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FOREWORD

So many articles and so many experimental efforts in the last 100 years
have been dedicated to the problem of determining absolute space that it
seems almost senseless to continue spending time and money searching for a
possible refutation of the principle of relativity. This principle, first formu-
lated by Galilei, has obtained such a firm experimental confirmation that any
researcher who, in the fourth-quarter on the 20th century, strains to refute it
ressembles very much the seeker of a perpetuum mobile.

Thus, on opening the book of Stefan Marinov, one is highly shocked.
One reads the first theoretical part with the due distrust with which one reads
anything that contradicts well-established and broadly accepted theories.
One then reads the second experimental part with the same distrust, expec-
ting easily to discover flaws in experiments which aim to disprove those
theories. However, on reading the book to the end, one begins to realize that
the experimental foundation of the general (Einstein) principle of relativity is
far from being so firm and indisputable as is generally accepted. I would like
to point out the so-called « rotating disk » experiment, performed for the first
time some 60 years ago, where first-order in v/c effects were easily measured.

One can doubt whether Marinov’s « coupled-mirrors » experiment is
carried out well and whether the effects which he claims to have registered
are not due to outside causes. However, the link Marinov shows between the
«rotating disk » experiment and his « coupled-mirrors » (or « coupled-
shutters ») experiment is so clear and indisputable that one is impelled to
logically accept his results. The different variants of the « rotating disk » and
« moving platform » experiments which he has performed give further evi-
dence for accepting his absolute space-time conceptions as adequate to
physical reality.

If the experimental results reported by Marinov are confirmed by other
experimenters, then the special theory of relativity will definitely have to be
rejected as not adequate to physical reality, although, as can be seen from the
first part of this book, the changes which have to be introduced into high-
velocity physics are not to be so radical as some of Einstein’s adversaries have
claimed and persist to claim. The Lorentz transformation (although treated
from an absolute point of view) and the 4-dimensional formalism of Min-
kowski will remain an important mathematical apparatus in the hands of the
theoreticians.



Nevertheless, the return to Newtonian absolute space-time conceptions
will be one of the most important physics events in the second-half of the 20th
century, showing how simple and, at the same time, how perfidious Nature is.

The work of Marinov brings many hopes that one day the quantum
enigma will be explained in a similar simple and « Newtonian » manner.

Moscow, April 1977 A. D. Sakharov
When living in Bulgaria (before September 1977), I frequently tried
but in vain to establish a written contact with Acad. A. D. Sakharov and to
send him EPPUR SI MUOVE via many channels. As the book had to ap-
pear, | wrote the above foreword and gave it to a girl-friend of mine, a
well-known physicist and a Jewess still living behind the curtain, who, put-
ting her scientific career at risk, decided to visit Sakharov in Moscow. Her
oral message (July 1977) was that Sakharov is highly sympathetic wih my
theory and will think about the matter of the foreword. As I could not re-
ceive his final consent, I published the book with the draft preface. Later
Acad. Sakharov distanced from my theory (see the whole story narrated in
detail in NATURE, 271, 296 and 272, 200 (1978)). Sakharov has given only
verbal opinions on my theory which are highly contradictory (as reported
via the press or communicated to me). After the apearance of EPPUR SI
MUOVE, at great personal risk, I visited Sakharov in Moscow flying from
Brussels (February 1978). He said me the following: The problems raised
by my theory and the conclusions to which it leads are so crucial and im-
portant for physics that he does not dare to take a stand-point. On the
other hand, he has no time to study the theory and to analyse the experi-
ments in detail, as he is dedicating all his time to social and moral activities.

I think that a written statement by Sakharov (positive or negative) on
my theory (now when he has more time for scientific work in Gor’ki) will
be decisive for the speedy restoration of absolute space. Absolute space-
time has already obtained such a firm experimental confirmation that for
its acceptance one needs one thing only: an open and wide discussion. For
this reason 1 organize on the 8—11 July 1982 in Genoa the International
Conference on Space-Time Absoluteness (ICSTA) which was prohibited by
the Bulgarian government -in 1977. I invite the space-time specialists all
over the world to publish papers before the conference and to participate at
the conference, where absolute freedom will be given to any stand-point.
Two Nobel-prize-winners, Prof. Wigner and Prof. Salam, have already
written me about their interest to visit the conference. If ICSTA-1982 will
be representative, then the GR-10 Conference in Venice (July 1983) will
meet on a firm and stable absolute ground, and the two old rivals, Genoa
and Venice, will concur for the prospect of science.

Graz, September 1981 S. Marinov
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PART I — THEORETICAL



§1. INTRODUCTION

In 1973 we completed the writing of our encyclopaedic work « Classical
Physics » (1500 typed pages in English), consisting of five parts :

1. Mathematical apparatus.
II. Non-relativistic mechanics.
I1. Relativistic mechanics.
IV. Gravimagretism.

V. Electromagnetism.

In this work theoretical classical (non-quantum and non-statistical)
physics for undergraduates is expounded, dealing with similar subject matter
as in Landau and Lifshitz (1969, 1959), and including celestial mechanics as
in, say, Danby (1962). In contradistinction to all conventional courses of
theoretical physics, we expound classical physics proceeding from Newto-
nian absolute space-time conceptions. We take only three physical quantities
— space, time, energy — as undefined notions and ten axioms (presented in
§2 of this book) as unproved assertions. All other conclusions and formulas
are obtained in a mathematically logical way, making use exclusively of the
mathematical apparatus given in part one, so that any student can read our
« Classical Physics » without encountering a single difficulty of mathematical
or logical character.

In the summer of 1973 we carried out the « coupled-mirrors » experi-
ment (Marinov, 1974b) with whose help we registered the Earth’s motion
with respect to absolute space, performing the measurement in a laboratory,
and thus we gave the first experimental refutation of the principle of relati-
vity. However, the accuracy of this first performance in the so-called de-
viative variant was too low, and the scientific community remained highly
sceptical [see, for example, Horedt (1975)].

Two years later we carried out for a second time the « coupled-mirrors »
experiment on a higher technological level in its so-called interferometric
variant (Marinov, 1978c) and we measured the Earth’s absolute velocity with
such an accuracy that no doubts can further remain about the invalidity of
the principle of relativity. The « coupled-mirrors » experiment, and many
others carried out or proposed by us, which prove the existence of absolute
space-time (considered in Part II of this book), as well as all important
high-velocity experiments carried out in the last 100 years, are described and
analysed in part three of « Classical Physics ».

We defend an aether-type model of light propagation, i.e., we assume
that light propagates with a constant velocity along any direction in absolute
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space.'However, the « aether » is not some medium at rest in absolute space
in which light propagates like sound in the air. We firmly defend the
corpuscular (Newton) model of light, rejecting the wave (Huyghens-Fresnel)
model, so that we call our model for light propagation « aether-Newtonian ».

_Within effects of first order in v/c (v the absolute velocity of the object
consxdergd. ¢ the velocity of light in absolute space) all physical and light
propagation phenomena can be rightly described by the traditional mathe-
matical apparatus and thus, within this accuracy, the Galilean transforma-

tion is adequate to physical reality. We call this mathematical approach
non-relativistic.

The non-relativistsc mathematical apparatus wrongly describes the ef-
fect§ of second (and higher) order in v/c. The so-called relativistic mathe-
n'!atlcal apparatus based on the Lorentz transformation (and on its compa-
mop which is called by us the Marinov transformation), as well as on the
4-dimensional mathematical formalism of Minkowski, rightly describes the
effgcts of any order in v/c. However, the Lorentz transformation and the
4-dimensional mathematical approach of Minkowski must be treated from
an absolute point of view, as is done in our absolute space-time theory (see
§3).. If they are treated and manipulated from a « relativistic » point of view
as is done ip the Einstein approach to the theory of relativity, then results;
inadequate in regard to physical reality are obtained. The errors to which the
theory of relativity leads are within effects of first order in v/c.

In many articles which are reviewed in Part I of the present book, we
analyse several experiments for which the relativity theory leads to false
results and we show why in many experiments the complex of absolute
effects which arise cannot be observationally detected, so that their apparent
results can be correctly described by the relativistic mathematical apparatus.

We shall also call high-velocity physics relativistic (in contradistinction
to low-velocity physics which will be called non-relativistic). but we preserve
these terms only for historical reasons, expressing in this way our high esteem
for the great deeds of Einstein and his followers, even though we establish

expcrimentally and logically that their basic concepts are not adequate to
physical reality.

§2. AXIOMATICS

§2.1. AXIOMS FOR SPACE, TIME AND ENERGY

The fundamental undefined notions in physics are :
a) space,

b) time,

c) energy (matter).



Let us note that we consider the notions « matter » and « material
system » as synonyms with the notions « energy » and « energy system ».

An image of a given material system is any totality of imprints (symbols)
with whose help, if corresponding possibilities and abilities are at our dispo-
sal, we can construct another system identical with the given one. We call two
material systems identical if their influence on our sense-organs (directly. or
by means of other material systems) is the same. We call two images of a
given material system equivalent if with their help identical systems can be
constructed. An image is adequate to physical reality if the influence of the
given material system on our sense-organs, which we predict as proceeding
from this image, is the same as the actual influence displayed by the system
considered.

A material system is called isolated if its images are independent of the
existence of other material systems.

We imagine space as a continuous, limitless, three-dimensional totality
of space points. The different Cartesian frames of reference (these are
mathematico-logical conceptions) with which we can represent space (i.e..
the images of space formed in our minds) may have various relations with
respect to each other. Depending on their relationship any pair of Cartesian
frames of reference will belong to one of the following three classes (or to
their combination) :

1. Frames with different origins.

2. Frames whose axes are mutually rotated.

3. Frames with differently oriented (or reflecting) axes (right or left
orientations).

We introduce the definitions of the fundamental properties of space :”

1. Homogeneity of space. Space is called homogeneous if considering
any material system in any pair of space frames of the first class, we always
obtain equivalent images.

2. Isotropy of space. Space is called isotropic if considering any material
system in any pair of space frames of the second class, we always obtain
equivalent images.

3. Reflectivity of space. Space is called reflective if considering any
material system in any pair of space frames of the third class, we always
obtain equivalent images.

We imagine time as a continuous, limitless, one-dimensional totality of
moments (time points). Here frames of reference for time of the first and
third class only can be constructed, i.e., time frames with different origins and
with oppositely oriented axes. The definitions of the fundamental properties

of time are :
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l: Homoge_neity of time. Time is called homogeneous if considering any
ma{enal system in any pair of time frames of the first class, we always obtain
equivalent images.

. 2. Reﬂec'tivity of time. Time is called reflective if considering any ma-
tena'll system in any pair of time frames of the third class, we always obtain
equivalent images.

.Experiment and observation suggest that real space has all three pro-
perties — l?omogeneity. isotropy and reflectivity, while real time has only the
homogenelty property. However. it is useful even in classical physics some-
times to assume (speculatively) time frames of the third class in order to
obtain a better understanding of some physical phenomena (for example, the
radiation of electromagnetic waves).

Thus we assume the following axioms for space and time :

. Axiom L. Space is homogeneous, isotropic and reflective. The
unit of measurement L for distance (i.e., space intervals along one
of the three dimensions of space) has the property of length and
may be chosen arbitrarily.

.Axi(.)m II. Time is homogeneous. The unit of measurement 7
for time intervals has the property of time and is to be established
from the following symbolic relation

LT '=c, 2.n

where c is a universal constant which has the property of velocity
(length divided by time) and is called velocity of light. If we
assume the numerical value of ¢ to be unity, then the correspon-
ding units of measurement for length and time are called natural.

Material points (see axiom III) of an important class, called photons,
propagate always with velocity ¢ in empty space. Space intervals can be
rpeasured by rigid rods and time intervals can be measured by light clocks. A
light clock represents a light source and a mirror placed at a distance ¢/2
lt?ngth units along the « arm » of the clock, so that any photon (or a suffi-
ciently small package of photons, called a light pulse) will return to the light
source, after being reflected by the mirror, in one unit of time.

Thus we imagine space as a three-dimensional totality of space points,
and time as a one-dimensional sequence (totality) of moments. These two
totalities are inseparable but independent of each other, and we can only
repeat the assertions of Newton about them (in his « Principia ») :

a) « Absolute space is that which by its own nature, unrelated to any
other thing whatsoever, always remains at rest. »

b') « Absolute time is that which by its own nature, unrelated to
anything else, flows evenly. »
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However. whilst endorsing Newton’s approach, we must make the
following remark : Space consists af space-points which can in no way exert
any influence on our sense-organs. Therefore, to speak about motion (or rest)
of space is inappropriate, and we prefer to reformulate Newton’s assertion
about space as follows :

Absolute space is that which by its own nature, unrelated to anything
else, extends evenly.

Of course, these « Newtonian » assumptions about space and time tell us
no more than that which is apparent to the layman because it is basically
impossible to define space and time satisfactorily: hence, appealing to the
intuitive ideas of the reader, we can say only :

a) Space is that which extends.
b) Time is that which endures.

However an empty space in which there is no matter and in which a
hypothetical time flows are purely academic notions, because space and time
which we know are associated with the Earth, the Sun and all stars of the
Universe (i.e., the world of energy surrounding us). Thus space and time
must be always considered related to matter. Space and time which we can
perceive with our sense-organs, because of their association with some ma-
terial systems, are called by Newton, relative, and he proposes :

a) « Relative space is that which is regarded immobile in relation to any
sensible thing : such as the space of our air in relation to the Earth. »

b) « Time regarded as relative is that which is uniform in respect of the
flux or variation of any sensible thing. Such is time of days, months, and
other periodic celestial phenomena as commonly received. »

When we have several sensible frames representing different relative
spaces and several sensible clocks reading different relative times, we can ask
which of these space and time frames of reference are the best representatives
of absolute space and time and have a common significance for any observer
in the Universe. Any historical epoch determines its best representatives of
absolute space and time wherein man and man’s thoughts stride. After the
performance of our « coupled-mirrors » experiment (Marinov, 1974b), we
propose the following definitions which, we hope, will not be refined by
future generations :

a) Absolute space is that in which velocity of light has the same value
along all directions.

b) Absolute time is read on a light clock which rests in absolute space
and is placed far enough from local concentrations of matter (i.e., from stars
and planets).
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These two definitions are identical with the following :

a) Absolute space is that with respect to which the energy of the Uni-
verse is minimum (Marinov, 1972b).

b) Absolute time is read on a light clock whose unit of time is less than
that of any other clock, the « arms » of all light clocks being equal (Marinov.

1975a).

Any reference frame associated with absolute space is called an absolute
frame and any clock (light clock) reading absolute time is called an absolute
clock.

Any reference frame which moves with a constant translational velocity
with respect to absolute space is called an inertial frame. Any clock stationary
in an inertial frame or placed near local concentrations of matter (or both) is
called a proper clock; a proper clock reads proper time.

Now we introduce the following axiom for energy which expresses the
philosophical principle about the unity of the world :

Axiom IIL All individually different material systems can be
characterized by a uniform (i.e.. having the same qualitative
character) quantity which is called energy and which can only
have different numerical value for different material systems. The
unit of measurement E for energy has the property of energy and
is to be established from the symbolical relation

ET = h, 22)
where A is a universal constant which has the property of action
(energy multiplied by time) and is called Planck’s constant. If we
assume the numerical value of / to be unity (and hence equal to
the numerical value of c¢), then the corresponding units of
measurement for length, time and energy are called natural.
Material points are those points in space whose energy is different
from zero. Every material point is characterized by a parameter
m, called mass, whose dimensions and numerical value are to be
established from the relation

(2.3)

where e, is the energy of the material point at rest and is called the
absolute energy or rest energy. When a material point moves with
respect to absolute space its energy is denoted by e,, being called
the proper energy or time energy. The quantity m,, called the
proper mass, is to be established from the relation

e. = mc?,

(2.9)

e, =m,c?.
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Furthermore, every material point is also characterized by a
parameter 7, called the period, whose dimensions and numerical
value are to be established from the relation

e, = h/T. (2.5)

Any material point crosses a given surface during a time
equal to its period. Thus any material point carries with itself a
certain strictly defined periodicity, representing not a rigid
« bullet » but a « burst ».

Finally, by analogy with the intuitive definitions of space and time given
on p. 14, we can also define energy intuitively and uniquely by :

c) Energy is that which exists.

Let us note that when we speak about material points we do not define
their volumes. This depends on the character of the physical problem which
is under consideration. For certain problems the elementary particles are to
be considered as material points and the atoms material systems. In other
contexts the stars are considered as material points and the galaxies material
systems. As a rule, however, when saying material points we shall understand
elementary particles. Let us note here that a photon in a radio wave (which
represents an elementary particle) can have a length in time (called the
wavelength) of the order of many kilometers. The word particle is a synonym
for the term material point.

2.2. AXIOMS FOR THE DIFFERENT TYPES OF ENERGY

Let us consider a given material system only in space. In this case the
energy of the material system can be called space energy and will be denoted
by U. If we measure this energy at different moments it will, in general, have
different values and thus will be a function of time.

Evidently, the energy U will depend on some « space individuality » of
the material points. If we suppose that the material points preserve their
space individuality in time, then the energy U will depend on their space
individualities only as a parameter. This numerical parameter is called the
parameter of the space energy of the given material point.

The space energy U of a material system cannot depend on the radius
vectors of the material points because, if this were so, the energy of the
material system in different space reference frames of the first class would
have different values, i.e., the images of the material system would be diffe-
rent, and that would contradict our first axiom.
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Thus the energy U will depend only on the mutual distances between the
material points becaue we have no other characteristics to describe the
material system considered now only in space, and we can write

U=1uU(r,), (2.6)
where r;, is the distance between the ith and jth material points whose total
number is n.

Consider now two material points of the system. The existence of other
material points cannot exert influence either on the parameters of space
energy of these points or on the distance between them. Hence the space

energy of a system of material points must be the sum of the space energies of
every pair of them.

iLj=12..n,

With the aid of logical considerations only, we cannot say how the space
energy U of two material points depends on the distance between them. This
dependence can be only postulated.

The part of physics known as mechanics does not consider the matter of
the dependence of energy U on the distances between the material points and
leaves this dependence unknown. o ;

The part of physics called gravitational theory denotes space energy by
U., gives to it the name gravitational energy (or the first type of space energy)
and assumes that the gravitational energy of two material points is inversely
proportional to the distance between them.

The part of physics called electrical theory denotes space energy by U,
gives to it the name electrical energy (or the second type of space energy) and
also assumes that the electrical energy of two material points is inversely
proportional to the distance between them.

The difference between the energies U, and U, consists in the different
parameters of space energy. The gravitational parameters of the material
points are their proper masses (called also gravitational charges) which we
have denoted by m,. The electrical parameters of the material points are their
electric charges which are denoted by g.

Space energy is called also potential energy.

We consider (here and in « Classical Physics ») only the gravitational
and electrical space energies and we ignore the energies of the so-called weak
a.nd strong interactions whose axiomatical basis and theoretical interpreta-
tion is as yet by no means clear.

We can systematize all unproved assertions about both types of space
€nergies in the following axioms for gravitational and electrical energies :

Axiom IV. The individual image of a material system in
space is given by the value of its gravitational energy U,. The
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energy U, of two material points is proportional to their proper
masses m,,, m,, and inversely proportional to the distance r

between them
m,, m,,

2.7)

U= -

The coupling constant y, called the gravitational constant,
shows what part of the energy unit represents the gravitational
energy of two unit masses separated by a unit distance; the di-
mensions of y are established from (2.7). The rest energy of an
important class of material points called electrons is equal to e,,
where e, is a universal constant called the rest energy of the
electron. If we work with natural units and we assume the nu-
merical value of e, to be unity, then the gravitational constant has
the value

y = 27810 *“ E 'L°T *. (2.8)

Axiom V. In addition to the mass parameter, every material
point is characterized by a second parameter of space energy g,
called the electric charge. The individual image of a material
system in space, in addition to its gravitational energy U,, is also
given by the value of its electrical energy U.. The energy U, of two
material points is proportional to their electric charges ¢,, g, and
inversely proportional to the distance r between them

v, = L9
e, r

The coupling constant ¢, is called the inverse electric con-
stant and e, — the electric constant; the inverse electric constant
shows what part of the energy unit represents the electrical energy
of two unit charges separated by a unit distance. The dimensions
of the electric charge g and of the electric constant e, are to be
established from (2.9), thus the dimensions of one of them are to
be chosen arbitrarily. The electric charge of any material point is
equal to ¢g., — ¢., 0 (or to an integer multiple), where g, is a
universal constant called the charge of the electron. If we work
with natural units and we assume the numerical value of the
electron charge to be unity, i.e., ¢. = 1 E'/2L "2 then the electric
constant is dimensionless and has the numerical value

e, = 861.

(2.9)

(2.10)

Remark. In the system of SI units, where one avoids fractional powers in
the dimensions of electromagnetic quantities, the unit for electric charge is
introduced as a fourth fundamental unit of measurement. In this system of
units the numerical values of ¢, h, e, , g, are different from unity, and with the
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aim of avoiding factors such as 27 and 47 appearing in formulas which do not
involve circular or spherical symmetry, respectively, one assumes the inverse
electric constant showing which part of the energy unit represents the
electrical energy of two unit charges separated by a distance of 1/4x length
units.

Let us now consider the given material system only in time. In this case
the energy of the material system can be called time energy and this will be
denoted by E, ; the time energy of a single material point will be denoted by
e,. If we measure this energy at different moments it will, in general, have
different values and thus will be a function of time.

Evidently, the energy E, will depend on some « time individuality » of
the material points. If we suppose that the material points preserve their time
individualities in time, then energy E, will depend on their time individuali-
ties only as a parameter. This numerical parameter is called the parameter of
the time energy of the given material point.

Consider now only one material point of the system. A system of one
material point is also a material system. Evidently for this material system the
time energy e, will only be different from zero because for the existence of
space energy we must have at least two material points. Thus, if we consider
this material point simultaneously in space and in time, its energy will be
equal only to its time energy e,

The time energy of our material point can depend neither on its radius
vector nor on a time coordinate (i.e., on the « time radius vector ») because in
such a case the energy of the material point would have different values in
different space and time reference frames of the first class, i.e., its images
would be different, so contradicting our first and second axioms.

If e, cannot depend on the space and time coordinates of the material
point, then we must assume that e, depends on the derivatives of the space
coordinates with respect to time because we have no other characteristics to
describe the image of the material point.

Contemporary physics, on the basis of the experience of centuries,
a§sumes that e, depends only on the first derivative of the space coordinates
with respect to time, i.e., on the velocity of the material point.

On the grounds of general considerations it is admissible to suppose that
our experience till now is insufficient, and that the time energy (generally
speaking, the image of the material points in time) could depend on the
higher derivatives too, i.e., on the acceleration. If until now human experience
has not established such a dependence, this may be due to the fact that
careful observations and detailed analyses of strongly accelerated material
Systems have not been performed. From the axiomatical point of view it is
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admissible to assume that a dependence of time energy on the acceleration of
the material points can exist, and that experiments with strongly accelerated
systems may lead to the discovery of entirely unexpected phenomena.

Let us now consider our material point in the presence of the other
material points of the given system. The existence of the other material points
cannot exert influence either on the parameters of the time energy of our
point or on its velocity (at a given moment!). Thus the time energy of a
system of material points must be the sum of the time energies of all material
points of the system.

We can systematize all unproved assertions about time energy in the
following axiom for time energy :

Axiom VL. The individual image of a material system in time
is given by the value of its time energy E,. The time energy e, of
one material point depends on its velocity; the change (the diffe-
rential) of the time energy is proportional to the scalar product of
the velocity and the differential of the velocity, the mass of the
material point being the coupling constant,

de, =mv.dv. 2.11)

Besides the space energies which depend on the distances between the
material points and the time energy which depends on the velocities of the
material points, a type of energy also exists which depends simultaneously on
the distances between the material points and on their velocities; we call this
space-time energy and denote it by W. If we measure this energy at different
moments it will, in general, have different values and thus will be a function
of time.

Evidently, the energy W will depend on some « space-time individu-
ality » of the material points. If we suppose that the material points preserve
their space-time individualities in time, then the energy W will depend on
these individualities only as a parameter. This numerical parameter is called
the parameter of the space-time energy of the given material point. It turns
out that the parameters of the space-time energy of the material points can be
expressed by their electric charges. Hence there exists, in addition to the
second type of space energy, a second type of space-time energy which is
called the magnetic energy. These two forms of energy are clearly comple-
mentary.

The logical question arises whether there exists also a first type of
space-time energy, i.e., a complement to the gravitational energy. The expe-
rience of centuries has not given us grounds to assume that such an energy
does exist. However, our present state of experimental technique cannot
reliably establish whether or not a first type of space-time energy exists. Since
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the internal logic of the mathematical apparatus with which we describe
physical reality (first of all the logic of the 4-dimensional mathematical
apparatus) does lead to the existence of a first type of space-time energy, we
shall hypothetically assume its existence, by analogy with the magnetic
energy, and we shall call it the magretic energy.

The part of physics where the gravitational and magretic energies are
considered is called gravimagretism; the part where the electrical and
magnelic energies are considered is called electromagnetism.

The manner of dependence of the energy W of two material points on
the distance between them and on their velocities is to be postulated. We
consider the space-time energy of a system of material points to be the sum of
the space-time energies of every pair of them.

Wf: can systematize all unproved assertions about the second type of
s?ace-tlme energy in the following axioms for magretic and magnetic ener-
gies :

Axiom VII. Every material point with proper energy e, moving at
velocity v is characterized by the quantity

P = (2.12)
called the proper momentum of the material point. The individual
imflge of a material system in space and time is given by the value
of its magretic energy W,. The energy W, of two material points is
proportional to the scalar product of their proper momentap,,, p,.

divided by c and inversely proportional to the distance r between
them

m, v

_ M, My, V.V,
oy — Y = — (2.13)
The coupling constant vy, called the magretic constant, is equal to
the gravitational constant.

Axiom VIII. Every material point with electric charge ¢ moving at
velocity v is characterized by the quantity

Jj=qv. (2.14)
called the electric current element of the material point. The
individual image of a material system in space and time, in addi-
tion to its magretic energy W, | is also given by the value of its
magnetic energy W. . The energy W, of two material points is
proportional to the scalar product of their electric current ele-
ments j, , j. divided by c and inversely proportional to the distance
r between them

_ jl I. q,q.
W =nm—

= K,
? r

v,.v,

~ . (2.15)
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The coupling constant p, is called the magnetic constant and it is
equal to the inverse electric constant, thus p, = /e,

Remark. In the SI system of units it is assumed that p, = 1/¢, c”.

2.3. AXIOM FOR THE CONSERVATION OF ENERGY

The five types of energy U, , U., E,, W,, W. of a material system are
functions of time and their numerical values can, in general, vary with time.
The unproved assertion about the change of the energies of a material system
in time is given by the following axiom for the conservation of energy,
expressing the philosophical principle about the unity of space and time :

Axiom IX. Full energy H, of a material system is called the
sum of the time energy E, and the space energy U. Total energy
H, is the full energy plus the space-time energy W. The numerical
value of the total energy of an isolated material system remains
constant in time, that is

di, = 0. (2.16)

2.4. HIGH VELOCITY AXIOM

On the grounds of the nine axioms formulated above, the theory of
classical non-relativistic physics can be built, i.e., of classical physics in which
we assume the velocities of the material points to be too small in comparison
with light velocity c. Whether we can consider the velocities of the material
points small in comparison with light velocity depends on the precision with
which we wish to consider the given physical problem.

At velocities of the material points comparable with ¢, we must take into
account also the tenth axiom which, together with the first nine axioms,
represents the axiomatical grounds of classical relativistic physics.

Conventional physics assumes that information can be transferred from
one space point to another only if a certain quantity of energy can be sent
from the first space point to the second. However, this is not true. Indeed, let
us have a rotating rigid shaft on whose ends two identical cog-wheels are
fixed and let us number any two cogs which lie oposite each other on the ends
of a certain generatrix of the shaft. Let us assume that the shaft rotates with a
constant angular velocity and there is no friction or torsion. Then, if a certain
cog of the first cog-wheel makes contact with an indicator placed at one end
of the shaft, we know that the corresponding cog of the other cog-wheel will
also make contact with an indicator placed symmetrically at the opposite end
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of the shaft. Obviously, in such a case, between both these space points no
transfer pf energy takes place, however, there is an information link between
these points.

We call the synchronization of spatially separated clocks by the help of a
rotating rigid shaft placed between them a Newtonian time synchronization.
A Newtonian time synchronization can be realized also by the help of signals
which proceed with the same velocity in any direction, after taking into
account the time delays which the signals need to cover the different dis-
tances to the clocks placed at different space points.

If we synchronize spatially separated clocks, interchanging light signals
between them, and assume that the velocity of light has the same numerical
value in all directions with respect to any inertial frame, then we call this an
Einsteinian time synchronization. The Einsteinian time synchronization can
be reduced to a Newtonian time synchronization only if the frame in which
we are working is attached to absolute space. In any frame moving with
respect to absolute space the Einsteinian time synchronization differs from
the Newtonian since in moving frames the velocity of light is anisotropic.

In Marinov (1975a) we show that the Newtonian time synchronization
leads to the Galilean transformation and the Einsteinian time synchroniza-
tion leads to the Lorentz transformation. It turns out, however, that space
coordinates are involved in the Lorentz transformation formulas for time,
and this implies that the constancy and isotropy of light velocity is essentially
only a convention.

The mathematical apparatus for a description of high-velocity physics
afiequate to physical reality is to be obtained by assuming the following
high-velocity (relativistic) axiom :

Axiom X. The material points called photons move with
velocity ¢ along all directions in absolute space and their velocity
does not depend on their history. Light clocks with equal « arms »
have the same rate in any inertial frame, independent of the
orientation of their « arms ». At any point of any frame the time
unit is to be defined by the period of light clocks with equal
« arms », independent of the velocity of the frame and the local
concentration of matter.

Here are some remarks on this axiom :
~ When we say that the velocity of the photons does not depend on their
hlstf)r}", we mean that it does not depend on the velocity of the source of
radiation, nor on the velocities of all material points with which the photon
has collided, nor on which it was « hitched » (Marinov, 1974a), and nor on
the material systems, i.e., on the potential fields, crossed by the photon.
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The most important unproved assertion of our tenth axiom affirms that
the rate of any proper light clock does not depend on the orientation of its
« arm ». This assertion represents a crucial boundary between non-relativis-
tic and relativistic mechanics which has concerned the human mind almost
the whole of this century. Indeed. if we try to find the rates of two identical
light clocks proceeding with velocity v with respect to absolute space when
their « arms » are, respectively, perpendicular and parallel to v, then the
non-relativistic conceptions should lead to the result that to n,,, periods of the
« transverse » light clock
par = Myer (1 = V¥/c)'2 2.17)

periods of the « longitudinal » light clock will correspond, supposing (as we
shall always do) that the « arms » of the clocks are equal.

n

Indeed, if we denote by T,., = T,.; = T,../2 the times in which light
covers the « arm » d of the « transverse » clock « there » and « back », we
shall have for these two cases

ATt =d + v T2,

per

AT, = (2.18)

per

&+ VT,

from where
2d

c(l = vi/c)'? 2.19)

Tpor = Tp;r + Tp!:; =

On the other hand, if we denote by 7., and T, the times in which light

covers the « arm » d of the « longitudinal » clock « there » (i.e., along the

direction of propagation of the clock) and « back » (i.e., against the direction
of propagation of the clock), we shall have for these two cases

Ty =d +vT,,,, cTyv =d — vl (2.20)
from where
2d
Towe = Tour + Tyt = ————— . 221
" ’ ’ c(l — vi/c?) 220
Hence it will be
Tper = Ty (1 = v?/c?)'2 (2.22)

and if for a certain time f the « transverse » light clock makes n,,, « ticks » and
the « longitudinal » n,,, « ticks », it will be

t=ny,T,., t =n,,, T,... (2.23)
From (2.23) and (2.22) we obtain (2.17).
Our tenth axiom asserts, however, that it must be
Mpar = Nper s (2.24)

and this empirical fact was first proved by the historical Michelson-Morley
“experiment.
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It can pe shown that the empirical fact (2.24) contradicts the Galilean
transformat;on (as a matter of fact we have just shown this). The Lorent
transf(?r{ngtlon leads to the result (2.24); however, when lr.eated from ;
« relativistic » point of view, it has failed to explain other experiments, such
as our « coupled-mirrors » experiment. e

In the .next section we shall show that our tenth axiom leads to
transformat!on of the space and time coordinates we have called the M;rinos
transforma'mon. anq which is different from those of Galilei and Lorentz
However. in a certain aspect, it represents a synthesis of these two, and is to b;

cons@ered as a companion of the Lorentz transformation, showing how the
latter is to be treated from an absolute point of view.

§3. COORDINATE TRANSFORMATIONS

3.1. THE GALILEAN TRANSFORMATION

‘ (\ll trgnsformations of the space and time coordinates which we consider
m'thls section are between a frame K attached to absolute space and a f;ame
K moving inertially with a velocity V. To avoid trivial constants, we shall
consider the so-called homogeneous transformation, i.e., we shakli suppos
that at the initial zero moment the origins of both frames have coincideg};se:
fig. 3-1 where for simplicity’s sake a two-dimensional case is presented).

w3

(44

Fig. 3-1
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Let us have a point P whose radius vector in frame K is r (called the
absolute radius vector) and whose radius vector in frame K" is r* (called the
relative radius vector). The radius vector of the origin of frame K"in frame K
is R (called the transient radius vector). It is

R=Vi=V,1, 3.1

where 1 is the time read on a clock which is at rest in frame K (an absolute
clock) and Vis the velocity of frame K’ measured on this clock, while ¢, is the
time read on a clock which is at rest in K’ (a proper clock) and V, is the
velocity of frame K~ measured on this clock.

According to the traditional Newtonian conceptions, we shall have

(3.2)
(3.3)

r=r—Vit,

r=r +V,ut,.

Adding these two equations, we obtain (3.1). If we assume that the
clocks attached to K and K’ read the same time, we have

V=1V,. (3-4)

’ = li) i)

Thus in such a case we can write the transformation formulas for the
space and time coordinates in the form

3.5)

(3.6)

r=r-—Vit,
r=r+Vt,

Formulas (3.5) represent the direct, and formulas (3.6) the inverse ho-
mogeneous Galilean transformation.

3.2. THE LORENTZ TRANSFORMATION

Now we shall search for a transformation of the space and time coordi-
nates which will lead to the relation

TP"" = Tpnr (37)
between the periods of « transverse » and « longitudinal » light clocks, as

required by our tenth axiom.

Let us decompose (fig. 3-1) the radius vectors r and r’ into components
P Foee and r,,., 1., respectively, perpendicular and parallel to the direction

of propagation of K.
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According to the traditional Newtonian conceptions, we have

r' = r;’wr + rr’mr = rnt-r + (rpar - Vl) =r - V’

(3.8)

We can meet the requirement (3.7) of our tenth axiom if we take the
parallel component of the relative radius vector contracted by the factor

(1 = V*/c*)""* when expressed by the coordinates in frame K. i.e.. if we
axiomatically assume as valid instead of the Newtonian relations
Fper =Py R — Vi=1r), (3.9)

the « Lorentzian » relations

Fpor = r"'p'y roor — Vi = r[’mr(l — Vl/CZ)l/z' (3]0)

This « contraction » (when r,,, — V1 is expressed by r;,,) or « dilation »
(when r,,, is expressed by r,,, — V1) is neither a physical effect, as supposed
by Lorentz, nor a result of measurement, as obtained by Einstein. According
toour theory, r,,. and r,,, —. Vi represent the same length (distance) between
two material points which can be connected by a rigid rod or which can move
vxtith respect to each other, or between two non-material points, taken at a
given moment. (N.B. About lengths one can speak only at a given moment !)
Thus r,,, and r,,, — Vi are equal and we write the second relation (3.10)
only because the velocity of light has not an exact aether-Newtonian cha-
racter. Making a transition from (3.9) to (3.10) we introduce a blunt mathe-
matical contradiction into the traditional Newtonian mathematical appara-
tus. As we have shown in detail in Marinov (1975a), this mathematical
contradiction remains for ever in the formulas and we must state that after
years c.)f intensive mathematical speculations we could not find a way to get
rid of it. We ask the reader to pay due attention to this statement and not to
blame our theory for mathematical imperfection. This imperfection exists in
Nature itself. We must realize once and for all that light has not an exact
aetller-l\lewtonian character of propagation since its « there-and-back » ve-
locity (in a frame moving in absolute space) is isotropic, while according to
the ae.th.er-Newtonian conceptions it must be anisotropic. We have called this
peculiarity in the propagation of light the aether-Marinov character of light
propagation.

Thus, if we wish to meet the requirement (3.7), we have to write instead
of the re.lation (3.8) the following relation for the transformation of the radius
vectors in frames K and K~

. , r..— Vi
r=r.,+r.,=r, + 2"
’ ’ P (l —_ Vz/cz)nz' (3”)
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This formula, written in such a manner that only the absolute radius
vector r is represented, but not its transverse and longitudinal components

Iy s Foar » has the form

n

1 r.V t

(l _ Vz/CZ)I/Z - I] | & —(l —_ VZ/Cz)lxz} V.

(3.12)

r=r+ {|

Let us now find the formula for the inverse transformation, i.e., from
r’ to r. Here we have two possibilities :

a) To assume that also in frame K the velocity of light is isotropic and
equal to ¢ (the Einstein way).

b) To assume that the velocity of light is isotropic and equal to c only in
frame K which is attached to absolute space (the Marinov way).

The Einstein way leads to transformation of the time coordinates where
the radius vectors should appear, i.e., to relative time coordinates, while the
Marinov way leads to transformation of the time coordinates where th
radius vectors should not appear, i.e., to absolute time coordinates.

Now we shall follow the first way and in §3.3 the second.

If the velocity of light in frame K is assumed to be isotropic and equal t
¢, then, assuming further that the velocity with which frame K moves wit
respect to K * (and measured on a clock attached to K7) is equal with opposit
sign to the velocity V' with which frame K' moves with respect to K (anc
measured on a clock attached to K), we can write (let us note that both thes
assumptions follow from the principle of relativity)

1 r. v t

(1 — Vi) - 1] 7z + = V’/CZ)'/Z} V. (3.13

r=r+ {]

Adding formulas (3.12) and (3.13), we obtain
1 r. Vv + t _
- [(] — Vz/cz)l/z ] V? (l _ Vz/cz)lxz

_ 1 l]r'. Vv + r
a [(I — V?/c?)'\? Ve (1= Vi)'

3.1

On the other hand, if in formula (3.14) we substitute r from (3.13), we
shall obtain the transformation formula for time in which ¢ will be expressed
through ¢ and r’

t"+r.V/c?
(I _ Vz/(.z)l/z :

(3.16)

Formulas (3.12), (3.15) represent the direct, and formulas (3.13). (3.16)
the inverse homogeneous Lorentz transformation. These formulas show that
not only the radius vectors r and r’ are two different quantities, but also the
time coordinates ¢ and ¢" are two different quantities and are to be called
absolute time coordinate and relative time coordinate.

Thus, since the time coordinates in the Lorentz transformation are
relative quantities, the light velocity constancy in this transformation is only
apparent. In Marinov (1975a). we show how, proceeding from the Lorentz
transformation, one can obtain the expressions for the light velocity in any
inertial frame which are adequate to physical reality. Hence, according to
absolute space-time theory, the Einstein general principle of relativity is
invalid and the Lorentz transformation is adequate to physical reality only if
it is treated from our absolute point of view. Since Einstein treats the light
velocity constancy as a physical fact and the general principle of relativity as
a law of Nature, we consider the Lorentz transformation in the context of
special relativity as inadequate to physical reality.

Note that we consider the Galilei limited principle of relativity as ade-
quate to physical reality. This principle asserts that there is no mechanical
physical phenomenon by whose help one can establish the inertial motion of
a given material system. Hence for the mechanical phenomena any inertial
relative space is isotropic.

For the electromagnetic phenomena the principle of relativity does not
hold good. Thus for the electromagnetic phenomena the inertial relative
Spaces are not isotropic.

However, as Minkowski has shown, if we consider a 4-space in which the
three space coordinates in any intertial frame are unified with the cor-
responding time coordinate multiplied by ¢ (and by the imaginary unit), then
this 4-space turns out to be isotropic and homogeneous. As the Galilean
transformations make a group in the 3-space, so the Lorentz transformations
make a group in the 4-space. This is an exclusively great mathematical

If in this formula we substitue r* from (3.12), we shall obtain the tran advantage and the 4-dimensional mathematical apparatus developed by

formation formula for time in which " will be expressed through 1 and r

t—r.V/c?

(= ——m——— .
(l —_ Vz/cz)l/z
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(3.15

Minl.(OWSki has given an enormous help in the investigation of high-velocity
physical phenomena.

In our absolute space-time theory, we work intensively with the 4-

dimensional mathematical formalism of Minkowski, always keeping in mind
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that the fourth dimension is not a time axis but a length axis along which the
time coordinates are multiplied by the velocity of light, and here the apparent
absoluteness of the light velocity is always connected with the relativity of the
time coordinates. As a matter of fact, the time coordinates are absolute and
light velocity relative, as in the Marinov transformation and as we have
shown by the help of numerous experiments analysed in Part II of this book.

We must note and emphasize that if setting experiments where only
electromagnetic phenomena are involved, then the principle of relativity
apparently holds good because of the mutual annihilation of the appearing
absolute effects. This principle breaks down only when setting experiments
where combined electromagnetic and mechanical phenomena are involved,
as is the case with the « coupled-mirrors » experiment, the « antipodal-
clocks » experiment and the ultrasonic « coupled-shutters » experiment.

3.3. THE MARINOV TRANSFORMATION

As a result of our theoretical and experimental work, we have come to
the conclusion that time is an absolute quantity and the Marinov trans-
formation (Marinov, 1978d) is adequate to physical reality. By the help of
this transformation, one can explain all high-velocity experiments, including
those which contradict the Galilean as well as the Lorentz transformation, if
the latter be treated in the frame of special relativity.

To obtain the Marinov transformation, we shall proceed from our tenth
axiom (§2.4), noting that now we shall not take into account the influence of
the gravitating masses on the rates of the light clocks, a problem considered
in Marinov (1976a).

Thus, according to the tenth axiom :

a) Light clocks with equal « arms » have the same rate, independent of
the orientation of their « arms ».

b) In any frame the time unit is to be defined by the period of light
clocks with equal « arms », independent of the velocity of the frame.

As we have shown in §2.4, the first assertion drastically contradicts the
traditional Newtonian conceptions. The second assertion represents not such
a drastic contradiction because in the frame of the traditional Newtonian
space-time conceptions also one can define the time unit in any inertial frame
by the period of light clocks with equal « arms ». However, in the traditional
Newtonian frame, the inconvenience exists that one has further to define that
the « arms » of the light clocks must always make the same angle with the
velocity of the inertial frame used, e.g., their « arms » must be perpendicular
to this velocity. In such a manner the absolute time dilation phenomenon will
be introduced also into the traditional Newtonian theory. Thus, at first
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lance, it seems that the second assertion has not such a « nat}lral » character
as the first one and represents only a stipulation. However, it turns out that
not only the periods of light clocks become greater when the'y move with

reater velocity in absolute space (we repeat, a phenomeqon which exists also
in the traditional Newtonian theory) but also the penods. of many other
physical processes (the periods of atomic clock§, the mean.-llves of decellyfng
elementary particles). So far there is no expenmenlal.ewdence permitting
one to assert that the period of any system (say, the pengd of a spring clqck,
the pulse of a man) becomes greater with the ?ncreasg of its a.bsolut'e vglocnty.k
This problem needs additional theoretical and expérm‘lent.al investigation. At
any rate, we think the statement about the time QIlathn is to be cons,d.ered
not as a stipulation but as an axiomatical assertion alien to the traditional
Newtonian theory.

Let us find first how the Galilean transformation formulas are to be
written if one should assume that in any inertial frame the time unit ?s to be
defined by the period of light clocks with equal « arms », supposmg’for
definiteness that the « arms » of the light clocks must be always perpendicu-
lar to the absolute velocity of the frames.

The period of an absolute light clock (see p.15) whose « arm » is d will be
T=2d/c. (3.17)

A proper light clock with the same « arm » which moves with velocity V
in absolute space will have a period [see (2.19)]

2d - r (3.18)

T, = c(l - Vz/CZ)I/Z (1 - V’/C’)"z :

If (at an appropriate choice of d ) we choose T as a time unit in frame K
(called absolute second) and T, as a time unit in frame K~ (called proper
second), then it is clear that when between two events, ¢ absolyte seconds and
1, proper seconds have elapsed, the relation between them will be

1/t = T/T, = (1 — V2/c?)\? (3.19)

where T and T, are measured in the same time units (absolute or proper).
Under this stipulation we shall obtain from (3.1) and (3.19)

4 V,
V= W . (3.20)

Thus the transformation formulas (3.2), (3.3) to which we attach the
relation (3.19) are to be written in the following form

r=r—Vi, t,=1(— V)2, (3.21)
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r=r+ V1, t=1,(1 4+ V/c1)"2, 3.22)

Formulas (3.21) represent the direct, and formulas (3.22) the inverse
homogeneous relativistic Galilean transformation.

In these formulas, V is the velocity of frame K~ with respect to absolute
space (i.e., to frame K) measured in absolute seconds (called the absolute
transient velocity), V, is the same velocity measured in proper seconds
(called the proper transient velocity) and ¢ is the velocity of light along the
«arm » of the absolute clock measured in absolute seconds, as well as along
the « arm » of the proper clock measured in proper seconds.

If, when proceeding from the traditional Newtonian conceptions, one
would come to the result that a « transverse » and a « longitudinal » light
clock would have the same rate, then a transformation of the space and time
coordinates adequate to physical reality, at the assumption of the time dila-
tion dogma, would be given by the relativistic Galilean transformation.
However, the traditional Newtonian conceptions lead to the conclusion that
a « transverse » and a « longitudinal » light clock have different rates (see
§2.4). On the other hand, the experiment (the historical Michelson-Morley
experiment was the first one) has shown that the rates of a « transverse » and
a « longitudinal » light clock are equal. We have assumed this empirical fact
as an axiomatical assertion, without trying to explain why Nature works in
such a manner. The introduction of this axiomatical (empirical) assertion into
the Galilean transformation leads to the Marinov transformation.

This is to be done in the following manner : exactly in the same way as in
§3.2, we come to the conclusion that if we wish to meet the requirement of our
tenth axiom about the independence of the light clock’s rate on the orienta-
tion of the clock’s « arm », the transformation between the radius vectors r
and r’is to be written in the form (3.12).

To obtain the inverse transformation, we proceed from the formula [see
(3.10), (3.1) and (3.20)]

r=r,tr.,=r.,+r.,.(1=-VY)"?2+ ¥Vt =

,

=r,+ —2 4+ V.1 . .

P (l + Vnz/cz)l/z (3 23)

This formula, written in such a manner that only the relative radius

vector r’ is represented, but not its perpendicular and parallel components
ry.. o Fooe » Will have the form

| r. v,
r=r'+ {[| ——— = 1]
(1 + Ve v

+10,)V, . (3.24)
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If we express here ¥V, through V according to the first formula (3.20),
then from (3.12) and (3.24), in a manner similar to that used in §3.2, we can
obtain the second formula (3.21). On the other hand, if in (3.12) we express V
through V, according to the second formula (3.20), then from (3.12) and
(3.24) we can obtain the second formula (3.22).

Let us combine formula (3.12) with the second formula (3.21) and
formula (3.24) with the second formula (3.22)

1 r.V t

ro=r+ {[Wz_l] K _(I—Vz/cz)”z} V,
t,=t(1 — V)", (3.25)
1 r. Vv,
r=r'+{[(l—+Wz— ] K +4,} V.,
t=1,(1+ V)", (3.26)

Formulas (3.25) represent the direct, and formulas (3.26) the inverse
homogeneous Marinov transformation.

Let us now obtain the Marinov transformation formulas for velocities.
Writing in the first formulas (3.25)and (3.26) dr, dt, dr’, di, instead of r. 1, ', L,
dividing them by d and introducing the notations v = dr/d1. v’ = dr’/dt, we
obtain

1 v.V 1

A=V L 7 = sz)m} V., (327

v =v+ {]

v'.
VI

v=v + {[(1 = V) — 1] Vo + 1y V. (3.28)

The velocities v and v’ are measured in absolute time. Thus v must be
called the absolute absolute velocity (as a rule, the first adjective « absolute »
will be omitted) and v’ absolute relative velocity (as a rule, the adjective
« absolute » will be omitted). For this reason we have written in (3.28) the
absolute transient velocity ¥ and not the proper transient velocity V, .
Formula (3.27) represents the direct, and formula (3.28) the inverse Marinov
transformation for velocities written in absolute time.

Writing in the first formulas (3.25) and (3.26) dr. dt, dr’, dt, instead of r. 1,
r’, t,, dividing them by d, and introducing the notations v, = dr/dt, for the
proper absolute velocity and v, = dr’/dt, for the proper relative velocity, we
can obtain the Marinov transformation for velocities written in proper time.
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One can write also the transformation formulas for velocities in which
the relative velocity is expressed in proper time and the absolute velocity in
absolute time. This will be the Marinov transformation for velocities written
in mixed time.

Now we shall write the transformation formulas for the velocities’
magnitudes. Denoting the angle between v and ¥V by 6§ and the angle between
v’and V by §', we can write formulas (3.27) and (3.28) in the following form,
after having squared them,

vi(l = Visin’8/c?) —2vVcos + V?

v = T : (329)

vi=vi(l = Vicost@/c?) + 2vWeos8 (I — Ve 2+ Vi (3.30)

If we suppose v = ¢ and if we write v’ = ¢’, where ¢ is the relative light
velocity measured in absolute time, i.e., the absolute relative light velocity (as
a rule, the adjective « absolute » will be omitted), then these two equations
(the second after a solution of a quadratic equation with respect to v°) give

| — Vcosl/c (1 = V/cy)in
¢ =c .
(I = Viey'n 1+ Vcos8'/c

¢’ = (3.31)
If we denote by ¢, the proper relative light velocity, then its connection

with the absolute absolute light velocity (as a rule, the first adjective « abso-
lute » will be omitted) ¢ will be

I — Vcosl/c c
;= = , 3.32
“ =T Tyae 1 + Vcos@'/c (32
and its connection with the proper absolute light velocity
c
c, = (3.33)

(l — VZ/CZ)I/Z

will be the same as that given by formula (3.31).

Note that the velocities with respect to the moving frame K are called
relative, while the clocks attached to K" are called proper. On the other hand,
the velocities with respect to the rest frame K are called absolute and the
clocks attached to K are also called absolute. To have in the second case a
terminological difference similar to the first case, we have considered calling
the absolute clock and absolute time « universal ». However, finally we
decided to use a single word, even though this might sometimes lead to
misunderstandings, because of the confusion in using too many different
terms.
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We designate the relative quantities by upperscripts (primes) and the
proper quantities by subscripts (zeros). For this reason, in the Lorentz
transformation (where time is relative), we designate the relative time coor-
dinates by upperscripts (primes) and in the Marinov transformation (where
time is absolute), we designate the proper time coordinates by subscripts
(zeros).

The distances are always absolute. However, the aether-Marinov cha-
racter of light propagation leads to the introduction of the notion « proper
distance ». The problem about the eternal contradiction between proper
distances and distances is considered in detail in Marinov (1975a). Here we
must again repeat that the absolute and proper time intervals are physically
different quantities, while the difference between proper distances and dis-
tances is only a contradictory mathematical result which appears because of
the aether-Marinov character of light propagation engendered by the bi-di-
rectional light velocity isotropy in any inertial frame.

3.4. GROUP PROPERTIES OF THE MARINOV TRANSFORMATION

After a due examination of the Marinov transformations, it can easily be
established that they form a group. Since the mathematical analysis in the
general case is too cumbersome, we shall suppose, for simplicity’s sake, that
the velocities of the different frames and their x-axes are parallel to the
x-axis of the rest (absolute) frame. As in this simple case the y- and :z-
coordinates are subjected to an indentical transformation, we shall ignore
them.

From formulas (3.25) we obtain the following direct transformation
between the coordinates (x,r) in the absolute frame K and the coordinates
(x,,t,) in a proper frame K, moving with velocity V, (V, S O) along the
positive direction of the x-axis

x = V,t
= — L=t (1= V,27/c)": 3.34
Xa (l — sz/(‘z)l/z e ( C) ( )

The inverse transformation between the coordinates (x,,,) in a proper
frame K, moving with velocity V, (V, S 0O) along the positive direction of the
x-axis of the rest frame K and the coordinates (x.,f) in K, according to
formulas (3.26) [see also formulas (3.20)], is

V, 1, L

X = xl(l —_ VlZ/Cl)l/2+ (1_:——7‘27)”2 , 1= (l———[/lz—/cz——)Tz N (335)

where the velocities V, and V, are measured in absolute time.
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Substituting formulas (3.35) into formulas (3.34), we can express the
coordinates in frame K, through the coordinates in frame K,
1 - Vet ) "2+ ; V=V,
1 — V¢ (1= V) (L = Vi e

x,=x (

l —_— VI/CI 172
12 = t, (T-—-—ﬁc—:) . (3.36)
1

These formulas are absolutely sy_inmetric with respect to the coordinates

_in both frames. Now we shall prove that these transformations form a group.

A set of transformations, T, , Ty » Tas »---, fOrms a group if it has the
following properties :

1. Transitive property : The product of two transformations of the set is
equivalent to a member of the set, the product

T,=T,Ty, (3.37)

being defined as performing T\, and T, successively.

If formulas (3.36) give a transformation T; , a transformation T, will
have the same form in which the number 1 is replaced by 2 and the number 2
by 3. Substituting formulas (3.36) for the transformation 7, into the cor-
responding formulas for the transformation 75, , we obtain a transformation
T,, which has the same form as (3.36) in which the number 2 is replaced by 3.

Thus the transitive property is proved right. We mention here that the
transitive property for the Lorentz and Galilean transformations can be
proved only if one takes into account the corresponding transformation for
velocities. The transitive property for the Marinov transformation is proved
directly, i.e., without taking into account the tr?nsformation for velocities.

2. Identity property : The set includes one « identity » transformation,
T,,, whose product with any other member of the set leaves the latter
unchanged. Thus

ToTny=TyT,=T,. (3'38)
The identify form of the transformation (3.36) occurs for V, = V,.
3. Reciprocal property : Every member of the set has a unique recipro-

cal (or inverse) which is also a member of the set. Thus the inverse of T, is
T.. , where T,, is a member of the set, and

T.T,,=T,. (3.39)
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The reciprocal of the transformation (3.36) can be obtained by writing
the number 2 instead of 1, and vice versa.

-

4. Associative property: If three succeeding transformations are
performed, then

To(TpTo) = (T T2) Ty . (3.40)

The associative property can easily be proved.
Thus the Marinov transformations form a group.

§4. ELEMENTS OF MOTION
4.1. VELOCITY

As already stated (§3.3), we introduce the following two types of velo-
city :

The velocity
: dr
v=—, . @.1
t
The proper velocity
di
v, = ” - v . (4.2)

d, (1= v/ (1= viic)”

For example, consider a car moving along a given road which we

suppose at rest in absolute space. Two policemen, the distance between

whom is dr, supplied with two clocks (imagine for clarity, light clocks) which
are synchronized by the help of a long rotating rigid shaft (i.e., by the help of
a Newtonian time synchronization), will register the time dr in which the car

- will cover the distance and, thus, will measure the velocity v of the car. The

driver supplied with a single clock will register the proper time dt, in which
the car will cover the same distance and, thus, will measure the proper
velocity v,. Obviously, the driver will always register a higher velocity and
even when he surpasses the prescribed speed limit (according to his calcula-
tion) he would not be stopped by the policemen to pay a fine.

In relativistic physics, we work with the proper velocities (in general,
with the proper elements of motion) because in such a case the problem about
the synchronization of spatially separated clocks is eliminated.
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The proper velocity represents the space part of a 4-vector called the
4-velocity. The time component of the 4-velocity is the proper light velocity
[see (3.33)]

_ d(ct) - c

. 4,
° T T, (I = vi/cn)2 3)

The product of the mass of a material point by its velocity is called the
momentum; thus

p=myv, P, =myv, “4.4)

are, respectively, the momentum and proper momentum of the material point.

42. ACCELERATION

We introduce the following three types of acceleration :

The acceleration

dv d’r 45
u = — = .
dt dr 45
The first proper acceleration
u0=‘£‘:"_—_i (ﬁ): il +1 v-u —.  (4.6)
dt — dt cdi] (1= vi/e) T e (1= vi/c)?
The second proper acceleration
dv, d . dr u v v.u
= = = 4.7

oo . ., = . 5. - + — .
Yoo = ., T a, (do) 1= vi/ct | @ (1= vy

The second proper acceleration represents the space part of a 4-vector
called the 4-acceleration. The time component of the 4-acceleration can
easily be expressed through the acceleration and velocity.

The product of the mass of a material point by its acceleration is called
the kinetic force; thus
f=mu, fo=mu,, foo = mu, (4.8)
are, respectively, the kinetic force, first proper kinetic force and second
proper kinetic force of the material point.
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4.3. SUPER-ACCELERATION

We introduce the following four types of super-acceleration :

The super-acceleration
du d'v d’r

E T T i dr 9

The first proper super-acceleration
du, _ dv, _d_dr
ar dr ~ dr " dr,

”70 =

) . (4.10)

The second proper super-acceleration

du,, dv, d [ d ( dr Al
7Y = —_— = —_— = — J— p—
dt dr dt, di, " dt, I @1
The third proper super-acceleration
du,, d ,dv, d d ( dr ) 412
w = = — — = —_— —_— —
dt, dt, * di, dt, [dt,, dt, I “.12)

Putting (4.7) into (4.12), we obtain the following expression for the third
proper super-acceleration through the velocity, acceleration and super-
acceleration of the material point

w Su(v.u) + vur + v(v.w) 4v  (v.u)
(l — Vz/Cz)J/Z Cz(l —_ Vz/Cz)</z ot (l _ VZ/(.2)7/2 ’

(4.13)

U =
Waooo

The third proper super-acceleration represents the space part of a 4-
vector called the 4-super-acceleration. The time component of the 4-super-
acceleration can easily be expressed through the super-acceleration, accele-
ration and velocity.

For the product of the mass of a material point by its super-acceleration
we do not introduce a special name and symbol.
§ 5. TIME ENERGY
5.1. THE NON-RELATIVISTIC CONSIDERATION

We obtain the form of the time‘énergy of a material point with mass m 1n
non-relativistic mechanics by integrating the axiomatical relation (2.11)

e, = mv?/2 + Const. (5.1
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For v = 0 the time energy of the material point must be equal to its
rest energy e, which is given by the relation (2.3), so that we can assume
Const = ¢, , and thus

e,=mct+mvi/2 =e + e, (5.2)

The difference between the time and rest energies is called the kinetic
energy. Thus, in non-relativistic mechanics, the kinetic energy has the form

e, = mvt/2. (5.3)

5.2. THE RELATIVISTIC CONSIDERATION

To obtain the time energy of a material point in relativistic mechanics
we have to put into the axiomatical assertion (2.11) the proper velocity v,
instead of the velocity v. There are three possibilities

de® = mv,.dv, (5.4)
de, = mv.dv,, (5.5)
de,, = mv,.dv,, (5.6)

and after the integration of these three formulas we obtain three different
expressions for the time energy in relativistic mechanics

e = —mcr(l — v/, (5.7)
_ mc? (5.8)
€ = (1 = vi/c?))'? ’
1 mc?
= 5.9)
o= T = v (

where all constants of integration are taken equal to zero, so that for v << ¢
we obtain

e =—-—mc+mvi/2=—e¢ +e,, (5.10)
e, =mc*+mvi/2=e, + e, (5.11)
e, =mc/2 + mvi/2 =e,/2 + e, . (5.12)

Thus for v << c¢ the kinetic energy of all these three forms of the
relativistic time energy has the same value as in non-relativistic mechanics,
though their rest energies are different. Only the rest energy of e, has the
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value e, postulated by our third axiom. The rest energies of ¢ and ¢, can be
obtained equal to e, if additional constants of integration are introduced. For
this reason, we choose e, as time (or proper) energy of the material point.
However, we must emphasize that e and e,, can adequately play the same
role.

We introduce the following terms :

e — Lagrange time energy,
e, — Hamilton time energy,
e,., — Marinov time energy.

The proper energy divided by velocity of light represents the time part of
a4-vector called the 4-momentum whose space part is the proper momentum
p. = mv, . This quantity is denoted by

- e _ mec 513

S (e 19
and is called the proper time momentum; the quantity p = mc is called the
(absolute) time momentum. Thus p = mv can be called the (absolute) space
momentum, v and c, respectively, (absolute) space and time velocities, and so
on.

Obviously. the Hamilton time energy ¢, can be called the proper time
energy and the rest energy ¢, the (absolute) time energy, denoting it by the
symbol e, when this cannot be confused with the charge of the electron: the
latter. as a rule, is denoted by us by ¢. (see axiom V).

All three types of time energy e°, ¢,. and e,, are used in theoretical
physics. The time energy e, plays the most important role, though many
formulas obtain a more compact form when Lagrange time energy ¢" is used
[see, for example, (6.14)].

Comparing (5.8) with (2.4) [or the second relation (4.4) with (2.12) when
taking into account (4.2)], we conclude that the relation between mass and
proper mass is

= '" 5.14
m, = A =viieys - (5.14)

Note that the axiomatical relation (2.3) represents the famous Einstein
formula which is considered as an « ideological basis » for modern physics in
our nuclear century. As a matter of fact, relation (2.3) serves only for the
introduction of a new derivative physical quantity which we call « mass » and
which differs from the axiomatical quantity « energy » only by a constant
factor. The whole of physics can be constructed without introducing at all the
quantity « mass » because relation (2.3) represents a trivial tautology. How-
ever, the establishment of relation (2.3) was an enormous scientific feat.
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The greatest accomplishment of a scientist is the revelation of a simple tru?h
where others see a complexity or nothing at all. Almost the same can be said
for de Broglie’s relation (2.5), although we must add, that the particles-waves
contradiction is still not lucidly resolved.

§ 6. THE LAGRANGE EQUATIONS
6.1. THE NON-RELATIVISTIC CONSIDERATION

As can be seen from (2.13) and (2.15), space-time energy is to be consi-
dered only in relativistic physics since its availability leads to effects of second
order in v/c. Thus in non-relativistic physics we have to consider only space
and time energies.

Let us assume that in a time dt the space energy U and the time energy E|,
of an isolated material system of n material points have changed their val!Jes
by dU and dE, . Denote by r, , v, , u; , e, the radius vector, velocity,
acceleration, and energy of the ith material point. As space energy depends
only on the distances between the material points, we have

aw=3 Y . .1

Time energy depends only on the velocities of the material points and
thus
de,; n d de,,

1 av; ndv, = i§|z dv;

).dr,,  (62)

Ik, A
dE, = 3 —— .dv,= 3
| 0w, =

I Ma

i
where we have taken into account (5.2) and the relation
u,.dr, = v,.dv,, (6.3)

which can be proved by dividing both sides by d.
Substituting (6.1) and (6.2) into the fundamental axiomatical equation
(2.16) and dividing by dI, we obtain
n d  de, aU

4 Y v =0. 6.4
E,[dt(avi)J' ar 1w =0 (6.4)

In this equation all n (as a matter of fact, 3n) expressions in the bracke.ts
must be identically equal to zero because otherwise a dependence wopld exist
between the components of the velocities of the different material points, and
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this would contradict our sixth axiom which asserts that the time energy of a
material point of a system depends only on its own velocity.

Thus from (6.4) we obtain the following system of n vector equations

d , de,, qU )
o ) = - o 1= 12 ..,n, (6.5)

which are called the Lagrange equations and represent the fundamental
equations of motion in non-relativistic physics.

Taking into account (5.2), (4.5). and the first relation (4.8), we see that
the left side of (6.5) represents the kinetic force £, of the ith material point.
Introducing the notation

1%
F, = -
ar) (6.6)
and calling F, the potential force which all n — | material points exert on
the ith point. we can write equations (6.5) in the form
fi=F, 1=1.2 ..n, (6.7)

in which form they are called the Newton equations (or Newton’s second law).

The potential force which the jth material point exerts on the ith pointis
F = — 93U, /dr, and the potential force which the ith material point exerts
on the jth pointis F,' = — U, /dr,. where U,, is the space energy of these
two material points. Since U,, depends on the distance between both points,
it will be

AU,/ = = U, /0r,, e, Fr=—F. (6.8)

J

Thus the potential forces with which two material points of a system (in
general, two parts of a system) act on each other are always equal and
oppositely directed along the line connecting them. This result is called
Newton’s third law.

Obviously, in equation (6.5) we can write
de,, de,, JdE, JdE,

dv, = v, = dv, - v, ' (6.9)

Wwhere ¢,, is the kinetic energy of the ith material point and E, is the kinetic
energy of the whole system.

6.2. THE RELATIVISTIC CONSIDERATION

In relativistic physics, equation (6.1) will preserve its form. This is
obvious for the electric space energy [see formula (2.9)], since the electric
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charges and the distances between them do not depend on the velocities of
the charges. However, as can be seen from formulas (2.7) and (5.14), the
gravitational space energy becomes velocity dependent in high-velocity
physics. The peculiarities of the fundamental equation of motion in gravi-
magretism will be considered in §8: in the present general analysis we shall
assume that the gravitational charges (the proper masses) are constant, i.e.,
velocity independent.

In relativistic physics instead of equation (6.2) we shall have

n 8e...
E dv, =
—1 v, (6.10)

[(l_ _) OI ] drl = é’:]%(%

dE, = 2"

a
" d
:1~ ) ° drl 1)
where ¢! is the Lagrange time energy of the ith material point.
In relativistic physics, we have to take into account also the space-time

energy W. As the space-time energy depends on the distances between the
material points and on their velocities, we shall have

o AW aw
= — .dr, 4+ =—.dv,) =
aw i§=:| (ar r, v, dv,)
no QW aw aw
§ [—— dr.+d(5-v.)—d(ﬁ).v,]. (6.11)

However, itis [see (2.13) and (2.15)]

oW
Ea'(—v—v)—EdW—dZW—ZdW (6.12)
i=1 ' i=1 1=1
where W, is the part of the space-time energy in which the ith material point
takes part.

From the last two equations we obtain

aw
aw =3, [= - +d(~——) v.]. (6.13)
i=1 r
Substituting (6.1), (6.10) and (6.13) into the energy conservation law
(2.16) and dividing by dt, we obtain by the help of the same reasonings as in
§6.1 the fundamental equations of motion in relativistic physics
d [i)(li"+ W)] _ W -w
di dv, B ar, ’
which we call the full Lagrange equations.

i=12..n (6.14)
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The quantity
N U — W)
FF=-——__
or, (6.15)
is called the full potential force acting on the ith material point.
The full Newton equations are
d Jw 1.4
fo=fi+ () F.=F + i i=12..n  (6.16)
where £, is called the full kinetic force of the ith material point.
The full Newton’s third law is
iU, — w, v, - w, . ~ ~
W, =W _ W, =W e o - Fr. (6.17)
ar, or,

Using the Lagrange equations and proceeding from the homogeneity of
time, homogeneity of space. and istotropy- of space. we can casily obtain,
respectively, the laws of energy, momentum. and angular momentum con-
servation in non-relativistic and relativistic physics (the first one representing
the assertion of our ninth axiom).

§ 7. FUNDAMENTAL EQUATIONS IN ELECTROMAGNETISM
7.1. THE NEWTON-LORENTZ EQUATION
Let us have a system of n electric charges ¢, moving with velocities v, ,

whose distances to a certain space point (called the reference point) are r, .
The quantities

n n lvl
=3 I A= 3 u,.q_r (7.1)

are called, respectively, electric and magnetic potentials at the reference
point. We shall further work in the CGS system of units in which it is
assumede,;' = p, = 1.

If at the reference point a material point with mass m, electric charge g.
velocity v, and proper energy e, is placed, then the electric and magnetic
energies of the whole system of n + 1 charges in which this charge ¢ takes part
will be

U=qd, W=%V.A. (1.2)
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Putting (7.2) into (6.14), we obtain

d q v.A
E(lh,+-c-l4)-—qgrad(d>—~c—). (7.3)

This is the full Newton equation in electromagnetism and we call it the
Newton-Lorentz equation.
Since it is
dA 04
—— =—— + (v.grad)4, 7.
dt at (v grad) 74
where (94/91) dr is the change of A for a time dr at a given space point and
(v.grad) 4 dr is the change of 4 due to the motion of charge g with velocity
v during this time dt, and taking into account the mathematical relation

grad(v.A4) = (v.grad)4 + (4 .grad)v + v X rotd + 4 X rotv  (7.5)

under the condition v = Const, we can write the Newton-Lorentz equation
in the form
dp, q

1 04
-gt-=ﬁ,——q(gradd>+?a)+?erotA, (7.6)

which is commonly called the Lorentz equation. As one can see, the Lorentz
equation represents the full Newton equation in electro-magnetism, and we
think that it is reasonable to re-name it the Newton-Lorentz equation.

To this equation we always attach its scalar supplement which can be
obtained after multiplication of both its sides by the velocity of the charge

d-e“'—"vf—— v(radd>+|a—A) 7.7
dt e qv-(& c (7.7)
Introducing the quantities | 94
Lo
=—grad® - — — =
gra T B = ro, (7.8)

called, respectively, the electric and magnetic intensities, we can write the
Newton-Lorentz equation and its scalar supplement in the form

dp q de,

= =qE + —vXB, — =gqv.E. 7.9

a 7 c a 1 7

Taking partial derivative with respect to time from the electric potential
& [consider the distances r, in the expression (7.1) as functions of time] and
divergence from the magnetic potential A, we obtain the following relation
1 a0

divd = — — — .
iv ~ (7.10)
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This relation is commonly called the « Lorentz condition ». Since in our
approach it is a logical result obtained from the axioms, we call it the
equation of potential connection.

7.2. THE CONNECTION BETWEEN DENSITIES AND POTENTIALS

The charge and current densities at a given reference point are the
following quantities (these are the so-called §-densities)

q.8(r —r). J(r)=
| 1

Jj.o(r—r), (7.11)
i

()=

I Ma
I M

where r is the radius vector of the reference point, r, are the radius vectors
of the single charges, and 8(r) = 8(x) 8(») 8(z) is the three-dimensional
§-function of Dirac.

Now we shall establish the differential connection between the charge
and current densities and the electric and magnetic potentials.

A. The static and quasi-static cases.

We shall prove the validity of the following mathematical relation
A(l/ry= — 47 68(r), (7.12)
where A = 9/3x* + 9°/dy* + 9%/ is the Laplace operator and r is the
distance between the frame's origin and a space point with radius vector r.
Indeed. putting into (7. 12)
r=lr=0]=(+ )y + )", (7.13)

we obtain an identity. Only for r = 0 does the left-hand side give the
uncertainty 0/0, and the right-hand side give the uncertainty 5(0).

To establish whether relation (7.12) is valid also for r = 0. let us integrate
(7.12) over an arbitrary sphere with radius R which has a centre at the frame’s
origin. Using the Gauss theorem, we shall obtain for the integral of the
left-hand side

fA(1/ryav = fdiv[grad (1/r)]dV = §grad (1/r).dS ., (7.14)
v v S
where S is the surface of the sphere of integration whose volume is V and dS

is the elementary area (taken as a vector) of the integrational surface whose
direction always points outside from the volume enclosed.
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The vector grad(1/r) = — r/ris directed to the frame’s origin, i.e..in a
direction opposite to the direction of the vector dS, and thus

ds I
;Ij’A(I/r)dV=——;fF=—I—{-Z{dS=—47r. (7.15)

The integral on the right of (7.12) taken over the same arbitrary sphere,
on the grounds of the fundamental propery of the §-function, gives

—4nf 8rdV=—4mx. (7.16)

The integrals (7.15) and (7.16) are equal and, since the domains of
integration represent spheres with arbitrary radii, both integrands must be
also equal. Thus the relation (7.12) is valid also for r = 0.

In the same way, or on the grounds of our first axiom for homogeneity
and isotropy of space, we can prove the validity of the following relations

A/ r=r))=—-4aér-r), i=12 .. n (7.17)

where r, are the radius vectors of n different space points.

Let us now assume that r, is the radius vector of a space point where a
charge q, is placed (static case) or where at any moment a charge ¢, moving
with velocity v, can be found (quasi-static case). Multiplying any of the
equalities (7.17) by the corresponding electric charge, ¢,, or electric current
element divided by ¢, j,/c, and summing  them, we obtain, after having
taken into account (7.1) and (7.11), the following differential connection
between potentials and densities for static and quasi-static systems
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Ad=—-47Q, AA=——;J. (7.18)

B. The dynamic case.

Let us consider a point (calling it the i-point) which moves at velocity v
along the x-axis of a rest frame K and at the initial zero moment 1 = 0 crosses
the frame’s origin. Let a moving frame K be attached to this i-point and the
transformation between K and K’ be a special one. In such a case the radius
vector of the i-point in K”will be r/ = (0,0,0).

If the radius vector of a reference point in frame K is r = (x,).z), then,
according to the Marinov transformation (3.34), the radius vector r’ of the
same reference point in the moving frame K” will be

X — vt

W')}’zl' (7.19)

r=(x.y.2)=|
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The distance between the i-point and the reference point considered in
frame K’ but expressed through the coordinates in frame K will be
(x— v+ (I = v¥/c?)(? + 27) 2
1 — v¥/¢? ]

re=r=r;|=|r—r],=|
(7.20)

This distance considered in frame K and expressed through the coordi-
nates in frame K will be

r=lr—r|=[(x—v) + v +27]2 (7.21)

- We call r the distance and r, the proper distance and we have considered
them in detail in Marinov (1975a). The difference between these two dis-
tances, as already said in §3.3, is due to the acther-Marinov character of light
propagation and this has nothing to do with a physical length contraction
(with the so-called « Lorentz contraction »). As a matter of fact, here we are
considering the distance between two points moving with respect to one
another which cannot be connected by a rigid rod and thus it is senseless to
speak about contraction of such a rod.

The validity of the following mathematical relation can now easily be
proved

(Mr)y=—4780r—r). (7.22)
where . = 0°/0x* + 0°/0y* + 0*/0z* — 9*/c* dr* is the d’Alembert operator
andr, = | r — r |, is the proper distance between a space point with radius

vector r = (x,),z) and a moving point with a radius vector r, = (v1,0,0).

Indeed, putting into (7.22) the expression (7.20) for r, , we obtain an
identity. Only for r, = 0, i.e., for

x—vt=0, y=0, z =0, (7.23)

does the left-hand side give the uncertainty 0/0, and the right-hand side the
uncertainty §(0).

To establish whether relation (7.22) is valid also for r, = 0 let us
integrate (7.22) over an arbitrary sphere with radius R which has a centre at
the point whose coordinates are given by (7.23)

S /r)ydv=—4xm f8(r—r)dv. (7.24)
v v

For all points of the volume V the integrand on the left-hand side is
equal to zero. Thus we can spread the integral over a small domain around
the point with coordinates given by (7.23), i.e., around the frame’s origin of
K’ Butatr, - Qitis I/r, = oo, and the derivatives with respect to x, v, z will
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increase much faster than the derivative with respect to #. Hence the last one
can be neglected with respect to the first ones. So we reduce the integral on
the left-hand side of (7.24) to the integral (7.15) which gives — 4#. The
integral on the right-hand side of (7.24), on the grounds of the fundamental
property of the 8-function, gives the same result, and, as in §7.2A, we con-
clude that the integrands must be equal. Thus the relation (7.22) is valid also
for the case (7.23).

In the same manner as in §7.2A, from the relation (7.22) we can obtain
the following connection between potentials and densities for the most
general dynamic case

.4
N =—470(), /AA==—-;JUL (1.25)

where the densities Q() and J(¢) are functions of time.

7.3. THE MAXWELL-LORENTZ EQUATIONS

Taking rotation from both sides of the first equation (7.8) and diver-
gence from both sides of the second equation (7.8) and making use of the
following mathematical relations

rot (grad @) = 0, div (rot4) = 0. (7.26)

we obtain the first pair of the Maxwell-Lorentz equations
rotk = — —I- @ , divB = 0. (7.27)
c ot )
Let us now take partial derivatives with respect to time from both sides
of the first equation (7.8), dividing it by ¢,

1 dE 1 v 1 04
Write the second equation (7.25) in the form
1 94 4
- =—AAd - =
= o A p J (7.29)

and put here the mathematical relation

A A = grad (divd) — rot (rotd) . (7.30)
Putting (7.29) into (7.28) and taking into account (7.10), we obtain
1 J0F 47
tB= — — —
ro can vt (7.31)
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Let us now take divergence from both sides of the first equation (7.8)

. | B
divE= - A — = (divA) . (1.32)
Write the first equation (7.25) in the form

Ad= — " —4x9Q. (1.33)

Putting (7.33) into (7.32) and taking into account (7.10), we obtain
divE=470Q. (7.34)

Equations (7.31) and (7.34) represent the second pair of the
Maxwell-Lorentz equations.

§ 8. FUNDAMENTAL EQUATIONS IN GRAVIMAGRETISM
8.1. THE NEWTON-MARINOV EQUATION
In §6.2 we pointed out that the gravitational energy in high-velocity

physics is velocity dependent. Thus in relativistic gravitation instead of
equation (6.1) we shall have

n AU, aU no QU 119 v,.v
du, = “ L dr+ S5 dv,)= " dr, vy LY
IE= I( arl ’ 3v. V) 1=EI[ arl " ( avl dVI) Vlz ]
(8.1)

Space-time energy is very small with respect to space energy (the
space-time energy of two material points moving with velocities v,, v,
represents a v, . v,/c? part of their space energy), and we can consider the
gravitational charges (the proper masses) in the magretic energy as constants.
Thus we can assume that the differential of the space-time energy 1n gravi-
magretism is given by formula (6.13).

Putting (8.1), (6.10) and (6.13) into the energy conservation law (2.16),
we obtain by the help of the same reasonings as in §6.1 the fundamental
equations of motion in gravimagretism

d _dE + W) U, v, WU, — w,) .
J— + U, _— = - =
dt v, I+« v, “) v, or, o A= L2
8.2)
where u, is the acceleration of the ith material point.
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As it can be seen from formulas (2.7) and (5.14), the quantity dU,/dv,
has the direction of the vector v,. In gravitation, as a rule, motions with large
tangentional accelerations cannot be realized and, assuming
(dU,/dv,) . u, = 0, we can write the fundamental equations of motion in
gravimagretism in the general form (6.14).

Let us consider a system of n masses m, moving with velocities v, and
having proper masses m,,. Introduce the gravitational and magretic poten-
tials

d)z:_éy > Az=_'27 s (83)
=1

where r, are the distances to a certain reference point where a mass m moving
with velocity v and having proper mass m, is placed.

The gravitational and magretic energies of the whole system of n+ |
masses in which mass m takes part will be

U =m,d,, w, =

’ffv.A, . (8.4)
c

Putting (8.4) into the full Lagrange (full Newton) equation (6.14), we
obtain the Newton-Marinov equation

dp, 1 04, m,
= =fi=- — — v X rot4 8.5
7 f m, (grad ¢, + Py ) + p; v X roi4, (8.9)
and its scalar supplement

de 1 a4

_" = . = - . q) p— L . .

7 v.f, m,v.(grad o, + Sy ) (8.6)

Introducing the quantities
1 94
G=—grad 9, - - £ B, = ro4,, 8.7

ar
called, respectively, the gravitational and magretic intensities, we can write
the Newton-Marinov equation and its scalar supplement in the form

dp, de,

7 =m,,G+ni'v><Bg, 7 =mv.G. (8.8)
¢ ¢
The equation of potential connection is
1 99
divd, = - — —£ | .9
Vel c o 9
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Introducing the proper mass and proper momentum densities (these are
the so-called §-densities)

B = S m 8 —r).  w= 3 pdr-r). (810

we can establish in the same manner as in §7.2 the following relation between
these densities and the gravimagretic potentials for the most general dynamic
case

4
b, = dmyp(n, /A, = {yﬁ:(l). (8.11)
We wish to emphasize that equations (7.25), as well as equations (7.18),
are written at the assumption that we are working in the CGS system of units,
where 1/¢, = p, = 1 (see the beginning of §7.1).
8.2. THE MAXWELL-MARINOV EQUATIONS

In the same manner as in §7.3 we can obtain the first and second pairs of
the Maxwell-Marinov equations

divB, =0, (8.12)

divG =-47yp,, (8.13)

whose analogues in electromagnetism are the Maxwell-Lorentz equations.

8.3. REDUCED CHARGES AND MASSES

If we take a general look at the fundamental equations of electro-
magnetism and gravimagretism, we shall establish that it is more reasonable
to work with the reduced electric charges and reduced masses,

q. =q/c, m. = m/c, (8.14)
instead of the electric charges, ¢, and masses, m.

With the reduced charges and masses the space and space-time energies
of two material points will be written

1 qci 4., qd.i 4.,
U= — —— ¢, We=p, —— v,.v,, :
o . c m p v,.V, (8.15)
m('()l m(‘o 'n(‘nl nlt'o
Ux = -y . 2 Cl, u/|= = -y __r 2 Vi.Vv,. (8]6)
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All equations in electromagnetism and gravimagretism will obtain more
symmetric forms when the reduced charges and masses are used. For ex-
ample, the Newton-Lorentz equation (7.9) will be written as follows [see
(5.13)]

d_()
df,, — g (CE+vxB), o g v.E. (8.17)
ar

dt

It is important to note that universal constants are not the charge of the
electron and the mass of the electron but their reduced values (see §12).

We have considered the fundamental electromagnetic equations in
Marinov (1978a) and the fundamental gravimagretic equations in Marinov
(1978b). In Marinov (1978b) we give a detailed analysis of the so-called
« Mercury problem ».

§ 9. PARTICLES AND WAVES

In our third axiom, we introduced the quantity 7, called the period of
the material point, according to relation (2.5).

The quantity
v=1UT 9.1

is called the frequency of the material point considered. Thus we shall have
[see (2.5) and (5.8)]

mc?
€= ey = (9.2)

Multiplying both sides of this equation by the velocity v of the material
point, we obtain [see (4.2)]

h
my, = 1—:} v. (9.3)
c
The quantity
k=vv/c 9.4)

is called the wave number of the material point m.
Write equation (9.3) in the form

mv,=hkn, 9.5)

where n is the unit vector directed along the velocity of the material point.
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The vector quantity
14 14
k—tn=z;vn=Fv (9.6)
is called the wave vector of the material point.

The quantity
A= 1k =cvy 9.7)

is called the wavelength of the material point.

If the material point considered is a photon, then v = ¢, and we have
VA =c. (9.8)
The quantities », , T, defined by the relation
vo=1/T., =mci/h 9.9)

are called the rest frequency and rest period of the material point and are
equal to » and 7. respectively, for v = 0. Obviously the rest wave number of
any material point. %, is equal to zero and the rest wavelength, A, . is infinitely
large. o

Formulas (9.5) and (9.2) can be written [see (4.4)] :

a) with the help of the frequency

_hv

p.= V. e, = hv, (9.10)

b) with the help of the wavelength

h hc?
P.= | n, e, = . 9.11)
A v

These formulas are called de Broglie’s relations.

The quantities m, p,, e, describe the « particle » character of the material
points and the quantities 7, », &, A describe their « wave » character.

As we said at the end of §5.2, the dialectic unity of opposites which the
ideas of particles and waves offer is still not lucidly enough resolved. We have
the feeling that this contradiction will never be understood with such clarity
as, for example, high-velocity physics will be understood after the acceptance
of our absolute space-time theory. Nevertheless, in classical (non-quantum)
physics, i.e., where, according to our categorization, the phenomenon inter-
ference is not considered, the « particles-waves » contradiction does not
originate logical difficulties, as the reader can see on reading this book.
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§ 10. FREQUENCY AND WAVELENGTH SHIFTS OF LIGHT
10.1. KINEMATIC SHIFT (THE DOPPLER EFFECT)

The light Doppler effect is the difference between the frequency and
wavelength with which a photon is emitted from a source of radiation and
those measured by an observer, due to the motion of source and observer
with respect to absolute space; we call this effect also the kinematic frequency
and wavelength shifts of light, and we have considered it in Marinov (1978e¢).
A review of the theoretical part of this paper is given in this sub-section.

A. Source and observer at rest.

Let us suppose that there is a source (emitter) of photons which rests in
absolute space. The frequency v registered by an observer (receiver) who is
also at rest in absolute space and the wavelength A, which he can measure, are
called emitted frequency and emitted wavelength. The relation between them
is given by formula (9.8).

B. Source moving, observer at rest.

Let us now suppose (fig. 10-1) that the observer is at rest in absolute
space at the point O" and the light source moves with velocity v from the

6 ) ’
/ (A
r s
/ S
/ yd
/ /
/ /
// //
A i 7
P d—
0 Fig. 10-1
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position S” where a photon is emitted to the position S where the source will
be at the moment when the photon will be received by the observer. We shall
suppose that the wavelength of the interchanged photon is much less than the
distance between source and observer and. thus. the emission and reception
positions of the source can be considered as points.

The source will be at the middle position S, at the middle moment
between the emission and reception moments. 6 is called the emission angle,
0 the reception angle and 6, the middle angle. We must note that when
defining these angles a certain freedom is inevitable which leads to certain
differences in the notations and in the formulas from those of our earlier
papers (Marinov, 1970, 1972a, 1973). Now, once and for all. we make the
following stipulation : The emission, reception and middle angles are sub-
tented by the velocity of the moving object and the line connecting the object
at rest with the moving object at the emission. reception and middle mo-
ments, respectively. We attach the subscript « , » to the received (observed)
frequency and wavelength and not to the emitted which will be written
without any subscript. The upperscript « * » will be attached to the emission
distance, position and angle, while the reception distance, position and angle
will be written without any upperscript.

When the source is moving, the observer at rest will not register the
frequency » and will not measure the wavelength A which are to be registered
and measured if the source be at rest and which we have called the emitted
frequency and wavelength, but some other, in general, different quantities,
v,. A.. which we call the observed (or received) frequency and wavelength.

If in fig. 10-1 we present the emitted-wavelength by the segment S°Q,
then. proceeding from our third axiom in which the « burst » model of the
material points is postulated, we have to present the observed wavelength A,
by the segment S°Q, (as a matter of fact, by that segment equal and parallel
to S'Q, whose final pointis Q). We repeat that we consider the case where the
distance between source and observer is much greater than the wavelength of
the photon (we have enlarged the wavelength diagram for clarity).

Since the photon moves in absolute space with velocity ¢, we have

v, A, =cC. (10.1)
From (9.8) and (10.1) we obtain
v,/v = A/A, . (10.2)

The triangles S°Q,Q and O'SS” are similar and thus
AN, =r'/r. (10.3)
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On the other hand, if we should suppose that the source is at rest and the
observer moving from the emission position O to the reception position O,
we obtain from the similar triangles $°Q,Q and S'00’

r'/r=c’/c, (10.4)

since the segments S°Q, and S°Q are, respectively, proportional to the abso-
lute light velocity ¢ (i.e., to the velocity of light with respect to absolute space)
and to the relative light velocity ¢’ (i.e., to the velocity of light with respect to
the moving observer), both measured on an absolute clock.
From the last three relations, using formulas (3.31) in which we write
V' = v, we obtain
(1 — v¥/c?)!2 1 —vcosf/c

= = . 10.5
g y] + vcosl'/c v (1 = vi/c)'”? ( )

(] — Vz/Cz) 172

1 —vcosf/c’

I +vcosf'/c _

A = (1 — vi/c))? -

Formulas (10.6) can be obtained direct/y from (10.3) [and then formulas

(10.5) from (10.2) and (10.6)] if we should use formulas (4.21) obtained in

Marinov (1975a), which give the relation between the emission and reception

discances and where, following our present notation, we have to write r, = r’,
6, = 6, thus obtaining

(10.6)

A+ veosf/c (1 —vi/e)'?

= . 10.7
’ (1 — v¥/cr)'1? 1 —vcosb/c ( )

r =

Multiplying, on one hand, both formulas (10.5) and, on the other
hand, both formulas (10.6), squaring them and writing cosf’ = cosf,, + a,
cosfl = cosfl,, — a, where a is an algebraic quantity, we obtain within the
necessary accuracy

I + vcosb,/c!?
= A(————— "~ . 10.8
> A ,\(l - vcos0,,,/c) ( )

1 —vcosl,/c'”?

v, = v (—m—
1+ vcoséb,,/c

For# =6 = 8, = 0 (or 7), we call the Doppler effect longitudinal.

For@ =7/2, 0 = 7/2 — v/c, 8, = w/2 — v/2¢c. we call the Doppler
effect post-traverse.

For@ = #/2, 0
effect ante-traverse.

Forf, =7n/2, 0 =a/2 + v/2c, § = n/2 — v/2¢, we call the Doppler
effect traverse.

/2 + v/c, 0, = 7/2 + v/2c, we call the Doppler

The post-traverse, ante-traverse and traverse Doppler effects are called
by the common name, transverse Doppler effect.
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C. Source at rest, observer moving.

Let us now suppose (see again fig. 10-1) that the source is at rest in
absolute space at the point S”and the observer moves with velocity v from the
emission position O to the reception position O.

Since the photon proceeds with respect to the moving obscrver with the
relative velocity ¢, the relation between the observed frequency and wave-
length will be ’

v, = (10.9)

According to our « burst » model for the photons. their wavelength can
change only when the source moves with respect to absolute space. The
motion of the observer with respect to absolute space leads only to a change
in the velocity and frequency of the observed photons but not to a change in
their wavelengths. We must emphasize that the wavelength is to be measured
always with respect to absolute space, even in the case of a moving observer.
We have to stress also that a direct measurement of the wavelength cannot be
performed. One can measure directly only the wavelength of standing waves,
i.e., of «to and fro » propagating photons which interfere (see §31). All
measurements of the wavelength of uni-directionally propagating photons
are indirect (see §32). If one should accept that the motion of the observer
leads to a change in the wavelength, then one is impelled to accept Einstein’s
dogma about the constancy of light velocity in any inertial frame which, as
we have experimentally shown, does not correspond to physical reality.

Thus for our case of source at rest and moving observer, we have

A =A. (10.10)

From (9.8), (10.9) and (10.10) we obtain

v,/Jv=1c'/c. (10.11)

Making use of formulas (3.31) in which we write V' = v, we obtain

(= vi/en)'? 1 — vcos@/c
V(I =V = .
[ +vcosO/c (I = viieyin (10.12)

Here again a formula analogical to the first formula (10.8) can be
introduced, as well as the definitions for longitudinal and transverse Doppler
effects.
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D. Source and observer moving.

Now suppose (fig. 10-2) that the source moves with velocity v with
respect to absolute space and the observer with velocity v,, so that §*, O are
the emission positions of source and observer and S, O are their reception
positions.

We introduce two pairs of emission and reception angles : §; and 6, are
the emission and reception angles if the source were at rest at its emission
position, while " and 6 are the emission and reception angles if the observer
were at rest at its reception position. For certain problems it is convenient to
use the angles 8, 4, while for others the angles 4, , 6.

To find the relation between the emitted and received frequencies and
wavelengths, we proceed as follows : Let us suppose that the real source emits
a photon and an imaginary observer is at rest at point O (the reception
position of the real observer). The frequency and wavelength registered by
him, called intermediary, will be [use the first and second formulas (10.5) and
(10.6)]

(1 — vi/cy)'? 1 —vcosf/c
Vine = =

B = , 10.13
"T+veoso/c (1 — v¥/c)'? ( )

_ 1 + vcosO'/c _

(I — VZ/CZ)I/2
Aine = (1 = Vi) -

1 —vcosf/c’

(10.14)

If now an imaginary source is at rest at point S’ (the emission position of
the real source) and emits a photon with frequency »,,, and wav'elength Aes
then the frequency and wavelength registered by the real observer when he
crosses point O will be [use formulas (10.12) and (10.10)]
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(l —_ V(,Z/Cz) 172

I —v,cosb/c

Vo = Vint l + v, COS 0,;/(‘ = Vint (I _ V“;/Cz)wz’ (1015)
A00 = Aln' . (]O.I6)
Putting (10.13) and (10.14) into (10.15) and (10.16), we obtain
1 —v,cos8,/c , 1 — vi/c? 12
vy =p =
° 1 +vcos@/c "1 —vi/c? (10.17)
_ l —vcos@/c , 1 —vi/et 2
T+ vp,cos./c - 1 — vi/c?
1 + 6/ 1 — v¥/c?) 2
Ae = A veosf'/c _ ( vi/c?) (10.18)

(l — VZ/CZ) 172

1 —vcosf/c’

When v, = v, then 8, = 7 — ', 6, = 7 — 6, and formulas (10.17)
reduce to

v, =, (10.19)

while formulas (10.18) remain the same, and

v, A = ¢, (10.20)

¢’ being the relative light velocity with respect to source and observer. In this
case 6 is the angle between the opposite line of light propagation and the
velocity of source and observer registered with respect to both of them, while
0’ is the same angle registered with respect to absolute space.

In formula (10.19), v is the frequency of the photons emitted by the
source moving at velocity v and, thus, A in the corresponding formulas (10.18)
is the emitted wavelength of such photons. If the same source should remain
at rest in absolute space (remember that only when the source is at rest in
absolute space can an observer, also at rest, measure the emitted frequency
and wavelength), the period of the emitted photons will become shorter
(and the frequency higher) because of the absolute time dilation; thus the
emitted wavelength A of such photons will become shorter [by the factor
(1 — v*/¢?)'"?], so that instead of (10.18) we have to write

1 + vcosl'/c A
= = , 10.21
A=A 1 —v2/c? 1 —vcos@/c (102
and now
v, A\, = c,, (10.22)

¢, being the proper relative light velocity with respect to source and observer.
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Formula (10.19) shows that if an observer moves with the same velocity
as the light source, then the measurement of the received frequency can never
give information about their absolute velocity. However, formula (10.21)
shows that the measurement of the wavelength can give such information.
These conclusions are of extreme importance. Let us note that, according to
contemporary physics which proceeds from the principle of relativity, a
Doppler effect appears only when source and observer move with respect to
one another. In contradistinction to this conclusion, we have shown that a
Doppler effect appears also when source and observer move with the same
velocity, namely, the received wavelength is different from that which should
be measured if source and observer be at rest in absolute space (see §32).

10.2 DYNAMIC SHIFT (THE EINSTEIN EFFECT)

The light Einstein effect is the difference between the frequency and
wavelength with which a photon is emitted from a source of radiation and
those measured by an observer due to the different gravitational potentials at
the points where source and observer are placed; we call this effect also the
dynamic (or gravitational) frequency and wavelength shifts of light and we
have considered it in Marinov (1976a). A review of this paper is given in this
sub-section.

Let us have a mass M which is at rest in absolute space and a mass m
(m << M) which moves with velocity v in the gravitational field of mass M.
The gravitational energy of these two masses will be [see formulas (2.7)
and (5.14)]
mM

U = — S ——
g Y T e (10.23)

According to the ninth axiom we have for this case

de,/dt = — dU,/dt . (10.24)

Putting here (5.8) and (10.23), taking into account (9.2) and supposing
that the material point is a photon (i.e., supposing m = 0, v = ¢), we obtain
after the integration of (10.24)

e _YM v v 1 .
v, Vv = ? (—r; - 7) = - ? (l’o (bo - l’(b) 5 (1025)
or Lo L+ ®/c? L+ (- et
o =V = -
Teo e =11+ )/, (10.26)
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where M M
<I>=—y—r—, b = -y — (10.27)

r

o

are the gravitational potentials caused by mass M, respectively, at the point
of emission of the photon whose distance from mass M is rand at the point of
reception (observation) of the photon whose distance from mass M is r, (we
consider M as a point mass or as a homogeneous sphere).

Formula (10.26) is the formula for the gravitational (dynamic) fre-
quency shift. We must emphasize that the period T and the frequency v of the
emitted photon are measured on a clock (imagine a light clock) which is
placed in the region where the photon is emitted (i.e., where the gravitational
potential is ®), while the period 7,° and the frequency »,” of the reccived
photon are measured on a clock placed in the region where the photon is
received (i.e., where the gravitational potential is ®,). Thus the subscript « , »
of the period and frequency signifies « observed » and the upperscript « ° »
signifies that time is measured on a clock placed in a region with gravitational
potential ®,.

Now we shall find the formula for the gravitational wavelength shift.
Since according to our tenth axiom the photons move with velocity ¢ in
absolute space when this velocity is measured by the help of a nearby light
clock, independent of the local concentration of matter, i.e., independent of
the gravitational potential in the space region considered, we shall have

rA =_c, v°A\, =c, (10.28)

where A is the wavelength of the emitted photon and A, is the wavelength of
the observed photon.

From (10.16) and (10.28) we obtain

I + &,/¢?
A, = )\—————l YR (10.29)

The physical quantity frequency (respectively, period) is a relatively
more complicated notion than the physical quantity wavelength because the
frequency is measured by the help of clocks which have different rates in
dependence on their velocities in absolute space (as we have seen in §2.4 and
shall further see in §11.1) and on the gravitational potentials (as we shall see
in §11.2), while the wavelength is measured by the help of rigid rods whose
lengths depend neither on their velocities nor on the gravitational potentials.
Hence, formula (10.29) clearly shows that the wavelength of a photon which
crosses a region with a stronger gravitational potential will have in thatregion
asmaller length. This gravitational potential, whose absolute value is greater,
is stronger. Thus, if |®,|>|®|, then A, <A.

63



The problem about the relation between the frequencies (the periods) of
the photons is considered in more detail in §11.2.

§11. TIME DILATION

I'.1. KINEMATIC (LORENTZ) TIME DILATION

In §2.4 we have shown that the period of any light clock increases when
its absolute velocity increases. According to the Newtonian conceptions this
effect is different for a « transverse » and « longitudinal » light clock, the
«arm » of the first being perpendicular and of the second parallel to the
clock’s velocity. According to our absolute space-time theory, this effect is the
same for any orientation of the clock’s « arm », being given by formula (3.18)
and is called the kinematic time dilation.

Proceeding from formula (3.31), we can easily show that formula (3.18) is
valid for any orientation of the light clock’s « arm ». Indeed. if the « arm » of
the light clock is d, its absolute velocity v, and the angle between them ', then
the clock’s period, if measured in absolute time, is

T = i.}. i =iI+VC050"/C d 1+ vcos8 /c
' c c’ c (I —v¥/c))n? s (1 = vi/c)in =
- 2d 3 T
B c(l = vi/eyyrz (1 = vizeyn” (11D

where T = 2d/c is the period of the same clock when being atrest. 8" and 6’

are the angles (for the « there » and « back » trips) between the velocity of the
clock, v, and the relative light velocity, ¢', i.e., the angles subtended by the
direction of clock’s propagation and the directions of light propagation,
measured with respect to the moving clock. Thusitis8'* = 6’8" =7 — ¢'.

Let us note that the angles ' and @ (for the « there » and « back » trips)
between v and c, i.e., the angles subtended by the direction of clock’s pro-
pagation and the directions of light propagation, measured with respect to
absolute space, are, in general, not complementary.

The result (11.1) can be also obtained proceeding from formula (10.7)
and calculating the path with respect to absolute space which the light pulse
has to cover during its « there » and « back » trips.

:As stated in §3.3, the experiment has shown that also the periods of other
physical systems are influenced by the kinematic time dilation, but the
problem whether this phenomenon can be generalized for the period of any
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material system remains open. At any rate, we can be sure that if the period of
asystem is determined by the motion of mass-less particles (i.e., particles with
m = 0), then this period will be influenced by the kinematic time dilation.
Consider, for example, an aerial which emits radio waves. The period (fre-
quency) of the radio waves will be determined by the time in which the
potential of the antenna’s top passes through two successive maxima, and this
is determined by the time in which light crosses the antenna’s « arm ».

Larmor (1900) was the first to introduce time dilation and rightly con-
sidered it as an absolute effect. Einstein (1905) analysed this phenomenon
five years later and wrongly considered it as a relative effect. Lorentz treated
time dilation in many publications also from an absolute point of view; since
this effect follows logically from the transformation to which his name is
attributed, we think that the kinematic time dilation should be called the
Lorentz time dilation.

Time dilation is one of the most controversial problems in physics.
Thousands of scientific, semi-scientific, and popular books and papers have
been dedicated to it. However, this phenomenon, according to which the
period of any clock increases proportionally to the square of its absolute
velocity, is no more paradoxical than the conclusion to which Archimedus
came, establishing that all bodies lose weight proportionally to their volumes
when put in a liquid. It was only the theory of relativity which threw theore-
tical physics into confusion, since it tried to explain time dilation as a relative
effect, cutting its natural logical tie with the absolute motion of the material
systems.

11.2. DYNAMIC (EINSTEIN) TIME DILATION

Now we shall show that the period of any light clock increases when it is
placed in a region with a stronger gravitational potential (we repeat — see
§10.2 — that this gravitational potential, whose absolute value is greater, is
stronger). We call this effect the dynamic time dilation, or the Einstein time
dilation, since Einstein (1907) was the first to introduce it into physics.

As we are not interested in the kinematic aspect of the time dilation in
this sub-section, we shall work in a frame which rests in absolute space. The
clocks attached to absolute space have been called by us absolute (with more
Precision we shall call them kinematically absolute). The clocks moving in
absolute space have been called proper (with more precision we shall call
them kinematically proper). Clocks placed far enough from local concentra-
tions of matter are to be called dynamically absolute and clocks placed near
local concentrations of matter are to be called dynamically proper. These
regions which in the problem considered have the weakest gravitational
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potential (which conditionally is to be assumed equal to zero) can be consi-
dered as lying far enough from local concentrations of matter.

Consider two points with gravitational potentials ® and @, (if [®,)> |®|,
we can conditionally assume ¢ = 0). Suppose that a photon is emitted from
the first point and received at the second. According to our tenth axiom, the
velocities of the emitted and received photons, if measured on dynamically
proper clocks, will be equal to c. If these velocities are measured on a unique
clock (say, on a clock placed in the ®-region), we shall designate them,
respectively, by c and ¢ and call them dynamically absolute light velocity and
dynamically proper light velocity.

To find the relation between ¢ and ¢ suppose that the gravitational
potential changes from the emission to the potential pointin a stepped form.
The potential « steps » can be infinitely near to each other, but, for clarity, we
shall assume the distances between them to be larger than the photon wave-
length. Now, according to our « burst » model for photons, we have to
conclude that the rear of the « burst », when passing the ith potential « step »,
will change its velocity from ¢, to ¢, ,, always with a time delay At, = A, /¢,
after the head of the « burst », A, being the wavelength of the photon in the
ith region. Thus the wavelength of the photon, after crossing the ith potential
«step », will be

AHl = C|¢|A’| = — C..1~ (]l.z)

If from the emission to the reception point there are n « steps », we have

An-l ¢ _A[ — A o
Cn.| n—Cl Cn"‘?c- (ll3)

A

n=)\n=

From (11.3) and (10.29) we obtain

1+ d,/c?
= (11.4)

1+ ®/c?
This formula shows that the velocity of light in a stronger gravitational
field is lower if measured on a unique clock.

The space regions in which velocity of light has the maximum possible
value can be called dynamically absolute space. Obviously the space in which
velocity of light is isotropic (i.e., has the same value along any direction) is to
be called kinematically absolute space.

As the absolute times of emission and reception (i.e., the absolute pe-
riods) of the photon emitted in the ®-region and received in the ®,-region are

T =M\, T,=A/c, (11.5)
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we obtain, taking into account (10.29) and (11.4),
T,=T. (11.6)

The proper periods of the emitted and received photons are

T=MAc, T, = A,/c. (11.7)
From (11.7) and (10.29) we obtain
1+ d./¢?
o=T — . (11.8)
T T 1 + ®/c?

From (11.6) we conclude that if the frequencies of the emitted (u) anfj
received (»,) photons are measured in the same time (say, in absolute time), it

must be
v, = . (11.9)

From (11.4) we conclude that the relation between the periods ?"ar.ld ™
of two light clocks with equal « arms » placed in the regions with grav!tallonal
potentials ® and @, if measured on a unique, say, absolute, clock will be

™= r*]' :;://C; . (11.10)

Hence if for a certain period of time the absolute (the ®-light-clock) has
measured ¢ time units and the proper (the ®,-light-clock) has measured
time units, the relation between them will be

I + d,/¢?
t0=t“l+d)/c’ . (11.11)

and this represents the phenomenon which we call the dynamic time dilation.

Regarding the generalization of dynamic time dilation ip the case where
the period is not determined by the motion of ma§s-less [.)arpcles,.we.have to
say the same as regarding the generalization of kinematic time dilation (see
§11.1).

To explain in more detail the essence of dynamic time dilation, lct. us
consider a light source which emits photons. with frequency v when being
placed at a point with gravitational potentional . Tﬂhej period T of the
emitted photon is equal to the time in which the emitting system passes
through its two specific states, and we shall cal.l T also .the period of th.e
emitting system. If we consider again an aerial emitting radio waves, then T'is
the time in which, say, the potential of the antenna’s top passes through two

successive maxima.
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Transfer now the source of radiation to a region with a gravitational
potential ®,. Since the velocity of light in the ®,-region, measured on the
®-clock, is ¢ [see formula (11.4)], the period of the system, measured on the
same ®-clock, will become equal to 7° and the relation between T and 7° will
be given by formula (11.10). Thus the relation between the frequencies » and
v* (measured on a unique, say, absolute clock) of two identical material
systems placed, respectively, in two regions with gravitational potentials ®
and ¢, will be

1 + &, /c?

0 — _ '~ — 2
=y T oo = vl + (P, — D)/c?]. (11.12)

Hence if an observer is placed in a ®-region and he receives photons
which are emitted by two identical sources of radiation, the first placed in
a ®-region and the second in a @ -region, he will register a frequency » for the
photons arriving from the ®-source and a frequency »° for the photons
arriving from the ®,-source, the relation between them being given by
formula (11.12). This is due to the fact that the frequencies of a photon
emitted in the ®-region and received in the ®,-region are equal if measured
on a unique clock [see (11.9)], but the frequencies of two identical ®- and
®,-sources are not equal, if measured on a unique clock, and the relation
between them is given by formula (11.12).

This is the cause which leads to a shift in the spectroscopic lines observed
on the Earth in the spectra of chemically identical stars’ and Earth’s gases.

Let us consider a mass m (m # 0) which, having velocity v in the region
with gravitational potential ®, acquires the velocity v, in the region with
gravitational potential &, only as a result of the gravitational interaction
between this mass and the masses producing the field. Proceeding from
formula (10.24) and taking into account (5.8) and (10.23), we find

1 + &, /c? I+ o/

(I - Voz/cz)l/Z - (I — VZ/CZ)'/z . (ll.l3)

This is the energy conservation law for a point mass in a gravitational
field.

On the other hand, if two clocks move at velocities v and v, with respect
to absolute space, then, according to kinematic time dilation, the relation
between their readings ¢ and ¢,, which correspond to the same absolute time
interval, will be [see (3.19)]

— Ty (11.14)
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Comparing (11.11), (11.13) and (11.14), we come to the following very
important conclusion : If we wish to change the rate of a clock, we have to
change either its velocity or its gravitational potential. In both cases we have
to expend the same quantity of work. Here we must mention that we have to
expend the same quantity of work in absolute value, since from (11.13) we
obtain, within an accuracy of second order in 1/c,

l 2 l 2

—mv——mvi=—(md, — mbd), (11.15)

2 2
and the gravitational energy (together with the gravitational potential) is
negative, while the kinetic energy is positive. This can be established also
with the following reasoning : If we wish to slow the rate of a clock « kine-
matically », we have to enhance its absolute velocity, and thus do positive
work, while if we wish to achieve this « dynamically », we have to transfer the
clock from a point with a weaker gravitational potential to a point with a
stronger gravitational potential, and thus do negative work.

§12. COSMOLOGICAL ASPECTS OF LIGHT KINEMATICS
12.1. THE PHYSICAL ESSENCE OF REST ENERGY

We assume that the rest energy e, = mc?® of a material point is its
gravitational energy with the mass of the whole Universe taken with a
negative sign

me=my [ dm/r or =y fdmsr, (12.1)
v v

where r is the distance between a mass dm and our mass m, the integration

being carried out over the volume ¥ of the whole Universe. Thus we can call

the rest energy of mass m its universal gravitational energy.

Since in §8.3 we mentioned that logic requests one to work with the
reduced masses, we have to write (12.1) in the following form

m.c = m(,yf am./r or c = yf dm,/r . (12.2)
v v

The second equation (12.2) gives the physical essence of light velocity.
Its numerical value is determined by the matter of the whole Universe and its
distribution, and represents the universal gravitational potential (divided by
clh)

®=—yfdnir o O = —yfdmsr (123
v v
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taken with a negative sign. The potential ®. is to be called the reduced
universal gravitational potential.

If a reduced mass m, changes its position from a ® -region to a ®,-re-
gion, its reduced universal gravitational energy will change with

AU, =m D, — m D, (12.4)
and hence its reduced absolute (rest) time momentum (see §5)
p.=plc=m.c (12.5)
has to change with
Ap.=m.c®—m.c, (12.6)

where c and ¢° are the velocities of light in the ®.- and ®,-regions.

Since the rest energy is the same thing as the universal gravitational
energy, it must be

AU, = Ap., (12.7)
and from (12.4), (12.6) and (12.7) we obtain

1+ ®.,./c

T Tv o/ (128)

c°

which, within the necessary accuracy, can be written in the form (11.4).

Let us note that when a mass changes its position, and correspondingly
its gravitational energy changes, then, according to the energy conservation
law (11.15), its kinetic energy changes by the same amount, taken with a
negative sign. However, when a mass changes its position, its universal
gravitational energy also changes, and since the rest energy is another form of
writing the universal gravitational energy, the velocity of light must cor-
respondingly change its value. Formula (10.24) represents the energy con-
servation law, while formula (12.7) represents an equality between two
identical quantities.

We shall now briefly discuss the problem about the experimental con-
firmation of our hypothesis (12.1).

First we have to answer the question about the model of the Universe
which our absolute space-time theory puts forward. By the help of observa-
tions, it has been established that the Universe represents a system of galaxies
and clusters of galaxies which are distributed homogeneously in space. Thus,
as a reasonable approximation, we can consider the Universe as a sphere with
radius R tending to infinity and with an average constant mass density p.,.
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We shall suppose that outside this sphere there is a void. The universal
gravitational potential for such a model of the Universe will be

R R
=—yf"av=—dayp. frdr=-2nyp. R (12.9)
,

0 0
From (12.1), (12.3) and (12.9) we obtain the following expression for
light velocity

¢ =27myp. R*. (12.10)

Thus if our hypothesis is adequate to physical reality, the average mass
density and corresponding « radius » of the Universe, which are experimen-
tally established, must satisfy the relation

P R?*< /27y = 2107 gcm ', (12.11)
since always some mass will remain outside the sphere with radis R which has

been taken as a « radius of the observable Universe ».
At the present time the experimental data are (Menzel et al., 1970)

pay = 10 *gem °, R = 3.10cm, thus p, R*=9.10gcm '. (12.12)

12.2. THE PHYSICAL ESSENCE OF COSMOLOGICAL
« RED SHIFT »

Hubble (1937), on the grounds of statistics of observational data, esta-
blished that the wavelengths of light coming from distant galaxies are shifted
according to the law (called Hubble’s law)

A, — A AA
A A

=Hr, (12.13)

where A is the wavelength of the photons which the luminescent gas observed
in the galaxy emits on the Earth, A, is the wavelength actually observed, r is
the distance to the galaxy and H is the so-called Hubble constant.

Since it is A,>A, then the visible spectral lines are always shifted to the
red end and this effect is called also the cosmological « red shift ».

Conventional physics and astronomy hypothetically assume that the
galaxies are receding from each other, the recession velocity being propor-
tional to the distance between them, so that the cosmological « red shift » is
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due to the appearing Doppler effect*. Since we have established by means of
our « coupled-mirrors » experiment (§19.2) that the Sun moves at a velocity
of about 300 km/s with respect to absolute space, then one has to accept that
our Sun is situated very near to the « centre » of the Universe, because the
cosmological « red shift » for remote galaxies, if considered as a Doppler
effect, corresponds to recession velocities approaching c. So, for instance, the
quasar PKS 0237-23 has a « red shift » AA/A = 2,22, and if we should accept
that this shift is due to a longitudinal Doppler effect, then on the grounds of
the second formula (10.8), where we puté, = 0, we shall obtain v = 247.000
km/s.

Thus we consider the recession hypothesis as highly artificial, since the
probability that among millions of galaxies it is ours which is exactly at the
« centre » of the Universe is very low.

In our absolute space-time theory we explain the cosmological « red
shift » by the gravitational action of the masses of the whole Universe, calling
it the cosmological gravitational frequency and wavelength shift, while the
« red shift » in the spectral lines of light emitted from a star and due to the
gravitational action of the mass only of this star is called the stellar gravita-
tional frequency and wavelength shift.

Let us consider mathematically the cosmological gravitational shift.

If there is a sphere with radius R whose mass density p = p(r) has a
central symmetry, then the gravitational potential at a point distance r from
the centre can be calculated from the following formula

R 4 r
d(r)y=—Adnyfprdr - TWqur"a’ri (12.14)
r 0

* Burcev [Phys. Lett., 27A, 623 (1968)] put forward the hypothesis of rotating quasars (and
galaxies) explaining the large red shifts as a transverse Doppler effect. This conclusion is due to
an incorrect treatment of the light Doppler effect formulas. Taking into account §10.1 (see also
§30), one should immediately establish that Burcev analyses only the formula for the post-tra-
verse Doppler effect (i.e., he assumes that there is no radial component when the angle between
the source-observer line and the direction of the relative velocity is equal to 7/2 at the moment of
emission). If one should analyse the formula for the ante-traverse Doppler effect (i.e.. if one
assumes that there is no radial component when the angle between the source-observer line and
the relative velocity is equal to #/2 at the moment of reception), then one should come to the
conclusion that at a suitable value of the transverse component a blue shift would be seen for an
value of the radial component.
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Supposing p = p,, = Const, we obtain for the difference between the
gravitational potentials at the centre of the sphere and at a point distance
r (<R) the following expression

2
AP(r) =d(0) — D (r) = — ?wyyavr’. (12.15)

We assert that always the point of emission is to be put at the centre of
the Universe because the point of emission is only one, while the points of
reception can be an infinite quantity, and we assume that there is no such
centre as the Universe is without limits and thus any point can be considered
as its centre. Here our conceptions are almost identical with those of Nicolaus
Cusanus (1401-1464), one of the most brilliant minds in history, who
forwarded the following cosmological model : « The Universe is a sphere
whose centre is everywhere and the surface nowhere ».

If a photon emitted from a space region with gravitational potential
® = A®(0) has a wavelength A, then in a space region with gravitational
potential ®, = Ad(r) this photon will have a wavelength A, and the relation
between all these quantities will be given by formula (10.29). Thus, substi-
tuting into this formula the potential (12.15) for r = O and r = r, we obtain

A
A, = 37y . (12.16)
Ty amr
which formula for r << R [see (12.10)] can be written
Ad=N 27y
TN T g gk (12.17)
Denoting

27y

g = T o e (12.18)

and calling H,, the Hubble-Marinov constant, we can writte (12.17) in the
form
A, — A AN

= % - Han (12.19)

which we call the Hubble-Marinov law.

Plotting the red shifts AA/A of the remote galaxies (observed
spectroscopically) versus their distances to the Earth (estimated from their
visual magnitudes at the assumption that the absolute magnitudes are equal),
one can find the value of the Hubble-Marinov constant, and then from
equation (12.18) one can calculate the average mass density in the Universe.
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We have done this in Marinov (1978g), establishing H,, = 1.98.10 **
cm '. Taking for p,, the statistically established value (12.12), we find, ac-
cording to formula (12.18), H = 1,25.10 * cm .

We show in Marinov (1978g) that our theoretical quadratic relation
(12.19) fits much better to the experimental points of the dependence
« red shift — distance » then the hypothetical /linear Hubble relation (12.13).

Formula (12.16) shows that for r —» R, where R is the « radius » of the
Universe, it is [see formula (12.10)]
27y Y
- — . Rr=27—p ., R =1, 12.20)
3 ¢? e c? K (
so that A, - oo. For this reason, even if there is a matter outside the sphere
with radius R, we can receive no information about it because the photons
which would come from there will be extremely faint, i.e., with an extreme
low energy.

Hence, according to our conceptions, even under the assumption of an
infinite Universe, factually the Universe must be regarded as finite as we
cannot « look » outside the sphere with radius R established from relation
(12.10). Of course, if a space traveller undertakes a cosmic journey, then new
galaxies will enter into the sphere of his Universe along the line of his motion
and the most « red » galaxies in the opposite direction will disappear: sailors
experience similar phenomena when they pass islands and other ships. Thus
we can call R not « radius of the world » but « radius of the world’s horizon ».

Ending this section, we must emphasize that, since cosmology operates
with conditions at infinity, one can never be sure whether one’s world model
is adequate to reality.

§13. PROPAGATION OF LIGHT IN A MEDIUM
13.1. DRAG

In classical (i.e., non-quantum) physics we consider only the gravita-
tional and electromagnetic interactions of particles (with masses different
from or equal to zero). In the axiomatics of classical physics we do not
introduce any assertion about the phenomenon « collision » (respectively,
« coalescence » and « disintegration ») of particles. All these problems are to
be considered in quantum physics. However, under certain idealized as-
sumptions we can consider some aspects of these phenomena also in classical
physics. These assumptions are :

a) The sizes of the material points are small enough with respect to the
distances between them, so that we can ignore their sizes altogether.
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b) When the particles collide (respectively, coalesce or disintegrate) we
take into account only the laws of conservation (see the end of §6.2), applying
them to the particles before and after the collision (respectively, coalescence
or disintegration).

The emission of a photon (i.e., of a particle with mass equal to zero) by a
particle with mass different from zero represents a disintegration of a par-
ticle. The absorption (reception) of a photon by a particle represents a
coalescence of particles.

When a photon propagates through a medium (i.e., through a space
region in which many particles are dispersed) it will collide with the first
« hit » particle, and be absorbed, reflected (dispersed) or re-emitted. In the
first case we call the medium « opaque » and in the last « transparent ». As a
rule, the re-emission of a photon by a particle occurs a certain time after its
absorption. This is our « model » for the propagation of light in a medium. As
a matter of fact, in this « model » we do not introduce additional characte-
ristics for the quantity « particle » other than those introduced in our third
axiom, and thus there is no new assertion which merits being introduced in
the axiomatics.

The problem about the velocity of light in a transparent medium when
the medium or the observer or both move with respect to absolute space is
considered in Marinov (1974a, 1976b). A review of the theoretical parts of
these papers follows.

A. Medium and observer at rest.

Let us have a medium which rests in absolute space. If, in a unit of time,
a photon crosses a distance ¢/n through the medium and if, for the sake of
simplicity, we assume that it is always being re-emitted by the particles in the
same direction along which it hits them, then we must conclude that the
photon propagates (1/n)th part of the time unit as a « free » photon and
(I = 1/n)th part of the time unit it rests « absorbed » (or « hitched ») by the
particles. Thus with respect to an observer who is also at rest in absolute
space, it moves with the mean velocity

cnh =c/n. (13.1)
The factor n is called the refractive index of the medium.
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A i . Fig. 13-1

B. Medium moving, observer at rest.

[_Jet us now calculate the velocity of light in a medium moving with
velocity v in absolute space with respect to an observer who is at rest.

.Suppose first (fig. 13-1) that the medium moves with velocity valong the
x-axis of the used rest frame K only during this time when the photon is
absgrbed by some particle (molecule) of the medium and suppose that
during the time between the re-emission and next absorption the medium
(the molecule) is at rest. If we consider the path of the photon between two
successive absorptions, then this path can be presented by the broken line

ABC in fig. 13-1. Supposing that the time between two successive absorptions
is chosen for a time unit, i.e., that

AB/v + BC/c =1, (13.2)
we obtain
AB = v(l — 1/n), BC = c¢/n. (13.3)

If now we suppose that the medium moves with velocity v during the
whole time, then the next molecule will be caught not at point C but at point
D, where the distance CD is covered by this molecule in the time in which the
photon covers distance BD, ie.,

CD =v/n. (13.9)

Thus now the distance covered by the photon between two successive
re-emission and absorption will not be BC but

2

B _ _ (-2 _ VZ . , 1/ v ,
D = BE + ED (;2 ,75'"20 ) + - cos ', (13.5)
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where
0 =6 -y (13.6)

is the angle between the « free path » of the photon and the velocity of the
medium with respect to the observer (i.e., to frame K) while 6, is the same
angle with respect to the medium (i.e., to the moving frame K' which is
attached to the medium). The angle

CE v/n

y = arc sin BC = pvm sin 8 z% sin 4, (13.7)

represents the difference between these two angles which is small and, as we
shall further see, it is enough to consider it with an accuary of first order

inv/c.
Within the same accuracy of first order in v/c we can write, having in
mind (13.6) and (13.7),

cos @ = cosb, + isin’ g, . (13.8)
c

The distance covered by the photon between two successive absorptions
with respect to the observer will be

AD?* = (AB + CD)* + BC* + 2(AB + CD)BCcosf,.  (13.9)

Putting here (13.3) and (13.4), and working with an accuracy of second
order in v/c, we obtain

(-2 ve 1/2 c l VI .
AD =(— +2 —cosb, +v)) = — +vcosl, + — — nsin’é,.
n? n n 2 ¢

(13.10)

To obtain the mean velocity of the photon with respect to the observer,
we have to divide the distance 4 D by the time for which the broken line A BD
is covered. This time, taken with an accuracy of second order in v/c, is

AB BD v ) I v
thn= — + — =14+ —cos@' — — — sin?f =
v c cn 2 c¢*n
v 1 v
=1+ C~ncosﬂ,, +j(fz—" sin? @, , (13.11)

where we have used (13.3), (13.5) and (13.8).

Thus, for the mean velocity of the photon in the moving medium
measured by the observer at rest, we get, within an accuracy of second order
inv/c,
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AD c
Cn — = — +v(l — —)cosb, —
1, n 1?
v? 1 1 vin |
— — —_— ~, 2 —_— —_ 1
o (1 nz)cos 6, + 5 (1 nz)smzo,,, (13.12)

having suppressed the factor »n in the denominator of the last term on the
right side of (13.11).

Let us introduce the angle between the velocity of the medium and the
mean velocity of the photon which is measured by the observer at rest

6=6,-a, (13.13)
where
o= vsin @ _vn . 0
= =7 sin (13.149)

is the difference between the angles 6, and  which is small and can be
considered only with an accuracy of first order in v/c.

Within the same accuracy of first order in v/c we can write, having in
mind (13.13) and (13.14),

cosf, = cosf — vr sin? @ . (13.15)
¢

Substituting this into (13.12), we find

o= + v(l !
m " v(l - ?)cosl)—
(13.16)
_ v? | - 1 » 1 2 1 )
C_”( ";;)COS _7*(1— n(l - "—7)sm70.

The « model » for the propagation of photons in a moving medium
described here is called by us the « hitch-hiker » model. Let us mention that
in our youth, when crossing countries by « hitch-hiking », we never waited
for the next car at the same point where being dropped by the previous one,
but always tried to « gain » more distance by walking. Of course, our pede-
strian velocity could never be higher than that of the cars.
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Fig. 13-2

C. Medium at rest, observer moving.

Let there be (fig. 13-2) a medium with refractive index n that is at rest in
absolute space and in which light propagates along a direction that makes an
angle # with the x-axis of a frame K attached to absolute space. Let an
observer attached to a frame K' move at velocity v along the positive direc-
tion of the x-axis of frame K, and suppose that the x-axes of both frames are
colinear.

We choose again the time between two successive absorptions of a
photon on the molecules of the medium as a time unit. At such a choice of the
time unit a photon propagating along the direction A4 F in the rest frame K is
« hitched » (1 — 1/n)th part of the time unit on a molecule which rests at
point A, and (1/n)th part of the time unit moves along the line A F until it will
be « hitched » again on another molecule which rests at point F.

In the moving frame K’ we have the following picture : During the time
in which the photon is « hitched » it will cover distance 4B with velocity v
and during the time in which the photon propagates with velocity ¢ in
absolute space it will cover distance BC in K’ (under an angle 6" to the
x'-axis) with the proper relative velocity [see (3.32)]

c

= —
1 + vcos@'/c

(13.17)

since during the time in which the photon has covered the broken line A BC in
frame K the molecule that rests at point F in absolute space has covered
distance FC in K" with velocity v. The mean proper relative light velocity in
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frame K’ (i.e., the average light velocity measured in K" by the help of a clock
which rests there) will make an angle 6, with the x’-axis and have magnitude

Com = AC = (AB* + BC? — 2 AB BC cos §°) 2, (13.18)

since the time between two successive absorptions of the photon is taken
equal to unity.

Putting into (13.18)

c

1 1
AB=V1————, BC= ——
( n) 1+ vcos@/cn (13.19)
and working within an accuracy of second order in v/c, we obtain
B c 2 l 2 2
Com = — — vcosl + r cos’ 0 + — = n(l - —l—) sin? @’ .
n cn 2 c n
(13.20)

The angle which the observer in frame K’ will measure between the
direction of propagation of light and his own velocity is §,. Thus, putting into
(13.20)

0 = 00 -7, (132])

where v is a small angle and, as we shall further see, within the necessary
accuracy we can take

siny = M g—v—(n — 1)sin ¢’ =2 (n — 1)sin @
AC c T °’
(13.22)
we obtain
o = = — vcosf, + v cos? 0, — 1 n(l - -l—)Sin’Q,' (13.23)
n cn 2 ¢ n?

The angle between the direction of propagation of light and the velocity
of the observer which should be measured in frame K is 6. Thus, putting into
(13.23)

0,=0+a, (13.24)

where a is a small angle and, as we shall further see, within the necessary
accuracy we can take

sina = E_F%_()_ = % nsin@, (13.25)
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we obtain

c v 1 v 1
Com = — —vcosd + — cos’d + — — n(l +
n cn 2 ¢

om

>)sin? 6. (13.26)

n

D. Medium and observer moving.

Let us now find the velocity of light in a medium moving at velocity v
with respect to absolute space measured by an observer attached to the
medium.

Since in such a case for (I — 1/n)th part of the time unit the photon is
« hitched » and does not move with respect to the moving frame K’ which is
attached to the medium, then the « effective » velocity of the frame with
respect to the trajectory of the « free » photon will be v/n. Thus, according to
formula (3.32), the proper velocity of the « free » photon with respect to K’
will be [write in (3.32) V = v/n]

1 - —icost‘?
o = ¢ -c o (13.27)
o - 2 . .
1 + —‘icosl?' 1 - d
cn

c’n?

The photon moves with this velocity only (1/n)th part of the time unit, so
that the mean proper velocity of light with respect to K’ will be

| 1 — —‘icosﬂ
P L A T Y
om n 0 n v n V;
1 + —cos @’ 1 -
cn c’n?

where 8 and 6 are the angles between the direction of light propagation and
the velocity of the medium measured, respectively, in the moving and rest
frames.

13.2. REFRACTION

In this sub-section we shall show that our model for the propagation of
light in a medium as a process of successive « absorptions » and « re-emis-
sions » of the photons leads immediately to Snell’s law for the refraction of
light.

We shall perform the calculation by considering a bundle of photons (a
light beam) which is incident under an angle ¢ on the boundary between the
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media A and B with refractive indices n ,and n ;. Consider two photons which
lie on the extremities of the bundle and on a line which is perpendicular to
the bundle. Suppose that the distance between the points at which both
flank-photons cross the boundary is d. After the instance at which the first
flank-photon crosses the boundary, the second flank-photon has to move a
certain time ¢ with the velocity ¢/n , in the medium 4 and cover a distance
dsing, until it also reaches the boundary. Thus we can write

L L (13.29)

c/n, .

During this time ¢, the first photon will move with velocity c¢/nyin the
medium B and will cover the distance dsiny, where  is the refractive angle
(note that when the second flank-photon has reached the boundary the first
and second flank-photons must lie on a line which is perpendicular to the
bundle). Thus we can write

dsiny
= — (13.30)
c/ny
From the last two formulas we obtain Snell’s law
sin
Iy _ s (13.31)
sin @ ny

13.3. COLLISION BETWEEN PHOTONS AND PARTICLES

As we said, when particles collide, we shall describe the phenomenon,
taking into account only the laws of conservation and applying them to the
systems of particles before and after the collision.

In this sub-section we shall consider only the elastic collision (i.e., a
collision in which the masses of the particles before and after the collision
remain the same) between a photon and a particle with mass different from
zero (the so-called Compton effect). We shall show that the Compton effect
represents nothing but a light Doppler-effect where the energy of the « mir-
ror-receiver » is comparable with the energy of the striking photon so that,
under the hit of the photon, the « mirror-receiver » changes its velocity.

As we have mentioned in Marinov (1978h), several authors have pointed
out the equivalence between the Compton and Doppler effects. However, all
these authors have treated this problem by considering the Compton scatte-
ring on particles at rest. We shall consider the more general case of collision
between a photon and a moving particle where the Doppler essence of the
Compton scattering becomes more obvious.
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The momentum and energy conservation laws applied to the elastic
collision of a photon and a particle with mass m are [see (4.4), (5.8) and (9.10)]

mv + hy mv'’ hv’
S — — n _ ee———— —
(l — Vz/(.l)l/l ¢ (l — V'Z/‘.z)lzl I
13.32
m¢? m¢? , ( )
_ —+ hy=—m———— + hr
(l _VZ/(.Z)I/Z (l — V’I/(.z)l 2

where v. v’ are the velocities of the particle before and after the collision; v »’
are the frequencies and m, n” arc the directions of propagation of the photon
before and after the collision.
Squaring both these equations and subtracting the first from the second.
we obtain ,
1 - — cos (v,.n) | = yjer

v o= : () - (13.33)

V -’ -
| — — cos(v’',n’)
P

This is the dependence between the characteristics of the photon and of
the particle before and after the collision in which only 3-dimensional inva-
riants are involved. If we interchange the places of the different terms in
equations (13.32) before squaring them, other formulas can be obtained for
the description of the Compton effect where the cosines of other angles will
appear.

The collision can be considered as « absorption » of the photon by the
particle followed by an immediate « re-emission ». The « absorbed » fre-
quency of the photon will be denoted by »,, (v intermediary) and the
« re-emitted » frequency (which can be received by an observer at rest) by v’

According to the second formula (10.12), where we write », = »,,,. we
shall have v
| — — cos(v,n)

.

_, , (13.34)

g (1 — vi/e)'?

mnt

since § = (v.n) is the angle between the velocity of the observer (the hit
particle) and the direction of the wave vector of the emitted light at the
moment of reception (« absorption »).

According to the first formula (10.5). where we write », = v". v = v,

v = v', we shall have | gy 12
I (A =vieT i (13.35)

v
1 + — cos(v',-n")
.



since ' = (v', -n’) is the angle between the velocity of the source and the
opposite direction of the wave vector of the reflected light at the moment of
emission (« re-emission »).

From the last two formulas we obtain the result (13.33).

We must emphasize that when the particle is elementary (for example,
an electron) its mass cannot change and the « re-emission » must follow
immediately after the « absorption », i.e., the photon will only be « reflec-
ted » by the particle. If the particle is compound (for example, an atom), its
mass can change and the « re-emission » can follow a certain time after the
absorption.

The Doppler effect formulas give the relation between the frequencies
of the emitted and observed light when source and observer move with
respect to one another. In the Compton effect source and observer are at rest.
However, between them there is a moving « mirror » (the particle) which,
moreover, changes its velocity under the hit of the photon. Hence it is obvious
that the relation to which the Doppler effect formulas lead (where we are
interested only in the mirror’s velocity before and after the reflection of the
photon) must be the same as the relation which can be obtained from the
momentum and energy conservation laws.

Formulas (13.32) represent four relations for six unknown quantities :
v',v’, n’. Thus two of these quantities must be taken arbitrarily and they are
determined by the unit vector n, which is perpendicular to the « reflecting
plane » of the moving mirror (Doppler treatment) or by the unit vector n’
along the direction of propagation of the « re-emitted » photon (Compton
treatment). Using the law of light reflection (the incident and reflected rays
lie in the same plane with the perpendicular to the reflecting plane and make
equal angles with it), we can find n, when n and n" are given, or n” when n and
n, are given.

Thus the Compton scattering represents a Doppler effect where one
observes reflection of light from a « mirror » which changes its velocity under
the action of any single incident photon.

13.4. RELATION BETWEEN REFRACTIVE INDEX AND DENSITY

The relation between the refractive index n of a transparent medium
and its density p is given by the well-known formula of Lorentz-Lorenz [see,
for example, Lorentz (1916)]

mo by 13.36
n2+2—;_ L ( )

where K is a constant which we call the Lorentz-Lorenz constant.
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Our « model » for the propagation of light in a transparent medium
leads to the following relation
n— 1
I
where K\, is a constant which we call the Marinov constant.

M* (13.37)

We come to formula (13.37) in the following extremely simple way : As
we stated (§13.1), at a density p of the transparent medium, 1/n is the time
in which, on average, the photon travels with velocity ¢ in vacuum and
1 — I/nis the time during which, on average, the photon remains « hitched »
to the molecules of the medium. Now suppose that the density of the
medium has changed from p to . The refractive index will change. respecti-
vely. from 1 to n". For that distance for which the photon was « hitched »

1 — 1/n seconds and has traveled 1/n seconds it will now be « hitched »
nr
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(1’ /p) (1 — 1/n)seconds and, as before, will travel 1/n seconds, since the sum
of the « free flight » distances remains the same and only the number of the
« hitch-points » has changed. Thus we can write

L R A . (13.38)
n

ﬂ_(l__)+_

© n n

' 1
Ba--)
I

From here formula (13.37) can immediately be obtained.

In Marinov (1978i) we show that our formula (13.37) finds a better
support in the experiment than the Lorentz-Lorenz formula (13.36). In fig.
13-3 we give the graphs of n as a function of p according to formulas (13.36)
and (13.37). The experimental points are taken from Michels et al. (1947),
who have measured this dependence for ethylene (u is given in Amagat
units).

However, even without looking at the experiment, we can show that
formula (13.36) is unsound.

Indeed, write formula (13.36) in the form

I+ 2K, 7
ﬁ%) . (13.39)
L

n= (

According to this formula, with the increase of the density. the refractive

index increases very rapidly and for a certain critical density u,, = 1/K, it

becomes equal to infinity. The Lorentz theory [see, for example, Lorentz

(1916)] cannot offer a sound explanation to this peculiarity. According to our

formula (13.37), no such peculiarity exists, and n becomes equal to infinity
only for p equal to infinity.
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§ 14. INTRODUCTION

In this second part we shall give short accounts of the most important
experiments which we consider decisive for the refutation of the principle of
relativity, for the rejection of the relativistic space-time conceptions and for
the restoration of the old Newtonian absolute conceptions dressed in the
clothes of our absolute space-time theory.

Certain of the experiments can reveal the absolute motion of the labo-
ratory, others cannot reveal it practically because all absolute effects cancel
each other in the effect to be measured. On the other hand, certain experi-
ments can give reliable effects when today’s experimental technique is used,
others cannot.

We describe all these experiments, concentrating our attention on their
essence, without entering into the details which the reader can find in the
original papers. Additional references to other authors can be found in the
same papers.

We consider the « coupled-mirrors » experiment (§19) and the « rota-
ting disk » experiments (§25 and § 26) as decisive for the rejection of Eins-
tein’s conceptions. The analysis of the other experiments (ours and of other
authors) can strengthen one’s faith in space-time absoluteness.

§ 15. THE QUASI-R(EEMER EXPERIMENT

With the help of the Reemer experiment (i.e., the observation of the
eclipses of a Jupiter satellite from the Earth during the course of a year) for
the first time in history the velocity of light was measured. If this experiment
be performed with the aim of measuring the Earth’s absolute velocity, we call
it the quasi-Remer experiment.

Now we shall show that according to our absolute space-time theory the
Earth’s absolute motion cannot be revealed by the help of the quasi-Reemer
experiment. This problem is considered in detail in Marinov (1978)).

Suppose (fig. 15-1) that at the initial year of observation when the Earth
and Jupiter are in opposition the absolute velocity of the Sun system v
makes an angle § with the opposition line.

Let us observe the zeroth eclipse of the satellite at the moment 1, read on
a terrestrial clock, when the Earth and Jupiter are at the positions E,, J,,, i.e.,
half a year before the moment when they will be in opposition.
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Fig. 15-1
The first eclipse will occur at the moment
J.E, — JE,
tl =t + T_ —_—, (15.1)
C,

where T'is the period of revolution of the satellite, E,, J, are the positions of
the Earth and Jupiter at the moment ', and ¢; is the proper relative velocity
of light coming from Jupiter with respect to the Sun system.

According to formula (3.32), where we write V' = v, we have

. ¢ 1 — vgcosb/c
“T T vicos@'/c “cT vi/e (15.2)

where 6 is the angle between v and the line of light propagation registered
with respect to the moving Sun’s frame and @ is the same angle registered
with respect to absolute space.

Since Jupiter covers (1/12)th part of its orbit during an Earth year, we
shall assume that the positions J,, J, are very near to one another. Thus in
(15.2) we can consider angle #" (= @ within the necessary accuracy) to be
equal to angle 6 in fig. 15-1, i.e., to the angle between the opposition line and
the Sun’s absolute velocity.
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Let the nth eclipse be observed at the moment (* when the Earth and
Jupiter are in opposition. We shall have

JnEn - J«;Eo

Cl!

2R v
n 0 — — = - — + - 0, l53)
At =1 — °=nT nT C(l Ccos) (

where R is the radius of the Earth’s orbit.

Finally, suppose that the 2nth eclipse is observed at the moment /*" after
another half-year when the Earth and Jupiter are at the positions E,,. J.,.
We have
Y R S L kLY (15.4)
o p
From here we can determine the period T of revolution of the satellite.
Using (15.4) in (15.3), we find

\ A" 2R 2Rv
b= P

Rvscosl?, (15.5)

C?

cosf = A —

where A?: is this time interval which follows the initial moment, after whose
elapsing one has to observe the nth eclipse if the abso.lute ‘velocity of the
Sun is equal to zero, or if the velocity of light is not direction depcnd.ent.
When Reemer made his observations, he compared the calculated time
interval Ar2"/2 with the really measured time interval Ar; and, knowing R,
he established c.

Any traditional absolutist would conclude that making use of formu!a
(15.5) one could establish the component v of the Sun’s absolute Yelocnty in
the plane of the ecliptic when performing observations of the eclipses of a
Jovian satellite during 12 years in which the angle § between v and.thc
opposition line takes different values in the range of 360, so that the diffe-
rence 8/ = A1t — Ar: will vary in the range — (2 Rvg/c?) < 8t < (2 Rv /).

However, if we take into account the absolute kinematic time dilation
(§11.1), we shall come to the conclusion that, if we measure the time on a
terrestrial clock, then no positive effect can be registered.

Indeed, let us assume that the Earth covers the path E E, during the
absolute time interval (read on a clock which rests in absolute space) Ar". The
time Ar; read on the proper terrestrial clock will be [use the second formula
(3.29)]
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Arr + 1 I 1 2 2
Moo= f - WP g by
0 ¢ ¢
A g R
- szscos(%—0+9t)dt= (15.6)
0

2 2
| v+ v
2 c?

2 Rv,
) A 4+ 2V‘“ cos @,
C

where v, is the Earth’s velocity with respect to the Sun, @ is its angular
velocity, and thus v, = QR.

Comparing formulas (15.5) and (15.6). we conclude that no positive
effect can be registered in the quasi-Rcemer experiment because the time
interval between the zeroth and nth eclipses actually registered on a terre-
strial clock will vary exactly in such a manner that the effect 67, which a
traditional absolutist expects to be registered, will be compensated for by a
change in the rate of the terrestrial clock.

§16. THE QUASI-BRADLEY EXPERIMENT

With the help of the Bradley experiment (i.e., the registration of the
differences in the angles under which a given star is observed from the Earth
during a year) for the second time in history the velocity of light was
measured. If this experiment be performed with the aim of measuring the
Eath’s absolute velocity, we call it the quasi-Bradley experiment.

Now we shall show that the Earth’s absolute motion can be revealed by
the quasi-Bradley experiment. This problem is considered in detail in Mari-
nov (1978)).

If we observe a star on the celestial sphere from a platform (the Earth)
moving with an absolute velocity v, then the relation between the emission
angle 6", which represents the angle between the velocity v and the source-
observer line at the moment of emission, and the reception angle 8, which

represents the same angle at the moment of reception, will be [see formula
(10.5)]

2

(l+%0050')(l—?vcos(i)=l—i. (16.1)

C2

Now suppose that our platform (the Earth) moves with velocity v, with
respect to another platform (the Sun) which for its part moves with velocity v
respective to absolute space. Thus we have

v=v + v (16.2)
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Fig. 16-1

Let us suppose that at the moment of emission an Earth’s observer and
an observer who rests with respect to the Sun (called the Sun’s observer) are
at the point O (fig. 16-1). The light emitted at this moment by a star which is
at the point S will be received by the Sun’s observer when he crosses point O
and by the Earth’s observer when he crosses point 0. We have the following
picture :

a) Observation by the Sun’s observer in absolute space. For this case #is
the emission angle and 4 the reception angle, distance SO is proportional to
the absolute light velocity ¢ and distance SOy to the relative light velocity
with respect to the Sun c§.

b) Observation by the Earth’s observer in absolute space. For this case
07 is the emission-angle and 6 the reception angle, distance SO is propor-
tional to the absolute light velocity ¢ and distance SO’ to the relative light
velocity with respect to the Earth ¢’.

c) Observation by the Earth’s observer in a frame attached to the Sun.
For this case 8" is the emission angle and @ the reception angle, distance SO is
proportional to the relative light velocity with respect to the Sun c (since this
is the velocity of light which travels along the given direction with respect to a
frame attached to the Sun) and distance SO’ to the relative light velocity with
respect to the Earth ¢'.

We must emphasize that we suppose all velocities (absolute and relative)
to be measured in absolute time.

Consider now an imaginable emission which occurs at the moment when
the Earth’s observer is at the point O' and a reception which occurs at the
moment when this observer arrives at the point O, the velocity of light being
equal to c. By analogy with (16.1) we have
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a+ :_Fcoso')(l— Cifcoso)=|— o (16.3)

2
s s LN

where [see formula (10.11) and the text after formula (10.12)]

v

- 3
l . cos O 1

= (— ) (16.4)
VS
— cosf
c ‘
is the relative velocity of light in a frame attached to the Sun and 6., is the
middle angle between 6and 6. i.e.,
.+ 40
0, = 5_25_ . (16.5)

Putting (16.4) into (16.3) and working within an accuracy of third order
in1/c (i.e., putting @ = 8 = @,, in the terms of second and third orderin 1/c),
we obtain

cos @ = cos ' + ZC—' sin” @ (1 + LScos&’gm). (16.6)
c .

Designating by @ = 6 — 6 the aberration angle, we find within the
necessary accuracy

a = YC-Esin 0.+ VE:S sinf _cosf, = a. + Aa, (16.7)
where a . is the aberration angle caused by the motion of the Earth if the Sun
were at rest in absolute space and Aa is the variation caused by the absolute
velocity of the Sun, in dependence on the angle 6, subtended by the light
beam coming from the star and the velocity of the Sun.

In fig. 16-2 we have shown four different positions of the Earth (E,, E,,
E,, E,) on its orbit around the Sun (S) at four different moments with
intervals of three months when four different stars (S, Sy, S¢, Sp) are in
range with the Earth in the plane of the ecliptic, if being observed from the
Sun. The real positions of the stars S, and S and their positions observed
from the Sun coincide, since the angle 6, between the Sun’s velocity v and
the propagation direction of the light coming from these stars is equal to 7 or
to 0. The positions of the stars S and S, observed from the Sun are tilted to
an angle ag = vg/c with respect to their real positions, since for these two
stars the angle 65, is equal to 7/2, i.e., they will be seen along the directions to
S5 and S5,

The star S, will be observed from the Earth’s positions E, tilted to an
angle a; = vg/c, ie, along the direction to S, if the Sun be at rest in
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absolute space and the velocity of light coming from S, be equal to c.
However, when the Sun moves and the velocity of light coming from S, is
¢ + vs, this star will be seen from E, tilted to an angle

Ve v

v
aap=aE—Aa= =a,— £
c+vg c?

s, (16.8)

i.e.,' along the direction to S,,. The same star when observed from the
position E, after six months will be<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>