
AMERICAN RESEARCH PRESS

LarissaBorissova andDmitri Rabounski

INSIDE STARS
Second edition, expanded with new chapters



American Research Press

Larissa Borissova and Dmitri Rabounski

I N S I D E S T A R S

A Theory of the Internal Constitution of Stars,
and the Sources of Stellar Energy
According to General Relativity

Second edition, expanded with new chapters

Rehoboth, New Mexico, USA
| 2014 |



This book is published and distributed in agreement with the Budapest Open Ini-
tiative. This means that the electronic copies of the book sh ould always be accessed
for reading, download, copying, and re-distribution for an y user free of charge. To
order printed copies of the book, please contact the Publish er. The book can be
downloaded on-line, free of charge, from the following prim ary web-sites:

Progress in Physics, the American journal of physics (USA):
http://ptep-online.com/index �les/books.html

The Abraham Zelmanov Journal (International):
http://zelmanov.ptep-online.com/books.html

Edited by Indranu Suhendro and Suzanne Billharz.
Preface by Pierre Millette.

Copyright © Larissa Borissova and Dmitri Rabounski, 2014

All rights reserved. Electronic copying, print copying and distribution of this book
for non-commercial, academic or individual use can be made b y any user without
permission or charge. Any part of this book being cited or use d howsoever in other
publications must acknowledge this publication. No part of this book may be re-
produced in any form whatsoever (including storage in any me dia) for commercial
use without the prior permission of the copyright holder. Re quests for permission
to reproduce any part of this book for commercial use must be a ddressed to the Au-
thors. The Authors retain their rights to use this book as a wh ole or any part of it in
any other publications and in any way they see �t. This Copyri ght Agreement shall
remain valid even if the Authors transfer copyright of the bo ok to another party.

Cover image: An SDO/NASA photo image of the Sun. Courtesy of S DO/NASA and
the AIA, EVE, and HMI science teams. SDO images and movies are not copyrighted
unless explicitly noted: the use of SDO images for non-comme rcial purposes and
public education and information e�orts is strongly encour aged and requires no
expressed authorization. See http://sdo.gsfc.nasa.gov/ data/rules.php for details.

Titlepage image: The enigmatic woodcut by an unknown artist of the Middle Ages.
It is referred to as the Flammarion Woodcut because its appearance in page 163 of
Camille Flammarion's L'Atmosph�ere : M�et�eorologie populaire (Paris, 1888), a work
on meteorology for a general audience. The woodcut depicts a man peering through
the Earth's atmosphere as if it were a curtain to look at the in ner workings of the
Universe. The caption \Un missionnaire du moyen �age racont e qu'il avait trouv�e
le point o�u le ciel et la Terre se touchent. . . " translates to \A medieval missionary
tells that he has found the point where heaven [the sense here is \sky"] and Earth
meet. . . ".

This book was typeset using the L ATEX typesetting system.

ISBN 978-1-59973-386-9

American Research Press, Box 141, Rehoboth, NM 87322, USA
Standard Address Number: 297-5092
Printed in the United States of America



Table of Contents

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .6

Chapter 1 Problem Statement

§1.1 Introducing a new theory of the internal constitution of
stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 9

§1.2 Modelling a star in terms of General Relativity . . . . . . . . . . . . 12

§1.3 Physical observable quantities . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 20

Chapter 2 Regular Stars and the Sun

§2.1 Introducing the space metric of a regular star. Einstein's
�eld equations in the form satisfying the metric . . . . . . . . . . . . 36

§2.2 The outer space breaking of the Sun's �eld matches with
the Asteroid strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

§2.3 The geometric sense of the outer space breaking . . . . . . . . . . .54

§2.4 The force of gravity acting inside a liquid star . . . . . . . . . . . . .57

§2.5 Solving the conservation law equations: pressure and den-
sity inside the stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .58

§2.6 The stellar energy mechanism according to the liquid star
model and the mass-luminosity relation . . . . . . . . . . . . . . . . . . . .61

§2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 66

Chapter 3 Regular Stars. The Description

§3.1 Problem statement. The internal space metric of a regular
non-rotating star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

§3.2 Einstein's equations in the internal �eld of a regular non-
rotating star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

§3.3 The internal space metric of a regular rotating star . . . . . . . .73

§3.4 Einstein's equations in the internal �eld of a regular rotat-
ing star. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

§3.5 The stationary vortex-free electromagnetic �eld of a regu-
lar rotating star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

§3.6 Solving Maxwell's equations in the vortex-free electromag-
netic �eld of a regular rotating star . . . . . . . . . . . . . . . . . . . . . . . . 86



4 Table of Contents

§3.7 Solving Maxwell's equations in the vortical electromag-
netic �eld of a regular rotating star . . . . . . . . . . . . . . . . . . . . . . . . 89

§3.8 Geometrization of the electromagnetic �eld for a regular
rotating star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

§3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 95

Chapter 4 Stellar Wind

§4.1 Finding the escape velocity condition for a star . . . . . . . . . . . .97

§4.2 Light-like (massless) particles inside a regular star . . . . . . . .102

§4.3 Particles of the stellar substance inside a regular star . . . . .107

§4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 113

Chapter 5 Neutron Stars and Pulsars

§5.1 Introducing the space metric of a rotating neutron star . . .115

§5.2 Einstein's �eld equations and the conservation law equa-
tions satisfying the metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

§5.3 Introducing the electromagnetic �eld . . . . . . . . . . . . . . . . . . . . . 122

§5.4 The distribution of the magnetic strength . . . . . . . . . . . . . . . . .125

§5.5 The frequency and the magnetic strength of a pulsar . . . . . .128

§5.6 Solving Maxwell's equations in the stationary vortex-free
magnetic �eld of a neutron star . . . . . . . . . . . . . . . . . . . . . . . . . . .130

§5.7 Solving Maxwell's equations in the stationary vortical mag-
netic �eld of a neutron star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

§5.8 Geometrization of the vortical electromagnetic �eld of
a neutron star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 141

§5.9 Boundaries of the physical space a pulsar . . . . . . . . . . . . . . . . .144

§5.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 145

Chapter 6 Black Holes

§6.1 Non-rotating liquid collapsars. The main characteristics . .147

§6.2 The Universe as a huge liquid collapsar . . . . . . . . . . . . . . . . . . .150

§6.3 Pressure and density inside liquid collapsars . . . . . . . . . . . . . .151

§6.4 The inner forces of gravitation. The inner redshift . . . . . . . .152

§6.5 The state of the collapsed liquid substance . . . . . . . . . . . . . . . .154

§6.6 Time 
ows in the opposite direction inside collapsars . . . . .158

§6.7 The boundary conditions of a liquid collapsar . . . . . . . . . . . . .158



Table of Contents 5

§6.8 Rotating liquid collapsars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .159

§6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 161

Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167



Preface

A scientist often encounters established ideas that were once thesubject
of debate, sometimes controversy. Often, we use those ideas with no
knowledge of their historical development, nor of the assumptionson
which they are based. We rarely stop to ponder the validity of an
established idea. This is not surprising as this is how we have been
building our edi�ce of physical theories, by standing on the shoulders of
giants, to paraphrase Isaac Newton.

Yet established ideas and theories need to be challenged and revisited
when new data or new theories that contradict or shed new light on
them, become available. We need not be afraid of new information that
risk overturning accepted ideas. After all, this is how new paradigms
arise and how progress is achieved.

The question of whether stars are gaseous or liquid is one debate
that most scientists are oblivious to. Yet this was a subject of vigorous
debate in the late 19th and early 20th centuries, with well-known physi-
cists lining up behind both sides of the question. Larissa Borissova and
Dmitri Rabounski provide a summary of the history of this debate and
a personal perspective on how they were pulled into it.

Recent evidence for liquid stars, in particular the extensive research
performed by Pierre-Marie Robitaille who has proposed the liquid
metallic hydrogen model of the Sun*, leads us to revisit this question.
Interestingly enough, stellar plasmas are modelled using Magnetohydro-
dynamics, i.e. magnetic 
uid dynamics, a combination of Maxwell's
equations of electromagnetism and the Navier-Stokes equations of 
uid
mechanics„. Magnetohydrodynamics is also used to model liquid metals.
This is an indication that the theory of liquid stars is highly plausible
as an explanation of solar and stellar astrophysical data.

My interest in this research area stems from the astrophysical re-
search I performed on stellar atmospheres of Wolf-Rayet stars at the
University of Ottawa's Department of Physics for my thesis on \Laser
Action in C IV, N V and O VI Plasmas Cooled by Adiabatic Expansion".
Wolf-Rayet stars exhibit mass loss and an expanding stellar atmosphere.
This results in population inversion of certain atomic transitions due to

* Robitaille P.-M. A high temperature liquid plasma model of t he Sun. Progress
in Physics , 2007, vol. 3, issue 1, 70{81.

„ Tajima T. and Shibata K. Plasma Astrophysics. Perseus Publi shing, Cam-
bridge, 2002; Kulsrud R. M. Plasma Physics for Astrophysics . Princeton University
Press, Princeton, 2005.
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the rapid cooling of the expanding plasma and the recombination of the
free electrons into higher excited ionic states, and laser action in the
corresponding emission lines. This physical mechanism has been pro-
posed as the explanation for the prominent spectral lines observed in
the spectra of Wolf-Rayet stars.

In this book, Larissa Borissova and Dmitri Rabounski provide a
general relativistic theory of the internal constitution of liquid sta rs,
a model that was lacking till now. This they accomplish by using a
mathematical formalism �rst introduced by Abraham Zelmanov for c al-
culating physically observable quantities in a four-dimensional pseudo-
Riemannian space, known as the theory of chronometric invariants.
This mathematical formalism allows to calculate physically observable
(chronometrically invariant) tensors of any rank, based on operators of
projection onto the time line and the spatial section of the observer. The
basic idea is that physically observable quantities obtained by an ob-
server should be the result of a projection of four-dimensional quantities
onto the time line and onto the spatial section of the observer.

This analysis allows them to propose a classi�cation of stars based on
three main types: regular stars (covering white dwarfs to super-giants),
of which Wolf-Rayet stars are a subtype, neutron stars and pulsars, and
collapsars (i.e. black holes). Their theory also provides a model of the
internal constitution of our solar system. It provides an explanation for
the presence of the asteroid belt, the general structure of theplanets
inside and outside that orbit, and the net emission of energy by the
planet Jupiter.

The ultimate test of any theory of stellar structure is the stellar mass-
luminosity relation which is the main empirical relation of observational
astrophysics. Using their theory, the authors can calculate the pressure
inside stars as a function of radius, including the central pressure. As
pointed out by the authors, the temperature of the incompressible liquid
star does not depend on the pressure, only on the source of stellar energy
(as opposed to a gas, in particular as given by the equation of stateof
an ideal gas). The authors match the calculated energy production of
the suggested mechanism of thermonuclear fusion of the light atomic
nuclei in the Hilbert core (the \inner sun") of the stars to the empir ical
mass-luminosity relation of observational astrophysics, to determine the
density of the liquid stellar substance in the Hilbert core.

Pulsars and neutron stars are found to be stars whose physical ra-
dius is close to the radius of their Hilbert core. They are modelled by
introducing an electromagnetic �eld in the theory due to their rotat ion
and gravitation. Electromagnetic radiation is found to be emitted only
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from the poles of those stars, along the axis of rotation of the stars.
This book represents a solid contribution to our understanding of

stellar structure from a general relativistic perspective. It provides a
general relativistic underpinning to the theory of liquid stars. It ra ises
new ideas on the constitution of stars and planetary systems, andpro-
poses a new approach to stellar structure and evolution which is bound
to help us better understand stellar astrophysics.

Ottawa, September 2, 2013 Pierre Millette
Astrophysics research on stellar at-
mospheres, Department of Physics,
University of Ottawa (alumnus)



Chapter 1

Problem Statement

§1.1 Introducing a new theory of the internal constitution of
stars

In this book, we suggest a new mathematical theory of the internal
constitution of stars, and the sources of stellar energy. The theory is
based on the common consideration of a star and its �eld according to
the General Theory of Relativity.

This is an alternative to the conventional theory of stars which was
introduced in the 1920's by Arthur Eddington [1] and others in the
framework of classical mechanics and thermodynamics.

As is known, the conventional theory resulted in themodel of gaseous
stars: stars are considered as gaseous spheres, consisting of mostly hy-
drogen and a very inhomogeneous interior so that the hydrogen ofthe
extremely hot and dense central region is carried into a process ofenergy
release. It assumes, after Hans Bethe [2], that this exothermic process
is thermonuclear fusion producing helium from hydrogen. Two other
versions of the gaseous model di�er from Eddington's theory in details.
Edward Milne [3] conjectured two (or more) di�erent states of mat ter
inside a star. Nikolai Kozyrev [4] arrived at the peculiar picture of low
density and temperature inside stars, and a non-nuclear source of stellar
energy.

Another theory of the internal constitution of stars was much pop-
ulated in the 1920{1930's due to James Jeans [5, 6]. This is themodel
of liquid stars. The public discussion between Jeans, who defended the
liquid model, and Eddington, the follower of the gaseous model, was
�xed in the dozens of short communications they published in the sci-
enti�c journals. Indeed, Eddington eventually won. Despite the many
astrophysical evidences of liquid stars, Jeans' theory did not possess a
solid mathematical basis. His theory was based on observational anal-
ysis and arguments rather than a mathematical model. In contrast,
the theory of gaseous stars was mathematically well-grounded by Ed-
dington. In particular, the mathematical model of gaseous starsgives
a theoretical deduction of the mass-luminosity relation, which is one
of the main relations of observational astrophysics*. This is a \trump

* The most comprehensive deduction of the mass-luminosity re lation in the frame-
work of the model of gaseous stars is given in Part I of Kozyrev 's paper [4].
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card": once the gaseous model predicts the mass-luminosity relation,
the theory is usually claimed to be true in general while all its incon-
sistencies with observational analysis are merely some \di�culties" to
be resolved in the future. Thus the model of gaseous stars became the
conventional model for decades to come, until the present time.

We now have to make an important note. As is known, the core of
the mathematical theory of the internal constitution of stars consists of
two equations: the equation of mechanical equilibrium and the equa-
tion of heat equilibrium. The mechanical equilibrium means that the
weight of any unit volume of the stellar matter is put into equilibrium
with the pressure from within the star. The heat equilibrium (energy
balance) means that the energy produced within any unit volume of the
stellar matter is put into equilibrium with the energy 
ow (radiations,
convection, or heat conductivity) from within the star onto its sur face.
These two main equations of the theory come from general physics, and
they do not dependon whether the stars are out of gas, liquid, or some-
thing else. Only then, by introducing the equation of state of ideal gas
(and many other particular assumptions) into the main equations, the
conventional theory yields gaseous stars and other conclusions including
the mass-luminosity relation.

Jeans' theory of liquid stars cannot follow this way. The equation
of state of ideal liquid, provided by classical physics, is so simple that
it contains not the characteristics of stellar matter which are necessary
for further deduction by means of the equations of equilibrium.

Instead of all these considerations of classical mechanics and ther-
modynamics, we suggest an absolutely di�erent approach to the prob-
lem. It is based on the simultaneous consideration of a star and its
�eld according to the General Theory of Relativity. We consider liquid
stars: this matches certain new observational evidences for thestate of
condensed matter inside stars; in particular, that the Sun consists of
high-temperature liquid metallic hydrogen (see [7{10]).

In the framework of the General Theory of Relativity, the struct ure,
matter, and �eld of such a star are characterized by Schwarzschild's
metric of a sphere �lled with incompressible liquid. The recent theo-
retical result obtained by one of us [11, 12] showed that, if the Sunis
represented as a liquid sphere according to the metric, the Sun's �eld
has a space breaking (discontinuity) in the asteroid strip (this implies
that the space breaking impedes the substance to be formed as a planet
in this orbit). We are therefore sure, hereby, of following the right path.

We deduce Einstein's �eld equations in the form that models stars
as liquid spheres. This is a particular form of �eld equations, which
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may or may not satisfy the particular space metric. Therefore, wethen
prove that the obtained particular form of the �eld equations satis �es
Schwarzschild's metric of a liquid sphere.

Then, on the basis of the obtained energy-momentum tensor of a per-
fect liquid (as contained on the right-hand side of the �eld equations),
we deduce the conservation law for the liquid substance of regular stars.
Solving the equations of energy-momentum conservation, we obtain the
pressure and density of the liquid substance inside the stars. We then
obtain the formula for the luminosity of stars in the framework of th e
liquid model. We study how this theoretical formula can be compatible
with the mass-luminosity relation (which is the main empirical rela-
tion of observational astrophysics). As a result, we obtain the physical
characteristics of the mechanism that produces energy inside thestars.

Concerning the stellar energy mechanism itself, we conclude that it
is the conversion of substance into radiation on the surface of thetiny
central \core" inside each star. The core can have a di�erent density
than that of the other substance of a star (a liquid sphere is homoge-
neous inside), and is selected by the collapse surface with the radius
determined according to the star's mass. Despite almost all the mass
of the star is located outside the core (the core is not a black hole),the
force of gravity approaches in�nity on the surface of the core due to the
inner space breaking of the star's �eld therein. The super-strongforce
of gravity is su�cient for the transfer of the necessary kinetic energy
to the lightweight atomic nuclei of the stellar substance, so that the
process of thermonuclear fusion begins. The energy produced bythe
thermonuclear fusion is that very energy which stars radiate. in other
wordss, the tiny core of each star is its luminous \inner sun", while the
produced stellar energy is then transferred to the physical surface of the
star due to thermal conductivity (which is regular to liquid media).

Neutron stars and pulsars, being rapidly rotating objects, consist
a special type of stars. The structure, matter, and �eld of such stars
should be described by another metric, which is that of a rotating liquid
sphere under special physical conditions (which are particular to neutron
stars and pulsars). We introduce such a metric. According to the metric,
the liquid substance of neutron stars and pulsars is in the same state
as high-density physical vacuum. We then deduce a particular formof
Einstein's �eld equations which satis�es the metric. We show that the
energy-momentum tensor of the obtained �eld equations satis�esthe
conservation law only in the case where the energy 
ow from within the
object is very anisotropic, and is directed toward the north and south
poles (while the axis of the magnetic �eld does not coincide with the axis
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of rotation of the object). This matches the well-known observational
data about neutron stars and pulsars.

This is our plan for the upcoming chapters. As a result, we obtain a
mathematical theory of liquid stars, and of the sources of stellar energy
according to the General Theory of Relativity.

Before proceeding with the steps, in the next§1.2, we survey the
space-time metrics we use in our theory. Then we introduce a new
classi�cation of stars. This classi�cation is based on the location of the
space breaking of a star's �eld with respect to its surface (the space
breaking is calculated according to the metric and proper parameters
of the star).

At the end of this chapter, §1.3 gives a survey of the important
mathematical apparatus of physically observable quantities in the space-
time of the General Theory of Relativity we require for our further
calculations.

§1.2 Modelling a star in terms of General Relativity

Stars are spherical bodies �lled with substance and light. Their �elds
are spherically symmetric as well. Therefore, once considering a star
in terms the General Theory of Relativity, the structure, matter , and
�eld of such an object should be given by a spherically symmetric space
(space-time) metric.

Among the space-time metrics known due to the General Theory of
Relativity, three primary metrics describe spherically symmetric �eld s.
These are Schwarzschild's metric of a mass-point, Schwarzschild's met-
ric of a sphere �lled with incompressible liquid, and de Sitter's metric
which describes a spherical distribution of physical vacuum (� -�eld).
All these three metrics will be used in our consideration of stars.

1.2.1 The mass-point metric

ds2 =
�

1 �
rg

r

�
c2dt2 �

dr2

1 �
r g

r

� r 2 �
d� 2 + sin 2� d� 2�

(1.1)

was introduced in 1916 by Karl Schwarzschild [13]. The metric describes
the �eld of a spherically symmetric massive body to so large a distance
from it that the physical size of the body is neglected (assuming thebody
is a mass-point). The metric is written in the spherical coordinatesr ,
� , � , whose origin meets the mass-point. Also, hereinrg = 2GM

c2 is the
Hilbert radius of the massive body*, while M is the body's mass (which
is the mass of the �eld source).

* This is not the same as the physical radius of the body. At a dis tance of the



§1.2 Modelling a star in terms of General Relativity 13

According to the metric (1.1), such a space does not rotate or deform.
The gravitational inertial force (see §1.4 for detail) in the space can be
deduced on the basis of the componentg00 of the fundamental metric
tensor. As is seen,g00 of the mass-point metric (1.1) has the form

g00 = 1 �
rg

r
: (1.2)

Di�erentiating the gravitational potential w = c2(1 �
p

g00) with respect
to x i , we obtain

@w
@xi

= �
c2

2
p

g00

@g00

@xi
: (1.3)

We then substitute it into the general formula for gravitational ine r-
tial force (1.42) while taking the absence of rotation of the space into
account. We obtain the formulae for the covariant and contravariant
components of the gravitational inertial force

F1 = �
c2rg

2r 2

1

1 �
r g

r

; F 1 = �
c2rg

2r 2 : (1.4)

As is seen from the formulae, the gravitational inertial force in a mass-
point space is due Newtonian gravitation, and is reciprocal to the square
of the distancer from the gravitating mass.

The curvature of a mass-point space is due to the Newtonian �eld
of gravitation, produced by the massive body in the origin of the coor-
dinates. This is not a constant curvature space; its curvature decreases
with distance from the massive body (the �eld source). At an in�nite ly
large distance from the body the space is 
at.

1.2.2 A space �lled with a spherically symmetric homogeneous dis-
tribution of physical vacuum (the � -�eld in Einstein's �eld equations)
without any island of mass presented therein is described byde Sitter's
metric

ds2 =
�

1 �
�r 2

3

�
c2dt2 �

dr2

1 � �r 2

3

� r 2 �
d� 2 + sin 2� d� 2�

: (1.5)

The metric was introduced in 1918 by Willem de Sitter [16] as a static
model of the Universe. It is assumed that� < 10� 56 in the cosmos, so

Hilbert radius from the center of gravity of the massive body (r = r g ), gravitational
collapse occurs: in a rotation-free space, this is a state by which the component g00
of the fundamental metric tensor g�� is zero (g00 = 0). See §5.1 and §5.2 for details.
The Hilbert radius was introduced due to David Hilbert (1862{1944) who conside red
it in 1917 [15] on the basis of Schwarzschild's mass-point me tric. It is also known
as the Schwarzschild radius , despite the fact that Karl Schwarzschild (1873{1916)
never considered gravitational collapse in his papers [13, 14].
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physical vacuum has a very low density therein. A modern version of
the static model of the Universe is presented in [17].

The fundamental metric tensor, via its components according to
de Sitter's metric (1.5), manifests that such a space does not deform or
rotate. Therefore, the gravitational inertial force (1.42) in such a space
is only due to g00 which is

g00 = 1 �
�r 2

3
: (1.6)

Accordingly, after the same algebra as previously, we obtain

F1 =
�c 2

3
r

1 � �r 2

3

; F 1 =
�c 2

3
r : (1.7)

This is a non-Newtonian gravitational force, which is proportional to
distancer : the force (� -force) grows along with the distance at which it
acts. If � < 0 (the observable density of vacuum is positive), this is an
attraction force. If � > 0 (the observable density of vacuum is negative),
this is a repulsion force. See Chapter 5 of our book [18] for details.

The curvature of a de Sitter space is due to the non-Newtonian
gravitational �eld produced by physical vacuum ( � -�eld), which homo-
geneously �lls the space. The curvature is the same everywhere within
the space. This is a constant curvature space, in other words.

1.2.3 The metric of a sphere �lled with incompressible liquid was
originally introduced in 1916 by Karl Schwarzschild [14] in a truncated
form containing substantial limitations. He arti�cially pre-imposed th e
limitations during the deduction of the metric in order to set the �eld
free of breaking*. The true metric of a sphere �lled with incompressible
liquid remained unknown until 2009, when one of us deduced it in the
most complete form [11, 12], which is free of any limitations and thus
takes space breaking into account. The model of stars as liquid spheres
plays a key rôle in our theory. We therefore consider the metric ofa
sphere �lled with incompressible liquid in the complete form

ds2 =
1
4

 

3

r

1 �
rg

a
�

r

1 �
r 2 rg

a3

! 2

c2dt2 �

�
dr2

1 �
r 2 r g

a3

� r 2 �
d� 2 + sin 2� d� 2�

(1.8)

* Actually, once a limitation is pre-imposed on the metric, th e geometry of the
metric space is arti�cially truncated. In this sense, the me tric Schwarzschild intro-
duced in 1916 is not the genuine metric of the space of a liquid sphere.
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as that deduced in the papers [11,12]. Herein,a = const is the physical
radius of the liquid sphere, whilerg = 2GM

c2 is the Hilbert radius calcu-
lated according to the massM of the liquid (which is the �eld source).
The complete deduction of the metric, containing all the necessaryde-
tails, will be presented in §2.1 of the book wherein we will suggest the
metric for regular stars.

The metric (1.8) is written for distances r < a : this is the \internal
metric" of a sphere �lled with incompressible liquid. At the surface of
the sphere (r = a) the metric coincides with the mass-point metric. Also,
as was proven in [12] (this deduction will be repeated in§2.1 of the
book), the \outer metric" of the sphere ( r > a ) is as well the same as
the mass-point metric: the external �eld of a liquid sphere is the same
as the Newtonian gravitational �eld of a mass-point.

As is seen from the metric of a liquid sphere (1.8), such a space does
not deform or rotate. Therefore, according to the de�nition of t he grav-
itational inertial force (1.42), the force in such a space is only due to
g00. In the metric (1.8), we have

g00 =
1
4

 

3

r

1 �
rg

a
�

r

1 �
r 2 rg

a3

! 2

: (1.9)

After the same algebra as previously, we obtain

F1 = �
c2 rg r

a3

1
�

3
q

1 �
r g

a
�

q
1 �

r g r 2

a3

� q
1 �

r g r 2

a3

; (1.10)

F 1 = �
c2 rg r

a3

q
1 �

r g r 2

a3

3
q

1 �
r g

a
�

q
1 �

r g r 2

a3

: (1.11)

Since r < a inside the sphere,F1 < 0 therein. Hence, this is a force of
attraction. Its numerical value is proportional to distance r . The force
is zero at the center of the sphere, and reaches its ultimate-high value
on the surface.

It is possible to show that the curvature of such a space, being due
to the aforementioned �eld of attraction, increases with distance from
the center of the liquid sphere onto its surface. in other words, the
space inside a liquid sphere is not a constant curvature space. (We will
provide the proof and discuss both the four-dimensional curvature and
the three-dimensional observable curvature of the space in§2.3.)
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1.2.4 We now suggest a new modelling of stars in terms of the
General Theory of Relativity.

Consider stars as spherical bodies consisting of liquid. In the frame-
work of the liquid model, the internal structure, matter, and �eld o f
a star is described by the metric of a sphere �lled with incompressible
liquid. This is formula (1.8). As was shown above, the force of gravita-
tion increases therein proportionally to the distance from the center of
the star. The external �eld of the star is described by the mass-point
metric (1.1). In the external �eld, the regular Newtonian gravitat ional
force acts. The force is reciprocal to the distance from the star.

The �eld of a liquid sphere, as such, is not continuous everywhere.
According to the external metric (1.1) and internal metric (1.8) of a
liquid sphere, its �eld has space breakingwhich appears at two distances
from the center of the liquid sphere. Due to this fact, we now introduce a
new classi�cation of stars according to the General Theory of Relativity.
We hereby explain how to build it.

The space breaking occurs due to the violation of thesignature pre-
scription conditions of the space metric. It means that the space has
a singularity in that region (surface or volume) wherein at least one
of the signature conditions is violated. The signature conditions fora
sign-alternating diagonal metric (+ ��� ) as that of the four-dimensional
pseudo-Riemannian space (which is the basic space-time of the General
Theory of Relativity) have the form

g00 > 0

g00 g11 < 0

g00 g11 g22 > 0

g = g00 g11 g22 g33 < 0

9
>>>>=

>>>>;

: (1.12)

The �rst three are known as the weak signature conditions. The fourth
is known as thestrong signature condition. If one or all weak signature
conditions are violated, while the strong signature condition is true,this
is a removable singularity. If the strong signature condition is violated,
the space-time hasunremovable singularity: in this case the solution is
regularly failed from consideration, because it \has no physical sense".
Actually, one could not see the physical meaning therein. However,it
is very meaningful mathematically. We therefore will take any space
singularity (space breaking) under consideration.

Consider now the space of a liquid sphere. According to the exter-
nal metric (1.1) of the sphere, the �rst signature condition is violated
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(g00 = 0) at the distance r = rg from the center:

g00 = 1 �
rg

r
= 0

g00 g11 = � 1 < 0

g00 g11 g22 = r 2 > 0

g = � r 4 sin2 � < 0

9
>>>>>>=

>>>>>>;

: (1.13)

The internal metric (1.8) of the sphere manifests that the second, third,
and fourth signature conditions are violated at the distance

r = rbr =

s
a3

rg
(1.14)

from the center of the sphere, where the aforementioned threefunctions
approach in�nity * :

g00 =
9
4

�
1 �

rg

a

�
> 0

g00 g11 ! �1

g00 g11 g22 ! 1

g = g00 g11 g22 g33 ! �1

9
>>>>>>=

>>>>>>;

: (1.15)

This means that the �eld of a liquid sphere has space breaking at two
distances from the center:

1. The �rst space breaking occurs on the surface, spherically covering
the center of gravity of the liquid sphere at the distance of the Hil-
bert radius r = rg. This is a surface of gravitational collapse (ac-
cording to the condition g00 = 0 of this space breaking). In other
words, while a liquid sphere itself may not be a collapsar, it always
contains a \core" which is selected from the other liquid substance
by the surface of gravitational collapse. In the case where the liq-
uid sphere is a star (as in the said model of liquid stars), each star
contains such a core. The core is much smaller than the physical
radius of regular stars: while the radius of the collapsed core
(Hilbert radius) of the Sun is rg = 2 :9 � 105 cm (2.9 km), the phys-
ical radius of the Sun is 7:0 � 1010 cm (700,000 km). We therefore
refer to it as the inner space breaking;

* As is known, a function has a breaking when approaching in�ni ty.
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2. The second space breaking occurs on the spherical surface cover-
ing the liquid body at the distance rbr =

p
a3=rg. The distance is

much larger than the physical radius of regular stars. Thus this is
the outer space breaking(contrary to the inner space breaking at
the Hilbert radius). For example, the second (outer) space break-
ing of the Sun's �eld occurs at the distance rbr = 3 :4 � 1013 cm =
= 340; 000; 000 km = 2:3 AU* . This space breaking is located in-
side the asteroid strip, close to the orbit of the maximal concentra-
tion of the asteroids (the asteroid strip is situated from 2.1 AU to
4.3 AU from the Sun). This implies that the space breaking does
not permit the substance to be formed into a common physical
body (such as a planet) in this orbit.

If the physical radius a of a liquid star is the same as the Hilbert ra-
dius rg = 2GM

c2 , it is a gravitational collapsar. In this case (rg = a), the
internal metric of the liquid sphere (1.8) takes the form

ds2 =
1
4

�
1 �

r 2

a2

�
c2dt2 �

dr2

1 � r 2

a2

� r 2 �
d� 2 + sin 2� d� 2�

: (1.16)

This metric, under the particular condition a2 = 3
� > 0 (thus � > 0), has

the same form as de Sitter's metric (1.5),

ds2 =
�

1 �
�r 2

3

�
c2dt2 �

dr2

1 � �r 2

3

� r 2 �
d� 2 + sin 2� d� 2�

; (1.17)

which describes a spherical distribution of physical vacuum (the� -�eld).
This means that such a collapsed object, which is a liquid sphere in the
state of gravitational collapse, consists of liquid whose state is close to
the state of high-density physical vacuum.

As a result, the new liquid model allows us to introduce a new clas-
si�cation of stars according to the location of the space breaking of a
star's �eld with respect to the physical surface of the star:

Type I: Regular stars including the Sun
The collapsed core (Hilbert radiusrg) of a regular star is many or-
ders less than the physical radiusa of the star (rg � a). The outer
space breakingrbr of the star's �eld is located far away from the
star, in the cosmos (rbr � a). This, of course, is the list of almost
all the visible stars: super-giants, the Sun, brown dwarfs, and even
white dwarfs. We will consider regular stars in Chapter 2;

* 1 AU = 1 :49 � 1013 cm (Astronomical Unit) is the average distance between the
Sun and the Earth.
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Object Mass M , Radius Hilbert radius r g

a
Space breaking r br

a
Type

gram a, cm r g , cm r br , cm

Red super-giant� 4:0 � 1034 7:0 � 1013 5:9 � 106 8:4 � 10� 8 2:4 � 1017 3:4 � 103 I

White super-giant y 3:4 � 1034 4:8 � 1012 5:0 � 106 1:0 � 10� 6 4:7 � 1015 9:8 � 102 I

Sun 2:0 � 1033 7:0 � 1010 2:9 � 105 4:1 � 10� 6 3:4 � 1013 4:9 � 102 I

Jupiter (proto-star) 1:9 � 1030 7:1 � 109 2:8 � 102 4:0 � 10� 8 3:4 � 1013 4:8 � 103 I

White dwarf z 2:0 � 1033 6:4 � 108 3:0 � 105 4:7 � 10� 4 2:9 � 1010 0:45� 102 I

Red dwarfs 6:7 � 1032 2:3 � 1010 9:9 � 104 4:3 � 10� 6 1:1 � 1013 4:8 � 102 I

Brown dwarfs 1:5 � 1032 7:0 � 109 2:2 � 104 3:1 � 10� 6 4:0 � 1014 5:7 � 104 I

Wolf-Rayet stars 1:0 � 1035 1:4 � 1012 1:5 � 107 1:1 � 10� 5 4:3 � 1014 3:1 � 102 Ia

Neutron stars 2:6 � 1033 1:0 � 106 3:9 � 105 0:39 1:6 � 106 1.6 II

Pulsarx 3:9 � 1033 1:6 � 106 5:8 � 105 0:36 2:7 � 106 1:7 II

Black holes various various various 1 1 1 III

� Betelgeuse. yRigel. zSirius B. xRadio-pulsar J1903+0327.

Table 1.1: Classi�cation of stars according to the General T heory of Relativity. The classi�cation is presented
with the numerical values of the parameters we calculated for the typical members of the families of stars.
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Type Ia: Wolf-Rayet stars
They are almost the same as regular stars, except that the power-
ful stellar wind consisting of the particles of the stellar substance,
which are permanently erupted from the star, should be taken
into account (it is the property characterizing Wolf-Rayet stars) .
Stellar wind will be considered in Chapter 3;

Type II: Neutron stars and pulsars
For such a star, the radius of the collapsed core is close to the
physical radius of the star (rg . a) but does not reach it (other-
wise the star would be invisible for observation). The outer space
breaking rbr of the star's �eld is located in the outer cosmos, and
is also close to the physical surface of the star but does not reachit
(rbr & a). Also, stars of this Type II rotate at high speeds which
are close to relativistic velocities. As a result, the metric and
energy-momentum tensor of such a star di�er from those of regu-
lar stars. These are neutron stars and pulsars. We will focus on
these stars in Chapter 4;

Type III: Black holes
The Hilbert radius rg (radius of the inner space breaking) and
the radius of the outer space breakingrbr of a such an object
meet each other on its physical surface (rg = rbr = a). These are
gravitational collapsars: the condition of gravitational collapse
(g00 = 0) occurs in the physical surface of such an object, so all of
its mass is concentrated within the collapsed surface. Black holes
will be under focus in Chapter 5 of the book.

This classi�cation is presented in Table 1.1, with the numerical values of
the parameters calculated for the typical members of the known families
of stars.

The new model of liquid stars according to the General Theory of
Relativity, surveyed in the classi�cation of stars, will be a subject to
develop in the upcoming chapters.

§1.3 physically observable quantities

Before considering stars in terms of the General Theory of Relativity, we
shall outline a theory of physically observable quantities in curved four-
dimensional space (space-time). A comprehensive expisition of thesaid
physically observable quantities has already been given in the respective
chapters of our books [18, 19]. We now give the necessary theoretical
basics of the theory of physically observable quantities according to [19],
with some amendments which are required for the current study.
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In order to build a descriptive picture of any physical theory, we
need to express the results through real physical quantities, which can be
measured in experiments (physically observable quantities). In the Gen-
eral Theory of Relativity, this problem is not a trivial one at all, becau se
we are looking at objects in a four-dimensional space-time, and so we
have to determine which components of the associated four-dimensional
tensor quantities are truly physically observable.

Here is the problem in a nutshell. All equations in the General
Theory of Relativity are cast in generally covariant form, which does
not depend on our choice of the frame of reference. The equations, as
well as the variables they contain, are four-dimensional. Thus, we ask,
which of those four-dimensional variables are truly observable in real
physical experiments, i.e. which components are true physically observ-
able quantities? Intuitively we might, at �rst glance, easily assume that
the three-dimensional components of a four-dimensional tensorconsti-
tute a physically observable quantity. Yet, at the same time, we cannot
be absolutely sure that what we simply observe are truly the three-
dimensional componentsper se, if not more complicated variables which
depend on other factors, e.g. on the properties of the physical standards
of the space of reference.

As is known, a four-dimensional vector (a 1st-rank tensor) has as few
as 4 components (1 time component and 3 spatial components). A 2nd-
rank tensor, e.g. a rotation or deformation tensor, has 16 components: 1
time component, 9 spatial components, and 6 mixed (time-space) com-
ponents. Now, are the mixed components truly physically observable
quantities? Tensors of higher ranks have even more components;for
instance the Riemann-Christo�el curvature tensor has 256 components,
so the problem of the heuristic recognition of genuine physically ob-
servable components becomes far more complicated. Besides, there is
an obstacle related to the recognition of the observable components of
covariant tensors (in which indices occupy the lower position) and of
mixed-type tensors, which have both lower and upper indices.

We see that the recognition of physically observable quantities in the
General Theory of Relativity is not a trivial problem. Ideally we would
like to have a mathematical technique to calculate physically observable
quantities for tensors of any given ranksunambiguously.

Numerous attempts to develop such a mathematical method were
made in the 1930's by some of the most outstanding researchers ofthat
time. The goal was nearly attained by Landau and Lifshitz in their fa-
mous The Classical Theory of Fields [20], �rst published in Russian in
1939. Aside for discussing the problem of physically observable quanti-
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ties itself, in §84 of their book, they introduced the interval of physically
observable time along with the phsyically observable three-dimensional
interval, which depend on the physical properties (physical standards)
of the space of reference of an observer. But all such attemptsmade in
the 1930's were very limited to just solving certain particular problems.
None of them led to a versatile mathematical apparatus.

A most complete mathematical apparatus for calculating physically
observable quantities in a four-dimensional pseudo-Riemannian space
was �rst introduced by Abraham Zelmanov and is known as thetheory of
chronometric invariants, or the chronometrically invariant formalism .
It was �rst presented in 1944 in his Ph.D. thesis [21] | then in his
condensed papers of 1956{1957 [22,23].

The essence of Zelmanov's mathematical apparatus of physically ob-
servable quantities (chronometric invariants), designed especiallyfor
the four-dimensional, curved, non-uniform pseudo-Riemannian space
(space-time), is as follows.

At any point of the space-time we can place a three-dimensional
spatial section x0 = ct = const (three-dimensional space) orthogonal to
a giventime line x i = const. If a spatial section is everywhere orthogonal
to the time lines, which pierce it at each point, such a space is referred
to as holonomic. Otherwise, if the spatial section is non-orthogonal
everywhere to the aforementioned time lines, the space is referred to as
non-holonomic.

Possible frames of reference of a real observer include a coordinate
net spanned over a real physical body (the reference body of the ob-
server, which is located near him) and a real clock located at each point
of the coordinate net. Both the coordinate net and clock represent a set
of real references to which the observer refers his observations. There-
fore, physically observable quantities registered by an observer should
be the result of a projection of four-dimensional quantities onto the time
line and onto the spatial section of the observer.

The operator of projection onto the time line of an observer is the
world-vector of four-dimensional velocity

b� =
dx�

ds
(1.18)

of his reference body with respect to him. This world-vector is tangential
to the world-line of the observer at each point of his world-trajectory,
so this is a unit-length vector

b� b� = g��
dx�

ds
dx�

ds
=

g�� dx� dx�

ds2 = + 1 : (1.19)
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The operator of projection onto the spatial section of the observer (his
local three-dimensional space) is determined as a four-dimensional sym-
metric tensor h�� , which is

h�� = � g�� + b� b�

h�� = � g�� + b� b�

h�
� = � g�

� + b� b�

9
>>=

>>;
: (1.20)

The world-vector b� and the world-tensor h�� are orthogonal to each
other. Mathematically this means that their common contraction is zero
(h�� b� = 0, h�� b� = 0, h�

� b� = 0, h�
� b� = 0). So, the main properties of

the operators of projection onto the time line and the spatial section of
the observer are commonly expressed, obviously, as follows:

b� b� = +1 ; h�
� b� = 0 : (1.21)

If the observer rests with respect to his reference object (such a case
is known as the accompanying frame of reference), then bi = 0 in his
reference frame. The coordinate nets of the same spatial section are
connected to each other through the transformations

~x0 = ~x0 �
x0; x1; x2; x3�

~x i = ~x i �
x1; x2; x3�

;
@~x i

@x0
= 0

9
=

;
; (1.22)

where the third equation displays the fact that the spatial coordinates in
the tilde-marked net are independent of the time of the non-tilded net,
which is equivalent to a coordinate net where the lines of time are �xed
x i = const at any point. The transformation of the spatial coordinates
is nothing but a transition from one coordinate net to another within
the same spatial section. The transformation of time means changing
the whole set of clocks, so this is a transition to another spatial section
(another three-dimensional space of reference). In practice this means
replacement of one reference body with all of its physical references with
another reference body that has its own physical references. But when
using di�erent references, the observer will obtain di�erent results (other
observable quantities). Therefore, the physically observable projections
in an accompanying frame of reference should be invariant with respect
to the transformation of time, which implies invariance with respect
to the transformations (1.22). In other words, such quantities should
possess the property ofchronometric invariance.
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We therefore refer to the physically observable quantities determined
in an accompanying frame of reference aschronometrically invariant
quantities, or chronometric invariants in short.

The tensor h�� of projection, being considered in the space of a
frame of reference accompanying an observer, possesses all properties
attributed to the fundamental metric tensor, namely

h�
i hk

� = � k
i � bi bk = � k

i ; � k
i =

0

@
1 0 0
0 1 0
0 0 1

1

A ; (1.23)

where� k
i is the unit three-dimensional tensor*. Therefore, in the accom-

panying frame of reference the three-dimensional tensorhik can lift or
lower indices in chronometrically invariant quantities.

So in the accompanying frame of reference the main properties of
the operators of projection are

b� b� = +1 ; hi
� b� = 0 ; h�

i hk
� = � k

i : (1.24)

Calculate the components of the operators of projection in the accom-
panying frame of reference. The componentb0 comes from the obvious
condition b� b� = g�� b� b� = 1, which in the accompanying frame of ref-
erence (bi = 0) is b� b� = g00 b0b0 = 1. This component, in common with
the remaining components ofb� , is

b0 =
1

p
g00

; bi = 0

b0 = g0� b� =
p

g00 ; bi = gi� b� =
gi 0

p
g00

9
>>=

>>;
; (1.25)

while the components ofh�� are

h00 = 0 ; h00 = � g00 +
1

g00
; h0

0 = 0

h0i = 0 ; h0i = � g0i ; hi
0 = � i

0 = 0

hi 0 = 0 ; hi 0 = � gi 0; h0
i =

gi 0

g00

hik = � gik +
g0i g0k

g00
; hik = � gik ; hi

k = � gi
k = � i

k

9
>>>>>>>>>>=

>>>>>>>>>>;

: (1.26)

* This tensor � k
i is the three-dimensional part of the four-dimensional unit ten-

sor � �
� , which can be used to replace indices in four-dimensional qu antities.
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Zelmanov created a comprehensive mathematical method for the cal-
culation of the chronometrically invariant (physically observable) pro-
jections of any generally covariant (four-dimensional) tensor quantity,
and set it forth as a theorem (we refer to it asZelmanov's theorem):

Zelmanov's theorem
Assume that Qik:::p

00::: 0 are the components of the four-dimensional
tensor Q��:::�

00::: 0 of the r -th rank, in which all upper indices are not
zero, while all m lower indices are zero. Then, the quantities

T ik:::p = ( g00) � m
2 Qik:::p

00::: 0 (1.27)

constitute a chronometrically invariant three-dimensional contra-
variant tensor of (r � m)-th rank. Hence the tensorT ik:::p is a re-
sult of m-fold projection onto the time line by the indices �; � : : : �
and onto the spatial section by r � m the indices �; � : : : � of the
initial tensor Q��:::�

��:::� .

According to the theorem, the chronometrically invariant (physically
observable) projections of a four-dimensional vectorQ� are

b� Q� =
Q0

p
g00

; hi
� Q� = Qi ; (1.28)

while the chr.inv.-projections of a symmetric tensor of the 2nd rankQ��

are the following quantities:

b� b� Q�� =
Q00

g00
; hi� b� Q�� =

Qi
0p

g00
; hi

� hk
� Q�� = Qik : (1.29)

The chr.inv.-projections of a four-dimensional coordinate interval
dx� are the interval of the physically observable time

d� =
p

g00 dt +
g0i

c
p

g00
dxi ; (1.30)

and the interval of the observable coordinatesdxi which are the same as
the spatial coordinates. The physically observable velocity of a particle
is the three-dimensional chr.inv.-vector

vi =
dxi

d�
; vi vi = hik vi vk = v 2; (1.31)

which at isotropic trajectories becomes the three-dimensional chr.inv.-
vector of the physically observable velocity of light

ci = v i =
dxi

d�
; ci ci = hik ci ck = c2: (1.32)
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Chronometrically projecting the covariant or contravariant fund a-
mental metric tensor onto the spatial section of an accompanyingframe
of reference (bi = 0)

h�
i h�

k g�� = gik � bi bk = � hik

hi
� hk

� g�� = gik � bi bk = gik = � hik

9
=

;
; (1.33)

we obtain that the chr.inv.-quantity

hik = � gik + bi bk (1.34)

is the chr.inv.-metric tensor (the observable metric tensor), using which
we can lift and lower indices of any three-dimensional chr.inv.-tensorial
object in the accompanying frame of reference. The contravariant and
mixed components of the observable metric tensor are, obviously,

hik = � gik ; hi
k = � gi

k = � i
k : (1.35)

Expressingg�� through the de�nition of h�� = � g�� + b� b� , we ob-
tain the formula for the four-dimensional interval

ds2 = b� b� dx� dx� � h�� dx� dx� ; (1.36)

expressed through the operators of projectionb� and h�� . In this for-
mula b� dx� = cd� , so the �rst term is b� b� dx� dx� = c2d� 2. The second
term h�� dx� dx� = d� 2 in the accompanying frame of reference is the
square of the observable three-dimensional interval*

d� 2 = hik dxi dxk : (1.37)

Thus, the four-dimensional interval, represented through the physically
observable quantities, is

ds2 = c2d� 2 � d� 2: (1.38)

The main physically observable properties attributed to the accom-
panying space of reference were deduced by Zelmanov in the framework
of the theory, in particular | proceeding from the property of non -
commutativity (non-zero di�erence between the mixed 2nd derivatives
with respect to the coordinates)

� @2

@xi @t
�

� @2

@t @xi =
1
c2 Fi

�@
@t

; (1.39)

* This is due to the fact that h �� in the accompanying frame of reference possesses
all properties of the fundamental metric tensor g�� .
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�@2

@xi @xk
�

�@2

@xk @xi
=

2
c2 A ik

�@
@t

(1.40)

where the chr.inv.-operators of di�erentiation of Zelmanov are
�@
@t

=
1

p
g00

@
@t

;
� @

@xi
=

@
@xi

�
g0i

g00

@
@x0

: (1.41)

The �rst two physically observable properties are characterized by
the following three-dimensional chr.inv.-quantities: the vector of the
gravitational inertial force Fi and the antisymmetric tensor of the an-
gular velocities of rotation of the space of referenceA ik which are

Fi =
1

p
g00

�
@w
@xi

�
@vi
@t

�
; (1.42)

A ik =
1
2

�
@vk
@xi

�
@vi
@xk

�
+

1
2c2

�
Fi vk � Fk vi

�
: (1.43)

Here w andvi characterize the body of reference and the reference space.
These are the gravitational potential

w = c2 (1 �
p

g00 ) ; 1 �
w
c2 =

p
g00 ; (1.44)

and the linear velocity of rotation of the space

vi = � c
g0i

p
g00

; vi = � c g0i p g00

vi = hik vk ; v2 = vk vk = hik vi vk

9
>=

>;
: (1.45)

We note that w and vi do not possess the property of chronometric
invariance, despitevi = hik vk can be obtained as for a chr.inv.-quantity,
through lowering the index by the chr.inv.-metric tensor hik .

Zelmanov also found that the chr.inv.-quantities Fi and A ik are
linked to each other by two identities (Zelmanov's identities)

� @Aik
@t

+
1
2

� � @Fk
@xi

�
� @Fi
@xk

�
= 0 ; (1.46)

� @Akm

@xi
+

� @Ami

@xk
+

� @Aik
@xm

+
1
2

�
Fi Akm + Fk Ami + Fm A ik

�
= 0 : (1.47)

In the framework of quasi-Newtonian approximation, i.e. in a weak
gravitational �eld at velocities much lower than the velocity of light an d



28 Chapter 1 Problem Statement

in the absence of rotation of space,Fi becomes a regular non-relativistic
gravitational force Fi = @w

@xi
.

Zelmanov also proved the following theorem setting up the condition
of holonomity of space:

Zelmanov's theorem on holonomity of space
Identical equality of the tensor A ik to zero in a four-dimensional
region of space (space-time) is the necessary and su�cient condi-
tion for the spatial sections to be everywhere orthogonal to the
time lines in this region.

in other words, the necessary and su�cient condition of holonomity of
a space should be achieved by equating to zero the tensorA ik . Naturally,
if the spatial sections are everywhere orthogonal to the time lines(in
such a case the space is holonomic), the quantitiesg0i are zero. Since
g0i = 0, we have vi = 0 and A ik = 0. Therefore, we will also refer to the
tensor A ik as the space non-holonomity tensor.

If the conditions Fi = 0 and A ik = 0 are met in common somewhere
in the space, the conditionsg00 = 1 and g0i = 0 are as well true therein.
In such a region, according to (1.30),d� = dt: the di�erence between
the coordinate time t and the physically observable time� disappears
in the absence of gravitational �elds and rotation of the space. Inother
words, according to the theory of chronometric invariants, the di�erence
between the coordinate time t and the physically observable time �
originates in both gravitation and rotation attributed to the space of
reference of the observer (the local space of the Earth in the case of an
Earth-bound observer), or in each of these physical factors separately.

On the other hand, it is doubtful to �nd such a region of the Universe
wherein gravitational �elds or rotation of the background space would
be absent in clear. Therefore, in practice the physically observabletime
� and the coordinate time t di�er from each other. This means that the
real space of our Universe is non-holonomic, and is �lled with a grav-
itational �eld, while a holonomic space free of gravitation can be only
a local approximation to it.

The condition of holonomity of a space (space-time) is linked directly
to the problem of integrability of time in it. The formula for the interva l
of the physically observable time (1.30) has no integrating multiplier.
In other words, this formula cannot be reduced to the form

d� = Adt ; (1.48)

where the multiplier A depends on onlyt and x i : in a non-holonomic
space the formula (1.30) has non-zero second term, depending onthe
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coordinate interval dxi and g0i . In a holonomic spaceA ik = 0, so g0i = 0.
In such a case, the second term of (1.30) is zero, while the �rst term is
the elementary interval of time dt with an integrating multiplier

A =
p

g00 = f
�
x0; x i � ; (1.49)

so we are allowed to write the integral

d� =
Z

p
g00 dt : (1.50)

Hence time is integrable in a holonomic space (A ik = 0), while it cannot
be integrated in the case where the space is non-holonomic (A ik 6= 0). In
the case where time is integrable (a holonomic space), we can synchro-
nize the clocks in two distantly located points of the space by moving
a control clock along the path between these two points. In the case
where time cannot be integrated (a non-holonomic space), synchroniza-
tion of clocks in two distant points is impossible in principle: the larger
the distance between these two points is, the more the deviation oftime
on these clocks is.

The space of our planet, the Earth, is non-holonomic due to the
daily rotation of it around the Earth's axis. Hence two clocks locatedat
di�erent points of the surface of the Earth should manifest a deviation
between the intervals of time registered on each of them. The larger
the distance between these clocks is, the larger the deviation of the
physically observable time (expected to be registered on them) is. This
e�ect was surely veri�ed by the well-known Hafele-Keating experiment
[24{27] concerned with displacing standard atomic clocks by an airplane
around the terrestrial globe, where rotation of the Earth's space sensibly
changed the measured time. During a 
ight along the Earth's rotation,
the observer's space on board of the airplane had more rotation than
the space of the observer who stayed �xed on the ground. Duringa

ight against the Earth's rotation it was vice versa. An atomic clock
on board of the airplane showed a signi�cant deviation of the observed
time depending on the velocity of rotation of space.

Because synchronization of clocks at di�erent locations on the sur-
face of the Earth is a highly important problem in marine navigation
and also aviation, in an early time de-synchronization corrections were
introduced as tables of the empirically obtained corrections which take
the Earth's rotation into account. Now, thanks to the theory of c hrono-
metric invariants, we know the origin of these corrections, and areable
to calculate them on the basis of the General Theory of Relativity.
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In addition to gravitation and rotation, the reference body can de-
form, changing its coordinate nets with time. This fact should also be
taken into account in measurements. This can be done by introducing
into the equations the three-dimensional symmetric chr.inv.-tensor of
the rate of deformation of the space of reference

D ik =
1
2

�@hik
@t

D ik = �
1
2

�@hik

@t

D = hik D ik =
�@ln

p
h

@t
; h = det khik k

9
>>>>>>=

>>>>>>;

: (1.51)

The regular Christo�el symbols of the 2nd rank (� �
�� ) and the 1st

rank (� ��;� )

� �
�� = g�� � ��;� =

1
2

g��
�

@g��
@x�

+
@g��
@x�

�
@g��
@x�

�
(1.52)

are linked to the respectivechr.inv.-Christo�el symbols

� i
jk = him � jk;m =

1
2

him
� � @hjm

@xk
+

� @hkm

@xj
�

� @hjk
@xm

�
(1.53)

which are determined similarly to � �
�� . The only di�erence is that here,

instead of the fundamental metric tensor g�� , the chr.inv.-metric ten-
sor hik is used. The Christo�el symbols characterize the property of
inhomogeneity of space.

The components of the regular Christo�el symbols are linked to the
other chr.inv.-chractersitics of the accompanying space of reference by
the following relations:

D i
k + A � i

k � =
c

p
g00

�
� i

0k �
g0k � i

00

g00

�
; (1.54)

F k = �
c2 � k

00

g00
; (1.55)

gi� gk� � m
�� = hiq hks� m

qs : (1.56)

We now express the chr.inv.-Christo�el symbols through the chr.inv.-
properties of the accompanying space of reference. Expressingthe com-
ponentsg�� and the �rst derivatives from g�� through Fi , A ik , D ik , w,
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and vi , after some algebra we obtain

� 00;0 = �
1
c3

�
1 �

w
c2

� @w
@t

; (1.57)

� 00;i =
1
c2

�
1 �

w
c2

� 2
Fi +

1
c4 vi

@w
@t

; (1.58)

� 0i; 0 = �
1
c2

�
1 �

w
c2

� @w
@xi

; (1.59)

� 0i;j = �
1
c

�
1 �

w
c2

� �
D ij + A ij +

1
c2 Fj vi

�
+

1
c3 vj

@w
@xi

; (1.60)

� ij; 0 =
1
c

�
1�

w
c2

� �
D ij �

1
2

�
@vj
@xi

+
@vi
@xj

�
+

1
2c2

�
Fi vj + Fj vi

�
�

; (1.61)

� ij;k = � � ij;k +
1
c2

�
vi A jk + vj A ik +

1
2

vk

�
@vj
@xi

+
@vi
@xj

�
�

�
1

2c2 vk
�
Fi vj + Fj vi

�
�

+
1
c4 Fk vi vj ; (1.62)
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; (1.63)
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1
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w
c2

� 2
F k ; (1.64)
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1
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; (1.65)
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; (1.66)
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� k
ij = � k
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1
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�
vi

�
D k

j + A �k
j �

�
+ vj

�
D k

i + A �k
i �

�
+

1
c2 vi vj F k

�
: (1.68)
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Zelmanov also deduced formulae for the chr.inv.-projections of the
Riemann-Christo�el curvature tensor. He followed the same procedure
by which the Riemann-Christo�el tensor was built proceeding from the
non-commutativity of the second derivatives of an arbitrary vector Q�

taken in the given space. Taking the non-commutativity of the second
chr.inv.-derivatives of an arbitrary vector

� r i
� r k Ql � � r k

� r i Ql =
2A ik

c2

� @Ql
@t

+ H :::j
lki � Qj ; (1.69)

where the chr.inv.-covariant di�erential from the vector is

� r k Qi dxk = dQi + � i
kl Qk dxl ; (1.70)

he obtained the chr.inv.-tensor

H :::j
lki � =

� @� j
il

@xk
�

� @� j
kl

@xi
+ � m

il � j
km � � m

kl � j
im ; (1.71)

which is like Schouten's tensor in the theory of non-holonomic mani-
folds [28]. The tensorH :::j

lki � di�ers from the Riemann-Christo�el tensor
R � � � �

�
� � due to the presence of space rotationA ik in the formula (1.69).
Nevertheless, its generalization gives the chr.inv.-tensor

Clkij =
1
4

(H lkij � H jkil + H klji � H iljk ) ; (1.72)

which possesses all the algebraic properties of the Riemann-Christo�el
tensor in this three-dimensional space. Therefore, Zelmanov called Ciklj

the chr.inv.-curvature tensor, which actually is the tensor of the phys-
ically observable curvature of the three-dimensional spatial section of
the observer. Its contraction step-by-step

Ckj = C ��� i
kij � = him Ckimj ; C = C j

j = hlj Clj (1.73)

gives the chr.inv.-scalar C which is the observable three-dimensional
curvature of this space.

The tensor H lkij is connected with the curvature tensorClkij by

H lkij = Clkij +
1
c2

�
2Aki D jl + A ij D kl + A jk D il +

+ Akl D ij + A li D jk
�
: (1.74)

The contracted tensorsH lk = H ��� i
lki � and Clk = C ��� i

lki � are connected as

H lk = Clk +
1
c2

�
Akj D j

l + A lj D j
k + Akl D

�
: (1.75)
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In a particular case where the space does not rotate,H lkij and Clkij are
the same. This is as well true forH lk and Clk . In this particular case,
the tensor Clk = hij Cilkj has the form

Clk =
� @

@xk

� � @ln
p

h
@xl

�
�

� @� i
kl

@xi
+ � m

il � i
km � � m

kl

� @ln
p

h
@xm

: (1.76)

The Riemann-Christo�el tensor R��
� , being a two-pair symmetric
tensor (its paired indices are non-symmetric inside each pair, while the
pairs are symmetric with respect to each other), has three chr.inv.-
projections according to formula (1.29) of the chronometrically invariant
formalism. They are as follows:

X ik = � c2 R� i �k
0�0�

g00
; Y ijk = � c

R � ijk
0 ���p
g00

; Z ijkl = c2R ijkl : (1.77)

Substituting the necessary components of the Riemann-Christo�el ten-
sor R��
� into the formulae for its chr.inv.-projections (1.77), and by
lowering indices, Zelmanov obtained the formulae

X ij =
� @Dij

@t
�

�
D l

i + A � l
i �

��
D jl + A jl

�
+

+
� � r i Fj + � r j Fi

�
�

1
c2 Fi Fj ; (1.78)

Yijk = � r i
�
D jk + A jk

�
� � r j

�
D ik + A ik

�
+

2
c2 A ij Fk ; (1.79)

Z iklj = D ik D lj � D il D kj + A ik A lj �

� A il Akj + 2 A ij Akl � c2Ciklj ; (1.80)

whereY( ijk ) = Yijk + Yjki + Ykij = 0 just like in the Riemann-Christo�el
tensor. Contraction of the observable spatial projectionZ iklj step-by-
step asZ il = hkj Z iklj and Z = hil Z il gives

Z il = D ik D k
l � D il D + A ik A �k

l � + 2 A ik Ak �
� l � c2Cil ; (1.81)

Z = hil Z il = D ik D ik � D 2 � A ik A ik � c2C : (1.82)

At the end of our survey of the chronometrically invariant formalism,
consider Einstein's �eld equations*

R�� �
1
2

g�� R = � { T�� + �g �� : (1.83)

* The left-hand side of the �eld equations (1.83) is often refe rred to as the Einstein
tensor G�� = R �� � 1

2 g�� R, in notation G�� = � { T�� + �g �� .
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The �eld equations, except for the fundamental metric tensor g�� , in-
clude: R�� = R � � � �

��� � is Ricci's tensor (the second-rank symmetric tensor
coming from contraction of the Riemann-Christo�el curvature te nsor),
R = g�� R�� is the curvature scalar, { = 8�G

c2 = 18:6 � 10� 28 cm/gram
is Einstein's constant of gravitation, G = 6 :672� 10� 8 cm3/gram � sec2

is Gauss' constant of gravitation, T�� is the energy-momentum tensor
of the matter distributed in the space, and � [cm� 2 ] that describes
physical vacuum (see§5.2 of the book [18]).

Landau and Lifshitz [20] use{ = 8�G
c4 instead of { = 8�G

c2 as used by
Zelmanov. To understand the reason, set{ = 8�G

c4 as in our study, and
consider the chr.inv.-projections of the energy-momentum tensor

� =
T00

g00
; J i =

c T i
0p

g00
; U ik = c2T ik ; (1.84)

which come with formula (1.29) as the projections of any second-rank
symmetric tensor. They have the following physical meaning:� is the
observable density of mass, J i is the observable density of momentum,
and U ik is the observable stress-tensor. Ricci's tensor has dimension
cm� 2. This means that the scalar chr.inv.-projection of the �eld equa-

tions, G00

g00
= � { T00

g00
+ � , and the quantity { T00

g00
= 8�G�

c2 have the same
dimension which is cm� 2. Hence, the energy-momentum tensorT��

has the same dimension as mass density (gram/cm3). Therefore, once

we would use{ = 8�G
c4 on the right-hand side of the �eld equations, we

would use not the energy-momentum tensorT�� but rather c2T�� .
The chr.inv.-projections of Einstein's equations (1.83) are calculated

as those of a second-rank tensor (1.29). They have the form (werefer
to them as the chr.inv.-Einstein equations)

� @D
@t

+ D jl D lj + A jl A lj +
�

� r j �
1
c2 Fj

�
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= �
{
2

�
�c 2 + U

�
+ �c 2; (1.85)
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�
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2
c2 Fj A ij = { J i ; (1.86)
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�
�c 2hik + 2 Uik � Uhik

�
+ �c 2hik ; (1.87)
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where U = hik Uik is the trace of the stress-tensorUik .
Also, the energy-momentum tensorT�� of distributed matter should

satisfy the law of conservation which is

r � T �� = 0 : (1.88)

The chr.inv.-projections of the conservation law are calculated as those
of a �rst-rank tensor (1.28). We refer to them as the conservation law
equations. The equations have the form

� @�
@t

+ D� +
1
c2 D ij U ij + � er i J i �

1
c2 Fi J i = 0 ; (1.89)

� @Jk

@t
+ DJ k + 2

�
D k

i + A �k
i �

�
J i + � er i U ik � �F k = 0 ; (1.90)

where the chr.inv.-operator � er i = � r i � 1
c2 Fi is created on the basis of

the chr.inv.-di�erential operator � r i (seeNotations).
Given these de�nitions, we can �nd how any geometric object of a

given four-dimensional pseudo-Riemannian space (space-time) is consti-
tuted from the viewpoint of any observer whose location is this space.
For instance, having any equation obtained in the generally covariant
tensor analysis, we can calculate the chr.inv.-projections of it ontothe
time line and onto the spatial section of any particular body of refer-
ence, then formulate the respective chr.inv.-projections in termsof the
physically observable properties of the reference space. This waywe will
arrive at fully quali�ed equations containing only quantities measurable
in practice.

Thus, we now have all the necessary mathematical \equipment" re-
quired for our further development of the mathematical theory of the
internal constitution of stars, and of the sources of stellar energy, ac-
cording to the General Theory of Relativity.



Chapter 2

Regular Stars and the Sun

§2.1 Introducing the space metric of a regular star. Ein-
stein's �eld equations in the form satisfying the metric

In this chapter, we introduce the new mathematical theory of liquid
stars being applied to regular stars. This means Type I of stars in
terms of the new classi�cation we have just introduced according to the
General Theory of Relativity (see§1.2, and Table 1.1 therein). It covers
the widest variety of stars, which includes super-giants, sun-like stars
(including the Sun), dwarfs, and, white dwarfs*.

The structure, matter, and �eld of a liquid star are characterized
by Schwarzschild's metric of a sphere �lled with incompressible liquid.
The metric was originally introduced in 1916 by Karl Schwarzschild [14].
He, however, introduced it in a truncated form containing substantial
limitations: he arti�cially pre-imposed these limitations during the de-
duction in order to set the �eld free of breaking, thus resulting in th e
geometry of the metric space arti�cially truncated. In other word s, the
metric introduced by Karl Schwarzschild is not quite the genuine metric
of the space of a liquid sphere. The true metric of a sphere �lled with
incompressible liquid, which is free of the said limitations, thus takes
space breaking into account, as deduced in 2009 by one of us [11, 12].
We now repeat the deduction here, according to the most detailed ex-
planation [12], along with some recent amendments and comments.

Consider an empty space that houses a spherical island which is a
liquid. The structure, matter, and �eld of such an massive island should
be characterized by a space metric which possesses spherical symmetry.
As is known, all spherically symmetric metrics have the following general
form

ds2 = e� c2dt2 � e� dr2 � r 2(d� 2 + sin 2� d� 2) ; (2.1)

where e� and e� are functions of r and t.
The matter and �eld of the spherical island (which is a liquid) should

satisfy Einstein's �eld equations (1.83), which in the case under consid-

* White dwarfs are considered separately in the framework of E ddington's theory
of gaseous stars.
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eration have the � -�eld neglected, i.e.

R�� �
1
2

g�� R = � { T�� ; (2.2)

where R�� is Ricci's curvature tensor, R is the curvature scalar, { =
= 8�G

c2 = 18:6 � 10� 28 cm/gram is Einstein's constant of gravitation, and
T�� is the energy-momentum tensor of the distributed matter (liquid).
The energy-momentum tensor (i.e. the distributed matter) should sat-
isfy the conservation law

r � T �� = 0 ; (2.3)

wherer � is the four-dimensional symbol of covariant di�erentiation (see
Notations).

Einstein's �eld equations connect the components of the fundamen-
tal metric tensor, the space curvature, and distributed matter according
to Riemannian geometry. In other words, the invariant square form of
Riemannian metric, ds2 = g�� dx� dx� = inv , in common with Einstein's
�eld equations characterize Riemannian spaces (the spaces whosegeom-
etry is Riemannian). Concerning the General Theory of Relativity, this
means as follows. Let us have a Riemannian space having a metricds2,
and suggest that matter be distributed in it (thus we suggest a particular
formula for the energy-momentum tensorT�� ). Then, the components
of the fundamental metric tensor g�� (known from the formula of the
metric ds2) and the components of the suggested energy-momentum ten-
sor, being commonly substituted into (respectively) the left-hand side
and the right-hand side of Einstein's �eld equations should transform
the equations into identities.

This is the way how, on the basis of the general formulae of a spheri-
cally symmetric metric (2.1), to deduce the metric of a sphere �lled with
liquid. We take the energy-momentum tensor of a perfect liquid, then
substitute its components into the right-hand side of the �eld equations.
Then we take the components of the fundamental metric tensor from
the general spherically symmetric metric (2.1) in their general (non-
particular) form containing the coe�cients e� and e� . We substitute
the components into the left-hand side of the �eld equations. Thenwe
look which form of the coe�cients e� and e� makes the left-hand side of
the �eld equations the same as the right-hand side (thus transforming
the �eld equations into identities). Finally, we substitute the obtaine d
particular formulae for the coe�cients e� and e� back into the general
formula of spherically symmetric metrics. Voil�a! The metric of a sphere
�lled with perfect liquid has been obtained.
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One might as well just ask, why did Schwarzschild himself not do
just that? Instead, why did he follow another complicated way, full
of assumptions and suppositions? Well. . . Let us come back to our
deduction.

As is known, the energy-momentum tensor of a perfect liquid (which
is incompressible and non-viscous) has the form

T �� =
�

� 0 +
p
c2

�
U � U � �

p
c2 g�� ; (2.4)

where � = � 0 = const is the density of the liquid (which is constant), p
is the pressure, while

U � =
dx�

ds
; U� U � = 1 (2.5)

is the four-dimensional velocity of the liquid 
ow with respect to the o b-
server (his reference space coincides with the space of the liquid sphere,
with the origin of the coordinates located at the center).

Hence forth we express the �eld equations in component notations
with the physically observable properties of the space selected.

We see that

g00 = e� ; g0i = 0

g11 = � e� ; g22 = � r 2; g33 = � r 2 sin2 �

)

(2.6)

in the metric of spherically symmetric spaces (2.1). According to the
chronometrically invariant formalism (see §1.3), the gravitational po-
tential in such a space has the following formulation

w = c2 �
1 � e

�
2
�

: (2.7)

Becauseg0i = 0 in the metric, the space does not rotate. Therefore, the
linear velocity of the rotation is vi = 0 as well. Hence the chr.inv.-tensor
of the angular velocity of space rotation is zero

A ik =
1
2

�
@vk
@xi

�
@vi
@xk

�
+

1
2c2 (Fi vk � Fk vi ) = 0 ; (2.8)

while the chr.inv.-vector of gravitational inertial force has the form

Fi =
c2

c2 � w

�
@w
@xi

�
@vi
@t

�
= �

c2

2
� 0; (2.9)

where the prime denotes di�erentiation along the radial coordinate r .
With these, the chr.inv.-metric tensor hik of the space has the non-
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zero components

h11 = e� ; h22 = r 2; h33 = r 2 sin2� ; (2.10)

h11 = e� � ; h22 =
1
r 2 ; h33 =

1

r 2 sin2 �
; (2.11)

h = det khik k = e� r 4 sin2 � : (2.12)

Thus, the chr.inv.-tensor of the rate of space deformation,D ik , has only
the following non-zero components:

D11 =
_�
2

e� � �
2 ; D 11 =

_�
2

e� � � �
2 ; D =

_�
2

e� �
2 ; (2.13)

where the upper dot denotes di�erentiation along the time coordinate
t. The chr.inv.-Christo�el symbols, which characterize space inhomo-
geneity, are calculated according to their de�nition given in §1.3 with
the components of the chr.inv.-metric tensorhik . After some algebra,
we obtain formulae for the non-zero components of �ij;m

� 11;1 =
� 0

2
e� ; � 22;1 = � r ; � 33;1 = � r sin2 � ; (2.14)

� 12;2 = r ; � 33;2 = � r 2 sin � cos� ; (2.15)

� 13;3 = r sin2 � ; � 23;3 = r 2 sin � cos� ; (2.16)

and formulae for the non-zero components of �kij

� 1
11 =

� 0

2
; � 1

22 = � re� � ; � 1
33 = � r sin2 � e � � ; (2.17)

� 2
12 =

1
r

; � 2
33 = � sin � cos� ; (2.18)

� 3
13 =

1
r

; � 3
23 = cot � : (2.19)

As was shown in§1.3, in a rotation-free space the second-rank chr.inv.-
curvature tensor Clk = hij Cilkj , which is the physically observable cur-
vature tensor, has the form (1.76). A rotation-free space is thecase
under consideration. After some algebra, we obtain the non-zerocom-
ponents of Clk for the spherically symmetric metric (2.1). They are

C11 = �
� 0

r
; C22 =

C33

sin2 �
= e� �

�
1 �

r� 0

2

�
� 1: (2.20)
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Let us calculate the chr.inv.-projections of the energy-momentum
tensor of a perfect liquid (2.4) according to the associated projections*

which are (1.84). With bi = 0 and b0 = 1p
g00

(1.25) which characterize
an accompanying frame of reference (in the case under consideration,
the observer accompanies the liquid sphere), we obtain

� =
T00

g00
= � 0 ; J i =

c T i
0p

g00
= 0 ; U ik = c2 T ik = phik : (2.21)

wherefrom we also have, forU = hik Uik ,

U = 3 p : (2.22)

The obtained condition J i = 0 means that the liquid is free of 
ow, while
U ik = phik means that the observer's reference frame accompanies the
liquid medium.

The chr.inv.-Einstein equations (1.85{1.87) in a rotation-free space
now take the simpli�ed form

� @D
@t

+ D jl D lj +
�

� r j �
1
c2 Fj

�
F j = �

{
2

�
� 0c2 + U

�
; (2.23)

� r j
�
hij D � D ij �

= 0 ; (2.24)

� @Dik

@t
� D ij D j

k + DD ik � D ij D j
k +

1
2

� � r i Fk + � r k Fi
�

�

�
1
c2 Fi Fk � c2Cik =

{
2

�
� 0c2hik + 2 Uik � Uhik

�
; (2.25)

where � r i is the symbol of chr.inv.-di�erentiation (see Notations). The
chr.inv.-equations of the conservation law (1.89{1.90) also simplify to

D� 0 +
1
c2 D ij U ij = 0 ; (2.26)

� er i U ik � � 0F k = 0 ; (2.27)

where � er i = � r i � 1
c2 Fi (seeNotations).

Substitute, into the chr.inv.-Einstein equations (2.23{2.25), the chr.
inv.-characteristics of the space we have obtained above for the spheri-
cally symmetric metric (2.1) and also the obtained chr.inv.-components

* They are the observable density of mass, � , the observable density of momen-
tum, J i , and the observable stress-tensor U ik of the liquid.
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of the energy-momentum tensor of a perfect liquid. After some algebra,
we obtain the chr.inv.-Einstein equations (2.23{2.25) in component no-
tation (the third tensorial equation splits into three, where the second
and third equations remain the same)

e� �

 

•� �
_� _�
2

+
_� 2

2

!

� c2e� �
�
� 00�

� 0� 0

2
+

2� 0

r
+

(� 0)2

2

�
=

= � {
�
� 0c2 + 3 p

�
e� ; (2.28)

_�
r

e� � � �
2 = 0 ; (2.29)

e� � �

 

•� �
_� _�
2

+
_� 2

2

!

� c2
�
� 00�

� 0� 0

2
+

(� 0)2

2

�
+

2c2� 0

r
=

= {
�
� 0c2 � p

�
e� ; (2.30)

c2 (� 0 � � 0)
r

e� � +
2c2

r 2

�
1 � e� � �

= {
�
� 0c2 � p

�
: (2.31)

The second equation manifests that_� = 0 in this case. This means that
the inner space of the liquid sphere does not deform: with_� = 0, we
have D11 = 0, D 11 = 0, and D = 0 according to (2.13). Taking this cir-
cumstance into account, as well as the stationarity of� , we reduce the
�eld equations (2.28{2.31) to the �nal form

c2e� �
�
� 00�

� 0� 0

2
+

2� 0

r
+

(� 0)2

2

�
= {

�
� 0c2 + 3 p

�
e� ; (2.32)

2c2� 0

r
� c2

�
� 00�

� 0� 0

2
+

(� 0)2

2

�
= {

�
� 0c2 � p

�
e� ; (2.33)

c2 (� 0 � � 0)
r

e� � +
2c2

r 2

�
1 � e� � �

= {
�
� 0c2 � p

�
: (2.34)

To solve the �eld equations (2.32{2.34), we need a formula for the
pressurep. To �nd the formula, we now deal with the conservation equa-
tions (2.26{2.27). However, due to the absence of space deformation in
the case under consideration (D ik = 0), the chr.inv.-scalar conservation
equation (2.26) vanishes. Only the chr.inv.-vectorial conservationequa-
tion (2.27) remains. It takes the form

� r i
�
phik �

�
�

� 0 +
p
c2

�
F k = 0 : (2.35)



42 Chapter 2 Regular Stars and the Sun

Since � r i hik = 0 is true always (as well asr � g�� = 0 for the fundamen-
tal metric tensor), the remaining conservation equation (2.35) reads

hik
� @p
@xi

�
�

� 0 +
p
c2

�
F k = 0 : (2.36)

Because
� @

@xi
= @

@xi
in a rotation-free space, this formula reduces to a

non-trivial equation which has the form

p0e� � +
�
� 0c2 + p

� � 0

2
e� � = 0 ; (2.37)

wherep0= dp
dr , � 0= d�

dr , e� 6= 0. Dividing both parts of (2.37) by e� � , we
obtain

dp
� 0c2 + p

= �
d�
2

; (2.38)

which is a plain di�erential equation with separable variables. It easily
integrates as

� 0c2 + p = Be� �
2 ; B = const: (2.39)

Thus, we obtain the pressurep as a function of � , which is

p = Be� �
2 � � 0c2: (2.40)

In looking for an r -dependent function p(r ), we integrate the �eld
equations (2.32{2.34). Summarizing (2.32) and (2.33), we �nd

c2 (� 0+ � 0)
r

= { Be� � �
2 : (2.41)

Express� 0 herefrom, then substitute the result into (2.34). We obtain

2c2

r
� 0+

2c2

r 2

�
e� � 1

�
� { Be� � � �

2 = {
�
� 0c2 � p

�
e� : (2.42)

Substituting p from (2.40) into (2.42), we obtain the following di�eren-
tial equation with respect to � :

� 0+
e� � 1

r
� { � 0 re� = 0 : (2.43)

We introduce a new variabley = e� . Thus � 0 = y 0

y . Substituting into
this equation y and y0, we obtain the Bernoulli equation (see Kamke [29],
Part III, Chapter I, §1.34)

y0+ f (r ) y2 + g(r ) y = 0 ; (2.44)
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where
f (r ) =

1
r

� { � 0 r ; g(r ) = �
1
r

: (2.45)

It has the following solution:

1
y

= E (r )
Z

f (r ) dr
E (r )

; (2.46)

where
E (r ) = e

R
g(r )dr : (2.47)

Integrating (2.47), we obtain E (r ) which is

E (r ) = e�
R

dr
r = eln L

r =
L
r

; L = const > 0; (2.48)

thus we obtain 1
y = e� � which is

e� � =
L
r

Z
r
L

�
1
r

� { � 0 r
�

dr = 1 �
{ � 0 r 2

3
+

Q
r

; Q = const: (2.49)

To �nd Q, we re-write equation (2.42) as

e� �
�

� 0

r
�

1
r 2

�
+

1
r 2 = { � 0 : (2.50)

This equation has a singularity at the point r = 0, where the numerical
value of the right-hand side term of the equation (the density of the
liquid) grows up to in�nity by r ! 0, i.e. at the center of the sphere.
This is a contradiction with the initially assumed condition � 0 = const,
which is speci�c to incompressible liquids. As a matter of fact, this
contradiction should not be in the theory. We remove this contradiction
(and the singularity) by re-writting (2.50) in the form

e� � (1 � r� 0) =
d
dr

�
re� � �

= 1 � { � 0 r 2: (2.51)

After integration, we obtain

re� � = r �
{ � 0 r 3

3
+ A ; A = const: (2.52)

BecauseA = 0 at the central point r = 0, it should be zero at any other
point as well. Dividing this equation by r 6= 0, we obtain

e� � = 1 �
{ � 0 r 2

3
: (2.53)
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Comparing this solution with the value e� � obtained earlier (2.49),
we see that they meet each other ifQ = 0. Besides, we should suggest
that e� 0 = 1 at the central point r = 0, consequently � 0 = 0.

Thus we have obtained the componentsh11 = e� � and h11 = e� of
the chr.inv.-metric tensor hik in the form expressed through the radial
coordinate r , i.e.

h11 = e� � = 1 �
{ � 0 r 2

3
; h11 = e� =

1

1 � { � 0 r 2

3

: (2.54)

Hence forth, we should introduce a boundary condition on the sur-
face of the sphere. We haver = a on the surface, wherea is the radius
of the sphere. Thus

e� � a = 1 �
{ � 0a2

3
: (2.55)

On the other hand, the solution of this function is also the mass-point
solution in emptiness. Hence, we have

e� � a = 1 �
2GM
c2a

; (2.56)

where M is the mass of the sphere. Comparing both these formulae of
e� � a , and taking into account that Einstein's constant of gravitation is
{ = 8�G

c2 , we �nd

M =
4�a 3� 0

3
= � 0V; (2.57)

where V = 4�a 3

3 is the volume of the sphere. Hence, we have obtained
the regular relation between the mass and the volume of a homogeneous
sphere.

Our next step is the look for the solution e� � outside the sphere,
where r > a . Since outside the sphere the density of matter (the liquid)
is � 0 = 0, we obtain, after integration of (2.51),

re� � =
Z r

0
dr �

Z a

0
{ � 0 r 2 dr = r �

{ � 0 a3

3
: (2.58)

We obtain, from this formula, that

e� � = 1 �
{ � 0 a3

3r
: (2.59)

Taking (2.55) and (2.56) into account, we arrive at the mass-point so-
lution in emptiness

e� � = 1 �
2GM
c2r

: (2.60)
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To obtain � we use equation (2.41). Substituting

� 0 =
2{ � 0 r

3

1 � { � 0 r 2

3

(2.61)

and the obtained formula of e� into (2.41), we obtain, after transforma-
tions,

� 0+
2{ � 0 r 2

3

1 � { � 0 r 2

3

�
{ B
c2

re� �
2

1 � { � 0 r 2

3

= 0 : (2.62)

We introduce a new variable e� �
2 = y. Thus, � 0= � 2y 0

y . Substituting
these into (2.62), we obtain the Bernoulli equation

y0+
{ B
2c2

r y 2

1 � { � 0 r 2

3

�
{ � 0 r

3 y

1 � { � 0 r 2

3

= 0 ; (2.63)

where

f (r ) =
{ B
2c2

r

1 � { � 0 r 2

3

; g(r ) = �
{ � 0 r

3

1 � { � 0 r 2

3

: (2.64)

Thus, we have the integral

Z
g(r ) dr = �

Z { � 0 r
3

1� { � 0 r 2

3

= ln N

s �
�
�
�1�

{ � 0r 2

3

�
�
�
� ; N = const; (2.65)

where

E (r ) = N

s �
�
�
�1 �

{ � 0r 2

3

�
�
�
� : (2.66)

In the region where the signature conditionh11 = e� > 0 is satis�ed,
we have

1 �
{ � 0 r 2

3
> 0; (2.67)

therefore we use the modulus of the function here.
Next, we look for 1

y = e
�
2 , which is

e
�
2 =

{ B
2c2

r

1 �
{ � 0 r 2

3

Z
rdr

q �
1 � { � 0 r 2

3

�3
: (2.68)
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We obtain, after integration,

e
�
2 =

{ B
2c2

 
3

{ � 0
+ K

r

1 �
{ � 0 r 2

3

!

; K = const: (2.69)

We now �nd the constants B and K . To �nd B , we re-write the formula
of p by the condition that p= 0 on the surface of the sphere (r = a).
Thus, we obtain

B = � 0c2e
� a
2 ; (2.70)

where e
� a
2 is the value of the function e

�
2 on the surface. As a result,

we have

e
�
2 =

{ � 0

2
e

� a
2

 
3

{ � 0
+ K

r

1 �
{ � 0 r 2

3

!

: (2.71)

To �nd K , we take the value ofe
�
2 on the surface (r = a)

e
� a
2 =

{ � 0 e
� a
2

2

 
3

{ � 0
+ K

r

1 �
{ � 0a2

3

!

: (2.72)

We obtain, from this formula, that

K = �
1

{ � 0

1
q

1 � { � 0 a2

3

: (2.73)

The quantity e
� a
2 means the numerical value ofe

�
2 by r = a (i.e. on

the surface of the sphere). Therefore, we can apply it to the mass-point
solution in emptiness at r = a, i.e.

e
� a
2 =

r

1 �
2GM
c2a

: (2.74)

Taking the formulae of e
� a
2 , (2.55) and (2.56), into account, we obtain

e
�
2 =

1
2

e
� a
2

0

@3 �

vu
u
t 1 � { � 0 r 2

3

1 � { � 0 a2

3

1

A =

=
1
2

 

3

r

1 �
2GM
c2a

�

r

1 �
2GMr 2

c2a3

!

: (2.75)

This formula on the surface (r = a) meets the mass-point solution in

emptiness: e
� a
2 =

q
1 � 2GM

c2 a
=

q
1 � { � 0 a2

3
.
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Thus the metric of the space of a sphere �lled with perfect liquid is,
since the formulae of� and � have already been obtained, as follows:

ds2 =
1
4

 

3

r

1 �
{ � 0a2

3
�

r

1 �
{ � 0 r 2

3

! 2

c2dt2 �

�
dr2

1 � { � 0 r 2

3

� r 2 �
d� 2 + sin 2� d� 2�

: (2.76)

Taking (2.55) and (2.56) into account, we re-write the formula (2.76) as

ds2 =
1
4

 

3

r

1 �
2GM
c2a

�

r

1 �
2GMr 2

c2a3

! 2

c2dt2 �

�
dr2

1 � 2GMr 2

c2 a3

� r 2 �
d� 2 + sin 2� d� 2�

: (2.77)

Finally, since 2GM
c2 = rg is the Hilbert radius calculated according to

the massM of the liquid sphere, while taking the obtained formula of
e

� a
2 into account, we re-write the metric in the �nal form

ds2 =
1
4

 

3

r

1 �
rg

a
�

r

1 �
r 2 rg

a3

! 2

c2dt2 �

�
dr2

1 � r 2 r g

a3

� r 2 �
d� 2 + sin 2� d� 2�

: (2.78)

This is the �nal formula for the \inner" metric of the space of a sphere
�lled with perfect liquid. As is seen, the \inner" metric completely
coincides with the mass-point metric in emptiness on the surface of the
liquid sphere (r = a).

Hence forth, we obtain the space metric outside the liquid sphere
(r > a ). We have already obtained the \external" solution for e� � (2.59),
which coincides with the \external" mass-point solution for this function
(2.60). Outside the sphere,B = 0 (2.39). Hence, (2.41) takes the form

� 0+ � 0 = 0 ; (2.79)

where, according to (2.60),

� 0 =
2GM
c2r 2

1

1 � 2GM
c2 r

: (2.80)
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Substituting (2.80) into (2.79) then integrating the resulting equat ion,
we obtain

� = ln
�

1 �
2GM
c2 r

�
+ P; P = const; (2.81)

thus

e� = P
�

1 �
2GM
c2 r

�
: (2.82)

Since this function is also

e� = 1 �
2GM
c2a

; (2.83)

on the surface (r = a) of the liquid sphere, we obtain P = 1. Having
the obtained formulae for e� (2.83) and e� (2.60) substituted into the
spherically symmetric metric (2.1), we obtain that the \outer" spac e of
a sphere �lled with perfect liquid is described by the mass-point metric
in emptiness (1.1), which is

ds2 =
�

1 �
rg

r

�
c2dt2 �

dr2

1 �
r g

r

� r 2 �
d� 2 + sin 2� d� 2�

: (2.84)

§2.2 The outer space breaking of the Sun's �eld matches
the asteroid strip

Herein we suggest a new model of the Solar System according to the
General Theory of Relativity. Namely | the Sun and the planets will
be considered as liquid spheres according to the metric of a liquid sphere
(2.78) we have obtained in the foregoing. The metric was also shown
in formula (1.8), in §1.2 wherein we surveyed the problem statement of
the modelling of a star in terms of the General Theory of Relativity. As
was also proven in the previous§2.1, the outer space of a liquid sphere
is described by the mass-point metric in emptiness (1.1).

Note that herein we do not discuss whether the internal planets can
be represented as liquid spheres or not. Astrophysicists and geologists
may simply appeal to the magma, because it is in the state of liquid
stone. However, the jovian planets (Jupiter, Saturn, Uranus, and Nep-
tune), according to their density and other parameters, can surely be
considered as stars. Herein, we only limit ourselves to the theoretical
modelling of the Sun and the planets, without an analysis of their origin
or other astrophysical factors. In detail, we focus on the location of the
\inner" and \outer" space breaking of their �elds: the space breaking
of the �eld within and outside the physical body (liquid sphere). Then
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we compare the obtained result with the observed distribution of the
planets within the Solar System.

Our approach to the Solar System is simple. As is known, given
a four-dimensional Riemannian space with a sign-alternating diagonal
metric (+ ��� ), the breaking occurs in that region (point or surface) of
the space wherein at least one of the four signature conditions

g00 > 0

g00 g11 < 0

g00 g11 g22 > 0

g = g00 g11 g22 g33 < 0

9
>>>>=

>>>>;

(2.85)

is violated. The space (space-time) of the General Theory of Relativ-
ity is one of this type of space. We therefore consider the signature
conditions in the space within and outside the liquid Sun.

2.2.1 In the \inner" space metric of a liquid sphere (2.78), while
taking into account that

{ � 0a3

3r
=

2GM
c2r

=
rg

r
(2.86)

therein*, the fundamental metric tensor has the following non-zero com-
ponents:

g00 =
1
4

 

3

r

1 �
rg

a
�

r

1 �
r 2 rg

a3

! 2

=

=
1
4

 

3

r

1 �
{ � 0a2

3
�

r

1 �
{ � 0 r 2

3

! 2

; (2.87)

g11 = �
1

1 � r 2 r g

a3

= �
1

1 � { � 0 r 2

3

; (2.88)

g22 = � r 2; (2.89)

g33 = � r 2 sin2 � : (2.90)

We obtain, from those components, that at a distance from the center
of the sphere which is

r = rbr =

s
a3

rg
=

s
3

{ � 0
(2.91)

* See formulae (2.59) and (2.60) in §2.1.
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the second, third, and fourth signature conditions are violated*

g00 =
9
4

�
1 �

rg

a

�
> 0

g00 g11 ! �1

g00 g11 g22 ! 1

g = g00 g11 g22 g33 ! �1

9
>>>>>>>=

>>>>>>>;

: (2.92)

This means that the �eld of the liquid spherical body has space breaking
on the spherical surface covering the body at the distancerbr =

p
a3=rg

from its center.
The Hilbert radius rg = 2GM

c2 (the radius of gravitational collapse)
calculated for regular physical bodies is many orders less than their
physical sizes. Hence,a � rg for a regular spherical liquid body (thus
the body is not a collapsar). Therefore,rbr =

p
a3=rg � a: the spherical

surface of the space breaking of the �eld is located far away from the
physical surface of the liquid body (the �eld source), and hence far away
from the inner �eld. In other words, the inner �eld and liquid substan ce
of the body produce breaking in the outer space of the body.

What does the outer space breaking of the �eld mean from the phys-
ical viewpoint? Has this space breaking a real action on a physical body
appearing in it, or is it only a mathematical �ction? As will be shown
in the next §2.3, the space (space-time) of a liquid sphere possesses
space breaking in its four-dimensional curvature tensorR��
� by the
condition r = rbr . Namely, | the component R0101 (2.113), which is
the four-dimensional curvature of the space in the (r -t)-direction 0101,
possesses breaking at the distancer = rbr from the center of the liquid
sphere (the curvature function becomes in�nite, R0101 ! 1 , on the sur-
face of the radiusr = rbr ). Because the four-curvature determines the
gravitational �eld which �lls the space (and vice versa), the breakin g at
r = rbr implies breaking in the gravitational �eld of the liquid sphere.

This is the physical sense of the outer space breaking of the �eld of
a liquid sphere.

2.2.2 The outer �eld of a liquid sphere is due to the same liquid
substance, which �lls the sphere and produces the �eld within the sphere
itself (its inner �eld). According to the \outer" space metric (2.84) ,
we see that the fundamental metric tensor of the outer space has the

* Namely | these three functions approach in�nity. As is known , a function has
such breaking when approaching in�nity.
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following non-zero components

g00 = 1 �
rg

r
; (2.93)

g11 = �
1

1 � r g

r

; (2.94)

g22 = � r 2; (2.95)

g33 = � r 2 sin2 � : (2.96)

We see that at a distance of

r = rg =
2GM

c2 (2.97)

from the center of the body, the �rst signature condition ( g00 > 0) is
violated

g00 = 1 �
rg

r
= 0

g00 g11 = � 1 < 0

g00 g11 g22 = r 2 > 0

g = � r 4 sin2 � < 0

9
>>>>>>=

>>>>>>;

: (2.98)

In other words, the outer �eld of a liquid sphere produces space breaking
deep within the sphere itself, in its inner space close to the center. For
example, the calculated Hilbert radius rg = 2GM

c2 is only 2.9 km for the
Sun, while for the Earth it is nothing but only 0.88 cm.

2.2.3 Concerning regular stars, and the Sun in particular, the
aforementioned �ndings imply the following (as per our new model of
liquid stars according to the General Theory of Relativity):

1. At the center of each star, a small core exists. The core is sep-
arated from the other mass of the star by the said inner space
breaking in the star's �eld, at the distance of the Hilbert radius
rg from the center. The inner space breaking means, physically,
that the liquid substance of the star has a singularity on the sur-
face of the Hilbert radius rg from the center, thus the small core
is separated from the major mass (the physical sense of the phe-
nomenon will be more clear from the example of the outer space
breaking in the �eld of the Sun);

2. The �eld of each star has an outer space breaking surrounding the
star by a spherical surface. This \bubble" has a very large radius
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of rbr =
p

a3=rg, which is many orders larger than the physical
radius a of the star. Physically, the outer space breaking impedes
the near substance such as small stones or dust orbiting the star
to be formed as a planet in the orbit of the radiusrbr .

Let us now calculate the radius of the outer space breaking of the
Sun's �eld by formula (2.91), which is rbr =

p
a3=rg =

p
3={ � 0. Substi-

tute the Sun's density � 0 = 1 :41 gram/cm3, or the massM = 2 :0 � 1033

gram and the radius a = 6 :95� 1010 cm. We obtain

rbr = 3 :4 � 1013 cm = 340; 000; 000 km = 2:3 AU; (2.99)

where 1 AU = 1:49� 1013 cm (Astronomical Unit) is the average distance
between the Sun and the Earth. We obtain that the spherical surface
(bubble) of the outer space breaking of the Sun's �eld is located within
the asteroid strip, very close to the orbit of the maximal concentration
of asteroids (as is known, the asteroid strip is located, approximately,
2.1 to 4.3 AU from the Sun).

This truly amazing �nding brings us to a conclusion that the internal
constitution of the Solar System can be calculated according to the
liquid model. Namely, | we consider the Sun and the planets as liquid
spheres, then we calculate the outer space breakingrbr in the �eld of
each of the cosmic bodies. The results of the calculation are collected
altogether in Table 2.1.

These results associated with the planets and the Sun, according to
Table 2.1, lead to the next conclusions:

1) The outer space breaking of the Sun's �eld is located within the
asteroid strip, near the maximal concentration of asteroids;

2) The internal planets of the Solar System (Mars, the Earth, Venus,
and Mercury) are located within the \bubble" of the outer space
breaking of the Sun's �eld;

3) The \bubbles" of the outer space breaking of the �eld of each of
the internal planets are as well located within the \bubble" of the
outer space breaking of the Sun's �eld;

4) The outer space breaking of the �elds of Mars and the Earth
reaches the asteroid strip;

5) The outer space breaking of Mars' �eld is located at 2.9 AU from
the Sun. It is within the asteroid strip near the orbit of Phaeton,
the hypothetical planet which was once orbiting the Sun according
to the Titius{Bode law at r = 2 :8 AU, and whose distraction in
the ancient time gave birth to the asteroid strip;
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Object Mass M , Density � 0 , Radius Hilbert radius Orbit, Space breaking Location of r br

gram gram/cm 3 a, cm r g , cm AU r br , AU from the Sun, AU

Sun 1:98� 1033 1.41 6:95� 1010 2:9 � 105 | 2.3 2 :3

Internal planets

Mercury 2:21� 1026 4.10 2:36� 108 0.03 0.39 1.3 � 0:9 { 1.7

Venus 4:93� 1027 5.10 6:19� 108 0.73 0.72 1.2 � 0:5 { 1.9

Earth 5 :97� 1027 5.52 6:38� 108 0.88 1.00 1.1 � 0:1 { 2.1

Mars 6:45� 1026 3.80 3:44� 108 0.10 1.52 1.4 0:1 { 2.9

Asteroid strip | | | | 2.5 � | |

Jovian planets

Jupiter 1 :90� 1030 1.38 7:11� 109 280 5.20 2.3 2.9 { 7.5

Saturn 5:68� 1029 0.72 6:00� 109 84 9.54 3.2 6.3 { 12.7

Uranus 8:72� 1028 1.30 2:55� 109 13 19.2 2.4 16.8 { 21.6

Neptune 1:03� 1029 1.20 2:74� 109 15 30.1 2.4 27.7 { 32.5

Pluto 1 :31� 1025 2.00 1:20� 108 0.002 39.5 1.9 37.6 { 41.4

Kuiper belt | | | | 30{100 | |

� The maximal concentration of the asteroids of the asteroid s trip is registered at � 2:5 AU from the Sun, while the asteroid
strip continues from 2.1 to 4.3 AU (approximately).

Table 2.1: The internal constitution of the Solar System acc ording to the General Theory of Relativity.
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6) The \bubble" of the outer space breaking of Jupiter's �eld meets,
from its inner side, that of Mars at r = 2 :9 AU from the Sun (this
is the case of the \parade of the planets"). It is very near 2.8 AU,
which is the theoretical orbit of Phaeton according to the Titius-
Bode law;

7) The \bubbles" of the outer space breaking of the �eld of the other
jovian planets (Saturn, Uranus, and Neptune) are located within
the inner boundary of the Kuiper belt (the strip of the aphelia of
the comets orbiting the Sun);

8) The outer space breaking of Neptune's �eld meets, from the outer
side of the \bubble", the inner boundary of the Kuiper belt;

9) The \bubble" of the outer space breaking of the �eld of Pluto is
completely located within the Kuiper belt.

The fact that the outer space breaking of the Sun's �eld is located
within the asteroid strip, near the maximal concentration of asteroids,
allows us to say: yes, the space breaking considered in this study has
a real physical meaning. Probably, the Sun's space breaking impedes
asteroids to be joined into a common physical body (one refers to it
as Phaeton). Alternatively, if Phaeton was an already existing planet
orbiting the Sun near the \space breaking orbit" in the past, the force
of gravitation of another massive cosmic body, emerging near the Solar
System in the ancient ages (for example, another star passing near it),
has displaced Phaeton to the \space breaking orbit" near it, thus leading
to the distraction of Phaeton's body.

Thus the internal constitution of the Solar System is formed by the
geometric structure of the Sun's �eld according to Riemannian geometry
as manifest within the laws of the General Theory of Relativity.

§2.3 The geometric sense of the outer space breaking

Consider the properties of the curvature of the space of a liquid sphere.
First, let us calculate the components of the chr.inv.-curvature tensor
Clkij , which is the physically observable curvature tensor of the space.

In a rotation-free space (A ik = 0), which is the space of a liquid sphere
under consideration,Clkij = H lkij according to the de�nition of the ten-
sorH lkij (1.74). Therefore, we calculateClkij = H lkij = hjm H :::m

lki � by the
formula of H :::m

lki � (1.71), wherein we substitute the respective chr.inv.-
Christo�el symbols � i

jk (2.17{2.19) already obtained for the metric of
a liquid sphere (2.78). After some algebra, we obtain that the chr.inv.-
curvature tensor Clkij in the space of a liquid sphere has the following
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non-zero components:

C1212 = H1212 = �
{ � 0

3
r 2

1 � { � 0 r 2

3

; (2.100)

C1313 = H1313 = �
{ � 0

3
r 2 sin2 �

1 � { � 0 r 2

3

; (2.101)

C2323 = H2323 = �
{ � 0

3
r 4 sin2 � : (2.102)

We see that, in the space of a liquid sphere, the non-zero components
of the observable space curvature tensorCiklj satisfy the condition

Ciklj = �
{ � 0

3
(hkl hij � hil hkj ) ; (2.103)

where the negative constant� { � 0
3 is the observable three-dimensional

curvature of the space in the respective two-dimensional direction. This
means that the three-dimensional spaceof a non-rotating liquid sphere
has aconstant negative curvature. Calculating the observable curvature
scalar C = hik Cik , where the non-zero components ofCik are

C11 = �
2{ � 0

3
1

1 � { � 0 r 2

3

; (2.104)

C22 =
C33

sin2 �
= �

2{ � 0 r 2

3
; (2.105)

we obtain
C = � 2{ � 0 = const < 0: (2.106)

Hence, according to (2.103), the chr.inv.-curvature tensorCiklj is ex-
pressed through the observable curvature scalarC as

Ciklj =
C
6

(hkl hij � hil hkj ) : (2.107)

Thus, the observable three-dimensional space of a non-rotatingliquid
sphere is aconstant negative curvature space. Therefore, the curvature
radius < of the three-dimensional space is imaginary. It is formulated
through the observable curvature scalarC by the relation

C = � 2{ � 0 =
1

< 2 ; (2.108)
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thus we obtain, �nally,

< =
i

2{ � 0
: (2.109)

Let us calculate the components of the full Riemann-Christo�el cur-
vature tensor

R��
� =
1
2

�
@g��

@x� x 
 +
@g�


@x� @x�
�

@g��
@x� @x


�
@g�


@x� @x�

�
+

+ g�� (� ��;� � �
;� � � ��;� � �
;� ) : (2.110)

According to the metric of a liquid sphere (2.78), we havegik = � hik and
� ik;j = � � ik;j . Thus, calculating the non-zero components of ���;� ,

� 01;0 = � � 00;1 =
{ � 0 r

12

3
q

1 � { � 0 a2

3 �
q

1 � { � 0 r 2

3q
1 � { � 0 r 2

3

; (2.111)

� 11;1 = �
{ � 0 r

3
1

�
1 � { � 0 r 2

3

�2
; (2.112)

and substituting these into (2.110), we obtain

R0101 = �
{ � 0

12

3
q

1 � { � 0 a2

3 �
q

1 � { � 0 r 2

3q
1 � { � 0 r 2

3

; (2.113)

R1212 =
{ � 0

3
r 2

1 � { � 0 r 2

3

= � C1212 ; (2.114)

R1313 =
{ � 0

3
r 2 sin2 �

1 � { � 0 r 2

3

= � C1313 ; (2.115)

R2323 =
{ � 0

3
r 4 sin2 � = � C2323 : (2.116)

We see that the componentR0101 , determining the four-dimensional
curvature in the ( r -t)-direction 0101, does not satisfy the condition of
four-dimensional constant curvature spaces which is

R��
� = Q ( g�
 g�� � g�� g�
 ) ; Q = const: (2.117)

Therefore, we arrive at the following conclusion:



§2.4 The force of gravity acting inside a liquid star 57

ˆ The four-dimensional spaceof a non-rotating liquid sphere is not
a constant curvature space. This is in contrast to theobservable
three-dimensional spaceof the liquid sphere which, as was proven
above, is aconstant negative curvature space.

We see also, from the formulae forC1212 (2.100) and C1313 (2.101),
that the three-dimensional observable curvatureCiklj possesses space
breaking

C1212 ! �1 ; C1313 ! �1 (2.118)

by the condition r = rbr =
p

3={ � 0 =
p

a3=rg. By the same condition
r = rbr , according to the formula for R0101 (2.113), we have

R0101 ! �1 : (2.119)

In other words, the three-dimensional chr.inv.-curvature Ciklj and the
four-dimensional Riemannian curvature R��
� have space breaking by
the condition r = rbr . Concerning the model of liquid stars, this means:

ˆ In the �eld of each star, the three-dimensional observable space
curvature Ciklj and the four-dimensional Riemannian curvature
R��
� have common space breaking on the spherical surface at
the distance r = rbr =

p
3={ � 0 =

p
a3=rg from the star.

This is the geometric sense of the outer space breaking of the �eld of
a star (in the framework of the liquid model under consideration).

§2.4 The force of gravity acting inside a liquid star

In a rotation-free space, according to the de�nition of the gravitational
inertial force (1.42), the force is only due tog00 (which is determined
by the gravitational potential w). Let us calculate that force. Sin ce the
gravitational potential is w = c2(1 �

p
g00), we obtain

@w
@xi

= �
c2

2
p

g00

@g00

@xi
: (2.120)

In the \inner" metric of a non-rotating liquid sphere (2.76),

g00 =
1
4

 

3

r

1 �
{ � 0a2

3
�

r

1 �
{ � 0 r 2

3

! 2

; (2.121)

or, in the same metric written in the other form (2.78),

g00 =
1
4

 

3

r

1 �
rg

a
�

r

1 �
r 2 rg

a3

! 2

: (2.122)
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We therefore obtain that the force acting inside it is

F1 = �
{ � 0c2r

3
1

�
3
q

1 � { � 0 a2

3 �
q

1 � { � 0 r 2

3

� q
1 � { � 0 r 2

3

; (2.123)

F 1 = �
{ � 0c2r

3

q
1 � { � 0 r 2

3

3
q

1 � { � 0 a2

3 �
q

1 � { � 0 r 2

3

; (2.124)

or, in the other form,

F1 = �
c2 rg r

a3

1
�

3
q

1 �
r g

a
�

q
1 �

r g r 2

a3

� q
1 �

r g r 2

a3

; (2.125)

F 1 = �
c2 rg r

a3

q
1 �

r g r 2

a3

3
q

1 �
r g

a
�

q
1 �

r g r 2

a3

: (2.126)

This is a force of attraction: since r < a inside the sphere,F1 < 0
therein. The force is proportional to distance r . Its numerical value is
zero at the center of the sphere, then it increases with distance upto its
ultimate-high value on the surface of the star (wherer = a)

(F1)r = a = �
{ � 0c2a

6
1

1 � { � 0 a2

3

= �
c2 rg

2a2

1

1 �
r g

a

; (2.127)

(F 1)r = a = �
{ � 0c2a

6
= �

c2 rg

2a2 : (2.128)

§2.5 Solving the conservation law equations: pressure and
density inside the stars

Consider now the pressurep and density � 0 inside a regular liquid star.
A formula connecting pressure and density inside a medium is the equa-
tion of state. It follows as a solution of the conservation law equations.

We have now already obtained almost all that is needed for the
formula. In §2.1, we solved the conservation law equations with the
energy-momentum tensor of a perfect liquid (2.4), which points to the
substance of liquid stars. After substitution of the physically observable
components (2.21) of the energy-momentum tensor, the general equa-
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tions of the conservation law (1.89{1.90) take the particular form (2.26{
2.27). In a non-deforming (static) space such as the space of a regular
star, only the vectorial conservation equation remains non-vanishing. It
has the form (2.36). The equation is solved as the formula (2.40)

p = Be� �
2 � � 0c2: (2.129)

Now, substituting the already found integration constant B (2.70)
and function e

�
2 (2.75) into p (2.129), we obtain the �nal solution con-

necting pressurep and density � 0 inside a regular star

p = � 0c2

q
1 � { � 0 r 2

3 �
q

1 � { � 0 a2

3

3
q

1 � { � 0 a2

3 �
q

1 � { � 0 r 2

3

: (2.130)

Find the pressure in the near-surface layer of a star. The constant
{ = 18:6 � 10� 28 cm/g is a very small value, while � 0 = 1 :4 gram/cm3 for
the Sun, the yellow dwarf, and is much less than that for larger stars.
Therefore, { � 0a2 is much smaller than 1 for even very large stars. For
instance, for Betelgeuse, which is one of the largest red super-giants:
M = 4 :0 � 1034 gram, a = 7 :0 � 1013 cm, � 0 = 2 :8 � 10� 8 gram/cm3. In this
case, we have{ � 0a2 = 2 :6 � 10� 7. As a result, we have, for the values of
r and a, r

1 �
{ � 0 r 2

3
� 1 �

{ � 0 r 2

6
:

Thus, after some algebra, we obtain the approximate formula for the
pressurep inside a regular star. It is

p �
{ � 2

0 c2
�
a2 � r 2

�

12
=

� 0GM
2a2

�
a2 � r 2

a

�
: (2.131)

Let h = a � r be the distance from the surface of the sphere to the point
of measurement. Becauseh � r in the near-surface layer, we have

a2 � r 2 = ( a � r ) (a + r ) = h (2a + h) � 2ah: (2.132)

Thus, from (2.131), we obtain the regular formula for the pressure in
the near-surface layer

p = � 0gh; (2.133)

where GM
a2 = g is the free-fall acceleration in the star's �eld near its

surface.
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Object Mass M , Radius Density � 0 , Pressure p0 ,
gram a, cm gram/cm 3 dynes/cm2

Red super-giant� 4:0 � 1034 7:0 � 1013 2:8 � 10� 8 5:3 � 105

White super-giant y 3:4 � 1034 4:8 � 1012 7:3 � 10� 5 1:7 � 1010

Sun 2:0 � 1033 7:0 � 1010 1:4 1:3 � 1015

Jupiter (proto-star) 1:9 � 1030 7:1 � 109 1:3 1:2 � 1015

Red dwarfs 6:7 � 1032 2:3 � 1010 13 1:3 � 1016

Brown dwarf z 4:1 � 1031 7:0 � 109 29 5:7 � 1015

White dwarf x 2:0 � 1033 6:4 � 108 1:8 � 106 1:9 � 1023

� Betelgeuse. yRigel. zCorot-Exo-3. xSirius B.

Table 2.2: The main characteristics of the regular stars.

The pressure in the central region of a regular star can easily be
found by assumingr = 0 in the general formula (2.130). Denoting the
central pressure asp0 = pr =0 , we obtain

p0 = � 0c2
1 �

q
1 � { � 0 a2

3

3
q

1 � { � 0 a2

3 � 1
�

{ � 2
0 a2c2

12
: (2.134)

Since{ = 8�G
c2 , we can also re-write this formula in the form

p0 �
3GM 2

8�a 4 : (2.135)

Table 2.2 gives the numerical values of the central pressurep0 we
have calculated according to this formula for the typical members of the
known families of regular stars.

We see that, according to our model of liquid stars, the pressure in
the central region of Betelgeuse, which is one of largest stars, is only
0:53 atmosphere (1 atm = 106 dynes/cm2). The smaller the size of a
star is, the higher the pressure inside it becomes. The pressure in the
central region of Rigel, a white super-giant whose radius is 14.6 times
less than that of Betelgeuse, is 1:7 � 104 atm. In dwarfs such as the Sun,
the central pressure is� 109 atm. However, in white dwarfs, the central
pressure reaches 1017 atm.

Note that the temperature of condensed matter does not depend on
pressure. The incompressible liquid of stars is a sort of condensed mat-
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ter. Therefore, temperatures inside stars depend solely on the formula
of that particular mechanism which produces stellar energy.

This note is important for the understanding of the physical condi-
tions inside stars, and of the sources of stellar energy.

§2.6 The stellar energy mechanism according to the liquid
star model and the mass-luminosity relation

First, we make the transition to the dimensionless characteristics of
stars, which are expressed in fractions of the respective characteristics
of the Sun:

�M =
M
M �

; �a =
a

a�
; �� =

�
� �

; : : : etc: (2.136)

where �M = �� 0 �a3 for a liquid sphere*. For the luminosity L of a star,
that is the energy emitted from the entire surface of the star into the
outer cosmos per one second, we have

�L =
L

L �
: (2.137)

With this representation of the characteristics of stars, the analysis be-
comes much simpler. This is because only the essential factors remain
in the formulae while all constant coe�cients vanish.

Let us study what mechanism producing stellar energy can now be
suggested due to the General Theory of Relativity, so that its produc-
tivity satis�es the observed luminosity of stars. In other words, t o be
the real mechanism that generates energy in stars, the calculated en-
ergy production of the suggested mechanism should match the mass-
luminosity relation which is the main empirical relation of observational
astrophysics.

Consider thus the space metric of a liquid star. As we know already,
the space of a liquid star has two primary regions which are described
by di�erent metrics:

1) The internal space metric of the star (the metric of a liquid sphere)
is valid from the center of the star to its surface. Except on the
singular spherical surface of the tiny radius,rg = 2GM

c2 around the
center of the star (see below). The internal metric is also valid on
the singular spherical surface of the radiusrbr =

p
a3=rg =

p
3={ � 0,

in the far cosmos: the metric produces a breaking of the space
curvature at this distance from the star;

* A liquid star has the same density � = � 0 = const in its entire volume, so its
mass is M = 4

3 �� 0 a3 . In fractions of the Sun's mass, it is �M = �� 0 �a3 .
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2) The external metric of the star (the mass-point metric) is valid
from the surface of the star to in�nity. Except on the singular
spherical surface of the radius,rbr =

p
a3=rg =

p
3={ � 0 which cov-

ers the star distantly from its surface in the cosmos (see above).
The external metric is also valid deep inside the star, on the sin-
gular spherical surface of the tiny radiusrg = 2GM

c2 from the center
of the star: on this spherical surface, the star's gravitational �eld
possesses space breaking produced due to the external metric.

As was shown in§2.3, the outer space breaking in the far cosmos
only implies space curvature breaking. One can show, on the basis of
§2.3, that it does not result in an anomaly with respect to the acting
force of gravitation.

However, we now show that the force of gravitation has a very strong
anomaly on the singular spherical surface of the inner space breaking.
Actually, inside the star at the Hilbert radius rg from its center the
external space metric is valid (while the internal metric is valid both
inside the Hilbert radius and outside it). Therefore, all calculations
for the inner singular surface are processed with the external metric
(mass-point metric). This is despite the fact that the singular surface
is located deep within the star near its center.

According to the fundamental metric tensor of the external metric
of the star (1.1), the chronometrically invariant (physically observable)
vector of the force of gravitation Fi has the form (1.4). On the singular
spherical surface of the Hilbert radiusr = rg , deep inside the star, the
observable force of gravity (1.4) reaches an in�nitely large magnitude

F1 = �
c2rg

2r 2

1

1 �
r g

r

! �1 ; (2.138)

i.e. the gravitational �eld possesses space breaking on the surface.
Due to its in�nitely large magnitude there, the force of gravity, by

de�nition, is su�cient for the transfer of the necessary kinetic en ergy
to the lightweight atomic nuclei of the stellar substance, so that the
process of thermonuclear fusion begins. The energy released in the
thermonuclear fusion is the energy that the stars radiate.

The singular spherical surface of the Hilbert radiusrg = 2GM
c2 sur-

rounds the geometric center of every star. This means that at the center
of each star a luminous \inner sun" is located. The \inner sun" is tiny
compared to the size of the star. For example, the Hilbert radius ofthe
Sun is only 2.9 km while the physical radius of the Sun is 700,000 km.
Therefore, the zone where thermonuclear fusion is processed is not only
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the surface layer of the radiusrg but all the volume of the \inner sun".
In other words, the \inner sun" of the radius rg is the very place where
thermonuclear fusion produces helium from hydrogen, thus providing
energy for the luminosity of the star. The energy is then transmitted
from the \inner sun" of the star to its surface due to heat conductivity
(the conventional transfer of heat in liquids); then it is radiated fr om
the surface into the cosmos.

Since the \inner sun" of a star has a radius equal to the Hilbert
radius rg, we will further refer to it as the luminous Hilbert core of a
star, or merely | the Hilbert core.

The luminosity of a star that shines due to the suggested mechanism
of stellar energy depends only on two factors: the volume of the Hilbert
coreV = 4

3 �r 3
g where energy is released, and the density� g of the stellar

substance therein (which can di�er from the density � 0 of the main mass
of the star, see the explanation in the next page). In terms of thedimen-
sionless characteristics of stars, it is

�L = �� g �r 3
g = �� g

�M 3: (2.139)

Recall that the suggested mechanism of stellar energy does not de-
pend on the pressure in the central region of the star: the super-strong
force of gravity (2.138) that acts therein provides the conditionsneces-
sary for thermonuclear fusion. But the productivity of the mechanism
depends on the density of the stellar substance in the Hilbert core.

Calculate the density of the Hilbert core so that the suggested mech-
anism of stellar energy satis�es the observed mass-luminosity relation.

Proceed from the facts of observational astronomy. It shows the
mass-luminosity relation �L = �M 2:6 for the stars whose masses are in the
range between 0:2M � and 0:5M � , �L = �M 4:5 for masses between 0:5M �

and 2M � , �L = �M 3:6 in the range between 2M � and 10M � , and �L = �M
for masses much heavier than 10M � . See Table 2.3.

These empirical data of observational astronomy match with our
theoretical formula for the luminosity of stars L (2.139), if the stellar
substance of the Hilbert core (wherein stellar energy is released) has the
density as shown in Table 2.4.

On the basis of the function �� g = �M y according to Table 2.4, we are
able to know how dense the Hilbert core of a star is compared to the
main mass of the star (known from astronomical observations). We can
thus calculate, for some typical stars, the following ratio:

�� g

�� 0
=

�M y

�� 0
: (2.140)
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Observed mass-luminosity Scale of the stellar masses, in fractions
relation �L = �M x of the Sun's massM �

�L = �M 2:6 �M = 0 :2 : : : 0:5
�L = �M 4:5 �M = 0 :5 : : : 2
�L = �M 3:6 �M = 2 : : : 10
�L = �M �M > 10

Table 2.3: The observed mass-luminosity relation �L = �M x .

Density of the Hilbert Scale of the stellar masses, in fractions
core �� g of the Sun's massM �

�� g = �M 0:4 �M = 0 :2 : : : 0:5

�� g = �M 1:5 �M = 0 :5 : : : 2

�� g = �M 0:6 �M = 2 : : : 10

�� g = �M � 2 �M > 10

Table 2.4: Density of the substance inside the Hilbert core.

Object Mass �M Density �� 0 Ratio �� g=�� 0

Betelgeuse (red super-giant) 20 2:0 � 10� 8 1:3 � 109

Rigel (white super-giant) 17 5:2 � 10� 5 6:7 � 107

Jupiter (proto-star) 9:5 � 10� 4 0:9 0:069

Red dwarfs 0:34 9 0:072

Brown dwarf (Corot-Exo-3) 0:021 21 0:010

White dwarf (Sirius B) 1 1:3 � 106 7:7 � 10� 7

Table 2.5: Ratio �� g=�� 0 for some typical stars.
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The results of the calculations are shown in Table 2.5. On the basis
of the calculated ratio �� g=�� 0 as shown in Table 2.5, we arrive at the
following conclusion. The luminous Hilbert core of a star | its \inner
sun" | can have a density that di�ers from the density of the main
mass of the star. It depends on the particular type of the star. For
instance. The stellar substance of the Hilbert core of a giant or super-
giant is many orders denser than the main substance of the stars.The
Hilbert core of the star that is similar to the Sun has approximately
the same density as the star. Concerning the dwarf stars, the Hilbert
core of such a star is more rare�ed than the main substance of thestar.
The greater the density of a dwarf star is, the less the density of its
core becomes compared to the density of the entire star. In sucha star
as the white dwarf, the Hilbert core is many orders of magnitude more
rare�ed than the main substance of the star.

Respectively, the following question arises. All physical bodies have
masses, therefore each body should have a Hilbert radius core inside
itself. Not only stars, but also planets and even individual elementary
particles should have such a core. Yet, why do they not shine like stars?

The answer comes from the state of that substance of which these
physical bodies consist. Stars are made up of liquid substance which
consists, mostly, of light chemical elements such as hydrogen and helium.
Therefore, thermonuclear fusion of light atomic nuclei is possible in the
Hilbert core of each star. Due to the fact that the substance is liquid,
more and more \nuclear fuel" is delivered from the other regions of the
star to its luminous Hilbert core, thus supporting the combustion inside
the \nuclear boiler", until the time when all the nuclear fuel of the
star ends. Another case | the planets. They consist of mostly heavy
elements with only a minor content of hydrogen. Therefore, as soon as
the \nuclear boiler" of the Hilbert core has �nished all the reserve of
the hydrogen fuel in the central region of the planet, it stops producing
energy but still remains to exist at the center of the planet, in a latent
state.

Astronomers know that the energy emitted by Jupiter exceeds the
solar energy absorbed by the entire surface of the planet. The same is
as well true for Saturn. This means, according to our theory, that the
Hilbert core of each of the planets still processes hydrogen into helium
thereby releasing nuclear energy.

Concerning individual elementary particles such as protons, neurons,
and electrons: as is known, they are stable and indi�erent for a long
time as long as they do not interact with other particles. In fact, th is
means that the Hilbert core of the proton (as well as of the neutron and
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the electron) does not interact with the main mass of the particle. Why
does this happen? We can only guess that either the substance that is
inside the particles is in the super-solid state, or there is a layer of the
very strong vacuum between the core and the rest mass. On the other
hand, the Hilbert core of the proton (and that of the neutron) has a tiny
radius of (rg)p = 2Gm p

c2 = 2 :48� 10� 52 cm, while the Hilbert core of the
electron has even a smaller radius of (rg)e = 2Gm e

c2 = 1 :35� 10� 55 cm. As
has been stated by Albert Einstein already, the geometric laws (space-
time geometry) of the General Theory of Relativity are true, probably,
upto the scale of elementary particles. Within the sub-nuclear scale,
probably, another geometry works thus stating its own laws which di�er
from the laws of the General Theory of Relativity. Therefore, we cannot
presently state something de�nite about the physical conditions and
processes inside elementary particles.

But as for the regular world of stars and the planets, experimental
physics and observational astronomy show that Einstein's theoryis cor-
rect and works on these scales with high accuracy. Therefore, allour
conclusions about the internal constitution of stars, and the mechanism
that generates energy in stars should be taken into account.

The particular details of the suggested mechanism of stellar energy
are a special theme that is out of the scope of this book (which is mostly
on the internal constitution of stars).

§2.7 Conclusion

All the theoretical conclusions about the source of stellar energy, and
about the internal constitution of stars that are presented in this Chap-
ter have been obtained in the framework of our model of liquid stars.
Our model is based on the presentation about stars as space-timeob-
jects, according to the General Theory of Relativity. Below, we list the
most important of the conclusions we have thus arrived at:

1. The �eld of each star possesses space breaking which surrounds
the star by a spherical surface. The \bubble" of the outer space
breaking of the �eld has a radius of

rbr =

s
3

{ � 0
=

s
a3

rg
;

which is many orders larger than the physical radiusa of the
star. The three-dimensional observable space curvatureCiklj and
the four-dimensional Riemannian curvatureR��
� have common
space breaking on the surface. The outer space breaking impedes
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the near substance to be formed as a planet in this orbit. The outer
space breaking of the Sun's �eld is located within the asteroid
strip, near the maximal concentration of the asteroids;

2. The �eld of each star possesses inner space breaking, inside the
physical body of the star, on the surface of the Hilbert radius

rg =
2GM

c2 ;

from the center. This means that there is a small core which is
separated, by the singular surface, from the major mass of the
star. On the surface of the core, the force of gravity reaches an in-
�nitely large magnitude. The super-strong gravity, by de�nition,
is su�cient for the transfer of the necessary kinetic energy to the
lightweight atomic nuclei of the stellar substance, so that ther-
monuclear fusion begins. Thus, nuclear energy is released. The
liquid \nuclear fuel" is delivered from the other regions of the star
to the core thus supporting the combustion inside the \nuclear
boiler";

3. Every star has a massM . Therefore, the luminous core of the
Hilbert radius rg = 2GM

c2 | the \inner sun" | exists in the center
of every star. We refer to it as theHilbert core. This is the place in
which thermonuclear fusion produces helium from hydrogen, thus
providing energy for the luminosity of the stars. The energy is then
transmitted from the \inner sun" of the star to its surface due to
heat conductivity (the conventional transfer of heat in liquids) fo r
it then to be radiated into the cosmos;

4. The Hilbert core is tiny compared to the size of stars. For example,
for the Sun, rg = 2 :9 km;

5. The observed relation \mass-luminosity" of stars is satis�ed if the
Hilbert core has a density depending on the particular type of the
star. The Hilbert core of a giant or super-giant should be many
orders denser than the main substance of the stars. The Hilbert
core of a star like the Sun should be approximately the same in
density as the star. In the dwarf star, the Hilbert core should be
more rare�ed than the main substance of the star (the core of the
white dwarf should be extremely rare�ed);

6. Each planet has a mass. Therefore, the Hilbert core exists in
the center of every planet. But planets consist of mostly heavy
elements with only a minor content of hydrogen. As soon as the
\nuclear boiler" of the Hilbert core has �nished all the reserve
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of the hydrogen fuel in the central region of the planet, it stops
producing energy but still remains to exist at the center of the
planet, in a latent state.



Chapter 3

Regular Stars. The Description

§3.1 Problem statement. The internal space metric of a reg-
ular non-rotating star

To broadly understand the description of a regular star again, recall
that in §2.1 we deduced the space metric of a liquid sphere by follow-
ing the \historical path" as Schwarzschild did it. Namely, | we took
the spherically symmetric metric in the general form, then applied the
particular conditions of a sphere �lled with perfect liquid. The sole dif-
ference from Schwarzschild's deduction was that we did not assumeany
arti�cial limitations. When following this deduction, we obtained the
observable characteristics of the space in the implicit form, as an auxil-
iary result. It was enough to obtain the space metric of a liquid sphere
in the �nal form. Now, we express the characteristics in the explicit
form, through the components of the fundamental metric tensor of the
space metric of a liquid sphere which we have obtained in Chapter 2.
Then we will study the equations of motion inside the star so as to take
the escape velocity into account.

So, the space metric of a liquid sphere has the form (1.8)

ds2 =
1
4

 

3

r

1 �
rg

a
�

r

1 �
r 2 rg

a3

! 2

c2dt2 �

�
dr2

1 �
r 2 r g

a3

� r 2 �
d� 2 + sin 2� d� 2�

: (3.1)

We calculate the chr.inv.-characteristics of the space, according to their
de�nitions given in §1.3 and the respective components of the funda-
mental metric tensor of the metric (3.1). The chr.inv.-metric tensor hik

of the metric (3.1) has the following non-zero components

h11 =
1

1 �
r 2 r g

a3

; h22 = r 2; h33 = r 2 sin2� ; (3.2)

h11 = 1 �
r 2rg

a3 ; h22 =
1
r 2 ; h33 =

1

r 2 sin2�
; (3.3)
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while its determinant, and the non-zero spatial derivatives of the loga-
rithm of the determinant have the form

h = det khik k =
r 4 sin2�

1 �
r 2 r g

a3

; (3.4)

� @ln
p

h
@r

=
2
r

+
rg r
a3

1

1 �
r 2 r g

a3

;
� @ln

p
h

@�
= cot � : (3.5)

So forth, after algebra according to the chronometrically invariant for-
malism (see§1.3 for the de�nitions of the chr.inv.-quantities), we ob-
tain the following. The chr.inv.-vector of the gravitational inertial f orce,
acting in the space has the form

F1 = �
c2 rg

a3

r
�

3
q

1 �
r g

a
�

q
1 �

r g r 2

a3

� q
1 �

r g r 2

a3

; (3.6)

F 1 = �
c2 rg

a3

r
q

1 �
r g r 2

a3

3
q

1 �
r g

a
�

q
1 �

r g r 2

a3

; (3.7)

where r < a since it is inside the sphere. Therefore,F1 < 0 therein (this
means that it is a force of attraction). The non-zero chr.inv.-Christo�el
symbols have the form

� 1
11 =

rg r
a3

1

1 �
r g r 2

a3

; � 1
22 = �

� 1
33

sin2�
= � r

�
1 �

rg r 2

a3

�
; (3.8)

� 2
12 = � 3

13 =
1
r

; � 2
33 = � sin� cos� ; � 3

23 = cot � : (3.9)

The non-zero components of the chr.inv.-tensor of the three-dimensional
observable curvatureCiklj , and its contraction Cik , have the form

C1212 =
C1313

sin2�
= �

rg r 2

a3

1

1 �
r g r 2

a3

; C2323 = �
rg r 4

a3 sin2�; (3.10)

C11 = �
2rg

a3

1

1 �
r g r 2

a3

; C22 =
C33

sin2�
= �

2rg r 2

a3 : (3.11)

So, we now have all that is needed to consider Einstein's equations
in the internal �eld of a regular non-rotating star.
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§3.2 Einstein's equations in the internal �eld of a regular
non-rotating star

Consider Einstein's �eld equations in the space of the metric (3.1). As
is known, the energy-momentum tensor of a perfect liquid has the fol-
lowing general form (2.4):

T �� =
�

� 0 +
p
c2

�
U � U � �

p
c2 g�� ; (3.12)

where� 0 = const is the density of the liquid, p is the pressure, whileU � is
the four-dimensional velocity of the 
ow of the liquid with respect to the
observer (the unit four-vector, so U� U � = 1). The chr.inv.-projections
of the energy-momentum tensor have the form (2.21)

� =
T00

g00
= � 0 ; J i =

c T i
0p

g00
= 0 ; U ik = c2 T ik = phik ; (3.13)

where � is the observable density of mass,J i is the observable density
of momentum, while U ik is the observable stress tensor. With these
formulae, and by taking into account that the space of the particular
liquid sphere is free of rotation and deformation (A ik = 0, D ik = 0), the
chr.inv.-Einstein equations (1.85{1.87) take the form

� r j F j �
1
c2 Fj F j = �

{
2

�
� 0c2 + U

�
; (3.14)

J i = 0 ; (3.15)

1
2

� � r i Fk + � r k Fi
�

�
1
c2 Fi Fk � c2Cik =

=
{
2

�
� 0c2hik + 2 Uik � Uhik

�
; (3.16)

where � r i is the symbol of chr.inv.-di�erentiation (see Notations), while
Uik = phik and U = 3 p.

Substitute, into the Einstein �eld equations, the formulae for Fi , Cik ,
and hik , which have been calculated for the metric (3.1). We obtain that
only two equations remain non-vanishing:

3c2rg
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q
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r g r 2
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3
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1 �
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=
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3
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a
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� 0c2 � p

�
: (3.18)
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Multiplying (3.18) by 3 then summarizing the product with (3.17), we
obtain

{ � 0c2 =
3c2rg

a3 : (3.19)

Substituting this result back into (3.18), we obtain the equation of state*

for the liquid substance of regular stars

p = � 0c2

q
1 � { � 0 r 2

3 �
q

1 � { � 0 a2

3

3
q

1 � { � 0 a2

3 �
q

1 � { � 0 r 2

3

: (3.20)

This formula completely coincides with the formula for pressurep
(2.130) we have obtained in Chapter 2 as the result of following the
path of Schwarzschild.

This formula for pressurep can also be obtained from the conserva-
tion equations (2.26{2.27). Because the space of the metric (3.1) does
not deform (hik 6= f (t), henceD ik = 0), the chr.inv.-scalar conservation
equation (2.26) vanishes. Only the chr.inv.-vectorial conservationequa-
tion (2.27) remains. It takes the form

� r i
�
phik �

�
�

� 0 +
p
c2

�
F k = 0 : (3.21)

Herein, � r i hik = 0 is true always as well asr � g�� = 0 for the funda-
mental metric tensor. Therefore, and because the chr.inv.-derivative
with respect to the spatial coordinates coincides with the regular spa-
tial derivative in the case where the space does not rotate, the remaining
conservation equation (3.21) has the form

hik @p
@xi

�
�

� 0 +
p
c2

�
F k = 0 : (3.22)

Substituting the formulae for h11 and F 1 we have obtained for the metric
(3.1), we transform (3.22) into the di�erential equation

dp
� 0c2 + p

= �
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�
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: (3.23)

This equation can be re-written in the form

d ln
�
� 0c2 + p

�
= � d ln
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rgr 2
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!

; (3.24)

* The formula connecting pressure and density inside the medi um.
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which is easy to integrate. After integration, we have

p + � 0c2 =
Q
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q

1 �
r g

a
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q
1 �

r g r 2

a3

; (3.25)

where the integration constantQ comes from the obvious conditionp= 0
on the surface of the star (wherer = a). Then

Q = 2 � 0c2

r

1 �
rg

a
; (3.26)

thus we obtain, �nally,

p + � 0c2 = 2 � 0c2
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r g r 2
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: (3.27)

It is easy to see that this solution leads to the same formula forp as
(3.20), which we have obtained from Einstein's �eld equations.

§3.3 The internal space metric of a regular rotating star

Consider now the metric of a regular liquid star (3.1) with only the
change that the star rotates, at an angular speed! , along its equatorial
axis (the axis � in the spherical coordinatesr , � , � ). In this case, the
non-rotating metric (3.1) takes the form

ds2 =
1
4
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It should be noted that we still consider regular stars, namely those
stars whose Hilbert radius is much smaller than their physical radius.

According to the metric (3.28), the star's linear velocity of space
rotation is

v1 = v2 = 0 ; v3 = �
2! r 2 cos�

3
q

1 �
r g
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�

q
1 �

r g r 2

a3

: (3.29)

As is known from the data of observational astronomy, the major-
ity of stars rotate at linear speeds v < 420 km/sec. Hence, we have
v2=c2 < 2 � 10� 6: most stars rotate slowly compared to the speed of light.
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According to the space metric of a regular (slowly rotating) regular
star (3.28), represented as a rotating liquid sphere, we have

v2 = hik vi vk = h33v3v3 ; h33 = � g33 =
1

r 2 sin2 �
: (3.30)

So, v2=c2 in the space of the metric (3.28) has the form
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Expanding, in this formula, the radicals into series, after elementary
transformations we obtain

v2

c2 =
! 2r 2 cot2 �

c2

�
1 +

3rg

2a
�

rgr 2

2a3

�
: (3.32)

Further, we will neglect higher-order terms of the series which aresmall
becauserg � a for the regular stars. Therefore, we have

v3 = ! r 2 cos� ;
v2

c2 =
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3
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! 2r 4 cos2 �

c2 : (3.33)

The non-zero components of the chr.inv.-metric tensor of the metric
(3.28) have the form

h11 =
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while the determinant of the chr.inv.-metric tensor hik and the non-zero
spatial derivatives of the logarithm of the determinant have the form
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Respectively, according to the chronometrically invariant formalism
(see§1.3 for the de�nitions of the chr.inv.-quantities), we obtain also
the other chr.inv.-characteristics of the space. The chr.inv.-vector of
the gravitational inertial force Fi , acting in the space takes the form
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which is a non-Newtonian force of attraction. The approximate formula
for the force is

F1 = F 1 � �
c2rg r
2a3 : (3.41)

The chr.inv.-tensor of the angular velocity of space,A ik , has the follow-
ing non-zero components:
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The approximate expressions of these components have the form
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4a3 �
! 2r 2 cot2 �

c2

�
: (3.51)

The non-zero chr.inv.-Christo�el symbols for the metric, with highe r-
order terms ! 4r 4=c4 neglected, have the form

� 1
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1

1 �
r g r 2
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; � 1
22 = � r

�
1 �
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�
; (3.52)
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: (3.55)

Neglecting the termsr 2
g=a2 and the product ! 2r 2=c2 to rg=a, we obtain

the approximate formulae for these components
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; (3.56)
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�
; (3.59)
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and the non-zero components of the chr.inv.-curvature tensorCiklj ,
along with the non-zero components of its contractionCik
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1

1 �
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; (3.60)
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0

@3! 2 cot2 �
c2 �

rg

a3

1 + ! 2 r 2 cot 2 �
c2

1 �
r g r 2

a3

1

A ; (3.61)

C2323 =
�
�

rgr 2

a3

�
1 +

! 2r 2 cot2 �
c2

�
+

+
! 2r 2

c2

�
cot2 � +

1

sin4 �

��
r 2 sin2 � ; (3.62)

C11 = �
2rg

a3

1

1 �
r g r 2

a3

+
3! 2 cot2 �

c2 ; (3.63)
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Becauserg=a� 1 and ! 2r 2=c2 � 1 for regular stars, we neglect the
terms r 2

g=a2 and the product ! 2r 2=c2 to rg=a. As a result, we obtain
the approximate formulae for the chr.inv.-curvature:

C1212 = �
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; (3.66)
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§3.4 Einstein's equations in the internal �eld of a regular
rotating star

We now solve Einstein's �eld equations in the internal space of a rotating
regular star, i.e. in the space of the metric (3.28). In the absence of
space rotation (A ik = 0), this problem reduces to the problem that was
considered earlier in§5.2 for regular non-rotating star.

So, consider the chr.inv.-Einstein equations (1.85{1.87) in the space
of a liquid sphere, which rotates (A ik 6= 0) but is free of deformation
(D ik = 0). They take the form

A jl A lj + � r j F j �
1
c2 Fj F j = �

{
2

�
�c 2 + U

�
; (3.71)

� r j A ij +
2
c2 Fj A ij = { J i ; (3.72)

2A ij A � j
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� � r i Fk + � r k Fi
�

�
1
c2 Fi Fk � c2Cik =

=
{
2

�
�c 2hik + 2 Uik � Uhik

�
; (3.73)

where � r i is the symbol of chr.inv.-di�erentiation (see Notations). The
chr.inv.-quantities � , J i , U ik are the physical observable projections of
the energy-momentum tensorT�� of the medium that �lls the space.
(We do not specify the energy-momentum tensor just yet.)

With the obtained components of A ik and Fi (see§3.2 for detail),
the chr.inv.-Einstein equations (3.71{3.73) take the form
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: (3.79)

In the framework of our approximation ( rg=a� 1 and ! 2r 2=c2 � 1)
which holds true for regular stars, we neglect the termsr 2

g=a2 and the
product ! 2r 2=c2 to rg=a. As a result, the obtained chr.inv.-Einstein
equations take the much simpli�ed form
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; (3.80)
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! 2r cot � = � { U12 ; (3.83)

! 2

2
�

{
2

�
�c 2 � U

�
= { U2

2 ; (3.84)
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�c 2 � U

�
= { U3
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Summarizing (3.82), (3.84), and (3.85), then taking into account
that U1

1 + U2
2 + U3

3 = U, we obtain

4! 2 cot2 � + ! 2 =
{
2

�
3�c 2 � U

�
: (3.86)

Summarizing the result (3.86) and (3.80), we obtain

3! 2 cot2 � +
3! 2

4
= { �c 2: (3.87)

Multiplying (3.80) by 3 then subtracting the result from (3.86), we
obtain

! 2 cot2 � +
! 2

4
= { U : (3.88)
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As is seen from (3.87) and (3.88),

�c 2 = 3 U : (3.89)

The energy-momentum tensorT�� should also satisfy the conserva-
tion equations. The chr.inv.-conservation equation in the rotating space
of the star, which is free of deformation (D ik = 0), have the form

� @�
@t

+ � r i J i �
2
c2 Fi J i = 0 ; (3.90)

� @Jk
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+ 2 A �k

i � J i + � r i U ik �
1
c2 Fi U ik � �F k = 0 : (3.91)

As follows from the scalar conservation equation (3.90),

� @�
@t

= 0 ; i.e. � = const: (3.92)

The vectorial conservation equation (3.91) with the index i = 3 is satis-
�ed identically. The equations with i = 1 and i = 2 take the form
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In the tensorial chr.inv.-Einstein equations that readily expressU1
1

(3.82), U12 (3.83), U2
2 (3.84), and U3

3 (3.85), we now take into account
that �c 2 = 3 U (3.89) and the formula for U (3.88). We obtain
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{ U33 =
! 2 cot2 �

r 2 sin2 �
+

! 2

4r 2 sin2 �
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Substitute these formulae, and also the other necessary quantities, into
the remaining conservation equations (3.93) and (3.94). After some
algebra, we see that the equations are satis�ed identically.

So, Einstein's equations and the conservation equations in the form
considered herein satisfy the metric of the internal space of a regular
rotating star, that is the space metric (3.28).

§3.5 The stationary vortex-free electromagnetic �eld of a re g-
ular rotating star

A realistic star bears an electromagnetic �eld. Therefore, we should
introduce the electromagnetic �eld into the theory of liquid stars. E lec-
trodynamics in terms of the chronometrically invariant formalism was
introduced in Chapter 3 of our book [18]. We now follow the deduction
therefrom, then apply it to the present theory of liquid stars.

So, as is known from the generally covariant formulation of electro-
dynamics [20], the energy-momentum tensor of an arbitrary electromag-
netic �eld has the form

T ��
em =

1
4�c 2

�
� F � �

� � F �� +
1
4

g�� F�� F ��
�

; (3.99)

whereF�� is the electromagnetic �eld tensor known also as the Maxwell
tensor. The �eld tensor F�� is the curl of the four-dimensional electro-
magnetic potential A �

F�� = r � A � � r � A � =
@A�
@x�

�
@A�
@x�

: (3.100)

The physically observable chr.inv.-projections of the four-dimensional
electromagnetic potential A � are the scalar electromagnetic potential'
and the vector electromagnetic potentialqi :

' =
A0

p
g00

; qi = A i : (3.101)

The electromagnetic �eld tensor F�� (5.44) has the following physically
observable components

� em =
T00

g00
=

E i E i + H � i H � i

8�c 2 ; (3.102)

J i
em =

c T i
0p

g00
=

1
4�c

" ikm Ek H � m ; (3.103)

U ik
em = c2T ik = � em c2hik �

1
4�

(E i E k + H � i H � k ) ; (3.104)



82 Chapter 3 Regular Stars. The Description

where E i is the three-dimensional chr.inv.-electric strength vector,H � i

is the three-dimensional chr.inv.-magnetic strength pseudo-vector of
the �eld, while " imn is the completely anti-symmetric unitary three-
dimensional chr.inv.-pseudo-tensor (see [18], for detail). Namely, |

E � ik = � " ikn En ; En =
� @'
@xn

+
1
c

� @qn
@t

�
'
c2 Fn

H � i =
1
2

" imn Hmn ; Hmn =
� @qm
@xn

�
� @qn
@xm

�
2'
c

Amn

9
>>=

>>;
: (3.105)

As is seen from the de�nitions (3.105), the chr.inv.-electric �eld strength
and the chr.inv.-magnetic �eld strength depend on not only the electro-
magnetic �eld potentials ' and qi , but also on the characteristics of the
space that is �lled with the �eld. The physical and geometric character-
istics of the space that a�ect the electric and magnetic �eld strengths
are, respectively, the gravitational inertial force Fi acting in the space,
and the angular velocity of the space rotationA ik .

Herein, in §5.3, we �rst consider the electromagnetic �eld which is
stationary and vortex-free. This means that the electromagnetic �eld
potentials are constant (' = const, qi = const) while the curl of the vec-
torial potential is zero (qik = 0). In other words, in the further consid-
eration of the electromagnetic �eld we will assume that

� @'
@xn

= 0 ;
� @qn
@t

= 0 ; qik =
� @qi
@xk

�
� @qk
@xi

= 0 (3.106)

in the formulae for the electric and magnetic �eld strengths (3.105). In
this case, we have

E i = �
'
c2 F i ; E i = �

'
c2 Fi

H � i = �
2'
c


 � i ; H � i = �
2'
c


 � i

9
>=

>;
; (3.107)

where 
 � i is the three-dimensional chr.inv.-pseudo-vector of the angular
velocity of space rotation


 � i =
1
2

" imn Amn ; 
 � i =
1
2

" imn Amn : (3.108)

It is easy to �nd that, in the internal space of a regular rotating st ar,
that is the space of the metric (3.28), we have


 � 1 = 
 � 1 =
!
2

; 
 � 2 =
! cot �

r
; 
 � 2 = ! r cot � : (3.109)
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thus


 � j 
 � j = ! 2
�

1
4

+ cot 2 �
�

: (3.110)

As is seen from the formulae (3.107), in the stationary vortex-free
electromagnetic �eld the electric �eld strength E i is determined by the
scalar electromagnetic potential ' and the gravitational inertial force
F i acting in the space. The magnetic �eld strength H � i is due to the
vectorial electromagnetic potential qi and the angular velocity 
 � i of
rotation of space.

Using these formulae forE i and H � i (3.107), we obtain that the
physically observable components (3.102{3.104) of the electromagnetic
�eld tensor F�� have the form

� em =
' 2

2�c 4

�
Fj F j

4c2 + 
 � j 
 � j
�

; (3.111)

J i
em =

' 2

2�c 4 " ikm Fk 
 � m ; (3.112)
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Fj F j
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hik �
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�
F i F k

4c2 +
 � i 
 � k
�

: (3.113)

It is easy to see that the trace of the electromagnetic �eld stress
tensor, which is expressed asUem = hik U ik

em, satis�es the condition

Uem =
' 2

2�c 2

�
Fj F j

4c2 + 
 � j 
 � j
�

= � em c2: (3.114)

As follows from the general form of the energy-momentum tensor
T�� that satis�es the metric (3.28), the tensor should satisfy the condi-
tion �c 2 = 3 U (3.89). This formula di�ers from � em c2 = Uem (3.114) we
have just obtained for the stationary vortex-free electromagnetic �eld.
We therefore should �nd such a structure of the electromagnetic�eld
that makes Uem satisfying �c 2 = 3 U.

So, according to the condition �c 2 = 3 U (3.89) and the formula
! 2 cot2 � + 1

4 ! 2 = { U (3.88) obtained from the chr.inv.-Einstein equa-
tions, the �eld density inside a regular rotating star should be

� =
3
 � j 
 � j

{ c2 ; U =

 � j 
 � j

{
: (3.115)

Therefore, we substitute the required condition

Uem =

 � j 
 � j

{
: (3.116)
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into (3.114) that we obtained for the stationary vortex-free electromag-
netic �eld. We obtain

' 2

2�c 2

�
Fj F j

4c2 + 
 � j 
 � j
�

=

 � j 
 � j

{
; (3.117)

or, expanding Einstein's constant of gravitation { = 8�G
c2 , in the equiv-

alent form

c2 
 � j 
 � j =
G' 2

c4

1 � 4G' 2

c4

Fj F j : (3.118)

We have considered a stationary electromagnetic �eld: the scalar
and vectorial electromagnetic potentials remain unchanged (' = const,
qi = const). Therefore, in the formula (3.118), the quantity

G' 2

c4 = n ; n <
1
4

(3.119)

is a constant dimensionless coe�cient depending only on the scalar po-
tential ' of the electromagnetic �eld of the star.

Using the constant n (3.119), we re-write (3.118) as

c2 
 � j 
 � j =
n

1 � 4n
Fi F i ; n <

1
4

: (3.120)

Substituting 
 j 
 j (5.13) and Fi F i (2.15) into the condition (3.120), we
can present it in the alternative (expanded) form

! 2 �
1 + 4 cot2 �

�
=

4n
1 � 4n

c2r 2
gr 2

a6 : (3.121)

If n = nmax = 1
4 and thus ' = ' max , the angular velocity of the star

would be ! = 1 which is non-sense. Therefore, we conclude thatn < 1
4

for all real stars including the Sun. With n < 1
4 , we obtain the upper

boundary of the numerical value for the scalar electromagnetic potential
possessed by a real star

' =
c2

2
p

G
< 1:74� 1024

h
gram 1= 2 cm1= 2

sec

i
: (3.122)

With the condition (3.120), the stationary vortex-free electromag-
netic �eld satis�es Einstein's equations and the metric of the internal
space of a regular rotating star. In other words, with this condition
(3.120), a stationary rotating regular star is a permanent magnet.
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Becausen = const in the stationary electromagnetic �eld (wherein
' = const, qi = const), the above condition (3.120) allows us to express
the characteristics of the electromagnetic �eld through the geometric
and physical characteristics of the space. In other words, in thispartic-
ular case, we can geometrize the electromagnetic �eld.

Substitute the obtained formulae for the gravitational inertial fo rce,
and for the angular velocity of space rotation into the physically observ-
able components (3.111{3.113) of the electromagnetic �eld tensorF�� .
By taking the relations (3.117) and (3.119) into account, we obtain the
observable components ofF�� in the form
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4
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; (3.123)
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From these equations we obtain, as previously,

Uem = hik U ik
em = � em c2: (3.129)

The chr.inv.-Einstein equations (3.123{3.128) can further be simpli-
�ed. In the surface layer of a star (r � a), the �rst term in the brackets
is

c2r 2
gr 2

16a6 '
c2r 2

g

16a4 : (3.130)

Consider the Sun as an example. Its surface layer makes one full rev-
olution with a period of 27 days, which is equivalent to the angular
velocity of rotation ! � ' 2:7 � 10� 6 sec� 1. Therefore, the second term
in the brackets is

1
4

! 2
� ' 1:8 � 10� 12 sec� 2: (3.131)
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The �rst term in the brackets, while taking the Hilbert radius for the
Sun rg� = 2 :9 � 105 cm, and the Sun's physical radiusa� = 7 :0 � 1010 cm
into account, is ten times less:

c2r 2
g�

16a4
�

' 2:0 � 10� 13 sec� 2: (3.132)

Therefore, we can neglect the �rst term in the brackets for evenslowly
rotating stars such as the Sun. Thus the chr.inv.-Einstein equations
(3.123{3.128) take the simpli�ed form
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Nevertheless, the �rst term in the brackets of the chr.inv.-Einstein
equations (3.123{3.128) can be su�cient in the case of small stars such
as white dwarfs or brown dwarfs. This is because we havea6 (the star's
radius in the 6th power) in the denominator of the term.

§3.6 Solving Maxwell's equations in the vortex-free electro -
magnetic �eld of a regular rotating star

As is known, the electromagnetic �eld is described by Maxwell's �eld
equations. They consist of two groups of equations. The generally
covariant formulation of Maxwell's equations in the four-dimensional
pseudo-Riemannian space has the form [20]

r � F �� =
4�
c

j � ; r � F � �� = 0 ; (3.139)

where the �rst generally covariant equation expresses Group I ofMax-
well's equations, while the second generally covariant equation repre-
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sents Group II. Herein, F � �� = " ���� F�� is the pseudo-tensor which
is dual to the electromagnetic �eld tensor F�� , while j � is the four-
dimensional current vector.

In terms of the chronometrically invariant formalism of General Rel-
ativity, the generally covariant Maxwell equations (3.139) take the fol-
lowing form (see Chapter 3 of the book [18] for details):

� r j E j �
1
c

H ik A ik = 4 � �

� r k H ik �
1
c2 Fk H ik �

1
c

� � @Ei

@t
+ DE i

�
=

4�
c

j i

9
>>=

>>;
I; (3.140)

� r i H � i �
1
c

E � ik A ik = 0

� r k E � ik �
1
c2 Fk E � ik �

1
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� � @H� i

@t
+ DH � i

�
= 0

9
>>=

>>;
II : (3.141)

Herein, E � ik = � " ikn Ek is the pseudo-tensor which is dual to the electric
strength tensor E i , H � i = 1

2 " imn Hmn is the pseudo-vector which is dual
to the magnetic strength tensor Hmn , while D = hik D ik is the rate of
space deformation. (See these de�nitions in formula (3.105) of§3.5).

The physically observable charge density� and the physically ob-
servable current vector j i are the respective chr.inv.-projections of the
four-dimensional current vector j �

� =
1
c

j 0
p

g00
; j i = hi

� j � : (3.142)

Because the space of a liquid sphere under consideration is station-
ary (the space metric does not depend on time), and also because we
assume that the electromagnetic �eld is stationary, all terms containing
the space deformation tensorD ik and the time derivatives of the elec-
tromagnetic �eld strengths vanish. In this particular case, the chr.inv.-
Maxwell equations (3.140{3.141) take the simpli�ed form

� r j E j �
1
c

H ik A ik = 4 � �

� r k H ik �
1
c2 Fk H ik =

4�
c

j i

9
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>;
I; (3.143)

� r i H � i �
1
c

E � ik A ik = 0

� r k E � ik �
1
c2 Fk E � ik = 0

9
>=

>;
II : (3.144)
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Substitute, into the equations (3.143{3.144), the formulae for the
gravitational inertial force Fi (3.41) and the angular velocity of space
rotation A ik (3.48{3.51) we have obtained in the framework of the space
metric of a regular rotating star (3.28). Also, substitute the formulae
for the electric strength E i and the magnetic strength H � i (3.107) of
the stationary vortex-free electromagnetic �eld we have obtained in the
space. To simplify the algebra, take into account the following termsfor
the case if they appear in the brackets commonly with the others. For
the Sun (! � ' 2:7 � 10� 6 sec� 1, rg� = 2 :9 � 105 cm, a� = 7 :0 � 1010 cm),
these terms take the following numerical values:

rg

a
= 4 :1 � 10� 6

rg

a3 = 8 :5 � 10� 28 cm� 2

! 2

c2 = 8 :1 � 10� 33 cm� 2

9
>>>>>=

>>>>>;

: (3.145)

For other regular stars, these terms take similar numerical valuesto
within a few orders of magnitude.

As a result, after some algebra we see that the equations of GroupII
of the chr.inv.-Maxwell-equations (3.143{3.144) vanish, while the equa-
tions of Group I take the following form:

3'r g

2a3 = 4 � � ;
! ' cot �
r 2 sin �

= � 2� j 3: (3.146)

The obtained Maxwell equations characterize the electromagnetic�eld
that originates due to the charges and currents (the �eld sources).
Should the right-hand side of the equations be zero, it would be a source-
free electromagnetic �eld (existing independently of the sources).

The �eld sources (the charge density� and the current vector j i )
are connected to each other through the law of conservation of electric
charge. The law has the following general covariant formulation:

r � j � = 0 : (3.147)

The generally covariant law of conservation of the electric charge (3.147)
is also known as the continuity equation. It means that the charge den-
sity � and the currents j i , which are two chr.inv.-observable projections
of the four-dimensional current vector j � are conserved within the four-
dimensional volume of the �eld. Maxwell's equations are connected
by the generally covariant Lorentz condition

r � A � = 0 ; (3.148)
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which means that the scalar electromagnetic potential' and the vec-
torial electromagnetic potential qi (the chr.inv.-observable projections
of the four-dimensional potential A � of the electromagnetic �eld) are
conserved within the four-dimensional volume of the �eld.

In the general case of an arbitrary electromagnetic �eld, the conser-
vation law r � j � = 0 (3.147) and the Lorentz condition r � A � = 0 (3.148)
have the following chronometrically invariant formulation:

� @�
@t

+ �D + � er i j i �
1
c2 Fi j i = 0 ; (3.149)

1
c

� @'
@t

+
'
c

D + � er i qi �
1
c2 Fi qi = 0 : (3.150)

See Chapter 3 of the book [18] for details. The chr.inv.-di�erential
operators � er i = � r i � 1

c2 Fi and � r i can be found inNotations.
Recall that we are considering a stationary vortex-free electromag-

netic �eld. This means that the conditions (3.106) should be true
� @'
@xn

= 0 ;
� @qn
@t

= 0 ; qik =
� @qi
@xk

�
� @qk
@xi

= 0 : (3.151)

In this particular case, and in the space which is free of deformation
(D ik = 0), the conservation equation (3.149) and the Lorentz condition
(3.149) are satis�ed as identities.

§3.7 Solving Maxwell's equations in the vortical electromag -
netic �eld of a regular rotating star

Consider a regular rotating star whose electromagnetic �eld is vortical.
This means that the curl qik of the three-dimensional vectorial chr.inv.-
potential qi of the �eld is non-zero

qik =
� @qi
@xk

�
� @qk
@xi

6= 0 : (3.152)

Assume, according to in Chapter 3 of the book [18] where we considered
relativistic electrodynamics, that the four-dimensional electromagnetic
�eld potential A � has the form

A � = '
dx�

ds
; g��

dx�

ds
dx�

ds
= 1 : (3.153)

In this case, the chr.inv.-projections ofA � have the form

A0
p

g00
= e' ; A i = qi =

e'
c

vi ; vi =
dxi

d�
; (3.154)
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where
e' =

'
q

1 � v 2

c2

; v2 = hik vi vk (3.155)

is the relativistic scalar potential of the electromagnetic �eld [18]. We as-
sume that the charges move within the star at small velocities (v2 � c2).
Then e' = ' .

We also assume, according to our consideration of a rotating neutron
star, that ' = const and q1 = q2 = 0. Then the chr.inv.-components of
A � take the form

' = const; q3 =
'
c

v3; (3.156)

where v3 = d�
d� , while � is the equatorial coordinate of the spherical

polar coordinatesr , � , � . Assuming that the electromagnetic �eld curl
is due to the angular rotation of the star, we have

d�
d�

= ! : (3.157)

Then the non-zero components of the three-dimensional vectorchr.inv.-
potential qi and its curl qik have the form

q3 =
'!
c

; (3.158)

q3 =
'!
c

r 2 sin2 � ; (3.159)

q31 =
@q3
@r

=
2'!

c
r sin2 � ; (3.160)

q23 = �
@q3
@�

= �
2'!

c
r 2 sin � cos� : (3.161)

In other words, we consider here only circular motion of the charge
along the equatorial coordinate� , which is the geographical longitude
of the star (in spherical polar coordinatesr , � , � ).

Substitute now the formulae for A ik (3.48{3.51) obtained for the
space metric of a regular rotating star (3.28) into the de�nition of t he
magnetic strength tensor H ik (3.105). We obtain that the non-zero
components of the tensor have the form
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c

�
cos� +

1
2

�
1 +

3rg

4a
�

rgr 2

a3

��
; (3.162)
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��
: (3.163)
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Using the de�nition of the magnetic strength preudo-vector (3.105)
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2
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c


 � i ; (3.164)

we have, �nally,
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while the covariant (lower-index) versions of the preudo-vector can be
calculated asH � 1 = h11H � 1 and H � 2 = h22H � 2. In the framework of
our approximation (with the higher-order terms withheld), we have
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2' !
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�
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1
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; (3.167)

H � 2 =
2'!
cr

(sin � � cot � ) : (3.168)

Concerning the chr.inv.-Maxwell equations: in the stationary elec-
tromagnetic �eld, they have the form (3.143{3.144)
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� r i H � i �
1
c

E � ik A ik = 0

� r k E � ik �
1
c2 Fk E � ik = 0

9
>=

>;
II : (3.170)

Substitute, into the equations, the obtained formula for the magnetic
�eld strength, and also the formula for the electric �eld strength ( 3.105),
which holds for the stationary electromagnetic �eld, has the form

E � ik = � " ikn En ; E i = �
'
c2 Fi =

'r g r
2a3 : (3.171)

Equations of Group II (3.170) are satis�ed identically. Equations of
Group I (3.170) take the form

3'r g

2a3 = 4 � �� ;
! ' cot �
r 2 sin �

= � 2� �j 3: (3.172)
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where �� and �j 3 are the charge density and the current of the vortical
electromagnetic �eld.

As is easy to see, these solutions are identical to the solutions (3.146)
obtained in the vortex-free electromagnetic �eld. It is easy to obtain
that the conservation equation r � j � = 0 (3.147) and the Lorentz condi-
tion r � A � = 0 (3.148), whose chronometrically invariant formulations
are (3.149) and (3.149) respectively, are satis�ed as identities.

This means that all the results obtained earlier in the vortex-free
electromagnetic �eld of a regular rotating star are as well true in the
present case where the electromagnetic �eld of the star is vortical.

This happens because all the terms that appear in the equations due
to the electromagnetic �eld curl vanish in the framework of the second-
order approximation. In the parlance of physics proper, this means that
the presence of a curl in the electromagnetic �eld does not changethe
�eld sources of a regular rotating star. The vortical electromagnetic �eld
can be meaningful only in the case of exotic stars, whose characteristics
di�er from those of regular stars. We will see the di�erence in Chapter 5
when considering rapidly rotating neutron stars (pulsars).

§3.8 Geometrization of the electromagnetic �eld for a regula r
rotating star

Using the geometric formula for the scalar electromagnetic potential

' = c2

r
n
G

(3.173)

that follows from (3.119), we write down the non-vanishing chr.inv.-
Maxwell equations (3.146), or (3.172) which is the same as
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�j = j =
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hik j i j k =
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h33 j 3j 3 =
!c 2 cot �

2� r

r
n
G

; (3.176)

where �� is the charge density and�j 3 is the current of the vortical elec-
tromagnetic �eld, while � and j 3 imply the vortex-free �eld. The di-
mensionless numerical coe�cient n = G' 2

c4 (3.119) is within the range
0< n < 1

4 . To see why 1
4 , see formula (3.118).
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The electromagnetic �eld sources are expressed herein through only
the geometric characteristics of the star's space and the fundamental
constants. This means that we have completely geometrized the sources
of the stationary electromagnetic �eld of a regular rotating star.

Now, express the electric and magnetic �eld strengths through the
geometric formula for the scalar electromagnetic potential' (3.173).
Using the formulae for the non-zero componentsE1, H � 1, and H � 2

obtained in the stationary electromagnetic �eld of a regular rotatin g
star, we thus obtain
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2a3 ; (3.177)
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H � 1 = h11 H � 1 = H � 1; (3.180)

H � 2 = h22 H � 2 = r 2 H � 2: (3.181)

Here, according to our calculation (3.109{3.110) made in the framework
of the space metric of a regular rotating star (3.28),
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Hence forth, we express the �eld density �� em and the 
ow of momen-
tum �J 3

em of the vortical electromagnetic �eld, which are the physically
observable projections of the energy-momentum tensor of the �eld (see
Einstein's equations). Using their general formulation made for any
electromagnetic �eld, (3.102) and (3.103), we obtain
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As we can see, the observable characteristics of the electromagnetic
�eld are expressed herein through only the geometric characteristics of
the star's space and the fundamental constants. This concernsboth
the vortical �eld and the vortex-free �eld. In the sense of mathematics,
this means that the electromagnetic �eld of a regular rotating star is
completely geometrized.

So, in the case of a regular rotating star, both Maxwell's equations
and Einstein's �eld equations are satis�ed with the inclusion of the elec-
tromagnetic �eld. This means that they consist a self-consistent system
of the Einstein-Maxwell equations that completely describes both grav-
itational and electromagnetic phenomena inside regular rotating stars.

Finally, we can conclude something pretty interesting for astro-
physics by �rst writing the formula for the charge density � (3.174)
in the form

� =
3c2

8�Ga 2

p
nG

rg

a
: (3.186)

The �rst multiplier herein coincides with the formula for the \critical
density" of substance in the Universe

� cr =
3c2

8�Ga 2 =
3H 2

8�G
; (3.187)

known from observational cosmology. Herein,H = c
a is the Hubble con-

stant, while a is the radius of the observable Universe. In analogy to the
Universe, the critical density can be formally introduced for any liquid
star. Thus, we can express the charge density� of the electromagnetic
�eld of the star as

� = � cr

p
nG

rg

a
; (3.188)

where n < 1
4 and, numerically,

p
G = 2 :6 � 10� 4 cm3=2/gram 1=2 sec.

If the charge density is � = � cr
p

nG, the physical radius of the star
coincides with the Hilbert radius a = rg. Becauserg � a for regular
stars, we conclude that the charge density of the electromagnetic �eld
inside any regular rotating star is much less than� cr

p
nG, i.e.

� � � cr

p
nG : (3.189)

A few words should be said at the end. As is known, the General
Theory of Relativity is the geometric theory of space-time-matter. Its
primary task is to express all physical phenomena as the manifestations
of space (space-time) geometry. The gravitational �eld was initially



§3.9 Conclusion 95

geometrized by Einstein, due to Einstein's �eld equations. However,
the electromagnetic �eld was not geometrized: as was shown by Ein-
stein, mathematically this problem in a general case is very non-trivial.
Nevertheless, it is possible to solve this problem in a particular case
where some particular conditions simplify the mathematics. Thus, as
was shown above, we have completely geometrized the electromagnetic
�eld in the internal �eld of a regular rotating star.

§3.9 Conclusion

This Chapter is complementary to the previous Chapter 2, wherein we
considered regular stars including the Sun. Three primary tasks were
achieved in this Chapter.

First. In Chapter 2, when considering the internal space metric of
a liquid star, we followed the historical path as Schwarzschild did when
introducing the metric. Namely, | even when we introduced the com-
plete form of the internal space metric of a liquid sphere (which contains
singularities), we used the Schwarzschild notation. This notation comes
from the general form of a spherically symmetric metric, and thus con-
tains the coe�cients e� and e� which are the functions of r and t. This
is the common method for writing any spherically symmetric metric.
But when we calculate the physically observable characteristics directly
on the basis of the metric, we obtain them in the �rm expressed through
e� and e� which are unknown. Therefore, we obtain the physically ob-
servable characteristics of the space in the incomplete form that needs
further calculation of the coe�cients e� and e� . This makes a huge
additional trouble when solving particular problems in the framework
of the space metric. Therefore, in this Chapter, we initially introduced
the internal space metric of a liquid sphere in the �nal form, where the
coe�cients e� and e� are already expressed through the main charac-
teristics of the sphere such as its physical radius and the Hilbert radius,
and through the radial coordinate r and time t. As a result, we have
obtained all the components of the fundamental metric tensor in ex-
plicit form, without unknown coe�cients. It was the subject of §3.1
and §3.2. Therefore, once we (or someone else) further solve problems
in the framework of the internal space metric of a regular liquid star,
we initially will have implicit formulae for all the physically observable
characteristics of its internal space.

Second. We considered the space metric of a non-rotating liquid
sphere. Nevertheless we know that the majority of stars rotate. Most
probably, even all stars rotate, but many of them rotate slowly sothat
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the Doppler splitting of the spectral lines that is due to the rotation
cannot be registered by modern methods of spectroscopy. In any case,
as a matter of fact if we target a liquid star possessing an electromag-
netic �eld, we should consider the internal space metric of a rotating
liquid sphere. This metric was introduced in§3.3, then we subsequently
introduced Einstein's �eld equations and Maxwell's equations in the
form satisfying the metric. We showed that the electric componentof
the �eld primarily originates due to the gravitational �eld of the star ,
while the magnetic �eld component is primarily due to the �eld rota-
tion. Also, we found that the vortical character of the electromagnetic
�eld does not play a signi�cant rôle in regular rotating stars.

Third. Concerning the most important achievement of this Chap-
ter: in §3.8 we showed that, in the case of the internal space metric of a
rotating liquid star, all the physically observable characteristics of the
electromagnetic �eld are expressed through only the geometric charac-
teristics of the star's space and the fundamental constants. This fact
means that, in the internal �eld of a rotating liquid star, the electro -
magnetic �eld is completely geometrized.



Chapter 4

Stellar Wind

§4.1 Finding the escape velocity condition for a star

A 
ow of the particles of the stellar substance is permanently erupted
from the surface of any star. A fraction of the 
ow consists of sorapid
particles that they leave the gravitational �eld of the star foreve r, for the
outer cosmos, thus producing a stellar wind.* In terms of our mathemat-
ical theory of liquid stars, this means that the particles of the surface
layer of the star are faster than the escape velocity for the star.

Why do the particles of the stellar substance leave the surface of a
star? Can this process be likened to the boiling of water in a kettle,
or is it entirely something else? Finding the answer to this question
constitutes our research task for this Chapter.

To answer this question we should study the motion of the particles
of the stellar substance inside a star. To do it, we shall �rst �nd the
formula for the escape velocity, expressed through the components of
the space metric of a liquid star. Then we shall deduce the equations
of motion of the particles of the stellar substance inside the star. Thus
we shall obtain the physical conditions under which the particles of the
surface layer are faster than the escape velocity for the star. Afterwards,
we will be able to solve the equations of motion of the particles of the
stellar substance.

The said escape velocity, known also as the second cosmic velocity
vII , is the velocity at which a test-particle can \leave", forever, the
gravitational �eld of the massive body.„

Let us assume that the particles of the stellar substance travel, radi-
ally, from within of the star onto its surface. Let the particles reach the
surface then leave the star, forever, for the outer cosmos, thus forming
stellar wind. We therefore refer to the formula for the velocity of the
particles of the stellar substance, which is expressed through theescape
velocity for the star, to as the escape velocity condition.

* Wolf-Rayet stars di�er from all the regular stars only by an e xtremely huge
stellar wind: the 
ow is so powerful that a Wolf-Rayet star lo ses a substantial part
of its mass with the stellar wind.

„ This is analogous to the �rst cosmic velocity, known also as t he orbital velocity,
which allows the test-particle to be orbiting the massive bo dy without falling down
onto its surface.
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Thus, for a spherically symmetric body whose mass isM , the escape
velocity at the distance r from its center is

vII =

r
2GM

r
: (4.1)

This formula comes from the mass-point metric (1.1),

ds2 =
�

1 �
rg

r

�
c2dt2 �

dr2

1 �
r g

r

� r 2 �
d� 2 + sin 2� d� 2�

; (4.2)

where rg = 2GM
c2 , while M is the mass of the body (the �eld's source).

As was shown in Chapter 2, the �eld of any liquid star has two pri-
mary regions. They are described by two di�erent metrics. The metric
of a liquid sphere is valid from the center of the star (r = 0) to its surface
(r = a). The mass-point metric is valid from the surface of the star to
the outer cosmos. In other words, the particles of the stellar substance
travel inside the star along those trajectories which are in accordance
with the metric of a liquid sphere. If the particles leave the star (in
the case that their velocity exceeds the escape velocity), they travel in
the cosmos along those trajectories which are in accordance with the
mass-point metric.

Therefore, the velocity of the particles of the stellar substance trav-
elling from the surface of the star for the outer cosmos results asthe
solution of the equations of motion of a mass-bearing particle accord-
ing to the mass-point metric. Being expressed in terms of the escape
velocity, it is the escape velocity condition for the star.

We derive this formula as a solution of the chr.inv.-equations of non-
isotropic geodesics [18,19]
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9
>>=

>>;
; (4.3)

which are the equations of observable motion of a mass-bearing particle
travelling at the observable velocity vi . The equations result as the
observable projections of the well-known generally covariant equations
of non-isotropic geodesics (see [18,19] for detail).

We solve the equations (4.3) for a particle of the stellar substance,
which travels only along the radial direction r . Therefore,

v1 =
dr
d�

6= 0 ; v2 = v 3 = 0 : (4.4)
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To solve these equations (4.3), we need to formulate the charac-
teristics of the space of the mass-point metric (4.2). As is seen from
the metric (4.2), the space is free of rotation and deformation (A ik = 0,
D ik = 0). Only the gravitational inertial force Fi and the Christo�el
symbols � i

nk remain non-zero. Calculating these quantities, and also
the components of the chr.inv.-metric tensorhik according to their def-
initions given in §1.3, we obtain, for the metric (4.2),
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With these, we obtain that the chr.inv.-equations of motion (4.3) in
the space of the mass-point metric have the form
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1

1 �
r g

r

�
dr
d�

� 2

+
c2rg

2r 2 = 0

9
>>>>=

>>>>;

; (4.9)

where

m =
m0s

1 �
_r 2

c2
�

1�
r g

r

�

; _r =
dr
d�

: (4.10)

Here, denoting the relativistic mass of the particle on the surface (r = a)
of the star asm(0) (this is the \start-mass" of the particle when leaving
the star), and denoting the observable velocity of the particle when it
leaves the star as _r0, we have

m = m(0)

q
1 �

r g

aq
1 �

r g

r

; m(0) =
m0vu

u
t 1 �

_r 2
0

c2

 

1�
r 3

g

a3

!

: (4.11)
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Proceed to solve the chr.inv.-equations of motion (4.9). Substituting
the scalar equation into the vectorial equation, we obtain the vectorial
equation of motion written with respect to the radial distance r

•r �
rg

r 2

_r 2

1 �
r g

r

+
c2rg

2r 2 = 0 : (4.12)

Denote _r = y, then

•r = yy0; y0 =
dy
dr

;

and the equation (4.12) takes the form

yy0 �
rg

r 2

y2

1 �
r g

r

+
c2rg

2r 2 = 0 : (4.13)

Assuming u(r ) = y2, we reduce it to the linear di�erential equation

u0 �
2rg

r 2

u

1 �
r g

r

+
c2rg

r 2 = 0 : (4.14)

This equation has the following exact solution:

u = e � F
�

u0 +
Z a

r
g(r ) eF dr

�
; u0 = y2

0 = _r 2
0 ; (4.15)

where

F (r ) =
Z a

r
f (r ) dr ; f (r ) = �

2rg

r 2

1

1 �
r g

r

; g(r ) =
c2rg

r 2 : (4.16)

Integrating the function f (r ), we obtain

F (r ) = ln

0

@
1 �

r g

a

1 �
r g

r

1

A

2

; eF =

0

@
1 �

r g

a

1 �
r g

r

1

A

2

; (4.17)

Z a

r

c2rg

�
1 �

r g

a

� 2

dr

r 2
�

1 �
r g

r

� 2
= c2

�
1 �

rg

a

�
0

@1 �
1 �

r g

a

1 �
r g

r

1

A : (4.18)

Substituting (4.16{4.18) into (4.15), and neglecting the high powers
of the term r g

a (this ratio is tiny for regular stars), we obtain

_r 2 = _r 2
0

�
1 +

2rg

a
�

2rg

r

�
+ c2

�
rg

a
�

rg

r

�
: (4.19)
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From here, we obtain the formula for the radial velocity of the particle
of the stellar substance, which leaves the star with stellar wind. Since
vII (4.1) on the surface of the star (r = a) takes the form

vII =

r
2GM

r
= c

r
rg

r
= c

r
rg

a
; (4.20)

we obtain

_r =
dr
d�

= c

s
_r 2
0 + v 2

II

c2 �
rg

r
+

2 _r 2
0

c2

�
v2

II

c2 �
c2rg

r

�
: (4.21)

This is the escape velocity condition we were looking for. If _r0 = 0, the
equation (4.21) manifests the obvious condition

dr
d�

=

r

v2
II �

c2rg

r
< vII : (4.22)

According to this condition, the particle of the stellar substance cannot
leave the gravitational �eld of the star, if its start-velocity on the surface
of the star is zero. Therefore, when further considering stellar wind, we
always assume _r0 6= 0 in all the equations of the theory.

Let us obtain the �nal simpli�cation of the escape velocity condi-
tion (4.21). Compare the estimated numerical values of all the terms
contained in the radicand. We denote the last term of the radicand as

q =
2 _r 2

0

c2

�
v2

II

c2 �
c2rg

r

�
: (4.23)

For the Sun, which is a typical regular star, we have: vII = 617 km/sec,
rg = 2 :9 km, _r0 = 750 km/sec*, and a = 7 :0 � 105 km. Sinceq= 0 by r = a,
assumer > a as for stellar wind. We obtain, after some algebra,

_r 2
0 + v 2

II

c2 ' 10� 5;
rg

r
< 4:1 � 10� 6; q < 5:3 � 10� 11: (4.24)

For a typical star of the Wolf-Rayet family (see Table 1.1), we have:
vII = 982 km/sec, rg = 150 km, _r0 = 2200 km/sec, and a = 1 :4 � 107 km.
Therefore, for a typical Wolf-Rayet star, we obtain

_r 2
0 + v 2

II

c2 ' 6:4 � 10� 5;
rg

r
< 1:1 � 10� 5; q < 1:2 � 10� 9: (4.25)

* _r 0 ' 750 km/sec is typical for the particles of the fast component of the solar
wind, whose composition is that of the photosphere. In contr ast, the slow component
of the solar wind has a composition close to that of the corona . Its particles travel
from the Sun at a velocity of about 400 km/sec.
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As is seen, the termq has so small a numerical value (four orders less
than the other terms in the formula) that can be neglected for stellar
wind, which comes from both a regular star and a Wolf-Rayet star.
Therefore, the �nal formula for the escape velocity condition hasthe
form

dr
d�

= c

r
_r 2
0

c2 +
v2

II

c2 �
rg

r
: (4.26)

As follows from the �nal formula, on the surface of the star (r = a)
the velocity of the particle of the stellar substance is _r0.

§4.2 Light-like (massless) particles inside a regular star

We now consider how particles of the stellar substance and particlesof
light behave inside the star. (Stars are �lled not only with substance
but also with light.)

First, consider light-like (massless) particles inside a regular star.
Such particles travel along isotropic geodesic lines. The chr.inv.-equa-
tions of isotropic geodesics have the form [18,19]

d!
d�

�
!
c2 Fi ci +

!
c2 D ik ci ck = 0

d
�
!c i

�

d�
+ 2 !

�
D i

k + A � i
k �

�
ck � !F i + ! � i

nk cn ck = 0

9
>>=

>>;
: (4.27)

These are the equations of observable motion of a light-like particle |
a photon whose frequency is! , | which travels with the observable
velocity of light ci . These chr.inv.-equations emerge as the observable
projections of the well-known generally covariant equations of isotropic
geodesics (see [18,19] for details).

As previously, we assume that regular stars do not rotate or deform
(A ik = 0, D ik = 0). Also, we consider only a photon which travels radi-
ally (along the direction x1 = r ) from the center of the star to its surface.
Therefore, the isotropic geodesic equations (4.27) inside a regularstar
take the particular form

d!
d�

�
!
c2 F1 c1 = 0

d
�
!c 1

�

d�
� !F 1 + ! � 1

11 c1c1 = 0

9
>>=

>>;
; (4.28)

where the observable (light) velocity of the photon isc1 = dr
d� .
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Consider the scalar geodesic equation of (4.28). SubstitutingF1

(3.6), obtained for the metric of a liquid sphere, we have

1
!

d!
d�

= �
rg

a3

r
�

3
q

1 �
r g

a
�

q
1 �

r g r 2

a3

� q
1 �

r g r 2

a3

dr
d�

: (4.29)

Re-write this equation in the following form, which can easily be inte-
grated:

d ln ! = �
d

�
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�
�3

q
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q
1 �

r g r 2
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�
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r g

a
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q
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r g r 2

a3

�
�
�
�

: (4.30)

We study only the photons inside the star. We therefore will look for
the solution for the interval rg 6 r 6 a. We obtain, after integration,

! =
B

3
q

1 �
r g

a
�

q
1 �

r g r 2

a3

; (4.31)

where B is the integration constant.
Assume that the photons originate from the Hilbert surface (r0 = rg).

Then

B = ! 0

 

3

r

1 �
rg

a
�

r

1 �
r 3

g

a3

!

; (4.32)

where ! 0 is the initial value of the photon's frequency (on the Hilbert
surface of the star). Sincerg � a for regular stars, we neglect the high-
power terms of r g

a . Finally, the solution of the scalar geodesic equation,
which manifests the photon's frequency (4.31), takes the form

! =
! 0

�
3

q
1 �

r g

a
� 1

�

3
q

1 �
r g

a
�

q
1 �

r g r 2

a3

: (4.33)

Now, consider the vectorial geodesic equation of (4.28). With our
assumption of the radial motion of the photon, it has the form

d2r
d� 2 +

1
!

d!
d�

dr
d�

+ � 1
11

�
dr
d�

� 2

� F 1 = 0 : (4.34)



104 Chapter 4 Stellar Wind

Denote •r = d2 r
d� 2 and _r = dr

d�
. Substitute 1

!
d!
d� (4.29), � 1

11 (3.8), and F 1

(3.7). Thus the vectorial geodesic equation (4.34) transforms into the
non-linear di�erential equation of the second order with respect to r

•r �
rgr
a3

_r 2
�

3
q

1 �
r g

a
�

q
1 �

r g r 2

a3

� q
1 �

r g r 2

a3

+

+
rgr
a3

_r 2

1 �
r g r 2

a3

+
c2rgr

a3

q
1 �

r g r 2

a3

3
q

1 �
r g

a
�

q
1 �

r g r 2

a3

= 0 : (4.35)

In this form the equation is simply non-solvable. Therefore, we simplify
it by the formula for _r 2 taken from the obvious relation hik ci ck = c2,
which in the present case has the form

_r 2

1 �
r g r 2

a3

= c2: (4.36)

As a result, the initial equation (4.35) takes the form

•r +
c2rgr

a3 = 0 : (4.37)

This is the equation of harmonic oscillation with the frequency


 =
c
a

r
rg

a
=

vII

a
=

r
2GM

a3 ; (4.38)

which is obviously dependent on the escape velocity calculated for the
star, vII (4.20).

In general, the frequency 
 (4.38) only depends on the massM
and radius a, which are the integral characteristics of the star. We
therefore refer to it as the proper frequency of the star. Table 3.1 gives
the numerical values of the proper frequency 
 for the typical members
of the known families of stars.

The proper frequency reaches its ultimate-high magnitude 
max = c
a

by rg = a. This is the case of gravitational collapsars (black holes), which
is also applicable to the Universe as a whole. According to observational
estimates, the Universe's radius isa = 1 :3 � 1028 cm, and it is the same
as its Hilbert radius rg: the Universe is a huge gravitational collapsar.
Therefore, the proper frequency of the Universe is


 max =
c
a

= 2 :3 � 10� 18 sec� 1 (4.39)
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Object Mass M , Radius Proper frequency
gram a, cm 
, sec � 1

Wolf-Rayet stars 1:0 � 1035 1:4 � 1012 7:0 � 10� 5

Red super-giant� 4:0 � 1034 7:0 � 1013 1:6 � 10� 7

White super-giant y 3:4 � 1034 4:8 � 1012 6:4 � 10� 6

Sun 2:0 � 1033 7:0 � 1010 8:8 � 10� 4

Jupiter (proto-star) 1:9 � 1030 7:1 � 109 8:4 � 10� 4

Red dwarfs 6:7 � 1032 2:3 � 1010 2:7 � 10� 3

Brown dwarf z 4:1 � 1031 7:0 � 109 7:4 � 10� 2

White dwarf x 2:0 � 1033 6:4 � 108 1:0

Universe 8:8 � 1055 1:3 � 1028 2:3 � 10� 18

� Betelgeuse. yRigel. zCorot-Exo-3. xSirius B.

Table 3.1: The proper frequency 
 for the typical members of t he known
families of stars, and for the Universe.

which matches the numerical value of the Hubble constant, which is
H = c

a = (2 :3 � 0:3) � 10� 18 sec� 1. In this case, the integral mass of the
Universe should be, according to (4.38),

M =

 2a3

2G
= 8 :8 � 1055 gram (4.40)

which coincides with the observed range of the average density of sub-
stance in the Universe, which is from 10� 28 to 10� 31 gram/cm3.

Let us return to the vectorial equation of motion of the light-like
particles inside liquid stars.

The vectorial geodesic equation in its �nal form (4.37) solves as

r = B1 cos
� r

rg

a
c�
a

�
+ B2 sin

� r
rg

a
c�
a

�
; (4.41)

where B1 and B2 are the integration constants. Assumingr and _r at
the initial moment of time � 0 = 0 to be r0 = rg and _r0 = c, we obtain

B1 = rg ; B2 = a
r

a
rg

: (4.42)

As a result, we obtain the �nal solution for r , which is

r = rg cos 
 � + a
r

a
rg

sin 
 � ; 
 =
c
a

r
rg

a
; (4.43)
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i.e. the harmonic oscillation equation r = A1 cos 
 � + A2 sin 
 � . Di�er-
entiating (4.43), we obtain the oscillation velocity of the photon

_r = c cos 
 � �
crg

a
sin 
 � ; 
 =

c
a

r
rg

a
; (4.44)

As is seen from the solution (4.43), the light-like matter of each
single star oscillates at the frequency 
 (4.38) depending on the mass
and radius of the star, and with two primary amplitudes:

a) The oscillation with the amplitude A1 = rg. In fact this means
that the surface of the Hilbert core of the star, wherein the stellar
energy is released, oscillates at the proper frequency of the star.
Thus the released light-like matter oscillates at the same frequency
and amplitude as its source (the Hilbert core);

b) The oscillation with the amplitude A2 =
p

a3=rg , which coincides
with the outer space breaking of the star's �eld (see Chapter 2 for
details). The space breaking is located outside the star, in the cos-
mos. For the Sun (a = 7 :0 � 1010 cm, rg = 2 :9 � 105 cm), we obtain
A2 = 3 :4 � 1013 cm = 2:3 AU which is the distance from the Sun
to the maximal concentration of asteroids (in the asteroid strip).
This means that the spherical surface the outer space breaking of
the �eld of each single star oscillates at the proper frequency of
the star, as well as the Hilbert core.

Hence, we arrive at the following fundamental conclusions:
1. The surfaces of both the inner space breaking and the outer space

breaking of the star's �eld oscillate at the same frequency 
, which
is the proper frequency of the star;

2. This frequency and the amplitudes thereof only depend on the
massM and radius a of the star;

3. In fact, this common oscillation of light-like matter comprising the
star is due to the gravitational �eld of the star (originating in the
star's massM ).

How does this oscillation a�ect the photon's frequency? To answer
this question, consider the obtained solution for the photon's frequency
! (4.33) in the framework of the two ultimate cases which correspond
to two oscillation amplitudes: r = A1 = rg and r = A2 =

p
a3=rg. Thus

the frequency takes the following numerical values:

r = A1 = rg : ! = ! 0

3
q

1 �
r g

a
� 1

3
q

1 �
r g

a
� 1

= ! 0 ; (4.45)
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r = A2 =
a2

rg
: ! = ! 0

3
q

1 �
r g

a
� 1

3
q

1 �
r g

a

: (4.46)

As is seen from these formulae, the primary oscillation of the gravita-
tional �eld of the star does not a�ect photons which are close to the
Hilbert core (at the center of the star). The oscillation a�ects only
photons at large distances from the Hilbert core.

§4.3 Particles of the stellar substance inside a regular star

Such particles travel along non-isotropic geodesics. The chr.inv.-equa-
tions of non-isotropic geodesics (see [18,19]) have the form (4.3):

dm
d�

�
m
c2 Fi vi +

m
c2 D ik vi vk = 0

d
�
mvi

�

d�
+ 2 m

�
D i

k + A � i
k �

�
vk � mF i + m� i

nk vn vk = 0

9
>>=

>>;
: (4.47)

We assume a regular star to be a liquid sphere, which is free of rota-
tion and deformation (A ik = 0, D ik = 0). For a particle of the stellar
substance, which travels inside the star radially from the center tothe
surface, the observable velocity is v1 = dr

d� while v2 = v 3 = 0. In this case,
the chr.inv.-equations of non-isotropic geodesics (4.47) take the form

dm
d�

�
m
c2 F1 v1 = 0

d
�
mv1

�

d�
� mF 1 + m� 1

11 v1v1 = 0

9
>>=

>>;
: (4.48)

They have the same structure as the chr.inv.-equations of isotropic
geodesics (4.28). They solve in the same way. But mass-bearing par-
ticles do not possess the light speed conditionhik ci ck = c2 (4.36) we
have used for the isotropic geodesic equations. Therefore, the chr.inv.-
equations of non-isotropic geodesics (4.48) will have another solution
than that which we have obtained for the chr.inv.-equations of isotropic
geodesics (4.28).

Substitute, into the scalar equation of (4.48),F1 (3.6) which we have
obtained for the metric of a liquid sphere. We thus obtain the scalar
geodesic equation in the form

1
m

dm
d�

= �
rg

a3

r
�

3
q

1 �
r g

a
�

q
1 �

r g r 2

a3

� q
1 �

r g r 2
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dr
d�

: (4.49)



108 Chapter 4 Stellar Wind

This equation can be re-written in the form

d ln m = �
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�
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; (4.50)

which is easy to integrate. With rg 6 r 6 a (we study only the particles
inside the star) we obtain, after integration,

m =
B

3
q

1 �
r g

a
�

q
1 �

r g r 2

a3

; (4.51)

where B is the integration constant.
Let the particles start from the Hilbert surface ( r0 = rg). Then

B = m(0)
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r 3

g
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; (4.52)

where
m(0) =

m0vu
u
t 1 �

_r 2
0

c2
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r 3

g

a3
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(4.53)

is the initial value of the relativistic mass of the particle on the Hilbert
surface of the star. Sincerg � a for regular stars, we neglect the high-
power terms of r g

a . With all these taken into account, the solution of
the scalar geodesic equation, which is (4.51), takes the form

m =
m(0)
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; (4.54)
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where
m(0) =

m0q
1 �

_r 2
0

c2

(4.55)

in the framework of our approximation mentioned above.
Now, consider the vectorial geodesic equation of (4.48). With our

assumption that the particle of the stellar substance travels radially,
from the center of the star to its surface, the equation has the form

d2r
d� 2 +

1
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+ � 1
11

�
dr
d�

� 2

� F 1 = 0 : (4.56)

With 1
!

d!
d� (4.29), � 1

11 (3.8), and F 1 (3.7) substituted, and with the

notations •r = d2 r
d� 2 and _r = dr

d�
, this equation transforms into the non-

linear di�erential equation of the second order with respect to r
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= 0 : (4.57)

It is identical to the equation (4.35) we have obtained for the photon,
and is non-solvable as well. To simplify the equation, we express _r 2

from the obvious relation h11 _r _r = _r 2, which takes the form
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rgr 2
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0
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�
= _r 2; (4.58)

where
m =
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It follows, from (4.54), that
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Therefore, from (4.58), we obtain

_r 2 = c2
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rgr 2
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: (4.61)

Substituting this formula for _r 2 into the initial di�erential equation
(4.57), and neglecting the high-power terms ofr g

a , we obtain the vecto-
rial geodesic equation (4.57) in the solvable form

•r +

�
c2 + _r 2

0

�
rg r

2a3 = 0 : (4.62)

This is the equation of harmonic oscillation with the frequency


 =

s �
c2 + _r 2

0

�
rg

2a3 : (4.63)

It concerns the particles of the stellar substance. As is easy to see, this
formula transforms into the formula for the photon's frequency 
 (4.38)
by the ultimate condition _r = c.

The vectorial geodesic equation (4.62) solves as

r = Q1 cos 
 � + Q2 sin 
 � ; (4.64)

where the integration constant Q1 and Q2 results from the conditions
r0 = rg and _r0 at the initial moment of time � 0 = 0. We obtain

Q1 = rg ; Q2 =
_r0 a

p
2a

p
(c2 + _r 2

0) rg
: (4.65)

Therefore, the �nal solution for r has the form

r = rg cos 
 � +
_r0 a

p
2a

p
(c2 + _r 2

0) rg
sin 
 � ; (4.66)

which is the harmonic oscillation equation r = A1 cos 
 � + A2 sin 
 � .
Di�erentiating (4.66), we obtain the velocity of the particle

_r = �

s �
c2 + _r 2

0

�
r 3

g

2a3 sin 
 � + _r0 cos 
 � : (4.67)

The obtained solution (4.66) manifests that the liquid substance of
each single star oscillates at the frequency 
 (4.63) depending on the
mass and radius of the star, and with two primary amplitudes:
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a) The amplitude A1 = rg , which is the same as that for photons (see
above). The Hilbert core of the star, consisting of liquid substance,
oscillates at the proper frequency of the star;

b) The amplitude

A2 =
_r0 a

p
2a

p
(c2 + _r 2

0) rg
: (4.68)

It depends on the initial velocity of the particles of the stellar
substance, _r0. If _r0 = c, A2 =

p
a3=rg,which coincides with the

amplitude of stellar photons (see above). According to (4.68),
the initial velocity for the particles whose oscillation amplitude
reaches the surface of the star (A2 = a) is

_r0 =
c
p

rg
p

2a � rg
=

vIIq
2 �

r g

a

'
vIIp

2
; vII =

r
2GM

a
; (4.69)

where vII (4.20) is the escape velocity for the star (with which the
particle leaves the gravitational �eld of the star forever). Thus,
by the condition A2 > a in (4.68), we obtain the velocity which
is necessary for a particle of the stellar substance in order to be
erupted from the surface of the star

_r0 >

r
GM

a
: (4.70)

Let us transform the obtained formula for the proper frequency 

(4.63) in order to express it through the orbital velocity v I for the star*


 =
c
a

r
rg

2a

r

1 +
_r 2
0

c2 =
vII

a
p

2

r

1 +
_r 2
0

c2 =
vI

a

r

1 +
_r 2
0

c2 : (4.71)

Using this formula, we expressr (4.66) in the form

r = rg cos 
 � +
_r0 a

vI

q
1 +

_r 2
0

c2

sin 
 � ; (4.72)

which is r = A1 cos 
 � + A2 sin 
 � . So we have

A1 = rg ; A2 =
_r0 a

vI

q
1 +

_r 2
0

c2

: (4.73)

* The orbital velocity v I , known also as the �rst cosmic velocity, allows the test-
particle to be orbiting the massive body without falling dow n onto its surface.
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Thus, _r (4.67) transforms to

_r = �
rg vI

a

r

1 +
_r 2
0

c2 sin 
 � + _r0 cos 
 � : (4.74)

Consider now the amplitude A2 (4.73) for some particular cases,
where it has di�erent numerical values:

1) If _r0 = 0, we have A2 = 0 according to the de�nition of A2 (4.73).
Hence the particles of the stellar substance oscillate at the ampli-
tude rg. In other words, if _r0 = 0, the particles cannot leave the
surface of the star;

2) If _r0 = v I , the particles also cannot leave the star. This is because
they oscillate at an amplitude less than the physical radius of the
star

A2 =
a

q
1 +

v 2
I

c2

< a ; (4.75)

3) If _r0 =v II , then the particles leave the star. This is because in the
case of _r0 =v II we have

A2 =
a

p
2

q
1 +

v 2
II

c2

'
�

1 �
v2

II

2c2

�
a

p
2 ' a

p
2 > a ; (4.76)

4) If A2 = a: the amplitude equals the physical radius of the star.
Then we obtain, from the de�nition of A2 (4.73), that

_r0 =
vIq

1 +
v 2

I

c2

'
�

1 �
v2

I

2c2

�
vI < vI : (4.77)

The particles are a little slower than the orbital velocity for the
star. This means that, if the amplitude equals the physical radius
of the star (A2 = a), the particles may jump up from the surface
of the star and yet they do not leave the star for the orbit (they
always fall back down on the star).

Thus, the new mathematical theory of liquid stars provides a solid
theoretical ground to stellar wind as that consisting of two components.
One is a little slower than the orbital velocity for the star, while the
other travels faster than the escape velocity. This conclusion matches
observational data. For example, the solar wind consists of two compo-
nents. The slow solar wind travels at a velocity of about 400 km/sec that
is slower than the orbital velocity for the Sun, which is vI = 440 km/sec.
The fast solar wind travels with a velocity of about 750 km/sec, which
exceeds the escape velocity, vII = 617 km/sec.
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§4.4 Conclusion

Let us summarize the main conclusions which we have obtained on the
origin of stellar wind. The conclusions are as follows:

1. Given any star, the light-like matter that �lls it oscillates at the
frequency


 =
c
a

r
rg

a
=

vII

a
=

r
2GM

a3 :

Each single star has its own frequency 
 according to its massM
and radius a. Therefore, it is the proper frequencyof the star;

2. The oscillation occurs with two primary amplitudes. The am-
plitude A1 = rg coincides with the surface of the Hilbert core of
the star, wherein the stellar energy is released. The amplitude
A2 =

p
a3=rg coincides with the surface of the outer space break-

ing of the star's �eld, which is located in the cosmos. For the Sun,
A2 = 3 :4 � 1013 cm = 2:3 AU coincides with the maximal concentra-
tion of asteroids (in the asteroid strip). This common oscillation
of the light-like matter of the star is due to the gravitational �eld
of the star (its source is the star's massM ). In other words, it is
the own \breathing" of the star;

3. Particles of the stellar substance oscillate at the frequency


 =

s �
c2 + _r 2

0

�
rg

2a3 =
vII

a
p

2

r

1 +
_r 2
0

c2 =
vI

a

r

1 +
_r 2
0

c2

and with two primary amplitudes. The frequency depends on the
initial velocity of the particles, _r0, and can be expressed through
the escape velocity vII and the orbital velocity v I for the star;

4. The amplitude A1 = rg is the same as that for photons. This
means that the physical surface of the Hilbert core oscillates at
the frequency 
 that above. The other amplitude A2 depends on
the initial velocity of the particles

A2 =
_r0 a

p
2a

p
(c2 + _r 2

0) rg
=

_r0 a

vI

q
1 +

_r 2
0

c2

;

5. Stars emit light (photons) and erupt the particles of the stellar
substance (stellar wind) not by the order of special physical condi-
tions, but automatically. The equations of motion of the particles
(both the photons and the substance), which travel radially inside
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a liquid star, are the harmonic free-oscillation equation

•r + 
 2r = 0 ; 
 2 = �
2F1

r
=

c2rg

a3 ;

where F1 = � c2 r g r
2a3 is the linearized form (in the sense ofrg � a)

of the force of gravity acting inside any liquid star. This is a non-
Newtonian gravitation (the force is proportional to the distance),
which is the cause of the oscillation of both the stellar light-like
matter and the stellar substance. Once the oscillation amplitude
exceeds the physical radius of the star, the particles come out the
star for the cosmos. Therefore, the cause of the emission of stars
is the internal structure of these self-gravitating bodies, which are
the liquid spheres in the weightless state in the cosmos;

6. According to the theory, stellar wind should consist of two com-
ponents: slow stellar wind and fast stellar wind. Particles whose
oscillation amplitude reaches the star's surface (A2 = a) have the
initial velocity

_r0 =
vIq

1 +
v 2

I

c2

'
�

1 �
v2

I

2c2

�
vI < vI :

which does not exceed the orbital velocity vI for the star. Particles
which are as fast as the escape velocity for the star ( _r0 =v II ) have
the oscillation amplitude

A2 =
a

p
2

q
1 +

v 2
II

c2

'
�

1 �
v2

II

2c2

�
a

p
2 ' a

p
2 > a :

This means that slow stellar wind is composed of particles whose
oscillation amplitude is in the range of a 6 A2 < a

p
2. These par-

ticles leave the surface of the star, but not forever. They always
fall back down on the star. Fast stellar wind is composed of par-
ticles whose oscillation amplitude isA2 > a

p
2. Particles of fast

stellar wind leave the gravitational �eld of the star, forever, for t he
outer cosmos. Naturally, solar wind consists of slow solar wind,
which travels at � 400 km/sec (slower than vI � = 440 km/sec),
and of fast solar wind travelling at � 750 km/sec (faster than
vII � = 617 km/sec).



Chapter 5

Neutron Stars and Pulsars

§5.1 Introducing the space metric of a rotating neutron star

This Chapter is most short, and most complicate in the math among
the other Chapters of this book. We will apply our model of liquid stars
to neutron stars and pulsars. The high level of complexity is due to the
fact that, once we introduce, in the space metric, the rotation around
even a single coordinate axis, the further calculations become highly
problematic. Anyhow, let us begin.

Neutron stars and pulsars are attributed to Type II of our classi� ca-
tion of stars according to the General Theory of Relativity (see Table 1.1
in §1.2). This means that the physical radiusa of such a star is a little
larger than its Hilbert radius rg: the star is almost a collapsar, but still
has a possibility to shine as a regular star. In§1.2 we showed that the
space metric of a liquid sphere transforms into de Sitter's metric of a
vacuum sphere under the condition of gravitational collapse (a = rg , i.e.
the liquid sphere is a collapsar). The metric has the form (1.16)

ds2 =
1
4

�
1 �

r 2

a2

�
c2dt2 �

dr2

1 � r 2

a2

� r 2 �
d� 2 + sin 2� d� 2�

: (5.1)

The physical parameters of neutron stars and pulsars are close to the
parameters of collapsars, but are not the same (see Table 1.1). Therefore
the metric (5.1), which includes the collapse condition, is close to the
true metric of a neutron star or a pulsar, but is not.

How to modify the space metric of a collapsar, (5.1), in order to
obtain the metric of a neutron star or a pulsar? To leave the collapse
condition, but be near it in the same time. Easy.

Remind, the particular condition of gravitational collapse (g00 = 0)
comes from the general condition of gravitational collapse according to
which the physical observable time� (1.30) stops on the surface of the
object

d� =
p

g00 dt +
g0i

c
p

g00
dxi = 0 : (5.2)

If the local space of the object does not rotate (allg0i = 0), the afore-
mentioned particular condition of collapse (g00 = 0) occurs.
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Once the object rotates (at least one of all three quantitiesg0i is non-
zero), the condition g00 = 0 can remain true on the surface of the object
but does not mean gravitational collapse. This is due to the second
term of the complete condition of collapse (5.2) which is non-zero in this
case. Therefore, once the rotation is introduced into the metric (5.1),
the metric describes the sphere which is out the state of gravitational
collapse. The faster the sphere rotates, the more its state di�ers from
the state of a collapsed sphere.

If we will �nd, in addition to the modi�ed metric which contains the
rotation, Einstein's �eld equations in the form containing the strong
magnetic �eld and also, in the same time, satisfying this metric, we will
have the complete description of a neutron star or a pulsar. This is our
research plan for this Chapter.

First, we add the space rotation to the metric (5.1), according to the
theory of chronometric invariant: see formulae (1.45) of§1.3. Assume
that the object | the liquid sphere of the radius a | rotates, with an
angular speed! , along its equatorial axis (the axis � in the spherical
coordinates r , � , � ). In this case, the initially metric of the collapsed
liquid sphere (5.1) takes the following form

ds2 =
1
4

�
1 �

r 2

a2

�
c2dt2 +

2!r 2 cos�
c

cdt d� �

�
dr2

1 � r 2

a2

� r 2 �
d� 2 + sin 2� d� 2�

; (5.3)

which means that the sphere is not a collapsar (due to the rotation,see
the explanation above).

The linear velocity of such a rotation is determined by g0i of the
space metric according to the general formula (1.45). In the present
case of the metric (5.3), it has the form

v1 = v2 = 0 ; v3 = �
2!ar 2 cos�
p

a2 � r 2
: (5.4)

The ultimate magnitude of the rotation speed of the neutron stars,
registered in the astronomical observations, is about 1; 000 km/sec. We
therefore neglect the terms v2

c2 , where v2 = hik vi vk � c2. The condition
v2 � c2 also means that the rotating body remains to be a sphere.

The three-dimensional observable chr.inv.-metric tensorhik (1.34)
of the space, whose metric is (5.3), has the components

h11 =
1

h11 =
a2

a2 � r 2 ; h22 =
1

h22 = r 2; h33 =
1

h33 = r 2 sin2� ; (5.5)
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while the determinant of the chr.inv.-metric tensor hik , and its non-zero
logarithmic derivatives along the spatial coordinates are

h = det khik k =
a2r 4 sin2�

a2 � r 2 ; (5.6)

� @ln
p

h
@r

=
2a2 � r 2

r (a2 � r 2)
; (5.7)

� @ln
p

h
@�

= cot � : (5.8)

Also, due to the assumed conditionv2 � c2 (the non-relativistic ro-
tation of the object), the chr.inv.-di�erential operator along the spatial
coordinates (1.41) coincides with the regular di�erential operator.

With g00 and g0i of the metric (5.3), we now deduce the formulae
for the chr.inv.-vector of the gravitational inertial force Fi acting in the
space, and for the chr.inv.-tensor of the angular rotation of the space,
A ik . According to the de�nitions of these quantities which come from
the chronometrically invariant formalism (see §1.3), we obtain

F1 =
c2r

a2 � r 2 ; F 1 =
c2r
a2 ; (5.9)

A13 = �
2!a 3 r cos�
(a2 � r 2)3=2

; A13 = �
2!a cos�

r
p

a2 � r 2 sin2�

A23 =
!ar 2 sin �
p

a2 � r 2
; A23 =

!a

r 2
p

a2 � r 2 sin �

9
>>>=

>>>;

: (5.10)

Two other chronometrically invariant (physical observable) quanti-
ties will be needed for our further calculations of Einstein's �eld equa-
tions. These are the chr.inv.-Christo�el symbols of the second kind� i

kn
and the chr.inv.-curvature tensor Ciklj . After some algebra according to
the general formulae of these quantities (see§1.3 for detail), we obtain
that, in the space of the metric (5.3), the chr.inv.-Christo�el symb ols
� i

kn have the following non-zero components

� 1
11 =

r
a2 � r 2 ; � 1

22 = �
r (a2 � r 2)

a2 ; (5.11)

� 1
33 = �

r (a2 � r 2)
a2 sin2� ; � 2

12 = � 3
13 =

1
r

; (5.12)

� 2
33 = � sin � cos� ; � 3

23 = cot � ; (5.13)
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while the non-zero components of the chr.inv.-curvature tensorCiklj are

C1212 = �
r 2

a2 � r 2 ; (5.14)

C1313 = �
r 2

a2 � r 2 sin2� ; (5.15)

C2323 = �
r 4

a2 sin2� : (5.16)

Respectively, the contraction Cik = hmn Cimkn (the chr.inv.-analogy of
Ricci's tensor) has the following non-zero components

C11 = �
2

a2 � r 2 ; C22 = �
2r 2

a2 ; C33 = �
2r 2

a2 sin2� : (5.17)

With these characteristics of the space of the metric (5.3), we are
able to deduce Einstein's �eld equations in the form satisfying the metric
(that is the next step of our research of neutron stars and pulsars).

§5.2 Einstein's �eld equations and the conservation law equa -
tions satisfying the metric

Consider the chr.inv.-Einstein equations in the general form (1.85-1.87).
In a stationary space (that means that the space is free of deformations),
such as the space of the metric (5.3) that we suggest to neutron stars
and pulsars, the chr.inv.-Einstein equations take the simpli�ed form

A jl A lj +
�

� r j �
1
c2 Fj

�
F j = �

{
2

�
�c 2 + U

�
+ �c 2; (5.18)

2
c2 Fj A ij � � r j A ij = { J i ; (5.19)

2A ij A � j
k � +

1
2

� � r i Fk + � r k Fi
�

�
1
c2 Fi Fk � c2Cik =

=
{
2

�
�c 2hik + 2 Uik � Uhik

�
+ �c 2hik : (5.20)

Herein, � , J i , and U ik are the chr.inv.-projections (1.84) of the energy-
momentum tensor of the continuous matter that �lls the space. These
are the observable density of mass, the observable density of momentum,
and the observable stress-tensor, respectively. WhileU = hik Uik is the
trace of the observable stress-tensor. Note that the energy-momentum
tensor has now an arbitrary form. So, the sort of the distributed matter
is not speci�ed for yet.
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Substitute, into the equations, the chr.inv.-characteristics of the met-
ric (5.3). While doing so we should take into account the fact that the
initially (non-rotating) metric (5.1) was deduced under the condition s
a2 = 3

� > 0 and � > 0 (see§1.2 for detail). As a result, we transform the
chr.inv.-Einstein equations (5.18{5.20) to the form

8! 2a4 cot2�
(a2 � r 2)2 +

2! 2a2

a2 � r 2 =
{
2

(�c 2 + U) ; (5.21)

2!a cot �

r 2
p

a2 � r 2 sin�
= � { J 3; (5.22)

8! 2a4 cot2�
(a2 � r 2)2 �

{
2

(�c 2 � U) =
{ U11 (a2 � r 2)

a2 ; (5.23)

4! 2a4 r cot �
(a2 � r 2)2 = � { U12 ; (5.24)

2! 2a2

a2 � r 2 �
{
2

(�c 2 � U) =
{ U22

r 2 ; (5.25)

2! 2a2

a2 � r 2 +
8! 2a4 cot2�
(a2 � r 2)2 �

{
2

(�c 2 � U) =
{ U33

r 2 sin2�
: (5.26)

By the calculation of U = hik Uik = h11U11 + h22U22 + h33U33 from
the three respective tensorial equations of these, we obtain therelation
which connects the quantities� and U

16! 2a4 cot2�
(a2 � r 2)2 +

4! 2a2

a2 � r 2 =
{
2

(3�c 2 � U) : (5.27)

Summarizing (5.21) and (5.27), we obtain the formula for the density
of the distributed matter that �lls the space

12! 2a4 cot2�
(a2 � r 2)2 +

3! 2a2

a2 � r 2 = { �c 2: (5.28)

Multiplying (5.21) by 3, then subtracting (5.27) from the obtained
product, we obtain the formula for U

4! 2a4 cot2�
(a2 � r 2)2 +

! 2a2

a2 � r 2 = { U : (5.29)

Comparing the obtained formulae (5.28) and (5.29), we see that�
and U of the distributed matter which �lls the space of the metric (5.3)
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are connected to each other by the relation

U =
1
3

�c 2: (5.30)

Finally, we transform the four tensorial equations of the obtained
chr.inv.-Einstein equations (5.21{5.26) so that they express the non-
zero contravariant components of the stress-tensor:U11= h1m h1n Umn ,
U12= h1m h2n Umn , U22= h2m h2n Umn , U33 = h3m h3n Umn . Taking the
obtained relation U = 1

3 �c 2 (5.30) and also the obtained formula for�
(5.28) into account, we obtain

{ U11 =
8! 2a2 cot2�

a2 � r 2 �
{ �c 2 (a2 � r 2)

3a2 ; (5.31)

{ U12 = �
4! 2a2 cot �
r (a2 � r 2)

; (5.32)

{ U22 =
1
r 2

�
2! 2a2

a2 � r 2 �
{ �c 2

3

�
; (5.33)

{ U33 =
1

r 2 sin2�

�
2! 2a2

a2 � r 2 +
8! 2a4

(a2 � r 2)2 �
{ �c 2

3

�
: (5.34)

Now, we have to check whether the obtained chr.inv.-Einstein equa-
tions (i.e. the given particular type of the distributed matter) satis fying
the metric (5.3) or not.

How to do it? The terms consisting Einstein's �eld equations are of
two sorts. These are the characteristics of the particular spaceand the
characteristics of the matter which �lls the space (the latter are the com-
ponents of the energy-momentum tensor of the matter). Suppose that
we have received, in another way, the formulae for the components of
the energy-momentum tensor of the given matter as expressed through
the characteristics of the given space. Then, substituting one into the
other, we will see: if the equations become identities, they satisfy the
particular space; however if not, then not.

To �nd how � , J i , and U ik of the obtained chr.inv.-Einstein equa-
tions are expressed through the geometric characteristics of the space,
we consider the conservation law equations (1.89{1.90). The equations
are the extended chr.inv.-notation of the conservation lawr � T �� = 0
for the energy-momentum tensor of the distributed matter.

In the space, which is free of deformations, such as the space of the
metric (5.3) we suggested to neutron stars and pulsars, the conservation
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law equations (1.89{1.90) take the simpli�ed form

� @�
@t

+ � er i J i �
1
c2 Fi J i = 0 ; (5.35)

� @Jk

@t
+ 2 A �k

i � J i + � er i U ik � �F k = 0 ; (5.36)

where � er i = � r i � 1
c2 Fi (see Notations). According to the obtained

chr.inv.-Einstein equations, we have onlyJ 3 6= 0 of all the three compo-
nents J i of the observable density of momentum in the rotating liquid
sphere. Also, as was shown in§4.2, only F1 6= 0 therein. Therefore,
concerning the scalar conservation law equation (5.35), we have

� er i J i �
1
c2 Fi J i = � er 3 J 3 �

1
c2 F3 J 3 =

=
� � @J3

@�
+ J 3� j

j 3 �
1
c2 F3 J 3

�
�

1
c2 F3 J 3 = 0 : (5.37)

As a result, the scalar conservation law equation (5.35) transforms into
the condition

� @�
@t

= 0 ; (5.38)

which means that the observable density of the matter (the liquid sub-
stance and the �elds) that �lls the sphere is stationary.

Of the three vectorial conservation law equations (5.36), the equation
with the index k = 3 vanishes. The rest two vectorial equations (with
k = 1 ; 2) take the form, respectively

2A31(a2 � r 2)
a2 J 3 +

@U11

@r
+

@U12

@�
+

 
@ln

p
h

@�

!

U12 +

+ � 1
22U22 + � 1

33U33 +

 

� 1
11 +

@ln
p

h
@r

�
1
c2 F1

!

U11 = �F 1; (5.39)

2A32

r 2 J 3 +
@U12

@r
+

@U22

@�
+

 
@ln

p
h

@�

!

U22 +

+ � 2
33U33 +

 

2� 2
12 +

@ln
p

h
@r

�
1
c2 F1

!

U12 = 0 : (5.40)

Consider these two conservation law equations (5.39, 5.40) which
remain non-vanished for yet. Substitute, into the equations, thecharac-
teristics of the space of the rotating liquid sphere and the characteristics
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of the matter which �lls it. The formulae for U ik (5.31{5.34) and the
formula for J 3 (5.22) which come from the chr.inv.-Einstein equations.
The formulae for the logarithmic derivatives (5.7, 5.8). The obtained
formula for � (5.28). The formulae for the acting gravitational inertial
force F1 (5.9) and for the non-zero componentsA13, A23 of the tensor
of the angular rotation of the space (5.10). When all the formulae have
been substituted into the remaining conservation law equations (5.39,
5.40), after some algebra we see that the equations vanish as well.

So, the common solution of Einstein's �eld equations and the con-
servation law equations in the space of the rotating liquid sphere showed
that the suggested equations are valid in the space. In other words, the
space metric (5.3) we have suggested to neutron stars or pulsarssatis�es
Einstein's �eld equations (and vice versa).

§5.3 Introducing the electromagnetic �eld

As is known, every neutron star or pulsar bears the strong magnetic
�eld. Therefore, we go to the next stage in this research. We needto
introduce such an energy-momentum tensor that describes the electro-
magnetic �eld and satis�es the relation U = 1

3 �c 2 (5.30) which follows
from the obtained chr.inv.-Einstein equations. The energy-momentum
tensor which satis�es the relation U = 1

3 �c 2, satis�es the space metric
we suggested to neutron stars and pulsars. Once the energy-momentum
tensor will be obtained, the equations of the electromagnetic �eld will
be able to be deduced. Then we conclude how the electromagnetic �eld
is distributed inside a neutron star or a pulsar, according to our theory.
This is our plan for now.

The energy-momentum tensor of an arbitrary electromagnetic �eld
has the following general form

T ��
em =

1
4�c 2

�
� F � �

� � F �� +
1
4

g�� F�� F ��
�

; (5.41)

where F�� is the electromagnetic �eld tensor (the Maxwell tensor). It
is the curl of the four-dimensional electromagnetic potentialA �

F�� = r � A � � r � A � =
@A�
@x�

�
@A�
@x�

: (5.42)

The physical observable chr.inv.-projections of the vectorA � are the
scalar potential ' and the vector potential qi of the electromagnetic
�eld

' =
A0

p
g00

; qi = A i : (5.43)
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The theory of the electromagnetic �eld expressed in terms of the
chronometrically invariant formalism is well developed in our book [18].
(See Chapter 3 therein.) So forth we follow with the theory, and refer
everyone who is curious in the details to the book.

The physical observable components of the electromagnetic �eld ten-
sor F�� (5.42) have the form

� em =
T00

g00
=

E i E i + H � i H � i

8�c 2 ; (5.44)

J i
em =

c T i
0p

g00
=

1
4�c

" ikm Ek H � m ; (5.45)

U ik
em = c2T ik = � em c2hik �

1
4�

(E i E k + H � i H � k ) : (5.46)

Herein, E i and H � i are, respectively, the three-dimensional chr.inv.-
vector and chr.inv.-pseudo-vector of the electric and magnetic strengthes
of the �eld, while " imn is the unit completely antisymmetric three-
dimensional chr.inv.-pseudo-tensor. They are expressed as [18]

E � ik = � " ikn En ; En =
� @'
@xn

+
1
c

� @qn
@t

�
'
c2 Fn

H � i =
1
2

" imn Hmn ; Hmn =
� @qm
@xn

�
� @qn
@xm

�
2'
c

Amn

9
>>=

>>;
: (5.47)

We see that the observable electric and magnetic strengthes depend
on not only the electromagnetic �eld itself (the scalar and vectorial
potentials, ' and qi ), but also on the acting gravitational inertial force
Fi and the angular velocity of the space rotation,A ik .

Pulsars are the massive objects which possess the strong electro-
magnetic �eld and the rapid rotation. Therefore, the factors of Fi and
A ik are signi�cant in our study. We will, however, neglect the temporal
variations and spatial non-uniformities of the electromagnetic poten-
tials by assuming ' = const and qi = const. With these assumptions,
the observable electric and magnetic strengthes take the form

E i = �
'
c2 Fi ; H � i = �

2'
c


 � i ; (5.48)

where 
 � i is the three-dimensional chr.inv.-pseudo-vector of the angular
velocity that the star rotates


 � i =
1
2

" imn Amn ; 
 � i =
1
2

" imn Amn : (5.49)
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The components of the chr.inv.-tensor of the angular speed of thespace
rotation, A ik , are determined by the metric of the space of the rotating
star. They, calculated for the metric of a neutron star or a pulsar, are
presented in formula (5.10).

Note. The formulae for the electric strength and the magnetic
strength (5.48) which we �nally suggest to neutron stars and pulsars,
manifest that the electromagnetic �eld of such a star is due to its grav-
itation and rotation. Namely, | the electric strength E i of the �eld
is manifested only due to the gravitational �eld of the star (even if t he
electromagnetic �eld potential ' is presented in the star). The magnetic
strength H � i is manifested only if the star rotates.

Using these formulae forE i and H � i (5.48), and all the aforemen-
tioned assumptions we suggested to neutron stars and pulsars, we trans-
form the physical observable components of the electromagnetic�eld
tensor F�� (5.44{5.45) to the form

� em =
' 2

2�c 4

�
Fj F j

4c2 + 
 � j 
 � j
�

; (5.50)

J i
em =

' 2

2�c 4 " ikm Fk 
 � m ; (5.51)

U ik
em =

' 2

2�c 2

�
Fj F j

4c2 + 
 � j 
 � j
�

hik �
' 2

�c 2

�
F i F k

4c2 + 
 � i 
 � k
�

; (5.52)

which corresponds to the vortex-free electromagnetic �eld of a neutron
star or a pulsar. From here, we obtain the formula forUem = hik U ik

em

Uem =
' 2

2�c 2

�
Fj F j

4c2 + 
 � j 
 � j
�

= � em c2: (5.53)

As is seen from this formula, (5.53), in the framework of the assumed
conditions of the particular electromagnetic �eld, we have U = �c 2.
However, as we obtained earlier for the space metric of a liquid neu-
tron star or a liquid pulsar, there should be U = 1

3 �c 2 (5.30). In other
words, according to the metric, we should have

Uem =
1
3

� em c2; (5.54)

where

Uem =

 � j 
 � j

{
; � em =

3
 � j 
 � j

{ c2 : (5.55)

Therefore, our task now is to �nd such a physical condition under which
the electromagnetic �eld satis�es (5.55), and hence (5.54).
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Let us �nd the condition. With the use of the obtained relationship
Uem = � em c2 (5.53), we re-write the (desirable) formulaUem = 1

{ 
 � j 
 � j

(5.55) in the form

' 2

2�c 2

�
Fj F j

4c2 + 
 � j 
 � j
�

=

 � j 
 � j

{
; (5.56)

or, because{ = 8�G
c2 , in the equivalent notation

c2 
 � j 
 � j =
G' 2

c4

1 � 4G' 2

c4

Fj F j : (5.57)

Note that the quantity G' 2

c4 is dimensionless. The scalar electromagnetic
potential is constant, ' = const, according to our initially assumptions.
Therefore, and because the magnetic strength isH � i = � 2'

c 
 � i (5.48),
the stationary rotating star is a permanent magnet.

Denote
G' 2

c4 = n; (5.58)

where n < 1
4 , while c and G are the fundamental constants. Therefore,

' =
c2

2
p

G
< 1:74� 1024

h
gram 1= 2 cm1= 2

sec

i
: (5.59)

Having the scalar electromagnetic potential ' within this scale of the
magnitudes, the electromagnetic �eld satis�es the space metric ofa
neutron star or a pulsar.

As a result, we re-write the obtained formula (5.57) in the form

c2 
 � j 
 � j =
n

1 � 4n
Fi F i ; n <

1
4

: (5.60)

With this particular condition, which connects the acting force of gravi-
tation and the angular velocity of rotation of the space, the electromag-
netic �eld satis�es the space metric and Einstein's �eld equations which
we suggested to neutron stars or pulsars.

§5.4 The distribution of the magnetic strength

To �nd how the magnetic strength is distributed along the surface of a
neutron star or a pulsar, we consider Maxwell's equations. The general
formulation of the two groups of Maxwell's equations is

r � F �� =
4�
c

j � ; r � F � �� = 0 ; (5.61)
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where F � �� = " ���� F�� is the pseudo-tensor which is dual to the elec-
tromagnetic �eld tensor F�� , while j � is the four-dimensional current
vector.

This formulation of Maxwell's equations means an arbitrary elec-
tromagnetic �eld. Transform it with taking into account our assump -
tions which are particular to neutron stars and pulsars. As previously,
we neglect the temporal variations and spatial non-uniformities ofthe
electromagnetic potentials by assuming' = const and qi = const. With
these assumptions, the current vector is zero (j � = 0) thus Maxwell's
equations (5.61) take the particular form

r � F �� = 0 ; r � F � �� = 0 : (5.62)

Write down the particular Maxwell equations (5.62) according to the
chronometrically invariant formalism. The chr.inv.-Maxwell equations
have the form (see Chapter 3 of the book [18] for detail)

� r j E j �
1
c

H ik A ik = 0

� r k H ik �
1
c2 Fk H ik �

1
c

� � @Ei

@t
+ DE i

�
= 0

9
>>=

>>;
I; (5.63)

� r i H � i �
1
c

E � ik A ik = 0

� r k E � ik �
1
c2 Fk E � ik �

1
c

� � @H� i

@t
+ DH � i

�
= 0

9
>>=

>>;
II ; (5.64)

whereE � ik = � " ikn Ek is the pseudo-tensor which is dual to the electric
strength tensor E i , while D = hik D ik is the rate of the deformation of
the space. Because the space of the rotating liquid sphere which is under
our consideration does not deform, and also, according to our initially
assumptions, the electric and magnetic strengthes are stationary, the
chr.inv.-Maxwell equations take the simpli�ed form

� r j E j �
1
c

H ik A ik = 0

� r k H ik �
1
c2 Fk H ik = 0

9
>=

>;
I; (5.65)

� r i H � i �
1
c

E � ik A ik = 0

� r k E � ik �
1
c2 Fk E � ik = 0

9
>=

>;
II : (5.66)
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Substitute, into the chr.inv.-Maxwell equation (5.65, 5.66) which
are already adapted to the space metric of a neutron star or a pul-
sar, the respective formulae forE i and H ik (5.48) (and those for their
dual preudo-tensors), and also the respective characteristicsof the space
which we have obtained in§4.1.

The �rst (scalar) equation of Group I (5.65) takes the form

c2

a2

3a2 � 2r 2

a2 � r 2 = 4
 � j 
 � j : (5.67)

Two of the vectorial equations of Group I vanish, while the third vec-
torial equation takes the form

2!a 3

r 3(a2 � r 2)
p

a2 � r 2

cot �
sin �

= 0 ; (5.68)

where ! , according to the space metric of the star (5.3), is the angular
speed of the rotation of the star along the equatorial axis� . Both the
scalar and vectorial equations of Group II (5.66). Therefore, the dry rest
which we have from the chr.inv.-Maxwell equations adapted to neutron
stars and pulsars, are only the equations (5.67) and (5.68).

Due to the obvious assumption that stars are not point-like objects
(so, a > 0), and that the radial coordinate is positive (r > 0), we arrive
at the solely valid solution of the equation (5.68):

� = �
�
2

: (5.69)

The solution means that the vectorial equation of Group I of the chr.inv.-
Maxwell equations is applicable only to the poles of a neutron star or a
pulsar.

The vectorial equation of Group I describes the chr.inv.-function
� r k H ik , which means the observable three-dimensional distribution
of the magnetic strength H ik of the electromagnetic �eld of the star.
Therefore, the solution (5.69) we have obtained means that the mag-
netic �eld of a neutron star or a pulsar manifests itself only at the South
Pole and North Pole of the star.

Calculate the magnetic strength H � i = � 2'
c 
 � i (5.48) for this case.

The components of the unit antisymmentric chr.inv.-pseudo-tensor " ikm

are explained in detail in Chapter 2 of the book [18]. Thus, after algebra
we obtain the components of the angular velocity chr.inv.-pseudo-vector

 � i (5.49) of the star


 � 1 =
A23p

h
= ! ; 
 � 1 = A23

p
h =

!a 2

a2 � r 2 ; (5.70)
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 � 2 =
A31p

h
=

2!a 2 cot �
r (a2 � r 2)

; 
 � 2 = A31
p

h =
2!a 2r cot �

a2 � r 2 : (5.71)

According to the obtained solution of the chr.inv.-Maxwell equa-
tions, which is � = � �

2 (5.69), we have cot� = 0 in the case. Therefore,

 � 2 = 
 � 2 = 0. This means that the magnetic �eld of a neutron star or
a pulsar has the solely non-zero componentsH � 1 = � 2'

c 
 � 1, which thus
is the radial r -components directed from the centre of the star to its
South Pole and North Pole, then | to the respective polar directions
from the star into the outer cosmos.

This result, in common with the solution � = � �
2 , were obtained on

the basis of our mathematical theory of the liquid neutron stars and
pulsars. These purely theoretical results completely coincide with the
well-known observational data about the pulsars.

§5.5 The frequency and the magnetic strength of a pulsar

The electromagnetic radiation of a pulsar (rapidly rotating neutron star)
is the same as the rotational frequency of the star itself. Let us calculate,
on the basis of our theory of the liquid neutron stars and pulsars, the
frequency of the electromagnetic radiation of a typical pulsar.

Calculate 
 � j 
 � j at the South Pole and North Pole of a rotating
neutron star (a pulsar), where � = � �

2 . We obtain


 � j 
 � j = 
 � 1 
 � 1 =
! 2a2

a2 � r 2 : (5.72)

Then the condition (5.60), which connects the angular velocity of rota-
tion of the space and the force of gravity acting in it, takes the form

! 2a2

a2 � r 2 =
n

1� 4n
c2r 2

a2 (a2 � r 2)
: (5.73)

The magnetic strength of the electromagnetic �eld of a neutron star
or a pulsar is expressed asH � i = � 2'

c 
 � i (5.48). It is due to the rotation
of the star. Therefore, studying of the obtained relation (5.73),we can
make a conclusion about the electromagnetic radiation of the star.

The relation (5.73) has a breaking at the surface of the star (r = a).
We therefore assumer 6= a. The relation (5.73) thus takes the form

r 2 =
1� 4n

n
! 2a4

c2 ; (5.74)

where r , with taking the previous solution � = � �
2 (5.69) into account,

is the radial distance along the polar axis of the rotation of the star.
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If the electromagnetic radiation is produced near the surface of the
star, inside the surface layer, we haver ' a. Thus, after some trivial
transformations, we obtain the formula for the frequency of theoscilla-
tion of the magnetic �eld of the star

! = ! 0

r
n

1 � 4n
; ! 0 =

c
a

; (5.75)

where ! 0 is the ultimate high rotational frequency of the star, at which
the star rotates with the light speed.

Assume a = 106 cm which is the typical radius of a neutron star.
With this radius, we obtain

! 0 = 3 � 104 sec� 1: (5.76)

It follows, from (5.75), that n is expressed as

n =
! 2

! 2
0 + 4 ! 2 : (5.77)

The observed frequencies of the radio-pulsars are in the range between
! min = 0 :53 and ! max = 448:57 sec� 1. This means that ! 2 � ! 2

0 . We
therefore can neglect! in the denominator of (5.77). We obtain

n =
! 2

! 2
0

=
! 2a2

c2 : (5.78)

Therefore, for the real radio-pulsars, the numbern lies in the range

3:1 � 10� 10 < n < 2:2 � 10� 4: (5.79)

Also, according to formula (5.58) deduced in the framework of our
theory, the scalar potential of the electromagnetic �eld of a pulsar is

' = c2

r
n
G

: (5.80)

Consequently, for the real radio-pulsars, we have

6:1 � 1019 < ' < 5:2 � 1022; (5.81)

in [gram1=2 cm1=2 sec� 1 ]. This interval of the magnitudes of ' satis�es
the upper theoretical limitation on the potential, which, according t o
our theory, is ' < 1:74� 1024 gram1=2 cm1=2 sec� 1 (5.59).

Finally, we now will calculate, on the basis of our theory, the ex-
pected range of the magnitudes for the magnetic �eld strengthH � i of
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the pulsars. According to our theory of the liquid neutron stars and
pulsars, H � i = � 2'

c 
 � i (5.48). With the calculated range of the magni-
tudes of the scalar electromagnetic potential' , and with the esteemed
range of the rotational frequencies! of the pulsars, we obtain

2:1 � 109 < H � 1 < 1:5 � 1015; (5.82)

in [gram1=2 cm� 1=2 sec� 1 ]. This range of the numerical values very cor-
responds to the magnitudes of the magnetic �eld of the radio-pulsars,
which are known due to the radio-astronomical observations.

§5.6 Solving Maxwell's equations in the stationary vortex-
free magnetic �eld of a neutron star

Previously, in §5.4{§5.5, we studied Maxwell's equations in the elec-
tromagnetic �eld of a neutron star or a pulsar under the assumption
that the four-dimensional current vector j � was zero within the �eld
(j � = 0). See (5.62) and so forth. In other words, we assumed that the
electromagnetic �eld was free of currents.

Further, this assumption generates the following problem. Look at
the formula for the observable momentum of the electromagnetic �eld
J i

em (5.51), which is the Poynting vector of the �eld. It has the form

J i
em =

1
4�c

" ikm Ek H � m =
' 2

2�c 4 " ikm Fk 
 � m : (5.83)

By the current-free assumption j � = 0 made in §5.4, we obtained that
only the component H � 1 = � 2'

c 
 � 1 of the magnetic �eld strength H � i

was non-zero at the South Pole and North Pole of the star. In this case
the circular momentum of the �eld, J 3

em, which should generate the mag-
netic component H � 1, would have been zero:J 3

em = 1
4�c "312E1H � 2 = 0.

This causes some trouble, because a model that satis�es astronomical
observations of the pulsars should obviously showH � 1 = � 2'

c 
 � 1 6= 0
and J 3

em = 1
4�c "312E1H � 2 6= 0.

Recall that we previously arrived at the di�culty that H � 1 6= 0 but
J 3

em = 0 as a result of our assumption according to which the electro-
magnetic �eld was free of currents (j � = 0). Therefore, we now will solve
Maxwell's equations in common with the condition j � 6= 0.

First, we will resolve this problem in the vortex-free electromagnetic
�eld. In §5.7, this problem will be solved in the vortical �eld.

The space (space-time) metric of the rotating neutron star has the
form (5.3). This metric means that the liquid sphere is not a collapsar
due to its rotation (see the necessary explanation in the beginning of
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this Chapter). Physical and geometric characteristics of the space were
calculated and presented in§5.1. In addition to these, we only should
add that the pseudo-vector of the angular velocity of space rotation,

 � i = 1

2 " imn Amn , has the following components


 � 1 = ! ; 
 � 1 =
!a 2

a2 � r 2


 � 2 =
2!a 2 cot �
r (a2 � r 2)

; 
 � 2 =
2!a 2r cot �

a2 � r 2

9
>>=

>>;
: (5.84)

Respectively, the square of the pseudo-vector of the angular velocity is


 � j 
 � j =
! 2a2

a2 � r 2

�
1 +

4a2 cot2 �
a2 � r 2

�
: (5.85)

Assume now that the scalar electromagnetic potential of the �eld re-
mains unchanged,' = const, while the vectorial electromagnetic poten-
tial gi is vortex-free. Then the components of the electric and magnetic
�eld strengths (5.47) take the form

E i = �
'
c2 F i ; E i = �

'
c2 Fi

H � i =
1
2

" imn Hmn ; Hmn = �
2'
c

Amn

9
>=

>;
: (5.86)

Herein, using the de�nition of 
 � i , which is 
 � i = 1
2 " imn Amn , we rewrite

the formula for H � i in the form

H � i = �
2'
c


 � i ; H � i = �
2'
c


 � i : (5.87)

Using the formula for F1 (5.9), then calculating 
 � 1 and 
 � 2 from (5.84),
we obtain the substantial components ofE i and H � i . They are

E1 = �
'r

a2 � r 2 ; E 1 = �
'r
a2 ; (5.88)

H � 1 = �
2' !a 2

c(a2 � r 2)
; H � 1 = �

2' !
c

; (5.89)

H � 2 = �
4' !a 2 r cot �

c(a2 � r 2)
; H � 2 = �

4' ! a 2 cot �
cr (a2 � r 2)

: (5.90)

Let us �nd how the magnetic strength is distributed along the surface
of the sphere. Consider Maxwell's equations in their full form (5.61)

r � F �� =
4�
c

j � ; r � F � �� = 0 ; (5.91)
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which implies the presence of the �eld current (j � 6= 0). According to
the chronometrically invariant formalism, their physically observable
(chronometrically invariant) projections | the chr.inv.-Maxwell equ a-
tions | have the form (see Chapter 3 of the book [18] for detail)

� r j E j �
1
c

H ik A ik = 4 ��

� r k H ik �
1
c2 Fk H ik �

1
c

� � @Ei

@t
+ DE i

�
=

4�
c

j i

9
>>=

>>;
I; (5.92)

� r i H � i �
1
c

E � ik A ik = 0

� r k E � ik �
1
c2 Fk E � ik �

1
c

� � @H� i

@t
+ DH � i

�
= 0

9
>>=

>>;
II : (5.93)

Herein, E � ik = � " ikn Ek is the pseudo-tensor which is dual to the electric
strength tensor E i , while D = hik D ik is the rate of space deformation.
Because the space of the rotating liquid sphere which we consider does
not deform, and also, according to our initial assumptions, the electric
and magnetic strengths are stationary, the chr.inv.-Maxwell equations
take the simpli�ed form

� r j E j �
1
c

H ik A ik = 4 ��

� r k H ik �
1
c2 Fk H ik =

4�
c

j i

9
>=

>;
I; (5.94)

� r i H � i �
1
c

E � ik A ik = 0

� r k E � ik �
1
c2 Fk E � ik = 0

9
>=

>;
II : (5.95)

The �rst equation of Group I (5.94) takes the form

4'! 2a2

c2 (a2 � r 2)

�
1 +

4a2 cot2 �
a2 � r 2

�
�

' (3a2 � 2r 2)
a2 (a2 � r 2)

= 4 �� : (5.96)

It follows from the second equation of Group I that j 1 = j 2 = 0 in the
framework of our model, while the equation forj 3 takes the form

'!a 3

r 2 (a2 � r 2)
p

a2 � r 2

cot �
sin �

= � �j 3 (5.97)
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and the absolute value of the chr.inv.-current vectorj i is

j =
p

j k j k =
'!a 3 cot �

�r (a2 � r 2)
p

a2 � r 2
: (5.98)

Equations of Group II (5.95) satisfy themselves as identities. So, these
formulae for � , j 3, and j (5.96{5.98) are the exact solutions to the
Maxwell equations we have just considered.

So, we have obtained the exact solutions to Maxwell's equations in
the internal electromagnetic �eld of a neutron star or a pulsar, where
the �eld originates due to its sources: the distributed charges� and the
currents j i .

The conservation law of the electric charges and the currents sets
up a connexion between the sources of the electromagnetic �eld. The
generally covariant form of the conservation law, which is also known
as the continuity equation, has the form

r � j � = 0 : (5.99)

It means that the distributed charges � and the currents j i , which are
the respective physically observable (chronometrically invariant) pro-
jections of the four-dimensional current vectorj � , are conserved within
the four-dimensional volume of the �eld. Also, Maxwell's equations are
connected by the Lorenz condition

r � A � = 0 ; (5.100)

which is imposed on the four-dimensional electromagnetic potentialA � .
In a general case, the conservation lawr � j � = 0 and the Lorentz

condition r � A � = 0 written in terms of the chronometrically invariant
formalism, have the form (see Chapter 3 of the book [18]), respectively,

� @�
@t

+ �D + � er i j i �
1
c2 Fi j i = 0 ; (5.101)

1
c

� @'
@t

+
'
c

D + � er i qi �
1
c2 Fi qi = 0 ; (5.102)

where � er i = � r i � 1
c2 Fi (seeNotations for de�nition of � r i ).

It is easy to show that, under the particular conditions of the prob-
lem we are considering, the chr.inv.-continuity equations (5.101) and
the chr.inv.-Lorentz conditions (5.102) are satis�ed as identities.

Now, on the basis of the obtained exact solutions (5.96{5.98) of the
Maxwell equations, we look for the Poynting vector J i

em that is the
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observable momentum of the electromagnetic �eld. We need to know
how the Poynting vector is distributed along the surface of the sphere,
which is the surface of a neutron star or a pulsar.

The Poynting vector J i
em is the second of the three physically ob-

servable projections of the electromagnetic �eld tensorF�� (5.42), which
are � em (5.44), J i

em (5.45), and U ik
em (5.46). We look for the Poynting

vector J i
em (5.45) in the framework of the particular conditions accord-

ing to which the scalar potential ' of the electromagnetic �eld remains
constant, while the vectorial potential qi of the �eld is vortex-free, i.e.

' = const ;
� @qi
@xk

�
� @qk
@xi

= 0 :

Substituting, into (5.44{5.46), the substantial (non-zero) compo-
nents of the electric strengthE i and the magnetic strength H � i , which
are (5.88{5.90), we obtain

� em =
' 2

2�c 4

�
Fj F j

4c2 + 
 � j 
 � j
�

=

=
' 2

2�c 4

�
! 2a2

a2 � r 2 +
4! 2a4 cot2 �
(a2 � r 2)2 +

c2r 2

4a2(a2 � r 2)

�
; (5.103)

J 3
em =

' 2

2�c 4 " ikm Fk 
 � m =
' 2F1 
 � 2

2�c 4
p

h
=

=
' 2 ! a

�c 2 (a2 � r 2)3=2

cot �
sin �

; (5.104)

Jem =
�
�
�
p

h33J 3
emJ 3

em

�
�
� =

'
� c 2

! ar cot �
(a2 � r 2)3=2

: (5.105)

Looking at these equations, we can conclude something about the
neutron stars and pulsars whose electromagnetic �eld is vortex-free (the
case of the§5.6). So, we see that the electromagnetic �eld density� em

is due to the gravitational inertial force, which is the non-Newtonian
force of repulsionFi acting within the sphere, and due to the sphere's
rotation. The electromagnetic �eld density � em can be non-zero by the
separate conditionFi 6= 0 or A ik 6= 0, and the common condition Fi 6= 0
and A ik 6= 0. The density of the �eld momentum J i

em is non-zero only
by the common condition Fi 6= 0 and A ik 6= 0.

As follows from (5.103), the density � em of the vortex-free electro-
magnetic �eld of a rotating neutron star (a pulsar) is zero at the equator
of the star (� = 0). Then the �eld density � em increases with the geo-
graphic latitude � to the South Pole and North Pole, where � = �

2 so
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the density of the vortex-free electromagnetic �eld takes the ultimately
high magnitude � em = ( � em)max .

Contrarily, the density of the electromagnetic �eld momentum J i
em

(5.105) is ultimately high at the equator, where � = 0. Then the magni-
tude of the �eld momentum J i

em falls down with the geographic latitude
� to the South Pole and North Pole, where it is J i

em = 0.
In addition to these, we can also conclude something about the

charge density� and the currents j i within the vortex-free electromag-
netic �eld of a neutron star or a pulsar.

We can initially re-write the respective formulae for the charge den-
sity � (5.96) and the current j 3 (5.97), obtained from Group I of the
chr.inv.-Maxwell equations, as follows:

� =
'

�c 4

�

 � j 
 � j �

1
4

r j F j
�

; (5.106)

j 3 = �
'
�

! a 3

r 2 (a2 � r 2)3=2

cot �
sin �

; (5.107)

where

r j F j =
c2 (3a2 � 2r 2)
a2 (a2 � r 2)

> 0 ; (5.108)

j =
�
�
�
p

h33 j 3
em j 3

em

�
�
� =

' ! a 3 cot �
� r (a2 � r 2)3=2

: (5.109)

As a result, we see that the electromagnetic charge density within a
neutron star or a pulsar is positive � > 0 (that should be according to
the physical sense of a physical �eld) if


 � j 
 � j >
1
4

r j F j : (5.110)

Now re-write this inequality with the formula for � (5.96). We obtain the
following condition which is necessary according to the physical sense:

4! 2a2

c2

�
1 +

4 cot2 �
a2 � r 2

�
>

3a2 � 2r 2

a2 : (5.111)

Compare the formulae for the electromagnetic �eld currentj 3 (5.107)
and its power j (5.109) to the obtained formulae for the density of
the electromagnetic �eld momentum J 3

em (5.104) and the power of the
momentum Jem (5.105). We have

c2J 3
em = �

'r 2

a2 j 3; c2Jem =
'r 2

a2 j : (5.112)
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Taking (5.57) into account, we express the scalar electromagnetic
�eld potential ' (which is ' = const, according to our initial assump-
tions) through the dimensionless constantn = G' 2

c4 (5.58) (the constant
is n < 1

4 , see in the end of§5.3, for detail). So, we have

' = c2

r
n
G

; ' 2 =
nc4

G
; n <

1
4

: (5.113)

With these, we obtain

� em =
n

2�G

�

 � j 
 � j +

1
4c2 Fj F j

�
; (5.114)

J 3
em =

E1H � 2p
h

=
4nc3

G
!a

(a2 � r 2)3=2

cot �
sin �

; (5.115)

� =
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G
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1
4

r j F j
�

; (5.116)

j 3 = � c2

r
n
G

!a 3

r 2 (a2 � r 2)3=2

cot �
sin �

; (5.117)

J 3
em = �

4�r 2c
a2

r
n
G

j 3: (5.118)

We see that the greater the scalar electromagnetic potential' (5.113)
of a neutron star or a pulsar, the stronger the three-dimensional circu-
lar current j 3 and the three-dimensional circular momentumJ 3

em of the
electromagnetic �eld. Moreover, the current and momentum 
ow of
the electromagnetic �eld exist in the star only if the star rotates on
the equatorial plane (x1; x3), i.e. only if 
 � 2 6= 0. If the neutron star
does not rotate (
 � j 
 � j = 0), the electric charge density of its internal
electromagnetic �eld would be negative (� < 0).

So, we have arrived at a non-satisfactory result. Both the circu-
lar electromagnetic �eld current j 3 (the current j i that goes along the
longitude coordinate � ) and the electromagnetic �eld momentum J 3

em
(that is the Poynting vector of the �eld) are zero at the South Pole and
North Pole of the star, where the geographical latitude is� = �

2 , and
reach the ultimate power at the equator (� = 0).

Herein, we have assumed that the electromagnetic �eld of the ro-
tating neutron star is vortex-free. The �nal feat to match with t he
observational data will be done with the vortical electromagnetic �eld
of a rotating neutron star (a pulsar). We will do it next, in §5.7.
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§5.7 Solving Maxwell's equations in the stationary vortical
magnetic �eld of a neutron star

In analogy to §3.7, consider a rotating neutron star (a pulsar) whose
electromagnetic �eld is vortical. The curl qik of the three-dimensional
vectorial chr.inv.-potential qi of the �eld is non-zero

qik =
� @qi
@xk

�
� @qk
@xi

6= 0 : (5.119)

The four-dimensional electromagnetic �eld potential

A � = '
dx�

ds
; g��

dx�

ds
dx�

ds
= 1 : (5.120)

has two chr.inv.-projections

A0
p

g00
= e' ; A i = qi =

e'
c

vi ; vi =
dxi

d�
; (5.121)

where

v2 = hik vi vk ; v2 � c2; e' =
'

q
1 � v 2

c2

= ' : (5.122)

According to our initial assumptions, ' = const and q1 = q2 = 0 in the
�eld. Thus v 3 = d�

d� = ! , and the non-zero components of the vectorial
electromagnetic potential qi and the �eld curl qik have the form

q3 =
'!
c

; (5.123)

q3 =
'!
c

r 2 sin2 � ; (5.124)

q31 =
@q3
@r

=
2'!

c
r sin� ; (5.125)

q23 = �
@q3
@�

= �
2'!

c
r 2 sin � cos� : (5.126)

Using the de�nition of the �eld strengths (5.47), we calculate the
non-zero components of the magnetic strength of the vortical �eld

H23 = �
2' ! r 2 sin �

c

�
a

p
a2 � r 2

+ cos �
�

; (5.127)

H31 =
2'!

c

�
sin2 � �

2a3 cos�

(a2 � r 2)
p

a2 � r 2

�
: (5.128)



138 Chapter 5 Neutron Stars and Pulsars

Using the relation

H � i =
1
2

" imn Amn =
1
2

" imn qmn �
2'
c


 � i ; (5.129)

we re-write the componentsH23 (5.127) and H31 (5.128) in the form

H � 1 = �
2' !

c
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p
a2 � r 2

a
cos�

!

; (5.130)

H � 2 =
2'!
cr

 p
a2 � r 2 sin �

a
�

2a2 cot �
a2 � r 2

!

; (5.131)

while their covariant (lower-index) versions can be calculated as follows:
H � 1 = h11 H � 1 and H � 2 = h22 H � 2.

Let us then �nd the solution to the chr.inv.-Maxwell equations.
In the case where the electromagnetic �eld is stationary, the chr.inv.-
Maxwell equations have the form (5.94{5.95)

� r j E j �
1
c

H ik A ik = 4 ��

� r k H ik �
1
c2 Fk H ik =

4�
c

j i

9
>=

>;
I; (5.132)

� r i H � i �
1
c

E � ik A ik = 0

� r k E � ik �
1
c2 Fk E � ik = 0

9
>=

>;
II : (5.133)

After substituting the electric and magnetic strengths of the vortical
electromagnetic �eld, we see that equations of Group II (5.133) are
satis�ed as identities. Equations of Group II take the form

4'! 2

c2

�
a2

a2 � r 2

�
1 +

4a2 cot2 �
a2 � r 2

�
�

a cos�
p

a2 � r 2

�
�

�
'

�
3a2 � 2r 2

�

a2 (a2 � r 2)
= 4 � �� ; (5.134)

3
2

'!
a2 +

'! a 3

r 2 (a2 � r 2)
p

a2 � r 2

cot �
sin �

= � � �j 3; (5.135)

where �� and �j 3 are the change density and the current of the vortical
electromagnetic �eld. The physical sense of these equations readily looks
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more understandable when re-written in the form

�� =
'

�c 2

�

 � j 
 � j �

1
4

r j F j
�

�
' ! 2

� c 2

a cos�
p

a2 � r 2
; (5.136)

�j 3 = �
' ! a 3

� r 2 (a2 � r 2)3=2

cot �
sin �

�
3' !
2�a 2 ; (5.137)

where ! = 
 � 1. Express now the charge density �� and the current �j 3

of the vortical electromagnetic �eld through the same characteristics �
(5.106) and j 3 (5.107) we have calculated in the vortex-free �eld

�� = � �
' ! 2a cos�

� c 2
p

a2 � r 2
; (5.138)

�j 3 = j 3 �
3' !
2�a 2 : (5.139)

As is seen from the equations (5.138) and (5.139), given a rotating
neutron star (a pulsar) whose electromagnetic �eld is vortical, thecharge
density and currents of the �eld di�er from those of the vortex-f ree
electromagnetic �eld by those terms depending on the star's rotation.

Respectively, the �eld density � em (5.44) and the circular momentum

ow J 3

em (5.45) of the vortical electromagnetic �eld have the form

�� em =
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2�c 4
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+
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; (5.140)
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cot �
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Or, in the other notation,

�� em = � em +
' 2

2�c 4

�
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�
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r 2 sin2 �
a2

�
�

! 2a cos�
p
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�
; (5.142)

�J 3
em = J 3

em �
' 2 !

2� c 2a2 : (5.143)

To understand the meaning of these resulting formulae, recall that,
as follows from the formulae forA31 (5.10)

A31 =
2!a 3 r cos�
(a2 � r 2)3=2

; A31 =
2!a cot �

r
p

a2 � r 2 sin�
; (5.144)
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this component and hence the pseudo-vector 
� 2 = 1
2 "231A31 depend on

the geographical latitude � , while 
 � 1 = 1
2 "123A23 = ! does not.

The obtained formulae for the current vector �j 3 (5.139) and the
Poynting vector �J 3

em (5.143) of the vortical electromagnetic �eld contain
that very term which does not depend on the geographical latitudeof
the star that possesses the �eld. This means that, contrary to the
vortex-free electromagnetic �eld, the current vector �j 3 and the 
ow of
momentum �J 3

em of the vortical electromagnetic �eld are non-zero at the
South Pole and North Pole of the star.

The obtained result, �J 3
em 6= 0 at the South Pole and North Pole,

means that a rotating neutron star whose electromagnetic �eld is vor-
tical can emit electromagnetic radiation along its polar axis, while that
possessing a vortex-free electromagnetic �eld | cannot.

Also, we have to make one more important conclusion in the frame-
work of our mathematical theory of pulsars. Look at the de�nition of
the magnetic �eld strength H � i = 1

2 " imn Hmn (5.47), which is

H � i =
1
2

" imn
� � @qm

@xn
�

� @qn
@xm

�
2'
c
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" imn
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�
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c
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=
1
2

" imn qmn �
2'
c


 � i : (5.145)

As is seen from this de�nition, the pseudo-vector of the magnetic �eld
strength H � i is the sum of the pseudo-vector of the electromagnetic �eld
curl q� i = 1

2 " imn qmn and the pseudo-vector 
 � i of the angular velocity of
the star's rotation. The magnetic �eld strength H � i coincides with the
pseudo-vector of the star's rotation, 
 � i , only if the electromagnetic �eld
curl qmn is zero. If qmn 6= 0 which is true in a vortical electromagnetic
�eld, H � i deviates 
 � i . The stronger the curl qmn of the electromagnetic
�eld is, the more the magnetic axis deviates from the axis of the star's
rotation.

Astronomers inform us that the electromagnetic �eld of observed
pulsars is very strong. They imply that electromagnetic radiation can
leave such a star only at the polar regions, where the latitudinal and
longitudinal electromagnetic �eld components are not so strong asat
the equatorial latitudes. Also, according to the oscillating behavior of
the signal registered from pulsars, astronomers conclude that the axis
of emission and the axis of rotation of the pulsar does not coincide. All
these facts from observational astronomy match with our theoretical
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results about pulsars.
As a result, our mathematical theory of pulsars leads us to the fol-

lowing conclusions that match observational data:

ˆ A rotating neutron star can be a pulsar only if its electromagnetic
�eld is vortical. Moreover, the curl of the electromagnetic �eld
means that the magnetic axis does not coincide with the axis of
the star's rotation. Otherwise, in the neutron star whose electro-
magnetic �eld is vortex-free, electromagnetic radiation does not
come from the South Pole and North Pole of the star.

All these theoretical results have been obtained in the framework
of our assumption that the scalar and vectorial electromagnetic �eld
potentials of the star do not depend on time. Of course, some temporal
variations of the potentials should pose an e�ect on the Poynting vector
(the 
ow of momentum) of the �eld, and thus on the electromagnet ic
radiation emitted by the pulsar. But now we neglect these e�ects.

§5.8 Geometrization of the vortical electromagnetic �eld of
a neutron star

Geometrization of the electromagnetic �eld is one of the primary tasks
in the General Theory of Relativity. As was shown already by Ein-
stein, this problem in a general case is very non-trivial from the sideof
mathematics. So, it is still not resolved in general. Nevertheless, ge-
ometrization of the electromagnetic �eld is possible in particular cases,
under some particular conditions that simplify the mathematics.

We now show that in the particular case of a pulsar the electromag-
netic �eld is geometrized. In the language of mathematics this means
that once we have Einstein's �eld equations and Maxwell's equations,
the characteristics of the electromagnetic �eld can be expressedthrough
only the geometric characteristics of the space.

Consider Einstein's �eld equations (5.18{5.20) and Maxwell's equa-
tions (5.132{5.133) we have obtained in the internal �eld of a rotating
neutron star. Note that in the case of the de Sitter-like metric we have
derived for neutron stars, the � -term describes physical vacuum in the
state of in
ation � = � � (see Chapter 1 for detail). Also, as we showed
in §5.2, this form of Einstein's equations satis�es the equations of con-
servation in the space.

We will consider the vortical electromagnetic �eld. This is because
we have shown that only the vortical �eld gives the result that matches
with astronomical observations of pulsars, i.e. the fact that a pulsar
emits electromagnetic radiation from only its polar regions.
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We have the scalar electromagnetic �eld potential ' (which remains
unchanged for each particular star, according to our initial assump-
tion) expressed through the fundamental constants as' = c2

p n
G (5.58),

wheren < 1
4 (see in the end of§5.3). With it, we obtain the electric and

magnetic strengths of the vortical �eld (see §5.7) in the form
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; (5.149)

H � 1 = h11 H � 1 =
a2

a2 � r 2 H � 1; (5.150)

H � 2 = h22 H � 2 = r 2 H � 2: (5.151)

Herein, according to the internal space metric of a rotating neutron star
or a pulsar, we have 
 � 1 (5.70), 
 � 2 (5.71), 
 � j 
 � j (5.85):
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p
h =

!a 2

a2 � r 2 ; (5.152)
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4a2 cot2 �
a2 � r 2

�
: (5.154)

As is seen from these formulae, both the electric and magnetic �eld
strengths are expressed here through only the geometric characteristics
of the internal space of the pulsar.
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Also, in the same way, the charge density �� (5.136) and the current
vector �j 3 (5.137) of the vortical electromagnetic �eld from Maxwell's
equations are expressed as:
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; (5.155)
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Respectively, the density �� em (5.140) and the 
ow of momentum
�J 3
em (5.141) of the vortical electromagnetic �eld | the characteristics

that come from Einstein's equations | are expressed as:
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= J 3
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We see that all the characteristics of the vortical magnetic �eld are
uniquely expressed through only the geometric characteristics ofthe
space inside the pulsar. Therefore, the vortical electromagnetic�eld of
a rotating neutron star (a pulsar) is hereby geometrized.

This fact also means that the system of Einstein's equations and
Maxwell's equations in the internal space of a pulsar is a self-consistent
system of equations. This self-consistent system of Einstein-Maxwell
equations completely describes both gravitational and electromagnetic
phenomena inside the pulsar.

However, if the electromagnetic �eld of a rotating neutron star is
vortex-free, Einstein's equations and Maxwell's equations do not com-
prise a self-consistent system. The electromagnetic �eld is not geometr-
ized inside the star as such. As was shown in§5.7, such a neutron star
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cannot emit electromagnetic radiation from its polar regions. Therefore,
it cannot be a pulsar.

§5.9 Boundaries of the physical space a pulsar

Consider an observer whose reference frame is connected to theinternal
space of a star. Where, from his point of view, does the observable
physical space of the star end? At which distance from the star?

These questions are answered in the framework of the theory of
physically observable (chronometrically invariant) quantities in General
Relativity. In terms of physical observables, the real physical space that
is allowed to be registered by an observer \ends" at that distance from
him where the physical observable time stops:d� = 0. The physical
observable time� is calculated according to the metric of the observer's
space. Therefore, the real physical boundaries of the observer's ob-
servable space are determined by the stopped time conditiond� = 0
according to the space metric.

Let us calculate the boundary of the observable space of a pulsar.
This is the distance from the center of the pulsar at which, according
to the space metric of the pulsar (an observer whose reference frame is
connected with the pulsar), the observable time stops (d� = 0).

As follows from the chronometrically invariant formalism, the ob-
servable time interval is formulated as (1.30)

d� =
p

g00 dt +
g0i

c
p

g00
dxi =

p
g00 dt �

1
c2 vi dxi : (5.159)

It consists of two terms. The �rst term is due to the gravitational �eld
potential w = c2

�
1�

p
g00

�
(1.44). The second term is due to the fact

that the space rotates, and is dependent on the linear velocity of the
rotation vi = � c g0 ip

g00
(1.45).

Therefore, the condition d� = 0 by which the observable time stops
in the space of a gravitating and rotating body is expressed as

p
g00 dt =

1
c2 vi dxi : (5.160)

The space (space-time) metric of a rotating neutron star has the
form (5.3). See§5.1 for details. In the metric,
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�
; (5.161)
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2!ar 2 cos�
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a2 � r 2
: (5.162)
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In this case, the stopped time condition (5.160) takes the form

g00 =
1
c4

�
v3

dx3

dt

� 2

; (5.163)

where dx 3

dt = d�
dt = ! . Substituting the formulae for g00 (5.161) and v3

(5.162) into the stopped time condition (5.163), we obtain the formula
for the distance r at which the observable time stops

r =
a

q
1 + 4a2 ! 2 cos �

c2

: (5.164)

This formula, (5.164), shows the boundary at which the physical
space of the rotating neutron star ends. As is seen from this formula, the
boundary r is the same as the neutron star's radiusa at the South Pole
and North Pole: the geographical latitude is � = �

2 therein, so cos� = 0
and thus r = a according to (5.164). Then the boundary r decreases
near the equator where it takes the ultimately low numerical value

rmin =
a

q
1 + 4a2 ! 2

c2

(5.165)

which depends only on the neutron star's radiusa and the angular
velocity of its rotation ! .

The more rapid the neutron star rotates, the more oblate the phys-
ical space of the star at its equator becomes. According to our formula
(5.165), the oblateness manifests itself only at relativistic speeds of ro-
tation, i.e. in pulsars.

Consider PSR J1748-2446ad, that is the fastest-known pulsar dis-
covered in 2004 [30]. It rotates at a period of 0.00139595482(6) sec
which means the angular velocity! = 2�

T = 4 ; 501 sec� 1. Its radius a is
estimated to be less than 16 km. Proceeding from these observational
data, we can calculate the oblateness of the physical space of thepulsar
at its equator:

rmin

a
=

1
q

1 + 4a2 ! 2

c2

' 0:90: (5.166)

§5.10 Conclusion

So, the complete mathematical theory of the liquid neutron stars and
pulsars is presented here, in this Chapter. We now repeat the mostim-
portant conclusions we made on the basis of the theory. They are:
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1. As follows from our mathematical theory, the electromagnetic �eld
of a rotating neutron star (a pulsar) is due to its rotation and grav-
itation. The faster the star rotates, the stronger is the magnetic
strength H � i of the �eld;

2. The magnetic �eld strength H � i of the pulsar is directed strict
along the polar axis of its rotation. Electromagnetic radiation is
emitted only from the poles of the star, then comes into the outer
cosmos strictly along the axis of the rotation of the star;

3. The electric strength E i depends on the spatial distribution of
the scalar potential and on the temporal variation of the vecto-
rial potential of the electromagnetic �eld. The magnetic strength
H � i depends on the curl of the vector potential the �eld, and on
the angular velocity of the star. Thus the temporal and spatial
variations of the electromagnetic �eld potentials should a�ect the
outcoming electromagnetic impulses emitted by the pulsar;

4. The Poynting vector (the electromagnetic �eld momentum) is non-
zero at the South Pole and North Pole of a rotating neutron star
only if its electromagnetic �eld is vortical. Therefore, a rotating
neutron star is a pulsar, thus emitting electromagnetic radiation
from the polar regions, only if possesses a vortical electromagnetic
�eld. Also, the presence of the �eld curls means that the magnetic
axis does not coincide with the axis of the star's rotation. A rotat-
ing neutron star whose electromagnetic �eld is vortex-free cannot
emit electromagnetic radiation along its polar axis, so it cannot
be a pulsar.

All the conclusions are valid only for a rotating star whose physical
radius is close to its Hilbert radius. These are rotating neutron stars
and pulsars, not the regular stars such as the Sun etc.



Chapter 6

Black Holes

§6.1 Non-rotating liquid collapsars. The main characterist ics

Now, we are going to study the collapse condition of a non-rotating
sphere of perfect liquid (that is, a collapsed rotation-free star),in terms
of our new model of liquid stars. At �rst sight, this problem stateme nt
sounds like non-sense: perfect liquid is incompressible, hence such a
liquid body cannot be compressed. Yes, it would be non-sense, if one
would consider collapse as the process of compression of a liquid cos-
mic body. We do not do it that way: in contrast, we do not discuss
cosmogony. We merely consider a collapsar as an already existing ob-
ject. This amounts to the occurrence of the physical conditions,not the
evolutionary compression of a liquid cosmic body.

Hence, a cosmic body is a collapsar if the parameters of its �eld on
its physical surface correspond to the condition of gravitationalcollapse.
Namely, | the �eld of gravity is so strong on the surface of the body that
light signals cannot leave the body for the outer cosmos. In terms of the
General Theory of Relativity, this means that the physically observable
time stops on the surface.

According to the theory of physically observable quantities (chrono-
metrically invariant formalism), the physically observable time interva l
d� (1.30) is formulated in terms of the gravitational potential w and th e
linear velocity of space rotation vi as follows:

d� =
p

g00 dt +
g0i

c
p

g00
dxi =

=
�

1 �
w
c2

�
dt �

1
c2 vi dxi : (6.1)

Thus the general condition of gravitational collapse has the form

d� =
p

g00 dt +
g0i

c
p

g00
dxi = 0 : (6.2)

In a rotation-free space (whereinvi = 0), the general condition of grav-
itational collapse is as simple as

d� =
p

g00 dt = 0 (6.3)
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or merely

g00 =
�

1 �
w
c2

� 2
= 0 : (6.4)

Thus, a cosmic object of rotation-free space is a collapsar, if the three-
dimensional gravitational potential w on its surface takes the value

w = c2 : (6.5)

Consider the collapse condition in the case of a non-rotating star
consisting of perfect liquid. As is seen from the space metric of sucha
liquid star, which is (2.76)

ds2 =
1
4

 

3

r

1 �
{ � 0a2

3
�

r

1 �
{ � 0 r 2

3

! 2

c2dt2 �

�
dr2

1 � { � 0 r 2

3

� r 2 �
d� 2 + sin 2� d� 2�

; (6.6)

or, in terms of the Hilbert radius rg (2.78),

ds2 =
1
4

 

3

r

1 �
rg

a
�

r

1 �
r 2 rg

a3

! 2

c2dt2 �

�
dr2

1 �
r 2 r g

a3

� r 2 �
d� 2 + sin 2� d� 2�

; (6.7)

the collapse condition (g00 = 0) in this case has the form

3

r

1 �
{ � 0a2

3
�

r

1 �
{ � 0 r 2

3
= 0 ; (6.8)

or, similarly,

3

r

1 �
rg

a
�

r

1 �
r 2rg

a3 = 0 : (6.9)

Thus, we obtain the radial coordinate r , by which a non-rotating liquid
star whose radius isa meets the state of gravitational collapse:

r c =

s

9a2 �
8a3

rg
: (6.10)

Since we keep in mind real cosmic objects, the numerical value ofr c

should be real (as well asa and rg). This requirement is satis�ed by
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the following obvious condition:

a 6 1:125rg : (6.11)

If this condition holds not ( a > 1:125rg), the non-rotating liquid body
(star) cannot be in the state of gravitational collapse.

The general collapse condition (6.11) includes the particular con-
dition a = rg. Given this particular case of a collapsed non-rotating
liquid star, we see that the physical radiusa of the star's surface, the
Hilbert radius rg of the star, and the radius of the outer space breaking
rbr =

p
a3=rg of the star's �eld coincide:

r c = rbr = rg = a : (6.12)

The said collapse condition,a = rg, is only a particular case of the gen-
eral collapse condition (6.11). The general collapse condition (6.11)
includes three particular cases, concerning the location of the physical
surface of the collapsed liquid star:

1) The collapsed liquid star is larger than the Hilbert radius calcu-
lated for the star (a > r g) but less than 1:125rg;

2) The surface of the collapsed liquid star coincides with its Hilbert
radius (a = rg);

3) The collapsed liquid star is completely located within its Hilbert
radius (a < r g).

It is obvious that r c is imaginary for rg � a, so the state of gravitational
collapse is impossible for such a star. For example, considering the Sun
(a = 7 � 107 cm, M = 2 � 1033 gram, rg = 3 � 105 cm), we see thatr c (6.10)
takes an imaginary numerical value. The same is as well true for other
regular stars, ranging from super-giants to white dwarfs. Hence, regular
stars cannot collapse.

In fact, the particular collapse condition r c = rbr = rg = a (6.12) for-
mulates the collapse radiusr c as follows*

r c = a =

s
3

{ � 0
=

4:0 � 1013

p
� 0

cm: (6.13)

For example, if a collapsed liquid sphere should consist of regular water
(� 0 = 1 :0 gram/cm3), its radius would be r c = 4 :0 � 1013 cm = 3:1 AU, i.e.
be located within the asteroid strip (the asteroids are located, approxi-
mately, from 2.1 AU to 4.3 AU from the Sun).

* { = 8�G
c2

= 18 :6 � 10� 28 cm/gram is Einstein's constant of gravitation.
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One more example: to be a collapsar whose size is that of neutron
stars and pulsars (their radius isa = (8{16) � 105 cm = 8{16 km), a liquid
body should have� 0 = 2 :5 � 1015{ 6 :3 � 1014 gram/cm3, according to the
obtained formula for r c (6.13).

Hence forth, we can calculate the mass of a non-rotating liquid col-
lapsar, proceeding from the formulaeM = 4

3 �a 3� 0 and a = r c =
p

3={ � 0

(6.13). We obtain the following dependencies:

M =
4�a
{

= 6 :8 � 1027 a gram; (6.14)

M =
4
p

3 �
{ 3=2p

� 0
=

2:7 � 1041

p
� 0

gram: (6.15)

For example, once a collapsed liquid sphere should have the size of
neutron stars and pulsars,a = (8{16) � 105 cm = 8{16 km, its mass would
be M = (5 :4{11) � 1033 gram (i.e. 2.7{5.5 masses of the Sun).

§6.2 The Universe as a huge liquid collapsar

Here is another example: the Universe itself. Astronomers estimate the
average density of substance in the Universe to be in the range of 10� 28

to 10� 31 gram/cm3. Also, according to the observational estimates of
the Hubble constant H = c

a = (2 :3 � 0:3) � 10� 18 sec� 1, the radius of the
Universe is a = 1 :3 � 1028 cm. At the upper boundary of the estimated
density � 0 = 10 � 28 gram/cm3, the collapse radiusr c (6.10) meets the
�eld of real numerical values. Respectively, we obtain, according to
observational estimates,

a = 1 :3 � 1028 cm

� 0 = 10 � 28 gram/cm3

M = 9 :2 � 1056 gram

rg = 1 :4 � 1028 cm

rbr = 1 :3 � 1028 cm

r c = 1 :5 � 1028 cm

9
>>>>>>>>>>=

>>>>>>>>>>;

: (6.16)

This is a reason to suggest that the Universe can be considered as a
sphere of perfect liquid, which is in the state of gravitational collapse.
We will refer to it as the liquid model of the Universe. In this case,
we should haver c = rbr = rg = a (6.12). Proceeding from this condition
and the numerical value of the radius of the Universe,a = 1 :3 � 1028 cm,
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M , gram � 0 , g/cm 3 a, cm r g , cm r br , cm r c , cm

Astron.
esteems 9:2 � 1056 � 10� 28 1:3 � 1028 1:4 � 1028 1:3 � 1028 1:5 � 1028

Liquid
model 8:8 � 1055 9:6 � 10� 31 1:3 � 1028 1:3 � 1028 1:3 � 1028 1:3 � 1028

Table 5.1: The model of the observable Universe as a non-rotating liquid
sphere in the state of gravitational collapse. The calculat ed parameters of
the liquid model are compared to the observational esteems.

obtained from the Hubble constant, we calculate the mass and density
which should be attributed to the Universe in the framework of the
present liquid model (according toa= rg = 2GM

c2 and M = 4
3 �a 3� 0). We

obtain
a = 1 :3 � 1028 cm

� 0 = 9 :6 � 10� 31 gram/cm3

M = 8 :8 � 1055 gram

rg = 1 :3 � 1028 cm

rbr = 1 :3 � 1028 cm

r c = 1 :3 � 1028 cm

9
>>>>>>>>>>=

>>>>>>>>>>;

: (6.17)

The obtained numerical values (6.17) are compared to the estimates
of observational astronomy (6.16) in Table 5.1. Since these observa-
tional estimates are known very approximately, we can conclude that
the observable Universe is a huge collapsar, so all the world we observe,
including us, is located within a huge black hole.

In particular, this conclusion meets another made in 1965 by Kyril
Stanyukovich [31]. He neither studied the geometric properties of a
liquid sphere nor introduced a particular space metric. His analysis
was based on the properties of elementary particles. Following this
way, Stanyukovich obtained that the Hilbert radius of the Universe is
the same as the observed event horizon: the observable Universeis a
collapsar. Thus, despite employing another theoretical basis thanour
own, he arrived at the same conclusion.

§6.3 Pressure and density inside liquid collapsars

Pressure and density inside non-rotating liquid collapsars. . . The regular
formula (2.130) we have obtained for the pressurep inside a sphere of
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perfect liquid,

p = � 0c2

q
1 � { � 0 r 2

3 �
q

1 � { � 0 a2

3

3
q

1 � { � 0 a2

3 �
q

1 � { � 0 r 2

3

; (6.18)

under the collapse conditiona =
p

3={ � 0 takes the simplest form

p = � � 0c2 = const; (6.19)

where � 0 = const by de�nition inside a sphere �lled with perfect liquid.
This formula is the equation of stateof the liquid. This state is known as
in
ation : at positive density of the substance the pressure is negative,
so the inner pressure of the substance tries to expand the body from
within (despite a liquid body is incompressible).

As is seen, the pressure is constant as well as the density. This means
that the liquid substance, which �lls a liquid collapsar, is in the state of
in
ation, and has the same pressure and density throughout the entire
volume of the collapsar, from its center to the surface.

§6.4 The inner forces of gravitation. The inner redshift

The formula for the force of gravitation acting inside a non-rotating liq-
uid collapsar can be found from the formula for the force acting inside
a non-rotating liquid sphere, once the sphere is in the state of gravita-
tional collapse (in this case, its physical radius isa = rg =

p
3={ � 0).

Following this way, on the basis of the obtained formulae of the
covariant componentF1 (2.123, 2.125) and the contravariant component
F 1 (2.124, 2.126) of the gravitational force, we obtain

F1 =
{ � 0 c2r

3
1

1 � { � 0 r 2

3

=
c2 r
a2

1

1 � r 2

a2

; (6.20)

F 1 =
{ � 0c2r

3
=

c2 r
a2 : (6.21)

Sincer < a inside the sphere,F1 > 0. Therefore, this is a force of repul-
sion. The force increases with distancer , from zero at the center of the
liquid collapsar to its ultimate-high value on the surface.

If the observable Universe is really a huge liquid collapsar (at least
astronomical data evidence it, as was shown above), the repulsiveradial
force acting inside the collapsar may cause a frequency shift in travelling
photons. To investigate this problem we consider the chr.inv.-equations
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of isotropic geodesics [18,19]

d!
d�

�
!
c2 Fi ci +

!
c2 D ik ci ck = 0

d
�
!c i

�

d�
+ 2 !

�
D i

k + A � i
k �

�
ck � !F i + ! � i

nk cn ck = 0

9
>>=

>>;
; (6.22)

which are the equations of observable motion of a light-like (massless)
particle which travels with the observable velocity of light ci (a photon
whose frequency is! ). The equations of isotropic geodesics result as the
observable projections of the well-known generally covariant equations
of isotropic geodesics (see [18,19] for details).

In a rotation-free and non-deforming space (A ik = 0, D ik = 0), such
as the space of a non-rotating liquid collapsar, the equations (6.22)take
the form

d!
d�

�
!
c2 Fi ci = 0

d
�
!c i

�

d�
� !F i + ! � i

nk cn ck = 0

9
>>=

>>;
: (6.23)

Let a photon travel only along the radial direction x1= r . Consider
the chr.inv.-scalar geodesic equation (equation of energy) of the photon
with the obtained formula for F1 (6.20) substituted. We also take into
account that the photon's observable velocity is the observable velocity
of light along the radial direction, c1 = dr

d� . We obtain

1
!

d!
d�

=
r

a2 � r 2

dr
d�

: (6.24)

This equation solves asd ln ! = � 1
2 d lnja2 � r 2 j, or

d ln ! = d ln
1

p
a2 � r 2

: (6.25)

Herefrom we obtain the function

! (r ) =
Q

p
a2 � r 2

; Q = const: (6.26)

The integration constant Q is found from the obvious boundary condi-
tion ! (r = 0) = ! 0. It is Q = a2! 0. Finally, we arrive at the solution

! =
! 0q

1 � r 2

a2

: (6.27)
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At distances (of the photon's travel) small to the physical radius of the
collapsar (r � a), this formula becomes

! ' ! 0

�
1 +

r 2

2a2

�
: (6.28)

This causes asquare redshift(we also refer to it as aparabolic redshift,
due to the parabolic square function)

z =
! � ! 0

! 0
=

1
q

1 � r 2

a2

� 1 > 0 (6.29)

in the photon's spectrum: the force of repulsionF1, acting along the
radial coordinate from the observer (in the observer's reference frame),
deccelerates photons travelling from a distant object to him. At small
distances, of the photon's travel (r � a), the redshift is

z '
r 2

2a2 ; (6.30)

or, formulating this result through the Hubble constant H = c
a ,

z '
H 2r 2

2c2 : (6.31)

Thus, the observable parameters of the Universe manifest that itis
a huge collapsar. These data match the calculations according to the
theory of non-rotating liquid collapsars presented here.

§6.5 The state of the collapsed liquid substance

We now discuss the state of the substance that �lls non-rotating liquid
collapsars. As easy to see, once a liquid star is in the state of gravi-
tational collapse (rg = a), the space metric of the star (6.7) takes the
form

ds2 =
1
4

�
1 �

r 2

a2

�
c2dt2 �

dr2

1 � r 2

a2

� r 2 �
d� 2 + sin 2� d� 2�

: (6.32)

This metric, under the particular condition a2 = 3
� > 0 (thus � > 0), has

the same form as de Sitter's metric (1.5),

ds2 =
�

1 �
�r 2

3

�
c2dt2 �

dr2

1 � �r 2

3

� r 2 �
d� 2 + sin 2� d� 2�

; (6.33)
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which describes a spherical distribution of physical vacuum (the� -�eld
in Einstein's �eld equations).

This means that liquid collapsars consist of perfect liquid whose state
is similar to the state of physical vacuum. The only di�erence is that
the liquid that �lls the collapsars possesses positive density, while the
density of physical vacuum is negative with� > 0 (see§5.2 and §5.3 of
our book [18] for details). Also, regular liquid collapsars have a small
size and high density (in contrast to the Universe as a whole). Therefore,
the liquid that �lls the regular (compact) collapsars is in a state similar
to the state of high-density physical vacuum.

What is physical vacuum, known also as the� -�eld? It is due to the
general formulation of Einstein's �eld equations

R�� �
1
2

g�� R = � { T�� + �g �� (6.34)

containing the � -term on the right-hand side. The right-hand side de-
termines distributed matter which �lls the space, while the left-hand
side determines the space geometry which is Riemannian according to
the formulation. Re-write the �eld equations in the form

R�� �
1
2

g�� R = � { eT�� ; (6.35)

where the common energy-momentum tensoreT�� = T�� + �T�� charac-
terizes both distributed substance and physical vacuum (� -�eld).

The energy-momentum tensor of physical vacuum

�T�� = �
�
{

g�� (6.36)

has the following physically observable projections

�� =
�T00

g00
= �

�
{

= const < 0; (6.37)

�J i =
c �T i

0p
g00

= 0 ; (6.38)

�U ik = c2 �T ik =
�
{

c2hik = � ��c 2hik : (6.39)

which are calculated as well as the observable projections (1.84) ofany
energy-momentum tensor.

The scalar chr.inv.-projection �� = � �
{ = const implies that physical

vacuum is homogeneously distributed in the space, i.e. is ahomogeneous
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medium. The vectorial chr.inv.-projection �J i = 0 manifests that the
physical vacuum is free of energy 
ow, i.e. is anon-emitting medium.

Let us then �nd the equation of state of physical vacuum. According
to the chronometrically invariant formalism [18, 23], the chr.inv.-stress
tensorU ik is expressed through the pressure inside a distributed medium
as follows:

Uik = p0hik � � ik = phik � � ik ; (6.40)

wherep0 is the equilibrium pressure known due to the equation of state,
p is the true pressure inside the medium,� ik is the chr.inv.-viscous stress
tensor, � ik = � ik � 1

3 �h ik is its anisotropic part which reveals itself in
anisotropic deformations, while � = hik � ik is the trace of the viscous
stress-tensor� ik . Since a spherically symmetric space is isotropic by
de�nition, we have � ik = 0 in the present case. Also, by the initial as-
sumption, the medium is non-viscous (� ik = 0). Therefore, for physical
vacuum, we have

�Uik = �phik = � ��c 2hik : (6.41)

Respectively, with the formula of the trace of the observable stress-
tensor U = hik Uik , we obtain the equation of state of physical vacuum

�p = � ��c 2; (6.42)

which, with negative density �� = � �
{ < 0, manifests the state of de
ation

(the inner pressure of the medium tries to compress the sphere).
Hence forth, we deduce the covariant and contravariant components

of the force of gravitation acting inside a vacuum (de Sitter) collapsar.
Following the same way of deduction as that for the force acting inside
a liquid collapsar (6.20, 6.21), we obtain

F1 =
�c 2r

3
1

1 � �r 2

3

; F 1 =
�c 2r

3
; (6.43)

while for the frequency shift of a photon we obtain

! =
! 0q

1 � �r 2

3

' ! 0

�
1 +

� 2

6

�
: (6.44)

z =
! � ! 0

! 0
=

1
q

1 � �r 2

3

� 1 '
� r 2

6
> 0 (6.45)

To understand the results, let us recall that we were able to trans-
form the space metric of a collapsed liquid sphere (6.32) to de Sitter's
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space metric (6.33) only by the particular condition a2 = 3
� > 0. Hence,

we have assumed� > 0. With � > 0 we have obtained a negative density
of physical vacuum �� = � �

{ < 0 (6.37), the state of in
ation �p= � ��c 2

(6.42), the repulsing forceF1 > 0 (6.43), and the redshift (6.45).
These are the same results as those obtained for a liquid collapsar,

except for the negative density �� = � �
{ < 0 (and, hence, the positive

pressure �p= � ��c 2 > 0 which gives the state of de
ation).
If we should assume a negative value of the� (i.e. � < 0), in order

to obtain a positive density of physical vacuum, the collapsar's radius
a would be imaginary, which is non-sense for the observed Universe.

However, there is another way to remove this di�culty with respect
to the theory. Consider Einstein's �eld equations (6.34) in a modi�ed
form wherein both the energy-momentum tensor of distributed sub-
stance and the� -term are taken with the same sign, i.e.

R�� �
1
2

g�� R = � { T�� � �g �� : (6.46)

In this case, the energy-momentum tensor of physical vacuum is

�T�� =
�
{

g�� ; (6.47)

while the physically observable projections of it are

�� =
�T00

g00
=

�
{

= const > 0; (6.48)

�J i =
c �T i

0p
g00

= 0 ; (6.49)

�U ik = c2 �T ik = �
�
{

c2hik = � ��c 2hik : (6.50)

Given this case, physical vacuum (the� -�eld) is as well in the state
of in
ation (�p= � ��c 2), however its density is positive �� = �

{ > 0. Thus,
the modi�ed form (6.46) of Einstein's �eld equations removes the afore-
mentioned contradiction between the theory of liquid collapsars andthe
observed positive density of substance in the Universe.

Hence, physical vacuum (the� -�eld) is a homogeneous, non-viscous,
non-emitting medium in the state of in
ation.

Concerning the deduced redshift formula (6.45), it depends only on
the formulation of the force of repulsion which is deduced fromg00 of
de Sitter's metric (6.33). Since we did not change the space metric, the
redshift formula (6.45) remains unchanged as well.
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§6.6 Time 
ows in the opposite direction inside collapsars

In a rotation-free space such as the space of a non-rotating liquidstar,
the observable time intervald� (1.30) has a simpli�ed formulation which
is d� =

p
g00 dt. Therefore, d� in the �eld of a non-rotating liquid star,

according to g00 of the metric (6.6), has the form

d� = �
1
2

 

3

r

1 �
{ � 0a2

3
�

r

1 �
{ � 0r 2

3

!

dt: (6.51)

Under the particular condition a = rg =
p

3={ � 0 characterizing the star
in the state of gravitational collapse, this formula transforms to

d� = �
1
2

r

1 �
{ � 0r 2

3
dt: (6.52)

We see that the sign of the observable time intervald� in a liquid
star whose state is regular (out of collapse) is opposite to that in the
star being a collapsar. In other words, the observable time in the �eld
of regular stars 
ows in the opposite direction than the observabletime
inside a collapsar. Just one illustration: we regularly assume that ob-
servable time 
ows from the past to the future. If so, the observable
time inside collapsars 
ows from the future to the past.

§6.7 The boundary conditions of a liquid collapsar

With the condition a = rg =
p

3={ � 0 characterizing liquid collapsars,
the non-zero components of the Riemann-Christo�el curvature tensor
R��
� (2.113{2.116) obtained in §2.3 take the form

R0101 =
{ � 0

12
=

1
4a2 = const ; (6.53)

R1212 = � C1212 =
{ � 0

3
r 2

1 � { � 0 r 2

3

=
r 2

a2

1

1 � r 2

a2

; (6.54)

R1313 = � C1313 =
{ � 0

3
r 2 sin2 �

1 � { � 0 r 2

3

=
r 2

a2

sin2 �

1 � r 2

a2

; (6.55)

R2323 = � C2323 =
{ � 0

3
r 4 sin2 � =

r 4

a2 sin2 � : (6.56)

SinceR0101 = { � 0

12 = const and R0101 > 0 at the positive density � 0 > 0 of
the liquid, the \inner" space of a liquid collapsar is a four-dimensional
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positive constant curvature space. This is in contrast to our result of
§2.3 where we showed that the space of a liquid sphere has avariable
four-curvature which is negative. This means that:

ˆ The state of gravitational collapse is a \bridge" connecting the
world of varying four-dimensional negative curvature (world of
regular stars) and the world of four-dimensional positive constant
curvature (inside those stars in the state of gravitational collapse).

Concerning the three-dimensional observable curvature of the space
inside non-rotating liquid collapsars, we calculate C11 (2.104), C22

(2.105), and the observable curvature scalarC = hik Cik under the con-
dition a = rg =

p
3={ � 0 characterizing liquid collapsars. We obtain

C11 = �
2{ � 0

3
1

1 � { � 0 r 2

3

= �
2
a2

1

1 � r 2

a2

; (6.57)

C22 =
C33

sin2 �
= �

2{ � 0 r 2

3
= �

2r 2

a2 ; (6.58)

C = � 2{ � 0 = �
6
a2 = const < 0: (6.59)

It is a three-dimensional negative constant curvature spaceas well as
the space of regular liquid stars (as a matter of fact that regular stars
are out of the state of collapse).

Hence forth, we express the force of gravitation acting in the \inner"
space of a non-rotating liquid collapsar through the three-dimensional
observable curvature of the \inner" space. From the respectiveformulae
for F1 (6.20) and F 1 (6.21), we obtain

F1 = �
c2r
2

C11 ; F 1 = �
c2

2r
C22 : (6.60)

we see that both the three-dimensional observable curvature and the
force of gravitation possess space breaking:

C11 ! �1 ; F1 = ! 1 (6.61)

by the boundary condition r = a on the surface of the collapsar. This
result is, however, trivial.

§6.8 Rotating liquid collapsars

We now reveal rotating liquid collapsars. Let us rotate the space metric
of a liquid collapsar (6.32) with an angular velocity ! around the line
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orthogonal to the equatorial plane. Among the g0i -th components of
g�� , the non-zero componentg03 characterizes the rotation of space
(while g01 = g02 = 0). It formulates as

g03 = �
2!r 2 cos�

c
; (6.62)

so the linear velocity of space rotationvi (1.45) is

v3 =
2! r 2 cos�
q

1 � r 2

a2

; v1 = v2 = 0 : (6.63)

As a result, we obtain the space metric of a rotating liquid collapsar

ds2 =
1
4

�
1 �

r 2

a2

�
c2dt2 �

dr2

1 � r 2

a2

�

�
2!r 2 cos�

c
cdt d� � r 2 �

d� 2 + sin 2� d� 2�
: (6.64)

It is possible to prove that this space metric satis�es Einstein's �eld
equations containing the energy-momentum tensor for perfect liquid
(2.4). This means that, once we substitute the particular components
of g�� taken from the metric (6.64) into the �eld equations, the left-
hand side and right-hand side of the equations are the same: the �eld
equations become identities and are thus satis�ed.

The general condition of gravitational collapse means that physical
observable time stops (d� = 0). The de�nition of d� (1.30),

d� =
p

g00 dt +
g0i

c
p

g00
dxi =

p
g00 dt �

1
c2 vi dxi ; (6.65)

takes both g00 and g0i into account. Therefore, with vi 6= 0, the collapse
condition is not d� =

p
g00 dt = 0 as that for non-rotating collapsars, but

takes, in the present case under consideration, the complete form

p
g00 �

1
c2 v3u3 = 0 ; (6.66)

where u3 = d�
dt = ! . Substituting g00 from the metric (6.64), v3 (6.63),

and u3 = ! , we obtain the radius of the collapse surface of a rotating
liquid collapsar

r c =
a

q
1 + 4 ! 2 a2 cos �

c2

6 a; (6.67)
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hence

r c ' a
�

1 �
2! 2a2 cos�

c2

�
= a � � a: (6.68)

Assuming ! = 103 sec� 1 and a = 106 cm for example, we obtain � a '
22 cos� , i.e. � a ' 22 meters at the equator of the star, and � a = 0 at
the South Pole and North Pole.

We see that the collapse surface matches the sphere's radiusa only
at the poles of the rotation (where the latitude � is � �

2 , so we have
cos� = 0). In other words, rotating liquid collapsars are not spheres but
have anelliptic form , which is 
attened on the equatorial plane (which
is orthogonal to the axis of rotation).

Once the collapsar does not rotate (! = 0), its form is spherically
symmetric (r c = a). Contrarily, at an ultimate relativistic speed of the
rotation, the collapsar's elliptic form is highly 
attened on the equato rial
plane. In the ultimate case, where the collapsar rotates at a speedvery
close to the speed of light (! 2a2 ! c2), its form is set up by the equation

r c =
a

p
1 + 4 cos�

: (6.69)

The other parameters of rotating liquid collapsars we have obtained
in the framework of the theory do not change the principal resultsob-
tained in §5.1 for non-rotating liquid collapsars. The only di�erence is
that correction for the angular velocity of the collapsar's rotation ! . We
therefore omit these results from consideration.

§6.9 Conclusion

Finally, let us recall all the theoretical results of liquid collapsars that
have been obtained above:

1. The radial coordinate r c (6.10) by which a non-rotating liquid
sphere of radiusa meets gravitational collapse, is

r c =

s

9a2 �
8a3

rg
:

For regular stars, r c is in the range of imaginary numerical values.
Therefore, regular stars ranging from super-giants to dwarfs and
white dwarfs cannot collapse;

2. By the requirement that the collapse radiusr c should be real for
real objects, the physical radiusa of a collapsar should be

a 6 1:125rg :
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If its radius is a > 1:125rg, the non-rotating liquid body (star)
cannot be in the state of gravitational collapse.

3. The density of substance is the primary characteristic of non-
rotating liquid collapsars. The physical radiusa of such a collapsar
is reciprocal to the square root of its density� 0 (6.13)

a =

s
3

{ � 0
=

4:0 � 1013

p
� 0

cm;

4. The massM of a non-rotating liquid collapsar is proportional to
its physical radius a (6.14)

M =
4�a
{

= 6 :8 � 1027 a gram;

and is reciprocal to the square root of its density� 0 (6.15)

M =
4
p

3 �
{ 3=2p

� 0
=

2:7 � 1041

p
� 0

gram;

5. The observable Universe is completely located inside its collapse
radius. In other words, it is a gravitational collapsar: all the stars
and galaxies, including us, exist within a huge black hole. Its
parameters, calculated according to the liquid model, are

a = 1 :3 � 1028 cm;

� 0 = 9 :6 � 10� 31 gram/cm3;

M = 8 :8 � 1055 gram;

6. The liquid which �lls the collapsars is in the state of in
ation

p = � � 0c2 = const;

i.e. at the positive density of the substance the pressure is nega-
tive, so the inner pressure tries to expand the body from within
(while the collapsar does not expand, because a liquid body is in-
compressible). The pressure and density remain unchanged from
the center of the collapsar to its surface;

7. The gravitational inertial force acting inside a non-rotating liquid
collapsar is a force of repulsion. It increases with distance, from
zero at the center of the collapsar to its ultimate-high value on
the surface;
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8. The inner force of repulsion produces a square (parabolic) redshift
in the photons travelling within the collapsar, to its center;

9. The state of the liquid �lling regular (compact) collapsars is sim-
ilar to the state of high-density physical vacuum (high-density � -
�eld), which is a homogeneous, non-viscous, non-emitting medium
in the state of in
ation;

10. The observable time 
ows in di�erent directions inside and out-
side collapsars: once we assume that the observable time of our
world 
ows from the past to the future, the observable time inside
collapsars 
ows from the future to the past;

11. The state of gravitational collapse is a \bridge" connecting the
world of varying four-dimensional negative curvature (world of
regular stars) and the world of four-dimensional positive constant
curvature inside gravitational collapsars (black holes);

12. Rotating liquid collapsars are not spheres but possess anelliptic
form which is 
attened on the equatorial plane. The radius r c

of a rotating liquid collapsar is formulated through the sphere's
radius a, the latitude � , and the angular velocity of the respective
rotation ! as

r c =
a

q
1 + 4 ! 2 a2 cos �

c2

:
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Ordinary di�erential of a vector:

dA� =
@A�

@x�
dx� :

Absolute di�erential of a contravariant vector:

DA � = r � A � dx� = dA� + � �
�� A � dx� :

Absolute di�erential of a covariant vector:

DA � = r � A � dx� = dA� � � �
�� A � dx� :

Absolute derivative of a contravariant vector:

r � A � =
DA �

dx� =
@A�

@x�
+ � �

�� A � :

Absolute derivative of a covariant vector:

r � A � =
DA �

dx� =
@A�
@x�

� � �
�� A � :

Absolute derivative of a 2nd rank contravariant tensor:

r � F �� =
@F��

@x�
+ � �

�� F �� + � �
�� F �� :

Absolute derivative of a 2nd rank covariant tensor:

r � F�� =
@F��
@x�

� � �
�� F�� � � �

�� F�� :

Absolute divergence of a vector:

r � A � =
@A�

@x�
+ � �

�� A � :

Chr.inv.-divergence of a chr.inv.-vector:

� r i qi =
�@qi

@xi
+ qi

� @ln
p

h
@xi

=
�@qi

@xi
+ qi � j

ji :

Physical chr.inv.-divergence:

� er i qi = � r i qi �
1
c2 Fi qi :
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D'Alembert's general covariant operator:

� = g�� r � r � :

Laplace's ordinary operator:

� = � gik r i r k :

Chr.inv.-Laplace operator:

� � = hik � r i
� r k :

Chr.inv.-derivative with respect to the time coordinate and that with
respect to the spatial coordinates:

�@
@t

=
1

p
g00

@
@t

;
�@

@xi
=

@
@xi

+
1
c2 vi

�@
@t

:

The square of the physically observable velocity:

v2 = v i vi = hik vi vk :

The linear velocity of the space rotation:

vi = � c
g0i

p
g00

; vi = � cg0i p g00 ; vi = hik vk :

The square ofvi . This is the proof: because ofg�� g�� = g�
� , then under

� = � = 0 we have g0� g� 0 = � 0
0 = 1, hencev2 = vk vk = c2(1� g00 g00), i.e.:

v2 = hik vi vk :

The determinants of the metric tensorsg�� and h�� are connected as:
p

� g =
p

h
p

g00 :

Derivative with respect to the physically observable time:

d
d�

=
�@
@t

+ v k
�@

@xk
:

The 1st derivative with respect to the space-time interval:

d
ds

=
1

c
q

1 � v 2

c2

d
d�

:
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The 2nd derivative with respect to the space-time interval:

d2

ds2 =
1

c2 � v2

d2

d� 2 +
1

(c2 � v2)2

�
D ik vi vk + v i

dvi

d�
+

1
2

� @hik
@xm

vi vk vm
�

d
d�

:

The chr.inv.-metric tensor:

hik = � gik +
1
c2 vi vk ; hik = � gik ; hk

i = � k
i :

Zelmanov's relations between the Christo�el regular symbols and the
chr.inv.-characteristics of the space of reference:

D i
k + A � i

k � =
c

p
g00

�
� i

0k �
g0k � i

00

g00

�
;

gi� gk� � m
�� = hiq hks � m

qs ; F k = �
c2 � k

00

g00
:

Zelmanov's 1st identity and 2nd identity:

� @Aik
@t

+
1
2

� � @Fk
@xi

�
� @Fi
@xk

�
= 0 ;

� @Akm

@xi
+

� @Ami

@xk
+

� @Aik
@xm

+
1
2

�
Fi Akm + Fk Ami + Fm A ik

�
= 0 :

Derivative from v 2 with respect to the physically observable time:

d
d�

�
v2�

=
d
d�

�
hik vi vk �

= 2 D ik vi vk +
�@hik
@xm

vi vk vm + 2v k
dvk

d�
:

The completely antisymmetric chr.inv.-tensor:

" ikm =
p

g00 E 0ikm =
e0ikm

p
h

; " ikm =
E0ikm
p

g00
= e0ikm

p
h :
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