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The Exact Godel Metric

Patrick Marquet
Calais, France. E-mail: patrick.marquet6 @wanadoo.fr

We demonstrate that Gddel’s metric does not represent a model of universe as it is usually
accepted in the standard literature. In fact, a close inspection shows that this metric
as it stands is a very special case of a broader metric. Introducing a simple conformal
transformation readily induces a pressure term on the right hand side of the Einstein’s
field equations which actually describe a peculiar perfect fluid. This term was wrongly
interpreted by Godel as the ad hoc cosmological constant required to sustain his model.
Godel’s space-time can be thus regarded as a real physical system with no cosmological
implication and it is relegated to the class of ordinary metrics. The emergence of the
related closed time-like curves is not bound to a rotating universe as stated in all classical
treatments and this fact naturally sheds new light on time travel feasibility considerations.

Notations In what follows, we are able to relax our demand that the
Godel metric be a description of an actual universe. This is
achieved through a specific transformation which makes Godel
space-time an “ordinary” metric just as any other metrics
currently derived in physics.

Space-time greek indices run from: «,8: 0, 1, 2, 3.
Space-time signature: -2.

x is the Einstein constant.

We adopt here: ¢ = 1.

1 The Godel universe 1.2 The basic theory
1.1 General The classical Godel line element is generically given by the

interval
In his original paper [1], Kurt Godel has derived an exact

solution to Einstein’s field equations in which the matter takes ~ ds’ = a’ [dez —dx’ + dx22% 21— dx? + 2 (dxodxz)], (1.1
the form of a shear/pressure free fluid (dust solution).

This universe is homogeneous but non-isotropic and it
exhibits a specific rotational symmetry which allows for the
existence of close timelike curves (CTCs). The Godel space-
time has a five dimensional group of isometries (G5) which is
transitive. (An action of a group is transitive on a manifold
(M,g), if it can map any point of the manifold into any other

or equivalently:

ds* = d*

1
—dx)? — dxy® — dxzzi e + (eMdx, + dxo)z]. (1.2)

a > 01is a constant.
The components of the metric tensor are:

points of M). a 02 a’e" 0
It admits a five dimensional Lie algebra of Killing vector (Gur)G = 20 —a ) 10 5 0
fields generated by a time translation dy,, two spatial transla- g ae™ 0 a"ze™ 02
tions dy,, 0y,, plus two further Killing vector fields: 0 0 0 —a
. S B —a? 0 —a~22e™% 0
Oy, — %20y, and 2e"0y, + x20,, + e — 2 X0y, |- o 0 ) 0 0
(g )G - _a—ZZe—xl 0 _a—22e—2x1 0
The Weyl tensor of the standard Godel solution has Petrov 0 0 0 —a?
type D: . . .
ype X In this particular case, since only 01(g22)g#0 and 01(go2)g
B _ paB B [ Bl # 0, the non-zero connection components are:
C¥ur = R+ 3 67,0, + 26 R P 1
0 _ 0 _ gl _
The presence of the non-vanishing Weyl tensor prevents the Mo =1 [T =1p= 2 e

Godel metric from being Euclidean whatever the coordinates
transformations.

This is in contrast to the Friedmann-Lemaitre-Robertson-
Walker metric which can be shown to reduce to a conformal
Euclidean metric, implying that its Weyl tensor is zero [2].

1
1 _ Z a2x 2 _ A
F22_2e I, =-e

Those greatly simplify the Ricci tensor: Rg, = 011 lﬁy +
r lﬁy -T 5aﬁf “5, whose components reduce to:

The Godel universe is often dismissed because it implies a 2%,
. . . Roo = 1, Ry =¢
non zero cosmological term and also since its rotation would .
. . . 1
conflict with observational data. Rop =Ry =e¢

Patrick Marquet. The Exact Godel Metric 133
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The Godel unit vector u of matter in the direction of the xg
lines has the following components:

U =", 0,0,0), (1.3)
(), = (@, 0, ae™, 0), (1.4)
hence:
Ry = (uﬂu,,)G a2, (1.5)
R= (u“uﬂ)G =a2 (1.6)

In order to make his metric a compatible solution to Ein-
stein’s field equations, Godel is led to introduce a cosmological
constant A as:

1
R, — zgwR = npu,u, + g, A

1.7
> (1.7
To achieve this compatibility, he then further sets:
a’?=up, (1.8)
1 1 1
A=—-—=R=—— =—=xp. 1.9
2 22" 2 (1.9)

As primarily claimed by Godel, its stationary space-time is
homogeneous.

For every point A of the manifold (M, g;), there exists a
one-parameter group of transformations of M carrying A into
itself.

This means that (M, g;) has a rotational symmetry and
matter rotates everywhere with a constant rotation velocity
magnitude wg orthogonal to ug.

Using the contravariant components:

2

(0 = [0, 0,0, i;) (1.10)

a

one finds:
a
WG = (G )" = Noh (1.11)
With (1.8) this magnitude is:

1 1/2

wG = (5 h’p) . (1.12)

A first glance at these constraints, readily reveals a fairly
high degree of arbitrariness in the theory.

Finetuning the hypothetical constant A with the density
of the universe (and the Ricci scalar) appears indeed as a
somewhat dubious physical argument.

We shall see that those ill-defined assumptions are not
required in order for the basic model to satisfy the field equa-
tions.

134

2  Godel’s model defined as a homogenous perfect fluid
2.1 Reformulation of Godel’s metric

We now make the assumption that a is slightly space-time
variable and we set:
(2.1)

The positive scalar U(x,) > 0 will be explicited below.
The Godel metric tensor components (1.2) are related to
the fundamental metric tensor g by:

(9)6 = €V gy, (22)

-2U uv
2

(@) =Yg (2.2 bis)

This means that the G6del metric is now conformal:
1
ds* = e®Y|dxy? —dx,> + dxzzz e — dx;? + 2e (dxodx,)|. (2.3)

We are now going to see how the substitution (2.1) drasti-
cally changes the meaning of Godel’s limited theory.

2.2 Relativistic analysis of a neutral homogeneous perfect
fluid

2.2.1 The geodesic differential system

Let us consider the manifold (M,g), on which is defined a
vector tangent to the curve C in local coordinates:

dc’

La

where ¢ is an affine parameter.

In these coordinates we consider the scalar valued function
f(x%,x%) which is homogeneous and of first degree with respect
to x¢.

To the curve C joining the point x; to x,, one can always
associate the integral A such that

6] X2
A = f(&x*,x%)d¢ = f Fx*,x%)dx”.

4]

2.4)

We now want to evaluate the variation of A with respect to
the points ¢} and {>:

63
éﬂzfélz_f‘s{l _f; Sfdé"

Classically we know that:

163 &)
f Sfd¢ = [ﬁ w] - f E,5x7d¢,
4] ox* &

where E, is the first member of the Euler equations associated
with the function f.
With E, as the components of E, we infer the expression

763
dA = [w(d)]y, — [w(d)],, —f Ebxdd, (2.5)

&
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where [w(d)] has the form:

[w(d)] = (ﬂ)éx“ - (x" af

Ax® oxe

f)é(.

Due to the homogeneity of f, it reduces to:

w(®) = (aaxa)sxa.

Let us apply the above results to the function
ds 1/2
_U9S _ v LB
f =¢ dév =€ (gaﬁx X ) ’

where eV is defined everywhere on (M, g).
Between two points x; and x;, of (M, g) connected by a
time-like curve we have the correspondence:

2 2 12
s’=f eUds=f eU(gaﬁx”xﬁ) .

X1 X1

(2.6)

We first differentiate f> = ¢2 (gaﬁx"xﬁ) with respect to X%
and x“:
of

2U .
95T € gaﬁxﬁa

S 2.7)

0
FoL = (gt

12

X

doe () + 5 eUa(,(gB,,xﬁxﬂ)]. 28

We now choose s as the affine parameter £ of the curve C,
so the vector i” is here regarded as the unit vector u” tangent
to C.

Equations (2.7) and (2.8) then reduce to the following:

d
ﬁ = eVug, 2.9)
d 1
ﬁ = OgeV + 3 eV Op(gap) U,
d
é = dpe¥ + eV up Ut (2.10)

The Iy, are here the Christoffel symbols of the first kind.
Expliciting the Euler equations f(x%,du®):

Ep=——L - L 2.11)

we get:

Eg = eU(u”aﬂuﬂ - F(,B,ﬂu”u/‘) —9qeY

Eg = [(w'Vyup) — 05U — 0, U(6," — uug) |-

Patrick Marquet. The Exact Godel Metric

Equation (2.5) becomes:

5A = [w(d)],, — [w(d)],, — f (ESx)ds,

X1

(2.13)

where locally: w(8) = eYu,dx”.

When the curve C varies between two fixed points x; and
X, the local variations [w(8)],, and [w(d)],, vanish. Therefore
applying the variational principle to (2.13) simply leads to:

X2
5A = —f (Edx)ds = 0,

X1

(2.14)

from which we infer E = 0, i.e., from (2.12):
W'V — 0 U(85" - u"ug) =0 (since e’ #0). (2.15)

The equation (2.15) is formally identical to the differential
system obeyed by the flow lines of a perfect fluid of density p
with an equation of state p = f(P) (see Appendix):

Tﬂﬁ = (‘0 + P)M”MIB - Pgﬂﬁ.

These flow lines are thus timelike geodesics of the confor-
mal metric to (M, g) according to (2.6):

5
s’:f eVds,
51

P ap
sz :
p P+P

All along the curve segment (s), the pressure is varying
between two endpoints s; and s, which correspond to the
values P; and P.

One can find similar conclusions in [3,4].

The positive scalar eV accounts for the relativistic fluid
index [5].

(2.16)

(2.17)

with

(2.18)

2.2.2 The Godel interpretation

The tensor (2.16) can be equivalently written:

T,p = pu,ug — Phyg, (2.19)
with the projection tensor:
hﬂﬁ = g”ﬁ - M”bt[;. (220)

The cosmological term can then be re-introduced by setting

A
P=-=,
V4

2.21)

yielding the model which Godel simply focused on.

Finally, by letting a be a conformal factor, we see that
Godel’s metric (2.3) is simply the solution of the field equations
with a variable pressure term as per:

(2.21bis)

1
Ry — 3 guR = %(pu”uﬁ - Phﬂﬁ).

The cosmological “constant” A is thus no longer this
arbitrary ingredient required to sustain the Godel model and so
are the constraints (1.8) and (1.9).
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2.3 The Godel rotation
2.3.1 Vorticity of the fluid

We just showed that Godel space-time should be likened to a
perfect fluid.

The time-like 4-vector u, is everywhere tangent to the flow
lines of this fluid.

The covariant derivative u,,, may be expressed in a in-
variant manner in terms of tensor fields which describe the
kinematics of the congruence of curves generated by u®.

In Godel’s case, the shear tensor o, vanishes:

Oap = Uy — % Ohoy + it ou,) = 0, (2.22)
where 8 is the expansion scalar:
0=u",. (2.22bis)
ity 18 the acceleration vector of the flow lines:
g = Ugyutt. (2.22ter)

For a perfect fluid, this acceleration is shown to be (see
Appendix):

it = 0, U. (2.23)

Besides i1, and 6, the shearless fluid is characterized by the
vorticity tensor:

Way = h(y(rhﬂvu[tr;v] = Ul T Ijl[auu]’ (224)
from which is derived the vorticity 4-vector w of the flow lines
of the fluid.
The w-components are known to be: [6]
of = L sy
= 3 777 uywep, (2.25)
with the Levi-Civita tensor: nf77* = —g~1/2 . ghror,
The kinematic quantities w,, and w, are completely or-
thogonal to u* | i.e.,
Woutt" =0, fut = weut = 0.
(Shear free flows of a perfect fluid associated with the Weyl ten-

sor have been extensively investigated by A. Barnes, Classical
General Relativity. proc. Cambridge, 1984).

2.3.2 Conformal transformations

All above results can be easily extended to the conformal
manifold (M, g") by applying the covariant derivative (V,)’
formed with the conformal connection coefficients:

(Fyflﬁ)/ = Fyaﬁ +267 U,ﬁ) - gaﬁUyy- (2.26)

(a

136

One also defines the unit 4-vector w of the fluid on the
conformal metric (ds?)’ as:

Uu/l’

(2.27)

wh =e

(2.28)

wp = e_Uuﬂ.

In this case, the differential system of the flow lines w*
admits the relative integral invariant in the sense of Poincaré

[7]:
fgz fwﬁéxﬂ.

Denoting by dQ the exterior differential of the form Q, we
have in local coordinates:

(2.29)

1
dQ = dug ndxF = |Optwe — Batwp|dx® A dx”.  (2.30)

To the form dQ is associated the antisymmetric tensor of
components:

Wpy = 6ﬁwa — 6awﬁ. (231)

It is easy to verify that these components coincide with
the vorticity tensor components defined by (2.24). Unlike the
vorticity tensor wg,, the vorticity vector w? does not remains
the same upon the conformal transformations (2.27)—(2.28).

2.3.3 Application to the Gédel model

On the modified Godel manifold (M, g), the components of
the unit 4-vector wg tangent to world lines of matter (1.3) (1.4)
are here:

(2.32)

(2.33)

W")g = e W) = ¢"(1,0,0,0),
(wﬁ)G = e”(uﬁ)G =eU(1,0,e",0).

Notice that the contravariant components (u*)g are all
constant.
In this particular case, according to (2.23), one has

() = 0,U =0, 1i.e., U is constant.

By concatenation, the conformal factor exp U reduces to a
constant and coincides with Godel’s choice a = const.

So the vorticity magnitude of the fluid’s matter remains as
in the initial theory:

12 a
—_ @ —_
wg = (gdpw w”)G =

N

On the other hand, we note that the covariant components
of the velocity (ug)g are not all constant.

This means that the conformal geodesics principle holds
within our theory.

In other words, we clearly see that Godel’s proposed solu-
tion is only a (very limited) special case (contravariant velocity
components) which therefore reveals a patent lack of general-

1ty.

(2.34)

Patrick Marquet. The Exact Godel Metric
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Therefore, Godel’s theory ought to be embedded in a
broader scheme implying a conformal metric (dsz) as we
inferred above.

Note: one of the Kretschmann scalar is an invariant only
for we : Rapys T = 120"

2.4 Chronal horizon

With Gdodel one defines new (cylindrical) coordinates (¢,7,¢,y)
by setting:

e™ = cosh2r + cos¢sinh2r, (2.35)
xe" = V2singsinh2r, (2.36)

1 -2t
tanz ¢+ %} = e‘zrtang, (2.37)
27 = x3. (2.38)

Within the framework of our theory, these coordinates lead
to the line element:

ds® = 4V (0)[dr* - dr* — d?+
+(sinh*r - sinh’r)d@® + 2 V2sinh®rdgdt|. (2.39)

This metric still exhibits the rotational symmetry of the
solution about the axis r = 0, since we clearly see that the
components of the metric tensor do not depend on ¢.

For r > 0, we have: 0 < ¢ < 27 If a curve rg is defined
by: sinh*r = 1, that is

re =In(1+ V2), (2.40)
then any curve r > In(1 + \5), i.e. (sinh4r - sinhzr) >0
materialized in the “plane” ¢ = const. (or zero ?), is a closed
timelike curve.

The radius rg referred to as the Gaodel radius induces a
light-like curve or closed null curve, where the light cones are
tangential to the plane of constant (or zero) .

The photons trajectories reaching this radius are closing
up, therefore rg constitutes a chronal horizon beyond which
an observer located at the origin (» = 0) cannot detect them.

With increasing r > rg the light cones continue to keel
over and their opening angles widen until their future parts
reach the negative values of ¢.

In this achronal domain, any trajectory is a closed time-like
curve and s’ is extended over a full cycle.

As aresult, the integral U performed over the closed path
has no endpoints and is thus expressed in the form:

U= f dpP
- p+P
However, the pressure P which is fluctuating along the

closed path remains at the same averaged value for the whole
cycle and may be then regarded as globally constant.

+ const. (2.41)

Patrick Marquet. The Exact Godel Metric

In this case, the first term in the r.h.s. of (2.35) vanishes
implies U = const., and the conformal factor (expU) may
coincide again with Godel’s choice a = const.

Therefore, for r > rg, the acceleration of flow lines of
matter is always zero whatever the components of wg. Because
of this, all closed timelike curves can no longer be derived
from the geodesic principle calculation developed above.

By introducing the pressure in the Godel model, we clearly
put in evidence the difference between the geodesics and the
closed time-like curves.

This was mathematically outlined in [8] but no explanation
was provided as why this difference arises.

Conclusion

When Godel wrote down his metric he was led to introduce a
distinctive constant factor a in order to re-transcript the field
equations with a cosmological constant along with additional
constraints.

Our theory is free of all these constraints and moreover
it provides a physical meaning to the a term. Inspection
shows that by substituting a conformal factor to the constant a
induces the field equations with a pressure like term which was
wrongly interpreted by Godel as the cosmological constant of
the universe.

In fact, he empirically assembled the pieces of the constant
matter density and curvature scalar in order to conveniently
cope with the field equations precisely written with the cosmo-
logical constant.

In contrast, the reconstructed Godel metric is here a straight-
forward solution to these equations and as such it can be
reproduced like any other metric without referring to any
cosmological model whatsoever.

The metric still exhibits a rotation which allows for the
existence of close timelike curves (CTCs) since the light cone
opens up and tips over, as the Godel’s circular coordinate radius
increases within the cylindrical coordinates representation.

It seems that the first model exhibiting this property was
pioneered by the German mathematician C. Lanczos in 1924
[9], and later rediscovered in a new form by the dutch physicist
W. J. Van Stockum in 1937 [10].

However, the existence of CTCs satisfying the Einstein’s
equations remained so far a stumbling block for most of physi-
cists because it should imply the possibility to travel back and
forth in time.

The time travel possibility, was quoted as a pure mathe-
matical “exercise” unrealistic in nature because it was deemed
to describe a hypothetical universe contradicting the standard
model in expansion as we observe it. Moreover, defining an
absolute time is not readily applicable in Godel space-time.

In here, the cards are now somewhat reshuffled: the Godel
model does not describe any sort of universe and the relevant
metric can be applied as any other metrics like for example the
Schwarzschild, the Kerr or the Alcubierre’s ones.
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Under these circumstances, why not considering the Godel
model as a potential time machine?

A typical example of such possible time machine is given
by the cylinder system elaborated by the American physicist
F. J. Tipler in 1974 [11].

It describes an infinitely long massive cylinder spinning
along its longitudinal axis which gives rise to the “frame
dragging” effect. If the rotation rate is fast enough the light
cones of objects in cylinder’s vicinity become tilted. Tipler
suggested that a finite cylinder might also produce CTCs
which was objected by Hawking who argued that any finite
region containing CTCs would require negative energy density
produced by a so-called “exotic matter” which violates all
energy conditions [12].

The same kind of negative energy is needed to sustain a
coupled system of Lorentzian wormholes designed to create a
time machine as suggested in [13].

In all cases, feasibility and related causality paradoxes
seemed to have been killed once for good by Hawking through
a specific vacuum fluctuations mechanism that impedes any
attempt to travel in the past [14].

Several authors have however recently challenged if not
rejected this statement [15, 16].

These constraints do not apply in the present theory.

For a thorough study covering CTCs questions one can
refer to [17, 18].

Submitted on May 24, 2021
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Appendix

In a holonomic frame defined on (M,g), the unit vectors are
normalized so that:

gwtt'u’ = g uu, = 1. (A.1)
By differentiating we get:
u'Vyu, = 0. (A2)

Let us consider the following tensor which describes a
homogeneous perfect fluid with density p and with pressure P:

Ty = (o + P)uyu, — Pg,,,. (A.3)
The conservation equations are written:
Vul(p + Pyuu,] = V,(P6,)). (A4)
Setting the vector K, such that
(p— P)K, = V,(Ps,}"), (A.5)
V[0~ Putu,] = (0 + P)K,. (A6)
VulGo + Pyt lu, + (o + P)uV,u, = (o + P)K,. (A7)

Multiplying through with #”, and taking into account (A.2),
we obtain after dividing by (o + P):

uVu, = (gﬂv - uﬂu\,)K” = h, K", (A.8)

The flowlines everywhere tangent to the vector u* are
determined by the differential equations (A.8).

K* only depends on x* and since: h,, K* = K, = 0,——,

we set
K, =0,U, (A.9)
with JP
U= f . (A.10)
p+P

When the fluid pressure is function of the density, the
4-vector 9, U is regarded as the 4-acceleration vector i, of the
flow lines given by the pressure gradient orthogonal to those
lines [19, p.70].
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Extensive experimental tests of the Bell inequality have been conducted over time and
the test results are viewed as a testimony to quantum mechanics. In considering the
close tie between quantum mechanics and statistical theory, this paper identifies the
mistake in previous statistical explanation and uses an elegant statistical approach to
derive general formulas for two-particle Bell tests, without invoking any wavefunctions.
The results show that, for the special case where the spins/polarizations are in the same,
opposite, or perpendicular directions, the general formulas derived in this paper convert
to quantum predictions, which are confirmed by numerous experiments. The paper also
investigates the linkages between the statistical and quantum predictions and finds that
vector decomposition and probability law are at the heart of both approaches. Based on
this finding, the paper explains statistically why the local hidden variable theory fails
the Bell tests. The paper has important implications for quantum computing, quantum
theory in general, and the role of randomness and realism in physics.

1 Introduction

The extensive study on Bell tests originated from the 1935 pa-
per by Einstein et al [1], which claimed that physical reality
can be predicted with certainty and that the uncertain nature
of quantum prediction is due to incomplete information or the
act of local hidden variables. Bohm [2] proposed a thought
experiment to test the local hidden variable (LHV) theory and
quantum mechanism, but this thought experiment was im-
practical to implement. In 1964, John Bell [3] developed the
Bell inequality from the LHV theory as a testing tool: if the
inequality is violated, the LHV theory is disproved. In 1969
Clauser et al [4] extended the Bell inequality to an experi-
mentally testable version. Freedman and Clauser [38], As-
pect [5, 6] and many others used this version to test the in-
equality and convincingly rejected it. Numerous experiments
on Bell tests [7-21] have been conducted to close the “loop-
holes” in testing. Since almost all testing results are consis-
tent with the quantum mechanical prediction, they are viewed
as a testimony to quantum mechanism.

It is well known that quantum mechanics has a close tie
with probability theory. The author suspects that both quan-
tum mechanics and statistics mechanics may essentially be
the same in the case of the Bell tests, and therefore identified
the mistakes in previous statistical explanation and derived a
statistical prediction for two-particle Bell tests. It is revealed
that the quantum prediction of the Bell test results is a spe-
cial case of the statistical prediction. By comparing the sta-
tistical and quantum derivations, the author further demon-
strates that the essence of quantum prediction is probability
law, and that quantum entanglement in two-particle Bell tests
is nothing mysterious but an alternative expression for statis-
tical correlation (i.e. there is no difference between statistical
and quantum correlations). When the correlated particles are
separated and facing different conditions (e.g. polarizers of
different orientations), probability law can still maintain their
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correlation.

The paper is organized as follows: Section 2 demonstrates
the deterministic or uncorrelated nature of the Bell inequality
and reveals the mistakes in the previous statistical approach.
Based on a general case of spin or polarization, Section 3
derives a statistical prediction for Bell tests for all possible
uncorrelated and correlated particle pairs. Section 4 explores
the linkage between the quantum and statistical predictions,
while Section 5 uses the statistical approach to explain the re-
sults of representative two-particle Bell tests. Section 6 con-
cludes the paper.

2 Deterministic or uncorrelated nature of the Bell in-
equality

Realism and localism play a key role in deriving the Bell in-
equality. The usual assumption for derivation is that at loca-
tion A, a setting a (e.g. the direction of the spin/polarization
analyser) leads to an experimental outcome A(a), while set-
ting b at location B leads to outcome B(b), with the joint out-
come being E(a,b) = A(a) B(b). Since a setting leads to an
outcome with certainty, the outcome is predetermined by the
settings. This fits with the idea of determinism or realism.
Moreover, the outcome at a location is determined only by
the setting at that location, e.g. A(a) is determined by local
setting a at location A, not by setting b at location B. This is
localism.

If settings a and b can be changed to @’ and &', respec-
tively, we can have joint outcomes:

E(a,b') = A(a) B(Y')
E(@,b) = A(@) B(b)
E@.,b)=A)BD).

We further assume that the detected outcome at any set-
ting is between -1 and +1, namely |A| < 1, |B| < 1. With these
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assumptions, we can have:

E(a,b) — E(a,b') = A(a) B(b) — A(a) B()
= A(a) B(b) — A(a) B(b") + [A(a) B(b)][A(a’) B(b")]
- [A(a) B(D)][A(d") B(b")]
or
E(a,b)— E(a,b)) = A(a)B(b)[1 +A(@) B(b')] -
—A(a) BB [1 + A(a@) B(D)].

In absolute value, we can write:

|E(a,b) - E(a,b")

<|A(a) B(b)| = |1 + A(a’) B(b")| +
+|A(a) B(B)| = |1 + A(a’) B(D)| .

We have changed the negative sign on the right-hand side
of (1) to a positive sign in (2) because A(a) B(b’) can be neg-
ative. Since the values of A(a), B(b), A(d’), and B(b’) are all
between -1 and 1, we have:

A(@)B(b) <1 and |A(@) BO)| < 1.

As such, the inequality can be written as:

|E(a,b) - E(a,b")

< |1+ A@)B®)| + |1 + A@) B(b)|
=2+ |A(a) B(') + A(d") B(b)|

or
|E(a,b) - E(a,})

<2+ |E@,b)+E@.b)|. ()

On the right-hand side of (3), we used the “+” sign be-
cause both A(a’) B(b’) and A(a’) B(b) can be negative (lead-
ing to negative sign) or positive (leading to positive sign).
There are two boundaries in the above inequality. If the lower
boundary is satisfied, the inequality holds, so we have arrived
at the Bell inequality:

|E(a,b) + E(d,b') + E(a'b) — E(a, b)) < 2.

“

To incorporate a hidden variable into the inequality, most
researchers introduced a random variable. For example, Bell
[3,22] and Clauser et al [4] added to the experiments a hidden
variable A, which has a normalized probability distribution:

pru)da=1.

With the added hidden variable, Bell [3,22] expressed the
expected values of coincidence at the different settings a, a’,
b and b’ as follows:

E(a,b) = f ) A(a, 2) B(b, 2) p(1) dA 5)

E@a,b) = f ) A(a, 1) B, D) p(A) dd (©6)

00
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E(d',b) = foo A(d’, 2) B(b, 1) p(1)da @)

E(d,b) = fm A, ) B(', ) p(A)da. ®)

Using the same procedure that was used to derive the Bell
inequality for (3) — the deterministic case, Bell ( [22, pp. 178—
179]) derived (the notations are slightly changed for contem-
porary readers):

E(a,b) — E(a,b’) =

= [ A(a,2) B(b, 1) p(2) dA -

— [ A(a, ) B(t', D) p(D)da

= fj; [A(a, ) B(b, ) — A(a, ) B(b', A) +

+ A(a, ) B(b, ) A(a’, ) B(b’, A1) —

— A(a, Q) B(b, ) A(d’, ) B(', )] p(1) dA

= [ A@, ) B(b, ) [1 + A(d', ) B, )] p(A) dA -
- f; A(a, ) B(b', ) [1 + A(d’, 1) B(b, )] p()dA.

€))

In terms of absolute value, we have:
|E(a,b) — E(a,b")|

< Ifoo A(a, ) B(b, ) [1 + A(@’, ) B(b', )] p(2)dA |
+ | f°° A(a, ) B', D) [1 + A(d’, 2) B(b, )] p(1) dA |
< Ifw[l +A(d’, ) B(b', )] p()da |

+|fm[1 +A(d, ) B(b, )] p(1)dA |
=2+ |E@,b)+E@,b).

Rearranging the above inequality as before, we can obtain the
same inequality as (4).

From the above derivation, one may notice that the same
term f_ 0; p(A) dAis added to outcomes of the different settings
and then this term is filtered out in the end by the definition
of expected values in (7) and (8). As such, the added hidden
variable and probability are only additional statistical noise,
which does not change the deterministic nature of the result-
ing inequality.

Later, Bell and others [28-30] moved on to a version of
the Bell inequality based on joint and conditional probabili-
ties. However, they used the same assumption that the distri-
bution of hidden variable A is UNRELATED to local settings.
This assumption apparently contradicts the concept of a local
variable. Ironically, the assumption is often regarded as a fea-
ture of a local variable. Myrvold et al [23] used a different
approach. Instead of concerning the probability distributions
of A conditioned on settings, they conditioned the experimen-
tal outcomes on hidden variable A. Since they assigned no
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statistical property to A, its behaviour is unknown, so its role
in their derivation is negligible, or not essential at least.

To present a genuine statistical event, one should allow
the probability density A to vary with the local settings. In
other words, the probability of value A must be conditioned on
the settings, i.e. for settings a and b, we have the probability
p(d]a) and p(1|Db), respectively. The probability of the joint
outcome of settings a and b should be p(1|a,b). Similarly,
we have p(1|a,b’), p(1]d’,b), p(1]|a’,b") for other joint set-
tings. As such, the expected joint detection should be:

E(a,b) = f ) A(a, ) B(b, 2) p(1 | a,b)dA
E@,b) = f ) Ala, ) BB, ) p(A | a,b)dA

E(d,b) = f B A, ) B(b, ) p(A| d’,b)dA

EW,b) = f A@, ) BW, ) pd|d,b)dA.

Using this new definition of expected values, the terms
for the probability of A are different for each joint setting and
thus cannot be filtered out. As a result, the Bell inequality
cannot be derived.

However, one may further assume that the joint probabil-
ity of outcome at joint setting a and b is the multiplication of
probabilities of outcomes at each setting, namely:

p(dla,b) = p(d|a) p(1|b)
where 0 < p(1]a) < 1; 0 < p(1|b) < 1; f_o;p(/lla)d/l =1,
and [ p(A|b)da = 1.

Applying the same method for joint settings a and ', a’
and b, and a’ and ', we have:

(10)

p(dla,b’) = p(d|a) p(4|b")

p(dld’,b) = p(d|a’) p(1|b)
pdld’,b") = p(d|a’) p(a|b).

Based on the above joint probabilities, we can calculate
E(a,b), E(a,b"), E(a’,b) and E(a’,b’). Following the same
procedure as in deriving (9), we can derive the Bell inequality
4).

As we see, (10) is crucial for deriving the Bell inequality
from a statistical point of view. However, the expression of
joint probability as a product of the probability of outcome of
two experiments is not without a condition. The well-known
but often neglected condition is that the two experiments in-
volved in the joint probability calculation in (10) must be to-
tally unrelated, i.e. independent random experiments. Apply-
ing this condition to the Bell tests, the requirement is that the
probabilities of outcomes at different locations/settings are
independent of each other, so “local” means “uncorrelated”.

Xianming Meng. A Statistical Approach to Two-particle Bell Tests

This interpretation gives the alternative condition for the Bell
inequality. That is, if the outcomes are not deterministic, the
outcomes at two different settings should not be correlated.

The common wisdom is that, during a Bell test, the exper-
iments at different locations A and B are apparently indepen-
dent because the orientations of the polarizers at A and B are
changed independently and randomly. However, the indepen-
dence of settings are not the full condition for independent
experiments because local settings are only one element of
the polarization experiments. The other element is the light
source. In fact, correlated source particles are used in all Bell
tests conducted so far, so the experiments conducted at dif-
ferent locations are not independent. Since the experiments
based on different settings are correlated by source particles,
the joint probability in a Bell test should be calculated based
on conditional probability:

Pap = Pa * Pbla

or
Pab = Db * Dap -

Similar mistakes are also commonly made in treating the
expected value of joint events as being the multiplication of
the expected values of separate events. Due to the statistical
nature of the polarization experiments, we need to allow one
setting to generate different results, e.g. experiments based
on setting a can have results A;(a), A>(a), ...A,(a), so the ex-
pected value for results of setting a can be expressed as:

1
E@=;Zm@. (11)

We can also write the expected value for results of setting
b as:

1
E(b)=- ) Bib). 12
®) "Z ®) (12)
Indeed, Bell [22, p. 178] realized the importance of in-
troducing (11) and (12) for E(a) and E(b). However, with no
precondition being specified, he assumed the following equal-
ity as the base for deriving the Bell inequality:
E(a,b) = E(a) * E(b) . (13)

The above equation is used by numerous researchers on Bell
tests, but the equation is not unconditional. Statistically, we
can expand the expected values as:

E(@b) = 3" Afa) Bib) (14)

1
E(a)» E(b) = — Z Aia) Z Bi(b). (15)

Apparently, E(a,b) # E(a) * E(b) in general cases. A
special statistical case where E(a,b) = E(a) * E(b) holds is
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when the outcomes of A;(a) are independent of (or not corre-
lated to) the outcomes of B;(b). In this special case, the Bell
inequality will hold. If E(a) and E(b) are correlated, we must
use the conditional expected values that reflect the correla-
tions between two experiments.

From the above discussion, we can conclude that the Bell
inequality does not allow for a probabilistic nature (or cor-
relation, to be exact) because it is based on determinism or
realism. To allow for the Bell inequality in a statistical exper-
iment, one must satisfy the condition for (13), which in turn
requires that there is no correlation between A;(a) and B;(b).
In terms of quantum mechanics terminology, if particles 1 and
2 are in separable (uncorrelated) states, the Bell inequality is
valid, otherwise (if particles 1 and 2 are in entangled states),
the Bell inequality will be violated.

3 A statistical interpretation of spin/polarization corre-
lation

A statistical presentation of Bell tests seems to be compli-
cated because it involves many random settings, such as ran-
dom directions of polarizers and random polarization of light
or spins of particles. Moreover, spins and polarizations have
different features. After trying a number of methods, the au-
thor has arrived at a remarkably simple and elegant approach
for deriving the statistical prediction.

The difference between polarization and spin is that spins
in opposite directions have different values while polariza-
tions in the opposite directions are viewed as being the same.
In other words, the spin direction in a plane can have a 360°
variation while the polarization direction varies only within
180°, so the case of polarization is a reduced case of spin. For
generality, this section focuses on deriving the results for the
case of spin, and then shows how the results can be applied to
the case of polarization.

There are various types of spin analyzer/detector [24-27],
but all spin detectors rely on a differing scattering cross sec-
tion for spin polarized particles. During spin detection, the
travel direction of the particle and the detector orientation
form a plane, in which the particles are reflected and de-
tected [25]. The spin polarized particles will cause asymmet-
ric reflection, and the asymmetric results indicate the detected
spin direction. Essentially, a spin analyser works similarly to
a polarizer for light, but the analyser can identify the spin di-
rection along the given detection orientation. Consequently,
we use a polarizer with an arrow (a vector) to represent a spin
analyzer.

Fig. 1 shows a general case where the particles of the dif-
ferent spin directions are measured by the two spin analyzers
in a Bell test experiment. Two spins, s; and s, and two spin
analyzers, A and B, are positioned in different directions. The
spin directions of particles 1 and 2 form an angle of 8, and 6,,
respectively, with the x-axis. For simplicity, we assume that
s1 and s are unit vectors, and that spin analyzer A is placed
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Fig. 1: Measuring spin directions

in the direction of the x-axis while spin analyzer B forms an
angle of 8 with the x-axis. Given this setting, the component
of s detected by A is E(A) = cos 6;. Similarly, the angle be-
tween s, and the spin analyzer B is 8, — 3, so the component
of s, detected by B is E(B) = cos(6, — ).

There are two types of correlation measurement in the
Bell tests. One is the joint detection counts normalized on
the separate detection counts at each setting. The other is the
joint detection rate normalized on the emission rate at the par-
ticle source. We address them in turn.

3.1 Correlation normalized on outcomes at each setting

This measurement fits with the standard definition of corre-
lation, so we can calculate the expected value, variance and
covariance and then obtain correlation. Since the source emits
particles of random spin directions, the expected values and
variances can be obtained by integrating E(A) and E(B) over
the spin angles 6; and 6, in the range of 0 — 2 for particles 1
and 2.

2 2n
I EA)do _ Jy cos61db;  sing, P

(EA)) = 22— : = =0
T T 0
Iy doy N 1o
Iy "Teos 61 — (E(A)) P doy
var(A) = o
Iy 6y
2
= e | cos® 0, do,
1 21
=— | 05(co0s20, + 1)do, = 0.5
277' 0
[E®B)d6, [ cos(®: — B)d6;
(E(B)) = o = o =
L I o,
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1 1cos(62 — B) — (EB)T dos

var(B) =
f(‘)Zﬂ d92

1 21

= — f cos> (6> — B) db,
27T 0
1 21

= — 0.5[cos2(6, —B) + 1]1dB, = 0.5.
271' 0

If the two particles are uncorrelated, 6; and 6, can vary
independently, so the covariance can be calculated through a
double integral:

cov(A,B) =
[ [cos 61 — (E(AN[cos(8> — B) — (E(B))] d6; db
_Jbo
[ oy 6,

1 21 21
= — 0, do 0, —B)d6, =0.
s j(; cos 6 db fo cos(6, — B) db,

The zero covariance is expected because of the uncorre-
lated nature of s; and s, — the positive and negative joint de-
tection counts will be largely cancelled out. If the two spins
are correlated, 6; and 6, can still change randomly, but these
two angles must keep the same difference, i.e. 6, = 6, + 6y,
where 6 is the fixed relative angle between two spin direc-
tions. In this case, the covariance can be calculated by an
integration over 6; (or 6,):

cov(A,B) =
_ fozn[cos 61 — CE(A)][cos(6 + 6y — B) — (E(B))] db,
J(‘)27‘( d@]
21
= %r j(; 0.5 [cos(26; + Gy — B) + cos(B — 6y)] dby
=0.5cos(B—6).

As such, we have the following spin correlation:

_ cov(A, B)
BB = T P lvar (B2
0.5 cos(B — 6
= PP —cosg- ). (16)

Eq. (16) is a general result for joint detection for any given
orientations of spin detectors. The application of this equa-
tion for special occasions can produce quantum predictions.
For example, if two particles have the same spin, i.e. entan-
gled particles of the same phase, we have 6, = 0, E(A, B) =
cos S. If two particles have the opposite spin, i.e., negatively
correlated particles, we have 6y = n, E(A,B) = —cosf. If
the two spin vectors are perpendicular, 8y = n/2, E(A,B) =
cos(mr/2 — B) = sinf.

It is worth mentioning that some researchers used light
intensity correlation instead of the expected-value correlation
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for polarization Bell test. For example, Ou and Mandel [31]
and Rarity and Tapster [35] regarded the joint detection prob-
ability of photons as being proportional to the intensity corre-
lation of light. This approach is misplaced. For polarization
experiments, one or more photons (assuming perfect detec-
tion for the simplicity of an argument) pass through the po-
larizer, a positive detection will be recorded, so the intensity
is not an appropriate measurement. One may argue that inten-
sity is the square of amplitude so intensity can be used as the
proxy of probability of photons passing through the polarizer,
based on which the joint probability can be calculated. How-
ever, as explained in Section 2, the joint probability cannot be
calculated through the multiplication of probabilities of sep-
arate detections because of the correlated particles in a Bell
test. Since probability measures the average of the squared
detection values, the intensity (or probability) correlation ap-
proach will produce totally different result from that in this
paper. This can be shown in the following expression:

pap = pa pp = (E(A)?) (E(BY*)#(E(A) E(B))* = E(A, B)*.

3.2 Correlation normalized on emissions at the source

For a Bell test, one needs to measure many pairs of particles
of different spin directions with varied detector orientations.
In this case, the joint detection rate is generally normalized
on the emission rate at the source and the correlation is cal-
culated based on the fixed axes.

Referring to Fig. 1, if the correlation is calculated based
on x and y axes, the component detected by analyzer A and B
needs to be further decomposed on the x-axis and y-axis:

Esx = E(A) = cosf and E4y =0

Eg, = E(B)cosf = cos(6, — ) cosfB
Ep, = E(B)sinf = cos(#, — B)sinf.

Since no component on the y-axis is detected by analyzer
A, the correlation (joint detection) on the y-axis is zero. On
the other hand, both analyzers detect values on the x-axis, so
the joint detection value is:

Esp = Eax Egy = cos 6 cos(6, —8) cosS.

Since the correlation is based on the emissions at source,
which are 100% detected (assuming all particles come to and
are detected by either detector A or B), the variances are one
and thus the correlation is equivalent to co-variance. If parti-
cles 1 and 2 are uncorrelated, the joint detection rate will be
the value of E4p integrated over both 6, and 6,:

[ Eas déy 6,

p =
M aoy dos
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ffozn cos 8 cos(6, — B) cos BdO db,
[ déy dos

27
cos 0, dHlf cos(6, —B)do, =0.
0

_cosf 2
C e

The above result indicates that for uncorrelated particles,
the joint detection rate is zero. This makes sense. Due to
the uncorrelated random nature, the different detection counts
will be washed out by the independent random changes in 8,
and 6,.

If two particles are correlated, i.e. 6, = 6, + 6y, we can
obtain correlation by integrating E4p over 6, (or 6,) in range
0-2nm:

fOZH Expdo,
Pap = 75—
Iy 6y
fozn cos 0 cos(6; + Gy — B) cos B db;
= - 17
fo2 o, a7
cosfB (**
= 5 0.5 [cos(26; + 6y — B) + cos(B — 6y)] db,
T Jo

= 0.5 cos(B—6p)cosfS.

The above result shows that when the two spin vectors are
correlated, i.e., the value of 6 is fixed, the joint detection rate
is determined only by correlation phase 6 and the angle 8
formed by the orientations of two spin detectors.

Egs. (16) and (17) can also be applied to light polariza-
tion experiments. In the case of polarized light, it is tricky
to derive the joint detection because the detected values have
to be non-negative and thus are not consistent with the cosine
functions for E(A) and E(B). The common approach (e.g. As-
pect et al [4,5]) is to define the result of no-detection as -1,
instead of 0. In other words, when the light polarization is
perpendicular to the orientation of detector, most likely no
photon will be detected and thus a result of -1 with a 90° will
be recorded. With this definition, all angles in (16) and (17)
should be halved, and then the equation is equally applicable
to the Bell tests with polarized light.

Where the two spin vectors are in the same directions
(i.e. 6y =0), (17) becomes:

pas = 0.5c0s? 8 =0.25(cos2B+ 1). (18)
In this special case, the joint detection rate can also be derived
without integration, as shown in Fig. 2.

To present three random directions (i.e. the same direc-
tion of spin of the two particles, and the directions of the two
spin analyzers A and B), we can fix one of them because only
the relative angles between them matter. For convenience of

presentation, we assume the spin vector OV to be a unit vec-
tor pointing to V(a,/ \/E, a,/ \/z), where a, and a, are unit
vectors at x and y directions, respectively.
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Fig. 2: Measuring the correlation of a particle pair of the same spin

The projection of the spin vector OV onto the B axis in
Fig.2 is:

OB, = BiB; + OB, = @, cos(6 — 6,) + a sin(@ - 6,)| / V2.

This projection can be further projected onto the x-axis
—
and y-axis and thus decomposed to two components OB, and

g . —_— . . .
OB,, respectively (OB, is not shown in Fig.2 so as not to
complicate the graph):

O_B; = cos(0—6,) [a_: cos(8 — 6,) + Ey) sin(6 — 9;,)] / V2 (19)

OB, = sin(0—6)) | cos(6 - 6,) + @y sin(@ - 6,)| / V2. (20)

Similarly, the projection of OV onto the A-axis can be

. — —
decomposed into the x and y components of OA, and OA,
respectively (not shown in Fig. 2):

O_A; = cos(8 —6,) [a_)x cos(d —6,) + E; sin(6 — Ha)] / V2

—

OA, = sin(8 - 0,) @ cos(6 - 0,) + @y sin(® - 6,)| / V2.
As such, the joint detection rate can be calculated as:

PAB = 0—>Ax0_>3x + O—A;O—B;

= cos(6) — 0,) [a@y cos(6 — 6) + @y sin(0 — 6,)| / V2

X c0s(6 — 0) @ cos(8 — 6,) + @y sin(@ — 6)| / V2

+ $in(0 - 6,) [@ cos(6 — 6,) + @, sin(6 - 6,)] / V2

X $in(0 - 0a) [@ cos(® — 6,) + a, sin(6 - 6,)] / V2

= 0.5 [acos(8 - 6,) + @, sin(0 - 6,)|

X [E; cos(6—6,) + E; sin(6 — Ha)] cos(8, — 6p)

= 0.5co0s*(0, — )
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or

pag = 0.25[cos2(6, — ;) + 1]. [@2))

Noting that (6, — 6,) is the angle formed by the orientations
of two detectors A and B, we find that the above result is the
same as (18). This joint probability of detection is exactly the
same as the coincidence rate derived from quantum mechan-
ics. The experiment by Aspect [5] confirmed this result.

The correlation function (16) and the joint detection rate
(17) derived in this section are general results that are appli-
cable to both uncorrelated or correlated polarization/spin of
any phase differences. The results can be tested experimen-
tally using the current Bell test techniques. The only change
needed is to add a randomly controlled source polarizer for
each of the two beams after the collimation lenses, but before
the traditional Bell test polarizers. If the pair of source polar-
izers are randomly and separately controlled, i.e. their relative
angle of polarization 6, varies randomly, the source particles
are uncorrelated, so the joint detection rate will be zero for
a large sample size. If the pair of source polarizers are con-
trolled randomly but jointly, i.e. the relative polarization angle
of the pair is fixed at any given value, the joint detection rate
should be determined by the relative angle (6) of the first pair
of (source) polarizers and that (8) of the second pair, with the
quantitative relations determined by (16) and (17).

4 Linkage between the statistical approach and quan-
tum mechanics

From the previous section, we see that the simple statistical
approach gives equivalent but more general results when they
are compared with the predictions from quantum mechanics
(QM). This is not a coincidence. This section shows that the
statistical approach is at the heart of quantum mechanical pre-
diction on Bell tests.

QM uses wavefunctions to represent the different states.
For example, a wavefunction of a spin-up (or +1) state can be
written in Dirac notation as | 0), while spin-down (or -1) can
be written as |1). The spin states can be projected to (or mea-
sured on) different axes and may result in different results. If
Alice measures a spin state of |0) on the A-axis while Bob
measures |1) on the B-axis, we can express this spin state as
|0)®|1), or simply | 01). A wavefunction |01)+]10) indicates
that the measurement on the A-axis is always opposite to the
measured results on the B-axis, i.e. the measured results are
negatively correlated. Similarly, the states in wavefunction
| 00) +|11) are positively correlated. The states in this type of
wavefunctions are called entangled states. On the other hand,
a wavefunction of |01) + |00) shows that while Alice’s mea-
surement is always | 0), Bob’s measurement can be either | 0)
or |1), so there is no correlation between the two measurement
results. The states in this wavefunction are called separable
states. In short, the entangled states are the QM expression
for correlation.

Xianming Meng. A Statistical Approach to Two-particle Bell Tests

Now we consider a normalized wavefunction of the pos-
itively entangled states: ¥ = (|00) + [11))/ V2. If the states
are measured by Alice on the A or x axis (both axes coincide,
shown in Fig. 3), the possible outcome will be (0| | 0) = +1
or {1041y = —1. Similarly, if the state is measured by Bob
on the B-axis, the possible outcome will be (0|c8|0) = +1
or (1]o®|1) = —1. Since this is a wavefunction of positively
entangled states, Alice and Bob will always obtain the same
(positive or negative) measurement outcome. Bob’s measure-
ment can be decomposed to two components on the x-axis
and y-axis: 0¥ = g% cos B + o} sinB. Alternatively, we can
write: (0]0?|0) = cosB, (1|o?|1) = —cosB, (0|o]0) =
sinB3, (1] o-fll) = —sinfB. Since Alice’s measurement is on
the x-axis, we have o = o4.

Y
A

By B

P> X
Bx

Fig. 3: Spin measurement for positively entangled particles

The correlation between the measurements of Alice and
Bob can be calculated by the expected value of joint mea-
surements: (o*¢-%). The QM calculation result is as follows:

(ofy =Wl ea’|y)

=0.5(00] + (11])c* ® B(100) + | 11))

=0.5((00] 0" ® 7?00 + (11| ® o | 00))

+(00|c* @B |11y + (110" @ B | 11Y)

=0.5(0]0” [0X0[o®[0) + (1 [ |0)(1 || 0))

+ O 1 1}01aP | 1y + (1o [1)(T [0 [ 1))

=0.5(010 10X0[0? [0) + (1o | 11| P | 1))

= 0501 100[ 0% [0) + (1] o | 1)(1] 0| 1)) = cos B.

The above result is exactly the same as (16) with 6y =

0, which was obtained from the much simpler statistical ap-
proach. A number of statistical features in the QM approach

contribute to this same result. First, the calculation of the
expected value in QM (i.e. (00 ®) = (Yo ® 0B |y¥)) is
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based on a probability-weighted average. Second, the rule
of tensor product ({11 |0 ® o100y = (1|0 |0)1|o?|0))
makes an operator (e.g. o or o®) work on the wavefunc-
tion on its space only. This is exactly the case of measure-
ment (or vector component decomposition) on different axes.
Third, the orthogonal condition of basis wavefunctions mim-
ics the measurement of the projection onto the orthogonal
axes, e.g. (0]c]0)=+1,{1|c®|1)=~1,and (1|c*|0) =
0. Fourth, the space (or axis) separation is consistent with the
concept of correlation. For example, since Alice measures on
the x-axis, only the x-component of the measurement by Bob
is relevant to the correlation calculations. This is manifested
by (0] 0)0|cB 10y = (0]c2]0)0|c2|0). Finally, the
normalized wavefunction automatically normalizes the cal-
culated expected value so that it fits the requirement of corre-
lation.

If we use other entangled wavefunctions to perform sim-
ilar calculations, we would arrive at essentially the same re-
sults but with a negative sign for some wavefunctions. For
example, with ¢ = (|01) + [10))/ V2, we find:

(B =(plo* @B |¢p) = —cos .

The above result is equivalent to (16) with 6y = &. This is
not surprising as this wavefunction indicates a negative corre-
lation. If we use a wavefunction of separable states to calcu-
late the expected joint measurement, we would find a value of
zero. This is expected because there is no correlation between
separable states.

If the measurement axes change randomly, we cannot put
a vector on either the A or B axis. In this case, the QM deriva-
tion of the joint detection rate involves a projection process
similar to that used in Fig. 2. Using a matrix presentation, we
can express the projection of a vector pointing to (xj, y;) onto
a specified axis of angle 6 as follows:

cosf . X1\ _
(sin 9) (cos 6 sin 9) (yl) =
cos @sin b\ [x;
sin® @ yi) -

In the above equation, if we let 6 be the angle of the B
axis with respect to the x-axis, i.e. € — 6 in Fig.2, and let
X = E))c/ \/E and y; = E)y/ \/5 we can obtain the same result
as in (19) and (20).

The matrix in (22) is called a projection matrix [28], as it

projects a vector onto the axis of angle 6 and gives the com-
ponents of the projection:

(22)
cos? 6

- (cos Osinf

cos2 6

cosdsinf sin” @

Q(@)z( cos@sin@)

Using the above projection matrix and an entangled wave-
function (e.g. ¢ = (|01) + [10))/ \/5), we can calculate the
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probability of joint measurement as:

pag = W1 0'® 0 [¢) = 0.5cos* (04 — Op)
=0.25[cos2(6,4 — Op) + 1].

Since (64 — 6p) is the angle of the orientations of detec-
tors, the above result is exactly the same as (18) or (21) that
we derived in the statistical approach. The identical result is
apparently because the same projection process works in both
approaches.

5 Statistical explanation of two-particle Bell tests

Many Bell test experiments are based on the coincidence rate
of particle pairs, but a handful of researchers (e.g. [9, 16,20,
32,39, 40] have conducted experiments on correlations of 3
or more particles. Multi-particle correlation can be achieved
by special designs of experimental setup to obtain specific
quantum states (e.g. [9, 32]) or by exploiting the coherent
states of Bose-Einstein condensate (e.g. [16, 20]). The sta-
tistical foundation of multi-particle correlation is the same as
that for particle pairs, so this paper focus on two-particle cor-
relation. Even though we confine our scope to two-particle
Bell tests, there still are copious experiments. This section
selects only some representative experiments and puts them
into two groups: the polarization experiments of entangled
photon pairs and non-polarization experiments based on light
phase correlation.

5.1 Polarization experiments

Among numerous Bell test using polarization of photon pairs,
we consider only two influential papers by Aspect et al [5,6].
Like most experiments on the Bell tests, Aspect et al [5,6] uti-
lized the derivation of Clauser et al [4] for an experimentally
applicable quantum mechanical prediction for the counting
rates of coincidence. The starting point of their derivation is
a probability formula:

P(a,b) = w[A(a),, B(b)+] — w[A(a),, B(b)-]
- wl[A(a)-, B(b),] + w[A(a)-, B(b)_]

where w means the probability weighting of each outcome in
total emission counts Ry, with:

Ry = [A(a)+, B(b).] + [A(a)+, B(b)-]
+[A(@)-, B(b).] + [A(a)-, B(D)-]

w[A(a)+, B(b),] = [A(a)+, B(D)+]/Ry, etc.

The above equation is a manifest that the net correlation (pos-
itive correlation [A(a),, B(D).] + [A(a)-, B(b)-] minus nega-
tive correlation [A(a)., B(b)_] + [A(a)_, B(b),] ) in terms of
total counts Ry. This equation is consistent with our deriva-
tion of joint detection rate presented in Section 3: the net cor-
relation in (17) is calculated by integrating E 45 over the angle
0—27 while the total counts is obtained by integrating the unit

Xianming Meng. A Statistical Approach to Two-particle Bell Tests



Issue 2 (October)

PROGRESS IN PHYSICS

Volume 17 (2021)

spin vector over the same range. Due to the same foundation
for derivation, the resulting (18) is unsurprisingly the same
as that obtained by Clauser et al [4] and used by Aspect et
al [5,6]. Since the joint detection rate derived from both sta-
tistical and quantum approaches is identical, the explanation
on the results of Aspect et al [5, 6] will be very similar, so
we omit this explanation but examine the maximum violation
angle derived from quantum mechanics and confirmed by ex-
periments.

Using the coplanar vectors (shown in Fig.4) introduced
by Clauser and Shimony [28] and Aspect et al [5] to present
the settings of the Bell test experiments, we can derive the
same results as the quantum prediction of the Bell test, but
without invoking any wavefunctions.

Fig. 4: Coplanar vectors presentation of Bell test settings

In Fig. 4, vectors a, a’, b, and b’ represent the direction of
the spin detectors, and the angles between them are displayed
on the graph. For simplicity of presentation, we assume all
vectors are of unit modulus and angles vy, y», and y3 are pos-
itive and less than 7 (for any angle 6 greater than 7, we can
rewrite it as 2 — 6). Applying the spin correlation results in
(16) derived in Section 3 to a case of positively entangled par-
ticles (i.e. 8y = 0), we can obtain the experimental results as
follows:

E(a,b) = cosy

E(a,b’) = cos(y1 + 72+ 73)
E(d’,b) = cosy,

E(a',b") = cosvy;.

The theoretical results for the Bell tests should be:

Epr = E(a,b) — E(a,b) + E(d,b) + E(d, b)

= cosy| —cos(y] + ¥z +Y3) + COS Yy +COSY3.

Applying the first and second order conditions of max-
imization (minimization) for the above equation, we know
that Epr reaches the maximum or minimum when:

siny; = siny, = siny; = sin(y; + y2 +v3).

Xianming Meng. A Statistical Approach to Two-particle Bell Tests

If y1, v2 and y;3 are less than /2, the condition of maxi-
mum/minimum value necessitates that y; = y, = y3 = y and
sin y=sin 3y. With some trigonometric manipulations, from
siny=sin 3y we can have siny (4 cos 2y-1)=siny, or y=n/4.

Similarly, if y;, v, and y3 are greater than 7/2 (they are
less than 7 as we assumed before for simplicity), we can ob-
tain y=3n/4.

If some angles are less than m/2, but some are greater
than /2, we obtain no satisfying solution. For example, if
v1 and 7y, are less than /2, but y3 is greater than /2, from
siny;=siny,=sinvy3;, we can infer that y; = vy, and y; =
7T —7y2,808iny; = sin(y; +y2 +7y3) =sin(y; +71) = —sinyy,
or y1 = ¥» = y3 = 0. This contradicts our assumption of
positive angles and presents a trivial case where all 4 settings
coincide.

To sum up, from the first and second order condition we
reveal that the maximum and minimum value of Egr occurs
at y=n/4 and y=3n/4, respectively. If y=n/4, we have:

E, .. =cosn/4 —cos3n/4 +cosm/4+cosm/4 =2 V2.
If y = 37/4, we have:
E,.;, = cos3n/4 —cos9n/4 + cos3n/4 + cos3n/4 = -2 V2.

As aresult, we obtain the same results as the quantum predic-
tion:

<2V2.

It is worth mentioning that the above derivation shows
that the maximum violation of the Bell inequality occurs at
the setting y = n/4 or y=3n/4, E = +2 V2. This seems in
conflict with the results of Aspect et al [5,6], where the max-
imum violation of the Bell inequality occurred at 6=n/8, or 6
=3n/8.

In fact, this difference highlights the different cases of
spin and polarization. Our derivation is based on spin detec-
tion. As we discussed in Section 3, the angle must be adjusted
when applying (16) and (17) to polarization experiments. In
most Bell test experiments using light, including Aspect et
al [5, 6], a count of photon detection is recorded as +1 and
no detection is recorded as -1. As such, if the angle between
the polarizer and the polarization of light is 6 = /2, the most
likely outcome is no detection or -1. We can express the re-
sult as cos26 = cosm = —1. It is apparent that one needs
to double the angle in the experiment to obtain a result that
is consistent with experimental record. On the other hand,
our derivation based on spin assumes that a count of photon
detection is recorded as +1 and no detection is recorded as
0. If the angle between the polarizer and the polarization of
light is ¥ = n/2, the most likely outcome is no detection or
0. We can express the result as cosy = cosn/2 = 0. This
recorded value is equivalent to the case of 8 = /4 in Aspect
et al [5,6]. From this we can infer that the angle y used for

|E(a,b) - E(a,b') + E(d’,b) + E(d’,})
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spin examples in the present paper is equivalent to twice the
angle 6 used in Aspect et al [5,6],1.e. y = 26. As aresult,
the angles for maximum violation of the Bell inequality in
Aspect et al [5, 6] will be half the value as in our derivation.

5.2 Interferometry Bell tests

There are Bell tests that examine the correlations between
variables other than polarization. One type of research fo-
cuses on the phase correlation (e.g. [19,34-36]). This type of
experiment creates a pair of photons of the same phase and
lets them pass through phase shifters and a distance of differ-
ent lengths, then detects the phase difference at a Michelson
interferometer. The experiments are based on the theoretical
prediction of Franson [37] which, based on the phase differ-
ence of wavefunctions caused by time difference, developed
a similar prediction as (18) in the present paper. Using a clas-
sical wave theory of light and joint intensity, one can also
obtain an equivalent result.

For simplicity, we combine the electrical and magnetic
components of a light field, so the normalized light field of a
photon pair of the same initial phase at position x and time ¢
can be expressed as:

E = cos(f + kx — wrt)

where 6 is the initial phase of the photon pair at the source, k
is wave vector, w is angular frequency.

Assume that photon A will be added a phase 6, by a phase
shifter (we use only one phase shifter for simplicity) and,
meanwhile, photon B will be added a phase 6, = wAr due
to the different time or distance travelled. The light fields of
the pair become:

E4 =cos(0+kx —wt+86,)

Ep =cos(0 +kx—wt+6).

Although this type of experiments use the joint intensity
as measurement, as we discussed in Section 3, we cannot cal-
culate the correlation of light intensity by directly multiplying
the intensities of light field because the changes in intensity
are not independent. Since the light phases and thus the light
fields are correlated, the joint intensity needs to be calculated
from light field correlation:

Esp = EsEp
= cos (0 + kx — wt + 6,) cos (0 + kx — wt + b))
=0.5[cos (20 + 2kx — 2wt + 6, + 0),) + cos (6, — 6,)] .

The initial phase of photon pair 6 can change randomly,
so the item related to 6 in the above equation will net out to
zero (by integrating E4p over 6 in the range of 0 — 27). As a
result, the above equation becomes:

E g =0.5cos(6, —6p).
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As such, the joint intensity can be calculated as:
Ing = E%, = 0.25c0s*(6, — 6) = 0.125[cos 2(6, — 6,) + 1].

This result is equivalent to the quantum prediction in Fran-
son [37, Eq.(16)] or Brendel et al [34, Eq.(4)]. From the
above derivation we can conclude that the light intensity dif-
ference stems from the phase difference caused by phase shift-
er and by different travel time. Probability law also works in
this case because it ensures that the initial random phase of
photon pairs have no impact on the interferometry results.

By examining representative experiments, we can con-
clude that the violation of the Bell inequality is caused by the
correlation in source particles as well as the physical relation-
ship between the spin/polarization angle and its component
on detection axes, or between the phase of electromagnetic
wave and the light field correlation. With varying detection
conditions (i.e. random changes in detection angles or adding
arbitrary phases), probability law can still maintain the cor-
relation of source particles. This leads to the violation of the
Bell inequality and the correct statistical predictions, which
are consistent with experimental outcomes.

6 Conclusions

The paper presents statistical predictions of two-particle Bell
tests, which are equivalent to, but more general than, the QM
predictions. By comparing the statistical and QM approaches,
the paper shows that probability law is at the heart of both
approaches. The statistical presentation of two-particle Bell
tests in this paper has far-reaching implications.

First, it can improve our understanding of quantum me-
chanics and help to demystify it. Although the concepts of
superposition and entanglement are widely accepted among
physicists, the explanation of these concepts is difficult and
thus causes significant misunderstanding. The statistical in-
terpretation of the Bell tests shows that the superposition of
entangled states in the two-particle Bell test is nothing more
than statistical correlation between states. For the correlated
particles at the polarizer or spin detector, probability law can
maintain the correlation through the expected value, so there
is no need for communication (let alone faster-than-light or
instantaneous communication) between different locations in
the Bell experiments. As quantum entanglement is explained
by probability law, the Bell test results and quantum mechan-
ics are no longer mysterious.

Second, it has significant implications for quantum com-
puting, which relies on quantum entanglement. Since the
quantum entanglement phenomenon results from probability
law, statistical noise is a natural and unavoidable part of quan-
tum computing. Understanding the nature of this noise may
shed light on how to improve the signal-to-noise ratio and
thus is crucial to the success of quantum computing.

Third, the paper pinpoints the cause for the violation of
the Bell inequality and thus explains why the local hidden
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variable theory is wrong. Although numerous Bell tests re-
ject the local hidden variable theory and support quantum
mechanics, they have not shed any light on why the former
is wrong and the latter is right. This paper shows that the key
lies in probability law, which underpins the Bell test results.
Because probability law is universal, if we regard the statisti-
cal mechanism (which causes statistical variation around the
mean) as a “hidden variable”, it is not a local one but a global
one. The local hidden variable theory misrepresents this na-
ture and thus fails. It is also this global law that leads to the
correct prediction from quantum mechanics.

Last but not least, the paper may stimulate a reassessment
of the role of determinism and realism. Broadly, the experi-
mental results on the Bell inequality are interpreted as being
a rejection of determinism or local realism, and an embracing
of randomness. While this paper highlights the importance
of randomness and probability law, it does not totally reject
determinism and realism. In the Bell tests, probability law
works only when the particles arrive at and interact with the
detector (polarizer or spin analyzer) — it plays no role before
and after. When probability law is not in action, it is deter-
minism, realism and logic that describe the behaviour of the
particles. In other words, both randomness and realism play
important roles in our understanding of physics.
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An analytical theory is proposed for the earth-atmosphere system at its equilibrium sur-
face temperature, 289.16 K. A non-linear relation is formulated between atmospheric
absorption and atmospheric radiation by modifying Kirchhoff’s law on thermal radi-
ation. For the first time, the Global Energy Balance can be realized in a wide range
of atmospheric absorptivity, transmittance, and surface emissivity. It is revealed that
atmospheric radiation becomes negative once the atmospheric absorptivity is below its
threshold value. It is proven that the upward cumulative long-wave atmospheric radi-
ation spontaneously increases from 3.8 Wm™ to 199.4 W m~2 as the long-wave atmo-
spheric absorptivity increases from 0.4 to 1.0 whilst the long-wave atmospheric trans-

mittance decreases from 0.6 to 0.1.

1 Introduction

For over a century, many attempts have been made to balance
the global energy budget, both at the top of the atmosphere
(TOA) and at the Earth’s surface [1]. It is known that the lack
of precise knowledge of the surface energy fluxes profoundly
affects the ability to study climate change [2]. In fact, the
power equation at the surface remains unbalanced as the un-
certainty in the net energy flux between the surface and the
atmosphere is over 17 W m™ [3]. To date, many static ex-
planations for the global energy balance have been confined
to using one set of fixed parameters to describe atmospheric
absorption and radiation [2], whereas the taken-for-granted
Kirchhoff’s law at the core of the radiative transfer descrip-
tion of atmospheric absorption and radiation seems theoreti-
cally invalid [4].

In this paper, several thermodynamic variables of theo-
retical importance are redefined to formulate the basic equa-
tions, including those previously treated as constants. By con-
tinuously mapping the surface emissivity and longwave (LW)
atmospheric absorptivity, several coupled quadratic equations
are derived and simultaneously solved, which are in quantita-
tive agreement with the latest experimental observations. In
light of these new findings, implications for some fundamen-
tal issues in climate studies are briefly discussed.

2 Theory

In general, the thermodynamic variables in the atmosphere-
surface system are dependent and should be described in cou-
pled equations.

2.1 Outgoing longwave radiation and surface radiance

It is known that the total power balance at the TOA can be
written as

RS (1 - 1) = 4nR*I},, (1

where S is the solar constant, R the radius of the Earth, r the
effective reflectivity of the Earth at the TOA, including the

Y. C. Zhong. A Quantitative Description of Atmospheric Absorption and Radiation at Equilibrium Surface Temperature

SW solar radiation reflected at the surface and then transmit-
ted upward to the TOA, and IzW denotes the outgoing LW
radiation (OLR) into outer space. From (1),

S(1-
1£W=¥. )

Notice that OLR is merely determined by the albedo and the
solar constant.

By treating the Earth as a graybody, the surface radiation
can be obtained from the Stefan-Boltzmann law,

3)

IE ZEEO'T4,

where g is defined as the Earth’s mean surface emissivity,
and T is the equilibrium mean surface temperature. In gen-
eral, gg is to be treated as a thermodynamic variable in this
study, although it has been often approximated as unity so far.

2.2 Modification of Kirchhoff’s Law

In theory, the upward cumulative atmospheric absorption at
any altitude can be calculated using the line-by-line method
provided all of the relevant lineshape functions are known.
At the TOA, the total LW atmospheric absorption can be ex-
pressed as

Arw = fj(; @) (Ta)p(2) Ig (A,2)dAdz, C))
where a, is the spectral absorptivity of the atmosphere, pre-
dominately determined by water vapor, 74 is the atmospheric
temperature at at a given altitude, p is the air density, Ig (4, z)
represents the attenuated surface LW emission spectra at dif-
ferent altitudes. Naturally, a, represents both the resonant
and continuum absorption by air molecules detected under
continuous excitation [5,7]. Note that a, is scaled by the
Planck function B (A, T) with its maximum at the center of
the atmospheric window near 10 yum.
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To proceed further, an effective LW cumulative atmosphe-
ric absorptivity, ayw, at the TOA can be introduced

(&)

Obviously, the maximum LW atmospheric absorption is I
whena;w = 1.
Similarly, SW atmospheric absorption can be written as

(6)

Arw = arwlg .

Asw = asw [1 +rsg (1 — agw)] 1L, (TOA) .

where [, é w (TOA) in the actual downward SW solar radiation
at the TOA by subtracting the reflected SW solar radiation at
the TOA, rsg is defined the SW surface reflectivity. In this
study, the SW atmospheric absorption is fixed.

Using Kirchhoft’s law, it would appear that @ = &, where
a and g are the spectral absorptivity and the emissivity of a
non-scattering medium, respectively. Nevertheless, it seems
unrealistic to expect that atmospheric radiation is equal to
atmospheric absorption. So far, many attempts have been
made at ab initio calculation of atmospheric radiation based
on Schwarzschild’s equation with the Planck function and an
effective emissivity, but the results seem over-simplified. Be-
sides, it has been revealed that Kirchhoft’s law is problematic
and should not be considered as a basic law [4].

In this paper, it is postulated that the fraction, denoted by
B, of upward cumulative atmospheric radiation (UCAR), is
proportional to the LW atmospheric absorptivity

(N

where y denotes the proportionality factor that is used to pa-
rameterize the rest of the unclear dependence during radiative
transfer in the atmosphere. In effect, (7) can be considered as
a modified Kirchhoff’s law for atmospheric radiation. In the
absence of internal reflection, it would appear the sum of the
LW atmospheric absorptivity and the LW atmospheric trans-
mittance, Ty, iS unity.

arw =yYp

Tw =1 —arw. (®)
Substituting (7) into (8) yields
TLwW = 1- ’)/ﬁ (9)

It is shown in this study, however, that (8) and (9) are
invalid in the presence of atmospheric radiation which is em-
powered by atmospheric absorption and other non-radiative
energy fluxes.

2.3 Formulation for power balance conditions

To derive the power balance equation at the surface, that en-
sures the net energy flux at surface is exactly zero at ther-
mal equilibrium, the net downward energy flux (NDEF) is
denoted as Ny. Thus the power bal