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EDITORIAL MESSAGE

Progress in Physics: 10 Years in Print

In January, 2015, we celebrate first 10 years of our journal

Progress in Physics. This is a good time to remember what

events led to the idea of the journal, and how the journal was

founded.

Ten years ago, in the fall of 2004, CERN Document

Server has changed its policy so that it closed its door for

all future pre-prints submitted by non-CERN employee. All

other persons were advised to submit their papers to Cornell

E-Print Archive (known as arXiv.org).

The main problem of this change was that Cornell E-Print

Archive only accept papers from people who have a scientific

institute affiliation. This policy continues to this day, and is a

necessary condition for consideration of papers in almost all

modern scientific journals.

This was a serious impact to the scientific community,

where so many researchers continue their studies in between

short-term grants, or even continue their scientific activity as

independent researchers. They all are not affiliated to any sci-

entific institution. So, they all loose their fundamental right

to be published in scientific journals.

But it was not always. In already the beginning of the

20th century, every person was able to submit a paper to any

scientific journal. And this paper was considered according

to its real scientific importance, not the formal degree or sci-

entific institute affiliation of the submitter. Otherwise, many

great scientists such as Einstein and others would never have

published their scientific works.

However, in the early 20th century, science was a matter

of a very few people. With the progress of democracy and

improved living mass of the people, in the 1950–1960’s, sci-

ence has become a professional field of activity of hundreds

of thousands and even millions of people in the world. Mas-

sive investment in research activities have led to the fact that

the scientific community is filled with people who do not view

science as a search for truth but as “employment”. Many sci-

entific workers speak frankly to each other that we went to the

science just in order “to get good income” thus doing some

formal activities in the field which is a hard to understand for

investors who pay for it all. Such “research staff”, not be-

ing burdened with a large intellectual tension of the solution

of scientific problems were much more socially active than

the real scientists. Therefore, they quickly and systematically

took formal positions in the scientific community, including

scientific journals. As a matter of fact that they considered

real scientists as potentially dangerous persons, who may po-

tentially qualify for their sure and well-paid job positions. To

defend themselves, they built a complicate bureaucratic sys-

tem, where, as Grisha Perelman said very well, no one re-

searcher who is really busy with research will waste so much

time and effort to fill out all the paperwork for a grant. Only

familiarity in the editorial board of the scientific journal, or

belonging to the “friendly” scientific group gives the oppor-

tunity to publish your article.

In this way, the scientific bureaucracy was born. This sit-

uation continues in the scientific community until this day.

In this background, CERN Document Server was the

solely possibility to publish research papers for the scientists,

who are not joined into “groups” or do not belong to “scien-

tific clans”. In the fall of 2004, this window was closed.

It is comical, but even papers authored by Brian Joseph-

son (Nobel Prize in Physics, 1973) were refused by Cornell

E-Print Archive. As was claimed the reason was that he has

right only to submit articles on his very particular field of

physics, and has not rights to submit articles on other field of

physics where he “cannot be an expert”.

Correspondence among Josephson and other researchers,

who were thinking of the future of the scientific community,

has began. In the course of correspondence with Josephson,

I met Florentin Smarandache. We both were active CERN

E-Print Server users. I looked for another possibility to pub-

lish a series of research papers authored by me and Larissa

Borissova, my closest colleague and friend. In our common

discussion with Florentin, I told him that we must establish a

new journal of physics: it is better and easier than to fight for

influence in existing journals. Do you like to see this journal

in print? — Florentin replied. So, Progress in Physics was

established by our common power. It was January, 2005.

Then I wrote Declaration of Academic Freedom, to fix

the fundamental rights and freedoms allowed among the sci-

entific community. This text, known also as Academic Bill of

Rights is now published in ten languages. All that we do in

our journal, is according to the articles of the Bill.

During the first year, we had no many authors and readers.

Nevertheless, ten years later, i.e. now, the journal has grown

very much. We now have a stable traffic in the range from

25,000 to 35,000 downloaded papers per month, with some

peaks in the months when a hot research is published.

Despite some difficulties, the journal is now stable. We

allow every person to submit a paper, with the warranty that

the submission will be reviewed according only to scientific

judgements, independent on the personality of the submitter.

Our personnel works on voluntary basis, to keep the author’s

fee as low as possible. I hope that first 10 years of Progress

in Physics will be the beginning of the long term life of the

journal, among the other respected journal of physics.

Dmitri Rabounski, Editor-in-Chief

Dmitri Rabounski. Progress in Physics: 10 Years in Print 3
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Trapping Regions for the Navier-Stokes Equations

Craig Alan Feinstein

2712 Willow Glen Drive, Baltimore, Maryland 21209. E-mail: cafeinst@msn.com

In 1999, J. C. Mattingly and Ya. G. Sinai used elementary methods to prove the exis-

tence and uniqueness of smooth solutions to the 2D Navier-Stokes equations with peri-

odic boundary conditions. And they were almost successful in proving the existence and

uniqueness of smooth solutions to the 3D Navier-Stokes equations using the same strat-

egy. In this paper, we modify their technique to obtain a simpler proof of one of their

results. We also argue that there is no logical reason why the 3D Navier-Stokes equa-

tions must always have solutions, even when the initial velocity vector field is smooth;

if they do always have solutions, it is due to probability and not logic.

1 Introduction

In this paper, we examine the three-dimensional Navier-

Stokes equations, which model the flow of incompressible

fluids:

∂ui

∂t
+

∑

j=1,2,3

u j

∂ui

∂x j

= ν∆ui −
∂p

∂xi

i = 1, 2, 3

∑

i=1,2,3

∂ui

∂xi

= 0







































, (1)

where ν > 0 is viscosity, p is pressure, u is velocity, and t > 0

is time. We shall assume that both u and p are periodic in

x. For simplicity, we take the period to be one. The first

equation is Newton’s Second Law, force equals mass times

acceleration, and the second equation is the assumption that

the fluid is incompressible.

Mattingly and Sinai [5] attempted to show that smooth

solutions to 3D Navier Stokes equations exist for all initial

conditions u(x, 0) = u0(x) ∈ C∞ by dealing with an equivalent

form of the Navier-Stokes equations for periodic boundary

conditions:

∂ωi

∂t
+

∑

j=1,2,3

u j

∂ωi

∂x j

=
∑

j=1,2,3

ω j

∂ui

∂x j

+ ν∆ωi i = 1, 2, 3, (2)

where the vorticity ω(x, t) = ( ∂u2

∂x3
− ∂u3

∂x2
,
∂u3

∂x1
− ∂u1

∂x3
,
∂u1

∂x2
− ∂u2

∂x1
).

Their strategy was as follows: Represent the equations (2)

as a Galerkin system in Fourier space with a basis {e2πikx}k∈Z3 .

A finite dimensional approximation of this Galerkin system

can be associated to any finite subset Z of Z3 by setting

u(k)(t) = ω(k)(t) = 0 for all k outside of Z. For each fi-

nite dimensional approximation of this Galerkin system, con-

sider the system of coupled ODEs for the Fourier coefficients.

Then construct a subset Ω(K) of the phase space (the set

of possible configurations of the Fourier modes) so that all

points in Ω(K) possess the desired decay properties. In addi-

tion, construct Ω(K) so that it contains the initial data. Then

show that the dynamics never cause the sequence of Fourier

modes to leave the subset Ω(K) by showing that the vector

field on the boundary ofΩ(K) points into the interior ofΩ(K).

Unfortunately, their strategy only worked for the 3D

Navier-Stokes equations when the Laplacian operator ∆ in

(2) was replaced by another similar linear operator. (Their

strategy was in fact successful for the 2D Navier-Stokes equa-

tions.) In this paper, we attempt to apply their strategy to the

original equations (1).

2 Navier-Stokes equations in Fourier space

Moving to Fourier space where

ui(x, t) =
∑

k∈Z

u
(k)

i
(t)e2πikx

p(x, t) =
∑

k∈Z

p(k)(t)e2πikx

|k| =

√

∑

j=1,2,3

k2
j































































, (3)

let us consider the system of coupled ODEs for a finite-

dimensional approximation to the Galerkin-system corres-

ponding to (1),

du
(k)

i

dt
=

(

∑

q+r=k

q,r∈Z

∑

j=1,2,3

−2πiq ju
(q)

i
u

(r)

j

)

−

− 4π2ν|k|2u
(k)

i
− 2πiki p

(k) i = 1, 2, 3, (4)

∑

i=1,2,3

kiu
(k)

i
= 0 , (5)

where Z is a finite subset of Z3 in which u(k)(t) = p(k)(t) =

= 0 for each k ∈ Z3 outside of Z. Like the Mattingly and

Sinai paper, in this paper, we consider a generalization of this

Galerkin-system:

du
(k)

i

dt
=

(

∑

q+r=k

q,r∈Z

∑

j=1,2,3

−2πiq ju
(q)

i
u

(r)

j

)

−

− 4π2ν|k|αu
(k)

i
− 2πiki p

(k) i = 1, 2, 3, (6)
∑

i=1,2,3

kiu
(k)

i
= 0 , (7)
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where α > 2. Multiplying each of the first three equations by

ki for i = 1, 2, 3 and adding the resulting equations together,

we obtain
∑

q+r=k

q,r∈Z

∑

j=1,2,3
l=1,2,3

−2πiklq ju
(q)

l
u

(r)

j
= 2πi|k|2 p(k), (8)

since
∑

i=1,2,3 ki
du

(k)
i

dt
= 0 (by equation (7)). Then substituting

the above calculated expression for p(k) in terms of u into (6)

we obtain

du
(k)

i

dt
=

[

∑

q+r=k

q,r∈Z

∑

j=1,2,3
l=1,2,3

2πi

(

kikl

|k|2
− δil

)

q ju
(q)

l
u

(r)

j

]

−

− 4π2ν|k|αu
(k)

i
i = 1, 2, 3. (9)

And since
∑

j=1,2,3 r ju
(r)

j
= 0 and q j+r j = k j, we can substitute

k j for q j:

du
(k)

i

dt
=

[

∑

q+r=k

q,r∈Z

∑

j=1,2,3
l=1,2,3

2πi

(

kikl

|k|2
− δil

)

k ju
(q)

l
u

(r)

j

]

−

− 4π2ν|k|αu
(k)

i
i = 1, 2, 3. (10)

3 A new theorem

Now, we state and prove the following theorem:

Theorem: Let {u(k)(t)} satisfy (10), where α > 2.5. And let

1.5 < s < α − 1. Suppose there exists a constant C0 > 0

such that |u(k)(0)| 6 C0|k|
−s, for all k ∈ Z3. Then there exists

a constant C > C0 such that |u(k)(t)| 6 C|k|−s, for all k ∈ Z3

and all t > 0. (The constants, C0 and C, are independent of

the setZ defining the Galerkin approximation.)

Proof: By the basic energy estimate (see [1,2,7]), there exists

a constant E > 0 such that for each t > 0 and for any finite-

dimensional Galerkin approximation defined by Z ⊂ Z3, we

have
∑

k∈Z

∑

i=1,2,3 |u
(k)

i
(t)|2 6 E. Hence, for any K > 0, we

can find a C > C0 such that |ℜ(u(k))| 6 C|k|−s and |ℑ(u(k))| 6

C|k|−s, for all t > 0 and k ∈ Z3 with |k| 6 K. Now let us

consider the set,

Ω(K) =

{(

ℜ(u(k)),ℑ(u(k))

)

k∈Z3
: |k| > K ,

|ℜ(u(k))| 6 C|k|−s,

|ℑ(u(k))| 6 C|k|−s
}

.

(11)

We will show that if K is chosen large enough, any point

starting in Ω(K) cannot leave Ω(K), because the vector field

along the boundary ∂Ω(K) is pointing inward, i.e., Ω(K) is a

trapping region. Since the initial data begins inΩ(K), proving

this would prove the theorem.

We pick a point on ∂Ω(K) where ℜ(u
(k̄)

i
) or ℑ(u

(k̄)

i
) =

±C|k̄|−s for some k̄ ∈ Z such that |k̄| > K and some i ∈

{1, 2, 3}. (For definiteness, we shall assume that ℜ(u
(k̄)

i
) =

C|k̄|−s, but the same line of argument which follows also ap-

plies to the other possibilities.) Then the following inequali-

ties hold when K is chosen large enough:
∣

∣

∣

∣

∣

∣

∑

q+r=k̄

q,r∈Z

∑

j=1,2,3
l=1,2,3

2π

(

δil −
k̄ik̄l

|k̄|2

)

k̄ jℑ(u
(q)

l
u

(r)
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)

∣

∣

∣

∣

∣
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6

∑

q+r=k̄

q,r∈Z

∑

j=1,2,3
l=1,2,3

4π|k̄ j||u
(q)

l
||u

(r)

j
| 6

∑

j=1,2,3
l=1,2,3

4π|k̄ j|

(

∑

q∈Z

|u
(q)

l
|2
)1/2(∑

r∈Z

|u
(r)

j
|2
)1/2

6

∑

j=1,2,3
l=1,2,3

4π|k̄ j|E < 4π2ν|k̄|α
C

|k̄|s
= 4π2ν|k̄|α|ℜ(u

(k̄)

i
)|. (12)

This establishes that the vector field points inward along

the boundary of Ω(K) for all t > 0. So the trajectory never at

any time leavesΩ(K). Then we have the desired estimate that

|u(k)(t)| 6 C|k|−s for all t > 0. �

4 Discussion

Just as in the 1999 paper by Mattingly and Sinai [5], an exis-

tence and uniqueness theorem for solutions follows from our

theorem by standard considerations (see [1,2,7]). The line of

argument is as follows: By the Sobolev embedding theorem,

the Galerkin approximations are trapped in a compact subset

of L2 of the 3-torus. This guarantees the existence of a limit

point which can be shown to satisfy (10), where Z = Z3.

Using the regularity inherited from the Galerkin approxima-

tions, one then shows that there exists a unique solution to the

generalized 3D Navier-Stokes equations where α > 2.5.

The inequality (12) in the proof of our Theorem is not

necessarily true when α = 2. Because of this, there is noth-

ing preventing the solutions to (10) from escaping the region

Ω(K) when α = 2. Hence, there is no logical reason why the

standard 3D Navier-Stokes equations must always have solu-

tions, even when the initial velocity vector field is smooth; if

they do always have solutions, it is due to probability (see [6])

and not logic, just like the Collatz 3n + 1 Conjecture and the

Riemann Hypothesis (see [3, 4]). Of course, it is also possi-

ble that there is a counterexample to the famous unresolved

conjecture that the Navier-Stokes equations always have so-

lutions when the initial velocity vector field is smooth. But as

far as the author knows, nobody has ever found such a coun-

terexample.

Submitted on October 15, 2014 / Accepted on October 22, 2014
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Majorana Particles: A Dialectical Necessity and not a Quantum Oddity

Abdul Malek

980 Rue Robert Brossard, Québec J4X 1C9, Canada. E-mail: abdulmalek@qc.aibn.com

The confirmation of the existence of Majorana particles is the strongest ever imperative

for a dialectical perspective for physics; and may have implications for epistemology

from the sub-nuclear to the cosmic scale. As the Majorana particle suggests matter at its

most fundamental level must be viewed as a composite of the “unity of the opposites”

— a contradiction, the resolution of which imparts “motion” to matter and hence the

dialectical assertion that “there can be no matter without motion and no motion without

matter”. The existence of Majorana particles show that the anti- dialectical conception

of matter as composed of distinctive and unitary particles like the fermions and the

bosons at the most fundamental level, is faulty and is untenable. These types of sharp

distinctions and categories of matter are indeed to be found in nature, but with relative

and conditional validity.

For dialectics, any tangible material existence is a compos-

ite of the unity of the two opposites; or an “Absolute Identity

of identity and non-identity” — a contradiction and a ratio-

nale for its change, motion, development, evolution and so

on. At the most fundamental level this contradiction is the

unity of the opposites of “being” and “nothing” — an inter-

penetration of the opposites and/or their inter-conversion to

each other. Any synthesis to a different level is infected with

this and its own peculiar new contradictions. The newly con-

firmed [1] existence of the Majorana particle is an affirmation

of this dialectical law and at the same time it is a negation of

the (artificial) division into the absolute and the unitary cat-

egories of the fundamental particles in nature as bosons and

fermions. This differentiation is indeed possible from an anti-

dialectical perspective, but only with relative and conditional

validity. The three laws of dialectics, namely i) the unity or

the interpenetration of the opposites, ii) the inter-conversion

of quality and quantity and iii) the negation of the negation

mediated by chance and necessity; provide an essential ba-

sis for an understanding of nature from the microcosm to

the macrocosm [2]. Any attribute, characteristics, manifes-

tation, developments, etc. of matter in dialectical epistemol-

ogy, therefore, must be found primarily within matter itself

and through its contradictions and not through any external

agency.

Official physics continues to operate under the perspective

of what Hegel termed as the “view of understanding” which

roughly corresponds to causality. This view follows the rules

of formal logic, and Aristotle’s doctrine of “unity, opposition

and the excluded middle” and with the mutual exclusion of

the opposites. The opposites in this view stand in absolute

opposition to each other and remain the same forever once

brought into existence by an external agency. This “good old

commonsense” view of the world though approximate and

faulty at human scale; was in essence satisfactory enough to

serve humanity and natural science reasonably well. But the

advent of the idea of evolution in biology and the quantum

phenomenon in physics fundamentally undermined the valid-

ity of the notions of the “view of understanding” in episte-

mology, particularly in modern physics.

Even before the discovery of the quantum phenomena;

thinkers starting from Heraclitus through Epicurus, Hegel,

Marx and Engels showed that dialectics offers a better epis-

temological tool for an understanding of nature, life, history,

society and thought. The existence of polarity and the “unity

of the opposites” and hence motion, was shown to manifest

itself in all aspects of the world But of course, dialectics that

denies the stability or the permanence of what exists is in-

imical to a class based social structure, which insists on per-

manence, continuity, certainty etc. Of necessity, and because

of its very nature as the conservative, the resisting and the

preserving side of what exists; the “view of understanding”

historically became the dominant epistemological tool, in-

cluding that of the natural sciences. The anti-dialectical no-

tion of the unitary and the absolutely defined “fundamental

building blocks” or fundamental elementary particles in na-

ture and their classification into fermions and bosons as de-

veloped through the quantum field theories of modern particle

physics is a case in point.

The Italian physicist Ettore Majorana in his 1937 paper

[3] raised serious doubt about such absolute categorization

and forced the dialectical perspective on modern particle

physics; shortly after Paul Dirac gave the relativistic formula-

tion of quantum mechanics for the electron [4] and conceived

the theoretical basis for describing the spin 1/2 particles that

would divide all possible matter particles into two mutually

exclusive groups known as fermions and bosons, based on

their spin properties. Following the mathematical logic and

the symmetry rules of Dirac; Majorana in contradiction to

Dirac, showed that such an absolute differentiation is not pos-

sible, because both the fermions and the boson can contain

their opposites within themselves as the dialectical unity of
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the opposites.

Paul Dirac ushered in the revolutionary idea of the anti-

particles in nature as a dialectical necessity. Dirac’s epoch

making discovery that anti-particles must exist as part of the

real world in the context of a real/virtual dialectical category

and that the quantum vacuum is seething with virtual parti-

cles with momentary existence and which can turn into real

particles through quantum tunnelling; for the first time gave

validity to the dialectical speculation of Hegel’s fundamental

triad of “being-nothing-becoming” as the mode of “coming

into being and passing out of existence” of matter as elemen-

tary particles in nature [5].

The developments in particle physics from the turn of the

20th century led to the discovery of multitude of so-called

“elementary particles” of matter/energy. These were eventu-

ally rationalized based on their integral or fractional electric

charge and fractional/integral spin values into two groups of

matter particles, namely Dirac fermions with fractional spin

values and bosons (named after the Indian physicist

S. N. Bose) with integral spin values. In his attempt to de-

velop a theoretical framework for describing spin 1/2 parti-

cles, Dirac thereby made a revolutionary discovery of hith-

erto unknown dialectical realm of the “unity of the oppo-

sites” of matter/antimatter. To describe the spin 1/2 particles,

Dirac found it necessary to incorporate imaginary and com-

plex quantities in his equations that gave rise to the complex-

conjugate field φ∗ of the real field φ, where the complex- con-

jugate fields φ∗ can accommodate the antiparticles. This is

a new aspect of reality brought forth by the developments in

quantum mechanics. Physics previously only dealt with in-

tegral spins of 0, 1 and 2 in its equations namely, the Klein-

Gordon, Maxwell (electromagnetism) and Einstein (general

relativity) equations, respectively; which readily accommo-

date real fields.

The concept of antiparticles in nature means that, as a di-

alectical necessity all particles must have or be their own an-

tiparticles. This “unity of the opposites” may manifest either

in the same body like the two poles of a magnet or on sepa-

rate bodies like the positive and negative electric charge or in

the same body simultaneously containing the opposites con-

tinuously exchanging into their opposite polarity; depending

on the nature of the exchange force that keep the two oppo-

sites together and the external circumstances under which this

force operates. The latter case is manifested for example in

positronium or meson where (though very unstable) matter

and antimatter reside together as the unity of the opposites.

Both positronium and mesons can exist even as their dim-

mers like the dipositronium and the mystery meson (X3872)

respectively. Even the most pure and holy of all things in the

world, namely the light photon has opposite characteristics

of a particle and a wave and also is a composite of two mat-

ter — antimatter particles and can be resolved into a pair of

the particles such as the electron-positron pair if the photon

has enough energy equivalent of the mass of the particle pair.

All these particles probably exist in Majorana type formation

where the two opposites exist in the same body through rapid

inter-conversion of the one opposite to the other.

The conundrum for anti-dialectical official physics is that

the existence of antiparticle itself is problematic. In the nar-

rative of the big bang theory all matter (and admittedly now

antimatter) was created in one fell swoop. Any antimatter that

was created was conveniently annihilated by reaction with

matter, so that only matter (which arbitrarily was in relative

excess) now prevails in the universe. Any new antimatter

can now only be produced in negligible quantity through sec-

ondary processes; but the existence of any tangible amount

(or even in large scale equivalent to matter); of antimatter is

therefore, impossible. This author has previously challenged

this contention of official physics; as many cosmic phenom-

ena and the dynamics of the galaxies can be attributed to

large-scale presence of antimatter in the universe [6].

The existence of anti-particle as such is not a big prob-

lem for anti-dialectical official physics. Because neutral and

integer spin particles (like bosons) can be viewed as their

own antiparticles, as they must be created by fields φ that

obey φ = φ∗ — that is, real fields, like electromagnetism

and gravity discussed above. What is “fundamentally con-

fusing” (to use the term expressed by some famous physi-

cists) for official physics is that some fermions with electric

charge and spin 1/2 must also be their own antiparticles as

Majorana (and dialectics) asserted. These fermions already

have their anti-particles that exist separately. For example the

neutron even with 0 charge and spin 1/2 has its antiparticle —

the anti-neutron, as electron and proton have their antiparti-

cles as positron and anti-proton respectively. Why then the

Dirac fermions still should behave as their own antiparticle

in one single body as the unity of the opposites under spe-

cial circumstances like for example positronium or pion? It

is simply that matter and antimatter in the Majorana parti-

cles has undergone a qualitative change and now reside in the

same entity (instead of different ones) like the two opposites

poles of a magnet or to take the analogy further, like a trans-

gender person. The matter and antimatter characteristics in

the Majorana particle did not vanish, but are maintained in a

different way, probably through rapid inter-conversion of the

one to the other through the exchange of some force parti-

cles. This is the same as in the case of positronium or meson

(or even in the inter-conversion of nucleons in the atomic nu-

cleus). In meson for example (a simpler case) the quark and

the antiquark must undergo rapid interchange of identity into

each other (through exchange of force particles) to remain in

a stable form. This seems evident; for example in the case

of pi-meson, an up and anti-down quark combination has a

mass-energy of only 140 MeV; yet the same quark combina-

tion but only with different spin in a rho-meson has a mass-

energy of 770 MeV!

How the Majorana particle emerges in the experimental

setup of Ali Yazdani’s group described in [1] is a matter of
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speculation at this stage. It seems that the super-conducting

magnet (two opposing factors) somehow polarizes the elec-

tron, probably through some new kind of unifying electo-

magneton coupling interaction, forming the end-to-end linear

chain of the polarized electrons within the magnet, turning

them into particles like the neutrinos, or mesons or even pho-

tons with the unbalanced opposite polarity emerging at the

two ends of the magnet

The random and catastrophic gamma ray bursts (GRBs)

observed in the cosmos can be attributed to the chance ac-

cumulated cosmic scale Majorana type formation of matter

and anti-matter clusters, or somewhat like speculated boson

stars [7]; probably mediated by the magnatic fields of the

host galaxies and their instant annihilations as gigantic cos-

mic “fire-balls”; emmiting high energy gamma rays, triggered

sponteneously or by some outside events [2]. GRBs are short

duration (10 milliseconds to several minutes) intense flashes

of high energy (from KeV to MeV to GeV range) gamma rays

associated with extremely energetic events in distant galaxies

that appear from random locations isotropically distributed

in the celestial sphere. The progenitors of these astrophysi-

cal phenomena remain largely unknown [8]. These energetic

events mostly emmiting gamma ray photons probably occur

from various scale matter-antimatter annihilation processes.

Indeed in the lower energy range, the most dominant peak

centered around ∼ 1 MeV probably corresponds to the mass

equivalent of the elctron-positron pair.

Like the quantum phenomena itself, dialectics and the

Majorana particle are counter-intuitive for anti-dialectical

physics. The discovery of the Majarona particle represents

another blow to the anti-dialectical perspective of modern

physics and shows the futility of hunting for absolutely uni-

tary fundamental constituents of matter in nature, like the

magnetic monopole.
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LETTERS TO PROGRESS IN PHYSICS

An Essay on Numerology of the Proton to Electron Mass Ratio

Alexander Kritov
E-mail: alex@kritov.ru

There are few mathematical expressions for calculation proton to electron mass ratio

presented. Some of them are new and some are not. They have been analysed in terms

of their simplicity, numerical significance and precision. Expressions are listed in the

structured manner with comments. The close attention should be paid to a comparison

of the formula similarity via their precision. A brief review of the different attempts in

similar search is given.

1 Introduction

The founding of the analytical expression for fundamental di-

mensionless constant was a dream of a physical science for

many years. There are many papers in literature trying to de-

rive or explain fine structure constant from pure numerical

theories. Such hypothetical theories can be divided into two

types. The first one proposes that the dimensionless constants

of the Nature are not actually constant and suggests using

some close numbers which deviate from the original ones.

This type of the theories requires further experimental re-

search because deviations of the dimensionless constants are

still unknown with good precision. For example G. Gamov

following Eddington’s belief explained the fine structure con-

stant suggesting that it is equal to exactly 137 but it differs

from exact number because of some small quantum pertur-

bations similar to those in the case of the Lamb-Rutherford

effect [1]. The second type of the theories is less common, it

suggests exact relation for the dimensionless constants which

is close to current experimental value. Usually such hypothe-

ses derive huge and unnatural formulas that lack of elegance

and explain-ability. Moreover physical justification for such

expressions doesn’t have enough arguments or the physical

model is absent. However some of such recent theories may

look interesting and promising in the view of the the pre-

sented material [2–4].

The part of the physics which involves dimensionless con-

stants is very prone to invasion of numerology. However such

cooperation has not been shown to be efficient yet. Though it

is worth to notice that numerology itself stays very close to al-

gebra and number theory of mathematics. Numerology itself

can be considered as ancient prototype of the modern algebra

(as well as alchemy was a base for a modern chemistry) and

as it was said by I. J. Good: “At one time numerology meant

divination by numbers, but during the last few decades it has

been used in a sense that has nothing to do with the occult

and is more fully called physical numerology” [5]. At this

perspective, physical numerology seems to be a way through

back-door which researches also try to enter and finding a key

by trying to pickup right numbers. Such attempts should not

be ignored as they may provide not only new clues for the re-

searchers, but also in case of null-result they might be an evi-

dence for another consistent principle which can be explored

further.

2 Background

The search for mathematical expression for this dimension-

less number motivated many serious scientists. A sufficient

theory on particle masses and their ratios is not yet ready. The

mass ratio of proton to electron (µ = mp/me) — two known

stable particles which belong to two different types (leptons

and hadrons) — still remains the mystery among other di-

mensionless numbers.

In 1929 Reinhold Fürth hypothesized that µ can be de-

rived from the quadratic equation involving the fine structure

constant [6]. Later on in 1935, A. Eddington who accepted

some of Fürth’s ideas presented the equation for proton to

electron mass ratio calculation (10µ2 − 136µ + 1 = 0) which

appeared in his book “New Pathways in Science” [17]. How-

ever both approaches can not be used nowadays as they give

very high deviation from the currently known experimental

value of µ, so they are not reviewed in present work. Later on

in 1951, it was Lenz [7] (but not Richard P. Feynman!) who

noted that µ can be approximated by 6π5. In 1990, I.J. Good,

a British mathematician assembled eight conjectures of nu-

merology for the ratio of the rest masses of the proton and the

electron.

Nowadays proton to electron mass ratio is known with

much greater precision: µ = mp/me = 1836.15267245(75),

with uncertainty of 4.1 × 10−10 (CODATA 2010, [4]). Re-

cently the professional approach to mathematically decode

mp/me ratio was done by Simon Plouffe [8]. He used a large

database of mathematical constants and specialized program

to directly find an expression. Alone with his main remark-

able result for the expression for µ via Fibonacci and Lucas

numbers and golden ratio he also noted that expression for µ

using π can be improved as 6π5 + 328/π8, but he concluded

that this expression: “hardly can be explained in terms of

primes and composites”.
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Expression Value Ref.

µ =

(

7

2

)6

1838.2656 (1 × 10−3) 1.

µ = sin

(

π

5

)

· 55 1836.8289 (4 × 10−4) 2.

µ =
17

4
432 1836.0000 (8 × 10−5) 3.

µ = 150
3
2 − 1 1836.1173 (2 × 10−5) 4.

µ = 6π5 1836.1181 (2 × 10−5) 5.

µ =
200300

7103
1836.1179 (2 × 10−5) 6.

µ =
22

(5 · 3 · α)2
1836.1556 (2 × 10−6) 7.

µ =
5 · 73

6 · 67
137π 1836.1514 (6 × 10−7) 8.

µ =
2435

5α−1
103π 1836.15220 (3 × 10−7) 9.

µ =
e8 − 10

φ
1836.15301 (2 × 10−7) 10.

µ =
40

3
α−1 +

800

9π2
1836.15298 (2 × 10−7) 11.

µ =
864

313
1836.15239 (2 × 10−7) 12.

µ =
22672

5 · 7 · 11 · α−1
6π 1836.1525639 (6 ∗ 10−8) 13.

µ =
1125

4
5 7

2
5 e3

6 · 2
4
5

1836.1526703 (1 × 10−9) 14.

µ =
55 · 5

3
2 11

15
32

φ
1

16

1836.1526748 (1 × 10−9) 15.

µ =
3

15
4 5

9
4 14

3
2

π3e
3
4

1836.1526719 (1 × 10−10) 16.

3 Variability

During the last decade a subject of variability of µ appeared

under heavy debate and serious experimental verifications.

The main experimental task is to distinguish cosmological

red-shift of spectral lines from the shift caused by possible

variation of µ. There is also proposed method to observe

absorption spectra in the laboratory using the high precision

atomic clocks.

Reinhold et al. [9] using the analysis of the molecular hy-

drogen absorption spectra of quasars Q0405-443 and Q0347-

373 concluded that µ could have decreased in the past 12

Gyr and ∆µ/µ = (2.4 ± 0.6) × 10−5. This corresponds to

entry value of µ= 1836.19674. King et al. [9] re-analysed

the spectral data of Reinhold et al. and collected new data

on another quasar, Q0528-250. They estimated that ∆µ/µ =

(2.6± 3.0)× 10−6, different from the estimates of Reinhold et

al. (2006). So the corresponding value for maximal deviated

µ to be something around 1836.1574. The later results from

Murphy et al. [15] and Bagdonaite et al. [2] gave a stringent

limit ∆µ/µ < 1.8 × 10−6 and ∆µ/µ = (0.0 ± 1.0) × 10−7 re-

spectively. However these deviations could be valid only for

the half of the Universe’s current age or to the past of 7 Gyr

which may not be enough for full understanding of the evo-

lution of such variation. The results obtained by Planck gave

∆α/α = (3.6 ± 3.7) × 10−3 and ∆me/me = (4 ± 11) × 10−3 at

the 68% confidence level [13] which provided not so strong

limit comparing to found in [9] and [10].

At first sight the variation, if confirmed, may seem to

make the numerical search for the mathematical expression

meaningless. However possible variability of the µ should

not prevent such search further, because the variation means

one has to find a mean value of its oscillation or the beginning

value from where it has started to change. And such variation

would give a wider space for the further numerical sophistica-

tion because such value can not be verified immediately as we

currently lack experimental verification of the amount of such

change. If the fundamental constants are floating and the Na-

ture is fine-tuned by slight the ratio changes from time to time,

even so, there should be middle value as the best balance for

such fluctuations. In this sense numerologists are free to use

more relaxed conditions for their search, and current the pre-

cision for µ with uncertainty of 2× 10−6 (as discussed above)

may suffice for their numerical experiments. The formulas

listed after number 7 in the table below do fall into this range.

4 Comments to the table

1. This expression is not very precise and given for its

simple form. Also the number (7/2) definitely has cer-

tain numerological significance. The result actually

better fits to the value of the mn/me ratio (relative un-

certainty is 2 × 10−4). It is not trivial task to improve

the formula accuracy, but why not, for example:

µ =

(

7

2

)8
9 · 13

10π · α−1
(relative error: 10−6).

2. It is well known [8] that mp/mn ratio can be well ap-

proximated as cos

(

π

60

)

with relative uncertainty of

6 × 10−6. So this is an attempt to build the formula

for mp/me ratio of similar form. Next more precise for-

mula of the same form would be: µ =
1743

1937
sin

(

π

674

)

=
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1836.1526661 (relative error is 3 × 10−9). In the table

it would be placed between number 13 and 14.

3. It was Werner Heisenberg in 1935 [14] who suggested

to use number 2433 (which is equal to 432) to calculate

alpha as α−1 = 432/π, so mp/me ratio can be also ob-

tained approximately via 432. The expression can be

rewritten as 1836 = 17 · 108 (the number 108 was con-

sidered to be sacred by ancients). There are other pos-

sible representations for the number 1836 which were

noticed in the past, for example: 1836 = (136 ·135)/10

(see review in [5] and [22]).

4. This expression has some certain theoretical base re-

lated to original R. Fürth ideas [6], but it won’t be dis-

cussed here. The precision has the same order as fa-

mous 6π5.

5. This is a Lenz’s formula and it remains the favorite

among the physicists. Recently Simon Plouffe also

suggested yet another adjustment to this formula as fol-

lowing: µ =
1

5 cosh(π)
+ 6π5 +

1

5 sinh(π)
which looks

remarkably symmetric and natural. The relative error

is also extremely good: 4 × 10−9. This formula has not

been published before, it definitely has to attract further

attention of the researchers.

6. The simplest way to approximate mp/me ratio using

powers of 2 and 7. Similar formula: µ =
35716

242
.

7. The elegant expression which uses almost ’kabalistic’

numbers 22, 5, 3 and fine structure constant. Other pos-

sible expression with similar look and with the same

precision: µ =
576

2127325
. Being combined together one

can derive approximation for fine structure constant as

137.035999761 (with good relative deviation of

5 × 10−9): α−2 =
578

11 · 2127323
.

8. Parker-Rhodes in 1981, see [21] and review in [5]. Mc-

Goveran D.O. [20] claimed that this formula does not

have anything in common with numerology as it was

derived entirely from their discrete theory.

9. This elegant expression uses only the fine structure

constant α, powers of 2, 3, 5 and the number 103. As

J.I. Good said: “the favoured integers seem all to be of

the form 2a3b ” [5].

10. By unknown source. No comment.

11. The expression can be also rewritten in more symmet-

ric form: µ = 2















20

3
α−1 +

(

20

3π

)2














. It can be noted

that the number (20/3) appears in the author previous

work [18] in the expression for the gravitational con-

stant G.

12. One of the found expressions by author’s specialized

program. The search was performed for the expression

of the view: µ = p
n1

1
p

n2

2
p

n3

3
p

n4

4
, where pi — some prime

numbers, ni — some natural numbers. Also:

µ =

(

19

5

)21
1

138
.

13. Number 2267 has many interesting properties; it is a

prime of the form (30n−13) and (13n+5), it is congru-

ent to 7 mod 20. It is father primes of order 4 and 10

etc. In the divisor of this formula there are sequential

primes 5, 7, 11. There are other possible expressions

of the similar form with such precision (10−8), for ex-

ample: µ =
45 ∗ 49 ∗ 532

8 ∗ 29 ∗ α−1
5π . It is also hard to justify

why in expressions 9 and 13 α−1 stays opposite to π

as by definition they supposed to be on the same side:

α−1 = ~c/ke2 or (2πα−1) = hc/ke2. But the author did

not succeed in finding similar expressions with α and π

on the same side with the same uncertainty. There are

some few other nice looking formulas which the use

of big prime numbers, for example: µ =
√

43 · 52679

(9 × 10−8).

14. Another possible expression was found using web

based program Wolframalpha [23]. The precision is

the same as in next formula.

15. Simon Plouffe’s approximation using Fibonacci and

Lucas numbers [8] - slightly adjusted from its origi-

nal look. Another elegant form for this expression is

following: µ32 =
1147580

φ2
.

16. This formula has the best precision alone the listed.

Though, powers of π and e seem to despoil its possi-

ble physical meaning.

5 Conclusions

At the present moment big attention is paid to experimen-

tal verification of possible proton-electron mass ratio varia-

tion. If experimental data will provide evidence for the ratio

constancy then only few expressions (14-16 from the listed)

may pretend to express proton-electron mass ratio as they

fall closely into current experimental uncertainty range (4.1×
10−10 as per CODATA 2010). Of course Simon Plouffe’s for-

mula (14) seems as a pure winner among them in terms of the

balance between it simplicity and precision. However, some

future hope for the other formulas remains if the variability of

the proton to electron mass ratio is confirmed. Important to

note that there could be unlimited numbers of numerical ap-

proximations for dimensionless constant. Some of them may

look more simple and “natural” than others. It is easy to see

that expression simplicity and explain-ability in opposite de-

termines its precision. As all formulas with uncertainty 10−8

and better become obviously more complex. And at the end:

“What is the chance that seemingly impressive formulae arise
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purely by chance?” [15].

Remembering mentioning words said by Seth Lloyd [19]

“not to follow in Dirac’s footsteps and take such numerology

too seriously” the author encourages the reader to continue

such mathematical experiments and in order to extend the ta-

ble of the formulas and submit your expressions to the author.

Special attention will be brought to simple expressions with

relations to: power of two (2n), prime numbers and proper-

ties of Archimedean solids. Besides that it may be interesting

mathematical exercise it may also reveal some hidden proper-

ties of the numbers. But how complexity of the mathematical

expression can be connected to the complexity of the num-

bers? What is the origin of the Universe complexity? How

much we can encode by one mathematical expression?

The mass ratio of proton to electron — two stable parti-

cles that define approximately 95% of the visible Universe’s

mass — can be related to the total value Computational ca-

pacity of the Universe (see [19]). So as a pure numbers they

supposedly have to be connected to prime numbers, entropy,

binary and complexity. So, possibly, their property should

be investigated further by looking through the prism of the

algorithmic information theory.

Let’s hope that presented material can be a ground for

someone in his future investigation of this area.
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6. Fürth R. Über einen Zusammenhang zwischen quantenmechanis-

cher Unscharfe und Struktur der Elementarteilchen und eine hier-

auf begründete Berechnung der Massen von Proton und Elektron.

Zeitschrift für Physik, 1929, v. 57, 429–446.

7. Lenz F. The ratio of proton and electron masses. Physical Review, 1851,

v. 82, 554.

8. Plouffe S. A search for a mathematical expression for mass ratios using

a large database. viXra:1409.0099, 2014.

9. Reinhold E., Buning R., Hollenstein U., Ivanchik A., Petitjean P.,

Ubachs W. Indication of a cosmological variation of the proton-electron

mass ratio based on laboratory measurement and reanalysis of H2 spec-

tra. Physical Review Letters, 2006, v. 96(15), 151101.

10. King J., Webb J., Murphy M., Carswell R. Stringent null constraint on

cosmological evolution of the proton-to-electron mass ratio. Physical

Review Letters, 2008, v. 101, 251304.

11. Murphy M. et al. Strong limit on a variable proton-to-electron mass

ratio from molecules in the distant Universe. arXiv:0806.3081, 2008.

12. Bagdonaite J. A Stringent Limit on a Drifting Proton-to-Electron Mass

Ratio from Alcohol in the Early Universe. Science, 4 January 2013,

v. 339, no. 6115, 46–48.

13. Ade P.A.R. et al. Planck intermediate results. XXIV. Constraints on

variation of fundamental constants. arXiv: 1406.7482, 2014.

14. Kragh H. Magic number: A partial history of the fine-structure con-

stant. Arch. Hist. Exact Sci., 2003, v. 57, 395–431.

15. Barrow D. John. The Constants of Nature. Vintage Books, 2004, p.93.

16. CODATA Value: proton-electron mass ratio. The NIST Reference on

Constants, Units, and Uncertainty. US National Institute of Standards

and Technology, June 2011.

17. Eddington A. New Pathways in Science. Cambridge University Press,

1935.

18. Kritov A. A new large number numerical coincidences. Progress in

Physics, 2013, v. 10, issue 2, 25–28.

19. Lloyd S. Computational capacity of the universe. arXiv:quant-

ph/0110141, 2001.

20. McGoveran D.O., Noyes H. P. Physical Numerology? Stanford Univer-

sity, 1987.

21. Parker-Rhodes A.F. The Theory of Indistinguishables: A Search for

Explanatory Principles below the level of Physics. Springer, 1981.

22. Sirag S.P. A combination [combinatorial] derivation of the proton-

electron mass ratio. Nature, 1977, v. 268, 294.

23. www.wolframalpha.com

Alexander Kritov. An Essay on Numerology of the Proton to Electron Mass Ratio 13



Volume 11 (2015) PROGRESS IN PHYSICS Issue 1 (January)
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Botermann et al in Test of Time Dilation Using Stored Li+ Ions as Clocks at Relativis-
tic Speed, Physical Review Letters, 2014, 113, 120405, reported results from an Ives-
Stilwell-type time dilation experiment using Li+ ions at speed 0.338c in the ESR storage
ring at Darmstadt, and concluded that the data verifies the Special Relativity time dila-
tion effect. However numerous other experiments have shown that it is only neo-Lorentz
Relativity that accounts for all data, and all detect a 3-space speed V ≈ 470 km/s essen-
tially from the south. Here we show that the ESR data confirms both Special Relativity
and neo-Lorentz Relativity, but that a proposed different re-analysis of the ESR data
should enable a test that could distinguish between these two theories.

1 Introduction

Botermann et al [1] reported results from an Ives-Stilwell [2,
3] time dilation experiment using Li+ ions at speed v = 0.338c
in the ESR storage ring at Darmstadt, and concluded that the
data verifies the Special Relativity time dilation effect, in (1).
However numerous other experiments [4, 5] have shown that
it is only neo-Lorentz Relativity that accounts for all of the
data from various experiments, all detecting a 3-space speed
V ≈ 470 km/s approximately from the south, see Fig. 3. Here
we show that the ESR data confirms neo-Lorentz Relativity,
and that the ESR Darmstadt experimental data also gives V ≈
470 km/s.

2 Special or Lorentz Relativity?

The key assumption defining Special Relativity (SR) is that
the speed of light in vacuum is invariant, namely the same
for all observers in uniform relative motion. This assumption
was based upon the unexpectedly small fringe shifts observed
in the Michelson-Morley experiment (MM) 1887 experiment,
that was designed to detect any anisotropy in the speed of
light, and for which Newtonian physics was used to calibrate
the instrument. Using SR, a Michelson interferometer should
not reveal any fringe shifts on rotation. However using LR,
a Michelson interferometer [4] can detect such anisotropy
when operated in gas-mode, i.e. with a gas in the light paths,
as was the case with air present in the MM 1887 experiment.
The LR calibration uses the length contraction, from (4), of
the interferometer arms. This results in the device being some
2000 times less sensitive than assumed by MM who used
Newtonian physics. Reanalysis of the MM data then led to
a significant light speed anisotropy indicating the existence
of a flowing 3-space with a speed of some 500 km/s from
the south. This result was confirmed by other experiments:
Miller 1925/26 gas mode Michelson interferometer, DeWitte
1991 coaxial cable RF speeds, Cahill 2009 Satellite Earth-
flyby Doppler shift NASA data [6], Cahill 2012 dual coaxial
cable RF speed [7], Cahill 2013-2014 [8, 9] Zener diode 3-

space quantum detectors. These and other experiments are re-
viewed in [4, 10]. All these experiments also revealed signif-
icant space flow turbulence, identified as gravitational waves
in the 3-space flow [10]. However there are numerous ex-
periments which are essentially vacuum-mode Michelson in-
terferometers in the form of vacuum resonant optical cavities,
see [11], which yield null results because there is no gas in the
light paths. These flawed experimental designs are quoted as
evidence of light speed invariance. So the experimental data
refutes the key assumption of SR, and in recent years a neo-
Lorentz Relativity (LR) reformulation of the foundations of
fundamental physics has been underway, with numerous con-
firmations from experiments, astronomical and cosmological
observations [12–14].

However of relevance here are the key differences be-
tween SR and LR regarding time dilations and length con-
tractions. In SR, these are

∆t = ∆t0/
√

1 − v2/c2 (1)

∆L = ∆L0

√
1 − v2/c2 (2)

where v is the speed of a clock or rod with respect to the
observer, c is the invariant speed of light, and subscript 0 de-
notes at rest time and space intervals. In SR, these expres-
sions apply to all time and space intervals. However in LR,
the corresponding expressions are

∆t = ∆t0/
√

1 − v2
R/c

2 (3)

∆L = ∆L0

√
1 − v2

R/c
2 (4)

where vR is the speed of a clock or rod with respect to the dy-
namical 3-space, and where c is the speed of light with respect
to the dynamical 3-space. In LR, these expressions only apply
to physical clocks and rods, and so the so-called time dilation
in SR becomes a clock slowing effect in LR, caused by the
motion of clocks with respect to the dynamical 3-space. Only
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by using (4) in place of (2) does the data from the Michelson-
Morley and Miller gas-mode interferometers agree with the
results from using other experimental techniques [5].

The interpretation of (1) and (3), relevant to the exper-
iment discussed herein, is that if a time interval ∆t0 corre-
sponds to 1 cycle of an oscillatory system at rest with respect
to an observer in SR, or at rest with respect to space in LR,
then ν0 = 1/∆t0 is the frequency of the emitted photon. When
the system is moving with speed vwith respect to an observer,
or with speed vR with respect to space, then the time inter-
nal ∆t0 is increased, and the emitted photon frequency is de-
creased to ν = 1/∆t.

Here the LR effects are applied to the frequencies of pho-
tons emitted by the moving Li+ ions, to the Doppler shifts of
these photons, and to the clock slowing of the two detectors
that measure the detected photon frequencies.

Fig. 1 shows the direction of the 3-space flow as deter-
mined from NASA satellite Earth-flyby Doppler shifts [6],
revealing that the flow direction is close to being South to
North, which is relevant to the ESR Darmstadt experiment in
which the Li+ ions travel also from South to North.

Fig. 2 shows the simple circuit for the quantum detec-
tion of the 3-space velocity, The measured 3-space speeds are
shown in Fig. 3, and follow from measuring the time delay
between two such detectors, separated by 25 cm and orien-
tated such that the maximum time delay is observed for the
3-space induced quantum tunnelling current fluctuations.

3 Special Relativity and Li+ ESR
Darmstadt experiment

The Li+ ESR Darmstadt experiment measured the photon fre-
quencies νN and νS at the two detectors, emitted by the ions
moving North at speed v = 0.338c, see Fig. 4 Top. In SR,
there are two effects: time dilation of the emitting source,
giving emitted photons with frequency ν0

√
1 − v2/c2, from

(1), where ν0 is the frequency when the ions are at rest with
respect to the two detectors. The second effect is the Doppler
shift factors 1/(1 ± v/c), giving the detected frequencies

νN = ν0

√
1 − v2/c2/(1 − v/c) (5)

νS = ν0

√
1 − v2/c2/(1 + v/c). (6)

Then
νNνS /ν

2
0 = 1 (7)

and this result was the key experimental test reported in [1],
with the data giving

√
νNνS /ν

2
0 − 1 = (1.5 ± 2.3) × 10−9. (8)

On the basis of this result it was claimed that the Special Rel-
ativity time dilation expression (1) was confirmed by the ex-
periment.

Fig. 1: South celestial pole region. The dot (red) at RA=4.3h,
Dec=75◦S, and with speed 486 km/s, is the direction of motion of
the solar system through space determined from NASA spacecraft
Earth-flyby Doppler shifts [6], as revealed by the EM radiation speed
anisotropy. The thick (blue) circle centred on this direction is the ob-
served velocity direction for different months of the year, caused by
Earth orbital motion and sun 3-space inflow. The corresponding re-
sults from the 1925/26 Miller gas-mode interferometer are shown by
second dot (red) and its aberration circle (red dots). For December 8,
1992, the speed is 491km/s from direction RA=5.2h, Dec=80◦S, see
Table 2 of [6]. EP is the pole direction of the plane of the ecliptic,
and so the space flow is close to being perpendicular to the plane of
the ecliptic.

Fig. 2: Circuit of Zener Diode 3-Space Quantum Detector, show-
ing 1.5 V AA battery, two 1N4728A Zener diodes operating in re-
verse bias mode, and having a Zener voltage of 3.3 V, and resistor
R =10 KΩ. Voltage V across resistor is measured and used to de-
termine the space driven fluctuating tunnelling current through the
Zener diodes. Current fluctuations from two collocated detectors are
shown to be the same, but when spatially separated there is a time
delay effect, so the current fluctuations are caused by space speed
fluctuations [8, 9]. Using more diodes in parallel increases S/N, as
the measurement electronics has 1/ f noise induced by the fluctuat-
ing space flow.
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Fig. 3: Average speed, and speed every 5 sec, on February 28, 2014
at 12:20 hrs UTC, giving average speed = 476 ± 44 (RMS) km/s,
from approximately S → N, using two Zener Diode detectors [9].
The speeds are effective projected speeds, and so do not distinguish
between actual speed and direction effect changes. The projected
speed = V cos θ, where θ is the angle between the space velocity V
and the direction defined by the two detectors. V cannot be imme-
diately determined with only two detectors. However by varying
direction of detectors axis, and searching for maximum time delay,
the average direction (RA and Dec) may be determined. As in previ-
ous experiments there are considerable fluctuations at all time scales,
indicating a dynamical fractal structure to space.

4 Lorentz Relativity and Li+ ESR
Darmstadt experiment

In LR, expressions (5) and (6) are different, being

νLN =
ν0

√
1 − (v − V cos θ)2/c2 − (V sin θ)2/c2

(1 − v/(c + V cos θ))
√

1 − V2/c2
(9)

νLS =
ν0

√
1 − (v − V cos θ)2/c2 − (V sin θ)2/c2

(1 + v/(c − V cos θ))
√

1 − V2/c2
(10)

where ν0
√

1 − (v − V cos θ)2/c2 − (V sin θ)2/c2, from (3), is
the expression for the lower emitted photon frequency with
the ions moving at velocity

vR = (v − V cos θ,−V sin θ) (11)

with respect to the 3-space; with 1/(1 − v/(c + V cos θ)) and
1/(1 + v/(c − V cos θ)) being the Doppler shift factors as the
photons have speed c ± V cos θ with respect to the detectors
frame of reference; and 1/(1 − V2/c2) being the time dilation
effect for the clocks in the frequency measuring devices, as
the slowing of these clocks, from (3), makes the detected fre-
quency appear higher, as they have speed V with respect to
the 3-space; see Fig. 4 Bottom. From (9) and (10) we obtain

νLNνLS /ν
2
0 = 1 − v2 sin2 θ

c2(c2 − v2)
V2 + O[V4] (12)

which is identical to (7) to first order in V . We obtain

√
νLNνLS /ν

2
0 − 1 = − v2 sin2 θ

2c2(c2 − v2)
V2 (13)

Li+N νN
SνS

¾ c -c

¾ v

Li+N νLN
SνLS

¾ c + V cos θ -c − V cos θ
HHHHY V

θ

¾ v

Fig. 4: Top: Special Relativity speed diagram with Li+ ions travel-
ling at speed v towards the North, emitting photons with speed c and
frequency νN to the North, and speed c to the South with frequency
νS , with all speeds relative to the detectors N and S frame of refer-
ence. The invariant speed of light is c. The photons are emitted with
frequency ν0 with respect to the rest frame of the ions.
Bottom: Neo-Lorentz Relativity speed diagram with space flow
speed V at angle θ and Li+ ions travelling at speed v towards the
North, emitting photons with speed c + V cos θ to the North and fre-
quency νLN , and speed c − V cos θ to the South and frequency νLS .
V cos θ is the projected space flow speed towards the North, with
speeds relative to the detectors N and S frame of reference. The
speed of light is c relative to the 3-space. The photons are emitted
with frequency ν0 with respect to the rest frame of the ions.

and, for example, V = 400 km/s at an angle θ = 5◦, with
v = 0.338c, gives

√
νLNνLS /ν

2
0 − 1 = −0.9 × 10−9 (14)

which is nearly consistent with the result from [1] in (8). It is
not clear from [1] whether the result in (8) is from the small-
est values or whether it is from averaging data over several
days, as the LR prediction varies with changing θ, as would
be caused by the rotation of the earth. Here we have used
θ = 5◦ which suggest the former interpretation of the data.

A more useful result follows when we examine the ratio
νLN/νLS because we obtain a first order expression for V

V cos θ =
c (c − v)2

2v2

(
c + v

c − v −
νLN

νLS

)
(15)

which will enable a more sensitive measurement of the pro-
jected V cos θ value to be determined from the Li+ ESR Dar-
mstadt data. This result uses only the neo-Lorentz Doppler
shift factors, and these have been confirmed by analysis of the
Earth-flyby Doppler shift data [6]. V cos θ will show space
flow turbulence fluctuations and earth rotation effects, and
over months a sidereal time dependence. The values are pre-
dicted to be like those in Fig. 3 from the 3-space quantum
detectors. Indeed such a simple detection technique should
be run at the same time as the Li+ data collection. The data is
predicted to give V cos θ ≈ 470 km/s, as expected from Fig. 3.
Then the Li+ experiment will agree with results from other
experiments [4–10].
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Note that SR gives, from (5) and (6),
(

c + v

c − v −
νN

νS

)
= 0 (16)

in contrast to (15).

5 Conclusions

The non-null experimental data, from 1887 to the present,
all reveal the existence of a dynamical 3-space, with a speed
≈ 500 km/s with respect to the earth. Originally Lorentz pro-
posed an aether moving through a static geometrical space.
However the data and theory imply a different neo-Lorentz
Relativity, with there being a dynamical fractal flowing 3-
space, which possesses an approximate geometrical measure
of distances and angles, which permits the geometrical de-
scription of relative locations of systems [5]. As well the
dynamical theory for this 3-space has explained numerous
gravitational effects, with gravity being an emergent quan-
tum and EM wave refraction effect, so unifying gravity and
the quantum [4, 10, 13–16]. An important aspect of Lorentz
Relativity, which causes ongoing confusion, is that the so-
called Lorentz transformation is an aspect of Special Relativ-
ity, but not Lorentz Relativity. The major result here is that
the Li+ ESR Darmstadt experimental data confirms the valid-
ity of both Special Relativity and neo-Lorentz Relativity, but
only when the 3-space flow is nearly parallel to the NS ori-
entation of the Li+ beam. Then to distinguish between these
two relativity theories one could use (15). This report is from
the Flinders University Gravitational Wave Project.
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This paper argues that the strong and weak forces arise from the proton and electron

coupling to the Planck vacuum state. Thus they are not free space forces that act be-

tween free space particles, in contradistinction to the gravitational and electromagnetic

forces. Results connect these four natural forces to the vacuum superforce.

1 Introduction

The Dirac particles (proton and electron) have been discussed

in a number of previous papers [1] [2] [3] [4], where it is

shown that they possess similar structures. Of interest here is

the fact that they are both strongly coupled to the Planck vac-

uum (PV) state via a two-term coupling force that vanishes at

their respective Compton radii. It is at these vanishing points

where the strong and weak forces emerge. Consequently both

forces are defined by the particle/PV coupling; i.e., they are

not free space forces acting between free space particles.

What follows derives the strong and weak forces and cal-

culates their relative strengths with respect to each other and

with respect to the gravitational and electromagnetic forces.

It is shown that these four forces are connected to the super-

force associated with the PV (quasi-) continuum.

Strong Force

In its rest frame the proton core (e∗,mp) exerts the follow-

ing two-term coupling force (the Compton relations remec2 =

rpmpc2 = r∗m∗c
2 = e2

∗ are used throughout the calculations)

Fp(r) =
(e∗)(−e∗)

r2
+

mpc2

r
= −Fs















r2
p

r2
−

rp

r















(1)

on the PV continuum, where the proton Compton radius rp (=

e2
∗/mpc2) is the radius at which the force vanishes. The mass

of the proton is mp [3] and the bare charge e∗ is massless. The

radius r begins at the proton core and ends on any particular

Planck-particle charge (−e∗) at a radius r within the PV.

The strong force

Fs ≡

∣

∣

∣

∣

∣

∣

(e∗)(−e∗)

r2
p

∣

∣

∣

∣

∣

∣

=
mpc2

rp

(

=
mpm∗G

rpr∗

)

(2)

is the magnitude of the two forces in the first sum of (1) where

the sum vanishes. The (e∗) in (2) belongs to the free-space

proton and the (−e∗) to the separate Planck particles of the

PV, where the first and second ratios in (2) are the vacuum

polarization and curvature forces respectively. It follows that

the strong force is a proton/PV force. The Planck particle

mass m∗ and Compton radius r∗ are equal to the Planck Mass

and Planck Length [5, p.1234].

Weak Force

The electron core (−e∗,me) exerts the coupling force

Fe(r) =
(−e∗)(−e∗)

r2
−

mec2

r
= Fw

(

r2
e

r2
−

re

r

)

(3)

on the vacuum state and leads to the Compton radius re (=

e2
∗/mec

2), where the first (−e∗) in (3) belongs to the electron

and the second to the separate Planck particles in the negative

energy vacuum.

The weak force

Fw ≡
(−e∗)(−e∗)

r2
e

=
mec

2

re

(

=
mem∗G

rer∗

)

(4)

is the magnitude of the two forces in the first sum of (3) where

the sum vanishes. Again, the first and second ratios in (4)

are vacuum polarization and curvature forces. Thus the weak

force is an electron/PV force.

2 Relative Strengths

The well known gravitational and electromagnetic forces of

interest here are

Fg(r) = −
m2G

r2
and Fem(r) = ±

e2

r2
(5)

where r is the free-space radius from one mass (or charge) to

the other.

The relative strengths of the four forces follow immedi-

ately from equations (2), (4), and (5):

Fw

Fs

=
r2

p

r2
e

=
m2

e

m2
p

=
1

18362
≈ 3 × 10−7 (6)

|Fg(rp)|

Fs

=
m2

pG/r2
p

e2
∗/r

2
p

=
m2

p(e2
∗/m

2
∗)

e2
∗

=

=
m2

p

m2
∗

=
r2
∗

r2
p

≈ 6 × 10−39 (7)

where G = e2
∗/m

2
∗ [1] is used in the calculation, and

|Fem(rp)|

Fs

=
e2/r2

p

e2
∗/r

2
p

=
e2

e2
∗

= α ≈
1

137
(8)

where α is the fine structure constant.
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3 Superforce

The relative strengths (6)–(8) agree with previous esti-

mates and demonstrate that the free space forces

Fg(rp) = −
r2
∗

r2
p

Fs , Fg(re) = −
r2
∗

r2
e

Fw (9)

and

Fem(rp) = ±αFs , Fem(re) = ±αFw (10)

are related to the proton and electron coupling forces (1) and

(3) through the strong and weak forces.

Equations (2) and (4) give precise definitions for the

strong and weak forces, and are connected to the vacuum su-

perforce via:

Fs =













r2
∗

r2
p













e2
∗

r2
∗

and Fw =

(

r2
∗

r2
e

)

e2
∗

r2
∗

(11)

where

superforce ≡
e2
∗

r2
∗

=
m∗c

2

r∗

(

=
m2
∗G

r2
∗

)

(12)

is the PV superforce to which Davies alludes [6, p.104]. The

equality of the first and third ratios in (12) indicate that the de-

generate vacuum state is held together by gravity-like forces.

The Newtonian force

−Fg(r) =
m2G

r2
=

(mc2/r)2

c4/G
=

=
(mc2/r)2

m∗c2/r∗
=

(

mc2/r

m∗c2/r∗

)2
m∗c

2

r∗
(13)

is related to the superforce through the final expression, where

c4/G (= m∗c
2/r∗) is the curvature superforce in the Einstein

field equations [7]. The parenthetical ratio in the last expres-

sion is central to the Schwarzschild metrics [8] associated

with the general theory.

Finally,

Fem(r) = ±
e2

r2
= ±α

(

r2
∗

r2

)

e2
∗

r2
∗

(14)

is the free space Coulomb force in terms of the vacuum po-

larization superforce.
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Lorentzian Type Force on a Charge at Rest. Part II

Rudolf Zelsacher
Infineon Technologies Austria AG, Siemensstrasse 2 A-9500 Villach. E-mail: Rudolf.zelsacher2@infineon.com

Some algebra and seemingly crystal clear arguments lead from the Coulomb force and
the Lorentz transformation to the mathematical expression for the field of a moving
charge. The field of a moving charge, applied to currents, has as consequences a mag-
netic force on a charge at rest, dubbed Lorentzian type force, and an electric field E⃗,
the line integral of which, taken along a closed loop, is not equal to zero. Both con-
sequences are falsified by experiment. Therefore we think that the arguments leading
to the mathematical formulation of the field of a moving charge should be subject to a
careful revision.

1 Citations

If someone asks me what time is, I do not know; if nobody
asks me, I don’t know either. [Rudolf Zelsacher]

2 Introduction

2.1 Miscellaneous

We will follow very closely the chain of thought taken by Ed-
ward Mills Purcell in [1]. We will use the Gaussian CGS units
in order to underline the close relationship between electric
field E⃗ and magnetic field B⃗.

Table 1: Definition of symbols

symbol description

jx, J⃗ current density
I current
A, a area
c speed of light in vacuum
v, v⃗ speed, velocity
ϑ, α angles
ω anglular velocity
Ne(x), ne(x) current electron density,

electron density
R̂ etc. unit vector in the direction of R⃗
F(x, y, z, t), inertial systems in the usual
F′(x′, y′, z′, t′) sense as defined in e.g. [2]
β v

c
E⃗ electric field
B⃗ magnetic field
q,Q, e, p charge
h, a, r,R, s distance
i, k,N,m natural number variables
x, y, z cartesian coordinates
t time

2.2 The electric field E⃗ in F arising from a point charge
q at rest in F′ and moving with v⃗ in F

The electric field E⃗ in F of a charge moving uniformly in F, at
a given instant of time, is generally directed radially outward
from its instantaneous position and given by [1]

E⃗(R⃗, ϑ) =
q(1 − β2)

R2(1 − β2 sin2 ϑ)
3
2

R̂. (1)

R is the length of R⃗, the radius vector from the instanta-
neous position of the charge to the point of observation; ϑ is
the angle between v⃗∆t, the direction of motion of charge q,
and R⃗. Eq. 1, multiplied by Q, tells us the force on a charge
Q at rest in F caused by a charge q moving in F (q is at rest
in F′).

3 Lorentzian type, i.e. magnetic like, force on a charge
Q at rest

3.1 Boundary conditions that facilitate the estimation of
the field characteristics

We have recently calculated the non-zero Lorentzian type
force of a current in a wire on a stationary charge outside
the wire by using conduction electrons all having the same
speed [3]. We now expand the derivation given in [3] to sys-
tems with arbitrary conduction electron densities, i.e. to con-
duction electrons having a broader velocity range. Based on
Eq. 1, describing the field of a moving charge, we derive
geometric restrictions and velocity restrictions useful for our
purposes. These boundary conditions allow the knowledge of
important field characteristics, due to a non-uniform conduc-
tion electron density, at definite positions outside the wire.

3.1.1 The angular dependent characteristics of the field
of a moving charge

For a given β, at one instant of time, the angle ϑc (theta
change), between R⃗ and v⃗∆t, given by
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ϑc = arcsin

[
1 −

(
1 − β2

) 2
3
] 1

2

β
(2)

separates two regions: one where the absolute value of the
field of the moving charge is less than q

R2 and a second where
the absolute value of the field of the moving charge is greater
than q

R2 . For small velocities, e.g. v = 2 · 10−10 [cm/s], ϑc

is ≈ arcsin
√

2
3 or about 54.7°. For v = 2 · 1010 [cm/s], ϑc

is less than 60°. We will later need ϑc to estimate the effect
of the field of conduction electrons at the position of a test
charge Q. In Fig. 1 we have sketched in one quadrant the
regions where the absolute value of the field of the moving
charge is separated by ϑc. 2 · 1010 cm/s or 2c/3 is just an
arbitrarily chosen and of course sufficiently high speed limit
for conduction electrons to be used in our estimations.

ϑc = arcsin

(
1 −

(
1 − β2

) 2
3

) 1
2

β

for v < c

ϑc � arcsin


√

2
3
+
β2

9
+

4β4

81
· · ·


(for v = 2e10[cms−1] ϑc < 60◦)

(for v ≪ c

ϑc = arcsin

√
2
√

3
� 54.7◦

Fig. 1: The angle ϑc separates the region where the absolute value of
the field of a moving charge is greater than q

R2 from the region where
the absolute value of the field of the moving charge is less than q

R2 .

3.1.2 The conduction electron density of a stationary
current in a metal wire

We will use neutral wires and apply an electromotive force
so that currents will flow in the wires. We also have in mind
superconducting wires; at least we cool down the wires to
near 0°[K] to reduce scattering. As in [1] we will restrict our
investigation to a one dimensional current i.e. to velocities
in one direction (vx). A stationary current I, the number of
electrons passing a point in a wire per unit of time, is then
given by

I =
∫

j⃗da⃗ = A (−e) Ne (x) v̄x (x) (3)

where A is the cross section of the wire, j⃗ or component jx

is the current density, Ne(x) is the local conduction electron
density and v̄x(x) is the local mean velocity of the conduction
electrons. For a stationary current div j⃗ = 0. This indicates

that there can be no permanent pile up of charges anywhere
in the wire. From our discussion with regard to ϑc in section
3.1.1 we know that for restricted velocities vx of the conduc-
tion electrons and restricted angles ϑ the absolute value of the
field of the conduction electron e(1−β2)

r2(1−β2 sin2 ϑ)
3
2

, at the position

of the test charge Q, is either greater than e
r2 or less than e

r2 .

3.1.3 The line integral of the field of a moving charge

The field of a moving charge at an instant t0 cannot be com-
pensated by any stationary distribution of charges. The reason
is that for the field of a moving charge in general

∮
E⃗ds⃗ , 0. (4)

We will use this property to estimate whether a variable
electron density ne(x) along a wire can compensate the field
due to the moving conduction electrons. In addition we will
use this fact to show that currents in initially neutral wires
produce electric fields whose line integral along a closed loop
is non-zero.

3.2 The force of a pair of moving charges on a resting
charge

In Fig. 2 we show two charges qn and qp moving in lab and
a test charge Q at rest in lab. The indices n & p were cho-
sen to emphasize that we will later use a negative elementary
charge and a positive elementary charge, and calculate the ef-
fect of such pairs, one moving and the other stationary, on a
test charge Q at rest in lab.

Fig. 2: The force F⃗pair on a resting charge Q caused by the two
moving charges qn and qp. We assign the name F⃗pair to the result of
the calculation of a force on a resting test charge Q, by at least two
other charges having different velocities (including v⃗ = 0⃗).

The force F⃗pair exerted by this pair of charges, of qn and
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qp, on the test charge Q is, according to Eq. 1, given by

F⃗pair = F⃗Qqp + F⃗Qqn =

=

qpQ
(
1 − v⃗

2
p

c2

)
r̂Qqp

r⃗2
Qqp

(
1 − v⃗

2
p

c2 sin2 ϑp

) 3
2

+

qnQ
(
1 − v⃗

2
n

c2

)
r̂Qqn

r⃗2
Qqn

(
1 − v⃗

2
n

c2 sin2 ϑn

) 3
2

.
(5)

We are going to use such pairs of charges – specifically a
conduction electron (−e), and its partner, the nearest station-
ary proton (e) – in a current carrying wire and investigate the
non vanishing field in lab produced by such pairs outside the
wire. “Stationary” (or resting, or at rest) indicates that the
“stationary charges” retain their mean position over time.

3.3 Lorentzian type force, part 1

We consider now two narrow wires isolated along their
length, but connected at the ends, each having length 2a and
lying in lab coaxial to the x-axis of F from x = −a to x = a.
In addition the system has a source of electromotive force ap-
plied so that a current I is flowing through the wires; in one
of the wires I flows in the positive x direction and in the other
wire I flows in the negative x direction. We also have in mind
superconducting wires. On the z-axis of F fixed (stationary)
at (0, 0, h) a test charge Q is located. The system is sketched
in Fig. 3. We will now calculate the Lorentzian type force F⃗Lt

on the stationary test charge Q fixed at (0, 0, h) exerted by the
electrons of the current I and their nearest stationary protons
at an instant t0.

Fig. 3: (a) (b): We show in Fig. 3(a) the two wires carrying the cur-
rent I extended along the x axis of F from x = −a to x = a and the
charge Q at rest in F at (0, 0, h). Additionally on the right-hand side
a magnification of a small element ∆x containing the two wires and
labeled Fig. 3(b) can be seen. Fig. 3(b) shows some moving elec-
trons and for each of these the nearest neighboring proton situated
in the tiny element. We calculate the force on Q by precisely these
pairs of charges.

The two wires are electrically neutral before the current
is switched on. Therefore after the current is switched on we
have an equal number of N electrons and N protons in the
system - the same number N, as with the current switched
off. We look at the system at one instant of lab time t0, after

the current I is switched on and is constant. We consider the
k electrons that make up the current I. For each of these k
electrons ei with i = 1, 2, ..k, having velocity vx,i, we select
the nearest neighboring stationary proton pi with i = 1, 2, ..k.
“Stationary” means that the charges labeled stationary retain
their mean position over time. For each charge of the mobile
electron-stationary proton pair, we use the same r⃗i as the vec-
tor from each of the two charges to Q. We use ϑi = arcsin h

ri
as

the angle between the x-axis and r⃗i for each pair of charges.
As long as the velocity vx,i of a conduction electron is less
than 2 · 1010[cm/s] and the angle ϑi = arcsin h

ri
, between the

x-axis and the vector r⃗i from the current electron to test charge
Q, is greater than 60°(and less than 120°), the contribution of
the current electron to the absolute value of the field at (0,0,h)
is, according to our discussion in section 3.1.1, greater than
e
r2

i
. The contribution of the nearest proton that completes the

pair is e
r2

i
. If we restrict ϑi to between 60°and 120°, we will

have an electric field E⃗ , 0⃗ at the position of Q pointing
towards the wire. The Lorentzian type force F⃗Lt on the sta-
tionary test charge Q is then given by

F⃗Lt = Qe
∑

i


∣∣∣∣∣∣cosϑi

r2
i

∣∣∣∣∣∣ (−1)mi

1 −
(
1 − v

2
x,i
c2

)
(
1 − v

2
x,i
c2 sin2 ϑi

) 3
2

 x̂+

+
sinϑi

r2
i

1 −
(
1 − v

2
x,i
c2

)
(
1 − v

2
x,i
c2 sin2 ϑi

) 3
2

 ẑ

 = S LtŜ .

(6)

The mi (mi = 0 if xei − xQ < 0,mi = 1 if xei − xQ >
0) ensures the correct sign for the x-component of the force.
Eq. 6 shows that an equal Number N of positive and negative
elementary charges (the charges of the wire loop) produces a
force on a stationary charge, when a current is flowing. This
force can be written as

F⃗Lt = Fx,Lt x̂ + Fz,Lt ẑ =

=

√
F2

x,Lt + F2
z,Lt√

F2
x,Lt + F2

z,Lt

(
Fx,Lt x̂ + Fz,Lt ẑ

)
= S LtŜ

(7)

with the unit vector ⃗̂S pointing from the position of the test
charge Q(0, 0, h) to a point X(−a < X < a) on the x-axis. X
will probably not be far from zero, but we leave this open as
the resulting force vector F⃗Lt = S Lt

⃗̂S depends on the local

current electron density in the wire. Note that

(
1−
v2x,i
c2

)
(
1−
v2x,i
c2 sin2 ϑi

) 3
2

is greater than 1 as long as vx,i < 2 · 1010 [cm/s] and 60°<
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ϑi <120°, as was shown in section 3.1.1 This means the field
at (0, 0, h) points to the wire.

3.4 Lorentzian type force, part 2

Next we place the stationary charge Q at the position (b >
a, 0, h), with ϑmax = arctan h

b−a < 54◦ (see Fig. 4).

Fig. 4: If the test charge Q, is located at (b, 0, h) as shown here, with
ϑmax = arctan h

b−a <54°, then the absolute value of the field of each
of the conduction electrons at (b, 0, h) is less than that of a stationary
charge for all velocities 0 < vx < c.

The force on the stationary test charge Q is given by Eq. 6.

But now

(
1−
v2x,i
c2

)
(
1−
v2x,i
c2 sin2 ϑi

) 3
2

is less than 1 for 0 < vx,i < 3 · 1010

[cm/s] and 0◦ < ϑi < 54◦ or 136◦ < ϑi < 180◦ as was shown
in section 3.1.1. This means the field at (b, 0, h) points away
from the wire.

3.5 The line integral of the field of two parallel wires
calculated at one instant t0

We continue by estimating a specific line integral of the elec-
tric field outside the wire along the closed path shown in
Fig. 5.

Fig. 5: Shows the electric field
∑

(E⃗ei + E⃗pi ) due to the moving con-
duction electrons and their partner protons of the system of Fig. 3.
In addition the path 12341 is shown where the line integral of the
electric field

∑
(E⃗ei + E⃗pi ) is estimated. E⃗s + E⃗Q, the field of the

residual stationary charges of the system and the test charge Q, is
not shown because the line integral of the field E⃗s + E⃗Q, along a
closed path is zero.

The electric field of the system is a superposition of the
field of the moving conduction electrons and their stationary

partner protons
∑

(E⃗ei + E⃗pi ), the field E⃗s of the residual sta-
tionary electrons and protons of the wire and the field E⃗Q of
the resting test charge Q. The line Integral of E⃗s + E⃗Q along
every closed path is zero. The line integral of the electric field∑

(E⃗ei + E⃗pi ) due to the moving conduction electrons and their
partner protons is, according to our discussion in section 3.1.1
and the results given by Eq. 6 at positions like (0, 0, h) and
(b, 0, h), less than zero from 1 to 2, zero from 2 to 3 (because
here we have chosen a path perpendicular to the field), less
than zero from 3 to 4 and zero from 4 to 1 (because here we
have again chosen a path perpendicular to the field).

∮
12341

E⃗ds⃗ =
∮

12341

(∑(
E⃗ei+E⃗pi

)
+E⃗s + E⃗Q

)
ds⃗ =

=

[
C
∫ 2

1

(∑
E⃗ei+E⃗pi

)
ds⃗+C

∫ 4

3

(∑
E⃗ei+E⃗pi

)
ds⃗

]
< 0.

(8)

A wire bent like the loop 12341 might be a good device
for the experimental detection of F⃗Lt. As we have mentioned
in section 3.1.2 we do not expect pile-up effects of charges
in the wire because from experiment we know the extreme
precision to which Ohm’s Law, is obeyed in metals. But we
expect a variable electron density ne(x) (not to be confused
with the variable conduction electron density Ne(x)) on the
wires resulting from capacitive and shielding effects, together
with the field component of the moving conduction electrons
directed along the wire. The estimation of the line integral of
the electric field of the system, resulting in Eq. 8, shows, by
being non-zero, that no “stationary” static charge distribution
on the wires is able to compensate the field due to the moving
conduction electrons.

3.6 The force on a charge at rest due to a superconduct-
ing ring

We consider now a superconducting current carrying ring,
with radius a, and assume that one of its conduction elec-
trons ei at t0, at rest in its local inertial frame, has constant
velocity v⃗i = ω⃗i × r⃗i. Then, according to Eq. 5 and Fig. 6 the
Lorentzian type force on a charge Q at rest at (0, 0, h) caused
by this system is given by

F⃗Lt =
∑

i

Qe
r2

i + h2

1 − 1(
1 − β2

i

) 1
2

 cos arctan
a
h

ẑ (9a)

or if v ≪ c

F⃗Lt ≈
∑

i

Qe
r2

i + h2

1 − 1 −
β2

i

2

 cos arctan
a
h

ẑ =

=
∑

i

−Qvi
c

evi
2
(
r2

i + h2
)

c
cos arctan

a
h

ẑ.

(9b)
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Fig. 6: The electrical field, at the position of a charge Q at rest,
caused by one of the charges ei of the current in a superconducting
wire.

As stated above we assume that the current carriers are at
rest in a succession of individual local inertial frames when
circling in the loop; i.e. the movement of the charges is
well described by a polygon, with as many line segments as
you like it. This view is supported by the experimental fact
that currents flow for years in such loops without weakening,
showing that the passage from one inertial frame to the next
happens without much radiation.

3.7 The Field due to a constant electron density in the
parallel wires connected at the ends

We now proceed to the case where the current electron den-
sity Ne(x) is constant along the wires by definition to get an
analytic expression for the force F⃗Lt on a stationary charge.
This was calculated in [3] and here we just rewrite the re-
sult. The Lorentzian type force on a charge Q at rest due to
a system like that shown in Fig. 2 is, by assuming a constant
current electron density, given by

F⃗Lt = −
Qvx

c
2I cosϑmin sin2 ϑmin

hc2 ẑ. (10)

The force described by Eq. 10 is of the same order of
magnitude as magnetic forces, as can be seen by comparing
it to Eq. 11, the result of a similar derivation given in [1]

F⃗ =
qvx
c

2I
rc2 ŷ. (11)

4 Discussion

The one and only way to scientific truth is the comparison
of theoretical conclusions with the experimental results. We
have investigated the consequences of Eq. 1 - the elegant
mathematical formulation of the field of a moving charge. By
applying the field of a moving charge to currents in loops
we derive a magnetic force on a charge at rest outside these
loops. We have dubbed this force “Lorentzian type force”

and state that such a force has never been observed in exper-
iments. In addition such current-carrying systems, when in-
vestigated by using the mathematical expression for the field
of a moving charge, show an electric field whose line integral
along a closed loop is non-zero. Also this prediction has never
been observed by experimental means. We find the example
of the Lorentzian type, i.e. magnetic, force on a charge at rest
due to the superconducting ring (as given in 3.6), which also
has been never observed, to be especially instructive because
nothing disturbs the intrinsic symmetry. The overall conclu-
sion from our investigation is that the arguments leading to
the formula for the field of a moving charge should be subject
to a careful revision.
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The geometric properties of General Relativity are reconsidered as a particular nonlin-

ear interaction of fields on a flat background where the perceived geometry and coordi-

nates are “physical” entities that are interpolated by a patchwork of observable bodies

with a nonintuitive relationship to the underlying fields. This more general notion of

gauge in physics opens an important door to put all fields on a similar standing but

requires a careful reconsideration of tensors in physics and the conventional wisdom

surrounding them. The meaning of the flat background and the induced conserved

quantities are discussed and contrasted with the “observable” positive definite energy

and probability density in terms of the induced physical coordinates. In this context, the

Dirac matrices are promoted to dynamic proto-gravity fields and the keeper of “phys-

ical metric” information. Independent sister fields to the wavefunctions are utilized in

a bilinear rather than a quadratic lagrangian in these fields. This construction greatly

enlarges the gauge group so that now proving causal evolution, relative to the physical

metric, for the gauge invariant functions of the fields requires both the stress-energy

conservation and probability current conservation laws. Through a Higgs-like coupling

term the proto-gravity fields generate a well defined physical metric structure and gives

the usual distinguishing of gravity from electromagnetism at low energies relative to

the Higgs-like coupling. The flat background induces a full set of conservation laws

but results in the need to distinguish these quantities from those observed by recording

devices and observers constructed from the fields.

1 Introduction

The theories (special and general) of relativity arose out of

an extension of notions of geometry and invariance from the

19th century. Gauge freedom is an extension of such ideas

to “internal” degrees of freedom. The gauge concept follow

from the condition that quantities that are physically real and

observable are generally not the best set of variables to de-

scribe nature. The observable reality is typically a function

of the physical fields and coordinates in a fashion that makes

the particular coordinates and some class of variations in the

fields irrelevant. It is usually favored that such invariance be

“manifest” in that the form of the equations of motion are evi-

dently independent of the gauge. Implicit in this construction

is the manifold-theory assumption that points have meaning

and coordinate charts do not. We are interested in the largest

possible extension of these ideas so that points themselves

have no meaning and gauge equivalence is defined by map-

pings of one solution to another where the observers built of

the underlying fields cannot detect any difference between

solutions. This is the largest possible extension of the intu-

itive notion of relativity and gauge. It will be essential to

find a mathematical criterion that distinguishes this condition

rather than simply asserting some gauge transformation ex-

ists on the lagrangian and seeking the ones that preserve this.

This leads us to consider a more general “intrinsic” reality

than the one provided by manifold geometry but, to give a

unified description of the gravitational fields and the fields

that are seen to “live on top of” the manifold structure it

induces requires we provide an underlying fixed coordinate

structure. The physical relevance, persistence and uniqueness

of this will be discussed, but the necessity of it seems un-

avoidable.

Initially we need to reconsider some aspects of the partic-

ular fields in our study: the metric, electromagnetic and Dirac

fields. The Dirac equation is interesting as a spinor construc-

tion with no explicit metric but an algebra of gamma-matrices

that induce the Minkowskii geometry and causal structure.

There are many representations of this but the algebra is rigid.

The general way to include spinors in spacetime is to use a

nonholonomic tetrad structure and keep the algebra the same

in each such defined space. We are going to suggest an ini-

tially radical alteration of this and abandon the spinor and

group notions in these equations and derive something iso-

morphic but more flexible that does not require the vierbein

construction. It is not obvious that this is possible. There are

rigid results that would seem to indicate that curvature ne-

cessitates the use of vierbeins [1]. These are implicitly built

on the need for ψ itself to evolve causally with respect to the

physical metric (in distinction with the background metric).

We will extend the lagrangian with auxiliary fields so that this

is not necessary but only that the gauge invariant functions of

the collective reality of these fields evolve causally. This is a

subtle point and brings up questions on the necessity of the

positive definiteness of energy, probability, etc. as defined by

the underlying (but not directly observable) flat space.
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Let us begin with a brief discussion of the Dirac equation

and this modification. The Dirac equation is the fundamen-

tal description for electrons in quantum theory. It is typically

derived in terms of causality arguments and the need for an

equation of motion that is first order in time, as was Dirac’s

approach, or, more formally, in terms of representation theory

of the Lorentz group. These arguments are discussed many

places [2–4]. While this is a powerful description and has

led to the first inclination of the existence of antiparticles, it

has its own problems. Negative energy solutions have had to

be reconciled by Dirac’s original hole theory or through the

second quantization operator formalism. Most are so steeped

in this long established perspective and impressed by its suc-

cesses that it gets little discussion.

A monumental problem today is that of “unification” of

quantum theory and gravity. There are formal perturbative

approaches to this and some string theory approaches as well.

In quantum field theory we often start with a single particle

picture as a “classical field theory” and then use canonical

quantization or path integral methods. For this reason, it is

good to have a thorough understanding of the classical theory

to be built upon. We will show that, by making some rather

formal changes in traditional lagrangians, some great simpli-

fications can result. The cost is in abandoning the notions

that the fields corresponding to nature are best thought of as

evolving on the “intrinsic” geometry induced by a metric and

that spacetime is a locally Lorentzian manifold. In place of

this is a trivial topological background and a reality induced

by fields which encodes the observable reality and apparent

coordinates (induced by collections of objects) and metrical

relationships in a non-obvious fashion. Usual objections to

such a formalism in the case of a gravitational collapse are

addressed by adherence to the time-frozen or continued col-

lapse perspective.

A main purpose of this article is to illustrate an alter-

nate interpretation of the Dirac equation. In the course of it,

we will make gravity look much more like the other bosonic

fields of nature and give a true global conservation law (that

is generally elusive in GR). Our motivation begins with a re-

consideration of the spinor transformation laws and the role

of representation theory. This approach will greatly expand

the gauge invariance of the system. In place of the metric gµν
as the keeper of gravitational information, we will let the γ

matrices become dynamic fields and evolve. Our motivation

for this is that, for vector fields, the metric explicitly appears

in each term and variation of it, gives the stress-energy ten-

sor. The only object directly coupling to the free Dirac fields

is γ. Additionally, γµ bears a superficial resemblance to Aµ

and the other vector bosons. Since g ∼ γγ we might antic-

ipate that the spin of this particle is one rather than two as

is for the graviton theories which are based explicitly on gµν.

It is because we only require our generalized gauge invariant

functions to obey causality and that these conserved quanti-

ties, while exact, are not directly observable so do not have to

obey positive definiteness constraints that this approach can

be consistent.

We will be able to show that this construction can give GR

evolution of packets in a suitable limit and obeys causal con-

straints of the physical metric. It is not claimed that the evo-

lution of a delocalized packet in a gravitational field agrees

with the spinor results in a curved spacetime. This will un-

doubtably be unsatisfactory to those who believe that such a

theory is the correct one. In defense, I assert that we do not

have any data for such a highly delocalized electron in a large

nonuniform gravitational field and that the very concept of

spinor may fail in this limit. As long as causality holds, this

should be considered an alternate an viable alternative theory

of the electron in gravity. The purely holonomic nature of the

construction is pleasing and necessary for a theory built on a

flat background. A unification of gravity in some analogous

fashion to electroweak theory would benefit from having a its

field be of the same type. One might naturally worry about the

transformation properties of ψa and γ
µ

ab
in this construction.

Under coordinate transformations of the background, ψa be-

haves as a scalar not a spinor and γ
µ

ab
is a vector. One should

not try to assign to much physical meaning to this since these

transformations of the structure are passive. Active transfor-

mations where we leave the reality of all the surrounding and

weakly coupled fields the same but alter the electron of inter-

est can be manifested by changes in both ψ and γ (and A) so

that the local densities and currents describing it are boosted

and those of the other fields are not. The usual active boost

ψ′
b
= S (Λ)baψa is included as a subset of this more general

gauge change.

There has been work from the geometric algebra perspec-

tive before [5] in trying to reinterpret the Dirac and Pauli

matrices as physically meaningful objects. Since the author

has labored in isolation for many years searching for a phys-

ical meaning for the apparent geometric nature of physical

quantities this did not come to his attention until recently.

However, there are significant differences in the approach pre-

sented here and the easy unification with gravity that follows

seems to depend on abandoning group representation theory

in the formulation. Most importantly, one has a new notion of

gauge freedom as it relates to the reality expressed by particle

fields (i.e. the full gauge independent information associated

with it). Coupling destroys the ability to associate the full “re-

ality” of the electron with the wavefunction. We will see that

this can get much more entangled when one includes gravity

and, with the exception of phase information, the only con-

sistent notion of a particle’s reality comes from the locally

conserved currents that can be associated with it. Here will

involve multiple field functions not just ψa as in the free par-

ticle case.

The dominant approaches to fundamental physics has

been strongly inspired by the mathematical theory of mani-

folds where a set of points is given a topology and local co-

ordinate chart and metric structure. The points have a reality
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in this construction and the charts are grouped into atlases so

that coordinates are “pure guage” and no physical reality is

associated with them. We frequently say that the invariance

of the field’s equations requires that we have a metric invari-

ant action be a scalar. It can be shown somewhat easily [6]

that this is not true and that most lagrangians that give many

common (local) field equations are neither invariant nor lo-

cal. In the following we enlarge the class of physically equiv-

alent fields to the set of fields that evolve in such a fashion

where the “observers” built from the fields cannot distinguish

one description from another. This includes simple spacetime

translations of a flat space of the entirety of fields and far more

general deformations of the fields which do not preserve the

underlying set of points.

The underlying space is chosen trivially flat with the ηµν

metric. This begs the question of how general curved co-

ordinates resulting from the effective curvature induced by

the field gµν(γ) relate to it and how the causally connected

structure induced by the fields evolves through this flat back-

ground. In this picture the “physical coordinates” seen by

observers are measures induced by “candles,” specifically

highly independent localized objects and radiators, that in-

duce his perception of his surroundings. Clocks are induced

by atomic oscillations and other local physical processes.

Collective displacements and alterations of the fields on the

underlying flat space that preserve the preserved reality are

considered alternate representations of the same physical re-

ality rather than an active transformation of it to a new and

distinct one, as one would expect from the usual manifold

founded perspective.

At the foundations of manifold inspired physics are ten-

sors and their transformation rules under coordinate changes.

In this case we have little interest in the transformations with

respect to the underlying flat space and all fields are treated

as trivial tensors with respect to it. The interesting case of ap-

parent curvature must then be measured with respect to these

local candles. The vector properties of functions of a field,

like the current j
µ
(0)
= ψ̄(0)γ

µψ(0), are then the collective result

of active transformations of the ψ(i), γ and underlying coor-

dinates that leave the nearby candles’ (labelled by i) gauge

invariant features unchanged and a transformation of the field

ψ(0) so that the resulting current j(0) appears to move through

a full set of Lorentz boosts and rotations relative to measure-

ments using these candles.

This is a significant departure from the usual geometry in-

spired approach. Not surprisingly many formulas will appear

(deceptively) similar to usual results despite having very dif-

ferent meaning since they will all be written with respect to

the underlying flat structure not some “physical coordinates”

with respect to some fixed point set induced by the candles.

The mystery of how we arrive at a geometric seeming reality

and at what energy scale we can expect this to fail is a main

motivation for this article. Conservation laws follow from

the usual ten Killing vectors of flat space but the meaning of

these conservation laws (and their form in terms of observable

quantities) is unclear. Even the positive definiteness of quan-

tities like energy and mass density are not assured and failure

of them do not carry the same consequences as in usual met-

ric theories. The symmetry responsible for mass conservation

is the same one as for probability so such a situation raises

more questions that must be addressed along the way. We

have been nonspecific about the details of what determines

equivalent physical configurations. Aside from the geometry

induced by candles the gauge invariant quantities that we pre-

sume are distinguishable by observers are those induced by

conserved currents such as mass and stress-energy. It is not

obvious why such should be the case. A working hypothesis

is that all observers are made up of long lasting quasilocal-

ized packets of fields that determine discrete state machines

and these are distinguished by localized collections of mass,

charge and other conserved quantities.

In this article we only discuss these as classical theories in

a 4D spacetime. Of course, the motivation is for this to lead

to a general quantum theory. There is a lot of work on reinter-

pretation of quantum theory as a deterministic one. Everyone

who works on this has his favorite approach. The author here

is no exception and has in mind a resolution that is consistent

with the theory in [7] that gives QM statistics assuming that

particular far-from-eigenstate wavefunctions describe classi-

cal matter that arise in an expanding universe with condensing

solids. The motivations behind the following constructions is

not just to get some insight on unification but to take steps

to resolve some of the fundamental contradictions of quan-

tum field theory, such as Haag’s theorem, and to give a solid

justification for the calculations of field theory that have been

successful.

The structure of the article will be as follows. Invariance

and the nature of causality are discussed and contrasted with

the usual flat background approach in §2. This is especially

subtle since the “physical” metric, reality and coordinate fea-

tures are encoded in this construction in nonobvious ways,

the gauge group is large and some conserved quantities and

expected positive definiteness of quantities can change with-

out altering the physically observable results. Next we will

elaborate in §3 on the transformation properties of the fields

and promotion of the gamma matrices to holonomically de-

scribed proto-gravity fields in causally consistent manner and

in §4 give a discussion on the “reality” induced by fields. In

§5 we modify the Dirac lagrangian with an auxiliary field φ

to replace the awkward ψ̄ = ψ∗γ0 with its extra γ0 factor un-

contracted in any tensorial fashion, and demonstrate causality

of the gauge invariant functions of the field.∗ In §6, a sister

∗We typically vary ψ and ψ∗ independently in the lagrangian to get equa-

tions of motion but then constrain them to be so related (though we should

show this constraint is propagated as well). Here we make no such restriction

and allow ψ and φ to be independent fields with no constraints on the initial

data. In the flat space case, the case of φ = γ0ψ∗ gives the usual results and

shows many other cases (i.e. ψ, φ initial data pairs) are gauge related to this.
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field to γ is introduced that allows a similar lagrangian for the

proto-gravity fields (when a Higgs-like construction is used)

as for the electromagnetic field and that gives General Rela-

tivity in a suitable limit. This similarity suggests a pairing of

the electromagnetic and proto-gravity fields in a manner rem-

iniscent of the electroweak theory. §7 gives a discussion of

the global conservation laws that arise due to symmetries of

the flat background.

2 Roles of invariants in physics

The mathematical theory of invariants arose in the 19th cen-

tury and the intuition derived from them made a physical ap-

pearance with the work of Mach [8] and Einstein [9]. Since

then they have played a preeminent role both in formulat-

ing theory and solving particular problems. The geometrody-

namic approach to General Relativity is to assume some un-

derlying geometry that is locally special relativity and posit

that this geometric structure and its associated transforma-

tion laws are the natural way to look at the world. “Flat

background” approaches are generally to look at small post-

Newtonian corrections to the universe for nearly flat spaces

where gravity is playing a small role [10]. In more dramatic

configurations this formalism seems hopelessly flawed.

Wormholes are topologically forbidden from such a descrip-

tion. Black holes with their singularities have infinite metric

curvature at the center and the interior of the event horizon

causally decouples in one direction from the exterior.

There is an old and out-of-favor view of black holes that

goes back to Oppenheimer [11] whereby the infalling mat-

ter gets redshifted to an effective asymptotic standstill so that

no singularity or horizon ever forms. This is often called the

“time-frozen” picture. For many this is considered equivalent

to lagrangian evolution where the particles fall in finite proper

time to the center. It is usually neglected that this implies a

transfinite amount of external observer time must elapse for

this to occur. This implies that we have assumed that in the

entirety of external observer time, no collective action occurs

to interfere with black hold formation before the event hori-

zon forms. Furthermore, an infalling pair of charges on oppo-

site nodes will be seen as a dipole field for all future time in

the time-frozen case. The lagrangian approach would suggest

that these fall to the center and form a spherically symmetric

charge distribution as suggested by the “no-hair” conjecture.

This latter picture has no physical relevance for the external

observers, so the author is firmly in the time-frozen camp.

The importance of this point of view is that there are no

exotic topologies to get in the way of assuming that one has

a flat background. The “geometric” aspects of gravity are

some yet to be explained feature of a field that evolves in an

equivalent fashion to all the other fields of nature. Let us

now take the point of view that there is a flat background and,

In the case of a nontrivial gravity field, we allow the possibility that no such

mapping may exist.

rather that looking at perturbations of it as gµν = ηµν + h̃µν,

the field hab sits on top of it and is coupled to the other fields,

including the kinetic terms, in the fashion of a metric. Let this

background have the flat space metric ηµν so that coupling, for

the electromagnetic case, is of the form

L =
(

∂αAβ − C
γ
αβAγ

)

hαα
′
hββ

′ (

∂α′Aβ′ −C
γ′

α′β′Aγ′

)

,

where the connection-like C tensor is yet to be defined. Im-

portantly, these are not considered to be indices that trans-

form as co and contravariant tensors under the metric h. All

the objects here are flat space η-tensor objects. This seem-

ingly bazaar construction gives causal cones for the evolution

that are not the flat space cones defined by ηµν. The coordi-

nate labels t̂, x̂, ŷ, ẑ give coordinate directions. We expect that

the (x, y, z) set are h-spacelike in the sense that hi juiu j > 1

for all u in the span of x̂, ŷ, ẑ. The forward timelike direc-

tion has a positive projection on t̂ even if the cone is so tilted

that htt > 0. Thus it gives a positive evolution direction for a

future on the background.

In general, any reasonable equation of motion for h should

preserve this set of conditions and evolve in our coordinate

time variable t for all values. In the case of black hole for-

mation the metric tends to asymptotically converge on a de-

generate state leading to a set of equations that are very ill-

conditioned. How to treat this situation numerically is still

unclear but the presence of a flat η-background means that

we have a full set of conservation laws so these may provide

an avenue to evolve without such problems [12]. We will not

be answering the question of general persistence of evolution

of the equations as it seems to be a very hard problem (as

most nonlinear PDE solution existence problems are) but it is

very important. Failure of this to hold would be destructive

to such a theory. It is taken as an article of faith that such a

set of initial data can be evolved for all coordinate time with

time steps taken uniformly at all locations. In other words,

cones may narrow and tilt but they will never intersect with

our spatial coordinate slices.

The role of gauge invariance in physics is analogous to an

equivalence class in mathematics. In mathematics we have

some set of structures we wish to preserve and there can be

classes of elements that act the same under them. In physics,

we may have a set of fields that evolve under the equations of

motion in such a way that there are classes that retain some

set of properties under evolution. We usually describe the set

by a gauge transformation that joins each subclass. It is not

clear that nature is really blind to which element of the class

we are choosing. One could choose a representative element

and claim that this is the “correct” one and be no worse for it.

In the case of the Dirac field ψ and the electromagnetic field

A each has a set of gauge transformations as free fields. The

Dirac field has only a global phase transformation however,

when coupled to the electromagnetic field, it acquires some

local gauge freedom A → A + ∇χ in that the phase ϕ →
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ϕ − χ. This is what we mean by “promoting” a global to a

local symmetry.

In the following we will replace the quadratic lagrangian

with a bilinear one by replacing ψ̄ = ψ∗γ0 with a new field φ.∗

This is the motivation for the title. We are really only aban-

doning γ0 in this sense as a factor in defining ψ̄. The fields γµ

are all retained as what might be loosely called a “spin 1” en-

coding of the gravitational field. We now need to ask what are

the physically distinguishable states of the system. It is natu-

ral to argue that the conserved quantities give the only unam-

biguous physical quantities that we can distinguish. Phase is

complicated in that it gives current and relative cancellation

due to interference. One can define a ψ by the mass density

ρ and the current j. When the density is over a compact set

this is enough to fix the phase up to a constant. For our new

set we will have conservation laws that depend on ψ, φ and

γ. The γ0 is still present but now a dynamical field. This trio

of fields now collectively determines the conserved currents.

Naturally this is a massive expansion of the gauge group. In

the “flat space” case we can choose γµ to be the Dirac matri-

ces in some representation and φ = γ0ψ∗ and obtain the usual

Dirac results.

The Noether charge symmetries here correspond to space-

time symmetries and phase transformations. When we con-

sider the quantum analogs of such fields the importance of

positive definite norm is important. This is because it is given

the role of a probability for a measurement so must be posi-

tive definite and normalizable. This fails in the classical the-

ory of Dirac particles but is “fixed up” in the quantum field

theory by choices for the commutation relations of the op-

erators and their action on the vacuum ground state (as with

the Gupta-Bluer formalism [13]). In this classical theory we

are not necessarily concerned with this for this reason but the

same symmetry generates mass and charge conservation so it

still is important. Interestingly, this symmetry holds in curved

space as we propagate hyperbolic spacelike slices even when

there is no spacetime symmetry.

One way the Dirac field is incorporated into curved space-

time is to fix γµ set to be a particular representation and use

vierbein fields (tetrad formalism). This preserves the desired

norm properties above and ensures local packets move cor-

rectly. There is little choice in this approach if one is to use

wavefunction evolution from a quadratic lagrangian [1]. To

be fair, no one knows what the evolution of an electron is

on such scales. We expect packets to move along geodesics

but if some negative norm or mass density entered we then

must defer to experiment to validate or reject this. The prob-

abilistic interpretation seems hopeless but consider that true

“observers” as machines that measure the results are them-

selves built from such fields. If quantum evolution is a deter-

ministic feature as decoherence advocates suggest, then the

∗Such a construction also introduces a large set set of nonlocal conser-

vations laws. [6]

probability is unity by the evolution and a change in posi-

tive definite norm means that the action of our measurement

devices must obey a modified rule that preserves this. This

should be kept in mind when we consider questions about the

conserved quantities. Negative energy and mass regions of

quantum bodies in highly curved regions my not be forbid-

den by nature as much as we forbid it by our assumptions

about the essential meaning of such quantities.

For evolution on such a flat η-background that mimics

gravity, we must then ask what kinds of transformations cor-

respond to the general coordinate transformations we are used

to in GR. Firstly, just as information has come to be consid-

ered a physical state in quantum information theory, coordi-

nates and time should be thought of as physical conditions

given by the kinds of candles afforded by local atoms and

clusters that triangulate our spacetime. We may as well think

of “physical coordinates” (i.e. non η-background coordinate

changes) as made of material bodies that are small enough

to give insignificant perturbations to the general dynamics.

To actively boost to another RF (reference frame) we con-

sider a local current relative to some other standard currents

that define the frame and choose the new current so the rela-

tive local motion matches. To passively boost to another RF

we consider a transformation of the underlying η-background

coordinates. Since the physically causal light cones induced

by hµν in its coupling to the other fields A, ψ, etc. are not

the cones induced by η we must take care to maintain the

t̂-forward direction of the cones under such changes. The

tensor field constructions made with the usual forms ψ̄γ
µ
D
ψ,

etc. will now be of the form jµ = φγµψ so that their trans-

formation properties under η-background coordinate changes

are tensorial. This is, however, not very interesting because

it does not relate to our physical observers and their physi-

cal coordinates that relate to the function hµν. Many active

transformation of the field trio φ, γ, ψ give the same boosted

current. If we make the change purely with γ and assume our

metric function hµν is built from them, this will change other

terms in the equations of motion.

There remains the many possibilities of transforming the

pair ψ, φ to give a new current function without altering the

local observed geometry. Passive transformations based on

allowable background coordinate changes can be done by

changing the η-background coordinates or altering the fields

ψ, φ in a manner that gives a shifted (on the background co-

ordinates) set of currents and conserved densities that evolve

in an isomorphic fashion to the original fields. The possi-

bility of having shifted and deformed sets of fields on the

background space with the same observable reality is a novel

extension over the manifold approach where the points have

reality and we assign and transform fields there based on co-

ordinate changes and other gauges. It is analogous to having a

set of fields onR4 and shifting the set by a 4-vector vµ to give a

new equivalent universe of solutions in the equivalence class;

an obviously true equivalence that is not present by positing a
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manifold with fields. We now allow this full set of equivalent

representations of such a universe.

3 Transformation rules

The theory of spinors arose naturally out of Dirac’s alge-

braic attempts to reconcile causality with the first order equa-

tions that seem to describe nonrelativistic electrons. Inter-

estingly, Schrödinger originally attempted the, later named,

Klein-Gordon equation to describe electrons but could not

get the fine structure right [4]. He settled on a diffusion-

like equation that was first order in time and second order

in spatial derivatives. Pauli adapted it to include spin but, as

for most such equations, signal propagation speeds diverge.

Dirac introduced a pair of spinors and a linear first order op-

erator that when “squared” gave the Klein-Gordon equation

for each component, thus ensuring causality.

His treatment introduces a set of γ
µ

ab
matrices that are con-

sidered fixed and constitute representations of the SL(2,C)

group which is a two-fold covering group of the SO+(3, 1)

group. More explicity, this gives a map of complex valued

bi-spinors
(

a

b

)(

c

d

)

to real 4-vectors so that each 4×4 complex

matrix action corresponds to a Lorentz transformation and

compositions among these is preserved by this mapping. In

the humblest of terms, we can decompose a general free state

ψa into a basis of free progressive wave solutions eikµxµua(k)

where we can define a general Lorentz transformation Λ
µ′

ν

through the coordinate and algebraic action S (Λ)abψb(Λx).

We define this action so that the current jµ is transformed by

a boost and interpret it as the actively boosted free plane wave

of positive energy. Note that S (Λ)abψb(x) , ψa(Λx).

The Dirac lagrangian has a (seemingly) symmetric form

LD = iψ̄γµ∂µψ − mψ̄ψ, (1)

where ψ̄ = ψ∗γ0. This inconvenientγ0 is generally considered

necessary to give Lorentz invariance. We can see that without

it we would get inconsistent equations of motion for ψ and ψ∗

if we vary them independently.

The operator S (Λ)ab performs a transformation of ψa so

that the lagrangian is invariant and the resulting current is

boosted as

j′α(x′) =
(

ψ′(x′)∗γαψ′(x′)
)

=
(

(Sψ(x))∗γαSψ(x)
)

=
(

ψ(x)∗S ∗γαSψ(x)
)

=
(

ψ(x)∗γ
′αψ(x)

)

= Λαβ

(

ψ∗(x)γβψ(x)
)

= Λαβ jβ(x).

(2)

The Dirac theory allows us to think of the complex 4-spinors

ψa at each point as indicating the local direction of the lo-

cal current of the particle corresponding to it. To achieve

this it has been necessary to introduce negative energy so-

lutions. The negative energy solutions are reinterpreted as

positrons and given a positive mass through the details of

canonical quantization since they are generally deemed unde-

sirable. One reason to reconsider this point is that net positive

energy initial data may maintain this property and negative

energy states do not necessarily provide an avenue for some

subset of the space to fall to negative infinite energy at the

expense of heating the rest of the system. Such a result would

depend on the details of the coupling and dynamics. Local net

negative energy density in solutions arising from positive lo-

cal energy physically arising states would produce problems

but it is not clear that this ever arises except in extreme cases

where pair production becomes available.

Other conservation laws such as the conservation of prob-

ability (which arise from the same global phase symmetry

that give mass and charge conservation) have similar prob-

lems. In an “emergent” theory of quantum measurement we

do not need a probability operator (or any operators at all).

The probabilities arise from measurements with the kinds of

macroscopic yet still quantum mechanical matter that con-

stitutes the classical world [7]. In this approach, the initial

data and evolution equations generate their dynamics in a de-

terministic fashion and the probabilistic features arise from

the long lived partitioning of the classical world into subsets

indexed by the delocalized objects that interact with it. De-

tails of when this is a consistent procedure are discussed in

ref. [7]. For this reason, we do not seek to validate or build

upon arguments that start with an “interpretation” of particu-

lar expressions since we ultimately expect the evolution and

interactions to independently determine the expressions that

give all observable results.

One of the frustrating aspects of the Dirac equation as it

stands is that it is not clear how we should alter its form in

general coordinates. One can use the local frame approach

and assume the Dirac matrices are members of the same rep-

resentation in each one. A spinorial connection then indicates

how nearby spinors are related as a consequence of geometry.

If we allow the matrices to become functions of space and

time with only the spacetime indices changing this gives a

simple approach but then it is not clear how we recover local

Klein-Gordon (KG) evolution of each component and what

the locally boosted fields should be. If we continue with the

spinor approach and let the γµ(x) matrices be fixed and alter

the spinor fields instead then we need a transformation that is

a kind of “square root” of the Lorentz vector transformation.

This is how we get the actively boosted solutions in flat space.

In curved spacetime, there is no global notion of a boost so

the former perspective seems more valuable. Ultimately, we

specify a configuration by the spacetime metric and the fields

on it but the metric will be a function of the γµ matrix fields

(and some associated dual fields) that only give geodesic mo-

tion below some energy bound.

In the early days of the Dirac equation, interpretations

have evolved from a proposed theory of electrons and protons

to that of electrons and positrons with positrons as “holes”

in an infinitely full electron “sea” to that of electrons with
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positrons as electrons moving “backwards in time.” The first

interpretation failed because the masses of the positive and

negative energy parts are forced to be equal. The second was

introduced out of fear that the negative energy solutions of

the Dirac equations would allow a particle to fall to endlessly

lower energies. The last was introduced as a computational

tool. The negative mass solutions were to be reinterpreted

as positive mass with negative charge. Necessary computa-

tional fixes associated with this idea are subtly introduced

through the anticommutation relations used in the field the-

ory approach to fermions and the properties of the supposed

ground state [13]. If we are going to seek a classical field

theory approach to this problem we need another mechanism.

For the moment, we assume the γmatrices are those of the

Dirac representation. Standard treatments allow any selection

of 4×4 matrices that represent the SO+(3,1) group. Here we

choose a specific representation because we are going to let

the γ’s be fields and let these other choices be a kind of gauge

freedom until some interaction restricts us to a specific subset.

The Dirac lagrangian has a (seemingly) symmetric form

LD = iψ̄γµ∂µψ − mψ̄ψ (3)

where ψ̄ = ψ∗γ0. This is generally considered necessary to

give Lorentz invariance. The Dirac matrices satisfy the con-

dition

{γµ, γν} = −2ηµν, (4)

where η =Diag(−,+,+,+). This suggests that we could view

the metrical properties of the space as encoded in γ rather than

invoking a metric η. The metric has ten independent parame-

ters at each point and γ has 4 × 10 or 43 parameters, depend-

ing on chosen symmetry constraints but we need to satisfy 44

equations. If we trace the suppressed spin indices then there

are only 10 equations and a general metric can be encoded

in the γµ set. However, eqn. 4 is the identity we require to

convert the Dirac equation into a KG one that demonstrates

causality in each component. This is a loose end in deriving

geodesic motion for a packet to show that we get observed

motion in the classical GR limit and an important considera-

tion in what follows.

In anticipation of a future unification theory one cannot

help but notice the greater similarity of γ
µ

ab
(x) to Aµ(x) and

the other vector boson fields than any of these to the metric

gµν. For now we simply leave this as constant but accept that

it can have its own transformation properties as a one-vector.

In contrast, all the “spinor” labels are considered as having

only scalar transformation properties. The bispinors ψa now

transform as scalars. To emphasize their new properties and

that they still have a collective reality as a four-tuple of func-

tions we term it a “spinplet.” The mixed objects γ
µ

ab
we con-

sider a vector object with extra labels and, by analogy, label

it a “vectorplet.”

There are some surprising implications of this. The equa-

tions are unchanged but the transformation properties are now

different. Since the γ
µ
ab

’s can vary with position, we expect a

much larger equivalence class of electron-gravity field pairs,

{ψ, γ}, that correspond to the same underlying reality. We

can boost the system by Λ
µ
αγ

α. This gives the same ψa fields

at every point but the physically measurable jν currents are

altered. Of course we still have the traditionally boosted so-

lutions S (Λ)ψ(0)(Λx) that have this same current so we have a

degeneracy in the pairs (Λγ, ψ(0)) and eiφ(γ, S (Λ)ψ(0)) and all

other states with the same current and net phase. This is not

the result of a discrepancy in the active vs. passive coordinate

transformations we observe in a fixed representation but an

additional degeneracy in the equivalent physical descriptions.

We have only used the current jµ to distinguish states and we

expect that there will be some other conserved quantities, like

stress-energy, that will physically subdivide this set into dis-

tinct equivalence classes. Since there are so many degrees of

freedom in the set of γ
µ
ab

(x)’s we anticipate that the set is still

significantly enlarged.

4 Reality and gauge

The AB effect gives a simple example of how the “reality” of

an electron is not sufficiently described by the wavefunction

of the electron itself. In this case, the current is a function of

both ψ and A as J = i~∇ψ + eA. This construction is use-

ful in sorting out various apparent contradictions in electro-

magnetism. If we want to investigate the radiation reaction

or questions of “hidden momentum” [14, 15] one can build

a packet that spreads slowly compared to the effects of ex-

ternal fields and see how the self field and lags contribute to

the actual motion. The power of it is that there is no am-

biguity in the gauge as for a hodge-podge lagrangian like
1
2
mv2+ jA− 1

4
FF [16] because the physical current of a packet

is the gauge invariant J not the naive j = mv. The AB effect

seems like a topological effect because it is viewed through

the lens of ψ being the pure descriptor of the reality of the

electron and as a stationary effect. In driving a solenoidal

current to create a circulating A field we accelerate J with a

transient circulating E field. Part of the current is made up

of the phase gradient of ψ and part from A itself. The field

and the acceleration moves outwards from the current source

at the speed of light and the resulting equilibrated current be-

comes a function of the final magnetic flux. This circulating

current must gain all of its curl from A. The ψ can only con-

tribute to an irrotational flow so general charge packet motion

requires a contribution from A. This suggests we might gen-

erally want a more nuanced distinction of particle reality than

merely a function of each individual field in a lagrangian that

has been nominally assigned to the particle type alone.

In flat space without gravity or interactions, we can con-

sider packets of fields that are widely separated based on type.

These can then evolve separately and the type of field and the

reality implied by it are synonymous. There can still be some

gauge freedom but the packets and any interesting properties
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that one might observe are contained in the same support. The

observables are, at best, the gauge invariant properties such

as stress-energy or current. Allowing interactions, this reality

gets complicated in two ways. Firstly, the conserved currents

may now involve aspects of more than one kind of field and

second, there are now constraints that must be obeyed. These

are generally defined by elliptic PDEs such as ∇ · E = ρ that

are propagated by the dynamic equations.∗

If we now include gravity in the form of a γµ field that has

some gauge freedom that mixes with the reality of the wave-

fuction ψ then we cannot make the above separation. The

gravitational field is everywhere so no isolation of packets

is possible. The reality of the electron is now a function of

ψ and any γ-like fields that have global extent. This is in

contrast with the case where the gravitational information is

completely specified in the gµν field. Since this has no gauge

freedom beyond that of coordinate changes, the packet mo-

tion of a wavefunction is affected by it yet the reality of the

electron is still entirely determined by the values of ψ in the

packet itself.

For the case where multiple fields determine a single re-

ality, when is it really viable to call one set of quantities the

“electron current” versus some combination of quantities that

strictly depend on multiple types of fields? In the case of

the Dirac and electromagnetic field (in flat space with con-

stant γ matrices), the density of the field is only a function

of ψ so that we have at least one component of the 4-current

that is entirely specified by the wavefunction. This allows us

a uniquely associate j0 with the electron field ψ and so call

it the “electron-density.” The stress-energy terms similarly

have T 00 as a simple function of ψ alone. If every conserved

quantity can be associated this way, we have a well-defined

mapping between the fields and conserved quantities. If we

are interested in more exotic lagrangians than can be formed

by the “minimal” prescriptions from the free quadratic cases,

we will need to be mindful of the possibility that the currents

may not necessarily be so associated with one particular field.

Although this discussion may feel somewhat pedantic, it

is important to make this distinction and not get trapped in

the vague lore that sometimes accompanies discussions in

physics. For example, it is often said that we must have “man-

ifestly invariant” lagrangians to get relativistically consistent

results. This is not true not only in the obvious sense that

∗This is purely a classical theory of delocalized fields so we do not have

the problem of “self-energy” or the “particle not feeling its own fields.” In

the many body case, the fields presumably are made of many constituent ones

with only the “center of mass” motion as visible to us. This allows us to have

a wavefunction of a charged particle that does not spread under the influence

of the field generated by it, as in the classical particle case [15]. However,

the self force and momentum are subtle concepts in that such a composite

charge must have both mbare and mem components. Only mbare is localized

and mem is spread over the range the static fields. The contribution to the

electromagnetic momentum in Ma = (mbare + mem)a = Fext in the force law

is actually provided by a self field of the radiation field traversing the support

of the charge.

they can be rearranged in a nonobvious invariant form. One

can conceivably write down a set of fields that gives a class

of solutions whereby the degrees of freedom and invariance

is with respect to the observers built of other physical fields.

Here we can imagine inducing a set of “physical coordinates”

based on local packets of long lasting separated objects that

define a grid. With the right time evolution parameterization,

we would expect the form of the equations to be invariant with

respect to such a coordinate set. The overall class of equiva-

lent solutions should allow for local field changes that induce

independent observable current changes with the appropriate

degrees of freedom for the observed dynamic freedom of the

system. In general, we only need observers to see the world

with such symmetry (such as Lorentz) but it need not hold

with respect to the coordinates. As long as the constituent

fields of the observers and the external reality “covary” to-

gether, then the observers see exactly the same thing. Allow-

ing such dynamics can enlarge the equivalence classes at the

cost of a more complicated relationship between coordinates

and observable reality.

Generally we seek a quadratic free field lagrangian and

then gauge and Lorentz invariant couplings between them.

The Dirac lagrangian is usually presented in the superficially

symmetric form

LD = iψ̄γµ∂µψ − mψ̄ψ. (5)

The appearance of the γ0 is displeasing if we are to interpret

the µ indices as spacetime indices. This particular form is of-

ten considered important because it gives a positive definite

probability density. In an “emergent” approach to quantum

theory where the probabilities are defined by the evolution

equations in a deterministic fashion, this is not important.

Probability will automatically be conserved by the normal-

ization over the resulting paths that bifurcate the histories of

recording devices and observers as indexed by the delocal-

ized particle’s coordinates [7] regardless of whether there is a

“nice” operator that describes it. More importantly, we need

the eom of ψ and ψ∗ to be consistent. This dictates that the

γ0 appear in this expression. By using a representation where

γ0γµγ0 = γµ the variations of the action give equivalent equa-

tions of motion.

To achieve a lagrangian that is manifestly invariant us-

ing this “vector-plet” interpretation we introduce an auxiliary

field φ that, in flat space, can be chosen to be ψ∗γ0. For

the usual Dirac equation this condition is propagated. One

should wonder if this will give a true isomorphism with phys-

ical results. We are interested in the propagation of conserved

quantities as mass, charge. . . and some local phase informa-

tion. This brings us to a subtle point. Even in nonrelativistic

quantum mechanics, the “reality” of interacting particles is

not completely given by the corresponding fields themselves.

This is most clearly observed in the AB effect. Often this

is viewed as an important example of topology and gauge in
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physics. It is more simply understood as an expression of

the electron current being not simply a function of the elec-

tron wavefunction alone. A similar property is observed in

the London skin depth in superconductors. The only way an

electron current can obtain rotational flow is through the vec-

tor field ~A or through the appearance of discrete vortices. The

moral here is that angular momentum, among other conserved

quantities, is defined by a collective set of fields so it makes

no sense to associate with one particular particle. “Spin” is

now a kind of angular momentum that exists through the col-

lective local reality of this new vector-plet graviton and two

fermion spinplet fields. By abandoning this usual concept of

a spinor we will obtain an isomorphic theory that has signifi-

cant generalizations.

5 Bilinear modification

To resolve the complications arising from the hidden γ0 in the

usual Dirac lagrangian, let us replace ψ̄with an associated yet

independent field φ and see when it evolves in a consistent

fashion when we simplify to the Dirac representation. Con-

sider the Dirac-limiting lagrangian density we can choose us-

ing only the complex valued ψ, φ and γα (with gµν an implicit

function of it) is of the form

L = i
(

φaγ
µ

ab
∂µψb − ∂µφaγ

µ

ab
ψb

)

− 2mφaψa. (6)

For constant γ’s chosen to be the Dirac representation, then

variation δφ yields iγµ∂µψ − mψ = 0. Variation by δψ yields

−i(∂φ)γµ − mφ = 0. If we choose φa = γ0
ab
ψ∗

b
then this is

equivalent to the Dirac equation solution for φ.

When we consider the gauge equivalent states this intro-

duces some additional considerations. For example, if the

support of ψ and φ are disjoint then there is no net mass or

current density. Such a state is evidently a vacuum despite

the nontrivial values of the functions and evolution equations.

Here we see that our notions of the physical meaning we at-

tach to functions as describing the reality of a particle is less

trivial than usual.

So far we have not explicitly included any measure or

metric and the action of∇µγν is ambiguous without it. We can

make formal definitions of these by using eqn. 4 as a guide.

The pair of functions,

gµν = − 1

4
Tracγ

(µ
ab
γ
ν)
bc

gµν = Inv

(

− 1

4
Tracγ

(µ

ab
γ
ν)
bc

)































(7)

to define the metric in terms of γ are evidently complicated

when explicitly constructed but they do give us trial defini-

tions for gµν(γ) and its inverse in terms of γµ that can specify a

completely general metric field. Another possible objections

is that the form of γµ with indices raised as a contravariant

object is opposite that of the covariant form that Aµ enters the

lagrangian especially the interaction terms qψ̄γµAµψ which

gives us pause when considering the possibility of treating γµ

and Aµ as analogous fields where no a priori metric exists.

Since we are interested in a theory that includes electrons,

positrons, photons and gravity with the electromagnetic and

gravitational fields on an equivalent footing we will will need

to make a further modification. It will be convenient to let the

natural form of γ be a lowered index object γµ and introduce

a contravariant sister field λν that generates gµν in the same

fashion that γµ generates gµν. It is not automatic that these be

inverse functions despite the suggestive notation but we will

show that they do so in sufficiently low energy cases for a

particular lagrangian. We expect the following relations to be

able hold in the flat space limit

gµνδac = −
1

2
{λµ, λν} = −λ(µ, λν)

gµνδac = −
1

2
{γµ, γν} = −γ(µ, γν)



























. (8)

It is very important to distinguish between this case, which

arises in deriving the Klein-Gordon results that demonstrate

causality for the Dirac components and the traced result. The

arbitrary metric field gµν(x) = − 1
8
Tr{γµ(x), γν(x)} can be de-

fined in terms of γ
µ

ab
(x)’s but the untraced result for gµν(x)δac

cannot. This will be central to what follows.

We like to have the metric appear explicitly in all the

terms of the lagrangian for the reason it gives us something

to vary in obtaining a conservation law for stress-energy. One

way to do this is is to use the lagrangian

Le = i
(

gµνφaγµ:ab∂νψb − gµν(∂µφa)γν:abψb

)

− 2mφaψa, (9)

where the colon separates spacetime from scalar indices. We

define gµν = − 1
4
Trλ(µ, λν). The evolution equations are given

by the variations δφ

i
(

gµνγµ:ab∂νψb + g
µν∇µ(γν:abψb)

)

− 2mψa = 0

igµνγµ:ab∂νψb +
1

2
igµν(∇µγν:ab)ψb − mψa = 0























(10)

and δψ

igµν(∇µφb)γν:ba +
1

2
igµνφb(∇µγν:ba) + mφa = 0 (11)

so that φ evolves as ψ with m→ −m and γ→ γT.∗

Since we are about to determine the motion of the con-

served gauge invariant stress energy associated with the fields

and it is deeply connected with geometry, we make a brief

segue to derive this conserved quantity. A general action con-

tains both a lagrangian and a measure that can be related to

the metric

S =

∫

d4xL
√
−g·· . (12)

∗Note that this does not mean that the energy of the rest field is m (c = 1).

The energy is a function of the triple of fields (ψ, φ, γ) as we see next.
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Incorporating general relativity, the lagrangian density is gen-

erally written

L = 1

2κ
R(g) +Lfields, (13)

where κ = 8πG and the first term gives the Riemann curvature

and the second gives the field terms that do not depend only

on the metric. The conservation laws arise from varying the

metric δgµν from which we obtain

Gµν = 8πGT µν = −κ −2
√−g··)−1

δLfields(
√−g··)−1

δgµν
. (14)

Since ∇µGµν = 0 as an identity we have ∇µT µν = 0. This

is a local conservation law. To obtain a global one we need

a spacetime with persistent Killing vectors corresponding to

continuous symmetries. The action of gravity typically de-

stroys these as global conservation laws, however, if G → 0

and the initial data is chosen to be flat then these exist and

persist so we have the usual global symmetric conservation

laws. This justifies this as a general method of deriving con-

servation laws with symmetric stress-energy tensors for fields

on flat space when all the fields present are tensorial. Of

course, we expect any such conservation law to correspond

to a symmetry. In this case, we can vary the coordinates lo-

cally and this leaves the quantity L√g·· invariant. Since all

the derivatives are covariant, we can replace a passive coor-

dinate change on an open set with an active transformation of

the metric field gµν. Varying gµν is therefore equivalent to a

general small variation in the local coordinates. Of course,

we are considering these as fields on a flat background so that

they change in a rather simple fashion relative to the coor-

dinate changes and we should include a coordinate measure√−η and this underlying space generates full set of ten con-

served quantities (see §3).

The (symmetric) stress tensor is usually defined by∗

Tµν = − 2

(
√−g··)−1

δ
(

Lfields

(√−g··
)−1

)

δgµν

= −2
δ (Lfields)

δgµν
+ gµνLfields

= 2i
(

φaγ(µ:ab∂ν)ψb − (∂(µφa)γν):abψb

)

+ gµν

[

i
(

gαβφaγα:ab∂βψb

− gαβ(∂αφa)γβ:abψb

)

− 2mφaψa

]

= 2i
(

φaγ(µ:ab∂ν)ψb − [∂(µφa]γν):abψb

)

,

(15)

where we have varied with respect to gµν and assumed γµ is a

field independent of it in anticipation of gµν being a function

of λµ.

∗Here we make the choice of taking the determinant with respect to the

“contravariant” metric g(γµ) in anticipation of later work. This explains the

power -1 this expression.

We can similarly examine the continuous symmetry given

by the globally constant phase changes ψ → eiθψ and φ →
e−iθφ to get the conserved current

jν = 2igµνφaγµ:abψb (16)

so that ∇ν jν = 0. Here we see this current also depends on

all three fields so that the vanishing of any one of them on a

region necessitates the entirety of the physical reality vanish.

We will now consider the implications of packet motion

given these two conservation laws. Firstly, when we say

“packet” we are not referring to a packet of localized ψ or

φ as much as a localized region where the reality associated

with these fields through Tµν and jµ are nonzero. Let us also

consider a packet that is devoid of internal stress and rotation

and where the pressure is minimal. For such a packet with

sufficiently uniform interior we can average over the current

to give 〈 jµ〉 ≈ mv µ where m2 is the averaged gµν jµ jν density

and, assuming the packet preserves its structure as it moves,

vi is the local coordinate velocity of the packet. We can then

define v0 by the relation gµνv
µvν = −1. The conservation law

tells us that ρ is conserved. v µ is well defined to the extent

packet motion is so.

From 〈T µ0〉 we can define a velocity u that carries the en-

ergy in a localized packet so that 〈T µ0〉 ≈ m′u(µu0). Since

a vanishing of the current on a region implies vanishing of

stress-energy as well we have that v = u and that 〈T µ0〉 ≈
m
′(µv0) = αm(µv0). Since there are no internal stresses, 〈T µν〉 ≈

αmv µvν. By combining these expressions we derive that these

“macroscopic” variables are

vν =
〈T µν〉
α 〈 jµ〉

m = α2 〈 jµ〉 〈 jν〉
〈T µν〉































, (17)

where these are actually several equations (repeated indices

are not summed) that are all equal by the conditions above.

Now consider the parcel averaged stress-energy conserva-

tion law. Applying ∇µ jµ = 0 we have

〈∇µT µν〉 = 〈∇µ( jµvν)〉
= 〈(∇µ jµ)vν + jµ∇µvν〉
= m′ 〈∇vv〉 = 0,

(18)

which indicates the gauge invariant aspects (i.e. the reality) of

the parcel follows geodesic motion. This is not entirely sur-

prising given that it is known that the conservation laws gen-

erally dictate that classical particles follow geodesics though

the proofs are generally quite difficult [18]. The “geodesics”

here are generally curved paths in our underlying coordinate

space but appear as geodesics in the geometry most apparent

to observers.

In the next section for a theory of “lepto-electro-gravity”

we have two covariant gauge fields and one contravariant one.
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These have trivial transformation laws in the flat background

coordinates but we maintain this distinction because it seems

more relevant for observers. In this sense we think of it as

a “2+1” theory. One contravariant field is always necessary

to match the covariant derivatives that must arise in any dif-

ferential equation. The electron field is described by a (φ, ψ)

pair of fields that embody its reality with a very large gauge

group and the meaning of the reality they describe depends

not only on the metric but the covariant gravity field γµ. We

will see that these have properties that are distinct from the

positive energy positrons so we will require another pair of

fields for their description. Along the way we will introduce

a lagrangian that exists as a purely polynomial expression and

removes the need for complicated nonanalytic measures and

rational inverse matrix functions.

6 Electro-gravity lagrangian

Here we seek a lagrangian that encompasses electrons,

positrons, electromagnetism and gravity and seek to have

equations that are polynomial rather than complicated ratio-

nals that arise from the operation of taking the inverse of the

metric. For this reason we define the function g : V → T
whereV is the set of vector-plet objects λ

µ

ab
and γµ:ab andT is

the set of corresponding contravariant or covariant 2-tensors

gµν and gµν respectively. Specifically,

g(A, B) = −1

8
Tr(AB + BA).

We will establish a lagrangian that gives Dirac particle motion

in the flat space limit, electromagnetism and a form for GR

that gives a simple parallel between the motion of the gravi-

tational fields, γν and the electromagnetic ones Aν that allows

gravity to obtain the nonlinear “geometric” features of GR.

Since we are interested predominantly in positive energy

solutions we will need to introduce a separate action term Λp

for positrons that have positive mass but a reversal of sign

of the charge in the coupling. We can write the lagrangian

for the covariant gravitational field γ by substitution into the

Einstein-Hilbert lagrangian. Alternately, we can choose it to

have a similar form of the actionΛ′g as the other vector poten-

tial ΛA and the coupling terms ΛeλA, ΛpλA will involve both

the contravariant gravitational field λ and the vector poten-

tial. Finally, there will need to be some way for the covariant

and contravariant gravitational fields to relate to one another.

This will be accomplished by a Higgs-like interaction term

Λc. The general action is then defined as

S =
∫

d4xL√−g =
∫

d4x Λ

=
∫

d4x (Λg + Λλ + ΛA + Λe + Λp

+ΛeλA + ΛpλA + Λc),

(19)

where we will define Λλ shortly.

Since the measure is a nonanalytic function of the metric

but this is not retained in the usual equations of motion. We

will find that this is also true here. For reasons as above we

use the λ fields in defining the measure.

The electron part of the action is given by the substitutions

Λe = Le

(
√

g··(λ)
)−1

=

[

i
(

gµν(λ)φaγµ:ab∇νψb − gµν(λ)(∇µφa)γν:abψb

)

− 2mφaψa

]

(
√

g··(λ)
)−1

(20)

where we have, harmlessly, replaced the ordinary with co-

variant derivatives since the act on spinplet objects which are

essentially scalars. Variation with the measure present allows

their action on higher tensors to give the appropriate covariant

connection terms. This is one indication of how the physics

itself can generate the geometric aspects of gravity rather than

imposing it by fiat in the formulation of the theory’s founda-

tions.

The positron portions of the lagrangian is of the same

form as Λe but with a different pair of fields φ̃, ψ̃. The dis-

tinction comes in the form of the interaction terms. The usual

minimal coupling prescription gives

ΛeλA = − qφaλ
µ

ab
Aµψb

ΛpλA = + q φ̃aλ
µ

ab
Aµψ̃b















. (21)

It is only the sign of the charge in the interaction terms that

distinguishes positrons from electrons and it only appears in

the couplings.

The gravitational part of the action can be defined by a

simple extension of the Einstein-Hilbert action

Λg =
1

2κ
R

(

gµν(γ), gµν(λ)
) (√

g··(λ)
)−1

. (22)

R is defined in terms of gµν(γ), gµν(λ) and the connections

implicit in the expression are defined by

Γαµν =
1

2
gασ(λ)

(

gµσ,ν(γ) + gσν,µ(γ) − gµν,σ(γ)
)

(23)

and their derivatives. We expect that some induced con-

straints force g(γ)g(λ) = δ. To have this done as a result of

field interactions we exploit a “Higgs-ish” mechanism with

the coupling term

Λc = M
∣

∣

∣ gµν(γ) gνρ(λ) − δρµ
∣

∣

∣

2
(24)

for a sufficiently large mass M. When the energies in the

other terms are much smaller this drives the relation between

γ and λ to hold so that the solutions become “geometric.”

Specifically, while it is easy to enforce causality if all evolu-

tion fields obey some equation such as gµν∂µ∂νφ + . . . where

gµν is a metric with signature +2, the geometric case indicates

that slowly spreading packets in regions of slowly varying

spacetime move along geodesics. When such a relation holds

Clifford Chafin. Gauge Freedom and Relativity 35



Volume 11 (2015) PROGRESS IN PHYSICS Issue 1 (January)

our lagrangian has a form that can be interpreted as coordi-

nate invariant in that the derivatives act on the tensor fields

with covariant derivatives with the Γs induced by the metric

gµν = −4−1Trγ(µγν). In the next section we will see that we

can also interpret the system to live on a flat background and

derive global conservation laws.

The other gauge fields all come from lagrangians that

have electromagnetic form FµνFµν where Fµν = ∂µAν − ∂νAµ.

Specifically,

ΛA = gµα(λ)gνβ(λ)(∂µAν − ∂νAµ)

× (∂αAβ − ∂βAα)
(
√

−g··(λ)
)−1

.
(25)

It is not necessary to use covariant derivatives here since an-

tisymmetry cancels them. For example, we model the action

contribution from the “dual field” λ as

Λλ = ǫ gµα(λ)gνβ(λ) Tr(∂µλ̃ν − ∂νλ̃µ)

× (∂αλ̃β − ∂βλ̃α)
(
√

−g(λ)
)−1

,
(26)

where λ̃µ = gµν(γ)λν.∗ where we have chosen the constant ǫ

to be small so that the dynamics can be dominated by γ and

the constraints induced by the Higgs-like term.

For a function Fµ(gµν(γ)) the variation under δγν gives

δFµ =
δF

δgµν
δγν (27)

and similarly for δλ. Variation of Λg by δλ gives

1

2κ

(

Rµν −
1

2
Rgµν

)

δλν (28)

or

Gµνδλ
ν = κTµνδλ

ν, (29)

where Tµν is the stress-energy tensor for all the actions terms

other that Λg. We have implicitly assumed that we are in a

low enough energy regime and the initial data includes no

“waves” of λ so that the contributions of Λλ can be ignored.

Since the γ’s contain gauge freedom that is independent of

coordinate changes so that we can choose any γµ that give the

same gµν(γ) field, this requires

Gµν = κTµν . (30)

7 Conservation laws

We can argue the whole structure exists on a flat background

though this is just a convenient artifice among many. It is

however a very convenient one. The appearance of geometric

evolution via the additional Γ factors that make the derivatives

∗We distinguish this field with a tilde because of the earlier convention

that these are all tensor indices under the underlying flat space metric so that

“lowering” an index with g must be new field to not be ambiguous.

seem “covariant” with respect to some induced geometry of

these fields is an emergent byproduct of the kind of couplings

present. It should be noted that these Γαβγ factors are actual

η-tensors on the background space instead of affine connec-

tions. Of course, we still need to know if our equations can be

evolved for arbitrary times using this point of view. Some dis-

cussion of this, especially in the case of black hole formation

is given in [12]. For now we assume that this is unlimited

however, although other methods have attempted to justify

working on a flat background [17] it is a delicate process to

have this make sense as gravitational collapse ensues due to

the trend of the equations to become ill conditioned here. One

should not be overly comfortable with formalism in this case.

A method to handle evolution on the large regions of nearly

degenerate metric using conservation laws is proposed in [12]

The flat background has a natural set of Killing vectors

that give global conservation laws. To elucidate this consider

the lagrangian written in terms of ordinary derivatives and

make the modification by defining g(γ) = h(γ) ◦ η

Λ = L
√
−g→ Λ

√
h
√
−η . (31)

All actions on tensors induced by η-background coordi-

nate transformations are of the form

∂µAα → ∇µ(η)Aα = ∂µAα − Γαµν(η)Aν (32)

and so forth, where η is a metric (in any coordiates) that can

be varied about the flat space case. Any covariant derivatives

∇µ(g) in terms of the metric induced connections are reinter-

preted as formal couplings through Γ(g) and the ∂µ are con-

verted by this prescription. We see a problem with eqn. 31 is

that it is not invariant under general η-space coordinate trans-

formations due to the factor
√−g. It is, however, invariant

under the isometries of flat spacetime that we use to generate

global conservation laws.

Since the flat space contains a full set of ten Killing vec-

tors we have a set of conserved global quantities that now

includes the gravitational fields of the form

∂µT
′µν = 0 (33)

with the Killing (co)vector fields pν = ω̂ν, Mi jk = ǫi jk x jω̂k

and bi = x0ω̂i + xiω̂0. The globally conserved quantities in

these coordinates are

Pν =
∫

d3x pµT
′µν

Ji =
∫

d3x Mi
jk

T
′i j

C j =
∫

d3x biT
′i j



























. (34)

8 Conclusions

The notions of invariance from differential geometry and in-

variance theory are imported into physics in a fashion that

ranges from formal to ad hoc. Surprisingly, they have not
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been reconsidered from the more physical point of view that

all configurations that are indistinguishable to observers built

of the fields themselves should form the most general equiva-

lence class of systems. This enlarged meaning of “gauge” re-

quires some underlying structure. We have shown that many

of the usual objections to a flat background can be overcome

and that this allows the fields to have very simple transfor-

mation laws and a large set of conservation laws with respect

to this flat background. The observers can then perceive a

curved space with all its mathematical complexity as emerg-

ing from the nature of nonlinear and multilinear coupling

among fields. Importantly, there is a classical lagrangian with

a Higgs-like term that causes there to be such a strongly non-

linear and geometric theory of gravity to arise from the per-

spective of such observers at low energy.

An interesting by-product of this approach is that the ap-

parent co and contravariant properties of the fields in the

“physical coordinates” induced by objects for the observers

obtain their transformation properties by the equations of mo-

tion not by a by-fiat assignment. This is another aspect of

“geometry” that is determined by the physics itself. At high

enough energies we expect this geometric association to fail

and nonmetric features to become evident to the observers. In

this case the induced constraints fail and evolution becomes

potentially more difficult. One suggestion is that such a situ-

ation allows inconsistent light cone structures to be induced

for different fields and that some intersection of these gives

the proper causal structure for these fields when they are in-

teracting.

The bilinear extension of the Dirac equation and promo-

tion of the γ matrices to dynamical fields introduced a num-

ber of concerns related to positive definiteness of energy and

probability and causality of the equations of motion. The lat-

ter has been verified for packets using gauge invariant func-

tions of the fields. The former is seen to be not essential since

these quantities, while rigidly conserved, are not necessar-

ily the physical ones an observer perceives since they are de-

rived from background coordinate symmetries. The probabil-

ity function may be a nontrivial function of the fields in the

case of gravity but normalization is assured in any theory of

emergent measurement such as decoherence.

There are undoubtably many inequivalent such theories

with the same low energy limit so we have presented only

one of probably many such solutions. From here it is un-

clear how to extend this classical theory to a quantum one.

The couplings are such that they determine the local notion

of causality and it is not clear when or how well a perturba-

tive scheme, which is generally built on free fields solutions,

will work in the many body case. This is a direction for fu-

ture work.
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Bio-Precursors of Earthquakes and Their Possible Mechanism

Takhir R. Akhmedov

333 S. Webster Ave, Suite 4, Norman, OK 73069. E-mail: TakhirAkhmedov@yandex.com

People observed anomalous behavior of animals prior to powerful earthquakes since

ancient times. Only in mid-20th century scientific community got interested in under-

standing what makes some animals “sensitive” to approaching earthquakes. Questions

were raised of whether we are truly observing anomalous behavior or just interpreting

it as such after the earthquake. Do animals actually “feel” the earthquakes? What are

the stimuli impacting animal behavior? Scientists looked at chemical composition of

ground water, release of some gases, sound booms and even electromagnetic activity

as potential stimuli. With no comprehensive and systematic study of animal behavior

prior to, during and after powerful earthquakes no plausible hypotheses explaining the

sensitivity exist at this point. In this article, we propose a possible mechanism based on

gravitational receptor, which each and every animal possess.

Accurate prediction of powerful earthquakes is one of the im-

portant problems faced by modern geophysics.

Rikitake (1979) presented extensive research data used

for predicting earthquakes and tried to provide theoretical ex-

planation [1]. While existing instrumental and statistical

methods of predicting earthquakes allow identification of

some patterns of future earthquakes, they do not answer the

most important questions — the magnitude of future earth-

quake and its precise time. Geller (1997) states that “exten-

sive searches have failed to find reliable precursors” [2]. He

further notes that “theoretical work suggests that faulting is a

non-linear process which is highly sensitive to unmeasurably

fine details of the state of the Earth in a large volume, not just

in the immediate vicinity of the hypocentre” [2].

Usually powerful earthquakes are accompanied with

rapid increase in speed of vertical shift of Earth’s crust in

epicenter and adjacent areas. For example, after Ashkhabad,

Turkmenistan, earthquake (October 5, 1948) as a result of lev-

eling an increase in speed of vertical shift of Earth’s crust with

a maximum near Ashkhabad was identified. Similar observa-

tion made during Tashkent, Uzbekistan, earthquake (April 26,

1966).

Therefore, we can assume, that prior to powerful earth-

quakes an increase in speed of vertical shift of Earth’s crust

can be observed.

In recent years scientists got interested in the anomalous

behavior of animals prior to powerful earthquakes. Even

though anomalous behavior of animals is long known, sci-

entific community only recently started researching this phe-

nomenon. In late 1976, USA hosted the first conference on

this subject.

The most important task facing scientists is identification

of the physical nature of the processes, which lead to anoma-

lous behavior of animals prior to powerful earthquakes.

Out of four types of forces (electromagnetic, gravitation-

al, strong and weak) only electromagnetic and gravitational

forces could be related to the mechanism of sensitivity of bio-

precursors of earthquakes. Characteristics of Earth’s electro-

magnetic field experience significant variations, which may

impact sensitivity of the mechanism. Therefore, we will not

consider electromagnetic force as the main force, which im-

pacts the mechanism of sensitivity of bio-precursors of earth-

quakes. Let’s consider gravitational force as the main force.

It is known that biological objects evolved within con-

stant influence of gravitational field of the Earth. This lead to

the creation of apparatus, gravitational receptor, allows bio-

logical objects to orient themselves in gravitational field [3].

Gravitational receptor basically consists of two main parts

— “proof mass” with a mass mp, which is capable of mov-

ing within the organ and around receptors that react to the

changes of position of “proof mass”.

One essential peculiarity of gravitational field is its con-

stant presence and our inability to shield against its impact,

i.e. all-pervading nature of the field.

One of the main characteristics of the gravitational field

is free-fall acceleration g (analogous to the electric field in-

tensity E). With changing characteristics of the field changes

the force, which impacts the “proof mass” with the mass mp.

Such changes are possible prior to powerful earthquakes.

However, there have not been successful measurements of

such changes due to inadequate sensitivity of the instruments.

Biological objects, it seems, are able to react to the speed

of changing free-fall acceleration parameter, which results

from vertical shift of Earth’s crust. If we consider the value

of sensitivity of biological objects to such changes as mp/M,

where M is mass of the Earth, then biological objects are able

to sense relative changes of the free-fall acceleration result-

ing from a vertical shift of Earth’s crust, numerical value of
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which exceeds mp/M. Evaluations showed that speed of rel-

ative changes of free-fall acceleration, resulting from vertical

shift of Earth’s crust, exceeds maximum sensitivity of gravi-

tational receptors of biological objects.

Thus, we conclude that biological objects, using signals

from gravitational receptors, can react to the relative local

changes of gravitational field prior to powerful earthquakes.

For experimental test of the proposed mechanism, we

would suggest experiments with biological objects used as

sensors of characteristics of gravitational field via continu-

ous recording of bioelectric current from gravitational recep-

tor during rapid increase in speed of vertical shift of Earth’s

crust in active seismic zones.
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Astrophysical Clock and Manned Mission to Mars

Takhir R. Akhmedov
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For many years scientists of different countries are engaged in research of biological

processes, which have rhythms close to geophysical ones. The main objective of this

research was finding the mechanism of time sensor, which leads to these rhythms. In

the previous article (Akhmedov T.R. Progress in Phys., 2014, v. 10, issue 1), based on

the analysis of the known experimental data obtained from biological objects and in

consideration of the original data obtained in Tashkent State University, we came to a

conclusion that the time sensor of a biological clock is exogenous in nature. This means

that clocks setting rhythms close to geophysical for biological processes exist outside of

those biological objects. From this we conclude that there are no biological clocks, but

rather there are astrophysical clocks (APhC), which form rhythms with periods close to

geophysical within physical, chemical and biological processes.

1 Astrophysical Clocks (APhC)

Let us review the experimental data proving the existence of

Astrophysical Clock. For this experiment we put assembled

a system, schematics of which is plotted on Fig. 1.

Container (1) with distilled water was placed into

the thermostated chamber (2), where stable temperature at

103±0.1◦C was maintained. Water was boiling inside the

container (1). The water vapor went through the cooling sys-

tem (3) and precipitated into the container (4). The mass of

the evaporated/precipitated water was measured every 15 min

and a set of 4 measurements had been plotted on the Fig. 2

and Fig. 3. The experiments were carried out uninterruptedly

by a number of series of 1 to 7 days of duration. In order to

thoroughly investigate the rate of water vaporization power

supply of the thermostat was carefully stabilized, all contain-

ers and tubes and connections were thermally insulated, mass

was carefully measured and stability of the temperature was

closely monitored. The data coming from the measurements

strongly suggested the existence of CR in the physical process

of distilled water evaporation from a thermostated container.

Initial experiments were carried out in 1974. During one

of experiments it became necessary to obtain a stable flow of

water vapor of low intensity (1.4×10−5 kg/s). This experi-

mental data had been obtained in 1974 by a group of physi-

cists conducted by Prof. M. A. Asimov. Author of the present

article was a responsible head for the experiments.

2 Lunar rhythms

This study rises from my previous article [1], based on the

analysis of the known experimental data obtained from bio-

logical objects and in consideration of the original data ob-

tained in Tashkent State University. We came to a conclusion

therein that the time sensor of a biological clock is exogenous

in nature.

Scientific publications, dedicated to research of biologi-

cal rhythms with periods close to geophysical ones, present

much experimental data pointing at the existence of lunar

Fig. 1: (1) Container filled with distilled water; (2) Thermostated

chamber with inside temperature of 103± 0.1◦C; (3) Cooling sys-

tem; (4) Container where the water condensate was collected.

rhythms in biological processes [2, 3]. In 1974, a research

group conducted by M. A. Azimov in Tashkent State Univer-

sity (Uzbekistan) identified lunar rhythms in chemical reac-

tion of vapor conversion of methane at T = 450◦C. It is ob-

vious that at such temperatures we can effectively exclude

biological processes.

The stable vapor flow of low intensity was necessary for

studying of chemical reaction of vapor conversion of

methane. The reaction used in chemical industry to produce

hydrogen is described by a formula:

CH4 + 2H2O −→ 450◦C −→ CO2 + 4H2 .

To investigate time dependence of the reaction speed there

were provided stable flows of gaseous CH4 and water vapor

(deviations were ± 0.3% and ± 3%, respectively). The ex-

periment had been carried out for 540 hours in October and

November of 1974.

In Fig. 3 the experimental measurements were plotted, y

axis shows the fraction of residual methane in the converted

dry gas at the output of the reactor.

Composition of the gas at the output was analyzed by the

method of gas chromatography. Every 15 min three chro-

matographs were collected; results of 2-4 hour measurements

were averaged and then plotted on the Fig. 3. Results of
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Fig. 2: Circadian periodicity of evaporation of water from a ther-

mostated vessel at 103◦ (1974).

these studies indicated on the existence of a lunar rhythm

in the chemical reaction of vapor conversion of methane at

T = 450◦C. This temperature is noticeably higher than tem-

perature of any known living organism.

3 Shnoll effect

One more argument in favor of existence of astrophysical

clocks (APhC) is Shnoll Effect. It is shown that due to fluc-

tuations, a sequence of discrete values is generated by suc-

cessive measurement events whatever the type of the pro-

cess measured. The corresponding histograms have much the

same shape at any given time and for processes of a differ-

ent nature and are very likely to change shape simultaneously

for various processes and in widely distant laboratories. For

a series of successive histograms, any given one is similar to

its nearest neighbors and occurs repeatedly with a period of

24 hours, 27 days, and about 365 days, thus implying that the

phenomenon has a very profound cosmophysical (or cosmo-

genic) origin [4, 5].

Substantial experimental material accumulated by biolo-

gists studying rhythms close to geophysical constitutes ob-

servations of the hands of astrophysical clock, which sets

rhythms for biological processes. The rhythms for these pro-

cesses are set by external forces.

Thus, from above described experimental data we con-

clude that rhythms close to geophysical, which occur in phys-

ical, chemical and biological processes, exist because of As-

trophysical Clock (APhC).

4 How does Astrophysical Clock (APhC) work?

Let’s analyze changing of kinetic and potential energy of

atoms/molecule on the surface of the Earth. An atom/mole-

cule on the surface of the Earth takes part in following mo-

tions:

Fig. 3: Concentration of residual CH4 in % in vapor conversion re-

action output.†

1. Spinning of the Earth around its own axis with the sur-

face speed V1 = 465 cosα m/s, where α is the geo-

graphic latitude;

2. Revolving with the Earth around the Sun with a linear

speed of V2 = 3 × 104 m/s;

3. Moving with the Solar system around the center of the

Galaxy with a linear speed of about V3 = 2.5×105 m/s;

4. Moving with the Galaxy from the center of the Uni-

verse with a linear speed of about V4 = 6 × 105 m/s.

It’s known that total mechanical energy is the sum of ki-

netic energy EK and potential energy U:

Etotal = EK + U(2).

And, if any of these components or both of them change ac-

cording to a law, then the total energy will change according

to the same law. And the change can be potentially affect-

ing any physical, chemical or biological process. The factors

1-3 cause changing of kinetic energy of atoms/molecules on

the surface of the Earth with periods, respectively, 24 hours

(CR), a year (year rhythm), 180 million years (the Galaxy

“year” rhythm). The existence of the rhythms has been men-

tioned above. Analysis of the kinetic energy changing leads

us to the following formula:

Emax–Emin = 2m × VT × VE cosα ,

where m is mass of an atom/molecule, VT is thermodynamic

speed of an atom/molecule, VE is the orbital speed of the

Earth’s surface on the equator, α is the geographic latitude.

†Experimental data presented in this figure was obtained in 1972–1975,

in Tashkent State University, Uzbekistan, by Azimov’s group, headed by

Takhir R. Akhmedov.
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5 Conclusion

1. Experimental data on research of rhythmic processes with

the periods close to geophysical (circadian rhythm — CR,

lunar rhythm — LR, annual/year rhythm — YR) testify to

existence of Astrophysical hours (APhC).

2. Rhythms with the periods close to the geophysical are

experimentally observed in physical, chemical, and in biolog-

ical processes. Furthermore, the circadian rhythm (CR) both

in physical and in biological processes demonstrated a con-

nection to local time.

3. Periods close to geophysical in all processes are formed

Astrophysical Clock by change of a total energy (kinetic and

potential) of atoms/molecules located on the surface of Earth

and moving with it in a space.

4. The Lunar Rhythm (LR) observed in chemical and bi-

ological processes is a result of a change of potential energy

of atom (molecule), located on the surface of Earth. This

change in potential energy is caused by movement of the

Moon within the system Sun – Earth – Moon. All planets of

the Solar System can have similar impact on processes taking

place on Earth.

5. Biological objects (including humans) constantly have

to receive signals of astrophysical clocks (APhC) for nor-

mal functioning. Thanks to APhC biological objects (almost

closed systems) have an opportunity to exchange energy with

environment, while maintaining their integrity.

6. During a long flight on low Earth orbit the time sen-

sor of circadian rhythms is distorted for astronauts. This dis-

tortion could lead to imbalance of biochemical processes in

astronaut’s body, which could result in serious health issues.

These issues may not manifest immediately.

7. During flight to Mars, human body stops receiving sig-

nals for setting circadian, lunar and yearly rhythms. This

leads to total unbalancing of finely tuned biochemical reac-

tions inside the body. At this point nobody knows what con-

sequences this unbalancing may lead to. The difficulty of this

problem is that experiments like Mars-500 cannot provide an-

swers to these questions. One cannot turn off astrophysical

clock during experiments on Earth.

8. To all those who desire and are able to carry out ex-

periments studying the time dependence of water evaporation

within a thermostatic vessel, further I provided the technical

specifications:

• Thermostatic vessel to contain the liquid (8–10 litres of

volume);

• Thermostatic liquid — motor or vegetable oil with tem-

perature of 103±0.1◦C;

• A system to distilled water, using typical chemical lab

hardware;

• The flask with water to be evaporated should be located

inside the thermostatic vessel;

• Cooling system for water vapor condensation;

• Water passing through the cooling system should be

room temperature of 20◦C with flow rate at 1 litre per

minute;

• The frequency of measurements (time interval at which

measurements are taken) is at the discretion of scien-

tists setting up experiments (10 min, 15 min, etc.).

Objective: to plot the correlation of water vapor (conden-

sate) with the time of day. Running experiment for 72 hrs

is preferred. When publishing results of this experiment, the

researcher needs to state geographical coordinates where ex-

periment took place.

Submitted on December 1, 2014 / Accepted on December 4, 2014
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Vectorial analysis relating to derivation of deflection of light is presented. Curvilinear

acceleration is distinguished from the Newtonian polar conic acceleration. The dif-

ference between the two is due to the curvature term. Lorentz invariant expression for

acceleration is derived. A physical theory of rotation curves of galaxies based on second

solution to Einstein’s field equation is presented. Theory is applied to Milky Way, M31,

NGC3198 and Solar system. Modified Kepler’s third law yields correct orbital periods

of stars in a galaxy. Deviation factor in the line element of the theory happens to be

the ratio of the Newtonian gravitational acceleration to the measured acceleration of the

star in the galaxy. Therefore this deviation factor can replace the MOND function.

1 Introduction

The article presented here is only a small element of a much

larger formulation [1–6] proposed to arrive at a theory of

quantum gravity and cosmology. Physicists have put in con-

siderable efforts to unify general relativity and quantum me-

chanics but without success. The string theory and loop quan-

tum gravity are still far from their goal.

Scientists are looking for a unified theory of creation. To

achieve this objective, the physicists have set up two principal

goals. First is the search for the fundamental building block

of the universe. Second is the unification of four fundamen-

tal forces in nature. This constitutes the mainstream physics.

The theory presented here regards these two principal goals

as speculative and not plausible and hence the deviation from

the mainstream physics.

Another feature of the mainstream physics is that most

of the physicists if not all, consider consciousness [5, 6] as

something outside the domain of physics and therefore when

they talk about theory of everything, they really mean theory

of everything excluding consciousness. As per the current

understanding in the physical and life sciences, much of the

scientific literature maintain strict distinction between con-

sciousness and matter. The former is considered sentient and

the later insentient. Many people are of the opinion that the

existence of consciousness in this universe is a reality and

the big bang theory could not be considered complete till it

can account for the presence of consciousness along with the

other forms of insentient matter.

Having rejected the two principal goals of the mainstream

physics, this theory proposes that everything in the universe

is reducible to energy. Therefore unity behind four forces

(bosons), fermions and leptons should be sought in energy.

Another point this theory makes is that the consciousness and

energy are two states of one and the same thing which you

may call the fundamental substance (Spirit) of the universe.

Fundamental building block of the universe is assumed to be

a micro entity, but the fundamental substance of the universe

is all pervasive and ever remains undivided.

In this theory space and time does not have any physical

existence, but they exist only in the human mind as imaginary

artifacts. Comparatively, the energy has some real existence

and it is found in myriads of forms. Again the energy is al-

ways associated with oscillations and motion, without excep-

tion. When these oscillation and motion of the energy sub-

side, it gets transformed into the unmanifest which is not the

energy and therefore does not gravitate. This unmanifest is

motionless without any oscillations and therefore impossible

to detect like empty space.

The idea of space-time arise in the human mind by way

of delusion. When a particle wave is presented to a physi-

cist, instead of seeing the oscillating energy, what he does

is, superimposes the idea of wavelength and period on this

wave and sees the space-time. All the geometrical theories in

physics are founded upon such delusion. In periodic quantum

gravity (PQG), the time does not flow in one direction, but

one gets the sense of time by comparing one period of time

with another. Hence time is a periodic phenomenon and pe-

riods are inverse of frequencies. Therefore in PQG, the Hub-

ble parameter is associated with the frequency of the particle.

Both have the same units. This eliminates the problem of

time which plagues the Wheeler De Witt equation and its as-

sociated theories like loop quantum gravity, Hartle-Hawking

wavefunction of the universe etc.

Advantage of Periodic relativity (PR) over general relativ-

ity can be seen in its use of revised principle of equivalence

which states that the gravitational mass is equal to the rela-

tivistic mass. Application of this principle gives a very sim-

ple derivation for the orbital period derivative of the binary

star [3]. And most important of all, allows the unification of

periodic relativity with quantum mechanics. Because of this

revised principle of equivalence, (modified) Newton’s inverse

square law of gravitation can be merged with the (modified)

Schrodinger Wave equation which gives the basis for peri-

odic quantum gravity and cosmology theory [4]. PR satisfies

Einstein’s field equations but does not utilize weak field ap-

proximation.

The reason general relativity (GR) got plagued with these

two problems (the problem of time associated with Wheeler
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De Witt equation and the inaccurate notion that the gravita-

tional mass is equal to the inertial mass) is its dependence

on the weak field approximation. The use of weak field ap-

proximation automatically locks the theory into having these

two problems. When you depend on weak field approxima-

tion, you cannot treat time as a periodic phenomenon and you

cannot introduce energy momentum invariant into Newton’s

inverse square law.

Another problem with GR is that the universe in this the-

ory begins with a mixture of energy (radiation) and matter

field. It doesn’t even bother to explain where these two things

come from. Another contradiction is that the equivalence of

mass and energy is the biggest feature of GR at the same time

they must have the universe begin with a mixture of energy

(radiation) and the matter field. And all the physicists find it

very comfortable to ignore the presence of life and conscious-

ness in the universe. At the same time they must have a theory

of everything.

Periodic quantum gravity and cosmology [4] is based on

the idea that there is a connection between consciousness and

energy [5]. Based on these ideas PQG proposes a unified

field of consciousness (UFC) [6] underlying the entire uni-

verse from which comes the energy and matter fields of the

big bang theory. In relating the consciousness and the energy

the periodic nature of the time is the most essential factor.

You don’t need any clock operators of the Wheeler De Witt

theory.

On the quantum mechanical side I don’t think Dirac’s lin-

ear representation of the wave function is very accurate be-

cause spin in that theory is not a part of the dynamics of

motion but it is introduced as a perturbation just like in Dar-

win and Pauli theories. Also, the selection of the radial mo-

mentum operator is somewhat arbitrary and it isn’t Hermi-

tian as pointed out by several authors. These deficiencies are

removed in the modified Schrodinger wave equation [2] in

which spin is directly introduced in the Laplacian operator.

This gives exactly same energy levels for hydrogen atom as

in Dirac’s theory and also it’s application to heavy quarko-

nium spectra gives data which are spin dependent.

When these two theories, the periodic relativity and the

relativistic wave mechanics are united, the result is the peri-

odic quantum gravity and cosmology theory [4] which yields

the entire table of standard model particles from a single for-

mula. There is no other theory of quantum gravity that can

do this.

Current article presents some corrections in previous arti-

cle [1] and perfects the derivation for the deflection of light. It

develops Lorentz invariant expression for the acceleration and

provides solution for the rotation curves of galaxies which

does not exist in GR. This solution does not have a disconti-

nuity like the one in the MOND function. The transition from

short distances to astronomical distances is continuous. This

theory gives perfect fit for the rotation curves which MOND

theory cannot give.

2 Curvilinear Gravity

In the earlier article “Periodic relativity: basic framework

of the theory” [1], we obtained correct deflection of light in

Newtonian theory by multiplying both sides of Newton’s in-

verse square law of gravitation by the factor (cosψ + sinψ).

As shown in Figs. 1 and 2 of that article, ψ is the angle be-

tween the radial vector and the tangential velocity vector. Ex-

planation given below makes it more clear that the theory is

Lorentz invariant and factor (cosψ + sinψ) introduces geo-

desic like trajectories. The details are as follows. After very

elaborate analysis, we arrive at Newton’s inverse square law

given by

m0

d2r

dt2
= −

GM0m0

r2
r̂, (1)

where GM0 = µ. Here we introduce the dynamic weak equiv-

alence principle which states that the gravitation mass is equal

to the relativistic mass. Therefore Eq. 1 becomes

m
d2r

dt2
= −

µm

r2
r̂. (2)

In classical mechanics, we have two different expressions for

the acceleration acting on a body in motion. One is a general

expression dv/dt in cartesian coordinates which include the

curvature term, and another is for Newtonian gravity in polar

coordinates d2r/dt2 based on the angular momentum vector

h, which is supposed to be a constant in order to satisfy Ke-

pler’s third law of equal areas in equal times. In periodic rel-

ativity [1] we have shown that these two accelerations are not

equal. At the same time we have maintained that the velocity

vectors in both coordinate systems are equal, v = dr/dt. The

reason for this is that the Newtonian gravity ignores the vari-

ation of angle ψ along the trajectory by assuming constant h.

As shown in Fig. 1, this angle ψ is related to curvature

through the expression

φ = θ + ψ, (3)

where dφ/ds = κ is the curvature. Newtonian gravity ignores

this curvature term by assuming constant ψ = π/2. This can

be verified from following arguments.

h =
L

m
=

p × r

m
≡
|p||r| sinψ

m
ĥ = r2 dθ

dt
sinψ ĥ. (4)

From Eq. 4 we can see that h can be the desired constant

only if sinψ = 1. This shows that the very foundation of

Newtonian gravity ignores the curvature of the trajectory of

the orbiting body. Hence in periodic relativity it is considered

unreasonable to equate the cartesian acceleration dv/dt with

the Newtonian polar acceleration d2r/dt2.

In order to account for the variation of angle ψ along

the trajectory, we propose that the absolute sum of vector

and scalar products of (µ/r2)r̂ and â is equal to magnitude
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Fig. 1: Vectors in a two-body system.

of dv/dt. The relation of these vectors to angle ψ is shown

in Fig. 1
∣∣∣∣∣
dv

dt

∣∣∣∣∣ =
∣∣∣∣∣−

∣∣∣∣∣â ×
µ

r2
r̂

∣∣∣∣∣ −
µ

r2
r̂ · â

∣∣∣∣∣ , (5)

∣∣∣∣∣
dv

dt

∣∣∣∣∣ =
∣∣∣∣∣|â|

∣∣∣∣∣
µ

r2
r̂

∣∣∣∣∣ sin (β + γ)ĥ

∣∣∣∣∣ +
∣∣∣∣∣
µ

r2
r̂

∣∣∣∣∣ |â| cos (β + γ), (6)

where

β =

(
π

2
− ψ

)
, (7)

γ = tan−1

(
at

an

)
. (8)

Various magnitudes of the parameters shown in Fig. 1 are as

follows.

al =
dv

dt
, (9)

at =

(
d2s

dt2
+
v

ν

dν

dt

)
, (10)

an = κ

(
ds

dt

)2

, (11)

ar = −
µ

r2
=

∣∣∣∣∣∣
d2r

dt2

∣∣∣∣∣∣ , (12)

v =
dr

dt
. (13)

Substitution of Eq. 7 in Eq. 6 gives

∣∣∣∣∣
dv

dt

∣∣∣∣∣ =
µ

r2
(cos (ψ − γ) + sin (ψ − γ)) . (14)

When the tangential component of the acceleration is absent

then we have atT̂ = 0. This gives γ = 0 and Eq. 14 reduces to

∣∣∣∣∣
dv

dt

∣∣∣∣∣ =
µ

r2
(cosψ + sinψ) . (15)

Similarly we can show that

∣∣∣∣∣
dv

dt

∣∣∣∣∣ =
∣∣∣∣∣∣
d2r

dt2

∣∣∣∣∣∣ (cos (ψ − γ) + sin (ψ − γ)) . (16)

The first term on the right of Eq. 14 can be interpreted as an

angular acceleration vector with its axis perpendicular to the

plane of motion. This could be the additional acceleration

quantity responsible for the rotation of the velocity vector v

about the coordinate origin o, causing the curvature of the

trajectory.

2.1 Lorentz invariant acceleration

Little diversion here. In the earlier work [1], we introduced

deviation to the flat Minkowski metric due to the gravitational

field in the form,

(
dt

dτ

)2

= γ2n = (1 − β2)−n. (17)

Here I propose a correction to our theory and change the

method of introducing the deviation so that the deviation fac-

tor n is directly introduced in the Lorentz transformation

equation as given below.

(
dτ

dt

)2

=
(
1 − nβ2

)
, (18)

where t is the coordinate time, τ the proper time of the orbit-

ing body, n is a real number and β = v/c. The corresponding

line element in polar coordinates is,

ds2 = c2dt2
− ndr2

− nr2dθ2
− n(r2 sin2 θ)dφ2. (19)

We showed [1] that the line element Eq. 19 satisfies Einstein’s

field equations for any constant value of n. For any constant

value of n, metric 19 always remain flat. This is similar to

the line element in Friedmann model when curvature factor

K = 0. The change made in equation 18 does not alter any of

the previous derivations.
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Coming back to the main topic, in relativity we can either

write our equations in terms of proper time or alternatively

we can write them in terms of relativistic mass. Eq. 18 can be

written as

(
dτ

dt

)2

=
(
1 − nβ2

)
=

(
m0

m

)2

=

(
E0

E

)2

, (20)

where E = mc2 = hν. This gives

E =
(
E2

0 + nE2β2
)1/2

. (21)

Differentiating w.r.t. time we get

dE

dt
= v̂F = n

(
ma +

hv

c2

dν

dt

)
. (22)

Here we arrive at the same relation that we described as true

force in the previous article [1] except that now we have in-

troduced the deviation factor n. I like to further point out a

correction that this true force is same as the Lorentz force.

Here we have used the relation E = mc2 = hν. Therefore

F =
dp

dt
=

dmv

dt
= n

(
ma +

hv

c2

dν

dt

)
, (23)

where F is the Lorentz force and v the velocity vector and a

is the classical acceleration of the particle given by

a =


d2s

dt2
T̂ + κ

(
ds

dt

)2

N̂

 . (24)

Therefore, Lorentz force = Classical force + de Broglie force.

From Eq. 23 we can define Lorentz invariant acceleration al

as

nal = n


(
d2s

dt2
+
v

ν

dν

dt

)
T̂ + κ

(
ds

dt

)2

N̂

 . (25)

The de Broglie force acts along the tangent vector. Now we

equate Lorentz force with the gravitational force given by

Eq. 14

|nmal| =

∣∣∣∣∣m
dv

dt

∣∣∣∣∣

= nm

((
d2s

dt2
+
v

ν

dν

dt

)
T̂ + κ

(
ds
dt

)2
N̂

)

=
µm

r2
(cos (ψ − γ) + sin (ψ − γ)) ,

(26)

|al| =

∣∣∣∣∣
1

n

dv

dt

∣∣∣∣∣ =

(

d2s

dt2
+
v

ν

dν

dt

)
T̂ + κ

(
ds

dt

)2

N̂



=
µ

nr2
(cos (ψ − γ) + sin (ψ − γ)) .

(27)

2.2 Bending of light in periodic relativity

For the bending of light around the sun, we introduce light

parameters v = ds/dt = c, d2s/dt2 = 0 and cdt = ds, along

with κ = dφ/ds for the curvature of the trajectory in Eq. 27.

In this case we will have dν/dt = 0 because the ray is equally

blue shifted and then red shifted, and the frequency shift is 0

at the limb of the sun. This gives,
∣∣∣∣∣∣
c2

ν

dν

ds
T̂ + c2 dφ

ds
N̂

∣∣∣∣∣∣ =
µ

nr2
(cos (ψ − γ) + sin (ψ − γ)) . (28)

Multiplying both sides by dψ, we get
∣∣∣∣∣
1

ν
dνdψT̂ + dφdψN̂

∣∣∣∣∣
=

µ

nc2r2
(cos (ψ − γ) + sin (ψ − γ)) dsdψ.

(29)

We integrate both sides with proper limits. For the star light

approaching the sun we get,
∣∣∣∣∣∣

∫ ν2

ν1

∫ π
2

π

1

ν
dνdψT̂ +

∫ 0

−φ

∫ π
2

π

dφdψN̂

∣∣∣∣∣∣

=
µ

nc2

∫ 0

−∞

∫ π
2

π

1

r2
(cos (ψ − γ) + sin (ψ − γ)) dψds.

(30)

For the star light approaching earth from the limb of the sun

we get,
∣∣∣∣∣∣

∫ ν1

ν2

∫ 0

π
2

1

ν
dνdψT̂ +

∫ −φ

0

∫ 0

π
2

dφdψN̂

∣∣∣∣∣∣

=
µ

nc2

∫ ∞

0

∫ 0

π
2

1

r2
(cos (ψ − γ) + sin (ψ − γ)) dψds,

(31)

∣∣∣∣(ln ν2 − ln ν1)T̂ + φN̂
∣∣∣∣

=
µ

nc2

∫ 0

−∞

∫ π
2

π

1

r2
(cos (ψ − γ) + sin (ψ − γ)) dψds,

(32)

∣∣∣∣(ln ν1 − ln ν2)T̂ + φN̂
∣∣∣∣

=
µ

nc2

∫ ∞

0

∫ 0

π
2

1

r2
(cos (ψ − γ) + sin (ψ − γ)) dψds.

(33)

If we add l.h.s. of Eqs. 32 and 33 we get,

l.h.s. =
∣∣∣∣0.T̂ + 2φN̂

∣∣∣∣ . (34)

From Eq. 34 we see that the magnitude of the tangential com-

ponent is zero. Therefore γ = 0. Hence substituting r2 =

s2 + ∆2 in Eqs. 32 and 33 we get

2φ =
4µ

nc2∆
. (35)

It is obvious from Eq. 35 that the value of constant n is 1 and

not 0 as was assumed in earlier article [1]. n = 1 corresponds

to the flat Minkowski metric therefore both the bending of

light and the gravitational frequency shift can be explained

corresponding to n = 1. Not only that, but no matter what

gets measured in future experiments such as LATOR, the new

measurement can easily be made to fit Eq. 35 by adjusting the

constant n.
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2.3 Curvic and conic gravity

Newtonian gravity is based on the constant vector h which

yields the conic sections. Therefore we can distinguish the

gravity that uses the Lorentz invariant acceleration as the

curvilinear (or curvic) gravity and the Newtonian gravity with

constant h as the conic gravity. Accelerations of the curvic

and conic gravity are related by Eq. 16. It also needs to be

understood that d2r/dt2 is a radial vector but dr/dt is not a

radial vector which acts along the velocity vector v. More-

over, the constant vector h does not play any role in defining

the velocity vector v. Therefore factor (cosψ + sinψ) does

not appear in this expression of velocity v = dr/dt which

remains unaltered. This can be verified from following anal-

ysis. By definition we have

cosψ =
dr

ds
, and sinψ =

rdθ

ds
, (36)

dr

dt
=

(
dr

dt
r̂ +

rdθ

dt
θ̂

)
, (37)

dr

dt
=

ds

dt
(cos (ψ + θ)i + sin (ψ + θ)j) . (38)

Substitution of Eq. 3 gives

dr

dt
=

ds

dt

√(
cos2 φ + sin2 φ

)
T̂ =

ds

dt
T̂ = v. (39)

From Fig. 1 we can verify that the unit vector acting at an an-

gle φ is T̂. Therefore Eq. 39 is not influenced by the constant

h assumption.

3 Rotation curves of galaxies

Earlier [1] we obtained two solutions to Einstein’s field equa-

tions, (
r

n

∂n

∂r

)
= 0 and

(
r

n

∂n

∂r

)
= −4. (40)

So far we have seen the application of the first solution which

requires n to be any real number constant. Now we look at

the second solution which we can write as

∫
∂n

n
= −4

∫
∂r

r
, (41)

ln(nr4) = C, (42)

where C is a constant of integration. This gives

n =
eC

r4
=

k

r4
, (43)

where

k = eC = constant. (44)

In this second solution n need not be a constant. We make

use of Eq. 27 in order to apply the second solution to rotation

Table 1: Milky Way rotation curve based on proper time. r(kpc),

v(km/s).

r v k × 10−81 n (1 − dτ/dt)

7.5 216 1.79546 0.62593 1.6246 × 10−7

8.0 220 2.10050 0.56566 1.5231 × 10−7

12.5 227 7, 52624 0.34004 9.748 × 10−8

17.5 179 33.2129 0.39061 6.9628 × 10−8

22.5 168 80.1362 0.34490 5.4155 × 10−8

27.5 183 123.309 0.23782 4.43091× 10−8

32.5 143 333.332 0.32956 3.7492 × 10−8

37.5 170 362.322 0.20210 3.2493 × 10−8

42.5 183 455.160 0.15388 2.8670 × 10−8

47.5 165 781.650 0.16936 2.5652 × 10−8

55 183 986.474 0.11891 2.2154 × 10−8

curves of a galaxies. Assuming circular orbit we substitute

ψ = π/2 and γ = 0. This gives

|a| =
µ

nr2
=
µr2

k
=
v2

r
, (45)

k =
µr3

v2
. (46)

We can write Eq. 45 as

v2 =
4π2r2

P2
=
µ

nr
, (47)

P =
2πr

v
, (48)

P2 =
4π2r3n

µ
. (49)

For n = 1, Eq. 49 reduces to Kepler’s third law, where P is the

orbital period. Substituting Eq. 46 in Eq. 43 and Eq. 18 we

can compute the ratio dτ/dt. We can apply these equations

of stellar motion to Blue Horizontal-Branch (BHB) halo stars

of the Milky Way [8]. The circular velocity estimates are

based on Naab’s simulation [9]. To this data, one additional

data point for solar radius of 8kpc [10] is added and the re-

sults obtained from Eqs. 46, 43 and 18 are shown in Table 1.

Computed values are based on the stellar mass at the galactic

center, which is 5.0924 × 1010M⊙ [11, 12]. Observed values

of r and circular velocities constrain the integration constant

k which provides a measure of non-uniform distribution of

the galactic matter and the cold dark matter at a given radius.

Hence it is appropriate to describe k as a galactic matter dis-

tribution constant. We also find that Eqs. 48 and 49 both yield

exactly the same orbital period when velocity and deviation n

along with the galactic stellar mass are used from the Tables.

For the Sun, both yield 223.4 million years.

Table 2 shows solar system data from NASA planet fact

sheets. Radial distance equal to semi major axis and mean
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Table 2: Solar system rotation curve based on proper time. r(m),

v(km/s).

Planet r × 10−9 v k n

Mercury 57.91 47.87 1.12 × 1043 1.000103

Venus 108.21 35.02 1.37 × 1044 1.000059

Earth 149.6 29.78 5.01 × 1044 1.000332

Mars 227.92 24.13 2.69 × 1045 1.000065

Jupiter 778.57 13.07 3.66 × 1047 0.997876

Saturn 1433.53 9.69 4.16 × 1048 0.985986

Uranus 2872.46 6.81 6.78 × 1049 0.99627

Neptune 4495.06 5.43 4.08 × 1050 1.00136

Pluto 5869.66 4.72 1.20 × 1051 1.014912

Moon 0.3844 1.023 2.16 × 1034 0.990824

Table 3: M31 rotation curve. k in m4, r(kpc), v(km/s), P in billions

of yrs, x = k × 10−81.

r v x n (1 − dτ/dt) P

8.5 232 6.23 1.316 3.94 × 10−7 0.225

12.5 251 16.89 0.763 2.68 × 10−7 0.305

16.5 251 38.74 0.576 2.03 × 10−7 0.402

20.5 227 90.94 0.568 1.63 × 10−7 0.553

24.5 226 156.89 0.480 1.367 × 10−7 0.665

28.5 218 263.96 0.441 1.175 × 10−7 0.80

32.5 224 371.15 0.367 1.030 × 10−7 0.888

36.5 240 460.47 0.286 9.178 × 10−8 0.933

Table 4: NGC3198 rotation curve. k in m4, r(kpc), v(km/s), P in

billions of yrs, x = k × 10−79.

r v x n (1 − dτ/dt) P

0.68 55 0.202 10.45 1.76 × 10−7 0.0759

1.36 92 0.579 1.868 8.79 × 10−8 0.0908

2.72 123 2.593 0.522 4.39 × 10−8 0.1358

5.44 147 14.52 0.183 2.2 × 10−8 0.2273

8.16 156 43.52 0.108 1.466 × 10−8 0.3213

13.6 154 206.78 0.066 8.79 × 10−9 0.5425

19.04 148 614.36 0.0515 6.28 × 10−9 0.7903

24.48 148 1305.7 0.040 4.88 × 10−9 1.016

29.92 149 2352.1 0.0323 3.99 × 10−9 1.233

orbital velocity are used. k and n are computed using Eqs. 46

and 43. (1 − dτ/dt) are of order 10−8 to 10−12 and not shown

in the table. In case of moon, earth mass 5.9736 × 1024 Kg.

is used. Value of n for Mercury shown in Table 2 should

not be compared with that used in the derivation of perihelic

precession [1] because here we have used second solution of

Einstein’s field equations with constant k, where as perihelic

precession is derived from the first solution of Einstein’s field

equations with constant n. These two solutions are derived

from two roots of a quadratic equation. The purpose of pre-

senting the solar system data is only to show that there is no

discontinuity like the MOND function. One should not look

for precision in Table 2 because it is based on circular or-

bit approximation. It is sufficient to note that n = 1 for flat

Minkowski metric is recovered at small distances.

We can also apply these equations of stellar motion to

rotation curves of M31 [13] and NGC3198 [14]. The results

obtained from Eqs. 46, 43 and 18 are shown in Tables 3 and 4.

Computed values are based on the stellar mass at the galactic

center, which is 1.4 × 1011M⊙ for M31 and 5.0 × 109M⊙ for

NGC3198.

From Eq. 27, we can see that n is a ratio of Newtonian

gravitational acceleration to the measured acceleration which

is 1 for flat Minkowski metric. From Eq. 45 we get the same

relation for circular orbits.

n =
µ/r2

v2/r
. (50)

Substitution of n in Eq. 18 gives

dτ2 =

(
1 −

µ

rc2

)
dt2. (51)

Therefore metric 51 becomes singular for the limiting radius

rl =
µ

c2
. (52)

This is the same expression which we derived earlier [1] for

a black hole.

4 Conclusion

We have presented derivation for the deflection of light from

fundamentals by introducing vectors. Here we can relate the

additional component of acceleration with the rotation of the

velocity vector which causes the curvature of the trajectory.

We have distinguished the cartesian curvilinear acceleration

from the polar conic acceleration and explained why they are

not equal even though they are derived from the same velocity

vector. We have derived expression for the Lorentz invariant

acceleration. We have presented a theory of rotation curves of

galaxies which is based on the second solution of Einstein’s

field equations which yields much better results than the ear-

lier one based on the first solution with constant n [7]. Devia-

tion factor n appears in the expression for acceleration as well

as the modified Kepler’s third law which now yeilds correct

orbital periods for the stars of galaxies. Deviation factor n

plays the same role as the MOND function in the expression

for acceleration. This kind of solution cannot be obtained in

general relativity because of the weak field approximation,

which is a different way of introducing deviation to the flat

Minkowski metric.
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Comprised of rods and clocks, a reference system is a mere intermediary between the

motion that is of interest in the problem and the motions of auxiliary test bodies the

reference system is to be gauged with. However, a theory based on such reference sys-

tems might hide some features of this actual motion-to-motion correspondence, thus

leaving these features incomprehensible. It is therefore desirable to consider this corre-

spondence explicitly, if only to substantiate a particular scheme. To this end, the very

existence of a (local) top-speed signal is shown to be sufficient to explain some peculiar-

ities of the weak interaction using symmetrical configurations of auxiliary trajectories

as a means for the gauge. In particular, the unification of the electromagnetic and weak

interactions, parity violation, SU(2)L × U(1) group structure with the values of its cou-

pling constants, and the intermediate vector boson are found to be a direct consequence

of this gauge procedure.

1 Introduction

We shall apply a direct motion-to-motion gauge to the elec-

troweak interactions. In so doing, our sole tool is the counting

of the numbers of the top-speed signal oscillations in order to

arrange test particles in special configurations of their trajec-

tories possessing a particular symmetry. First we shortly re-

view the basics of the motion-to-motion measurements

(Sec. 1). Second we introduce compact symmetric configu-

rations suitable for the gauge (Secs. 2, 3). Third we apply

this gauge to construct a regular lattice suitable to unambigu-

ously transport the (integer) value of the electric charge unit

over the space-time and find that parity violating weak inter-

action is a necessary component of this (Sec. 4). In the Sec.

5, we describe some other applications of the gauge. The bur-

den of the argument is as follows. The cube-star arrangement

of electron and positron trajectories allows for the construc-

tion of a regular gauging lattice only under some conditions.

In particular, it turns out that the particle charges must be al-

tered, so as to let them leave the gauging cell intact notwith-

standing the residual uncertainty pertinent to the gauge. Aim-

ing at the finest lattice, we have found its minimal cell size

required for the gauge. This size defines the range which is

free to introduce an additional (“weak”) interaction having no

effect on the gauge itself. We can use this additional interac-

tion to realize the necessary charge conversion (the electrons

into the neutrinos). However, the top-speed signal oscillation

numbers define not a single but two trajectories, and we have

to provide the weak interaction with the property to select one

of them. This interaction must depend on spin and contains

parity violation as a necessary ingredient of electric charge

gauge and transport.

2 Motion gauged with auxiliary motion

Ultimately, mechanics is based on comparing a trajectory of

the body which is of interest in a problem to the trajectories

of test bodies that are measuring force in the related points.

Applications of the scheme also require a means to follow

motions of the body. Otherwise, one could never be sure (in

the absence of instant communication) that at a later moment

it is the same body rather than a similar one. To this end,

a top speed signal must exist in the scheme for not to loose

the object upon its possible accelerations. In the conventional

version, the required comparison is being carried out via an

intermediate reference system comprised of rods and clocks.

However, finally the real devices designed to measure the tra-

jectories of bodies are to be gauged with the use of some stan-

dard motions. Thus, narrow light rays or free fall are used to

determine whether or not the rod is rectilinear, and clock read-

ings are to agree with astronomical and/or atomic processes.

So, a reference system comprised of rods and clocks is just

an intermediary in the comparison of one motion to another.

One could guess that this intermediary might either add some

features of its own to the gauge or, on the contrary, hide some

important information in cases when the standard procedure

is used beyond its traditional scope. It is therefore desirable

to dispense with any intermediary so as to gauge motions di-

rectly, if only to obtain a criterion of suitability of the inter-

mediary. To this end, many authors attempted to define the

structure of space-time solely in terms of trajectories. In par-

ticular, natural topologies have been proposed to conform to

the special role of the time axis [1-5]. A drawback of some

of these approaches is the premise of a four-dimensional dif-

ferentiable manifold for the space-time a topology to be in-

troduced in. (However, the very idea to construct open sub-

sets out of all trajectories, rather than of only free ones, and

to deduce space-time properties, e.g., its dimension, out of

their intersections was already considered [2].) Furthermore,

topology is a too general structure, and practice requires more

details. Thus, in order to define metrics based on a subset of

trajectories, it was proposed to eliminate rigid rods (see, e.g.,

[6] and references therein); still clocks, at least in the form of

affine parameters, seemed unavoidable.
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But then, trajectories cannot be taken as primary entities

in a theory to be developed from scratch, even though they

might be considered directly observed (contrary to empty

space-time!). It must be explained why just the trajectories of

bodies are of particular interest rather than arbitrary changes

in nature. Already in the Einstein’s picture of the space-time,

the event is defined as the intersection point of world lines

of particles or of light pulses. This approach was further

developed by Marzke and Wheeler [7]. In actual fact, pri-

mary definitions must be substantiated by the intended ap-

plication of the theory, and therefore they must arise directly

from the desirable statement of the problem, that is, to be ax-

ioms rather than hypotheses. Of course, a general uncertain

concept of event cannot be basic for technical use that aims

at a method to provide predictions, and therefore mechanics

offers a particular kind of event, namely, contact (collision).

The idea is to leave aside the question as to what results from

the contact, assuming instead that nothing will happen, pro-

vided the contact does not occur. Whereas the notion “mate-

rial point”, i.e. “infinitesimal body”, requires a preliminary

concept of metric, the concept of contact is self-contained:

the contact either exists or not. Only such problems are al-

lowed for the analysis in mechanics. To this end, we define

trajectories merely as a means to predict whether or not the

contact of interest will occur in a particular problem upon

detecting only some auxiliary contacts to be appropriately se-

lected. Each trajectory possesses its own linear order, since

it is introduced just for step-to-step predictions. This order

introduces the topology of a simple arc on the trajectory to

provide the basis for emerging structures. For this to be pos-

sible, we have to prepare a set of auxiliary (standard) trajec-

tories in order to encode final, initial and intermediary states

(contacts) solely in terms of these. Yet the choice of standard

trajectories needs an explanation of its own. Can we dispense

with geodesics? What properties of these are actually neces-

sary for the scheme? Might these properties be deduced from

meager information?

A reliable concept to begin with is the communication of

bodies with a top speed signal (which is necessary anyway

to follow motions of the body, while ensuring its unambigu-

ous identification). Top speed signal can be defined indepen-

dently of any general concept of speed. Consider two bodies

A and B, the problem being stated of whether or not they will

come into contact. Let A contact with an auxiliary body X

which then contacts with B. Among these X’s we look for the

first to reach B, whatever ways they go. Only the order of

these contacts matters, e.g., an X might put a mark on B, so

that all the X’s, except the first, find B already marked. It is

this top-speed body that will serve as the signal. Let further

there be a triple contact (B,X,Y), such that Y is, in turn, the

first to meet A afterwards. If the contact (A,B) occurs, the

number of these oscillations (multiple “echo”) is infinite, cor-

responding to the so-called Zeno sequence. Otherwise, the

last oscillation would occur before (A,B), and then this last

oscillating body would not be a top-speed one. We could re-

verse this argument, suggesting that tending the number of

oscillations to infinity could be used to predict the occurrence

of (A,B), if in the absence of this contact the number of os-

cillations were not infinite as well. In conventional notions

this implies infinite time of oscillations, but we cannot in-

troduce space-time terms a priori aiming at a solution solely

in terms of contacts. For this purpose, let us provide in our

scheme some auxiliary X, such that (B,X) does occur. Then

we can state that (A,B) occurs, provided the ratio of the (infi-

nite) numbers of oscillations between A and B to that between

B and X tends to a finite limit. For this to be actually used,

one begins to count oscillation numbers at a moment, and the

value of the ratio is determined as its limit when the num-

ber of oscillations as measured for the contacts of the signal

with, e.g., A tends to infinity. This limit does not depend on

the moment it starts from or on the reciprocal positions of the

signals coming to A from B and X within one oscillation cy-

cle [8]. We emphasize, that only local existence of the top

speed signals is important (no cm/sec and no free trajecto-

ries to appear from the outset!). The counting of such ratios

will be our sole tool in the sequel; however in some cases

also finite oscillation numbers are suitable. (Finite numbers

of top-speed signal oscillations were already used to compare

distances [6, 7].)

We define space-time R not as something pre-existing but

rather as an envelope of combination of all possible trajec-

tories, the occurrence of contacts between which can be de-

termined by means of top speed signal. In fact a (single!)

reference system does exist in this approach, comprising an

appropriate subset of trajectories – X’s – chosen under the

following conditions: i. Any pair of them either have no com-

mon contact or have only one (at least locally – with respect

to their own topology); ii. If some trajectory A has a contact

with some other trajectory B, there exists some X with the

triple contact (A,B,X); iii. Although X’s might have multiple

contacts with trajectories not belonging to the subset, any pair

of such contacts could be separated to insert a sequence of the

top-speed signal oscillations for each of them. Moreover, just

multiple contacts determine dynamics in terms of X’s upon

using an additional subset of “charged” test bodies, the tra-

jectories of which are also encoded via X’s. Under these con-

ditions, infinite oscillation numbers provide the space-time

with differential topology as a means to clearly separate pos-

sible contacts. Moreover, space-like hyper-surfaces S and the

projections of trajectories thereon (“paths”) might also be de-

fined in these terms. The condition for a so defined contact

scheme to represent any finite arrangement of the projections

with their mutual intersections, while excluding any unneces-

sary for this purpose subsets, defines the topology of S. In the

framework of traditional topology [1-5], dim R=ind R=1, but

S is not a sub-space of R, though the set of its neighborhoods

can be induced by trajectories from R: Each neighborhood of

a point of the trajectory defines the corresponding neighbor-
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hood of this point in S, consisting of all its points connected

with top-speed signal to this neighborhood of the trajectory.

However, S is not a topological image of R, and its dimension

is to be defined independently of R.

Unlike the trajectory itself, its projection on S need not

be a simple arc, and it might have various self-intersections.

However, according to the Nöbeling-Pontryagin embedding

theorem, any n-dimensional metrizable topological space

with a countable base of open subsets can be embedded into

the (2n+1)-dimensional Euclidean space. In fact, the theorem

states that in this space its n-dimensional subspaces are free

to intersect or not, while a space of a lower dimension might

be too “dense” forcing some of them to intersect necessar-

ily, and a space of a higher dimension would add nothing to

this freedom. This is particularly clear for n=1: In only two

dimensions a line cannot pass a closed boundary line with-

out crossing it, whereas in three dimensions this is always

possible (traffic interchange, say), while the fourth dimension

would be redundant. For a finite (and even for a countable)

array of trajectories its map in S has n=1, so dim S = 3. It fol-

lows that each contact might be encoded with only three X’s.

This fact could never be understood unless the space-time is

defined as a union of actual trajectories [2] rather than being

accepted in advance. In this version, the extension of bod-

ies should itself be regarded just as their property to obstruct

some trajectories or their paths.

Upon focusing in this presentation only on some features

of motion-to-motion measurements relevant for weak interac-

tions, further analysis of geometrical properties of the space-

time that arise from this approach is left for discussion else-

where.

3 Compact arrangements of trajectories

Consider a set of trajectories with their common contact. We

can choose some triple of them to provide a basis, so that any

other member of the set can be specified with its oscillation

numbers ratios with those of the basis. However, there exists

the twin to any so defined trajectory. Indeed, let us consider

for the sake of visualization such decomposition in the rest

frame of one of bodies of the basis. Then the other two de-

fine a surface, e.g., a plane, and the dual to a trajectory is its

mirror image with respect to this plane. In order to specify

the trajectory uniquely, we have to add some internal degree

of freedom, a doublet, in close analogy to the spin variable.

Among all such sets we select a particular subset –

spheres – that is defined as follows. It is convenient to in-

troduce an additional body for the center of the sphere. The

sphere is comprised of a finite number of trajectories with

equal oscillation numbers with respect to the center body,

that is, their ratio equals 1 for each pair of the sphere mem-

bers. The sphere might be viewed as a compact arrangement

of trajectories which are specified solely by their mutual an-

gles. While the ratios of the oscillations numbers between

the members themselves to those between them and the cen-

ter are in general different, we can define for each trajectory

its neighbors as those for which this ratio is maximal. The

spheres might be used to specify a condition for forces that

are permitted to act on bodies over their trajectories. If we

accept that everything in sight must be described in terms of

signals, we have to define forces in these terms as well. Such

a rule must be independent of the space-time point, i.e. to

require the force not to alter oscillation number ratios.

Let us take the sphere consisting of A, B, C and use con-

ventional variables in order to reveal the familiar forces that

satisfy this condition. The ratio AΓBC of the oscillation num-

bers between the bodies A and B to that of A and C is [8]:

AΓBC = lim
nAB→∞

nAB

nAC

=

ln

(

uAiuBi +

√

(uAiuBi)
2 − 1

)

ln

(

uAiuCi +

√

(uAiuCi)
2 − 1

) (1)

where uAi and others are the four-velocities of the bodies, and

summation over i is implied. Evidently the ratio AΓBC will

not change under a force if the scalar products of the four-

velocities do not.

Consider the electromagnetic force, Fik. Then for velocity

of light c, the charges and masses of the bodies e and m:

duAi =
e

mc
FikuAkdsA . (2)

Hence:

d(uAiuBi) =
eA

mAc
FikuAkuBidsA +

eB

mBc
FkiuBiuAkdsB . (3)

But dsA = dsB since A and B are the members of a sphere.

Then, d(uAiuBi) = 0, if Fik = −Fki and also eA/mA = eB/mB.

Apart from electromagnetic field, anti-symmetry of which

can be expressed, in the connected space-time manifold, via

potentials as Fik = ∂Ai/∂xk − ∂Ak/∂xi, a field might also in-

clude commutators [Ai, Ak] if the components of the potential

do not commute. (Quanta of these fields must be bosons,

whereas fermions would require only anti-commutators.) We

can then reverse the argument to state that only fields pre-

serving the ratios of the oscillation numbers can appear in the

theory as bosons. Moreover, propagation of the fields can

also be expressed via appropriate contact schemes by means

of Green functions [9]. To complete the method, we stay in

need of a condition, in terms of contacts, for the constancy of

charge and mass in (3) everywhere, and in order to find this

condition we need a means to translate these values over the

whole space- time. For this purpose consider a particular sub-

set of spheres, in which the oscillation number ratios with its

neighbors are the same for each member of the sphere. Such

a sphere will be called a star. In three-dimensional space only

five stars are possible. These are known as Platonic solids.

Note that the definition of star doesn’t imply that its bodies

move uniformly.

52 Felix Tselnik. Motion-to-Motion Gauge for the Electroweak Interaction of Leptons



Issue 1 (January) PROGRESS IN PHYSICS Volume 11 (2015)

4 Star-based gauge of electric charge

Eventually, all that is actually measured in experiments re-

lates to motion under electromagnetic force of, e.g., particles,

products of their interactions etc. It is therefore this force pro-

portional to the electric charge of the particle it acts upon that

must be gauged in the first place. The value of this charge

is commonly accepted to be the same everywhere. Still a

method is needed to detect this identity in terms of contacts.

We want to use the stars for gauging electric charge with-

out any intermediary. To this end, we have to specify the

charge not only locally but also to develop some motion-to-

motion gauge for its translation to any point the body of in-

terest might occupy along its trajectory. This should be based

on the symmetries of stars, which can easily be expressed in

terms of equality of some oscillation numbers.

Suppose all the members of a star (in the gauge procedure

we will call them particles) are electrically charged with equal

e/m values and move only under mutual electromagnetic in-

teraction. In any star comprised of identical particles they

move along straight lines repelling each other, and the parti-

cles cannot reach the center. Moreover, the trajectories might

become curved, provided some of the particles differ from

others in charges or masses, and for this reason they miss

the center as well. But in a symmetry-based charge gauging

procedure, it is the disparity of charges and masses that is de-

tected as a star symmetry breaking. If the particles miss the

star center anyway, we cannot be sure that the symmetry is not

broken just at the closer vicinity of the center, still being ob-

served far from it. We must therefore use for the gauge only

neutral as a whole stars with equal numbers of positive and

negative particles. Of all Platonic solids, the center is reached

only in the cube with opposite signs of the charges between

the tetrahedrons the cube is comprised of. Although in the

cube star the particles keep moving along straight lines (even

if the absolute values of their charges differ between its two

tetrahedrons, while being identical within each of them), the

symmetry will be broken because the tetrahedrons are being

differently accelerated by mutual attraction.

Starting the counting of the oscillation numbers between

the particle and an introduced, for the sake of simplicity,

imaginary central particle at a moment before the contact,

we detect the symmetry breaking if these numbers, as mea-

sured at the center, differ at least by one oscillation. In the

limit of the smallest star size, defining the highest precision

of electromagnetic gauge, one tetrahedron nears the center

over only one oscillation while another — over two oscilla-

tions. At a smaller initial radius the second oscillation has no

time to occur. Since we detect only integer numbers of sig-

nal oscillations, the values of charge to be detected must be

discrete. Indeed, suppose that the charges differ by some in-

finitesimal value. However close to the center the symmetry

was detected, we cannot be sure that asymmetry could still be

detected upon continuing the counting, since nothing is being

registered in between the neighboring contacts. So, we are

able to detect with our method only discrete values of charge

(and/or mass), hence a minimum value of charge e can be

registered, the next value being 2e. Now, whereas in a given

external field acceleration depends on e/m, for a case of in-

teracting particles it depends on e2/m, and in order to observe

the symmetry of a star the masses and the absolute values of

the charges of its particles are to be equal.

The particles of the tetrahedron having the charge 2e ex-

perience smaller acceleration as compared to the tetrahedron

having the charge e. The related symmetry breaking gauge

condition — one extra oscillation — is reached at some fi-

nal radius rmin. Smaller radii are not involved in the gauge

procedure, leaving this region free to introduce a new interac-

tion under our general trend to regard possible in mechanics

everything described with the motion-to-motion schemes. In

the next section, we will find such an interaction to be neces-

sary for the gauge itself.

5 Application to electroweak interactions

With the basic cube star at hand we proceed to develop the

whole regular lattice, along which the value of the electric

charge can be transported to a point of the trajectory in ques-

tion. Along our general lines, the regular lattice must com-

prise elementary cube-star cells. For this purpose, we use

some particles of one star, after they pass its center, as a seed

for the next star. According to Sec. 2, just three stars are suf-

ficient to completely define their next star. As a matter of

fact, this simple picture cannot be trusted, because deviation

of the charge at radii that are smaller than those involved in

the gauge for the finest lattice might either prevent electrons

and positrons from escaping the star against the exit potential

barrier formed by the attraction of the other members of the

star or to have a final energy differing from what is needed

as the input energy of the next star. Even small charge devi-

ation are important, since the energy near the minimal radius

is typically much higher than the energies of the particles at

the star entrance, and momentum conservation would yield

large final fluctuations there; moreover, the deviation might

be collected over a sequence of stars. In particular, even low

level radiation that has a small effect on the matching of in-

coming to outgoing energies in a single star might cause large

deviations over long sequences.

Radiation is negligible in stars comprising large bodies,

and our gauge is quite feasible in this case. Long sequences

might then be directly arranged, in which the outgoing bodies

are directly used in the next star, since their velocity return to

the initial values being decelerated after passing the star cen-

ter. This is impossible in the limit of elementary particles. If,

however, a new — “weak” — interaction converts the charge

of the particles to zero at the smallest radius of the symmetry

detection, the gauge becomes independent of radiation. Being

constrained to radii that are smaller than those involved in the
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electric charge gauge, such a conversion doesn’t obstruct the

gauge. Over a larger scale, one could consider stars consist-

ing, e.g., of ions, which can change their charge via charge

exchange or stripping. We, however consider the limiting

case of the finest lattice comprised of stars having the small-

est possible size, still allowing the motion-to-motion charge

gauge. Then only elementary particles might participate in

the lattice, and an elementary neutral particle must complete

the collection. It is just in this extreme case the weak interac-

tion with its parity violation appears.

In order to form the lattice, this newborn particle, the

“neutrino”, has then to be converted back into the electron

of the next star. This can happen under the same weak inter-

action, provided the neutrino collides with the anti-neutrino

to create the electron-positron pair. Though never observed in

practice, such a limiting process, as well as the charged star it-

self — with its eight particles’ simultaneous collision, should

be considered a feature of our formal language to question

nature, providing as concepts for theories so also rules for ex-

periments. We need therefore to introduce intermediate cube

stars made up of only neutrinos and anti-neutrinos and posi-

tioned at the corners of the charged cube. These neutral stars

are “blind” in the sense that their symmetry cannot be de-

tected electromagnetically. Still, suitability of the whole reg-

ular lattice might be detected, provided the following charged

star is found to repeat the original symmetry. So, we need

a doublet consisting of electrons and neutrinos to prepare a

regular lattice. The doublet corresponds to two charge states

that convert one into another at the vertices, suggesting the

SU(2) group for transformations of the inner (charge) space

in the gauge field theory, but now it appears as an indispens-

able mechanism to realize the regular lattice by means of the

motion-to-motion gauge.

Our next step is to define all the members of the next star

starting with the trajectories that are continuations of its three

preceding stars. For any star, it is sufficient to take a basis

of three trajectories to determine all the others. In order to

visualize this construction, it is convenient to proceed using

the conventional picture, that is, to imagine the cube star in

its center-of-mass (CM) reference system as eight particles at

its vertices moving toward the center with equal velocities v

(β = v/c). Let us take, for example, the trajectory A and its

neighbors B and C as the basis for the star to be constructed

and choose the line of A for the x-axis, the line through the

cube center parallel to the line between the vertices B and

C for the y-axis, and the z-axis as orthogonal to these two.

We have to find D as the third neighbor of A. In so chosen

coordinates, the decomposition coefficients of the basis are:

βAx = β, βAy = βAz = 0

βBx = βCx =
β

3
, βBy = −βCy = β

√

2

3

βBz = βCz = β

√
2

3











































, (4)

and those of D:

βDx =
β

3
, βDy = 0 , βDz = − β

2
√

2

3
. (5)

But we know from Sec. 2 that via the oscillation num-

ber ratios counting — our sole means — the basis A, B, C

defines actually two trajectories, that is, there exists another

trajectory E besides D with the same ratios of the oscillations.

In order to determine the coordinates of E, we transform (4)

and (5) to the reference system, in which A is at rest, to find E

there as the mirror image of D, and then to return to the CM

system to find the coordinates of E there. From the relativistic

transformation formulae for velocities, we find:

β
′

Ax
= β

′

Ay = β
′

Az
= 0

β
′

Bx = β
′

Cx = − β
2

3 − β2

β
′

By = − β
′

Cy = β

√

6(1 − β2)

3 − β2

β
′

Bz = β
′

Cz = β

√

2(1 − β2)

3 − β2

β
′

Dx = − β
2

3 − β2
, β

′

Dy = 0

β
′

Dz = − β
2
√

2(1 − β2)

3 − β2























































































































. (6)

Using (6), we obtain the mirror image E of D trajectory

with respect to the plane defined by the transformed B and C

velocities as:

β
′

Ex = − β
2(3 − 5β2)

(3 − β2)2

β
′

D
′
y
= 0

β
′

D
′
z
= β

2
√

2(1 − β2) (3 + β2)

(3 − β2)2















































. (7)

Upon back transforming (7) to the laboratory reference

frame, we find finally:

βEx =
β

(

(3 − β2)2 − 2(3 − 5β2)
)

(3 − β2)2 − 2β2(3 − 5β2)

βEz =
2
√

2 β (1 − β2)(3 + β2)

(3 − β2)2 − 2β2(3 − 5β2)



































. (8)

Though in our example (D placed between B and C) E

moves in the same xz plane as D, (8) does not define a vertex

of the cube. Even the absolute values of the D and E veloci-

ties differ already in the order of β, though their oscillations

numbers with respect to the basis are the same. So, upon con-

structing the next star we must introduce some additional —

internal — degree of freedom, helicity, to define just D but

not E by means of choosing a particular order in the basis A,
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B, C. Mathematically, this is similar to the spin variable, the

spin being directed either in the direction of the momentum

of the particle or oppositely. So, parity violation turns out to

be a necessary property of the motion-to-motion gauge, since

only the projection of spin on the momentum direction con-

veys the necessary information to select the appropriate tra-

jectory out of the two. In the electron/positron cube star, the

opposite sense particles belong to different tetrahedrons, and

of the two particles on each main diagonal of the cube one is

the electron while another – the positron. Therefore the order

of the basis for the electron is seen as reversed from its oppo-

site positron, and the product of parity and charge conjugation

is the same for both (CP conservation).

We are able now to use parity in the electric charge gauge

as performed solely with photon oscillations counting. In the

symmetric cube star magnetic field is zero on the trajecto-

ries, hence there is no orbital angular momentum, and only

the spin of the particle defines its total angular momentum.

Then our electric charge gauge fails to distinguish between

particles with left and right orientations, letting both enter the

weak interaction zone. In order to define the fourth trajectory,

the neutrinos must be provided with a definite, e.g., left, he-

licity, and therefore the charged star must generate only these.

To this end, the weak interaction must be spin-dependent to

create only left-handed neutrinos (and right-handed antineu-

trinos) in the collision of the particles in the charged star. It

is sufficient to consider only the electron and its neutrino, the

argument being similar for their antiparticles. In the blind star

the neutrino will turn into the electron with the same projec-

tion of its spin in virtue of the angular momentum conserva-

tion.

For the left-handed electrons in the charged star, the func-

tion of the weak interaction is dual. On the one hand, the

weak interaction for the left-handed electrons possesses its

own dynamics, since it should match the output and input

energies in the sequence of charged stars over the whole lat-

tice. On the other hand, its intensity defines charge conver-

sion probability, scaling as γ2 = (1 − β2)−1 according to the

general properties of all acceptable fields as satisfying the

condition (1), and the same field should also accelerate the

electrons to maximize the cross-section of charge conversion

along with minimizing that of annihilation. (The latter scales

as γ−2; so the ratio of the related probabilities (however small)

is proportional to γ4.) This relationship of the dynamics and

the charge conversion implies their common coupling con-

stant. For the same reason charged particles created in the

neutral star are to leave the weak interaction region avoiding

annihilation.

When the left-handed electron passes the weak interaction

region of the star, it has some probability either to turn into

the neutrino or to annihilate or to cross this region intact. In

the latter case this left-handed electron might be reflected by

the exit potential to pass the star center in the opposite direc-

tion now as a right-handed one. Being reflected once again,

this electron can turn into the neutrino becoming left-handed

again, thus sharing the total neutrino flux. This cannot be al-

lowed for the gauge, since the time moment of this electron

would differ from that of the normally leaving star electron to

result further on in the incorrect initial moment of the new-

born electron in the next star. This unwanted process can be

suppressed by annihilation of the electron-positron pair when

the reflected particles flip their helicity. The related probabil-

ities depend on the value of the weak coupling constant gL,

given the electromagnetic coupling constant e (the subscript

L refers to the left-handed electron).

Let us first consider the energy matching dynamics ig-

noring radiation. In the charged star, the electron is being

accelerated from γi at the radius ri, as defined by the finest

star cell still possible for the gauge of electron charge, up

to some γ f at rmin ≪ ri [10]. As any field satisfying the

general motion-to-motion condition (1), the weak field has

to satisfy a wave equation [9]. In particular, the finite range

weak interaction could be expressed via the Yukawa potential

gr−1 exp(−r/rmin) satisfying the wave equation with an addi-

tional “mass” term. For not to disturb the charge gauge, the

weak potential should be at most of the order of the Coulomb

potential e2/r at the minimal gauge-defined radius rmin. Apart

from the short range, parity violation and electric neutrality,

the dynamical behavior of weak field should be quite similar

to that of electric field, as prescribed by (1). For the esti-

mations let us approximate the weak field Yukawa potential

with its averaged factor g2/r, analogous to the electromag-

netic e2/r, though defined only within the weak field range

r/rmin ∼ 1: For r/rmin < 1, the potential gr−1 exp(−r/rmin) ≈
g/r − g/rmin constant second term being immaterial. We in-

troduce therefore a combined radius rL, rL = (e2 + g2
L
)/mc2 to

write the following equation for γ in the CM reference sys-

tem:

γ3 = γ3
f + 3ArL

(

1

r
−

1

rmin

)

(9)

where A ≈ 10 represents the force created by all the other

particles of the cube star together [10]. In dimensionless vari-

ables ηL = 3ArL/rmin and x = r/rmin (8) reads:

γ3 = γ3
f + ηL

(

x−1 − 1
)

. (10)

In the transition from one star to the next, the electron

starting with γ = γ f is accelerated by both the electromag-

netic and weak forces from rmin down to some smaller r′,

where it turns into the neutrino, which moves to some r′′ on

the opposite end of the weak region under the weak force

only, then this neutrino moves freely to start being acceler-

ated by the weak field of the neutral star at rmin, where it

turns into the new electron at r′′, which finally decelerates by

both the electromagnetic and weak fields to become a mem-

ber of the next star, now at its own ri, where it must have

γ = γi. In this oversimplified scenario the total contribution

of the weak field over the whole path from the output of one
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charged star to the input of the next charged star is zero, and

it is the sole electric field, which is active only over its parts,

defines the final velocity. In order to obtain a non-zero re-

sult also for the weak field, we have to switch it on and off

over some parts of the transition. A natural means to realize

this switch is to include an intermediate particle with a dif-

ferent mass as its carrier. This is the typical situation for a

random process (at least, for a local one [11]), e.g., for quan-

tum mechanics: the described with the wave function particle

can be found (with some probability) anywhere at the same

moment, still remaining point-like. The required intermedi-

ate particle will then have some mass M, the value of which

must be large, being defined only within the short weak field

range Λ = ~/Mc ∼ rmin, so describing the transition solely in

terms of the charge gauge.

For the energies relevant in our gauge procedure such a

massive particle can only be a virtual one, its sole role con-

sisting in correctly transporting the momentum, charge and

spin data. For this to be possible, this meson must possess

its own charge and polarization, having the spin equal to 1

to preserve the total angular momentum in the charge con-

version, since the two other particles — the electron and the

neutrino — have spin 1/2. Similarly, transporting the value

of momentum as encoded by means of the boson properties

implies its motion. Then the moments of creation and decay

of the boson must be separated by a time interval, however

short due its small velocity for the large mass. The whole

transition between the charged stars will now look as follows.

In electron at rmin having γ = γ f is being accelerated to reach

the energy mc2γ′ at r = r′. Here the electron turns into the

intermediate boson, non-relativistic because of its large mass,

moving with the velocity v = c(γ′2m/M)1/2.

Over the characteristic time Λ/c the boson moves a dis-

tance of the orderΛ(γ′2m/M)1/2 ∼ rmin(γ′2m/M)1/2 (neglect-

ing acceleration due to its large mass) to turn into the neu-

trino, moving with the same energy the distance ∼ ri with

velocity c to turn back into the boson at r = r′′ (now mea-

sured from the center of the neutral star). Here the newborn

electron is being decelerated, again by the electromagnetic

and weak forces to reach γ = γi at r = ri as measured from

the center of the next charged star. In order to get in the

course of the transition to the required γi given γ f , we put

r′′ = r′ − rmin(γ′2m/M)1/2 to obtain for the whole transition:

γ3
i = γ

3
f + ηL















x′−1 −
1

x′ −
√

2m/Mγ′















. (11)

This equation should be supported with the equation for

γ′ = γ(x′):

γ′3 = γ3
f + ηL

(

x′−1 − 1
)

. (12)

We eliminate x′ from the system of (11) and (12) to ob-

tain:

F(γ′, ηL) = γ3
f
− γ3

i

−

(

ηL + γ
′3 − γ3

f

)
√

2m/M γ′

ηL −
(

ηL + γ′3 − γ3
f

)
√

2m/M γ′

= 0.

(13)

Still, the condition of reducing γ from γ f to γi in the

course of the whole transition doesn’t define the points r′ and

r′′ of the charge flips uniquely, unless the charge conversion is

connected with the related dynamics (otherwise the flip might

occur at any point within the weak interaction region), and

we look for the maximum of γ′ to achieve the maximal ratio

(increasing as γ′) of the charge conversion cross section to

that of the dominating (two-photon) electron/positron annihi-

lation.

The equation (13) implicitly defines γ′(η) given γ f and γi,

and the condition for its maximum dγ′(ηL)/dηL = ∂F/∂ηL =

0 (provided ∂F/∂γ′ , 0 at ηL = ηL(max)) yields:

ηmax =
(

γ′3max − γ
3
f

) 1 +
√

2m/M γ′max

1 −
√

2m/M γ′max

. (14)

Substituting (14) in (13), we obtain the equation for γ′max,

given γ f and γi:

γ′3max −
(

γ3
f − γ

3
i

)

(

1 −
√

2m/M γ′max

)2

4
√

2m/M γ′max

− γ3
f = 0. (15)

For the finest lattice as defined by the electron charge

gauge, the equation for γ f is similar to (9), in which, how-

ever, the electric force, introduced via re = e/mc, acts alone:

γ3
f = γ

3
i + 3Are

(

1

rmin

−
1

ri

)

. (16)

In the gauge procedure, the value of γi is of great im-

portance, because it is this lowest velocity that mainly con-

tributes to the sensitivity of asymmetry detection in the stars:

Since ri ≫ rmin, it will be: γ f ≫ γi and the exact value of

γ f (since β f is very close to 1) is but of minor importance in

the integration of the disparity between the tetrahedrons [10].

However, γ f is important in equations (9)-(15).

With resulting from the gauge condition [10] γi ∼ 3 and

rmin ∼ 3×10−3re, we find from (16): γ f ∼ 30. Then from (15)

and (14): γ′max ∼ 50 and ηL(max) ∼ 105. This value of ηL(max)

corresponds to g ∼ 2e, in agreement with the experimental

data: sin θw ∼ 0.5.

Until now we ignored radiation, and we have to consider

its importance. In the gauge process itself, i.e. for ri > r >

rmin, radiation decreases the value of γ f , and in the weak field

regions, rmin > r > r′ and r′′ < r < rmin, radiation is active as

well. Both effects decrease the related γ’s and therefore the

probability of the charge conversions.
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Whereas only the mean values of mechanical variables

(behaving classically) are important in our gauge, as based

solely on the top-speed signal oscillations, the analysis of the

role of radiation requires the full quantum theory. Indeed,

it was shown [10] that in the classical limit, corresponding

to multiple soft-photons emission [11], radiation restricts the

size of the star for the finest lattice down to the order of re.

But it is well known that the classical field theory is no longer

valid at these distances. Instead, we are bound to calculate

only the cross sections for the emission of single photons.

Contrary to the classical limit, single photon radiation in

QED occurs only with some probability, i.e. there is also

a finite probability for the absence of emission. Only this

case is relevant for our gauge, since radiation decreasing the

related γ accordingly decreases the proportional to γ ratio of

charge conversion cross section to that of annihilation. If the

radiation cross section is not too close to unity, the charge

conversion events which are not accompanied by radiation

might be isolated as providing correct γ f to γi transitions in

accord with (11).

In the close vicinity of the star center only some small

central part of the wave packet can take a part in the inter-

action, which is the source of radiation. Therefore, only a

small part of the infinite range Coulomb interaction is actu-

ally involved, behaving there like a short range interaction.

A similar effect in scattering on (neutral) atoms is accounted

for by means of “screening” the potential [11, 12]. When the

particle interacts with atom, this screening appears as a form

factor effectively reducing the range of Coulomb potential to

the size of the atom. In the same way, the short range Yukawa

potential could be regarded as a screened initially long range

fictitious potential, and we consider also the electromagnetic

interaction to be screened as well, because now the flux of

incoming particles should be normalized for a wave packet

of the relevant size rather than for a plane wave. We start

with the ultra- relativistic case for the radiation cross section

formula in the center-mass system [11]:

dσrad = 4αr2
e

d f

f

(

1 −
2

3
(1 − f ) + (1 − f )2

)

×
(

ln 4γ2
0

(

1

f
− 1

)

−
1

2

)

,

(17)

where α = e2/~c ∼ 1/137 is the fine structure constant f =

~ω/ǫ0 (ω is the frequency of the emitted photon, ǫ0 is the en-

ergy of the incident electron in the CM system, γ0 = ǫ0/m).

Integrating (17), we find σrad. The integral diverges for small

f . For a simple estimation let us replace ln(1/ f − 1) with its

average value Q. Integrating f from some fmin, (to be deter-

mined later) to 1:

σrad = 4αr2
e

(

Q −
1

2
+ 2 ln 2γ0

)

×
(

5

6
−

4

3
(ln fmin − fmin) −

1

2
f 2
min

)

.

(18)

In the scattering matrix theory, the analysis is carried out

over the infinite distances from the interaction region both

for initial and final states of the system, so that the incoming

and outgoing wave functions are plain waves over the whole

continuum, and in the derivation of (17), the integral for the

Fourier component of the infinite range Coulomb potential is

taken from 0 to ∞. In our case, only radiation events within

the star are important, e.g., for ri > r > r′ in the charged star

and for r′′ < r < rmin in the neutral one. We shall therefore

accept a model, in which the wave functions outside the inter-

action regions are still plain waves though bounded laterally

to the interaction radii. These functions are given in advance,

not taking care of how they were actually prepared. Then we

can replace r2
e with r2

i
for the gauge region in (17) and (18), so

normalizing the plane wave spinors in the S-matrix element

with one particle in r3
i

rather than in the unit volume, in ac-

cord with the flux density of one electron per r2
i
. Similarly,

rmin will replace re for the weak field region. We have also to

modifyα to account for the weak potential: αL = e(e+gL)/~c.

It will then be possible to use the Feynman diagram tech-

nique to calculate the radiation cross sections. Considering

the interactions as existing only in these regions, we calculate

the related interaction potential in the momentum representa-

tion. In particular, for the pure Coulomb potential eA0(q) (the

time component of the four-vector eAi) in the gauge region

(ri > r > rmin) we write (see, e.g., [11]):

A0(q) = − 4πe

∫ ri

rmin

dr exp(iqr)

=
4πe

q2

(

cos(qri) − cos(qrmin)
)

,

(19)

where we put the boundary radii instead of usual ∞ and 0.

(If ri were to tend to infinity, the exponential factor with a

negative real power should be included in the integrand (to

be set zero at the end in order to cancel the first term in the

parenthesis, while and the second term becomes unity). In

the derivation of (17) (see, e.g., [11, 12]), the argument q has

to be set equal to the absolute value of the recoil momentum

according to the total four-momentum conservation. In the

ultra-relativistic case q ≈ mc/~, so for the gauge region (ri ∼
re ≫ rmin), qri ∼ e2/~c = α≪ 1, and it follows from (19):

A0(q) = −
2πe

q2
α2. (20)

Since the S-matrix element is proportional to (20), the ra-

diation cross section (17), proportional to the S-matrix el-

ement squared, becomes modified by the additional factor

α ∼ 10−9. In order to obtain the total probability wrad of

emission in the interval (ri > r > rmin) of a single photon with

fmin < f < 1, the modified according to (20) cross section

(18) is to be multiplied by the flux j = 2v/V (v ≈ c is the

velocity in the CM system, and V ∼ r3
i

is the gauge region

volume) to obtain the probability for unit time, and then mul-

tiplying by ri/v to find the probability for this region. With all
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these substitutions:

wrad ≈ 4α5

(

Q −
1

2
+ 2 ln 2γ0

)

×
(

5

6
−

4

3
(ln fmin − fmin) −

1

2
f 2
min

)

.

(21)

Due to the factor α5, this probability is very low, unless

fmin is sufficiently small. For wrad to be of the order of unity, it

must be: ln(1/ fmin) ∼ α−5, whatever all other factors in (21)

might be. Evidently, such soft photons cannot bring about

any changes in the value of γ f in the gauge region. The same

reasoning and with the same conclusion holds in the weak

field region for γ′max and ηmax.

The factor α4 in (21) suppresses radiation of the elec-

tron that does not pass the star center, the nearest vicinity

of which provides main contribution to radiation. However,

for the electron that passes the center without turning into the

neutrino the full radiation cross section must be accounted

for. As it follows from (18), the probability of emitting even

rather high energy photons is of the order of unity, and it will

be collected over a sequence of stars, since radiation can only

decelerate the electron. Loosing even a small part of its final

energy (≥ mc2γi), this electron either reaches a lower value

of γi than allowed for the next stars, or even fails to over-

come the exit potential barrier of the last star of a short star

sequence, so destroying the gauge lattice.

Although the right-handed electrons take no part in the

charge conversion, they might ruin the charge gauge. Indeed,

their helicity becomes opposite if they are reflected by the

output electromagnetic barrier of the star, and the initially

right-handed electron becomes a source of the left-handed

neutrino as well. Such oppositely moving neutrinos would

make uncertain the choice of the charge sign in the next star,

being admixed to the proper antineutrinos generated by the

positrons. The flux of these neutrinos could be somewhat

suppressed by the electromagnetic electron-positron annihi-

lation, provided the weak interaction acts against the electro-

magnetic acceleration. So, for the right-handed electron the

weak interaction also receives some dynamical meaning.

In order to determine the value of the corresponding cou-

pling constant gR in the Yukawa potential, we have to find the

probability wan of the two-photon electron-positron annihila-

tion when they are decelerated from γ = γ f down to γ = 0 at

the turning point. We start with the well-known Dirac’s for-

mula for the annihilation cross section in the CM system. In

our case it looks:

σan =
2πr2

min

γ4
√

γ2 − 1

[ (

γ4 + γ2 −
1

2

)

ln

(

γ +

√

γ2 − 1

)

−
1

2
γ
(

γ2 + 1
)

√

γ2 − 1

]

.

(22)

The probability of annihilationwan, increasing with decel-

eration, depends on the function γ(r), which, in turn, depends

on r:

γ3 = γ3
f − ηR

(

1

x
− 1

)

(23)

where ηR = 30rR/rmin, rR = (g2
R
− e2)/mc2, x = r/rmin. Anni-

hilation probability dw an over the interval dx is:

dwan = σan

2v

r2
min

dx. (24)

From (22), (23) and (24) we obtain:

wan = 12πηR

∫ γ f

1

dγ

×

(

γ4−γ2− 1
2

)

ln
(

γ+
√

γ2−1
)

− 1
2
γ
(

γ2+1
)
√

γ2−1

γ2
√

γ2−1
(

γ3
f
+ηR−γ3

)2
.

(25)

Given γ f , this equation defines a function wan(ηR), which

possesses a maximum. A simple numerical calculation with

γ f ≈ 30 gives: wan(max) = 0.12 for ηR(max) ≈ 2500. This

value of ηR(max) corresponds to gR ≈ 1.15e, again in close

correspondence with the experimental value of cos θw. In a

standard probabilistic approach, this 12% difference is suffi-

cient to reliably discern between particles and antiparticles.

6 Conclusion

In summary, our argument goes as follows:

i. A direct gauge of electric charge using motion-to-

motion measurements might be based on the very existence

of a (local) top-speed signal, no matter how high this speed is

in any units whatsoever.

ii. Letting this signal oscillate between test particles and

counting the ratios of the (infinite) numbers of these oscilla-

tions, we are able to detect the symmetry of the stars arranged

as Platonic solids.

iii. Of the five Platonic solids, only the neutral as a whole

cube-symmetrical star, consisting of the two tetrahedrons –

one for the electron and another for the positron – is suitable

for the electric charge gauge, since it is the only symmetry

in which the particles move under electrical interaction along

straight lines to cross at their common center.

iv. In order for the electron charge to be gauged as having

the same value everywhere, the stars must be arranged in a

lattice extended over the whole space-time, in which the ini-

tial star arrangement gives rise to its followings by means of

the same signal oscillations counting.

v. For this to be possible, the method must uniquely de-

fine the transitions in the star sequences; however, the oscil-

lation ratios counting method defines two trajectories rather

than only one, and some internal degree of freedom (spin)

should be given the particle to make the choice unique.

vi. With our gauge confined to integer charge values and

sensitive to deviation from these, however small, beyond the
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gauge region, transitions between the stars in the lattice be-

comes uncertain; however, our charge gauge leaves free some

vicinity of the star center, where an additional interaction not

destroying the gauge might exist, and it could be used for

charge conversion to make this uncertainty immaterial.

vii. The weak interaction realizes the necessary charge

conversion with the neutrino that must also provide the nec-

essary information to select a single trajectory out of the two

in the next star, their spin projection onto the momentum di-

rection being the sole source for this selection. The transition

within the lattice also requires appropriate matching between

the in and out energies of the electrons in the succeeding stars;

this can be reached only with an intermediate vector boson.

viii. The design of the lattice requires only one conversion

of the electric charge, so involving only two charge eigen-

states (the SU(2) doublet).

ix. The charge gauge naturally combines the weak and

electromagnetic interactions in a single interaction as pertain-

ing to the common cube star, and the numerical relationships

between the three coupling constants directly follow from this

gauge.

It is fascinating that just the existence of top-speed sig-

nals is sufficient to predict the existence of the weak interac-

tions with its range, parity violation and even the intermedi-

ate boson, basing solely on Platonic symmetries. The elec-

troweak segment in the standard model suggesting SU(2)L ×
U(1) group with adjusted coupling constants to account for

the previously observed in experiments data including par-

ity violation (while PC is still preserved for the leptons) pro-

vides good predictions as well. One should appreciate, how-

ever, the difference between a theory predicting these features

from its own ”first principles” and a developed ad hoc the-

ory that only explains, however successfully, already known

experimental results. Moreover in other applications, the ex-

istence of top-speed signal is sufficient to construct the non-

singular part of the Green function (the so-called Huygens’

tail) in general relativity [9]. Also, motion-to-motion mea-

surements are relevant in stochastic approach to quantum me-

chanics [13], in which random scattering on the measuring

device, that is realized as a set of macroscopic bodies mov-

ing so as to correspond on average to that of the particle in

question, leads to the Schrodinger equation: In the form of

the Madelung’s fluid with its “quantum potential” depending

on the same wave function, the external force vector corre-

sponds to the total average acceleration of the particle, that is,

the “scattering medium” itself depends also on the own mo-

tion of the particle under measurement. One more application

of the motion-to-motion gauge helps to explain the existence

and masses of the heavy µ- and τ-mesons [14]: In the cube

cell, the same gauge regular lattice might occur if one (for the

τ) or two (for the µ) electron/positron pairs are being replaced

by the heavy mesons. These two sub-symmetries of the cube

star may form the whole regular lattice, provided these “for-

eign” entries move under the mutual acceleration in the cell

nearly identically to other electrons and positrons. This situa-

tion was found to exist only for some particular values of the

mesons’ masses, found to be close to experimental data.

We deduce therefore that the pure motion-to-motion

gauge eliminating all artificial ingredients (even free falling

bodies) and basing only on the (local) existence of top-speed

signals provides not only its own interpretation of observa-

tions, but it can predict experimental results, otherwise hid-

den. This is not surprising, since such a gauge is based solely

on the very statement of practical problems, and the attached

theoretical scheme merely prescribes appropriate notions

to address nature. Experiments, as carried out along these

lines, can give then nothing but what these notions already

imply, in accord with the viewpoint of I. Kant [15] (see also

H. Bergson [16]).
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The paper concerns a theoretical model on the transport mechanisms occurring when
the charge carriers generated during the working conditions of a fuel cell interact with
point and line defects in a real lattice of solid oxide electrolyte. The results of a model
previously published on this topic are here extended to include the tunnelling of carriers
within the stretched zone of edge dislocations. It is shown that at temperatures appro-
priately low the charge transport turns into a frictionless and diffusionless mechanism,
which prospects the chance of solid oxide fuel cells working via a superconductive
effect.

1 Introduction

The electric conductivity of ceramic electrolytes for solid ox-
ide fuel cells (SOFC) has crucial importance for the science
and technology of the next generation of electric power sour-
ces. Most of the recent literature on solid oxide electrolytes
concerns the effort to increase the ion conductivity at temper-
atures as low as possible to reduce the costs and enhance the
portability of the power cell. The efficiency of the ion and
electron transport play a key role in this respect.

In general different charge transfer mechanisms are active
during the working conditions of a fuel cell, depending on
the kind of microstructure and temperature of the electrolyte.
The ion migration in the electrolyte is consequence of the
chemical reactions at the electrodes, whose global free energy
change governs the charge flow inside the electrolyte and the
related electron flow in the external circuit of the cell. Alio-
valent and homovalent chemical doping of the oxides affects
the enthalpy of defect formation, whose kind and amount in
turn control the diffusivity of the charge carriers and thus their
conductivity. Particularly interesting are for instance multi-
ion [1] and super-ion [2] conduction mechanisms.

Yet in solid oxide electrolytes several reasons allow also
the electronic conduction; are important in this respect the
non-stoichiometric structures originated by appropriate heat
treatments and chemical doping. In general an oxygen va-
cancy acts as a charge donor, because the two electrons re-
lated to O−2 can be excited and transferred throughout the
lattice. Oxygen deficient oxides have better conductivity than
stoichiometric oxides. Typical case is that of oxygen defi-
cient oxides doped with lower valence cations, e.g. ZrO2
with Y or Ca. As a possible alternative, even oxide doping
with higher valence cations enables an increased amount of
electrons while reducing the concentration of oxygen vacan-
cies. Besides, an oxide in equilibrium with an atmosphere of
gas containing hydrogen, e.g. H2O, can dissolve neutral H
or hydride H− or proton H+; consequently the reaction of hy-
drogen and hydrogen ions dissolved in the oxide with oxygen
ions releases electrons to the lattice in addition to the proton
conduction.

Mixed ionic–electronic conductors (MIECs) concern in

general both ion, σi, and hole/electron, σel,conductivities of
the charge carriers. Usually the acronym indicates materi-
als in which σi and σel do not differ by more than 2 orders of
magnitude [3] or are not too low (e.g. σi, σel ≥ 10−5 S cm−1).
According to I. Riess [4], this definition can be extended to
intend that MIEC is a material that conducts both ionic and
electronic charges. A review of the main conduction mech-
anisms of interest for the SOFC science is reported in [5].
Anyway, regardless of the specific transport mechanism ac-
tually active in the electrolyte, during the work conditions of
the cell the concentration profiles of the charges generated by
the chemical reactions at the electrodes look like that qualita-
tively sketched in the figure 1.

It is intuitive that the concentration of each species is
maximal at the electrode where it is generated. The con-

Fig. 1: Qualitative sketch of the concentration profiles of two car-
riers with opposite charges in the electrolyte as a function of their
distance from the electrode where either of them was generated. The
profiles represent average diffusion paths, regardless of the local mi-
croscopic lattice jumps around the average paths.
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centration gradients are sustained by the free energy change
of the global reaction in progress; so the charges are sub-
jected to a diffusive driving force Fc and electric potential
gradient driving force Fϕ, the latter being related to the non-
uniform distribution of charges at the electrodes. In general
both forces control the dynamics of all charge carriers.

This picture is however too naive to be realistic. Dopant
induced and native defects in the lattice of the electrolyte can
interact together and merge to form more complex defects,
in particular when the former and the latter have opposite
charges, until an equilibrium concentration ratio of single to
complex defects is attained in the lattice. Moreover, in addi-
tion to the vacancies and clusters of vacancies, at least two
further crystal features are to be taken into account in a real
material: the line defects and the grain boundaries, which act
as potential barriers to be overcome in order that the ions per-
form their path between the electrodes. The former include
edge and screw dislocations that perturb the motion of the
charge carriers because of their stress field; the latter have a
very complex local configuration because of the pile up of
dislocations, which can result in a tangled dislocation struc-
ture that can even trap the incoming ions and polygonized dis-
location structure via appropriate annealing heat treatments.
For instance hydrogen trapping in tangled dislocations is re-
ported in [6]. Modelling these effects is a hard task; exists in
the literature a huge amount of microscopic [7] and macro-
scopic [8] models attempting to describe the transport mech-
anisms of the charge carriers through the electrolyte.

The former kind of models implements often quantum ap-
proaches to get detailed information on a short range scale of
phenomena; their main problem is the difficulty of theoreti-
cal approach that often requires drastic approximations, with
results hardly extrapolable to the macroscopic behaviour of a
massive body and scarcely generalizable because of assump-
tions often too specific.

The latter kind of models regards the electrolyte as a con-
tinuous medium whose properties are described by statisti-
cal parameters like temperature, diffusion coefficient, electri-
cal conductivity and so on, which average and summarize a
great variety of microscopic phenomena; they typically have
thermodynamic character that concerns by definition a whole
body of material, and just for this reason are more easily gen-
eralized to various kinds of electrolytes and transport mecha-
nisms.

A paper has been published to model realistically the elec-
trical conductivity in ceramic lattices used as electrolytes for
SOFCs [9]; the essential feature of the model was to intro-
duce the interaction between charge carriers and lattice de-
fects, in particular as concerns the presence of dislocations. It
is known that the diffusion coefficient D of ions moving in a
diffusion medium is affected not only by the intrinsic lattice
properties, e.g. crystal spacing and orientation, presence of
impurities and so on, but also by the interaction with point
and line defects. The vacancies increase the lattice jump rate

and decrease the related activation energy, thus enhancing the
diffusion coefficient; this effect is modelled by increasing pur-
posely the value of D, as the mechanism of displacement of
the charge carriers by lattice jumps is simply enhanced but re-
mains roughly the same. More complex is instead the interac-
tion with the dislocation; thinking for simplicity one edge dis-
location, for instance, the local lattice distortion due to stress
field of the extra-plane affects the path of the ions between the
electrodes depending on the orientation of the Burgers vector
with respect to the applied electric field. Apart from the grain
boundaries, where several dislocations pile up after having
moved through the core grain along preferential crystal slip
planes, the problem of the line defects deserves a simulation
model that extends some relevant concepts of the dislocation
science: are known in solid state physics phenomena like dis-
location climb and jog, polygonization structures and so on.

From a theoretical point of view, the problem of ion dif-
fusion in real lattices is so complex that simplifying assump-
tions are necessary. The most typical one introduces a homo-
geneous and isotropic ceramic lattice at constant and uniform
temperature T ; in this way D is given by a unique scalar value
instead of a tensor matrix. Also, the dependence of D and re-
lated conductivity σ upon T are described regardless of their
microscopic correlation to the microstructure, e.g. orienta-
tion and spacing of the crystal planes with respect to the av-
erage direction of drift speed of the charge carriers. Since the
present paper represents an extension of the previous results,
a short reminder of [9] is useful at this point. The starting
points were the mass flow equations

J = −D∇c = cv : (1)

the first equality is a phenomenological law that introduces
the proportionality factor D, the latter is instead a definition
consistent with the physical dimensions of matter flow i.e.
mass/(sur f ace × time). The second Fick law is straightfor-
ward consequence of the first one under the additional conti-
nuity condition, i.e. the absence of mass sinks or sources in
the diffusion medium. Strictly speaking one should replace
the concentration with the activity, yet for simplicity the sym-
bol of concentration will be used in the following. The model
focuses on a solid lattice of ceramic electrolyte, assumed for
simplicity homogeneous and isotropic, where charge carriers
are allowed to travel under concentration gradient and electric
potential field. It is interesting in this respect the well known
Nernst-Einstein equation linking σ to D/kBT , which has gen-
eral valence being inferred through elementary and straight-
forward thermodynamic considerations shortly commented
below; so, in the case of mixed electronic-ionic conduction, it
holds for ions and expectedly for electrons too, being in effect
direct consequence of the Ohm law. Is known the dependence
of D on T ; the Arrhenius-like form D = D0 exp(−∆G/kT )
via the activation free energy ∆G is due not only to the direct
T -dependence of the frequency of lattice jumps inherent D0,
but also to the fact that the temperature controls the amount
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and kind of point defects that affect ∆G. The Nernst-Einstein
equation has conceptual and practical importance, as it allows
calculating how the electrolytes of SOFCs conduct at differ-
ent temperatures; yet it also stimulates further considerations
about the chance of describing the interactions of charges in a
crystal lattice via the concept of “effective mass” and the con-
cept of diffusion coefficient in agreement with the Fick laws.
This point is shortly highlighted as follows.

It is known that the effective mass meff of an electron with
energy E moving in a crystal lattice is defined by meff =

ℏ2
(
∂2E(k)/∂k2

)−1
, being k = 2π/λ and λ the wavelength of

its De Broglie momentum p = h/λ = ℏk. The reason of
this position is shortly justified considering the classical en-
ergy E = p2/2m + U, which reads E = ℏ2k2/2m + U from
the quantum standpoint; U = U(k) is the electron interac-
tion potential with the lattice. If in particular U = 0, then
meff coincides with the ordinary free electron rest mass m.
Instead the interacting electron is described by an effective
mass meff , m; putting U = ℏ2u(k)/m and replacing in E,
one finds instead meff = m(1 + ∂2u/∂k2)−1. In fact the de-
viation of meff from m measures the interaction strength of
the electron with the lattice; it is also known that by intro-
ducing the effective mass, the electron can be regarded as a
free particle with good approximation. Owing to the physical
dimensions length2 × time−1 of ℏ/m, the same as the diffu-
sion coefficient, it is formally possible to put D = ℏqm/m and
Deff = ℏqmeff/meff via appropriate coefficients qm and qeff

m able
to fit the experimental values of D and Deff .

Rewrite thus meff/m as

Deff

D∗
= 1 +

∂2u
∂k2 D =

ℏqm

m
D∗ = qD q =

qmeff

qm
, (2)

which calculate D∗ and thus Deff as a function of the physical
D actually measurable. So, once taking into account the in-
teraction of the electron with the lattice, one could think that
the real and effective electron masses correspond to the actual
D and effective Deff related to its interaction with the electric
field and lattice. Note that the first eq (2) reads

Deff = D∗ + D§ D§ = D∗
∂2u(k)
∂k2 . (3)

Clearly the contribution of D§ to the actual diffusion coef-
ficient Deff is due to the kind and strength of interaction of
the charge carrier with the lattice; thus Deff , and not the plain
D, has physical valence to determine the electrical conduc-
tivity of the electrolyte during the operation conditions of the
cell: the electron in the lattice is not a bare free particle, but a
quasi-particle upon which depends in particular its conductiv-
ity. It is known indeed that electrons in a conductor should be
uniformly accelerated by an applied electric field, but attain
instead a steady flow rate because of their interaction with the
lattice that opposes their motion; the resistivity is due to the
electron-phonon scattering and interaction with lattice ions,

impurities and defects, thermal vibrations. Any change of
these mechanisms affects the resistivity; as a limit case, even
the superconducting state with null resistivity is due itself to
the formation of Cooper pairs mediated just by the interaction
between electrons and lattice. Write thus the Nernst-Einstein
equation as follows

σeff =
1
ρeff =

(ze)2cDeff

kBT
. (4)

The crucial conclusion is that all this holds in principle
for any charge carrier, whatever U and m might be. To un-
derstand this point, suppose that the interaction potential U
depends on some parameter, e.g. the temperature, such that
u = u(k,T ) verifies the condition lim

T→Tc
∂2u/∂k2 = ∞ at a crit-

ical temperature T = Tc. Nothing excludes “a priori” such
a chance, as this condition does not put any physical con-
strain on the macroscopic value of the diffusion coefficient D
nor on the related D∗: likewise as this latter is simply D af-
fected by the applied electric field via the finite factor q, the
same holds for Deff affected by the lattice interaction upon
which depends meff as shown in the eq (2). Thus the limit
lim

T→Tc
(Deff/D) = ∞ concerns D§ only. Being qm > 0 and

qeff
m > 0 but anyway finite, the divergent limit is not unphysi-

cal, it merely means that at T = Tc the related carrier/lattice
interaction implies a new non-diffusive transport mechanism;
this holds regardless of the actual value of D, which still rep-
resents the usual diffusion coefficient in the case of carriers
ideally free or weakly interacting with the lattice in a differ-
ent way, e.g. via vacancies only. In conclusion are possible
two diverse consequences of the charge carrier/lattice defect
interactions: one where D§ , D, i.e. the presence of de-
fects simply modifies the diffusion coefficient, another one
where the usual high temperature diffusive mechanism is re-
placed by a different non-diffusive mechanism characterized
by D§ → ∞, to which corresponds ρeff → 0 at T = Tc. Two
essential remarks in this respect, which motivate the present
paper, concern:

(i) The quantum origin of both eqs (1) is inferred in [10];
this paper infers both equations as corollaries of the statis-
tical formulation of quantum uncertainty. Has been contex-
tually inferred also the statistical definition of entropy S =
−∑ jπ j log(π j) in a very general way, i.e. without hypothe-
ses about the possible gaseous, liquid or solid phase of the
diffusion medium. It has been shown that the driving force
of diffusion is related to the tendency of a thermodynamic
system in non-equilibrium state because of the concentration
gradients towards the equilibrium corresponding to the max-
imum entropy, whence the link between diffusion propensity
and entropy increase.

(ii) The result Deff = D§ +D∗, actually inferred in [9]: the
interaction of the charge carrier with the stress field of one
edge dislocation defines an effective diffusion coefficient Deff

consisting of two terms, D∗ related to its interaction with the
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electric potential of the cell and D§ related to its chemical gra-
dient and interaction with the stress field of the dislocation.

The concept of Deff is further concerned in the next sec-
tion to emphasize that the early ideas of Fick mass flow,
which becomes now effective mass flow, and Einstein Deff-
dependent conductivity are extendible to and thus still com-
patible with the limit case D§ → ∞.

In summary Did → D → D∗ → Deff are the possible
diffusion coefficients of each charge carrier concerned in [9]:
Did is that in an ideal defect free lattice, D that in a lattice
with point defects only, D∗ in the given lattice with an ap-
plied electric potential, Deff in a real lattice with dislocations
under an applied electric potential. The chance of extrapolat-
ing the equation (4) to the superconducting state, despite this
latter has seemingly nothing to do with the diffusion driven
charge displacement, relies on two logical steps.
The first step is to acknowledge that Deff = D§ + D is re-
quired by the presence of dislocations, because Deff cannot
be defined simply altering the value of the plain D; the reason
of it has been explained in [9] and is also summarized in the
next section for clarity.

To elucidate the second step, consider preliminarily D→
Deff simply because D§ ≫ D: in this case the finite con-
tribution D§ due to the charge/dislocation interaction can be
accepted without further problems.

Suppose that a valid physical reason allows a charge car-
rier to move as a free particle in the lattice, regardless of the
concentration gradient or applied potential difference or force
F of any physical nature; in this extreme case, the condition
ρeff → 0 necessarily results by consequence and requires it-
self straightforwardly D§ → ∞ in the Nernst-Einstein equa-
tion. In other words, the second step to acknowledge the
divergent value of D§ is to identify the peculiar interaction
mechanism such that the charge carrier behaves effectively
in the lattice as a free particle at a critical temperature Tc:
the existence of such a mechanism plainly extrapolates to the
superconducting state the eq (4), which is thus generalized
despite the link between σ and D is usually associated to a
diffusive mechanism only.

The present paper aims to show that thanks to the fact of
having introduced both point and line lattice defects in the
diffusion problem, the previous model can be effectively ex-
tended to describe even the ion superconducting state in ce-
ramic electrolytes. It is easy at this point to outline the or-
ganization of the present paper: the section 2 shortly sum-
marizes the results exposed in [9], in order to make the ex-
position clearer and self-contained; the sections 3 and 4 con-
cern the further elaboration of these early results according
to the classical formalism. Eventually the section 5 reviews
from the quantum standpoint the concepts elaborated in sec-
tion 4. Thus the first part of the paper concerns in particular
the usual mechanism of charge transport via ion carriers, next
the results are extended to the possible superconductivity ef-
fect described in the section 5. A preliminary simulation test

in the section 5.1 will show that the numerical results of the
model in the particular case where the charge carrier is just
the electron match well the concepts of the standard theory of
superconductivity.

2 Physical background of the model

The model [9] assumes a homogeneous and isotropic elec-
trolyte of ceramic matter at uniform and constant temperature
everywhere; so any amount function of temperature can be re-
garded as a constant. The electrolyte is a parallelepiped, the
electrodes are two layers deposited on two opposite surfaces
of the parallelepiped. The following considerations hold for
all charge carriers; for simplicity of notation, the subscript i
that numbers the i-th species will be omitted. Some remarks,
although well known, are shortly quoted here because use-
ful to expose the next considerations in a self-contained way.
Merging the flux definition J = cv and the assumption J =
−D∇c about the mass flux yields v = −D∇ log(c). Introduce
then the definition v = βF of mobility β of the charge carrier
moving by effect of the force F acting on it; one infers both
D = kBTβ and F = −∇µ together with µ = −kBT log(c/co).
An expression useful later is

F =
kBT
D

v =
kBT
Dc

J. (5)

So the force is expressed through the gradient of the potential
energy µ, the well known chemical potential of the charge
carrier. The arbitrary constant co is usually defined as that of
equilibrium; when c is uniform everywhere in the diffusion
medium, the driving force of diffusion vanishes and the Fick
law predicts a null flow of matter, which is consistent with
c ≡ co. Another important equation is straightforward conse-
quence of the link between mass flow and charge flow; since
the former is proportional to the number of charged carriers,
each one of which has charge ze, one concludes that Jch = zeJ
and so βch = zeβ. Let the resistivity ρ be summarized macro-
scopically by Ohm’s law ρJch = −∇ϕ = E; i.e. the charge
carrier interacts with the lattice while moving by effect of the
applied electric potential ϕ and electric field E. The crucial
eq (4) is inferred simply collecting together all statements just
introduced in the following chain of equalities

Jch = σE = zecv = zecβchE =

= (ze)2cβE =
(ze)2EcD

kBT
= −cDze∇ϕ

kBT
. (6)

Moreover the effect of an electric field on the charge car-
riers moving in the electrolyte is calculated through the last
sequence of equalities recalling that the electric and chemical
forces are additive. Consider thus the identity

Ftot = −∇µ − αze∇ϕ = −kBT
c

(
∇c + α

zec∇ϕ
kBT

)
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where α is the so called self-correlation coefficient ranging
between 0.5 to 1; although usually taken equal to 1 and omit-
ted [11], it is quoted here by completeness only. Recalling
the mobility equation kBT/c = D/βc and noting that Fβc is
just a mass flow, the result is

Jtot = −D
(
∇c + α

zec
kBT
∇ϕ

)
=

cD
kBT

(∇µ − αze∇ϕ) . (7)

So far D has been introduced without mentioning the dif-
fusion medium, in particular as concerns its temperature and
the presence of lattice defects of the ceramic crystal. As the
point defects simply increase the frequency of lattice jumps
[12] and thus the value of the diffusion coefficient, in these
equations D is assumed to be just that already accounting for
the vacancy driven enhancement. As concerns the presence of
edge and screw dislocations also existing in any real crystal,
the paper [9] has shown that in fact the dislocations modify
significantly the diffusion mechanism in the electrolyte: their
stress field hinders or promotes the charge transfer by creating
preferential paths depending on the orientation of the disloca-
tion stress field with respect to the electrode planes. In par-
ticular the dislocation affects the mobility of the charge carri-
ers, as it is intuitive to expect: phenomena like the climbing,
for instance, occur when a dislocation or isolated atoms/ions
move perpendicularly to the extra plane of another disloca-
tion to overcome the compression field due to the local lattice
distortion. Moreover, in the case of edge dislocations the fig-
ure 2 shows the possibility of confinement of light atoms, e.g.
typically C and N, along specific lattice directions perpendic-
ular to the Burgers vector; this emphasizes the importance of
the orientation of grains and dislocations with respect to the
average path of the charges between the electrodes.

Assume first one lonely dislocation in a single crystal lat-
tice; this case allows a preliminary assessment of the interac-
tion between charge carriers travelling the lattice in the pres-
ence of an applied potential field. In the case of edge disloca-
tion the shear stress component on a plane at distance y above
the slip plane is known to be σxy = [8πy(1 − ν)]−1Gb sin(4θ),
being ν the Poisson modulus, G the shear modulus, b = |b|
and b the Burgers vector, θ is the lattice distortion angle in-
duce by the extra plane on the neighbour crystal planes [13].
Moreover the modulus of the force per unit length of such
dislocation is F(d) = bσxy, where the superscript stands for
dislocation. Hence, calling l(d) the length of the extra plane,
the force field due to one dislocation is

F(d) = [8πy(1 − ν)]−1Gb2l(d) sin(4θ)ub

where ub is a unit vector oriented along the Burger vector, i.e.
normally to the dislocation extra plane. It is known that atom
exchange is allowed between dislocations; the flow J of these
atoms within a lattice volumeΩ is reported in the literature to
be

J = DL∇µ/(ΩkBT ) µ = −kT log(cΩ),

being µ the chemical potential and DL the appropriate diffu-
sion coefficient; for clarity are kept here the same notations
of the original reference source [14]. Actually this flow is
straightforward consequence of the Fick law, as it appears
noting that the mass mΩ of atoms within the volume Ω of
lattice corresponds by definition to the average concentration
cΩ = mΩ/Ω; so the atom flow between dislocations at a mu-
tual distance consistent with the given Ω is nothing else but
the diffusion law JΩ = −DL∇cΩ itself, as it is shown by the
following steps

JΩ = −DL∇cΩ = −cΩDL∇ log(cΩ)

=
cΩDL

kBT
∇µ = mΩ

Ω

DL

kBT
∇µ.

(8)

Thus the flow J = JΩ/mΩ reported in the literature de-
scribes the number of atoms corresponding to the pertinent
diffusing mass. The key point of the reasoning is the appro-
priate definition of the diffusion coefficient DL, which here
is that of a cluster of atoms of total mass mΩ rather than
that of one atom in a given matrix. Once having introduced
F(d), it is easy to calculate how the flow of the charge carri-
ers is influenced by this force field via the related quantities
D(d) = kBTβ(d) and v(d) = β(d)F(d); in metals, for instance,
it is known that the typical interaction range of a disloca-
tion is of the order of 10−4 cm [13]. The contribution of
this exchange to the charge flow is reasonably described by
J(d) = F(d)D(d)c/kBT according to the eq (5). Consider now
F(d) as the average field due to several dislocations, while the
same holds for β(d) and D(d), which are therefore related to
the pertinent σ(d); omitting the superscript to simplify the no-
tation, eq (7) reads thus

Jtot = −D
(
∇c + α

zec
kBT
∇ϕ − cF

kBT

)
F =< F(d)(G, ν, l(d),b) > . (9)

In this equation D has the usual statistical meaning in a
real crystal lattice and includes the electric potential as well.
Here the superscript has been omitted because also F denotes
the statistical average of all the microscopic stress fields F(d)

existing in the crystal. One finds thus with the help of the
continuity condition

∇·
[
D

(
∇c + α

zec
kBT
∇ϕ − cF

kBT

)]
=
∂c
∂t

D = D(T, c, t) (10)

where c and v are the resulting concentration and drift veloc-
ity of the i-th charge carrier in the electrolyte. In general the
diffusion coefficient depends on the local chemical composi-
tion and microstructure of the diffusion medium. Moreover
the presence of F into the general diffusion equation is re-
quired to complete the description of the charge drift through
a real ceramic lattice by introducing a generalized thermody-
namic force, justified from a microscopic point of view and
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thus to be regarded also as a statistical macroscopic param-
eter. This force, considered here as the average stress field
resulting from the particular distribution of dislocation arrays
in the lattice, accounts for the interaction of a charge carrier
with the actual configuration of lattice defects and is expected
to induce three main effects: (i) to modify the local velocity
v of the charge carrier, (ii) to modify the local concentration
of the carriers (recall for instance the “Cottrel atmospheres”
that decorate the dislocation), (iii) to modify the local electric
potential because altering the concentration of charged parti-
cles certainly modifies the local ϕ. Accordingly, considering
again the average effects of several dislocations in a macro-
scopic crystal, it is reasonable to write

cF
kBT

=
mcv̇
kBT
+ a∇c + Γ

v̇ = v̇(c) Γ = Γ(c, ϕo) c = c(x, y, z, t,T )

being a a proportionality constant. The first addend at right
hand side accounts for the effect (i), the second for the ef-
fect (ii), the vector Γ for the effect (iii) because it introduces
the local potential ϕo due to the charges piled up around the
dislocation; the dependence of these quantities on c of the
pertinent carrier emphasizes the local character of the respec-
tive quantities depending on the time and space coordinates.
The final step is to guess the form of Γ in order to introduce
in the last equation the electrochemical potential αϕ + µ/ze
inferred from the eq (7) . As motivated in [9], Γ is defined
as a local correction of ϕ because of the concentration of the
charge carriers; with the positions

Γ =
cα

kBT
∇ (zeϕ + µ) − zeϕoα

kBT
∇c a = 1 − α

eq (10) turns into

∇ ·
[

mv
kBT

∂(cD)
∂t
+

zeϕoα

kBT
D∇c

]
=
∂C
∂t

(11)

where

C = c +
m

kBT
∇ · (cDv) ϕo = ϕo(x, y, z, t).

The function ϕo has physical dimensions of electric po-
tential. Eventually, owing to this definition of C, the last
equation reads

∇ ·
[
(D∗ + D§)∇C

]
=
∂C
∂t

(12)

being

D∗ =
zeϕo

kBT
αD

m
kBT

∂(cD)
∂t

v = D∗∇(C − c) + D§∇C.

These considerations show that it is possible to define an ef-
fective diffusion coefficient in the presence of an applied po-
tential ϕ and taking into account the presence of point and
line defects

Deff = D∗ + D§. (13)

This equation is equal to that inferred via the effective mass
of the charge carrier interacting with the lattice, see the eq
(3); D§ is defined by the last eq (12) accounting via C for
the presence of dislocations in a real ceramic electrolyte. Ac-
cordingly, the equation (13) is modified as follows

Deff

D
= α

zeϕo

kBT
+

D§

D
σeff =

1
ρeff =

Deff

D
σ. (14)

The solution of the eq (10) via the eq (12) to find the an-
alytical form of the space and time profile of c is described
in [9]; it is not repeated here because inessential for the pur-
poses of the present paper. Have instead greater importance
the result (13) and the following equations inferred from the
eqs (11) and (12)

∇ · (cDv) = 0, C ≡ c, v =
kBT
m

D§

∂(cD)/∂t
∇c. (15)

The consistency of the first equation with the eq (12) has
been therein shown. This condition requires that the vector
cDv, having physical dimensions of energy per unit surface,
is solenoidal i.e. the net flow of carriers crossing the volume
enclosed by any surface is globally null; this holds for all car-
riers and means absence of source or sinks of carriers around
any closed surface. Note that this condition is fulfilled by

v =
B

cD
(16)

with

B = iBx(y, z, t) + jBy(x, z, t) + kBz(x, y, t) |B| → energy
sur f ace

.

The vector B is defined by arbitrary functions whose ar-
guments depend on the coordinate variables as shown here:
at any time and local coordinates the functions expressing the
components of B can be appropriately determined in order to
fit the corresponding values of vcD resulting from the solu-
tion of the eq (10). Hence the positions (15) do not conflict
with this solution, whatever the analytical form of v and c
might be; the third equality (15) defines D§ = D§(c,D, v,T ).
The central result to be implemented in the present model is

v =
kBT
η

D§
∇c
m
= ΩD§∇n (17)

where

η =
∂(cD)
∂t

n =
c
m

Ω =
kBT
η

with n numerical density of the given carrier and η energy
density corresponding to the time change of cD; the volume
Ω results justified by dimensional reasons and agrees with the
fact that the diffusion process is thermally activated. More-
over one finds

v =
B

cD
=
Ω

m
D§∇c = D§

∇c
c

m = cΩ. (18)
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Owing to the importance of the third eq (15) for the pur-
poses of the present paper, it appears useful to verify its va-
lidity; this check is shortly sketched below by demonstrating
its consistency with relevant literature results.

First of all, the eq (17) leads itself to the literature re-
sult (8); the key points are the definition of mobility β and
its relationship to the diffusion coefficient β = D/kT previ-
ously reported in the eq (5). Let the atom exchange between
dislocations be thermally activated, so that holds the last eq
(17). Being v = D§∇µ/kBT according to the eq (18), then
DLF/kBT = −D§∇µ/kBT specifies DL ≡ D§, i.e. the dif-
fusion coefficient is that pertinent to the interaction of atoms
with the concerned dislocations; moreover the force F ≡ −∇µ
acting on the atoms corresponds to the change of chemical po-
tential related to the migration of the atoms themselves. Since
these relationships are directly involved in the Fick equation
inferred in section 1, it follows that the eq (15) fits well the
model of concentration gradient driven diffusion process.

Furthermore let us show that eq (15) implies the link be-
tween ∇µ and the stress τ that tends to move preferentially
dislocations with Burgers vector favourably oriented in a
crystal matrix, e.g. perpendicularly to a tilt boundary plane
[14]; this stress produces thus a chemical potential gradi-
ent between adjacent dislocations having non-perpendicular
component of the Burgers vector. Once more D to be im-
plemented here is just the diffusion coefficient D§ pertinent
to the interaction with the dislocation and thus appropriate to
this specific task. Assuming again kBT/η ≈ Ω, then F = −∇µ
yields FΩ = −(kBT/η)∇µ. If two dislocations are at a dis-
tance d apart, then Ω = Ad/2 for each dislocation, being A
the surface defined by the length L of the dislocations and the
height of their extra-planes; so Ad is the total volume of ma-
trix enclosed by them, whereas Ad/2 is the average volume
defined by either extra-plane and its average distance from an
equidistant atom, assumed d/2 apart from each dislocation.
Being 2FΩ/(Ad) = −∇µ, the conclusion is that 2τΩ/d = −∇µ
with τ = F/A, which is indeed the result reported in [14].

Finally let us calculate with the help of the eq (15) also
the atom flux I = AJ/m between dislocations per length of
boun-dary of cross section A in direction parallel to the tilt
axis. The following chain of equations

I = −ADL∇c
m

= −ADL∇c
cΩ

= −ADL∇ log(c)
Ω

=

=
DLA∇µ
kBTΩ

= −2DLF
kBTd

= −2DLLτ
kBT

τ =
F
Ld

yields the literature result −2DLτ/kT per unit length of dislo-
cation [14].

All considerations carried out from now on are self-
contained whatever the analytical form of c might be. In the
following the working temperature T of the cell is always re-
garded as a constant throughout the electrolyte.

Fig. 2: A: Cross section of the stretched zone of an edge dislocation
at the interface between the lower boundary of the extra plane and
the perfect lattice. B: Equilibrium position of an atom, typically
carbon or nitrogen, in the stretched zone after stress ageing.

3 Outline of the charge transport model

In general, the macroscopic charge flow within the electrolyte
of a SOFC cell is statistically represented by average concen-
tration profiles of all charges that migrate between the elec-
trodes. The profiles of the ions during the working condition
of the cell, qualitatively sketched in the fig. 1, are in effect
well reproduced by that calculated solving the diffusion equa-
tion (12) [9]. The local steps of these paths consist actually
of random lattice jumps dependent on orientation, structure
and possible point and line defects of the crystal grains form-
ing the electrolyte, of course under the condition that the dis-
placement of the charge carriers must be anyway consistent
with the overall formation of neutral reaction products. So v
and∇n of the eqs (17) are average vectors that consist actually
of local jumps dependent on how the charge carriers interact
each other and with lattice defects, grain boundaries and so
on. The interaction of low sized light atoms and ions with
the lattice distortion due to the extra plane of a dislocation
has been concerned in several papers, e.g. [15]: the figure
2A shows the cross section of the stretched zone of an edge
dislocation, the fig. 2B the location of a carbon atom in the
typical configuration of the Cottrell atmosphere after strain
ageing of bake hardenable steels. The segregation of N and
C atoms, typically interstitials, on dislocations to form Cot-
trell atmospheres is a well known effect; it is also known that
after forming these atmospheres, energy is required to unpin
the dislocations: Luders bands and strain ageing are macro-
scopic evidences of the pinning/unpinning instability. These
processes are usually activated by temperature and mechani-
cal stresses.

Of course the stress induced redistribution and ordering of
carbon atoms has 3D character and has been experimentally
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Fig. 3: 3D representation of the static Cottrell configuration of sev-
eral carbon atoms after interaction with the stress field of an edge
dislocation. B: dynamical flow of charge carriers that tunnel along
the length of the extra plane of the dislocation.

verified in ultra low carbon steels; the configuration reported
in the literature and redrawn in fig 3A explains the return to
the sharp yield point of the stress-strain curve of iron [16].

The chance that light atoms line up into the strained zone
of an edge dislocation is interesting for its implications in the
case of mixed conductivity in ceramic electrolytes. It is rea-
sonable to guess that the aligned configuration sketched in
fig. 3A is in principle also compatible with the path of mo-
bile charge carriers displacing along this transit trail, as repre-
sented in the fig. 3B. Among all possible paths, the next sec-
tion concerns in particular the conduction mechanism that oc-
curs when low atomic number ions tunnel along the stretched
zone at the interface between the extra-plane of an edge dis-
location and the underlying perfect lattice. The mechanism
related to this specific configuration of charges involves di-
rectly the interaction of the carriers with the dislocation and
thus is described by the eq (15), which indeed depends explic-
itly upon D§. From a classical point of view, is conceivable
in principle an ideal fuel cell whose electrolyte is a ceramic
single crystal with one edge dislocation spanning the entire
distance between the electrodes; in this particular case, there-
fore, is physically admissible a double conduction mecha-
nism based on the standard diffusive process introduced in [9]
plus that of ion tunnelling throughout the whole electrolyte
size. Regarding the tunnel path and the whole lattice path as
two parallel resistances, the Kirchhoff laws indicate how the
current of charge carriers generated at the electrodes shunts
between either of them. This is schematically sketched in the
figure 4.

The tunnel mechanism appears reasonable in this context
considering the estimated electron and proton classical radii,
both of the order of 10−15 m, in comparison with the lattice

Fig. 4: Shunt effect of charge carriers between dislocation path and
lattice path of different resistivity. On the left is sketched the pos-
sible path within and in proximity of the stretched zone of an edge
dislocation; on the right is shown the corresponding electric circuit
of the currents crossing the electrolyte.

spacing, of the order of some 10−10 m. A short digression
about the atom and ion sizes with respect to the crystal cell
parameter deserves attention. Despite neither atoms nor ions
have definite sizes because of their electron clouds lack sharp
boundaries, their size estimate allowed by the rigid sphere
model is useful for comparison purposes; as indeed the Cot-
trel atmospheres of C and N atoms have been experimentally
verified, the sketch of the fig. 3A suggests by size comparison
a qualitative evaluation about the chance of an analogous be-
haviour of ions of interest for the fuel cells. The atomic radius
is known to be in general about 104 times that of the nucleus,
the radii of low atomic number elements typically fall in the
range 1÷100 pm [17]. Specifically, the covalent values for C,
N and O atoms are 70, 65 and 60 pm respectively; it is known
that they decrease across a period. The ionic radii of low
atomic number elements are typically of the order of 100 pm
[18]; they are estimated to be 0.1 and 0.14 nm for Na+ and
O=. It is known that the average lattice parameters of solid
oxides increase about linearly with cationic radii [19]; typi-
cal values of lattice average spacing are of the order of 0.5-0.6
nm. As the stretched zone of a dislocation has size necessarily
greater than the unstrained spacing, one reasonably concludes
that, at least in principle, not only the proton and nitrogen
and carbon atoms but even oxygen ions have sizes compatible
with the chance of being accommodated in the stretched zone
underlying the dislocation extra-plane. These estimates sug-
gest by consequence that even low atomic number ion con-
duction via channelling mechanism along the stretched zone
of the dislocation is reasonably possible. It is known that pro-
ton conducting fuel cells typically work with protons crossing
of polymer membranes from anode to cathode, whereas in-
SOFCs oxygen ions migrate through the ceramic electrolyte
from cathode to anode; yet the tunnelling mechanism seems
in principle consistent with both kinds of charge carriers in
typical SOFC electrolytes.
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Consider now the case where the driving energy of the
segregation process of atoms to dislocations is not only the
lattice strain of the ceramic electrolyte but, during the work-
ing cycle of a fuel cell, also the free energy that generates
ions at the electrodes and compels them migrating by effect of
the electric potential; the alignment of several ions confined
along the dislocation length sketched in fig. 3A has thus a
dynamical valence, i.e. it suggests the specific displacement
mechanism that involves the tunnelling of ions throughout the
stretched zone of an edge dislocation at its boundary with the
perfect lattice. In other words, one can think that the line of
foreign light ions along this zone is also compatible with the
particular migration path of such ions generated at either elec-
trode; certainly the proton is a reasonable example of carrier
compliant with such particular charge transport mechanism,
as qualitatively sketched in fig. 3B. These considerations ex-
plain the difference between D, the usual diffusion coefficient
of a given ion in a given lattice with or without point defects,
and Deff , which in this case is the effective diffusion coef-
ficient of the same ion that moves confined in the stretched
zone of the dislocation. This conclusion agrees with and con-
firms the idea that the electric conductivity is related to Deff

and not to D, because the former only accounts for this par-
ticular kind of interaction between charge carrier and dislo-
cation. Also, just for this reason in the fig. 4 the resistivity
of ions with different kind of interaction with the dislocation,
i.e. inside it along the stretched zone and outside it in the
lattice compression zone, have been labelled respectively ρeff

1
and ρeff

2 . Despite Deff is related generically to any interaction
mechanism possible when charge carriers move in the pres-
ence of dislocations, it will be regarded in the following with
particular reference to the charge tunnelling mechanism just
introduced.

4 Classical approach to elaborate the early results [9]

The experimental situation described in this section, in princi-
ple possible, is the one of a unique edge dislocation crossing
throughout the single crystal ceramic electrolyte and arbitrar-
ily inclined with respect to plane parallel electrodes. The fol-
lowing discussion concerns the eq (17) and consists of two
parts: the first part has general character, i.e. it holds at any
point of the ceramic lattice, in which case the presence of the
dislocation merely provides a reference direction to define
specific components of v; the second part aims to describe
the particular mechanism of transport of charges that tunnel
along the stretched zone of the dislocation, which in fact is
the specific case of major interest for the present model.

4.1 Charge transport in the electrolyte lattice

Regard in general the drift velocity v of a charge carrier as
due to a component v∥ parallel to the tunnelling direction and
a component v⊥ perpendicular to v∥; so the eq (17) yields

v = v∥ + v⊥ v∥η = kBT D§∥∇n ± η′va (19)

v⊥η = kBT D§⊥∇n ∓ η′va D§∥ + D§⊥ = D§

where η′ has physical dimensions of energy per unit volume
and va is an arbitrary velocity vector: with the given signs,
the third equation is fulfilled whatever va and η′ might be. Of
course the components of v are linked by

v =
√

v2
∥ + v2

⊥ v⊥ =
(
u∥ −

uo

uo · u∥

)
v∥ u∥ =

v∥
v∥

(20)

with v = |v| given by the solution of the set (12) of diffusion
equations; the same notation holds for the moduli v∥ and v⊥.
The arbitrary unit vector uo is determined in order to satisfy
the first equation; trivial manipulations yield indeed

v =
v∥

cosφ
v2
⊥ = v2

∥

(
1

cos2φ
− 1

)
uo · u∥ = cosφ, (21)

which fits v2 via an appropriate value of cosφ. Moreover the
eq (17) yields

v∥ = ΩD§u∥ · ∇n, (22)

which in principle is fulfilled by an appropriate value of Ω
whatever the actual orientation of uo and related value of
cosφ in the eqs (21) might be. Consider now that also the
thermal energy kBT = mv2

T/2 contributes to the velocity of
the carriers crossing the electrolyte, and thus must someway
appear in the model; vT defined in this way is the average
modulus of the velocity vector vT , whose orientation is by
definition arbitrary and random. During the working condi-
tions of the cell it is reasonable to expect that the actual dy-
namics of charge transport is described combining vT , due to
the heat energy of the carrier in the electrolyte, with v, due to
its electric and concentration gradient driving forces. Let us
exploit va of the eqs (19) to introduce into the problem just
the vector vT of the carriers; hence

v∥ =
D§∥
D§

v± η
′

η
vT v⊥ =

D§⊥
D§

v∓ η
′

η
vT va ≡ vT . (23)

These equations express the components of v along the
tunnel direction and perpendicularly to it. Of course v is the
actual velocity of the charge carrier resulting from the solu-
tion of the eq (12), v∥ and v⊥ are the components of v affected
by the thermal perturbation consequently to either sign of vT ;
the notations v±∥ and v∓⊥, in principle more appropriate, are
implied and omitted for simplicity. So in general

v∥ = r∥v±rvT v⊥ = r⊥v∓rvT r =
η′

η
r∥ =

D§∥
D§

(24)

r⊥ =
D§⊥
D§

r∥ + r⊥ = 1.

As expected, the velocity components result given by the
respective linear combinations of v and vT . Here it is reason-
able to put r = 1 in order that v∥ → ±vT and v⊥ → ∓vT for
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v → 0; as this reasonably occurs for T → 0, it means that
both components of v tend to the respective values consistent
with the zero point energy of the charge carrier. Note in par-
ticular that the second eq (24) vT = ±(r⊥v−v⊥) yields thanks
to the eqs (21) v2

T = (r⊥v)2 + v2
⊥ − 2r⊥v · v⊥, i.e.

v2
T = r2

⊥
v2
∥

cos2φ
+ v2
∥ tan2φ − 2r⊥v2

⊥ = (25)

=

(
r2
⊥

cos2φ
+ (1 − 2r⊥)tan2φ

)
v2
∥ v · v⊥ = v2

⊥

Let us specify now the considerations hitherto carried out to
describe the behaviour of a charge carrier moving inside the
stretched zone of the dislocation; the next part of this section
concerns in particular just the charge transport via tunnelling
mechanism.

4.2 Charge transport along the stretched zone of the
dislocation

Both possible chances r∥v∥ + vT and r∥v∥ − vT of the first
equation (24) yield an average velocity vector still consistent
with the possible tunnelling of the ion. The corresponding
chances of the second equation, where instead the vector vT

sums and subtracts to r⊥v⊥, are more interesting and critical.
The components r⊥v⊥ ∓ vT of v show indeed that the ther-
mal agitation summed up to the transverse component of ion
velocity could possibly avert the tunnelling conduction mech-
anism; this linear combination implies the possibility for the
ion path to deviate from the tunnel direction and flow out-
wards the tunnel. Moreover, even the Coulomb interaction
of the carriers with the charged cores of the lattice closely
surrounding the tunnel is to be considered: as the cores are
in general electrically charged, their interaction with the flow
of mobile carriers is expectable. The second condition for a
successful tunnelling path of the carriers concerns just this in-
teraction: if for instance the charge carrier is an electron, it is
likely attracted to and thus neutralizes with the positive cores;
so the tunnel path through the whole distance L is in practice
impossible. If instead the carrier is a proton, its Coulomb re-
pulsion with the positive cores is consistent with the chance
of travelling through L and coming out from the dislocation
tunnel: in the case of a ceramic single crystal and dislocations
crossing throughout it, the charge carrier would start from one
electrode and would reach the other electrode entirely in the
confined state. This tunnel transport mechanism is coupled
with the usual lattice transport mechanism. This situation is
represented in the figure 5.

Let us analyze both effects. Let δt = L/v∥ be the time
necessary for the carrier to tunnel throughout the length L of
the stretched zone. Then, as schematically sketched in fig. 6,
all possible trajectories are included in a cone centred on the
entrance point of the carrier whose basis has maximum total
size 2δr = 2(r⊥v⊥+vT )δt.

Fig. 5: Schematic sketch of a cell where is operating the proton
conduction mechanisms.

Fig. 6: The figure shows qualitatively the effect of the thermal ve-
locity, solid arrow, on the tunnelling of a charge carrier that travels
within the stretched zone of an edge dislocation. In A the vector sum
of v∥ and vT occurs at a temperature preventing the chance for the
carrier to tunnel throughout the dislocation length; in B the reduced
value of vT at lower T allows the tunnelling effect.

As vT has by definition random orientation, here has been
considered the most unfavourable case where vT is oriented
just transversally to v∥ in assessing the actual chance of con-
finement of the carrier within the stretched zone of the dis-
location. In general the tunnel effect is expectable at tem-
peratures appropriately low only, in order that the width of
the cone basis be consistent with the average size δl of the
stretched zone: during δt the total lateral deviation 2δr of the
ion path with respect to v∥ must not exceed δl, otherwise the
ion would overflow in the surrounding lattice. In other words,
the charge effectively tunnels if v∥ is such to verify the condi-
tion (r⊥v⊥ + vT )L/v∥ ≤ δl only.
In conclusion, considering the worst case with the plus sign
where vT and r⊥v⊥ sum up correspondingly to the maximum
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deviation of the charge, it must be true that, whatever the
component v∥ of the actual ion displacement velocity might
be,

T ≤ m
2kB

(
v∥
δl
L
− r⊥v⊥

)2

kBT =
mv2

T

2
. (26)

Two interesting equations are obtained merging the gen-
eral eq (5) and the eqs (24). Specifying for instance that the
modulus of velocity is v⊥ and D is actually D§⊥, one finds
D§⊥ = v⊥kBT/F⊥; so, multiplying both sides by v⊥/D§ and
repeating identical steps also for v∥, the results are

r⊥v⊥ =
kBT

F⊥D§
v2
⊥ r∥v∥ =

kBT
F∥D§

v2
∥ . (27)

These equations introduce the confinement forces F⊥ and F∥
that constrain the carrier path within the tunnel and corre-
spond to the interaction of the charge carrier with the neigh-
bours lattice cores surrounding the stretched zone of the dis-
location. Also, as the eqs (21) yield v⊥ = ±v∥ tanφ, one finds

T ≤
mv2
∥

2kB

(
δl
L
− kBTv∥

F⊥D§
tan2φ

)2

which is more conveniently rewritten as follows

T
Tc
≤

mv2
∥

2kBTc

δlL − T
Tc

v∥
vc
w

(
δl
L

)22

(28)

F⊥D§ = vckBTc tanφ = ±wδl
L
+ . . . .

The meaning of the second equation is at the moment
merely formal, aimed to obtain an expression function of
T/Tc and v∥/vc; as concerns the third position, is attracting
the idea of writing the expression in parenthesis as a power
series expansion of δl/L truncated at the second order, in
which case the proportionality constant w defines the series
coefficient Tv∥w/(Tcvc). Note that this coefficient should ex-
pectably be of the order of the unity, in order that the series
could converge; indeed this conclusion will be verified in the
next subsection 5.2. Clearly vc is definable as the transit crit-
ical velocity of the charge carrier making equal to 1 the right
hand side of the first eq (28). Anyway both positions are ac-
ceptable because neither of them needs special hypotheses,
being mere formal ways to rewrite the initial eq (26). This
equation emphasizes that even when v⊥ = 0, i.e. in the par-
ticular case where the entrance path of the charge carrier is
exactly aligned along v∥, the mere thermal agitation must be
consistent itself with the available tunnel cross section: the
greater the latter, the higher the critical temperature below
which the tunnelling is in fact allowed to occur. This equation
links the lattice features δl and L to the operating conditions
of the cell, here represented by the ion properties m and v∥.
Hence it is reasonable to expect that vT and thus T must not
exceed a critical upper value in order to allow the tunnelling

Fig. 7: The figure highlights that the arising of a concentration gra-
dient along the tunnel is hindered by the size of the stretched zone
of the dislocation.

mechanism. If T and m, and thus vT , are such that v∥δt really
corresponds to the whole length L of the dislocation, then the
eqs (17) describe the flow of ions that effectively tunnel in the
stretched zone of the dislocation.

4.3 The superconducting charge flow

The main feature of these results is that D§ and ∇n char-
acterize the charge tunnelling path. In general the occur-
ring of concentration gradient requires by definition a volume
of electrolyte so large to allow the non-equilibrium distribu-
tion of a statistically significant number of charge carriers
unevenly distributed among the respective lattice sites. Yet
∇n , 0 is in fact inconsistent with the size of the dislocation
stretched zone here concerned; in particular, the existence of
the component u∥ ·∇n of this gradient would require a config-
uration of charges like that qualitatively sketched in fig. 7.

This chance seems however rather improbable because of
the mutual repulsion between charges of the same sign in the
small channel available below the dislocation extra plane. So
the gradient term at right hand side of the eq (22) should in-
tuitively vanish inside the tunnel. Assume thus the compo-
nent u∥ · ∇n = 0, i.e the carriers travel the stretched zone
with null gradient within the tunnel path. To better under-
stand this point, note that in the eq (22) appears the product
D§∇n; moreover, in the eqs (27) appear the products F⊥D§

and F∥D§. These results in turn suggest two chances allowed
at left hand side of eq (22):

(i) v∥ = 0, i.e. all charges are statistically at rest in the
stretched zone; the eq (22) trivially consisting of null terms at
both sides is nothing else but the particular case of the Cottrell
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atmosphere sketched in fig. 3A. The ions that decorate the
dislocation prevent the tunnelling of further ions provided by
the lattice. The charge flow in the cell is merely that described
by the usual bulk lattice ion transport under concentration and
electric potential gradients, already concerned in [9].

(ii) The left hand side of the eq (22) is non-vanishing:
v∥ , 0 reveals actual dynamics of charges transiting within
the tunnel zone. This is closely related to the previous state-
ment of the section 1 according which, for instance, a bare
electron of mass me interacting with the dislocation can be
described by a free electron of effective mass meff

e : owing to
the eqs (2), this reasoning is identically expressed in general
via Deff instead of meff of any charge carrier.

The latter case is interesting, because the finite value of
v∥ , 0 requires that D§ → ∞ in order that the undetermined
form∞×0 makes finite the corresponding limit value of D§u·
∇n. This also means that Deff = D∗ + D§ tends to infinity
as well, which compels the resistivity ρeff → 0 according
to eq (4). Moreover, for the same reason this mechanisms
implies both F⊥ → 0 and F∥ → 0 for D§ → ∞, which implies
D§⊥ → ∞ and D§∥ → ∞; this in turn means null interaction of
the charge carrier with the lattice surrounding the tunnel zone.
Hence the eqs (28) and (27) yield

T
Tc
=

mv2
∥

2kBTc

δlL − T
Tc

v∥
vc
w

(
δl
L

)22

(29)

lim
D§→∞
F⊥→0

F⊥D§

kB
= vcTc lim

D§→∞
F∥→0

F∥D§

kB
= v′cTc.

In the eqs (28) Tc and vc were in general arbitrary vari-
ables; here instead they are fixed values uniquely defined by
the limit of the second and third equations; the same holds for
v′c related to v∥. So the transport mechanism in the stretched
boundary zone of the dislocation extra plane is different from
that in other zones of the ceramic crystal: clearly the for-
mer has nothing to do with the usual charge displacement
throughout the lattice concerned by the latter. While the con-
centration gradient is no longer the driving force governing
the charge transport, F⊥ → 0 and F∥ → 0 consequently ob-
tained mean that the charge carrier moves within the tunnel as
a free particle: the lack of friction force, i.e. electrical resis-
tance, prevents dissipating their initial access energy into the
dislocation stretched zone. This appears even more evident in
the eq (5), where D ≡ D§ at T = Tc yields J , 0 compatible
with F = 0.

Simple considerations with the help of fig. 8, inferred
from the fig. 4 but containing the information ρeff → 0,
show the electric shunt between zones of different electrical
resistivity and highlight why the charge carriers tend to privi-
lege the zero resistance tunnel path: this answers the possible
question about the preferential character of this conduction
mechanism of the charge carriers. Further quantum consider-
ations are necessary to complete the picture essentially clas-

Fig. 8: Schematic sketch showing that at the ion current shunts to
the zero resistivity path inside the tunnel with electrical resistivity
ρeff = 0 rather than to any lattice path with ρeff , 0.

sical so far carried out. On the one hand the expectation of a
superconducting flow of charges cannot be certainly regarded
as an unphysical result, despite its derivation has surprisingly
the classical basis hitherto exposed. In this respect however it
is worth recalling the quantum nature of both eqs (1), which
indeed have been obtained as corollaries of the statistical for-
mulation of the quantum uncertainty [10]; the fact that the
Fick equations have been obtained themselves as corollaries
of a quantum approach to the gradient driven diffusion force,
shows that actually all results have inherently quantum phys-
ical meaning. Then, by definition, even a classical approach
inferred from these equations has intrinsic quantum founda-
tion. On the other hand, the heuristic character of this section
requires being completed with further concepts more specifi-
cally belonging to the quantum world.

5 Quantum approach

This section aims to understand why the results of the clas-
sical model of a unique dislocation crossing through one sin-
gle grain are actually extendible to a real grain with several
disconnected dislocations of different orientations and to the
grain boundaries consisting of several tangled dislocations in-
ordinately piled up at the interface with other grains.

5.1 Grain bulk superconductivity

Define δε = εtu − εla, being εtu the energy of the ion trav-
elling the tunnel along the stretched zone of the edge dislo-
cation and εla that of the ions randomly moving in the lattice
before entering the tunnel; δε represents thus the gap between
the energy of the ion in either location, which in turn suggests
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the existence of an energy gap for a charge carrier in the su-
perconducting and non-superconducting state. This conclu-
sion is confirmed below. The fact of having introduced the
tunnelling velocity components v⊥ and v∥, suggests introduc-
ing the respective components of De Broglie momentum of
the ion corresponding to εtu. Being p∥ = h/λ∥ and p⊥ = h/λ⊥
these components, then |p| = h

√
λ−2
⊥ + λ

−2
∥ in the tunnel state;

λ⊥ and λ∥ are the wavelengths corresponding to the respective
velocity components. Let us specify n⊥λ⊥ = δl and n∥λ∥ = L,
in order to describe steady waves with n⊥ and n∥ nodes along
both tunnel sizes; then, with n⊥ = 1 and n∥ = 1,

ptu = |p| = γh/δl γ =

√
1 + (δl/L)2.

Note that γ ≈ 1 approximates well ptu even if L corre-
sponds to just a few lattice sites aligned to form the extra-
plane of the edge dislocation, i.e. even in the case of an
extra-plane extent short with respect to the lattice spacing
stretched to δl: indeed (γh/δl − h/δl)/(γh/δl) ≈ (δl/L)2/2
yields γ ≈ 1 even for values L >∼ δl. Anyway with ptu = γh/δl
one finds εtu = (hγ)2/2mδl2. According to this result, the
momentum is essentially due to the small cross section of the
stretched zone that constrains the transverse velocity compo-
nent v⊥ of the ion in the tunnel with respect to that of the ion
randomly moving in the lattice; this means that remains in-
stead approximately unchanged the component v∥ of velocity
along the tunnel. Put now εla = ϑεtu, being θ an appropriate
numerical coefficient such that δε = (ϑ − 1)εtu. In princi-
ple both chances ϑ >

< 1 are possible, depending on whether
εla >

< εtu: as neither chance can be excluded “a priori” for an
ion in the two different environments, this means admitting
that in general to the unique εla in the lattice correspond two
energy levels spaced ±δε around εtu, one of which is actu-
ally empty depending on either situation energetically more
favourable. This is easily shown as the eqs (24) yield two
chances for the energy of the charge carrier in the tunnel, de-
pending on how vT combines with v∥ and v⊥. These equa-
tions yield ε2 =

(
(r∥v + vT )2 + (r⊥v − vT )2

)
m/2 and ε1 =(

(r∥v − vT )2 + (r⊥v + vT )2
)

m/2; trivial manipulations via the
eqs (21) yield thus δε = ε2 − ε1 = 2mv · vT (r∥ − r⊥) showing
indeed a gap between the levels ε2 = ε0 +mv · vT (r∥ − r⊥) and
ε1 = ε0 − mv · vT (r∥ − r⊥) with ε0 =

(
(r2
∥ + r2

⊥)v2/2 + v2
T

)
m:

this latter corresponds thus to the Fermi level between the oc-
cupied and unoccupied superconducting levels defining the
gap. As the ion dwell time δt in the tunnel is of the order of

δt =
ℏ

|δε| = 2
mδl2ℏ

|ϑ − 1| (γh)2 ,

the extent L of the extra-plane controlling the time range of
ion transit at velocity v∥ requires

L = v∥δt =
mv∥δl2

|ϑ − 1| πhγ2 .

So, supposing that ntu electrons ξ apart each other transit si-
multaneously within the tunnel,

L =
v∥ℏ
|δε| =

v∥ℏ
|ϑ − 1| εtu

L = (ntu − 1)ξ v∥ =
γh
mδl

suggest that

ξ =
v∥ℏ

(ntu − 1) |δε| =
v∥ℏ

|ϑ − 1| (ntu − 1)εtu
.

Define now the tunnel volume V available to the transit of
the ions as V = χLδl2, being χ a proportionality constant
of the order of the unity related to the actual shape of the
stretched zone; if for instance the tunnel would be simulated
by a cylinder of radius δl/2, then χ = π/4. Hence

V = χδl2v∥δt =
χ

|ϑ − 1| π
m
h

v∥δl
γ2 δl3.

Note that v∥δl has the same physical dimensions of a dif-
fusion coefficient; so it is possible to write v∥δl = ψD∥, being
ψ an appropriate proportionality constant. Moreover recall
that the diffusion coefficient has been also related in the sec-
tion 1 to h/m via a proportionality constant, once more be-
cause of dimensional reasons; so put Dm = qmh/m via the
proportionality factor qm, as done in the section 1, whereas
the subscript emphasizes that the diffusion coefficient is by
definition that related to the mass of an ion or electron tun-
nelling in the stretched zone of the dislocation. So one finds

V =
χψ

|ϑ − 1| πγ2

D∥
qmDm

δl3.

Note eventually that it is certainly possible to write V/δl3 =
θ(1 + ζ) with ζ > 1 appropriate function and θ proportional-
ity constant: indeed the tunnel can be envisaged as a series
of cells of elementary volumes L0δl2, where L0 corresponds
to the lattice spacing of atoms aligned along the dislocation
extra plane. Replacing these positions in the equation of V
one finds

D∥
qDm

= 1 + ζ q =
|ϑ − 1| θπqm

χψ
γ2.

This result compares well with the eq (2) previously ob-
tained in an independent way, simply identifying ζ =

∂2u(k)/∂k2 and all constants with q; as expected here D∥ plays
at T = Tc the role of D§ introduced in the section 1, whereas
qDm is just D∗ previously obtained as electric potential driven
enhancement of the plain diffusion coefficient D ≡ Dm. This
agreement supports the present approach. This also suggests
some more considerations about the nature of the supercon-
ducting charge wave propagating along the tunnel zone. It is
intuitive that the quantum states of the charge carriers within
the tunnel must correspond to an ordered flow of particles, all
travelling the tunnel with the same velocity v∥; any perturba-
tion of the motion of these charges would increase the total
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Coulomb energy of the flow and could even spoil the flow;
the low temperature helps in this respect. This requires in
turn a sort of coupling between the carriers, because several
fermions cannot have the same quantum state; in effect it is
known that a small contraction of positive charges of the lat-
tice cores around the transient electrons in fact couples two
electrons. Actually, in this case the contraction is that of
the lines of lattice cores delimiting the tunnel stretched by
the dislocation plane around the transient charges. In other
words, electron pairs or proton pairs travel through the tunnel
as bosons with a unique quantum state.

5.2 Computer simulation

Some estimates are also possible considering a ceramic lattice
whose average spacing is a; this is therefore also the order of
magnitude expected for the size δl >∼ a of the stretched zone.
Consider first the case where the charge carrier is an elec-
tron, which requires negatively charged ion cores delimiting
the tunnel cross section; this assumption reminds the famil-
iar case of electron super-conduction and thus helps to check
reliability and rationality of the estimates. To assess the pre-
vious results, put m = 9 × 10−28 g and consider the rea-
sonable simulation value δl = 5 × 10−8 cm, consistent with
a typical lattice spacing quoted in the section 3; one finds
v∥ ≈ 1.5× 108 cm/s with the approximation γ = 1. Moreover
putting L = 10−4 cm, i.e. considering an edge dislocation that
crosses through a test grain average size of the typical order
of 1 µm, one finds a gap δε = v∥ℏ/L = 10−3 eV between the
ion energies in the tunnel and in the lattice. Note that the
zero point energy of a free ion in such a test lattice would be
of the order of εla ≈ 3ℏ2/2ma2 ≈ 0.3 eV, quite small with
respect to the definition value 1 eV of one electron or unit
charge ion in a ceramic electrolyte of a cell operating with
1 V. To εla corresponds the zero point vibrational frequency
ν = 2εla/h, i.e. ν ≈ 2 × 1014 s−1; with such a frequency the
wavelength λ∥ = L corresponds to a total charge wave due to
Lν/v∥ electrons. So one finds ≈ 102 electrons, whose mean
mutual distance is thus 10 nm about. Eventually the critical
temperature compatible with the arising of the superconduct-
ing state given by the eq (26) is 0.02 K with v⊥ = 0 or even
smaller for v⊥ , 0. Compare now this result obtained via the
eq (26) with that obtainable directly through the eq (25)

v2
T =

(
r2
⊥

cos2φ
+ (1 − 2r⊥)tan2φ

)
v2
∥ .

Note that v2
T has a minimum as a function of r⊥. If φ = π/2

this minimum corresponds to rmin
⊥ = 1, to be rejected because

it would imply D§⊥ = D§ and D§∥ = 0. If instead φ , π/2,
then the minimum corresponds to rmin

⊥ = sin2φ, which yields
in turn v2

T = v2
∥ sin2φ; hence kBTc = mv2

T /2 yields

Tc =
m

2kB
v2
∥ sin2φ.

With v∥ = 1.5 × 108 cm/s the electron mass would yield
T = 6.2 × 106sin2φ K. Comparing with the previous result,
one infers that 10−8 >∼ sin2φ; so being sin2φ ≈ tan2φ with good
approximation, one also infers that the second position (28) is
verified with w such that Tv∥w/(Tcvc) is of the order of unity
for δl/L = 10−4, as in fact it has been anticipated in the previ-
ous subsection 4.3. Of course the actual values of these order
of magnitude estimates depend on the real microstructure of
the ceramic lattice; yet the aim of this short digression con-
cerning the electron is to emphasize that the typical properties
of the test material used for this simulation are consistent with
the known results of electron superconduction theory. The
simulation can be repeated for the proton, considering that
the proton velocity v∥ is now me/mprot times lower than be-
fore; so, despite m is mprot/me larger than before, mv2

∥ of the
eq (26) predicts a critical T smaller than that of the electron
by a factor me/mprot for r⊥v⊥ ≪ v∥δl/L.

5.3 Grain bulk and grain boundary superconductivity

As concerns the chance of superconduction in the grain bulk
with several disconnected dislocations at the grain bound-
aries, it is necessary to recall the Josephson effect concur-
rently with the presence of tangled dislocations and pile up of
dislocations. The former concerns the transfer of supercon-
ducting Cooper pairs existing at the Fermi energy via quan-
tum tunnelling through a thin thickness of insulating material:
it is known that the tunnelling current of a quasi-electron oc-
curs when the terminals of two dislocations, e.g. piled up or
tangled, are so close to allow the Josephson Effect. If some
terminals are a few nanometers apart, then superconduction
current is still allowed to occur even though the dislocation
break produces a thin layer of ceramic insulator. In other
words, the terminal of the superconducting channel of one
dislocation transfers the pair to the doorway of another dislo-
cation and so on: in this way a superconduction current can
tunnel across the whole grain. An analogous idea holds also
at the grain boundary. Of course the chance that this event
be actually allowed to occur has statistical basis: due to the
high number of dislocations that migrate and accumulate at
the grain boundaries after displacement along favourable slip
planes of the bulk crystal lattice, the condition favourable to
the Josephson Effect is effectively likely to occur. As the
same holds also within the grain bulk between two differ-
ent dislocations close enough each other, e.g. because they
glide preferentially along equal slip planes and pile up on
bulk precipitates, the conclusion is that the pair tunnelling al-
lows macroscopic superconduction even without necessarily
requiring the classical case of a unique dislocation spanning
throughout a single crystal electrolyte.

6 Discussion

It is commonly taken for granted that the way of working of
the fuel cells needs inevitably high temperatures, of the or-
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der of some hundreds C degrees, so as to promote adequately
the ion conductivity; great efforts are addressed to reduce as
much as possible this temperature, down to a few hundreds
C degrees, yet still preserving an acceptable efficiency of the
cell compatibly with the standard mechanisms of ion conduc-
tion.

The present paper proposes however a new approach to
the problem of the electric conduction in solid oxide elec-
trolytes: reducing the operating temperature of SOFCs down
to a few K degrees, in order to promote a superconducting
mechanism.

Today the superconductivity is tacitly conceived as that
of the electrons only; the present results suggest however that
at sufficiently low temperatures, even the low atomic num-
ber ions are allowed to provide an interaction free conduc-
tion thanks to their chance of tunnelling in the stretched zone
of edge dislocations. Note that although the electron and
ion superconduction occur at different temperatures, as it is
reasonable to expect, the nature of the lattice cores appears
able to filter either kind of mechanism during the working
conditions of the cell for the reasons previously remarked:
for instance positively charged cores hinder the electron su-
perconduction by attractive Coulomb effect, while promoting
instead the proton superconduction via the repulsive effect
that keeps the proton trajectory in the middle of the stretched
channel. The results obtained in this paper support reason-
ably the chance that, at least in principle, this idea is practica-
ble. Of course other problems, like for instance the catalysis
at the electrodes, should be carefully investigated at the very
low temperatures necessary to allow the ion superconduction.
However this side problem, although crucial, has been delib-
erately waived in the present paper: both because of its differ-
ent physicochemical nature and because the foremost aim of
the model was (i) to assess the chance of exploiting the super-
conductivity not only for the electric energy transmission but
also for the electric energy production and (ii) to bring this
intriguing topic of the quantum physics deeply into the heart
of the fuel cell science.

Moreover other typical topics like the penetration depth of
the magnetic field and the critical current have been skipped
because well known; the purpose of the paper was not that of
elaborating a new theory of superconductivity, but to ascer-
tain the feasibility of an ion transport mechanism able to by-
pass the difficulties of the high temperature conductivity. Two
considerations deserve attention in this respect. The first one
concerns the requirement u∥ ·∇n = 0 characterizing the super-
conductive state with D→ ∞. At first sight one could naively
think that the eq (4) should exclude a divergent diffusion coef-
ficient. Yet the implications of a mathematical formula cannot
be rejected without a good physical reason. Actually neither
the chain of equations (6) nor the eq (19) exclude D → ∞:
the former because it is enough to put the lattice-charge inter-
action force F → 0 whatever v and kBT might be, the latter
provided putting concurrently ∇ϕ = −Ee → 0. The prod-

uct∞× 0 is in principle not necessarily unphysical despite D
diverges, because this divergence is always counterbalanced
by some force or energy or concentration gradient concur-
rently tending to zero; rather it is a matter of experience to
verify whether the finite outcomes of these products, see for
instance the eqs (29), have experimental significance or not.
In this respect, however, this worth is recognized since the
times of Onnes (1913). In fact, the electron superconductiv-
ity is nothing else but a frictionless motion of charges, some-
how similar to the superfluidity. Coherently, both equations
(29) and (10) suggest simply a free charge carrier moving
without need of concentration gradient or applied potential
difference or electric field or force F of any physical nature.
The essence of the divergent diffusion coefficient is thus the
lack of interaction between lattice and charge carrier. In this
sense the Nernst-Einstein equation is fully compatible even
with De f f → ∞: in fact is hidden in this limit, and thus in the
eq (4) itself, the concept of superconductivity, regarded as a
peculiar charge transport mechanism that lacks their interac-
tions and thus does not need any activation energy or driving
force.

These results disclose new horizons of research as con-
cerns the solid oxides candidate for fuel cell electrolytes. The
choice of the best oxides and their heat treatments is today
conceived having in mind the best high temperature conduc-
tivity only. But besides this practical consideration, nothing
hinders in principle exploring the chance of a fuel cell re-
alized with MIEC solid oxides designed to optimize the ion
superconducting mechanism. The prospective is that MIECS
with poor ionic conductivity at some hundreds degrees could
have excellent superconductors at low temperatures. It seems
rational to expect that the optimization of the electrolytes for
a next generation of fuel cells compels the future research not
to lower as much as possible the high temperatures but to rise
as much as possible the low temperatures.

7 Conclusion

The model has prospected the possibility of SOFCs work-
ing at very low temperatures, where superconduction effects
are allowed to occur. Besides the attracting importance of
the basic and technological research aimed to investigate and
develop high temperature superconductors for the transport
of electricity, the present results open new scenarios as they
concern the production itself of electric power via zero re-
sistivity electrolytes. Of course the chance of efficient fuel
cells operating according to these expectations must be veri-
fied by the experimental activity; if the theoretical previsions
are confirmed at least in the frame of a preliminary laboratory
activity, as it is legitimate to guess since no ad hoc hypothe-
sis has been introduced in the model, then the race towards
high Tc electrolytes could allow new goals of scientific and
applicative interest.
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Weinberg Angle Derivation from Discrete Subgroups of SU(2) and All That

Franklin Potter
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The Weinberg angle θW of the Standard Model of leptons and quarks is derived from
specific discrete (i.e., finite) subgroups of the electroweak local gauge group SU(2)L ×
U(1)Y . In addition, the cancellation of the triangle anomaly is achieved even when there
are four quark families and three lepton families!

1 Introduction

The weak mixing angle θW , or Weinberg angle, in the suc-
cessful theory called the Standard Model (SM) of leptons and
quarks is considered traditionally as an unfixed parameter of
the Weinberg-Salam theory of the electroweak interaction. Its
value of ∼30◦ is currently determined empirically.

I provide the only first principles derivation of the Wein-
berg angle as a further application of the discrete symme-
try subgroups of SU(2) that I used for the first principles
derivation of the mixing angles for the neutrino mixing matrix
PMNS [1] in 2013 and of the CKM quark mixing matrix [2]
in 2014. An important reminder here is that these derivations
are all done within the realm of the SM and no alternative
theoretical framework beyond the SM is required.

2 Brief review of neutrino mixing angle derivation

The electroweak component of the SM is based upon the local
gauge group SU(2)L x U(1)Y acting on the two SU(2) weak
isospin flavor states ± 1

2 in each lepton family and each quark
family. Its chiral action, i.e., involving LH doublets and RH
singlets, is dictated by the mathematics of quaternions act-
ing on quaternions, verified by the empirically determined
maximum parity violation. Consequently, instead of using
SU(2) generators acting on SU(2) weak isospin states, one
can equivalently use the group of unit quaternions defined by
q = a + bi + cj + dk, for a, b, c, d real and i2 = j2 = k2 =

ijk = −1. The three familiar Pauli SU(2) generators σx, σy,
σz, when multiplied by i, become the three generators k, j, i,
respectively, for this unit quaternion group.

In a series of articles [3–5] I assigned three discrete (i.e.,
finite) quaternion subgroups (i.e., SU(2) subgroups), specif-
ically 2T, 2O, 2I, to the three lepton families, one to each
family (νe, e), (νµ, µ), (ντ, τ). These three groups permeate
all areas of mathematics and have many alternative labelings,
such as [3,3,2], [4,3,2], [5,3,2], respectively. Each of these
three subgroups has three generators, Rs = iUs (s = 1,2,3),
two of which match the two SU(2) generators, U1 = j and U3
= i, but the third generator U2 for each subgroup is not k [6].
This difference between the third generators and k is the true
source [1] of the neutrino mixing angles. All three families
must act together to equal the third SU(2) generator k.

The three generators U2 are given in Table 1, with ϕ =
(
√

5 + 1)/2, the golden ratio. The three generators must add

Table 1: Lepton Family Quaternion Generators U2

Fam. Grp. Generator Factor Angle◦

νe, e 332 − 1
2 i − 1

2 j + 1√
2

k −0.2645 105.337

νµ, µ 432 − 1
2 i − 1√

2
j + 1

2 k 0.8012 36.755

ντ, τ 532 − 1
2 i − ϕ2 j + ϕ

−1

2 k −0.5367 122.459

to make the generator k, so there are three equations for three
unknown factors. The arccosines of these three normalized
factors determine the quaternion angles 105.337◦, 36.755◦,
and 122.459◦. Quaternion angles are double angle rotations,
so one uses their half-values for rotations in R3, as assumed
for the PMNS matrix. Then subtract one from the other to
produce the three neutrino mixing angles θ12 = 34.29◦, θ23 =

−42.85◦, and θ13 = −8.56◦. These calculated angles match
their empirical values θ12=± 34.47◦, θ23=± (38.39◦−45.81◦),
and θ13 = ±8.5◦ extremely well.

Thus, the three mixing angles originate from the three
U2 generators acting together to become the k generator of
SU(2). Note that I assume the charged lepton mixing matrix
is the identity. Therefore, any discrepancy between these de-
rived angles and the empirical angles could be an indication
that the charged lepton mixing matrix has off-diagonal terms.

The quark mixing matrix CKM is worked out the same
way [2] by using four discrete rotational groups in R4, [3,3,3],
[4,3,3], [3,4,3], [5,3,3], the [5,3,3] being equivalent to 2I× 2I.
The mismatch of the third generators again requires the lin-
ear superposition of these four quark groups. The 3× 3 CKM
matrix is a submatrix of a 4× 4 matrix. However, the mis-
match of 3 lepton families to 4 quark families indicates a tri-
angle anomaly problem resolved favorably in a later section
by applying the results of this section.

3 Derivation of the Weinberg angle

The four electroweak generators of the SM local gauge group
SU(2)L × U(1)Y are typically labeled W+, W0, W−, and B0,
but they can be defined equivalently as the quaternion gener-
ators i, j, k and b. But we do not require the full SU(2) to act
upon the flavor states ± 1

2 for discrete rotations in the unitary
plane C2 because the lepton and quark families represent spe-
cific discrete binary rotational symmetry subgroups of SU(2).
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That is, we require just a discrete subgroup of SU(2)L ×
U(1)Y . In fact, one might suspect that the 2I subgroup would
be able to perform all the discrete symmetry rotations, but
2I omits some of the rotations in 2O. Instead, one finds that
2I× 2I′ works, where 2I′ provides the “reciprocal” rotations,
i.e., the third generator U2 of 2I becomes the third generator
U′2 for 2I′ by interchanging ϕ and ϕ−1:

U2 = −
1
2

i − ϕ
2

j +
ϕ−1

2
k, U′2 = −

1
2

i − ϕ
−1

2
j +
ϕ

2
k. (1)

Consider the three SU(2) generators i, j, k and their three
simplest products: i× i = −1, j× j = −1, and k× k = −1. Now
compare the three corresponding 2I× 2I′ discrete generator
products: i× i = −1, j× j = −1, and

U2 U′2 = −0.75 + 0.559i − 0.25 j + 0.25k, (2)

definitely not equal to −1. The reverse product U′2U2 just
interchanges signs on the i, j, k, terms.

One needs to multiply this product quaternion U2U′2 by

P = 0.75 + 0.559i − 0.25 j + 0.25k (3)

to make the result −1. Again, P′ has opposite signs for the i,
j, k, terms only.

Given any unit quaternion q = cos θ + n̂ sin θ, its power
can be written as qα = cosαθ + n̂ sinαθ. Consider P to be a
squared quaternion P = cos 2θ + n̂ sin 2θ because we have the
product of two quaternions U2 and U′2. Therefore, the quater-
nion square root of P has cos θ =

√
0.75 = 0.866, rotating

the U2 (and U′2) in the unitary plane C2 by the quaternion an-
gle of 30◦ so that each third generator becomes k. Thus the
Weinberg angle, i.e., the weak mixing angle,

θW = 30◦. (4)

Therefore, the Weinberg angle derives from the mismatch of
the third generator of 2I× 2I′ to the SU(2) third generator k.

The empirical value of θW ranges from 28.1◦ to 28.8◦,
values less than the predicted 30◦. The reason for the discrep-
ancy is unknown (but see [7]), although one can surmise ei-
ther (1) that in determining the Weinberg angle from the em-
pirical data perhaps some contributions have been left out, or
(2) the calculated θW is its value at the Planck scale at which
the internal symmetry space and spacetime could be discrete
instead of continuous.

4 Anomaly cancellation

My introduction of a fourth quark family raises immediate
suspicions regarding the cancellation of the triangle anomaly.
The traditional cancellation procedure of matching each lep-
ton family with a quark family “generation by generation”
does produce the triangle anomaly cancellation by summing
the appropriate U(1)Y , SU(2)L, and SU(3)C generators, pro-
ducing the “generation” cancellation.

However, we now know that this “generation” conjecture
is incorrect, because the derivation of the lepton and quark
mixing matrices from the U2 generators of the discrete binary
subgroups of SU(2) above dictates that the 3 lepton families
act as one collective lepton family for SU(2)L × U(1)Y and
that the 4 quark families act as one collective quark family.

We have now created an effective single “generation” with
one effective quark family matching one effective lepton fam-
ily, so there is now the previously heralded “generation can-
cellation” of the triangle anomalies with the traditional sum-
mation of generator eigenvalues [8]. In the SU(3) representa-
tions the quark and antiquark contributions cancel. Therefore,
there are no SU(3)× SU(3)×U(1), SU(2)×SU(2)×U(1),
U(1)×U(1)×U(1), or mixed U(1)-gravitational anomalies
remaining.

There was always the suspicion that the traditional “gen-
eration” labeling was fortuitous because there was no spe-
cific reason for dictating the particular pairings of the lepton
families to the quark families within the SM. Now, with the
leptons and quarks representing the specific discrete binary
rotation groups I have listed, a better understanding of how
the families are related within the SM is possible.

5 Summary

The Weinberg angle derives ultimately from the third genera-
tor mismatch of specific discrete subgroups of SU(2) with the
SU(2) quaternion generator k. The triangle anomaly cancel-
lation occurs because 3 lepton families act collectively to can-
cel the contribution from 4 quark families acting collectively.
Consequently, the SM may be an excellent approximation to
the behavior of Nature down to the Planck scale.
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Can the Emdrive Be Explained by Quantised Inertia?
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It has been shown that cone-shaped cavities with microwaves resonating within them

move slightly towards their narrow ends (the emdrive). There is no accepted explanation

for this. Here it is shown that this effect can be predicted by assuming that the inertial

mass of the photons in the cavity is caused by Unruh radiation whose wavelengths

must fit exactly within the cavity, using a theory already applied with some success to

astrophysical anomalies where the cavity is the Hubble volume. For the emdrive this

means that more Unruh waves are “allowed” at the wide end, leading to a greater inertial

mass for the photons there. The gain of inertia of the photons when they move from

the narrow to the wide end, and the conservation of momentum, predicts that the cavity

must then move towards the narrow end, as observed. This model predicts the available

observations quite well, although the observational uncertainties are not well known.

1 Introduction

It was first demonstrated by Shawyer (2008) that when mi-

crowaves are made to resonate within a truncated cone-

shaped cavity a small, unexplained acceleration occurs to-

wards the narrow end. In one example when 850 W of power

was put into such a cavity with end diameters of 16 and 12 cm,

and which had a Q value (dissipation constant) of 5900 the

thrust measured was 16 mN towards the narrow end. The

results from two of Shawyer’s experiments are shown in Ta-

ble 1 (rows 1-2). There is no explanation for this behaviour

in standard physics, and it also violates the conservation of

momentum, and Shawyer’s own attempt to explain it using

special relativity is not convincing, as this theory also should

obey the conservation of momentum (Mullins, 2006).

Nethertheless, this anomaly was confirmed by a Chinese

team (Juan et al., 2012) who put 80-2500 W of power into

a similar cavity at a frequency of 2.45 GHz and measured a

thrust of between 70 mN and 720 mN. Their result cannot

however be fully utilised for testing here since they did not

specify their cavity’s Q factor or its geometry.

A further positive result was recently obtained by a NASA

team (Brady et al., 2014) and three of their results are also

shown in Table 1 (rows 3 to 5). They did provide details of

their Q factor and some details of their cavity’s geometry. The

experiment has not yet been tried in a vacuum, but the abrupt

termination of the anomaly when the power was switched off

has been taken to show the phenomenon is not due to moving

air.

McCulloch (2007) has proposed a new model for inertial

mass that assumes that the inertia of an object is due to the

Unruh radiation it sees when it accelerates, radiation which is

also subject to a Hubble-scale Casimir effect. In this model

only Unruh wavelengths that fit exactly into twice the Hubble

diameter are allowed, so that a greater proportion of the waves

are disallowed for low accelerations (which see longer Unruh

waves) leading to a gradual new loss of inertia as accelera-

tions become tiny, of order 10−10 m/s2. This model, called

MiHsC (Modified inertia by a Hubble-scale Casimir effect)

modifies the standard inertial mass (m) as follows:

mi = m

(

1 −
2c2

|a|Θ

)

= m

(

1 −
λ

4Θ

)

(1)

where c is the speed of light, Θ is twice the Hubble distance,

a is the magnitude of the relative acceleration of the object

relative to surrounding matter and λ is the wavelength of the

Unruh radiation it sees. Eq. 1 predicts that for terrestrial ac-

celerations (eg: 9.8 m/s2) the second term in the bracket is

tiny and standard inertia is recovered, but in low acceleration

environments, for example at the edges of galaxies or in deep

space (when a is small and λ is large) the second term in the

bracket becomes larger and the inertial mass decreases in a

new way.

In this way, MiHsC can explain galaxy rotation without

the need for dark matter (McCulloch, 2012) and cosmic ac-

celeration without the need for dark energy (McCulloch,

2007, 2010), but astrophysical tests like these can be ambigu-

ous, since more flexible theories like dark matter can be fitted

to the data, and so a controlled laboratory test like the Em-

Drive is useful.

Further, the difficulty of demonstrating MiHsC on Earth

is the huge size of Θ in Eq. 1 which makes the effect very

small unless the acceleration is tiny, as in deep space. One

way to make the effect more obvious is to reduce the distance

to the horizon Θ (as suggested by McCulloch, 2008) and this

is what the emdrive may be doing since the radiation within

it is accelerating so fast that the Unruh waves it sees will be

short enough to be limited by the cavity walls in a MiHsC-like

manner.

2 Method

The setup is a radio-frequency resonant cavity shaped like a

truncated cone, with one round end then larger than the other.

When the electromagnetic field is input in the cavity the mi-

crowaves resonate and we can consider the conservation of
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momentum for the light

∂(mv)

∂t
= 0 = m

∂v

∂t
+ v
∂m

∂t
. (2)

Interpreting the first term on the right hand side as the

force (mass times acceleration) that must be exerted on the

light to conserve its momentum, leads to

F = −c
∂m

∂t
. (3)

So that

F = −c
∂m

∂x

∂x

∂t
= −c2 ∂m

∂x
. (4)

Normally, of course, photons are not supposed to have

mass in this way, but supposing we consider this? We assume

the inertial mass of the microwave photons (whatever its ab-

solute value) is affected by MiHsC, but instead of the horizon

being the far-off and spherically symmetric Hubble horizon

as before, the horizon is now made by the asymmetric walls

of the cavity. This is possible because the photons involved

are travelling at the speed of light and are bouncing very fast

between the two ends of seperation s and their acceleration

(a ∼ v2/s) is so large that the Unruh waves that are assumed

to produce their inertial mass are about the same size as the

cavity, so they can be affected by it, unlike the Unruh waves

for a terrestrial acceleration which would be far to long to be

affected by the cavity. This dependence of the inertial mass

on the width of the cavity means that the inertial mass is cor-

rected by a MiHsC-like factor (Eq. 1). Using Eq. 4, the force

is modified as follows

F = −c2
(mbigend − msmallend

l

)

(5)

where l is the axial length of the cavity. Now using eq. 1

for the inertial masses and replacing the Hubble scale with

the cavity width (W) assuming for simplicity the waves only

have to fit laterally, and with subscripts to refer to the big and

small ends, we get

F =
−c2m

l

(

λ

4Wbig

−
λ

4Wsmall

)

(6)

where λ is the wavelength of the Unruh radiation seen by the

photons because they are being reflected back and forth by

the cavityλ = 8c2/a = 8c2/(2c/(l/c)) = 4l so that

F = −4c2m

(

1

4Wbig

−
1

4Wsmall

)

. (7)

Using E = mc2 and E =
∫

Pdt where P is the power,

gives

F = −

∫

Pdt

(

1

Wbig

−
1

Wsmall

)

. (8)

Table 1: Summary of EmDrive experimental data published so far,

and the predicted (Eq. 10) and observed anomalous thrust.

Expt. P Q l wbig/wsmall FPred FObs

W /1000 m metres mN mN

S1 850 5.9 0.156 0.16/0.1275 4.2 16

S2 1000 45 0.345 0.28/0.1289 216 80-214

B1 16.9 7.32 0.332 0.397/0.244 0.22 0.091

B2 16.7 18.1 0.332 0.397/0.244 0.53 0.05

B3 2.6 22 0.332 0.397/0.244 0.1 0.055

Integrating P over one cycle (one trip of the photons from

end to end) gives Pt where t is the time taken for the trip,

which is l/c, so

F =
−Pl

c

(

1

Wbig

−
1

Wsmall

)

. (9)

This is for one trip along the cavity, but the Q factor quan-

tifies how many trips there are before the power dissipates so

we need to multiply by Q

F =
−PQl

c

(

1

Wbig

−
1

Wsmall

)

(10)

where P is the power input as microwaves (Watts), Q is the

Q factor measured for the cavity, l is the length of the cavity

and Wbig and Wsmall are the diameters of the wide and narrow

ends of the cavity. MiHsC then predicts that a new force will

appear acting towards the narrow end of the cavity.

3 Results

We can now try this formula on the results from Shawyer

(2008) (from section 6 of their paper). This EmDrive had

a cavity length of 15.6 cm, end diameters of 16 cm and 12.75

cm, a power input of 850 W and a Q factor of 5900, so

F =
850 × 5900 × 0.156

3 × 108

(

1

0.16
−

1

0.1275

)

= 4.2 mN. (11)

This predicts an anomalous force of 4.2 mN towards the

narrow end, which is about a third of the 16 mN towards the

narrow end measured by Shawyer (2008).

We can also try values for the demonstrator engine from

section 7 of Shawyer (2008) which had a cavity length of 32.5

cm, end diameters of 28 cm and 12.89 cm, a power input of

1000 W and a Q factor of 45000. So we have

F =
1000 × 45000 × 0.325

3 × 108

(

1

0.28
−

1

0.1289

)

= 216 mN.

(12)

This agrees with the observed anomalous force which was

between 80 and 214 mN/kW (2008) (if we also take into ac-

count the uncertainties in the model due to the simplified 1-

dimensional approach used).
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Table 1 is a summary of various results from Shawyer

(2008) in rows 1 and 2 and Brady et al. (2014) (see the Ta-

ble on their page 18) in rows 3, 4 and 5. The Juan et al.

(2012) data is excluded because they did not specify their Q

factor or the exact geometry in their paper. Column 1 shows

the experiment (S for Shawyer (2008) and B for Brady et al.

(2014)). Column 2 shows the input power (in Watts). Column

3 shows the Q factor (dimensionless, divided by 1000). Col-

umn 4 shows the axial length of the cavity. Column 5 shows

the width of the big and small ends (metres). Column 6 shows

the thrust predicted by MiHsC and column 7 shows the thrust

observed (both in milli-Newtons).

It is unclear what the error bars on the observations are,

but they are likely to be wide, looking for example at the

range of values for the case S2. MiHsC predicts the correct

order of magnitude for cases S1, S2, B1 and B3 which is in-

teresting given the simplicity of the model and its lack of ad-

justable parameters. The anomaly is case B2 where MiHsC

overpredicts by a factor of ten. This case is anomalous in

other ways since the Q factor in B2 was more than doubled

from that in B1 but the output thrust almost halved.

More data is needed for testing, and a more accurate mod-

elling of the effects of MiHsC will be needed. This analysis

for simplicity, assumed the microwaves only travelled along

the axis and the Unruh waves only had to fit into the lateral

“width” dimension, but in fact the microwaves will bounce

around in 3-dimensions so a 3-d model will be needed. This

approximation would become a problem for a pointed cone

shape where the second term in Eq. 10 would involve a divi-

sion by zero, but it is a better approximation for a truncated

cone, as in these experiments.

So far, it has been assumed that as the acceleration re-

duces, the number of allowed Unruh waves decreases linearly,

but even a small change of frequency can make the difference

between the Unruh waves fitting within a cavity, and not fit-

ting and this could explain the variation in the observations,

particularly in case B2.

4 Discussion

If confirmed, Equation 10 suggests that the anomalous force

can be increased by increasing the power input, or the qual-

ity factor of the cavity (the number of times the microwaves

bounce between the two ends). It could also be increased by

boosting the length of the cavity and narrowing it. The effect

could be increased by increasing the degree of taper, for ex-

ample using a pointed cone. The speed of light on the denom-

inator of Eq. 10 implies that if the value of c was decreased

by use of a dielectric the effect would be enhanced (such an

effect has recently been seen).

This proposal makes a number of controversial assump-

tions. For example that the inertial mass of photons is finite

and varies in line with MiHsC. It is difficult to provide more

backing for this beyond the conclusion that it is supported by

the partial success of MiHsC in predicting the EmDrive with

a very simple formula.

5 Conclusions

Three independent experiments have shown that when mi-

crowaves resonate within an asymmetric cavity an anomalous

force is generated pushing the cavity towards its narrow end.

This force can be predicted to some extent using a new

model for inertia that has been applied quite successfully to

predict galaxy rotation and cosmic acceleration, and which

assumes in this case that the inertial mass of photons is caused

by Unruh radiation and these have to fit exactly between the

cavity walls so that the inertial mass is greater at the wide end

of the cavity. To conserve momentum the cavity is predicted

to move towards its narrow end, as seen.

This model predicts the published EmDrive results fairly

well with a very simple formula and suggests that the thrust

can be increased by increasing the input power, Q factor, or

by increasing the degree of taper in the cavity or using a di-

electric.
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Structures of Superdeforemed States in Nuclei with A ∼ 60

Using Two-Parameter Collective Model
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Superdeformed (SD) states in nuclei in mass region A ∼ 60− 90 are investigated within

the framework of two-parameter formula of Bohr and Motelson model. The concept of

γ-ray transition energy Eγ over spin (EGOS) is used to assign the first order estimation

of the bandhead spin. The model parameters and the true spin of bandhead have been

obtained by adopted best fit method in order to obtain a minimum root-mean-square

deviation between the calculated and the experimental γ-ray transition energies. The

transition energies Eγ and the dynamical moment of inertia J(2) for data set include thir-

teen SD bands in even-even nuclei are calculated. The results agree with experimental

data well. The behavior of J(2) as a function of rotational frequency ~ω are discussed.

By using the calculated bandhead moment of inertia, the predicted quadrupole moments

of the studied yrast SD bands are calculated and agree well with the observed data.

1 Introduction

Since the initial discovery of a superdeformed (SD) rotational

band in 152Dy [1], several SD bands were identified in differ-

ent mass region [2]. The SD 60, 80 and 90 regions are of

particular interest because they showed exciting new aspects

of their large rotational frequency and they present experi-

mental difficulties due to the increased doppler broading of

γ-ray peaks and the decreased detection efficiency at large γ-

ray transition energies. In A ∼ 60, the negative-parity SD1 in
62Zn was the first SD band [3], it assigned to configurations

with two ig9/2 protons (π) and three ig9/2 neutrons (ν). It is

formed in the Z = 30 deformed gap i.e with two f7/2 proton

holes [4,5]. The SD bands in A ∼ 60 region are characterized

by very large transition energies reaching 3.2 MeV or more.

The yrast SD band in Sr was interpreted [6, 7] as having the

ν 52π51 configuration, i.e the excitation of two N = 5, h11/2

intruder neutrons, which corresponding to the N = 44 shell

gap with a large deformation, and a single proton excitation

of the N = 5, h11/2 intruder orbital. The predicted deforma-

tion for this band was β2 ≃ 0.55 [6]. A systematic analysis

on S r nuclei shows that the quadrupole moment of the SD

band in 82Sr is the largest among these Sr isotopes. This may

be an indication of the important role of N = 44 SD shell

gap. For the region A ∼ 90 SD states with large deformation

β2 ≃ 0.6 in 88Mo were identified [8]. These findings were

in agreement with cranked Woods-Saxon-Strutinsky calcula-

tions, which predicted Z = 42 and Z = 43 to be favored

particle numbers at SD shapes in A ∼ 90 nuclei [8, 9].

As it is well known, the experimental data on SD bands

consist only in a series of γ-ray transition energies linking

levels of unknown spins. Spin assignment is one of the most

difficult and unsolved problem in the study of superdeforma-

tion.This is due to the difficulty of establishing the deexci-

tation of a SD band into known yrast states of normal de-

formed band. Several approaches to assign the spins of SD

bands were proposed [10–16]. For all such approaches an ex-

trapolation fitting procedures was used. The purpose of the

present paper is to predict the spins of the SD nuclear states

in the A ∼ 60 − 90 region and to study their properties by

using the one-parameter and two-parameters Bohr-Mottelson

model. The theoretical formalism is presented in section 2.

The theoretical results and a comparison with experimental

data are discussed in section 3. Finally a brief conclusion is

given in section 4.

2 The formalism

For the strongly deformed nuclei, the collective excitations

exhibit a spectrum of rotational character. In even-even nu-

clei, the spectrum is given by:

E(I) = A [I(I + 1)] (1)

where A is the inertial parameter A = ~2/2J, with J denot-

ing the effective moment of inertia, which is proportional to

the square of the nuclear deformation, and expected to vary

slowly with the mass number A. The γ-ray transition energies

with the band are given by:

Eγ(I) = E(I) − E(I − 2)

= 4A
(

I − 1
2

)

.
(2)

It is interesting to discuss the energy levels by plotting the

ratio Eγ(I) to spin (I− 1
2
)(EGOS)(E−Gamma Over Spin) [17]

against spin. Therefore, the EGOS for rotational formula (2)

can be written as:

EGOS =
Eγ(I)
(

I − 1
2

) = 4A. (3)

Even in a first note on deformed nuclei, Bohr and Mottel-

son [18] remarked that the simple rotational formula equation

(1) gives deviations from experimental data. They pointed out
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Table 1: The calculated E Gamma Over Spin (EGOS) for 62Zn(SD1) compared to the experimental ones at three bandhead spins I0, I0 ± 2

using the one-parameter formula.

I0 = 14.5 I0 = 16.5 I0 = 18.5

I(~) EGOS (keV/~) EGOS (keV/~) EGOS (keV/~)

exp. cal. exp. cal. exp. cal.

16.5 124.562 124.560

18.5 123.055 124.560 110.722 110.720

20.5 122.000 124.560 110.750 110.700 99.650 99.648

22.5 122.272 124.560 110.909 110.720 100.681 99.648

24.5 122.458 124.560 112.083 110.720 101.666 99.648

26.5 124.461 124.560 113.038 110.720 103.461 99.648

28.5 115.571 110.720 104.964 99.648

30.5 107.866 99.648

Table 2: The calculated E Gamma Over Spin(EGOS) for 62Zn(S D1) compared to the experimental ones at three bandhead spins I0, I0 ± 2

using the two-parameter formula.

I0 = 18 I0 = 20 I0 = 22

I(~) EGOS (keV/~) EGOS (keV/~) EGOS (keV/~)

exp. cal. exp. cal. exp. cal.

20 102.205 101.692

22 103.023 102.901 92.697 92.477

24 103.829 104.124 94.255 94.143 84.808 84.607

26 105.490 105.599 95.686 95.957 86.862 86.759

28 106.872 107.304 97.818 97.919 88.727 88.978

30 109.694 109.221 99.627 100.019 91.186 91.280

32 102.730 102.287 93.301 93.678

34 96.597 96.180

that agreement was improved by adding to it a second term

(The Bohr-Mottelson two-term formula)

E(I) = A[I(I + 1)] + B[I(I + 1)]2. (4)

The new parameter B is almost negative and is 103 times

less than that value of A.

Eγ(I) = A(4I − 2) + B
[

2(4I − 2)
(

I2 − I + 1
)]

, (5)

and the EGOS can be written as:

EGOS =
Eγ(I)
(

I − 1
2

)

= 4A + 8B
(

I2 − I + 1
)

.

(6)

For SD bands, one can determine the first-order estima-

tion of the bandhead spin I0 using equation (2) by calculating

the ratio

Eγ(I0 + 4)

Eγ(I0 + 2)
=

E(I0 + 4) − E(I0 + 2)

E(I0 + 2) − E(I0)
=

2I0 + 7

2I0 + 3
. (7)

Let

Eγ1
= Eγ(I + 2), (8)

Eγ2
= Eγ(I + 4), (9)

J2
0 =

4

Eγ2
− Eγ1

, (10)

we can find the bandhead spin I0 as:

I0 =
1

2

[

Eγ1
J2

0 − 3
]

. (11)

Now, let us define the angular velocity ω as the derivative

of the energy E with respect to the spin I

ω = ~−1 dE

dÎ
; Î = [I(I + 1)]

1
2 . (12)

Two possible types of moments of inertia were suggested

by Bohr and Mottleson [18] reflecting two different aspects

of nuclear dynamics. The kinematic moment of inertia J(1)

and the dynamic moment of inertia J(2):

J(1) =
~

2

2

[

dE

d[I(I + 1)]

]−1

=
~

ω
[I(I + 1)]

1
2 , (13)
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Table 3: The bandhead spin proposition and the model parameters A and B adopted from the best fit procedures for the studied SD bands

in the A = 62 − 88 mass region. The experimental bandhead moment of inertia are also given.

Z N Nuclear and Eγ(I0 + 2→ I0) I0 A B

the SD band (keV) (~) (keV) (keV)

30 32 62Zn(SD1) 1993 20 20.997 2.313×10−3

38 42 80Sr(SD1) 1443 16 20.881 -1.873×10−4

80Sr(SD2) 1688 18 22.106 -1.041×10−3

80Sr(SD3) 1846 18 24.056 -4.466×10−4

80Sr(SD4) 2140 20 26.371 -1.705×10−3

38 44 82Sr(SD1) 1429.8 17 19.292 1.770 ×10−4

40 46 86Zr(SD1) 1518 23 14.732 5.881 ×10−4

86Zr(SD2) 1577 16 23.390 -1.354×10−3

86Zr(SD3) 1866 25 19.082 -1.146×10−3

86Zr(SD4) 1648 18 22.037 -1.021×10−3

42 46 88Mo(SD1) 1238.6 33 5.788 1.308×10−3

88Mo(SD2) 1458.6 33 7.676 1.219×10−3

88Mo(SD3) 1259.1 23 11.406 1.202×10−3

J(2) = ~2





















d2E

d
[

[I(I + 1)]
1
2

]2





















= ~
d[I(I + 1)]

1
2

dω
. (14)

J(1) is equal to the inverse of the slope of the curve of energy

E versus Î2 times (~2/2), while J(2) is related to the curvature

in the curve of E versus Î.

In terms of our two-parameter Bohr-Mottleson formula

equation (4), yield

~ω(I) = 2Î
(

A + 2BÎ2
)

, (15)

J(1)(I) = J0

(

1 +
2B

A
Î2

)−1

, (16)

J(2)(I) = J0

(

1 +
6B

A
Î2

)−1

, (17)

with

J0 =
~

2

2A
. (18)

Experimentally the dynamic moment of inertia J(2) is re-

lated to the difference ∆Eγ in consecutive transition energies

Eγ along a band in the following way

J(2) =
dI

dω
≃ ∆I

∆ω
≃ 2

∆
(

Eγ

2

) =
4

∆Eγ

=
4

Eγ(I + 2→ I) − Eγ(I → I − 2)

(19)

remembering that ω ≃ Eγ/2. Hence equal ∆Eγ’s imply equal

J(2)’s.

The quadrupole deformation parameter β2 are derived

from the electric quadrupole transition probabilities B(E2).

For this purpose, the well formula [18]

B(E2, I → I − 2) =
5

16π
Q2

0〈2020|00〉2, (20)

was first applied to extract the intrinsic quadrupole moment

Q0. Then the deformation β2 of the nuclear charge distribu-

tion was derived with the expression [19]

Q0 =
3
√

5π
ZR2β2(1 + 0.36β2) × 10−2eb (21)

where R = 1.2 A
1
3 fm, and Z is the number of protons and A

is the number of nucleons.

If X represents the ratio between the major to minor axis

of an ellipsoid, then X can be deduced from Q by using the

following formula [19]

Q =
2

5
ZR2 X2 − 1

X
2
3

× 10−2eb. (22)

The bandhead moment of inertia J0 is related to the

quadrupole deformation β2 by the Grodzins formula [20]

J0 = c(Z)A
5
3 β2

2. (23)

c(Z) describes the calibration of this relationship between J0

and β2.

3 Results and discussions

For each SD band, we used the EGOS concepts of the one-

parameter and the two-parameter models equations(3,6) to as-

sign the bandhead spin I0. Tables (1, 2) and Figure(1) presents
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Table 4: Level spin I, γ-ray transition energies Eγ and the dynamical moment of inertia J(2) calculated by using the optimized best parame-

ters listed in Table(3). The experimental γ-ray transition energies are also listed.

62Zn(SD1) 80Sr(SD3)

E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1 E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1

1993 22 1988.275 17.849 1846 20 1849.857 21.806

2215 24 2212.375 17.054 2039 22 2033.287 22.028

2440 26 2446.915 16.269 2216 24 2214.874 22.275

2690 28 2692.781 15.499 2391 26 2394.445 22.549

2939 30 2950.862 14.750 2572 28 2571.830 22.853

3236 32 3222.048 2747 30 2746.857

82Sr(SD1) 86Zr(SD1)

E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1 E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1

1429.8 19 1436.598 25.385 1518 15 1513.088 29.361

1596.6 21 1594.170 25.273 1646 17 1649.323 28.729

1757.7 23 1752.439 25.151 1785 19 1788.551 28.081

1918.6 25 1911.473 25.020 1929 21 1930.996 27.417

2076.6 27 2071.340 24.880 2077 23 2076.886 26.745

2228.6 29 2232.107 24.731 2228 25 2226.446 26.066

2380.7 31 2393.844 24.574 2383 27 2379.901 25.384

2544.6 33 2556.616 24.408 2540 29 2537.478 24.702

2736 35 2720.494 2696 31 2699.403

86Zr(SD3) 86Zr(SD4)

E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1 E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1

1866 27 1851.803 36.037 1648 20 1658.218 25.696

1959 29 1962.798 38.197 1811 22 1813.881 26.412

2062 31 2067.518 40.815 1967 24 1965.327 27.241

2155 33 2165.521 44.030 2123 26 2112.163 28.202

2244 35 2256.368 48.048 2273 28 2253.996 29.317

2343 37 2339.618 53.181 2403 30 2390.435 30.615

2429 39 2414.832 2491 32 2521.086

80Sr(SD4) 88Mo(SD2)

E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1 E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1

2140 22 2132.134 23.600 1458.6 35 1460.250 29.582

2292.1 24 2301.619 24.723 1595.6 37 1595.465 27.823

2459 26 2463.411 26.068 1740.1 39 1739.226 26.182

2621.1 28 2616.854 27.693 1894.9 41 1892.002 24.652

2763 30 2761.294 2054.2 43 2054.260 23.227

2224.3 45 2226.469

80Sr(SD2) 88Mo(SD1)

E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1 E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1

1688 20 1662.433 25.670 1238.6 35 1228.823 31.877

1821.1 22 1818.252 26.399 1342.1 37 1354.302 29.707

1950 24 1969.772 27.244 1480.7 39 1488.949 27.716

2090 26 2119.593 28.224 1633.5 41 1633.266 25.891

2256 28 2258.315 29.363 1795.5 43 1787.756 24.218

2364.1 30 2394.540 30.692 1962.2 45 1952.921 22.683

2573.9 32 2524.865 2133.4 47 2129.269 21.274

2306.6 49 2317.284
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Table 6: The calculated quuadrupole deformation parameter β2 and the major to minor axis ratio X in the yrast SD bands for even-even
62Zn, 80,82Sr, 86Zn and 88Mo nuclei. The experimental quadrupole moments Qexp are also given for comparison.

J0 C(Z) β2 Q X Qexp

(~2MeV−1) eb eb

62Zn(SD1) 23.835 0.1261 0.4410 2.6178 1.52 2.70
80Sr(SD1) 24.002 0.1106 0.3822 3.3438 1.44 3.42
82Sr(SD1) 25.917 0.1089 0.3920 3.4973 1.45 3.54
86Zr(SD1) 33.939 0.0996 0.4508 4.4512 1.54 4.60

88Mo(SD1) 86.385 0.1707 0.5390 5.8295 1.66 6.00

Table 5: Level spin I, γ-ray transition energies Eγ and the dynamical

moment of inertia J(2) calculated by using the optimized best param-

eters listed in Table(3). The experimental γ-ray transition energies

are also listed.

80Sr(SD1)

E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1

1443 18 1453.619 24.395

1611 20 1617.584 24.500

1775.1 22 1780.848 24.616

1948 24 1943.338 24.745

2118 26 2104.983 24.886

2284 28 2265.711 25.041

2440.9 30 2425.449 25.208

2595 32 2584.127 25.389

2743 34 2741.672 25.585

2680 36 2898.011

86Zr(SD3)

E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1

1577 18 1579.123 24.266

1730 20 1743.961 25.036

1890 22 1903.730 25.944

2056 24 2057.908 27.014

2227 26 2205.976 28.280

2392 28 2347.414 29.786

2514 30 2481.702 31.591

2562 32 2608.320 33.776

2708 34 2726.748

88Mo(SD3)

E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1

1259.1 25 1259.498 31.051

1382.6 27 1388.315 29.644

1522.9 29 1523.249 28.265

1669.4 31 1664.763 26.926

1817.0 33 1813.317 25.631

1976.0 35 1969.375 24.386

2134.0 37 2133.397 23.195

2297.0 39 2305.846

the numerical values and graph of EGOS at three different

values of bandhead spins I0, I0 ± 2 for the yrast SD band in
62Zn as example for our calculations. The model parameters

Fig. 1: Calculated (solid lines) and experimental (closed circles)

EGOS against spin I for these different values of bandhead spin

I0, I0 ± 2. (a) for first order estimation of I0 (b) for second order

estimation of I0.

A and B are then fitted to reproduce the observed transition

energies Eγ. The procedure is repeated for several trail val-

ues of A and B and recalculate the true spin of the lowest

observed level. In order to illustrate the sensitivity of the root

mean square deviation, we employed the common definition

of the chi squared

χ2 =
1

N

∑

i















E
exp
γ (Ii) − Ecal

γ (Ii)

∆E
exp
γ (Ii)















2

(24)

where N is the number of data points and ∆E
exp
γ is the ex-

perimental error in γ-ray transition energies. The experimen-

tal data are taken from the evaluated nuclear structure data

file ENSDF [2]. Table (3) lists the bandhead spin proposi-

tion and the adopted model parameters. Using the best fitted

parameters, the spins I, the γ-ray transition energies Eγ, the

rotational frequency ~ω and the dynamical moment of iner-

tia J(2) are calculated and listed in Table(4) compared to the

observed Eγ.

Figures (2, 3, 4) shows the experimental and calculated

dynamical moment of inertia J(2) as a function of rotational

frequency ~ω for the SD bands in our even-even nuclei. The

experimental and calculated values are denoted by solid cir-

cles and solid lines respectively.

By substituting the calculated bandhead moment of iner-

tia J0 in Grodzins formula equation (23), we adjusted the pro-
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Fig. 2: Shows the experimental and calculated dynamical moment

of inertia J(2) as a function of rotational frequency ~ω for even-even
62Zn(SD1) and 80Sr(SD1, SD2, SD3 and SD4). The experimental

and calculated values are denoted by solid circles and solid lines

respectively.

portional constant c(Z) for each yrast SD band and extracted

the deformation parameter β2 and then calculated the transi-

tion quadrupole moment Q which is related to the ratio X of

the major to minor axis. The results are given in Table (5).

4 Conclusion

The structure of the SD bands in the mass region A ∼ 60− 90

have been investigated in the framework of two-parameter

Bohr-Mottelson model. The bandhead spins have been ex-

tracted by using first order estimation method using the con-

cept of EGOS. The model parameters have been determined

by using a best fit method between the calculated and the ex-

perimental transition energies. The calculated transition en-

ergies Eγ, rotational frequency ~ω and dynamic moments of

inertia J(2) are all well agreement with the experimental ones.

This confirm that our model is a particular tool in studying

the SD rotational bands. The behavior of J(2) as a function of

~ω have been discussed. The quadrupole deformation param-

eters are also calculated.

Submitted on December 5, 2014 / Accepted on December 12, 2014

Fig. 3: Shows the experimental and calculated dynamical moment

of inertia J(2) as a function of rotational frequency ~ω for even-even
82Sr(SD1) and 86Zn(SD1, SD2, SD3 and SD4). The experimental

and calculated values are denoted by solid circles and solid lines

respectively.

Fig. 4: Shows the experimental and calculated dynamical moment

of inertia J(2) as a function of rotational frequency ~ω for even-even
88Mo(SD1, SD2 and SD3). The experimental and calculated values

are denoted by solid circles and solid lines respectively.
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In this paper on a unified basis in terms of mechanistic interpretation of J. Wheeler’s ge-

ometrodynamic concept the attempt to explain the nature of nuclear forces as the result

of the complex nucleons structure and to submit the model of the structure of atomic

nuclei is done. It is shown that the assumption of the existence of closed contours,

including electron and proton quarks leads to a conclusion about the existence of W,

Z-bosons and also the Higgs boson whose mass is calculated. Values of the coupling

constants in the strong and weak interactions are calculated, and it is shown that they

do not indicate the strength of the interaction, but indicate only the strength of bonds

between the elements of nucleon structure. The binding energy of the deuteron, triton

and alpha particles are defined. Dependence of the nucleon-nucleon interaction of the

distance is explained. The structural scheme of nuclei is proposed, the inevitability of

presence of envelopes in nuclei is proved, the formulas allowing to estimate the features

of nuclear structure, as well as correctly to assess the binding energy of nuclei and their

mass numbers are obtained. The results of calculations at the level of the model suggest

the possibility to use this model for the construction of an appropriate theory.

1 Introduction

At present there is no a complete theory of the nuclear struc-

ture, which would explain all properties of atomic nuclei. To

describe properties and behavior of atomic nuclei, different

models are used, each of which is based on various experi-

mental facts and explains some allocated properties of the nu-

cleus. One reason for this is that the analytical dependences

for the interaction forces between nucleons are until now not

derived.

In the quantum theory, the interaction between the mi-

croparticles is described as an exchange of specific quanta

(photons, pions, gluons, and vector bosons) associated with

these types of interactions. The dimensionless parameter de-

termining the relative strength of any interaction (an interac-

tion constant or coupling constant α) is assumed proportional

to the source interaction charge by analogy with the charge of

an electron in the electromagnetic interaction:

αe =
e2

~c
=

1

137
, (1)

where e is the electron charge (in the CGSE).

But the problem consists in that for both strong and weak

interactions the mechanism of interaction and, accordingly, a

coupling constant strongly depend on the interaction energy

(distance) and are determined experimentally.

In terms of the developed model based on the mechanistic

interpretation of J. Wheeler’s geometrodynamic concept [1],

such a variety of types and mechanisms of interaction seems

strange and unreasonable. In contrast to the quantum theory,

which states that microphenomena in no way can be under-

stood in the terms of our world scale, the mechanistic inter-

pretation of Wheeler’s idea above all assumes the existence

of common or similar natural laws, which are reproduced at

the different scale levels of matter that, in particular, allows

using of macroscopic analogies in relation to the objects of

microworld.

The proposed model of nuclear forces and nuclear struc-

ture as well as previous works [2–5] is based on the gen-

eral conservation laws and balances between main interac-

tions: electrical, magnetic, gravitational and inertial — with

no additional coefficients or any arbitrary parameters intro-

duced. Without using complicated mathematical apparatus,

this work is not physical and mathematical one, but rather

is the physical and logical model. However, application of

Wheeler’s ideas to this area of microphenomena gives the op-

portunity to clarify the cause and nature of nuclear forces and

give a reasonable scheme of nuclear structure, which is con-

firmed by some of the examples of successful calculations

made on the basis of the model.

2 Initial conditions

Recall that in this article, as well as in the earlier works, the

charges in accordance with Wheeler’s idea treated as singu-

lar points on the three-dimensional surface, connected by a

“worm-hole” or vortical current tube similar to the source-

drain principle, but in an additional dimension of space, con-

stituting a closed contour as a whole.

The closest analogy to this model, in the scale of our

world, could be the surface of ideal liquid, vortical structures

in it and their interactions which form both relief of the sur-

face and sub-surface structures (vortex threads and current

tubes).

In this model, there is no place for a charge as a specific

matter, it only manifests the degree of the nonequilibrium
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state of physical vacuum; it is proportional to the momen-

tum of physical vacuum in its motion along the contour of the

vortical current tube. Respectively, the spin is proportional to

the angular momentum of the physical vacuum with respect

to the longitudinal axis of the contour, while the magnetic in-

teraction of the conductors is analogous to the forces acting

among the current tubes.

In such a formulation the electric constant ε0 makes sense

the linear density of the vortex current tube

ε0 =
me

re

= 3.233 × 10−16 kg/m, (2)

and the value of inverse magnetic constant makes sense the

centrifugal force

1

µ0

= c2ε0 = 29.06 n, (3)

appearing by the rotation of a element of the vortex tube of

the mass me and of the radius re with the light velocity c; this

force is equivalent to the force acting between two elemen-

tary charges by the given radius, and electron charge makes

sense the momentum of the vortex current tube (counter) with

a mass of mec
2/3

0
and with velocity of c

2/3

0
× [m/sec], the en-

ergy of which is equal to the maximum energy of the electron

mec2, i.e.

e = mec
4/3

0
cos qw × [m/sec] = 1.603 × 10−19 kg m/sec, (4)

where c0 is the dimensionless light velocity c × [m/sec]−1, qw
is the Weinberg angle of mixing of the weak interaction, it

equals 28.7◦.

Vortex formations in the liquid can stay in two extreme

forms — the vortex at the surface along the X-axis (let it

be the analog of a fermion of the mass mx) and the vortical

current tube under the surface of the angular velocity v, the

radius r and the length ly along the Y-axis (let it be the ana-

log of a boson of the mass my). These structures oscillate

inside a real medium, passing through one another (forming

an oscillation of oscillations). Probably, fermions conserve

their boson counterpart with half spin, thereby determining

their magnetic and spin properties, but the spin is regener-

ated up to the whole value while fermions passing through

boson form. The vortex thread, twisting into a spiral, is able

to form subsequent structures (current tubes). The possibility

of reciprocal transformations of fermions and bosons forms

shows that a mass (an energy) can have two states and pass

from one form to another.

In paper [2] proceeding from conditions of conservation

of charge and constancy parameters µ0 and ε0, parameters of

the vortex thread my, v, r, for an arbitrary p+– e−-contour de-

fined as a proportion of the speed of light and electron radius

as:

my = (an)2, (5)

v =
c

1/3

0

(an)2
, (6)

r =
c

2/3

0

(an)4
, (7)

where n is quantum number, a is inverse fine structure con-

stant.

Wherein, referring to the constancy ε0 (linear density), it

is clear that the relative length of the tube current in the units

of re is equal boson mass my in the units of me, i.e.

ly = my = (an)2. (8)

In the model the particles themselves are a kind of a con-

tour of subsequent order, formed by the intersection of the X-

surface with the current tube, and they have their own quan-

tum numbers defining the zone of influence of these micropar-

ticles. In [3] determined that for the proton

np =

(

2c0

a5

)1/4

= 0.3338, (9)

for an electron ne =
√

np = 0.5777, and for the critical con-

tour, when r → re and v→ c, nc = c
1/6

0
/a = 0.189.

Hereinafter all the numerical values of the mass, size and

speed are given in dimensionless units: as a proportion of

mass of the electron me, its radius re and speed of light c.

It is important to note that the contour or vortex tube,

which the vortex thread fills helically, can be regarded as

completely “stretched”, i.e. elongated proportional to 1/r or,

on the contrary, extremely “compressed”, i.e. shortened pro-

portional to 1/r and filling all the vortex tube of radius re.

In the latter case its compressed length Lp = ly r is numeri-

cally equal to the energy of the contour boson mass in units

of mass-energy.

Indeed, since r = v2, then the above quantities values in

dimensionless units are in all cases identical:

Lp = ly r = my r = my v
2 =

c
2/3

0

(an)2
. (10)

It is obvious that an arbitrary boson mass in the units of

mass-energy will match of its own value my only in the case

of ultimate excitation of the vortex tube when r → re and

v→ c.

Here are some of the parameters for mentioned three par-

ticular contours. Substituting in the formula (7) and (8) the

parameters ne, np, and nc one can find the characteristic sizes

of the vortex tubes: for an electron vortex thread radius r =

0.0114, the length of the vortex thread ly = 6267, for the

proton r = 0.1024, ly = 2092, for a critical contour r = 1,

ly = 670.

As for the accepted scheme of the nucleons structure, in

[3] it is shown that the proton has a complex structure, which
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is revealed in process of transition to smaller scales with in-

creasing the interaction energy, i.e., as if its “deepening”

along the Y-axis; so to the outside observer the nuclear forces

manifest themselves in a complex manner.

In the inner area of the proton there are three critical sec-

tion (quarks), each of which is crossed by three force lines

(charges 1, 1, −1). The presence of inverse circulation cur-

rents forming three closed contours leads to the fact that the

intersection of the critical section by the lines of force in-

side the proton will for an outside observer be projected on

the outer proton surface in the form of 2
3
, 2

3
, − 1

3
of the total

charge.

Along the Y-axis the proton boson vortex tube is located

having parameters mpy = 2092 and rp = 0.1024. The most

“deep” along the Y-axis the quark vortex tubes are located

with the parameters defined in [3]: the quantum number nk =

0.480, the total fermion mass mkx = 12.9, the total boson

mass mky = 4324, the radius of the vortex tube rk = 0.024.

It should be noted that the value of the parameter rk is con-

firmed by works on studying of neutron polarizability. In [6]

the lower limit the polarizability coefficient is specified of

ap = 0.4×10−42 cm3. This means that the linear inhomogene-

ity parameter in the structure of the neutron coincides with the

radius of the quark vortex tube as (ap)1/3 = 7.37 × 10−15 cm

or 0.026 re.

Neutron has three closed contour, i.e. six force lines in-

stead of nine ones, which a proton has, and, therefore, the

total neutron quark mass has the value of 12.9 × 2/3 = 8.6.

Having in mind adopted direction and the possible distribu-

tion of the force lines in the neutron [3], one can expect that in

the case of neutron polarization neutron may have the charges

in the inner region of 1, −1, or −1, 2
3
, 1

3
, and in the projection

of the outer surface of − 2
3
, 1

3
, 1

3
.

In the contour connecting the charged particles, the

quarks are involved in the circulation and become an active

part of the nucleon mass. It is assumed that in the critical

section circulation velocity reaches the velocity of light, so

quarks are actually dark matter, which is equivalent to the

mass defect, reflecting the energy of bonds within nucleons or

nuclei; the nominal mass-energy of a quark is 0.511 × 12.9
3
=

2.2 MeV.

When considering the closed contour having contra-

directional currents, from the balance of magnetic and gravi-

tational forces recorded in a “Coulombless” form the charac-

teristic size of a contour as a geometrical mean of two linear

values is obtained:

lk =
√

li ri =

√

zg1
zg2

ze1
ze2

√

2πγ ε0 × [sec] , (11)

where zg1
, zg2

, ze1
, ze2

, ri, li are gravitational masses and

charges expressed through masses and charges of an electron,

a distance between current tubes and theirs length.

Number of vortex thread constituting contour reflects the

difference of material medium from vacuum, and their great-

est value corresponds to the ratio of electrical forces to grav-

itational forces, i.e. value:

f =
c2

ε0 γ
= 4.16 × 1042, (12)

where γ is the gravitational constant.

The contour can be considered located both in the X-area

(for example, p+– e−-contour in atom) and in the Y-area (vor-

tex tube inside an atomic nucleus). When a proton and an

electron come together (for example, when its contraction by

the e-capture) a deformation of the contour takes place, en-

ergy and the fermion mass increase, while the boson mass

decreases, but the impulse (charge) is conserved.

Formula (11) for unit charge taking zg2
= 1 and after cal-

culating the constants gets the form in the units of re and me:

mk = zg1
= b l2k , (13)

where mk is the proton quark mass involved in the circulation

contour, b = 5.86 × 10−5.

Parameter lk is composite. If the contour (vortex tubes) is

directed along the Y-axis, then ri = r, li = ly, if the contour

is directed along the X-axis, then in calculating parameters

are replaced, i.e. ri = ly, li = r. Having in mind (7), (8),

(11), and (13)), replacing arbitrary parameters ri and li by the

sizes of short and long axes of the contour and calculating

constants, we obtain the formulas relating the quark mass and

the contour linear parameters:

mk =
26.25

r
= 0.0392

√

ly , (14)

and also

r

√

ly = c
1/3

0
. (15)

3 On boson masses

The circuit parameters in X-region and Y-region in the gen-

eral case do not match, but both include the quark mass,

which depends on the size of the contour. Let us compare

the parameters of these contours for some specific cases.

Let us consider X-contour of own electron at ne = 0.5777.

Its size along the X-axis, as follows from (8), ri = ly = 6267.

From (14) we find the quark mass mk = 3.10. For having of

the same value of mass-energy Lp, Y-contour, as follows from

(10), should have a quantum number n = 2.77. The boson

mass of such a contour according to (5) my = 1.44× 105, that

is close to the mass of W-bosons.

Let us consider the contour of own proton at np = 0.3338.

Its size along the X-axis ri = ly = 2092 and the quark mass

mk = 1.795. Y-contour having the same value of mass-energy

has n = 3.645. Boson mass of such a contour my = 2.494 ×
105, that is almost exactly corresponds to the mass of the

Higgs boson (125 GeV).
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Let us consider the critical contour at nc = 0.189. Its size

along the X-axis ri = ly = 672 and the quark mass mk = 1.02.

That is, in the limiting case the quark mass becomes equal to

the mass of an electron. Y-contour having the same value of

mass-energy has n = 4.884, i.e. it is a standard contour [2].

The boson mass of such a contour my = 4.48 × 105, that is

close to the total mass of W, Z-bosons.

Thus, these relations between the masses of the particles

taking part in the weak interaction (quarks, bosons, protons,

and electrons) to some extent clarify the nature of the weak

interaction and the physical meaning of its interpretation as

“the exchange of bosons”. It turns out that W, Z-bosons and

the Higgs boson are the vortex tube having the value of mass-

energy equal to mass-energy of the quarks included in the cir-

culation contours corresponding to their own electron, proton,

and critical contours. And in the course of the weak inter-

action X-contour is reduced and when performing this con-

dition, it is reoriented to Y-region, transmitting momentum

(charge) to the proton while keeping the angular momentum

(spin, in the case of e-capture, for example); then it is ex-

tracted as a neutrino [3]. From the above it implies that the

Higgs boson is not a unique particle in microcosm.

4 The coupling constants

In [5] a formula is obtained, from which it follows that the

unit contour or vortex tube having a momentum equivalent to

the electron charge consist of three unit vortex threads. After

transformation this formula can be written as:

n3
i =

mec
2/3
0

re
√

2π × [sec2]

2πγm2
e

r2
e

= 26.25. (16)

This formula represents the ratio of inertial forces occur-

ring during acceleration of the standard contour boson mass

and acting toward to periphery (as the value re√
2π × [sec]

is the

rotational speed of the vortex thread relative to the longitudi-

nal axis of the contour [3]) to the gravity forces acting be-

tween the masses of me at a distance of re. The numera-

tor is constant, so the formula depends only on the force of

gravity, i.e. from interacting masses and distances between

them. This ratio (or its modification for arbitrary mi and ri)

can be the equivalent of the coupling constant, as indicates

the strength of the bonds between the elements of the proton

structure (quarks).

4.1 Strong interaction

Suppose that quarks are located at the corners of an equi-

lateral triangle at a distance re. In this case each of them

is exposed of the sum of two projections forces, therefore

the denominator into (16) should be corrected by multiplier

2 sin 60◦. As a result, the formula (16) in the relative units of

re and me after calculating of constants takes the form:

as = 15.15

(

ri

mi

)2

. (17)

Consider the case of the strong interaction at low ener-

gies where the parameter ri is greater than the nucleon size

rn. Let the mass of the proton quark takes a minimum value

me (section 3), the distance between the quarks is re; substi-

tuting ri = 1, mi = 1 into (17), we obtain as = 15.15, which

coincides with the known value determined at low energies

as ∼ 15.

It should be expected that at as = 1, there is a balance

between the forces of gravity and peripheral inertia forces,

which the nominal size of the proton can be determined from.

Indeed, under this condition (17) it follows ri = 0.257, and the

size of the vortex tube, accordingly, is 0.257/ sin 60◦ = 0.297

or 0.84 fm, which coincides with the proton radius.

Consider the case of the strong interaction with ri < rn,

where the energy of the interacting particles is high (about

100 GeV), and they approach each other at the minimum dis-

tance of the vortex proton tube rp = 0.1023 (section 2). In this

case, the distance between the quarks inscribed in the vortex

proton tube is ri = rp sin 60◦ = 0.0887. Substituting ri and

mi = 1 into (17), we obtain as = 0.119. This calculated value

coincides with the experimental data. Indeed, in [7] it was

found that at the given energy as = 0.1176± 0.0024.

Now it becomes clear physical meaning of the great dif-

ference in magnitudes of this type interaction. At low ener-

gies of the interacting particles affecting only the outer struc-

ture of nucleons (ri > rn, low “depth” along Y-axis) the pe-

ripheral inertial forces exceed the forces of gravity, so the el-

ements of the structure (quarks) are weakly bonded to each

other, can move away from the starting position and interact

with nearby nucleon quarks. At high energies (ri < rn, more

“depth” along Y-axis) interaction occurs at the level where

the forces of mutual attraction holds the quarks in the bound

state within the nucleon size, that leads to a decrease in the

efficiency of the interaction of microparticles as a whole.

Note, that in the atoms nuclei quarks may also be in a

bound state due to their large masses, which they acquire

when entering into the p+– e−-contours.

4.2 Weak interaction

When the weak interaction (such as in the case of e-capture,

for example) the bosonic part of the proton quark or vortex

tubes take part (section 3).

Let us assume that the mass of each of three quark tubes

mi = mky = 4324/3 = 1441 (section 2). Substituting mi

and ri = 1 into (17), we find aw = 0.73 × 10−5. This value

agrees with the value of aw, defined through Fermi constant

(1 × 10−5). At high interaction energies (about 100 GeV) the

constant aw increases to ∼ 1
40

. In our model this increase can

also be explained.
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At the limit excitation of the contour vortex tube at the

quarks level when v → c and r → re boson mass becomes

equivalent to its mass-energy, but because the parameters ε0

and µ0 are constant then the radius of the vortex tube increases

proportional to the ratio re/rk. Since re/rk = 41.7, then in this

case ri = 41.7, and the parameter aw increases proportionally

to the square of this ratio, i.e. aw = 0.73×10−5×41.722 = 1
78

,

which is in agreement with the value of aw determined at high

energies.

4.3 On the electron

Suppose that the formula (17) is applied to the electron itself.

Electron contains three vortex threads. Assuming ri = re and

considering that the boson mass of an electron vortex threads

is mi =
1
3

(ane)
2 = 2089, and it coincides with the proton

boson mass, it is obvious that the coupling constant for the

electron in the weak interaction is identical to that of the pro-

ton.

As for the strong interaction then in this case mi =
1
3

me.

Substituting into (17) ri = 1 and mi =
1
3
, we find as = 136.4,

which almost coincides with the value of the reciprocal fine

structure. Proceeding from the enormous value of the cou-

pling constant as the electron structure cannot be in a bound

state, and in equilibrium at as = 1 the size of the electron

would be very small at ri = 0.086. But having such a small

radius the electron charge cannot place itself according to the

classical definition, by which the potential energy of the elec-

trostatic field is completely equivalent to the rest mass of an

electron.

Thus, the electron to resolve this contradiction and be

able to exist itself shall continuously oscillate between these

states. Its pulsations provide the motion of medium along the

p+– e−-contours thereby confirming definition of the charge

as the momentum.

Summing up the results of Chapter 4 one can say that the

coupling constant defines neither the nature of nuclear forces,

nor the interaction force, but only indicates the strength of the

bonds within the complex structure of nucleons.

5 The nucleus

When considering nuclear forces hereinafter to take into ac-

count the Coulomb interaction at various energy levels (dis-

tances) proved sufficient, from which it can be concluded that

the introduction of any special nuclear forces is not required,

at least within the limits of this model.

As for scheme of nuclear structure, then the proposed

scheme is, to a certain extent, associated with collective

model (J. Rainwater, 1959, A. Bohr, and B. Mottelson, 1952).

This model combines the provisions of the hydrodynamic and

the envelope model and suggests that the nucleus consists of

the inner stable part — the core formed the nucleons of filled

envelopes and the outer nucleons moving in the field gener-

ated by the core nucleons.

5.1 Nuclear forces

Are there any special nuclear forces at all?

At high energies and short distances, i.e. when approach-

ing nucleons to their radius rn = 0.842 fm and overlapping of

their internal structures, the interaction between nucleons oc-

curs inside their total “quark bag” between oppositely quarks

having inside the nucleon structure the charges of 1 and −1 at

the distance of its vortex tube. Let us assume that the quark

mass is minimal and equal to me, i.e. it is identical to an elec-

tron, then its vortex tube size is equal to the electron vortex

tube size rk = 0.0114 (section 2).

Write the formula for the potential in the units of MeV

and the fractions of re. The depth of the attractive potential at

the minimum distance for unit charges is

V = −
0.511

rk

, (18)

which gives − 44.8 MeV (see Figure 1).

With further approach of nucleons at even higher energies

(greater “depth” along Y-axis) the interaction at the level of

boson vortex nucleons tubes is added. It is understood that the

unidirectional vortex tubes are repelled, and as far as “deep-

ening” along Y-axis their radius r decreases (here the role of

magnetic attraction forces is negligible). Since the mass per

unit length is reduced in proportion to the square of the radius,

the local value of the electrical constant (linear density) ε0 is

reduced proportional to the ratio r/re. Thus repulsive poten-

tial as a result increases in inverse proportion to the square of

the distance, and the resulting potential-distance dependence

receives the form below:

V = 0.511

(

−
1

rk

+
1

r2

)

MeV. (19)

Beyond “quark bag”, at the distance of the nucleon diam-

eter, the Coulomb interaction occurs between the fractional

Fig. 1: Dependence of the nucleon-nucleon interaction on the dis-

tance between them.
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charges of different signs, located on the outer surface of pro-

tons. Thus, attractive potential sharply decreases, for protons

it is in proportion to the product of 1
3
× 2

3
= 2

9
. Namely, at

the distance 2rn = 1.684 fm attractive potential decreases to

a value 2
9
× 44.8 = 9.96 MeV.

Another reference point for plotting the dependence V(r)

can be found by equating the Coulomb repulsive forces be-

tween two protons at the distance between their centers to

the residual attractive forces acting between the fractional

charges located on the outer surface of the protons. In this

case we have:

e2

ε0 r2
=

2

9

e2

ε0 (r − 2rn)2
, (20)

from which we obtain r = 2rn

(

1 −
√

2
9

)−1

= 3.78rn = 3.19

fm, i.e. distance where the attractive forces between the nu-

cleons can be neglected. The resulting dependence V(r) is

shown in Figure 1 and it as a whole corresponds to actual

dependence.

Thus, it may be concluded that any special nuclear forces

do not exist, and complex nuclear interaction is explained by

the forces of unified nature (electrical) acting between the el-

ements of the complex structure of nucleons at different levels

(the “depths” along Y-axis), which are determined by the in-

teraction energy.

5.2 The binding energy of deuterium, tritium and alpha

particles

A deuterium nucleus — the deuteron is a rather loose forma-

tion, and therefore it can be assumed that the bond of two

nucleons due to Coulomb forces between the proton having

on its outer surface fractional charges of 2
3
, 2

3
, − 1

3
and the po-

larized neutron with charges on the surface of − 2
3
, 1

3
, 1

3
. Let

us assume that the nucleons form its own contour having at

n = np the parameters ly = 2092 and r = 0.1024 (section 2).

When substituting r into (18), we obtain the binding energy

(potential) in the units of MeV bonding the nucleons in the

deuteron: Ed = 0.511× ( 2
3
× 2

3
)/0.1024 = 2.22 MeV that cor-

responds exactly to the actual binding energy of the deuteron.

Could this be an accidental coincidence? It is known that

the good description of the characteristics of the deuteron pro-

vides the selection of the nucleon-nucleon n-p potential in the

form of a rectangular pit of depth V ∼ 35 MeV and of width

d = 2 fm [8]. Assuming that d is the distance between the

centers of nucleons, one can find that the distance between the

fractional charges on the nucleon periphery is d−2rn = 0.316

fm or 0.112 re. The result is in good agreement with the pro-

ton vortex tube size, i.e. with parameter r, that confirms the

correctness of calculation.

The tritium nucleus — triton consists of a proton and two

neutrons attached. The mean square charge radius of the tri-

ton is 1.63 fm, so, obviously, the nucleons are in contact. Let

Fig. 2: Settlement scheme of the alpha particle: a — on the basis of

the quark masses, b — on the basis of energy of the quarks.

us assume that the neutrons are polarized with charges of 1,

−1. Binding energy can be determined by summing the mass-

energy of the four quarks involved in creating bonds. As a

result, we get Ed = 2.2 × 4 = 8.8 MeV that is close to the

actual triton binding energy (8.48 MeV).

An alpha-particle is a spherically symmetric object with

radius of about 2 Fermi, and it is the most stable and compact

structure (cluster) that can occur inside the atomic nucleus. If

we assume that nucleons are in contact with each other, then

for symmetrical arrangement of four nucleons having radii

rn = 0.842 fm and forming a closed system as a whole, in

fact, the alpha-particles radius will be 2.04 fm, Figure 2.

The alpha particle emitted from a nucleus overcomes the

potential barrier and, in addition, is a surplus energy in dif-

ferent ranges. Apparently, in addition to the mass-energy of

eight quarks involved in the interaction, there is a necessity

to take into account also the mass-energy of the two pro-

tons quarks included in p+– e−-contours; this mass-energy

depends on the quantum number of the contour, Figure 2a.

It was revealed that alpha-clustering is most probable in the

nucleus surface region where the density of nuclear matter is

reduced to about one-third of density in the nucleus central

part [9]. Therefore, we can assume that the protons of alpha-

particles leaving the nucleus are associated with the second

electron shell (the first one has only two electrons).

From (8), (13), and (14) it follows that the masses of

quarks that are constituents in a p+– e−-contour are propor-

tional to the quantum number:

mk = b a c
1/3

0
n = 5.377 n , (21)

i.e. for the second shell the quark mass is equal to 10.75.

As a result, given the potential repulsion of two protons

(∼ 0.6 MeV at a specified distance 2.38 fm on the scheme),

we obtain: Ea = 0.511×(4.3×8+10.75×2)−0.6 = 28.0 MeV,

which corresponds well to the actual alpha particles binding
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energy (28.2 MeV).

One can determine the binding energy from another con-

siderations by summing the energy of bonded opposite

charges, assuming that the distance between them is equal

to the radius of the electron vortex tube r = 0.0114 = 0.032

fm, Figure 2b. Other positive charges of the protons quarks

are associated with the atom electrons, and the unaccounted

negative neutrons charges create the repulsive potential. The

bonds form a closed system, so one can assume that the al-

pha particle binding energy is the averaged binding energy

of a link, since at destruction of a link the particle splits as a

whole. Indeed, it is known that to remove of only a nucleon

from alpha particles the energy about 20 MeV is required [9].

Given the above, referring to the adopted charges layout,

the alpha particles geometry, and specified dimensions, one

can write the final formula for the binding energy as the av-

erage energy per bond at subtracting the repulsive potentials

of protons as whole units and the fractional charge repulsion

potentials of neutrons:

Ea =
1

4

(

1 × 1 +
1

3
× 1 + 1 × 1 +

1

3
× 1

)

0.511

r
–

− 1 × 1 ×
0.511

b
−

(

2

3
×

2

3

)

0.511

c
, (22)

where b and c are calculated from geometrical considerations:

b = 2rn

√
2 = 2.38 fm or 0.845, c = 2rn(

√
2 − 1) = 0.697 fm

or 0.248. Substituting the values, we obtain Ea = 28.3 MeV,

which coincides with the actual value.

It is known that the nuclei can be seen as the system of nu-

cleons and at the same time as the system of the large number

of clusters of different nature, which are in dynamic equilib-

rium, i.e. they disintegrate, are again formed and exchanged

both nucleons and energy [10]. The closer to the nucleus cen-

ter are protons, the higher energy they have, since the pro-

ton quarks mass-energy included in the p+– e−-contours in-

creases in proportion to the quantum number. When the trans-

fer of energy from the center and from the inner envelopes to

the periphery occurs, alpha-particles leaving the nucleus sur-

face have the energy excess equal to the energy difference

between the corresponding levels, i.e. referring to (22) and at

changing to energy units Ea = 2.75(n2 − n1) MeV.

Thus, when the excitation transfer from the third to the

second envelope the energy of alpha-particles having two pro-

tons may be not more than 2× 2.75 = 5.5 MeV, and when the

excitation transfer from the fourth to the second envelope —

twice as much, not more than 11 MeV.

Indeed, for the emitted alpha particles there are two en-

ergy ranges: with the upper limit of 2–4 MeV for rare earth el-

ements and 4–9 MeV for the elements heavier than lead [11].

Not numerous long-range alpha particles with higher energy

get this energy after series of collisions with protons in the

center of the nucleus, which are associated with the fifth,

sixth, and seventh envelopes; accordingly, their maximum en-

ergy can reach 2×2.75(7−2) = 27.5 MeV. The resulting value

matches exactly the value of the maximum alpha particles en-

ergy, defined in during the study of heavy nucleus fission ac-

companied by the formation of three charged particles [12].

Moreover, in these particles energy spectrum there is no fine

structure, which is understandable, since the energy of such

particles is derived from protons homogeneously packed in

the “quark bag” in the nucleus core, but not from the struc-

tural units in the nuclear envelopes composition having cer-

tain specificities.

It should be noted that the binding energies differences

between neighboring isotopes for the nuclei of almost all ele-

ments are in the range of 20 MeV (for isotopes with the least

number of neutrons) to 2 MeV (for isotopes with the greatest

number of neutrons). That is, in the most cases these energy

differences lie in the range from the nominal mass-energy of

a cluster 2.2 × 8 = 17.6 MeV to the mass-energy of a quark

2.2 MeV. This means that in the first case, with the excess of

protons, addition of a neutron leads to the formation of an en-

tire cluster (alpha-particles) and in the second case, with the

excess of neutrons, — to another quark be only involved in a

common bound nucleus structure.

Another fact confirming that clusters are only formed in

the envelopes from the first to the fourth is the amount of iso-

topes depleted by neutrons. Typically, for most of elements

(except radioactive ones) it is close to the number of clus-

ters. The maximum amount of such isotopes Platinum has

(Pt195. . . Pt166), it is equal to the number of clusters in all four

envelopes (30).

5.3 On the nucleus structure

In accordance with the model the packing density of alpha-

clusters and of protons in particular increases toward the cen-

ter of the nucleus, as the distance between the vortex tubes

of p+– e−- contours is reduced and the vortex tubes length in-

creases. Therefore, the electrons located at the more distant

orbits are associated with the protons located at the deeper

nucleus levels; thus the layers or envelopes are formed in the

nucleus that similarly to the electronic shells.

Suppose that the distance ri between the vortex tubes can-

not be less than the size of alpha-particles (4 Fermi). This

condition limits the number of the electronic shell whose

electrons can associate with the protons belonging to alpha-

clusters and, accordingly, the nucleus envelope which deeper

alpha-clusters are not formed. From (14) and (8) implies

n > 3.44. Even if the diameter of the equivalent sphere equal

to the volume of four alpha-particles nucleons (∼ re) to accept

for limiting size, and even then n < 5. That is the electrons of

the fifth and subsequent atom shells are associated with pro-

tons in the center of the nucleus; these protons are here not

part of the alpha-clusters. Thus, the fourth layer (envelope) is

the last in the nucleus.

It should be noted that a similar condition for the nu-
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cleon size also determines the maximum possible number of

the atom electron shell. Indeed, assuming ri > 2rn, we find

nmax 6 8.1.

Consider the heavy atom nucleus, for example, 82Pb207,

wherein there is a fourth filled electron shell with 32 electrons

and, accordingly, the fourth layer of 16 clusters in the nucleus.

It is not difficult calculate the outer and inner radii of the layer,

assuming that one alpha-cluster has a volume equivalent to

the volume of four nucleons, i.e. 4 × (2rn)3 = 19.1 fm3. The

inner radius is 2.93 fm. The remaining 22 protons are not

part of the proton clusters; they are located in the center of

the nucleus and have the volume equivalent to the sphere of

exactly the same radius 2.93 fm. The outer diameter of the

nucleus as a whole in the summation of the thickness of the

four envelopes is 2.93+4×2rn = 9.66 fm, which corresponds

to the size of heavy nuclei.

Thus, it appears that for the elements heavier than lead,

the protons taking part in the contours where electrons belong

to the fifth and subsequent shells no longer completely go in

the core of the nucleus. With increasing the number of pro-

tons the fourth nuclear envelope expands, additional neutrons

are included in it, and radius of the nucleus increases.

Neutrons are not included in the cluster (for 82Pb207 of

such neutrons are 65) are placed in the free volume being

forced out into the outer envelopes. One can assume that the

average distance between them is not less re, accordingly, the

average volume per a neutron exceeds 22.4 fm3 that provides

the nuclear attraction forces between neutrons to be absent

and neutrons to move freely. Now it is possible to calcu-

late the number of neutrons in the void volume (excluding

the first envelope, which is the transition boundary structure,

where the nuclear and charge density fall sharply down) and

then the mass number. For lead the outer radius of the second

envelope is 9.66 − 2rn = 7.98 fm, its volume is 2130 fm3.

Subtracting from this volume the volume of 30 clusters (120

nucleons) and subtracting the volume of 22 nucleons in the

center of the nucleus, we obtain the volume 1452 fm3, which

can accommodate 65 neutrons. As a result, adding the num-

ber of protons (82) and neutrons in clusters (60), we obtain

the exact mass number for the stable isotope of lead A = 207.

The highest density of nuclear matter exists in the nucleus

center and in the inner envelopes. Assuming that the nucle-

ons packing density in the nuclear core and in the adjoining

envelope are identical, i.e. their nuclear density is the same,

and on the basis of the above geometrical considerations, it

is possible derive the relation between the number of nucle-

ons in the nucleus core zcor and their number in the adjoining

envelope zenv, which provides this homogeneity condition:

zenv = c

(

1 + (
zcor

c
)1/3

)3

–zcor , (23)

were c = 4π
3

.

Equation (23) observed for the lead very precisely: 22

nucleons in the center correspond to 64 nucleons in the 4th

Fig. 3: Condition of the nucleus central part homogeneity with re-

spect to the initial number of nucleons for the stable isotopes of some

elements.

envelope (32 protons and 32 neutrons), so it turns out that

in the nucleus core neutrons are absent. For the lighter nuclei

the inner envelope volume including protons and neutrons can

be considered as the core. Condition (23) is also satisfied of

about for iron (4 nucleons in 4th envelope, 28 nucleons in 3d

envelope), xenon (8 nucleons in the core 36 nucleons in 4th

envelope) and for a few other elements. At that, for the nuclei

of these elements the observed electric quadrupole moments

are close to zero. For most other elements situation may be

different; in the general case part of the neutrons or go in the

nucleus core, or go in the adjacent envelope, and such nuclei

may take a non-spherical shape.

Thus, for the condition (23) to be satisfied, it is necessary

(for the metals heavier than iron having one or two electron at

the fourth electronic shell) for the additional neutrons that are

outside clusters to replenish the fourth inner nucleus envelope

and (for the metals with Z = 37 . . .52, many of lanthanides,

and heavy metals before lead) to instil into the nucleus core.

For others, mainly non-metals and the elements heavier than

lead, the neutrons must replenish the envelope adjoining to

the nucleus inner part. Figure 3 shows the position of the

curve zcor(zenv) respect to the initial number of nucleons for

stable isotopes of some elements.

Thus, knowing the structure of the atom electron shell

and, accordingly, the number of protons in nucleus envelopes

and its core, specifying the number of neutrons and having

in mind the condition (23), one can try to reproduce the nu-

cleus structure for different atoms and their isotopes. There is

a question, how exactly the condition (23) should be satisfy

during of additional neutrons distribution? That is whether

equation (23) can be solved in integers, as it is done for lead?

Perhaps this peculiarity defines some properties of the iso-

topes: lifetime and others.

To fill the outer nuclear envelopes neutrons there is usu-

ally no in enough. Therefore, for some nuclei its outer en-
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Even numbered elements

Elements 4Be9
8O16

14Si28
26Fe56

30Zn65
42Mo96

62Sm150
74W184

92U238

Actual, MeV 58.2 128 237 492 567 831 1239 1473 1802

Calculated, MeV 62.6 131 244 487 566 822 1232 1479 1806

Calculated A 9 16 28 56 65 99 151 184 236

Odd numbered elements

Elements 5B11
17Cl35

21Sc45
29Cu64 39Y89

51Sb122
67Ho165

83Bi209
93Np237

Actual, MeV 76.4 298 388 559 775 1033 1344 1640 1795

Calculated, MeV 79.7 303 388 544 757 1009 1344 1636 1821

Calculated A 11 35 45 63 90 123 165 208 238

velope must be squeezed, lose shape of a spherical layer and

take the form of a polyhedron, in the corners of which alpha-

clusters are. A similar phenomenon is starting to get a confir-

mation, for example, in [13].

5.4 The nuclei binding energies and the mass numbers

It is well known that nuclear binding energy En is calculated

by the Weizsäcker semiempirical formula, based on the liq-

uid drop model and consists of five members and empirical

coefficients reflecting the contribution of various components

in the total binding energy.

Presented above model allows calculating the nucleus

binding energy without having to empirical coefficients. As

mentioned in section 5.2, the nucleus energy is ultimately de-

termined by the mass-energy of nucleon quarks. Represent

this energy as the sum of the nominal energy of eight quarks

in all clusters (Figure 2a), included in the envelopes from the

first to the fourth as 8 × 2.2 zkl, the total energy of the pro-

ton quarks belonging to p+– e−-contour as 2.75(m1 + 2m2+

3m3 + . . .), and the base energy of the first envelope as 2.75 z.

The latter may be associated with a potential barrier.

Here it is denoted: zkl is the clusters number, z is the pro-

tons total number, mi is the electrons number in the i-th atom

shell.

The final amount when changing the clusters number by

the protons number in clusters has the form:

En = 8.8 zpkl + 2.75 (m1 + 2m2 + 3m3 + . . . + z) , MeV (24)

where zpkl is the total protons number in the first — the fourth

envelopes.

Formula (23) for the binding energy does not depend on

the neutrons number; this indicates that for stable isotopes a

certain optimum amount of neutrons are in accordance with

protons. It turns out that it is possible to calculate the neu-

trons number based on energy balance considerations, using

the dependences previously obtained.

It is considered that the neutrons and protons are different

states of nucleons. This is true for the nominal quark masses

of nucleons, since their mass-energies are identical and equal

to 2 × 2.2 = 4.4 MeV. However, the mass-energy of neu-

tron quarks must also comply with the mass-energy of proton

quarks, which are included in the circulating p+– e−-contour

2.75(m1 + 2m2 + 3m3 + . . .), net of the basic energy of the

unfilled first shell 2.75 z and minus the nominal mass-energy

of proton quarks, located in the nucleus center and not con-

nected with neutrons 4.4(z–zpkl).

That is the balance of energy must be from which the neu-

trons number N and further the mass number A = N + z can

be determined:

2.75 (m1 + 2m2 + 3m3 + . . .) − 2.75 z − 4.4
(

z–zpkl

)

=

= 4.4 N MeV, (25)

A = zpkl + 0.625 (m1 + 2m2 + 3m3 + . . . –z) + (4)A<140 . (26)

For the mass number an amendment is necessary in some

cases, which, it may be supposed, is the consequence of the

presence of alpha-cluster four nucleons in the first envelope,

which are split off when the nucleus reaches a certain mass.

Thus, for light and medium nuclei the result of formula (26)

should be increased by 4. For the heavier nuclei with A> 140,

the amendment is not necessary, that seems to be due to their

natural alpha decay. For the transuranic elements nuclei, as

calculations are shown, their binding energy should also be

reduced by the amount of the alpha particle binding energy.

Table 1 show the actual and calculated data of the binding

energy and mass number rounded to the integer for the stable

isotopes of certain elements according to the formulas (24)

and (26). These formulas are obtained under the condition

that the nuclei structure satisfies the condition (23). Exist-

ing slight variations in binding energy to the lower side for

medium nuclei can be eliminated by considering their indi-

vidual features, for example, with taking into account the en-

ergy bonds of additional neutrons, which replenish the core

or adjoining nucleus envelope.
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6 Conclusion

It seems surprising that the complex nature of nuclear forces

and the structure of atomic nuclei proved possible to be large-

ly understood without involving actual quantum concepts and

complex mathematical apparatus.

The mass of equivalent to the Higgs boson mass are ob-

tained, the coupling constants in different types of interac-

tions, the binding energy of the deuteron, triton, and alpha

particles are defined, the possible ranges of alpha particles en-

ergies are identified, and dependence of the nucleon-nucleon

interaction from a distance is explained. Based only on the

composition of the atom electron shells, it was possible to

determine the nuclei binding energies, the nucleus neutron

numbers, to reveal the important features of nuclei.

Obviously, these results indicate that the model adequa-

tely reflects the fundamental features of the atomic nucleus

structure. These results give reason to believe that the forego-

ing model can become the basis of further theoretical devel-

opments for detailed describing the properties of nuclei and

their behavior in nuclear reactions.
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Charge and mass gauging procedure is carried out by means of counting the oscillation

numbers of an auxiliary top-speed signal (“photons”) between the appropriately ordered

electrons and positrons, moving under their interaction along the diagonals of the cube

toward its center (the “cube star”). Regular lattices composed of such stars transport the

values of charge and mass over space-time regions. The gauge consists in detection of

the cube symmetry in each star. However, the detected symmetry can also be observed,

even if some particles of the basic electron/positron star are replaced with heavy mesons.

These become an unavoidable byproduct of the gauge procedure. Two possible sub-

symmetries of the cube realizing such replacement correspond to two mesons, but the

regularity of the whole lattice holds only for some particular values of their masses.

Numerical solutions to the non-linear ODE systems describing this situation yield these

masses in terms of electron mass, which are close to those of the µ- and τ-mesons.

1 Introduction

The existence of the three flavor families remains a mystery,

and it appears rather artificial in the otherwise self-contained

structure of the standard model of particle physics (see, for

instance, [1]). As in all basic structures of physics, theories

must agree with experimental facts, and, in turn, the perfor-

mance of experiments depends on existing theoretical con-

ceptions. The design of measuring devices includes their

gauge, which is an intermediary between the measurement

of interest and some standard test measurements. In order

to eliminate clocks and rods in the gauge, which might hide

some features of the desired correspondence, we suggested

a direct motion-to-motion gauge [2, 3]. We shall show that

the flavor families naturally arise from the particular way this

gauge could be carried out. Since all related experiments

are ultimately based on the observation of the trajectories of

charged particles in external electromagnetic fields, the gauge

of electric charges and masses of particles is at the heart of

any measurement. A relevant gauge procedure could use a

regular lattice comprised of elementary cells (“stars”), each

one being a standard configuration of the trajectories of test

particles that are identical, apart from the sign of their charges

[2, 3]. Starting with the stars that are primary for the gauge

lattice, the whole lattice is constructed in such a way that the

primary stars completely define secondary ones. The result-

ing relay races make it possible to transport the initial val-

ues of charge and mass over a chosen space-time region. In

an appropriate construction of the lattice, each star could be

connected to a previous star along various sequences of inter-

mediate stars. The preservation of charge and mass over such

transports might be detected, provided various paths connect-

ing a pair of stars reveal the same symmetry at both ends ac-

cording to the dynamics of involved particles.

In order to realize this program one needs a method to

construct standard stars unambiguously. For this purpose, it

was proposed to count top signal oscillations between the par-

ticles of the star [2]. No rods or clocks are then needed, pro-

vided the elementary stars possess some symmetry belong-

ing to the Platonic solids. In this communication, we confine

ourselves to the lepton sector of elementary particles, cor-

responding to the cube subsystem of the full dodecahedron

structure. To this end, consider electrons and positrons mov-

ing along the diagonals of the cube toward its center under

mutual attraction — the “cube star”. The cube consists of

two interlaced tetrahedrons — one for electrons, another for

positrons, and the star is thus electrically neutral as a whole.

Charge is being gauged by means of detecting the cube sym-

metry as being seen in the equality of the related numbers of

photon oscillations, so that the detection of even one extra

oscillation is sufficient to find this symmetry broken. (It is

convenient to replace formally the counting of inter-particle

oscillations with that between the particle and an imaginary

central body; the translation is straightforward.) Of particu-

lar interest is the limiting case of the finest lattice, in which

only one photon oscillation is sufficient to detect the symme-

try of the star. Just this finest star will be considered in what

follows.

The regular lattice comprises the stars as elementary cells

to form a whole charge gauging structure. For this to be possi-

ble, the electrons/positrons are bound to turn into neutrinos at

the center: Otherwise, the exit potential together with the ra-

diation reaction force would prevent their leaving the star, so

destroying the lattice forming connections. We regard neu-

trinos massless (or having a mass that is negligible as com-

pared to that of other involved particles), hence moving prac-

tically with the velocity of light independently of their kinetic

energy.

Only the simplest case of cube star symmetry breaking

was considered in the charge gauging procedure [2, 3], i.e.

that in which asymmetry may occur only between the two

opposite-charge tetrahedrons of the cube. The breaking of
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cube symmetry in this case consists in this that particles be-

longing to different tetrahedrons have dissimilar masses m

and/or absolute values of charge e, while these parameters

remain identical within each tetrahedron. Perfect symmetry

will be observed, provided all the involved particles have the

same values of both m and |e|. In this case, the asymmetry

to be detected is, in a sense, the weakest, and we assign it

to the first flavor family, i.e. to that of the electron. We re-

gard this — electron/positron — star as the basic one and

ask whether or not our photon oscillations counting proce-

dure might detect the symmetry as observed, even if some

electrons/positrons in the star are being replaced with differ-

ent particles. Detection of a perfect star with our method re-

quires both charges and masses of the involved particles to be

identical. Upon assuming the charges to remain equal, let us

consider the lattice, in which some particles have a different

mass. While electrons must turn into neutrinos in each star,

these foreign particles (“mesons”) are able to pass the center

intact, since the exit barrier decreases there. They can then

take part in the secondary stars. For this to be possible, they

must satisfy three following requirements:

i. Preserve proper charge distribution in each star;

ii. Pass successfully the symmetry detection in the stars as

carried out by counting photon oscillations;

iii. Yield the definite output velocity (e.g., equal to the in-

put velocity) to be suitable over a long line of succes-

sive stars.

To fulfill these requirements, we have only two parameters

at our disposal to be controlled over the whole lattice, that

is, the mass and the velocity of the meson at the star entrance.

We guess only much heavier mesons to be met with. Since the

lattice is a ready structure and the slower mesons are just “im-

purities” in it, they will enter the next star with some time lag.

Besides the basic star, there exist only two configurations

having weaker sub-symmetries. Depending on the mass

found for the related foreign particle, one of the sub-symmet-

ries will be ascribed to the τ-meson, and another to the µ-

meson.

In the first sub-symmetry, only one pair of opposite elec-

tron and positron is replaced by the meson/anti-meson pair.

Their diagonal is the natural axis of the star symmetry, since

under the interaction in the star the mesons keep moving

along this axis. The trajectories of the remaining three elec-

trons and three positrons are curvilinear, though confined

pair-wise to three planes (the members of each pair don’t be-

long to a common diagonal of the cube). Then the absolute

values of the Cartesian coordinates of all six electrons/posi-

trons, both along and transverse the axis, will be the same.

We refer to this case as (6:2) sub-symmetry. (In this notation,

the electron/positron star is (8:0) sub-symmetry.) Contrary

to the basic (8:0) case, magnetic part of the interaction is no

longer cancelled on the curved trajectories in stars possess-

ing only sub-symmetries, though the total resulting interac-

tion still leaves the particles on the same planes they would

move under the electric force alone.

In the second sub-symmetry, two identical meson/anti-

meson pairs replace electron-positron pairs. Now all eight

trajectories are curved though confined to the two mutually

orthogonal planes, one of which carries only electrons and

positrons, while another — only mesons and anti-mesons.

Within each of these planes, the absolute values of the ap-

propriately chosen Cartesian coordinates of its particles will

be the same. We refer to this case as (4:4) sub-symmetry. Fol-

lowing the previous argument [2], we ignore the terms with

retarded interaction in the equations describing the motion

of the particles in the star, but radiation reaction of the ac-

celerated particles may be important. However, even rough

estimation of this multiple soft photons radiation will be suf-

ficient to distinguish flavor families, provided the mesons are

much heavier than the electron, and the mesons related to the

two possible sub-symmetries strongly differ in their masses.

As was found [2], the radius of the star is much smaller than

the classical electron radius, still the smallest radius down

to which the photon oscillations are being counted might be

of the order or even larger than the classical radius r0 of the

meson. Therefore, the effect of radiation on the motion of

the star particles should be estimated for the electrons and the

mesons differently though the very motion of the center of the

electron wave packet, which only matters in the photon oscil-

lations counting procedure, might be described classically in

virtue of the Ehrenfest theorem. In so complicated systems as

the stars containing several interacting particles, accurate cal-

culation of radiation would be rather complicated, and, more-

over, it is well known [4] that r0 is the limit of validity of

the electrodynamics, while the trajectories for the finest star

lie well deeper this value. Therefore, QED is needed to deter-

mine single photon radiation of electrons, pair production etc.

in the very strong (even vacuum violating) electric field [5].

However, the motion of the electrons is of interest here only

inasmuch as it influences that of the mesons, and we need not

go into fine details for the electron component of the star. We

thus choose to model radiation of the electrons with an appro-

priate functional factor S that tempers the energy increase of

the accelerated electrons. This factor will depend on a param-

eter q, varying which one can match a solution for the mesons

according to the threshold where the quantum single photon

radiation reaction exceeds the driving force in the star. We

assume that S depends only on the kinetic energy of the elec-

tron via the relativistic factor γe: S = exp[−(γ−2
e − γ−2

ei
)/q2],

where γei is the initial value γe of in the star. So, S = 1 at the

initial moment, while for appropriate solutions the value of q

must be so chosen that its final value γe, f � 5, in accordance

with the charge gauge [2] in the basic (8:0) star unperturbed

by mesons.

The mesons are expected to move unchanged over many

successive stars. Their motion should be analyzed in respect

of the possibility to sustain a regular lattice, that is, of the
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S −1 dβeu

dχ
= − 4ueγ

−5
e

[

4u2
e + v

2
e − (2ueβev + veβeu)2

]− 3
2 − 1

4
ueγ
−5
e

[

u2
e + v

2
e − (ueβev − veβeu)2

]− 3
2
+

+
[
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(
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eu

)
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]
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M γ
−1
e
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−2
M
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2
+

+
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(uM + ue)
(
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)

+ veβev (βM − βeu)
]

γ−2
M γ
−1
e

[

(uM + ue)2 + v2eγ
−2
M

]− 3
2

S −1 dβev

dχ
= − veγ−5

e

[

4u2
e + v

2
e − (2ueβev + veβeu)2

]− 3
2 − 1

4
veγ
−5
e

[

u2
e + v

2
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2
+
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e γ
−5
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1

4
β2

ev
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2

−
[
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(

1 − βMβeu − β2
ev
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γ−2
M γ
−1
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[
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2 + v2eγ

−2
M
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[
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1 − βMβeu − β2
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M γ
−1
e
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(uM + ue)2 + v2eγ
−2
M
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2

η−1 dβM

dχ
= −3 (uM − ue) γ−3

M γ
−2
e

[

(uM − ue)
2 + v2eγ
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e
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. (1)

repeatability of their initial and final velocities either in each

star or, at least, for a long sequence of successive stars. For

each of the sub-symmetries this possibility depends on the

mass of the related meson. Interaction of the electrons and

the mesons results in that that the motion of the electrons de-

pends on the meson mass as well, hence the ratio of electron

to meson masses might be obtained from our condition of the

whole lattice regularity. Motion of heavy mesons might be

described classically.

Strictly speaking, one has to include explicitly the meson

radiation reaction term in the equation of motion. It would

be convenient however to use, wherever possible, perturba-

tion methods to determine the radiation reaction, provided it

is much less than the driving force: The equation of motion

could be solved for the driving force alone, and then the ra-

diated energy is found using this solution. The final kinetic

energy of the meson is determined by subtracting the radi-

ation loss from its value as obtained before (see, e.g., [4]).

This estimation is certainly valid for a large enough mass,

since the radiation cross section contains inverse square of

the mass value. For this reason, we may use classical, that is,

multiple soft photon emission value for the radiation of heavy

mesons.

2 (6:2) sub-symmetry

In this case, the meson/anti-meson pair still moves along a

straight line, whereas the curved trajectories of the three elec-

tron family pairs confine to three planes intersecting over the

meson axis with the relative angles 2π
3

. It is convenient there-

fore to measure the z coordinate along the meson axis, and to

choose the second coordinate ρ at each electron plane as the

distance from this axis. Then the values of ρ for each particle

of the electron family (each one measured in its own plane)

are equal, and the absolute values of z are the same for all

electrons. In dimensionless variables:

χ =
ct

r0

, ue =
ze

r0

, ve =
ρ

r0

, βeu =
due

dχ
,

βev =
duv

dχ
, uM =

zM

r0

, βM =
duM

dχ
, η =

me

mM

,

γe =
(

1 − β2
eu − β2

ev

)− 1
2
, γM =

(

1 − β2
M

)− 1
2
,

where the subscript e marks electrons, M means mesons, c is

the speed of light. The system of three ODEs describes the

motion of the electrons and the mesons in the star under their

interaction. Using the well-known expression for the field of

a fast moving charge [4], this system can be written as shown

in Eqs. 1 on top of this Page 101.

This system should be numerically solved under the ini-

tial conditions taken from the solution for the basic electron

family [2]: the initial radius of the electrons re,i = 0.24r0, and

γe,i = 3.2. In our variables, these correspond to:

χi = 0 , ue,i =
ri

3r0

, ve,i =
2
√

2ri

3r0

βeu,i =
1

3
βe,i , βev,i =

2
√

2

3
βe,i

βe,i =
(

1 − γ−2
e,i

)
1
2
, βM,i =

(

1 − γ−2
M,i

)
1
2























































. (2)

In the perturbation approach, the value of γM,i for the regular

lattice should be equal to the final γM, f at the exit of the pre-

ceding star (or a group of stars) as obtained by subtracting the

radiation term γM,rad and the term of the exit potential barrier

γM,ex from the final value of the solution to the system (1).

These terms are:

γM,rad =
2

3
η

∫ χ f

0

dχ

(

dβM

dχ

)2

γ3
M , (3)
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γM,ex � 12−1ηu−1
M, f γ

−2
M,i . (4)

It is assumed in (4) that γM,ex≪ γM, f −γM,i, and uM, f ≪ uM,i.

(The first inequality holds since the deceleration from the

opposite meson is at least an order of magnitude less than

the acceleration from the electrons because of the relativistic

anisotropy of the electric field of fast moving charges.)

Then the value of uM,i is: uM,i =
ri

r0
(2−βM, f ), where βM, f =

(1 − γ−2
M, f

)1/2.

The solution for (1) goes down to the final value re,2 =

0.002r0, that is, (u2
e,2
+ v2

e,2
= 0.002)1/2. This value of re,2

corresponds to the average value of the weak Yukawa-type

potential (instead of re,2 = 0.003r0 found in the charge gauge

procedure for (8:0) case [2]). We assume that the electrons

and positrons disappear at r < re,2. The value of χ f in (3)

should be defined by the condition that the function

re(χ f ) = re,2 for the first time.

The solution must meet the requirement for the meson to

be unrecognized with our method of symmetry detection, i.e.,

that the numbers of the photon oscillations remain equal for

the electron and the meson. To this end, consider the photon

emitted at re(0) = ri and reaching re,1 = re(χe,1) after be-

ing reflected at the star center. Then, χe,1 = (u2
e,i
+ v2

e,i
)1/2+

(u2
e,1
+ v2

e,1
)1/2, where the last member should be taken from

(1). Similarly for the meson: χM,1 = uM,i + uM,1. Neglecting

the small (because rM,1 ≫ rM,2 ≈ rM,i − re,i) difference in the

initial positions, we write the condition for the second photon

not to have enough time to oscillate between the electron and

the center over the first oscillation of the meson as:

(

u2
e,1 + v

2
e,1

)
1
2
+ 0.002 > uM,1 . (5)

This inequality ensures that the electron annihilates

within the time of the first oscillation for the meson. Since the

meson doesn’t annihilate, the opposite inequality preventing

the second photon oscillation for the meson within the time

of the first photon oscillation for the electron is:

uM,1 >
(

u2
e,1 + v

2
e,1

)
1
2
. (6)

Upon solving the system (1) with q = 2, it was found that

only for η = 0.0003 there exists an “equilibrium cycle” that

repeats itself over the series of the stars (possibly with small

shift of γM, f from a mean value in a star to be compensated

with some opposite shift in the next star) under the condi-

tions (5) and (6) for some particular value of γM,i. For γM,i =

5.150408, and uM,i = 0.244567, the system (1) yields γM, f =

5.248322 , γM,i, but already in the next star with uM,i, fol-

lowing from this γM, f : uM,i = 0.244397 (γM,i = 5.248322),

we obtain γM, f = 5.150408, and the solution for the whole

trajectory of the meson repeats itself infinitely. For these two

consecutive stars: (u2
e,1
+ v2

e,1
)1/2 = 0.00437 and 0.003782,

uM,1 = 0.004815 and 0.003785 respectively, so both (5) and

(6) are fulfilled for each of them; uM, f = uM,2 = 0.00214,

(u2
e,1
+ v2

e,1
)1/2 = 0.002, γe, f = 5.280387. According to (3)

and (4), radiation decreases γM, f by only γM,rad ≈ 10−4, and

the exit potential by γM,ex ≈ 10−3. Both are small as com-

pared to the variation in the energy of the meson along its

trajectory:
∣

∣

∣γM, f − γM,i

∣

∣

∣ ≈ 0.05. Hence, our assumption for

deceleration from the exit potential barrier to be negligible

for (6:2) sub-symmetry is reasonable. No acceptable solu-

tions exist for other values of η. Although at each η there is

a value of γM,i, for which the electrons and the mesons meet

at (u2
e,2
+ v2

e,2
)1/2 ≈ uM,2 6 0.002, but γM, f , γM,i, tending

to increase monotonously, when extended over the next stars.

Eventually the electron radius (u2
e,2
+ v2

e,2
)1/2 becomes larger

than the weak interaction threshold 0.002 everywhere on the

trajectory. E.g., for η = 0.00015 this happens at γM,i ≈ 5.46,

while for η = 0.0004 at γM,i ≈ 5.48. (For η = 0.0002, only

(6) is broken.) Then the annihilation of the electrons becomes

impossible, and our lattice will be ruined.

This behavior of the solutions to (1) can be explained as

follows. If in the immediate vicinity of the star center the pos-

itive, say, meson lags with respect to the three nearest elec-

trons, it is accelerated, while the electrons are decelerated to

be overtaken by the meson and vice versa. Which case is re-

alized depends on η and on γM,i. The equilibrium along the

whole series comes from balance in the interaction. If situa-

tion is far from the balance, the meson will move much ahead

or behind the electrons. Then its attraction will not be able

to compensate for the reciprocal repulsion of the electrons,

resulting in the increase of (u2
e,2
+ v2

e,2
)1/2, and this quantity

becomes eventually larger than 0.002.

3 (4:4) sub-symmetry

In this case, electrons and mesons move in two orthogonal

planes intersecting at some axis of the cube (z) that connects

the centers of the pair of its opposite faces. In each of these

planes, the absolute values of the two Cartesian coordinates

of the particles are the same for its four particles — elec-

trons or mesons — due to the (4:4) symmetry. It is convenient

therefore to choose a coordinate frame with the (x) axis in the

electron plane and the (y)axis in the meson plane.

We guess in this case η ≫ 0.0003, since the effect of four

electrons on four mesons is smaller than that of six electrons

on two mesons. Hence, radiation is expected to be important,

since the meson must radiate much more energy with main

contribution coming from the close neighborhood of the star

center. This effect owes to the smaller meson mass as well

as to the curvature of the trajectory, since, given force, trans-

verse acceleration scales as γ−1 while longitudinal one only as

γ−3. Although it was long shown [4, 6] that, in the relativistic

case, the energy radiated by the particle might be even larger

than that received under external acceleration, we cannot use

this result directly. In these references, the accelerating field

was considered given in advance, i.e. independent of the par-

ticle’s motion, whereas in our case back influence of radiation
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where the functions U and W are expressed as follows
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(

1 − β2
Mw

)]

×

× γ−2
e γ
−1
M

{

w2
Mγ
−2
e + v

2
e + (uM + ue)

2 −
[

(uM + ue) βev − veβeu

]2
}− 3

2
+

+ 2
[

(uM − ue) (1 − βMwβeu) βMuβMw − wM (1 − βMuβeu)
(

1 − β2
Mw

)]

×

× γ−2
e γ
−1
M

{

w2
Mγ
−2
e + v

2
e + (uM − ue)

2 −
[

(uM − ue) βev − veβeu

]2
}− 3

2
.

on the field-generating particles is important. We have thus to

include the radiation reaction term explicitly in the equation

of motion. But the value η ≈ 0.005 is just at the bound-

ary of self-contradiction of electrodynamics for the meson at

the weak interaction threshold. Also quantum effects, how-

ever weaker than those for the electron, might alter radiation

there. Moreover, deceleration of the meson at the exit po-

tential barrier coming from other mesons as well as radiation

accompanying this deceleration cannot be neglected now.

However, it would be inadequate merely to introduce a

functional factor like that used above for the electron, because

details of the meson trajectory are now in question. In order to

trace the tendency, we shall instead try to approach the value

η = 0.005 from below, i.e. from larger meson mass.

Again, in dimensionless variables

χ =
ct

r0

, ue =
ze

r0

, ve =
xe

r0

, βeu =
due

dχ
, βev =

dve

dχ
,

γe =
(

1 − β2
eu − β2

ev

)− 1
2
,

uM =
zM

r0

, wM =
yM

r0

, βMu =
duM

dχ
, βMw =

dwM

dχ
,

γM =
(

1 − β2
Mu − β2

Mw

)− 1
2
,

the system of four ODE equations — Eqs. 7 shown in the

previous Page 103, with the functions U and W explained

on the same Page Page 103 and on top of this Page 104 —

describes the relativistic motion of electrons and mesons in

the (4:4) cubic star under their interaction.

This system will be numerically solved under following

initial conditions:

ue,i = uM,i =
ri√
3r0

, ve,i = wM,i =

√

2

3

ri

r0

,

βeu,i =
1
√

3
βe,i , βMu,i =

1
√

3
βM,i , βev,i =

√

2

3
βe,i ,

βMw,i =

√

2

3
βM,i , βe,i =

(

1 − γ−2
e,i

)
1
2
,

γe,i = 3.2, βM,i =
(

1 − γ−2
M,i

)
1
2
.

At the star exit, the contribution of radiation coming from

meson-meson interaction is expected to be rather low. It is

thus convenient to follow the method used in the previous

section in order to separate the radiation part in the total de-

crease of kinetic energy there. So, we solve first the equa-

tions of motion ignoring radiation, and then compute γM,rad

over the confined to a plane meson trajectory corresponding

to this solution:

γM,rad =
2

3
η

∫ χ f

0

dχ















(

dβMu

dχ

)2

+

(

dβMw

dχ

)2

−

−
(

βMw

dβMu

dχ
− βMu

dβMw

dχ

)2














γ3
M .

(8)

The related ODE system is shown in Eqs. 9 on top of the

next Page 104.

Since the lateral displacement of the heavy meson in a

single star is expected to be small, the system (9) should be

solved under the initial condition:

uMi =
rM2√

3
, wMi = rM2

√

2

3
, rM2 =

(

u2
M2 + w

2
M2

)
1
2
, (10)

where rM2 is the final radius of the meson in the accelerating

phase of the star. It was found that the condition (6) holds

only for η > 0.005. With η = 0.005, the equilibrium cycle

looks as follows. (We have to choose q = 1.3 to agree with

the charge gauge condition γe, f ≈ 5 as in [2]). Unlike (6:2)

case, in which the full cycle of returning to the initial state

takes two neighboring stars, now it takes four.

On the accelerating phase of the first star of the cycle:

rM,i = 0.244912; rM,2 = 0.001923; γM,i = 4.927011; γM, f =

5.090523; γe, f = 5.353761. On the decelerating phase: γM, f =

4.925161; γM,rad = 0.014866. Radiation energy decrease (8)

is less than 0.1 of that from the exit potential barrier as found

by subtraction the final energy for the deceleration phase (9)

from that for the acceleration phase (7), the second being

initial for the first. Hence, our approximation is appropri-

ate. On the accelerating phase of the last star of the cy-

cle: rM,i = 0.244921; rM,2 = 0.001934; γM,i = 4.926057;
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η−1 dβMu
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=
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. (9)

γM, f = 5.089923; γe, f = 5.411567. On its decelerating phase

again: γM, f = 4.927011. The conditions (5) and (6) are satis-

fied in all four stars of the equilibrium cycle.

Contrary to the (6:2) case, both electron and meson en-

ergies have been found to increase in the close vicinity of

the star center on the acceleration phase. Therefore, for (4:4)

symmetry it is just meson radiation that dominates the mecha-

nism to support equilibrium. An equilibrium cycle satisfying

both (5) and (6) exists also for η > 0.005. Formal solution

gives that only for η > 0.02 the condition (5) is broken. QED

estimation with averaged Coulomb field [5] shows that for

heavy meson (η < 0.02) quantum single photon corrections

for radiation are small. However, classical electrodynamics

is invalid for η < 0.005. Therefore η = 0.005 could only be

accepted as the lowest value compatible with the above equa-

tions. This result by no means undermines the very fact of

correspondence between the lepton families and the cube star

sub-symmetries as detected with photon oscillation counting,

which possesses its own meaning, independent of a particular

theory to specify trajectories.

4 Concluding remarks

However imprecise, the obtained values for η strongly sug-

gest the (6:2) and (4:4) sub-symmetries to be associated ac-

cordingly with the τ−meson (≈ 1.5 GeV/c2, η = 0.0003) and

the meson (≈ 100 MeV/c2, η = 0.005). Our estimations

are reliable because of sufficiently big differences in mass

values between the leptons. In order to find precise values,

more complicated calculations of bremsstrahlung [5] are re-

quired for the star involving many Feynman diagrams for the

mesons, interacting between themselves and with the elec-

trons. Another approximation relates to the assumed sharp

cut-off in the electroweak interaction at re,2.

We point out that the similar analysis might be carried out

for quarks, which correspond to the three subsets of the com-

plementary to the cube 12-particle part of the dodecahedron

star in the full gauge lattice [2].

Although being presented here in the conventional form,

the motion-to-motion gauge is actually coordinate-less, bas-

ing solely on the existence of the top velocity signal and sym-

metrical patterns of particles’ trajectories. The existence of

the flavor families could never be comprehended, unless the

direct motion-to-motion gauge of charge is used, because the

intermediary involving reference systems comprised of

clocks and rods hides some important features of actual mea-

surements. Just the same situation comes about in the weak

interaction [3], where the obstructive role of reference sys-

tems stimulates the appearance of auxiliary “principles” like

gauge invariance with its artificial group structure that can

only explain the already known results of experiments rather

than predict them. As a matter of fact, the very statement

of the basic problem in mechanics, i.e. the contact problem,

must be sufficient to substantiate all principles, including

Lorentz covariance, gauge invariance and so on [7].
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EDITORIAL MESSAGE

Celebrating the 60th Anniversary of Florentin Smarandache

December 10, 2014, marked the 60th anniverssay of Florentin

Smarandache’s birth. Through great personal sacrifice, our

friend and colleague became one of the co-founders, and Ex-

ecutive Editor of our journal Progress in Physics. He is a

mathematician of international renown, and a Professor in

the Department of Mathematics and Science at the University

of New Mexico, where he was Department Chair for many

years. His detailed biography was previously published one

year ago, in our journal.∗

We, the colleagues and friends who have been privileged

to know Florentin closely, wish him a happy life for many

decades to come, good health, prosperity, and enthusiasm for

his further research.

Dmitri Rabounski, Larissa Borissova, Andreas Ries,

Pierre Millette, Ebenezer Chifu, Gunn Quznetsov

∗Rabounski D. Florentin Smarandache: A Celebration. Progress in

Physics, 2014, issue 1, 25–27.

Prof. Florentin Smarandache,

Executive Editor of Progress in Physics
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A Physical Model of Pulsars as Gravitational Shielding
and Oscillating Neutron Stars

T. X. Zhang

Department of Physics, Alabama A & M University, Normal, Alabama 35762. E-mail: tianxi.zhang@aamu.edu

Pulsars are thought to be fast rotating neutron stars, synchronously emitting periodic
Dirac-delta-shape radio-frequency pulses and Lorentzian-shape oscillating X-rays. The
acceleration of charged particles along the magnetic field lines of neutron stars above
the magnetic poles that deviate from the rotating axis initiates coherent beams of ra-
dio emissions, which are viewed as pulses of radiation whenever the magnetic poles
sweep the viewers. However, the conventional lighthouse model of pulsars is only con-
ceptual. The mechanism through which particles are accelerated to produce coherent
beams is still not fully understood. The process for periodically oscillating X-rays to
emit from hot spots at the inner edge of accretion disks remains a mystery. In addition,
a lack of reflecting X-rays of the pulsar by the Crab Nebula in the OFF phase does not
support the lighthouse model as expected. In this study, we develop a physical model
of pulsars to quantitatively interpret the emission characteristics of pulsars, in accor-
dance with the author’s well-developed five-dimensional fully covariant Kaluza-Klein
gravitational shielding theory and the physics of thermal and accelerating charged par-
ticle radiation. The results obtained from this study indicate that, with the significant
gravitational shielding by scalar field, a neutron star nonlinearly oscillates and produces
synchronous periodically Dirac-delta-shape radio-frequency pulses (emitted by the os-
cillating or accelerating charged particles) as well as periodically Lorentzian-shape os-
cillating X-rays (as the thermal radiation of neutron stars whose temperature varies due
to the oscillation). This physical model of pulsars broadens our understanding of neu-
tron stars and develops an innovative mechanism to model the emissions of pulsars.

1 Introduction

Neutron stars are extremely compact objects, resulting from
supernova explosions of dying massive stars with 8 to 20 so-
lar masses. The theoretical prediction for the existence of
neutron stars in nature was proposed eight decades ago [1].
But the observational discovery of these compact objects was
only done in the middle of the 1960s from the measurement of
an unusual Dirac-delta-shape pulse-like radio emission from
the Crab Nebula [2,3] first observed by Chinese astronomers
in 1054. The mass and radius of neutron stars are mostly
around 1.4 solar masses and 10 to 20 km, respectively. The
recent measurement for the Shapiro delay of light from a bi-
nary millisecond pulsar has discovered a neutron star with a
mass of about two solar masses [4]; and other measurements
have found the radii of some neutron stars to be less than 10
km [5–7]. The mass-radius relation of these unusual neutron
stars has been modeled recently by [8].

The conventional interpretation for the observed Dirac-
delta-shape pulse-like radio emission was based on the light-
house model of pulsars as fast rotating neutron stars [9–12].
Figure 1 sketches a diagram for the lighthouse model of pul-
sars. Charged particles that are accelerated along the mag-
netic field lines of neutron stars above the magnetic poles pro-
duce or give off coherent beams of radio emissions, through
mechanisms which are, however, not yet entirely understood.
These beams are viewed as pulsing radio-frequency radiation

Fig. 1: A sketched diagram for the lighthouse model
of pulsars as fast rotating neutron stars (Credit:
www.pas.rochester.edu/afrank/A105). Charged particles, ac-
celerated by the magnetism of the neutron star, flow along the
magnetic field lines, producing radio radiation that beams outward.
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Fig. 2: A flashlight beam through the air (Credit:
www.youtube.com/watch?v=ggr5YQYqD0I). One can see the
beam, even if it does not point to the viewer, because the air reflects
the beam of the flashlight.

when the magnetic poles sweep the viewers. Twenty years
after the discovery of neutron stars, quasi-periodic oscilla-
tions (QPOs) of X-rays were observed first from white dwarfs
and then from neutron stars [13–14]. The recent observa-
tions of pulsar PSR B0943+10 by combining the X-ray tele-
scope XMM-Newton and the radio telescope LOFAR have
shown that this pulsar synchronously emits periodic Dirac-
delta-shape pulses of radio-frequency radiation and Lorentz-
ian shape oscillating X-rays [15]. At present, pulsar quasi-
periodically oscillating X-rays are believed to come from in-
ner edges of the accretion disks of white dwarfs, neutron stars,
and black holes, but the physical cause still remains unsolved
and a detailed consistent theory of how these fascinating stars
work remains elusive.

Fig. 3: X-ray images of the Crab Nebula. The left panel is the case
when the pulsar turns on and the right panel is the case when the pul-
sar turns off. When the beam of X-rays points away, why we cannot
see the radiation beam formed by the nebula reflection (Einstein Ob-
servatory image, Smithsonian Institution Photo No. 80-16234).

It is well known or experienced that a beam of flashlight
is visible from the side because part of the light is scattered
by the tiny particles like dust in the air (Figure 2). A beam
of radio waves can bend or change the direction of propaga-
tion due to ionospheric reflections and refractions. However,
the similar case does not happen for the beam of emissions
(including radio waves through gamma rays) from the pul-
sar in the Crab Nebula. In visible light, the Crab Nebula
consists largely of filaments with ionized gases of tempera-
ture ∼ 10 − 100 times higher than ionosphere and density
∼ 1 − 1000 times lower than ionosphere. The Crab Nebula,
though behaving unlike the air or ionosphere, should be able
to reflect or scatter the beams of radio waves or X-rays from
the pulsar. But the observations have not shown such events
occurring when the pulsar is in the OFF phase (see the right
image of Figure 3). Figure 3 shows the X-ray images of the
Crab Nebula taken by the Einstein Observatory when the pul-
sar is in the ON (the left panel) and OFF (the right panel)
phases. According to the lighthouse model, the ON phase of
the pulsar refers to the beam of radiation pointing to the Earth
or the viewer; while the OFF phase refers to the beam of ra-
diation pointing to other directions. The X-ray image of the
entire Crab Nebula in the ON phase is significantly brighter
than that in the OFF phase, especially the region above the
lighting pulsar. This indicates that the Crab Nebula does re-
flect/scatter some X-rays of the pulsar when the pulsar is ON.
However, there is not any reflection/scattering happened and
perceived when the beam points to other directions through
the Nebula in the OFF phase. This fact strongly implies that
our conventional lighthouse model may not work. The lack of
reflecting/scattering X-rays of the pulsar by the Crab Nebula
in the OFF phase does not support the lighthouse model as
expected. In the OFF phase, the pulsar is more likely to turn
the radiation off entirely rather than just to direct the radiation
away from the Earth or the viewer. In addition, the lighthouse
model may not be able to theoretically form, except for when
the deviation of the rotating axis from the magnetic poles is
negligible, a stable accretion disk and jets, which were clearly
seen in the X-ray images recently captured by the Chandra
Observatory. It is also hard to explain why some pulsars are
gamma rays only [16,17].

Recently, the author has developed a new mechanism for
supernova explosion caused by gravitational field shielding
[18], in accordance with his five-dimensional (5D) fully co-
variant Kaluza-Klein theory with a scalar field [8,19,20]. Ac-
cording to the gravitational field shielding theory, a supernova
explosion takes place when its core collapses to a critical den-
sity where the gravitational field suddenly disappears or is
shielded by the strong scalar field. At this moment, the ex-
tremely large pressure of matter immediately stops the core
from collapsing and then the core quickly expands to power-
fully push the mantle part of the supernova moving radially
outward as a supernova explosion. As the core expands, the
gravity resumes. After the mantle explodes out of the super-
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nova, the core is left as a neutron star and starts to oscillate
about its equilibrium of gravity and pressure. Rather than the
rotation, acoustic wave and neutrino driven mechanisms of
supernova explosions, this new mechanism is driven by the
extreme pressure of the core when the gravitational field is
suddenly weakened by the strong scalar field.

In this paper, we develop a physical model of pulsars,
through which we propose an alternative explanation for neu-
tron stars to emit the Dirac-delta-shape pulse-like radio fre-
quency radiation and the Lorentzian shape oscillating X-rays,
in terms of the 5D gravitational field shielding theory and the
self-gravitating oscillations of neutron stars. We will also dis-
cuss how the frequency of emissions depends on the mass of
the neutron star, the initial conditions, the equation of state,
and the frozen magnetic field. In contrast to the conceptual
lighthouse model, this physical oscillating model is based on
the simple physics of thermal and accelerating charged par-
ticle radiation and the 5D gravity, and predicts power-time
profiles of pulsars that are highly consistent with the mea-
surements and observations.

2 Emissions of oscillating neutron stars

As described above, a neutron star starts to oscillate about
its equilibrium of gravity and pressure once the mantle is ex-
ploded out of the supernova. The oscillation of the neutron
star oscillates or accelerates inside particles. At the surface or
in the crust, the acceleration of particles can be simply given
by the following equation of motion,

a(t) ≡ d2R(t)
dt2 = −g(R) − 1

ρ(R)
dP(ρ)

dR
, (1)

where a(t) is the acceleration of the particle; R(t) is the radial
distance of the particle or simply the radius of the neutron
star; ρ(R) is the density of neutron star; P(ρ) is the pressure of
neutron star, which in this study is given by the Skyrme model
for the Equation of State (EOS) of neutron stars [21,22],

P = 5.32 × 109ρ5/3 + 1.632 × 10−5ρ8/3 − 1.381 × 105ρ2, (2)

in the cgs unit system; and g(R) is the gravitational field or ac-
celeration, which in this study is determined according to the
five-dimensional fully covariant Kaluza-Klein gravitational
shielding theory with a scalar field that the author previously
developed [18],

g =
c2

2φ2

(
dφ
dr

+ φ
dν
dr

)
e−λ, (3)

in the Einstein frame. Here the scalar field φ, the metric 00-
and 11-components eν and eλ were solved as ([19] and refer-
ences therein)

φ2 = −α2 ψ4 + (1 + α2)ψ−2, (4)

eν = ψ2 φ−2, (5)

eλ =

(
1 − B2

r2

)2

ψ−2, (6)

in the Jordan frame, where ψ, B, and α are given by

ψ =

( r − B
r + B

)1/
√

3

, (7)

B =
GM√

3(1 + α2) c2
, (8)

α =
Q

2
√

GM
. (9)

This solution does not have an unknown parameter and re-
duces to the Schwarzschild solution in the Einstein frame
when fields are weak and matter that generates the fields is
neutral [8,18,23]. The weak field tests of general relativity are
also the tests of this 5D gravity. In the case of strong fields,
especially charged, the 5D gravity gives new effects such as
the space polarization [24,25], electric redshift [19], gravita-
tional field shielding or spacetime flattening [18], gravitation-
less black hole [23], and so on. The new effects are results of
the strong scalar field, which significantly reduces the local
gravity or, in other words, decreases the equivalent gravita-
tional constant [20].

Figure 4a plots the radial distance as a function of time
that is obtained from numerically solving (1). The result in-
dicates that the neutron star nonlinear periodically oscillates,
non-uniformly with quick stop and bounce by the pressure
force when the gravity loses its dominance. It is in a dy-
namic equilibrium state rather than a static one. According
to the gravitational shielding model [18], a supernova explo-
sion takes place, due to the extremely large pressure push-
ing outward, when its core collapses to a critical density, at
which the gravitational field suddenly disappears or is shed
by the strong scalar field. Once a supernova or a dying star
has exploded its mantle, the core as a stellar remnant forms
a neutron star, located at the center of the supernova progen-
itor, with a relative large initial radius where the gravity is
resumed. Then, the formed neutron star starts to gravitation-
ally compress from its initial state. As it squeezes, the scalar
field increases and reduces the gravitational field or flattens
the spacetime again. To about the critical density, the gravi-
tational field is disappeared or shed again by the strong scalar
field. At this moment, the extensive pressure immediately
stops the neutron star from the further collapse and extremely
drives the neutron star to rapidly expand. Particles are ex-
tremely accelerated by the extensive pressure when the grav-
itational field is shed. After the neutron star is sufficiently ex-
panded, the gravity resumes because the scalar field is weak-
ened. When the gravity becomes dominant, the neutron star
collapses again. This periodic switching of the dominance be-
tween the gravity and the pressure force leads to a nonlinear
oscillation of the neutron star. Here in Figure 4 as an example
we have chosen the mass of the neutron star to be about 1.5
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Fig. 4: Oscillation of a neutron star with 1.5 solar masses versus
synchronous emissions of the Dirac Delta shape radio pulses and
the Lorentzian shape X-ray oscillations. The radial distance (a), the
power of radio emission (b), and the power of X-ray emission (c)
are plotted as functions of time. The initial conditions for the radial
distance and velocity of oscillation are chosen to be R0 = 22 km and
v0 = 0.

solar masses; and the initial radial distance and velocity to be
about R0 = 22 km and v0 = 0, respectively.

The accelerating particles, if electrically charged, gener-
ate radio emissions. According to the Larmor equation [26],
the power of radio emissions generated by the accelerating
charged particle is proportional to the square of the magni-
tude of the acceleration,

Pr(t) =
q2a2(t)
6πε0c3 ∝ a2(t), (10)

where q is the particle charge; ε0 is the dielectric constant in
the free space; and c is the speed of light in free space. Figure
4b plots the power of radio emissions normalized to the power
at the initial state, in terms of the Larmor equation (10) and
the acceleration (1). The result indicates that the radio emis-
sions by the nonlinearly oscillating neutron star are periodi-
cally pulse-like radiation with the Dirac delta shape, which is
consistent with the general observations of pulsars. A neutron
star could be possibly charged as a consequence of holding
some certain amount of net protons or nuclei. The fraction
and effect of protons in neutron stars have been considered
for years [27,28]. To explain the observations of Geminga,

a model of a dense neutron star with localized protons was
proposed [29,30]. In [28], the maximum amount of charge in
a compact star can be ∼ √GM , which is ∼ 2.5× 1020 C for a
neutron star with 1.5 solar masses.

On the other hand, a hot neutron star can emit thermal or
blackbody radiation in the frequency range of X-rays. For in-
stance, according to Wien’s law, the frequency of blackbody
radiation at the maximum or at the peak of the power by a hot
body with surface temperature of 100 million Kelvins is about
1019 Hz, which is in the frequency range of X-rays. The total
power of X-rays emitted by a hot neutron star can be given by

PX(t) = 4πR2(t)σT 4(t) ∝ R−δ(t), (11)

where σ is the Stefan-Boltzmann constant. Here we have
also considered that the surface temperature of the neutron
star varies as the neutron star oscillates, or in other words,
the temperature is a function of the radius or density. Fig-
ure 4c plots the power of X-rays normalized to the initial
power, in terms of the blackbody radiation or (11). Here
we have chosen the index δ = 3/2, which corresponds to
T ∝ R−(δ+2)/4 = R−7/8. Choosing a larger δ does not alter the
shape of the radiation, but can lead to a more significant os-
cillation of X-ray emissions, because the variation of temper-
ature responding to the oscillation of neutron star increases
with the index δ. The result shown in Figure 1c indicates that
the X-rays emitted by the nonlinearly oscillating neutron star
are synchronous periodically oscillating blackbody radiation
with the Lorentzian shape, which is also consistent with the
general observations of pulsars.

A neutron star may have a temperature as high as thou-
sand billion degrees (1012 K) at the moment of its birth by an
explosion of a supernova and then quickly cools down to a
hundred million degrees (108 K) because of its strong radia-
tion and neutrino emissions [31]. Therefore, for an early-aged
neutron star, if the temperature is above 1010 K, the domi-
nant thermal or blackbody radiation can be gamma rays. In
other words, a younger pulsar as a hotter neutron star can
emit gamma-rays mainly, which may explain the gamma ray
only pulsars recently measured by NASA’s Fermi Gamma
Ray Telescope [32,33].

The frequency of the pulses shown in Figure 4 is about
2000 Hz (with a period of about 0.5 milliseconds), which de-
pends on (1) the mass of the neutron star, (2) the initial kinetic
and potential energy of the neutron star (or initial conditions
of R0 and v0), and (3) the applied EOS. In general, at the
same initial conditions with the same applied EOS, the pulse
frequency is higher if the mass of the neutron star is greater
because a larger mass, and thus larger gravity, collapses the
neutron star quicker. Figures 5 and 6 show, respectively, the
radial distance and the radio emission power for oscillating
neutron stars with four different masses under the same ini-
tial conditions and the same applied EOS. It is seen that the
frequency decreases with decreasing neutron star mass. For a
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Fig. 5: Oscillations of neutron stars. The radial distance is plotted
as a function of time for neutron stars with mass equal to 2, 1.5, 1,
and 0.5 solar masses, respectively, from (a) through (d). The initial
conditions and applied EOS are the same as in Figure 4.

neutron star with mass four times smaller, the pulse frequency
will be twice lower. The oscillation model of pulsars also
gives very precise intervals between pulses as shown in Fig-
ures 3 to 5. Different pulsars can have quite different periods
of pulses because they have different masses and start their
oscillations from different initial states. Given a neutron star,
the periodic switch between gravity and pressure dominant
forces does not vary the period or frequency of oscillation.

3 Discussions and conclusions

For neutron stars with the same mass and the same applied
EOS, the frequency of pulses is lower if the initial R0 or v0
is greater, because it takes a longer time to make one oscil-
lation not only due to the longer course for the oscillation
but also due to the weaker initial gravity. For neutron stars
with the same mass and at the same initial state of motion,
the frequency is greater if the density dependence of the pres-
sure determined by the EOS is harder, because the pressure
gradient push is greater and thus the oscillation is faster. On
the other hand, the oscillation of the neutron star compresses
and relaxes the frozen magnetic field of the neutron star as
well as varies the particle radial speed of motion. The mag-

Fig. 6: Radio emissions of oscillating neutron stars. The power of
radio emissions for neutron stars with mass equal to 2, 1.5, 1, and
0.5 solar masses, respectively, from (a) through (d). The initial con-
ditions and applied EOS are the same as in Figure 5. The powers for
all cases are normalized.

netic pressure and speed gradients also play some role in re-
sisting the oscillations and thus decreasing the frequency of
the oscillations, but not changing the emission characteris-
tics. Therefore, oscillation periods of neutron stars can be in
a wide range [34,35], when all these effects are considered.
Details on these effects will be studied next.

The oscillation of a neutron star will be damped and thus
slowed down due to the loss of energy or mass. Neutron stars
can speed up their oscillations when they accrete more energy
or mass than they lose. They may also twitch or glitch their
pulses when their states of matter suddenly change [36,37].
Very hot neutron stars (e.g. 1010 K) may emit oscillating
gamma rays [38,39]. Sufficiently cooled down neutron stars
(e.g. 106 K) can emit oscillating ultraviolet radiation [40]. All
the temperature-related emissions are periodically oscillating
with the Lorentzian shape. Only the acceleration-related ra-
dio frequency emissions are pulse-like with the Dirac delta
shape. Since electrons have much smaller inertia than nu-
clei, the pressure gradient buoyant forces accelerate them in
different strengths with time lag. Therefore, the radio emis-
sions from electrons and nuclei in the neutral crust of an os-
cillating neutron star are not completely destructed. Net ra-
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dio emissions from the electrons and nuclei in the neutral
crust of a neutron star can be generated by the self-gravitating
oscillating neutron star. Due to the time lag, each primary
pulse, which is produced by electrons, may follow a sec-
ondary pulse, which is produced by nuclei.

The sudden disappearance of gravitational field due to the
shielding by the strong scalar field is significant for the ra-
dio emissions of neutron stars to be pulses with the Dirac
delta shape. Under the Newtonian and Einsteinian gravita-
tional theories, the gravitational oscillations of neutron stars
may also produce the observed Dirac delta shape radio emis-
sions, but need the neutron star to be over compressed in order
for the pressure gradient push to dominate the non-shielding
strong gravity. On the other hand, it should be noted that (1)
and (2) are valid only for non-relativistic motion. According
to the calculation done in Figure 1, we can see that the max-
imum speed of the oscillation is less than about one third of
the light speed in vacuum. In this case, we have a relativistic
factor γ < 1.1, which means that the relativistic effect is not
significant and thus negligible. The shape of radio emissions
depends on the acceleration of charged particles and the shape
of X-ray emissions depends on the surface temperature or ra-
dius of the neutron star. This physical model quantitatively
explains the emission characteristics of pulsars.

The energy dissipation deficiently decreases the neutron
star’s total energy, mass, amplitude of oscillation, EOS (or the
bounce of the neutron star), magnetic field strength, and thus
slightly changes or reduces both the power and frequency of
pulses. The small energy dissipation or loss due to radiation
(or damping) can only weakly slow down the pulses. The
measured polarizations of pulsars can be considered as the
causes of particles flowing, electromagnetic activities, and
unevenly distributed surface temperatures. This paper has
only addressed the radio emission of charged particles that
are accelerated due to the oscillation of the neutron star. If
we also consider the radio emission of charged particles that
are accelerated due to particle flowing and electromagnetic
activities, the pulse profiles should be polarized with multi-
ple components [41–43] and complicated pulse profiles. The
Dirac-delta shape and Lorentzian shape are only the main
characteristics (i.e. periodicities) of radio pulses and X-ray
emissions. The emissions of pulsars are gravitation-powered
with effects of rotation, accretion, and/or magnetism, respec-
tively. The gravitational (or oscillatory) energy dissipation
provides the power for the pulsar-nebula system. The radio
emissions are coherent with high brightness temperature be-
cause charged particles are coherently accelerated along with
the oscillation of neutron stars. The X-ray emission of a pul-
sar is thermal but with the temperature varying in a range
rather than a single temperature. To obtain the energy spec-
tra of X-rays, we must integrate the flux of emission over a
temperature range. The result of integration should be non-
thermal as measured. All these aspects will be explored in
details in future.

As a summary, we have developed a physical model of
pulsars to quantitatively interpret the emission characteristics
of pulsars, in accordance with the five-dimensional fully co-
variant Kaluza-Klein gravitational shielding theory and the
physics of thermal and accelerating charged particle radia-
tion. With the significant gravitational shielding by the strong
scalar field, a neutron star nonlinearly oscillates and produces
synchronous periodically Dirac-delta-shape pulse-like radio-
frequency radiation as well as periodically Lorentzian shape
oscillating X-rays. The oscillating or accelerating charged
particles produce the Dirac-delta-shape pulse-like radio fre-
quency radiation, while the thermal/blackbody radiation of
neutron stars that oscillate and thus vary the temperature pro-
duces the Lorentzian shape X-rays. This physical model of
pulsars as gravitational shielding and oscillating neutron stars
broadens our understanding of neutron stars and develops an
innovative mechanism to disclose the mystery of pulsars.
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The Structured Proton and the Structureless Electron
as Viewed in the Planck Vacuum Theory
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This paper argues that the proton possesses structure because the positive proton charge
attracts the negative-energy vacuum toward the massive proton core, exposing a small
spherical portion of that vacuum to free-space perturbations. Calculations indicate that
the apparent charge spread of the proton is due to this structure.

1 Introduction

The proton and electron are Dirac particles in the sense that
they both possess a Compton radius and they both obey the
Dirac equation, but the positive and negative charge of the
proton and electron make their characteristics radically dif-
ferent. For example, the proton is smaller and more massive
than the electron because of this charge difference [1]. It is
shown below that this difference also accounts for the proton
structure and its apparent charge spread. The structure is the
result of the perturbed Planck vacuum (PV) state [2] in the
vicinity of the massive proton core.

In its rest frame the proton core (e∗,mp) exerts the follow-
ing two-term coupling force [3] [4]

Fp(r) =
(e∗)(−e∗)

r2 +
mpc2

r
= −Fs


r2

p

r2 −
rp

r

 (1)

on the PV negative-energy continuum, where the proton Co-
mpton radius rp (= e2

∗/mpc2) is the radius at which the force
vanishes. The mass of the proton is mp and the bare charge e∗
is massless. The radius r begins at the proton core and ends
on any particular Planck-particle charge (−e∗) at a radius r
within the PV. The strong force

Fs ≡
∣∣∣∣∣∣
(e∗)(−e∗)

r2
p

∣∣∣∣∣∣ =
mpc2

rp
(2)

is the magnitude of the two forces in the first sum of (1)
where the sum vanishes. The (e∗) in (1) and (2) belongs to
the free-space proton and the (−e∗) to the separate Planck
particles of the PV, where the first and second ratios in (1)
and (2) are vacuum polarization and curvature forces respec-
tively. It follows that the strong force is a proton/PV force
(rather than a free-space/free-space force). The Planck par-
ticle mass m∗ and Compton radius r∗ are equal to the Planck
Mass and Planck Length [5, p. 1234]. (The three Compton re-
lations remec2 = rpmpc2 = r∗m∗c2 = e2

∗ and c~ = e2
∗ are used

throughout the preceding and the following calculations.)
The massive electron core (−e∗,me) exerts the coupling

force

Fe(r) =
(−e∗)(−e∗)

r2 − mec2

r
= Fw

(
r2

e

r2 −
re

r

)
(3)

Fig. 1: Graphs of the normalized coupling forces Fp(r)/Fs with rp =

1 (negative to the left), and Fe(r)/Fw with re = 1 (positive to the left).
(re/rp = 1836)

on the vacuum state and leads to the Compton radius re (=
e2
∗/mec2), where the first (−e∗) in (3) belongs to the electron.

The weak force

Fw ≡ (−e∗)(−e∗)
r2

e
=

mec2

re
(4)

is the magnitude of the two forces in the first sum of (3) where
the sum vanishes. Again, the first and second ratios in (3) and
(4) are vacuum polarization and curvature forces respectively.
Thus the weak force, like the strong force, is an electron/PV
force.

It is important to note that, for r < rp � re, Fp(r) and
Fe(r) are negative and positive respectively (Figure 1). That
is, the proton and electron cores attract and repel respectively
the Planck particles (−e∗,m∗) within the PV. This is the phe-
nomenon that gives the proton structure, while denying struc-
ture to the electron.
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Fig. 2: Graphs of the normalized coupling potentials Vp(r)/mpc2

with rp = 1 (upper curve), and Ve(r)/mec2 with re = 1 (lower curve).
(re/rp = 1836)

2 Proton structure

The potential energy associated with the coupling forces (1)
and (3) is defined as

V(r) =

∫
F(r)dr + V0 (5)

so that dV/dr = F and V(rc) = 0, where rc = e2
∗/mc2 is

the force’s Compton radius. For the proton and electron this
definition leads to

Vp(r)
mpc2 =

rp

r
− 1 − ln

( rp

r

)
(6)

and
Ve(r)
mec2 = 1 − re

r
+ ln

( re

r

)
(7)

where (6) and (7) yield Vp(r) ≥ 0 and Ve(r) ≤ 0 over the
entire range of the radius r (Figure 2).

The spirit of the Klein Paradox discussed in Appendix A
is that, if a region of free space is subjected to a sufficiently
large positive potential, then an electron impinging on that
region can extract energy from the negative-energy vacuum
state. The following assumes that this paradox reflects a real
physical phenomenon, implying that the positive charge of
the proton core (but not the negative charge of the electron
core) can expose a small region of the PV to perturbations
from free-space particles. This conclusion leads to a struc-
tured proton and a structureless electron.

Equation (6) yields the quadrature formula

x = 1 +
Vp

mpc2 + ln x with x ≡ rp/r (8)

from which the proton structure can be derived, where x is
defined in the open interval (0,∞). The proton-proton (p-p)
overlap radius (Appendix A) is determined by setting Vp =

2mpc2 in (8) and results in

x = 3 + ln x (9)

which leads to x = 4.50 and the p-p overlap radius r1 (≡
rp/4.50). This is the radius where the negative-energy level
−mpc2 of the vacuum state just enters the positive-energy
level mpc2 of the free-space proton in its rest frame.

The negative energy maximum associated with the PV is
−mec2. Thus the proton electron-proton (e-p) overlap radius
results from Vp = mpc2 + mec2 and yields

x = 1 +
(mpc2 + mec2)

mpc2 + ln x

= 2 +
rp

re
+ ln x ≈ 2 + ln x

(10)

where me/mp = rp/re = 1/1836. Solving (10) leads to x =

3.15 and r2 (≡ rp/3.15) for the e-p overlap radius. The sphere
within the outer overlap radius r2 (> r1) represents the to-
tal exposed portion of the PV, and the surface of that sphere
takes on a positive polarization charge due to the proton-core
charge.

The size of the core (−e∗,me) in the Dirac electron is no
larger than re/39, 000 [6] [7, pp. 402-403]; so it is reasonable
to conclude that the proton core is similarly reduced in size
below rp. From the preceding the following picture of the
proton structure emerges: the “point charge” proton core has
a radius r0 (< rp/39, 000); the p-p overlap radius is r1; and
the e-p overlap radius is r2. The e-p surface at r2 sustains a
polarization charge caused by the core polarizing the exposed
PV within that radius.

3 Charge spread

The core-charge polarization of the PV in the proton case
leads to an apparent spread in the proton charge that can be
roughly expressed in the proton electric field as

E(r) =
e(r)
r2 (11)

where the spread is

e(r) =



e∗ , r < r0
< e∗ , r0 < r < r2
∼ e , r2 < r < rp

e = α1/2e∗ , rp < r

(12)

and α (≈ 1/137) is the fine structure constant. An important
characteristic of this result is the large charge gradient

∆e
∆r

=
e∗ − e
r2 − r0

≈ e∗(1 −
√
α)

rp/3.15
≈ 2.9e∗

rp
(13)

between the core charge e∗ and the polarization charge at r2.
This result explains a similar gradient in the QED spread de-
picted in Figure 11.6 of [8, p. 319].
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Appendix A: Overlap radii

In the Klein Paradox [9, p. 127], a free electron propagates
in the positive z-direction until it collides with the free-space
region II in which the negative energy vacuum has been dis-
torted by the positive step-potential

eφ =

{ 0 for z < 0 (region I)
V0 for z > 0 (region II) (A1)

that is externally applied to the half-space z > 0. The Klein
Paradox demonstrates that a sufficiently strong positive free-
space potential can expose a portion of the vacuum state to
“attack” by free-space particles.

For V0 = 0, the positive energy continuum for an elec-
tron in regions I and II increases from mec2 in the positive
energy direction, while the negative-energy vacuum contin-
uum decreases from −mec2 in the negative-energy direction.
When the positive step-potential is imposed on the z > 0 half-
space, however, the negative energy continuum in region II is
increased as a whole by V0. The electron positive energy con-
tinuum and the vacuum negative energy continuum can then
overlap in region II. The plane at z = 0 is referred to in the
present paper as an overlap boundary, and region II as the
corresponding overlap region.

Upon collision with the step, the electron excites electron-
positron pairs, the electrons and positrons propagating in the
negative and positive z-directions respectively. In order for
there to be pair excitation, the perturbing potential V0 must
satisfy the inequality

V0 > E + mec2 = (m2
ec4 + c2 p2)1/2 + mec2 (A2)

where E and p are the relativistic energy and momentum of
the incident electron.

In the proton rest frame, the proton core (e∗,mp) is re-
sponsible (via the coupling force (1)) for distorting the PV
and for exposing the negative energy continuum to the free
space around the core. The free-space spherical surfaces whe-
re the various positive and negative energy continua begin to
overlap are defined in the present paper as overlap radii. The
surface at the e-p overlap radius develops a positive polariza-
tion charge due to the polarizing effect of the positive core
charge.
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Affirming Kirchhoff’s Law of thermal emission, Max Planck conferred upon his own

equation and its constants, h and k, universal significance. All arbitrary cavities were

said to behave as blackbodies. They were thought to contain black, or normal radiation,

which depended only upon temperature and frequency of observation, irrespective of the

nature of the cavity walls. Today, laboratory blackbodies are specialized, heated devices

whose interior walls are lined with highly absorptive surfaces, such as graphite, soot, or

other sophisticated materials. Such evidence repeatedly calls into question Kirchhoff’s

Law, as nothing in the laboratory is independent of the nature of the walls. By focusing

on Max Planck’s classic text, “The Theory of Heat Radiation’, it can be demonstrated

that the German physicist was unable to properly justify Kirchhoff’s Law. At every turn,

he was confronted with the fact that materials possess frequency dependent reflectivity

and absorptivity, but he often chose to sidestep these realities. He used polarized light to

derive Kirchhoff’s Law, when it is well known that blackbody radiation is never polar-

ized. Through the use of an element, dσ, at the bounding surface between two media,

he reached the untenable position that arbitrary materials have the same reflective prop-

erties. His Eq. 40 (ρ= ρ′), constituted a dismissal of experimental reality. It is evident

that if one neglects reflection, then all cavities must be black. Unable to ensure that

perfectly reflecting cavities can be filled with black radiation, Planck inserted a minute

carbon particle, which he qualified as a “catalyst”. In fact, it was acting as a perfect

absorber, fully able to provide, on its own, the radiation sought. In 1858, Balfour Stew-

art had outlined that the proper treatment of cavity radiation must include reflection.

Yet, Max Planck did not cite the Scottish scientist. He also did not correctly address

real materials, especially metals, from which reflectors would be constructed. These

shortcomings led to universality, an incorrect conclusion. Arbitrary cavities do not con-

tain black radiation. Kirchhoff’s formulation is invalid. As a direct consequence, the

constants h and k do not have fundamental meaning and along with “Planck length”,

“Planck time”, “Planck mass”, and “Planck temperature”, lose the privileged position

they once held in physics.

. . . That the absorption of a particle is equal to its

radiation, and that for every description of heat.

Balfour Stewart, 1858 [1]

1 Introduction

Seldom does discovery bring forth scientific revolution [2].

In this regard, there can be no greater exception than Max

Planck’s [3] introduction of the quantum of action, at the be-

ginning of the twentieth century [4, 5]. Within “The The-

ory of Heat Radiation” [5] Planck outlined the ideas which

gave life both to this revolution and to the concept that fun-

damental constants existed which had universal significance

throughout nature. The pillars which supported his ideas in-

cluded: 1) Kirchhoff’s Law of thermal emission [6, 7], 2) the

irreversability of heat radiation, and 3) the adoption of dis-

crete states.∗ He utilized Kirchhoff’s Law not only to assist in

the derivation of his equation, but to infer universality. Max

Planck concluded that all cavities, irrespective of experimen-

tal evidence, would eventually become filled with blackbody,

or normal, radiation. He argued that, if a cavity did not con-

tain black radiation, the cause was a lack of thermal equilib-

rium, which could be easily rectified by the introduction of

a minute particle of carbon [8]. For Max Planck, as for his

teacher Gustav Kirchhoff [9], cavity radiation was indepen-

dent of the nature of the enclosure. In reality, such ideas were

not supported by experiment, as arbitrary cavities do not con-

tain black, or normal, radiation. By applying his law to all

cavities, the father of quantum theory detached his equation

from physical reality itself. In truth, Planck’s equation was

only valid for laboratory blackbodies constructed from highly

∗The Theory of Heat Radiation is readily available online [5].
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absorbing materials.

As a direct consequence, Planck’s equation was never

linked to a particular physical process and he did not provide

physics with a cause for thermal emission. In fact, Kirch-

hoff’s Law prevented him from advancing such a link [8,10].

The exact nature of the oscillators responsible for thermal

radiation could not be identified. Planck emphasized that

[5, § 111],

“. . . to attempt to draw conclusions concerning

the special properties of the particles emitting

the rays from the elementary vibrations in the

rays of the normal spectrum would be a hopeless

undertaking”.

Studying Planck’s classic text, the reader is eventually

brought to the equation which governs specific intensity Kν
[5, Eq. 300],

Kν =
h ν3

c2

1

e
hν
kT − 1

, (1)

wherein ν, c, h, k and T represent the frequency of interest,

the speed of light,∗ Planck’s constant, Boltzmann’s constant,

and absolute temperature, respectively. The validity of this

equation appears to have been established for blackbodies;

namely those specialized heated cavities whose interior is al-

ways lined with good absorbers over the frequency of inter-

est, such as graphite, soot, carbon black, or other specialized

materials (see [8] and references therein). Max Planck rec-

ognized that blackbodies were complex devices, as the data

provided for his analysis had been obtained by some of the

premier experimentalists in Germany [11–13].

He relied on the work of Rubens and Kurlbaum [11,13] to

secure the data which led to Eq. 1. In this regard, it is impor-

tant to note the elaborate experimental setup used [11, 13]. It

was very far from a simple cavity. These results made use of

“the method of residual rays”, a process which actually took

place well beyond the confines of the cavity [11, 13]. Re-

peated reflections were supported by using crystals of quartz,

fluorite, rocksalt, and sylvine, each for a given frequency of

interest [11, 13]. The desired data points could only be ob-

tained with an apparatus used to select the frequency of inter-

est at the proper intensity.

In themselves, such extreme experimental methods con-

firmed that not all enclosures were filled with black radiation.

Surely, if arbitrary cavities contained black radiation, there

should have been no need for the use of these sophisticated

approaches [13].

In this regard, it is also interesting to note that when faced

with non-compliant experimental facts, scientists often in-

voke the inability to reach thermal equilibrium. This is espe-

cially true when cavities are constructed from materials with

a low emissivity. Such arguments are not reasonable, given

∗The United Nations has declared that 2015 will be the “Year of Light”.

the speed of light and the relative ease of maintaining tem-

perature equilibrium in metallic objects through conductive

processes. Laboratory findings do not support Planck’s posi-

tion relative to Kirchhoff’s Law.

Clearly, real blackbodies were much more than simple ar-

bitrary cavities [11–13]. Yet, Max Planck believed with cer-

tainty in the universality of Kirchhoff’s Law. It is this as-

pect of Planck’s work which must be carefully considered.

For if it holds true, then Eq. 1 continues to have far-reaching

consequences. It can be applied to any thermal spectrum,

whether on Earth in the laboratory, or within any astrophysi-

cal context, provided of course, that thermal equilibrium can

be demonstrated.† However, if Kirchhoff’s Law can be shown

to be false, then Planck’s equation, while still valid for

laboratory blackbodies, loses all universal significance [8,10,

14–19].

It could no longer be used indiscriminately outside of the

laboratory, at least if the observer could not ensure that the

source of the observed spectrum originated from a known

solid. Hence, all applications of Planck’s law in astronomy

would very likely constitute violations of its required set-

ting. In addition, the fundamental nature of Planck’s constant,

Boltzmann’s constant, and of “Planck length”, “Planck time”,

“Planck mass”, and “Planck temperature” would forever be

lost. All would have ordinary significance. They would be no

more fundamental for physics than the mile versus the kilo-

meter. Everything simply becomes a question of the scale

physics chooses to select, rather than scales being imposed

upon mankind by nature itself. Consequently, Max Planck’s

conclusion that Eq. 1 could be applied to all arbitrary cavities

had great implications.

It remains an experimental fact that good reflectors, such

as silver, are never utilized to construct blackbodies, in di-

rect contradiction to Kirchhoff’s claim that cavity radiation

is independent of the nature of the walls from which it is

comprised. Silver walls would prefer to increase their tem-

perature when confronted with an influx of heat, such as that

typically used to drive blackbodies in the laboratory (see [8]

and references therein). They would not easily maintain their

temperature while building a radiation field within a cavity

using reflection (see [19] for a discussion). It has also not

been established that cavities constructed from walls of low

emissivity can contain Lambertian emission. These are some

of the reasons why Kirchhoff’s Law fails.

As such, how could this law have survived for so long?

In order to answer this question, it is important to revisit both

the experimental and theoretical foundations which brought

forth Kirchhoff’s Law. For this exposition, the journey will

begin with the experiments of Balfour Stewart [1] in keep-

ing with the reality that experiments [10], not solely theory,

govern the laws of physics. At this point, the work of Gus-

†There must be radiative equilibrium, no temperature changes, and no

conduction or convection taking place in the system of interest.
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tav Kirchhoff [6,7] must be discussed, especially as related to

his treatment of reflection. Then, finally, a detailed analysis

of Max Planck’s derivation of Kirchhoff’s Law, as outlined

in “The Theory of Heat Radiation” [5], will be presented. It

will be demonstrated that Planck’s derivation suffers, not only

with minor problems, but with significant departures from ex-

perimental reality.

2 Balfour Stewart and the Law of Equivalence

Balfour Stewart was a Scottish physicist. In 1858, one year

before Kirchhoff’s Law was proposed [6, 7], Stewart pub-

lished what can be considered one of the most important

works in the history of thermal emission [1]. His analysis of

radiation was entirely based on experimental grounds. Hence,

he never claimed, as law, principles which could not be

proven experimentally [1]. Using actual measurements with

material plates made of various substances, Stewart formu-

lated the Law of Equivalence, first in §19 of his work [1],

“The absorption of a plate equals its radiation,

and that for every description of heat”,

and then in §33 [1],

“That the absorption of a particle is equal to its

radiation, and that for every description of heat”.

At the same time, he addressed cavity radiation, arriving

at a general principle by considering a single theoretical ar-

gument. For Stewart, this principle did not rise to the level of

a law, precisely because the conclusion had not been exper-

imentally verified. He treated cavity radiation purely from

a theoretical perspective and highlighted that the radiation

which should come to fill the cavity resulted from the radia-

tion emitted, in addition to the radiation which had been built

up by reflection. The arguments advanced, being theoretical

and not experimental, prevented him from formally proposing

a new law with respect to cavity radiation. Rather, he spoke

of a general principle [1],

“Although we have considered only one partic-

ular case, yet this is quite sufficient to make the

general principle plain. Let us suppose we have

an enclosure whose walls are of any shape, or

any variety of substances (all at a uniform tem-

perature), the normal or statical condition will

be, that the heat radiated and reflected together,

which leaves any portion of the surface, shall be

equal to the radiated heat which would have left

that same portion of the surface, if it had been

composed of lampblack. . . Let us suppose, for in-

stance, that the walls of this enclosure were of

polished metal, then only a very small quantity

of heat would be radiated; but this heat would be

bandied backwards and forwards between sur-

faces, until the total amount of radiated and re-

flected heat together became equal to the radia-

tion of lampblack”.

The problem is that good reflectors do not readily emit radia-

tion. As such, in order to drive the reflection term, one must

try to inject heat into the walls of these cavities, while hoping

that additional photons will be produced. But, if one attempts

to pump heat into their walls using conduction, for instance,

the temperature of the walls can simply increase [18, 19].

Nothing dictates that new photons can become available for

the buildup of the reflective term, while maintaining the cav-

ity at the same temperature. One can infer that good reflectors

can easily move away from the temperature of interest and fall

out of thermal equilibrium. As a result, they cannot easily be

filled with the desired radiation, even if theoretical arguments

suggest otherwise. In the real world, nothing is independent

of the nature of the materials utilized.

Stewart recognized that, if one could “drive the radiation”

in a cavity made from arbitrary materials, by permitting the

slow buildup of reflected radiation, the interior could eventu-

ally contain black radiation. The argument was true in the-

ory, but not demonstrated in practice. Stewart remained con-

strained by experimental evidence. The situation could not be

fully extended in the laboratory.

From Balfour Stewart, we gain three important lessons.

First, he correctly supplied the Law of Equivalence: Given

thermal equilibrium, the emission of an object is equal to its

absorption. Second, he outlined the principle that cavity ra-

diation can become black, in theory, in the event that the re-

flective term can be driven. Third, and most importantly, he

did not advance a new law of physics without experimental

confirmation.

3 Gustav Kirchhoff: Physics from Theory Alone

Soon after Balfour Stewart formulated the Law of Equiva-

lence [1], Gustav Kirchhoff published his law of thermal

emission [6,7]. Almost immediately, the work was translated

into English by F. Guthrie [7] and Kirchhoff’s paper was then

re-published in the same journal where Stewart had presented

his law the year before. At this point, a battle ensued between

Kirchhoff and Stewart.∗ The problem centered on Kirchhoff’s

attempt to dismiss Stewart’s priority claims for the Law of

Equivalence. Kirchhoff did so by arguing that Stewart had

not brought forth sufficient theoretical support for his law. As

for Stewart, he believed that the law had been experimentally

proven, even if his mathematical treatment might have lacked

sophistication.

In any event, Kirchhoff’s paper went much beyond the

Law of Equivalence. Thus, Stewart, who had outlined the

principle that arbitrary cavities might come to hold black radi-

ation, did not insist that this was always true [1]. Conversely,

Kirchhoff formulated this conclusion as a law of physics, but

∗An excellent treatment of this incident has already been published [20]

and one of the authors has also addressed the issue [8].
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he did so without recourse to a single experiment. Both of his

proofs were theoretical [6, 7].

To begin his investigation, Kirchhoff, in the first section

of his text, defined a blackbody as follows [7, § 1]:

“This investigation will be much simplified if we

imagine the enclosure to be composed, wholly or

in great part, of bodies which, for infinitely small

thickness, completely absorb all rays which fall

upon them”.

Note the emphasis on the absorption by an element of in-

finitely small thickness. The contrast between Kirchhoff’s

definition of a blackbody and that adopted by Max Planck

was profound [5], as will be discovered below. In any event,

in §3 of his classic paper [7] Kirchhoff presented his law as

follows,

“The ratio between the emissive power and the

absorptive power is the same for all bodies at

the same temperature”.

In § 13, he explicitly wrote the following form,

E

A
= e. (2)

Kirchhoff eventually set A = 1 [7, § 3]. In modern notation,∗

one could express Kirchhoff’s Law as follows:

Eν

αν
= f (T, ν), (3)

where f (T , ν) corresponds to the right side of Eq. 1 above,

as first defined by Max Planck [4, 5]. In §17 of his classic

paper [7], Kirchhoff outlined his law as follows,

“When a space is surrounded by bodies of the

same temperature, and no rays can penetrate

through these bodies, every pencil in the inte-

rior of the space is so constituted, with respect to

its quality and intensity, as if it proceeded from

a perfectly black body of the same temperature,

and is therefore independent of the nature and

form of the bodies, and only determined by the

temperature. The truth of this statement is evi-

dent if we consider that a pencil of rays, which

has the same form but the reverse direction to

that chosen, is completely absorbed by the infi-

nite number of reflections which it successively

experiences at the assumed bodies. In the inte-

rior of an opaque glowing hollow body of given

temperature there is, consequently, always the

same brightness whatever its nature may be in

other respects.”

∗Though Kirchhoff speaks of absorptive power, A, he was actually refer-

ring to the unitless absorptivity, αν. Conversely, when referring to emissive

power, E, he was, in fact, referring to this quantity, even in modern terms.

That is, Kirchhoff’s “E” has the same units as his “e” and neither is equal

to 1. Kirchhoff, stated that “e” was a universal function and believed that its

elucidation was a matter of great scientific importance.

Relative to Kirchhoff’s formulation, three important concerns

must be raised. First, the law becomes undefined in the per-

fect reflector, as αν = 0 under that condition. Planck him-

self recognized this fact [5, § 48], but might not have ex-

ercised proper care relative to its consequences. Second, it

is clear that Kirchhoff lacked an accurate understanding of

what was happening within his cavity, as an “infinite num-

ber” of reflections will never amount to absorption. An “in-

finite number” of reflections does not involve the exchange

of energy. Conversely, when absorption occurs, energy is ex-

changed between the field in the interior of the cavity and the

walls. Third, and the most serious objection to Kirchhoff’s

Law, centers upon his improper treatment of reflection. One

of the authors has previously addressed these problems in de-

tail [16].

In brief, within his first proof, Kirchhoff utilized transmis-

sive plates to accomplish the proof, even if blackbody cavities

must always be opaque. He addressed transmission by posi-

tioning mirrors behind his plates. In so doing, it appeared that

Kirchhoff had properly treated reflection, because the mirrors

did, in fact, reflect radiation. However, he had dismissed the

possibility that the plates considered could possess differing

surface reflection [16]. As shall be discovered below, Max

Planck committed the same error, when he attempted to for-

mulate Kirchhoff’s Law [5, § 36–38]. In his second proof,

Kirchhoff unknowingly permitted the cavity to fall out of ther-

mal equilibrium, depending on the order in which operations

were performed (see [16] for a detailed presentation).

It is evident that no valid theoretical proof of Kirchhoff’s

Law existed before Max Planck formulated his law of emis-

sion (see [21] for an excellent presentation). In fact, physi-

cists continued to argue about a proper theoretical proof for

Kirchhoff’s Law until well after Planck’s ideas became ac-

cepted [21]. Thus, in search of a proof, those provided by

Planck, Hilbert, or Pringsheim may be the most relevant [21].

Yet, the proofs provided by Pringsheim and Hilbert have their

own shortcomings [21].† It has even been claimed that, by ap-

plying Einstein coefficients to arrive at Planck’s law, physics

could dispense with the proof of Kirchhoff’s Law [21]. How-

ever, Einstein’s derivation utilized the energy density asso-

ciated with a Wien radiation field, something which could

only be found within a blackbody. Surely, Wien had not dis-

pensed with Kirchhoff. In truth, it appears that those con-

cerned with bringing forth a proper proof for Kirchhoff’s Law

were never able to reach their goal. The problem of finding

a valid proof, seems to have simply been displaced by “more

exciting physics”, as the long sought definitive formulation

of Kirchhoff’s Law could no longer provide sufficient inter-

est. The entire issue appears to have come to a slow death,

without proper resolution.

It is certain that all theoretical proofs of Kirchhoff’s Law

†The authors have not been able to locate an analysis of the proof ad-

vanced by Max Planck within “The Theory of Heat Radiation”.
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will be found to contain significant misapplications of exper-

imental facts. The inability to provide a proper proof before

the days of Planck [21], has not been easily overcome by

some new insight into the nature of materials, after Planck.

It remains true that all theoretical proofs of Kirchhoff’s Law

suffer from one or more of the following: 1) an improper

treatment of reflection, absorption, or transmission; 2) the in-

vocation of polarized light, when heat radiation is always un-

polarized; 3) the use of transmissive materials, when Kirch-

hoff’s Law refers to opaque enclosures; and 4) the existence

of hypothetical objects which can have no place in the physi-

cal world.

However, the central proof of Kirchhoff’s Law must al-

ways be the one outlined by Max Planck himself (see [5, § 1–

51]), forty years after Kirchhoff [6,7]. For it is upon this proof

(see [5, § 1–51]) that Eq. 1 was derived and through which

Planck would ultimately attempt to lay the foundation for uni-

versality. Hence, it is best to forgo Kirchhoff’s own deriva-

tions, as the theoretical validity of Kirchhoff’s Law now rests

with Max Planck [5, § 1–51].

4 Max Planck and Departure from Objective Reality

Having held such reverence for Max Planck over the years

[3], it is with some regret that the following sections must

be composed, outlining his sidestep of known experimental

physics in the derivation of Kirchhoff’s Law. Fortunately, in

Planck’s case, the validity of his equation is preserved, but

only within the strict confines of the laboratory blackbody.

The quantum of action continues to hold an important place in

physics. Yet, the loss of universality cannot be taken lightly,

as this aspect of Planck’s work was the pinnacle of his ca-

reer. In fact, above all else, it was universality which Planck

sought, believing that he had discovered some great hidden

treasure in nature [5, § 164],

“Hence it is quite conceivable that at some other

time, under changed external conditions, every

one of the systems of units which have so far been

adopted for use might lose, in part or wholly, its

original natural significance. In contrast with

this it might be of interest to note that, with the

aid of the two constants h and k which appear

in the universal law of radiation, we have the

means of establishing units of length, mass, time,

and temperature, which are independent of spe-

cial bodies or substances, which necessarily re-

tain their significance for all times and for all en-

vironments, terrestrial and human or otherwise,

and which may, therefore, be described as ‘natu-

ral units’ ”.

This was an illusion. With the collapse of Kirchhoff’s Law,

there are no “natural units” and all the constants of physics

become a manifestation of the scales which the scientific

community chooses.

4.1 Planck’s Derivation of Kirchhoff’s Law: Part I

Throughout his derivation of Kirchhoff’s Law (see [5, § 1–

51]), Max Planck sub-optimally addressed reflection, trans-

mission, and absorption. This can be seen in the manner

in which he redefined a blackbody, in an array of quotations

[5, § 4],

“Strictly speaking, the surface of a body never

emits rays, but rather it allows part of the rays

coming from the interior to pass through. The

other part is reflected inward and according as

the fraction transmitted is larger or smaller, the

surface seems to emit more or less intense radi-

ation”.

For Planck, photons were being released from an object, not

because they were emitted by its surface, but simply because

they managed to be transmitted throughout, or beyond, its in-

terior. The blackbody became a sieve. Planck stated

[5, § 10],

“A rough surface having the property of com-

pletely transmitting the incident radiation is de-

scribed as ‘black’ ”.

Planck continued [5, § 12],

“Thus only material particles can absorb heat

rays, not elements of surfaces, although some-

times for the sake of brevity, the expression ab-

sorbing surfaces is used.

Note the contrast, with Kirchhoff, which can be repeated

for convenience [7, § 1],

“This investigation will be much simplified if we

imagine the enclosure to be composed, wholly or

in great part, of bodies which, for infinitely small

thickness, completely absorb all rays which fall

upon them”.

Planck acknowledged in a footnote that Kirchhoff considered

a blackbody as absorbing over an infinitely thin element. He

stated [5, § 10],

“In defining a blackbody Kirchhoff also assumes

that the absorption of incident rays takes place

in a layer ‘infinitely thin’. We do not include this

in our definition.”

With his words, Planck redefined the meaning of a blackbody.

The step, once again, was vital to his derivation of Kirchhoff’s

Law, as he relied on transmissive arguments to arrive at its

proof. Yet, blackbody radiation relates to opaque objects and

this is the first indication that the proofs of Kirchhoff’s Law

must not be centered on arguments which rely upon transmis-

sion. Planck ignored that real surface elements must possess

absorption, in apparent contrast with Kirchhoff and without

any experimental justification. Planck would expand on his

new concept for a blackbody with these words [5, § 10],
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“. . . the blackbody must have a certain minimum

thickness depending on its absorbing power, in

order to insure that the rays after passing into

the body shall not be able to leave it again at a

different point of the surface. The more absorb-

ing a body is, the smaller the value of this min-

imum thickness, while in the case of bodies with

vanishingly small absorbing power only a layer

of infinite thickness may be regarded as black.”

Now, he explicitly stated that bodies which are poor absorbers

can still be blackbodies. Yet, we do not make blackbodies

from materials which have low absorptivities, because these

objects have elevated reflectivities, not because they are not

infinite. Planck had neglected the important effects of absorp-

tion and reflection when formulating his new definition for a

blackbody. This may have consequences throughout physics

and astronomy [8, 17, 22].

In the end, Planck’s surface elements must be composed

of material particles. Since Planck was a theoretical physi-

cist, he cannot work solely in the vacuum of a mathemati-

cal world. His derivations and conclusions must be related

to physical reality. Yet, Planck’s treatment had moved away

from laboratory experiments with thin plates. These exper-

iments were vital to the development of blackbody radiation

science from the days long before Balfour Stewart [1]. Planck

stated that [5, § 12],

“Whenever absorption takes place, the heat ray

passing through the medium under consideration

is weakened by a certain fraction of its intensity

for every element of path traversed.”

Clearly, Planck’s element at the “bounding surface”, as will

soon be discovered, was an “element of path traversed”. He

therefore cannot neglect its absorption. Planck was well

aware of this fact [5, § 12]:

“We shall, however, consider only homogeneous

isotropic substances, and shall therefore suppose

that αν has the same value at all points and in all

directions in the medium, and depends on noth-

ing but the frequency ν, the temperature T , and

the nature of the medium.”

and again [5, § 32],

“Consider then any ray coming from the surface

of the medium and directed inward; it must have

the same intensity as the opposite ray coming

from the interior. A further immediate conse-

quence of this is that the total state of radiation

of the medium is the same on the surface as in

the interior.”

Still, at every turn, he attempted to include the effect of trans-

mission, when it had no proper place in the treatment of

blackbody radiation, as found in opaque bodies [5, § 14],

“Let dσ be an arbitrarily chosen, infinitely small

element of area in the interior of a medium

through which radiation passes.”

Planck thereby included the transmissive properties of the el-

ement, dσ, though he should have avoided such an extension.

In the end, his definition of a blackbody was opposed to all

that was known in the laboratory. Blackbodies are opaque

objects without transmission, by definition. By focusing on

transmission, Planck prepared for his move to universality, as

will now be discussed in detail.

4.2 Planck’s Derivation of Kirchhoff’s Law: Part II

In the first section of his text, leading to his Eq. 27, [5, Eq. 27],

Planck chose to formally neglect reflection, even though the

total energy of the system included those rays which are both

emitted/absorbed and those which would have been main-

tained by driving reflection [18, 19]. Such an approach was

suboptimal. Planck must have recognized that the reflective

contributions could eventually be canceled. Perhaps, that is

why he simply neglected these terms, but the consequence

was that insight was lost. In addition, by adopting this ap-

proach, Max Planck explicitly prevented the newcomer to the

field of thermal radiation from appreciating the crucial impor-

tance of reflection within cavity radiation, as Balfour Stewart

had well demonstrated [1, 18, 19].

In order to properly follow Planck’s work, it is important

to recognize his unusual conventions with respect to symbols.

Dimensional analysis reveals that even though he spoke of a

coefficient of emission (Emissionskoeffizienten) and utilized

the symbol now reserved for emissivity, ǫν, he was not refer-

ring to the emissivity in this instance. Rather, he was invok-

ing the emissive power, E, an entity with units. Conversely,

when he spoke of the coefficient of absorption (Absorptionko-

effizienten), αν, he was truly referring to the dimensionless

absorptivity, as we know it today. Insufficient attention rel-

ative to Planck’s notation has, in fact, caused one of the au-

thors to revise some of his previous works [18, 19]. Suffice it

to note for the time being that, in order to remain consistent

with Planck’s notation, the following conventions will now

be adopted: The symbol ǫν, will represent emissive power,

E, and not emissivity. The symbols αν and ρν will retain

their modern meaning and represent dimensionless absorp-

tivity and reflectivity, respectively. This is in keeping with

Planck’s notation. At the same time, we shall add the symbol

ην, in order to deal with dimensionless emissivity, since Max

Planck had already utilized the needed symbol when express-

ing emissive power.∗

∗In § 44, Planck presented Kirchhoff’s Law in the following form [5,

Eq. 48],
E

A
= I = dσ cos θ dΩKν dν,

where A is actually the unitless absorptivity. Then, in § 45, Planck set A = 1.

But, he also set, E = A. In so doing, he removed dimensionality from the

emissive power, E.
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At the outset, Max Planck considered the radiation within

the interior of an isotropic medium. Inside this material, the

total energy emitted from a volume element, dτ, in frequency

range of interest, ν + dν, and in time, dt, in the direction of a

conical element, dΩ, was given by [5, Eq. 1],

dt dτ dΩ dν 2ǫν, (4)

from which Planck immediately surmised, by integrating over

all directions and frequencies, that the total energy emitted

corresponded to [5, Eq. 2],

dt dτ 8π

∫ ∞

0

ǫν dν. (5)

He then moved to present the same equation, in slightly mod-

ified form in § 25 as,

dt v 8π

∫ ∞

0

ǫν dν, (6)

where v now corresponded to the volume element.

But since this element was contained within the

medium of interest, it must also be reflecting radiation from

other elements within the medium. That is because, as Bal-

four Stewart correctly highlighted, the total radiated power

measured from a particle is to that portion which was emitted

by the particle itself and that portion which it reflected [1].

This reflective component corresponds to the reflection coef-

ficient, ρν, multiplied by the specific intensity, Kν, of the radi-

ation leaving the second element, dτ′, positioned at the end of

Planck’s conical section. The proper form of Eq. 4 [5, Eq. 1],

including all of the radiation which leaves the particle, be-

comes,

dt dτ dΩ dν 2 (ǫν + ρνKν) . (7)

This expression, rather than leading to Eq. 6, results in,

dt v 8π

∫ ∞

0

(ǫν + ρνKν) dν. (8)

Similarly, Planck characterized the fate of the radiation which

strikes the volume element, by including only absorption [5,

Eq. 25],

dt v 8π

∫ ∞

0

ανKν dν. (9)

If however, one considers that the radiation incident to the

volume element, v, can be either absorbed or reflected, then

Eq. 9 [5, Eq. 25] becomes,

dt v 8π

∫ ∞

0

(αν + ρν) Kν dν. (10)

Equating Eqs. 6 and 9, Planck obtained,

dt v 8π

∫ ∞

0

ǫν dν = dt v 8π

∫ ∞

0

ανKν dν, (11)

which led to [5, Eq. 27],

Kν =
ǫν

αν
. (12)

Note that in this expression, Planck, like Kirchhoff, removed

all consideration of reflection. Conversely, by combining Eqs.

8 and 10, we obtain that,

dt v 8π

∫ ∞

0

(ǫν + ρνKν) dν = dt v 8π

∫ ∞

0

(αν + ρν) Kνdν. (13)

This expression leads to the following relation,

ǫν + ρνKν = ανKν + ρνKν. (14)

If one eliminates the terms involving reflection, this expres-

sion immediately leads to Eq. 12 [5, Eq. 27]. More impor-

tantly, since αν+ρν = 1 at thermal equilibrium, then a second

expression, which retains the importance of reflectivity, is ob-

tained,

ǫν = (1 − ρν) Kν. (15)

Since Eq. 14 leads directly to Eq. 12, it now becomes clear

why Max Planck chose to ignore the contribution of reflec-

tion in his derivation. He adopted a physically incomplete

picture, but without mathematical consequence, at least in

this instance. It could also be argued that Eq. 12 and Eq. 15

do not differ from one another, since at thermal equilibrium

1 − ρν = αν. However, mathematically this is not the case.

Eq. 12 becomes undefined when the absorptivity, αν, is set to

zero. This is precisely what happens in the perfect reflector.

Conversely, Eq. 15 is never undefined, as long as the reflec-

tive term is retained. As such, the prudent course of action

for Max Planck might have been to adopt Eq. 15.

At this point, a trivial observation can be easily advanced.

As mentioned above, given thermal equilibrium, then 1−ρν =

αν. But at the same time, αν = ην. This is the Law of Equiv-

alence, first presented by Balfour Stewart [1]. As a result, it

can be readily noted that Eq. 15 can be expressed as,

ǫν = ηνKν or Eν = ηνKν, (16)

which is similar to Planck’s Eq. 26 [5, Eq. 26]. In this case,

Kν is given by Planck [5, Eq. 300]. It corresponds to a Planck

function multiplied by the square of the index of refraction

of the medium. Note what Eq. 16 is stating: The emissive

power of an arbitrary cavity at thermal equilibrium is equal

to the emissivity of the material which makes up the cavity

multiplied by a function. This constitutes a proper and di-

rect contradiction of universality. The nature of the radiation

within the cavity becomes dependent on the nature of the cav-

ity itself.

Thus, if the derivation is accomplished while including

reflection, additional insight is gained. If given the choice, a

function which is never undefined, like Eq. 15, must always

take precedence over a function which can become undefined,
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like Eq. 12. Then, consider Eq. 16. This relationship is im-

portant, because, like the form presented by Kirchhoff (Eq. 2)

and Planck (Eq. 12), it is devoid of the consideration of re-

flection. But, when confronted with Eq. 16, it is impossible

to conclude that arbitrary cavities contain black radiation.

In this initial treatment, Planck had not yet formally intro-

duced Kirchhoff’s Law. In order to accomplish this feat, he

had to explore more than one medium at a time. Nonetheless,

in this initial exposition of Planck’s derivation, an important

lesson has been learned: it is vital to recognize that the man-

ner in which a result is presented can have a great deal of

influence on its interpretation. Nowhere is this more applica-

ble than in Planck’s formal presentation of Kirchhoff’s Law,

as he leads the reader from Eq. 27 to Eq. 42 [5, Eq. 27–42]. It

is here that Planck sidestepped experimental reality.

4.3 Planck’s Derivation of Kirchhoff’s Law: Part III

Heat radiation is unpolarized, by definition [23, p. 450]. In

§ 4 of The Theory of Heat Radiation [5], Planck considered

a homogeneous isotropic emitting substance. Any volume

element of such a material necessarily emits heat radiation

uniformly in all directions. In § 5 Planck admitted that ho-

mogeneous isotropic media emit only natural or normal, i.e.

unpolarized, radiation [5, § 5]:

“Since the medium was assumed to be isotropic

the emitted rays are unpolarized.”

This statement alone, was sufficient to counter all of the argu-

ments which Planck later utilized to arrive at Kirchhoff’s Law

[5, Eq. 42]. That is because the important sections of Planck’s

derivation, namely § 35–37 make use of plane-polarized light.

These steps were detached from experimental reality, relative

to heat radiation [5, § 35],

“Let the specific intensity of radiation of

frequency ν polarized in an arbitrary plane be

Kν in the first substance . . . and K′ν in the sec-

ond substance . . . ”

Planck also stated [5, § 36],

“. . . we have for the monochromatic plane-

polarized radiation. . . ”

As such, to prepare for his use of polarized light in later sec-

tions, Planck resolved, in § 17, the radiation into its two po-

larized components. However, note that he could have arrived

at Eq. 12 [5, Eq. 27] without ever resolving the radiation into

its components. Nonetheless, his proof for the universality

of Kirchhoff’s Law [5, Eqs. 27–42] depended upon the use of

polarized light [5, § 35–37]. Planck utilized polarized light in

an isotropic medium, even though he had already recognized

in § 5, that such radiation must be unpolarized. He clearly

remarked in § 107,

“For a plane wave, even though it be periodic

with a wave lying within the optical or thermal

spectrum, can never be interpreted as heat radi-

ation.”

In order to arrive at Kirchhoff’s Law, in § 35–37, Planck

placed two different homogeneous isotropic media in contact

with one another, as illustrated in Figure 1. The whole sys-

tem was “enclosed by a rigid cover impermeable to heat”.

He then considered two arbitrary plane-polarized waves, one

from each of the media, incident upon an element of area dσ

at the bounding surface of the two media. It can be seen

in § 38, that Planck initially endowed this element with dif-

fering reflectivities, depending on whether the incident rays

approached from medium 1 or medium 2. For Planck, both

waves underwent reflection and refraction. He sidestepped

that the ray could be absorbed, a decision vital to his ability

to derive Kirchhoff’s law [5, § 9],

“. . . a discontinuous change in both the direction

and the intensity of a ray occurs when it reaches

the boundary of a medium and meets the sur-

face of a second medium. The latter, like the

former, will be assumed to be homogeneous and

isotropic. In this case, the ray is in general partly

reflected and partly transmitted.”

Planck invoked a small element of area dσ at the boundary

of his two contiguous media. This element had no consistent

meaning in Planck’s analysis. First, in § 36 and § 42 Planck

placed this element in the bounding surface and, in so doing,

allocated it properties characteristic of medium 1 on one half

and medium 2 on the other. However, in § 43, he placed the

element firmly within the surface of medium 2,

“. . . and falls on the surface element dσ of the

second medium.”

Note that Planck had already introduced three causes for

objection. First, what exactly was the location of dσ? In re-

ality it must rest in one of the two media. Second, Planck ne-

glected the fact that real materials can possess finite and dif-

fering absorptivities. While these can be ignored within the

medium when treating propagation, because of the counter

effect of emissivity, they cannot be dismissed at the bound-

ary. Third, the simplest means of nullifying the proof leading

to Planck’s Eq. 42, is to use a perfect reflector as the second

medium. In that case, a refractive wave could never enter the

second medium and Planck’s proof fails. The same objection

can be raised using any fully opaque material for the second

medium (i.e. αν + ρν = 1), as for all of them, τν=0. This

would include many materials typically used to construct real

blackbodies in the laboratory. Consequently, for his proof of

Kirchhoff’s Law, Planck eliminated, by definition, virtually

all materials of interest. In fact, he even excluded the perfect

reflector, the very material he had chosen to consider through-

out much of his text [5].

In § 36 Planck considered a monochromatic plane-

polarized ray of frequency ν, emitted in time dt. In order to
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Fig. 1: Expansion of Figure 3 in “The Theory of Heat Radiation” [5] depicting the full complement of rays involved in treating the

interaction between two media separated by a “bounding surface” which contained a hypothetical element of interest, dσ. Planck considered

the reflective nature of dσ to ascertain whether its reflection coefficients were identical depending on whether the incident ray originated

from medium 1, (A), or medium 2, (B). A) Schematic representation of the incident specific intensity, Kν (plain arrow), at an angle θ,

contained in the conical section, dΩ, of the first medium (upper right quadrant) which is reflected by the bounding surface into the conical

section dΩ in the upper left quadrant and refracted into the conical section dΩ′ of the second medium, at an angle θ′, in the lower left

quadrant. Note that in order to preserve the proper specific intensities, Kν, in the upper left quadrant, Planck must sum the reflected

portion of the incident specific intensity of medium 1, ρνKν, with the refracted portion of the incident specific intensity of medium 2,

(1 − α′ν − ρ
′
ν)K

′
ν, depicted in B. This fact is represented by the feathered arrow. However, he neglected to include that part of the specific

intensity in the upper left quadrant was being produced by emission in that direction, ην, by dσ. B) Schematic representation of the incident

specific intensity, K′ν (plain arrow), at an angle θ′,contained in the conical section, dΩ′, of the second medium (lower right quadrant) which

is reflected by the bounding surface into the conical section, dΩ′, in the lower left quadrant and refracted into the conical section, dΩ, of

the first medium, at an angle θ, in the upper left quadrant. Note that, in order to preserve the proper specific intensities, K′ν, in the lower

left quadrant, Planck must sum the reflected portion of the incident specific intensity of medium 2, ρ′νK
′
ν, with the refracted portion of the

incident specific intensity of medium 1, (1 − αν − ρν)Kν, as depicted in A. This fact is represented by the feathered arrow. However, he

neglected to include that part of the specific intensity in the lower left quadrant was being produced by emission in that direction, η′ν, by dσ.

address absorption at the “bounding surface”, as mentioned

under the second objection above, the total radiation which

was both emitted and reflected by an element within the

medium of interest (i.e. the incident ray) towards the “bound-

ing surface” must be considered, as illustrated in Figure 2.

Note in this case, that the ray which is approaching the

bounding surface will be transformed into three components:

1) that which will be absorbed at the “bounding surface” and

then re-emitted in the direction of reflection; 2) that which

will be reflected into the same medium; and 3) that which

will be refracted into the other medium. The distinction is

important, for Planck inferred that ρν + τν = 1, whereas the

correct expression involves ρν+τν+αν = 1.∗ Planck permitted

himself to state that τν = 1 − ρν, whereas he should have

∗Note that in §36 Planck referred to frequency dependent reflectivity, ρν,

but chose to write it simply as ρ. In this case, since he was dealing with the

frequency dependent value, the subscripted form will be utilized throughout

the presentation which follows. As such, the equations presented by Max

Planck will be modified such that ρ is replaced with ρν in accordance with

his description that the term was frequency dependent.

obtained τν = 1 − ρν − αν. Again, this completely prevents

further progress towards Kirchhoff’s Law [5, Eq. 42].

Planck considered the reflected rays in the first medium,

of specific intensity Kν at incidence [5, Eq. 38],

ρν dt dσ cos θ dΩKν dν, (17)

which were augmented by rays of incident specific intensity

K′ν refracted from the second medium [5, Eq. 39],
(

1 − ρ′ν
)

dt dσ cos θ′ dΩ′K′ν dν. (18)

In this setting, the resultant rays in medium 1 consist of com-

ponents from both media, the reflected and the refracted rays.

Planck then obtained the following equation, at the end of

his § 36,
Kν

K′ν
·

q2

q′2
=

1 − ρ′ν

1 − ρν
, (19)

where q and q′ correspond to speeds of light in first and sec-

ond media, respectively. He rapidly moved to [5, Eq. 40],

ρν = ρ
′
ν, (20)
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Fig. 2: Schematic representation of the fate of an incident ray, 1,

which strikes a bounding surface. The ray will be split into three

components: 1) the reflected ray, ρν; 2) the refracted ray, τν; and 3)

that portion of the ray which is first absorbed, αν, then immediately

re-emitted, ην, in order to preserve energy balance, in the direction

of the reflected ray (αν = ην). Thus, it is possible to describe this

problem mathematically as 1 = ρν + τν + αν.

The result was stunning. Max Planck had determined that

the reflectivities of all arbitrary media were equal. Yet, he

attempted to dismiss such a conclusion by stating relative to

Eq. 20 [5, Eq. 40]:

“The first of these two relations, which states that

the coefficient of reflection of the bounding sur-

face is the same on both sides, is a special case of

a general rule of reciprocity first stated by Helm-

holtz.”

Planck provided for the element of the bounding surface two

separate coefficients of reflection. These must, in fact, cor-

respond to those of the media utilized. Planck has already

stated in § 35 that

“. . . let all quantities referring to the second sub-

stance be indicated by the addition of an accent.”

Consequently, ρ and ρ′ can only take meaning with respect to

the media under consideration. Thus, how did Planck possi-

bly reach the conclusion that these values must be equal? At

the onset in Eq. 19 [5, § 35], Planck sought to force ρν = ρ
′
ν,

in general, by first making ρν = ρ
′
ν = 0, in particular. To

accomplish this feat, he considered rays that were,

“polarized at right angles to the plane of inci-

dence and strike the bounding surface at the an-

gle of polarization” [5, § 37].

Again, such rays could never exist in the context of heat radi-

ation [23, p. 450].

The “plane of incidence” is that containing the unit nor-

mal vector from the surface of incidence and the direction of

the incident ray. There are two natural ways by which the

orientation of an electromagnetic wave can be fixed; by the

electric vector E or the magnetic vector B. Contemporary

convention is to use the electric vector E [24, § 1.4.2]. Planck

used the erstwhile magnetic vector convention.

The “angle of polarization” is Brewster’s angle

[23, p. 450]. The angle between reflected and refracted rays

resulting from a given incident ray is then 90o. The reflected

wave is entirely plane-polarized∗, as shown in Figure 3,

Fig. 3: Schematic representation of Brewster’s Law. The dots cor-

respond to the electric vector perpendicular to the page, whereas the

double-headed arrows represent the electric vector in the plane of

the page. An unpolarized, or arbitrarily plane-polarized, incident

ray (upper right quadrant), strikes a surface at an angle of incidence,

θB, corresponding to the Brewster’s angle, or the angle of polariza-

tion. The reflected ray, depicted in the upper left quadrant will be

entirely plane-polarized in such a way that it has no component of

its electric vector in the plane of incidence. The transmitted ray pro-

duced at the angle of refraction, θ′B, depicted in the lower left quad-

rant, will be partially polarized. The angle between the reflected

and refracted rays is 90o. The angles, θB and θ′B are complementary
(

θ + θ′B = 90o
)

. This process depends on the refractive indices of the

two media involved, n1 and n2, such that the process is defined by

Snell’s Law, n1 sin θB = n2 sin (90o − θB), which in turn becomes

n1 sin θB = n2 cos θB, or tan θB = n2/n1.

Planck’s medium 2 has a Brewster’s angle complemen-

tary to the Brewster’s angle of his medium 1 (θB + θ
′
B
=90o).

Brewster’s angle is defined in terms of a reflected and a re-

fracted beam. Unpolarized light, and plane-polarized light

that is not “at right angles to the plane of incidence”, produce

reflected and refracted beams, in accordance with Brewster’s

Law. Planck invoked Brewster’s Law [23, p. 450] with the

special condition that incident rays are orthogonal to the plane

of incidence. In this case, there could be no reflection, but

only refraction, in accordance with Snell’s Law. He simulta-

neously applied these same restricted conditions to medium 2.

“Now in the special case when the rays are po-

larized at right angles to the plane of incidence

and strike the bounding surface at the angle of

polarization, ρ = 0, and ρ′ = 0.”

∗The reflected ray has no E component in the plane of incidence.
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However, Planck’s two contiguous media were homogeneous

and isotropic. They could only emit unpolarized light and

not plane-polarized light. Since the entire system was en-

closed by a barrier impermeable to heat, there was no external

source of any incident plane-polarized rays. All incident rays

considered must be unpolarized and all resultant composite

rays, at best, partially polarized. This implied that the reflec-

tivities of both media were never zero. Yet, Planck made all

rays plane-polarized and, in this special case, orthogonal to

the plane of incidence (magnetic vector convention). Since

plane-polarized rays in both media were chosen orthogonal

to their common plane of incidence, they had no components

which could be reflected. The conclusion that the reflectivi-

ties were equal was therefore never properly tested, as Planck

had offered no possibility of any reflection taking place. Con-

sequently, Planck’s conclusion, that ρν = 0, and ρ′ν = 0 cannot

be true. Thus, Planck becomes unable to move to Kirchhoff’s

Law, as presented in his Eq. 42 [5, Eq. 42].

The situation was actually more complex, as Planck did

not provide the proper form for Eqs. 17, 18, and 19. In reality,

he neglected the contribution from emission or absorption in

Eqs. 17 and 18. He had already redefined the blackbody

as possessing a purely transmissive surface, in contradiction

to Kirchhoff, as seen above. This was a critical error. The

proper form of Eq. 17 [5, Eq. 38] must also include a term for

emissivity, ην, in the direction of the conical element,

(ην + ρν) dt dσ cos θ dΩKν dν. (21)

The proper form of Eq. 18 [5, Eq. 39] must also include a term

for absorptivity of the second medium, α′ν,

(

1 − ρ′ν − α
′
ν

)

dt dσ cos θ′ dΩ′K′ν dν. (22)

That is because the intensity of the ray from medium 2 which

is refracted into medium 1 corresponds to the transmissiv-

ity (τ′ν = 1 − ρ′ν − α
′
ν). Clearly, the intensity of the trans-

mitted ray must account for the reduction of the incident ray

within medium 2 as a result of both reflection and absorption.

Planck cannot ignore the absorption of the surface. Conse-

quently, Eq. 19 should have included the emissivity of the first

medium, ην, and the absorptivity of the second medium, α′ν.

If one considers that the emissivity of the first medium, ην, is

equal to its absorptivity, αν, then Eq. 19 becomes,

Kν

K′ν
·

q2

q′2
=

1 − ρ′ν − α
′
ν

1 − ρν − αν
. (23)

This equation can never lead to Kirchhoff’s Law [5, Eq. 42].

As a consequence, it is readily apparent that Planck,

through Eqs. 17-20, adopted a presentation which selectively

applied the rules of reflection and refraction to polarized rays,

irrelevant to the discussion of heat radiation. Furthermore, he

then arbitrarily chose the plane of polarization such that when

the waves were incident at Brewster’s angle, there would be

no reflection. Nonetheless, if there could be no reflection,

then Brewster’s angle, or the angle of polarization, could have

no meaning. That is because such an angle depends on the

reflected and refracted rays being at 90o to one another. But

since Planck insisted that no reflection occurred, then clearly

the reflected and refracted rays could not form a 90o angle.

Importantly, not only did Planck advance Eq. 20 (i.e.

Planck’s Eq. 40) by neglecting absorptivity and emissivity, he

thereby selected materials which have little or no relevance to

heat radiation. Planck could not neglect absorption and emis-

sion, treating only transmission and reflection, if he wished

to have any relevance to actual blackbodies. In addition, he

hypothesized a bounding surface without any true physical

meaning. Given this array of shortcomings, this derivation of

Kirchhoff’s law can never be salvaged. Planck’s claims for

universality were without proper theoretical confirmation.

5 Planck’s Perfectly Reflecting Cavities and the Carbon

Particle

Throughout “The Theory of Heat Radiation”, Planck had re-

course to a perfectly reflecting cavity, in which he placed a

minute carbon particle (see [8] for a detailed treatment). Ob-

viously, cavities comprised solely of perfectly reflecting sur-

faces, can never contain black radiation, as such materials

cannot emit photons [16]. Nonetheless, Planck believed that

these cavities contained radiation. He was careful however,

not to state that this radiation was black [5, § 51],

“. . . in a vacuum bounded by totally reflecting

walls any state of radiation may persist.”

This statement, by itself, was a violation of Kirchhoff’s Law.

Nonetheless, Planck believed that he could transform the ra-

diation contained in all cavities into the thermodynamically

stable radiation by inserting a carbon particle [5, § 51],

“If the substance introduced is not

diathermanous for any color, e.g., a piece of car-

bon however small, there exists at the stationary

state in the whole vacuum for all colors the inten-

sity Kν of black radiation corresponding to the

temperature of the substance”.

and later [5, § 52],

“It is therefore possible to change a perfectly ar-

bitrary radiation, which exists at the start in the

evacuated cavity with perfectly reflecting walls

under consideration, into black radiation by the

introduction of a minute particle of carbon. The

characteristic feature of this process is that the

heat of the carbon particle may be just as small

as we please, compared with the energy of radi-

ation contained in the cavity of arbitrary magni-

tude. Hence, according to the principle of the

conservation of energy, the total energy of ra-

diation remains essentially constant during the
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change that takes place, because the changes in

the heat of the carbon particle can be entirely ne-

glected, even if its changes in temperature should

be finite. Herein the carbon particle exerts only

a releasing (auslösend) action” .

Recall however, that Stewart’s law insisted that [1],

“. . . That the absorption of a particle is equal to

its radiation, and that for every description of

heat.”

When Planck moved the carbon particle into the cavity,

clearly the emissive field of the particle also entered the cavity

provided the former had some real temperature. However, if

one assumes that the particle was at T=0K, then no radiation

from the carbon particle could enter the cavity. At the same

time, if the particle was allowed to come into physical con-

tact with the walls of the cavity, then energy could flow from

the walls into the particle by conduction. Hence the parti-

cle, being perfectly emitting, would fill the entire cavity with

black radiation. Alternatively, if the carbon particle could be

suspended within the cavity, with no thermal contact to its

walls, then the only radiation entering the system, would be

that which accompanied the carbon particle itself [16]. That

is because the walls of the cavity would not be able to “drive”

the carbon particle, since they could emit no radiation. In

that case, the radiation density within the cavity would re-

main too low and characterized only by the carbon particle.

Unlike what Planck believed, the carbon particle could never

be a simple catalyst, as this would constitute a violation of

Stewart’s law [1]. Catalysts cannot generate, by themselves,

the product sought in a reaction. They require the reactants.

Yet, the carbon particle was always able to produce black ra-

diation, in accordance with Stewart’s findings [1]. This was

evidence that it could not be treated as a catalyst.

6 Planck’s Treatment of Two Cavities

Planck’s suboptimal treatment of the laws of emission con-

tinued [5, § 69],

“Let us finally, as a further example, consider a

simple case of a irreversible process. Let the cav-

ity of volume V, which is everywhere enclosed

by absolutely reflecting walls, be uniformly filled

with black radiation. Now let us make a small

hole through any part of the walls, e.g., by open-

ing a stopcock, so that the radiation may escape

into another completely evacuated space, which

may also be surrounded by rigid, absolutely re-

flecting walls. The radiation will at first be of a

very irregular character; after some time, how-

ever, it will assume a stationary condition and

will fill both communicating spaces uniformly, its

total volume being, say, V ′. The presence of a

carbon particle will cause all conditions of black

radiation to be satisfied in the new state. Then,

since there is neither external work nor addition

of heat from the outside, the energy of the new

state is, according to the first principle, equal to

that of the original one, or U ′ = U and hence

from (78)

T ′4V ′ = T 4V

T ′

T
=

4

√

V

V ′

which defines completely the new state of equi-

librium. Since V ′ > V the temperature of the

radiation has been lowered by the process.”

This thought experiment was unsound. First, both cavities

were made of perfectly reflecting walls. As such, Planck

could not assume that the second cavity contained no radi-

ation. To do so, constituted a violation of the very law he

wished to prove. Kirchhoff’s Law stated that the second cav-

ity could not be empty. Therefore, Planck could not surmise

that the temperature had dropped.

If one accepted that Kirchhoff’s Law was false, as has

been demonstrated above, then both cavities must be viewed

as empty, other than the minute contribution made by the car-

bon particle. Here again, Max Planck had moved beyond the

confines of reality, for he advanced a result which could not

be correct, whether or not Kirchhoff’s Law was true. The

cavities were either both empty (i.e. Kirchhoff’s Law was not

valid), or both filled with radiation (i.e. Kirchhoff’s Law was

valid). One could not be filled, while the other was empty.

Planck’s equation, in the quote above, was incorrect.

7 Conclusion

Throughout “The Theory of Heat Radiation’ [5] Planck em-

ployed extreme measures to arrive at Kirchhoff’s Law. First,

he redefined the nature of blackbodies, by adopting

transmission as a central element of his derivation. Second,

he neglected the role of absorption at the surface of such

objects, in direct contradiction to experimental findings and

Kirchhoff’s understanding of blackbodies. While it could be

argued that absorption does not take place entirely at the sur-

face, Planck could not assume that no absorption took place

in this region. He was bound to include its contribution, but

failed to meet this requirement. Third, he sidestepped re-

flection, by neglecting its presence in arriving at Eq. 12 [5,

Eq. 27]. Nonetheless, the energy of the system under investi-

gation included both that which was involved in emission/ ab-

sorption and that associated with the reflection terms. Stewart

has well highlighted that such terms are central to the nature

of the radiation within arbitrary cavities [1] and the concept

has recently been re-emphasized [18,19]. Fourth, Planck had

recourse to plane-polarized light, whereas blackbody radia-

tion is never polarized.

In the end, Planck’s presentation of Kirchhoff’s Law did

not properly account for the behavior of nature. Arbitrary
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cavities are not always black and blackbodies are highly spe-

cialized heated objects. Planck’s characterization of the car-

bon particle as a simple “catalyst” constituted a dismissal of

Stewart’s Law [1]:

“. . . That the absorption of a particle is equal to

its radiation, and that for every description of

heat.”

Planck could not transform a perfect absorber into a cata-

lyst. Yet, without the carbon particle [8], the perfectly re-

flecting cavities, which he utilized throughout “The Theory of

Heat Radiation” for the derivation of his famous Eq. 1 [4, 5],

remained devoid of radiation. Perfectly reflecting cavities

are incapable of producing radiation, precisely because their

emissivity is 0 by definition. Planck can only properly arrive

at Eq. 1 by having recourse to perfectly absorbing materials, a

truth which he did not acknowledge. The presence of reflec-

tion must always be viewed as suboptimal to the creation of a

blackbody, since significant reflection acts as a hindrance to

the generation of photons through emission. It is never clear

that the reflection term can easily be driven to arrive at the

desired radiation, since thermal equilibrium, under these cir-

cumstances, can easily be violated, as the temperature of the

cavity increases.

Planck’s detachment from experimental findings relative

to Kirchhoff’s Law was evident in his presentation of Eq. 20

[5, Eq. 40]. His conclusion, with respect to the equivalence

of the reflection in arbitrary materials, was false. Obviously,

if reflection was always the same, then all opaque cavities

would become identical. Eq. 20 [5, Eq. 40] became the vi-

tal result in Planck’s derivation of Kirchhoff’s Law. Unfor-

tunately, the conclusion that ρ=ρ′ [5, Eq. 40] constituted a

distortion of known physics and, by extension, so did Kirch-

hoff’s formulation.

Without a proper proof of Kirchhoff’s Law, Planck’s

claim for universality loses the role it plays in science. This

has significant consequences in both physics and astronomy

[8, 17, 24]. The constants h and k do not have fundamen-

tal meaning. Along with “Planck length”, “Planck time”,

“Planck mass”, and “Planck temperature”, they are to be rel-

egated to the role of ordinary and arbitrary constants. Their

value has been defined by our own selection of scales, not by

nature itself.

Dedication

This work is dedicated to the memory of Balfour Stewart [1].
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4. Planck M. Über das Gesetz der Energieverteilung im Normalspektrum.

Annalen der Physik, 1901, v. 4, 553–563.

5. Planck M. The theory of heat radiation. P. Blakiston’s Son & Co.,

Philadelphia, PA, 1914, http://gutenberg.org/ebooks/40030.
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7. Kirchhoff G. Über das Verhältnis zwischen dem Emissionsvermögen
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The paper shows that the sequence of sorted by value body masses of planets and largest

planetoids is connected by a constant scaling exponent with the sequence of their sorted

by value orbital periods.

1 Introduction

In [1] we have shown that the observable mass distribution of

large celestial bodies in the Solar system continues the mass

distribution of elementary particles that can be understood as

contribution to the fundamental link between quantum- and

astrophysics via scaling.

Within the last ten years several articles [2–6] were pub-

lished which confirm our statement that scaling is a widely

distributed phenomenon. Possibly, natural oscillations of mat-

ter generate fractal distributions of physical properties in very

different processes. Fractal scaling models [7] of oscillation

processes in chain systems are not based on any statements

about the nature of the link or interaction between the ele-

ments of the oscillating system. Therefore, the model state-

ments are quite general, that opens a wide field of possible

applications.

In this paper we will show, that the connection between

the body mass distribution and the distribution of orbital pe-

riods of planets and largest planetoids in the solar system can

be described by the scaling law (1):

M = µ · T D, (1)

where M is a celestial body mass, T is a celestial body orbital

period and µ and D are constants.

We will show, that for sorted by value couples of a body

mass M and an orbital period T the exponent D is quite con-

stant and is closed to 3/2. Furthermore, for M in units of the

proton rest mass mp ≈ 1.67×10−27 kg [8] and T in units of the

proton oscillation period τp = ~/mpc2
≈ 7.02×10−25 s [9], the

constant µ= 1.

2 Methods

Already in the eighties the scaling exponent 3/2 was found

in the distribution of particle masses [10]. In [11] we have

shown that the scaling exponent 3/2 arises as consequence of

natural oscillations in chain systems of harmonic oscillators.

Within our fractal model [1] of matter as a chain system

of oscillating protons and under the consideration of quantum

oscillations as model mechanism of mass generation [9], we

interpret the exponent D in (1) as a Hausdorff [12] fractal

dimension of similarity (2):

D =
ln M/mp

ln T/τp

. (2)

The ratio M/mp is the number of model protons, the ratio

T/τp is the number of model proton oscillation cycles.

3 Results

If we sort by value the body masses and the orbital periods

of planets and largest planetoids of the Solar system, then we

can see that for sequently following couples of a body mass

M and an orbital period T the fractal dimension D is quite

constant and closed to the model value of 3/2.

Table 1 contains properties of planets and of the most

massive planetoids in the Solar system. On the left side the

bodies are sorted by their masses, on the right side the bodies

are sorted by their orbital periods. Within the Solar system

the average empiric value D≈ 1.527 is a little bit larger then

the model value of 3/2.

Based on the empiric value D≈ 1.527, Table 2 contin-

ues the Table 1 until the Jupiter body mass. The orbital pe-

riod of Eris corresponds well to the Uranus body mass, but

the smaller transneptunian orbits, occupied by Pluto, Haumea

and Makemake, ask for additional bodies. Possibly, the three

vacant body masses and the three vacant orbital periods in

Table 2 are properties of bodies which are still to be discover.

4 Resume

Celestial bodies are compressed matter which consist of nu-

cleons over 99%. Possibly, the model approximation of

D= 3/2 and µ= 1 in (1) for proton units is a macroscopic

quantum physical property, which is based on the baryon na-

ture of normal matter, because µ= 1 means that M/T D =

mp/τ
D.

The scaling law (1) seems a true system property, because

it describes a connection between masses and orbital periods

of different celestial bodies (Mercury and Jupiter, Earth and

Neptune, etc.) within the Solar system.
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Bodies, Body mass M, kg ln(M/mp) D ln(T/τp) Orbital Bodies,

sorted by M period T , years sorted by T

Ceres 9.5000 × 1020 109.9584 1.5387 71.4603 0.2408 Mercury

Makemake 2.1000 × 1021 110.7516 1.5298 72.3980 0.6152 Venus

Haumea 4.0100 × 1021 111.3985 1.5284 72.8839 1.0000 Earth

Pluto 1.3000 × 1022 112.5746 1.5313 73.5156 1.8808 Mars

Eris 1.7000 × 1022 112.8429 1.5165 74.4099 4.6000 Ceres

Mercury 3.3020 × 1023 115.8094 1.5368 75.3573 11.8626 Jupiter

Mars 6.4191 × 1023 116.4741 1.5272 76.2665 29.4475 Saturn

Venus 4.8690 × 1024 118.5003 1.5327 77.3149 84.0168 Uranus

Earth 5.9742 × 1024 118.7049 1.5221 77.9885 164.7913 Neptune

Table 1: For sorted by value couples of a body mass M and an orbital period T the fractal dimension D(2) is quite constant and closed to

the model value 3/2. Data come from [8, 13–16].

Bodies, Body mass M, kg ln(M/mp) D2 ln(T/τp) Orbital Bodies,

sorted by M period T , years sorted by T

vacant 1.6358 × 1025 119.7122 1.5270 78.3970 247.9207 Pluto

vacant 2.0281 × 1025 119.9271 1.5270 78.5378 285.4000 Haumea

vacant 2.2999 × 1025 120.0529 1.5270 78.6201 309.9000 Makemake

Uranus 8.6849 × 1025 121.3816 1.5325 79.2064 557.0000 Eris

Neptun 1.0244 × 1026 121.5467 1.5270 79.5984 824.2881 vacant

Saturn 5.6851 × 1026 123.2605 1.5270 80.7207 2532.1227 vacant

Jupiter 1.8987 × 1027 124.4664 1.5270 81.5104 5577.7204 vacant

Table 2: Continues Table 1 until the Jupiter body mass. The masses and orbital periods for vacant bodies are calculated, based on the

empiric average value D≈ 1.527.
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Fig. 1: Graphic representation of Table 1. For sorted by value couples of a body mass M and an orbital period T the fractal dimension D is

quite constant. The doted line is drawed for the average D≈ 1.527.
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EDITORIAL MESSAGE

In Memoriam of Joseph C. Hafele (1933–2014)

Joseph Carl Hafele was born on July 25, 1933, in Peoria, Illi-

nois, in the large family of Carl Louis Hafele and Thelma

Loeb Hafele. He grew up among his many brothers and sis-

ters.

In 1951, after serving in the US Army, he attended the

University of Illinois at Urbana-Champaign. At the Univer-

sity, he got a BSc in engineering physics in 1959, and was

bestowed the PhD degree in nuclear physics in 1962. After

the graduation, during 1964–1966, he worked at the Los Ala-

mos National Laboratory, wherein he conducted research in

particle physics. After that, during 1966–1972, he worked

within the Physics Faculty of Washington University at St.

Louis, Missouri.

In 1958, he married Carol Hessling, and they raised four

daughters.

In October 1971, Joseph C. Hafele commonly with Ri-

chard E. Keating, an astronomer from the US Naval Observa-

tory, conducted the around-the-world-clock experiment

which is one of the main experimental tests of the Theory

of Relativity. Four Cesium atomic clocks were transported

on board of a jet plane around the Globe twice, toward and

against the direction of the Earth’s rotation. The around-the-

world-clock experiment showed, with high measurement pre-

cision, both gravitational and relativistic effects of Einstein’s

theory in the local space of the Earth. This experiment gave

both of them world fame. Later, it became known as Hafele-

Keating experiment.

Commencing in 1972, Joseph C. Hafele worked in differ-

ent positions. He conducted some developments for Caterpil-

lar Inc., lectured at Eureca College (1985–1991), was a vis-

iting researcher for NASA at Langley AFB in Hampton, Vir-

ginia, lectured at Christopher Newport University in Newport

News, Virginia. He retired in 1996, and settled in common

with his wife Carol in Laramie, Wyoming.

Upon retirement, Joseph C. Hafele did not cease his sci-

entific activity. Having no longer a physics laboratory for

conducting experiments, he undertook deep theoretical re-

search studies of the anomalous experiments which were un-

explained in the frameworks of both modern classical me-

chanics and relativistic mechanics. He published a number of

excellent papers in scientific journals, including our journal.

It was a great honour for us to communicate with him and

publish his research papers. Many of his scientific ideas still

remain undeveloped until now.

In Laramie, Wyoming, he lived a modest life in common

with his wife Carol, in their home where he grew tomatoes in

Joseph C. Hafele and Richard E. Keating on board of a jet plane

while performing the around-the-word-clock experiment (1971).

his garden, and spent some astronomical observations at the

telescope installed in his home observatory at the back yard.

Joseph C. Hafele passed away in November 15, 2014, be-

ing 81 years old. His heart suddenly stopped during surgery

for an aortic aneurism at the Medical Center of the Rockies

in Loveland, Colorado.

Let his memory live for ever!

Dmitri Rabounski and Larissa Borissova
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Solar-Time or Sidereal-Time Dependent? The Diurnal Variation in the

Anisotropy of Diffusion Patterns Observed by J. Dai (2014, Nat. Sci.)

Felix Scholkmann

Bellariarain 10, 8038 Zürich, Switzerland. E-mail: felix.scholkmann@gmail.com

In this correspondence an additional analysis is reported about the anisotropic diffusion

patterns of a toluidine blue colloid solution in water measured by J. Dai (Nat. Sci., 2014,

v. 6 (2), 54–58). In the previous analysis (Scholkmann, Prog. in Phys., 2014, v. 10 (4),

232–235) it could be shown that the anisotropy data contain a diurnal and annual peri-

odicity. This novel analysis investigated whether this periodicity is also present when

the data were analyzed according to the sidereal time. The analysis revealed that the

daily periodicity is present in the data scaled with the solar as well the sidereal time.

When using solar time an oscillation with a diurnal period appears, when using sidereal

time the oscillation is semidiurnal. In addition, the novel analysis revealed that the data

of the maximum diffusion trend show a quantization of unknown origin.

Recently in this journal (v. 10 (4), [1]), I present a reanal-

ysis of the data of J. Dai [2] that investigated fluctuations

in anisotropic diffusion patterns of a toluidine blue colloid

solution in water. It could be shown that the fluctuation of

anisotropy, i.e. the maximum diffusion trend (MDT), clearly

exhibits a diurnal and annual periodicity. Responding to this

article, Prof. R. Cahill (Flinders University, Adelaide, Aus-

tralia) suggested that it would be interesting to analyse if the

observed periodicity is associated with the solar or the side-

real time (i. e. the time based on the Earth’s rotation with

respect to the fixed stars). In order to investigate this issue,

the following new analysis was performed: (i) The time in-

formation given in the data of Dai was converted from the

local solar time to the local sidereal time using the infor-

mation of the location where the experiment was conducted

(Wuhan City, China, latitude: N ∼ 30◦35′35.1168′′, longi-

tude: E ∼ 114◦18′18.6192′′). (2) The data were analyzed

by calculating the median and the median absolute deviation

(MAD) for every hourly time interval (24 in total). (3) The

function f (MDT) = α0 + α1 cos(MDT ω) (with the free pa-

rameters α0, α1 and ω) was fitted to the daily grouped data

using the Trust-Region-Reflective Least Squares Algorithm.

For the fitting, the MAD values were taken into account to

increase the precision of the fit (which is an improvement to

the fitting approach used in the previous analysis [2]).

The individual MDT values plotted against the solar time

and sidereal time are shown in Figure 1(a) and (e), respec-

tively. Fitting the periodic (sinusoidal) function to the MDT

data showed that the fit functions differ depending on the time

scaling (solar vs. sidereal) used. When using the solar time

the best fit is a function with a diurnal periodicity (see Figure

1(b)) whereas when using the sidereal time the best fit has

a semidiurnal periodicity (See Figure 1(f)). The goodness-

of-fit (quantified by the squared Pearson correlation coeffi-

cient, r2, and the root-mean-square error, RMSE) for both

cases were: (i) MDT data with solar time: r2 = 0.5028,

RMSE = 3.191, and (ii) MDT data with sidereal time: r2 =

0.4838, RMSE = 3.04. A visualization of the r2 and RMSE

values for both cases is shown in Figure 1(d) and Figure 1(h).

To visualize the density distribution of the MDT values the

density at each point of the grid was calculated as 1/z with z

the sum of squared distance from each point. For this the

Matlab function “DataDensityPlot” written by M. McLean

was used. The density plots are shown in Figure1(c) and Fig-

ure 1(g).

From this new analysis results we can conclude that (i)

in both cases (solar and sidereal time scaling) the MDT data

show a periodicity, (ii) the periodicity has a frequency de-

pending on the time scaling: diurnal for solar time (oscillation

maximum: at approx. 0.00 a.m.) and semidiurnal for sidereal

time (oscillation maxima: at approx. 0.00 a.m. and 12.00–

1.00 p.m.), (iii) the goodness-of-fit of the fitted function for

both data sets (MDT vs. solar or sidereal time) is similar. The

correlation is higher for the solar time scaling but the RMSE

value lower for the sidereal time scaling. This can be inter-

preted as meaning that the MDT values contain an oscillation

correlated with the solar as well as with the sidereal time. A

related observation was obtained by Shnoll who found a so-

lar and sidereal oscillation in the similarity of histograms of

radioactive decay of 239Pu [3, 4].

The detected oscillations indicate that there is possibly

cosmophysical factor influencing the diffusion process. This

factor might be influencing the process from a preferred di-

rection in space such as determined for example by Miller

(right ascension, α = 4hr 54min, declination, δ = −70◦ 33′

[5]; α = 4hr 56min, δ = −70◦ 33′ [6]), Cahill (α = 4.92hr,

δ = −75.0◦) [7], Múnera et al. (α = 16hr 40min, δ = −75◦ [8];

α = 5hr 24min, δ = +79◦ [9]), and Baurov (α = 19hr 32min

± 40min, δ = 36◦ ± 10◦) [10].∗

∗The value for the right ascension is originally given by Baurov as α =
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Fig. 1: Raw data plotted against solar (a) or sidereal (e) time. Fitted sinusoidal function to the MDT scaled using the solar (b) or sidereal

(f) time. Density plot of the MDT values plotted against solar (c) or sidereal (g) time. The values for the correlation and RMSE value of

the fit are shown in (d) and (h).

Fig. 2: (a) Histogram and Kernal density (b) of the MDT values.

As an additional analysis the characteristics of the dis-

tribution of the MDT from all 15 days were investigated by

computing the histogram (number of bins: 40) and the Ker-

nal density according to the method of Shimazaki & Shi-

nomoto [5]. This analysis revealed an interesting pattern: the

occurrence of MDT values shows three distinct peaks. The

strongest peak is at 230◦, the second at 158◦ and the third at

303◦ (see Figure 2). This quantization of diffusion anisotropy

is another interesting feature of Dai’s data that awaits expla-

nation.

In conclusion, the new analysis performed shows novel

features of the MDT data of Dai. Further MDT measurements

and investigations into the cause of the observed effects would

be an interesting next step in this area of research.

Submitted on January 28, 2015 / Accepted on February 5, 2015

293◦ ± 10◦ and was converted to α = 19hr 32min by the author using the

equality 360◦ = 24 h.
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It is suggested here that a swastika-shaped rotor exposed to waves will rotate in the di-

rection its arms are pointing (towards the arm-tips) due to a sheltering effect. A formula

is derived to predict the motion obtainable from swastika rotors of different sizes given

the ocean wave height and phase speed and it is suggested that the rotor could provide

a new, simpler method of wave energy generation. It is also proposed that the swastika

rotor could generate energy on a smaller scale from sound waves and Brownian motion,

and potentially the zero point field.

1 Introduction

With the recent awareness of the environmental damage

caused by fossil fuels, there is a need to find renewable

sources of energy. There are many possible sources of energy:

sunlight, the wind, ocean tides and also the energy stored in

ocean surface waves, and other types of waves. Ocean waves

are particularly relevent for the island of Great Britain. It has

been estimated that between 7 and 10 GW of energy might

be extractable from the waves in UK waters by Wave Energy

Converters (WECs), compared with the UK peak demand es-

timated at 65 GW, so that 15% of UK peak demand could be

met by wave power [1].

One of the first viable techniques for the generation of

ocean wave power was Salter’s Duck which rotated along a

horizontal axis under the undulation of waves and generated

energy using dynamos. The result was an 81% conversion of

wave energy into power [2], but this method extracts energy

from waves only in one direction.

Another problem with Salter’s duck and other wave en-

ergy converters is that they have many moving parts which

can degrade with time. The new wave energy generation

method proposed here is far simpler in structure and has only

one moving part: the rotor. It can also be deployed far from

the coast, and, as discussed later in the paper, is applicable to

all kinds of waves or fluctuations and not just ocean waves,

maybe also the zero point field.

Part of the inspiration for this paper was the proposal of

Boersma [3] that two ships at sea will produce a wave shadow

zone between them, so that more waves will hit the ships from

outside than from between them and so the ships will tend to

move together. This is an analogy to the well-known Casimir

effect in quantum physics [4] which involves the suppression

of the zero point field between two parallel conducting plates

which are then forced together. The Casimir force has been

measured [5]. The effect due to ocean waves is predicted to

be small, but has recently also been measured by [6].

2 Method & results

This proposal uses a swastika, or Greek letter Chi, see Fig-

ure 1. The idea is that if waves arrive from all directions,

Fig. 1: Schematic showing the swastika rotor, the surrounding wave

field (dashed lines) and the resulting forces (arrows).

more waves hit the outer sides of the swastika’s arms, then

hit the sheltered inner-facing sides of the arms, producing a

torque that rotates the swastika about its axis.

To explain this more clearly and estimate the force that

can be extracted from this shape we can consider three square

areas that interact with the southeast arm: areas A, B and C

as shown in Fig. 1. The assumption is that the areas A and B

are sheltered zones rather like harbours and that only certain

waves can exist between the walls, those with a wavelength

that has nodes at the walls. If we then assume that the par-

ticular wavelength in the ocean does not fit, then there will

be fewer waves in areas A and B, but there will of course be

waves in area C since there is no closed boundary, it is open

to the ocean. The maximum force obtainable from this shape

can be found by looking at the net force on the southeast arm

of the swastika and multiplying it by four. For the inner half

of the southeast arm, between areas A and B, there is no net

force since there are either no waves, or more likely the same

intensity of waves, on either side, but for the outer half of the

arm between B and C there will be a force on the arm pushing

it westward because there are waves on the open east side, but

not on the enclosed west side.

According to [7,8] the impact pressure or slamming force

(P) due to wave impacts is

P =
F

A
= KρC2

, (1)
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where A is the area of impact, K is an empirical constant be-

tween 3 and 10, ρ is the water density and C is the wave phase

speed. For the southeast arm of the swastika this is

F = KAρC2 (2)

and A is the area hit by the waves which is the half-length of

the arm (D) times the wave height h

F = KDhρC2
. (3)

The force and resulting rotation will be clockwise, to-

wards the arm-tips. Since F = ma, then the acceleration of

the arm will be

a =
KDhρC2

m
. (4)

Equation 4 predicts the maximum acceleration obtainable

from the swastika, neglecting friction, if its dimensions are

such that it cancels the waves in areas A and B completely.

The acceleration increases as a function of the wave height

(h), length of the arms (D) and the phase speed (C). The

acceleration, of course, decreases as the mass increases (m).

The effect missing here is friction, which will slow the rota-

tional acceleration as soon as it begins.

3 Discussion

This rotor is only a proposal at this stage. It requires testing

in a wave tank big enough so that interactions between the

swastika and the wave tank’s walls are reduced and also so

that the waves in area C are not damped. The waves should be

a similar wavelength to the width of the arms of the swastika

or shorter. Longer waves than this will not be able to resolve

the shape of the arms so there will be no rotation. Eqs. 3 and

4 imply that to get the maximum rotation, the test should use

a light rotor with arms projecting enough from the water to

intercept the waves, subject to high waves with a large phase

speed. Since the effect may be subtle, care will have to be

taken to reduce the effects of residual rotational flows.

The swastika rotor has advantages over current wave en-

ergy devices in that it is simple and has only one moving part:

the axle, it does not require wave impacts from any particu-

lar direction and can work just as well with isotropic random

waves, and it will also rotate if a surface ocean current exists,

but the opposite way, since it is then similar in design to an

anenometer.

One intriguing possibility is that the rotation of the swas-

tika shape in a wave field could also be applied at a much

smaller scale. A smaller-scale swastika may be spun by sound

waves, Brownian motion or even on the nanoscale by the

zero-point field allowing perhaps that source of energy to be

tapped for the first time.

On the Brownian scale [9] have shown that boomerang-

shaped colloidal particles move towards their concave sides

when subjected to Brownian motion: random collisions with

atoms or molecules. A sheltering process similar to that de-

scribed in this paper, might explain their results since, due

to sheltering, these boomerang particles would see fewer im-

pacts from atoms in the concave gap between their arms and

more impacts on their convex side, so they should move to-

wards their concave side, or towards their arm-tips, just as

observed.

A light-driven swastika-shaped rotor on the nanoscale has

already been demonstrated. It does not utilise the zero point

field, but is driven by an applied beam of light and works in

a different manner since the light photons interact with the

electrons in the conducting shape [10].

4 Conclusions

It is predicted that a rotor in the shape of a swastika will rotate

in the direction its arms are pointing, i.e.: towards the arm-

tips, in the presence of isotropic waves, due to the sheltering

effect of the arms.

It is proposed that such a rotor can be used to convert wave

energy to electricity by using its axle to drive a dynamo. Its

advantage over existing wave energy generating devices is its

simplicity, its response to isotropic waves and its (reversed)

response to surface currents. It now needs to be tested exper-

imentally.

The swastika shape could also be used on smaller scales to

generate energy from sound waves or Brownian motion: for

example it may explain the observed motion of Boomerang-

shaped particles. It may be possible to use nanoscale swastika

rotors to extract energy from the hitherto untapped zero point

field.

Submitted on February 1, 2015 / Accepted on February 4, 2015
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The interacting boson model (sd-IBM1) with intrinsic coherent state is used to study the
shape phase transitions from spherical U(5) to prolate deformed SU(3) shapes in Nd-
Sm isotopic chains. The Hamiltonian is written in the creation and annihilation form
with one and two body terms.For each nucleus a fitting procedure is adopted to get
the best model parameters by fitting selected experimental energy levels, B(E2) transi-
tion rates and two-neutron separation energies with the calculated ones.The U(5)-SU(3)
IBM potential energy surfaces (PES’s) are analyzed and the critical phase transition
points are identified in the space of model parameters.In Nd-Sm isotopic chains nuclei
evolve from spherical to deformed shapes by increasing the boson number. The nuclei
150Nd and 152Sm have been found to be close to critical points.We have also studied the
energy ratios and the B(E2) values for yrast band at the critical points.

1 Introduction

The interacting boson model (IBM) [1] describes the low en-
ergy quadruple collective states of even-even nuclei in terms
of bosons with angular momentum 0 and 2 so called s and d
bosons. The bosonic Hamiltonian is assumed to have a gen-
eral form with one- and two-body terms and must be invariant
under some fundamental symmetries. The algebraic formula-
tion of the IBM allows one to find analytical solutions associ-
ated with breaking the U(6) into three dynamical symmetries
called U(5), SU(3) and O(6) limits of the model, correspond-
ing to spherical (vibrational), axially symmetric prolate de-
formed (rotational)and soft with respect to axial symmetric
(γ-unstable) shapes respectively.

Phase transitions between the three shapes of nuclei are
one of the most significant topics in nuclear structure research
[2-11]. These shape phase transitions were considered in the
framework of the geometric collective model [12], resulting
in the introduction of the critical point symmetries E(5) [13]
X(5) [14]. Y(5) [15], Z(5) [16] and E(5/4) [17]. The E(5)
corresponds to the second order transition between U(5) and
O(6), while X(5) corresponds to the first order transition be-
tween U(5) and SU(3). The symmetry at the critical point is
a new concept in the phase transition theory, especially for a
first order transition. From the classical point of view, in a
first order transition, the state of the system changed discon-
tinuously and a sudden rearrangement happens, which means
that there involves an irregularity at critical point [18].

Empirical evidence of these transitional symmetries at the
critical points has been observed in several isotopes.
The study of the shape phase transitions in nuclei can be best

done in the IBM, which reproduces well the data in several
transitional regions [8, 11].

In this paper we use the IBM with intrinsic coherent states
to study the spherical to prolate deformed shape transition in
the Nd-Sm isotopic chains. Section 2 outlines the theoreti-
cal approach and the main features of the U(5)-SU(3) model,
the model Hamiltonian under study is introduced in subsec-
tion 2.1. In subsection 2.2 the intrinsic coherent states are
given as energy states of the model Hamiltonian.In section 3
we present the numerical results of PES’s for Nd-Sm isotopic
chains and gives some discussions. Finally a conclusion is
given in section 4.

2 Outline of the theoretical approach

2.1 The general Hamiltonian of the sd-IBM

In order to study the geometric shapes associated with the sd-
IBM, we consider the most standard one and two body IBM
Hamiltonian [1]

H = ϵ sn̂s + ϵdn̂d

+
∑

L

1
2

√
2L + 1 CL

[
[d† × d†]

(L) × [d̃ × d̃](L)
](0)

+
1
√

2
v2

([
[d† × d†](2) × d̃s

](0)
+

[
s†d† × [d̃ × d̃](2)

](0)
)

+
1
2
v0

([
[d† × d†](0) × ss

](0)
+

[
s†s† × [d̃ × d̃](0)

](0)
)

+u2[d†s† × d̃s](0)
+

1
2

u0[d†s† × ss](0)

(1)

A.M. Khalaf, et al. Nuclear Phase Transition from Spherical to Axially Symmetric Deformed Shapes 141



Volume 11 (2015) PROGRESS IN PHYSICS Issue 2 (April)

with
CL = ⟨ddL|v|ddL⟩, (2)

v2 =

√
5
2
⟨dd2|v|ds2⟩, (3)

v0 = ⟨dd0|v|ss0⟩, (4)

u2 = 2
√

5 ⟨ds2|v|ds2⟩, (5)

u0 = ⟨ss0|v|ss0⟩, (6)

where s†(s) and d†(d̃) are the creation and annihilation op-
erators of the s and d bosons. d̃ is the annihilation operator
of the d boson with the time reversal phase relation d̃2k =

(−1)2+kd2,−k .

2.2 The intrinsic coherent state

The geometric picture of the IBM can be investigated by in-
troducing the intrinsic coherent state which is expressed as a
boson condensate [19]:

|Nβγ⟩ = 1
√

N!
(bc
†)

N |0⟩, (7)

bc
†=

1√
1+β2

[
s†+d0

† β cos γ+
1
√

2
(d2
†+d−2

†)β sin γ
]
, (8)

where N is the boson number, β and γ are the intrinsic defor-
mation parameters which determine the geometrical shape of
the nucleus.|0⟩ is the boson vacuum. Here β ≥ 0, 0 ≤ γ ≤ π3 .

2.3 The Potential Eneryg Surface (PES)

The PES associated with the classical limit of IBM Hamil-
tonian (1) is given by its expectation value in the intrinsic
coherent state (7)

E(N, β, γ) = ⟨Nβγ|H|Nβγ⟩ = ϵ s
N

1 + β2 + ϵd
Nβ2

1 + β2+(
1
10

C0 +
1
7

C2 +
9
35

C4

)
N(N − 1)

β4

(1 + β2)2−

2
√

35
v2N(N − 1)

β3 cos 3γ

(1 + β2)2 +
1
√

5
(v0 + u2)N(N − 1)

β2

(1 + β2)2 +
1
2

u0N(N − 1)
1

(1 + β2)2 .

(9)

If the parameter v2 = 0, then the PES is independent of
γ. If v2 , 0 then for every β > 0 the PES has a minimum at
γ = 0, if v2 > 0 (axially symmetric case with prolate shape)
or γ = π3 if v2 < 0 (oblate shape).

The PES equation (9) can be written in another form as:

E(N, β, γ)
N

=
A2β

2 + A3β
3 cos 3γ + A4β

4

(1 + β2)2 + A0 (10)

Table 1: Equilibrium values of the parameters A2, A3, A4 in the large
N limit for transition from dynamical symmetry limit U(5) to dy-
namical symmetry limit SU(3) as an illustrative example.

Set A2 A3 A4

a 500 -283 850
b 102 -508 703
c 91 -514 727
d 0 -566 700
e -250 -707 625
f 95 -512 728
g 85 -517 725

with
A2 = ϵd − ϵ s − u0 + (N − 1)

1
√

5
(u2 + v0), (11)

A3 = −
2
√

35
(N − 1)v2, (12)

A4 = ϵd − ϵ s −
1
2

u0 + (N − 1)
(

1
10

C0 +
1
7

C2 +
9
35

C4

)
, (13)

A0 =
1
2

u0. (14)

To determine the critical values of the order parameters
of the system, one needs to determine the locus of points for
which the conditions ∂E

∂β
= 0 and ∂

2E
∂β2 = 0 are fulfilled.

The equilibrium value of β is determined by:

∂E(N, β)
∂β

= 0, (15)

leading to

β
[
2A2 + 3A3β + (4A4 − 2A2) β2 − A3β

3
]
= 0. (16)

Figure (1) (with the parameters listed in table (1)) illus-
trates the critical points: For A2 = 1, A3 = A4 = 0, the nucleus
is in the symmetric phase since the PES has a unique mini-
mum at β = 0 when A3 and A4 not vanish and A2 decreases, a
second nonsymmetric minimum arises (set b) at β , 0. This
non symmetric minimum take the same depth of the symmet-
ric one at the critical point (set c). Beyond this value, the
symmetric minimum at β = 0 becomes unstable point (set d).
(Sets g, h) show two cases in the coexistence region.

3 Application to Nd–Sm isotopic chains

Nuclei in rare-earth region are well-known examples of the
U(5)-SU(3). The validity of the present technique is exam-
ined for the rare earth isotopic chains 144−154Nd and
146−162Sm. The optimized values of the nine parameters of
the Hamiltonian ϵ s, ϵd, c0, c2, c4, u0, u2, v0, v2 which are trun-
cated to four parameters A2, A3, A4, A0 are adjusted by fitting
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Fig. 1: The scaled PES’s as a function of the deformation parameter
β for the model parameters listed in table (1). The curves (b, c, d)
represents the spinodal, critical and antispinodal points respectively.
The curves (f, g) show two cases on the coexistence region.

procedure using a computer simulated search program in or-
der to describe the gradual change in the structure as neu-
tron number varied (number of bosons) and to reproduce ten
positive parity experimental levels namely (21

†, 41
†, 61

†, 81
†,

02
†, 23

†, 43
†, 22

†, 31
† and 42

†), the B(E2) values and the two
neutron separation energies for each nucleus in each isotopic
chain. The effect of ϵ s be ignored also the parameter u0 is kept
zero because it can be absorbed in the three parameters. The
resulting model parameters are listed explicitly in Table (2).
The PES’s E(N, β) as a function of the deformation parame-
ter βfor our Nd-Sm isotopic chains evolving from spherical to
axially symmetric well deformed nuclei are illustrated in the
Figures 2, 3. At the critical points (150Nd, 152Sm) the spheri-
cal and deformed minima must coexist and be degenerated in
order to obtain a first order phase shape transition. To identify
the shape phases and their transition it is helpful to examine
the correspondence between the interaction strengths in the
microscopic model and the dynamical symmetry in the IBM.

Phase transitions in nuclei can be tested by calculating the
energy ratios

RI/2 = E(I+1 )/E(2+1 ). (17)

For I = 4, the ratio R4/2 varied from the values which
correspond to vibrations around a spherical shapeR4/2 = 2
to the characteristic value for excitations of a well deformed
rotor R4/2 = 3.33. Figure (4) shows the RI/2 for 150Nd and
152Sm compared to U(5) and SU(3) prediction.

Now, we discuss the electric quadruple transition proba-
bilities. The general form of the E2 operator was used

T (E2) = α
([

d† × s̃ + s† × d†
](2)
+ β

[
d̃ × d̃

](2)
)

(18)

where α is the boson effective charge and β is the structure

Fig. 2: The PES’s (in the γ = 0 plane given by the IBM as a function
of deformation parameter β , to describe the U(5)-SU(3) transition
in 144−154Nd isotopic chain. The calculations are for χ = −

√
7/2.

Fig. 3: The same as Fig.2 but for 146−162Sm isotopic chain.

parameter. The parameters α and β have been determined
directly from the least square fitting to the observed β(E2).
α = 0.135 and β = −0.115. The ratios of the E2 transition
rates for the U(5) and SU(3) are given by

B(I+2)/2 = B(E2, I + 2→ I)/B(E2, 2+1 → 0+1 ),

=
1
2

(I + 2)
(
1 − I

2N

)
for U(5),

=
15
2

(I + 2)(I + 1)
(2I + 3)(2I + 5)

(
1 − I

2N

) (
1 +

I
2N + 3

)
for SU(3).

(19)

In Figure (5), the B(I+2)/2 ratios are shown for the best candi-
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Table 2: The adopted best model parameters in (keV) for our se-
lected Nd-Sm isotopic chains.

NB A2 A3 A4 A0

144Nd 6 400.132 -242.551 636.717 18.936
146Nd 7 168.175 -291.061 452.077 39.874
148Nd 8 54.518 -339.571 385.737 60.812
150Nd 9 -140.338 -388.081 238.197 81.751
152Nd 10 -359.495 -436.591 66.357 102.689
154Nd 11 -452.052 -485.102 21.117 123.627
146Sm 7 748.245 -160.541 946.905 0.0
148Sm 8 554.405 -187.298 786.175 0.0
150Sm 9 360.565 -214.055 625.445 0.0
152Sm 10 166.725 -240.812 464.715 0.0
154Sm 11 -27.115 -267.569 303.985 0.0
156Sm 12 -220.955 -294.326 143.255 0.0
158Sm 13 -414.795 -321.083 -17.475 0.0
160Sm 14 -608.635 -347.839 -178.205 0.0
162Sm 15 -802.475 -374.596 -338.935 0.0

date 152Sm compared to the U(5) and SU(3) predictions and
the experimental data.

4 Conclusion

The shape transition U(5)-SU(3) in 144−154Nd and 146−162Sm
isotopic chains in the rare earth region is studied in the frame-
work of sd IBM1 using the most general Hamiltonian in terms
of creation and annihilation operators using the method of the
intrinsic states.

Fig. 4: Normalized excitation energies RI/2 = E((I1
†)/E((I2

†) for
150Nd and 152Sm nuclei compared to U(5) and SU(3) predictions.

The optimized model parameters have been deduced by
using a computer simulated search program in order to obtain
a minimum root mean square deviation of the calculated some
excitation energies, the two neutron separation energies and
some B(E2) values from the measured ones. The PES’s are
analyzed and the location of the critical points are obtained.
In our Nd and Sm chains, nuclei evolve from spherical to pro-
late deformed shape transition. The lighter nuclei are spher-
ical and the heavier are well deformed. The 150Nd and the
152Sm have been found to be critical point nuclei, that is the

Fig. 5: Comparison of the BI+2/2 = B(E2, I + 2 : I)/B(E2, (21
†, 01

†)
ratios of the ground state band in 152Sm (N=11) compared to the
U(5) and SU(3) predictions and the experimental ratio.

transition from the spherical to deformed occurs between bo-
son number N=9 and N=10. The energy ratios and the B(E2)
values are also studied.
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Planck’s Radiation Law: Thermal Excitations of Vacuum Induced Fluctuations

Fernando Ogiba
E-mail: ogiba@cpovo.net

The second Planck’s radiation law is derived considering that “resonators” induced by

the vacuum absorb thermal excitations as additional fluctuations. The maximum energy

transfer, as required by the maximum entropy equilibrium, occurs when the frequencies

of these two kind of vibrations are equal. The motion resembles that of the coherent

states of the quantum oscillator, as originally pointed by Schrödinger [1]. The resulting

variance, due to random phases, coincides with that used by Einstein to reproduce the

first Planck’s radiation law from his thermal fluctuation equation [2].

1 Introduction

In 1901, Planck derived the spectral distribution of radiant

heat, simply calculating entropy from the number of ways

that thermal energy can be distributed among all blackbody

resonators (maximum entropy). This forced him to interpret

the possible energies of the resonators, for a given mode and

temperature, as multiples of a fixed energy; the quantum of

electromagnetic energy [3]. In such approach, the appear-

ance of a collection of resonators — with all sort of frequen-

cies — depends only on thermal excitations, that is, for T = 0

they do not exist. However, in 1912 Planck realized that ther-

mal equilibrium with radiation would make sense only if the

resonators remain even for T = 0 [4]. In this new approach

the quantization of the first Law was preserved, but only in

the emissions, that is, oscillators in equilibrium with radiation

absorbs continuously until a certain nhν is reached, and then

they emit or continues absorbing. From this semi-classical

derivation, one concludes that exists vibrations not induced

by thermal excitations. In this way, arose the concept of zero-

point energy (ZPE), which is a term of the second Planck’s

radiation law, i.e.

〈E〉 =
1

2
~ω +

~ω

e~ω/kBT − 1
. (1)

At the time, the ZPE was a controversial concept; at best,

it was accepted as “virtual photons due to nearby matter”.

The concept of a radiation field permeating the vacuum, and

then inducing “matter-oscillators” with an energy given by

the first term of Eq. (1), only gained credibility after the pre-

dictions of the quantum field theory (quantum vacuum states)

and the experimental proof of the Casimir’s force [5]. In fact,

around the middle of the last century they begin appear works

that assume explicitly that the matter (elementary electrical

charges or agglomerates of them) are in permanent interac-

tion with a zero-point radiation field (ZPF); absorbing and

emitting electromagnetic radiation in a conservative way, in-

dependently of temperature.

In accordance with the experimentally proved work of

Casimir [6] and the proponents of the stochastic electrody-

namics [7], the ZPF is a homogeneous and isotropic distribu-

tion of electromagnetic plane waves pervading all space; each

one carrying energy proportional to its frequency (ranging

from zero to infinite, or a big cutoff value), ~ω/2. Moreover,

its spectral energy density is proved to be a Lorentz invariant.

As the phases of such waves are randomically distributed in

the range [0, 2π], then electrical charges (or any agglomerate

of them) are permanently receiving unpredictable impulses

with the following features: First, the ZPF isotropy ensures

zero net momentum transfer. Second, the emitted radiation,

due to non uniform acceleration, responds by the local en-

ergy conservation. Third, the symmetric distribution of emis-

sions ensures zero net self-momentum (no liquid radiation

reaction). Fourth, the permanent nature of the absorption-

emission process imply a remnant random trembling motion,

whose energy in the particle-bound reference frame, in the

case of a free electron, is the well-known rest energy

m0c2 =
~ωZ

2
, (2)

where ωZ is the zitterbewegung frequency [8, 9].

This zitterbewegung, strongly correlated with the trans-

lational motion trough the de Broglie’s periodicity, prevent

such particles to follow predictable paths (quantum random-

ness). Even so, the overall motion obeys the dynamical prin-

ciple founded on trajectories. Non relativistically, this obedi-

ence means that the center of mass of the particle’s vibrations

can be found — instantly — over any one of the trajectories

dictated by the stochastic Hamilton-Jacobi-Bohm equation,

which is implicit in the Schrödinger’s equation [10].

What follows is a derivation of Planck distribution, which

replaces the quantization a priori by the presence of the ZPF,

which, therefore, is the responsible by “resident blackbody

resonators”. Nevertheless, quantization is implied. Indeed,

the zero-point energy ε0, besides being a fixed quantity for

each mode, is indispensable to get a discrete Boltzmann’s dis-

tribution from a continuous one [12].

2 Thermal excitations of vacuum induced fluctuations

The energy absorbed (emitted) from (to) the ZPF in order to

form temperature independent primordial matter-oscillators

(or “Blackbody resonators”) is

ε0(ω) =
1

2
~ω. (3)
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When particles absorbs such vibrant energy, conserva-

tively, it is expected that its coordinates fluctuates as

q0(t, φ) =

√

2ε0(ω)

mω2
cos(ωt + φ), (4)

which differs from a typical classical oscillation only by the

presence of random phases φ (ZPF randomness), which imply

that this equation does not describe the actual path followed

by particles, but simply obedience to the dynamic principle at

each occupied position. Indeed, this is the main feature of the

Schrödinger’s equation, as argued elsewhere.

Notice, now ε0(ω) is the energy of the matter-oscillator

(the zero-point energy), which, as can be seen by simple sub-

stitution of Eq. (4), obey the equality

ε0(ω) =
1

2π

∫ 2π

0















(2)
2π

ω

∫ 2π/ω

0

1

2
m

(

dq0(t, φ)

dt

)2

dt















dφ, (5)

where the factor (2) refers to equal contributions from kinetic

and potential energies of the harmonic oscillator, ω is the an-

gular frequency of the absorbed radiation, the integral in t is

an average over the radiation period, and the integral in φ is

an average over random phases.

Given the permanent nature of the interactions, the ZPE

must be viewed as a remnant energy. It is indispensable to

compose the ground state energy of quantum systems. The

exact shape, as it should be, only appears in the case of the

harmonic oscillator.

For T , 0, there are thermal excitations, which manifest

as additional vibrations that increase the amplitude of existing

fluctuations. In a sense, this can be inferred from the thermal

dilatation of bodies. In other words, the center of mass of the

matter-fluctuations, as expressed by Eq. (4), fluctuates due to

thermal excitations. This implies the superposition

qφ,Φ(t) =

√

2ε0(ω)

mω2
cos(ωt+φ)+

√

2ET (Ω)

mΩ2
cos(Ωt+Φ), (6)

where ET (Ω) is the vibrational energy induced be thermal ex-

citations at the temperature T , Φ is a random phase, and, for

the sake of generality,Ω is an arbitrary frequency.

It is worth informing, the assumption of the last paragraph

is in full agreement with what is inferred from the coherent

states of the quantum harmonic oscillator (the perfect frame-

work to derive the Planck’s law); that is, the statistical Gaus-

sian of the ground state (here, the primordial oscillator) is

moved, as a whole, by classical oscillations [11, see p. 104 ].

Averaging the energy

(2) ×
ω

2π

∫ 2π/ω

0

1

2
m

(

dqφ,Φ(t)

dt

)2

dt

over random phases, both φ andΦ, yields the energy absorbed

(emitted) by this superposition of vibrations, i.e.

E(ω,Ω) = ε0(ω) + ET (Ω), (7)

where Ω still continues unknown.

Now, averaging the square deviation from ε0(ω),















(2) ×
2π

ω

∫ 2π/ω

0

1

2
m

(

dqφ,Φ(t)

dt

)2

dt − ε0(ω)















2

,

over both random phases, emerges the variance

σ2
ω,Ω =

2~ω3
(

ω2 + Ω2
)

sin2 (πΩ/ω) ET (Ω)

π2
(

ω2 −Ω2
) +

+

[

ω2 + 16π2Ω2 − ω2 cos2 (4πΩ/ω) ET (Ω)
]

ET (Ω)

16π2Ω2
(8)

which seems to diverges when Ω→ω. In true, there is the

maximum variance

σ2 = lim
Ω→ω
σ2
ω,Ω = E2

T (ω) + ~ωET (ω), (9)

which can also be obtained replacing Ω by ω in the starting

Eq. (6), and then performing the indicated operations.

Maximum variance implies maximum entropy (or ther-

modynamical equilibrium). Indeed, calculating entropy form

Gaussian or exponential distribution (like Boltzmann’s distri-

bution) one find that entropy is proportional to [ln(σ2) + cte].

From another point of view, the Eq. (9) also means that

maximum energy transfer occurs when thermal vibrations are

tuned with that induced by the ZPF, in full agreement with a

well-known result of the theory of oscillations; that is, max-

imum energy transfer occurs at the natural frequency of the

absorbing oscillator.

Therefore, from this tuned behavior — thermodynamical

equilibrium — it follows that each possible energy, consider-

ing Eq. (7), obey

E =
~ω

2
+ ET (ω), (10)

and are distributed in such a way that the corresponding dis-

tribution has the variance σ2.

It is crucial emphasizing, such ensemble of random ener-

gies is justified by a variance arising from random phases, φ

and Φ. The first is a well-known feature of the ZPF (master-

fully interpreted in the quantum mechanics framework), and

the second is related to the myriad of ways that thermal exci-

tations can move an elementary constituent of a body.

3 Thermal fluctuations and the Planck’s radiation law

The variance expressed by Eq. (9) ensures that for each ω-

mode at the remperature T there is a collection of random

energies E, Eq. (10). From a thermodynamical point of view,

the equilibrium involving such energy fluctuations must be

treated in terms of the Boltzmann’s statistics.

Deriving the moments of such distribution,

〈Er〉 =

∫ ∞

0
dEEre−βE

∫ ∞

0
dEe−βE

= r!〈E〉r,
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with respect to β= 1/kBT , we obtain the Einstein’s thermal

fluctuation equation

σ2
E = kBT 2 d 〈E〉

dT
, (11)

where, in the present calculations, 〈E〉 is the thermal average

of the energies expressed by Eq. (10), i.e.

〈E〉 =
~ω

2
+ 〈ET 〉 , (12)

and the thermal variance (thermal fluctuation) σ2
E

is, there-

fore, the thermal average of Eq. (9):

σ2
E = 〈ET 〉

2 + ~ω 〈ET 〉 . (13)

Combining the last three equations, we get the differential

equation

kBT 2 d 〈ET 〉

dT
= 〈ET 〉

2 + ~ω 〈ET 〉 , (14)

whose solution, considering 〈ET 〉 = 0 for T = 0, is

〈ET 〉 =
~ω

e~ω/kBT − 1
. (15)

Therefore,

〈E〉 =
~ω

2
+

~ω

e~ω/kBT − 1
. (16)
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The paper concerns an “ab initio” theoretical model based on the space-time quantum
uncertainty and aimed to identify the conceptual root common to all four fundamental
interactions known in nature. The essential information that identifies unambiguously
each kind of interaction is inferred in a straightforward way via simple considerations
involving the diffusion laws. The conceptual frame of the model is still that introduced
in previous papers, where the basic statements of the relativity and wave mechanics
have been contextually obtained as corollaries of the quantum uncertainty.

1 Introduction

Understanding the fundamental interactions of nature is cer-
tainly one among the most challenging topics of the modern
physics; a unified theory able to account for the fundamental
forces is a dream of the physicists since a long time [1, 2].
The science of the fundamental interactions progressed with
the advancement of the physics of the elementary particles
[3], whose properties could be tested by examining their way
of interacting with other particles. The theoretical models
bridging quantum and relativistic theories [4, 5] progressed
along with the merging of the physics of the elementary par-
ticles and quantum fields [6] with that of the fundamental in-
teractions. All this culminated with the formulation of the
standard model [7] and with the superstring theory [8]. The
way the particles interact involves significantly even the cos-
mology [9, 10]. The GU theories [11, 12] share some general
concepts about the four fundamental interactions, their basic
idea to model the force between quantum particles is in prin-
ciple simple: to exchange appropriate elementary particles
that transfer momentum and energy between the interacting
partners. The vector bosons are acknowledged to mediate
the forces between particles according to their characteristic
features of lifetime and action range [13]. These messenger
particles, quanta of the respective fields, are said to mediate
the interaction that propagates with finite velocity and per-
turbs the space-time properties. This way of thinking sug-
gests reasonably the key role of the displacement mechanism
of the particles that propagate the interaction, e.g. the dif-
ferent transport rates of massive or massless messengers; this
means, in particular, that the space in between a set of inter-
acting particles is filled with the vector bosons mutually ex-
changed. As clouds of these latter flow throughout the space-
time, it is reasonable to expect that the global properties of
the resulting interaction should depend on the ability of the
messengers to spread around the respective partners. Even-
tually, since the mutual positions of each particle in the set
are in general functions of time, even random local density
gradients of these messengers are expectedly allowed to form
throughout the space-time.

These preliminary considerations feed the idea of imple-

menting a model of fundamental interactions based on a ap-
propriate mechanism of transport of matter/energy, suffi-
ciently general to be suitably extended from sub-nuclear to in-
finite range interactions. Among the possible transport mech-
anisms deserves attention the particle diffusion, driven by a
gradient law originated by a non-equilibrium situation; as it
has been shown in a previous paper [14], this law is strictly
connected with the global entropy increase of an isolated ther-
modynamic system, the diffusion medium plus the diffusing
species both tending to the equilibrium configuration in the
state of maximum disorder. So the driving force of the dif-
fusion process is actually the second principle of thermody-
namics, i.e. a law so general to hold at the nano-micro-macro
scales of interest in the present context. As a matter of fact,
it has been found that this law allows describing not only the
concentration gradient driven mass transport but also other
important laws of physics: for instance Ohm’s electric con-
ductivity or Fourier’s heat conductivity or Poiseuille pressure
laws [14]. So, in agreement with the quantum character of
the approach therein introduced, appears stimulating in prin-
ciple the idea of testing via the diffusion laws even the ex-
change of vector bosons to describe the fundamental interac-
tions. This hint leads in a natural way to the idea of dynamical
flux of messenger particles, by consequence of which are ex-
changed momentum and energy of the interacting partners.
This assumption merely requires that the messengers of the
forces are exchanged as clusters of particles randomly flow-
ing through the space-time and thus characterized in general
by local concentration gradients. The physics of the four fun-
damental interactions has been already concerned in a dedi-
cated paper [15]; in that paper the interactions have been de-
scribed starting directly from the concept of space-time un-
certainty. Here this problem is reformulated via the diffusion
laws only in a surprisingly simple way. This paper aims to
show that the key features of the fundamental forces are ob-
tained by elaborating purposely the diffusion laws; it will be
emphasized that these laws provide interesting hints also for
relativistic and thermodynamic considerations. Of course the
purpose of the paper is not that of providing an exhaustive
description of the fundamental interactions, which would re-
quire a much longer review of the huge amount of literature
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existing about each one of them; the paper intends instead to
emphasize an even more crucial aspect of this topic, i.e. how
to infer the essential features of all known interactions from
a unique fundamental principle; in other words, the aim is to
focus on a unique conceptual root from which follow contex-
tually as corollaries all fundamental interactions. The paper
introduces an “ab initio” model via considerations limited to
the minimum necessary to infer the distinctive features of the
various forms of interaction that identify unambiguously each
one of them. Despite this topic is usually tackled via heavy
computational ways, the present theoretical model is concep-
tual only but surprisingly straightforward. While the idea of
interactions due to a diffusion-like flux of vector bosons has
been early introduced [16], in the present paper this hint is
further implemented. The model concerned in this paper ex-
ploits first the quantum origin of the diffusion laws, shortly
reported for completeness of exposition, to infer next the in-
teractions directly via the diffusion laws. Some concepts al-
ready published [14, 15, 16] are enriched here with further
considerations in order to make this paper as self-contained as
possible. It is clear the organization of the paper: the section
2 introduces the quantum background of the model and both
Fick diffusion laws, plus ancillary information useful in the
remainder sections; the section 3 introduces some thermody-
namic considerations; the section 4 concerns the fundamental
interactions, whereas the section 5 concerns a few additional
remarks on the gravity force.

2 Physical background

The statistical formulation of the quantum uncertainty reads
in one dimension

∆x∆px = nℏ = ∆ε∆t, ∆ε = vx∆px, vx = ∆x/∆t. (1)

The subscript indicates the component of momentum range
along an arbitrary x-axis. The second equality is actually con-
sequence of the former merely rewritten as (∆x/vx)(∆pxvx),
being ∆t the delocalization time lapse necessary for the par-
ticle to travel throughout ∆x; so this definition leaves un-
changed the number n of quantum states allowed to the con-
cerned system. Since the local coordinates are waived “a
priori”, i.e. conceptually and not as a sort of approxima-
tion aimed to simplify some calculation, these equations fo-
cus the physical interest on the region of the phase space ac-
cessible to the particle rather than on the particle itself. As
these equations link the space range ∆x to the time range ∆t
via n, any approach based on these equations is inherently
four-dimensio-nal by definition. The sizes of the uncertainty
ranges are arbitrary, unknown and unknowable; it has been
shown that they do not play any role in determining the eigen-
values of the physical observables [17], as in effect it is known
from the operator formalism of the wave mechanics. Actually
it is possible to show that the wave formalism can be inferred
as a corollary of the Eqs. (1) [17], coherently with the fact that

n plays just the role of the quantum number in the eigenval-
ues inferable via these equations only [18, 19]. The Eqs. (1),
early introduced in these papers to provide a possible way to
describe the quantum systems in alternative to the solution
of the pertinent wave equations, have been subsequently ex-
tended to the special and general relativity [20]. It has been
shown for instance that a straightforward consequence of the
space time uncertainty is

c2∆px = vx∆ε. (2)

The demonstration is so short and simple to deserve of
being mentioned here for completeness: this equation and the
next Eq. (3) are enough for the purposes of the present paper.
Consider a free particle delocalized in ∆x. If this particle is
a photon in the vacuum, then ∆x/∆t = c; i.e. the time range
∆t is necessary by definition for the photon to travel ∆x. Yet,
trusting to the generality of the concept of uncertainty, the
Eqs. (1) must be able to describe even the delocalization of a
massive particle moving at slower rate vx = ∆x/∆t < c. Let
us examine now this problem according to the Eqs. (1), i.e.
starting from ∆x∆px = ∆ε∆t to infer ∆ε/∆px = ∆x/∆t; as
c represents the maximum velocity allowed to any particle,
it must be true that ∆x/∆t ≤ c, whence ∆ε/∆px ≥ c. The
inequality therefore constrains the ratio of the range sizes ∆ε
and ∆px depending on whether the delocalized particles are
massive or not. Anyway both chances are considered writing
∆ε/∆px = (c/vx)c. One finds thus the sought Eq. (2), which
implies the local functional dependence c2 px = vxε between
energy and momentum and velocity components of the mas-
sive particles. Also note that the Eq. (2) implies the concept
of mass simply introducing the limit

lim
vx→0

∆px

vx
=
∆εrest

c2 = m. (3)

As there is no compelling reason to expect a vanishing ∆εrest

for vx → 0, one concludes that the left hand side is in general
finite and corresponds to the definition of mass. Both signs
are allowed in principle to vx and thus to ∆px; yet squaring
c4∆p2

x = v2
x∆ε

2 and implementing again vx < c, one finds
c2∆p2

x < ∆ε
2 i.e. ∆ε2 = c2∆p2

x+∆ε
2
o; thus the local functional

dependence ε2 = c2 p2
x + ε

2
o, well known, combined with the

Eq. (3) yields εo = mc2 and also the explicit expressions of ε
and px compliant with the respective Lorentz transformations.

2.1 Quantum basis of the diffusion laws

This subsection assumes that the diffusion medium is an iso-
tropic body of solid, liquid or gas matter at constant and uni-
form temperature. The following considerations shortly sum-
marize the reasoning introduced in [14]. Let us divide both
sides of the Eq. (2) by voV , being vo an arbitrary velocity and
V an arbitrary volume. So one finds

vxC = ∆Jx, C =
∆px

voV
, ∆Jx =

∆ε/c2

V
vx. (4)
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As C has physical dimensions mass/volume, it represents the
average concentration of a mass m in the volume V , whereas
∆Jx is the net change of the flux of particles moving at av-
erage rate vx through V . So ∆Jx, whose physical dimensions
are mass/(time×sur f ace), describes the net flux of matter en-
tering in and leaving out two opposite surfaces delimiting V;
the first Eq. (4) also implies that the functional dependence
of any Jx within its uncertainty range ∆Jx upon the corre-
sponding local flux of m fits the classical definition Jx = Cvx.
Assuming that ∆ε/c2 is the energy equivalent of mass, the last
equation inferred with the help of the Eq. (2) extends the defi-
nition of flux of the first equation to the change of energy den-
sity inside V . Write now V = ∆x3, which is certainly possible
regardless of the particular geometric shape because both V
and ∆x are arbitrary; so any shape factor, e.g. 4π/3 for spheri-
cal V , is inessential because it would still yield V = ∆x′3 once
included in ∆x′. Since ∆x−3 = −∂∆x−2/2∂∆x, one finds

∆Jx =
∆px

∆x3 = −
∆px

2
∂∆x−2

∂∆x
.

Moreover ∆x−2 = ∆p2
x/(nℏ)

2, so that

∆Jx = −
∆p2

x

(nℏ)2

∂∆px

∂∆x
= − 1

3(nℏ)2

∂∆p3
x

∂∆x

which yields in turn

∆Jx = −
nℏ
3
∂(1/∆x3)
∂∆x

= − nℏ
3m
∂(m/∆x3)
∂∆x

. (5)

The last equality holds under the reasonable assumption
of constant mass m in the volume ∆x3: as both V and m are
arbitrary, the former can be conveniently chosen in order to
fulfil the requirement that the latter is simply redistributed
within ∆x3 during an assigned diffusion time ∆t related to
∆Jx. Indeed the fact of having defined C as the average con-
centration of a constant amount of diffusing mass does not
exclude the existence of a concentration gradient within V; in
effect ∆Jx results in the Eq. (5) as the concentration gradient
driven mass flux at the boundary surfaces of V . Also note
that ℏ/m has the same physical dimensions, length2/time, of
a diffusion coefficient D; so, as shown in [14], it is possible to
write D = qnℏ/m being q an appropriate numerical coefficient
able to fit the experimental value of D of any species mov-
ing in any diffusion medium. Owing to the generality of the
Eqs. (1), no specific hypothesis is necessary about whether
the concerned diffusion process occurs in gas or liquid or
solid phase or even in the vacuum; also, this holds at any
temperature and value of C. So the last equation (5) reads

∆Jx = −D
∂C
∂∆X
, C =

m
∆x3 , ∆X =

∆x
q
, D =

qnℏ
m
. (6)

Of course the inessential factor 3 has been included into q.
Here C is related to the given amount of mass m redistributed

within V; so it depends not only on m itself, but on the space
extent through which this redistribution was allowed to oc-
cur. This result is nothing else but the well known first Fick
gradient law, now straightforward consequence of the funda-
mental Eqs. (1). So far, for simplicity has been concerned the
one-dimensional case, symbolized by the subscript x denot-
ing the actual vector components of momentum and displace-
ment velocity of m along an arbitrary x-axis. Yet it is useful to
account explicitly for the vector nature of the equations above
summarizing the Eqs. (4) and (6) as follows:

∆J = Cv = −D∇C. (7)

For the following purposes, it is interesting to extend these
first results. Given an arbitrary function f (x, t) of coordinate
and time, express its null variation δ f (x, t) = 0 as (∂ f /∂x)δx+
(∂ f /∂t)δt = 0 that reads vx(∂ f /∂x)+ (∂ f /∂t) = 0 i.e. v · ∇ f +
∂ f /∂t = 0; this yields ∇ · ( f v) − f∇ · v = −∂ f /∂t. It is
convenient in the present context to specify this result putting
f = C, in which case f v = J; thus

∇·∆J = −∇·(D∇C) = −∂C
∂t
+C∇·v C = C(x, y, z, t). (8)

In the particular case where v is such that the second addend
vanishes, one obtains a well known result, the second Fick
equation subjected to the continuity boundary condition re-
quired by δ f = 0 i.e.

∇ · ∆J = −∂C
∂t

∇ · v = 0. (9)

The condition on v is satisfied if in particular:
(i) v = iv1(y, z, t) + jv2(x, z, t) + kv3(x, y, t) or (ii) v = v(t) or
(iii) v = const.

Anyway, whatever the general analytical form of v might
be, this condition means that the vector v is solenoidal, which
classically excludes sinks or sources of matter in the volume
∆x3 enclosing m. Note however that since the boundaries of
any uncertainty range are arbitrary and unknown, introducing
the range ∆J = J − J0 means implementing the actual J as
change of the flux in progress with respect to a reference flux
J0 appropriately defined. For instance J0 could be a constant
initial value at an initial time t0 of ∆t = t − t0 where the dif-
fusion process begins, in which case J0 can be put equal to
zero by definition; this means determining the initial bound-
ary condition J0 = 0 at t0 = 0. Yet more in general is remark-
able the fact that, according to the Eq. (8), the usual classical
form J = Cv is also obtained if J0 is regarded as a reference
flux as a function of which is defined J that fulfils the condi-
tion

∇ · J = −∂C
∂t

∇ · J0 = −C∇ · v. (10)

The quantum chance of expressing the diffusion equations
considering ∆J instead of J emphasizes that the classical view
point is a particular case of, and in fact compatible with, the
Eqs. (1).
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This section has shown that the usual Fick equation (8)
written as a function of J and C does not hold necessarily
in the absence of sinks or sources of matter only, it includes
also the chance ∇ · v , 0 provided that the boundary condi-
tion about the reference flux gradient ∇ ·J0 is properly imple-
mented. In this subsection it has been also shown that all this
has a general quantum basis.

2.2 Diffusion and relativistic velocity addition rule

Let us consider the Eq. (7) ∆J = Cv and express the change
δ∆J of ∆J as a function of the variations of δv and δC

δ∆J = vδC +Cδv v = vx + vy + vz v = v(∆t) (11)

to calculate the scalar product of δ∆J by one component of v,
e.g. vx:

vx · δ∆J = vx · vδC +Cvx · δv. (12)

It is interesting to define in particular δv orthogonal to this
component vx for reasons clarified below; hence

vx · δv = 0, vx = δv − (δv)2 vo

vo · δv
. (13)

The second equation shows the form of vx that satisfies the
former condition whatever the ancillary vector vo might be.
So, owing to the Eqs. (7) and (12), one finds

vx · δ∆J = vx · vδC = δ∆J · δv − (δv)2 vo · δ∆J
vo · δv

. (14)

As concerns the second equality, eliminating (δv)2 between
the Eqs. (14) and (13) one finds

vx = δv −
(δv − vx) · δ∆J

vo · δ∆J
vo. (15)

As concerns the first equality (14), it is possible to write

vx · δ∆J = ±vxδ∆Jx,

δ∆Jx = ±
v · vxδx

vx

δC
δx
= ±(vxδx)

δC
δx
, (16)

being δ∆Jx the modulus of the component of δ∆J along vx.
Note that v · vxδx/vx = v · uxδx, where ux is a unit vector
oriented along vx, has the physical dimensions of a diffusion
coefficient D; so, being |vx| arbitrary, the Eq. (16) reads

δ∆Jx = ±D
δC
δX
, D = qvxδx, δX = qδx, (17)

with q again proportionality coefficient, as previously intro-
duced. With the minus sign, the first equation fits the quan-
tum result (6); this sign therefore is that to be retained. Also,
this agreement supports the usefulness of the condition (13)
and introduces a further result in the quantum frame of the
present approach. Put vx = ξvo+v1, being ξ an arbitrary con-
stant and v1 another arbitrary vector; in this way vx has been

simply redefined through a linear combination of two vectors,
as it is certainly possible. So the second Eq. (13) reads

vo =
δv − v1

ξ − ξ(δv)2

v1 · δv

.

Multiplying both sides of this equation by the unit vector
uz one finds

voz =
δvz

ξ − ξ(δv)2

v1 · δv

, voz = vo ·uz, δvz = (δv−v1) ·uz. (18)

It is natural at this point to express the terms with physical
dimensions of velocity and square velocity appearing in the
last result as follows

δvz/ξ = ua − ub, (δv)2 = uaub, v1 · δv = c2,

being ua and ub two arbitrary velocities; then one obtains

voz =
ua − ub

1 − uaub

c2

. (19)

The physical meaning of this result is acknowledged by
reasoning “a posteriori”, i.e. by assessing its implications.
Trivial considerations show that, whatever the actual numer-
ical value of c might be, if ua = ub = c then voz = c; also,
the right hand side never exceeds c. Knowing that c is the
upper value of velocity accessible to any particle [16], and
so just for this reason invariant in different inertial reference
systems in reciprocal motion [17], the Eq. (19) must have the
physical meaning of addition velocity rule; the appropriate
notation should be therefore voz = u′a with u′a corresponding
to ua in another reference system, which is possible because
vo has not been specifically defined. Also this conclusion is
a corollary of the quantum principle of uncertainty, Eqs. (1),
from which started the present reasoning.

Let us summarize the results achieved in this subsection.
The Eqs. (6) and (7) introduce the laws of physics where
the gradient of some non-equilibrium property, e.g. the non-
uniform concentration of matter or charges and even tempera-
ture or pressure field gradients, generates the respective mass
or charge or heat flows and related driving forces; this ex-
presses the tendency of nature towards an equilibrium config-
uration corresponding to the maximum entropy [14]. Next the
Eq. (12) enabled to infer the x-component of δ∆J correspond-
ing to that of the Eq. (6), thus emphasizing the connection of
the present analysis with the straightforward quantum result.
Eventually the orthogonality position of the Eq. (13) was also
necessary to ensure that δv associated to δ∆J does not imply
the change of vx to which is related D of the Eq. (17); so the
Eq. (19) results pertinent to the Eq. (6) although obtained via
δv. This last result, Eq. (19), is a well known relativistic equa-
tion: the addition of the velocities, here expressed through
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one velocity component along an arbitrary axis identified by
uz, cannot overcome the limit speed c despite ua or ub or both
are themselves equal to c. All of these results have been ob-
tained via the first equation (13) only, which is straightfor-
ward consequence itself of the Eqs. (1). Besides the concrete
importance of these results, however, the question arises at
this point: what is the physical connection between the gra-
dient laws of physics and the relativistic composition of the
velocities? Otherwise stated: if the gradient law describes the
tendency of physical systems towards the equilibrium state,
why this result has been inferred contextually to the veloc-
ity addition rule of the special relativity? This question can
be further extended also considering the dimensional proper-
ties of the flux of matter of the Eq. (7), whose time derivative
obtained differentiating the Eq. (7) yields

δ∆J
δ∆t
= Cv̇ + vĊ, v̇ =

δv
δ∆t
, Ċ =

δC
δ∆t

; (20)

as explained in [17], the derivatives are defined in the present
model via the Eqs. (1) only, i.e. as ratios of the uncertainty
ranges therein introduced. In the present context the ratio re-
gards the change δ∆J during δ∆t. Being C = mass/volume
and noting that ∆J̇ is f orce/volume, one infers that F ≈ ma
in the case where vĊ can be neglected with respect to the for-
mer addend. As it is known, force and acceleration are par-
allel vectors in the non-relativistic approximation only; since
both C and v are arbitrary, in general they are expected to
contribute at increasing v to the relativistic limit |v| → c
where reasonably the second addend becomes important. In
effect is sensible the fact that vĊ someway surrogates the rel-
ativistic consequences of the space-time deformation, recall-
ing that C = m/V; writing V = ∆x3 and regarding the time
derivative as that due to the change of V pertinent to a fixed
amount m of mass, in agreement with the Eq. (5), one infers
Ċ = −3C∆ẋ/∆x. In fact ∆ẋ/∆x is a deformation of the space-
time uncertainty range ∆x, being by definition ∆ẋ = δ∆x/δ∆t;
so, at least in principle, the involvement of relativistic con-
cepts like the deformation of the space-time in the presence of
the mass is understandable. In effect, is not accidental the fact
that just this space-time deformation is the relativistic contri-
bution to the Newtonian term mv̇.

In conclusion, the actual quantum origin of the diffusion
equations stimulates the question about why relativistic im-
plications, apparently dissimilar, have been contextually ob-
tained without any “ad hoc” hypothesis. The only possible
answer is that the mere context of the quantum uncertainty
contains itself the intimate connection that underlies funda-
mental laws even of apparently different nature. All consid-
erations have been carried out by elaborating the Eqs. (1),
which are thus the common root of these results: so this
conclusion is not surprising because, as shown in [17], even
the basic statements of quantum mechanics and special and
general relativity are obtained as corollaries of the Eqs. (1).
Therefore further considerations are expectedly hidden in this

kind of approach, even as concerns the field gradient driven
forces.

2.3 Diffusion and driving forces

The second equality (7) reads v = −D∇ log(C) and suggests
a reasonable link with the known expression of the chemical
potential µ = kBT log(C); this hint yields

v = − D
kBT
∇kBT log(C) F = −∇kBT log(C); (21)

then merging the thermodynamic definitions of µ and mobil-
ity β, i.e. v = βF, one finds contextually the force F = −∇µ
acting on the diffusing species and the Einstein equation D =
βkBT linking mobility and diffusion coefficient. Note how-
ever that it is convenient to define µ as

µ = kBT log(C/C j) C j = C j(t) (22)

which leaves unaffected F and v and is still consistent with
the asymptotic limits F → 0 and v → 0 for C → const: i.e.
the driving force of the diffusion process vanishes when C
evolves as a function of time to reach any constant concentra-
tion. This limit implies a gradient free distribution of matter
attained for C → C j evolving as well e.g. to fit the limit value
of C. Further information is also inferred with the help of
the Eq. (2); dividing both sides by ∆t, this equation reads in
vector form F = ∆p/∆t = (∆ε/c2∆t)v, which yields with the
help of the Eqs. (1)

F =
nℏ(c∆t)v

(c∆t)3 =
nℏ
δx3 vδx, δx = c∆t, β =

c2∆t
∆ε
=

(c∆t)2

nℏ
.

Calculate the component of F along the arbitrary direction of
a unit vector u; owing to the Eq. (17) the scalar v ·uδx at right
hand side defines the diffusion coefficient D, so

Fu

D
=

nℏ
V
, V = δx3, D = v · uδx. (23)

Merging the last equation with the Eq. (6), one finds v ·uδx =
qnℏ/m, which reads mvuδX = nℏ and thus is just nothing
else but the first equality (1). Implementing again the idea
of expressing D via nℏ/m by dimensional reasons, see the
Eqs. (6), the Eq. (23) reads

Fu =
(nℏ)2

mV
; (24)

this step of the reasoning introduces diffusing mass and vol-
ume in the expression of the driving force of the macroscopic
process whose diffusion coefficient is D. Interesting evidence
about the importance of this result has been already empha-
sized in [16]; this point is so simple that it is worth being
shortly summarized here for completeness.

The Eqs. (1) and (6) yield qFu/D = nℏ/V and thus
qFu/D = ∆ε/νV having defined ν = ∆t−1; so the right hand
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side is an energy range per unit frequency and unit volume.
Putting ∆ε = hν one finds thus qFu/D = nh/V . Let now
V be the volume of a cavity in a body filled with radiation
in equilibrium with its internal walls, whose size is able to
contain the longest wavelength λ = c/ν of the steady radia-
tion field; of course λ is arbitrary. Then V = (2c/ν)3, where
the factor 2 accounts for λ with nodes just at the bound-
aries of the cavity, whose size is thus one half wavelength.
Hence Fu/D = 8h(ν/c)3n/q. Is significant here the physi-
cal meaning of the ratio Fu/D, which has physical dimen-
sions h/volume, regardless of the specific values of Fu and
D separately; thus, being Fu/D the component of the vector
F/D along the arbitrary direction defined by u, regard this
latter as a unit vector drawn outwards from the surface of the
body at the centre of the cavity. As u represents any possi-
ble path of the radiation leaving the cavity, let q be defined in
this case in agreement with ∫ (Fu/D)dΩ = πnh/V . Actually
Fu/D is taken out of the integral because it has no angular
dependence, whereas the integral ∫ dΩ is carried out over the
half plane above the surface of the cavity only, which yields
2π; a factor 1/2 is also necessary as this is the probability
that one photon at the surface of the cavity really escapes out-
wards instead of being absorbed inwards within the cavity. So
∫ (Fu/D)dΩ = 8πh(ν/c)3n yields the Planck black body for-
mula once replacing the number n of states allowed to the ra-
diation field with the factor (exp(hν/kBT ) − 1)−1 of the Bose
distribution statistics of all oscillators: as an arbitrary number
of particles is allowed in each state, n is also representative of
any number of particles concerned by the statistical distribu-
tion.

Implement now the definition of mobility to write δv =
βδF + Fδβ; dividing both sides by δβ one finds δv/δβ − F′ =
F = −∇µ, having put F′ = βδF/δβ. By analogy with F, let us
introduce the position F′ = −∇Y with Y appropriate energy
function related to δF; thus the result is

δv
δβ
= −∇(Y + µ). (25)

The physical meaning of this result is highlighted thinking
that the physical dimensions of β are time/mass; considering
in particular a volume V of matter where the mass is con-
served and simply redistributed, exactly as assumed in the
Eq. (5), δv/δβ is proportional to mass × δv/δt, i.e. it is noth-
ing else but the law of dynamics previously found via ∂J/∂t.
The Eq. (25), which agrees with the additive character of the
force vectors, could be also obtained via Euler’s homoge-
neous function theorem. Here F′ is regarded as if it would be
a function of β, whereas it is usually implemented as a func-
tion of the position vector r defined in an appropriate refer-
ence system. To this purpose it is enough to put the modulus
r = aβ, being a a parameter that controls the local values of
mobility as a function of r, to write F(aβ) = akF(β). So cal-
culating ∂F(aβ)/∂aβ = β∂F(aβ)/∂a = kak−1F(β) and putting
then in particular a = 1, as shown in standard textbooks, one

finds β∂F/∂β = kF(β); this is the essence of the Euler theo-
rem. Eventually, once having inferred F′ = βδF/δβ = akF(β),
similarly to F = −∇µ one concludes F′ = −∇Y too. An ex-
ample to elucidate Y could be the familiar force ∇Y = −ze∇ϕ
to which is subjected an ion of charge ze under the electric
potential gradient ∇ϕ, in which case Y + µ = zeϕ + µ is the
well known electro-chemical potential controlling the work-
ing conditions of a fuel cell. The result (25) is in fact possible
because δF = F2 − F1 is an arbitrary force; whatever F2 and
F1 might be, their arbitrariness ensures the general physical
meaning of F′ and thus its ability to be specified according
to some particular physical condition. Suppose known for in-
stance C, solution of the Eq. (8) with or without the condition
(9). This solution provides one with information about the
momentum pertinent to the mass transfer involved by the dif-
fusion process. Indeed ∆J represents from the dimensional
point of view the momentum change per unit volume related
to the redistribution of the mass within V . Thus, collecting
the Eqs. (2) and (7), one finds ∆J = ∆p/V = v∆ε/c2V = Cv
being ∆ε/c2 = m and mC = V by definition. Putting then
∆p = p − po, trivial manipulations with the help of the first
Eq. (21) yield

p
m
=

po

m
− D∇ log(C).

The ratios involve the velocities v and vo in agreement with
the Eqs. (21); for instance, the former is the rate with which
occurs the redistribution of m in V , the latter is the initial ve-
locity of the concerned species before the redistribution. In
summary, this section has shown that the diffusion equations
imply the transfer of matter, energy and momentum; more-
over, the velocity addition rule shows that the particles re-
sponsible of the mass transfer move in agreement with the
relativistic requirements under the condition (13). Eventually
the fact of having inferred F ≈ ma without precluding, at
least in principle, even its possible generalization to the rel-
ativity, suggests that the quantum basis of these preliminary
results is appropriate to carry out further tasks to describe the
fundamental interactions too.

3 Entropy and chemical potential

As concerns µ of the Eq. (22) it is known that [21](
∂µ

∂T

)
P,n
= −

(
∂S
∂n

)
T,P
, (26)

being dS the entropy change calculated keeping constant the
pressure and temperature during the time necessary to in-
crease n by dn; here n is a dimensionless amount of the con-
cerned substance, e.g. a number of atoms or molecules, whe-
reas dn can be approximately treated as a differential for large
n only. The following considerations aim to integrate the
Eq. (26) with respect to dn with the help of the Eq. (22).

Let m consist of a cluster of nm atoms or molecules ran-
domly distributed over an arbitrary number of elementary vol-
umes V j forming V , i.e. such that V =

∑
jV j: so the given
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amount m of mass in the actual volume V is in fact distributed
into several elementary volumes V j = V j(t). Regard thus each
V j as a possible state allowed to one or more particles among
the nm available: if for instance V j would be all equal, then
each ratio V j/V = 1/n j would yield the probabilityΠ j = 1/n j

of each state accessible to m, being by definition
∑

jn−1
j = 1.

Moreover the possible distributions of nm objects into the var-
ious V j are functions of time related to the corresponding
number N j of allowed quantum configurations: whatever N j

might be in general, depending on the kind of statistical dis-
tribution compliant with the possible spin of the nm particles,
V j/V is in fact a parameter related to the degree of disorder
characteristic of m in V . Hence integrating the Eq. (26) with
respect to dn means summing over all of the probabilities n−1

j
consistent with all possible V j compatible with V; this also
means integrating over d(V j/V) while keeping constant the
total number of particles nm in V , as required at left hand side
of the Eq. (26) and in agreement with the Eq. (5). Putting
therefore C j = m/V j by analogy with C = m/V , one infers
C/C j = V j/V and then

S j = S o − ∫ (∂µ j/∂T )P,ndn = S o − kB ∫ log(V j/V)d(V j/V) =

= S o − kB(V j/V)
(
log(V j/V) − 1

)
.

Clearly the reasoning about the j-th states in V can be
repeated for the j′-th states pertinent to the ratios V ′j/V

′ con-
cerning the volume V ′, which consists of related elementary
volumes V ′j such that

∑
j′V ′j/V

′ = 1. The same holds also
for a volume V ′′ defined as sum of elementary volumes V ′′

and so on; in this way it is possible to define the resulting ex-
tensive entropy collecting together all integrals on V j/V plus
that on V ′j/V

′ and V ′′j /V
′′, with V + V ′ + V ′′ + ·· = Vtot

and the respective masses m + m′ + m′′ + ·· = mtot each
one of which is that already concerned in the Eq. (5). Then
since by definition

∑
j′V ′j/V

′ =
∑

j′′V ′′j /V
′′ = 1 and thus∑

jV j/V +
∑

j′V ′j/V
′ +

∑
j′′V ′′j /V

′′ + ·· = jtot, summing over
all elementary volumes of which consist the total mass and
volume of the body yields

S = (S o + jtotkB) − kB

∑
j

V j

V
log

(
V j

V

)
. (27)

The first addend is clearly a constant. This result defines an
extensive function that collects all possible configurations N j

corresponding to all distributions of the various m in the re-
spective volumes V j compatible with each V where holds the
Eq. (5). In principle V is arbitrary; yet it must be sufficiently
large to be subdivided into V j whose n j allow considering dn j

as differentials. Note that the Eq. (27) has been early obtained
in [14] elaborating directly the Eqs. (5). Appears clear the
link between diffusion, regarded as the way through which
the nature drives a thermodynamic system towards the equi-
librium state, and entropy, −Σ jπ j log π j, which measures the
tendency towards states of progressively increasing disorder:

this link is the underlying chemical potential µ, strictly con-
nected with the concentration gradient of the diffusing species
on the one side and with the related entropy change on the
other side. If in the Eq. (26) dµ = 0, which corresponds to
F = −∇µ = 0 for uniform distribution of C, then dS = 0
reveals that the concerned system is in the state of maximum
disorder. The diffusion of matter and energy is thus the driv-
ing force that puts into action the second law.

4 Diffusion and fundamental interactions

This is the central section of the paper. The fact of hav-
ing inferred the results of the previous section from the fun-
damental Eqs. (1) along with relativistic implications, sug-
gests that additional outcomes should be obtainable elabo-
rating further the concepts hitherto introduced. For the fol-
lowing considerations it is useful to remark that the physi-
cal dimensions of J imply f lux/velocity = density = ρ and
f lux × velocity = energy density = η. The interactions are
thus described by a flux J of messenger particles, the respec-
tive boson vectors, displacing at rate v and characterized by
mass and energy densities ρ and η. The starting point of this
section is again the initial Eq. (9) identically rewritten as

∇ · ∆J +
∂C
∂t
= +∇ · ∇ × U+,

which holds whatever the arbitrary vector U+ might be; in-
deed the last addend is anyway null. Let us rewrite this equa-
tion with the help of the position ∇ · U− = C, which in turn
yields

∇ ·
(
∆J +

∂U−
∂t
− ∇ × U+

)
= 0. (28)

So the vector within parenthesis must be a constant or a func-
tion of time only; then in general

∆J+
∂U−
∂t
−∇×U+ = Jw, Jw = Jw(t), ∇·U− = C. (29)

The physical dimensions of U− and U+ are mass× sur f ace−1

and mass× time−1× length−1, whence U+ = U−c from dimen-
sional point of view; c is the pertinent constant velocity. The
homogeneous differential equation obtained from the Eq. (29)
is

∆J +
∂U−
∂t
− ∇ × U+ = 0, Jw = 0. (30)

Starting from this quantum groundwork, the next subsections
aim to highlight the steps ahead toward the goal of infer-
ring the four fundamental interactions of nature as contextual
corollaries.

4.1 The Maxwell equations

This subsection summarizes the reasoning reported in [15]; it
is emphasized in the next subsection 4.2 how to include also
the weak interaction still in the frame of the same approach.
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Consider first the homogeneous differential equation inferred
from the Eq. (30)

∇ × U+ = ∆J +
∂U−
∂t
, ∇ · U− = C. (31)

The first equation (31) defines the vector U+ as a function
of U−, the second one defines the vector U− as a function
of C. Putting ∆J = J2 − J1, it is reasonable to expect also
U− = U2 − U1 and thus C = C2 − C1. Moreover, besides the
dimensional link, appears now a preliminary reason to de-
fine U+ via the same vectors that implement U−: there is no
compelling necessity to introduce further vectors additional
to U1 and U2, about which specific hypotheses would be nec-
essary to solve both Eqs. (31). This choice simply requires
U+ = (U2 + U1)ξ, being ξ an appropriate proportionality fac-
tor. The vectors U1 and U2 just introduced are arbitrary, like-
wise the respective C1 and C2; for this reason both U+ and
U− have been defined with coefficients of the linear combi-
nations of U1 and U2 equal to 1 without loss of generality.
Hence, combining these definitions with the dimensional re-
quirements, one finds

U+ = c(U2 + U1), U− = U2 − U1, (32)

U2,U1 = mass/sur f ace,

so that the second Eq. (31) yields

∇ · U2 = C2, ∇ · U1 = C1, (33)

whereas the first Eq. (31) takes the form

c∇ × U2 + c∇ × U1 − J2 + J1 −
∂U2

∂t
+
∂U1

∂t
= 0. (34)

Now the problem arises about how could be rearranged the
terms appearing in this equation. For instance the chance

c∇ × U2 − J2 −
∂U2

∂t
= J′ = −c∇ × U1 − J1 −

∂U1

∂t
(35)

separates the quantities with subscript “2” from those with
subscript “1”; the ancillary arbitrary vector J′ that satisfies
both equalities (35) can be in general different from zero. If
so, then one obtains two equations

c∇ × U2 − J′2 −
∂U2

∂t
= 0, −c∇ × U1 − J′1 −

∂U1

∂t
= 0,

J′2 = J2 + J′, J′1 = J1 + J′. (36)

Note that it is possible to change the physical meaning
of the mass concentrations C1 and C2 of the Eqs. (33) sim-
ply multiplying both sides by qm/m and qe/m respectively; qe

is the total amount of electric charge possibly owned by the
mass m, the physical meaning of qm will be explained later
in analogy with that of qe. The multiplicative factors convert
the mass density C2 into the qe charge density C∗2, whereas

C1 turns into the qm density C∗1; analogously U1 and U2 turn
into U∗1 and U∗2 in the Eqs. (33), whereas the same holds for
J′2 and J′1 that turn respectively into charge and qm flows J∗2
and J∗1 in the Eqs. (36). This means having converted U1 and
U2 into quantities corresponding to the respective J∗1 and J∗2.
Indeed the Eqs. (33) and the last two equations read

∇ · U∗1 = C∗1, ∇ · U∗2 = C∗2,

C∗1 = C1
qm

m
, C∗2 = C2

qe

m
, (37)

whence

c∇×U∗2−J∗2−
∂U∗2
∂t
= 0, U∗2 = U2

qe

m
, J∗2 = J′2

qe

m
, (38)

and

−c∇ × U∗1 − J∗1 −
∂U∗1
∂t
= 0

U∗1 = U1
qm

m
, J∗1 = J′1

qm

m
. (39)

The Eqs. (38) and (39) have physical meaning different
from that of the respective Eqs. (36); subtracting side by side
these latter one of course finds again the initial Eq. (34),
whereas the same does not hold for the Eqs. (38) and (39) that
have been multiplied by the respective factors implemented in
the Eqs. (37).

Exploit now the fact that the Eqs. (38) and (39) can be still
merged together because anyway c∇ × U∗2 − J∗2 − ∂U∗2/∂t =
−c∇ × U∗1 − J∗1 − ∂U∗1/∂t. Note however that the vectors
U∗1(J∗1) and U∗2(J∗2) obtained solving separately the Eqs. (38)
and (39) have scarce physical interest, because the bound-
aries of the initial uncertainty range ∆J are arbitrary; what-
ever their form might be, they provide two independent solu-
tions that are functions of their own flux vectors only. More
interesting seems instead a general solution like U∗1(J∗1, J

∗
2)

and U∗2(J∗1, J
∗
2), in fact also prospected by the initial Eqs. (35)

themselves: this hint appears sensible because U+ and U−
consist by definition of the same vectors U1 and U2 in the
Eq. (31). So rewrite the last result as

c∇ × U∗1 − J∗2 − ∂U∗2/∂t = 0 = −c∇ × U∗2 − J∗1 − ∂U∗1/∂t,

where we have simply exchanged the sides where appear the
curl vectors. For simplicity of notation, but without loss of
generality, has been omitted the new flux vector J′′ possibly
shared by both equalities; indeed, as previously done with J′
to infer the Eqs. (36) from the Eq. (35), J′′ would have been
once more incorporated within J∗2 and J∗1. In conclusion one
obtains from the Eqs. (37) to (39)

∇ · U∗1 = C∗1, ∇ · U∗2 = C∗2, (40)

c∇ × U∗1 − J∗2 −
∂U∗2
∂t
= 0, c∇ × U∗2 + J∗1 +

∂U∗1
∂t
= 0.
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Despite the notations, mere consequence of the fact that
the starting point to attain the Eqs. (40) were the diffusion
equations of the section 2, is evident the conceptual equiva-
lence of these equations with the well known ones

∇ ·H = 0, ∇ · E = ρch, (41)

∇ ×H − ∂E
∂t
− Jch = 0, ∇ × E +

∂H
∂t
= 0,

simply regarding U∗2 ≡ E and U∗1 ≡ H together with the
charge density C∗2 ≡ ρch and C∗1 = 0. So, being J∗2 by def-
inition identified with the charge current density Jch, the Eqs.
(41) are nothing else but the Maxwell equations, usually writ-
ten putting C∗1 = ρqm = 0 and J∗1 = Jqm = 0; these positions,
due to qm = 0, acknowledge the lack of experimental evi-
dence of magnetic monopoles. Since these monopoles have
not yet been observed experimentally, the correspondence has
been emphasized as in the Eqs. (41), despite it would be very
attracting and convincing to consider qm , 0 too in the equa-
tions (41) by formal symmetry: it is worth emphasizing in-
deed that the reasoning hitherto carried out does not exclude
at all the theoretical existence of the magnetic monopoles,
rather this approach suggests explicitly them. The positions
above that read now

U∗+/c = E +H, U∗− = E −H,

entail four more reasons to validate the positions (32), ac-
cording which U− and U+ can be expressed through the same
vectors they introduce:
(i) U∗+/c + U∗ = 2H and U∗+/c − U∗− = 2E;
(ii) the same holds for the scalars U+ · U−/c = H2 − E2 and
U2
+/c

2 − U2
− = 4E ·H;

(iii) U− × U+/c = 2E ×H;
(iv) U2

+/c
2 + U2

− = 2(H2 + E2).
Once having specified in particular H and E as vectors

proportional to magnetic and electric fields, then the proposed
definitions of U− and U+ entail the well known features: the
scalars (ii) define two invariants with respect to Lorentz trans-
formations, whereas the vector (iii) is proportional to the Po-
ynting vector and defines the energy density flux; moreover
the point (iv) defines a scalar proportional to the energy den-
sity of the electromagnetic field; finally, the integral c−1 ∫ U+ ·
U−dV over the volume previously introduced is proportional
to the Lagrangian of a free field. As the only velocity that ap-
pears in these equations is c, one must conclude that the car-
riers of this kind of interaction are the photons. Despite these
last considerations are well known, their mentioning here is
not redundant: indeed these outcomes of the diffusion laws
come from and complete the quantum frame of the Maxwell
equations.

4.2 The weak interactions

The starting point of this subsection is the non-homogeneous
Eq. (29) which concerns Jw , 0. Of course even the results of

the previous subsection hold when Jw , 0 is negligible with
respect to ∆J; so the content of this subsection is not to be
regarded separately from the previous one, rather as its com-
pletion and generalization. Note that the Eq. (29) results for-
mally similar to the Eqs. (35); the only difference is that J′ is
in general function of x, y, z, t, as no hypothesis has been nec-
essary about it, whereas Jw is instead by definition function
of time only in agreement with the Eq. (28). So this case can
be formally handled as before, simply rewriting the Eq. (29)
as

∆J′+
∂U−
∂t
−∇×U+ = 0, ∆J′ = ∆J−Jw, Jw = Jw(t). (42)

Once replacing the previous change of flux ∆J = J2 − J1
with ∆J′ = J2 − J1 − Jw, is attracting the idea that in the
present problem Jw describes a quantum time fluctuation of
energy range ∆εw and time length ∆tw consistent with the un-
certainty equations (1). To highlight the link between the flux
modulus Jw = |Jw| and ∆εw, let ηw = v · Jw be the energy
density transient of time length ∆tw = ℏ/ηwV , being V = ∆x3

the volume within which is generated the mass density tran-
sient ρw = mw/V = Jw/v; of course v = |v| is the modulus
of the velocity with which the messenger particles propagate
this kind of interaction, whereas ∆εw is the fluctuation energy
change necessary to create messengers with lifetime ∆tw. It
is possible to express the mass flux Jw of mw as ℏ/∆x4

w by di-
mensional reasons; so Jw = ξℏ/∆x4

w, being ξ a proportionality
constant. Hence ξℏ/∆x4

w = mwv/∆x3
w yields

ζ
ℏ

∆xw
= mwc, v = γc, ζ =

ξ

γ
;

so the range of this interaction force is∆xw = (ξ/γ)(ℏc/mwc2).
Let us estimate ∆xw putting preliminarily ξ/γ ≈ 1, according
to the reasonable idea that a proportionality constant corre-
lating two quantities should be of the order of the unity; oth-
erwise some further physical effect should be identified and
implemented to justify ξ/γ >> 1. So one expects

∆xw ≈
ℏc

mwc2 , ∆xw ≈ 10−16cm, mwc2 ≈ 250 GeV. (43)

The estimates have been guessed to exemplify the corre-
lation between space range and energy scale; the figures are
plausibly typical of the weak interactions. This preliminary
estimate aimed merely to show that the positions Jw ≈ ℏ/∆x4

w

and ρw ≈ Jw/v and mass mw of the messenger particles are
reasonable; this result must be however better assessed and
more thoroughly justified.

The basic idea is that during the time transient described
by Jw, the range of the related interaction cannot be very
wide; a long distance travel of messenger particles would re-
quire an extended time length, incompatible with the short-
lasting transient ∆tw during which the classical energy con-
servation is temporarily replaced by the related quantum en-
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ergy uncertainty ∆εw. The next reasoning attempts to intro-
duce a short range force mediated by massive particles cre-
ated somewhere in the space-time by the energy fluctuation
∆εw and moving at rate vw < c: once having waived in the
Eqs. (1) the local time and space coordinates, it is possible
to say that at an arbitrary time t0 the quantum fluctuation nu-
cleates at the arbitrary point x0, y0, z0 the total mass mw that
flows along with Jw within a volume V with average density
ρw.

To confirm the existence of massive particles describing
this interaction, divide the Eqs. (1) by ∆t so that vx∆px =

ℏ/∆t = ∆ε with ∆px ≈ (m′ − m)vx according to the Eq. (3):
hence the uncertainty prospects the chance of two kinds of
vector bosons of different masses describing the interaction.

Consider first the carrier of mass m and implement the
Eq. (24), noting that the volume V defining the density ρw
can be written as V = ∆x2δxu without loss of generality; in-
troducing indeed V via an arbitrary coefficient ξ is actually
irrelevant, because ξ∆x2δxu would be handled exactly like
V = ∆x2δx′u simply rewriting δx′u = ξδxu. So the actual geo-
metric shape of V is waived because the sizes of ∆x and δxu

are arbitrary in the conceptual frame based on the uncertainty
Eqs. (1) only. Let us write the Eq. (24) as εu = (nℏ)2/m∆x2

with εu = Fuδxu and then identify εu with the energy mc2 nec-
essary to create just the concerned rest mass m by virtue of the
quantum energy fluctuation only; so one finds with n = 1 the
reduced Compton length associated to m

λ̄ = ∆x, λ̄ =
ℏ

mc
. (44)

This expression holds for any particle free and neutral: the
former condition assumes that m does not directly interact
with m′, the latter requires that no additional net charge is
created during ∆tw because of the total charge conservation
with respect to that early concerned by the Maxwell equations
before the quantum fluctuation.

Analogous considerations hold for m′, in particular as
concerns the condition of charge conservation during the fluc-
tuation time of Jw. So m′ either describes another neutral
particle or it could actually consist of a couple of particles
having equal mass and opposite charges; as in the latter case
the charges interact to form an electromagnetic interaction
driven Coulomb system with gain of energy, let therefore m′

consist of two particles of equal reduced mass m′r = m′/2.
The energy εem and Bohr radius rem of a hydrogenlike sys-
tem are well known: considering the ground energy state
with n = 1 only, they are εem = −α2m′rc

2/2 = −e2/2rem

with rem = α
−1ℏ/m′rc; thus εem is defined by the diametric

delocalization distance 2rem only of the system of charges or-
biting around their centre of mass [18]. Express rem via the
condition of steady circular waves 2πrem = nwλw early in-
troduced to account for the stability of the old Bohr atom,
whence εem = −πe2/nwλw with nw ≥ 1 an arbitrary integer.
Define then the new energy εw = nwεem = −πe2/λw. Clearly

nw = 1 still implies the electromagnetic energy εw = εem,
whereas nw > 1 implies εw > εem since λw < rem: this shows
that actually εem and εw are both allowed and thus coexist-
ing. On the one hand εw is hidden into and closely related
to εem: having merely replaced rem with the wavelengths λw
allowed to the circular waves of charge, εw appears as a sort
of short range high energy compatible with the electromag-
netic interaction from which it differs for nw > 1, rather than
the energy of a separate form of interaction. On the other
hand, if really the masses of all three particles correspond to
the available energy εw, it should be true that εw ≈ 3mwc2 for
three equal masses mw. In fact this expectation is compatible
with −πe2/λw putting mwc2 ≈ e2/λw while λw ≈ λ̄ ≈ λ̄′; the
replacement of rem with the smaller λw accounts for the in-
crease of energy necessary to create short range massive bo-
son vectors, whereas the factor π replacing the expected fac-
tor 3 simply reveals that the masses of the neutral and charged
boson vectors should actually be slightly different. Otherwise
stated, regarding this result as (m0 + m+ + m−)c2 = πe2/λw
with obvious meaning of symbols, one infers

m0c2 + 2m±c2 = π
e2

λw
, m±c2 =

e2

λw
,

m0c2 = (π − 2)
e2

λw
, m+ = m− = m±. (45)

Hence, it should be true that

m0/(m0 + m+ + m−) = (π − 2)/π,

m±/(m0 + m+ + m−) = 1/π.

Compare this last conclusion with the experimental data

mZ0 = 91.19 GeV, mW± = 80.39 GeV,

mtot = mZ0 + 2mW± = 251.97 GeV.

Indeed m0/mtot = 0.36 and m±/mtot = 0.32 agree well with
(π − 2)/π = 0.363 and 1/π = 0.318; despite the non-relativis-
tic approach, this agreement supports the idea that the energy
gain εw due to the charge system accounts for the creation of
its own mass plus a further neutral particle as well. The ex-
perimental energies support the idea that contracting λw from
2πrem down to 2πrem/nw implies the chance of a new form
of interaction correlated to and coexisting with the familiar
electromagnetic interaction at increasing values of the quan-
tum number nw.

Let us put now

m′c2 ≈ ℏ
∆tw

(46)

being ∆tw the characteristic lifetime of the vector bosons.
This result is reasonable, as m′ is proportional to the char-

acteristic energy ℏ/∆tw. To calculate this expression, let us
also assume m′ ∝ ∆tw: as any process in nature requires a
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definite time to be completed, it is natural to expect that the
amount of mass creatable during the fluctuation of Jw is pro-
portional to the time length of this fluctuation. In other words:
the longer the fluctuation, the greater the transient amount of
energy and thus of mass that can be created. Putting then
m′ = kw∆tw, where kw is an appropriate proportionality con-
stant, there are two chances: either kw ≈ 1 or kw , 1. In
general the latter chance means that some physical effect is
still hidden in kw, whereas the former chance means that in
fact kw accounts for the concerned physical correlation with-
out need of further considerations. Let us guess that kw ≈ 1
effectively represents the fluctuation lifetime; then, replacing
into the Eq. (46), one finds

kw(c∆tw)2 = ℏ, kw ≈ 1g/s, (47)

which yields ∆tw ≈ 10−24s. Note that the second Eqs. (45)
reads m±c2 = ℏαc/λw, which suggests that αc is the actual
displacement rate of the charged vector bosons having energy
ℏv/λw and that the same holds for the neutral boson. Assum-
ing therefore that v = αc is the actual displacement rate of
the massive bosons, the characteristic range of this interac-
tion should be of the order of ∆xw ≈ αc∆tw = 2 × 10−16cm,
whereas ℏc/∆xw ≈ 0.15 erg = 98 GeV in agreement with the
Eq. (43) previously found.

In conclusion we have introduced three particles of com-
parable mass, of the order of 90 GeV, two of which with op-
posite charges and the third neutral, that propagate the inter-
action within the sub-nuclear space range ∆xw during a char-
acteristic time range ∆tw. These results are the fingerprint of
the weak interaction, which has been inferred as a general-
ization of the Maxwell equations inherent the homogeneous
diffusion equation (30) via the transient fluctuation term Jw(t)
appearing in the more general Eq. (29). So this kind of inter-
action differs in principle from, but it is strictly related to, the
electromagnetic interactions of the Maxwell equations; it is
simply an extension of these latter to the transient formation
of three further short range carriers consistent with the time
flux function Jw additional to the electric and magnetic fields
described by J∗2 and J∗1, consequences themselves of the early
Fick diffusion equations. It is worth emphasizing once again
that the existence of magnetic monopoles does not conflict
with, rather comes directly from, all of these outcomes and
their quantum origin.

4.3 The gravity force

Exploit the dimensional relationship

±J · v = |F|
sur f ace

; (48)

of course v is the rate with which propagate the carriers of
the force F at right hand side and J their flux. The double
sign takes into account either chance of sign in principle pos-
sible at left hand side, being the modulus of force positive by

definition. The gravitons are acknowledged to be the carri-
ers of the gravity force at the light speed; anyway, whatever
the actual physical nature of these boson vectors and their dis-
placement rate might specifically be, is enough for the present
purposes to introduce a one-dimensional reference system R
to which will be referred the scalars of the Eq. (48). This
assumption on R is consistent with the chance of describing
the gravitational interaction between two masses placed ar-
bitrarily apart along one coordinate. Imposing this condition
and thus introducing an arbitrary x-axis, write |F| = ξFx: the
x-component of F has been related to its modulus |F| via the
dimensionless proportionality factor ξ, which obviously is an
unknown variable quantity. Moreover, being Jx = ℏ/∆x4, it
is possible to write in an analogous way J · v = ±ζJxvx =

±ζℏc/∆x4: once more the dimensionless proportionality fac-
tor ζ relating the scalar J · v to its arbitrary component Jxvx is
an unknown variable quantity. In this way, whatever vx and
the interaction carriers might be, Jxvx can be expressed via
ζ as a function of the constant quantity ℏc. Of course, even
sur f ace reduces to ∆x2 in R. These positions are useful to
rewrite the initial Eq. (48) as ζℏc/∆x4 = ±ξFx/∆x2 and thus
ζm2

oG/∆x4 = ±ξFx/∆x2 in R, having put ℏc = Gm2
o by di-

mensional reasons; this is surely possible by defining appro-
priately the value of the constant mass mo. Yet the specific
value of mo is not essential: the term m2

oζ/ξ yields indeed
m1m2, with m1 = moζ and m2 = mo/ξ because of the arbi-
trary values of the proportionality factors ζ and ξ. In this way
m1 and m2 are two arbitrary inputs defining Fx, which indeed
owing to the Eq. (48) reads

Fx = ±G
m1m2

∆x2 .

Note that the ∆x−2 law could be directly inferred from the
Eqs. (1), since in the present model the derivatives are de-
fined as mere ratios of uncertainty ranges. Differentiating the
Eqs. (1) at constant n yields δ∆px = −(nℏ/∆x2)δ∆x, then
dividing both sides by δ∆t corresponding to δ∆x one finds
δ∆px/δ∆t = −nℏvx/∆x2 with vx = δ∆x/δ∆t: at left hand side
appears the x-component of a force, at right hand side the
concept of mass is hidden in the physical dimensions of the
factor ℏvx, which reveals its physical meaning of space-time
deformation rate of δ∆x during δ∆t. Of course vx is positive
or negative depending on whether δ∆x represents expansion
or contraction of ∆x.

This short note aims to emphasize that in the present
model the concept of gravity force is still linked to that of
space-time deformation; yet the force also explicitly follows
from the diffusion equations. In conclusion, taking the minus
sign, we have found the Newton gravity law. Note however
three remarks:
(i) this result is not new, it has been inferred in different ways
directly from the Eqs. (1) in [20, 23];
(ii) here even the anti-gravity with the plus sign is allowed, as
it has been repeatedly found elsewhere [22, 23];
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(iii) the Newton law is actually an approximation of a more
general gravity law, as found previously when concerning
F ≈ ma.

In fact one could guess an expression of sur f ace like
∆x′2 = ∆x2(1 + a1∆xo/∆x + a2(∆xo/∆x)2 + ··); the series ex-
pansion is dimensionally compatible with the Eq. (48) and
reduces to ∆x2 previously considered for ∆x → ∞ only, i.e.
for weak gravity fields at large distances between the masses.
This expansion defines a more general scalar component
ζJ′xvx = ±ξF′x/∆x′2 defining a more complex force compo-
nent ±F′x that coincides, as a particular case, with that Fx

previously found simply putting equal to zero the higher order
coefficients a j≥1 of the series expansion. Note that Fx → 0
for ∆x → ∞. The present choice to express the series expan-
sions of sur f ace has been purposely assumed in order that
even the non-Newtonian F′x → 0 satisfies the same condition
of the Newtonian Fx.

4.4 The strong interaction

The starting point and the subsequent reasoning are still that
of the subsection 4.3. Note however that the dimensional
equation (48) does not compel defining f orce as purposely
done before; as a subtle and possible alternative, nothing hin-
ders defining in the one dimensional R the right hand side as

±J · v = |F|
∆x2 +

energy
∆x3 . (49)

Proceeding as before, we merge again J · v with the con-
cerned force per unit surface at the right hand side of the
Eq. (48); one finds ±ξℏc/∆x4 = Fx/∆x2 + εo/∆x3 i.e. Fx =

±ξℏc/∆x2−εo/∆x, where εo is a constant. This force compo-
nent is derivable from a potential energy U having the form

U = ±ξℏc
∆x
+ εo log(∆x/∆xo), (50)

which in turn, putting ∆x = ∆xo ± δx, reads

U ≈ ±
( a
∆x
± bδx

)
, ∆x = ∆xo ± δx,

a = ξℏc, b =
εo

∆xo
,

δx
∆xo
<< 1. (51)

This is certainly possible because, being both ∆x and ∆xo

arbitrary, the necessary inequality can be actually verified at
short distances ∆x >∼ ∆xo or ∆x <∼ ∆xo. This result with the
minus sign at right hand side reads

U ≈ − a
∆x
+ bδx,

i.e. it leads to the sought interaction energy of interest here.
It is however also interesting to note that attractive and

repulsive strong forces are in principle allowed in this model.
The physical dimensions of the constants a and b are

energy × length and energy/length, so that ab = energy2 and

a/b = length2: write then ℏ/
√

ab = ∆ts whence ℏc/
√

ab =
λs = c∆ts. The chance of introducing the characteristic range
λs directly via c agrees with the idea of massless vector
bosons mediating this kind of interaction, which follows in
turn from the lack of a compelling motivation to introduce a
slower velocity of heavy particles. Thus, putting reasonably
λs =

√
a/b too, one finds

a = ℏc, ξ = 1, (52)

i.e. a sensible value of the proportionality constant ξ. More-
over holds also now the reasoning previously introduced abo-
ut the proportionality between mass and characteristic life-
time of particles mediating the interaction. Let us repeat the-
refore an identical approach, concerning however the energy
of the messengers instead of their mass to rewrite the propor-
tionality condition m ∝ ∆t as

√
ab/c2 ∝ ∆ts; introducing once

more a proportionality constant k one finds
√

ab = kc2∆ts,
which reads in turn

√
ab = kc2ℏ/

√
ab so that ab = kℏc2.

Hence, owing to the Eq. (52),

b = kc, k ≈ 1g/s. (53)

The last position, coherent with that of the Eq. (47), is justi-
fied by the same hint of the previous section about the phys-
ical meaning of any proportionality constant correlating two
physical amounts. The values of these constants are therefore

a = 3 × 10−17erg cm = 0.2 GeV fm,

b ≈ 1010dyn =105N. (54)

These figures yield therefore the characteristic length ∆xo

defined by a/∆xo = b∆xo and the characteristic interaction
time as a function of the characteristic energy

√
ab; one ob-

tains

∆xo =
√

a/b ≈ 10−13cm, ∆ts = ℏ/
√

ab ≈ 10−24s,
√

ab =
√

kℏc2 ≈ 10−3erg = 0.6GeV.

Note that a/∆x reads ℏc/∆xo = α
−1e2/∆xo, i.e. the strength

of this kind of interaction is α−1 times greater than that of the
electromagnetic interaction. The form of U in the Eq. (51)
and these figures are fingerprints of the strong interaction.

5 Connection between gravity and electromagnetism

Note that in the cgs system (charge/mass)2 has physical di-
mensions l3/mt2, i.e. the same as the gravity constant. Yet,
what has to do the electromagnetism with the gravity force?
The possible answer relies just on the hint suggested by the
question itself, i.e. the link between (e/mG)2 and G. It is in-
teresting the possibility of specifying mG directly as follows

G =
ℏc
m2

G

=
1
α

(
e

mG

)2

,
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which defines mG = 2.2 × 10−5g as a function of the value of
G assumed known; moreover, introducing mG via its reduced
Compton length λ̄G, one finds

G =
1
α

(eλ̄Gc
ℏ

)2

=
e
α

e
m2

G

, λ̄G =
ℏ

mGc
. (55)

It is interesting the fact that the gravity constant is linked:
(i) to the electromagnetism via the electric charge, (ii) to the
relativity via c and (iii) to the quantum theory via ℏ; also,
λ̄G results to be of the order of the Planck length. However
we acknowledge gravity and electromagnetism as two sep-
arate forces despite their common origin from the diffusion
equations, whence the question: how and why does actually
the nature split the electromagnetic and gravity forces? The
starting point to answer this question is the Newton law itself
previously found. Rewrite first the Newton law with the help
of the Eq. (55) as

F = G
m1m2

∆x2 =
e
α

e
∆x2

m1

mG

m2

mG
. (56)

The only term of the second equality that does not depend nei-
ther upon ∆x nor upon m1 and m2 is e/α. Let us split therefore
this equation via a proportionality constant k as follows

G = k
e
α
,

m1m2

∆x2 =
F
G
=

1
k

e
∆x2

m1

mG

m2

mG
. (57)

Note now that the masses m1 and m2 appear in this equation as
dimensionless ratios m1/mG and m2/mG; these pure numbers
yield therefore

F
G
=

r2

k
Qe1

∆x2 =
1
αG

Qe2Qe1

∆x2 , Qe1 = r1e, Qe2 = r2e,

m1

mG
= r1,

m2

mG
= r2. (58)

In practice we have eliminated the concept of mass from
the right hand side of F: the arbitrary variable r1, which de-
pends on the arbitrary value of m1, converts the fixed charge e
of the second equation (57) into the arbitrary total charge Qe1.
The ratio r2/k involves an arbitrary number r2 and a factor k
that is reasonably related to the measure units of the modulus
Qe1/∆x2 of a new quantity we call electric field strength due
to the charge Qe1 at a distance ∆x: hold indeed for Qe2 the
same considerations highlighted for Qe1, i.e. Qe2 is an arbi-
trary charge in the field of Qe1. In fact the first Eq. (58) turns
into

F =
Qe2

α

Qe1

∆x2 . (59)

From numerical and dimensional points of view, the factor
α−1 is immaterial: since both Qe1 and Qe2 are arbitrary, one
could identically write F as Q′e2Qe1/∆x2 with Q′e2 = Qe2/α
without loss of generality. Conceptually, however, α−1 re-
places in fact G: the latter describes the interaction between

m1 and m2, the former that between Qe1 and Qe2. This also
shows that the analogous analytical form of the Coulomb and
Newton laws is not at all accidental, as already shown in [23].
It is clear that the key step of this conclusion is the position
G = k(e/α) of the Eq. (57). It is instructive to calculate e/α
and compare it with the experimental values of G in the cgs
and SI systems

G = 6.68 × 10−8cm3g−1s−2 = 6.68 × 10−11m3Kg−1s−2;

while being

ecgs = 4.8 × 10−10esu, eS I = −1.6 × 10−19C.

One finds

kcgs
ecgs

α
= kcgs6.6 × 10−8cm3g−1s−2,

kS I
eS I

α
= kS I2.1 × 10−12m3Kg−1s−2.

Of course kS I , kcgs for two reasons: (i) because of
the different measure units and (ii) because in the cgs sys-
tem the charge is directly defined via the electric force, in the
SI the charge is defined in an independent way via the Am-
pere; thus kS I requires an additional multiplicative factor k0
to match G calculated simply changing the mass and length
units of the proportionality constants kcgs and kS I . As the
physical dimensions of kcgs are (length/mass)3/2/time, one
expects kS I = (103/2kcgs)k0; the factor in parenthesis accounts
for the different metric units only. Hence

G = kcgs6.6 × 10−8cm3g−1s−2,

G = kcgsk06.6 × 10−11m3Kg−1s−2. (60)

This result clearly shows that the actual value of the gravity
constant is well described by the dimensionless proportion-
ality constant kcgs ≈ 1 and that kcgsk0 ≈ 1 is also true; ac-
tually k0 ≈ 1 is not surprising, it is consequence of having
implemented eS I by including the Coulomb factor in the sec-
ond Eq. (60). As repeatedly stated, a proportionality factor
of the order of the unity shows that the correlation between
two quantities is physically correct; no hidden effect is to be
expected. What is significant is that the dimensionless values
kcgs ≈ 1 and k0 ≈ 1 fit the experimental values of G in both
systems.

To conclude this section, it is worth noticing that the value
of G had been correctly calculated in several ways as a func-
tion of the fundamental constants of nature in the previous
paper [20]; moreover more details about the connection be-
tween gravity and electric forces have been emphasized in a
recent paper [23].
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6 Discussion

The idea of linking the diffusion laws to the fundamental in-
teractions was suggested by their generality and by the var-
ious implications inherent their basic concepts. Regarding
the formulae of the section 2 as strictly related to the mere
displacement of chemical elements, thus with outcomes per-
tinent to the solid state physics only, is certainly reductive.
Actually some concepts can be extrapolated beyond the plain
domain of the materials science, e.g. as they concern even the
fields. This aspect, evidenced by the first and last Eqs. (4),
has been emphasized considering for instance that the heat
transfer Fourier law has formal physical analogy with the dis-
placement of matter [14]. The connection with the fundamen-
tal interactions appears thus natural once acknowledging that
these latter consist of the exchange of messenger particles,
the vector bosons, that propagate throughout the space-time.

Follow the idea that any body of matter is surrounded by a
cloud of bosons randomly flowing towards another body with
which it interacts, and that in general both bodies are moving
by effect of the interaction itself; consequently transients of
local concentration gradients of these carriers throughout the
space-time are also allowed to form. If so, the ability of the
carriers to mediate the pertinent interaction reduces basically
to the diffusion laws governing the displacement of clusters of
these carriers. It has been evidenced that the concept of par-
ticle flux is crucial in finding the correlation between density
gradient of the carriers and strength and kind of interaction;
as the flux related to the concept of diffusion concerns intrin-
sically a non-equilibrium situation, even the interactions fit
the idea of dynamical universe evolving towards a thermody-
namic steady state.

Obviously the results introduced here are not exhaustive
in describing themselves all features of the fundamental
forces of the nature; this detailed investigation about each
form of interactions is not the actual purpose of the model,
which instead aims merely to identify their common root only
by merging diffusion laws and quantum uncertainty only. On
the one hand, the present conclusions must be regarded hav-
ing already in mind also previous results, obtained starting
directly from the Eqs. (1) to explain the significant features
of the various interactions [15]. On the other hand, the fact
that the same results are also obtainable via the diffusion laws
is informative of the physical mechanism upon which these
latter rely: otherwise stated, all interactions are consequences
of the second law, i.e. the vector bosons transfer the interac-
tion moving likewise chemical elements of a non-equilibrium
thermodynamic system to increase the global internal entropy
of the system. Are significant in this respect the considera-
tions of the section 3. A further implication of the present
model relies on the possibility of demonstrating that the mag-
netic monopoles can in fact exist, being compatible with the
basic ideas from which the interactions are inferred: at the
present stage of development, the model does not prospect

any reason to reject their existence. The isotropy of the space-
time is essential to introduce the pertinent diffusion coeffi-
cient as a numerical value D without requiring instead a ten-
sor matrix; even without excluding that actually this position
could be an oversimplification only, the results indicate that
the assumption is acceptable at least at the present level of
development of the model. Moreover no necessity of extra-
dimensions appears in this context, which however does not
exclude that these latter might actually exist.

A short remark is useful to explain why the diffusion
equations are the key to infer contextually and in a surpris-
ingly simple way the basic aspects of the fundamental interac-
tions. A partial answer is that the concept of uncertainty does
not require hypotheses or information about the kind of dif-
fusion medium, kind of vector bosons and strength and range
of the interactions; as the Eqs. (1) have a primary significance
regardless of any ancillary information, their consequences
are expected to match different kinds of interaction just be-
cause of their generality. Yet a more comprehensive answer
is that the quantum Eqs. (1) are inherently consistent with the
general relativity [17], so any reasoning based on these equa-
tions leads consequently to relativistic conclusions as well;
this explains why some valuable relativistic implications have
been contextually found as side outcomes throughout the pa-
per. Previous and present results demonstrate the validity of
the theoretical model where uncertainty ranges replace the
local values of the dynamical variables; ignoring these lat-
ter means accepting that the former only have true physical
meaning. On the one hand, it is worth recalling the key role of
the arbitrary boundaries of the uncertainty ranges to demon-
strate that the quantum origin of the Maxwell equations and
related consequences, e.g. the Gauss theorem and the Fara-
day law, rely on the concept of space-time ranges: E and H
were contextually introduced implementing just both bound-
aries of ranges to express via the Eqs. (1) the flux of vector
bosons that mediate the electromagnetic interaction between
charged particles. On the other hand, the most interesting
aspect of the formalism based on ranges concerns its concep-
tual meaning that merges quantum theory and relativity: so
the usefulness of the results presently achievable is not the
only support to their validity.

In the wave mechanics the dynamical variables of the
classical formulae are replaced by operators that constitute
the wave equations, whose solutions provides the eigenvalues
of the observables; in the present model the dynamical vari-
ables are replaced by the respective uncertainty ranges, the
eigenvalues are inferred by elementary manipulations of the
classical formulae while the quantization is introduced via n.
The present model reverts thus fundamental inputs and out-
comes of the standard wave mechanics: the uncertainty is no
longer consequence of the commutation rules of postulated
quantum operators, it becomes instead the fundamental state-
ment as a function of which the operator formalism is inferred
by consequence of the range formalism. Several papers, e.g.
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[18, 19] show that this way of thinking is a valid alternative
to the standard wave mechanics: the expressions of the eigen-
values are identical in all cases where the wave equations can
be solved analytically without the need of numerical proce-
dures. The intriguing advantage of the present approach is
thus that it not only agrees with the wave formalism, in fact
inferable as a corollary so that the present model is in prin-
ciple compliant with any quantum results today known, but
contextually implies even the conceptual foundations of the
special and general relativity [17]; so are not surprising the
chance of having obtained the Eq. (19) and recognized the
approximate character of the Netwton law F ≈ ma, prelim-
inarily obtainable as in the Eq. (20), without the relativistic
correction involving the space-time deformation in the pres-
ence of mass.

The quantum space-time uncertainty has profound impli-
cations in relativity, whose formulae result indeed expressed
themselves via uncertainty ranges; although the formulae are
seemingly identical, however their physical meaning is defi-
nitely different. E.g., it has been emphasized that the Eq. (2)
entails the functional dependence px = vxε/c2 of the local
dynamical variables: the latter equation is well known, the
former seems a redundant and pretextuous attempt to rewrite
the standard relativistic result. Yet just in this way, introduc-
ing ranges that replace local variables, the relativity is made
compliant with the quantum theory. The local dynamical vari-
ables are incompatible with the Heisenberg principle, the un-
certainty ranges do by definition; so the usual formulae of the
standard relativity are mere classical limit cases of range sizes
tending to zero, in agreement with the classical character of
the relativity itself.

In short, the present paper is a further contribution con-
firming that the Eqs. (1) represent the common root underly-
ing quantum theory and relativity.

7 Conclusion

The necessity of skipping a detailed analysis about the spe-
cific features of all forms of interaction, outside of the scope
of this paper, ranks the significance of the essential outcomes
provided by the model; the value of results already known re-
lies on the fact of being obtained contextually in the frame of
a unique idea, which emphasizes the validity of the theoretical
basis so far implemented. The approach proposed here sug-
gests that an appropriate basic assumption about the displace-
ment mechanism of the vector bosons has prioritary impor-
tance with respect to the detailed speculation about the single
interactions themselves; moreover the scalar J · v was proven
effective as a common basis to infer distinguishing informa-
tion even without introducing explicit hypotheses on the per-
tinent vector bosons. The analytical form of the gravity force
was inferred waiving the specific nature of the gravitons; the
well known form (51) of the strong force has been inferred
waiving the features of the gluons and their property of ex-

changing the colour force between quarks, whereas the elec-
tromagnetic interaction was found related to the photons as a
particular case of a more general electro-weak interaction in-
volving massive vector bosons. The weak interaction only re-
quired considering explicitly the displacement velocity of the
carriers, which cannot travel at the light speed as their masses
affect the characteristic space range and lifetime. Yet the ba-
sic features of all interactions depend primarily on the diffu-
sion like behaviour of vector bosons described case by case
through the form of the respective scalars J ·v. Although such
theoretical approach is seemingly classical, indeed the section
2 exploits standard vector calculus, relativistic implications
are anyway evident and occasionally even unexpected; this
is because the Eqs. (1) contain an obvious quantum charac-
ter that however encloses also relativistic implications, which
therefore appear by consequence while implementing them.
Considering the quantum origin of the diffusion laws, it is
not surprising that the implications of the model are general
enough to span not only the solid state physics but also the
fundamental interaction physics.
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The paper shows, that the sequence of sorted by value masses of the largest moons in
the systems of Saturn, Jupiter and Uranus is connected by constant scaling exponents
with the sequence of their sorted by value orbital periods.

1 Introduction

In [1] we have shown, that the connection between the body
mass distribution and the distribution of orbital periods of
planets and planetoids in the Solar System can be described
by the scaling law:

M = µ · T D, (1)

where M is a celestial body mass, T is a celestial body orbital
period and µ and D are constants. We have shown, that for
sorted by value couples of a body mass M and an orbital pe-
riod T the exponent D is quite constant and is closed to the
model value 3/2. Furthermore, for M in units of the proton
rest mass mp ≈ 1.67× 10−27 kg [2] and T in units of the pro-
ton oscillation period τp = ℏ/mpc2 ≈ 7.02× 10−25 s, the con-
stant µ= 1.

In this paper we will show, that the scaling law (1) de-
scribes also the distribution of masses and orbital periods in
the moon systems of Saturn, Jupiter and Uranus.

2 Methods

In [3] we have shown that the scaling exponent 3/2 arises as
consequence of natural oscillations in chain systems of har-
monic oscillators.

Within our fractal model [4] of matter as a chain system
of oscillating protons and under the consideration of quan-
tum oscillations as model mechanism of mass generation [5],
we interpret the exponent D in (1) as a Hausdorff [6] fractal
dimension of similarity (2):

D =
ln M/mp

ln T/τp
. (2)

The ratio M/mp is the number of model protons, the ratio
T/τp is the number of model proton oscillation cycles.

Already in the eighties the scaling exponent 3/2 was found
in the distribution of particle masses [7]. Possibly, the model
approximation of D≈ 3/2 and µ= 1 in (1) for proton units is
a macroscopic quantum physical property, which is based on
the baryon nature of normal matter, because µ= 1 means that:

M/T D = mp/τ
D
p (3)

In [1] we have shown, that for planets and the most massive
planetoids the average empiric value D≈ 1.527 is a little bit

larger then the model value 3/2. If we interpret the deviation
of the empiric value D≈ 1.527 in comparison with the model
value 3/2 as a consequence of the fractality of the mass dis-
tribution in the system, then we can represent (1) in the form:

M∆/T 2 = 1 (4)

where ∆= 2/D is the fractal dimension of the mass distribu-
tion, the constant of proportionality is 1 for proton units mp

and τp. The model value of ∆ is 2/(3/2) = 4/3.

3 Results

The tables 1-3 contain properties of the largest moons of the
Saturn, Juputer and Uranus systems. Always on the left side
the moons are sorted by their masses, on the right side the
moons are sorted by their orbital periods. The tables show,
that within each moon system the fractal dimension ∆ (4) is
quite constant, but different from the average empiric value
∆= 2/D= 2/1.527≈ 1.31 for planets and planetoids [1]. This
fact we interpret as criterion of different levels of fractality of
the mass distribution in these systems. Furthermore, the ta-
bles show, that for the systems of Saturn and Uranus the frac-
tal dimension ∆ is nearly of the same average value, which is
quite different of ∆ for the system of Jupiter.

4 Resume

Within our fractal model [8], the scaling law (4) arises in
chain systems of many harmonic oscillators and can be un-
derstood as fractal equivalent of the Hooke law. The scaling
law (4) is valid for sorted by value couples of system prop-
erties. The Saturn system shows, that the scaling law (4) can
be valid for one and the same body. The Jupiter and Uranus
systems shows, that the scaling law (4) can be valid also for
couples of different bodies. This may mean, that in general,
the orbital period of each body does not depend only on its
own mass, but depends on the body mass distribution in the
system.
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Saturn moons, Body mass M, kg ln(M/mp) ∆ ln(T/τp) Orbital Saturn moons
sorted by M period T , years sorted by T

Mimas 3.7493× 1019 106.7277 1.2541 66.9235 0.9420 Mimas
Enceladus 1.0802× 1020 107.7858 1.2487 67.2983 1.3702 Enceladus
Tethys 6.1745× 1020 109.5291 1.2347 67.6187 1.8878 Tethys
Dione 1.0955× 1021 110.1024 1.2350 67.9901 2.7369 Dione
Iapetus 1.8056× 1021 110.6022 1.2385 68.4914 4.5182 Rhea
Rhea 2.3065× 1021 110.8470 1.2585 69.7524 15.9450 Titan
Titan 1.3452× 1023 114.9130 1.2419 71.3568 79.3215 Iapetus

Table 1: For sorted by value couples of a body mass M and an orbital period T the fractal dimension ∆(4) is quite constant within the Saturn
moon system. The Saturn moon system average ∆= 1.2445. Data comes from [9].

Jupiter moons, Body mass M, kg ln(M/mp) ∆ ln(T/τp) Orbital Jupiter moons
sorted by M period T , years sorted by T

Europa 4.7998× 1022 113.8824 1.1864 67.5538 1.7691 Io
Io 8.9319× 1022 114.5035 1.1921 68.2506 3.5512 Europa
Callisto 1.0759× 1023 114.6896 1.2024 68.9510 7.1546 Ganymede
Ganymede 1.4819× 1023 115.0098 1.2138 69.7980 16.6890 Callisto

Table 2: For sorted by value couples of a body mass M and an orbital period T the fractal dimension ∆(4) is quite constant within the
Jupiter moon system. The Jupiter moon system average ∆= 1.1987. Data comes from [12].

Uranus moons, Body mass M, kg ln(M/mp) ∆ ln(T/τp) Orbital Uranus moons
sorted by M period T , years sorted by T

Miranda 6.5900× 1019 107.2916 1.2551 67.3294 1.4135 Miranda
Umbriel 1.1720× 1021 110.1700 1.2328 67.9076 2.5200 Ariel
Ariel 1.3530× 1021 110.3136 1.2402 68.4050 4.1440 Umbriel
Oberon 3.0140× 1021 111.1145 1.2446 69.1473 8.7062 Titania
Titania 3.5270× 1021 111.2717 1.2507 69.5833 13.4632 Oberon

Table 3: For sorted by value couples of a body mass M and an orbital period T the fractal dimension ∆(4) is quite constant within the
Uranus moon system. The Uranus moon system average ∆= 1.2447. Data comes from [10, 11].
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The fundamental vector calculus definition of a force-free, field-aligned current in space
is expanded in cylindrical coordinates to directly obtain the Bessel partial differential
equation that specifies the magnetic field created by such a current. This result is often
called the Lundquist solution. A simple but detailed derivation is included here. The
physical properties of the resulting intricate magnetic field structure are described. The
cause of its characteristic counter-rotation and counter-flows are identified. The describ-
ing equations are put into state-variable form and a step-wise approximation is applied.
This solution reveals the primary effect of the force-free parameter, α, as being a scale
factor of radial distance. We show that: 1) both the axial and azimuthal magnetic and
current density components cyclically reverse their directions with radial distance from
the central axis of the current; 2) the magnetic field extends farther from the central
axis within a force-free field than it would if produced by a current in a long straight
conductor. The total magnetic field magnitude and current density are shown to vary
inversely as the square root of r. For large r, outside the plasma, the azimuthal magnetic
field is shown to vary as 1/r. These results are shown to be consistent with laboratory
and astronomical observations.

1 Introduction

After Kristian Birkeland [1] (1867-1917) suggested in 1908
that Earth’s auroras were powered by corpuscular rays ema-
nating from the Sun that become deflected into Earth’s po-
lar regions by the geomagnetic field, the existence of such
magnetic field-aligned currents was strongly disputed based
partially on the idea that currents could not cross the pre-
sumed “vacuum” of space [2, p. 181]. Birkeland’s main prob-
lem, however, was that having made detailed measurements
of Earth’s geomagnetic field on the ground, he then wanted to
extrapolate that knowledge into a description of the current-
density distribution that caused those magnetic effects. This
is not possible because a given magnetic field value can be
produced by more than one distribution of current-density.

A level of interest did, however, develop regarding the
Sun’s photosphere and plasma properties of the solar corona.
For example, a mathematical model of a force-free magnetic
field was proposed as early as 1950 by Lundquist [3, 4]. He
investigated whether magnetic fields could exist in an elec-
trically conducting liquid and his results included presenta-
tion of the now well-known Bessel solution for force-free
fields. Later in 1957, investigators such as Chandrasekhar
and Kendall [5] applied a similar analysis to the spherical ge-
ometry of the Sun.

NASA scientists and many other investigators worked on
Birkeland currents and flux rope observations since the mid-
to-late 1960’s [6–18], with substantial activity on this topic
after the late 1980’s [19–24]. A few researchers have sought
cylindrical coordinate solutions [25] but almost always in ref-
erence to intricate quasi-cylindrical solar surface or coronal
applications. Potemra [24] concluded that Birkeland currents
and Alfvén waves are fundamental to an understanding of

the Earth’s plasma environment. It is now generally assumed
that magnetic fields inside interplanetary magnetic clouds and
flux ropes in the solar photosphere are force-free [26]. In
2009, space probe Themis discovered a flux rope pumping a
650,000 A current down into the arctic auroral region [27].
This strong observational evidence supports the existence of
Birkeland Currents.

Consistent with this, the major goals of this paper are:
1. To present a simple, but complete derivation of Lund-

quist’s equations that describe the magnetic field struc-
ture of a field-aligned current.

2. To fully describe the physical (not only magnetic, but
also both the electrical and structural) consequences of
those equations; to develop a model.

3. To demonstrate the correspondence between the prop-
erties of that model and observational evidence gath-
ered from both plasma laboratories and astronomical
images.

First we show that the basis of any model of a Birkeland cur-
rent is what is called a force-free, field-aligned current.

2 Definition of a force-free field-aligned current

Consider a stream of moving charged particles (an electrical
current) in a plasma that is not subject to any external forces.
A useful mathematical idealization of such a physical cos-
mic current is a vector field of current density, j, that, when
viewed in a cylindrical coordinate system, creates an overall
average current vector, I, which, by definition determines the
direction of the z-axis. The magnitude of I is assumed to be
everywhere independent of the z coordinate. The coordinate
system defines a point, p, represented by (r, θ, z), as illustrated
in Figure 1.
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The basic structure of such a cosmic magnetic field is con-
trolled by the momentum equation of ideal magneto-hydro-
dynamics [25, 28–30],

(∇ × B) × B = µ0∇p (1)

where µ0 is the permeability of free-space.
The left hand side of this expression represents the com-

pressive magnetic (Lorentz) force and the right side is the ex-
pansive force (pressure gradient multiplied by the permeabil-
ity of the plasma). We distinguish between force-free fields
with ∇p = 0 and pressure balanced fields with ∇p , 0.
On the photosphere and within the lower chromosphere of
the Sun the energy of the plasma motion dominates the mag-
netic energy and therefore the field is swept passively along
with the plasma. This condition is characterized as a high-
β plasma [31], where the parameter β is defined as the ratio
between the plasma pressure p and the magnetic pressure,

β = 2µ0
p

B2 . (2)

Higher up in the corona, in interplanetary and in cosmic spa-
ce, a lower pressure (lower ion and electron densities), low-β
plasma often exists depending on local field pressure. Here
the plasma can take on a force-free character [6,32,33]. How-
ever, care must be exercised in assuming low-β properties.
For example, “the extensive magnetosheath flow downstream
of Earth’s bow shock is a high-beta plasma. Along a radial
cut of the plasma coming inward from the Sun near the day-
side sub-solar point, the solar wind and magnetosheath flow
is high-beta, the magnetopause and immediate (thin) plasma
boundary provides a high to low beta transition, and immedi-
ately within the low-latitude boundary layer (within the outer
magnetosphere) plasma is low-beta. Then with lower radial
distance the plasma again becomes high-beta.” [34]. We now
present here a model that requires a low-β plasma environ-
ment.

The electromagnetic force experienced by each charge
within such a plasma is given by,

F = q (E + v × B) . (3)

The first term, qE, is the electric force and the second term,
q (v × B), is called the magnetic force. The name Lorentz
force is used to describe expression (3). The plasma region
contains the cylindrical current stream. No initial assump-
tions are made about the distribution of the current density
across the cross-section.

A flow of charge creates its own magnetic field through
which the charge flows. The site at which each charged par-
ticle, q, in the stream is located is the point of origin of two
local vectors: j = qv (current density) and B (magnetic field).
The current density vector j at each point inherently creates a
curl(B) vector given by Maxwell [35]:

∇ × B = µ

(
j + ε

∂E
∂t

)
. (4)

Fig. 1: Total magnetic field vector B = B(r, θ, z), and its two compo-
nents Bz and Bθ at a particular location; Br = 0. Note that at any
point r, the pitch angle of the vector B measured upward from the
horizontal plane is defined as the arctan

[
Bz (r) /Bθ (r)

]
.

The derivative term in (4) which was added by Maxwell
is called the displacement current. It is often considered to be
zero valued, as we do here, when it can be assumed there are
no time-varying electric fields in the region. Integrating the
curl(B) vectors over a cross-section of the cylindrical stream
(Stoke’s theorem) yields,

∫

S
∇ × B · dS =

∫

S
µ j · dS =

∮

C
B · dl (5)

where S is any cross-section of the plasma, and µ and ε are
the permeability and permittivity respectively of the plasma
medium. The second term in (5) is equivalently µI where I is
the total current carried by the plasma. If the cross-section is
circular with radius r, then the last term in (5) is 2πrB where
B is in the azimuthal, θ, direction, not aligned with I and the
z-axis. Thus the B field produced by a cylindrical plasma at
its outer boundary, r = R, is

Bθ =
µI

2πR
. (6)

Expression (4) is the point form and (5) is the integral
(macroscopic) form of that Maxwell equation. Expression
(4) is valid at any point. The integral forms given in (5) and
(6) imply that B is a vector sum of the effects of all the j
vectors on the surface S that is enclosed by C. B is not directly
produced by any single j. In (4) it is clear that j, the current
density at a point, creates only a single curl(B) vector, not a
B vector. In general, there can be (and often is) a non-zero
valued B vector at points at which j =0.

Prior to the time a cosmic current system, free of exter-
nally applied forces or fields, reaches a steady-state config-
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uration, the j and B vectors are interacting – all the j’s are
creating curl(B) vectors that sum to form the local B vec-
tors. At any point in the plasma where j , 0 a force can exist
between that current density vector and its local magnetic B-
field vector. This force is a magnetic Lorentz force given by
the second term in (3). This vector cross product of a moving
charge’s velocity vector v and the local vector B implies that
the scalar value (magnitude) of the resulting Lorentz force on
each q is given by,

FL = qvB sinϕ (7)

where ϕ is the smallest angle between the vectors v and B,
with scalar values v and B. We call ϕ the Lorentz angle. If
this angle is zero or 180 degrees, the magnetic Lorentz v × B
force at that point is zero-valued.

The magnetic intensity (symbol H) is often used to de-
scribe the macroscopic forcing function that creates a mag-
netic field,

H =
B
µ

=
NI
l
. (8)

The dimensions of H are A/m. (The number of turns, N, is
dimensionless). H has also been called the magnetic field
strength, and the magnetizing force.

The scalar magnitude, B, in (8) arises from the integral
form (5). In that expression, B is shown to be the result of the
total current, I. It follows that H is not a point form variable.

It may be shown that the energy density, WB (Joules/m3),
stored in the magnetic field of such a current stream is given
by,

WB =
µ

2
H2. (9)

Using (8) in (9), the total energy stored, ψ (Joules), in the
magnetic field of a cosmic current is given by,

ψ =
1
2

(
µN2Ac

l

)
I2 (10)

where Ac is the cross-sectional area and the inductance of the
current stream is defined by the factor in parentheses. This
shows that the only way to reduce the entire stored energy to
zero is to completely cut off the current (set I = 0); in which
case the entire cosmic current structure would cease to exist.

However, we assume that in unconstrained plasma in cos-
mic space, the current stream is free to move and distribute
itself so as to minimize the internally stored potential energy
due to the stresses resulting from magnetic Lorentz forces ev-
erywhere throughout the plasma. In fact space plasmas are
uniquely situated to obey the minimum total potential energy
principle [36], which asserts that a system or body shall de-
form or displace to a position and/or morphology that min-
imizes its total potential (stored) energy (a formalization of
the idea that “water always flows downhill.”).

The energy described in (10) is irreducible because it is
caused by the fixed quantity, I. But the Lorentz energies can

be eliminated because they do not depend on the value of I,
only on the cross-products between local B and j vectors.

If and when the process of shedding the internal magnet-
ic-force energy reaches a steady-state equilibrium, this struc-
ture is called a force-free current and is defined by the relation
between the magnetic field vector, B, and the current density
vector, j, at every location at which a charge, q, exists in the
current stream:

q (v × B) = j × B = 0. (11)

It follows from (11) that the Lorentz forces are every-
where equal to zero in a force-free current because every j is
collinear with its corresponding B. This arrangement is there-
fore also called a field-aligned current (FAC).

It follows directly from (4) and (11) that, if there is no
time-varying electric field present, then (11) is equivalent to

(∇ × B) × B = 0 (12)

which is identical to (1) with ∇p = 0. This is the basic defin-
ing property of a force-free, field-aligned current.

Expression (4) implies that, if at any point in an other-
wise field-aligned current, j = 0, (12) is automatically ful-
filled even if B is non-zero. The value of the magnitude and
direction of B at any given point is generally not sufficient in-
formation to determine the magnitude, direction, or even the
existence of j at that point. This is the problem that confronted
Birkeland in his attempts to identify the currents responsible
for the magnetic field variations he measured. However, from
(4), knowledge of the direction and magnitude of the ∇ × B
vector at any given point does identically determine the value
of µj there.

Field-aligned, force-free currents represent the lowest sta-
te of stored magnetic energy attainable in a cosmic current
[31]. We seek an expression for the magnetic field, B (r, θ, z),
in such a current/field structure.

3 Quantitative model of a force-free field-aligned cur-
rent

Equation (12) can be expanded into differential equation form
using the cylindrical coordinate definition of curl and the 3-
dimensional vector product determinant. However, this leads
to an expression of little utility. Because (12) is satisfied if the
current density, j, has the same direction (except for sign) as B
(and with no requirements on its magnitude), it was suggested
(Lundquist [3, 4] and many others) that,

∇ × B = αB (13)

which from (4) is equivalently,

µ j = αB (14)

where α is any non-zero valued scalar, which is equivalent
to (12). This leads to a simple solution, but it is important
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to note that accepting (14) as a substitute for (12) assumes a
priori that, for any non-zero α, a non-zero valued B at any
point requires the existence of a current density j , 0 at that
same point. This is in general, an unwarranted presumption.
This is especially so in light of the well-known tendency of
plasmas to form filaments (creating regions where j = 0 but
B is not). There are many examples in the study of electro-
magnetism, such as: Given that, in otherwise empty space,
a current, Ix = +1 A exists in a straight, infinitely long con-
ductor lying along the x-axis, find the value of the resulting
magnetic field vector, B, at the point (x = y = 0, z = 1). The
goal of this exercise is to find a value of B at a point where j
is explicitly zero-valued. The answer is not zero.

However, most investigators start unhesitatingly with (13)
and therefore (14) as givens. (This rules out applying the so-
lution to a filamented plasma.) For example, Wiegelmann
[37] does this and derives a vector Helmholtz equation which
he states, can be solved by a separation ansatz, a Green’s
function method [8] or a Fourier method [18].

An ansatz is the establishment of the starting equation(s),
the theorem(s), or the value(s) describing a mathematical or
physical problem or solution. After an ansatz has been es-
tablished (constituting nothing more than an assumption), the
equations are solved for the general function of interest (con-
stituting a confirmation of the assumption). That the mathe-
matical solution accurately describes the physics is assumed.

In his 1950 paper Lundquist (after accepting the validity
of (13)), without further explanation or derivation states that
the solution of (14) with constant α is,

Hz = A J0 (αr)

Hθ = A J1 (αr) .
(15)

Lundquist thus presents α as being a radial distance scale
factor in the argument of his Bessel function solution. No
evaluation of the coefficient A is offered. He also presents an
image similar to Figure 6 below, but does not derive the cur-
rent density or the physical consequences of these functions
such as periodic reversals with increasing radius or counter-
rotation and counter-flows of the plasma within the current
structure.

Other investigators [45] start with (13) and then take its
curl to obtain,

∇ (∇ · B) − ∇2B = α (∇ × B)

∇2B = −α (∇ × B) .
(16)

They then also present the solution of (16) as being that given
in (15). This agrees with Lundquist.

One of the most extensive reviews of force-free currents
in a cylindrical geometry by Botha & Evangelidis [25] con-
tains several references to similar studies. However, none of
these investigators make the simplest assumptions: adopt a
piece-wise linear approach, assume α to be any scalar value,

and assume no variation of j or B in either the azimuthal or
axial directions. Such simplifications may not be justified on
the solar surface, but are in deep space. Therefore, we derive
here a simple solution that follows from this and carefully
note the effect of the parameter α on the resulting model.

Before beginning this derivation, we specify the dimen-
sions of several involved quantities. Using (8),

[
µ
]

=

[ B
H

]
=

Wb
m2

m
A

=
Wb
mA

. (17)

Using (4) the following units obtain,

[∇ × B] =
[
µj

]
=

Wb
mA

A
m2 =

Wb
m3 . (18)

Using (13),
Wb
m3 = [α]

Wb
m2 (19)

or
[α] = 1/meter. (20)

Our derivation is as follows: The left side of (13) is ex-
panded in cylindrical coordinates:

∇ × B =

(
1
r
∂Bz

∂θ
− ∂Bθ

∂z
,
∂Br

∂z
− ∂Bz

∂r
,

1
r
∂

∂r
(rBθ) − 1

r
∂Br

∂θ

) (21)

and the right side of (13) is expressed as,

αB = (αBr, αBθ, αBz) . (22)

In (21) and (22), all field components are functions of the
position vector, p. Given that there is no reason to assume
any variation of current density j in the θ or z directions in
cosmic space, (14) implies the same is true for B.

It follows from the absence of any externally applied for-
ces other than possibly a static axial electric field to maintain
I (first term in (3)) and any time-varying electric fields, that
all partial derivatives of B with respect to θ and z are zero and,
therefore, what remains of (13) after these simplifications in
(21) are the following three expressions: In the radial direc-
tion,

αBr = 0. (23)

There is no radial component of the B vector. This is consis-
tent with Maxwell’s ∇ · B = 0. In the azimuthal direction,

∂Bz

∂r
= −αBθ (24)

and in the axial direction,

1
r
∂

∂r
(rBθ ) = αBz. (25)

This results in two non-trivial coupled differential equa-
tions in the two dependent variables Bz and Bθ as shown in
(24) and (25). The independent variable in both is radial dis-
tance, r.
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4 Solution in closed form

Combining (24) and (25) yields a single second-order differ-
ential equation in a single dependent variable,

r2 ∂
2Bz (r)
∂r2 + r

∂Bz (r)
∂r

+ α2r2Bz (r) = 0. (26)

The dependent variable Bz(r) is the axial component of the
force-free steady-state magnetic field. The component field
Bz(r) is allowed to extend as far as the differential equation
(26) provides for. No boundary condition at any non-zero
value of r is introduced. There will be, in all real currents
in space, a natural limit, r = R, to the extent of the current
density j(r).

Having now fully specified the differential equation (26),
it is recognized as being identical to Bessel’s equation of or-
der zero, with scalar parameter α (the units of which are (see
(20)) the reciprocal of the units of r). We thus have a closed-
form solution for the dependent variable in that differential
equation that results from expanding equation (13). Its solu-
tion is,

y = AJ0 (αx) + CY0 (αx) . (27)

J0(x) is the Bessel function of the first kind and zeroth order,
and Y0(x) is the Bessel function of the second kind (or some-
times called the Weber or Neumann function) of zeroth order.

The function J0(αx) has the value unity at the boundary
x = 0, and the function Y0(αx) has a singularity at this same
boundary. Because reality dictates that the magnetic field re-
main finite-valued, the value of arbitrary coefficient C must
be set equal to zero. Thus, the solution to (26) is given by,

Bz (r) = Bz (0) J0 (αr) . (28)

This Bessel function of the first kind and of order zero is
used to produce Bessel functions of the first kind and orders
1, 2, 3, . . . by simple differentiation. The recursion relation
for the first-order Bessel function is,

J1 (x) = −dJ0 (x)
dx

. (29)

Thus, from (24) and (29), we obtain,

Bθ (r) = Bz (0) J1 (αr) . (30)

Consequently, from (28) and (30), the scale of the size, r, of
the magnetic field in the radial direction is determined by the
parameter α. Allowing α = α(r) would distort the radial axis
used to plot Bz(r) and Bθ(r).

These Bessel functions approach damped trigonometric
functions for large r, but the amplitude decrease is unusually
gradual – varying inversely as the square root of αr, which is
a more gradual decay than the typical exponential, or 1/αr,
or 1/(αr)2 damping.

This decay behavior is seen from the asymptotic forms
shown here in (31) below,

J0 (x) =

√
2
πx

[
cos

(
x − π

4

)
+ O

(
1
x

)]

J1 (x) =

√
2
πx

[
cos

(
x − 3π

4

)
+ O

(
1
x

)]
.

(31)

Therefore, Br(r), Bz(r) and Bθ(r) shown in (23), (28), and (30)
together provide a complete description of the magnetic field
that surrounds and pervades the final force-free, minimum-
energy, steady-state, cylindrical current. In this state, all Lo-
rentz forces have been reduced to zero. The physical impli-
cations of these expressions are fully described in Section 8,
below.

5 Euler method of solution

Another approach to solving (26), one that does not require
that it be recognized as a Bessel equation, is to use an it-
erative numerical method. One such method is based on a
state-variable representation of the differential equation – in
this case the pair (24) and (25). In order to describe those
differential equations in state-variable form, the product rule
for derivatives is first applied to (25) as follows:

∂ (rBθ)
∂r

= rαBz (32)

r
∂Bθ
∂r

+ Bθ = rαBz. (33)

Two state-variables may be defined as follows:

x1 = Bz (34)

x2 = Bθ (35)

so that rewriting (24) and (25) in state-variable form yields,

dx1

dr
= −αx2 (36)

dx2

dr
= αx1 −

(
1
r

)
x2. (37)

An Euler/Runge-Kutta algorithm for obtaining an approx-
imate step-wise solution to (36) and (37) was implemented.
The results, presented in Figure 2, show, as expected, the fa-
miliar shapes of Bessel functions J0 and J1 as Bz(r) the axial
component, and Bθ(r) the azimuthal component. Also shown
is the total magnetic field strength |B| (the square root of the
sum of the squares of the two component scalar fields, Bz

and Bθ). This total field strength magnitude is strongest at
a minimum radial value r and decreases monotonically with
increasing r.

Specifically, in Figure 2, total magnetic field magnitude
is shown to decrease with increasing radial distance from the
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Fig. 2: Axial Magnetic Field component Bz, the Azimuthal Magnetic Field component Bθ, the magnitude of the Total Magnetic Field; and,
for reference, a plot of 1/

√
r – all vs. radial distance quantized to integer multiples of the step-size h = 0.1. The value of α arbitrarily

selected in (36) and (37) to achieve adequate resolution of the Bessel functions with this step-size is 0.075. The horizontal axis in this
plot is the radius r-axis. Note in Table I that in every case (row) the inherently dimensionless Bessel function argument, x = αr, thus
demonstrating the scale factor utility of α. (e.g., 2.4048 = 0.075 × 32.)

central axis of the current as (αr)−1/2. This function is shown,
for reference, as the fourth series plotted in Figure 2. This
behavior was fully described in Section 4 (see (31)). There-
fore, the magnetic fields within field-aligned cosmic currents
clearly extend outward in space much farther and less dimin-
ished in strength than the magnetic field that would be gener-
ated by a simple straight-wire electric current (see (6)).

The parameter α appears as a scale factor operating on the
radius variable, r. In the result shown in Figure 2, the value
for that distance-scaling parameter was arbitrarily chosen to
be α = 0.075. The horizontal axis of Figure 2 is in units of
actual radial distance, r. For example, the first zero of J0(x) is
located at x = 2.4048. In Figure 2 it is shown to occur at r =

x/0.075 = 32. This demonstrates the relationship between
the non-dimensional argument of the Bessel functions, x, and
the scaled variable, r: x = αr. Nothing is inferred or implied
about the current density vector field j at this stage.

The step-wise Euler method described here can also be
used in the event the state-equations are nonlinear due to cho-
osing an arbitrary α = α (r).

6 General validity of solution

A question remains regarding the generality of the solutions
(23), (28), and (30), for Br(r), Bθ(r), and Bz(r) respectively.
Directly or indirectly all three of these quantities result from
solving the Bessel equation (26), which, itself, is derived from
the substitute equation (13), not from the fundamental, defi-
nition of a force-free current (12). This substitute, (13), was
posited as being a valid alternative to (12), the defining prop-
erty. Expressions (12) and (13) impose similar but not iden-

tical requirements on the magnetic field B(r, θ, z) and the cur-
rent density field j(r, θ, z). Therefore, it has not yet been dem-
onstrated that the vector field solutions of (13) listed in (23),
(28) and (30) are also valid solutions of the fundamental def-
inition, (12).

In order to demonstrate this, we insert those solutions
back into (12) by writing the central three-dimensional cross
product contained in that expression in determinant form:

(∇ × B) × B =

∣∣∣∣∣∣∣∣

r̂ θ̂ ẑ
(∇ × Br) (∇ × Bθ) (∇ × Bz)

Br Bθ Bz

∣∣∣∣∣∣∣∣
. (38)

Using the cylindrical curl expansion of (21),

∣∣∣bi j

∣∣∣ = (∇ × B) × B =

∣∣∣∣∣∣∣∣∣

r̂ θ̂ ẑ
0 − ∂Bz

∂r
1
r
∂
∂r (rBθ)

Br Bθ Bz

∣∣∣∣∣∣∣∣∣
. (39)
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We use (23), (28) and (30). Then in (39) the element b22
becomes,

b22 = − ∂
∂r

[
Bz (0) J0 (αr)

]

= αBz (0) J1 (αr) .
(40)

The element b23 becomes,

b23 =
1
r

(
r
∂Bθ
∂r

+ Bθ

)
=
∂Bθ
∂r

+
1
r

Bθ

= αBz (0)
[
∂J1 (αr)
∂r

+
1
αr

J1 (αr)
]
.

(41)

Since
∂J1

∂x
= J0 − 1

x
J1, (42)

(41) becomes,

b23 = αBz (0)
[
J0 (αr) − 1

αr
J1 (αr) +

1
αr

J1 (αr)
]

= αBz (0) J0 (αr) .
(43)

Using the above expressions together with (23), (28), and
(30), in (39) and omitting functions’ arguments for clarity,

(∇ × B) × B =

∣∣∣∣∣∣∣∣

r̂ θ̂ ẑ
0 αB0J1 αB0J0
0 B0J1 B0J0

∣∣∣∣∣∣∣∣
= 0. (44)

(QED)

Thus, the components of B(r, θ, z) given in (23), (28), and
(30) are shown to be valid solutions of the original defining
equation (12). That fact remains valid whether or not the al-
ternative (13) had ever been suggested.

Regarding the practical evaluation of αwhen approximate
observations of both B and ∇×B are available, we have [31,
p.107],

α =
(∇ × B) · B

B2 . (45)

Inserting the appropriate components from (23), (28), and
(30) into (45) yields the identity,

α = α. (46)

This indicates that the results presented here as (23), (28) and
(30) are consistent with the formulation for α given in (45).

7 Current density of a field aligned current

Having accepted the postulated alternative definition (13) and
(14) to determine the force-free magnetic-field solutions (28)
and (30) (repeated below as (47) and (48)), it is then logi-
cally consistent to simply insert these into (14) to obtain the
companion current-density relations (49) and (50):

Bz (r) = Bz (0) J0 (αr) (47)

Bθ (r) = Bz (0) J1 (αr) (48)

jz (r) =
αBz (0)
µ

J0 (αr) (49)

jθ (r) =
αBz (0)
µ

J1 (αr) . (50)

A dimensional analysis of (49) and/or (50) using (18) and (20)
shows the units of the constant term αBz(0)/µ to be A/m2 as
they must be.

In (49) and (50), it is clear that as the radial size of the
model is increased (by decreasing the value of α), the magni-
tude of both current density components decrease proportion-
ally.

Wiegelmann [37] defines α as being α(x, y) = µ0 j0/B0
(see (49) and (50)). This definition also has units of 1/m (re-
ciprocal of distance) (see (17)-(20)). Peratt [31, p.107] states
that α is adjusted until reasonable agreement is obtained with
observations (see (45) and (46)).

8 Consequences of the oscillatory nature of the Bessel
(Lundquist) solution

Expressions (47)–(50) fully describe the structure of the mo-
del of a minimum (Lorentz force) energy, cylindrical, force-
free, field-aligned current (FAC) under the assumption of eq-
uation (14). Thus:

1. There are no points within the plasma where B = 0. A
non-zero valued magnetic field exists at every point. In
the first paragraph after (3) it was stated, nor are any
assumptions made about the distribution of the current
density across the cross-section. (49) and (50) now ex-
press that spatial distribution of j(p).

2. At every point in the plasma, j and B are collinear.

3. At every point in the plasma µj = αB (assumption, as
discussed in Section 3).

4. The model expressions (47)–(50) remain valid only ov-
er the range 0 < r < R. Farther out from the z-axis than
r = R, j = 0. From that point outward, the cylindrical
plasma appears more and more like a single straight,
isolated current-carrying wire. So beyond radius R,
the magnetic field strength will decay approaching 1/r.
This is shown directly using (14): for r > R, j = 0,
α = 0. Then using (32) and (33) yields:

Bθ (r) =
kz

r
. (51)

This is consistent with (6).
Visualizing this field configuration with the aid of Figures

2, 3, and 5, reveals that, within the plasma, at increasing radial
values, the magnetic field, together with its collinear current
density, wrap the axis of the current stream with a continu-
ously increasing helical pitch angle.
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Fig. 3: Cross-section of a force-free current. In this view the
reader is looking in the +z-direction, in the direction of main cur-
rent flow. The radius values shown are plotted as values of r = x/α
(α = 0.075), which were used in the Euler iterative solution of (36)
and (37). At the radius values shown, the axial B-field is zero-valued
so the total field is only azimuthal (either clockwise or counter-
clockwise circles).

From (23), there is no outward radiation of the magnetic
field (nor its collinear j) from inside the plasma where α , 0.
There is no non-zero Br or jr component anywhere. Thus no
matter escapes from the plasma. This preserves the structural
integrity of the FAC over large axial distances.

Both solutions (closed-form and Euler) demonstrate re-
peated reversals in the directions of both the axial and the
azimuthal magnetic field components with increasing radial
distance. This implies the existence of a discrete set of vir-
tual concentric cylindrical surfaces (see Figure 3). These sur-
faces are centered on the z-axis of the field-aligned current.
At these discrete radial values, the axial field component, Bz

is zero-valued and the azimuthal magnetic component, Bθ,
is at alternatingly clockwise and counter-clockwise maxima.
As a function of r the axial and azimuthal field strengths are
observed to be in quadrature. For example in Figure 2, in a
region such as that between radial distances 74 and 116, the
axial field, Bz, is unidirectional (in the positive z-direction, at-
taining maximum strength at r = 94); whereas the azimuthal
field reverses direction at r = 94, changing from the nega-
tive direction of θ to the positive direction. This results in a
total magnetic field vector that wraps the current stream, its
pitch angle rotating (with increasing r) in a clockwise direc-
tion when viewed looking inward in a radial direction, toward
the central axis of the current (see Figure 5).

Thus, the axis of a cosmic, field-aligned current is wrap-
ped with a compound helical magnetic field whose angle with
respect to the +z-axis increases continuously with increasing
radial distance, r. This gives rise to a structure suggestive of
some ancient Roman fasces.

Fig. 4: Three-dimensional plot of the magnitude of the axial mag-
netic field component Bz(r) and the current density jz (r). This
demonstrates the relative strength of both those central (on-axis)
fields. The magnitude scale of the horizontal axes used in this Fig-
ure are both x, the dimensionless arguments of the Bessel J0(x) and
J1(x) functions.

In Figure 5, one cycle (0◦–360◦) of the pitch angle is
shown. The cycle is sketched at eleven incrementally in-
creasing sample values of radius. The shaded arrows show
the total magnetic field direction at each value of radius, r,
and the white arrows show the field direction at an increment
just below each of those values of radius. At every point in a
stable force-free, field-aligned current, the current density j is
collinear with B.

The Lundquist-Alfvén image shown in Figure 6, which
is often used to describe the Birkeland current steady-state
minimum-energy magnetic field, is in agreement with these
results (47–50), but it only describes the morphology for sm-
all values of r. As r increases beyond what is shown in Figure
6, an uninterrupted rotation of the pitch angle of the mag-
netic/current helices continues (see Figure 5). The field rota-
tion does not abruptly stop at 90◦ (where the total magnetic
field is orthogonal to the direction of z) as might be inferred
from Figure 6. The helical wrapping of the j and B fields con-
tinues with increasing radius values. This adds strength to the
overall FAC structure. The tangent of the helical angle at any
point, r, is the ratio (see Figure 1),

Bz (r)
Bθ (r)

=
J0 (αr)
J1 (αr)

=
J0 (x)
J1 (x)

. (52)

Therefore if the value of the scale factor, α = x/r is, say,
doubled, then that same pitch angle will occur at a value of r
at half the original radius (x value unchanged). Thus the scale
of the entire model will be halved (see Figure 6).

9 Effects of increased axial current

In a geomagnetic storm, a surge in the flux of charged parti-
cles (current increase) often temporarily alters Earth’s mag-
netic field.
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Fig. 5: The pitch angle of the helical total magnetic field, B vector,
that encircles a field-aligned current changes continuously with in-
creasing radial distance from the central axis of the current. There
are no abrupt quantum jumps or breaks in this angle’s change or
in the field’s magnitude. One cycle (0◦–360◦) of the pitch angle
is shown. The cycle is sketched at eleven incrementally increasing
sample values of radius. The shaded arrows show the total magnetic
field direction at each value of radius, r, and the white arrows show
the field direction at an increment just below each of those values of
radius.

The entirety of this paper up to this point has been focused
on the consequences of the reduction or possible elimination
of the Lorentz v×B forces as defined in the second term of
(3). But, the first term in that expression produces an indepen-
dent, conduction component of the current density that may
be added, via superposition, to the current density, jz, that has
been derived above. This additional term is written as,

jcond = qE

∑

k

nk µ
(k)
ions + ne µe

 (53)

where nk is the ion density, with k = ionization number of
the various ions, ne is the electron density and µ(k)

ions and µe

are the respective mobilities of those ions and electrons in
the plasma. Expression (53) is the point form of Ohm’s Law.
Another way that jz might become increased is by narrowing
the cross-sectional area of a Birkeland current as it squeezes
down into a polar cusp in a geomagnetic field.

It is not known if any actual, observed cosmic currents
are in the complete minimum (Lorentz force) energy, field-
aligned state. Several apparently show evidence of near-for-
ce-free behavior [31]. In the steady-state minimum energy
FAC configuration, all Lorentz forces have been eliminated
and charge simply follows the magnetic field structure. For
example, in Figure 3, any positively charged matter located at
r = 158, has counter-clockwise motion.

The image shown in Figure 8 was obtained in a plasma
laboratory. Neither this nor the image of Saturn’s north pole
in Figure 7 represent force-free currents because they both are
images of collisions of such currents with material objects.

Fig. 6: Two different sized scale models of a FAC. These are both
Lundquist-Alfvén-type images showing the helical structure of the
collinear j and B vectors for small values of radius, r. (Left: Using
α = αo. Right: Using α = 2αo.) This demonstrates why some
investigators say that alpha controls the “tightness of twist”. It only
appears to do that as a secondary effect because it’s primary effect is
as a scale factor on the overall dimensional size (r, z) of the model’s
structure.

Figure 8 suggests what may occur if such an overall cur-
rent density increase were to occur. The force-free structure
would begin to undergo changes (if not be totally destroyed).
Exactly what would happen is pure conjecture but if we start
with Figure 3 and consider what might occur if and when a
low intensity stream of positive charge begins to infuse the
entire cross-section in a +z direction (away from the reader),
these additional positive charges would likely be deflected by
Lorentz forces as follows (see Figure 3). At radii 33, 116, and
199 – deflection inward and clockwise. At radii 74, and 158
– deflection outward and counter-clockwise.

The two paths (inward and clockwise at r = 116 and the
one at r = 74 moving outward and counter-clockwise) might
appear to be a single path spiraling inward from r = 116
toward r = 74. Such pathways are suggested in Figure 8.
Clearly in that state, the system is no longer at minimum en-
ergy – Lorentz forces are at work within the no-longer force-
free plasma.

Another effect of an increase in the magnitude of the axial
component of the current density, jz, would be to add a small
incremental vector in the +z-axis direction to each existing jz-
vector. For example, consider sub-figures 2-5 in Figure 5. A
small +jz vector added to each of the shaded j-vectors shown
there would tend to twist them slightly counter-clockwise,
away from being aligned with their corresponding B-vector
that remains fixed. The resulting Lorentz force (j × B) would
be directed inward (away from the viewer). However, if a
similar small +jz vector were to be added to each of the shad-
ed j-vectors shown in sub-figures 7-10 in Figure 5, this would
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Fig. 7: Saturn’s north pole, infrared Cassini image. Saturn is a
gaseous planet composed mainly of hydrogen and helium. This im-
age was obtained during the dark winter. The pole is encircled by a
hexagonal feature in its atmosphere, which is thought to be caused
by a planetary (atmospheric) wave. Image obtained using the in-
frared mapping spectrometer on board the Cassini Orbiter space-
craft. Courtesy of: NASA/JPL-Caltech/University of Arizona. The
Cassini-Huygens mission is a cooperative project of NASA, the Eu-
ropean Space Agency and the Italian Space Agency. Image Credit:
NASA/JPL/GSFC/Oxford University/Science Photo Library [40].

twist them slightly clockwise and the Lorentz force would, at
those points, be directed outward (toward the viewer). Ions,
then, will be pushed inward over radial ranges wherever az-
imuthal magnetic field, Bθ, is directed clockwise in Figure
3. Ions will be expelled outward wherever Bθ is directed
counter-clockwise in Figure 3. Matter (ions and neutral dust)
will thus tend to congregate at intermediate radius values such
as r = 0, 94, and 178. These are radii defined by the odd zeros
of J1 = J1(x) = J1(αr), (x = 0, 7, 13, . . . ) (see Figure 4 and
column 3 of Table I for values). Electrons moving in the −z-
direction will tend to be scavenged into the same r-regions.
These are hollow cylindrical surfaces where +jz dominates.

10 Comparison of results with observations

Images in Figures 7, 9, and 10 are obtained from actual astro-
nomical observations. The image shown in Figure 7 is consis-
tent with the hypothesis that Saturn is receiving a flow of elec-
tric charge via a Birkeland current directed into its north pole
much as Earth is known to be experiencing. It is well known
that currents in plasma drag un-ionized (as well as ionized)
matter along in their path [42]. Figure 3 and the discussion at
the end of Section 9, above, imply that clockwise and counter-
clockwise counter-rotating current paths such as those at r =

33 and 74 ought to exhibit such counter-rotation. But, for
years it has been unknown whether the spiraling/circular pa-
ths appearing in Figures 7, 8 and 9 are really counter-rotating.

Fig. 8: Cross-section of a dense plasma focus Birkeland Current car-
rying I = 174, 000 amperes. This image was captured by a witness
plate placed in the discharge in a plasma lab. The spiral structure of
the cross-section is visible. The 56-dot circular overlay shows the
locations of the apparent spiral shaped paths of matter. Courtesy of
A.L. Peratt, from Characteristics of a High-Current, Z-Pinch Aurora
As Recorded in Antiquity, Part II Directionality and Source by Per-
att, Directionality and Source. IEEE Transactions on Plasma Sci.,
August 2007 [41].

It would require a video to reveal that relative motion.
It so happens that NASA has produced exactly such a

video clearly showing counter-rotating (plasma) clouds with-
in what appears to be the hexagonal shape at Saturn’s north
pole (see: [43] NASA video - Saturn’s Hurricane). In this
video, the term hurricane is used repeatedly by the narrator
who expresses concern about the fact that the “storm” is fixed
to the planet’s north pole and that no water ocean exists be-
low it to cause it to exist. He does not mention that actual
hurricane winds do not counter-rotate as these do.

In that video, in shear regions between counter-rotating
shells, what appear to be diocotron instabilities are visible
(see Figure 9). Without NASA’s video, the counter-rotational
motions of these areas in the Saturnian surface would not be
observed and therefore their existence would go undiscov-
ered. This recent motion picture is crucial evidence of part
of what is being presented here. Many other edited versions
of the original NASA video exist that do not show counter-
rotation taking place. The uncut original does.

11 Conclusions

It has been well-known for decades that the Lundquist solu-
tion (15) constitutes a simple model of a cylindrical force-
free, field-aligned current. This model:

1. Dictates that the two vector fields j(r, θ, z) and B(r, θ, z)
be everywhere collinear;
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Fig. 9: Series of diocotron (shear) instabilities, especially obvious in
the upper left of this image. This was taken from the NASA video
[43] which clearly shows counter-rotation. From NASA Cassini
mission video of Saturn’s North Pole. Courtesy of: NASA/JPL-
Caltech/University of Arizona. The Cassini-Huygens mission is a
cooperative project of NASA, the European Space Agency and the
Italian Space Agency. The imaging operations center is based at
the Space Science Institute in Boulder, Colo. The Visual and In-
frared Mapping Spectrometer team is based at the University of Ari-
zona [43].

2. States that the overall solutions that specify the spatial
dependence of those fields’ magnitudes and directions
are Bessel functions;

3. Assumes α is constant inside the plasma.

In this present paper we present a simple, but detailed
derivation of this model of a force-free current and demon-
strate, through straightforward mathematical analysis and str-
ict adherence to the principles delineated in Maxwell’s equa-
tions [35], a number of significant characterizations [44] of
these field equations that are in strong agreement with reli-
able imagery obtained from both actual observations of phe-
nomena in space and measurements in experiments in plasma
laboratories. The most significant of those results are:

1. The complete mathematical model of a cylindrical, for-
ce-free FAC, including expressions for its current-den-
sity field is presented by (47)–(50), not just (15).

2. Magnetic fields produced by force-free currents stretch
out radially from the central axis of the current stream
much farther, and with greater effect, than previously
thought. For radial distances, r, within the plasma (r <
R) the amplitudes of those helical fields decay slowly
in inverse proportion to the square root of r.

3. The fact that expression (23) requires that no compo-
nent of the magnetic field, B, can extend outward in
the radial direction (and the fact that B and j are every-
where collinear) demonstrates that no dissipative cur-
rents or fields leave the cylindrical structure along its
length. Birkeland’s critics thought that the final, re-

laxed distribution would be an infinite dispersion, not a
strong, tight cylinder (which it is).

4. The structural stability of the spiraling fasces-like wra-
pping of the magnetic field explains the observed enig-
matic stability of Birkeland currents over long inter-
planetary, inter-stellar, and inter-galactic distances. For
example, the cosmic current “jet” emanating from gala-
xy M87 remains collimated over a distance exceeding
5000 light years [46]. The stability of the flux-rope
connecting the Sun and Earth is now better understood
(see Section 8).

5. The angle of pitch of the helix varies smoothly and con-
tinuously with increasing radial distance, r, from the
central axis of the current out as far as the plasma’s
current-carrying charge density extends. This causes
cyclical reversals of direction (counter-flows) in both
the axial and azimuthal magnetic field and its collinear
current density. The magnitude of both the B and j-
fields may be greater than zero for r values far beyond
the first zero of J0(αr) (which occurs at r = 2.4048/α).
Figure 6 is shown to be correct but incomplete, and thus
potentially misleading.

6. Coupled with the new NASA video of Saturn’s north
polar region, this presentation strongly supports the hy-
pothesis that a Birkeland current is feeding electric cur-
rent into that region.

7. Parameter α controls the size of the resulting model in
both the r and z dimensions (together – not separately).
The value of α is arbitrary and is selected to enable the
model to fit the size of the actual space-plasma being
modeled.

8. The major difference between a field-aligned current
(FAC) and a Birkeland current is that in a FAC the total
current, I, is a minimum. When the current density at
any point, j, increases for any reason above its minimal
value, non-zero Lorentz forces begin to occur and the
matter scavenging described in Section 9 takes place.

9. The mathematical procedure offered here is circumscr-
ibed to an extent not typical of other papers by caveats
regarding the consequences of the universal unques-
tioning acceptance of the generality of the expression
µj = αB (14). This is not applicable in filamented
plasma.

The conclusions drawn from the analysis of the mathe-
matical model derived in this paper have been tested against
original motivating observations and measurements. Consis-
tently strong agreement is found. Many otherwise enigmatic
images stand witness to the potential benefits of considering
possible electrical causation of other cosmic plasma phenom-
ena.

The M2-9 Hourglass planetary nebula in Figure 10 is a
prime case in point. We suggest that the narrowing of the
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Fig. 10: The Hourglass (or Butterfly) planetary nebula, M2-9. In
this image the separate hollow, cylindrical tubes of matter are clearly
visible. The cross-sectional area of the structure diminishes near the
center of the pinch. Since the total current is the same at every cross-
section, this means regions near the central pinch have increased
current density (A/m2) and corresponding greater visual brightness.
Courtesy of the Hubble Legacy Archive, NASA, ESA Processing
Judy Schmidt. The Hubble Legacy Archive (HLA) is designed to
optimize science from the Hubble Space Telescope by providing on-
line, enhanced Hubble products and advanced browsing capabilities.
The HLA is a joint project of the Space Telescope Science Institute
(STScI), the Space Telescope European Coordinating Facility (ST-
ECF), and the Canadian Astronomy Data Centre (CADC) [45].

plasma FAC channel due to the z-pinch creates an increased
current density which causes a transition of the plasma from
the dark mode into the visible glow and arc modes. The ob-
served dual, concentric cylinders of excited plasma are con-
sistent with the counter-rotation, matter scavenging, and re-
versing flows described in this paper.
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LETTERS TO PROGRESS IN PHYSICS

An Eidetic Reflex and Moment of Breakthrough in Time and Scientific Creation:

10 Years of Progress in Physics, 100 Years of General Relativity,

and the Zelmanov Cosmological Group

Indranu Suhendro

The Zelmanov Cosmological Group, Secretary of the Zelmanov Journal for General Relativity, Gravitation, and Cosmology

We celebrate the first 10-year momentous span of the solid

body of critical scientific results and efforts delivered by the

visionary editorial and founding team of the pioneering open

new-millennium journal for advanced studies in theoretical

and experimental physics, mathematics, astronomy, and cos-

mology, Progress in Physics (see the Editor-in-Chief’s mes-

sage: “Progress in Physics: 10 years in Print”), behind which

is the core scientists and guardians of universal scientific cre-

ation, scientific revolution, and scientific-intellectual freedom

and ethics: the few core scientists of the quintessential Zel-

manov Cosmological Group, such as the founding editors and

scientific creators Dmitri Rabounski and Larissa Borissova.

The Zelmanov Cosmological Group, which is also behind

The Abraham Zelmanov Journal for General Relativity, grav-

itation, and cosmology, dedicates itself to the profound and

extensive scope and depth of the works of the master theoreti-

cian “par excellence” of the Soviet-era general relativistic and

cosmological school, Abraham Leonidovich Zelmanov, and

to the most unique problems and possible extensions of Gen-

eral Relativity in general. Abraham Zelmanov’s profundity

“sine qua non” is reflected in the singular creation of the the-

ories of chronometric, kinemetric, and orthometric (monad)

formalism in General Relativity, the Infinite Relativity Prin-

ciple, the Anthropic Principle, the extensive classification of

all possible cosmological models in the space-time of General

Relativity (the Zelmanov Classification, including the possi-

bility of absolute reference frames in a deforming, rotating,

gravitating closed finite Universe), and many others (see the

website of The Abraham Zelmanov Journal for details, and in

particular the 2012 foreword to the book Particles Here and

Beyond the Mirror). So, Zelmanov’s theoretical mastery sin-

gularly encompasses the general fully non-linear, anisotropic,

inhomogeneous, anholonomic, non-simply-connected space-

time structure (and sub-structure) of General Relativity and

the fabric of the cosmos, achieving the unification of the un-

derlying structure of space-time, reference frame systems,

and the fundamental observer. Zelmanov’s few students and

theoretical inheritors — such as Dmitri Rabounski and La-

rissa Borissova — have thereby preserved and extended his

scientific and philosophical ideals as a whole, comprehen-

sive, unitive scientific legacy: a singular univocity — “Zel-

manovian Universum” — in the form of an ideologically most

unique and versatile platform for the most singular kind of

meta-science and scientific creation, which is the embryo of

the present Zelmanov Cosmological Group.

In the background of such unique origination, the gen-

eral fundamental physics journal Progress in Physics, with a

substantial portion of publications in General Relativity and

differential geometry — in common with The Abraham Zel-

manov Journal, is dedicated mostly to original, profound,

critical, and challenging scientific works that potentially en-

gage with the overall, far-reaching horizons and verizons of

theoretical and experimental physics, mathematics, astron-

omy/cosmology, and of science as a whole, thereby expand-

ing and synthesizing new scientific landscapes for both the

present and the future. This is done mostly by identifying

the pertinent objective quality and originality of the idea(s)

in a submitted scientific work and the first and foremost cru-

cial identification of the author as an essentially independent

creative mind (whether specifically affiliated or not) and as a

true person of integrity and clarity, therefore isolating the pro-

cess of scientific judgement infinitely and decisively from the

pervasively corruption-mongering, business-minded, pseudo-

scientific (so, pseudo-objective) politics of typical modern

academic practice and science administration (i.e., “big-wig

scientism”). In specific cases where the editors and expert

peer reviewers (who dare be non-anonymous) do not agree

with the ideology and content of a submitted paper, a fidelity

to pure scientific-intellectual freedom is still maintained as

much as possible in the publication of the said work, as long

as the basic technicality and competence (such as the math-

ematics and logical reasoning) is fulfilled. This is also true

for some tremendous-looking extremely short papers that can

subtly serve as an impetus for reflection and future scientific

inspiration: they can be so short and still publishable in view

of inspiring some pertinent new ideas in the future.

A word on a better peer-review system is at hand: above

all, the journal categorically and distinctly promotes origi-

nal thinkers and original scientific creators, along with fun-

damentally improving and transcending the largely deficient

anonymous peer-review system, thus often allowing a work

to be published with the potential for an on-going open peer-

review (in the full critical vastness of time and space as re-

gards judgement and validation): such as witnessed in the
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forced, pioneering open peer-review case of Grisha Perel-

man’s ground-breaking works on Ricci flow, manifold surge-

ry, and the Poincaré conjecture. Thus, the journal employs

a unique, more substantial form of peer-review system cov-

ering both immediate (pre-publication) and open-to-future-

validation fully substantiated peer-review models. The jour-

nal does not welcome typical celebrity popularization and

“celebrity fetishism/worship”. Thus, it does not endorse ex-

ercising scientific judgement based on mere consensus and

popularity, which is the maladious, rotten, decadent business

of politics and pseudo-science arising from the fact that there

are too many people nowadays claiming to be “career sci-

entists” (while careerism and science are most certainly two

different things by way of subtle logical discernment) while

essentially they are at large socially, inter-subjectively active

opportunists and imitators. Such is to be compared to Ein-

stein’s time when scientists were truly still a rare breed or

species — or say, before World War II, a war that changed

so many ways of doing things in science and life, in sci-

ence especially with the hijacking of some old journals and

institutions by a plethora of powerful pseudo-scientists and

pervasive mediocrity: certainly Einstein would not have sur-

vived today’s popularity-concocting, narrow-minded, overly

pretentious, intrinsically and extrinsically flawed scientific

administration laden with closed-minded and pathetically

rigid apathy against fundamental scientific novelty, individ-

uality, and originality.

The common board of Progress in Physics and The Abra-

ham Zelmanov Journal therefore comprises and welcomes

scientific pioneers, as ethically liberal-democratic and inter-

disciplinarily universal as possible: this, while the said board

consists mostly of theoreticians and scientific creators in Gen-

eral Relativity, cosmology, and differential geometry at the

heart of the Zelmanov Cosmological Group. While the jour-

nal is hosted by the said general relativists and differential

geometers, it does not oppose alternative views: it acknowl-

edges the two kinds of “alternative” (not one): the categori-

cally superior “alternative” and the simple (ordinary) “alter-

native” (which can be either inferior or relatively on-par at

times). Consequently, it promotes the fully open discussion

of categorically different (often opposing) scientific views

and ontologies, thus covering both the substance and event

of all possible ideological presentations and representations.

In conducting a superior, alternative form of scientific

peer-review, the board is also helped a great deal in dealing

with radical, paradoxical, universal, inter-disciplinary scien-

tific submissions and reasoning by the Smarandache Neutros-

ophy Group that extends the content, expression, and scope of

logic and dialectics. This then is meant to be a fundamental

platform for the creation of new physics, new mathematics,

new cosmology, new phenomenology, new ontology, and new

epistemology.

In other words, the journal aims at the rapid and transpar-

ent publication of uniquely qualified original scientific ideas

and impetuses: anything that is counter-productive, parasitic,

and artificial to the true spirit of genuine scientific judgement

(no matter how trendy), such as the extremely pernicious and

popular trends and developments in the superficial politics of

today’s scientism, is not recognized by it. In addition to sub-

stantiating and upgrading peer-review, the journal also strives

to help improve fully the genuine open-access system in all

possible ways. This is the firmest future model for any true

future science and scientific organization, where the quality

of an individual original scientific work alone can reflect the

journal’s over-all stance as a whole, not simply the very su-

perficial, idiotic, logically and semantically flawed concoc-

tion of “citation-only impact factor” (based merely on the

number of citations) misused by so many “illiterate” (essen-

tially quality-blind and quality-devoid) pretentious people in

the typical administration nowadays. The journal philosophy

as a whole serves in many ways as an absolute separator be-

tween real science and artificial politics, between originality

and imitation, between profundity and superficiality, between

integrity and hypocrisy. Any reader or any institution is ab-

solutely free to download the materials (papers and books)

published by both Progress in Physics and The Abraham Zel-

manov Journal.

The year 2015 also marks the 100th anniversary of Ein-

stein’s geometric theory of space-time and gravitation, the

General Theory of Relativity, since the final formulation of

the generally covariant Einstein’s field equations of gravita-

tion in the last quarter of 1915 (during a very tragic and dif-

ficult time of World War I). It goes without saying that this

was achieved by Einstein almost at the same time as Hilbert’s

final formulation of the field equations of gravitation, an ax-

iomatic, lone, and colossal problem Hilbert rather sponta-

neously worked on upon witnessing Einstein’s Göttingen lec-

ture on the (at that time agonizingly stifled) progress of the

formulation of the theory during the same year. It took well

over 8 years of one of mankind’s greatest intellectual (philo-

sophical, physical, mathematical) struggles towards synthe-

sis in history for the greatly isolated, independent, original,

and visionary young scientific creator — Albert Einstein —

to complete the task since 1907 when he first attempted the

logical extension of the Special Theory of Relativity (born

in 1905) to include gravitation and more general reference

frames under the umbrella of differential geometry and gen-

eral covariance (first with the help of Einstein’s friend, Marcel

Grossmann, who helped select and qualify Riemannian ge-

ometry for Einstein’s new physics program, and also of Tulio

Levi-Civita and Hermann Weyl upon the later publication of

the final form of General Relativity). This was not so long

after Poincarë and Minkowski (among Einstein’s own teach-

ers) proposed a basic four-dimensional space-time structure

for the world, which later became incorporated into Special

Relativity, and into particle physics and group theory via al-

gebraic symmetry classification. Today, as per differential ge-

ometry and topology, both Riemannian and non-Riemannian
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geometry (such as Finsler geometry) can be used in General

Relativity to understand better its geometric-folitional struc-

ture (such as Riemannian sub-manifolds and singular spaces)

as well as its extensions (most ontologically and epistemo-

logically unique, though, would be General Relativity’s or-

thometric extensions — not just any extension — as I have

alluded to elsewhere).

Understood initially by very few in the world — and now

genuinely and profoundly understood (truly in-depth, not

merely in the popular and prevalent context) still by very

few — General Relativity as such is a universal scientific

construct and superstructure equivalent to a pure work of vi-

sual and musical art and a novel philosophical edifice of on-

tology and epistemology. I therefore would like to salute

the truly small number of the world’s most dedicated and

original scientists (absolutely indifferent to mere popularity)

whose field of work encompasses General Relativity, gravita-

tion, cosmology, and the unified geometric theory of space-

time and the physical fields (fundamental extension of Ein-

stein’s theory): those who singularly live Einstein’s theory

of General Relativity and generally the Einsteinian ideology

of the geometrization of space-time, matter, and fields, i.e.

those with real creative contributions to the field (excluding

mere “toy models”) and not simply those very many who op-

portunistically make a living out of it by hijacking Einstein’s

theory and name. Congratulations to the rarest and most uni-

versal kind of scientific creators in Einstein’s name: those few

scientific creators in possession of insight and ideation, orig-

inality and profundity, solitude and singularity, of new ideas

in the unmistakable footsteps of Einstein himself.

Again, a disclaimer — a song of epistemic suffering and

near-despair, arising from a saddest line and event of alien-

ation in science — is immediately at hand also. It is a sad,

tragic fact that Einstein’s name today has been hijacked, mis-

appropirated, and misused in the said way by the throngs

of aggressively narrow-minded and self-promoting scientific

imitators and popularizers (and “launderers” of shallow sci-

entific outputs, opinions, and hypernarrations) the world over:

they typically and consensually announce a plethora of triv-

ial toy models of physics and the Universe and (by the blind

forces of “status quo” consisting of greedy and petty power

grabbers, false opinion manufacturers, and all their stooges)

often force and entrench them as prevailing dogmas while

hiding rather cowardly and manipulatively behind Einstein’s

stature. Such is a patently false misuse of power and a trivial,

empty concoction of prestige, and an epitome of great preva-

lent hypocrisy, amounting to the greatest corruption done in

the name of science: a categorical scientific abuse by way of

mere opinion-making, large political and financial backing,

and all sorts of flawed prestige and opinion manufacture ab-

solutely without (and in contrast to) the first-principle ontic-

epistemic determination of scientific profundity, quality, and

reality with all its reflexively self-evident intrinsic logic, se-

mantics, and syntax. It is clear that Einstein himself would

never take the side of those professing such a dogmatic and

popular position, let alone those who pathetically suffer from

— what I always call — utter ontic-epistemic shallowness,

solipsistic folly, sycophant opportunism, and hypernarration

(see the previous scientific letter “Meta-Epistemic Determi-

nation of Quality and Reality in Scientific Creation” as to

how to epistemically qualify real quality science as simply

genuine science and to disqualify bad popular science and its

politics as simply bad science). I and my colleagues disas-

sociate ourselves forever, once and for all, from such people

who are the latent enemies and cancers of science. We care

solely about the subtle and sublime spirit of science and sci-

entific creation, and of scientific-intellectual freedom, not all

the flawed manufactures of politics and such contingency.

The above diseased situation, often fogged and misunder-

stood in popular venues, has to be clearly understood by not

only those working fundamentally in Einstein’s theory, but

also those who have engendered a relative (or absolute) op-

position to Einstein and General Relativity. The latter group

of people with certain alternative views — which we cer-

tainly usually can tolerate as long as science is the objective

— ought not to mistake the flawed-in-mind opportunistic hi-

jackers of Einstein’s name and theory for Einstein himself

(and General Relativity), so as to very arbitrarily and short-

handedly fume out “war against Einstein”. They have to at

least understand the semantics and hermeneutics of Einstein

and General Relativity a little better than usual: not from the

said hijackers (who have no ontological, substantial relation

to Einstein whatsoever), but from the solitary few who are

real Einsteinian experts and inheritors. The Zelmanov Cos-

mological Group would welcome anyone who wants to un-

derstand Einstein and General Relativity better in a different

way, as to disclose that great light in a solitary, often dark and

hidden, true cosmic lane.

Finally, I salute once again the truly intellectually free —

true scientists, minds symphonically swarthed with the cos-

mos and ideas, like true poets and artists — anywhere on this

Earth and in the cosmos, on the most unique joint birthday

occasion and resonance of Einstein’s General Relativity and

Progress in Physics.

Dedicated to Grisha Perelman and all the (few) truly free,

corageous, revolutionary minds in the world of science. And

to professors Brian Josephson and Sydney Brenner, and the

late Joseph C. Hafele, from a silent observer on a distant

but immediate star, as was Einstein unto Spinoza and as was

Newton unto Copernicus: “. . . as this song of truth, this utter

knowing — the poem — falls to the beautiful soul as dew to

grass” (Pablo Neruda).
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We analyzed the individual masses of non-radioactive isotopes of the chemical elements

with an extended version of the bipolar model of oscillations in a chain system. When

defining a small set of appropriate rules, the model is able to predict the isotope which

possesses the highest abundance. This information can be read out from the continued

fraction representations of the isotope masses. Isotopes with enhanced nuclear stability

due to a magic number of neutrons in the nucleus were frequently found as exceptions

from the model. The model is applicable to the di-, tri- and tetranuclidic chemical ele-

ments; it fails completely as soon as a chemical element is composed of 5 or more stable

isotopes. From this we conclude that the bipolar model of oscillations in a chain system

– in its present form – is not yet the final version; the model must still be extended.

1 Introduction

In a previous paper [1], the bipolar model of oscillations in a

chain system was applied to the standard atomic weights of

the chemical elements. The atomic weights of the 19 mono-

nuclidic elements and Helium, which have the lowest stan-

dard deviations, were expressed in continuous fraction form

without any outliers. This was the calibration (and determi-

nation oh the phase shift) of the model. It was then found

that the vast majority of atomic weights of the polynuclidic

elements could be reproduced through continued fractions as

well.

The underlying mathematical formalism worked as fol-

lows: the mean atomic weights were transformed into a con-

tinued fraction according to the equations

ln
m

melectron

= pe + S , ln
m

mproton

= pp + S , (1)

where p is the phase shift (it must hold pp = -pe) and S is the

continued fraction (e is Euler’s number)

S = n0 +
e

n1 +
e

n2 +
e

n3 + ...

. (2)

Numerically (if , 0), pp was found to be -1.7918229 for the

calibrating (low standard deviation) data set.

In this article we extend this previously established ver-

sion of the model and demonstrate how to predict with an ad-

equate set of rules, which isotope of a given chemical element

has the highest abundance.

2 Data sources and computational details

All masses and percentage abundances of isotopes were taken

from the web-site of the National Institute of Standards

(NIST). An isotope mass is understood as the mass of the

neutral atom in its nuclear and electronic ground state.

As in previous articles, the continued fraction representa-

tion p + S is abbreviated as [p; n0 | n1, n2, n3, . . . ], where the

free link n0 is allowed to be 0,±3,±6,±9,±12,±15 . . . and

all partial denominators ni can take the values e+1,−e−1,±6,

±9,±12,±15 . . . .

3 Results and discussion

3.1 Model extension

Within the originally presented form of the bipolar model

(eq. 1) it is not possible to express all the nuclide masses

through continued fractions within the accuracy of their stan-

dard deviations. Two adjustments are mandatory, one is re-

lated to the model itself, the other one to the data set.

First we introduce an additional phase shift δ, as it was

already done in a previous article dealing with the electron

density distribution in the Hydrogen atom [2]. We write

ln
m

melectron

= δe + pe + S , ln
m

mproton

= δp + pp + S . (3)

In the same manner as holds pp = -pe, must consequently hold

δp = −δe, which means the bipolarity is strictly conserved.

The only difference between δ and p is the fact that δ is a

small phase shift (, 0, with either positive or negative sign)

applying to all isotope masses, while the phase shift p varies

among the data points. Some of the masses are associated to

the phase shift zero, others to its non-zero value.

Second, in order to be able to express (almost) all the nu-

clide masses through continued fractions, we have to split the

data set of non-radioactive nuclide masses into groups:

Group zero is the set of 19 mononuclidic elements, which

was already analyzed in a previous article. Here the phase

shift p was determined (pp = -1.7918229) and a δ parameter

was not considered, which means δp = 0.

Group 1 is the set of dinuclidic elements. We require that

the phase shift p remains the same for all nuclides, so only δ
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must be adjusted in such a way that ideally all isotopes can be

expressed through a continued fraction.

Group 2 is composed of all stable isotopes of the set of

the trinuclidic chemical elements.

Analogously the remaining chemical elements can be

grouped. Every group of masses leads to the determination

of a different numerical value of the parameter δ.

The first task (before making any abundance prediction)

is the determination of δ, so that from the continued frac-

tion representations (ideally) every isotope mass can be re-

produced with a numerical error smaller than its standard de-

viation.

This means for every isotope mass we obtain 4 different

continued fraction representations (eq. 3): two of them inter-

pret the mass as a proton resonance and two others as electron

resonances. In the case of no outliers, at least one of these

continued fractions reproduces the mass value with an error

smaller than its standard deviation.

3.2 Prediction rules

The following simple rules lead to a prediction of nature’s

preference for the one or the other isotope.

Rule 1:

The electrons contribute very little to the isotope mass, there-

fore the electron resonances are not decisive and we express

the nuclide masses only as proton resonances, according to

the equations

ln
m(nuclide)

mproton

= δp + 0 + S 0

and

ln
m(nuclide)

mproton

= δp + (−1.7918229)+ S p.

This means we calculate two continued fractions S 0 and S p.

In all the fractions below, the number -1.7918229 is abbrevi-

ated as p.

Rule 2:

It is obvious that now, due to the elimination of the elec-

tron resonances, many nuclide masses cannot be expressed

anymore through a continued fraction with a numerical er-

ror smaller than the standard deviation. Consequently we ig-

nore the standard deviation criterion and consider continued

fractions leading to a numerical error up to 0.3 u as valid;

whenever this error is greater, the result is interpreted as “no

continued fraction found”.

The choice of 0.3 u as the allowed numerical error is not

fully arbitrary. It was adjusted in such a way to make it possi-

ble to express at least 95% of the masses through valid contin-

ued fractions. If the allowed error is too small, many masses

fall out of the model, so the model automatically does not

work for them. However, with increasing error also rises the

probability that the continued fraction has no physical rela-

tion to the mass.

Rule 3:

The priority rule for continued fractions with different phase

shifts: the fractions with phase shift zero have priority.

Rule 4:

Comparison rule: we can compare only continued fractions

(of different masses) which were calculated considering the

same phase shift.

Rule 5:

Abundant isotopes accumulate in nodes and sub-nodes with

high positive denominator.

Rule 6:

A nuclide mass which cannot be expressed through a contin-

ued fraction is not abundant.

3.3 Model verification

These rules are now applied to the different groups of iso-

tope masses. For simplicity, only the first four denominators

of the fractions are given, which is sufficient for comparison

purposes.

Group 1: dinuclidic chemical elements, δp = 0.002919.

1. Hydrogen:
1H: [0; 0 | -1146, e+1, -e-1, e+1], 99.9885%
2D: [0; 0 | e+1, 12, 9, 6], 0.0115%

Here we compare the first denominators: e+1 > -1146,

so the model predicts that the isotope 2D is more abun-

dant than the isotope 1H, which is not observed. The

reason for the failure of the model is simply the fact that

the isotope 1H is directly linked to the proton, the ref-

erence mass of the model, always more abundant than

any other nuclide mass.

2. Helium:
3He: [p; 3 | -24, 12, -e-1, -9], 0.000134%
4He: [p; 3 | 15, e+1, -e-1, e+1], 99.999866%

It is not possible to express the Helium isotope masses

through continued fractions with phase shift zero. Ac-

cording to the priority rule for phase shifts we now con-

sider the phase shifted fractions. As the first denomi-

nator (15) is higher than (-24), the isotope 4He should

be preferred by nature.

3. Lithium:
6Li: [p; 3 | e+1, e+1, -e-1, e+1], 7.59%
7Li: [p; 3 | e+1, 441, -6, -e-1], 92.41%

441 > e+1, therefore the isotope 7Li should have the

higher abundance, as observed. None of the Li isotope

masses can be expressed via a continued fraction with

phase shift zero.

4. Boron:
10B: [0; 3 | -e-1, -21, 18, -15], 19.9%
11B: [0; 3 | -e-1, -e-1, -150, 15], 80.1%

-e-1 > -21, therefore preference to 11B.
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5. Carbon:
12C: [0; 3 | -6, e+1, -6, -6], 98.93%
13C: [0; 3 | -6, -24, -e-1, e+1], 1.07%

e+1 > -24, therefore preference to 12C.

6. Nitrogen:
14N: [0; 3 | -6, -e-1, e+1, -e-1], 99.636%
15N: [0; 3 | -9, 1137, -e-1, e+1], 0.364%

-6 > -9, therefore preference to 14N.

7. Chlorine:
35Cl: [0; 3 | 6, -e-1, e+1, -e-1], 75.76%
37Cl: [0; 3 | e+1, e+1, -6, -e-1], 24.24%

6 > e+1, therefore preference to 35Cl.

8. Vanadium:
50V: [0; 3 | e+1, -e-1, -18, e+1], 0.25%
51V: [0; 3 | e+1, -e-1, 15, e+1], 99.75%

15 > -18, therefore preference to 51V.

9. Copper:
63Cu: [p; 6 | -36, 6, e+1, -e-1], 69.15%
65Cu: [p; 6 | -60, -9, 9, e+1], 30.85%

-36 > -60, therefore preference to 63Cu.

10. Gallium:
69Ga: [p; 6 | 186, -e-1, 6, -6], 60.108%
71Ga: [p; 6 | 63, -15, 30, 6], 39.892%

186 > 63, therefore preference to 69Ga.

11. Bromine:
79Br: [p; 6 | 18, 24, -27, 21], 50.69%
81Br: [p; 6 | 15, 6, -e-1, 6], 49.31%

18 > 15, therefore preference to 79Br.

12. Rubidium:
85Rb: [p; 6 | 12, 15, 6, -e-1], 72.17%
87Rb: [p; 6 | 12, -e-1, e+1, -e-1], 27.83%

15 > -e-1, therefore preference to 85Rb.

13. Silver:
107Ag: [p; 6 | 6, -375, 12, e+1], 51.839%
109Ag: [p; 6 | 6, -12, e+1, -9], 48.161%

As -12 > -375, the model predicts the higher abundance

for the isotope 109Ag, which is not observed. So the

element Silver is the first and only unexplained outlier

where our model fails.

It is completely impossible to express theses masses

through continued fractions with p = 0.

14. Indium:
113In: [p; 6 | 6, -e-1, -6, 54], 4.29%
115In: [p; 6 | 6, -e-1, 6, 18], 95.71%

6 > -6, preference to 115In, as observed.

15. Antimony:
121Sb: [p; 6 | e+1, e+1, -e-1, e+1], 57.21%
123Sb: [p; 6 | e+1, e+1, -e-1, -e-1], 42.79%

e+1 > -e-1, preference to 121Sb, as observed.

16. Lanthanum:
138La: [p; 6 | e+1, 24, -e-1, e+1], 0.09%

139La: [p; 6 | e+1, 33, 6, -e-1], 99.91%

33 > 24, preference to 139La, as observed.

17. Europium:
151Eu: [0; 6 | -e-1, e+1, -e-1, e+1], 47.81%
153Eu: [0; 6 | -e-1, e+1, -e-1, 6], 52.19%

6 > e+1, preference to 153Eu, as observed.

18. Lutetium:
175Lu: [0; 6 | -e-1, 6, -e-1, -e-1], 97.41%
176Lu: [0; 6 | -e-1, 6, -6, e+1], 2.59%

-e-1 > -6, preference to 175Lu, as observed.

19. Tantalum:
180Ta: [p; 6 | e+1, -e-1, e+1, -9], 0.012%
181Ta: [p; 6 | e+1, -e-1, e+1, -6], 99.988%

-6 > -9, preference to 181Ta, as observed.

20. Rhenium:
185Re: [0; 6 | -e-1, 9, e+1, -9], 37.40%
187Re: [0; 6 | -e-1, 12, -15, e+1], 62.60%

12 > 9, preference to 187Re, as observed.

21. Iridium:
191Ir: [0; 6 | -e-1, 21, -6, e+1], 37.3%
193Ir: [0; 6 | -e-1, 33, -27, -e-1], 62.7%

33 > 21, preference to 193Ir, as observed.

22. Thallium:
203Tl: [0; 6 | -e-1, -15, -396, -e-1], 29.52%
205Tl: [0; 6 | -e-1, -12, 6, e+1], 70.48%

-12 > -15, preference to 205Tl, as observed.

Group 2: trinuclidic chemical elements, δp = −0.016544.

Now we apply the same system to the set of 6 trinuclidic

chemical elements. We see that (with one magic number ex-

ception) the model identifies the most abundant isotope.

1. Oxygen:
16O: [0; 3 | -12, -6, -24, e+1], 99.757%
17O: [0; 3 | -18, e+1, -36, -e-1], 0.038%
18O: [0; 3 | -27, -33, -e-1, e+1], 0.205%

-12 > (-18 or -27), preference to 16O, as observed; how-

ever the model does not explain why the isotope 18O is

more abundant than 17O.

2. Neon:
20Ne: [0; 3 | 585, -15, 18, 6], 90.48%
21Ne: [0; 3 | 51, -12, -e-1, 21], 0.27%
22Ne: [0; 3 | 27, 15, -e-1, e+1], 9.25%

585 > (51 or 27), preference to 20Ne, as observed.

3. Magnesium:
24Mg: [0; 3 | 15, -6, -18, -e-1], 78.99%
25Mg: [0; 3 | 12, -48, 12, -e-1], 10.00%
26Mg: [0; 3 | 9, e+1, -e-1, e+1], 11.01%

15 > (12 or 9), preference to 24Mg, as observed.

4. Silicon:
28Si: [0; 3 | 9, -e-1, e+1, -e-1], 92.223%
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29Si: no continued fraction found, 4.685%
30Si: [0; 3 | 6, e+1, 6, -e-1], 3.092%

9 > 6, preference to 28Si, as observed.

5. Argon:
36Ar: [0; 3 | e+1, e+1, -e-1, e+1], 0.3365%
38Ar: [0; 3 | e+1, 6, -6, 93], 0.0632%
40Ar: [0; 3 | e+1, 15, 39, 6], 99.6003%

15 > (6 or e+1), preference to 40Ar, as observed.

6. Potassium:
39K: [0; 3 | e+1, 9, -e-1, -12], 93.2581%
40K: [0; 3 | e+1, 15, 30, e+1], 0.0117%
41K: [0; 3 | e+1, 57, e+1, -6], 6.7302%

57 > (9 or 15), preference expected to 41K, which is

against the experimental observations. Reason: Potas-

sium is the element with atomic number 19. The iso-

tope 39K has 39 − 19 = 20 neutrons, which means a

magic number of neutrons. This explains the increased

abundance.

Group 3: tetranuclidic chemical elements, δp = 0.025770.

1. Sulfur:
32S: [0; 3 | 6, 9, 12, -429], 94.99%
33S: [0; 3 | 6, -21, -e-1, e+1], 0.75%
34S: [0; 3 | 6, -6, 9, -e-1], 4.25%
36S: [0; 3 | 6, -e-1, e+1, -e-1], 0.01%

9 is the highest denominator, preference to the isotope
32S, which is indeed observed.

2. Chromium:
50Cr: [0; 3 | e+1, -e-1, -e-1, -6], 4.345%
52Cr: [0; 3 | e+1, -e-1, 24, -15], 83.789%
53Cr: [0; 3 | e+1, -e-1, 6, e+1], 9.501%
54Cr: [0; 3 | e+1, -e-1, e+1, e+1], 2.365%

24 is the highest denominator, therefore preference to

the isotope 52Cr, as observed.

3. Iron:

When considering the phase shift zero, for both iso-

topes, 57Fe and 58Fe, no continued fraction is found.

This is the only case where two isotopes of a chemi-

cal element could not be expressed as proton resonance

simultaneously. A better description is found for the

phase shifted fractions, here only 54Fe turns out to be

an outlier. The model is correct when going down the

priority hierarchy and analyze these phase shifted frac-

tions:
54Fe: no continued fraction found, 5.845%
56Fe: [p; 6 | -12, -6, e+1, -6], 91.754%
57Fe: [p; 6 | -15, e+1, -e-1, e+1], 2.119%
58Fe: [p; 6 | -15, 48, 150, 12], 0.282%

-12 > -15, therefore 56Fe has the highest abundance.

4. Strontium:
84Sr: [p; 6 | 15, -e-1, -e-1, e+1], 0.56%
86Sr: [p; 6 | 12, e+1, -6, -e-1], 9.86%

87Sr: [p; 6 | 12, 18, -9, -6], 7.00%
88Sr: [p; 6 | 12, -6, -12, 9], 82.58%

15 > 12, so the model predicts the highest abundance

for the isotope 84Sr, which is not observed. Reason:

Strontium is the element with atomic number 38. The

most abundant nuclide 88Sr has 88 − 38 = 50, a magic

number of neutrons, which explains the failure of our

model.

5. Cerium:
136Ce: [p; 6 | e+1, 9, -e-1, e+1], 0.185%
138Ce: [p; 6 | e+1, 12, -e-1, e+1], 0.251%
140Ce: [p; 6 | e+1, 15, e+1, -e-1], 88.450%
142Ce: [p; 6 | e+1, 30, e+1, e+1], 11.114%

Our model predicts the highest abundance for the iso-

tope 142Ce. However, the most abundant isotope 140
58

Ce

has a magic number of 140 − 58 = 82 neutrons, so its

abundance is increased.

6. Lead:
204Pb: [0; 6 | -e-1, -33, 6, e+1], 1.4%
206Pb: [0; 6 | -e-1, -21, e+1, -e-1], 24.1%
207Pb: [0; 6 | -e-1, -18, e+1, -e-1], 22.1%
208Pb: [0; 6 | -e-1, -15, e+1, 6], 52.4%

-15 is the highest denominator, the model predicts the

highest abundance for 208Pb, as observed.

Higher groups: unfortunately, the model fails completely

when predicting the most abundant nuclide for all chemical

elements consisting of more than four isotopes. Despite the

fact that the grouping scheme still allows the expression of

the nuclide masses through continued fractions (with few out-

liers), no correlation between the maximum abundance and

the denominators is visible.

4 Conclusions

We have shown that a minor extension of the bipolar model of

oscillations in a chain system allows a satisfactory prediction

of the most abundant isotope for a given chemical element.

Most outliers occur when one of the isotopes has a magic

number of neutrons in the nucleus. From its total failure for

elements with 5 ore more stable isotopes, we conclude that

our model is still incomplete and must be extended.
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This is addenda to my paper entitled “New Possible Physical Evidence of the Homoge-

neous Electromagnetic Vector Potential for Quantum Theory. Idea of a Test Based on a

G. P. Thomson-like Arrangement”, which was published in Progress in Physics, 2014,

v. 10, Issue 3, 196–200.

1 On the special coil able to create a homogeneous vec-

tor potential h − ~A
Some experimenters potentially interested in evaluating the

test suggested in my article communicated me comments like:

• ’It is practically difficult to realize with a desired level

of geometrical accuracy the special annular coil de-

signed in [1]. Then it arises the question if it is possible

to imagine another system (of coils) able to create also

a h − ~A and which can be manufactured more easily

and with a required precision’.⋆

Here we wish to note shortly that a system of alluded type

can be devised in form of a set consisting in two parallel flat

coils pictured below in Fig. 3b. Each such a coil has the aspect

shown in Fig. 3a. Note that here we were indexing figures and

equations by the consecutive numbers from [1].

In the case of coils system from Fig. 3b the expression of

the h − ~A in an interior point P is given by

A = Az (P) = µ0 · I · n · d (11)

where n denote the number of conductors per unit length

along the coil (in direction of Ox axis).

The expression (11) can be achieved through a set of sev-

eral simple calculations and the reasoning done in the follow-

ing sequence of items

α : Taking into account the equation (6) and its motivation

from [1] as starting elements;

β : Imagining a scheme of infinitely long conductors, lo-

cated in xOz plane and mutually parallel with the Oz

axis. The conductors are crossed by currents of same

value I;

γ : Evaluation of the h− ~A field generated by the respective

currents in a point P situated on the Oy axis at some

distance h of xOz plane;

δ : The respective evaluation can be done by integration

over the Ox-axis and using formula (2.733) from [2];

Fig. 3: Schemas with special flat coils. (a) Frontal image of a single

coil. (b) Side view of a couple of coils

η : Consideration in Fig. 3 that the quantities L and H are

much larger than the dimensions d and s specific to the

set of flat and finite coils from Fig. 3b. One requires

also that the respective coils to satisfy the conditions

specified in note “From the ideal coil to a real one”

from [1];

τ : Then, through some modest calculations, by using the

evaluation mentioned in item δ one obtains the for-

mula (11).

So, if one uses the coils-system from Fig. 3b, for evalu-

ating the quantity idB
e f f

(A) mentioned in relation (5) from [1],

become of interest the result (11). This means that for the

value of h − ~A must be taken the value A = ℜ · I with

ℜ = µ0 · n · d. Then instead of relation (5) from [1] the
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test in question has to check the formula

1

idB
e f f

(A)
=

a
√

2me

hD

√
U+

ae

hD
A=

a
√

2me

hD

√
U+

aeℜ
hD

I. (12)

The last formula points out the fact that the quantity (idb
e f f

)−1

(inverse of effective interfringe distance) shows linear depen-

dence of the value of the h− ~A (and of course of the current I

which crosses the coils set). Such a fact can be significant in

checking the plausibility of the proposed test.

2 On the G. P. Thomson-like arrangement

As instrument for testing the possible distinct physical signi-

fication of h − ~A in [1] we suggested to use a G. P. Thomson-

like arrangement. Such an arrangement can be designed and

manufactured as a new apparatus specially dedicated to the

concerned test. But one can appreciate that for such a device

it is possible to use with sufficient confidence some scien-

tific equipments already existent on the specialized market.

As example of such an equipment can be taken into account

the set “Electron diffraction P2511300” manufactured by the

PHYWE company [3]. The main piece of the alluded set is in

fact a G. P. Thomson-like device. In the respective device the

role of diffraction grating (crystal lattice) mentioned in [1] is

played by a graphite foil with interatomic spacing a and D as

distance between crystalline foil and observational screen.

Usually [3] the respective device is used for measuring the

diameter Q of the first (and eventually of second) smallest

diffraction ring at different anode voltages U. Note that, in

terms used by us in [1], the diameter Q of first such a ring is

twofold of interfringe width i that is Q = 2 · i. The interplanar

spacing of graphite used in [3] is nothing but the interatomic

spacing a in the crystal lattice (diffraction grating) mentioned

in Fig.1 from [1]. Also a quantity D plays the role of distance

between graphite foil and observational screen.

Notice: Putting into practice the test [1] by using the

PHYWE-device can be performed by eluding the concrete

values of a and D. Such a performance can be done as fol-

lows. In a first step is completed a measurement in absence

of h − ~A field (i.e. when in (12) A = 0 and I = 0). From

the respective measurement is possible to evaluate a couple

of values U0 and QdB
e f f

(0) for the quantities U and Q. So ac-

cordingly with (12) can be calculated device parameter

Γ =
a

h D
=















QdB
e f f

(0)

√

meU0

2















−1

. (13)

Take into account the fact that in the case of the PHYWE-

device the values of quantities a, D and Γ as well as the per-

mitted range for the voltages U0 and U are predetermined by

manufacturer. The respective fact must be considered when

one operates with the alluded device and the set of numerical

estimations from Section 4 of [1] are not important.

With the aid of parameter Γ the relation (12) can be tran-

scribed as

[

QdB
e f f (A)

]−1
= Γ

√

meU

2
+Γ

eA

2
= Γ

√

meU

2
+Γ

eℜ
2

I. (14)

By using the above relations the mentioned PHYWE-device

can be put in practice in order to check the proper evidence

of the h − ~A field.
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The de Broglie Relations Derived from the Electron and Proton Coupling
to the Planck Vacuum State

William C. Daywitt

National Institute for Standards and Technology (retired), Boulder, Colorado. E-mail: wcdaywitt@me.com

This paper argues that the de Broglie relations for the electron and proton are the re-
sult of their coupling to the Planck vacuum state, the continuum nature of that state
impressing a wave-like behavior onto the free-space-particle aspect of the two particles.
Lorentz transforming the vanishing of their corresponding particle/vacuum coupling
forces at their respective Compton radii, treated as Lorentz invariant constants, leads
to their space-direction and time-direction de Broglie relations. Results: explain the
peculiar form of the relativistic particle energy

√
m2c4 + c2 p2; define the de Broglie

waves for the electron and proton as periodic undulations within the Planck vacuum in
the vicinity of the electron and proton cores; and easily explain the double-slit electron-
diffraction thought experiment.

1 Force transformation

The electron and proton cores, (−e∗,me) and (e∗,mp), exert
the two-term coupling forces [1]

±
(

e2
∗

r2 −
mc2

r

)
(1)

on the Planck vacuum (PV) negating-energy continuum,
where the plus and minus signs refer to the electron and pro-
ton respectively and mc2 represents the rest energy of either
particle. The bare charge e∗ is assumed to be a massless point
charge. The massive particle cores, however, possess a small
spherical extension due to the zero-point formation of their
derived masses [2].

The coupling force vanishes

e2
∗

r2
c
− mc2

rc
= 0 (2)

at the Compton radius rc (= e2
∗/mc2) of either particle, leading

to the Compton relations

rc · mc2 = e2
∗ −→ remec2 = rpmpc2 = e2

∗ (3)

for the electron (reme) and proton (rpmp), and the (reduced)
Planck constant ℏ = e2

∗/c. It is noted that (1) is a force act-
ing between a free-space particle and the vacuum state – it
is not a free-space/free-space force as are the Coulomb and
Newton forces. The Compton relations and ℏ = e2

∗/c are used
throughout the following calculations.

The vanishing force (2) can be expressed as a tensor
4-force difference. In the primed rest frame of the particle
where these static forces apply, this vanishing force differ-
ence ∆F′µ is (µ = 1, 2, 3, 4)

∆F′µ =
[
0, i

(
e2
∗

r2
c
− mc2

rc

)]
= [0, 0, 0, i 0] (4)

where i =
√
−1 . Thus the vanishing of the component ∆F′4 =

0 in (4) can be thought of as the source of the Compton rela-
tions in (3).

The force difference in the laboratory frame (in which the
rest frame travels at velocity v along the z-axis) [3]

∆Fµ = aµν∆F′ν = 0µ (5)

follows from the tensor nature of (4) and the Lorentz trans-
formation xµ = aµν x′ν, where xµ = (x, y, z, ict) ,

aµν =


1 0 0 0
0 1 0 0
0 0 γ −iβγ
0 0 iβγ γ

 (6)

and µ, ν = (1, 2, 3, 4) . Thus (5) yields

∆Fµ =
[
0, 0, βγ

(
e2
∗

r2
c
− mc2

rc

)
, i γ

(
e2
∗

r2
c
− mc2

rc

)]
=

[
0, 0,

1
rc

(
e2
∗

rd
− c · mγv

)
,

i
rc

(
e2
∗

rL
− c · mγc

)]
= [0, 0, 0, i 0]

(7)

where
rd =

rc

βγ
and rL =

rc

γ
(8)

are the de Broglie radii for the space and time directions re-
spectively; and where β = v/c < 1 and γ = 1/

√
1 − β2.

The force difference ∆F3 = 0 in (7) gives the de Broglie
relation

rd · cp = e2
∗ or rd =

ℏ

p
(9)

in the space direction, where p = mγv is the relativistic par-
ticle momentum. The force difference ∆F4 = 0 gives the de
Broglie relation

rL · E = e2
∗ or rL =

ℏ

mγc
(10)
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in the time direction, where E = mγc2 is the total relativistic
particle energy.

The momentum and energy in equations (9) and (10) are
derived from nothing more than the vanishing of the Lorentz
transformation of (2), whose results can be taken a step fur-
ther:

E =
e2
∗

rL
=

e2
∗γ

rc
= mc2γ

= mc2
(
1 +

β2

1 − β2

)1/2
=

(
m2c4 + c2 p2

)1/2
(11)

showing that this well known equation has its source in the
two-term particle/PV coupling force.

2 Conclusions and comments

The vast accumulation of electron diffraction data leaves no
doubt that the electron and proton possess a wave nature. If
the corresponding waves are roughly expressed in terms of
planewaves, then it is reasonable to assign 2πrd and 2πrL

as the wavelengths in the space and time directions respec-
tively. As a first approximation then, the electron and proton
de Broglie waves are planewaves propagating within the PV
continuum.

The Synge primitive (or planewave) quantization of
spacetime [4, p.106] is an independent calculation that par-
allels the ideas of the previous paragraph. That quantiza-
tion divides the space and time axes of the Minkowski space-
time diagram into equal segments, where the space and time
segments are rd and rL respectively (Synge actually multi-
plies these two segments by 2π which defines a phase space).
The particle/PV coupling of the previous section provides the
physical explanation for that quantization in terms of the cou-
pling force (1).

Although the implied mathematics of the two previous
paragraphs involves planewaves (which are global), the PV
wave phenomenon must be a local property associated with
the particle/PV interaction in the neighborhood of the parti-
cle cores (−e∗,me) and (e∗,mp), with characteristic (radian)
frequencies defined by

ωc =
e2
∗/rc

ℏ
=

c
rc

(12)

with

ωL =
e2
∗/rL

ℏ
= γωc and ωd =

e2
∗/rd

ℏ
= βγωc (13)

for each particle. Then (11) yields

ω2
L = ω

2
c + ω

2
d . (14)

The preceding results offer a simple explanation for the
double-slit thought experiment [5, p.85]. Consider a colli-
mated beam of monoenergetic electrons that is directed at

an opaque wall containing two narrow, parallel, and closely
spaced slits A and B, with a detection screen at some distance
beyond the slits. Being a particle (although with a wave-
like nature), the electron cannot go through both slits at the
same time. Now consider the two experiments: (1) with slit
A open and slit B closed; and (2) with both slits A and B
open. Assume that the slits are narrower than one de Broglie
wavelength (2πrd) and that their separation distance is several
wavelengths.

If the electrons are particle-like with no wave-like qual-
ities, the screen would show a bell-shaped excitation curve
in case (1) and two superimposed bell-shaped curves in case
(2). But for case (2), however, the overwhelming diffraction
evidence demands a well defined oscillatory excitation curve
on the screen — because the particle exhibits a definite wave-
particle nature. Since the electron must go through A or B,
but not both, this result is difficult to understand [5, p.85] with
present-day physics. But if the free-space particle is accom-
panied by a PV de Broglie wave, the diffraction of that wave
through A and B, and its interaction with the particle core,
easily explains the oscillatory curve on the detection screen.
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A New Understanding of Particles by
−→
G-Flow Interpretation

of Differential Equation

Linfan Mao

Chinese Academy of Mathematics and System Science, Beijing 100190, P. R. China.

E-mail: maolinfan@163.com

Applying mathematics to the understanding of particles classically with an assumption

that if the variables t and x1, x2, x3 hold with a system of dynamical equations (1.4),

then they are a point (t, x1, x2, x3) in R4. However, if we put off this assumption, how

can we interpret the solution space of equations? And are these resultants important for

understanding the world? Recently, the author extended Banach and Hilbert spaces on a

topological graph to introduce
−→
G-flows and showed that all such flows on a topological

graph
−→
G also form a Banach or Hilbert space, which enables one to find the multiverse

solution of these equations on
−→
G. Applying this result, this paper discusses the

−→
G-flow

solutions on Schrödinger equation, Klein-Gordon equation and Dirac equation, i.e., the

field equations of particles, bosons or fermions, answers previous questions by ”yes“,

and establishes the many world interpretation of quantum mechanics of H. Everett by

purely mathematics in logic, i.e., mathematical combinatorics.

1 Introduction

Matter consists of bosons with integer spin n and fermions

with half-integer spin n/2, n ≡ 1 (mod 2). The elementary

particles consist of leptons and hadrons, i.e. mesons, baryons

and their antiparticles, which are composed of quarks [16].

Thus, a hadron has an internal structure, which implies that all

hadrons are not elementary but leptons are, viewed as point

particles in elementary physics. Furthermore, there is also

unmatter which is neither matter nor antimatter, but some-

thing in between [19-21]. For example, an atom of unmatter

is formed either by electrons, protons, and antineutrons, or by

antielectrons, antiprotons, and neutrons.

Usually, a particle is characterized by solutions of differ-

ential equation established on its wave function ψ(t, x). In

non-relativistic quantum mechanics, the wave function ψ(t, x)

of a particle of mass m obeys the Schrödinger equation

i~
∂ψ

∂t
= −
~

2

2m
∇2ψ + U, (1.1)

where, ~ = 6.582 × 10−22MeVs is the Planck constant, U is

the potential energy of the particle in applied field and

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
and ∇2 =

∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
.

Consequently, a free boson ψ(t, x) hold with the Klein-

Gordon equation

(
1

c2

∂2

∂t2
− ∇2

)
ψ(x, t) +

(
mc

~

)2

ψ(x, t) = 0 (1.2)

and a free fermion ψ(t, x) satisfies the Dirac equation

(
iγµ∂µ −

mc

~

)
ψ(t, x) = 0 (1.3)

in relativistic forms, where,

γµ =
(
γ0, γ1, γ2, γ3

)
,

∂µ =

(
1

c

∂

∂t
,
∂

∂x1

,
∂

∂x2

,
∂

∂x3

)
,

c is the speed of light and

γ0 =

(
I2×2 0

0 −I2×2

)
, γi =

(
0 σi

−σi 0

)

with the usual Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
,

σ3 =

(
1 0

0 −1

)
.

It is well known that the behavior of a particle is on su-

perposition, i.e., in two or more possible states of being. But

how to interpret this phenomenon in accordance with (1.1)–

(1.3) ? The many worlds interpretation on wave function

of (1.1) by H. Everett [2] in 1957 answered the question in

machinery, i.e., viewed different worlds in different quantum

mechanics and the superposition of a particle be liked those

separate arms of a branching universe ([15], also see [1]). In

fact, H. Everett’s interpretation claimed that the state space

of particle is a multiverse, or parallel universe ([23, 24]), an

application of philosophical law that the integral always con-

sists of its parts, or formally, the following.

Definition 1.1([6],[18]) Let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm)

be m mathematical or physical systems, different two by two.

A Smarandache multisystem Σ̃ is a union
m⋃

i=1

Σi with rules R̃ =

m⋃
i=1

Ri on Σ̃, denoted by
(
Σ̃; R̃

)
.
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Furthermore, things are inherently related, not isolated in

the world. Thus, every particle in nature is a union of elemen-

tary particles underlying a graph embedded in space, where,

a graph G is said to be embeddable into a topological space

E if there is a 1 − 1 continuous mapping f : G → E with

f (p) , f (q) if p , q for ∀p, q ∈ G, i.e., edges only intersect

at end vertices in E . For example, a planar graph such as

those shown in Fig. 1.

v1 v2

v3v4

u1 u2

u3u4

Fig. 1

Definition 1.2([6]) For any integer m ≥ 1, let
(
Σ̃; R̃

)
be

a Smarandache multisystem consisting of mathematical sys-

tems (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm). An inherited topologi-

cal structures GL
[
Σ̃; R̃

]
on

(
Σ̃; R̃

)
is defined by

V
(
GL

[
Σ̃; R̃

])
= {vΣ1

, vΣ2
, · · · , vΣm

},

E
(
GL

[
Σ̃; R̃

])
= {(vΣi

, vΣ j
)|Σi

⋂
Σ j , ∅, 1 ≤ i , j ≤ m}

with a labeling L : vΣi
→ L(vΣi

) = Σi and L : (vΣi
, vΣ j

) →

L(vΣi
, vΣ j

) = Σi

⋂
Σ j, where Σi

⋂
Σ j denotes the intersection

of spaces, or action between systems Σi with Σ j for integers

1 ≤ i , j ≤ m.

For example, let Σ̃ =
4⋃

i=1

Σi with Σ1 = {a, b, c}, Σ2 = {a, b},

Σ3 = {b, c, d}, Σ4 = {c, d} and Ri = ∅. Calculation shows that

Σ1

⋂
Σ2 = {a, b}, Σ1

⋂
Σ3 = {b, c}, Σ1

⋂
Σ4 = {c}, Σ2

⋂
Σ3

= {b}, Σ2

⋂
Σ4 = ∅, Σ3

⋂
Σ4 = {c, d}. Such a graph GL

[
Σ̃; R̃

]

is shown in Fig. 2.

{a, b}

{b}

{c, d}

{c}

{b, c}

Σ1 Σ2

Σ3Σ4

Fig. 2

Generally, a particle should be characterized by
(
Σ̃; R̃

)
in

theory. However, we can only verify it by some of systems

(Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) for the limitation of human

beings because he is also a system in
(
Σ̃; R̃

)
. Clearly, the

underlying graph in H. Everett’s interpretation on wave func-

tion is in fact a binary tree and there are many such traces in

the developing of physics. For example, a baryon is predomi-

nantly formed from three quarks, and a meson is mainly com-

posed of a quark and an antiquark in the models of Sakata,

or Gell-Mann and Ne’eman on hadrons ([14]), such as those

shown in Fig. 3, where, qi ∈ {u, d, c, s, t, b} denotes a quark

for i = 1, 2, 3 and q2 ∈
{
u, d, c, s, t, b

}
, an antiquark. Thus, the

underlying graphs
−→
G of a meson, a baryon are respectively

−→
K2 and

−→
K3 with actions. In fact, a free quark was not found

in experiments until today. So it is only a machinery model

on hadrons. Even so, it characterizes well the known behavior

of particles.

q1

q2 q3

q1 q2

....................................

...................

.................................

Baryon Meson

Fig. 3

It should be noted that the geometry on Definition 1.1−1.2

can be also used to characterize particles by combinatorial

fields ([7]), and there is a priori assumption for discussion in

physics, namely, the dynamical equation of a subparticle of a

particle is the same of that particle. For example, the dynam-

ical equation of quark is nothing else but the Dirac equation

(1.3), a characterizing on quark from the macroscopic to the

microscopic, the quantum level in physics. However, (1.3)

cannot provide such a solution on the behaviors of 3 quarks.

We can only interpret it similar to that of H. Everett, i.e., there

are 3 parallel equations (1.3) in discussion, a seemly ratio-

nal interpretation in physics, but not perfect for mathematics.

Why this happens is because the interpretation of solution of

equation. Usually, we identify a particle to the solution of

its equation, i.e., if the variables t and x1, x2, x3 hold with a

system of dynamical equations

Fi

(
t, x1, x2, x3, ut, ux1

, · · · , ux1x2
, · · ·

)
= 0,

with 1 ≤ i ≤ m, (1.4)

the particle in R×R3 is a point (t, x1, x2, x3), and if more than

one points (t, x1, x2, x3) hold with (1.4), the particle is nothing

else but consisting of all such points. However, the solutions

of (1.1)–(1.3) are all definite on time t. Can this interpretation

be used for particles in all times? Certainly not because a

particle can be always decomposed into elementary particles,

and it is a little ambiguous which is a point, the particle itself

or its one of elementary particles sometimes.
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This speculation naturally leads to a question on mathe-

matics, i.e., what is the right interpretation on the solution of

differential equation accompanying with particles? Recently,

the author extended Banach spaces on topological graphs
−→
G

with operator actions in [13], and shown all of these exten-

sions are also Banach space, particularly, the Hilbert space

with unique correspondence in elements on linear continu-

ous functionals, which enables one to solve linear functional

equations in such extended space, particularly, solve differen-

tial equations on a topological graph, i.e., find multiverse so-

lutions for equations. This scheme also enables us to interpret

the superposition of particles in accordance with mathematics

in logic.

The main purpose of this paper is to present an interpre-

tation on superposition of particles by
−→
G-flow solutions of

(1.1)–(1.3) in accordance with mathematics. Certainly, the

geometry on non-solvable differential equations discussed in

[9]–[12] brings us another general way for holding behaviors

of particles in mathematics. For terminologies and notations

not mentioned here, we follow references [16] for elementary

particles, [6] for geometry and topology, and [17]–[18] for

Smarandache multi-spaces, and all equations are assumed to

be solvable in this paper.

2 Extended Banach ~G-flow space

2.1 Conservation laws

A conservation law, such as those on energy, mass, momen-

tum, angular momentum and electric charge states that a par-

ticular measurable property of an isolated physical system

does not change as the system evolves over time, or simply,

constant of being. Usually, a local conservation law is ex-

pressed mathematically as a continuity equation, which states

that the amount of conserved quantity at a point or within a

volume can only change by the amount of the quantity which

flows in or out of the volume. According to Definitions 1.1

and 1.2, a matter in the nature is nothing else but a Smaran-

dache system
(
Σ̃; R̃

)
, or a topological graph GL

[(
Σ̃; R̃

)]
em-

bedded in R3, hold with conservation laws

∑

k

F(v)−k =
∑

l

F(v)+l

on ∀v ∈ V
(
GL

[(
Σ̃; R̃

)])
, where, F(v)−k , k ≥ 1 and F(v)+l , l ≥ 1

denote respectively the input or output amounts on a particle

or a volume v.

2.2 ~G-flow spaces

Classical operation systems can be easily extended on a graph
−→
G constraint on conditions for characterizing the unanimous

behaviors of groups in the nature, particularly, go along with

the physics. For this objective, let
−→
G be an oriented graph

with vertex set V(G) and arc set X(G) embedded in R3 and let

(A ; ◦) be an operation system in classical mathematics, i.e.,

for ∀a, b ∈ A , a◦b ∈ A . Denoted by
−→
GL

A
all of those labeled

graphs
−→
GL with labeling L : X

(
−→
G

)
→ A . Then, we can

extend operation ◦ on elements in
−→
GA by a ruler following:

R: For ∀
−→
GL1 ,
−→
GL2 ∈

−→
GL

A
, define

−→
GL1 ◦

−→
GL2 =

−→
GL1◦L2 ,

where L1 ◦ L2 : e→ L1(e) ◦ L2(e) for ∀e ∈ X

(
−→
G

)
.

For example, such an extension on graph
−→
C 4 is shown in

Fig. 4, where, a3=a1◦a2, b3 =b1◦b2, c3=c1◦c2, d3 =d1◦d2.

✲

❄

✛✻
❄

✛✻
❄

✛✻

v1 v2

v3v4

v1 v2

v3v4

v1 v2

v3v4

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

✲ ✲

Fig. 4

Clearly,
−→
GL1 ◦

−→
GL2 ∈

−→
GL

A
by definition, i.e.,

−→
GL

A
is also an op-

eration system under ruler R, and it is commutative if (A , ◦)

is commutative,

Furthermore, if (A , ◦) is an algebraic group,
−→
GL

A
is also

an algebraic group because

(1)

(
−→
GL1 ◦

−→
GL2

)
◦
−→
GL3 =

−→
GL1 ◦

(
−→
GL2 ◦

−→
GL3

)
for ∀
−→
GL1 ,
−→
GL2 ,

−→
GL3 ∈

−→
GA because

(L1(e) ◦ L2(e)) ◦ L3(e) = L1(e) ◦ (L2(e) ◦ L3(e))

for e ∈ X

(
−→
G

)
, i.e.,

−→
G (L1◦L2)◦L3 =

−→
GL1◦(L2◦L3).

(2) there is an identify
−→
GL1A in

−→
GL

A
, where L1A

: e →

1A for ∀e ∈ X

(
−→
G

)
;

(3) there is an uniquely element
−→
GL−1

for ∀
−→
GL ∈

−→
GL

A
.

However, for characterizing the unanimous behaviors of

groups in the nature, the most useful one is the extension of

vector space (V ;+, ·) over field F by defining the operations

+ and · on elements in
−→
GV such as those shown in Fig. 5 on

graph
−→
C4, where a, b, c, d, ai, bi, ci, di ∈ V for i = 1, 2, 3,

x3=x1+x2 for x=a, b, c or d and α ∈ F .

✲

❄

✛✻
❄

✛✻
❄

✛✻

v1 v2

v3v4

v1 v2

v3v4

v1 v2

v3v4

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

✲ ✲

✲
❄

✛✻

✲
❄

✛✻
α

v1 v2 v1 v2

v3v4 v3v4

a

b

c

d

α·a

α·b

α·c

α·d

Fig. 5
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A
−→
G-flow on

−→
G is such an extension hold with L (u, v) =

−L (v, u) and conservation laws

∑

u∈NG(v)

L (v, u) = 0

for ∀v ∈ V

(
−→
G

)
, where 0 is the zero-vector in V . Thus, a

−→
G-

flow is a subfamily of
−→
GL

V
limited by conservation laws. For

example, if
−→
G =

−→
C 4, there must be a=b=c=d, ai=bi=ci=di

for i = 1, 2, 3 in Fig. 5.

Clearly, all conservation
−→
G-flows on

−→
G also form a vector

space over F under operations + and · with zero vector O =
−→
GL0 , where L0 : e → 0 for ∀e ∈ X

(
−→
G

)
. Such an extended

vector space on
−→
G is denoted by

−→
GV .

Furthermore, if (V ;+, ·) is a Banach or Hilbert space with

inner product 〈·, ·〉, we can also introduce the norm and inner

product on
−→
GV by

∥∥∥∥
−→
GL

∥∥∥∥ =
∑

(u,v)∈X

(
−→
G

)
‖L(u, v)‖

or 〈
−→
GL1 ,
−→
GL2

〉
=

∑

(u,v)∈X

(
−→
G

)
〈L1(u, v), L2(u, v)〉

for ∀
−→
GL,
−→
GL1 ,
−→
GL2 ∈

−→
GV , where ‖L(u, v)‖ is the norm of

L(u, v) in V . Then it can be verified that

(1)
∥∥∥∥
−→
GL

∥∥∥∥ ≥ 0 and
∥∥∥∥
−→
GL

∥∥∥∥ = 0 if and only if
−→
GL = O;

(2)
∥∥∥∥
−→
GξL

∥∥∥∥ = ξ
∥∥∥∥
−→
GL

∥∥∥∥ for any scalar ξ;

(3)
∥∥∥∥
−→
GL1 +

−→
GL2

∥∥∥∥ ≤
∥∥∥∥
−→
GL1

∥∥∥∥ +
∥∥∥∥
−→
GL2

∥∥∥∥;

(4)

〈
−→
GL,
−→
GL

〉
=

∑

(u,v)∈X

(
−→
G

) 〈L(uv), L(uv)〉 ≥ 0 and

〈
−→
GL,
−→
GL

〉

= 0 if and only if
−→
GL = O;

(5)

〈
−→
GL1 ,
−→
GL2

〉
=

〈
−→
GL2 ,
−→
GL1

〉
for ∀

−→
GL1 ,
−→
GL2 ∈

−→
GV ;

(6) For
−→
GL,
−→
GL1 ,
−→
GL2 ∈

−→
GV and λ, µ ∈ F ,

〈
λ
−→
GL1 + µ

−→
GL2 ,
−→
GL

〉

= λ

〈
−→
GL1 ,
−→
GL

〉
+ µ

〈
−→
GL2 ,
−→
GL

〉
.

The following result is obtained by showing that Cauchy

sequences in
−→
GV is converges hold with conservation laws.

Theorem 2.1([13]) For any topological graph
−→
G,
−→
GV is a

Banach space, and furthermore, if V is a Hilbert space,
−→
GV

is a Hilbert space also.

According to Theorem 2.1, the operators action on Ba-

nach or Hilbert space (V ;+, ·) can be extended on
−→
GV , for

example, the linear operator following.

Definition 2.2 An operator T :
−→
GV →

−→
GV is linear if

T

(
λ
−→
GL1 + µ

−→
GL2

)
= λT

(
−→
GL1

)
+ µT

(
−→
GL2

)

for ∀
−→
GL1 ,
−→
GL2 ∈

−→
GV and λ, µ ∈ F , and is continuous at a

−→
G-flow

−→
GL0 if there always exist a number δ(ε) for ∀ǫ > 0

such that ∥∥∥∥∥T

(
−→
GL

)
− T

(
−→
GL0

)∥∥∥∥∥ < ε

if ∥∥∥∥
−→
GL −

−→
GL0

∥∥∥∥ < δ(ε).

The following interesting result generalizes the result of

Fréchet and Riesz on linear continuous functionals, which

opens us mind for applying
−→
G-flows to hold on the nature.

Theorem 2.3([13]) Let T :
−→
GV → C be a linear continuous

functional. Then there is a unique
−→
G L̂ ∈

−→
GV such that

T

(
−→
GL

)
=

〈
−→
GL,
−→
G L̂

〉

for ∀
−→
GL ∈

−→
GV .

Particularly, if all flows L(u, v) on arcs (u, v) of
−→
G are state

function, we extend the differential operator on
−→
G-flows. In

fact, a differential operator
∂

∂t
or

∂

∂xi

:
−→
GV →

−→
GV is defined

by
∂

∂t
:
−→
GL →

−→
G

∂L
∂t ,

∂

∂xi

:
−→
GL →

−→
G

∂L
∂xi

for integers 1 ≤ i ≤ 3. Then, for ∀µ, λ ∈ F ,

∂

∂t

(
λ
−→
GL1 + µ

−→
GL2

)

=
∂

∂t

(
−→
GλL1+µL2

)
=
−→
G

∂
∂t

(λL1+µL2)

=
−→
G

∂
∂t

(λL1)+ ∂
∂t

(µL2) =
−→
G

∂
∂t

(λL1) +
−→
G

∂
∂t

(µL2)

=
∂

∂t

−→
G (λL1) +

∂

∂t

−→
G (µL2)

= λ
∂

∂t

−→
GL1 + µ

∂

∂t

−→
GL2 ,

i.e.,
∂

∂t

(
λ
−→
GL1 + µ

−→
GL2

)
= λ

∂

∂t

−→
GL1 + µ

∂

∂t

−→
GL2 .

Similarly, we know also that

∂

∂xi

(
λ
−→
GL1 + µ

−→
GL2

)
= λ

∂

∂xi

−→
GL1 + µ

∂

∂xi

−→
GL2
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for integers 1 ≤ i ≤ 3. Thus, operators
∂

∂t
and

∂

∂xi

, 1 ≤ i ≤ 3

are all linear on
−→
GV .

✲

❄

✛

✻ ⑥
❂

✲

❄

✛

✻
❂
⑥

✲

✲

✲

✲

✲t

t

t

t

et

et

et

et

et

et

et

et

1

11

1

∂

∂t

Fig. 6

Similarly, we introduce integral operator

∫
:
−→
GV →

−→
GV by ∫

:
−→
GL →

−→
G

∫
Ldt,

−→
GL →

−→
G

∫
Ldxi

for integers 1 ≤ i ≤ 3 and know that

∫ (
µ
−→
GL1 + λ

−→
GL2

)
= µ

∫ (
−→
GL1

)
+ λ

∫ (
−→
GL2

)

for ∀µ, λ ∈ F ,

∫
◦

(
∂

∂t

)
and

∫
◦

(
∂

∂xi

)
:
−→
GL →

−→
GL +

−→
GLc ,

where Lc is such a labeling that Lc(u, v) is constant for ∀(u, v)

∈ X

(
−→
G

)
.

3 Particle equations in ~G-flow space

We are easily find particle equations with nonrelativistic or

relativistic mechanics in
−→
GV . Notice that

i~
∂ψ

∂t
= Eψ, −i~∇ψ = −→p 2ψ

and

E =
1

2m

−→p 2 + U,

in classical mechanics, where ψ is the state function, E,−→p ,U

are respectively the energy, the momentum, the potential en-

ergy and m the mass of the particle. Whence,

O =
−→
G(E− 1

2m
−→p 2−U)ψ

=
−→
GEψ −

−→
G

1
2m
−→
p 2ψ −

−→
GUψ

=
−→
G i~

∂ψ

∂t −
−→
G−

~

2m
∇2ψ −

−→
GUψ

= i~
∂
−→
GLψ

∂t
+
~

2m
∇2−→GLψ −

−→
GLU
−→
GLψ ,

where Lψ : e→ state function and LU : e→ potential energy

on e ∈ X

(
−→
G

)
. According to the conservation law of energy,

there must be
−→
GU ∈

−→
GV . We get the Schrödinger equation in

−→
GV following.

−i~
∂
−→
GLψ

∂t
=
~

2m
∇2−→GLψ − Û

−→
GLψ , (3.1)

where Û =
−→
GLU ∈

−→
GV . Similarly, by the relativistic energy-

momentum relation

E2 = c2−→p 2 + m2c4

for bosons and

E = cαk
−→p k + α0mc2

for fermions, we get the Klein-Gordon equation and Dirac

equation

(
1

c2

∂2

∂t2
− ∇2

)
−→
GLψ +

(
cm

~

)
−→
GLψ = O (3.2)

and (
iγµ∂µ −

mc

~

)
−→
GLψ = O, (3.3)

of particles in
−→
GV respectively. Particularly, let

−→
G be such

a topological graph with one vertex but only with one arc.

Then, (3.1)–(3.3) are nothing else but (1.1)–(1.3) respective-

ly. However, (3.1)–(3.3) conclude that we can find
−→
G-flow

solutions on (1.1)–(1.3), which enables us to interpret mathe-

matically the superposition of particles by multiverse.

4 ~G-flows on particle equations

Formally, we can establish equations in
−→
GV by equations in

Banach space V such as (3.1)–(3.3). However, the important

thing is not just on such establishing but finding
−→
G-flows on

equations in V and then interpret the superposition of parti-

cles by
−→
G-flows.

4.1 ~G-flow solutions on equation

Theorem 2.3 concludes that there are
−→
G-flow solutions for

a linear equations in
−→
GV for Hilbert space V over field F ,

including algebraic equations, linear differential or integral

equations without considering the topological structure. For

example, let ax = b. We are easily getting its
−→
G-flow solution

x =
−→
Ga−1L if we view an element b ∈ V as b =

−→
GL, where

L(u, v) = b for ∀(u, v) ∈ X

(
−→
G

)
and 0 , a ∈ F , such as those

shown in Fig. 7 for
−→
G =
−→
C 4 and a = 3, b = 5.
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✲
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✛
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Generally, we know the following result:

Theorem 4.1([13]) A linear system of equations



a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · · + amnxn = bm

with ai j, b j ∈ F for integers 1 ≤ i ≤ n, 1 ≤ j ≤ m holding

with

rank
[
ai j

]
m×n
= rank

[
ai j

]+
m×(n+1)

has
−→
G-flow solutions on infinitely many topological graphs

−→
G, where

[
ai j

]+
m×(n+1)

=



a11 a12 · · · a1n L1

a21 a22 · · · a2n L2

. . . . . . . . . . . . .

am1 am2 · · · amn Lm


.

We can also get
−→
G-flow solutions for linear partial differ-

ential equations ([14]). For example, the Cauchy problems on

differential equations

∂X

∂t
= c2

n∑

i=1

∂2X

∂x2
i

with initial value X|t=t0 =
−→
GL′ ∈

−→
GV is also solvable in

−→
GV if

L′ (u, v) is continuous and bou- nded in Rn for ∀(u, v) ∈ X

(
−→
G

)

and ∀
−→
GL′ ∈

−→
GV . In fact, X =

−→
GLF with LF : (u, v)→ F(u, v)

for ∀(u, c) ∈ X

(
−→
G

)
, where

F (u, v) =
1

(4πt)
n
2

(∫ +∞

−∞

e−
(x1−y1)2

+···+(xn−yn )2

4t

× L′ (u, v) (y1, · · · , yn)dy1 · · · dyn

)

is such a solution.

Generally, if
−→
G can be decomposed into circuits

−→
C , the

next result concludes that we can always find
−→
G-flow solu-

tions on equations, no matter what the equation looks like,

linear or non-linear ([13]).

Theorem 4.2 If the topological graph
−→
G is strong-connected

with circuit decomposition

−→
G =

l⋃

i=1

−→
C i

such that L(u, v) = Li (x) for ∀(u, v) ∈ X

(
−→
C i

)
, 1 ≤ i ≤ l and

the Cauchy problem

{
Fi

(
x, u, ux1

, · · · , uxn
, ux1 x2

, · · ·
)
= 0

u|x0
= Li(x)

is solvable in a Hilbert space V on domain ∆ ⊂ Rn for inte-

gers 1 ≤ i ≤ l, then the Cauchy problem

{
Fi

(
x, X, Xx1

, · · · , Xxn
, Xx1 x2

, · · ·
)
= 0

X|x0
=
−→
GL

such that L (u, v) = Li(x) for ∀(u, v) ∈ X

(
−→
C i

)
is solvable for

X ∈
−→
GV .

In fact, such a solution is constructed by X =
−→
GLu(x) with

Lu(x) (u, v) = u(x) for (u, v) ∈ X

(
−→
G

)
by applying the input and

the output at vertex v all being u(x) on
−→
C , which implies that

all flows at vertex v ∈ V

(
−→
G

)
is conserved.

4.2 ~G-flows on particle equation

The existence of
−→
G-flow solutions on particle equations (1.1)–

(1.3) is clearly concluded by Theorem 4.2, also implied by

(3.1)–(3.3) for any
−→
G. However, the superposition of a par-

ticle P shows that there are N ≥ 2 states of being associated

with a particle P. Considering this fact, a convenient
−→
G-flow

model for elementary particle fermions, the lepton or quark P

is by a bouquet
−→
B

Lψ

N
, and an antiparticle P of P presented by

−→
B

L
ψ−1

N
with all inverse states on its loops, such as those shown

in Fig. 8.

P Pψ1ψ2ψN ψ−1
1

ψ−1
2

ψ−1
N

✛ ✲

Particle Antiparticle

Fig. 8

An elementary unparticle is an intermediate form between

an elementary particle and its antiparticle, which can be pre-

sented by
−→
B

LC
ψ

N
, where LC

ψ : e → Lψ−1 (e) if e ∈ C but LC
ψ :

e → Lψ(e) if e ∈ X

(
−→
BN

)
\ C for a subset C ⊂ X

(
−→
BN

)
, such

as those shown in Fig. 9,
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ψ1ψ2ψN1 ψ−1
1

ψ−1
2

ψ−1
N2

✛ ✲

Fig. 9 Unparticle

where N1,N2 ≥ 1 are integers. Thus, an elementary particle

with its antiparticles maybe annihilate or appears in pair at a

time, which consists in an elementary unparticle by combina-

tions of these state functions with their inverses.

P P

ψ
N

2

2

1

1

ψ
N

ψ

ψ

ψ

ψ

Fig. 10
−−→
D⊥

Lψ

0,2N,0

For those of mediate interaction particle quanta, i.e., bo-

son, which reflects interaction between particles. Thus, they

are conveniently presented by dipole
−−→
D⊥

Lψ

0,2N,0
but with dotted

lines, such as those in Fig. 10, in which the vertex P, P′ de-

notes particles, and arcs with state functions ψ1, ψ2, · · · , ψN

are the N states of P. Notice that
−→
B

Lψ

N
and
−−→
D⊥

Lψ

0,2N,0
both are a

union of N circuits.

According to Theorem 4.2, we consequently get the fol-

lowing conclusion.

Theorem 4.3 For an integer N ≥ 1, there are indeed
−−→
D⊥

Lψ

0,2N,0

-flow solution on Klein-Gordon equation (1.2), and
−→
B

Lψ

N
-flow

solution on Dirac equation (1.3).

Generally, this model enables us to know that the
−→
G-flow

constituents of a particle also.

...............ψk · · · ψ2 ψ1

p q
ψ′

1
ψ′

2
· · · ψ′

l

✲
✲✲ ✛✛

✛

Fig. 11 Meson

Thus, if a particle P̃ is consisted of l elementary parti-

cles P1, P1, · · · , Pl underlying a graph
−→
G

[
P̃
]
, its
−→
G-flow is

obtained by replace each vertex v by
−→
B

Lψv
Nv

and each arc e by
−−→
D⊥

Lψe

0,2Ne,0
in
−→
G

[
P̃
]
, denoted by

−→
GLψ

[
−→
B v,
−→
De

]
. For example,

the model of Sakata, or Gell-Mann and Ne’eman on hadrons

claims that the meson and the baryon are respectively the

dipole
−−→
D⊥

Lψe

k,2N,l
-flow shown in Fig. 11 and the triplet

−→
G-flow

−−→
C⊥

Lψ

k,l,s
shown in Fig. 12,

.............................................
..
..
..
..
..
..
..
..
..
..

q1 q2

q3

ψ1
k

ψ1
2
ψ1

1

ψ2
l

ψ2
2

ψ2
1

ψ3
sψ3

2
ψ3

1

✲

✲
✲

✲✲✲
✛✛✛

Fig. 12 Baryon

Theorem 4.4 If P̃ is a particle consisted of elementary parti-

cles P1, P1, · · · , Pl for an integer l ≥ 1, then
−→
GLψ

[
−→
Bv,
−→
De

]
is a

−→
G-flow solution on the Schrödinger equation (1.1) whenever

λG is finite or infinite.

Proof If λG is finite, the conclusion follows Theorem 4.2

immediately. We only consider the case of λG → ∞. In fact,

if λG → ∞, calculation shows that

i~ lim
λG→∞

(
∂

∂t

(
−→
GLψ

[
−→
Bv,
−→
De

]))

= lim
λG→∞

(
i~
∂

∂t

(
−→
GLψ

[
−→
Bv,
−→
De

]))

= lim
λG→∞

(
−
~

2

2m
∇2−→GLψ

[
−→
B v,
−→
De

]
+
−→
GLU

)

= −
~

2

2m
∇2 lim

λG→∞

−→
GLψ

[
−→
B v,
−→
De

]
+
−→
GLU ,

i.e.,

i~ lim
λG→∞

(
∂

∂t

(
−→
GLψ

[
−→
B v,
−→
De

]))

= −
~

2

2m
∇2 lim

λG→∞

−→
GLψ

[
−→
Bv,
−→
De

]
+
−→
GLU .

In particular,

i~ lim
N→∞


∂
−→
B

Lψ

N

∂t

 = −
~

2

2m
∇2 lim

N→∞

−→
B

Lψ
N
+
−→
GLU ,

i~ lim
N→∞

∂

∂t

(−−→
D⊥

Lψ

0,2N,0

)
= −
~

2

2m
∇2 lim

N→∞

−−→
D⊥

Lψ

0,2N,0
+
−→
GLU

for bouquets and dipoles. �
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5 ~G-flow interpretation on particle superposition

The superposition of a particle P is depicted by a Hilbert

space V over complex field C with orthogonal basis |1〉 , |2〉 ,

· · · , |n〉 , · · · in quantum mechanics. In fact, the linearity of

Schrödinger equation concludes that all states of particle P

are in such a space. However, an observer can grasp only

one state, which promoted H. Everett devised a multiverse

consisting of states in splitting process, i.e., the quantum ef-

fects spawn countless branches of the universe with different

events occurring in each, not influence one another, such as

those shown in Fig. 13, and the observer selects by random-

ness, where the multiverse is
⋃
i≥1

Vi with Vkl = V for integers

k ≥ 1, 1 ≤ l ≤ 2k but in different positions.

✻

✸❨

✣♦ ♦ ✼

ψ1 ∈ V1

ψ11 ∈ V11 ψ12 ∈ V12

ψ31 ∈ V31

ψ32 ∈ V32

ψ33 ∈ V33 ψ34 ∈ V34

Fig. 13

Why it needs an interpretation on particle superposition

in physics lies in that we characterize the behavior of particle

by dynamic equation on state function and interpret it to be

the solutions, and different quantum state holds with different

solution of that equation. However, we can only get one so-

lution by solving the equation with given initial datum once,

and hold one state of the particle P, i.e., the solution corre-

spondent only to one position but the particle is in superposi-

tion, which brought the H. Everett interpretation on superpo-

sition. It is only a biological mechanism by infinite parallel

spaces V but loses of conservations on energy or matter in the

nature, whose independently runs also overlook the existence

of universal connection in things, a philosophical law.

Even so, it can not blot out the ideological contribution

of H. Everett to sciences a shred because all of these men-

tions are produced by the interpretation on mathematical so-

lutions with the reality of things, i.e., scanning on local, not

the global. However, if we extend the Hilbert space V to
−→
B

Lψ
N

,
−−→
D⊥

Lψ

0,2N,0
or
−→
GLψ

[
−→
B v,
−→
De

]
in general, i.e.,

−→
G-flow space

−→
GV ,

where
−→
G is the underling topological graph of P, the situa-

tion has been greatly changed because
−→
GV is itself a Hilbert

space, and we can identify the
−→
G-flow on

−→
G to particle P, i.e.,

P =
−→
GLψ

[
−→
B v,
−→
De

]
(5.1)

for a globally understanding the behaviors of particle P what-

ever λG → ∞ or not by Theorem 4.4. For example, let

P =
−→
B

Lψ

N
, i.e., a free particle such as those of electron e−,

muon µ−, tauon τ−, or their neutrinos νe, νµ, ντ. Then the su-

perposition of P is displayed by state functions ψ on N loops

in
−→
BN hold on its each loop with

input ψi = ouput ψi at vertex P

for integers 1 ≤ i ≤ N. Consequently,

input
∑

i∈I

ψi = ouput
∑

i∈I

ψi at vertex P

for ∀I ⊂ {1, 2, · · · ,N}, the conservation law on vertex P. Fur-

thermore, such a
−→
B

Lψ

N
is not only a disguise on P in form but

also a really mathematical element in Hilbert space
−→
BV , and

can be also used to characterize the behavior of particles such

as those of the decays or collisions of particles by graph oper-

ations. For example, the β-decay n→ p+e−+µ−e is transferred

to a decomposition formula

−−→
C⊥

Lψn

k,l,s
=
−−→
C⊥

Lψp

k1,l1,s1

⋃−→
B

Lψe

N1

⋃−→
B

Lψµ

N2
,

on graph, where,
−−→
C⊥

Lψp

k1,l1,s1
,
−→
B

Lψe

N1
,
−→
B

Lψµ

N2
are all subgraphs of

−−→
C⊥

Lψn

k,l,s
. Similarly, the β- collision νe+p→ n+e+ is transferred

to an equality

−→
B

Lψνe
N1

⋃−−→
C⊥

Lψp

k1,l1,s1
=
−−→
C⊥

Lψn

k2,l2,s2

⋃−→
B

Lψe

N2
.

Even through the relation (5.1) is established on the lin-

earity, it is in fact truly for the linear and non-liner cases be-

cause the underlying graph of
−→
GLψ

[
−→
B v,
−→
De

]
-flow can be de-

composed into bouquets and dipoles, hold with conditions of

Theorem 4.2. Thus, even if the dynamical equation of a par-

ticle P is non-linear, we can also adopt the presentation (5.1)

to characterize the superposition and hold on the global be-

havior of P. Whence, it is a presentation on superposition of

particles, both on linear and non-linear.

6 Further discussions

Usually, a dynamic equation on a particle characterizes its

behaviors. But is its solution the same as the particle? Cer-

tainly not! Classically, a dynamic equation is established on

characters of particles, and different characters result in dif-

ferent equations. Thus the superposition of a particle should

be characterized by at least 2 differential equations. How-

ever, for a particle P, all these equations are the same one by
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chance, i.e., one of the Schrödinger equation, Klein-Gordon

equation or Dirac equation, which lead to the many world in-

terpretation of H. Everett, i.e., put a same equation or Hilbert

space on different place for different solutions in Fig. 12. As

it is shown in Theorems 4.1 − 4.4, we can interpret the so-

lution of (1.1)–(1.3) to be a
−→
GLψ

[
−→
Bv,
−→
De

]
-flow, which prop-

erly characterizes the superposition behavior of particles by

purely mathematics.

The
−→
G-flow interpretation on differential equation opens

a new way for understanding the behavior of nature, partic-

ularly on superposition of particles. Generally, the dynamic

equations on different characters maybe different, which will

brings about contradicts equations, i.e., non-solvable equa-

tions. For example, we characterize the behavior of meson or

baryon by Dirac equation (1.3). However, we never know the

dynamic equation on quark. Although we can say it obeying

the Dirac equation but it is not a complete picture on quark.

If we find its equation some day, they must be contradicts be-

cause it appear in different positions in space for a meson or a

baryon at least. As a result, the
−→
G-solutions on non-solvable

differential equations discussed in [9]–[12] are valuable for

understanding the reality of the nature with
−→
G-flow solutions

a special one on particles.

As it is well known for scientific community, any science

possess the falsifiability but which depends on known scien-

tific knowledge and technical means at that times. Accord-

ingly, it is very difficult to claim a subject or topic with logi-

cal consistency is truth or false on the nature sometimes, for

instance the multiverse or parallel universes because of the

limitation of knowing things in the nature for human beings.

In that case, a more appreciated approach is not denied or ig-

nored but tolerant, extends classical sciences and developing

those of well known technical means, and then get a better

understanding on the nature because the pointless argument

would not essentially promote the understanding of nature for

human beings ([3,4,22]).
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Question of Planckian “Action” in Gravitational
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It is shown that in the absence of a purely gravitational measurement of Planck’s con-

stant one cannot at present rule out the possibility that the ripples in the curvature of

the fabric of spacetime may be scaled by a more diminutive “action” whose detection

requires sensitivities beyond the standard quantum limit. An experiment that could

unequivocally test this possibility is suggested.

1 Introduction

The search for gravitational waves, one of the centerpieces of

general relativity, has been a work in progress for over five

decades. Two main forms of detectors are currently in use

worldwide. The first, pioneered by Weber [1] in the 1960s,

is based on the expectation that a passing gravitational wave

will induce a mechanical oscillation in a cryogenically cooled

cylindrical bar whose resonance can then be amplified and

recorded. The second method, using lasers, is designed to

measure spacetime geometry variations between mirrors sus-

pended in vacuum using interferometry in a Michelson con-

figuration.

Despite the ever increasing sensitivity of these detectors

these ripples in the curvature of the fabric of spacetime have

yet to be detected. After these many years of experimenta-

tion one may therefore be justified in questioning whether the

failure to detect these perturbations is symptomatic of yet to

be discovered physics beyond the standard quantum limit.

It should be observed that if we examine this question

from a quantum mechanical perspective we are inevitably

struck by the fact that the role of Planck’s constant in gravi-

tational wave phenomena has always been taken for granted

without questions regarding the possible limits of its appli-

cability being asked, which is somewhat perplexing since no

purely gravitational measurement of Planck’s constant exists.

As will be shown in this paper, if pursued, this element of un-

certainty gives rise to the possibility that gravitational quanta

may not be scaled by Planck’s constant.

2 Scaling of gravitational quanta

It should be emphasized from the outset that any discussion

of this possibility has as its foundation the irrefutable fact that

nature has made available two immutable elementary “ac-

tions” in the context of the framework of quantum mechan-

ics. That is, Planck’s familiar constant, h, which has been

shown experimentally to play an indispensable role in the mi-

crophysical realm, and a second, more diminutive “action”

formed from two of the fundamental constants of quantum

mechanics, namely, e2/c – the ratio of the square of the ele-

mentary charge to the velocity of light, which has the value

7.6957 × 10−37 J s.

In what follows I shall put forward an experimentally ver-

ifiable hypothesis in favor of a dynamical interpretation of the

fabric of spacetime. That is, we shall allow for the possibility

that this more diminutive “action” is an intrinsic property of

the fabric of spacetime; the size of the gravitational quanta

being always scaled in terms of e2/c. Implicit in this con-

ceptualization is the widely held expectation that spacetime

should play a dynamic role in its own right, rather than being

a passive observer.

3 Possible experimental test

Clearly, the most direct way of verifying if this hypothesis

corresponds to reality is to measure the vibrational displace-

ment induced in a resonant detector by a passing gravitational

wave. To give an illustration, let us assume, using the “ac-

tion” constant e2/c, that a gravitational quantum of angular

frequency ω has an energy

E =

(

e2

2πc

)

ω . (1)

We can then profit from the fact that the vibrational en-

ergy induced in a resonant detector, by a gravitational wave,

can be converted to the fractional change in vibrational dis-

placement by making use of the relation between amplitude

x0, energy E and the total mass M for a harmonic oscillator,

in the familiar form

E =
1

2
Mω2 x2

0 . (2)

If we now take as an example Weber’s seminal experi-

ment, which used as an antenna a 1400 kg cylindrical alu-

minum bar that had a natural resonance frequency ν0 of 1660

Hz, we can readily compute the vibrational displacement, x,

caused by a single quantum of gravitational radiation of angu-

lar frequency ω = 2πν0, and energy (e2/2πc)ω. Combining

Eqs. (1) and (2) and then substituting these values, we obtain

x =

√

2

Mω

e2

2πc
(3)

≈ 1.3 × 10−22 m.
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Needless to say, such extraordinarily small displacements

could not be measured with the technology available in We-

ber’s day. Indeed, even today such a feat remains out of reach

since there are no resonant-mass antennas in operation that

have the required sensitivity.

Fortunately, since Weber’s pioneering work in the 1960s

numerous projects have been undertaken in an effort to en-

hance detector sensitivity. One of the more innovative of

these efforts has been the development of the Schenberg

spherical resonant-mass telescope in Brazil [2], which has the

advantage of being omnidirectional. When fully operational

it will provide information regarding a wave’s amplitude, po-

larization, and direction of source. The detector program,

which we shall presently exploit, uses an 1150 kg spherical

resonant-mass made of a copper-aluminum alloy, and has a

resonance frequency ν0 of 3200 Hz. The vibrational displace-

ment caused by a single quantum of gravitational radiation of

angular frequencyω = 2πν0 can easily be computed by direct

substitution of these values in Eq. (3). We thus obtain

x ≈ 1.0 × 10−22 m. (4)

Verification of this result is contingent on the Schenberg sur-

passing the standard quantum limit by squeezing the signal,

which should result in a ten-fold increase in sensitivity.

Clearly, in the absence of a physical law that prohibits an

elementary “action” smaller than Planck’s this result must be

taken seriously.

4 Summary

The possibility was raised that gravitational quanta may not

be scaled by Planck’s constant. It was shown that in the

absence of a purely gravitational measurement of Planck’s

constant one cannot at present rule out the possibility that

gravitational quanta may be scaled by the more diminutive of

nature’s two elementary “actions”, namely, e2/c, which was

conjectured to be an intrinsic property of the fabric of space-

time. A possible experiment requiring sensitivities beyond

the standard quantum limit was suggested.
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Appendix

The recognition of the “action” e2/c as an intrinsic property

of the fabric of spacetime inevitably leads to quantum uncer-

tainty at a more fundamental level than Planck’s constant, in

the analogous form

(∆x)(∆p) ≈
e2

c
(1)

where, as usual, x is uncertainty of position, and p the uncer-

tainty in momentum. Its implication for the temporal events

that make up the big bang can be simply illustrated in terms

of the sub-Planckian unit of time, T0, analogous to the Planck

time TP =
√

~G/c5, in the form

T0 =

√

e2

2πc

G

c5
(2)

= 1.837 × 10−45 s

where (e2/2πc) is the reduced sub-Planckian “action” con-

stant, G is the Newtonian gravitational constant, and c is the

velocity of light. Unfortunately, because of the sub-Planckian

uncertainty principle, Eq. (1), we are prevented from specu-

lating on times shorter than 10−44 seconds after the big bang,

which is an order of magnitude prior to the Planck era (10−43

seconds). The disparity in this temporal sequence of events

is, needless to say, cosmologically significant since it im-

plies that a sub-Planckian era preceded the Planck era in the

nascent universe, which should be discernible from its gravi-

tational signature.
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In 2014 Jiapei Dai reported evidence of anisotropic Brownian motion of a toluidine blue
colloid solution in water. In 2015 Felix Scholkmann analysed the Dai data and detected
a sidereal time dependence, indicative of a process driving the preferred Brownian mo-
tion diffusion direction to a star-based preferred direction. Here we further analyse the
Dai data and extract the RA and Dec of that preferred direction, and relate the data
to previous determinations from NASA Spacecraft Earth-flyby Doppler shift data, and
other determinations.

1 Introduction

In 2014 Jiapei Dai [1] reported evidence of anisotropic Brow-
nian motion, and in 2015 Felix Scholkmann [3] detected a
sidereal time dependence, indicative of a process driving the
preferred Brownian motion diffusion direction to a star-based
preferred direction. Here we further analyse the Dai data and
extract the RA and Dec of that preferred direction, and re-
late the data to previous determinations from NASA space-
craft Earth-flyby Doppler shift data, and other determinations
[5]. It is shown that the anisotropic Brownian motion is an
anisotropic “heating” generated by the dynamical 3-space [4].

2 Anisotropic Brownian motion

Dai in Wuhan City detected anisotropic Brownian motion by
loading a small drop of toluidine blue solution into a con-
tainer of water. The diffusion pattern was photographed start-
ing within 30 sec of loading the water cell and then once ev-
ery ten minutes until the end of observations [1]. The images
were analysed using image analysis software. The observa-
tions were performed 24 times per day, and repeated from
December 22, 2011 to March 23, 2013.

The image of the diffusion anisotropy is illustrated in Fig-
ure 1, with directions measured from East in a clockwise di-

Fig. 1: Illustration of anisotropic diffusion of the toluidine blue so-
lution in water, 30 min after inserting drop. The preferred direction
is measured clockwise in degrees from East. Reproduced from [1].

rection. Dai reported the preferred direction of diffusion from
15 days, plotted against Wuhan Solar Time. In Fig. 2 that data
has been replotted against Local Sidereal Time for Wuhan
City. We now analyse that data from the point of view of a
preferred 3-space velocity, where the Right Ascension, RA,
is defined by when the preferred diffusion direction is from S
to N. The Declination is to be determined by the dynamic
range of the diffusion direction over one day, as in Fig. 4.
We report herein that the anisotropic Brownian motion data
confirms various properties of the 3-space flow previously re-
ported [5].

3 Dynamical 3-space

The Schrödinger equation must be extended to include the
dynamical space [6]

i~
∂ψ(r, t)
∂t

= − ~
2

2m
∇2ψ(r, t) + V(r, t)ψ(r, t)−

−i~
(
v(r, t)·∇ +

1
2
∇·v(r, t)

)
ψ(r, t).

(1)

Here v(r, t) is the velocity field describing the dynamical spa-
ce at a classical field level, [4], and the coordinates r give
the relative location of ψ(r, t) and v(r, t), relative to a Eu-
clidean embedding space, and also used by an observer to
locate structures. This is not an aether embedded in a non-
dynamical space, but a dynamical space which induces an
embedding space or coordinate system. This minimal gener-
alisation of the original Schrödinger equation arises from the
replacement ∂/∂t → ∂/∂t + v.∇, the Euler derivative, which
ensures that the quantum system properties are determined
by the dynamical space, and not by the embedding coordi-
nate system. The extra ∇·v term in (1) is required to make the
hamiltonian in (1) hermitian.

4 Analysing Brownian motion data

For a plane wave ψ = eik·r−iωt, for water molecules, this re-
sults in an energy shift E = ~ω→ E + ~k · v. The Dai data in
Fig. 2 reveals a complex behaviour, with not all data reveal-
ing a RA for the preferred flow. However this is explainable
by two key observations. First the fluctuations in the 3-space
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Fig. 2: Dai data [1], showing preferred direction of colloidal diffusion, plotted against Wuhan Local Sidereal Time (LST), for the various
indicated days. The coding M, N, ... refers to the labelling in [1], which reported the data against Wuhan local solar time. The preferred
direction of diffusion is measured as indicated in Fig. 1.
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Fig. 3: Plot of the better data from Fig. 2: M, I, J, L. These days show
trend of preferred direction to be from South to North (270◦) at ∼5
hrs LST. A similar trend might be expected for 17hrs LST, but is not
seen in all days shown. This is because at this approximate LST the
space flow passes more deeply through the Earth, see Fig. 5, which
results in considerable increase in turbulence.

flow manifest as changes in both speed and direction. When
the data for the better days is plotted, as in Fig. 3, we see that
the RA cluster around 5hrs Local Sidereal Time. However we
would also expect to see the data crossing the due N direction
(270◦) some 12 hours later. However the data in Fig. 3 shows
much noisier variations. This second key observation is that
this is also expected as during these times the 3-space flow
has passed deeply into the earth, as shown in Fig. 5, and this
results in increased turbulence in both speed and direction.
One consequence of this is that future studies of anisotropic
Brownian motion should be performed well into the southern
hemisphere. Finally, from the 3-space turbulence, we expect
the best quality data, being least affected by 3-space turbu-
lence, would be for day M. That data is shown in Fig. 4, which
gives an approximate RA=5hrs, Dec=60◦S. This is consistent
with the RA and Dec for December from the NASA Doppler
shift data [5].

5 Conclusion

That the known characteristics of the 3-space flow agree with
results from the anisotropy of the Brownian motion data sug-
gests a simple mechanism, namely that the 3-space flow gen-
erates an energy shift in the water molecules; E → E + ~k · v,
where k is the wavenumber vector for water molecules, and
that this is largest for water molecules moving in the direc-
tion of v. This results in water molecules moving in the di-
rection of v having a greater kinetic energy, and imparting
more momentum to the toluidine colloidal particles than wa-
ter molecules moving in the opposite direction. So the −i~v·∇
term gives rise to an enhanced Brownian diffusion in the di-
rection of v.

A similar effect was observed by Shnoll [7] in which the
α decay rate of 239Pu is directional dependent. This is also ex-
plained by the −i~v · ∇ term, as it causes the α kinetic energy
to be different in different directions related to v, and so af-

Fig. 4: Plot of Dai data vs Wuhan LST for Dec 22, 2011 (plot M
in Fig. 2). Smooth curve (blue) is predicted form for RA=5hrs,
Dec=60◦S. The RA is defined by when dynamical 3-space flow di-
rection is from S to N, here RA 5hrs and 17hrs. The Dec determines
the variation in direction, here 270◦ ± 40◦. Note the increased turbu-
lence, manifesting as fluctuations in direction of the flow, when the
flow is more deeply through the Earth. For Dec 8, 1992, the NASA
Doppler shift data gave RA=5.23hrs, Dec=80◦S, [5].

Fig. 5: Cross section of Earth showing Wuhan horizontal planes and
the local N and S directions at Local Sidereal Times of 5 hr and 17
hr. Also shown is dynamical 3-space flow direction, with a Declina-
tion of -60◦. At LST of ∼17hr the flow passes most deeply into the
Earth, resulting in significant turbulence, as revealed by the Brown-
ian motion data in Figs. 3 and 4.

fects the quantum tunnelling process, with more α emerging
in the direction of v.
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A classical field theory is introduced that is defined on a tower of dimensionally in-

creasing spaces and is argued to be equivalent to QED. The domain of dependence is

discussed to show how an equal times picture of the many coordinate space gives QED

results as part of a well posed initial value formalism. Identical particle symmetries

are not, a priori, required but when introduced are clearly propagated. This construc-

tion uses only classical fields to provide some explanation for why quantum fields and

canonical commutation results have been successful. Some old and essential questions

regarding causality of propagators are resolved. The problem of resummation, gener-

ally forbidden for conditionally convergent series, is discussed from the standpoint of

particular truncations of the infinite tower of functions and a two step adiabatic turn

on for scattering. As a result of this approach it is shown that the photon inherits its

quantization ~ω from the free lagrangian of the Dirac electrons despite the fact that the

free electromagnetic lagrangian has no ~ in it. This provides a possible explanation for

the canonical commutation relations for quantum operators, [P̂, Q̂] = i~, without ever

needing to invoke such a quantum postulate. The form of the equal times conservation

laws in this many particle field theory suggests a simplification of the radiation reaction

process for fields that allows QED to arise from a sum of path integrals in the various

particle time coordinates. A novel method of unifying this theory with gravity, but that

has no obvious quantum field theoretic computational scheme, is introduced.

1 Introduction

Quantum field theory, in some ways, marks the ultimate state

of our understanding of physics. In its computational ex-

actness, it can be thrilling yet its conceptual grounding is

very unsatisfactory. Field theory has its origins in the 1920’s

and 1930’s when attempts to include particle creation and the

quantization of the photon necessitated a larger mathematical

structure [13, 17]. Fock space seemed to have sufficient fea-

tures to encompass the intrinsic quantum and particle number

variable features. The ladder operators of the harmonic os-

cillator could be formally modified to give an algebra that

allowed these various particle number spaces to interact. Dif-

ferent attempts to generate an equation of motion and find

transition rates led to various formal procedures. Classical la-

grangians were varied in a formal manner with “second quan-

tized” operators in approaches by Schwinger and Tomanaga

and systematic procedures to handle the divergent terms were

introduced [15, 17]. Feynman gave a very intuitive approach

using path integrals that was put into a formal structure by

Dyson. This approach has gained prominence due to its ease

of organizing the terms of the expansion.

Quantum mechanics is the quantum theory of fixed parti-

cle number systems. Certain quasi-classical approaches made

the treatment of radiative decay possible without QED at low

energies. Nevertheless, even in this low energy domain, the

theory had lingering conceptural problems. Measurement and

the “collapse of the wavefunction” led to paradoxes that have

spawned an enormous literature [7]. Decoherence is a pop-

ular “explanation” of these effects but these tend to rely on

assumptions that are just pushed off to other parts of the anal-

ysis [16]. The Born interpretation, due to its simplicity and

historical inertia, still dominates most treatments of classical-

quantum interactions. Some may object that there are now

ways to treat measurements independently of the Born in-

terpretation to handle to new sorts of quantum nondemoli-

tion measurements [11] but these ultimately involve other ad

hoc statistical assumptions. Quantum statistical mechanics

has never found any solid conceptual footing despite the fre-

quent success of its formalism in describing thermodynamic

behavior and providing numerical results. This problem is of-

ten given a short comment in books on the subject and little

progress has been made. Ultimately, an initial data formula-

tion approach must resolve all of these issues in terms of the

dynamical equations and provide evidence for the kinds of

initial data that is physically relevant.

The quantum field theory approach to quantum mechan-

ics is on a solid footing. Even though operators may change

the particle number, it is always changed back at every or-

der in the expansion. One may show [15] that this gives an

exact isomorphism with the Schrödinger, Heisenberg and in-

teraction picture versions of QM. This leads to the Feynman

path integral approach to quantum mechanics which, while

equivalent, generally gives absurdly difficult derivations of

results compared to other means. In contrast, regularization

of the path integral has never had a very solid mathematical

foundation but applying the theory in a “standard” fashion

gives correct results. The main uses of QFT is in relativis-

tic physics, quasiparticle motions in condensed matter and in

the “Wick rotated” form which converts temporal evolution
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to a high temperature expansion of the thermodynamic poten-

tials. The correspondence of QFT in the case of quasiparticle

evolution to that of Schrödinger evolution is itself challeng-

ing [2]. Fundamentally, one must give a description of the

many-body wavefunction’s excited states to give such a cor-

respondence. This has led to the popularity of Green’s func-

tion methods in condensed matter physics since it sidesteps

this difficult work and leads directly to calculations. The va-

lidity of the derivation of the Kubo formula [8] has been ex-

tensively criticized [9] but it has, nevertheless, proved to be

of great use over a broader range of phenomena than should

be expected.

Given that no true classical-quantum correspondence of

objects is known, it is unclear when one should impose clas-

sical structures (like hydrodynamics) on the system and when

to extract certain properties (like viscosity) by quantum me-

ans. This is of particular interest in the study of ultracold

gas dynamics [5] and superfluid Helium. There are popular

and sometimes successful approaches for doing this but it is

never clear that they must follow from the true many body

dynamical theory or that we have simply made enough as-

sumptions to stumble on to the tail of a correct derivation, the

first, and correct part of which is a mystery to us. The general

vagueness and nonspecificity of the subject allows theorists

great freedom to generate calculations that then can be com-

pared with experimental or Monte-Carlo data for affirmation

of which ones to keep. This very freedom should undermine

our reasons for faith in our theory and intuition. Instead it, to-

gether with professional publication demands, seems to cre-

ate a selective pressure in favor of optimism and credulity on

the part of practitioners and an air of mystical prophecy of our

physics fathers and those who derive experimentally match-

ing results.

In relativistic field theory, where particle creation is im-

portant, there are additional problems. Renormalization is

necessary because of the local interactions of particles and

fields. Classical physics certainly has such a problem and the

radiation reaction problem of classical electrodynamics still

has unanswered questions [14]. The series derived from QFT

in the relativistic and quasiparticle cases tend to be asymp-

totic series and conditionally converging. Nonetheless, it se-

ems very important to resum these series over subsets of dia-

grams to get desired approximations and Green’s functions

that are analytically continued to give the propagator pole

structure corresponding to masses and lifetimes of resonan-

ces. The path integral itself has too large a measure to give

a rigorous derivation. Regularization procedures, like putting

the integrals on a Euclidean lattice for computation, length

scale cutoffs, Wilson momentum cutoffs, dimensional regu-

larization and others, are introduced to get finite results [13].

Of the conceptual problems facing quantum theory, renormal-

ization will be shown to be a rather modest one. Justifying the

use of resummation will be much more serious.

The Schrödinger approach to quantum mechanics has a

special place. Questions of causality and geometric intuition

are most naturally discussed in a real space picture. The dif-

fusive nature of this equation is problematic but vanishes in

the relativistic limit of the Dirac equation. Unfortunately, this

is exactly where particle creation effects become important.

In relativistic classical field theory, all causality questions are

resolvable systematically. The structure of the equations en-

sures that it is valid. Other advantages of classical fields are

that they are deterministic, propagate constraints exactly, give

clearly obeyed conservation laws and introduce a specificity

that allows all philosophical questions and thought experi-

ments to be resolved through examination of their own math-

ematically consistent structure. In some cases, like relativ-

ity, our intuition may need to be updated but how this is to

be done is made clear through such examples. QFT clearly

works at the level of computation for many problems. This

makes one believe that maybe our precursory arguments and

descriptions leading to those calculations are fine and merely

need elaboration. Given the success of so many calculations,

it comes as a great disappointment that almost any interacting

field theory is inconsistent [6].

Beyond these problems, the use of one particle lagrangi-

ans and couplings that get promoted to many body interacting

theory through canonical quantization or propagator methods

lead to a kind of conceptual disconnect that makes the solid

implications of classical field theory, e.g. Noether’s theorem

and conservation laws, unclear. These conservation laws can

be formally defined by a correspondence of operators and

checked but are no longer strict implications of the symme-

tries of a lagrangian. The symmetries of one-particle sys-

tems themselves require a more explicit definition in the many

body case where multiple coordinate labels of the wavefunc-

tion Ψ can describe independent motions but the current state

of theory does not present a solid enough foundation to show

how and when to make this manifest as an important symme-

try. The meaning of a “propagator” in classical theory is sim-

ple yet it is often not appreciated that the full reality described

by a Klein-Gordon (KG) field is not necessarily contained in

the support of φ in a given constant time slice due to its sec-

ond order nature. This is often lost in confusing discussions

in terms of positive and negative energy components. This

will be resolved for both KG and Dirac equations in the clas-

sical and quantum cases and clear up any apparently acausal

effects without reference to commutation relations and formal

measurement.

It is an emotionally identical state to feel that something

is wrong but unclear, lacking sufficient specificity, or that we

simply don’t understand. The formal character of quantum

field theory has produced a useful computational tool but left

enough vague and ill-defined that there is plenty to improve.

It is interesting that it has been proved that no interacting

quantum field theory is consistent [6]. People typically shrug

this off as with the other conceptual troubles in quantum the-

ory. At some point people have to generate work or do some-

Clifford Chafin. Beyond Quantum Fields: A Classical Fields Approach to QED 209



Volume 11 (2015) PROGRESS IN PHYSICS Issue 3 (July)

thing else but eventually formal approaches are destined to

lose productivity. Beyond that is the lack of satisfaction that

one really understands what one is doing. It is very common

in physics to find clever solutions or long derivations that turn

out to be flawed. Classical systems exist as well posed ini-

tial value problems so that they can be tackled from many

angles: perturbation theory, conservation laws, idealized sys-

tems, . . . . A well posed such problem that describes field

theory would doubtlessly open some new doors.

The foregoing was to show that some new approach to

the reality described by QFT is justified. In doing so, QFT’s

successes are the best guide to start. In the following we will

seek a well-posed classical relativistic theory over a tower of

spaces of increasing dimension that will have some loose cor-

respondence with Fock space. This will not be guided by the

computational convenience it affords but logical and mathe-

matical consistency and specificity. Since we are taking the

point of view that the fields are valid at all time (so implicitly

have an “emergent measurement theory” at work) we don’t

need to think of “particles” as something more than a label

for some axes in our higher dimensional space. It will turn

out that we will need a larger encompassing structure than

field theory on Fock space to describe the phenomenology of

QFT adequately. From this we can derive QFT phenomenol-

ogy in a suitable limit and use its rigid structure to answer

conceptual questions in a more convincing fashion. Since this

will strictly be a deterministic covering to QFT we consider

for it a new name, deterministic wave mechanics (DWM). Its

purpose is to elucidate an explanation of why quantum field

theory works and give a framework for modifications, like the

inclusion of gravity, that may have a well posed structure but

not exist in the framework of QFT itself. In the following we

will use QED as a particular case but the generalizations will

be evident.

2 Overview

The goal here is to introduce set of many particle number

spaces where energy, mass, charge, probability, stress, . . .

can travel between the spaces at two-body diagonals. This

will necessitate we make sense of multiple time labels and

have a well defined set of initial data and regions where inter-

acting fields can consistently evolve in this high dimensional

many-time structure. Because there will be no “field opera-

tors” there will be no need for a translationally invariant vac-

uum to build particles from. If we start with N electrons, the

number of photons may increase and electron-positron pairs

can appear but the net charge is the same in every space where

nonzero amplitude exists. This eliminates the basis of Haag’s

theorem and its contradiction.

Firstly, we will introduce separate equations of motion

and particle labels for electrons and positrons. The ampli-

tude of each of these will be positive locally and interactions

will not change this. Negative norm states exist but are never

utilized by the system. This is due to a symmetry of the dy-

namical equations not a constraint akin to the Gupta-Bueler

formalism. The photon fields will be described by both A and

Ȧ labels so that, each “photon” will now have 4 → 2 × 4 co-

ordinate labels. An important distinction here with QFT is

that there will be nonzero functions in the “tower” of fields

that have zero norm. For example, in a one-electron zero-

photon system, ψ(x) has full norm while the function in the

one-electron and Φem sector is nonzero. The norm of electro-

magnetic fields will not be a simple square of the function am-

plitude but a function of its amplitude and derivatives in such

a way that only if there are imaginary parts will it contribute

to the “norm.” Thus our tower of functions will involve many

nonzero ones that have no norm and the electromagnetic field

can pick up some complex components. This suggests that

our theory may have a larger configuration space than QFT.

A explanation of QFT may arise from this by thinking of

QFT tracking the flow of norm and other conserved quanti-

ties through the system while ignoring these higher nonzero

functions and, in some gauges, treating them as constraints.

Once we have a suitable configuration space, equations of

motion and reasonable sense of “future” we seek a mapping

of QED into the space. The tools used to treat scattering in

QFT involve “adiabatic turn on/off” of the interactions, reg-

ularization and renormalization. Typically we sum over spe-

cial subsets of diagrams and adjust the “bare” parameters to

get the right free behavior for these modifications. The reg-

ularization can be easily dealt with as in classical theory by

assuming finite size effects. This is essential for the radiation

reaction. It is still unclear how QFT can treat the radiation

reaction adequately so this alone may introduce new physics.

The sort of initial data with interactions already “on” requires

we work with a truncated set of the total space on interactions.

Implicit here is that the bare parameters be chosen to give the

right momenta and other observable for the “free” particles

(in the sense that they are ballistic not that interactions are

turned off). The structure of the theory allows us to adjust

couplings and interactions with far more freedom than QFT

for perturbative purposes. Resummation has always been the

most dubious aspect of QFT. Conditionally convergent series

should not be rearranged so having a limiting method to make

sense of this is an important improvement. In this paper we

will not prove an isomorphism with QED, and, given the in-

consistencies in the theory, this may be for the best. A foun-

dation is laid with some arguments for its ability to generate

QED results, but given the scope of the subject, much more

work remains than can be done in this one paper.

Finally we will discuss a method of combining this with

gravity by promoting the γ matrices themselves. This will re-

quire some extension of most fields to allow dual pairs so that

the quadratic lagrangians become bilinear. Such a method is

distinct from vierbein approaches and works on a flat back-

ground. Some important extensions of the notion of gauge

freedom arise here and the “reality” of the particles can be
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shown to move causally yet not be definable in any obvious

fashion in terms of the fields.

3 The configuration space

3.1 Dirac fields

In the early days of the Dirac equation, interpretations have

evolved from a proposed theory of electrons and protons to

that of electrons and positrons with positrons as “holes” in an

infinitely full electron“sea” to that of electrons with positrons

as electrons moving “backwards in time.” The first interpre-

tation failed because the masses of the positive and negative

parts are forced to be equal. The second was introduced out

of fear that the negative energy solutions of the Dirac equa-

tions would allow a particle to fall to endlessly lower ener-

gies. The last was introduced as a computational tool. The

negative mass solutions were to be reinterpreted as positive

mass with negative charge. Necessary fixes to this idea are

subtly introduced through the anticommutation relations and

the algebraic properties of the vacuum ground state used in

the field theory approach.∗ If we are going to seek a clas-

sical field theory approach to this problem we need another

mechanism.

In a universe containing only electrons and positrons we

require the fields Ψe, Ψp, Ψee, Ψep. . . where the number of

spinor and coordinate labels is given by the number of parti-

cle type labels as inΨee = Ψ
ab
ee (xµ, yν). The lagrangian density

must distinguish electrons and positron by their charge only.

Since we have not included any photons yet and we have as-

serted that positive norm will be enforced on the initial data

(and suggested it will be propagated even in the interacting

case) these will have equations of motion that follow from

the related one particle lagrangians

Le = i~ψ̄eγ
µ∇µψe − mψ̄eψe

Lp = i~ψ̄pγ
µ∇µψp + mψ̄pψp.

(1)

The sign of the charge will be discussed when the electromag-

netic field is added but, at this point, could be chosen either

±q. We confine ourselves to the Dirac representation and the

positron lagrangian is chosen so that its rest positive energy

contribution is in the v component of the spinor
(

u

v

)

unlike the

the electron case. We will only be interested in initial data

with positive energy. Later we will see that this is consistent

with the kinds of creation and annihilation operator couplings

in QED that allows positrons to have positive energy. We still

need a lagrangian for our many particle wavefunctions. In

this noninteracting case, we consider this to be built of a sum

of the one particle ones so that the lagrangian of the two elec-

tron field Ψab(xµ, yν) is

Lee = i~Ψ∗a fγ
0
abγ

µ

bc
∇µΨc f − mΨ∗abγ

0
acΨcb+

+ i~Ψ∗f aγ
0
abγ

ν
bc∇νΨ f c − mΨ∗abγ

0
acΨcb

(2)

∗It is interesting to note that it is precisely the properties of this ground

state that lead to the inconsistencies shown by Haag’s theorem.

where we have explicitly written out the indices associated

with spinor labels and coordinates and the summation con-

vention is assumed for all repeated indices. The action is to

be computed by integrating over a region in the 2-fold Lorentz

spaceR4×R4. Variation of the function can be done holding it

constant along y and x respectively leading to the usual equa-

tions of motion along the separate time coordinates tx, ty for

a product function Ψ = ψ1(xµ)ψ2(yν).

From a dynamical point of view, we are mostly interested

in the cases where the fields are all evaluated at equal times.

However we should ask what it even means to evaluate a func-

tion at two different times. When is this even meaningful? If

we specify Ψ(x
µ
1
, xν

2
) at t1 = t2 we desire to know into what

region of this many-time future we should expect a solution.

Further explanation of the equal time evolution is discussed

in Sec. 3.4.

Considering free propagators we can evolve the data from

(x1, x2) in the t1 direction indefinitely and similarly for t2. The

domain of dependence is then the union of the two backwards

light-cones |x′
1
− x1| < c (t1′ − t1) and |x′

2
− x2| < c (t2′ − t2). In-

teractions will allow free evolution for such a function except

on 2-body diagonals xµ = yν. When these cones intersect

these regions sources and sinks with other particle number

functions will arise. When these produce a net change in am-

plitude versus simply a potential force remains to be seen.

Furthermore, it is still unclear that we can derive the static

electromagnetic force effects from such a restricted local in-

teraction. This will be explained later but first we investigate

the case of free photons.

3.2 Photons

The classical electromagnetic field is a real vector field Aµ.

For our many body generalization as Ψ
µ
a ∼ ψa(x) Aµ(y) we

will have, generally nonseparable, combinations of electro-

magnetic and electron fields so making the assignment of

which is “real” is ambiguous. We will find that phase dif-

ferences between these fields on the many body diagonals

give sources and sinks of amplitude from one particle num-

ber space to another. Firstly, let us consider the classical elec-

tromagnetic field which we can, loosely, think of as a single

particle field.† The lagrangian of the electromagnetic field is

LA = −
1

4
FµνFµν (3)

where Fµν = ∂[µAν] = ∂µAν−∂νAµ. For now consider only the

“classical” field theory case where we have one field of each

type on R4. The complex Klein-Gordon field has a norm con-

servation law induced by the global phase change φ → φeiγ.

In this case of a noninteracting electromagnetic field we have

equations of motion �Aµ = 0 and, allowing complex values,

we have four independent global phase changes allowed in

†Generally classical electromagnetic fields are considered as combina-

tions of photon fields of all photon number.
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addition to the usual Aµ → Aµ + ∇ξ gauge freedom. We will

revisit this shortly and reveal how photon quantization arises

naturally from the lagrangian once coupling is introduced.

One important distinction of the electromagnetic fields

versus the Dirac fields is that the equations are second order.

These can be rendered into first order equations by introduc-

ing an auxiliary field Cµ = Ȧµ so that the equations of motion

become
∂tA

µ = Cµ

∂tC
µ = ∂i∂

iAµ.
(4)

The extension to the many particle case leads to a prolifera-

tion of functions akin to the rapid number of increasing spin

states for multiple Dirac fields. In each time direction of a two

photon state Aµν(xα, yβ) we need first and second order time

derivatives. A complete set of first order initial data is then

A, Cx = ∂tx A, Cy = ∂tyA, and Cx,y = ∂tx,tyA with equations of

motion
∂tx Aµν = C

µν
x

∂tyA
µν = C

µν
y

∂txC
µν
x = ∂i∂

iAµν

∂tyC
µν
y = ∂ j∂

jAµν

∂txC
µν
y = ∂tyC

µν
x = C

µν
x,y = C

µν
y,x

∂txC
µν
x,y= ∂i∂

iC
µν
y

∂tyC
µν
x,y = ∂ j∂

jC
µν
x

(5)

where the roman indices are spatial indices related to the cor-

responding spacetime indices as (tx, xi) = xµ, (ty, y j) = yν,

etc. We can see that the number of first order fields for a

source free N-photon system is 4 · 2N analogous to the num-

ber of spin subspaces for an N-electron system. A convenient

notation for this is (P,Q) where P, Q can be 0 or 1 and the

pair indicates how many derivatives of A with respect to x

and y are taken. This notation gives (suppressing spacetime

indices)

A = C00

Cx = C10

Cy = C01

Cx,y = C11

(6)

which will be convenient for later generalization.

3.3 Interactions

The presence of interactions is what makes dynamics inter-

esting. The mixing of gauge freedom means that any notion

of “reality” of an electron now involves a photon field as is

illustrated through the Aharonov-Bohm (A-B) effect. This is

seen in the definition of a gauge invariant electron current in

its explicit use of A. In the many body case we need a set

of interaction terms tailored for our, now distinct, equations

of motion for electrons and positrons. It also radically con-

strains our domain of dependence in this many time coordi-

nate space.

Let us begin with the classical or “one body” case. The

interaction terms tailored for electrons and positrons are re-

spectively:

ΛeA = −qψ̄(e)
a γ

µ

ab
Aµψ

(e)

b

ΛpA = −qψ̄
(p)
a γ

µ

ab
Aµψ

(p)

b
.

(7)

The free Dirac equation does not require such extra terms but

we will include them from now on to make the interaction

terms nicer. The sign stays the same here because of the sign

flip in the charge induced by the γ0 factor in the Dirac rep-

resentation where we assume the amplitude for the resting

positron is chosen in the “v” component of the spinor ψ =
(

u

v

)

.

We previously changed the sign of the mass term in Lp so

that the energy of this field is positive.

Including the interaction term Le, variation of the action

yields the equations of motion

∂Fµν

∂xν
= q jµ = qψ̄γψ

i~γψ + qAµγµψ − mψ = 0.
(8)

These are not all dynamic. Since the first is a second order

equation of motion, the equations of motion must have two

time derivatives. In this case we have the constraint ∇ · E =
qρ = q j0 which is propagated by the equations of motion.

This is induced by the conservation law we derive from the

sources, ∂µ jµ = 0 which shows that only three of these equa-

tions are now dynamical. We can rewrite this as a set of first

order equations by the definition Cµ = ∂tAµ. Choosing the

Lorentz gauge, ∂µAµ = −Ct + ∂iA
i = 0, we obtain �Aµ = q jµ

in a form that automatically generates compatibility with the

conservation of charge and is propagated for all time.

Interactions for the many body case, QED, involves two

ways of coupling electrons and positrons to the electromag-

netic field: a lone electron can couple to a lone electron and a

photon or a photon can couple to an electron and a positron.

We are not interested in any of the common “backwards in

time” mnemonics or procedures here since this is an initial

value approach. Firstly we should give a picture of the “tow-

er” of states that need to be coupled.

α

Ψ
µ

(A),Q
(x),Ψ

µν

(AA),QR
(x, y) . . .

Ψ(e),a(x),Ψ
µ
(eA),aQ

(x, y),Ψ
µν
(eAA),aQR

(x, y, z) . . .

Ψ(p),a(x),Ψ
µ
(pA),aQ

(x, y),Ψ
µν
(pAA),aQR

(x, y, z) . . .

Ψ(ep),ab(x, y),Ψ
µ

(epA),abQ
(x, y, z),

,Ψ
µν

(epAA),abQR
(x, y, z, w) . . .

. . .

(9)
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The first line holds a complex value α that indicates occu-

pancy of the “vacuum” state. The next line gives the pure

photon states. The N photon state has 4 · 2N degrees of free-

dom (dof) in the free case if we have not imposed any gauge

constraints. Below this are the one electron states with the 1,

2, . . . photon states to the right. Below are the one positron

states with the various photon number states then the electron

and positron states with corresponding photon number cases.

The action to describe these as free fields is given by a collec-

tion of independent actions

S (e) =
∫ (

i~Ψ∗aγ
µ

ab
∂µΨb − mΨ∗aΨa

)

dx

S (ee),1 =
! (

i~Ψ∗
ba
γ0

bc
γ
µ

cd
∂µΨda − mΨ∗

ba
γ0

bc
Ψca

)

dxdy

S (ee),2 =
! (

i~Ψ∗
ab
γ0

bc
γν

cd
∂νΨad − mΨ∗

ab
γ0

bc
Ψac

)

dxdy

. . .

(10)

The action for a single particle photon field is

S (A) = −
∫

1
4
FµνFµν dx

= − 1
4

∫ (

∂[µΨ
∗ν]
(A)

) (

∂[µΨ
(A)

ν]

)

dx
(11)

where we have included a complex conjugation. This seems

unnecessary since we generally consider the electromagnetic

field to be real. When we consider the functions that correlate

electron and photon fields we will see that we cannot neglect

it. The two photon actions are∗

S (AA),1 =− 1
4

∫ (

∂
[µ
(x)
Ψ
∗ν]α
(AA)

(x., y.)
)

(

∂(x)

[µ
Ψ

(AA)

ν]α
(x., y.)

)

dxdy

S (AA),2 =− 1
4

∫ (

∂
[µ
(y)
Ψ
∗να]

(AA)
(x., y.)

)

(

∂
(y)

[µ
Ψ

(AA)

να]
(x., y.)

)

dxdy

S (AC),1 =− 1
4

∫ (

∂
[µ

(x)
Ψ
∗ν]α
(AC)

(x., y.)
)

(

∂
(x)

[µ
Ψ

(AC)

ν]α
(x., y.)

)

dxdy

S (CA),2 =− 1
4

∫ (

∂
[µ

(y)
Ψ
∗να]

(CA)
(x., y.)

)

(

∂
(y)

[µ
Ψ

(CA)

να]
(x., y.)

)

dxdy

(12)

where the 1, 2, . . . subscripts on the actions indicate the re-

spective coordinate label x., y. . . . where the derivatives are

being taken. The previous notation we used to distinguish

coordinate order for the Dirac fields is not available here be-

cause of the more complicated index structure and we replace

A and C as field labels withΨ(A) andΨ(C) for the sake of a uni-

form notation when both electrons and photons are present.

Here we explicitly include the coordinates and label the first

∗The “upper” or “lower” state of the particle type labels (AA), (AC), (eA)

etc. have no meaning but are chosen to make the expression as uncluttered

as possible. Summation conventions are in effect for spacetime and spinor

indices.

coordinate, x., in the derivative operator ∂
µ
(x)

and order the

indices in Ψµν to correspond to x. and y. respectively. The

square backets, [ ], indicate antisymmetry over the two in-

dices immediately to their open sides. The first order time

derivative data from the “inactive” coordinates, those not be-

ing dynamically evolved by the particular lagrangian, are in-

cluded with the C labels to get a full set of first order initial

data. Variation of these lagrangians, through a combination

of explicit and implicit expressions, gives the four functions

Ψ
µν

(CPQ )
and eight linear Equations of Motion (EoM) for each

function in each of the two time directions tx, ty.

The (noninteracting) mixed one-electron one-photon ac-

tions on Ψ(x., y.) to generate EoM in each time label are

S (eA),1 =
∫ (

i~Ψ∗,ν
(eA),a

γ
µ

ab
∂(x)
µ Ψ(eA),bν−

−mΨ∗ν
(eA),a
Ψ

(eA)
aν

)

dx

S (eA),2 =− 1
4

∫ (

∂
[µ
(y)
Ψ
∗ν]
(eA),a

) (

∂
(y)

[µ
Ψ

(eA)

aν]

)

dx.

(13)

Generalizations to higher particle numbers from here are ev-

ident but rapidly become onerous. Symmetries among iden-

tical particle types are not required by these actions but it is

not hard to see that imposing them as initial data lets them be

propagated.

To give an interesting theory there must be interactions.

The vacuum u is strictly formal and does not couple to any-

thing. We know that electrons and positrons can annihilate

and electrons/positrons can scatter and produce a photon. The

couplings must be “local” in some sense that we enforce, with

inspiration from QED, as

S (e) =
∫ (

i~Ψ̄∗aγ
µ

ab
∂µΨb − mΨ̄∗aΨa

)

dx

+Λ(e−eA)

S (eA),1 =
∫ (

i~Ψ̄
∗,ν
(eA),a

γ
µ
ab
∂

(x)
µ Ψ(eA),bν−

−mΨ̄∗ν
(eA),a
Ψ

(eA)
aν

)

dx + Λ(eA−eAA)

S (eA),2 = − 1
4

∫ (

∂
[µ

(y)
Ψ
∗ν]
(eA),a

) (

∂
(y)

[µ
Ψ

(eA)

aν]

)

dx+

+Λ(e−eA) + Λ(eep−eA)

. . .

(14)

where the “bar” action over theΨ is hiding a γ0 considered to

be contracted on the active spinor indices. Here we see that

the one-electron field ψ = Ψ(e) feels the electromagnetic field

from Ψ(eA) as we evolve in its time coordinate direction t(e).

The notion of locality for this interaction is chosen so that ψ

feels the field of Ψ(eA) when all three spacetime coordinates

agree. In this case, this gives only a self energy contribu-

tion but will give the usual two body static interaction for two

charges. Conversely, the field Ψ(eA) feels the influence of ψ as

a source where all three coordinates agree when we evolve in

the time direction t
(eA)

2
, the second time label corresponding
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to A. For an electron-positron pair production or annihilation

amplitude we give a similar definition of locality.

Explicitly, the couplings are

Λe−eA = −q
∫

Ψ̄
(e)
a (x.)γ

µ

ab
Ψ

(eA)

µ,b
(y., z.)δ(x. − y.)

δ(x. − z.) dxdydz

Λp−pA =−q
∫

Ψ̄
(p)
a (x.)γ

µ

ab
Ψ

(pA)

µ,b
(y., z.)δ(x. − y.)

δ(x. − z.) dxdydz

Λep−A = ±q
∫

Ψ
(ep)∗
ab

(x., y.)γ0
acγ

µ
cb
Ψ

(A)
µ (z.)δ(x. − y.)

δ(x. − z.) dxdydz.

(15)

The sign of the pair production term is not clearly constrained

here and neither is our choice of where to place the complex

conjugations. Comparison with QED suggests that the sign

be chosen negative and these be the correct choices of con-

jugation and contraction with γ0 factors. The evolution of

the free equations ensures conservation of the stress-energy,

charge and particle number. These coupling terms can in-

troduce relative phase differences at these many-body diago-

nals so can act as source and sink terms for amplitude. The

complexity of the quantum version of the photon is important

in generating these sources and in creating a norm conserva-

tion law that governs the flow of “norm-flux” between these

spaces. Interestingly the conservation of charge and norm

arise from the same global phase symmetry. The electron-

positron field has no net charge yet will have a well defined

norm from the phase symmetry Ψab → eiθΨab in the free la-

grangians

S (ep),1 =
! (

i~Ψ∗
ba
γ0

bc
γ
µ
cd
∂

(x)
µ Ψda−

−mΨ∗
ba
γ0

bc
Ψca

)

dxdy

S (ep),2 =
! (

i~Ψ∗
ab
γ0

bc
γν

cd
∂

(y)
ν Ψad+

+mΨ∗
ab
γ0

bc
Ψac

)

dxdy.

(16)

There is an obvious extension of these interactions to the

tower of fields. We need to discuss why the equal times slice

of the evolution∗ here is most related to what we see and expe-

rience. Before we do this let us consider the electrostatic in-

teraction between two electrons. It has always seemed a little

ad hoc that we impose the two point interaction
q

4π
|x2

1
− x2

2
|−1

for a function Ψ(x, y) in quantum mechanics. Certainly we

can write down a one body wavefunction ψ(x) and vector po-

tential Aµ and impose a classical 4D lagrangian. We find an

electrostatically driven self spreading distribution where the

density of the norm gives the charge density. This is not at

all what we see for the two charge quantum system. No such

self-force is manifested beyond the usual quantum pressure.

∗Specifically, for any many body point of any function of the tower, we

choose all the times corresponding to the spatial coordinates equal: t1 = t2 =

t3 . . . .

Given the fields Ψ
(ee)

ab
(x., y.) and Ψ

(eeA),µ
ab

(x., y., z.), we see

that when we impose the Coulomb gauge that

Ψ
(eeA),t
ab

= Ψ
(ee)

ab
(x, y)

q

4π

(

|~x 2 − ~z 2|−1 + |~y 2 − ~z 2|−1
)

. (17)

The nature of the self-energy for such a theory seems more

opaque than in the classical case where we can consider it

in terms of finitely sized objects [14]. Locality and causal-

ity here are not so forgiving with such a construction and a

constituent based approach would likely require an infinite

number of fields of vanishing mass and charge that bind to a

state of finite extent with the center-of-mass coordinates ap-

pearing as the xµ, yν coordinates in our Ψ
(ee)

ab
. We will not

discuss this point further but should be aware of the compli-

cation in managing self field contributions that affect both the

energy and momenta of particles. Shortly we will see that

even though Ψ
(eeA),t
ab

is nonzero it contains zero norm and that

there is an infinite tower of such nonzero fields above it. This

is not so evident in QFT which we may think of as tracking

the nonzero norm of the fields through the tower. Now would

be a good time to emphasize that these are all classical fields

in a tower of spaces of growing dimensionality. There are no

Grassmann variables, q-numbers or field operators and their

associated commutation relations. These have always been

conceptually dubious or ad hoc constructions on which field

theory is built and the goal of our construction is to show why

(and when) they work.

3.4 Diagonal time evolution

The relationship between the quantum and classical worlds is

an enduring problem. It is not just explaining quantum mea-

surement that is troublesome. Encoding the classical world

in a quantum description is a challenge to do correctly. Naive

approaches have led to such useful results as band theory

and the Kubo relations but ultimately lead to inconsistencies.

One approach is to assume the classical world is a very re-

stricted subset of localized many body wavefunctions that

are sparsely distributed in the total Fock space. The usual

quantum statistics then follow trivially along with an arrow

of time [1,3]. The new problem is justifying such initial data.

In this many time description we have the further challenge of

justifying why we, as observers, seem to observe the universe

of “equal times” and not the vast regions of unequal space and

time locations where the many body quality of the description

is more evident.

Possible explanations for this is that interactions occur at

many body diagonals. Since our observations require interac-

tions this is the part of the universe we see. In general, many

body wavefunctions do not act in a form similar to discrete

state machines which seem to underlie our notions of mem-

ory and consciousness. The special cases do seem to define

our classical world. We will show that the equal times evolu-

tion defines the motion everywhere so all the other regions are
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defined by them and so give no other possible observations of

the world.

As an example, consider the evolution of the two photon

field Aµν(xα, yβ) along the tx = ty axis with respect to t = tx+ty

∂tA
µν = C

µν
x +C

µν
y

∂tC
µν
x = ∂i∂

iAµν +C
µν
x,y

∂tC
µν
y = ∂ j∂

jAµν +C
µν
x,y

∂tC
µν
x,y = ∂i∂

iC
µν
y + ∂ j∂

jC
µν
x .

(18)

It is unclear if this is particularly useful but it does illustrate

how the evolution along the equal times axis is locally deter-

mined in the equal time coordinate t. However, we still need

to evolve spatially in a neighborhood of this diagonal so the

many body and many time propagator approach seems hard

to avoid.

3.5 Quantization of the photon

Here we show that the quantization of the photon inherits

its norm from the purely electron part of the lagrangians.

This is the photon analog to the way that the “reality” of the

Schrödinger electron picks up a contribution from A in the

current jk = ~

m
∇kφ − eAk.∗ This explains how the photon

quantization condition can be a function of ~ despite having

no such factor in its own lagrangian. It is quantized in the

sense that if all the amplitude (normalized to 1) is initially in

the lepton fields then it is all converted to a photon then the

factor ~ω gives the magnitude of the photon norm. Up to this

point we have been using units where c = µ0 = ǫ0 = 1 but

left ~ general. In this section, we revert to full SI units to

emphasize this connection more clearly.

In the free field cases, the usual definitions of momen-

tum, energy. . . follow from the stress tensors for the classical

Dirac and electromagnetic fields regardless of whether they

are real or complex. The one additional conserved quantity

that Dirac fields have is “norm” associated with the complex

global phase freedom. The fields in the tower possess a U(1)

symmetry in the sense that Ψ → Ψeiθ and similar transfor-

mations for every function in the tower leaves the set of la-

grangians invariant. When a fermion and photon field interact

the coupling terms act as complex source terms resulting in,

for example, a complex Ψ(eA) functions as the amplitude of

Ψ(e) decreases. Since this is not generally a separable func-

tion, we cannot say whether the photon or electron part is

complex individually but can predict the phase difference be-

tween the function pair and derive a many body conserved

norm.

Firstly, we can modify the photon lagragian to allow com-

plex fields as

LA =
1

4µ0

(

∂µA∗ν∂
µAν + ∂µAν∂

µAν∗
)

(19)

∗We have neglected the “spin current” fraction here for simplicity.

This is essentially the massless Klein-Gordon field. The con-

served current is

jµ =
i

4µ0

(

∂µAν · A∗ν − Aν · ∂µA∗ν
)

(20)

Consider the case of a complex plane wave solution Ay(x, t) =

Aei(kx−ωt). If this was a real (classical) field there would be no

current and norm would equal zero. For the complex case,

ρ = j0 = A
2ω/2µ0 and jx = −A

2k/2µ0. In computing the

norm for Ψ(eA) we need to use this j0
(A)

and evaluate

N̂(Ψ(eA))=
i

2µ0

! (
∂

(A)
t Ψ

(eA)
aν Ψ

∗ν
(eA),a
−

−Ψ(eA)
aν ∂

(A)
t Ψ

∗ν
(eA),a

)

dx3dy3

= i
2µ0

! (
Ψ

(eC)
aν Ψ

∗ν
(eA),a
−

−Ψ(eA)
aν Ψ

∗ν
(eC),a

)

dx3dy3

(21)

where N̂ is the norm operator defined by j0 for the argu-

ment function. A Dirac field gives a conserved
∫

ψ∗ψ so this

clearly gives the correct electron-photon conserved current in

the noninteracting case so this is the quantity that is conserved

along the equal times diagonal. Let the volume of the space

be V = 1. Now let us investigate the implications of simul-

taneous conservation of energy and norm in a radiative decay

process.

Suppose we start with an excited positronium state Ψ∗
(ep)

that radiates with frequency ω into the state {Ψ(epA),Ψ(epC)}†
and possibly higher photon number ones. The resulting pho-

ton must have the same frequency ω since this is the fre-

quency at which the source term oscillates. The initial norm

for the states is N̂Ψ(ep) = 1 and N̂Ψ(epA) = 0. Our goal is

to find the resulting norms after the transfer is completed, in

these units. This will tell us the ratio of energy to norm trans-

ferred, which we construe as the meaning of photon quanti-

zation.

Assume the resulting function is Ψ(epx) = Ψ
′
(ep)

Aei(kx−ωt)

where N̂(Ψ′
(ep)

) = 1. Since these lagrangians are coupled

the coefficients they define a relative size for them which are

respectively ~ at t = 0 (from the factor in the kinetic term in

the electron and positron lagrangians) and

N̂Ψ(epA) = N̂Ψ(A) = A
2ω/2µ0 (22)

at t = t f . Since these must be equal we obtain the amplitude

of the wave as A = (2µ0~/ω)1/2. The final energy of the

system must be the same with the electron and positron in a

new state with ∆E(ep) = ∆E(epA). The photon contribution is

given by E(A) =
∫

1
2µ0

C2dx = 1
2µ0

A
2ω2 = ~ω. This shows that

to radiate any more energy an additional photon would need

to be generated.

†Note that the notation {, } does not denote anticommutation here. These

are functions and the braces here just indicate a set.
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In quantum mechanics and quantum field theory this is

one of the assumptions that is hidden in the formalism. Since

we are constructing an explicit classical field theory we do

not have such a liberty. It was not, a priori, necessary that a

transfer of energy, ~ω, from a decay between two eigenstates

give a unit norm transfer. We might have had a partial oc-

cupancy of the Ψ(epA) state and not completely emptied the

Ψ(ep) one or had to resort to higher Ψ(epAA...) states to contain

all the norm that was generated by the event. This is the first

actual derivation of the “quantization” of the photon. In this

model, the statement of photon quantization is more precisely

stated that the ratio of energy flux to norm flux between dif-

ferent photon number states is jE/ jn = ~ω, at least for the

case where the frequency of the radiation is monochromatic.

It is interesting that the photon “norm” depends on ~ even

though the only lagrangian with such a factor is that of the

fermions. The coupling has done several things. It introduces

a constraint on one of the components of the electromagnetic

field from the current conservation of the charges. It mixes

the “reality” of the A and ψ fields to give the electron current.

Here we see that it also induces the proportionality constant

in the norm flux of the photon between different particle num-

ber spaces. This relationship between norm and energy flux

may be what underlies the success of the formal commutation

relations for field operators [P̂, Q̂] = i~ [4].

4 Dynamics

We have not firmly established an isomorphism with QED

for a precise subset of initial data. Ideally, imposing the usual

particle symmetries on such data and evolving will match the

usual scattering amplitudes. We have several barriers to do-

ing this. Firstly is renormalization and the singularity of the

coupling terms. The dimensionality of the space is so enor-

mous and the number of nonzero yet norm free subspaces is

infinitely large so finding an economical and compact man-

ner to even start the problem is unclear if possible at all.

Even finding the suitable “dressed” particles to scatter is not

yet accomplished. The largest hurdle to overcome is prob-

ably the fact that no interacting field theory is well defined

by Haag’s theorem. This has been solved here so it might

be unfair to even ask for an isomorphism between the theo-

ries. However, QED has a record of impressive calculations

and the most reasonable notion of “isomorphism” may be

to reproduce these. The foundational aspects of QED were

designed after the fact on the tail of a process of refining

procedures to obtain useful calculations so the inconsistency

of these foundations may not be so important. Let us be-

gin with a process of restricting the subspaces in a fashion

that gives observable particles with enough of the interac-

tions necessary for good approximations. Given the expanse

of QED we cannot do all the work necessary to make a con-

vincing case for this theory in a single paper. Some of this

section is meant to be suggestive of more essential work

ahead, not an exhaustive argument or thorough calculation

to this end.

4.1 Scattering and adiabatic coupling changes

One of the most frustrating aspects of QFT is that the interim

state of the system is clouded in the language of “virtual par-

ticles” and it seems to be not well defined at every time. Our

measurements are confined to in and out states once the in-

teractions are over. This is a formulaic extension to bound

states where the interaction persists but this does not solve

this problem. The current formulation shows that there is a

well defined state at every time. Ironically, the in and out

state picture has more problems at t = ±∞! This is because

the interactions have been “turned off” here so the “virtual

cloud” of many particle states that must always accompany a

particle are no longer there. By adjusting the bare mass pa-

rameter slowly we can make an association with such states

of the same net mass and momentum.

This is already formally discussed in many books. Here

we will make some small changes that don’t affect the re-

sults but make the process a bit more logical. Firstly, notice

that the equations of motion above have been selected to give

the usual propagators in the single time coordinate functions

and the couplings to model those of QED. The role of the

many photon coordinate spaces has been suppressed by the

QED formalism and we see that there are many more spaces

to consider than in the usual treatment. Once we impose

the Coulomb gauge, we see that many of the constraints de-

scribed by the “longitudinal photons” are just nonzero zero-

norm functions in the tower.

If we consider the case of scattering of two particles, say

an electron and a positron, we should properly “dress” them

first. This suggests we partition our tower into a set of higher

photon and electron-positron pair spaces that only couple to

these particles separately. By turning on the interaction pa-

rameters slowly enough we can force the net mass and mo-

mentum of these waves to be the same without inducing any

unwanted reflection. Since we typically work with plane wa-

ves of infinite extent instead of wave packets, we don’t have

a natural way to let spatial separation of packets prevent them

from interacting but we can now use a second adiabatic turn

on that lets these towers now interact and couple to the set of

higher photon and electron-positron pair spaces that include

both of these in more interesting ways. The more flowery

aspects of QED such as “the positron is an electron moving

backwards in time” is removed by our positive mass indepen-

dent equation for the positron and superluminal virtual parti-

cles are now to be understood as a feature of evolving prop-

agators in separate time spaces to arrive at the equal times

result. We will now show that the apparent superluminal con-

tributions to the Feynman propagator is actually a constraint

on consistent initial data not faster than light effects that are

cancelled by a measurement ansatz.
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4.2 Causality considerations

The divergences we see in field theory with interactions are

directly related to the singular nature of the δ-function cou-

pling in the lagrangian. This is usually phrased in the loose

semi-classical language of quantum theory as the “particles

are point-like”. We already expressed that our opinion was

that finer nonsingular structure existed at a level we cannot yet

probe. The oldest method of handling such a situation is with

“cutoffs”. Naively done, these are intrinsically nonrelativis-

tic for reasons of their small nonlocality. We can make them

as mild a problem as possible by choosing them in the local

frame defined by the two body currents at the interaction diag-

onal. Specifically, it is here we need to couple two fields such

as Ψ(e) and Ψ(eA) so that the electron field of Ψ(e) generates

the electromagnetic field in Ψ(eA) as a source at the xe = xA

diagonal. The current jµ(Ψ(e)) defines a velocity v = j/ρ.

This specifies a local frame to construct a spherical region of

radius r0. We can then modify the electromagnetic source in-

teraction term as Ψ̄(e)γ
µΨ(eA);aµδ(x(e),1 − x(e),2)δ(x(e) − x(A))→

Ψ̄(e)γ
µΨ(eA);aµδ(x(e),1−x(e),2) f (v, x(e),Θ(r0−|x(e)−x(A)|)) where

f gives a boost distortion to the r0 sphere in the rest frame de-

fined by the current. As long as the oscillations we consider

are much longer than r0 this has little contribution to nonlocal

and nonrelativistic errors for a long time. It does create a re-

cursive (hence nonlinear) definition. We only expect cutoffs

to be useful when the details of the cutoff are not important in

the result. It is expected that this extension of the usual cut-

off procedure will give new radiation reaction contributions

not present in QED although it is possible that other regular-

ization procedures to cut off integrals may effectively do this

implicitly. The small range of the boost dependent shape of

the cutoff has effects only for field gradients that can probe

it, however, this is exactly the case in the radiation reaction

problem. There is considerable belief that the radiation reac-

tion force and rate of particle creation is not captured by stan-

dard QED and that all such approaches are plagued with the

pre-acceleration problems standard in the classical case [14]

but some useful limits have been derived [10].

The perturbative schemes generally built on the interac-

tion representation yields a time ordered exponential [13, 17]

of terms ordered by the number of discrete interactions in

the terms. The details of this construction allow S F to be

pieced together from forwards and backwards propagators in

a spacelike slice. This results in a propagator that lives out-

side the light cone. Usual arguments [13] tell us that the

vanishing of the commutator of the field operators outside

the light cone is sufficient for causality, an explanation that

sounds excessively hopeful and reaching but all too familiar

to students of QFT. For our initial data formalism there is no

such analog. Firstly let us argue that this unconfined behav-

ior of S (x − y) at tx = ty = 0 is not an expression of acausal

behavior just a statement that the “reality” the initial data has

not been localized to start with. How can this be? We could

start with a classical delta function source and evolve with

this and arrive at a true solution that evolves past the light

cone. The usual answer to this is obscured by the usual cloudy

use of positive and negative energy states in QFT. Here we

have distinct equations of motion or electrons and positrons

so the “negative energy” components are a reality to contend

with and not to be “reinterpreted” through some measurement

ansatz.

To address this consider the case of the classical (massive)

KG equation

∇2φ − ∂2
t φ =

m2

~2
φ (23)

where the propagator has the same problem. Here the initial

data is φ and φ̇. Localizing φ as a delta function gives

φ =
∑

ei(px−ωt)

φ̇ = −i
∑

Epei(px−ωt)
(24)

where Ep = ω(p) =
√

p2 + m2/~2. This shows that whatever

reality is associated with the KG field φ is not localized even

though φ itself is. Interestingly, if we force localization of φ̇

then φ = i(2π)3∑ E−1
p ei(px−ωt) = i(2π)3Gp(x) so it embodies

the delocalized initial data we complain about in the propa-

gator. We can produce a localization of φ and φ̇ by setting

φ(x) = δ(x) and φ̇ = 0 as the particular linear combination

φ(x, t = 0) =
1

2π

∫ ∞

0

dk
(

aeikx+iω(k)t + be−ikx−iω(k)t
)

|t=0 (25)

with a + b = 1 and a − b = 0 so a = b = 1
4

but this will turn

out not to be the interesting solution for coupling of KG to a

positive energy Dirac field.

Our inability to constrain the total reality (charge, energy,

mass, . . . ) of the particle to a point indicates that we have

a constraint on our physical initial data not a measure of the

incompleteness of our basis or a causality problem with our

propagators. It should now not be surprising that a similar

situation arises for the Dirac fields. For a spin up, positive en-

ergy state, localization of all components is inconsistent with

the equations of motion. In coupling the Dirac field to the

KG (or electromagnetic) field we cannot couple a delocalized

Dirac packet to a localized one and the use of the propagator

Gp to build the interaction now is more reasonable that the so-

lution given by (25) since it follows directly from the Fourier

transforms of the couplingsΛe−eA, Λee−eeA, etc.

4.3 Subspace restrictions and resummation

The problems of finding initial data and evolving in an infi-

nite tower of spaces is daunting. The perturbative solutions

embodied in the path integral approach are a way of working

around this without stating it in these terms. The problems of

field theory are often such that a finite perturbative approach

is inadequate. Superconductivity is a canonical example of
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this where this “nonperturbative” behavior delayed an expla-

nation for half a century. Summing over the same diagram-

matic sequence such as with “ladder diagrams” lets us cap-

ture some small slice of the infinite character of the space and

derive new effective propagators where effective mass terms

arise. The number of terms in the total perturbative expansion

grow exponentially so it is unclear if such a sum actually has

any meaning to which we are attempting convergence. We

now know that such series are generally asymptotic so that

there is no meaning to them in this limit. However, these par-

ticularly abbreviated series have been very valuable and are

often capturing essential parts of the physics.

In this article, we are seeking a higher standard of con-

ceptual justification for such sums. Even though we cannot

hope to complete this task in a single article, let us seek a

foundation for such calculations based on the data set and

coupling provided. The self energies have been addressed

through a relativistically valid, if slightly nonlocal, approach

through cutoffs. Consider a single particle of mass parameter

m and momentum p. This should be thought of as including

Ψ(e),Ψ(eA),Ψ(eAA), . . . (and associated CPQ fields) with all am-

plitude in the bottom state but constraints holding in the upper

level functions but no other space couplings. This can be ex-

actly and easily solved with the Coulomb gauge imposed at

each level. Turning up the other interactions through the pair

creation states Ψ(eep),Ψ(eepA), . . . can be done independently

since the couplings between all function pairs, labelled by q,

can be controlled separately. These states acquire little con-

tribution in dressing a lone charge because they add so much

energy to the system although the effects can be larger during

deep scattering events with other charges.

In order to evolve such a system with a gradually chang-

ing interaction term while preserving the net norm, mass,

and charge (observed from a distance) we can control the

m and q parameters and an overall multiplicative constant,

β, of the system. The final observed mass is the net en-

ergy of the system in the rest frame. We assert that the ob-

served charge is determined by the electric flux that we can

observe through large spheres in the A-coordinate subspaces

in Ψ(eA),Ψ(epA),Ψ(eAA), . . . . When a large “classical” body

interacts with such a particle we assume it is broadly and uni-

formly distributed through a large variation in photon num-

ber spaces. This may seem ad hoc but for such a body to

affect a lone dressed charge it must act in all the photon num-

ber spaces available or it leads to spectroscopic filtering of

charge subspace components as they move in its field. Since

this is not observed and we don’t have a clear understand-

ing of how classical bodies are represented with a quantum

description, this seems like a reasonable supposition. These

ideas lead to a prescription to modify the m, q, and β as we

turn up the interaction. We need to be careful here as we

now implicitly have multiple q’s! This has been obscured by

our choice of labeling them the same in our tower of inter-

actions. There is the value qeA that gives the self energy cou-

pling in the towers of strictly photon number increasing states

e.g. Ψ(eA),Ψ(eAA),Ψ(eAAA), . . . and the value qeep that gives the

couplings to the towers of electron positron pair increaseΨ(e),

Ψ(eep), Ψ(eeepp), . . . . Ultimately we want these parameters to

be both the same. This seems to be a nontrivial process and

it is somewhat impressive that the usual QED adiabatic turn

on gets this to work by starting with a completely undressed

charge and a single parameter.

Once we have dressed up lone charges on a subset of the

towers deemed to be sufficiently rich to describe the dynam-

ics of the process of interest, the interactions between them

must be turned up. Given the states Ψe1A and Ψe2A we expect

an antisymmetrized product of the two to give a first approxi-

mation to Ψe1e2A and evolve these new “crossing” interaction

parameters q1,2 gradually and then hold it steady for a much

longer period of time followed by a turn off of the interac-

tions. If these adiabatic processes can be done in a way that

leaves momenta of scattered waves unchanged then we can

infer the actual scattering rates and angles for dressed parti-

cles. To this author, this is the simplest possible way to ar-

rive at the scattering results from a well-posed initial value

formalism. Ultimately, we must try other less restrictive sub-

space restrictions to show that our assumption that they made

a small contribution was valid. There is reason to believe this

actually works and gives the usual QED results and will be a

subject of a followup work.

5 Conclusions

The need for establishing a well-defined space and set of dy-

namical equations for the reality described by QED, and QFT

in general, has been discussed and presented in the form of

a tower of spaces of continuum functions. Subsets of the di-

mensional labels of these spaces give meaning to the notion

of “particle” and symmetries in the couplings and initial data

define “identicality” of them. There have been a number of

subtle issues to confront. Not the least of these is how to give

meaning to the many time labels that arise in such a construc-

tion and why we, as observers built from the fields, should

observe only one time. Such a construction has a number of

advantages. It removes the ad hoc character of the construc-

tion and the need for the notion of “quantum fields.” The

inconsistencies described by Haag’s theorem are resolved by

a partitioning of the tower space into subsets of fixed lepton

number that never couple to the ground state. Most impor-

tantly we have given an explanation for the quantization of

the photon and an indication of the origin of the quantization

conditions for quantum operators and the appearance of ~ in

them.

The biggest downside of this construction is that of com-

putability. QED was built from computations and arose out of

many ad hoc attempts to make sense of observed dynamics on

the part of many stellar physicists. The actual foundations of

the subject are almost a necessary afterthought. Of course, no
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class is taught this way and the foundations must come first

regardless of how flimsy they are. A cynic might worry that

field theory courses are filtering students based on their levels

of credulity or lack of concern with consistency, a possible

advantage in a field driven by extreme publication pressures.

The work here is still hardly complete and it is still to

be shown that such construction can validate the successful

results of QED for scattering. The subject of bound state cor-

rections has been untouched here and an important topic that

needs attention. There is good reason to believe that, ulti-

mately, this theory will have corrections that are not found in

QED and therefore be inequivalent at some level of accuracy.

The subject of the radiation reaction and QED is still dis-

puted. Given that the classical radiation reaction is resolved

by keeping track of the self fields that traverse the extent of

a finite body, one might worry that the renormalization pro-

cedure to handle self energy might be too simplistic and miss

the asymmetric forces that must arise to give the back reac-

tion. A primary motivation for this construction is the incor-

poration of gravity in a consistent fashion with the quantum

world and other fundamental forces. A recent construction by

the author in a classical direction relies on a greatly expanded

gauge group and a flat background construction. Here cou-

plings mock up the “geometric” effects of general relativity

to observers and provides a new avenue for this problem as

discussed briefly in the appendix.

A Gravity

Recently the author has presented a treatment of classical GR,

electromagnetism and the Dirac field on a flat background

that retains the apparently geometric features of GR and yet

puts the fields on a similar footing [3]. The motivation for

this is in promoting the Dirac γµ matrices to dynamic fields

without imposing the vierbein approach. This has a number

of consistency challenges to work out that will not be repro-

duced here. One of the essential features is that the γ0 that

is hidden in the Ψ̄ has to go. We must replace all the Ψ̄’s

with new independent fields Φ’s that implicitly do the work

of them. The quadratic nature of the equations then become

bilinear and, while the fields may not evolve causally, it can

be shown that the gauge invariant reality of them do. Promot-

ing the γ
µ
ab

matrices to dynamical fields necessitates that we

reinterpret them as vectors in the µ index and scalars in the

a, b indices. This seems at odds with the usual SU(2) repre-

sentation theory. This can be resolved by keeping track of the

gauge invariant quantities and allowing new rules to actively

boost fields in the space. The various details surrounding this

are discussed in Chafin [1].

The metric and its inverse can be defined in terms of these

fields as
gµν = −4−1Tracγ

(µ

ab
γν)

bc

gµν = Inv(−4−1Tracγ
(µ

ab
γ
ν)
bc

),
(26)

however the complexity of the inverse definition makes it

more convenient to define an auxiliary field λµ and define the

γ matrix with its index down

gµνδac = −2−1{λµ, λν} = −λ(µ, λν)

gµνδac = −2−1{γµ, γν} = −γ(µ, γν).
(27)

Some dynamic interaction terms will then lead to these forc-

ing of the inverse matrix relation for the trace of these at low

enough energy e.g. through the “Higgs-ish” coupling in the

action

S c = M |gµν(γ)gνρ(λ) − δρµ|2 (28)

for a large “mass” parameter M.

In our many body tower of functions we need to ask how

the couplings with such a gravity field γ
µ

ab
would work. Mod-

eling it on the electromagnetic field by introducing γ and λ

labels to Ψ as in Ψν
(eAγ),µ,abc

(x, y, z) has some appeal in think-

ing of gravitons as correlated with other particles but is prob-

lematic in the details. When we look at the modified Dirac

lagrangian we find that there is always an extra µ index to

accommodate:

L = i(φaγ
µ
ab
∂µψb − ∂µφaγ

µ
ab
ψb) − 2mφaψa (29)

Furthermore the γ function will need to span the full coor-

dinate set of the function it is evolving. For example, when

we wish to evolveΨ(eA)(x, y) in the te direction we must mul-

tiply by a function γ
µ

ab
(x, y) so that the x(A) = y coordinate

must still be present even if it is only in a passive role. For

these reasons it seems important to include not just a dual

field Φ(eA) to go with Ψ(eA) but an independent γ
µ
(eA)

(x, y) field

to contract with the derivative operator ∂(e)
x . Note that we have

labeled the gravity function γ
µ
ab

with the electron and photon

coordinate labels not some new graviton coordinate and it has

only one µ and two a, b indices. This will persist regardless

of how many coordinate functions are embedded in it. Thus

the tower of functions of electron, positron and photon fields

(and their Φ associated fields) has an associated tower

γ
µ

(A),Q
(x), γ

µ

(AA),abQR
(x, y) . . .

γ
µ
(e),ab

(x), γ
µ
(eA),abQ

(x, y), γ
µ
(eAA),abQR

(x, y, z) . . .

γ
µ

(p),ab
(x), γ

µ

(pA),abQ
(x, y), γ

µ

(pAA),abQR
(x, y, z) . . .

γ
µ

(ep),ab
(x, y), γ

µ

(epA),abQ
(x, y, z),

, γ
µ

(epAA),abQR
(x, y, z, w) . . .

. . .

(30)

This allows these functions to be straightforwardly coupled

into the electron, positron and photon lagrangians using the

mapping gµν = −8−1Tr{λµ, λν}.
The problem now is reduced to giving an evolution equa-

tion for these various γ
µ

ab
functions in each of the implicit

time directions. The Einstein-Hilbert action S EH =
∫

R
√
g..
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suggests a start. The measure can be extracted from gµν =

−8−1Tr{γµ, γν}. The geometric meaning of these terms is not

clear but it is not necessarily required. We know that we want

GR to arise in some, probably uncorrelated classical limit of

particles over the energy scales we currently observe but be-

yond that we only require that we have a well defined set of

evolution equations. Define the Riemann operator R̂(e)i
to be

the Riemann function of the connections Γ(λ, γ) in terms of

the two associated gravity fields where all the derivatives are

taken with respect to the x(e)i coordinate label, ith electron la-

bel, in the γ(eee...ppp...AAA...) function. The interactions are pro-

vided by the remaining classical lagrangians that now needs

no delta function to localize the interaction.

The global gauge freedom we associate with norm Ψ →
Ψeiθ and Φ → Φe−iθ does not involve the γ functions so

it seems to not acquire or lose amplitude in the fashion of

particle creation so exists as a new kind of field entity that

makes gravity seem fundamentally different than the other

fields even though the geometric nature of the theory is sub-

verted in favor of a flat background formalism. It seems that

any generalization of this theory needs three fields (with var-

ious particle label sets). It would be interesting to see if there

is some high energy unification which treats them in a more

symmetric fashion.
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An emergent theory of quantum measurement arises directly by considering the partic-

ular subset of many body wavefunctions that can be associated with classical condensed

matter and its interaction with delocalized wavefunctions. This transfers questions of

the “strangeness” of quantum mechanics from the wavefunction to the macroscopic ma-

terial itself. An effectively many-worlds picture of measurement results for long times

and induces a natural arrow of time. The challenging part is then justifying why our

macroscopic world is dominated by such far-from-eigenstate matter. Condensing cold

mesoscopic clusters provide a pathway to a partitioning of a highly correlated many

body wavefunction to long lasting islands composed of classical-like bodies widely

separated in Fock space. Low mass rapidly delocalizing matter that recombines with

the solids “slice” the system into a set of nearby yet very weakly interacting subsystems

weighted according to the Born statistics and yields a kind of many worlds picture but

with the possibility of revived phase interference on iterative particle desorption, delo-

calization and readsorption. A proliferation of low energy photons competes with such

a possibility. Causality problems associated with correlated quantum measurement are

resolved and conserved quantities are preserved for the overall many body function de-

spite their failure in each observer’s bifurcating “slice-path”. The necessity of such a

state for a two state logic and reliable discrete state machine suggests that later stages of

the universe’s evolution will destroy the physical underpinnings required for conscious-

ness and the arrow of time even without heat-death or atomic destruction. Some exotic

possibilities outside the domain of usual quantum measurement are considered such as

measurement with delocalized devices and revival of information from past measure-

ments.

1 Introduction

The interpretation of quantum measurement has been a con-

founding topic since the early days of quantum mechanics.

Approaches have ranged from very formulaic as in the Co-

penhagen interpretation to the many worlds view and deco-

herence [7, 9, 15, 16]. The statistics derived from these are

typically excellent. Their accuracy for some systems that

have some mix of classical and quantum character is still de-

bated. Questions about locality and causality regularly arise

in the case of correlations [1]. The purpose of this article is to

show that a unification of classical and quantum worlds under

the same description is easy given the right set of questions

and that quantum statistics arise naturally from the dynam-

ical equations of motion (and conservation laws). Specifi-

cally, the sorts of states that lead to observed classical mat-

ter arise in a natural way from a primordial delocalized and

nonclassical gas due to contraction and the relative cheapness

of creating low energy photons. The photon induced inter-

actions of the induced clusters and massive proliferation of

photons, hence increasing dimensionality of the space, will

then lead to a kind of “slicing” of the space into many classi-

cal subspaces in the overall Fock space. The independence of

these are long lasting when their particle numbers are mod-

estly large and slow delocalization is “resliced” regularly by

the interactions of delocalizing particles with the condensed

matter portions of the system. The small particles that are ca-

pable of delocalizing on small time scales are mediators for

further partitioning of the space with the probabilities given

the square of the amplitude of its wavefunction∗.

Any emergent discussion of measurement invariably runs

into the need for the many body wavefunction. This is a high

dimensional object and we typically have small particles with

delocalization to measure that then interact and produce “col-

lapse”. This implies some separability in the net wavefunc-

tion. Any such explanation of quantum measurement must

explain the following

1. The kinds of wavefunctions that correspond to classical

matter and their origin;

2. The separability of the classical world from the isolated

evolving quantum one;

3. The statistics of the interaction of the two.

One point often overlooked is that measurements occur at par-

ticular times and this is measurable. A delocalized packet of

∗Here we are referring to the one body wavefunction, ψ(x), that arises

from ejection of a localized particle from classical-like matter which will

produce a near product function ΨN ≈ ΨN−1ψ(x) up to symmetrizations.

The framework here will help us extend measurement theory for the collapse

of correlated delocalized particles in a causal manner.
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an atom incident on a surface will give both a location and a

time. Invariably this leads to some vague discussion involving

the uncertainty relations, ∆x∆p ≥ ~/2 and ∆E∆t ≥ ~/2, how-

ever our concern is how the duration of a position measure-

ment relates to the localization in any one slice. Our goal here

is to produce a theory that has no operators or such relations

as fundamentals to it. Rather we seek initial data and an evo-

lution that deterministically arrives at the statistics and evolu-

tion we see and, ultimately, gives an explanation for the rather

special subsets of wavefunctions that correspond to classical

objects and the classical world.

This article will unfold as follows. First we discuss a delo-

calized cooling gas with proliferating photons and how these

influence condensing clusters to produce islands of classical

behavior for the condensed matter in the many body wave-

function. These are long lived and promote an arrow of time

until the system recontracts and becomes relatively photon

poor. To achieve this we need a description of matter with

photon fields of varying number. Recently it has become pos-

sible to subsume the dynamics of QED in a many coordinate

and many time classical field theory formalism where the ob-

servers perceive a world with equal times only [5]. This for-

malism and its associated many body conservation laws will

be utilized to provide qualitative wavefunction descriptions

of measurement as well as quantitative statistics. Next we

discuss how the usual measurement statistics follow for such

a system through “slicing” over delocalized particle coordi-

nates with such condensed matter states. A nonlinearity, hid-

den while using the usual operator formalism, arises in the

generation of radiation fields that removes some of the para-

doxes in equilibration for purely linear operators on a Hilbert

space. Finally, we use these structures to investigate some

paradoxes in quantum mechanics, place some bounds on vi-

olation of Born statistics and suggest experiments to reveal

such behavior.

2 Classical genesis: a first look

The primordial state of the universe is expected to be a gas

that cools and condenses into stars and dust. If the photon

number is zero and there are N particles, we expect a sin-

gle wavefunction Ψ to describe this state∗. It is clear, that a

general such function is not describable by some mapping

to hydrodynamics as a commutative mapping of Ψ(X) →
(ρ(x), v(x)) where the left hand side is governed by the Schrö-

dinger equation and the right by Navier-Stokes. The states on

the left are just too large. Instead of making an argument that

the system should settle down to such a state we accept that

this may never arise. It is the author’s opinion that classical

behavior arises from condensed matter and the proliferation

of photons and that it is then induced on gases so we continue

our story with nucleation.

∗We ignore the role of virtual particles to this approximation.

Nucleation theory is still in a theoretically very unsatis-

factory state and errors in nucleation rates are measured in

orders of magnitude. However, this is fortunately not a com-

plication to the relevant parts of our discussion. When the

atoms of a gas condense into a cluster, a large number of

photons are released. This means that we have now both in-

creased the mean photon number and occupied a large region

of Fock space. The ground state of a cluster of N-particles

is nearly spherical (through some polygonal approximation)

and rotationally invariant. This seems initially paradoxical.

No discrete crystal has rotational invariance. The resolution

follows from the fact that these are 3N dimensional wave-

functions. The translation is given by three of these and the

rotational freedom by two more. Rotation always requires

radial excitation, as we see from the case of the Hydrogen

atom. In the case of a large cluster, this radial excitation

is a centrifugal distortion. The rotationally invariant ground

state has no well defined atom location, even if the structure

is crystalline in that we cannot find peaks at locations ri so

that Ψ ∼
∏

S (xi − r j). The states where such arises, as in the

physical states we observe, must then be manifested by the

cluster being in a mixture of high rotational eigenstates (even

if having net angular momentum zero).

A surprising complication is that any classical body is in

such a mixture of states so, even at “T = 0” it is far from

its own ground state. The kinds of condensed matter we en-

counter have well defined shape, orientation, etc. They define

a “classicality” that is very specific, three dimensional and

Newtonian, and far-from-eigenstates. A solid can be specif-

ically described and phonons given as excitations of the lo-

calized cores along particular many body diagonals and are

eigenstate-like despite the ultimately transient nature of the

classicality on which their description depends [4]. We now

are compelled to ask how such apparently omnipresent states

can arise.

Consider a pair of irregularly shaped bodies, A and B,

that are spatially separated, but suffering delocalization about

their centers of mass, and are bathed in a sea of photons. Let

these be in their ground states initially. A photon that trav-

els from far away and casts a shadow from body B onto A

gets absorbed and produces a localized excitation on them.

In the case of absorption by A the surface builds up a history

through local heating or chemical changes. After many such

photon events the body A has a record of the shape of body B

in this shadow. Of course, some fraction of the amplitude of

each photon gets absorbed by B or flies past without interac-

tion. If the bodies A and B had localized atomic constituents,

then their boundaries would be well defined and the shadows

sharp. Since this is not the case we have to ask what hap-

pens. We can consider each to be a superposition of states

that are in various angular orientations. This is reasonable

since the centrifugal forces of these many angular states are

small and make little deformation of the bodies. Each such

case produces shadows that are well defined so we have a
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macroscopic superposition of all the configurations with well

defined orientations and atomic locations. The crucial part is

how this then evolves.

Given a superposition of nearly overlapping macroscopic

bodies in a space with no photons the energy change is huge.

Atoms cannot sit on top of each other without inducing large

repulsive forces from their electronic structure. However, for

a system with a huge variation in the photon number states,

such slight changes can easily have different photon numbers

so be, ostensibly, at the same location but in different pho-

ton number spaces. This allows an apparent overlap with no

energy cost. Specific details of this rely on an initial value

(rather than operator based) description of low energy QED

described in [5] and summarized below. Since the delocal-

ization rate of large N objects is very small, such states can

then evolve for long periods of time with essentially no inter-

action between them. Ultimately, we are such objects. Our

very consciousness and memory depends on our being reli-

able discrete state machines. Once the expanding and cool-

ing universe is so partitioned we have a set of “many worlds”

that are sufficiently separated in Fock space to be insulated

from each other. Of course, this is not expected to persist.

In a gravitational contraction or long term stagnation, these

worlds will come back together and the “information” made

up by these separated worlds will be lost. This is an appealing

way for the arrow of time to arise naturally despite the time

reversal symmetry of the equations of motion. To be fair, this

is a very vague and qualitative discussion. Now let us try for

a more specific, but less general case in an attempt to justify

this partitioning of the many body wavefunction.

3 Classical genesis: cluster collisions and photons

Here we give a justification for the “sparse worlds” state that

we claim is a set of many-body wavefunctions that corre-

spond to classical condensed matter objects (plus gas and a

few delocalized particles). By this we mean that the solid

and liquid objects have well defined boundaries, shapes and

orientations as 3D objects but encoded in the N-body space

of atoms where these atoms have well defined locations to

within some localization distance determined by the electro-

nic bonds between them. Of course, such a state is not an

eigenstate. Each body will tend to delocalize both radially

and in location. Such a state is an unfathomably complicated

mix of eigenstates of the true system yet it makes some sense

to think of the excitations of the bodies in terms of collective

phonon modes as eigenstates in such clumps of matter.

Matter begins in the universe as a gas that collapses into

stars and explodes to create the clusters that condense into

dust that eventually coalesces into planets and other rocky

objects. The gas undoubtably begins as delocalized and “cor-

related” in the sense that the particles have no well defined

3D locations so the many body Ψ cannot be represented as

some symmetrized N-fold product. The implications of this

are rarely considered. How does classical hydrodynamics

arise in such a system and lead to stars of well defined lo-

cation much less the larger scale density structures we ob-

serve? Is this classical localization a result of some product

of our consciousness in creating a “measurement”. This is

pretty unpalatable to most scientists. The alternative is that

such condensing occurs but the resulting stars have no well

defined location, particle number, boundary and orientation

relative to one another. Such a universe is a truly many body

object and how it would “look” to an observer injected into it

is not clear. Later we will see that the consciousness required

for observation may be incompatible with such a universe.

The resolution we suggest is that this is the true state of

the early universe and it is the presence of condensed matter

that “slices” the space into a well defined collection of stars

of well defined locations and velocities. The collapse picture

implies that only one such state is selected and exists. In this

picture, the the coordinates of the observer contain copies of

the “observer ⊗ system” that cease to be the same for all val-

ues of the system coordinates. This divides the wavefunction

of the many body space into a collection of independently

evolving states of well defined 3D structure with long last-

ing independence and duration. We can then think of quan-

tum measurement as the “auto-fibration” of the macroscopic

world over the coordinates of the measured particle.

Consider a classical-like block of matter floating in space.

A superposition of a star at two locations shining on such a

block creates a superposition of the block in the star’s coor-

dinates. If we view the block as a measurement device that

is recording observations in the changes in its surface under

the influence of photons from the star, then it “observes” its

own history to have the star at one continuously connected

path of locations. It now has a double life as two blocks with

different histories even though the number of coordinates has

not changed. Its classicality has been compromised (albeit in

a very minimal way) by the influence of the delocalized star

even though the star and the block are widely separated and

the net mass and energy transferred by the photons is typi-

cally miniscule. The “measurement device” has not forced

a change in the larger system. Rather, the larger system has

induced a change in the measurement device so it now follow

separate paths in the many body space. This is possible, in

part, due to the massive size of the many body space and its

capacity to hold many classical world alternatives as distinct

for long times. Note that the size of the block compared to

the superimposed object is irrelevant in producing this effect.

The problem then amounts to the creation of such a set

of classical-like bodies distributed in a set of sparse worlds

embedded in the many body space. As a prototype world

consider a collection of dust of different sizes, shapes, orien-

tations, internal excitation, positions and velocities. These be-

gin as a highly correlated system that has no classical mean-

ing despite having formed solid matter. Let us start with an

idealized simple system to discuss the mechanism. Consider
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two solid balls of radius r but nonspecific location and ve-

locity in many body space described by a cube of length L.

Ignoring internal degrees of freedom, we can consider the

system to be a 6D wavefunction in an L6 cube with excluded

volume given by the 2 body cylindrical projection of the in-

terior of the sphere. At higher energies the wavefunction will

tend to have oscillations much smaller than the radius λ ≪ r.

The state of the system in terms of eigenstates is assumed to

be of a broad energy distribution ∆E & <E> and have ran-

dom phases or have evolved for a long but random length of

time. Such a condition is necessary to have fluctuations in

the many body current J . The energy density and fluctua-

tions then tend to uniformly fill the box and we have a soup

of high frequency and highly varied oscillations bound by the

excluded volume.

So far we have said nothing about photons. Let us as-

sume there are none to start with. Currents induced by the

fluctuations in the wavefunction produce flux on the bound-

aries of the excluded volume. Classically this corresponds to

the collision of two spheres with velocities given by the two

velocities

v1, v2 =
J
P

given by the 6D current J and density P at the coordinate

X = (x1, x2). Depending on the angle and relative speed of

the collision, a certain number of photons are created in the

event. Photons are exceedingly inexpensive at low energies.

This has led to the infrared divergence problem in QED where

an unbounded number of low energy photons get created. Our

finite box regularizes this to some degree but for short enough

collision times no such problem arises since they cannot tra-

verse the box during their creation.

A small change in the location of the collision creates a

different number and set of photons. Thus one location can

generate a large occupancy in the tower of spaces Ψbb, ΨbbA,

ΨbbAA,ΨbbAAA,ΨbbAAAA . . . where b indicates the coordinates

of each ball and A are the photon coordinate labels. In a short

time, the current flux at that location can be very different and

generate a very different occupancy the the ball-photon wave-

function tower (Fock space). Once each small current fluctua-

tion is completed, the higher photons spaces have acquired an

occupancy of localized spatial position in the b-coordinates

(defined by the length of time of the local fluctuation in cur-

rent) and a broad number of photon waves moving away from

it in the A-coordinates. The long time limit we argue is of a

sum of such states distributed among the tower with almost all

the amplitude having left theΨbb state. These can now evolve

with no quantum interference of other states (since all b and

A coordinates would have to match up in one of the towers for

this to happen). By “long time” we mean long enough for the

currents in the Ψbb state to have had time to have all reached

the excluded volume surface and hence pushed amplitude up

the photon tower, τ & L/Min(v1, v2), but not so long as to

cause delocalization of the amplitude in each n-photon space

so these begin to interact and interfere.

The actual process “in vivo” of the universe is of course

more organic and occurs while the dust is forming. It must

create the orientation of the dust as well as select these sub-

slices to have well defined atom number in each. It seems

that the cheap and plentiful photon along with dust formation

is what drives the formation of these “classical worlds” as iso-

lated long lasting packets in the many body space. Quantum

mechanics then arises for each of these universes by the ac-

tion of condensed matter as discrete state machines. Clearly

this process cannot persist forever. The universes will delo-

calize, meet, possibly gravitationally collapse and get driven

to a density where the full correlated structure of the universe

matters.

4 Measurement

Part of the formalism of quantum mechanics has been to use

Hilbert space and eigenfunctions of operators to give mea-

surement results.

These Hamiltonians are often effective Hamiltonians of

subspaces created by the kinds of localized “classical” states

described above. This introduces a kind of metastable fea-

ture to the evolution that is connected with the duration of

the classical nature of the external world. One has to won-

der what the role of the eigenstates are in arriving at mea-

surements, specifically how one collection of matter indicates

one particular operator and spectrum. In the case of position

measurements, we see from above that the system has parti-

tioned itself so that measurement of particle location is inher-

ited by the special independently evolving nature of the clas-

sical states. In this case we say the system has been “sliced”

in a manner that gives it its classical character but not into a

subset of eigenstates of the net or any obvious subset of the

Hamiltonian. We assert that momentum, energy and other

measurements are universally inferred from position data e.g.

a local color change in a material or spatial measurements at

different times. It has already been long debated how gen-

eral a measurement can be made from an arbitrary linear self

adjoint operator (LCAO) and it is this author’s opinion that

position and time measurements are the fundamental sort that

arise and all others are derivative.

Note that our “measurement” process has nothing to do

with consciousness of an observer but of a specific property

of condensed matter in a photon rich environment. In fact,

photon production at low energies is so cheap that it is hard

to conceive of a measurement that didn’t produce copious

numbers of them. Let us now consider temporal effects and

measurements. It is inevitable that temporal effects arise.

Wavepackets can be delocalized and measurement devices

can move. This makes it clear that the measurement oper-

ator x̂ is going to have some insufficiencies. Furthermore,

measurement devices have finite spatial extent. Screens are

essentially 2D so they are typically only picking up a tiny
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fraction of a wavefunction’s motion at any time.

To illustrate these points consider a narrow single particle

packet incident on a screen with a couple of adsorption sites

as in Fig. 1. We can simplify this by breaking it up into a

set of disjoint regions of support as in Fig. 2. The duration

of an adsorption event is not related to the length of a packet

but the radiation time for the electronic decay that produces

binding. For simplicity let the binding action be mediated

by the release of a single photon of energy E so the radiative

process has a time scale τ ∼ ~/∆E. Let the parcels be roughly

monochromatic so they have a well defined velocity v = j/ρ

and the parcel widths w ≈ vτ. A parcel separation of nw lets

the adsorption events be well separated.

When a subparcel reaches the site at x0 it adsorbs and cre-

ates a photon so that some amplitude flows from ψ(x)ΨN , the

photon free wavefunction of the system, to ΨN+1,A, the single

photon and N+1 particle wavefunction with a radiation field

flowing away from it. The operator formalism obscures some

features of this problem so we invoke an equivalent formal-

ization of low energy QED by using a many time approach

where one body equations of motion hold for each time coor-

dinate in the many body tower [5]:

...

ΨN,AAA

ΨN,AA

ΨN,A

ΨN

(1)

We call this theory “deterministic wave mechanics” (DWM)

in contrast with the formal operator and path integral formu-

lation of the theory. A basis of states in each photon number

space is given byΨ
(m)

N
Am whereAm is a stationary state in the

space spanned by Ai1 ⊗ Ai2 ⊗ . . . ⊗ Aim of complex 3-vectors

fields for photons∗. The net norm and energy are conserved

in such approach when they are defined as

N̂(ΨN,n)=
∫

dx
i1
s . . . dx

iN
s Ψ̄NΨN

+ 1
4µ0

∫

dx
i1
s . . .dx

iN
s

∫

dx
i1
A
. . . dx

in
A

∑n
k=1

(

Ψ̄i1...in∂
t
ik
A

Ψi1...in − ∂t
ik
A

Ψ̄i1 ...in Ψi1 ...in

)

=
∫

dx
i1
s . . . dx

iN
s Ψ̄NΨN

+ 1
4µ0

∫

dx
i1
s . . .dx

iN
s

∫

dx
i1
A
. . . dx

in
A

∑n
k=1

(

Ψ̄i1...inN̂A
k
Ψi1...in

)

.

(2)

∗Coulomb gauge is assumed for every coordinate label so that the Ψ
µ=0

N,1
,

Ψ
ν,µ=0

N,2
, etc. components are fixed by constraint.

EN,k =Ψ̄N,k

(

∑N
i=1 Êsi

N̂1...̂i...NN̂A
1...k
+

+
∑k

j=1 ÊA j
N̂1...NN̂A

1... ĵ...k

)

ΨN,k

(3)

and we evaluate on the equal time slices t � tnet = t
i1
s = t

i2
s =

. . . = t
i1
A
= t

i2
A
= . . . . The operators N̂s and N̂A are the one

body norm operators for massive and photon fields respec-

tively. The operators Ês and ÊA are similarly the one body en-

ergy operators. The many body versions are simply concate-

nations of these where the “hatted” indices are excluded. The

definition of Ψ̄ for Dirac fields is to apply γ0’s to all the spinor

indices of Ψ (which have been suppressed here). Here we are

interested in atomic center-of-mass wavefunctions. For these

we simply require the transpose conjugate.

Using this picture we can derive the long time states of the

system. The radiative decay occurs at frequency ω with an

envelope of duration τ as in Fig. 6. The atom binds a location

x0 with a mean width of d so that it may be represented by

a peaked function δd(x − x0) akin to a delta function of finite

width d. Assume the first peak arrives as time t = 0 and that

there are only two equal pulses that contain all the amplitude

of ψ. Initial data at t . 0 is

ΨN+1 = ΨNψ(x, 0)

= 1√
2
ΨN (δw(x − x0) + δw(x − x0 − wn))

ΨN+1,A = 0

...

(4)

The final wavefunction for t > t′ = 2τ + nτ is

ΨN+1 = 0

ΨN+1,A ≈ 1√
2
ΨNδd(x − x0)

(

1
r

ei(kr−ωt)h(r − ct)

+ 1
r

ei(kr−ω(t−t′))h(r − c(t − t′))
)

eiφ(t)ǫ̂κ

ΨN,AA = 0

ΨN,AAA = 0

...

(5)

We have implicity assumed the block is essentially trans-

parent and the radiation flies unobstructed into infinite space.

(The orientation of the radiation field ǫ̂κ is determined by the

direction of the dipole produced by the radiation. This may

be a superposition of such solutions and a function of the lo-

cal geometry of the solid. For now we neglect its details.)

The meaning of this solution is that the wavefuction support

has exactly partitioned into two parts. The “reality” of a clas-

sical field can have some surprising subtleties† [3]. In this

†We can consider this as the “Schrödinger” and “first quantized” analog

to usual QFT formalism in terms of field operators.
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case the support and its values there contain all the mean-

ing there is to the system. We see that we have two bound

states that occurred at times t = 0 and t = t′. The packet

is flying away from the location X ≈ x0 ⊗ X(0) at c in the x

direction when viewed in the equal times coordinate t. The

motion in the material coordinates is essentially static unless

some other dynamics were present to start with. If we con-

sider the block to contain a discrete state machine as in Fig. 3

that has internal dynamics that makes a record of when the

event occurs, then each one exists in a kind of parallel uni-

verse with a record of a different time. Unless these photon

coordinate portions of the packet are reflected or forced to in-

terfere, this situation continues in perpetuity and each evolves

according to their own record of their particular past. Should

they generate their own delocalized particles and repeat this

experiment they will find the Born-like ψ∗ψ probabilities for

when the measurement occurs. This is a direct consequence

of the above norm conservation law. Ultimately the delocal-

ization can only go on so long before the “classicality” of

the system fails. The consequences of this we will soon con-

sider.

Let us now consider a broad packet that intercepts the

screen at the same time as in Fig. 4. Analogously to above,

let us consider this to be broken into two parts with the width

of the measurement centers and less than w = vτ as in Fig. 5.

Here a similar analysis yields a resulting pair of packets ra-

diating outwards from the two centers at the same time. Our

system now seems to be split into two spatially distinct parts

as indicated by the outer product in Fig. 7 where the radiative

field shells have been suppressed. These shells are no longer

disjoint but contain a finite volume fraction of overlap. For

farther apart centers this is of order w/R(t) where R(t) = ct.

To the extent this overlap remains negligible, these solutions

remain disjoint and evolve as separate worlds.

This is a good point to pause and reflect on what overlap

of these systems means for evolution. The emphasis on lin-

ear operators and Hamiltonians leads one to believe that any

superimposed world is equivalent to each world evolving sep-

arately. As such, when one decomposition evolves it is hard

to see how anything interesting can really happen. However,

there is a hidden nonlinearity in our problem. The classical

radiation reaction problem holds a nonlinearly due to current

acceleration which is best thought of in terms of finite sizes of

radiators and crossing times [11]. Our radiation fields can be

thought of in a similar fashion with a small unknown struc-

ture involving many hidden internal coordinates. The “radi-

ation reaction” now must transfer both four momentum and

particle norm at the interacting two-body diagonals that con-

nect the states in the Fock space tower. The implications of

this is that overlapping of states in the Fock space do not sim-

ply superimpose so there are no true eigenstates when photon

interactions are included. This is to be expected. If we super-

impose the eigenstates ψ2p and ψ1s of the Hydrogen atom then

it is the presence of the current that drives amplitude from ψH

Fig. 1: A long narrow packet illustrates the measurement of event

time at a particular location and how these can lead to a persistent

slicing of the space (up to the delocalization time of the device) in

an infinite space.

to ψH,A. In the low energy limit the Hydrogenic states are sta-

tionary but the overlap drives the transition to higher photon

levels. This is an intrinsic nonlinearity that is obscured by

the formal operator description of quantum field theory. It is

unclear if this is adequately accounted for in quantum field

theory through its operator calculus.

Fig. 2: An idealized sequence of packets of a single incident particle.

5 Slice memory and revival of measurement history

One of the unpleasant features of the many worlds interpreta-

tion is that the size of the universe seems to grow. In this and

all “interpretations” of quantum mechanics, the role of the

measurement device and how and when it acts lacks speci-

ficity. The action of the “observable” associated with each

such device is not clearly determined by the microstructure

of the device. The DWM theory here addresses each of these

and lets us ask some new questions that may take us outside

the bounds of traditional quantum theoretical problems. One

of the obvious questions is to what extent is the measure-

ment a complete destructive event (at least from the perspec-

tive of the observers). Can we somehow undo measurement

and recover some of the delocalization and phase informa-

tion from before? Now that we can nanoengineer systems

and create extremely cold ones, highly decoupled from the

external world, other quantum domains can be probed. A

molecular two-slit experiment was recently realized [10]. In

the measurement direction what happens when a measure-

ment device itself has a mass comparable to the delocalized

system it measures? Is there a measurable “back reaction” to
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Fig. 3: A measurement device with a coupled observer or pro-

grammable device to respond to observations.

Fig. 4: A narrow one-particle packet incident on a detector surface.

the measurement event? If a measurement device is partially

delocalized itself how does this affect the measurement once

we then slice the measurement device so it is back in the fully

classical domain of our experience?

5.1 Wavefunction revival: inverse measurement

On the topic of slicing of the space into independently evolv-

ing subspaces we have introduced the restriction on the form

of macroscopic matter that gives a classical limit for dynam-

ics. This was far more restrictive than the rather naive Ehr-

enfest-limit defined by large mass and moving packets [12].

The continuing lack of overlap given by large mass induced

slow spreading and the rapid motion of light speed packets

in the A-coordinate directions into an empty space help pre-

serve this “many-worlds” picture for long times. Constraints

on the space that photons can move about in leads to greater

overlap possibilities and opportunities for such slices to in-

teract through radiation absorption and production however,

since low energy photons are so prolific this kind of interfer-

ence may be difficult to engineer in practice. Nevertheless,

we should investigate the possible bounds on slice indepen-

dence.

Consider the example system given in Fig. 5. Generally,

there are going to be internal motions and radiation fields that

exist in any such large body. Let the incident atom be distinct

from those of the device so that it is unconstrained by sym-

metry and the binding to the surface can be much less than

that of the device particles to each other. We can imagine a

situation where we heat the block and the atom ejects and de-

Fig. 5: An idealization of the narrow one-particle packet into local-

ized subparcels.

Fig. 6: The absorption of a particle at a site is correlated with radia-

tion field moving away from the selected location.

localizes then is pulled back to the surface by an external field

such that this process is iterated. The CM of the device grad-

ually delocalizes (at a much increased rate) from this process.

If this system is closed then the photon number will gradu-

ally increase as the battery driving the process loses energy.

This tells us that the system is undergoing important changes

and so reejecting the particles may not create a system that

interferes with previous slice histories. On the other hand, if

the system is in a finite volume, the radiation fields can all

be contained in this finite space so that past slices eventually

can interfere if the photon number does not grow much faster

than the number of iterations.

It is simpler to consider the case of a photon that is ab-

sorbed at a pair of sites and then ejected as in the process

ΨN,1 → ΨN,0 → ΨN,1. The release times for the two slices

may vary over a large range but, if we restrict ourselves to

looking at the fraction of amplitude that occur at the same

time (e.g. by use of a beam chopper on the input and ejected

flux), then the phases of the resulting two components of the

single photon may be compared. After absorption, the system

is a photon free wavefunction consisting of a superposition

of two different internally excited states that evolves accord-

ing to the net mass-energy in it. The relative phase of each

space is fixed by the phase difference of the original photon

at the time it was absorbed by the two sites ∆φ = φ(x1, t =

0) − φ(x2, t = 0). Restricting our measurements to the case

where the frequency of the emitted photons are the same, this

phase difference should be preserved in the T = 0 limit. Ther-

mal fluctuations in phase between the two points will produce
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Fig. 7: The two possible configurations of a broad packet measure-

ment (with suppressed radiative fields) exist as a kind of direct sum

indexed by the coordinate label of the original incident particle.

a shift in this value. This procedure gives a measure of the re-

gional phase fluctuations and isolation of the system.

5.2 Measurement back reaction

The subject of back reaction has been around for some time

[8]. If one believes in a collapse picture then one can readily

see that center of mass motion is not conserved in a position

measurement. This means either it is truly not conserved or

there is an unspecified back reaction on the system. In DWM

we see that conservation laws only hold for the totality of

slices not for individual “observer-paths”. Therefore no back

reaction is expected. We can utilize a pair of ultracold traps

to give a specific test of this. Given a delocalized large mass

molecule in a pair of widely separated traps we can send an

atom through two paths to make contact with each of these.

If a collapse produces a net conservation of all the usual con-

served quantities then the center of mass shift will be propor-

tional to the separation of the traps so can be made as large

as desired and easily detected by florescent behavior of the

molecule.

5.3 Nested and fuzzy measurement

The meaning of superposition of macroscopic objects has be-

en debated at least as long as the famous Schrödinger’s cat

paradox [2, 13]. By our judicious selection of initial data we

see that this is resolvable. The overlap of such states is ex-

plained by the proper consideration of correlations of photon

fields in partitioning the system under such a slicing event as

above. The nature of macroscopic superposition does how-

ever beg some interesting questions when the measuring de-

vice is also delocalized. For example, if the incident ψ has

positive and negative regions that are shared equally over the

same site due to delocalization then the net norm of ψ at that

site may be zero. Does this mean there is no probability of ad-

sorption at the site and the amplitude there is reflected? Fur-

thermore, we can ask if the order of a meta-observer’s action

on the system in measuring the measurement device before

it acts on the ψ or after makes any difference in the result-

ing statistics. These two scenarios can be classified as “fuzzy

measurements” and “nested measurements”.

Fig. 8: A broad narrow packet incident on a screen. There is a rel-

atively slow phase oscillation component parallel to the surface that

matches the possible adsorption sites.

Firstly, consider a “device” that is a pair of separated, lo-

calized and slowly spreading heavy atoms or molecules in a

trap. This allows for the possibility of the larger bodies cap-

turing a small atom then moving the bound bodies around

before ejecting the light atom from them. If the atoms are

initially well localized and remain so for the duration of the

experiment then the resulting phases on revival will be de-

termined by the amplitude emission time and rate from each

source atom. Note that this situation depends on the parti-

cles and what is moving them. If they are isolated like a gas

then this is certainly true. If, however, the particles are being

localized and moved by macroscopic classical matter or radi-

ation that then is absorbed by it then the interactions with the

external world may produce a slicing of the system. There

may be no “meta-observer” or other unsliced mechanism to

eject the light atoms and produce a spreading in its coordinate

direction that causes the system to be seen as a wavefunction

with some stored phase history and an external world. We can

apply a radiation field to eject the light atom but have no way

to know that our counterparts in the other slices have chosen

to do the same.

Let us now extend the above case of the heavy atoms to

the case of a measurement device i.e. a screen, as in Fig. 4.

Here let us utilized a nearly monochromatic (wavelength λ)

packet moving towards the screen but with a slow additional

phase oscillation (λ|| ≪ λ) parallel to the screen surface. Let

the screen have five adsorption sites and have separation equal

to half this long wavelength oscillation D = λ||/2 as in Fig. 8.

Now let the measurement device be delocalized in the vertical

direction by a vertical shift D. We consider this to be in the

form of two narrow packets of equal amplitude akin to the

case of the incident wave in Fig. 5. The resulting initial state

is described by the sum of configurations in Fig. 9.

Upon interaction the sites on the screen now feel both a

positive and negative amplitude component of the wave. This

is our first case of a correlated two body system. The sys-

tem slices into a set of 4 + 5 = 9 cases where the first four

correspond to a screen that is upwardly displaced by D and

the other five do not. For an “observer” living in the screen

body itself, one of these cases appears to represent his initial

data for the evolving future for all the initial data he has avail-

able to him. If somehow these slices are brought together in

his future and the photon fields radiated from the adsorption
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Fig. 9: A superimposed case of a measurement device with vertical

delocalization and an incident wave packet.

events are confined with the system, the neighboring slices

can interfere and this would seem to be a statistical aberra-

tion that flows from an unknown source. Now let us consider

the situation from the “meta-observer” outside the system.

This person can interact with the screen before or after the

screen interacts with the packet. The bifurcation of ampli-

tude gives the same results in both cases so there is nothing

“fuzzy” about the measurement from the delocalized device

and the measurement operations commute.

6 Conclusions

One alternate title to this article could have been: “The Cheap

Photon and the Classical Limit: The Origin of Discrete State

Machines, the Apparently 3D World, Quantum Measurement,

the Arrow of Time and Why You Have Any Memory at All”.

It is impressive that such disparate topics should all be con-

nected to mapping the classical world properly into quantum

mechanics. A sister document on the dynamic process of

thermalization and time dependent fluctuations has also been

recently completed by this author [4]. The many body wave-

function of a system is a complicated high dimensional ob-

ject. By including the photons a large number of degrees of

freedom appear that allows condensing matter to sparsely oc-

cupy subdomains corresponding to very similar objects that

retain independent existence for long periods of time. This

provides a subset of wavefunctions that correspond to classi-

cal bodies that can withstand many quantum slicing events

without producing significant overlap. The release of low

mass particles from a condensed matter “classical” body leads

to a product function state where the low mass component

spreads rapidly and, when reabsorbed, creates a bifurcated

class of such classical states with probabilities given by the

Copenhagen interpretation defining a set of measurement ev-

ents. These are locations and times specified by the atomic

granularity scale of our condensed matter and a temporal gra-

nularity scale by the photon decay process associated with

binding times. This resolves the paradoxes of quantum mea-

surement and introduces an arrow of time in a rather simple

fashion. We have argued that the genesis of such a state fol-

lows naturally from early universe conditions assuming con-

densation of small clusters of very low internal energy have

time to interact and produce the localized classicality that par-

tition the wavefunction into Newtonian-like parts.

One of the more unclear features yet to be resolved here is

in the behavior of gases. Gases are made of light particles that

have rapid delocalization so the persistent localization prop-

erty we have argued for solids is not applicable. Collisions

with solids surfaces of a container produce some localization

by the slicing process but low diffusion rates suggest that this

does not propagate well into the bulk of the gas. Hydrody-

namic and thermodynamic behavior either requires some reg-

ular interaction with condensed matter by collision or possi-

bly by photons or by some other process. We know that such

gases have the power of producing quantum like measure-

ment paths in cloud chambers (though clouds by definition

involve condensed droplets). These are not pointlike but line-

like events. This introduces an interesting direction to further

investigate this model. Ultracold gas dynamics has become a

very popular probe of quantum limits on viscosity [6, 14]. It

is not clear that at such low temperatures for gases bound by

fields and so not in contact with condensed matter, that hy-

drodynamics and thermodynamics are valid limiting behav-

iors on any timescale. These macroscopic formal models are

often justified by vague scaling arguments. It is hard to argue

against them because we have lacked a proper quantum de-

scription of gases in its “classical” limit. If this can be found,

we may have a framework to see how well such a descrip-

tion can hold in the ultracold case and if such parameters like

temperature and viscosity can have any relevant meaning for

them.
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It was discovered many years ago that histograms constructed from the results of mea-
surements of various natural processes are not random. The histogram shape was
demonstrated to be determined by the diurnal rotation and circumsolar movement of the
Earth and to be independent of the nature of the process considered [1-17]. The results
of those works change our basic views about stochasticity of natural processes. When
the time series of physical measurements, which are traditionally considered stochastic,
are transformed into the series of histograms constructed for an optimally small num-
ber of the results (i.e., optimally short segment of the time series), one can see regular
changes in the histogram shape. The paper illustrates the main manifestations of this
phenomenon by comparing the results of 90Sr β-radioactivity and 239Pu α-decay mea-
surements, with the distance between the laboratories in which the data were collected
being about 3000 km.

1 Introduction

The material for our research were results of long-term mea-
surements of 239Pu α-radioactivity in Pushchino (at the lat-
itude of 54◦ north and longitude of 37◦38’ east) and 90Sr
β-radioactivity in Novosibirsk (at the latitude of 55◦02’13”
north and longitude of 82◦54’05” east). The data were col-
lected with a 1-second interval for many days. With the aid
of Edwin Pozharsky’s computer program GM [3], non-over-
lapping 60-point segments of 1-second time series were trans-
formed into series of 1-minute histograms. The same pro-
gram was used for a visual comparison of the histograms –
after the procedures of smoothing, stretching, squeezing and
mirror transformation, necessary to achieve the maximal sim-
ilarity (for details, see [1]).

2 Experimental details

α-Radioactivity of a 239Pu preparation was measured using
low-voltage semiconductor detectors with collimators [10].
β-Radioactivity was measured using CTC-6 Geiger counters
fixed in a metal case in a horizontal position, with their longi-
tudinal axis directed along the azimuth of NN-SSW
NNW-SSO (∼320◦). The source of β-radiation (90Sr–90Y,
a flat disk of 20 mm diameter) was fixed 10 cm above the
counter, with its radiating surface directed downwards to the
counter.

3 Results

Fig. 1 shows a time series: the results of 90Sr β-activity mea-
surements. According to all fitting criteria, it is a purely
stochastic process obeying the Poisson statistics.

As seen from Fig. 2, the results of measurements shown in
Fig. 1 ideally correspond to the Poisson-Gauss statistics. That
is why radioactive decay is considered an ideal example of the
stochastic process. In Fig. 3, however, the same material of
Fig. 1 is shown without smoothing, in the form of cumulative
layers, where every next layer adds 3000 measurement points
to the previous layer.

This figure demonstrates that contrary to the law of large
numbers (the total number of measurements is 259200), the
fine structure of the layered lines is not smoothed when the
number of measurements is increased – it becomes even
sharper. This paradox has a general character and can be
observed in the measurements of any “stochastic” physical

Fig. 1: A time series – the results of 1-second 90Sr β-activity mea-
surements for a period of 3 days (from 00:00 of June 19, 2013 to
23:59 of June 21, 2013). Novosibirsk local time (UTC + 7). X-axis:
time, seconds. Y-axis: number of β-decays per second.
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Fig. 2: Distribution of the results of measurements shown in Fig. 1.
An ideal Poisson-Gauss distribution. X-axis: radioactivity, counts
per second. Y-axis: number of results with the corresponding ra-
dioactivity value.

Fig. 3: Non-smoothed layered distribution of the results shown in
Fig. 1. Every layer adds 3000 measurement points to the neighbor
layer below. The axes are as in Fig. 2.

process [1].
In the paper, though, we consider histograms constructed

for an optimally small number of measurements. It is trans-
formation of time series into sequences of such inconsistent
histograms, revealing well-reproducible cosmo-physical reg-
ularities, indicating nonrandomness of “stochastic” physical
processes [1]. In the paper, this is demonstrated through syn-
chronous measurements of 90Sr β-radioactivity in Novosi-
birsk and 239Pu α-radioactivity in Pushchino; the distance be-
tween these laboratories is about 3000 km.

The subject of this paper – as that of our previous works
[1-17] – is the demonstration of regularities in the change of
the shape of histograms constructed from an optimally small
(30–60) number of results. Such a transformation of time se-
ries of the results of measurements into the sequences of his-
tograms reveals the nonrandom character of these time series.

Fig. 4 shows some histograms constructed for the seg-
ments of the time series represented in Fig. 1. Each segment
contains 60 90Sr β-radioactivity measurement points; the his-
tograms were smoothed 5 times.

Fig. 4: Measurements of 90Sr β-radioactivity. Transformation of a
time series (Fig. 1) into a sequence of 60-point histograms smoothed
5 times. The figure shows the first 24 histograms from the total set
of 4320 histograms.

Fig. 5: A screenshot demonstrating comparison of two histogram
sequences. Top band: measurements of 90Sr β-radioactivity; bottom
band: measurements of 239Pu α-radioactivity. For each step, both
bands shift forward by one number, and the new histograms, ap-
pearing at the right, are compared: the new top with all the bottom
ones and the new bottom with all the top ones – this being repeated
360 times to build a distribution of the number of similar histogram
pairs over the interval between these histograms (see Fig. 7 and here-
inafter).

The fact that changes of the shape of such histograms in
time are not random follows from a number of regularities
found in our previous studies [1-17]. Even a careful exami-
nation of Fig. 4 would indicate this nonrandomness. It can,
however, be estimated quantitatively. A quantitative measure
of nonrandomness of the shape of inconsistent histograms is
the results of their thorough comparison. The histograms can
be compared either by a human expert, with the aid of Ed-
win Pozharsky’s program, or by application of completely
automated algorithms written by V. Gruzdev [19] and V.V.
Strelkov et al. [18, 20–22].

Fig. 5 illustrates the procedure of pairwise histogram
comparison, showing histograms constructed from the results
of synchronous measurements of 90Sr β-radioactivity in No-
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Fig. 6: A fragment of the computer journal (archive). Pairs of his-
tograms considered similar by an expert.

vosibirsk (top band) and 239Pu α-radioactivity in Pushchino
(bottom band). Each band contained 360 numbers. In total,
about 20,000 histogram pairs were compared, and the results
are given in Figs. 6 and 7.

Fig. 6 shows an example of the histogram pairs that an
expert deemed similar upon visual comparison.

Fig. 7 demonstrates the results of histogram comparison
in the synchronous measurements of 90Sr β-radioactivity in
Novosibirsk and 239Pu α-radioactivity in Pushchino in 3 vari-
ants of experimental setup: with the collimator aimed at the
Polar star (no. 4); with the collimator constantly aimed at the
Sun (no. 3) (on a rotating platform compensating for the di-
urnal rotation of the Earth); with the collimator directed west
(no. 5). These results are represented as a dependence of the
number of similar histogram pairs on the interval between the
histograms.

As seen in Fig. 7, when the collimator in Pushchino is
aimed at the Polar star, there is no synchronism in the change
of histogram shape in Novosibirsk and Pushchino. When the
collimator in Pushchino is directed west, synchronism is not
very apparent but statistically significant (P < 10−3). When
the collimator is aimed at the Sun, synchronism is evident
(P < 10−7).

We shall not discuss now why the extent of synchronism
depends on the direction of collimators in Pushchino (for de-
tails, see [1]). What is important is that with other condi-
tions being equal, these differences in the experimental setup
make the effects observed statistically significant. Therefore,
the shape of histograms constructed from the results of mea-
surements of β- and α-radioactivity at the distance between
the laboratories ∼3000 km does not depend on the nature of
the process measured and the method of measurement. This
agrees with the conclusion that the shape of histograms and
its changes are determined by the orbital movement and di-
urnal rotation of the Earth and other cosmo-physical factors
[1, 10–17].

This conclusion is confirmed by demonstration of the ef-
fects that are traditional for our works. The first effect is the

Fig. 7: Distribution of the number of pairs of similar histograms over
the interval between them. Measurements of 90Sr β-radioactivity in
Novosibirsk and 239Pu α-radioactivity in Pushchino with the colli-
mators directed to the Sun (no. 3), Polar star (no. 4) or west (no. 5).
Pairs no. 1-3; 1-4; 1-5. X-axis: intervals between similar histograms
(min). Y-axis: number of similar histograms per 360 compared
pairs.

Fig. 8: Measurements of 90Sr β-activity. The “effect of near zone”,
a higher probability of neighbor histograms (interval = 1) to be sim-
ilar comparatively to the histograms separated by larger intervals.
X-axis is time interval in minutes, Y-axis is number of similar his-
tograms per 360 compared pairs.

“effect of near zone”. It means that the neighbour histograms
are much more probable to be similar, and Fig. 8 shows how
it looks for the β-activity measurements.

Since histograms are constructed for non-overlapping
segments of time series, the effect of near zone is the first sign
of histogram shape to be determined by an external factor [1].
The second traditional effect, indicating cosmo-physical con-
ditionality of the shape of histograms, is the existence of two
clearly resolvable near-daily periods: sidereal and solar [1].
Fig. 9 shows these near-daily periods revealed in the mea-
surements of 90Sr β-activity in Novosibirsk (no. 1) and 239Pu
α-activity in Pushchino (no. 3–5)
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Fig. 9: Sidereal (1436 min) and solar (1440 min) daily periods in
the appearance of similar histograms in the measurements of 90Sr
β-activity in Novosibirsk (no. 1) and 239Pu α-activity in Pushchino
(no. 3, 4, 5). Collimator is aimed at the Sun – no. 3; collimator is
aimed at the Polar star – no. 4; collimator is directed west – no. 5.
X-axis is time interval in minutes, Y-axis is number of similar his-
tograms per 360 compared pairs.

The existence of well-resolvable sidereal and solar daily
periods means a sharp anisotropy of the effects observed. The
difference between the direction at the immobile stars (side-
real daily period) and the Sun (solar daily period) is about 1
degree. As seen in Fig. 9, these periods are 4 minutes apart,
i.e., they are resolved with the accuracy of 15 angular min-
utes. We also observe spatial anisotropy in the effects of syn-
chronism by the absolute and local time [1, 11].

One can see the effect of spatial anisotropy in Fig. 10,
which demonstrates local-time synchronism in the change of
the shape of histograms constructed for the measurements of
90Sr β-activity in Novosibirsk (no. 1) and 239Pu α-activity in
Pushchino with a west-directed collimator. The calculated
difference in local time is equal to 179–180 min. As seen
in Fig. 10, there is a sharp extremum – evidence of the ef-
fect – at 178th minute (peak height, 134 similar pairs). Other
extrema, corresponding to the moments of absolute-time syn-
chronism (at 0th, 193rd and 209th minutes), are substantially
lower (peak height, 16 similar pairs and less).

Thus, the measurements of 90Sr β-activity performed in
Novosibirsk give us another confirmation of universality of
the effects described earlier.

As the last illustration, we shall consider the “effect of
palindrome”, which indicates a dependence of the histogram
shape on the spatial relation between the directions of the
Earth diurnal rotation and its movement along the circum-
solar orbit [8, 9]. The effect consists in the reverse change
of the histogram sequences at the moments when the relation
between the directions alternates its sign. According to the
previously published works, it occurs at 6:00 and 18:00 by

Fig. 10: Effect of synchronism by local time revealed upon com-
parison of the histograms constructed for the measurements of 90Sr
β-activity in Novosibirsk and 239Pu α-activity in Pushchino with a
collimator directed west. X-axis is time interval in minutes, Y-axis
is number of similar histograms per 360 compared pairs.

Fig. 11: Measurements of 90Sr β-activity. The “palindrome effect”
revealed upon comparison of a daytime histogram sequence (no. 1;
from 6:00 to 18:00 by accurate local time) to the non-inverse (no. 2)
and inverse (no. 3) nighttime sequences (from 18:00 to 6:00 of the
next day) and the next daytime sequence (no. 4). X-axis is time
interval in minutes, Y-axis is number of similar histograms per 360
compared pairs.

accurate (longitudinal) local time. In the course of its diurnal
rotation, the Earth starts moving against its orbital translo-
cation at 6:00. At 18:00, the directions of both movements
become the same. The effect manifests itself in a dramatic
difference in the similarity of consecutive histograms when a
“daytime” histogram sequence (from 6:00 to 18:00) is com-
pared to either inverse or non-inverse “nighttime” sequence
(from 18:00 to 6:00 of the next day). This effect is illustrated
in Fig. 11.

The effect of palindrome is clearly seen in Fig. 11. After
inversion of one half of a day (in the points of palindrome),
the number of similar histogram pairs doubles.
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4 Discussion

The objective of this paper was to check if the results of 90Sr
β-activity measurements conducted by E.Y. Filin can be com-
pared with the results of other measurements obtained within
the research on “cosmo-physical fluctuations”. As follows
from the presented data, all the expected effects were repro-
duced with these experiments. Since β-particles run a dis-
tance of a few meters in the air (in contrast to α-particles,
which run only a few centimeters), these measurements can
be a valuable tool for a study of the spatial anisotropy of the
observed effects.
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In order to account for the slight polarization of the continuum towards the limb, propo-
nents of the Standard Solar Model (SSM) must have recourse to electron or hydrogen-
based scattering of light, as no other mechanism is possible in a gaseous Sun. Con-
versely, acceptance that the solar body is comprised of condensed matter opens up new
avenues in the analysis of this problem, even if the photospheric surface itself is viewed
as incapable of emitting polarized light. Thus, the increased disk polarization, from
the center to the limb, can be explained by invoking the scattering of light by the at-
mosphere above the photosphere. The former is reminiscent of mechanisms which
are known to account for the polarization of sunlight in the atmosphere of the Earth.
Within the context of the Liquid Metallic Hydrogen Solar Model (LMHSM), molecules
and small particles, not electrons or hydrogen atoms as required by the SSM, would
primarily act as scattering agents in regions also partially comprised of condensed hy-
drogen structures (CHS). In addition, the well-known polarization which characterizes
the K-corona would become a sign of emission polarization from an anisotropic source,
without the need for scattering. In the LMHSM, the K, F, and T-coronas can be viewed
as emissive and reflective manifestations of a single coronal entity adopting a radially
anisotropic structure, while slowly cooling with altitude above the photosphere. The
presence of “dust particles”, advanced by proponents of the SSM, would no longer be
required to explain the F and T-corona, as a single cooling structure would account for
the properties of the K, F, and T coronas. At the same time, the polarized “Second
Solar Spectrum”, characterized by the dominance of certain elemental or ionic spectral
lines and an abundance of molecular lines, could be explained in the LMHSM, by first
invoking interface polarization and coordination of these species with condensed matter
in the chromosphere. The prevalence of polarized signals from the Rare Earth metals, a
chemically unique group of the periodic table, provides powerful evidence, based on the
“Second Solar Spectrum”, that chemical reactions and coordination are taking place in
the atmosphere of the Sun. This concept is also supported by the polarized signal from
lithium, an element previously hypothesized to assist in stabilizing metallic hydrogen
structures. The possibility that some atoms are coordinated with CHS implies that the
relative abundance of elements cannot be simply ascertained through the analysis of
emission or absorption lines in the solar atmosphere.

. . . it follows that a body, which absorbs more rays

from one plane of polarization than from another,

sends out in the same ratio more rays from the first

plane of polarization than from the second.

Gustav Kirchhoff, 1860 [1]

1 Introduction

Recently, considerable doubt has been raised [2–4] relative to
Kirchhoff’s formulation of his law of thermal emission [1].
In this regard, the equivalence between emitted and absorbed
radiation under conditions of thermal equilibrium, properly
known as Stewart’s law [5], has not been questioned. How-
ever, the German scientist’s claim that the radiation within
an arbitrary cavity will always be independent of the nature

of the walls, while subject only to the temperature and the
frequency of observation, has never been demonstrated ex-
perimentally and is unsupported by mathematical derivation
[2–4]. Regrettably, even the proof of Kirchhoff’s law of ther-
mal emission, as advanced by Max Planck, has been found
to be physically unsound [2].∗ As such, beyond the restate-
ment of Stewart’s law [5], it would appear that little can be
preserved from Kirchhoff’s classic paper [1].

Yet, there is an experimental aspect of Kirchhoff’s work
which can never be discounted, namely that a tourmaline
plate can absorb radiation more favorably in one plane than
in the other [1, § 16]:

∗Since mathematics is the language of physics, this is a serious problem
for all those who adhere to the validity of Kirchhoff’s claims [2].
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“A tourmaline plate, cut parallel to the optic

axis, absorbs, at ordinary temperatures, more of

the rays which strike it normally, if the plane of

polarization of these is parallel to the axis than

when it is perpendicular to it. Assuming that the

tourmaline plate retains this property when it is

at a glowing heat, it must give out rays in a direc-

tion normal to it, which are partially polarized

in the plane passing through the optic axis and

which is the plane perpendicular to that which

is called the plane of polarization of tourmaline.

I have proved this striking deduction from theory

by experiment and it confirmed the same.”

With this observation, Kirchhoff was emphasizing that cer-
tain objects, especially when highly anisotropic in their crys-
tal structure, could emit polarized light [6, p. 604]. Kirch-
hoff’s finding, that the light emitted by a heated tourmaline
plate was polarized in the same plane as that which preferen-
tially absorbed light, had also been noted by Balfour Stew-
art [7, § 68]. P. P. Feofilov addressed this aspect of nature
in his classic text on The Physical Basis of Polarized Emis-

sion [8, p. 33–34]:

“. . . in order that the polarization should appear

in the radiation due to a macroscopic system, it

is necessary that the mutual orientation of the

elementary radiating systems should not be ran-

dom. A random aggregate of anisotropic elemen-

tary radiators, gives, clearly, a completely unpo-

larized radiation. A regular orientation of the

separate elements of a macroscopic system may

be due to the properties of the system itself, and

this is the case, for example, in anisotropic crys-

tals, or it may be induced from outside by electric

and magnetic fields, by mechanical action, or fi-

nally, by light incident from outside the system,

since a light ray, because of its nature, is always

anisotropic . . . In the case of regular crystals, the

orientation of the emitting centers may be com-

plete, and the emitted light may be practically

totally polarized . . . ”

In the case of tourmaline, the degree of polarization can ap-
proach 40% [9, p. 112].

Beyond crystals, it is not generally known that incandes-
cent metals can often be a source of strongly polarized light
[9, p. 110 & 138]. This effect does not occur when observ-
ing metals perpendicular to the surface, but polarization can
approach 90% when the angle of observation departs substan-
tially from the normal, in studying a clean metal
[9, p. 110 & 138]. Thin metal wires exhibit polarized emis-
sion [10,11] and the heat radiation, from small but long cylin-
drical objects, can also be highly polarized [12]. More re-
cently, polarized light emission has been noted from individ-
ual carbon nanotubes, their fibers, bundles, and arrays (see

Fig. 1: An anisotropic tourmaline crystal (National Mining Hall of
Fame and Museum — Leadville, CO; 3/18/2015; Photo by PMR).

[13, 14] and references therein). Importantly, within these
carbon-based bundles, the light emission maintained a black-
body spectral appearance [13].

Still, Kirchhoff’s observation relative to tourmaline [1],
these others [6–14], and many more, which highlight the im-
portance of anisotropy relative to the emission of polarized
light, have been discounted by astronomy. Clearly, since the
Standard Solar Model (SSM) advocates that the Sun is gase-
ous in nature, there is little room in modern astrophysics for
condensed matter.∗ The stars are thought to be devoid of
solids and liquids. Rather, most astronomers believe that
these objects are composed either of gaseous plasmas or
highly degenerate matter, in accordance with the stellar type
involved and the dictates of mathematical models. Nonethe-
less, ample evidence exists that the Sun itself is comprised
of condensed matter or, more specifically, of metallic hydro-
gen [15]. Thus, it is fitting to reconsider the lessons of the
tourmaline plate [1] in order to obtain a new perspective with
respect to the emission of polarized light by the Sun and the
stars.

2 Polarized light in the corona

Knowledge that the solar corona emitted polarized light was
first gained at the eclipse of 1868 [16, p. 44]. Schuster pro-
vided a mathematical treatment of the problem as early as
1879 [17]. But it was not until R. K. Young analyzed photo-
graphic plates of the eclipses of 1901, 1905, and 1908 with
a Hartmann microphotometer, that the extent of polarization
could be properly quantified [18]. Young discovered that po-
larization increased gradually, with increasing elevation
above the photosphere, to a value of ∼37% before slowly
starting to decrease. He also noted [18] that the corona was

∗With the exception perhaps of some planets, meteors, asteroids, etc.
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“. . . formed from matter which has been project-

ed from the Sun” and that “The distribution of

matter in the corona is dependent on high in-

verse powers of the distance from the Sun’s cen-

ter, probably the sixth or eighth or a combination

of the two.”

Young also believed that the polarization was due to the scat-
tering of photospheric light by small particles. As a conse-
quence of such early studies, it was established that the light
arising from the K-corona was radially polarized [18].

With the advent of the Lyot coronograph in 1930, the
study of the solar corona outside of total eclipses became
possible [19]. That same year, Minnaert published his work
on the nature of the continuous coronal light and its polar-
ization [20]. Minnaert considered the idea that the corona
was self-luminous [20]. Sixty years earlier, William Harkness
had viewed a total eclipse from Iowa and had also concluded
that the corona was “. . . a highly rarefied self-luminous atmo-

sphere surrounding the Sun” [21, p. 199].
However, the concept that the corona could be self-

luminous has been largely abandoned by astronomy. In part,
this dates back to the days of Schuster and his analysis of the
polarization question. The British scientist had treated a lumi-
nous sphere surrounded by small particles which could scat-
ter the light, thereby producing the desired polarization [17].
Schuster noted that [17]:

“In reality the polarisation rapidly diminishes

and very soon a point is reached at which no

polarisation can be observed; the corona must

therefore contain some matter which is either

self-luminous or too large to polarise the light

while scattering it . . . The rapid decrease of

polarisation with increasing distances from the

Sun, as well as the comparatively small amount

of observed polarization, shows that a large part

of the light is not due to scattering particles. This

light may either be produced by incandescence,

or by particles which are too large to polarise

the light in the act of scattering it.”

Like Schuster, Minnaert also left open the possibility that the
corona was capable of both scattering photospheric light and
self-emission [20]. For his presentation, Minnaert considered
that the scattering, leading to polarization, was taking place
through the action of free electrons.

Within the context of the SSM, K-coronal polarization is
thought to be produced by relativistic electrons which scat-
ter photospheric light such that most Fraunhofer lines can no
longer be observed [16, p. 4-5 & 135].

At the same time, streamers are known to constitute the
most polarized portion of the corona, with values ranging
from 30-60% [16, p. 136–138]. Such findings, along with
Young’s discovery that the degree of polarization could first
increase and then decrease with elevation above the photo-

sphere [18], provide strong evidence that the cause of polar-
ization must involve structure and not simply the presence of
relativistic free electrons.

In this respect, given the degree of ionized atoms in the
E-corona [16, p. 4–5 & 135], it is doubtful that the determi-
nations of electron density from polarization measurements
could be accurate [16]. Furthermore, such calculations dis-
count the notion that condensed matter may well be present
in this region of the Sun [22]. It has been proposed that
the metallic hydrogen which makes up the corona is elec-
tron starved and this, in turn, not MK temperatures, leads to
the presence of the highly ionized atoms which characterize
the E-corona [23, 24]. The Liquid Metallic Hydrogen Solar
Model (LMHSM) [15, 22–24] leaves little possibility for the
presence of substantial numbers of free electrons, in the upper
coronal atmosphere of the Sun. In order that a star can remain
stable, it must work to salvage both its hydrogen [25–27] and
its electrons [22–24]. Such an idea has only been advanced
within the context of the LMHSM [15, 22–27].∗

3 Unifying the K-, F-, and T-coronas in the LMHSM

Throughout much of the solar atmosphere, K-coronal polar-
ized light is mixed with F-coronal radiation. The F-corona is
characterized by the presence of Fraunhofer lines and, in the
SSM, is believed to be produced by dust particles which act to
scatter photospheric light without polarization [16, p. 4–5 &
135]. Indeed, polarization has been utilized as a basis of dis-
criminating between the K- and F-coronas, as F-coronal light
was initially thought to be unpolarized [32–34]. However, it
soon became clear that the polarization of the F-corona be-
yond 5R⊙ could not be ignored [35].† Using the degree of
polarization, attempts to excise a K-coronal signal has been

∗One of the authors (PMR) recently became aware that Professor J.E.
Hirsch proposed, in 1989, that sunspots might be composed of metallic hy-
drogen based on the presence of strong magnetic fields in these regions:
“Sunspots are characterized by having a lower temperature than their envi-

ronment, and very strong magnetic fields. It is natural to conclude that metal-

lic hydrogen develops large spin polarization in these regions” [28]. Since no
lattice structure was specified to account for the emission of sunspots, Profes-
sor Hirsch appears to have adopted the accepted view from the SSM that the
lower emissivities from these structures are associated with decreased tem-
peratures [28] and not due to changes in emissivity as a result of increased
metallic character [15]. Unlike Robitaille, who has promoted the idea that
sunspots reflect slightly higher densities relative to the photosphere [15], Pro-
fessor Hirsch speaks of a lower density inside sunspots [28]. At the same
time, Hirsch makes a compelling case for the importance of metallic hydro-
gen throughout astronomy, as a universal cause of magnetism. On a related
question, based on solar densities of ∼150g/cm3 associated with the SSM,
Professor Setsuo Ichimaru has advanced that the solar core might be com-
prised of metallic hydrogen [29–31]. Conversely, while Robitaille recognizes
the presence of a solar core, he has advocated that the Sun possesses a nearly
uniform density of ∼ 1g/cm3 (see [15] and references cited therein). This is
because a density of 150g/cm3 in the core, as proposed by Ichimaru [29–31],
would leave little material to build condensed structures on the photosphere.
Further, Robitaille’s position is in keeping with the idea that liquids are es-
sentially incompressible.

†Coronal polarization has been measured out to an amazing 10 solar
radii [36, p. 187].
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used to compute electron densities in this region [32–35]. The
problem rests in that electron densities calculated in this man-
ner are dictated by the very mechanism proposed for the po-
larization, without any independent confirmation that polar-
ization was in fact produced by electrons. In addition, it is
evident that there should be a strong decrease in free elec-
tron density as a function of distance from the Sun (e.g. [36,
p. 188]). It is difficult to justify distant polarization with rela-
tivistic electrons.

Relative to the nature of the “dust” which is believed to
constitute F-coronal matter in the SSM, Mukai et al. [37] ad-
vocated, in 1974, that graphite grains were the most likely
candidate. They envisioned that the grains would sublime,
as the distance to the solar surface was decreased, hence ac-
counting for the known reduction in the F-coronal contribu-
tion in this direction [37]. A T-corona has also been hypoth-
esized to exist, in order to account for the increased redden-
ing of coronal light with increasing altitude above the pho-
tosphere [16, p. 4–5 & 135]. This reddening had been noted
long ago by Allen [38]:

“microphotograms for solar distances varying

from R= 1.2 s to R= 2.6 s show that the coronal

radiation reddens slightly as the distance from

the Sun is increased.”

Pondering on all of these fragmented pieces of information,
there is a need to arrive at a unifying principle relative to the
corona of the Sun.∗

Rather than speak of the K-, F-, and T- coronas as sepa-
rate entities [16, p. 4–5 & 135], the idea should be entertained
that the corona is composed of condensed matter which is
manifesting spatially variable emissive, reflective, and struc-
tural properties. It is logical to postulate that condensed coro-
nal matter is based on photospheric Type-1 metallic hydro-
gen which has been ejected from the solar surface [22–24].
Since photospheric matter produces unpolarized radiation, it
is reasonable that, in the lower solar atmosphere, coronal ma-
terial will also lack the ability to significantly polarize light.
Nonetheless, it will remain capable of self-emission. With
elevation above the solar surface, the ejected photosheric ma-
terial, which now constitutes the corona, begins to adopt a
radially anisotropic structure, as manifested by streamers, for
instance. Such structural anisotropy thereby enables the emis-
sion of polarized light from incandescent radially aligned
coronal material [8]. This explains the presence of the K-
coronal signals. No Fraunhofer lines are present, because the
coronal matter is self-luminous and positioned above the ele-
vation where intense absorption by free atoms or ions is possi-
ble. With increased elevation above the photosphere, coronal

∗The idea that the F-corona was produced by interplanetary dust parti-
cles was initially adopted in accounting for the behavior of the corona, even
within the context of the LMHSM [22–24]. However, upon further reflec-
tion, it is clear that the SSM explanation for the presence of the F-corona
should not be salvaged.

material begins to cool, loosing incandescence. In response
to decreased temperatures, emissivity decreases and reflectiv-
ity increases, much like the iron rod placed in a forge. With
increased reflectivity, coronal material becomes less able to
emit polarized light in the visible range. Rather, it now in-
creasingly reflects photospheric light. That is why the Fraun-
hofer lines become visible in the F-coronal spectrum. At the
same time, since coronal material is cooling, it begins to emit
its light, not in the visible, but in the infrared. Hence, the
production of the T-coronal spectrum.

With this new proposal, the K-, F-, and T- coronas sim-
ply become manifestations of the same coronal material. A
streamer can be viewed as a real structure whose emissive
and reflective behavior is characterized by both temperature
and structural changes within the same entity. A streamer is
unlikely to be comprised of an assembly of isolated gaseous
ions or atoms, as currently held by the SSM, as the simplest
explanation for such structure rests upon condensed matter.

As for the E-corona [39], it is being produced, not by
the presence of MK temperatures in the corona, but rather
through the removal of atomic and ionic electrons by con-
densed coronal material [15,22–24]. With increased elevation
above the photoshere, the coronal metallic hydrogen, which
acts to channel electrons back onto the solar surface, can be
viewed as becoming increasingly electron starved. As a re-
sult, any ion or atom which comes into contact with such ma-
terial will be likely to be stripped of electrons, since the Sun
is working to maintain neutrality [22–24]. Electron affinities,
not extreme temperatures, govern the production of highly
ionized elements in the corona.

4 Polarization at the solar limb

In 1946, Chandrashekhar, through mathematical considera-
tion of Thomson scattering by electrons [40, p. 249], first ad-
vanced that the body of the stars could emit a continuous
spectrum, characterized by polarization, concluding that [41]

“the degree of polarization must vary from zero

at the center of the disk to 11 per cent at the

limb”

Using similar approaches, Sobolev confirmed Chandrashe-
khar’s finding [42] and the problem has been extensively re-
viewed [43, p. 119–203].

According to Dolginov, Gnedin and Silant’ev [43, p. 120],
stellar polarization can be attributed to three major factors:

“a) nonsphericity of stellar shape, b) the eclipses

of a hot star within a binary system, c) scattering

in a nonspherical circumstellar envelope by gas

flux.”

They argue that even a spherical star can have mechanisms
for changes in luminosity across its surface, the most impor-
tant of which might be temperature variations [43, p. 121].
The scattering of light by electrons has continued to play an
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important role, relative to accounting for the production of
polarized light in the context of gaseous stars and the SSM.

In the final analysis, the need to account for the produc-
tion of polarized light in a gaseous object requires a sus-
pension of objective reality. For instance, Chandrashekhar’s
analysis depends on the generation of polarized light from
a gaseous star [41]. Yet, at the same time, the SSM views
the Sun and the stars as a nearly ideal blackbody emitters
[44–46]. It is well-known that blackbodies are incapable of
emitting polarized light, by definition (see [47, p. 450], and
[48, §5 &107 ]). Hence, it should have been difficult for pro-
ponents of the SSM to accept Chandrashekhar’s claim that
a gaseous star could emit up to 11.7% polarized light at the
limb, a number which was actually very large [41]. In order to
reconcile Chandrashekhar’s findings with the SSM and black-
body behavior, a gaseous Sun must be divided into that opac-
ity region which produces the thermal spectrum and an upper
layer responsible for polarization [49,50]. The reality remains
that, since the Sun sustains convection currents and conduc-
tion, it makes for a very poor example of a blackbody [15],
as highlighted by Max Planck himself [48, § 51]. Moreover,
because Thomson scattering by an electron is frequency in-
dependent [51, p. 69] and the polarization of the continuous
solar spectrum is frequency dependent, Rayleigh scattering
by neutral hydrogen had to be introduced to reconcile the-
ory [40–43] with solar observations [49, 50].

In order to account for the slight degree of frequency-
dependent polarization in the continuous spectrum towards
the solar limb, it is more prudent to postulate that the body
of the Sun emits unpolarized light. A single photon can be
considered which leaves the photosphere at the center of the
solar disk. That photon, if it escapes at an angle far from
the normal, could then travel in the direction of the limb.
Along its path, it will encounter molecules and small parti-
cles which could cause scattering in the direction of the Earth.
In this manner, photons experiencing a 90◦ scatter towards the
Earth could then be polarized.∗ It does not depend on the elec-
tron and does not necessitate that the body of the Sun itself
emit polarized light, as theoreticians have proposed [41–43].
The only requirement rests in acceptance that both polariz-
ing molecules and various forms of condensed matter† ex-
ist above the photosphere of the Sun, a concept supported
by ample evidence, including both spectroscopy and coronal
seismology [15].

5 Polarization and second solar spectrum

Beyond the frequency dependent polarization of the contin-
uous solar spectrum [49, 50], the Sun also emits polarized
light from numerous individual spectral lines. In combina-

∗The phenomenon parallels that which occurs daily with sunlight in the
atmosphere of the Earth [9, 47, 52–54].

†Atomic clusters are known to be polarizable [55, p. 64–85]. Thus, it
might be appropriate to consider that small hydrogen based atomic clusters
might also be present in the solar chromosphere and corona.

tion, these two findings lead to the “Second Solar Spectrum”
[49,50,56–67]. Brief historical accounts of this problem have
been presented [58, 61] and the major features of the Second
Solar Spectrum are as follows:

1. Relative to the Fraunhofer spectrum, these signals are
extremely weak, rarely exceeding a Q/I level of 10−3 in the
visible range [57, 58].

2. The most important atomic lines in the Second So-
lar Spectrum are produced from Ti I and Cr I [58]. These
two elements possess ground state electronic configurations
of [Ar]3d24s2 and [Ar]3d54s1, respectively.‡

3. The phase of the emission lines relative to the con-
tinuum can be highly variable [61]. Therefore, spectroscopic
lines are said to either add to (i.e. polarize [61]) or subtract
from (i.e. depolarize [62]) the continuum polarization. It is
also said that the lines appear, either in emission or absorp-
tion, for the same reason [50], but that the strongest lines tend
to be depolarizing [57].

4. The strongest polarizing lines include the following:
H I , Na I, Mg I, Ca I, Ca II (6.11 eV), Ti I, Ti II (6.83 eV),
V I, V II (6.75 eV), Cr I, Mn I, Fe I, Co I, Ni I, Cu I, Sr I, Sr II
(5.69 eV), Zr I, Zr II (6.63 eV), Nb II (6.76 eV), Ru I, Pb I,
Ba I, and Ba II (5.21 eV) [61].§

5. The spectrum is particularly rich in molecular lines,
including, most notably, lines from MgH, C2, and CN [56,57,
63–65]. The intensity of this polarization increases towards
the solar limb.

6. The spectrum contains an amazing array of lines from
the Rare Earth elements: Sc II (6.56 eV), Y I, Y II (6.22 eV),
La II (5.58 eV), Ce II (5.54 eV), Nd II (5.53 eV), Sm II
(5.64 eV), Eu II (5.67 eV), Gd II (6.15 eV), Dy II (5.94 eV),
and Yb I [61].

7. Lithium, Li, is barely detectable in the regular solar
spectrum of the photosphere [70], but its doublet at 6708 Å
appears at the ∼ 10−4 level in the polarized spectrum [57,67].
This constitutes a tremendous increase in relative detectabil-
ity for this element.

5.1 The second solar spectrum and the standard solar

model

Adherence to the SSM brings many difficulties when study-
ing the Second Solar Spectrum. A means must first be found
to excite these atoms or molecules, such that they can later
emit the required line spectrum. The only reasonable mech-
anism available, in the context of a gaseous Sun, involves

‡The calculated, or experimentally determined, static electric dipole po-
larizabilities, αD , of neutral atoms in their ground state are readily available
(see e.g. [68, p. 11] and [69, § 10; 188–189]). However, these values are of
limited interest for this problem, as the polarizability of the excited atoms or
ions may be more appropriate to consider, but are not easily ascertained.

§The elements followed by a Roman numeral I are neutral and said to be
in spectroscopic state I. Elements in the +1 oxidation state are in the second
spectroscopic state (i.e. state II). The ionization energy for each element
involved in producing its state II ion is provided in brackets [69, § 10;197–
198].
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direct excitation through photon absorption and subsequent
re-emission. Thus, a random process is invoked. Chemical
reactions are never considered, despite the fact that the chem-
ically similar Rare Earth elements produce prominent signals.
Furthermore, all ionic strongly polarizing lines present were
produced by the removal of a single electron from atoms, re-
quiring ∼6 eV of energy, as can be ascertained by examining
the ionization potentials listed in 4 and 6 above.

In the SSM, a polarization mechanism must also be ad-
vanced, namely anisotropic radiation. Thus, in order to po-
larize the emitting species, proponents of the SSM must also
have recourse to anisotropic light as follows [57]:

“The polarization arises because the incident ra-

diation, being anisotropic, induces a net dipole

moment in the scattering particle. If the particle

does not suffer a collision before it re-radiates,

the phase relations between the vector compo-

nents of the dipole moment . . . are preserved and

become imprinted on the scattered radiation.”

Such arguments bring further complications, as a cause for
anisotropic radiation in the atmosphere of a fully gaseous Sun
must now also be advanced. In the end, the center-to-limb
variation (CLV) in solar intensity is adopted, to account for
the anisotropic light [49, 50, 57]. However, at the level where
these lines are being produced, such a mechanism is unlikely
to be valid. Thus, it is also advanced that “. . . local inhomo-

geneities on the Sun will produce scattering polarization all

over the solar disk . . . ” [57]. But, in the SSM, there can be
no local cause of inhomogeneities. The magnetic fields, so
often advanced to explain such inhomogeneities, cannot be
reasonably generated in the context of a gaseous Sun [15].

Finally, since many of the lines appear to depolarize the
continuum polarization, some means of accounting for this
effect must be brought forward. In this regards, three mech-
anisms have been hypothesized [61]: 1) Hanle depolariza-
tion produced by random magnetic fields [57, 71], 2) colli-
sional depolarizations produced by hydrogen atoms (see [72]
and references cited therein) and 3) radiation transfer effects
(see [72] and references cited therein). Consequently, mag-
netic fields must be applied in the SSM, both to produce the
anisotropic light required for polarization and as a means of
depolarization. At the same time, collisional depolarization
using the hydrogen atom contradicts one of the tenets of the
gaseous Sun, namely that collisional processes are not sig-
nificant in the gaseous solar atmosphere associated with the
SSM: “Collisional processes of excitation and de-excitation

occur so seldom that they are of no importance” [73, p. 10].
This is because, within this model, the chromosphere and
corona exist as tremendous vacuums, essentially devoid of
material and with inferred densities of less than 10−12 g/cm3

(see references within [15]). While computations of colli-
sional and radiation transfer effects might be reasonably ap-
plied to a few lines, the problem becomes daunting, when

considering an entire spectrum, especially given that “. . . our

knowledge of the collisional rates is still very limited” and
“. . . there are many physical processes that are involved in

the generation and modification of the polarization” [61].
The dilemmas faced in the context of the SSM relative

to accounting for the Second Solar Spectrum has been out-
lined [61]:

“. . . probably one of the most important ques-

tions concerning the whole Second Solar Spec-

trum, that still waits for an answer, is why only

particular lines, of certain elements, produce

strong polarizing signals. For instance, one can

wonder why some elements are particularly

present with their lines in the Second Solar Spec-

trum, whereas other elements of comparable

abundance are totally absent.”

5.2 The second solar spectrum and the LMHSM

Novel insight can be gained, with respect to the Second Solar
Spectrum, if the findings are interpreted within the context of
a model wherein condensed matter participates in the gener-
ation of spectroscopic lines.

5.2.1 Excitation and relaxation in the LMHSM

Contrary to the SSM which advocates that emitting species
must first be excited through the interaction with light, fol-
lowed by re-emission disconnected from chemical processes,
the LMHSM proposes that all emission lines are inherently
linked to chemical or electrical processes in the Sun [23–27].
In the corona, the interaction between free atoms or ions with
condensed matter results in the production of highly ionized
species, like FeXXV [23,24], since condensed matter has the
ability to maintain a higher electron affinity than a free atom.
It is this affinity, not the presence of extreme temperatures,
which is hypothesized to be responsible for the production
of such highly ionized atoms in the corona [23, 24]. In this
manner, the body of the Sun can recapture lost electrons, by
stripping coronal atoms or ions and channeling the result-
ing harvest back down to the photosphere. Consequently, the
emission lines observed in the corona are associated with the
capture of electrons from free atoms or ions by condensed
matter. Such processes should be exothermic in nature, hence
their association with light emission [23, 24]. Electron cap-
ture is thus associated with the activation of a highly ionized
species which then emits the well known coronal lines. Un-
like the SSM, light need not be invoked to excite these highly
ionized species. Collisional relaxation processes are not im-
portant in this region of the Sun. Any excited ion achieves the
ground state through the emission of light.

As for the chromosphere, it has been viewed as the site
of proton and hydrogen recapture [25–27]. The hypothesized
condensation reactions take advantage of hydrogen’s tremen-
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dous ability to form hydrides. These are then used to de-
posit hydrogen atoms onto condensed hydrogen structures,
CHS [25–27]. Such a model can account for the presence of
both He I and He II emission lines in the chromospheric spec-
trum [27]. In this case, line emission becomes associated with
exothermic hydrogen based condensation reactions [25–27].
Collisional processes of excited atoms or ions back to the
ground state is not necessary either for further excitation or
relaxation back to the ground state.

In combination, the mechanisms advanced in the corona
and chromosphere act to reclaim both protons and electrons
in the outer solar atmosphere and, thereby, help to maintain
mass and charge balance in the LMHSM. Such means of pre-
serving the integrity of the Sun are absent in the SSM.

As mentioned above, in order to account for the behav-
ior of several ions in the Second Solar Spectrum, collisional
depolarization mechanisms have been invoked (see [72] and
references cited therein). Yet, such random processes are
unlikely to be of true significance in governing the behav-
ior of emission lines in this spectrum, as definite lineshapes
must depend on repeatable processes, not chance occurrence.
Moreover, the densities for the chromosphere proposed in the
SSM of 10−12 g/cm3 (see references within [15]), leave little
room for such processes. Lineshapes are inherently linked to
the environment in the vicinity of the emitter itself. It is this
microenvironment which must be considered, not the pres-
ence of macroscopic phenomena, as will be addressed in the
next section.

In the LMHSM, the presence of condensed matter and el-
evated chromospheric densities, well-beyond the densities of
the Earth’s atmosphere, are entirely compatible with a con-
densed solar photosphere. Unlike the setting proposed by the
SSM, collisional processes can be invoked in the LMHSM.
Such processes do not need to play any role in understand-
ing the emission lines of the chromosphere and corona. But
they can provide an important relaxation mechanism for the
Fraunhofer lines, as the atoms involved in photon absorp-
tion, must relax again prior to repeating the process. It is
here that collisional relaxation mechanisms can play an im-
portant function, beyond simple scattering, in the context of
the LMHSM. This is because, the LMHSM does not insist
that the chromosphere of the Sun possesses a density which
is vacuum-like and greatly inferior to that in the Earth’s atmo-
sphere. This is another important advantage of the LMHSM
over the SSM.

5.2.2 Chemical reactions and the second solar spectrum

Rather than speak of polarizing (or emission) and depolariz-
ing (or absorption) signals, it is best to consider all the lines in
the Second Solar Spectrum as inherently polarized, but with
an emission phase which can either add to or subtract from the
polarized continuum. Thus, lineshape becomes a question of
phase, as with any other spectroscopic process.

If a species is to have a net phase, then it must be rel-
ative to a common framework. In nuclear magnetic reso-
nance (NMR), phase is determined relative to receiver chan-
nels placed in quadrature, with respect to one another, as dic-
tated by a master oscillator. In NMR, lineshapes reflect spe-
cific nuclear environments and populations at the local level.
These same principles can guide lineshape analysis in the
Sun, with phase being determined by electronic orbital orien-
tation relative to a polarizing interface. Since emission lines
are being observed, then chemical activation of the emitting
species can once again be invoked, but this time within the
context of coordination of the emitting species.

As noted in introduction to section 5, the Second So-
lar Spectrum is characterized by many powerful lines from
molecules and the Rare Earth elements [74]. Rare Earth met-
als are actually relatively abundant in the Earth’s crust [74]
and they are likely to be similarly abundant in the Sun with
respect to the other metals, as polarization studies suggest.
These elements share a common outer electron configuration
often with a single electron in an outer d-shell and two elec-
trons in the immediately inferior s-shell. In this regard, the
Lanthanide series is slowly filling the 4f-shell, while main-
taining a (6s25d1) outer configuration. The latter is similar
to the Group IIIB elements of scandium (Sc), Yttrium (Y),
and Lanthanum (La), which have outer electronic configura-
tions of 4s23d1, 5s24d1, and 6s25d1, respectively. Generally
speaking, atoms with a single unpaired electron are easiest to
polarize.

The presence of the Rare Earth elements in the Second
Solar Spectrum strongly suggests that a similar chemical re-

action is responsible for all of these lines. It is likely that
these reactions involve the condensation of hydrogen onto
CHS, a process which has been inherently tied to the func-
tion of the chromosphere in the LMHSM [25–27].

Consequently, Rare Earth metal hydrides could interact
with CHS in the chromosphere. Upon release of their hydro-
gen atom, the resulting activated Rare Earth metal would be
interface polarized by the adjacent CHS with which it would
remain at least partially interacting. In this way, atomic or-
bitals always maintain the same orientation, relative to the
surface and relative to all other ions or atoms involved in
similar interactions with CHS, while maintaining coordina-
tion. As a result, the relative phase of all atoms involved in
such processes would be dictated by coordination with the
charged interface. Upon relaxation through emission, these
atoms would then be released in association with the delivery
of hydrogen.

The ability to deliver hydrogen and the exact strength and
nature of the associated coordination would depend on the
atomic species involved. Some atoms, like He for instance,
may well participate in condensation reactions [27], but given
their nobel gas electronic configurations, might be difficult
to polarize and might remain uncoordinated during emission.
Others, like the nobel gases below helium in group VIIIA of
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the periodic table, would not be expected to interact at all
with hydrogen. Hence, given their inability to participate in
condensation reactions, they should be devoid of neutral atom
chromospheric emission lines.

Thus, within the context of the LMHSM, it is reasonable
to conceive that structures comprised of condensed matter
exist in the chromosphere. Such condensed hydrogen struc-
tures, CHS, could possess a surface electric charge polarizing
any atom brought in its proximity through interface polariza-
tion mechanisms. Each atomic species involved in conden-
sation reactions would have a preferred means of being co-
ordinated with the surface, in a manner dependent on their
atomic orbitals. In such a way, it is possible to explain why
a given line would adopt a consistent and at times complex
appearance in the Second Solar Spectrum.

Support for the idea that chemical reactions are involved
can be gained by appreciating not only the prevalence of the
chemically similar Rare Earth metals, but also from the fact
that all of the most polarizing lines from ions arise from el-
ements with a first ionization potential of ∼ 6 eV [61]. This
cannot be coincidental, but strongly supports the contention
that chemistry, and not random processes, are involved.

The same is true for the presence of molecular lines. Note
that the three most important molecular species observed,
namely CN, MgH, and C2, all have the potential of deliv-
ering hydrogen to CHS structures, through species such as
HCN, MgH2, HC2, and HCCH.

Note also that, at first glance, none of the elements from
Group IVA, VA, VIA, and VIIA (with the exception of Pb at
the bottom of group IVA), appear to participate in generating
the Second Solar Spectrum. Since these atoms are increas-
ingly electronegative towards the upper right of the periodic
table, they may share a lack of ability to enter into condensa-
tion reactions that involve the delivery of a hydrogen atom.

Finally, the presence of a doublet signal from Li in the po-
larized spectrum provides another important clue that chemi-
cal processes are involved [57,67]. Signals from this element
are weak or non-existent in other spectra (Fraunhofer, chro-
mospheric, or coronal), leading proponents of the SSM to ad-
vocate depletion of Li in the Sun and the stars, despite its
abundance in meteors [70]. Conversely, within the LMHSM,
the paucity of detectable lithium has been linked to the abil-
ity of this element to stabilize metallic hydrogen, a proposal
first advanced by Zurek et al. [75]. Coordination within the
solar interior, not depletion, appears to be a more reason-
able answer, especially given meteoric abundances [70]. This
idea is also in keeping with the proposal that atoms, which
are involved in condensation reactions, can be interface po-
larized in the excited state prior to emission. This helps to
account for the presence of lithium in the Second Solar Spec-
trum. It also provides powerful evidence that interface po-
larization, not random processes and anisotropic radiation,
is responsible for the production of the Second Solar Spec-
trum.

6 Conclusion

The study of solar and stellar polarimetry is one of the most
fascinating aspects of astronomy, as the associated observa-
tions hold a treasure of clues, relative to the structure and
functioning of the Sun, the stars, and the galaxies [76, 77].
At every turn, polarization studies also add tremendous sup-
port to the concept that the Sun is comprised of condensed
matter [15]. In this regard, the LMHSM provides a strong
platform to account for the polarization of the K-corona, en-
abling polarized self-emission from an anisotropic structure.
At the same time, the model elegantly unifies the K-, F-, and
T-coronas into a single entity, with variable emissivity based
on cooling with elevation and increasingly radial anisotropy.
The idea that the chromosphere and the corona act to recap-
ture hydrogen and electrons which have escaped from the so-
lar body has no equivalent in the SSM [23–27].

Given the evidence, it is more reasonable to postulate that
the Second Solar Spectrum results from interface polariza-
tion and associated condensation reactions, rather than call-
ing for anisotropic radiation, Hanle depolarization, and colli-
sional depolarization.

Ample proof exists that the Second Solar Spectrum is in-
herently tied to chemistry, as the presence of Rare Earth el-
ements, relevant ionization potentials, molecular lines, and
phase sensitive lineshapes suggest. In the end, the Second
Solar Spectrum is perhaps the most significant of all spectro-
scopic signals obtained from the Sun, as in its lines, the scien-
tist can find compelling evidence for the presence of chemical
reactions within the solar atmosphere.
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Unmatter Plasma Discovered
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The electron-positron beam plasma was generated in the laboratory in the beginning of

2015. This experimental fact shows that unmatter, a new form of matter that is formed

by matter and antimatter bind together (mathematically predicted a decade ago) really

exists. That is the electron-positron plasma experiment of 2015 is the experimentum

crucis verifying the mathematically predicted unmatter.

Unmmatter Plasma is a novel form of plasma, exclusively

made of matter and its antimatter counterpart. It was first

generated in the 2015 experiment [1, 2] based on the 2004

considerations [3].

There are four fundamental states of matter: solid, liquid,

gas, and plasma. Plasma consists of positive ions and free

electrons (negative particles), typically at low pressures, and

it is overall almost neutral. Plasma is an ionized gas (as in

fluorescent neon, in lightning, in stars, in nuclear reactors).

An ion is a positive or negative charged particle. A positive

ion is called cation, while a negative ion is called anion. If the

ion is an atom, then it may contain less electrons than needed

for being neutrally charged (hence one has a cation), or more

electrons than needed for being neutrally charged (hence one

has an anion). Similarly if the ion is a molecule or a group

(of atoms or molecules). The process of forming ions is called

ionization. The degree of ionization depends on the propor-

tion of atoms that have lost or gained electrons. By applying

a strong electromagnetic field to a gas, or by heating a gas,

one obtains plasma.

Unmatter as theoretically predicted in the framework of

the neutrosophic logic and statistics [4–6] is considered as

a combination of matter and antimatter that bound together,

or a long-range mixture of matter and antimatter forming a

weakly-coupled phase. For example, the electron-positron

pair is a type of unmatter. We coined the word unmatter

that means neither matter nor antimatter, but something in

between. Besides matter and antimatter there may exist un-

matter (as a new form of matter) in accordance with the neu-

trosophy theory that between an entity and its opposite there

exist intermediate entities.

The 2015 experiment [1, 2] on matter-antimatter plasma

(unmatter plasma, in terms of the neutrosophic logic and stat-

istics) was recently successful in the Astra Gemini laser facil-

ity of the Rutherford Appleton Laboratory in Oxford, United

Kingdom. The 2015 experiment has produced electron-

positron plasma. The positron is the antimatter of the elec-

tron, having an opposite charge of the electron, but the other

properties are the same.

Also, the meson is a clear example of unmatter whose

configuration includes a pair quark-antiquark. Unmatter is

mostly expected to emerge in exotic states outside the bound-

aries of the Standard Model for particle physics (for example

in the Dark Matter sector) and in the regime of high-energy

astrophysical objects [7].

“It is definitely a jet of unmatter, because a plasma con-

sisting of the electrons and the positrons is neither matter nor

antimatter in the same time. This experiment is the truly ver-

ification of unmatter as the theoretical achievements of neu-

trosophic logic and statistics. This experiment is a milestone

of both experimental physics and pure mathematics” [8].
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For more than four years, fluctuations in the deflection angle θ(t) of novel type of tor-

sion balance have been monitored at the Main Astronomical Observatory of National

Academy of Sciences in Kiev, Ukraine. During this all-year recording, unpredictable

spontaneous high-frequency oscillations were observed occasionally. The aim of the

present paper was to investigate four of these high-frequency oscillatory events by per-

forming a detailed time-frequency analysis. From the overall available θ(t) signal, we

selected four 24-hour long segments containing a clearly visible oscillations observed

on 20 and 21 November 2009 (data segments 1 and 2) and on 24 and 25 December

2012 (data segments 3 and 4). High-resolution time-frequency analysis was performed

for each of the four data segments using the generalized S-transform with a hyperbolic

window. The oscillation of θ(t) present in data segment 1 shows clearly an increase

in frequency, starting at 0.0002205 Hz (period length T = 75.59 min) and ending at

0.0002325 Hz (T = 71.68 min). The oscillation of θ(t) present in data segment 2 has

instead a stable frequency of f = 0.000243 Hz (T = 68.59 min). Both high frequency

oscillations of θ(t) of data segment 3 and 4 show an increase in frequency, starting at

0.006179 Hz (T = 161.84 s) and ending at 0.006859 Hz (T = 145.79 s) for data segment

3, and starting at 0.005379 Hz (T = 185.91 s) and ending at 0.005939 Hz (T = 168.38 s)

for data segment 4, respectively. In addition, the oscillation present in data segment 3 is

periodically amplitude-modulated with a period length of T = 57 ± 4.2 min. Regarding

the origin of the observed high frequency oscillation we discuss possible technical or

natural factors that could be related to these oscillations.

1 Introduction

At the Main Astronomical Observatory of National Academy

of Sciences in Kiev, Ukraine, a high-sensitive torsion balance

with a new design (termed “torsind”, refering to the device’s

function as a torsion indicator) has been quasi-continuously

measuring fluctuations of its angular deflection since 2009.

The specific design of the device (i.e. replacement of the

linear light beam by a light disc of non-magnetic material

and the free suspension of the disk with a specific type of

monofilament) makes it insensitive to changes in the gravi-

tational potential so that gravitational (tidal) influences from

any directions are excluded in the measurements. In addition,

since the device is sealed into a container, variations of tem-

perature, pressure, humidity and environmental electric field

strength do not influence the reading [1]. Also changes in

the excitation of the ionosphere over the place of observation

were shown not to influence the measured values of the de-

vice [1].

Based on the long-term measurement of the tosind’s disc

rotations, different types of non-random fluctuations in the

time-dependent deflection angle θ(t) were observed.

The main oscillatory component in the variability is an

(amplitude-modulated) diurnal oscillation (i.e. an increase in

d/dt(θ(t)) at sunrise, a decrease at sunset and a maximum de-

flection at noon) [1, 2], having a period length of 1440.24 ±

2.60 min [2], indicating that it is related to solar and not

sidereal time (length of sidereal day: 1436 min, solar day:

1440 min). Such a diurnal oscillation was also observed in

other experiments where torsion or vertical pendulums were

used [3–6].

The fluctuations of θ(t) measured by the torsind seem also

to be related to cosmophysical processes and events since sig-

nificant changes in θ(t) were observed during solar and lunar

eclipses [1, 7–9], the transit of Venus across the Sun’s disk

[1], and even specific astronomical configurations [10]. Re-

markably, it was observed that the torsind responds to a solar

eclipse occurring on the opposite side of the globe [7, 10] or

when the measurement is performed underground at a depth

of 40 meters [8].

During the all-long recording as a whole, unpredictable

spontaneous high-frequency (period length: T < 24 h) oscil-

lations were observed occasionally.

The aim of the present paper was to investigate four of

these high-frequency oscillatory events by performing a de-

tailed time-frequency analysis.

The motivation to perform this kind of analysis was based

on the first author’s (FS) previous work on the analysis of

unexplained oscillations in electrochemical reactions [11] and

diffusion processes [12, 13].
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2 Materials and Methods

2.1 Measurement Setup

As described in detail in [1], the torsind device resembles a

classical torsion balance but has a very light aluminium disc

(diameter: 120 mm, weight: approx. 100 mg) instead of a

linear beam. The disc is suspended by a monofilament (diam-

eter: 20 µm) made from natural silk, which has the advantage

of not having a reverse torque when twisted. The disc rota-

tion is monitored by a webcam and the image live-stream is

processed automatically by custom-made software that deter-

mines the angular deflection θ every minute with a standard

error of each measurement of ± 0.157◦ (determined under sta-

ble space weather conditions on 13 February 2013) [2].

The device is housed in a quartz glass cylinder (having

a high of 240 mm and a wall thickness of 2 mm) with two

round glass plates covering the top and bottom. Various ef-

forts were made to isolate the torsind device from environ-

mental changes [1]. To reduce electrostatic influences, the in-

ner wall and the bottom of the glass cylinder are surrounded

by a grounded aluminium foil. To ensure that environmental

changes in humidity and pressure are not influencing the de-

vice, the edges of the quartz-glass housing are sealed with a

silicon joint sealant material. The sealing also improves the

thermal stabilization.

Measurements were made with the torsind in isolated,

shaded room with tightly closed doors and windows at the

Main Astronomical Observatory of National Academy of Sci-

ences in Kiev. The place of measurement was selected to en-

sure that no technical electrical or mechanical processes were

happening within a radius of 50 m that could influence the

measurement (i.e. no electrical devices, no electromagnetic

wireless data-transfer devices, no devices that cause mechan-

ical vibrations).

Concerning the sensitivity of the torsind to detect (ex-

tremely) weak forces, the torque (M) of the minimal accelera-

tion value that could be recorded by the device was estimated

to be M ≈ 6.5 × 10−12 Nm) [1].

2.2 Data

For the analysis presented in this paper, we selected four 24-

hour-long signal segments from the overall available signal

that contain a clearly visible oscillation. Two of the data seg-

ments show a long-lasting fast oscillation with multiple max-

ima during the 24-hour interval (recording dates: 20 Novem-

ber 2009 [data segment 1], 21 November 2009 [data seg-

ment 2]). The other two segments contain a brief, very fast

oscillation (recording dates: 24 December 2012 [data seg-

ment 3], 25 December 2012 [data segment 4]). Thus, the

two distinct oscillatory phenomena investigated in the present

study occurred in November 2009 and December 2012. All

signals were recorded with respect to Universal Time (UT1)

which is the same everywhere on Earth due to its proportion-

ality to the Earth’s rotation angle with respect to the Interna-

tional Celestial Reference Frame.

2.3 Time-Frequency Analysis

High-resolution time-frequency analysis was performed for

each of the four data segments, applying a specific type of

Stockwell (S)-transform, the generalized S-transform (GST)

with a hyperbolic window according to the approach devel-

oped by Pinnegar and Mansinha [14].

3 Results

3.1 Data Segments 1 and 2

Data segments 1 and 2 contain both a clearly visible oscilla-

tion of θ(t) (see subfigures a1–3 of Fig. 1).

The oscillation of θ(t) present in data segment 1 clearly

shows a frequency increase, starting at 0.0002205 Hz (T =

75.59 min) and ending at 0.0002325 Hz (T = 71.68 min) (see

subfigures b1 and c1 of Fig. 1). This is not the case for the

oscillation of θ(t) present in data segment 2 which exhibits a

stable frequency of f = 0.000243 Hz (T = 68.59 min) (see

subfigures b2 and c2 of Fig. 1).

Subfigures b3 and c3 of Fig. 1 show the time-frequency

spectrum of the combined signal (data segment 1 + data seg-

ment 2) with the increasing frequency on day one (20 Novem-

ber 2009) and the stable frequency on day two (21 November

2009).

3.2 Data Segments 3 and 4

A very high frequency oscillation is present in data segments

3 and 4.

The high frequency oscillation in data segment 3 started

at 746 min and ended at 969 min (total duration: 223 min),

whereas the start of the high frequency oscillation of data seg-

ment 4 started at 347 min and ended at 549 min (total dura-

tion: 202 min) (see subfigures a1 and b1, as well as a2 and b2

of Fig. 2). Thus, both periods of high-frequency activity are

of similar duration.

Both high frequency oscillations of θ(t) of data segment 3

and 4 show an increase in frequency, starting at 0.006179 Hz

(T = 161.84 s) and ending at 0.006859 Hz (T = 145.79 s) for

data segment 3, and starting at 0.005379 Hz (T = 185.91 s)

and ending at 0.005939 Hz (T = 168.38 s) for data segment 4.

What distinguishes these two oscillatory events is that the os-

cillation present in data segment 3 is periodically amplitude-

modulated (see subfigure c1 of Fig. 2) whereas such a peri-

odic modulation is not obvious in the oscillation of data seg-

ment 4. Three peaks in the variability of the power can be dis-

tinguished that correspond to an amplitude-modulation with

a period length of T = 57 ± 4.2 min.

Besides the high frequency oscillations, both data seg-

ments contain strong shifts of θ(t). For data segment 3, two

significant shifts can be identified within the time frame 318-

376 min (θ(t)start = 232.5◦, θ(t)end = 774.7◦, resulting in ∆θ(t)
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Fig. 1: (a1-a3) Time series of θ(t) recorded on 20 and 21 November 2009, as well as the stitched time series covering both dates.

(b1-b3) Spectrogram showing the time-frequency changes of the oscillation. The power is color-coded. (c1-c3) Spectrogram with red

line indicating the maximum power depending on frequency and time.

= 542.2◦), and the time frame 1396–1402 min (θ(t)start =

703.4◦, θ(t)end = 566.9◦, resulting in ∆θ(t) = 136.5◦). In data

segment 4, one strong shift is present, occurring in the time

frame 1250–1273 min (θ(t)start = 550.5◦, θ(t)end = 192.3◦,

∆θ(t) = 358.2◦). These kind of shifts (also termed “spikes”

[2]) correspond to moments when a strong rotational momen-

tum is acting on the torsind.

4 Discussion and Conclusion

The analysis performed revealed that the fast variations ob-

served in the four days of data segments exhibit oscillations

with clearly defined frequencies. The fast oscillations start-

ing at 20 and ending at 21 November 2009 are characterized

by an increase in frequency. This characteristic of frequency

increase is also observed in the very fast oscillations present

in the data from 24 and 25 December 2012.

In the following we will briefly discuss the possibility that

these oscillations could be artefacts caused by technical or

natural processes, or effects from well-known factors associ-

ated with geophysical processes.

Artefacts caused by technical or natural processes. Tor-

sion balance measurements can be generally influenced by

changes in the local environmental parameters like tempera-

ture, humidity, pressure or electromagnetic fields. The influ-

ence of these factors was actively minimized during the mea-

surement with the torsind by applying proper shielding and

the effectiveness of the shielding was evaluated experimen-

tally. For this reason, we conclude that it is unlikely that the

observed oscillations are simply artifacts due to technical or
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Fig. 2: (a1, a2) Time series of θ(t) recorded on 24 and 25 December 2012. (b1, b2) Zoom into the intervals with fast oscillations. (c1, c2)

Time series of the maximum power depending on the frequency, showing a periodic (c1) and a unimodal (c2) amplitude modulation.

(d1, d2) Spectrograms of the entire time series. The power is color-coded. (e1, e2) Spectrograms of the zoomed-in parts of the time series.

(f1, f2) Spectrograms with red lines indicating the maximum power depending on frequency and time.
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natural processes happening in the local environment of the

measurement.

Effects from geophysical processes. What geophysical

or astrophysical phenomena exhibit a frequency of approx.

0.002 Hz (as observed in data segments 1 and 2) or approx.

0.006–0.007 Hz (as observed in data segments 3 and 4)? It is

known that the geomagnetic field can exhibit periodic fluctu-

ations, termed “geomagnetic pulsations” [15, 16].

Those geomagnetic pulsations in the frequency range of

0.002–0.006 Hz (T = 166.67 − 500s), termed “Pc5 pulsa-

tions”, overlap with the oscillation in θ(t) found in the present

study. Geomagnetic pulsations are the result of solar wind

disturbances (caused by increased solar activity) perturbing

the magnetosphere and causing disturbances/modulations of

the geomagnetic field. We checked whether there were any

significant disturbances in the geomagnetic field on the dates

of the data segments investigated (20–21 November 2009 and

24–25 December 2012) by analysing the hourly Dcx index

(http://dcx.oulu.fi), i.e. the corrected Dst index [17,18]. Geo-

magnetic disturbances are seen as negative deflections of the

Dcx (and Dst) index, associated with an enhanced westward

directed electric current during the geomagnetic storm. Dur-

ing the two periods (20–21 November 2009 and 24–25 De-

cember 2012) no geomagnetic storms or significant distur-

bances occurred. The observed oscillations in θ(t) can there-

fore to be regarded as most likely not caused by Pc5 geomag-

netic pulsations.

Another principal possibility is low-frequency microseis-

mic oscillations or “long-period seismic noise” [19]. How-

ever, it is known that in the range of 0.002–0.02 Hz microseis-

mic activity is the lowest compared to the frequency ranges

off approx. < 0.002 Hz and > 0.02 Hz [20, 21]. Also, these

kinds of microseismic fluctuations in general do not exhibit

the clear frequency stability and do not occur for such a long

time span as observed in the θ(t) oscillations analysed in the

present paper. Therefore, we believe microseismicity is un-

likely to be responsible for the fast θ(t) oscillations.

Future experimental work involving measurements with

the torsind and data analysis is needed to identify the mech-

anism causing the non-random fluctuations in θ(t) measured

by the torsind device. Further data analysis is ongoing and

will be reported in the near future.
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The Van der Pol differential equation was constructed for an autonomous regime using
link’s law. The Van der Pol equation was studied analytically to determine fixed points,
stability criteria, existence of limit cycles and solved numerically. The graphs of the
equation are drawn for different values of damping coefficient µ.

1 Introduction

Balthazar Van der Pol (1899-1959) was a Dutch electrical en-
gineer who initiated experimental dynamics in the laboratory
during the 1920’s and 1930’s. He first introduced his (now
famous) equation in order to describe triode oscillations in
electric circuits, in 1927.

Van der Pol found stable oscillations, now known as limit
cycles, in electrical circuits employing vacuum tubes. When
these circuits are driven near the limit cycle they become en-
trained, i.e. the driving signal pulls the current along with it.
The mathematical model for the system is a well known sec-
ond order ordinary differential equation with cubic non linear-
ity: the Van der Pol equation. The Van der Pol equation has a
long history of being used in both the physical and biological
sciences. For instance, Fitzhugh [1] and Nagumo [2] used the
equation in a planer field as a model for action potential of
neurons. The equation has also been utilized in seismology
to model the plates in a geological fault [3].

During the first half of the twentieth century, Balthazar
Van der Pol pioneered the field of radio telecommunication
[4–9]. The Van der pol equation with large value of non-
linearity parameter has been studied by Cartwright and Lit-
tlewood in 1945 [10]; they showed that the singular solution
exists. Also analytically, Lavinson [11] in 1949, analyzed the
Van der Pol equation by substituting the cubic non linearity
for piecewise linear version and showed that the equation has
singular solution also. Also, the Van der Pol Equation for
Nonlinear Plasma Oscillations has been studied by Hafeez
and Chifu in 2014 [12]; they showed that the Van der pol
equation depends on the damping co-efficient µ which has
varying behaviour. In this article, the analytical study of the
Van der Pol equation in the autonomous regime is studied.

2 Description of the Van der Pol oscillator

The Van der Pol oscillator is a self-maintained electrical cir-
cuit made up of an Inductor (L), a capacitor initially charged
with a capacitance (C) and a non-linear resistance (R); all of
them connected in series as indicated in Fig. 1 below. This
oscillator was invented by Van der Pol while he was trying
to find out a new way to model the oscillations of a self-
maintained electrical circuit. The characteristic intensity-ten-

sion UR of the nonlinear resistance (R) is given as:

UR = −R0 i0


i
i0
− 1

3

(
i
i0

)3 (1)

where i0 and R0 are the current and the resistance of the nor-
malization respectively. This non linear resistance can be ob-
tained by using the operational amplifier (op-amp). By ap-
plying the link’s law to Fig. 1 below,

Fig. 1: Electric circuit modelizing the Van der Pol oscillator in an
autonomous regime.

we have:
UL + UR + UC = 0 (2)

where UL and UC are the tension to the limits of the inductor
and capacitor respectively and are defined as

UL = L
di
dτ

(3)

UC =
1
C

∫
idτ. (4)

Substituting (1), (3) and (4) in (2), we have:

L
di
dτ
− R0 i0


i
i0
− 1

3

(
i
i0

)3 +
1
C

∫
idτ = 0. (5)
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Differentiating (5) with respect to τ, we have

L
d2i
dτ2 − R0

1 − i2

i20

 di
dτ

+
i
C

= 0. (6)

Setting

x =
i
i0

(7)

and
t = ωeτ (8)

where ωe = 1√
LC is an electric pulsation, we have:

d
dτ

= ωe
d
dt

(9)

d2

dτ2 = ω2
e

d2

dt2 . (10)

Substituting (9) and (10) in (6), yields

d2x
dt2 − R0

√
C
L

(
1 − x2

) dx
dt

+ x = 0. (11)

By setting µ = R0

√
C
L Eq. (11) takes dimensional form as

follows
ẍ − µ (1 − x2) ẋ + x = 0 (12)

where µ is the scalar parameter indicating the strength of the
nonlinear damping, and (12) is called the Van der Pol equa-
tion in the autonomous regime.

3 Analytical study

3.1 Fixed points and stability

Transforming the higher order ODE (12) into a system of si-
multaneous ODE’s i.e. let x1 = x and x2 = ẋ

[
ẋ1
ẋ2

]
=

[
x2

−x1 + µ (1 − x2
1) x2

]
. (13)

Introducing the standard transformation

y = x (14)

z = ẋ − µ
(
x − x3

3

)
(15)

and letting

F(x) = µ

(
x3

3
− x

)
, (16)

now
ẏ = ẋ. (17)

Using (15) we have,

ẏ = z + µ

(
y − y

3

3

)
(18)

and
ż = ẍ − µẋ (1 − x2)

ż = −µ (y2 − 1) ẋ − x − µ (1 − y2) ẋ = −x = −y. (19)

This transformation puts the equation into the form:

[
ẏ
ż

]
=


z − µ

(
y3

3 − y
)

−y

 . (20)

Eq. (20) is the particular case of Lienard’s Equation
[
ẏ
ż

]
=

[
z − f (y)
−y

]
(21)

where f (y) = µ
(
y3

3 − y
)
. Linearizing (20) around the origin

i.e. fixed point (0,0), we have
[
ẏ
ż

]
=

[
µ 1
−1 0

] [
y
z

]
. (22)

The characteristic equation of (22) is given as

λ2 − µ λ + 1 = 0 (23)

with eigenvalues of

λ± =
µ ±

√
µ2 − 4
2

(24)

and eigenvectors of

~e+ =

[ −2
µ−√(µ2−4)

1

]
, ~e− =

[ −2
µ+
√

(µ2−4)
1

]
. (25)

The stability of this fixed point depends on the signs of the
eigenvalues of the Jacobian matrix (22).

3.2 Existence of the limit cycles

Let us now analytically study the amplitude of the limit cycle
by using the average method [13]. Considering the following
transformations

x(t) = A(t) cos (t + ϕ(t)) = A cosψ (26)

ẋ(t) = −A(t) sin (t + ϕ(t)) = −A sinψ (27)

where A(t) is the amplitude, ϕ(t) being the phase and with
ψ(t) = ϕ(t)+t. Supposing the amplitude and phase feebly vary
during a period T = 2π, we have the fundamental equations
of the average method as follows:

Ȧ(t) = − µ
2π

∫ 2π

0
f (A cosψ,−A sinψ) sinψ dψ (28)

ϕ̇(t) = − µ
2π

∫ 2π

0
f (A cosψ,−A sinψ) sinψ dψ (29)

Hafeez Y. H. et al. Analytical Study of the Van der Pol Equation in the Autonomous Regime 253



Volume 11 (2015) PROGRESS IN PHYSICS Issue 3 (July)

Eqs. (28) and (29) help to determine the amplitude A(t) and
phase ϕ(t) of the oscillator. Applying this method to (12) for
which

f (x, ẋ, t) = (1 − x2) ẋ

then, we have

f (A, ψ) = −A sinψ + A3 sinψ cos2 ψ. (30)

Substituting (30) into (28) and (29), we get

Ȧ(t) = − µ
2π

∫ 2π

0

(
−A sin2 ψ + A3 sin2 ψ cos2 ψ

)
dψ (31)

ϕ̇(t) = − µ
2π

∫ 2π

0

(
−A sinψ cosψ + A3 sinψ cos3 ψ

)
dψ. (32)

Integration of (31) and (32) gives the evolution equation of
the amplitude A(t) and the phase ϕ(t):

Ȧ(t) = −µA(t)
2

(
1 − A2(t)

4

)
(33)

ϕ̇(t) = 0. (34)

The average method states that the amplitude and the phase
feebly vary during a period. Therefore Ȧ(t) = 0, and the
amplitude is eventually A(t) = 2.

4 Numerical solution

The numerical solution to the Van der Pol equation for various
values of µ are presented in Figs. 2 to 4.

Fig. 2: Plot of y(t) and dy/dt against t(s) for µ = 0.

5 Discussion

The classical Van der Pol equation (12) depends on the damp-
ing coefficient µ and the following varying behaviors were ob-
tained. When µ < 0, the system will be damped and the limit
lim t→∞ → 0. From Fig. 2, where µ = 0, there is no damp-
ing and we have a simple harmonic oscillator. From Figs. 3

Fig. 3: Plot of y(t) and dy/dt against t(s) for µ = 10.

Fig. 4: Plot of y(t) and dy/dt against t(s) for µ = 20.

and 4, where µ ≥ 0, the system will enter a limit cycle, with
continuous energy to be conserved. The wave generated by
this oscillator is periodic with sinusoidal form for µ � 1 and
relaxation for large value of µ [14] with fix amplitude equal
to 2. Also when −∞ < µ ≤ 0 and λ± is Re(λ±) < 0, the point
is stable; if µ = 0 and λ± = ±i, the point is marginally stable
and unstable; if 0 ≤ µ < ∞ and λ± is Re(λ±) > 0, the origin
is unstable. If 0 ≤ µ ≤ 2 and λ± is Im(λ±) , 0, then the
fixed point (0,0) is an unstable center. If 2 < µ < ∞ and λ± is
Im(λ±) = 0, then the fixed point (0,0) is still unstable.

6 Conclusion

In the above analysis, a class of analytical study of the Van
der Pol equation in the autonomous regime is presented. An-
alytically, we conclude that the fixed point (0,0) is unstable
whatever the value of the damping coefficient µ and the sys-
tem enters a limit cycle with amplitude A(t) of the Van der Pol
oscillator limit cycle equal to 2. We showed that there exists
a unique limit cycle.
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The deformation energy of the even-even nuclei of the Cerium isotopic chain is inves-
tigated by means of the Macroscopic-Microscopic method with a semiclassical shell
correction. We consider axially symmetric shapes. Binding energy and two neutron
separation energy are also evaluated. For the sake of clarity several important details of
the calculations are also given. It turns out that all these nuclei have prolate equilibrium
shape. The regions of maximum deformation are obtained around N = 64 and N = 102.
There is no critical-point of quantum phase transition in this isotopic chain.

1 Introduction

Nowadays it is well established that the majority of nuclei
possess a nonzero intrinsic electric quadrupole moment (IE
QM). This feature means that the charge distribution inside
the nucleus deviates from the spherical symmetry. In other
words, apart from very few nuclei, the surface of the nucleus
is generally not spherical in its ground state. The intrinsic
quadrupole electric moments (or equivalently the nuclear de-
formation) can be deduced from two types of measurements:

• The reduced electric quadrupole transition probability,
B(E2) [1];

• The static electric quadrupole moments of ground and
excited states, Q [2].

It turns out that in a number of cases, the two methods of
measurement do not systematically lead to the same values.
Important discrepancies occur for several nuclei. This is es-
sentially due to the fact that not only different experimental
techniques are used but above all, because different models
can be implemented to deduce the nuclear deformation for
the both cases.

In [3] it is stated that deformations deduced from B(E2)
have a “more general character”. In other words, “B(E2)-
type” data reflect not only static nuclear deformation (perma-
nent deviation of the nuclear shape from sphericity), but also
dynamic deformation. Furthermore, B(E2) measurements are
model independent and thus are generally more reliable. This
is corroborated by the fact that the only systematic compi-
lation in which the deformation of the ground state is given
explicitly is based on B(E2; 0+→2+) and has been published
in [1]. In the present work, experimental values refer to these
ones.

Theoretical approaches to the deformation energy can be
divided into two categories; Dynamic calculations to find the
shape of the ground state (or even of excited states) and static
calculations by determining the absolute minimum (ground
state) or multiple minima (shape isomers) in the potential en-
ergy surface (PES) for a given nucleus.

Thus, on the one hand, we have the so-called collective
models, which themselves are subdivided into two groups:
The “Geometric Collective Model” also called the “Collec-
tive Bohr Hamiltonian” (CBH and its variants) and the “Al-
gebraic Model”, well known under the name of the “Interact-
ing Boson Model” (IBM and its variants) [4]. On the other
hand, “particle models” consider the nucleus as a collection
of interacting nucleons (fermions).

In practice, the classical N-body problem can be approx-
imately solved by the usual approximation of the mean field
with eventually residual interactions. In this respect, the “be-
st” mean field is deduced after applying a variational prin-
ciple in the Hartree-Fock-Bogoliubov method (HFB). In this
model, the determination of the potential energy surface (PE
S) of the nucleus amounts to perform constrained Hartree-
Fock-Bogoliubov (CHFB) calculations [5]. We will not ad-
dress very complicated methods “beyond the mean field” su-
ch as the Quasiparticle Random Phase Approximation (QRP
A) or the Generator-Coordinate-Method (GCM) methods wh-
ich are unsuitable in practice for large scale calculations.

Because of CHFB calculations are time consumers, es-
pecially in large studies, Microscopic-Macroscopic method
(Mic-Mac) constitutes a good alternative which, is up to now,
implemented [6]. In the present work, we use an improved
variant of this method. The word “improved” means that
we use semi-classical method to avoid the well-known draw-
backs (spurious dependence on two mathematical parame-
ters) of the standard Strutinsky shell correction (see text be-
low).

The present study is devoted to the deformation energy,
equilibrium nuclear shapes and binding energy of the ground
state of the even-even cerium isotopes. There are many rea-
sons to this choice. One of them is to re-test our previous
calculations. In effect, similar calculations have been already
performed by us in the xenon, barium, and cerium region
[7]. However because the phenomenological mean potential
varies smoothly with N and Z, we have made, in the past, a
rough approximation by choosing the same set of parameters
for the phenomenological mean potential, for the all treated
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nuclei. Originally, this approximation was done only for sim-
plifying the calculations.

Here, contrarily to that study, each nucleus has its “own”
mean potential with a specific set of parameters. In this way it
is possible to evaluate in a rigorous way the uncertainty intro-
duced in the previous calculations. Apart from this remark,
there are several main other reasons which could justify this
choice: (i) First, it should be interesting to see how the defor-
mation energy and binding energy vary with the neutron num-
ber (N) for this isotopic chain. (ii) Second, the present study
extends the previous calculations to all cerium isotopes up to
the drip lines (34 versus 13 nuclei). (iii) Third, we also will at-
tempt to deduce, from potential energy surface (PES) curves,
the shape transition from spherical to axially deformed nuclei,
looking for the so-called X(5) critical-point between U(5) and
SU(3) symmetry limits of the IBM [8, 9].

It is worth to recall briefly some information deduced fr-
om the literature for the cerium isotopes. In the past, a num-
ber of experimental as well as theoretical studies have been
done for the cerium isotopes. Among the numerous studies,
we only cite some of them.

In 2005 Smith et al [10] have studied excited states of
122Ce up to spin 14~ deducing a probable quadrupole defor-
mation of about β ≈ 0.35. The deformed nucleus 130Ce has
been studied in 1985, using the techniques of in-beam gamma
-ray spectroscopy [11]. The corresponding data have been in-
terpreted in terms of the cranking model by assuming a pro-
late deformation with ε2 ≈ 0.25 (β ≈ 0.27).

High-spin states in 132Ce have been also studied by A.J.
Kirwan et al [12]. They found a superdeformed band with de-
formation β ≈ 0.4 much more larger that the ground state de-
formation (β ≈ 0.2). E. Michelakakis et al [13] by evaluating
γ−ray transitions in 142Ce and 144Ce conclude that in cerium
isotopes (near the beta-stable line) the onset of nuclear defor-
mation occur between N = 86 and N = 88. “Pure” theoretical
calculations have been performed in [14] and [15] with pro-
jected shell model (PSM) and Hartree-Bogoliubov ansatz in
the valence space respectively for 122Ce and 124−132Ce for low
lying yrast spectra. Good values of energy levels and reduced
transition probabilities B(E2, 0+→2+) have been obtained re-
spectively in these two papers.

Other approaches for the rich-neutron cerium isotopes ha-
ve been made in [16]. A study of the shape transition from
spherical to axially deformed nuclei in the even Ce isotopes
has been done in [17] using the nucleon-pair approximation
of the shell model. The result of a such study is that the tran-
sition has been found too rapid. Relativistic Hartree-Fock-
Bogoliubov theory has been used to predict ordinary halo for
186Ce,188 Ce,190 Ce, and giant halo for 192Ce,194 Ce,196 Ce, and
198Ce near the neutron drip line.

Systematic studies about nuclear deformations and mass-
es of the ground state can be found in [18–21] with respec-
tively, the Finite-Range Droplet-Model (FRDM), Hartree-Fo-
ck-Bogoliubov (HFB), HFB+5-dimensional collective qua-

drupole Hamiltonian and Relativistic Mean Field (RMF) mo-
dels.

2 The Macroscopic–Microscopic method

2.1 Liquid drop model and microscopic corrections

This method combines the so-called semi-empirical mass for-
mula (or liquid drop model) with shell and pairing corrections
deduced from microscopic model. Thus the binding energy is
given as a function of nucleon numbers and deformation pa-
rameter (referred to as β) by mean of the usual symbols:

B(A,Z, β) = ELDM(β) − δBmicro(β). (1)

δBmicro contains the shell and pairing correction (see text be-
low). The minus sign before δBmicro is consistent with the
convention that the binding energy is defined as positive here.

For the liquid drop model we take the old version of My-
ers and Swiatecki [28] (because of its simplicity compared
to more recent formulae). Here, there is no need to look for
very high accuracy in binding energy, because this is not the
purpose of the present work.

ELDM(β) = CV A −CS A2/3BS (β) −CCZ2A−1/3BC(β)+

+ εapairA−1/2 + CdZ2A−1.
(2)

In (2), we have the usual contributions of volume, surface and
coulomb energies.

The different constants of Myers and Swiatecki are given
in Appendix A. The shape dependence (β) of the surface and
coulomb energies are contained in BS (β) and BC(β). They
are normalized to the unity for a spherical nuclear surface.
The latter is symbolized by β = 0. The two last terms in (2)
are respectively due to the smooth part of the pairing energy
and the correction of the Coulomb energy to account for the
diffuseness of the nucleus surface. The different constants
will be fixed later.

The potential energy surface (PES without zero point en-
ergy correction) is defined as follows:

EPES (β) = ELDM(0) − B(A,Z, β)

= ∆ELDM(β) + δBmicro(β)
(3)

in which

∆ELDM(β) = ELDM(0) − ELDM(β)

= CS A2/3 [
BS (β) − BS (0)

]
+

+ CCZ2A−1/3 [
BC(β) − BC(0)

]
.

(4)

Constants CV and CS are expressed by means of three other
constants aV , aS , and κ. For spherical shape, as said before,
the normalization is expressed by: BS (0) = BC(0) = 1. As it
can be easily seen, the potential energy surface is related only
to two macroscopic constants CS (which depends actually on
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aS and κ) and CC . To calculate microscopic shell an pairing
corrections contained in δBmicro, we have to proceed in two
steps. The first consists in solving the Schrödinger equation
and the second in deducing the shell and pairing corrections
in an appropriate way, as explained in the following.

2.2 Microscopic model

We briefly present the microscopic model which is based on
the Schrödinger equation of the deformed independent parti-
cle model:

Ĥ(β) | Ψi(β)〉 = εi(β) | Ψi(β)〉 (5)

where |Ψi〉 and εi are respectively the eigenfunctions and the
associated eigenvalues of nucleons. Hamiltonian Ĥ contains
four contributions which are: (i) kinetic energy, (ii) central
deformed mean field, (iii) spin-orbit and (iv) Coulomb inter-
actions.

We perform analogous calculations as in Nilsson model
but our deformed mean potential is of Woods-Saxon type and
therefore is “more realistic”. Although calculations are not
self consistent, they are microscopic. It is to be noted that our
Schrödinger equation has a form which is very close to the
one of the Skyrme-Hartree-Fock method. Eq. (5) is solved
by our FORTRAN program described in details in [22] and
improved in two successive versions [23] and [24].

2.3 Microscopic corrections

Microscopic corrections are defined as the sum of shell and
pairing corrections which themselves are calculated separate-
ly for each kind of nucleons:

δBmicro(β) = δEshell(N, β) + δEshell(Z, β)+

+ δPpairing(N, β) + δPpairing(Z, β).
(6)

In this formula the shell correction is defined by the usual
Strutinsky prescription, i.e. as the difference between the sum
of the single particle energies (which contains the shell ef-
fects) and an averaged (or smoothed) sum (which is free from
shell effects)

δEshell(N or Z) =

NorZ∑

i=1

εi(β) −
∑

i=1

εi (β). (7)

Energies εi(β) are deduced from (5). In our procedure, the
second sum is found by means of a semi-classical way instead
a Strutinsky smoothing procedure, see [27]. This avoids the
well-known weakness of the standard shell correction meth-
od, namely, the dependence on two unphysical parameters
which are the “smoothing” parameter and the order of the
curvature correction.

Moreover, it has been clearly shown that Strutinsky level
density method is only an approximation of that of the semi-
classical theory [26]. The “pure” pairing correlation energy

is defined by:

P(β) =

∞∑

i=1

2εi(β)υ2
i −

N/2orZ/2∑

i=1

2εi(β) − ∆2

G
(8)

where υ2
i , ∆ and λ are the usual occupation probabilities, gap

and Fermi energy of the BCS approximation (the factor “2”
is simply due to the Kramers degeneracy). Since the smooth
part of pairing correlations is already contained in the liquid
drop model, we have to add only the one due to the shell
oscillations of the level density. This contribution is defined
by means of a formula similar to (7)

δPpairing(N or Z, β) = P(β) − P(β) (9)

where the averaged pairing is defined as

P(β) =
1
2
gsemicl.(λ) ∆

2
.

We use a simple BCS method to account for pairing correla-
tions. To calculate (7) and (9) we follow the method detailed
in [27] with its FORTRAN code. The treatment of the pairing
has also been explained in [7] and references quoted therein.

2.4 Numerical constants and prescriptions

2.4.1 Constants of the microscopic model

For each kind of particles the mean central and the mean spin-
orbit field are written as [22]:

V(β) =
V0

1 + exp(RV LV (β)/a0)

VS O(β) = λ

(
~

2Mc

)
V0

1 + exp(RS OLS O(β)/a0)

(10)

where LV (β) and LS O(β) contain the information on the de-
formation. In fact, these functions contain 9 constants: V0neut,
V0prot, RVneut, RV prot, RS O−neut, RS O−prot, a0, λneut, λprot. These
quantities are taken from the “universal” parameters [29] (see
Appendix B) which is an optimized set. The Coulomb mean
field is approximated by a uniform charge distribution inside
a deformed surface. The volume conservation is therefore
Vol = (4/3)πR3

chwith the simple assumption Rch = RV prot.

2.4.2 Constants of the liquid drop model

As already stated, we have chosen the parameters of Myers
and Swiatecki (see Table 1) because this set contains a re-
duced number of parameters with respect to more modern
formulae. All the constants are needed in the binding energy
whereas only aS ,CC , κ play a role in the potential energy sur-
face.
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aV aS CC κ Cd apair

Myers and Swiatecki 15.67 MeV 18.56 MeV 0.72 MeV 1.79 1.21 MeV 11 MeV

Table 1: Parameters of the liquid drop model in the Myers and Swiatecki version [28].

2.4.3 Nuclear mass excesses

Nuclear masses are deduced as mass excesses:

Mexcess(A,Z) = ZMH + (A − Z)Mn − B(A,Z)

where MH = 7.289034 MeV is the hydrogen mass excess and
Mn = 8.071431 MeV the neutron mass excess. This makes
comparisons with experimental values easiest.

3 Results

In our previous paper [7] calculations for isotopes 116−130Ce
showed that the equilibrium deformations (β ≈ 0.25 − 0.30)
have always been obtained for symmetric prolate shapes (γ =

0◦). Results obtained in [32] with a similar approach for the
nuclei 116−130Ce, corroborate this fact. For these reasons, we
think that it is needless to account for the axial asymmetry in a
“pure” static study of the equilibrium deformation. However,
we have to consider prolate (γ = 0◦) as well as oblate (γ =

60◦) nuclear shapes. In this regard, it is worth remembering
that oblate shape given by (β > 0, γ = 60◦) is equivalent to
the set (β < 0, γ = 0◦).

3.1 Comparison between the different contributions en-
tering in the potential energy surface

It could be useful to compare the importance of the different
terms entering in the right hand side of (6). In this respect,
we have drawn in Fig.1 for axially prolate shape, the four
microscopic contributions

δEshell(N, β), δEshell(Z, β), δPpairing(N, β), δPpairing(Z, β)

for the case of 160Ce as functions of β. Following the cited
order, we can say that the difference between the highest and
lowest values in the interval β ∈ [0.0, 0.7] are respectively ab-
out 11.0 MeV, 10.5 MeV, 5.7 MeV, 3.5 MeV for the four cor-
rections.

Thus, these variations show that the shell corrections

δEshell(N, β), δEshell(Z, β)

are more important than

δPpairing(N, β), δPpairing(Z, β)

and have a clear minimum at respectively β = 0.35 and β =

0.30. It is well known that for each kind of nucleon the shell
correction is in opposite phase with respect to the pairing cor-
rection (this means for that when δEshell(N, β) increases with
β, δPpairing(N, β) decreases and vice versa).

Contrarily to these curves, the liquid drop model is strictly
increasing with β, and its minimum occurs always at the be-
ginning β = 0.0 (spherical shape). When all the contributions
are added, the minimum of the potential energy surface of the
nucleus is reached at about β = 0.3 and is mainly due to the
shell corrections. When β becomes more and more, larger
the contribution of the liquid drop energy becomes prepon-
derant so that the equilibrium deformation occurs generally
between β = 0 and β = 0.4. Because of the convention of
the sign stated before, δBmicro defined in (1) must be negative
in order to increase the binding energy of the nucleus. Since
the shell corrections (for protons and neutrons) play a major
role in δBmicro, it is naturally expected that negative (but ab-
solute large) values of shell correction contribute to increase
the binding energy of the nucleus.

In this respect, it is well known that the shell correction
is essentially determined by the distribution of single-particle
levels in the vicinity of the sharp Fermi level (defined here as
midway between the last occupied level and the first empty
level). Following [31], we can state that “the nuclear ground
state, as well as any other relatively stable state, should cor-
respond to the lowest possible degeneracy, or, in other words,
the lowest density of state near the Fermi level”. This is illus-
trated in Fig. 2 where the single-particle levels are drawn as
function of the deformation β (γ being fixed at γ = 0◦). To
this end we have used the FORTRAN code of [22] and [24].
The area where the single-particle level density is low near
the Fermi level (black stars) is indicated by a circle. Thus,
it is not so surprising that, it is in this region where the neu-
tron shell correction becomes the most important, involving a
minimum in the PES of the nucleus.

3.2 Equilibrium deformations

Equilibrium deformations are given in Table (2) for prolate as
well as oblate shapes (see table legend for details). The min-
ima of PES for the corresponding wells are denoted minpro
and minobl. The deformation energy is defined as the differ-
ence Ede f = EPES (0) − Emin

PES (β), i.e. the difference between
the potential energy surface for a spherical shape and the one
corresponding to the absolute minimum of PES. Permanent
deformations will be in principle characterized by large val-
ues of Ede f and are responsible of rotational spectra.

From this table, some remarks may be drawn:
(i) Two regions of prolate deformation are found. They oc-
cur around N = 64 and N = 102 with maximum deformation
about β ≈ 0.30. The deformation energy (between spheri-
cal and deformed shape) is about 6.70 MeV for N = 64 and
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potential energy surface of the nucleus 160Ce.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-6

-5

-4

-3

-2

-1

.

.

.

.

..

....

.....

..

......

....

....

.....

..

.......

....

....

.....

..

.......

....

....

.....

..

.......

...

.

....

.....

..

.......

...

.

....

.....

..

.......

...

.

....

.....

..

.......

...

.

....

.....

..

.......

...

.

....

.....

..

.......

...

.

....

....

.

..

......

....

.

....

....

.

..

......

....

.

....

....

.

..

......

...

..

...

.

....

.

..

......

...

..

...

.

....

.

..

.....

...

..

...

.

....

.

..

.....

....

..

...

.

...

..

..

.....

....

..

...

.

...

..

..

.....

....

..

...

.

...

..

..

.....

....

..

...

.

...

..

..

.....

....

..

...

.

...

..

..

....

....

..

.

...

.

...

..

.

.

....

....

...

...

.

...

..

.

.

....

....

...

...

.

...

..

.

.

.....

...

...

...

.

...

.

.

.

.

.....

...

...

..

..

...

.

.

.

.

.....

...

...

..

..

...

.

.

.

.

.....

...

...

..

.

.

...

.

.

.

.

.....

...

...

..

.

.

...

.

.

.

.

.....

...

...

..

.

.

..

..

.

.

.

.....

..

...

..

.

.

..

..

.

.

.

.....

...

...

..

.

.

..

.

.

.

.

.

.....

...

...

..

.

.

..

.

.

.

.

.

....

..

..

...

..

.

.

..

.

.

.

.

.

....

..

..

...

..

.

.

..

.

.

.

.

.

....

..

..

...

..

.

.

..

.

.

.

.

.

....

..

..

...

..

.

.

..

.

.

.

.

.

....

..

..

...

..

.

.

..

.

.

.

.

.

....

..

..

...

..

.

.

..

.

.

.

.

.

....

..

..

...

..

.

.

..

.

.

.

.

.

....

..

..

...

..

.

.

..

.

.

.

.

.

....

..

..

...

..

.

.

..

.

.

.

.

.

....

..

..

...

..

.

.

..

.

.

.

.

.

....

..

..

...

..

.

.

..

.

.

.

.

.

....

..

..

...

..

.

.

..

.

.

.

.

.

....

..

..

...

..

.

.

..

.

.

.

.

.

....

..

..

...

..

.

.

..

.

.

.

.

.

....

..

..

...

..

.

.

..

.

.

.

.

.

....

..

..

...

..

.

.

..

.

.

.

.

.

....

.

..

.

...

..

.

.

..

.

.

.

.

.

....

.

..

.

...

..

.

.

..

.

.

.

.

.

....

.

..

.

...

..

.

.

..

.

.

.

.

.

....

.

..

.

...

..

.

.

..

.

.

.

.

.

...

..

..

.

...

..

.

.

..

.

.

.

.

.

...

..

..

.

..

..

.

.

..

.

.

.

.

.

...

..

..

.

..

..

.

.

..

.

.

.

.

.

...

..

..

.

...

..

.

.

..

.

.

.

.

.

...

..

..

.

...

..

.

.

..

.

.

.

.

.

...

..

..

.

...

..

.

.

..

.

.

.

.

.

...

..

..

.

...

..

.

.

..

.

.

.

.

.

...

..

..

.

...

..

.

.

..

.

.

.

.

.

...

..

..

.

...

..

.

.

..

.

.

.

.

.

...

..

..

.

...

..

.

.

..

.

.

.

.

.

...

..

..

.

...

..

.

.

..

.

.

.

.

.

..

..

.

..

.

...

..

.

.

..

.

.

.

.

.

..

..

.

..

.

...

.

.

.

.

..

.

.

.

.

.

..

..

.

..

.

...

.

.

.

.

..

.

.

.

.

.

..

..

.

..

.

...

.

.

.

.

..

.

.

.

.

.

..

..

.

..

.

...

.

.

.

.

..

.

.

.

.

.

..

..

.

..

.

...

.

.

.

.

..

.

.

.

.

.

..

..

.

..

.

...

.

.

.

..

.

.

.

.

.

.

..

..

.

..

.

...

.

.

.

..

.

.

.

.

.

.

..

..

.

..

.

...

.

.

.

..

.

.

.

.

.

.

..

..

.

..

.

...

.

.

.

..

.

.

.

.

.

..

...

.

..

.

...

.

.

.

..

.

.

.

.

.

..

...

.

..

.

...

.

.

.

..

.

.

.

.

.

..

...

.

..

.

...

.

.

.

..

.

.

.

.

.

..

...

.

..

.

...

.

.

.

..

.

.

.

.

.

..

...

.

..

.

...

.

.

.

..

.

.

.

.

.

..

...

.

..

.

...

.

.

.

..

.

.

.

.

.

..

...

.

..

.

...

.

.

.

..

.

.

.

.

.

...

..

.

..

.

...

.

.

.

..

.

.

.

.

.

...

..

.

..

.

...

.

.

.

..

.

.

.

.

.

...

..

.

..

.

..

.

.

.

.

..

.

.

.

.

.

...

..

.

..

.

..

.

.

.

.

..

.

.

.

.

.

...

..

.

..

.

..

.

.

.

.

..

.

.

.

..

...

..

.

..

.

..

.

.

.

.

..

.

.

.

..

...

..

.

..

.

..

.

.

.

.

..

.

.

.

..

...

..

.

..

.

..

.

.

.

.

..

.

.

.

..

...

..

.

..

.

..

.

.

.

.

..

.

.

.

..

...

..

.

..

.

..

.

.

.

.

.

..

.

.

..

...

..

.

..

.

..

.

.

.

.

.

..

.

.

..

...

..

.

..

.

..

.

.

.

.

.

..

.

.

..

...

..

.

..

.

..

.

.

.

.

.

..

.

.

..

...

..

.

..

.

..

.

.

.

.

.

..

.

.

..

...

..

.

..

.

..

.

.

.

.

.

..

.

.

.

...

..

.

..

.

..

.

.

.

.

.

..

.

.

..

...

..

.

..

.

..

.

.

.

.

.

..

.

.

..

...

..

.

..

.

..

.

.

.

.

.

..

.

.

..

...

..

.

..

.

..

.

.

.

.

.

..

.

.

..

...

..

.

..

.

..

.

.

.

.

.

..

.

.

..

...

..

.

..

.

..

.

.

.

.

.

..

.

.

..

...

..

.

..

.

..

.

.

.

.

.

..

.

.

..

...

..

.

..

.

..

.

.

.

.

.

..

.

.

..

..

...

.

..

.

..

.

.

.

.

.

..

.

.

..

..

...

.

..

.

..

.

.

.

.

.

..

.

.

..

..

...

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

...

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

...

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

...

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

...

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

...

.

..

.

..

.

.

.

..

.

.

.

.

.

.

..

...

.

..

.

..

.

.

.

..

.

.

.

.

.

.

..

...

.

..

.

..

.

.

.

..

.

.

.

.

.

.

..

...

.

..

.

..

.

.

.

..

.

.

.

.

.

.

..

...

.

..

.

..

.

.

.

..

.

.

.

.

.

.

..

...

.

..

.

..

.

.

.

..

.

.

.

.

.

.

..

..

.

..

.

..

.

.

.

..

.

.

.

.

.

.

..

...

.

..

.

..

.

.

.

..

.

.

.

.

.

.

..

...

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

...

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

...

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

...

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

...

.

.

.

.

..

.

.

.

..

.

..

.

.

.

..

...

.

.

.

.

..

.

.

.

..

.

..

.

.

..

.

...

.

.

.

.

..

.

.

.

..

.

..

.

.

..

.

...

.

.

.

.

..

.

.

.

..

.

..

.

.

..

.

...

.

.

.

.

..

.

.

.

..

.

..

.

.

..

.

...

.

.

.

.

..

.

.

.

..

.

..

.

.

..

.

...

.

.

.

.

..

.

.

.

..

.

..

.

.

..

.

...

.

.

.

.

..

.

.

.

..

.

..

.

.

...

...

.

.

.

.

..

.

.

.

..

.

..

.

.

...

...

.

.

.

.

..

.

.

.

..

.

..

.

.

...

..

.

.

.

.

..

.

.

.

..

.

..

.

.

...

...

.

.

.

.

..

.

.

.

..

.

..

.

.

...

...

.

.

.

.

..

.

.

.

..

.

..

.

.

...

...

.

.

.

.

..

.

.

.

..

.

..

.

.

...

..

.

.

.

.

.

..

.

.

.

..

.

..

.

.

...

..

.

.

.

.

.

..

.

.

.

..

.

..

.

.

...

..

.

.

.

.

.

..

.

.

.

..

.

..

.

.

...

..

.

.

.

.

.

..

.

.

.

..

.

..

.

.

...

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

..

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

..

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

..

..

..

..

.

.

.

.

..

.

.

.

.

.

.

..

..

..

..

..

.

.

.

.

..

.

.

.

.

.

.

..

..

..

..

..

.

.

.

.

..

.

.

.

.

.

.

..

..

..

..

..

.

.

.

.

..

.

.

.

.

.

.

..

..

..

..

..

.

.

.

.

..

.

.

.

.

.

.

..

..

..

..

..

.

.

.

.

..

.

.

.

.

.

.

..

..

..

..

..

.

.

.

.

..

.

.

.

.

.

.

..

..

..

..

..

.

.

.

.

..

.

.

.

.

..

..

..

..

..

..

.

.

.

.

..

.

.

.

.

..

..

..

..

..

..

.

.

.

.

..

.

.

.

.

..

..

..

..

..

..

.

.

.

.

..

.

.

.

.

..

..

..

..

..

..

.

.

.

.

..

.

.

.

.

..

..

..

..

..

..

.

.

.

.

..

.

.

.

.

..

..

..

..

..

..

.

.

.

.

..

.

.

.

.

..

..

..

..

..

..

.

.

.

.

.

.

.

.

.

.

..

..

..

..

..

..

.

.

.

.

.

.

.

.

.

.

..

..

..

..

..

..

.

.

.

.

.

.

.

.

.

.

..

..

..

..

..

..

.

.

.

.

.

.

.

.

.

.

..

..

..

..

..

..

.

.

.

.

.

.

.

.

.

.

..

..

..

..

..

..

.

.

.

.

.

.

.

.

.

.

..

..

..

..

.

..

..

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

..

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

..

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

..

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

..

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

..

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

..

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

..

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

..

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

..

..

.

.

.

.

.

.

.

..

.

.

.

..

.

..

.

..

..

.

.

.

.

.

.

.

..

.

.

.

..

.

..

.

..

..

.

.

.

.

.

.

.

..

.

.

.

..

.

..

.

..

..

.

.

.

.

.

.

.

..

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

...

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

...

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

...

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

...

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

...

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

...

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

...

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

...

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

...

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

...

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

...

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

...

.

..

..

.

..

.

.

.

.

.

..

.

.

.

...

.

..

..

.

..

.

.

.

.

.

..

.

.

.

...

.

..

..

.

..

.

.

.

.

.

..

.

.

.

...

.

..

..

.

..

.

.

.

.

.

..

.

.

.

..

.

.

..

..

.

..

.

.

.

.

.

..

.

.

.

..

..

..

..

.

..

.

.

.

.

.

..

.

.

.

..

..

..

..

.

..

.

.

.

.

.

..

.

.

.

..

..

..

..

.

..

.

.

.

.

.

..

.

.

.

..

..

..

..

.

..

.

.

.

.

.

..

.

.

.

..

..

..

..

.

..

.

.

.

.

.

..

.

.

.

..

..

..

..

.

..

.

.

.

.

.

..

.

.

.

..

..

..

..

.

..

.

.

.

.

.

..

.

.

.

..

..

..

..

.

..

.

.

.

.

.

..

.

.

.

..

..

..

..

.

..

.

.

.

.

.

..

.

.

.

..

..

..

..

.

..

.

.

.

.

.

..

.

.

.

..

..

.

.

..

.

..

.

.

.

.

.

..

.

.

.

..

.

.

.

..

.

..

.

.

.

.

.

..

.

.

.

..

..

.

.

..

.

..

.

.

.

.

.

..

.

.

.

..

..

.

.

..

.

..

.

.

.

.

.

..

.

.

.

..

..

.

.

..

.

..

.

.

.

.

.

..

.

.

.

..

..

.

.

..

.

..

.

.

.

.

.

..

.

.

.

..

..

.

.

..

.

..

.

.

.

.

.

..

.

.

.

..

..

.

.

..

.

..

.

.

.

.

.

..

.

.

.

..

..

.

.

..

.

..

.

.

.

.

.

..

.

.

.

..

..

.

.

..

.

..

.

.

.

.

.

..

.

.

.

..

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

...

..

..

.

.

.

.

.

.

.

.

.

.

.

.

...

..

..

.

.

.

.

.

.

.

.

.

.

.

.

...

..

..

.

.

.

.

.

.

.

.

.

.

.

.

...

..

..

.

.

.

.

.

.

.

.

.

.

.

.

...

..

..

.

.

.

.

.

.

.

.

.

.

.

.

...

..

..

.

.

.

.

.

.

.

.

.

.

.

.

...

..

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

.

..

.

.

..

..

..

.

.

..

.

.

.

.

..

.

.

..

..

..

.

.

..

.

.

.

.

..

.

.

..

..

..

.

.

..

.

.

.

.

..

.

.

..

..

..

.

.

..

.

.

.

.

..

.

.

..

..

..

.

.

..

.

.

.

.

..

.

.

..

..

..

.

.

..

.

.

.

.

..

.

.

..

..

..

.

.

..

.

.

.

.

..

.

.

..

..

..

.

.

..

..

.

.

.

..

.

.

..

..

..

.

.

..

..

.

.

.

..

.

.

..

..

..

.

.

..

..

.

.

.

..

.

.

..

..

..

.

.

..

..

.

.

.

.

.

.

.

..

..

..

.

.

..

..

.

.

.

.

.

.

.

..

..

..

.

.

..

..

.

.

.

.

.

.

.

..

..

..

.

.

..

..

.

.

.

.

.

.

.

..

..

..

.

.

..

..

.

.

.

.

.

.

.

..

..

..

.

.

..

..

.

.

.

.

.

.

.

..

..

..

.

.

..

..

.

.

.

.

.

.

.

..

..

..

.

.

..

..

.

.

.

.

.

.

.

..

..

..

.

.

..

..

.

.

.

.

.

.

.

..

..

.

.

.

..

..

.

.

.

.

.

.

.

..

.

..

.

.

..

.

.

.

.

.

.

.

.

..

..

..

.

.

..

.

.

.

.

.

.

.

.

..

..

..

.

.

..

.

.

.

.

.

.

.

.

..

..

..

.

.

..

.

.

.

.

.

.

.

.

..

..

..

.

.

.

..

.

.

.

.

.

.

.

..

..

..

.

.

.

..

.

.

.

.

.

.

.

..

..

..

.

.

.

..

.

.

.

.

.

.

.

..

..

..

.

.

.

..

.

.

.

.

.

.

.

..

..

..

.

.

.

..

.

.

.

.

.

.

.

..

..

..

.

.

.

..

.

.

.

.

.

.

.

..

..

..

.

.

.

..

.

.

.

.

.

.

.

.

.

..

..

.

.

.

..

.

.

.

.

.

.

.

.

.

..

..

.

.

..

.

.

.

.

.

..

.

.

.

..

..

.

.

..

.

.

.

.

.

..

.

.

.

..

..

.

.

..

.

.

.

.

.

..

.

.

.

..

..

.

.

..

.

.

.

.

.

..

.

.

.

..

..

.

.

..

.

.

.

.

.

..

.

.

.

..

..

.

.

..

.

.

.

.

.

..

.

.

.

..

..

.

.

..

.

.

.

.

.

..

.

.

.

..

..

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

..

..

.

.

.

.

.

..

.

.

.

.

.

..

..

..

.

.

.

.

.

..

.

.

.

.

.

..

..

..

.

.

.

.

.

..

.

.

.

.

.

..

..

..

.

.

.

.

..

.

.

.

.

.

..

..

..

.

.

.

.

..

.

.

.

.

.

..

..

..

.

.

.

.

..

.

.

.

.

.

..

..

..

.

.

.

.

..

..

.

.

.

..

..

..

.

.

.

.

..

..

.

.

.

..

..

..

.

.

.

.

..

..

.

.

.

..

..

..

.

.

.

.

..

..

.

.

.

..

..

.

.

.

.

.

..

..

.

.

.

..

..

.

.

.

.

.

..

..

.

.

.

..

..

.

.

.

.

.

..

..

.

.

.

..

..

.

.

.

..

..

..

.

.

.

..

..

.

.

.

..

..

..

.

.

.

..

..

.

.

.

..

..

..

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

..

..

.

.

..

.

.

.

.

.

..

.

.

..

..

.

.

..

.

.

.

.

.

..

.

.

..

..

.

.

..

.

.

.

.

.

..

.

.

..

..

.

.

..

.

.

.

.

.

..

.

.

..

..

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

..

.

.

.

.

..

.

.

.

.

.

..

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

....

.

.

..

.

.

.

.

.

.

.

....

.

.

..

.

.

.

.

.

.

.

....

.

.

..

.

.

.

.

.

.

.

....

.

.

..

.

.

.

.

.

.

.

....

.

.

..

.

.

.

.

.

.

.

....

.

.

..

.

.

.

.

.

.

.

....

.

.

..

.

.

.

.

.

.

.

....

.

.

..

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

.

....

.

.

..

.

.

.

.

.

.

.

....

.

.

..

.

.

.

.

.

.

.

....

.

.

..

.

.

.

.

.

.

.

....

.

.

..

.

.

.

.

.

.

.

....

.

.

..

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

..

.

.

.

.

.

.

.

..

..

.

.

..

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

...

..

..

.

.

.

.

.

.

.

.

...

..

..

.

.

.

.

.

.

.

.

...

..

..

.

.

.

.

.

.

.

.

...

..

.

.

.

.

.

.

.

.

.

.

...

..

.

.

.

.

.

.

.

.

.

.

...

..

.

.

.

.

.

.

.

.

.

.

...

..

.

.

.

.

.

.

.

.

.

.

...

..

.

.

.

.

.

.

.

.

.

.

...

..

.

.

.

.

.

.

.

.

.

.

...

..

.

.

.

.

.

.

.

.

..

...

..

.

.

.

.

.

.

.

.

..

...

..

.

.

.

.

.

.

.

.

..

...

..

.

.

.

.

.

.

.

.

..

...

..

.

.

.

.

.

.

.

.

..

...

..

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

..

.

.

.

.

.

..

.

.

.

..

.

..

.

.

.

.

.

..

.

.

.

..

.

..

.

.

.

.

.

..

.

.

.

..

.

..

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

..

.

..

.

..

.

.

.

..

.

.

..

.

..

.

..

.

.

.

..

.

.

..

.

..

.

..

.

..

..

.

.

..

.

..

.

..

.

..

..

.

.

..

.

..

.

..

.

..

..

.

.

..

.

..

.

..

.

..

..

.

.

..

.

..

.

..

.

..

..

.

.

..

.

..

.

..

.

..

..

.

.

..

.

.

..

.

..

.

..

.

.

.

.

..

.

.

..

.

..

.

..

.

.

.

.

..

.

.

..

.

..

.

..

.

.

.

.

..

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

..

.

.

.

..

.

.

.

.

.

.

..

.

..

.

.

.

..

.

.

.

.

.

.

..

.

..

.

.

.

..

.

.

.

.

.

.

..

.

..

.

.

.

..

.

.

.

.

.

.

..

.

..

.

.

.

..

.

.

.

.

.

.

..

.

..

.

.

.

..

.

.

.

.

.

.

..

.

..

.

.

.

..

.

.

.

.

.

.

..

.

..

.

.

.

..

.

.

.

.

.

.

..

.

..

.

.

.

..

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

..

..

.

..

.

.

.

.

.

.

.

.

.

..

..

.

..

.

.

.

.

.

.

.

.

.

..

..

.

..

.

.

.

.

.

.

.

.

.

..

..

.

..

.

.

.

.

.

.

.

.

.

..

..

.

..

.

.

.

.

.

.

.

.

.

..

..

.

..

.

.

.

.

.

.

.

.

.

..

..

.

..

..

.

.

.

.

.

.

.

..

..

.

..

..

.

.

.

.

.

.

.

..

..

.

..

..

.

.

.

.

.

.

.

..

..

.

..

..

.

.

.

.

.

.

.

..

..

.

..

..

.

.

.

.

.

.

.

..

..

.

..

..

.

.

..

.

.

.

..

..

.

..

..

.

.

..

.

.

.

..

..

.

.

.

..

.

.

..

.

.

.

..

..

.

.

.

..

.

.

.

..

.

.

.

..

..

.

.

.

..

.

.

.

..

.

.

.

..

..

.

.

.

..

.

.

.

..

.

.

.

..

..

.

.

.

..

.

.

.

..

.

.

.

..

..

.

.

.

..

.

.

.

..

.

.

.

..

..

..

.

..

.

.

.

..

.

.

.

.

.

..

..

.

..

.

.

.

..

.

.

.

.

.

..

..

.

..

.

.

.

.

..

.

.

.

.

.

..

..

.

..

.

..

.

..

.

.

.

.

.

..

..

.

..

.

..

.

..

.

.

.

.

.

..

..

.

..

.

..

.

..

.

.

.

.

.

..

..

.

..

.

..

.

..

.

.

.

.

.

..

..

.

..

.

..

.

..

.

.

.

.

.

..

..

.

..

.

..

.

..

.

.

.

.

.

..

..

.

..

.

..

.

..

.

.

.

.

.

..

..

.

..

.

..

.

..

.

.

.

.

.

..

..

.

..

.

..

.

..

.

.

.

.

.

..

..

.

..

.

..

.

..

.

.

.

.

.

..

..

.

..

.

..

.

..

.

.

.

.

.

..

..

.

..

.

..

.

.

.

.

.

.

.

.

..

..

.

..

.

..

.

.

.

.

.

.

.

.

..

..

.

..

.

..

.

.

.

.

.

.

.

.

..

..

.

..

.

..

.

.

.

.

.

.

.

.

..

..

.

..

.

..

.

.

.

.

.

..

.

..

..

.

..

.

..

.

.

.

.

.

..

.

..

..

.

..

.

..

.

.

.

.

.

..

.

..

..

.

..

.

..

.

.

.

.

.

..

.

..

..

.

..

.

.

.

.

.

.

.

.

..

.

..

..

.

..

.

.

.

.

.

.

.

.

..

.

..

..

.

..

.

.

.

.

.

.

.

.

..

.

..

..

.

..

.

.

.

.

.

.

.

.

..

.

.

..

.

..

.

.

.

.

.

.

.

.

..

.

...

.

.

..

.

.

.

.

.

.

.

..

.

...

.

.

..

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

..

.

...

.

...

.

.

.

.

.

.

..

.

...

.

...

.

.

.

.

.

.

..

.

...

.

...

.

.

.

.

.

.

..

.

...

.

...

.

.

.

.

.

.

..

.

...

.

...

.

.

.

.

.

.

..

.

...

.

...

.

.

.

.

.

.

..

.

...

.

...

.

.

.

.

.

.

..

.

...

.

...

.

.

.

.

.

.

..

.

..

.

...

.

.

.

.

.

.

..

.

...

.

...

.

.

.

.

.

.

..

.

...

.

...

.

..

.

.

.

..

.

...

.

...

.

..

.

.

.

..

.

...

.

...

.

..

.

.

.

..

.

...

.

...

.

..

.

.

.

..

.

...

.

...

.

..

.

.

.

..

.

...

.

...

.

..

.

.

.

..

.

...

.

..

.

.

.

..

.

.

.

..

.

...

.

..

.

.

.

..

.

.

.

..

.

...

.

.

..

.

.

..

.

.

.

.

.

.

...

.

.

..

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

..

..

..

.

.

..

.

.

.

.

.

.

.

..

..

..

.

.

..

.

.

.

.

.

.

.

..

..

..

.

.

..

.

.

.

.

.

.

.

..

..

..

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

..

.

.

.

.

.

...

.

.

.

.

.

..

..

.

.

.

.

.

...

.

.

.

.

.

..

..

.

.

.

.

.

...

.

.

.

.

.

..

..

.

.

.

.

.

...

.

.

.

.

.

..

..

.

.

.

.

.

...

.

.

.

.

.

..

..

.

.

.

.

.

...

.

.

.

.

.

..

..

.

.

.

.

.

...

.

.

.

.

.

..

..

.

.

.

.

.

...

.

.

.

.

.

..

..

.

.

.

.

.

...

.

.

.

.

.

..

..

.

.

.

.

.

...

.

.

.

.

.

..

..

.

.

.

.

.

..

..

.

.

.

.

..

..

.

.

.

.

.

..

..

.

.

.

.

..

..

.

.

.

.

.

..

..

.

.

.

.

..

..

.

.

.

.

.

..

..

.

.

.

.

..

..

.

.

.

.

.

..

..

.

.

.

.

..

..

.

.

.

.

.

..

..

.

.

.

.

..

..

.

.

.

.

.

..

..

.

.

.

.

..

..

.

.

.

.

.

.

.

..

.

.

.

.

..

..

.

.

.

.

.

.

.

..

.

.

.

.

..

..

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

.

...

.

.

.

..

..

.

.

.

.

.

.

.

...

.

.

.

..

..

.

.

.

.

.

.

.

...

.

.

.

..

..

.

.

.

.

.

.

.

...

.

.

.

..

..

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...

..

.

.

.

.

..

.

.

.

.

.

.

..

..

..

.

.

.

.

..

.

.

.

.

.

.

..

..

..

.

.

.

.

..

.

.

.

.

.

.

..

..

..

.

.

.

.

..

.

.

.

.

.

.

..

..

..

.

.

.

.

..

..

.

.

.

.

..

..

..

.

.

.

.

.

.

..

.

.

.

.

..

..

..

.

.

.

.

.

.

..

.

.

.

.

..

..

..

.

.

.

.

.

.

..

.

.

.

.

..

..

..

.

.

.

.

.

.

..

.

.

.

.

..

..

..

.

.

.

.

.

.

..

.

.

.

.

..

..

..

.

.

.

.

.

.

..

.

.

..

..

..

..

.

.

.

.

.

.

..

.

.

..

..

..

..

.

.

.

.

.

.

..

.

.

..

..

..

..

.

.

.

.

.

.

..

.

.

..

..

..

..

.

.

.

.

.

.

..

.

.

..

..

..

..

.

.

.

.

.

.

..

.

.

..

..

..

..

.

.

.

.

.

.

..

.

.

..

..

..

..

.

.

.

.

.

.

..

.

.

..

..

..

..

.

.

.

.

.

.

..

.

.

..

..

..

..

.

.

.

.

.

.

..

.

.

..

..

..

.

.

.

.

.

.

.

.

..

.

.

..

..

..

.

.

.

.

.

.

.

.

..

.

.

..

..

..

.

.

.

.

.

.

.

.

..

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

.

..

..

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

..

.

.

..

.

..

..

.

.

.

.

.

.

..

.

.

..

.

..

..

.

.

.

.

.

.

..

.

.

..

.

..

..

.

.

.

.

.

.

..

.

.

..

.

..

..

.

.

.

.

.

.

..

.

.

..

.

..

..

.

.

.

.

.

.

..

.

.

..

.

..

..

.

.

.

.

..

..

.

.

..

.

..

..

.

.

.

.

..

..

.

.

..

.

..

..

.

.

.

.

..

..

.

.

..

.

..

..

.

.

.

.

..

..

.

.

..

.

..

.

.

.

..

.

..

..

.

.

..

.

..

.

.

.

..

.

..

..

.

.

..

.

...

.

.

..

.

..

..

.

.

.

.

.

...

.

.

..

.

..

..

.

.

.

.

.

...

.

.

..

.

..

..

.

.

.

.

.

...

.

.

..

.

..

..

.

.

.

.

.

...

.

.

..

.

..

..

.

.

.

.

.

...

.

.

..

.

..

..

.

.

.

.

.

...

.

.

..

.

..

..

.

.

.

.

.

...

.

.

..

.

..

..

.

.

.

.

.

...

.

.

..

.

..

..

.

.

.

.

.

...

.

.

..

.

..

..

.

.

.

.

.

...

.

.

..

.

..

..

.

.

.

.

.

...

.

.

..

.

..

..

.

.

.

.

.

..

.

.

.

..

.

..

..

.

.

.

.

.

..

.

.

.

..

.

..

..

.

.

.

.

.

..

.

.

.

..

.

..

..

.

.

.

.

.

..

.

.

.

..

.

..

..

.

..

.

.

..

.

.

.

..

.

..

..

.

..

.

.

..

.

.

.

..

.

..

..

.

..

.

.

..

.

.

.

..

.

.

.

..

.

..

.

.

..

.

.

.

..

.

.

.

..

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

..

.

..

..

.

.

.

.

.

.

.

.

..

.

.

..

.

..

..

.

.

.

.

.

.

.

.

..

.

.

..

.

..

..

.

.

.

.

.

.

.

.

..

.

.

..

.

..

..

.

.

.

.

.

.

.

.

..

.

.

..

.

..

..

.

.

.

.

.

.

.

.

..

.

.

..

.

..

..

.

.

.

.

.

.

.

.

..

.

.

..

.

..

..

.

.

.

.

.

.

.

.

..

.

.

..

.

..

..

.

.

.

.

.

.

.

.

..

.

.

..

.

..

..

.

.

.

.

.

.

.

.

..

..

..

.

..

..

.

.

.

.

.

.

.

.

..

..

..

.

..

..

.

.

.

.

.

.

.

.

..

..

..

.

..

..

.

.

.

.

.

.

.

.

..

..

..

.

..

..

.

.

.

.

.

.

.

.

..

..

..

.

..

..

.

.

.

.

.

.

.

.

..

..

..

.

..

..

.

.

.

.

.

.

.

.

..

..

..

.

..

..

.

.

.

.

.

.

.

.

..

..

..

..

.

.

.

.

.

.

.

.

.

.

..

..

..

..

.

.

.

.

.

.

.

.

.

.

..

..

..

..

.

.

.

.

.

.

.

.

.

.

..

..

..

..

.

.

.

.

.

.

.

.

.

.

..

..

..

..

.

.

.

.

.

.

.

..

.

..

..

..

..

.

.

.

.

.

.

.

..

.

..

..

..

..

.

.

.

.

.

.

.

..

.

..

..

..

.

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

.

..

.

.

.

..

.

.

.

..

..

..

.

.

..

.

.

.

..

.

.

.

..

..

..

.

.

..

.

.

.

..

.

.

.

..

..

..

.

.

..

.

.

.

..

.

.

.

..

..

..

.

.

..

.

.

.

..

.

.

.

..

..

..

.

.

..

.

.

.

..

.

.

.

..

..

..

.

.

..

.

.

.

..

.

.

.

..

..

..

.

.

..

.

.

.

..

.

.

.

..

..

..

.

.

..

.

.

.

..

.

.

.

..

..

..

.

.

..

.

.

.

..

.

.

.

..

..

..

.

.

..

.

.

.

..

.

.

.

..

..

..

.

.

..

.

.

.

..

.

.

.

..

..

..

.

.

..

.

.

.

..

.

.

.

..

..

..

.

.

..

.

.

.

..

.

.

.

..

..

..

.

.

..

.

.

.

..

.

.

.

..

..

..

.

.

..

.

.

.

..

.

.

.

..

..

..

.

.

..

.

.

.

..

.

.

.

..

..

..

.

.

..

.

.

.

..

.

.

.

..

..

..

.

.

...

.

.

..

.

.

.

..

..

..

.

.

...

.

.

..

.

.

.

..

..

..

.

.

...

.

.

.

.

.

.

.

..

..

..

.

.

...

.

.

.

.

.

.

.

..

..

..

.

.

...

.

.

.

.

.

.

.

..

..

..

.

.

...

.

.

.

.

.

.

.

..

..

..

.

.

...

.

.

.

.

.

.

.

..

..

..

.

.

...

.

.

.

.

.

.

.

..

..

..

.

.

...

.

.

.

.

.

.

.

..

..

..

.

.

...

.

.

.

.

.

.

.

..

..

..

.

.

...

.

.

.

..

.

.

..

..

..

.

.

...

.

.

.

..

.

.

..

..

..

.

.

...

.

.

.

..

.

.

..

..

.

.

.

.

...

.

.

.

..

.

.

.

.

..

.

.

.

.

...

.

.

.

..

.

.

.

.

..

.

.

.

.

...

.

.

.

..

.

.

.

.

..

.

.

.

.

...

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

..

.

..

.

.

.

.

..

.

.

.

.

..

.

..

.

..

.

.

.

.

..

.

.

.

.

..

.

..

.

..

.

.

.

.

..

.

.

.

.

..

.

..

.

.

..

.

.

.

..

.

.

.

.

..

.

..

.

.

..

.

.

.

.

.

.

..

.

..

.

..

.

.

..

.

.

.

.

.

.

..

.

..

.

..

.

.

..

.

.

.

.

.

.

..

.

..

.

..

.

.

..

.

.

.

.

.

.

..

.

..

.

..

.

.

..

.

.

..

.

.

..

.

..

.

..

.

.

..

.

.

..

.

.

..

.

..

.

..

..

..

.

.

..

.

.

..

.

..

.

..

..

..

.

.

..

.

.

..

.

..

.

..

..

.

.

.

.

..

.

.

..

.

..

.

..

..

.

.

.

.

..

.

.

..

.

..

.

..

..

.

.

.

.

..

.

.

..

.

..

.

..

..

.

.

.

.

..

.

.

..

.

..

.

..

..

.

.

.

.

..

.

.

..

.

..

.

..

..

.

.

.

.

..

.

.

..

.

..

..

.

..

.

.

.

.

..

.

.

..

.

..

..

.

..

.

.

.

.

..

.

.

..

.

..

..

.

..

.

.

.

.

..

.

.

..

.

..

..

.

..

.

.

.

.

..

.

.

..

.

..

..

.

..

.

.

.

.

..

.

.

..

.

..

..

.

..

.

.

.

.

..

.

.

..

.

..

..

.

..

.

.

.

.

..

.

.

.

.

.

..

..

.

..

.

.

.

.

..

.

.

.

.

.

..

..

.

..

.

.

.

.

..

.

.

.

.

.

..

..

.

..

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

..

.

.

.

.

..

..

..

.

.

.

.

.

.

..

.

.

.

.

..

..

..

.

.

.

.

.

.

..

.

.

.

.

..

..

..

.

.

.

.

.

.

..

.

.

.

.

..

..

..

.

.

.

.

.

.

..

.

.

.

.

..

..

..

.

.

.

.

.

.

..

.

.

.

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

..

..

.

.

..

.

.

.

.

..

..

.

.

..

..

.

.

..

.

.

.

.

..

..

.

.

..

..

.

.

..

.

.

.

.

..

..

.

.

..

..

.

.

..

.

..

.

..

..

.

.

..

..

.

.

..

.

..

.

..

..

.

.

..

..

.

.

..

.

..

.

.

.

..

.

.

..

..

.

.

..

.

..

.

.

.

..

.

.

.

..

.

.

..

.

..

.

.

.

..

.

.

..

..

.

.

.

.

.

..

.

.

.

..

.

.

..

..

.

.

.

.

.

..

.

.

.

..

.

.

..

..

.

.

.

.

.

..

.

.

.

..

.

.

..

..

.

..

.

.

..

.

.

.

..

.

.

..

..

.

..

.

.

..

.

.

.

..

.

.

..

..

.

..

.

.

..

.

.

.

..

.

.

..

..

.

..

.

.

..

.

.

.

..

.

.

.

.

..

.

..

.

.

..

.

.

.

..

.

.

.

.

..

.

..

.

.

..

.

.

.

..

.

.

.

.

..

.

..

.

.

..

.

.

.

..

.

.

.

.

..

.

..

.

.

..

.

.

.

..

.

.

.

.

..

.

..

.

.

..

.

.

.

..

.

.

.

.

..

.

..

.

.

..

.

.

.

..

.

.

.

.

..

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

..

.

.

..

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

..

.

.

.

..

.

.

.

..

.

.

.

.

..

..

.

.

.

..

.

.

.

..

.

.

.

.

..

..

.

.

.

..

.

.

.

..

.

.

.

.

..

..

.

.

.

..

.

.

.

..

.

.

.

.

..

..

.

.

.

..

.

.

.

..

.

.

.

.

..

..

.

.

.

..

.

.

.

..

.

.

.

.

..

..

.

.

.

..

.

.

.

..

.

.

.

.

..

..

.

.

.

.

.

.

.

..

.

.

.

.

..

..

.

.

.

..

.

.

.

..

.

.

.

.

..

..

.

.

.

..

.

.

.

..

.

.

.

.

..

..

.

.

.

..

.

.

.

..

.

.

.

.

..

..

.

.

.

..

.

.

.

..

.

.

.

.

..

..

.

.

.

..

.

.

.

.

.

.

.

.

.

..

..

.

.

.

..

.

..

.

.

.

.

.

.

..

..

.

.

.

..

.

..

.

.

.

.

.

.

..

..

.

.

.

..

.

..

.

.

.

.

.

.

..

..

.

.

.

..

.

..

.

.

.

.

.

.

..

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

..

.

.

.

.

.

.

...

.

.

.

.

.

..

..

.

.

.

.

.

.

...

.

.

.

.

.

..

..

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

..

.

.

...

.

.

.

.

.

..

.

.

.

.

..

.

.

...

.

.

.

.

.

..

.

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

..

.

.

.

.

..

..

.

.

.

.

.

..

..

.

.

.

.

...

..

.

.

.

.

..

..

.

.

.

.

...

..

.

.

.

.

..

..

.

.

.

.

...

..

.

.

.

.

..

..

.

.

.

.

...

..

.

.

.

.

..

..

.

.

.

.

...

..

.

.

.

.

..

..

.

.

.

.

...

..

.

.

.

.

..

..

.

.

.

.

...

..

.

.

.

.

..

..

.

.

.

.

...

..

.

.

.

.

..

..

.

.

.

.

..

..

.

.

.

.

..

..

.

.

.

.

...

..

.

.

.

.

..

..

.

.

.

.

...

..

.

.

.

.

..

..

.

.

.

.

...

..

.

.

.

.

..

..

.

.

.

.

...

..

.

.

.

.

..

..

.

.

.

.

...

..

.

.

.

.

..

.

.

.

.

.

.

...

..

.

.

.

.

..

.

.

.

.

.

.

...

..

.

.

.

.

..

.

.

.

.

.

.

...

..

.

.

.

.

..

.

.

.

.

.

.

..

.

..

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

..

...

.

.

.

..

.

.

.

.

..

.

..

...

.

.

.

..

.

.

.

.

..

.

..

...

.

.

.

..

.

.

.

.

..

.

..

...

.

.

.

..

.

.

.

.

..

.

..

...

.

.

.

..

.

.

.

.

..

.

...

..

.

.

.

..

.

.

.

.

..

.

...

..

.

.

.

..

.

.

.

.

..

.

...

..

.

.

.

.

.

.

.

.

.

..

.

....

.

.

.

.

.

.

.

.

.

.

..

.

...

.

.

.

.

.

.

.

.

.

.

..

.

....

.

.

..

.

.

.

.

.

.

..

.

....

.

.

..

.

.

.

.

.

.

..

.

....

.

.

..

.

.

.

.

.

.

..

.

....

.

.

..

.

.

.

.

.

.

..

.

....

.

.

..

.

.

.

.

.

.

..

.

....

.

.

..

.

.

.

.

.

.

..

.

....

.

.

..

.

.

.

.

.

.

..

.

....

.

.

..

.

.

.

.

.

.

..

.

....

.

.

..

.

.

.

.

.

.

..

.

....

.

.

..

.

.

.

.

.

.

...

....

.

.

...

.

.

.

.

.

...

....

.

.

...

.

.

.

.

.

...

.....

.

...

.

.

.

.

.

..

.....

.

...

.

.

.

.

.

...

.....

.

...

.

.

.

.

.

...

.....

.

...

.

.

.

.

.

...

....

.

.

...

.

.

.

.

.

...

....

.

.

...

.

.

.

.

.

...

....

.

.

...

.

.

.

.

.

...

....

.

.

...

.

.

.

.

.

...

....

.

.

...

.

.

.

.

.

...

....

.

.

...

.

.

.

.

.

...

....

.

.

...

.

.

.

.

.

..

.

....

.

.

..

.

.

.

.

.

.

..

.

....

.

.

..

.

.

.

.

.

.

..

.

....

.

.

..

.

.

.

.

.

.

.

..

....

.

.

..

.

.

.

.

.

.

.

..

....

.

.

..

.

.

.

.

.

.

.

..

....

.

.

..

.

.

.

.

.

.

.

..

....

.

.

..

.

.

.

.

.

.

.

..

....

.

.

..

.

.

.

.

.

.

.

..

....

.

.

..

.

.

.

.

.

.

.

..

....

.

.

..

.

.

.

.

.

.

.

..

....

.

.

..

.

.

.

.

.

.

.

..

....

.

.

..

.

.

.

.

.

.

.

..

....

.

.

..

.

.

.

.

.

.

.

.

....

.

.

..

.

.

.

.

.

.

.

..

....

.

.

..

.

.

.

.

.

.

.

..

....

.

.

..

.

.

.

.

.

.

.

..

....

.

.

..

.

.

.

.

.

.

.

..

....

.

.

..

.

.

.

.

.

.

.

..

....

.

.

..

.

.

.

.

.

.

.

..

...

.

.

.

..

.

.

.

.

.

.

.

..

...

.

.

.

..

.

.

.

.

.

.

.

..

...

.

.

.

..

.

.

.

.

.

.

.

..

...

.

.

.

..

.

.

.

.

.

.

.

.

..

...

.

.

.

..

.

.

.

.

.

.

.

.

..

..

.

.

.

..

.

.

.

.

.

.

.

..

...

.

.

.

..

.

.

.

.

.

.

.

..

...

.

.

.

..

.

.

.

.

.

.

.

..

...

.

.

.

..

.

.

.

.

.

.

.

..

...

.

.

.

..

.

.

.

.

.

.

.

..

...

.

.

.

..

.

.

.

.

.

.

.

..

...

.

.

.

..

.

.

.

.

.

.

.

..

...

.

.

.

..

.

.

.

.

.

.

.

..

...

.

.

.

..

.

.

.

.

..

.

..

...

.

.

.

..

.

.

.

.

..

.

..

..

..

.

.

..

.

.

.

.

..

.

..

..

..

.

.

..

.

.

.

.

..

.

..

..

..

.

.

..

.

.

.

.

..

.

..

..

..

.

.

..

.

.

.

.

..

.

..

..

..

.

.

..

.

.

.

.

..

.

..

..

..

.

.

..

.

.

.

.

..

.

..

..

..

.

.

..

.

.

.

.

..

.

..

..

..

.

.

..

.

..

.

..

.

..

..

..

.

.

..

.

..

.

..

.

..

..

..

.

.

..

.

..

.

..

.

..

..

..

.

.

..

..

.

.

..

.

..

..

..

.

.

.

.

..

.

.

..

.

..

..

..

.

.

.

.

..

.

.

..

.

.

..

...

.

.

.

.

..

.

.

..

.

.

..

...

.

.

.

.

...

.

..

.

.

..

...

.

.

.

.

...

.

..

.

.

..

...

.

.

.

.

...

.

..

.

.

..

...

.

.

.

.

...

.

..

.

.

..

...

.

.

.

.

...

.

..

.

.

..

...

.

.

.

.

...

.

..

.

.

..

...

.

.

.

.

...

.

..

.

.

..

...

.

.

.

.

...

.

..

.

.

..

...

.

.

.

.

...

.

..

.

.

.

...

.

.

.

.

..

.

.

..

.

.

..

...

.

.

.

.

..

.

.

..

.

.

...

..

.

.

.

.

..

.

.

..

.

.

...

..

.

.

.

.

.

..

.

..

.

.

...

..

.

.

.

.

.

..

.

..

.

.

...

..

.

.

.

.

.

..

.

..

.

.

...

..

.

.

.

.

.

..

.

..

.

.

...

..

.

.

.

.

.

..

.

..

.

.

...

..

.

.

.

.

.

..

.

..

.

.

...

..

.

.

.

.

.

..

.

..

.

.

...

..

.

.

.

.

.

..

.

..

.

.

...

..

.

.

.

.

.

..

.

..

.

.

...

..

.

.

.

.

.

..

.

..

.

.

...

..

.

.

.

.

.

..

.

.

.

.

.

...

..

.

.

.

.

.

..

.

.

.

.

.

...

..

.

.

.

.

.

..

.

.

.

.

.

...

..

.

.

.

.

.

..

.

.

.

.

.

...

..

.

.

.

.

.

..

.

.

.

.

.

..

...

.

.

.

.

.

..

.

.

.

.

.

..

...

.

.

.

.

.

..

.

.

.

.

.

..

...

.

.

.

.

.

..

.

.

.

.

.

..

...

.

.

.

.

.

..

.

.

.

.

.

..

...

.

.

.

.

.

..

.

.

.

.

.

..

...

.

.

.

.

.

..

.

.

.

.

.

..

...

.

.

.

.

.

..

.

.

.

.

.

..

...

.

.

.

.

.

..

.

.

.

.

.

..

...

.

.

.

.

.

..

.

.

.

.

.

..

...

.

.

.

.

.

..

.

.

.

.

.

..

...

.

.

.

.

.

..

.

.

.

.

.

..

...

.

.

.

.

.

..

.

.

.

.

.

..

...

.

.

.

.

.

..

.

.

.

.

.

..

...

.

.

.

.

.

..

..

.

.

.

..

...

.

.

.

.

.

..

..

.

.

.

..

...

.

.

.

.

.

..

..

..

.

..

...

.

.

.

.

.

..

..

..

.

..

..

.

.

.

.

.

..

..

..

.

..

...

.

.

.

.

.

..

..

..

.

..

...

.

.

.

.

.

..

..

..

.

..

...

.

.

.

.

.

..

..

..

.

..

...

.

.

.

.

.

..

..

..

.

..

...

.

.

.

.

.

..

..

..

.

..

...

.

.

.

.

.

..

..

..

.

..

...

.

.

.

.

.

..

..

..

.

..

...

.

.

.

.

.

..

..

..

.

..

...

.

.

.

.

.

..

..

..

.

..

...

.

.

.

.

.

..

..

..

.

..

...

.

.

.

.

.

..

..

..

.

..

...

.

.

.

.

.

..

..

..

.

..

...

.

.

.

.

.

..

..

..

.

..

...

.

.

.

.

.

..

..

..

.

..

...

.

.

.

.

.

.

..

..

.

..

...

.

.

.

.

.

.

..

..

.

..

...

.

.

.

.

.

.

.

.

..

.

..

...

.

.

.

.

.

.

.

.

..

.

..

...

.

.

.

.

.

.

.

.

..

.

..

...

.

.

.

.

.

.

.

.

..

.

..

..

.

.

.

.

.

.

.

.

.

..

.

..

..

.

.

.

.

.

.

.

.

.

..

.

..

..

.

.

.

.

.

.

.

.

.

..

.

..

..

.

.

.

.

.

.

.120
118

116
114

112

110

108

106
104

102

100

98

96

94

92

90

126

82

160

58
Ce

102
 Neutron Levels

3p1/2

4d5/2
1i13/2

3p3/2

1h9/2

2f7/2

S
in

gl
e-

P
ar

tic
le

 E
ne

rg
y 

 (
M

eV
)

Deformation ββββ

Fig. 2: Single-particle energies of the microscopic model as function of deformation for prolate shapes (β > 0) for the nucleus 160Ce.
Spherical spectroscopic notation is given for spherical deformation (β = 0) .The circle in dotted line indicates the area of lowest level
density.
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Fig. 3: Theoretical equilibrium deformations for even-even cerium
isotopes evaluated by different or similar approaches.

9.30 MeV for N = 102 and decreases from either side from
these two nuclei.
(ii) Spherical deformation occur at and near the (magic) num-
bers N = 82 and N = 128 (not shown).
(iii) The deformation energy decreases from N = 64 (maxi-
mum) to N = 82 (minimum) and reincreases again to N =

102 (maximum). We have found graphically that the first
inflexion point occurs between N = 72 and N = 74 and a
second inflexion point is found between N = 90 and N = 92.
One can consider (somewhat arbitrarily) that spherical shapes
occur approximately between these two limits.
(iv) The minima of prolate equilibrium deformations are, by
far, always deeper compared to the ones of the oblate minima
(minpro�minobl). In other words cerium isotopes prefer,
by far, prolate shapes. In other words, the deformation en-
ergy increases in average with the asymmetry γ. This justifies
a posteriori that, in a static study of the equilibrium defor-
mation, it is needless to account for axial asymmetry. It is
worth to remember that most of nuclei of the chart have pro-
late shape (see [25]).
(v) Even though the experimental deformations are known
only in absolute value from B(E2), a good agreement is ob-
tained if one excepts the three “nearly magic” nuclei 138−142Ce

In Fig. (3) are displayed the present equilibrium deforma-
tions, experimental values [1] , our “old” calculations [7] and
other studies performed by different authors which are: Kern
et al. [32], Hilaire and Girod [34], Gotz et al. [33] and Nix et
al. [18]. All calculations are based on Macro-Micro method
(with different mean fields or different parameters). Except
the one of [34] which uses Hartree-Fock-Bogoliubov model
with Gogny force.
(i) Near magic number (N = 82) all calculations give spheri-
cal equilibrium deformation whereas experimental results are
always slightly deformed (even for N = 82). It seems difficult
to overcome this defect with a pure static approach which ne-
glects the role of the mass parameters.

(ii) The overall tendency of these calculations is the same ex-
cept the fact that HFB calculations differ significantly from
the others with higher values in some regions.
(iii) Apart from HFB calculations, theoretical values are gen-
erally quite close from each others.
(iv) Our old and new calculations give very close results (see
Table 3). Thus, even if it is better to choose a proper set of
mean-field parameters for each nucleus, we do not commit
a significant error by taking the same set of parameters for
nuclei that do not differ strongly by the number of neutrons
(N).

3.3 Mass excesses

We list from a FORTRAN file (see Fig. 4) the results of our
theoretical calculations of the binding energies and mass ex-
cesses (m-excess) for the even-even cerium isotopic chain.
For the sake of completeness, experimental mass excesses
and the ones of the FRDM model (see [18]) are also given.
We must keep in mind that only 6 parameters are used in
the liquid drop model whereas 16 parameters are necessary
in the FRDM model. This explains the “better quality” of
the FRDM model. However, we have checked that the vari-
ations of binding energy or mass excesses from one isotope
to the nearest is practically the same in our model and the
one of FRDM (the deviations are about ±0.35 MeV). For this
reason, the calculation of the two neutron separation energies
(see the following subsection 3.4) will almost be probably the
same for the two approaches even though our model is not so
accurate.

3.4 Transitional regions in cerium isotopes

In Fig. 5 is shown the gradual transition in the potential en-
ergy surface from spherical vibrator to the axially deformed
rotor when the number of neutrons (N) increases from 76 to
92. One signature of X(5) symmetry which is a critical-point
of phase/shape transitions (quantum phase transition between
spherical and axial symmetries) should be a long flatness of
the potential energy surface with eventually a weak barrier
from prolate to oblate shapes. In this figure, for N > 82,
the width of the flatness increases as one moves away from
N = 82 but at the same time the difference between oblate
and prolate minima and barrier between oblate and prolate
shapes also increase. For example the differences between
oblate and prolate energy minima and barriers for isotopes
with N = 88, 90, 92 are respectively about 1.5 MeV, 2.5 MeV
and 3.3 MeV with energy barrier about 2 MeV, 4 MeV and
5.5 MeV respectively. The wideness of the bottom of the
well must be relativized with the height of the barrier. Thus
for the case of N = 92 the width is important, i.e. about
∆β ≈ βpro − βobl ≈ 0.26 − (−0.20) ≈ 0.46 but the barrier
is about 5.5 MeV and therefore seems too high. The case
N = 90 gives a width of ∆β ≈ 0.3 with a barrier of about
4 MeV. For N < 82, the case N = 76 seems to be rela-
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N A βpro minpro βobl minobl Ede f
∣∣∣βexp

∣∣∣ N A βpro minpro βobl minobl Ede f
∣∣∣βexp

∣∣∣
(MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

58 116 0.30 0.90 −0.21 3.62 4.80 92 150 0.25 1.23 −0.17 4.45 5.12 0.31
60 118 0.32 0.88 −0.23 4.07 5.87 94 152 0.27 1.21 −0.19 5.05 6.40
62 120 0.32 1.03 −0.23 4.33 6.19 96 154 0.28 0.64 −0.21 4.94 7.47
64 122 0.31 1.16 −0.23 4.23 6.68 98 156 0.29 0.66 −0.22 5.13 8.44
66 124 0.30 1.47 −0.21 4.15 6.17 0.30 100 158 0.29 0.71 −0.22 5.14 9.08
68 126 0.29 1.75 −0.21 3.87 5.43 0.33 102 160 0.30 0.32 −0.22 4.52 9.27
70 128 0.27 1.82 −0.21 3.48 4.67 0.29 104 162 0.29 0.71 −0.22 4.42 9.08
72 130 0.25 2.02 −0.2 3.27 3.34 0.26 106 164 0.29 1.00 −0.23 4.23 8.44
74 132 0.20 1.90 −0.17 2.60 1.97 0.26 108 166 0.28 1.16 −0.23 3.92 7.57
76 134 0.16 1.28 −0.14 1.63 0.93 0.19 110 168 0.27 1.46 −0.21 3.84 6.39
78 136 0.10 0.04 −0.07 0.18 0.19 0.17 112 170 0.25 1.68 −0.20 3.55 5.33
80 138 0.00 −1.93 0.00 −1.93 0.00 0.13 114 172 0.25 1.97 −0.19 3.20 4.19
82 140 0.00 −3.96 0.00 −3.96 0.00 0.10 116 174 0.2 1.93 −0.17 2.79 2.95
84 142 0.00 −2.07 0.00 −2.07 0.00 0.12 118 176 0.17 1.71 −0.16 2.17 1.68
86 144 0.15 0.02 −0.06 0.53 0.50 0.17 120 178 0.14 1.39 −0.14 1.60 0.55
88 146 0.19 0.73 −0.11 2.43 1.99 0.17 122 180 0.0 0.3 0.00 0.30 −0.15
90 148 0.23 1.15 −0.14 3.76 3.15 0.25 124 182 0.0 −1.08 0.00 −1.08 −0.08

Table 2: Equilibrium deformations as well as deformation energies for the cerium isotopic chain. The columns give successively the
number of neutrons (N), the mass number (A), the prolate equilibrium deformation (βpro), the minimum of the prolate well (minpro), the
oblate equilibrium deformation (βobl), the minimum of the oblate well (minobl), the deformation energy (Ede f ,see text), the experimental
equilibrium deformation (βexp). Note: The deformation energy is always given for the prolate equilibrium shape because no absolute
minimum is obtained for oblate shape.

Cerium (Z = 58) N = 58 60 62 64 66 68 70 72 74 76 78 80 82
Present β +0.30 +0.32 +0.32 +0.31 +0.30 +0.29 +0.27 +0.25 +0.20 +0.16 +0.10 +0.00 +0.00

Old β +0.28 +0.30 +0.31 +0.31 +0.31 +0.30 +0.27 +0.24 +0.22 +0.18 +0.06 +0.11 +0.00
Present Ede f (MeV) 4.80 5.87 6.19 6.68 6.17 5.43 4.67 3.34 1.97 0.93 0.19 0.00 0.00

Old Ede f (MeV) 4.82 5.77 6.03 6.31 7.08 5.36 4.41 3.35 2.13 0.77 0.00 0.24 0.00

Table 3: New equilibrium deformations and deformations energies vs old [7].

tively equivalent to N = 90 with a slightly smaller width and
a lower height barrier. Thus it is difficult to determine clearly
the existence of a X(5) critical-point. Thus, everything seems
to indicate a continuous transition.

In Fig. 6 is displayed the two-neutron separation energy
(TSN) as function of the neutron number N. A clear jump
is seen from N = 82 to N = 84, i.e. from one major shell
to the following. Just before N = 82 and just after N = 84
the TSN varies more slowly. Far for the “jump” the curve be-
comes quasi-linear. Once again, no special behavior is noted
around N = 90 which from [35] and [36] should constitute
with Z ≈ 62 the first order shape transition (X(5) critical-
point) in the rare earth region. In [37], it has been pointed out
that “Empirical evidence of transitional symmetry at the X(5)
critical-point has been observed in 150Nd, 152Sm, 154Gd, and
156Dy”. One of the most important signatures of the phase
transition is given by a sudden jump in the value of the en-
ergy ratio R4/2 = 4+

1 /2
+
1 from one nucleus to the next. We

found it useful to compare the experimental values of this ra-
tio (see Fig. 7) in the cases of the isotopic chains of Ce and Sm
(The experimental values of the considered levels have been
deduced from the adopted level of ENS DF site [38]). The
figure shows clearly two facts. First, the important variation

of R4/2 near of the magic number N = 82 for both isotopic
chains and then, the important difference between the behav-
ior the two isotopic chain from N = 88 to N = 90. In effect

64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124
0

5

10

15

20

25
Two-Neutron Separation Energies VS Neutron Number
For Cerium Isotopes (Z=58)

S
2N

(M
eV

)

N

Fig. 6: Two-neutron separation energies (S 2N) along the cerium
isotopic chain. This quantity is defined as S 2N(A, Z,N) =

Bind(A, Z,N) − Bind(A − 2,Z,N − 2) where the binding energy
Bind(A, Z,N) is given by (1). Note that in our approache the neu-
tron drip line (where S 2N ≈ 0) can be extrapolated around N = 128
for Cerium isotopes.
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N  58  A  116.   Z  58   bind   914.85   m-excess   -23.94   exp *********   frdm   -29.21 
N  60  A  118.   Z  58   bind   942.64   m-excess   -35.59   exp *********   frdm   -40.57 
N  62  A  120.   Z  58   bind   968.86   m-excess   -45.66   exp *********   frdm   -50.01 
N  64  A  122.   Z  58   bind   993.74   m-excess   -54.40   exp *********   frdm   -57.99 
N  66  A  124.   Z  58   bind  1017.15   m-excess   -61.67   exp *********   frdm   -64.93 
N  68  A  126.   Z  58   bind  1039.35   m-excess   -67.73   exp *********   frdm   -70.82 
N  70  A  128.   Z  58   bind  1060.58   m-excess   -72.81   exp *********   frdm   -75.54 
N  72  A  130.   Z  58   bind  1080.54   m-excess   -76.63   exp *********   frdm   -79.17 
N  74  A  132.   Z  58   bind  1099.73   m-excess   -79.68   exp *********   frdm   -81.89 
N  76  A  134.   Z  58   bind  1118.37   m-excess   -82.18   exp   -84.750   frdm   -84.02 
N  78  A  136.   Z  58   bind  1136.63   m-excess   -84.30   exp   -86.500   frdm   -85.67 
N  80  A  138.   Z  58   bind  1154.66   m-excess   -86.18   exp   -87.570   frdm   -87.62 
N  82  A  140.   Z  58   bind  1171.81   m-excess   -87.19   exp   -88.090   frdm   -88.68 
N  84  A  142.   Z  58   bind  1184.16   m-excess   -83.39   exp   -84.540   frdm   -84.78 
N  86  A  144.   Z  58   bind  1195.44   m-excess   -78.53   exp   -80.440   frdm   -80.23 
N  88  A  146.   Z  58   bind  1207.28   m-excess   -74.23   exp   -75.720   frdm   -76.00 
N  90  A  148.   Z  58   bind  1218.60   m-excess   -69.41   exp   -70.430   frdm   -70.83 
N  92  A  150.   Z  58   bind  1229.50   m-excess   -64.17   exp   -64.990   frdm   -65.80 
N  94  A  152.   Z  58   bind  1239.76   m-excess   -58.28   exp *********   frdm   -59.78 
N  96  A  154.   Z  58   bind  1249.85   m-excess   -52.23   exp *********   frdm   -52.90 
N  98  A  156.   Z  58   bind  1258.66   m-excess   -44.90   exp *********   frdm   -45.40 
N 100  A  158.   Z  58   bind  1266.78   m-excess   -36.87   exp *********   frdm   -37.29 
N 102  A  160.   Z  58   bind  1274.68   m-excess   -28.63   exp *********   frdm   -28.70 
N 104  A  162.   Z  58   bind  1281.19   m-excess   -19.00   exp *********   frdm   -19.01 
N 106  A  164.   Z  58   bind  1287.19   m-excess    -8.86   exp *********   frdm    -8.62 
N 108  A  166.   Z  58   bind  1292.74   m-excess     1.74   exp *********   frdm     2.23 
N 110  A  168.   Z  58   bind  1297.58   m-excess    13.04   exp *********   frdm    13.43 
N 112  A  170.   Z  58   bind  1301.96   m-excess    24.81   exp *********   frdm    25.00 
N 114  A  172.   Z  58   bind  1305.73   m-excess    37.17   exp *********   frdm    36.82 
N 116  A  174.   Z  58   bind  1309.33   m-excess    49.72   exp *********   frdm    49.07 
N 118  A  176.   Z  58   bind  1312.60   m-excess    62.59   exp *********   frdm    61.53 
N 120  A  178.   Z  58   bind  1315.49   m-excess    75.84   exp *********   frdm    74.94 
N 122  A  180.   Z  58   bind  1318.69   m-excess    88.79   exp *********   frdm    87.48 
N 124  A  182.   Z  58   bind  1321.72   m-excess   101.90   exp *********   frdm    99.94

Fig. 4: Theoretical binding energies and mass excesses of the present approach compared to the experimental mass excesses and the ones
given by the FRDM model of [18]. All energies are expressed in MeV. The experimental data as well as the frdm results have been entered
manually in the code. Asterics mean that no experimental data is available for the corresponding nucleus.

in the case of Samarium, there is a sudden increase of this ra-
tio whereas this is not the case for the Cerium isotopes. This
has been attributed to the X(5) critical-point symmetry of the
nucleus 152Sm. Thus the present study confirms that cerium
isotopic chain is characterized by a continuous shape/phase
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Fig. 7: R4/2 energy ratio as function of neutron number for Cerium
and Samarium isotopes. Sudden variations are associated with
magic closure shells for the both chains ( at N = 82) and with X(5)
critical point which occurs only for S m (at N = 90).

transition.

4 Conclusion

Potential energy surfaces have been drawn for the cerium
isotopic chain. All even-even nuclei between the two drip
lines have been considered. To this end, we have used the
microscopic–macroscopic method in which the quantum cor-
rections have been evaluated by a semi-classical procedure.
The microscopic model is based on a “realistic” Schrödinger
equation including a mean field of a Woods-Saxon type. The
macroscopic part of the energy is evaluated from the liquid
drop model using the version of Myers and Swiatecki. The
following points must be remembered:
(i) All equilibrium deformations have been found prolate with
an important deformation energy compared to oblate shapes.
(ii) The maximum deformations are of order β ≈ 0.3 and are
located around N = 64 and N = 102 with deformation energy
about 6 MeV and 9 MeV respectively. The equilibrium defor-
mations decrease as one moves away from these two nuclei.
(iii) Spherical shapes are found in the neighborhood of N =

82.
(iv) Good agreement is obtained between theoretical and ex-
perimental values if one excepts the area of the shell closure
N = 82 where the latter are slightly larger.
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Fig. 5: Shape evolution for cerium isotopes from N = 78 to N = 92.

(v) This isotopic chain possesses a continuous shape/phase
transition from spherical shapes toward the axially symmet-
ric ones.

Submitted on May 2, 2015 / Accepted on May 22, 2015

References
1. Raman S., Nestor C. W. Jr. and Tikkanen P. At. Data Nucl. Data Tables,

2001, v. 78, 1.
2. Stone N. J., At.Data Nucl.Data Tables, 2005, v. 90, 75.
3. Boboshin I., Ishkhanov B., Komarov S., Orlin V., Peskov N., and Var-

lamov V. ND 2007 – International Conference on Nuclear Data for Sci-
ence and Technology. Nice, France, April 22–27 2007.

4. Iachello F. and Arima, A. The Interacting Boson Model. Cambridge
University Press, Cambridge, 1987.

5. Bayram T. Rom. Journ. Phys., 2013, v. 58 (7–8), 931–938.
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A Constants of the binding energy of the liquid drop
model

The constants of (1) are defined as follows:

CV = aV

[
1 − κI2

]
(in the volume term)

CS = aS

[
1 − κI2

]
(in the surface term)

I =
N − Z
N + Z

(relative neutron excess)

ε = +1 (even − even) (in the pairing term),
0 (odd),
− 1 (odd − odd)

CC =
3
5

e2

r0
(in the Coulomb term)

Cd =
π2

2

(
a0

r0

)2 e2

r0
(diffuseness correction)

The last correction to the Coulomb energy takes into account
that the liquid drop has not a sharp but a diffuse surface of the
Woods-Saxon type. The diffuseness parameter is a0 and the
charge radius “contains” r0 (Rch = r0A1/3).

B Constants of the Woods-Saxon mean potential

“Universal parameters” of the Woods-Saxon central and
Spin-orbit potentials entering in (10).

Neutrons
V0neut=49.6(1-0.86I) depth of cmf (MeV)
RVneut=1.347A1/3 radius of cmf (fm)
λ=35.0 (dimensionless) spin-orb. coupling strength
RS O−neut=1.310A1/3 Radius of somf (fm)
a0=0.70 diffuseness of cmf (fm)
a0=0.70 diffuseness of somf (fm)

Protons
V0prot=49.6(1+0.86I) depth of cmf (MeV)
RV prot=1.275A1/3 radius of cmf (fm)
λ=36.0 (dimensionless) spin-orb. coupling strength
RS O−nprot=1.200A1/3 radius of somf (fm)
a0=0.70 diffuseness of cmf (fm)
a0=0.70 diffuseness of somf (fm)

cmf = central mean field
somf = spin-orbit mean field
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The objective of this paper is to propose a search methodology for finding other exactly
similar earth like planets (or sister earths). The theory is based on space consisting of
Riemann curves or highways. A mathematical model based on constant curvature, a
moving frame bundle, and gravitational dynamics is introduced.

1 Introduction

The objective of this paper is to propose a search methodol-
ogy that could show the way to finding other exactly similar
earth like planets (or sister earths). The main idea in this pa-
per lies behind the theory that space contains of what is called
highways. The term highway refers to a path with no obstruc-
tions. Examples of obstructions are black holes and stars or
any celestial objects with significant masses and gravitational
forces. Paths are non-linear graphs.

Space is composed of these highways, on which there is
at least one sister earth. Topologically highways are made up
of constant Riemann curvatures, [1]. It is posited that sister
earths are located at the points of constant curvature; more
accurately, these are the points where two oppositely directed
highways (or paths) with identical constant curvatures share
a moving tangent frame where the coordinate frame is the
derivative of their gravitational tensors with respect to the (x)
coordinate.

A sister earth comes with its satellite (or a moon) just
as earth has its satellite, the moon. A satellite is found at
the point of intersection of two oppositely directed highways.
The earth’s moon provides a parallel highway to the earth’s
highway. So far the methods of detecting earth like exo-
planets consist of observation through Hubble space telesco-
pe of extrasolar giant planets and their gravitational influence
on parent stars, [2,3,4]. Transit method, [5], orbital bright-
ness modulations, [6], timing variations, [7], gravitational mi-
crolensing, [8], direct imaging, [9], and polarimetry, [10], are
among methods currently used for the detection of earth like
exoplanets. In all these methods the main element of study
is observation of light and gravitational changes as it distorts
light around planets.

The advantage of the current theory proposed in this paper
is that it provides an analytical approach based on Rieman-
nian curvature, and the dynamics of gravitation mathemati-
cally represented by differential gravity calculations around
the points of constant curvature. The important first step is to
find pathways (or space highways) with constant curvatures.
One Riemann path or space highway with constant curvature
is known, and that is the Riemann path of the earth. The Rie-
mann path of the moon is another known pathway or space
highway that is parallel to the earth’s Riemann path. Other

Riemann paths can be traced out parallel to the earth’s and
the moon’s Riemann paths or space highways. A path to a
sister earth can be traced out assuming that it has the same
curvature with different gravitational tensor described in the
following section.

2 Space highways

Space highways are paths that extend to infinity. The word
infinity is used to imply very long distances. These paths can
be considered as Riemannian curves with constant curvatures.
Riemann paths with constant curvatures contain no obstacles.
Here, obstructions are mainly black holes, and massive stars,
or any significant electrostatic system, moving with a certain
velocity (v) corresponding to an electromagnetic momentum,
(H).

In other words, any significant mass with inertia, momen-
tum, and thus velocity that produces gravitational and electro-
magnetic forces. Vector (H) represents the electromagnetic
direction and magnitude. The electromagnetic momentum
can be expressed as the multiplication of the vector (H) by
the velocity (v), as (H · v). The assumption of Riemann paths
in dark regions of space is fundamental to the structure of the
model to be introduced.

The earth’s Riemann path with constant curvature can be
constructed given the coordinates of the sun and the earth.
Let’s assume that the earth is in a stationary system (K), whe-
re [xτ = (x, y, z, t) ∈ K] denotes the coordinates and the sys-
tem (K) holds a homogeneous gravitational field, and gravi-
tational acceleration equal to [γ = (γx, γy, γz)]. In system (K),
Newtonian laws hold in their most basic form, the same basic
laws equally hold with respect to any other coordinate system
moving in uniform translation with respect to (K).

Let system (K) represent the sun system. It is assumed
that the coordinates of the sun are (0, 0, 0, 0), meaning that
the sun is considered to be the first solar system of its kind.
Let’s assume that earth is located in a second coordinate sys-
tem (K′), where [xσ = (x′, y′, z′, t′) ∈ K′] signifies the coor-
dinates in this system. It is also assumed that for any other
coordinate system outside of the two systems (K) and (K′),
the laws of general relativity hold with respect to the two co-
ordinate systems.

By this it is meant that the velocity of light (c) in vacuum
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Fig. 1: A graphical representation of Riemann Paths.

is constant, [11], and in combination with the principles of
relativity, follows the relativity of simultaneity, the Lorentz
transformation rules, and the related laws indicating the be-
haviour of bodies in motion. The laws of geometry are taken
directly as laws relating to relative positions of mass at rest.
The laws of kinematics are to be taken as laws which describe
the relation of a solid body with respect to another in terms of
their distance from each other in definite length independent
of the location and the orientation of the two bodies in time.
An example of space highways is given in Fig. 1.

Let’s consider the earth as an event point in system (K′)
in a uniform constant rotation in a finite space with respect to
system (K). The curvature from the event point to the station-
ary system (K) is given by (1):

ds2 =
∑

στ

Gστdxσdxτ. (1)

(dxσ) corresponds to differentials in system (K′), (σ) repre-
sents the (x′, y′, z′, t′) coordinate system in (K′), and (dxτ)
corresponds to differentials in system (K), where τ represents
the (x, y, z, t) coordinate system. (Gστ) is the gravitation ten-
sor, signifying the gravitational forces exerted mutually be-
tween systems (K) and (K′) multiplied by the differential of
the electromagnetic force (dH).

The gravitation tensor (Gστ) is a matrix obtained by multi-
plying matrix (gστ), the matrix of the differentials of the grav-
itational force, given as:

gστ =



∂x′
∂x

∂x′
∂y

∂x′
∂z

∂x′
∂t

∂y′

∂x
∂y′

∂y
∂y′

∂z
∂y′

∂t

∂z′
∂x

∂z′
∂y

∂z′
∂z

∂z′
∂t

∂t′
∂x

∂t′
∂y

∂t′
∂z

∂t′
∂t



with matrix (dH), the matrix of the differentials of the elec-
tromagnetic force or the matrix of the curl of (H) given by

(2):
Gστ = gστ × dH. (2)

The matrix of the curl of (H), the electromagnetic force is
given as:

dH =



(
∂Hx′
∂z −

∂Hz′
∂x

)
0 0 0

0
(
∂Hy′
∂x − ∂Hx′

∂y

)
0 0

0 0
(
∂Hz′
∂y
− ∂Hy′

∂z

)
0

0 0 0 1



.

In the presence of significant mass, and the electromag-
netic momentum (H · v), the diagonal entries of the curl of
(H) are given in (3)–(5) as:

(
∂Hx′

∂z
− ∂Hz′

∂x

)
=

1
c
× ρ × vx′ (3)

(
∂Hy′

∂x
− ∂Hx′

∂y

)
=

1
c
× ρ × vy′ (4)

(
∂Hz′

∂y
− ∂Hy′

∂z

)
=

1
c
× ρ × vz′ . (5)

In (3)–(5), (c) is the velocity of light, (ρ) is the volume-densi-
ty charge of a mass, and the vector (v) is the velocity of the
electromagnetic momentum where v = (vx′ , vy′ , vz′).

The curvature of the system (K)-(K′) in a finite region
between an event-point in system (K′), and a stationary point
in system (K) such as the earth and the sun is well-known to
be an ellipsoid in the form expressed by (6) as:

S = Gστ ×
(

(xσ − xτ)2

a2

)
. (6)

(xσ) is the vector of coordinates in the (K′) system, where
xσ = (x′, y′, z′, t′), and (xτ) is the vector of coordinates in
the (K) system, where xσ = (x, y, z, t). Equation (6) can be
rewritten with respect to the coordinates given in (7):

S = A1 ×
(

(x − x′)2

a1
2

)
+ A2 ×

(
(y − y′)2

a2
2

)
+

+ A3 ×
(

(z − z′)2

a3
2

)
+ A4 ×

(
(t − t′)2

a4
2

)
.

(7)

The coefficients (A) are the columns of (Gστ), the gravitation
tensor. The denominators in (7), (a1, a2, a3, a4) are constants
less than 1, and the coefficients (A = (A1,A2,A3,A4)) are
given at the top of the next page.

The time (t) in the (K) system is formulated in a relativis-
tic sense as in (8):

t =

(
1 − v

c

)
× t′

√
1 − v2

c2

. (8)
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A =



∂x′
∂x ×

(
∂Hx′
∂z −

∂Hz′
∂x

)
0 0 0

0 ∂y′

∂y
×

(
∂Hy′
∂x − ∂Hx′

∂y

)
0 0

0 0 ∂z′
∂z ×

(
∂Hz′
∂y
− ∂Hy′

∂z

)
0

0 0 0 ∂t′
∂t × 1



The elements of the coefficient matrix (A) are:

A11 =
∂x′

∂x
×

(
∂Hx′

∂z
− ∂Hz′

∂x

)
=

1
c
× ρ × γx′ (9)

A22 =
∂y′

∂y
×

(
∂Hy′

∂x
− ∂Hx′

∂y

)
=

1
c
× ρ × γy′ (10)

A33 =
∂z′

∂z
×

(
∂Hz′

∂y
− ∂Hy′

∂z

)
=

1
c
× ρ × γz′ (11)

and

A44 =
∂t′

∂t
=

(√
1 − vx′ 2

c2

)

(
1 − vx′

c

) × (
t′ − t

)
. (12)

In (9–11), the vector (γ) is the vector of acceleration of the
electromagnetic momentum (H · v), where γ = (γx′ , γy′ , γz′).
The assumption is that the curvatures of Riemann paths or
space highways should be formulated in exactly the same
manner as the curvature formulated for the system (K)-(K′).
This assumption can be justified since any event point (earth
like planet) on a Riemann curve of constant curvature should
exhibit the same characteristics as the event-point earth.

An important element to consider, is how to find the coor-
dinates of an event point (earth like planet) with respect to the
coordinate system (K). These coordinates are arbitrary since
the only point of reference is the system (K). All the same,
let’s assign coordinates to an event point (earth like planet)
as (xν) where [xν = (x′′, y′′, z′′, t′′) ∈ K′′] denotes the coordi-
nate system in (K′′). The coordinates of the event point (earth
like planet) can be determined given that the event point is in
the finite region from the sun. The event point (earth like
planet) in the dark region is chosen assuming that it is on an
ellipsoid parallel to the ellipsoid that contains the coordinate
system (K), with coordinates xτ = (x, y, z, t), in other words
the sun.

The curvature can be formulated in (9) as:

ds′2 =
∑

νσ

gνσ ×Gστ × (dxσdxτ) dxν. (13)

The tensor (gνσ) represents the gravitational force exerted be-
tween the two coordinate systems (K) and (K′′). Given that
the coordinate system (K′′) is in a finite region with respect
to the coordinate system (K), the tensor (gνσ) takes on values

equal to the Lorentz factor as is given in the first matrix at the
top of the next page.

The Lorentz factor gives length contraction and time dila-
tion. As the function of velocity (v), the Lorentz factor starts
at value (1) at (v = 0), and approaches infinity as (v→ c), the
velocity of a particle approaches the speed of light (c). The
solution to differential equation (9) is an ellipsoid similar to
the one given in (6), and its extended form similar to (7) is
given in (10) as:

S ′ = B ×
(

(xν − xτ)2

b2

)
(14)

S = B1 ×
(

(x′′ − x)2

b1
2

)
+ B2 ×

(
(y′′ − y)2

b2
2

)
+

+ B3 ×
(

(z′′ − z)2

b3
2

)
+ B4 ×

(
(t′′ − t)2

b4
2

)
= 1.

(15)

The denominators in (11), (b1, b2, b3, b4) are constants less
than 1, and the coefficients B = (B1,B2,B3, B4) are given in
the second matrix at the top of the next page.

The elements of the coefficient matrix (B) are:

B11 = −


∂x′′

∂x
× 1√

1 − v2
x′′
c2



= −


1√

1 − v2
x′′
c2

 × | x
′′ − x |

(16)

B22 = −


∂x′′

∂x
× 1√

1 − v2
x′′
c2



= −


1√

1 − v2
x′′
c2

 × | y
′′ − y |

(17)

B33 = −


∂x′′

∂x
× 1√

1 − v2
x′′
c2



= −


1√

1 − v2
x′′
c2

 × | z
′′ − z |

(18)
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gνσ =



− 1√
1 − v2

x′′
c2

0 0 0

0 − 1√
1 − v2

y′′
c2

0 0

0 0 − 1√
1 − v2

z′′
c2

0

0 0 0
∂t′′

∂t
× 1√

1 − v2
x′′
c2



B =



− ∂x′′
∂x × 1√

1− v2
x′′
c2

0 0 0

0 − ∂y′′
∂y
× 1√

1−
v2
y′′
c2

0 0

0 0 − ∂z′′
∂z × 1√

1−
v2
z′′
c2

0

0 0 0 − ∂t′′
∂t × 1√

1− v2
x′′
c2



and

B44 =
∂t′′

∂t
×


1√

1 − v2
x′′
c2



=

(
1

1 − vx′′
c

)
× (t′′ − t)

(19)

where (| x′′ − x |) is the absolute distance.
Any event point in the dark regions of space that does not

violate the Lorentz factor impact of the gravitational force be-
tween the two coordinate systems (K) and (K′′) can be con-
sidered to be on the constant curvature. The event point earth
like planet should be found on such a constant curvature. Any
other significant mass such as a black hole or a star would cre-
ate discontinuity and thus disrupts the Riemann path.

Fig. 2 provides a graphical representation of an ellipsoidal
curve with an event point (earth). Fig. 2 depicts the rotation of
the earth around the sun scaled down to (100−3) of the actual
size. Fig. 3 demonstrates a Riemann path with respect to the
sun system. Fig. 4 demonstrates Riemann paths with respect
to the sun system.

3 Other earths

An event point (earth), is located at the point of constant cur-
vature of two opposing Riemann paths or space highways,
where the two curves share common points. Let (S ′) be the
Riemann path of constant curvature of an ellipsoidal form
given in (13). Let (S c2 ) be a Riemann path with a singular
event point earth. The event point on (S c2 ) has a mass (M),
and a density (ρ), and a velocity (v), equal to that of the earth.

1.00.80.60.20.0-0.2-0.4-0.6-0.8-1.0

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

-0.4

-0.5
0.4

Rotation of the Earth around the sun scaled down for graphical presentation 

The Earth system in 2D representation without relativistic effects 

Fig. 2: A graphical representation of the rotation of the earth around
the sun (the earth system).

The values of mass, density, and velocity of the event point
earth of the space highway (S c2 ) is independent of it’s coordi-
nates. Assuming that this condition holds, then the Riemann
path (S c2 ) is in such a region of space where (S c2 ) is of con-
stant curvature, and thus assumes an ellipsoidal form of type
given in (13). The event point earth conserves its momentum
and energy. The curvature (sc2 ) can be written as in (12).

The coordinates of this solar system are the same as the
earth’s solar system with the exception that the new sun’s co-
ordinates are that of our sun added the distance between the
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Fig. 3: A graphical representation of a Riemann path with respect to
the sun system.
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Fig. 4: A graphical representation of Riemann paths with respect to
the sun system.

two stars. The coordinates of the new sun are

xτ′ = [(xτ′ + Ξ), yτ′ , zτ′ , tτ′]

where (Ξ) is the distance between the two stars. The coordi-
nates of the event point earth are

(xc2η) = [(xc2 + Γ), yc2 , zc2 , tc2 ]

where (Γ) is the distance from the sun to the point of constant
curvature where the two Riemann paths meet.

The ellipsoidal form of the Riemann path (S c2 ) is given in
(13) as:

ds2
c2

=
∑

τ′η

Gτ′η
c2 dxτ′dxηc2 (20)

S c2 = −Gτ′η
c2 ×

(
xτ′ − xηc2

)2

b2
c2

. (21)

The denominators in (13),
(
bc2 = bc2

1 ,b
c2
2 ,b

c2
3 ,b

c2
4

)

are constants less than 1, and the coefficients

−Gτ′η
c2 = (−Ac2

1 ,−Ac2
2 ,−Ac2

3 , A
c2
4 )

are given at the top of the next page.
The elements of the coefficient matrix (−Gτ′η

c2 ) are:

−Ac2
11 = −∂xηc2

∂xτ′
×


∂Hxηc2

∂zτ′
−
∂Hzηc2

∂xτ′

 =
1
c
× ρ × −γxηc2

(22)

−Ac2
22 = −∂y

η
c2

∂yτ′
×


∂Hy

η
c2

∂xτ′
−
∂Hxηc2

∂yτ′

 =
1
c
× ρ × −γyηc2

(23)

−Ac2
33 = −∂zηc2

∂zτ′
×


∂Hzηc2

∂yτ′
−
∂Hy

η
c2

∂zτ′

 =
1
c
× ρ × −γzηc2

(24)

and

A44 =
∂t′′

∂t
=

√
1 −

(
vxηc2

)2

c2(
1 −

vxηc2
c

) × (t′′ − t). (25)

(−γxηc2
) states that the acceleration on the Riemann path (S c2 )

should be opposite of the acceleration on the (S ′) curve. In
the above matrix the (xc2 ) coordinate should be taken equal to
(xc2 + Γ).

The event point earth is located where

−∂Gνη
c2

∂xηc2

=
∂Bxν

∂xν

the derivative of the gravitational tensor (−Gτ′η
c2 ) belonging to

the (c2) Riemann path with respect to the coordinates of the
(c2) solar system, is equal to the derivative of the gravitational
tensor of the (S ′) Riemann path with respect to its coordinate
system. In Fig. 5, the event point earth can be found where
the green ellipse Riemann path (S ′) and the Riemann path
(c2) (the red ellipse) meet. Fig. 6 depicts the tangent vector at
the event point earth.

It should be stated that the magnitude of the electromag-
netic force of the event point earth (Hxηc2

) is equal to the mag-
nitude of the electromagnetic force of the solar system’s earth,
(H),

| Hxηc2
|=| H | .

Consequently, the curl of (Hxηc2
), and the curl of (H) should

be equal. Thus the density, the volume-density charge of the
mass, and the velocity of the event point earth are equal to
that of the solar system’s earth.

Let (T ) be the set of all frames at all points of Riemann
path (c2). Let [(Uα, Xα)α∈c2 ], represent all pairs where (Uα)
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Fig. 5: A graphical representation of the event point earth.

−Gτ′η
c2 =



− ∂xηc2
∂xτ′
×

(
∂Hxηc2
∂zτ′
−

∂Hzηc2
∂xτ′

)
0 0 0

0 − ∂y
η
c2

∂yτ′
×

(
∂H

y
η
c2

∂xτ′
−

∂Hxηc2
∂yτ′

)
0 0

0 0 − ∂zηc2
∂zτ′
×

(
∂Hzηc2
∂yτ′
−

∂H
y
η
c2

∂zτ′

)
0

0 0 0 ∂tηc2
∂tτ′
× 1



is an open subset of (T ), and (Xα = (Xα
1 , ..., X

α
n )) is a moving

frame on (Uα), then

(
U,
−∂Gνη

c2

∂Xα
=
∂Bxν

∂Xβ

)
∈ (Uα, Xα)α∈c2 ,

where (Xβ = (Xβ
1 , ..., X

β
n)) is a moving frame on (S ′). This

gives the following set of differential equations for each (α ∈
c2), and (β ∈ S ′):

∂

∂Xα

(
∂Xα

∂xτ′
×

(
∂HXα

∂z′τ
− ∂HXα

∂x′τ

))

= − ∂

∂Xβ


∂Xβ

∂x′′
× 1√

1 − v2
x′′
c2



(26)

and

∂

∂Xα

(
∂tηc2

∂tν
× 1

)
= − ∂

∂Xβ


∂t′

∂t
× 1√

1 − v2
x′′
c2

 . (27)

The equalities in (26) and (27) mean that the moving fra-
me contains an open set of points (Xα = Xβ) where accel-
erations on the two Riemann paths (c2) and (S ′) are equal.
For (26) and (27) to hold a condition is imposed. The con-
dition is that (26) and (27) must respect the linear translation
(Ln×n,<), where (n) is the dimension of a matrix. If (M) was
a (2 × 2) matrix , then the Jacobian of (M) would be equal to
1, ([M] = 1). This implies that the tangent bundle forms an
isomorphic group to (<1). Matrix (M) is given at the top of
the next page. [M] is given by (28) below:

[M] =
∂

∂Xα

(
∂Xα

∂xτ′
×

(
∂HXα

∂z′τ
− ∂HXα

∂x′τ

))
×

×

−
∂

∂Xβ


∂t′

∂t
× 1√

1 − v2
x′′
c2





− ∂

∂Xα

(
∂tηc2

∂tν
× 1

)
×

−
∂

∂Xβ


∂Xβ

∂x′′
× 1√

1 − v2
x′′
c2




= 1.

(28)
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Event point Earth and the Tangent vector 

Fig. 6: Tangent vector at the event point earth.

M =



∂

∂Xα

(
∂Xα

∂xτ′
×

(
∂HXα

∂z′τ
− ∂HXα

∂x′τ

))
∂

∂Xα

(
∂tηc2

∂tν
× 1

)

− ∂

∂Xβ


∂Xβ

∂x′′
× 1√

1 − v2
x′′
c2

 − ∂

∂Xβ


∂t′

∂t
× 1√

1 − v2
x′′
c2





(M) is the representation of (<1) in the (2 × 2) matrix form,
thus is an invertible linear transformation of the tangent bun-
dle. Given that the Riemann path is of constant curvature,
then the implication is that the tangent bundle is invariant with
respect to space-time. This condition would give the point on
the (S c2 ) path that touches the (S ′) Riemann path. Therefore,
it traces out the movement of the event point earth.

4 Conclusion

In this paper a new methodology is introduced that gives a
mathematical approach to finding other exactly similar earth
like planets. The mathematical model is based on finding
what is called “space highways” or “Riemann paths”. The
characteristic of these highways is that they are found in the
dark regions or non-deformed by gravitational forces regions
of space, where there are no stars, or black holes, or planets.
Riemann paths are considered as paths of constant curvature.
Space highways are modelled as ellipsoidal forms with coef-
ficients as columns of a gravitational tensor.

It is assumed that the coordinates of the sun are (0, 0, 0, 0),
meaning that the sun is considered to be the first solar system
of its kind. This assumption is justified, since there is no
evidence to the contrary to this day.

Space highways or Riemann paths are parallel to each
other if they are in the same direction. The location of the
event point earth (or exactly similar earth type planet) is whe-
re a Riemann path or space highway intersects at points of
constant curvature with another space highway coming from
an opposite direction. The movement of the event point earth
is traced out where the two Riemann paths share the same
tangent bundle. It is hoped that the search methodology in-
troduced in this paper opens up a new possibility of finding
planets that harbor life as we know it.
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Based on an analysis of classical views stating that a charged particle creates certain
magnetic field around its trajectory, we draw a conclusion about possible polarization
of target nuclei within the magnetic field of approaching charged particle.

1 Introduction

While studying of scattering of electrons and neutrons by nu-
clei Mott [1] and J. Schwinger [2] suggested the mechanism
of interaction of the scattering particle’s magnetic moment
with Coulomb field of a nucleus. Such scattering has been
known as Mott-Schwinger interaction. Polarization of scat-
tered particles is considered within the framework of this in-
teraction [3].

In the present study, the interaction of the magnetic field
of the scattering charged particles with the magnetic moment
of nuclei is investigated.

It was demonstrated earlier that within the framework of
this interaction the nucleus is also polarized. Spin of the nu-
cleus interacting with the fast-moving (primary) charged par-
ticle orient itself in the plane perpendicular to the direction of
the primary particle’s momentum.

2 Magnetic field of the charged particle

The charged particle moving with the velocity v induces mag-
netic field H wrapped around its path. H depends on the dis-
tance from the charged particle as follows [4]:

H =
e v sin θ

r2 , (1)

where e is the charge of the scattered particle, r is the distance
from the particle, and θ is the angle between the direction of
the particle’s velocity and r. Using this expression, one can
calculate the intensity of the magnetic field H as a function of
r and the speed of the particle with β ∼ 1. It is assumed that
laws of electromagnetism apply for small distances down to
10−13 cm. The calculations are presented in Table 1.

The numbers in the Table 1 indicate that pretty strong
fields still not achieved by any experimental instrument. As
it is known the magnetic field of a single charged particle has
rotational characteristics.

3 Interaction of the magnetic field of the charged parti-
cle with the magnetic field of the nucleus

Magnetic charge of the scattering particle functions as an ex-
ternal magnetic field in respect to the nucleus. However, spe-
cific characteristic of the rotational magnetic field must be
accounted for. Magnetic intensity lines are in the plane that is
perpendicular to the direction of the particle’s velocity. At the
same time the vector of the magnetic field H at any arbitrary

point on that plane at the distance r from the path of the parti-
cle is tangential to the circle of the radius r, and the direction
of H is determined by the right-hand screw rule.

Let’s consider that the nucleus is not exactly in the cen-
ter of such a circle, but instead at some distance r from it.
One can estimate the energy of interaction of the magnetic
moment of the nucleus, µ, and the field H at distance r:

U = µH . (2)

One has to take into consideration that magnetic moment acts
like a top, and, in non-relativistic case, precession of the nu-
cleus is simple Larmor precession. Relativistic case was de-
scribed by Bargman et al [5].

Following Bargman, one can consider the case when the
angle between the spin of the nucleus and magnetic field H is
close to π

2 . The spin will start precessing around the magnetic
field H with the frequency

Ω = ωL
(
g

2
– 1
)
, (3)

where ωL = e
mγ H is the frequency of Larmor precession, g is

gyromagnetic ratio, and γ = (1–β2)–2. It follows that

Ω =
eH
mγ

(
g

2
− 1
)
. (4)

As Ω can be expressed as Ω = 2π
t and for those nuclei whose

spin satisfies the condition of g
2 , 1 the spin of the target nu-

cleus will precess in the magnetic field of the incoming par-
ticle. Forced polarization appears while turning the direction
of the spin by π

2 .
Time necessary for the turn is determined by

t =
mπγ
eH

(g – 2) , (5)

where m is the mass of the nucleus. For γ = 10, m = 50
a.m.u., we have (g – 2) ∼ 1, and µ = 1 (nuclear magneton).
Other examples in Table 2 demonstrate some interesting faces
of the interaction.

Figures in Table 2 demonstrate that during the interaction
of a fast moving charged particle with a nucleus (at r ∼ 10–12

cm) the orientation of the spin of the target nucleus takes as
little time as ∼10–26 seconds. During this time interval the fast
moving charged particle covers only 3×10–16 cm. This allows
drawing a conclusion that right at the beginning of the inter-
action the nucleus target has time to orient its spin and further
interaction takes place with the already polarized nucleus.
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r, cm 10−13 10−12 10−11 10−10 10−9 10−8

H, Ersted 4.8 × 1016 4.8 × 1014 4.8 × 1012 4.8 × 1010 4.8 × 108 4.8 × 106

Table 1: The magnetic field intensity H as a function of r and the speed of the particle with β ∼ 1.

r, cm 10–13 10–12 10–11 10–10 10–9 10–8

T , sec 10–28 10–26 10–24 10–22 10–20 10–18

l = ts, cm 3 × 10–18 3 × 10–16 3 × 10–14 3 × 10–12 3 × 10–10 3 × 10–8

U = µH, eV 1.5 × 105 1.5 × 103 15 0.15 1.5 × 10–3 1.5 × 10–5

Table 2: During the interaction of a fast moving charged particle with a nucleus (at r ∼ 10–12 cm), the orientation of the spin of the target
nucleus takes as little time as ∼ 10–26 seconds.

4 Evaluation of energy required to change orientation of
the nuclear spin within the external magnetic field

In known experiments of Dr. Wu et al [6], Co-60 nuclei were
polarized at T ∼ 0.003 K and the parity conservation was
tested. Low temperatures were achieved by adiabatic demag-
netization of Cerous Magnesium Nitrate. The energy of the
effect can be estimated to be < 2.5 eV. Energy of the inter-
action of Co-60 nucleus magnetic moment with the outside
magnetic field of a few hundred oersteds is negligible.

Therefore, the condition µH � κ T is satisfied entirely
(see Table 2): µH ∼ 103, κ T ∼ 10−2.
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A natural behavior is used to characterize by differential equation established on hu-

man observations, which is assumed to be on one particle or one field complied with

reproducibility. However, the multilateral property of a particle P and the mathematical

consistence determine that such an understanding is only local, not the whole reality

on P, which leads to a central thesis for knowing the nature, i.e. how to establish a

physical equation with a proper interpretation on a thing. As it is well-known, a thing

consists of parts. Reviewing on observations, we classify them into two categories, i.e.

out-observation and in-observation for discussion. The former is such an observation

that the observer is out of the particle or the field P, which is in fact a macroscopic

observation and its dynamic equation characterizes the coherent behavior of all parts in

P, but the later is asked into the particle or the field by arranging observers simultane-

ously on different subparticles or subfields in P and respectively establishing physical

equations, which are contradictory and given up in classical because there are not ap-

plicable conclusions on contradictory systems in mathematics. However, the existence

naturally implies the necessity of the nature. Applying a combinatorial notion, i.e. GL-

solutions on non-solvable equations, a new notion for holding on the reality of nature

is suggested in this paper, which makes it clear that the knowing on the nature by solv-

able equations is macro, only holding on these coherent behaviors of particles, but the

non-coherent naturally induces non-solvable equations, which implies that the knowing

by GL-solution of equations is the effective, includes the classical characterizing as a

special case by solvable equations, i.e. mathematical combinatorics.

1 Introduction

An observation on a physical phenomenon, or characters of

a thing in the nature is the received information via hearing,

sight, smell, taste or touch, i.e. sensory organs of the observer

himself, little by little for human beings fulfilled with the re-

producibility. However, it is difficult to hold the true face of

a thing for human beings because he is analogous to a blind

man in “the blind men with an elephant”, a famous fable for

knowing the nature. For example, let µ1, µ2, · · · , µn be all ob-

served and νi, i ≥ 1 unobserved characters on a particle P at

time t. Then, P should be understood by

P =


n⋃

i=1

{µi}

⋃

⋃

k≥1

{νk}
 (1.1)

in logic with an approximation P◦ =
n⋃

i=1

{µi} for P at time t. All

of them are nothing else but Smarandache multispaces ([17]).

Thus, P ≈ P◦ is only an approximation for its true face of P,

and it will never be ended in this way for knowing P as Lao

Zi claimed “Name named is not the eternal Name” in the first

chapter of his TAO TEH KING ([3]), a famous Chinese book.

A physical phenomenon of particle P is usually charac-

terized by differential equation

F
(
t, x1, x2, x3, ψt, ψx1

, ψx2
, · · · , ψx1 x2

, · · ·) = 0 (1.2)

in physics established on observed characters of µ1, µ2, · · · , µn

for its state functionψ(t, x) inR4. Usually, these physical phe-

nomenons of a thing is complex, and hybrid with other things.

Is the reality of particle P all solutions of (1.2) in general?

Certainly not because (1.2) only characterizes the behavior

of P on some characters of µ1, µ2, · · · , µn at time t abstractly,

not the whole in philosophy. For example, the behavior of a

particle is characterized by the Schrödinger equation

i~
∂ψ

∂t
= − ~

2

2m
∇2ψ + Uψ (1.3)

in quantum mechanics but observation shows it in two or

more possible states of being, i.e. superposition. We can not

even say which solution of the Schrödinger equation (1.3) is

the particle because each solution is only for one determined

state. Even so, the understanding of all things is inexhaustible

by (1.1).

Furthermore, can we conclude (1.2) is absolutely right for

a particle P? Certainly not also because the dynamic equa-

tion (1.2) is always established with an additional assump-

tion, i.e. the geometry on a particle P is a point in classical

mechanics or a field in quantum mechanics and dependent on

the observer is out or in the particle. For example, a water

molecule H2O consists of 2 Hydrogen atoms and 1 Oxygen

atom such as those shown in Fig. 1. If an observer receives in-

formation on the behaviors of Hydrogen or Oxygen atom but

stands out of the water molecule H2O by viewing it a geo-

metrical point, then such an observation is an out-observation

because it only receives such coherent information on atoms

H and O with the water molecule H2O.

276 Linfan Mao. A Review on Natural Reality with Physical Equations



Issue 3 (July) PROGRESS IN PHYSICS Volume 11 (2015)

Fig. 1

If an observer is out the water molecule H2O, his all ob-

servations on the Hydrogen atom H and Oxygen atom O are

the same, but if he enters the interior of the molecule, he will

view a different sceneries for atom H and atom O, which are

respectively called out-observation and in-observation, and

establishes 1 or 3 dynamic equations on the water molecule

H2O.

The main purpose of this paper is to clarify the natural

reality of a particle with that of differential equations, and

conclude that a solvable one characterizes only the reality

of elementary particles but non-solvable system of differen-

tial equations essentially describe particles, such as those of

baryons or mesons in the nature.

For terminologies and notations not mentioned here, we

follow references [1] for mechanics, [5] for combinatorial ge-

ometry, [15] for elementary particles, and [17] for Smaran-

dache systems and multispaces, and all phenomenons dis-

cussed in this paper are assumed to be true in the nature.

2 Out-observations

An out-observation observes on the external, i.e. these macro

but not the internal behaviors of a particle P by human senses

or via instrumental, includes the size, magnitudes or eigen-

values of states, ..., etc.

Certainly, the out-observation is the fundamental for qua-

ntitative research on matters of human beings. Usually, a dy-

namic equation (1.2) on a particle P is established by the prin-

ciple of stationary action δS = 0 with

S =

t2∫

t1

dt L (q(t), q̇(t)) (2.1)

in classical mechanics, where q(t), q̇(t) are respectively the

generalized coordinates, the velocities and L (q(t), q̇(t)) the

Lagrange function on the particle, and

S =

∫ τ1

τ2

d4xL(φ, ∂µψ) (2.2)

in field theory, where ψ is the state function and L the La-

grangian density with τ1, τ2 the limiting surfaces of integra-

tion by viewed P an independent system of dynamics or a

field. The principle of stationary action δS = 0 respectively

induced the Euler-Lagrange equations

∂L

∂q
− d

dt

∂L

∂q̇
= 0 and

∂L
∂ψ
− ∂µ

∂L
∂(∂µψ)

= 0 (2.3)

in classical mechanics and field theory, which enables one to

find the dynamic equations of particles by proper choice of L

or L. For examples, let

LS =
i~

2

(
∂ψ

∂t
ψ − ∂ψ

∂t
ψ

)
− 1

2

(
~

2

2m
|∇ψ|2 + V |ψ|2

)
,

LD = ψ

(
iγµ∂µ −

mc

~

)
ψ,

LKG =
1

2

(
∂µψ∂

µψ −
(
mc

~

)2

ψ2

)
.

Then we respectively get the Schrödinger equation (1.3) or

the Dirac equation

(
iγµ∂µ −

mc

~

)
ψ(t, x) = 0 (2.4)

for a free fermion ψ(t, x) and the Klein-Gordon equation

(
1

c2

∂2

∂t2
− ∇2

)
ψ(x, t) +

(
mc

~

)2

ψ(x, t) = 0 (2.5)

for a free boson ψ(t, x) hold in relativistic forms by (2.3),

where ~ = 6.582 × 10−22MeV s is the Planck constant, c is

the speed of light,

∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
, ∇2 =

∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
,

∂µ =

(
1

c

∂

∂t
,
∂

∂x1

,
∂

∂x2

,
∂

∂x3

)
,

∂µ =

(
1

c

∂

∂t
,− ∂

∂x1

,− ∂

∂x2

,− ∂

∂x3

)

and γµ =
(
γ0, γ1, γ2, γ3

)
with

γ0 =

(
I2×2 0

0 −I2×2

)
, γi =

(
0 σi

−σi 0

)

with the usual Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
.

Furthermore, let L = √−gR, where R = gµνRµν, the Ricci

scalar curvature on the gravitational field. The equation (2.3)

then induces the vacuum Einstein gravitational field equation

Rµν −
1

2
gµνR = 0. (2.6)

Linfan Mao. A Review on Natural Reality with Physical Equations 277



Volume 11 (2015) PROGRESS IN PHYSICS Issue 3 (July)

Usually, the equation established on the out-observations

only characterizes those of coherent behaviors of all parts in

a particle P. For example, a water molecule H2O obeys the

Schrödinger equation (1.3), we assume its Hydrogen atom H

and oxygen atom O also obey the Schrödinger equation (1.3)

as a matter of course. However, the divisibility of matter ini-

tiates human beings to search elementary constituting cells

of matter, i.e. elementary particles such as those of quarks,

leptons with interaction quanta including photons and other

particles of mediated interactions, also with those of their an-

tiparticles at present ([14]), and unmatters between a matter

and its antimatter which is partially consisted of matter but

others antimatter ([8-19]). For example, a baryon is predomi-

nantly formed from three quarks, and a meson is mainly com-

posed of a quark and an antiquark in the models of Sakata,

or Gell-Mann and Ne’eman on hadron and meson, such as

those shown in Fig. 2, where, qi ∈ {u, d, c, s, t, b} denotes a

quark for i = 1, 2, 3 and q2 ∈
{
u, d, c, s, t, b

}
, an antiquark.

But a free quark was never found in experiments. We can

not even conclude the Schrödinger equation (1.3) is the right

equation (1.2) for quarks because it is established on an inde-

pendent particle, can not be divided again in mathematics.

q1

q2 q3

q1 q2

....................................

...................

.................................

Baryon Meson

Fig. 2

Then, why is it believed without a shadow of doubt that

the dynamical equations of elementary particles such as those

of quarks, leptons with interaction quanta are (1.3) in phys-

ics? It is because that all our observations come from a macro

viewpoint, the human beings, not the particle itself, which

rationally leads to H. Everett’s multiverse interpretation on

the superposition by letting parallel equations for the wave

functions ψ(t, x) on positions of a particle in 1957 ([2]). We

only hold coherent behaviors of elementary particles, such as

those of quarks, leptons with interaction quanta and their an-

tiparticles by (1.3), not the individual, and it is only an equa-

tion on those of particles viewed abstractly to be a geomet-

rical point or an independent field from a macroscopic point,

which leads physicists to assume the internal structures me-

chanically for hold the behaviors of particles such as those

shown in Fig. 2 on hadrons. However, such an assumption

is a little ambiguous in logic, i.e. we can not even conclude

which is the point or the independent field, the hadron or its

subparticle, the quark.

In fact, a point is non-divisible in geometry. Even so, the

assumption on the internal structure of particles by physicists

was mathematically verified by extending Banach spaces to

extended Banach spaces on topological graphs
−→
G in [12]:

Let (V ;+, ·) be a Banach space over a field F and
−→
G a

strong-connected topological graph with vertex set V and arc

set X. A vector labeling
−→
G

L
on
−→
G is a 1−1 mapping L :

−→
G →

V such that L : (u, v)→ L(u, v) ∈ V for ∀(u, v) ∈ X
(−→
G

)
and

it is a
−→
G-flow if it holds with

L (u, v) = −L (v, u) and
∑

u∈NG (v)

L (vu) = 0

for ∀(u, v) ∈ X
(−→
G

)
, ∀v ∈ V(

−→
G), where 0 is the zero-vector in

V .

For
−→
G-flows

−→
G

L
,
−→
G

L1

,
−→
G

L2

on a topological graph
−→
G and

ξ ∈ F a scalar, it is clear that
−→
G

L1

+
−→
G

L2

and ξ · −→G
L

are also
−→
G-flows, which implies that all

−→
G-flows on

−→
G form a linear

space over F with unit O under operations + and ·, denoted

by
−→
G

V

, where O is such a
−→
G-flow with vector 0 on (u, v) for

∀(u, v) ∈ X
(−→
G

)
. Then, it was shown that

−→
G

V

is a Banach

space, and furthermore a Hilbert space if introduce

∥∥∥∥∥
−→
G

L
∥∥∥∥∥ =

∑

(u,v)∈X
(−→
G

)
‖L(u, v)‖ ,

〈−→
G

L1

,
−→
G

L2
〉
=

∑

(u,v)∈X
(−→
G

)
〈L1(u, v), L2(u, v)〉

for ∀−→G
L
,
−→
G

L1

,
−→
G

L2 ∈ −→G
V

, where ‖L(u, v)‖ is the norm of

L(u, v) and 〈·, ·〉 the inner product in V if it is an inner space.

The following result generalizes the representation theorem

of Fréchet and Riesz on linear continuous functionals on
−→
G-

flow space
−→
G

V

, which enables us to find
−→
G-flow solutions on

linear equations (1.2).

Theorem 2.1([12]) Let T :
−→
G

V

→ C be a linear continuous

functional. Then there is a unique
−→
G

L̂
∈ −→G

V

such that

T

(−→
G

L
)
=

〈
−→
G

L
,
−→
G

L̂
〉

for ∀−→G
L
∈ −→G

V

.

For non-linear equations (1.2), we can also get
−→
G-flow

solutions on them if
−→
G can be decomposed into circuits.

Theorem 2.2([12]) If the topological graph
−→
G is strong-

connected with circuit decomposition

−→
G =

l⋃

i=1

−→
C i
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such that L(uv) = Li (x) for ∀(u, v) ∈ X
(−→
C i

)
, 1 ≤ i ≤ l and the

Cauchy problem

{
Fi

(
x, u, ux1

, · · · , uxn
, ux1 x2

, · · ·) = 0

u|x0
= Li(x)

is solvable in a Hilbert space V on domain ∆ ⊂ Rn for inte-

gers 1 ≤ i ≤ l, then the Cauchy problem


Fi

(
x, X, Xx1

, · · · , Xxn
, Xx1 x2

, · · ·) = 0

X|x0
=
−→
G

L

such that L (uv) = Li(x) for ∀(u, v) ∈ X
(−→
C i

)
is solvable for

X ∈ −→G
V

.

Theorems 2.1−2.2 conclude the existence of
−→
G-flow solu-

tion on linear or non-linear differential equations for a topo-

logical graph
−→
G, such as those of the Schrödinger equation

(1.3), Dirac equation (2.4) and the Klein-Gordon equation

(2.5), which all implies the rightness of physicists assuming

the internal structures for hold the behaviors of particles be-

cause there are infinite many such graphs
−→
G satisfying condi-

tions of Theorem 2.1− 2.2, particularly, the bouquet
−→
B

Lψ

N , the

dipoles
−−→
D⊥

Lψ

0,2N,0 for elementary particles in [13].

3 In-observations

An in-observation observes on the internal behaviors of a par-

ticle, particularly, a composed particle P. Let P be composed

by particles P1, P2, · · · , Pm. Different from out-observation

from a macro viewing, in-observation requires the observer

holding the respective behaviors of particles P1, P2, · · · , Pm in

P, for instance an observer enters a water molecule H2O re-

ceiving information on the Hydrogen or Oxygen atoms H,O.

For such an observation, there are 2 observing ways:

(1) there is an apparatus such that an observer can simul-

taneously observe behaviors of particles P1, P2, · · · , Pm, i.e.

P1, P2, · · · , Pm can be observed independently as particles at

the same time for the observer;

(2) there are m observers O1,O2, · · · ,Om simultaneously

observe particles P1, P2, · · · , Pm, i.e. the observer Oi only

observes the behavior of particle Pi for 1 ≤ i ≤ m, called

parallel observing, such as those shown in Fig. 3 for the water

molecule H2O with m = 3.

✶

❄

❨

❄

■❃

O1

P1

O2

P2

O3

P3

Fig. 3

Certainly, each of these observing views a particle in P to

be an independent particle, which enables us to establish the

dynamic equation (1.2) by Euler-Lagrange equation (2.3) for

Pi, 1 ≤ i ≤ m, respectively, and then we can apply the system

of differential equations



∂L1

∂q
− d

dt

∂L1

∂q̇
= 0

∂L2

∂q
− d

dt

∂L2

∂q̇
= 0

· · ·
∂Lm

∂q
− d

dt

∂Lm

∂q̇
= 0

q(t0) = q0, q̇(t0) = q̇0

(3.1)

for characterizing particle P in classical mechanics, or



∂L1

∂ψ
− ∂µ

∂L1

∂(∂µψ)
= 0

∂L2

∂ψ
− ∂µ

∂L2

∂(∂µψ)
= 0

· · ·
∂Lm

∂ψ
− ∂µ

∂Lm

∂(∂µψ)
= 0

ψ(t0) = ψ0

(3.2)

for characterizing particle P in field theory, where the ith equ-

ation is the dynamic equation of particle Pi with initial data

q0, q̇0 or ψ0.

We discuss the solvability of systems (3.1) and (3.2). Let

S qi
=

{
(xi, yi, zi)(qi, t) ∈ R3

∣∣∣∣∣
∂L1

∂qi

− d

dt

∂L1

∂q̇i

= 0,

qi(t0) = q0, q̇i(t0) = q̇0 }

for integers 1 ≤ i ≤ m. Then, the system (3.1) of equations is

solvable if and only if

D(q) =

m⋂

i=1

S qi
, ∅. (3.3)

Otherwise, the system (3.1) is non-solvable. For example, let

particles P1, P2 of masses M,m be hanged on a fixed pulley,

such as those shown in Fig. 4.

Then, the dynamic equations on P1 and P2 are respec-

tively

P1 : ẍ = g, x(t0) = x0 and P2 : ddotx = −g, x(t0) = x0

but the system

{
ẍ = g

ẍ = −g, x(t0) = x0

is contradictory, i.e. non-solvable.
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Similarly, let ψi(x, t) be the state function of particle Pi,

i.e. the solution of



∂Li

∂ψi

− ∂µ
∂Li

∂(∂µψi)
= 0

ψ(t0) = ψ0.

Then, the system (3.2) is solvable if and only if there is a state

function ψ(x, t) on P hold with each equation of system (3.2),

i.e.

ψ(x, t) = ψ1(x, t) = · · · = ψm(x, t), x ∈ R3,

which is impossible because if all state functions ψi(x, t), 1 ≤
i ≤ m are the same, the particles P1, P2, · · · , Pm are nothing

else but just one particle. Whence, the system (3.2) is non-

solvable if m ≥ 2, which implies we can not characterize

the behavior of particle P by classical solutions of differential

equations.

m

M
✻

❄

P1

P2

g

g

Fig. 4

For example, if the state function ψO(x, t) = ψH1
(x, t) =

ψH2
(x, t) in the water molecule H2O for x ∈ R3 hold with



−i~
∂ψO

∂t
=
~

2

2mO

∇2ψO − V(x)ψO

−i~
∂ψH1

∂t
=
~

2

2mH1

∇2ψH1
− V(x)ψH1

−i~
∂ψH2

∂t
=
~

2

2mH2

∇2ψH2
− V(x)ψH2

Then ψO(x, t) = ψH1
(x, t) = ψH2

(x, t) concludes that

AOe−
i
~

(EO t−pO x) = AH1
e−

i
~
(EH1

t−pH1
x) = AH2

e−
i
~
(EH2

t−pH2
x)

for ∀x ∈ R3 and t ∈ R, which implies that

AO = AH1
= AH2

, EO = EH1
= EH2

and pO = pH1
= pH2

,

a contradiction.

Notice that each equation in systems (3.1) and (3.2) is

solvable but the system itself is non-solvable in general, and

they are real in the nature. Even if the system (3.1) holds

with condition (3.3), i.e. it is solvable, we can not apply the

solution of (3.1) to characterize the behavior of particle P be-

cause such a solution only describes the coherent behavior of

particles P1, P2, · · · , Pm. Thus, we can not characterize the

behavior of particle P by the solvability of systems (3.1) or

(3.2). We should search new method to characterize systems

(3.1) or (3.2).

Philosophically, the formula (1.1) is the understanding of

particle P and all of these particles P1, P2, · · · , Pm are inher-

ently related, not isolated, which implies that P naturally in-

herits a topological structure GL[P] in space of the nature,

which is a vertex-edge labeled topological graph determined

by:

V
(
GL [P]

)
= {P1, P2, · · · , Pm},

E
(
GL [P]

)
= {(Pi, P j)|Pi

⋂
P j , ∅, 1 ≤ i , j ≤ m}

with labeling

L : Pi → L(Pi) = Pi and

L : (Pi, P j)→ L(Pi, P j) = Pi

⋂
P j

for integers 1 ≤ i , j ≤ m. For example, the topological

graphs GL[P] of water molecule H2O, meson and baryon in

the quark model of Gell-Mann and Ne’eman are respectively

shown in Fig. 5,

H H

O

H ∩ O H ∩ O

H2O

q1

q2q3

q1 ∩ q3 q1 ∩ q2

q2 ∩ q3

Baryon

q q
′q ∩ q′

Meson

Fig. 5

where O,H, q, q′ and qi, 1 ≤ i ≤ 3 obey the Dirac equation

but O ∩ H, q ∩ q′, qk ∩ ql, 1 ≤ k, l ≤ 3 comply with the Klein-

Gordon equation.

Such a vertex-edge labeled topological graph GL[P] is

called GL-solution of systems (3.1)–(3.2). Clearly, the global

behaviors of particle P are determined by particles P1, P2, · · · ,
Pm. We can hold them on GL-solution of systems (3.1) or

(3.2). For example, let u[v] be the solution of equation at ver-

tex v ∈ V
(
GL[P]

)
with initial value u

[v]

0
and GL0 [P] the ini-

tial GL-solution, i.e. labeled with u
[v]

0
at vertex v. Then, a

GL-solution of systems (3.1) or (3.2) is sum-stable if for any

number ε > 0 there exists δv > 0, v ∈ V(GL0 [P]) such that

each GL′ -solution with

∣∣∣u′[v]
0
− u

[v]

0

∣∣∣ < δv, ∀v ∈ V(GL0 [P])

exists for all t ≥ 0 and with the inequality

∣∣∣∣∣∣∣∣

∑

v∈V(GL′ [P])

u′[v] −
∑

v∈V(GL [P])

u[v]

∣∣∣∣∣∣∣∣
< ε
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holds, denoted by GL[P]
Σ∼ GL0 [P]. Furthermore, if there

exists a number βv > 0 for ∀v ∈ V(GL0 [P]) such that every

GL′ [P]-solution with

∣∣∣u′[v]
0
− u

[v]

0

∣∣∣ < βv, ∀v ∈ V(GL0 [P])

satisfies

lim
t→∞

∣∣∣∣∣∣∣∣

∑

v∈V(GL′ [P])

u′[v] −
∑

v∈V(GL [P])

u[v]

∣∣∣∣∣∣∣∣
= 0,

then the GL[P]-solution is called asymptotically stable, de-

noted by GL[P]
Σ→ GL0 [P]. Similarly, the energy integral of

GL-solution is determined by

E(GL[P]) =
∑

G≤GL0 [P]

(−1)|G|+1

∫

OG

(
∂uG

∂t

)2

dx1dx2 · · ·dxn−1,

where uG is the C2 solution of system

∂u

∂t
= Hv(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u
[v]

0
(x1, x2, · · · , xn−1)


v ∈ V(G)

and OG =
⋂

v∈V(G)

Ov with Ov ⊂ Rn determined by the vth equa-

tion 

∂u

∂t
= Hv(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u
[v]

0
(x1, x2, · · · , xn−1).

All of these global properties were extensively discussed

in [7–11], which provides us to hold behaviors of a composed

particle P by its constitutions P1, P2, · · · , Pm.

4 Reality

Generally, the reality is the state characters (1.1) of existed,

existing or will exist things whether or not they are observable

or comprehensible by human beings, and the observing objec-

tive is on the state of particles, which then enables us to find

the reality of a particle. However, an observation is dependent

on the perception of the observer by his organs or through by

instruments at the observing time, which concludes that to

hold the reality of a particle P can be only little by little, and

determines local reality of P from a macro observation at a

time t, no matter what P is, a macro or micro thing. Why is

this happening because we always observe by one observer

on one particle assumed to be a point in space, and then es-

tablish a solvable equation (1.2) on coherent, not individual

behaviors of P. Otherwise, we get non-solvable equations on

P contradicts to the law of contradiction, the foundation of

classical mathematics which results in discussions following:

4.1 States of particles are multiverse

A particle P understood by formula (1.1) is in fact a multi-

verse consisting of known characters µ1, µ2, · · · , µn and un-

known characters νk, k ≥ 1, i.e. different characters charac-

terize different states of particle P. This fact also implies that

the multiverse exist everywhere if we understand a particle P

with in-observation, not only those levels of I − IV of Max

Tegmark in [24]. In fact, the infinite divisibility of a matter

M in philosophy alludes nothing else but a multiverse ob-

served on M by its individual submatters. Thus, the nature of

a particle P is multiple in front of human beings, with unity

character appeared only in specified situations.

4.2 Reality only characterized by non-compatible sys-

tem

Although the dynamical equations (1.2) established on uni-

lateral characters are individually compatible but they must

be globally contradictory with these individual features un-

less all characters are the same one. It can not be avoided by

the nature of a particle P. Whence, the non-compatible sys-

tem, particularly, non-solvable systems consisting of solvable

differential equations are suitable tools for holding the real-

ity of particles P in the world, which also partially explains a

complaint of Einstein on mathematics, i.e. as far as the laws

of mathematics refer to reality, they are not certain; and as

far as they are certain, they do not refer to reality because the

multiple nature of all things.

4.3 Reality really needs mathematics on graph

As we know, there always exists a universal connection be-

tween things in a family in philosophy. Thus, a family F of

things naturally inherits a topological graph GL[F ] in space

and we therefore conclude that

F = GL[F ] (4.1)

in that space. Particularly, if all things in F are nothing else

but manifolds MT (x1, x2, x3; t) of particles P determined by

equation

fT (x1, x2, x3; t) = 0, T ∈ F (4.2)

in R3 × R, we get a geometrical figure
⋃

T∈F
MT (x1, x2, x3; t),

a combinatorial field ([6]) for F . Clearly, the graph GL[F ]

characterizes the behavior of F no matter whether the system

(4.2) is solvable or not. Calculation shows that the system

(4.2) of equations is non-solvable or not dependent on

⋂

T∈F
MT (x1, x2, x3; t) = ∅ or not.

Particularly, if
⋂

T∈F
MT (x1, x2, x3; t) = ∅, the system (4.2) is

non-solvable and we can not just characterize the behavior

of F by the solvability of system (4.2). We must turn the

contradictory system (4.2) to a compatible one, such as those
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shown in [10] and have to extend mathematical systems on

graph GL[F ] ([12]) for holding the reality of F .

Notice that there is a conjecture for developing mathe-

matics in [4] called CC conjecture which claims that any

mathematical science can be reconstructed from or turned

into combinatorization. Such a conjecture is in fact a com-

binatorial notion for developing mathematics on topological

graphs, i.e. finds the combinatorial structure to reconstruct or

generalize classical mathematics, or combines different math-

ematical sciences and establishes a new enveloping theory on

topological graphs for hold the reality of things F .

5 Conclusion

Reality of a thing is hold on observation with level depen-

dent on the observer standing out or in that thing, particu-

larly, a particle classified to out- or in-observation, or paral-

lel observing from a macro or micro view and characterized

by solvable or non-solvable differential equations, consistent

with the universality principle of contradiction in philosophy.

For holding on the reality of things, the out-observation is

basic but the in-observation is cardinal. Correspondingly, the

solvable equation is individual but the non-solvable equations

are universal. Accompanying with the establishment of com-

patible systems, we are also needed to characterize those of

contradictory systems, particularly, non-solvable differential

equations on particles and establish mathematics on topolog-

ical graphs, i.e. mathematical combinatorics, and only which

is the appropriate way for understanding the nature because

all things are in contradiction.
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LETTERS TO PROGRESS IN PHYSICS

Abraham I. Fet (1924–2007). In Memory of the 90th Anniversary

Abraham I. Fet (1924–2007) belonged to a particular “species

of human” that is becoming extinct today: he could be rather a

man of Renaissance in late Medieval Italy or Enlightenment

in France in the 18th century, or a bright representative of

intelligentsia in Russia of the 19th century.

A. Fet got his basic university education in mathematics

and submitted a brilliant candidate (PhD) thesis at Moscow

University being barely 24 years old. The mathematical re-

sults of his doctoral (DSc) thesis, presented later at the same

University, still remain unsurpassed. He mainly published pa-

pers in mathematics, but he was also enrolled to research in

physics that he started in collaboration with Yuriy B. Rumer,

the famous Russian theoretical physicist. The results of their

joint work were published in two co-authored books Theory

of Unitary Symmetry (1970) and Group Theory and Quan-

tum Fields (1977). Then there followed Symmetry Group of

Chemical Elements, a book written by Fet alone, which pre-

sented a new physical perspective of the System of Chemical

Elements and has become classics.

His research interests, however, were not limited to math-

ematics and physics. He remarkably explored many sciences

and humanities, among which biology, economics, history,

philosophy, sociology, psychology, and even literature, mu-

sic, and arts. Moreover, being an encyclopedic scientist, he

was not just an “erudite”: with his powerful intellect, he built

up a solid worldview from seemingly dispersed lines of

knowledge.

First and utmost, Abraham Fet was a thinker, and his

thinking was a blend of intellect, passion and concern. His

major concern was about the fate of Mankind; he felt himself

an active and responsible protagonist rather than being an ob-

server “heeding to good and evil with equanimity, knowing

neither pity nor ire”.

A. Fet thought a lot on the human society, on the bio-

logical and cultural nature of man, on religious beliefs and

ideals, and on the social mission of the intelligentsia, which

he saw primarily in enlightening. He summarized his ideas

in numerous essays and several books: Pythagoras and the

Ape (1987), Letters from Russia (1989–1991), Delusions of

Capitalism, or the Fatal Conceit of Professor Hayek (1996),

and finally Instinct and Social Behavior (2005). The latter be-

came his main work, where he investigated the history of cul-

ture in terms of ethology, with the aim to “reveal the impact of

the social instinct on the human society, to describe the con-

ditions frustrating its manifestations and to explain the effects

of various attempts to suppress this invincible instinct”. That

Abraham Ilych Fet

was his discovery and first study of a social instinct unique to

humans, which he called “the instinct of intraspecific solidar-

ity”. With comprehensive historic examples, he has convinc-

ingly demonstrated how the morals and love for our neigh-

bors originated from tribal solidarity within a minor kindred

group and how the mark of kinship spread progressively to

ever larger communities, as far as the entire mankind.

Two previously published books, together with a wealth

of unpublished manuscripts, are now coming to the public

with his Collected Works in seven volumes∗.

With his excellent command of seven European langua-

ges, Abraham Fet not only had an extremely broad range of

reading but also chose some important books and translated

them for his friends and broad public. It was especially valu-

able in the conditions of harsh censorship in the Soviet times,

when many books, for instance on psychology, were forbid-

den. Thus he translated Eric Berne, Erich Fromm, Karen Hor-

ney, Gregory Bateson, and many others. Being himself fasci-

nated with the works of Konrad Lorenz, Fet was the first to in-

troduce Lorenz’s main books to the Russian readers. Namely,

∗The publicaiton is just in Russian; an English volunteer translator is

wanted. Ask Ludmila Petrova aifet@academ.org, for detail.
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he translated Das sogennannte Böse (“The So-Called Evil”),

Die acht Todsünden der zivilisierten Menschheit (“Civilized

Man’s Eight Deadly Sins”), Die Rückseite des Spiegels

(“Behind the Mirror”), which were then published twice in

post-Soviet Russia.

Abraham Fet was an ardent opponent to tyranny. Al-

though being more a thinker than an active public person, he

signed the ”Letter of 46” in spring 1968 in defense of impris-

oned dissidents. That lost him his job, both at the research in-

stitute and the university, and left him unemployed for years,

to survive from occasional earns. Another reason of his dis-

missal, though, besides the very fact of signing the letter, was

rather his spirit of independence and straight speaking. He

called things the way he saw them, were they professional or

personal characteristics of his fellows, or intrigues of func-

tionaries or the privileges in science. A moral maximalist,

Abraham Fet despised those who “lived as the others do” and

called this lifestyle “the life of insects”.

Beginning with the mid-1970s, Fet closely followed the

events which took place in Poland. He perceived the revolt of

1980–1981 as the start of collapse of the so-called socialist

camp. His book The Polish Revolution written in the wake

of the events was anonymously published in 1985 in Mu-

nich and London. He not only provided deep review of the

Polish events but also disclosed their historic prerequisites,

demonstrated the outstanding role of the Polish intellectuals

and foretold the further historic paths of the country.

Making retrospective of Fet’s life and works, we can defi-

nitely put his name along with the most outstanding scientists

and thinkers of the 20th century. He was among those who

rarely get recognition during their lifetime. Rather than being

in line with the “spirit of epoch”, his ideas were against the

mainstream. However, these are the ideas that are worth the

most as they blaze truly trails to the science of the future and

appeal to the future Mankind. Let his memory live for ever!

A. V. Gladky, L. P. Petrova, R. G. Khlebopros
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Piñol M. A Model of Dust-like Spherically Symmetric Gravitational Collapse without

Event Horizon Formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331

Rossler O. E. The c-global Revival in Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340



Information for Authors and Subscribers

Progress in Physics has been created for publications on advanced studies in

theoretical and experimental physics, including related themes from mathe-

matics and astronomy. All submitted papers should be professional, in good

English, containing a brief review of a problem and obtained results.

All submissions should be designed in LATEX format using Progress in

Physics template. This template can be downloaded from Progress in Physics

home page http://www.ptep-online.com. Abstract and the necessary informa-

tion about author(s) should be included into the papers. To submit a paper,

mail the file(s) to the Editor-in-Chief.

All submitted papers should be as brief as possible. Short articles are

preferable. Large papers can also be considered in exceptional cases. Letters

related to the publications in the journal or to the events among the science

community can be applied to the section Letters to Progress in Physics.

All that has been accepted for the online issue of Progress in Physics is

printed in the paper version of the journal. To order printed issues, contact

the Editors.

This journal is non-commercial, academic edition. It is printed from pri-

vate donations. (Look for the current author fee in the online version of the

journal.)



Issue 4 (October) PROGRESS IN PHYSICS Volume 11 (2015)

Dislocations in the Spacetime Continuum:
Framework for Quantum Physics

Pierre A. Millette
PierreAMillette@alumni.uottawa.ca, Ottawa, Canada

This paper provides a framework for the physical description of physical processes at
the quantum level based on dislocations in the spacetime continuum within STCED
(Spacetime Continuum Elastodynamics). In this framework, photon and particle self-
energies and interactions are mediated by the strain energy density of the dislocations,
replacing the role played by virtual particles in QED. We postulate that the spacetime
continuum has a granularity characterized by a length b0 corresponding to the smallest
STC elementary Burgers dislocation-displacement vector. Screw dislocations corre-
sponding to transverse displacements are identified with photons, and edge dislocations
corresponding to longitudinal displacements are identified with particles. Mixed dislo-
cations give rise to wave-particle duality. The strain energy density of the dislocations
are calculated and proposed to explain the QED problem of mass renormalization.

1 Introduction

In a previous paper [1], the deformable medium properties
of the spacetime continuum (STC) led us to expect dislo-
cations, disclinations and other defects to be present in the
STC. The effects of such defects would be expected to ma-
nifest themselves mostly at the microscopic level. In this pa-
per, we present a framework to show that dislocations in the
spacetime continuum are the basis of quantum physics. This
paper lays the framework to develop a theory of the physi-
cal processes that underlie Quantum Electrodynamics (QED).
The theory does not result in the same formalism as QED,
but rather results in an alternative formulation that provides
a physical description of physical processes at the quantum
level. This framework allows the theory to be fleshed out in
subsequent investigations.

1.1 Elastodynamics of the Spacetime Continuum

As shown in a previous paper [1], General Relativity leads us
to consider the spacetime continuum as a deformable contin-
uum, which allows for the application of continuum mechan-
ical methods and results to the analysis of its deformations.
The Elastodynamics of the Spacetime Continuum (STCED)
[1–7] is based on analyzing the spacetime continuum within
a continuum mechanical and general relativistic framework.

The combination of all spacetime continuum deforma-
tions results in the geometry of the STC. The geometry of
the spacetime continuum of General Relativity resulting from
the energy-momentum stress tensor can thus be seen to be a
representation of the deformation of the spacetime continuum
resulting from the strains generated by the energy-momentum
stress tensor.

As shown in [1], for an isotropic and homogeneous space-
time continuum, the STC is characterized by the stress-strain
relation

2µ̄0ε
µν + λ̄0g

µνε = T µν (1)

where T µν is the energy-momentum stress tensor, εµν is the
resulting strain tensor, and

ε = εαα (2)

is the trace of the strain tensor obtained by contraction. The
volume dilatation ε is defined as the change in volume per
original volume [8, see pp. 149–152] and is an invariant of
the strain tensor. λ̄0 and µ̄0 are the Lamé elastic constants of
the spacetime continuum: µ̄0 is the shear modulus and λ̄0 is
expressed in terms of κ̄0, the bulk modulus:

λ̄0 = κ̄0 − µ̄0/2 (3)

in a four-dimensional continuum.
As shown in [1], energy propagates in the spacetime con-

tinuum as wave-like deformations which can be decomposed
into dilatations and distortions. Dilatations involve an invari-
ant change in volume of the spacetime continuum which is
the source of the associated rest-mass energy density of the
deformation. On the other hand, distortions correspond to a
change of shape of the spacetime continuum without a change
in volume and are thus massless. Thus deformations propa-
gate in the spacetime continuum by longitudinal (dilatation)
and transverse (distortion) wave displacements.

This provides a natural explanation for wave-particle du-
ality, with the transverse mode corresponding to the wave
aspects of the deformation and the longitudinal mode corre-
sponding to the particle aspects of the deformation [7]. The
rest-mass energy density of the longitudinal mode is given
by [1, see Eq.(32)]

ρc2 = 4κ̄0ε (4)

where ρ is the rest-mass density, c is the speed of light, κ̄0 is
the bulk modulus of the STC (the resistance of the spacetime
continuum to dilatations), and ε is the volume dilatation.

This equation demonstrates that rest-mass energy density
arises from the volume dilatation of the spacetime continuum.
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The rest-mass energy is equivalent to the energy required to
dilate the volume of the spacetime continuum. It is a measure
of the energy stored in the spacetime continuum as mass. The
volume dilatation is an invariant, as is the rest-mass energy
density.

This is an important result as it demonstrates that mass is
not independent of the spacetime continuum, but rather mass
is part of the spacetime continuum fabric itself. Mass results
from the dilatation of the STC in the longitudinal propagation
of energy-momentum in the spacetime continuum. Matter
does not warp spacetime, but rather, matter is warped space-
time (i.e. dilated spacetime). The universe consists of the
spacetime continuum and energy-momentum that propagates
in it by deformation of its (STC) structure.

Note that in this paper, we denote the STCED spacetime
continuum constants κ̄0, λ̄0, µ̄0, ρ̄0 with a diacritical mark over
the symbols to differentiate them from similar symbols used
in other fields of Physics. This allows us to retain existing
symbols such as µ0 for the electromagnetic permeability of
free space, compared to the Lamé elastic constant µ̄0 used to
denote the spacetime continuum shear modulus.

1.2 Defects in the Spacetime Continuum

As discussed in [1], given that the spacetime continuum be-
haves as a deformable medium, there is no reason not to ex-
pect dislocations, disclinations and other defects to be present
in the STC. Dislocations in the spacetime continuum repre-
sent the fundamental displacement processes that occur in its
structure. These fundamental displacement processes should
thus correspond to basic quantum phenomena and provide a
framework for the description of quantum physics in STCED.

Defect theory has been the subject of investigation since
the first half of the XXth century and is a well-developed dis-
cipline in continuum mechanics [9–14]. The recent formula-
tion of defects in solids in based on gauge theory [15, 16].

The last quarter of the XXth century has seen the investi-
gation of spacetime defects in the context of string theory,
particularly cosmic strings [17, 18], and cosmic expansion
[20, 21]. Teleparallel spacetime with defects [18, 22, 23] has
resulted in a differential geometry of defects, which can be
folded into the Einstein-Cartan Theory (ECT) of gravitation,
an extension of Einstein’s theory of gravitation that includes
torsion [19, 20]. Recently, the phenomenology of spacetime
defects has been considered in the context of quantum grav-
ity [24–26].

In this paper, we investigate dislocations in the spacetime
continuum in the context of STCED. The approach followed
till now by investigators has been to use Einstein-Cartan dif-
ferential geometry, with dislocations (translational deformati-
ons) impacting curvature and disclinations (rotational defor-
mations) impacting torsion. The dislocation itself is modelled
via the line element ds2 [17]. In this paper, we investigate
spacetime continuum dislocations using the underlying dis-

placements uν and the energy-momentum stress tensor. We
thus work from the RHS of the general relativistic equation
(the stress tensor side) rather than the LHS (the geometric
tensor side). It should be noted that the general relativistic
equation used can be the standard Einstein equation or a suit-
ably modified version, as in Einstein-Cartan or Teleparallel
formulations.

In Section 2 of this paper, we review the basic physical
characteristics and dynamics of dislocations in the spacetime
continuum. The energy-momentum stress tensor is consid-
ered in Section 2.2. This is followed by a detailed review of
stationary and moving screw and edge dislocations in Sec-
tions 3, 4 and 5, along with their strain energy density as cal-
culated from STCED. The framework of quantum physics,
based on dislocations in the spacetime continuum is covered
in Section 6. Screw dislocations in quantum physics are con-
sidered in Section 6.2 and edge dislocations are covered in
Section 6.3. Section 7 covers dislocation interactions in quan-
tum physics, and Section 8 provides physical explanations of
QED phenomena provided by dislocations in the STC. Sec-
tion 9 summarizes the framework presented in this paper for
the development of a physical description of physical pro-
cesses at the quantum level, based on dislocations in the spa-
cetime continuum within the theory of the Elastodynamics of
the Spacetime Continuum (STCED).

2 Dislocations in the Spacetime Continuum

A dislocation is characterized by its dislocation-displacement
vector, known as the Burgers vector, bµ in a four-dimensional
continuum, defined positive in the direction of a vector ξµ tan-
gent to the dislocation line in the spacetime continuum [14,
see pp.17–24].

A Burgers circuit encloses the dislocation. A similar ref-
erence circuit can be drawn to enclose a region free of dislo-
cation (see Fig. 1). The Burgers vector is the vector required
to make the Burgers circuit equivalent to the reference circuit
(see Fig. 2). It is a measure of the displacement between the
initial and final points of the circuit due to the dislocation.

It is important to note that there are two conventions used
to define the Burgers vector. In this paper, we use the con-
vention used by Hirth [14] referred to as the local Burgers
vector. The local Burgers vector is equivalently given by the
line integral

bµ =

∮
C

∂uµ

∂s
ds (5)

taken in a right-handed sense relative to ξµ, where uµ is the
displacement vector.

A dislocation is thus characterized by a line direction ξµ

and a Burgers vector bµ. There are two types of dislocations:
an edge dislocation for which bµξµ = 0 and a screw disloca-
tion which can be right-handed for which bµξµ = b, or left-
handed for which bµξµ = −b, where b is the magnitude of the
Burgers vector. Arbitrary mixed dislocations can be decom-
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Fig. 1: A reference circuit in a region free of dislocation, S: start, F:
finish
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??��S
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posed into a screw component, along vector ξµ, and an edge
component, perpendicular to vector ξµ.

The edge dislocation was first proposed by Orowan [27],
Polanyi [28] and Taylor [29] in 1934, while the screw dislo-
cation was proposed by Burgers [30] in 1939. In this paper,
we extend the concept of dislocations to the elastodynamics
of the spacetime continuum. Edge dislocations correspond
to dilatations (longitudinal displacements) and hence have an
associated rest-mass energy, while screw dislocations corre-
spond to distortions (transverse displacements) and are mass-
less [1].

2.1 Dislocation dynamics

In three-dimensional space, the dynamic equation is written
as [31, see pp. 88–89],

T i j
, j = −Xi + ρ̄0üi (6)

where ρ̄0 is the spacetime continuum density, Xi is the volume
(or body) force, the comma (,) represents differentiation and
u̇ denotes the derivative with respect to time. Substituting for
εµν = 1

2 (uµ;ν + uν;µ) in (1), using (2) and uµ;µ = εµµ = ε in this
equation, we obtain

µ̄0
−→
∇2ui + (µ̄0 + λ̄0)ε;i = −Xi + ρ̄0üi (7)

which, upon converting the time derivative to indicial nota-
tion and rearranging, is written as

µ̄0
−→
∇2ui − ρ̄0c2ui

,00 + (µ̄0 + λ̄0)ε;i = −Xi. (8)

We use the arrow above the nabla symbol to indicate the 3-
dimensional gradient whereas the 4-dimensional gradient is

Fig. 2: A dislocation showing the Burgers vector bµ, direction vector
ξµ which points into the paper and the Burgers circuit, S: start, F:
finish
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written with no arrow. Using the relation [1]

c =

√
µ̄0

ρ̄0
(9)

in the above, (8) becomes

µ̄0(
−→
∇2ui − ui

,00) + (µ̄0 + λ̄0)ε;i = −Xi (10)

and, combining the space and time derivatives, we obtain

µ̄0∇
2ui + (µ̄0 + λ̄0)ε;i = −Xi. (11)

This equation is the space portion of the STCED displacement
wave equation (51) of [1]

µ̄0∇
2uν + (µ̄0 + λ̄0)ε;ν = −Xν. (12)

Hence the dynamics of the spacetime continuum is described
by the dynamic equation (12), which includes the accelera-
tions from the applied forces.

In this analysis, we consider the simpler problem of dis-
locations moving in an isotropic continuum with no volume
force. Then (12) becomes

µ̄0 ∇
2uν + (µ̄0 + λ̄0)ε;ν = 0, (13)

where ∇2 is the four-dimensional operator and the semi-colon
(;) represents covariant differentiation.

Separating uν into its longitudinal (irrotational) compo-
nent uν

‖
and its transverse (solenoidal) component uν⊥ using

the Helmholtz theorem in four dimensions [32] according to

uν = uν
‖

+ uν⊥, (14)
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(12) can be separated into a screw dislocation displacement
(transverse) equation

µ̄0 ∇
2uν⊥ = 0 (15)

and an edge dislocation displacement (longitudinal) equation

∇2uν
‖

= −
µ̄0 + λ̄0

µ̄0
ε;ν. (16)

2.2 The energy-momentum stress tensor

The components of the energy-momentum stress tensor are
given by [33]:

T 00 = H

T 0 j = s j

T i0 = gi

T i j = σi j

(17)

where H is the total energy density, s j is the energy flux vec-
tor, gi is the momentum density vector, and σi j is the Cauchy
stress tensor which is the ith component of force per unit area
at x j.

From the stress tensor T µν, we can calculate the strain
tensor εµν and then calculate the strain energy density of the
dislocations. As shown in [3], for a general anisotropic con-
tinuum in four dimensions, the spacetime continuum is ap-
proximated by a deformable linear elastic medium that obeys
Hooke’s law [31, see pp. 50–53]

Eµναβεαβ = T µν (18)

where Eµναβ is the elastic moduli tensor. For an isotropic and
homogeneous medium, the elastic moduli tensor simplifies
to [31]:

Eµναβ = λ̄0

(
gµνgαβ

)
+ µ̄0

(
gµαgνβ + gµβgνα

)
. (19)

For the metric tensor gµν, we use the flat spacetime diag-
onal metric ηµν with signature (– + + +) as the STC is locally
flat at the microscopic level. Substituting for (19) into (18)
and expanding, we obtain

T 00 = (λ̄0 + 2µ̄0) ε00 − λ̄0 ε
11 − λ̄0 ε

22 − λ̄0 ε
33

T 11 = −λ̄0 ε
00 + (λ̄0 + 2µ̄0) ε11 + λ̄0 ε

22 + λ̄0 ε
33

T 22 = −λ̄0 ε
00 + λ̄0 ε

11 + (λ̄0 + 2µ̄0) ε22 + λ̄0 ε
33

T 33 = −λ̄0 ε
00 + λ̄0 ε

11 + λ̄0 ε
22 + (λ̄0 + 2µ̄0) ε33

T µν = 2µ̄0 ε
µν, µ , ν.

(20)

In terms of the stress tensor, the inverse of (20) is given
by

ε00 =
1

4µ̄0(2λ̄0 + µ̄0)

[
(3λ̄0 + 2µ̄0) T 00+

+ λ̄0 (T 11 + T 22 + T 33)
]

ε11 =
1

4µ̄0(2λ̄0 + µ̄0)

[
(3λ̄0 + 2µ̄0) T 11+

+ λ̄0 (T 00 − T 22 − T 33)
]

ε22 =
1

4µ̄0(2λ̄0 + µ̄0)

[
(3λ̄0 + 2µ̄0) T 22+

+ λ̄0 (T 00 − T 11 − T 33)
]

ε33 =
1

4µ̄0(2λ̄0 + µ̄0)

[
(3λ̄0 + 2µ̄0) T 33+

+ λ̄0 (T 00 − T 11 − T 22)
]

εµν =
1

2µ̄0
T µν, µ , ν.

(21)

where T i j = σi j. We calculate ε = εαα from the values of
(21). Using ηµν, (3) and Tα

α = ρc2 from [2], we obtain (4)
as required. This confirms the validity of the strain tensor in
terms of the energy-momentum stress tensor as given by (21).

Eshelby [34–36] introduced an elastic field energy-mo-
mentum tensor for continuous media to deal with cases where
defects (such as dislocations) lead to changes in configura-
tion. The displacements uν are considered to correspond to a
field defined at points xµ of the spacetime continuum. This
tensor was first derived by Morse and Feshback [37] for an
isotropic elastic medium, using dyadics. The energy flux vec-
tor s j and the field momentum density vector gi are then given
by [34, 37]:

s j = −u̇k σk j

gi = ρ̄0 uk,i u̇k

bi j = L δi j − uk,i σk j

(22)

where ρ̄0 is the density of the medium, in this case the space-
time continuum, L is the Lagrangian equal to K−W where W
is the strain energy density and K is the kinetic energy den-
sity (H = K + W), and bi j is known as the Eshelby stress
tensor [38, see p. 27]. If the energy-momentum stress tensor
is symmetric, then gi = si. In this paper, we consider the
case where there are no changes in configuration, and use the
energy-momentum stress tensor given by (17) and (20).
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Fig. 3: A stationary screw dislocation in cartesian (x, y, z) and cylin-
drical polar (r, θ, z) coordinates [14, see p. 60].

3 Screw dislocation

3.1 Stationary screw dislocation

We consider a stationary screw dislocation in the spacetime
continuum, with cylindrical polar coordinates (r, θ, z), with
the dislocation line along the z-axis (see Fig. 3). Then the
Burgers vector is along the z-axis and is given by br = bθ =

0, bz = b, the magnitude of the Burgers vector. The only
non-zero component of the deformations is given by [14, see
pp. 60–61] [13, see p. 51]

uz =
b

2π
θ =

b
2π

tan−1 y

x
. (23)

This solution satisfies the screw dislocation displacement eq-
uation (15).

Similarly, the only non-zero components of the stress and
strain tensors are given by

σθz =
b

2π
µ̄0

r

εθz =
b

4π
1
r

(24)

respectively.

3.2 Moving screw dislocation

We now consider the previous screw dislocation, moving a-
long the x-axis, parallel to the dislocation, at a constant speed
vx = v. Equation (13) then simplifies to the wave equation
for massless transverse shear waves for the displacements uz

along the z-axis, with speed ct = c given by (9), where ct

is the speed of the transverse waves corresponding to c the
speed of light.

If coordinate system (x′, y′, z′, t′) is attached to the uni-
formly moving screw dislocation, then the transformation be-
tween the stationary and the moving screw dislocation is gi-

ven by [14]

x′ =
x − vt

(1 − v2/c2)1/2

y′ = y

z′ = z

t′ =
t − vx/c2

(1 − v2/c2)1/2 .

(25)

which is the special relativistic transformation.
The only non-zero component of the deformation in carte-

sian coordinates is given by [14, see pp. 184–185]

uz =
b

2π
tan−1 γy

x − vt
, (26)

where

γ =

√
1 −

v2

c2 . (27)

This solution also satisfies the screw dislocation displacement
equation (15). It simplifies to the case of the stationary screw
dislocation when the speed v = 0.

Similarly, the only non-zero components of the stress ten-
sor in cartesian coordinates are given by [14]

σxz = −
bµ̄0

2π
γy

(x − vt)2 + γ2y2

σyz =
bµ̄0

2π
γ(x − vt)

(x − vt)2 + γ2y2 .

(28)

The only non-zero components of the strain tensor in car-
tesian coordinates are derived from εµν = 1

2 (uµ;ν+uν;µ) [1, see
Eq.(41)]:

εxz = −
b

4π
γy

(x − vt)2 + γ2y2

εyz =
b

4π
γ(x − vt)

(x − vt)2 + γ2y2 ,

(29)

in an isotropic continuum.
Non-zero components involving time are given by

εtz = εzt =
1
2

(
∂uz

∂(ct)
+
∂ut

∂z

)
εtz =

b
4π

v

c
γy

(x − vt)2 + γ2y2

(30)

where ut = 0 has been used. This assumes that the screw
dislocation is fully formed and moving with velocity v as de-
scribed. Using (20), the non-zero stress components involv-
ing time are given by

σtz = σzt =
bµ̄0

2π
v

c
γy

(x − vt)2 + γ2y2 . (31)

Screw dislocations are thus found to be Lorentz invariant.
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3.3 Screw dislocation strain energy density

We consider the stationary screw dislocation in the space-
time continuum of Section 3.1, with cylindrical polar coor-
dinates (r, θ, z), with the dislocation line along the z-axis and
the Burgers vector along the z-axis bz = b.

Then the strain energy density of the screw dislocation
is given by the transverse distortion energy density [1, see
Eq. (74)]

E⊥ = µ̄0 eαβeαβ (32)

where from [1, see Eq. (33)],

eαβ = εαβ − esg
αβ (33)

where es = 1
4ε

α
α is the dilatation which for a screw dislo-

cation is equal to 0. The screw dislocation is thus massless
(E‖ = 0).

The non-zero components of the strain tensor are as de-
fined in (24). Hence

E⊥ = µ̄0

(
εθz

2 + εzθ
2
)
. (34)

Substituting from (24),

E⊥ =
µ̄0 b2

8π2

1
r2 = E. (35)

We now consider the more general case of the moving
screw dislocation in the spacetime continuum of Section 3.2,
with cartesian coordinates (x, y, z). The non-zero components
of the strain tensor are as defined in (29) and (30). Substitut-
ing in (32), the equation becomes [1, see Eqs.(114–115)]

E⊥ = 2µ̄0

(
−εtz

2 + εxz
2 + εyz

2
)
. (36)

Substituting from (29) and (30) into (36), the screw disloca-
tion strain energy density becomes

E⊥ =
µ̄0 b2

8π2

γ2

(x − vt)2 + γ2y2 = E. (37)

This equation simplifies to (35) in the case where v = 0, as
expected. In addition, the energy density (which is quadratic
in energy as per [1, see Eq.(76)]) is multiplied by the special
relativistic γ factor.

4 Edge dislocation

4.1 Stationary edge dislocation

We consider a stationary edge dislocation in the spacetime
continuum in cartesian coordinates (x, y, z), with the disloca-
tion line along the z-axis and the Burgers vector bx = b, by =

bz = 0 (see Fig. 4). Then the non-zero components of the
deformations are given in cartesian coordinates by [14, see

Fig. 4: A stationary edge dislocation in cartesian (x, y, z) and cylin-
drical polar (r, θ, z) coordinates [14, see p. 74].

p. 78]

ux =
b

2π

(
tan−1 y

x
+
µ̄0 + λ̄0

2µ̄0 + λ̄0

xy
x2 + y2

)
uy = −

b
2π

(
1
2

µ̄0

2µ̄0 + λ̄0
log(x2 + y2)+

+
1
2
µ̄0 + λ̄0

2µ̄0 + λ̄0

x2 − y2

x2 + y2

)
.

(38)

This solution results in a non-zero R.H.S. of the edge dislo-
cation displacement equation (16) as required. Equation (16)
can be evaluated to give a value of ε in agreement with the
results of Section 4.3 as shown in that section.

The cylindrical polar coordinate description of the edge
dislocation is more complex than the cartesian coordinate de-
scription. We thus use cartesian coordinates in the follow-
ing sections, transforming to polar coordinate expressions as
warranted. The non-zero components of the stress tensor in
cartesian coordinates are given by [14, see p. 76]

σxx = −
bµ̄0

π

µ̄0 + λ̄0

2µ̄0 + λ̄0

y(3x2 + y2)
(x2 + y2)2

σyy =
bµ̄0

π

µ̄0 + λ̄0

2µ̄0 + λ̄0

y(x2 − y2)
(x2 + y2)2

σzz =
1
2

λ̄0

µ̄0 + λ̄0

(
σxx + σyy

)
= −

bµ̄0

π

λ̄0

2µ̄0 + λ̄0

y

x2 + y2

σxy =
bµ̄0

π

µ̄0 + λ̄0

2µ̄0 + λ̄0

x(x2 − y2)
(x2 + y2)2 .

(39)

The non-zero components of the strain tensor in carte-
sian coordinates are derived from εµν = 1

2 (uµ;ν + uν;µ) [1, see

292 Pierre A. Millette. Dislocations in the Spacetime Continuum: Framework for Quantum Physics



Issue 4 (October) PROGRESS IN PHYSICS Volume 11 (2015)

Eq.(41)]:

εxx = −
b

2π
y

x2 + y2

(
1 +

µ̄0 + λ̄0

2µ̄0 + λ̄0

x2 − y2

x2 + y2

)
= −

by
2π

(3µ̄0 + 2λ̄0)x2 + µ̄0y
2

(2µ̄0 + λ̄0) (x2 + y2)2

εyy = −
b

2π
µ̄0

2µ̄0 + λ̄0

y

x2 + y2

(
1 −

µ̄0 + λ̄0

µ̄0

2x2

x2 + y2

)
=

by
2π

(µ̄0 + 2λ̄0)x2 − µ̄0y
2

(2µ̄0 + λ̄0) (x2 + y2)2

εxy =
b

2π
µ̄0 + λ̄0

2µ̄0 + λ̄0

x(x2 − y2)
(x2 + y2)2

(40)

in an isotropic continuum.

4.2 Moving edge dislocation

We now consider the previous edge dislocation, moving a-
long the x-axis, parallel to the z-axis, along the slip plane
x−z, at a constant speed vx = v. The solutions of (13) for the
moving edge dislocation then include both longitudinal and
transverse components. The only non-zero components of the
deformations in cartesian coordinates are given by [11, see
pp. 39–40] [39, see pp. 218–219]

ux =
bc2

πv2

(
tan−1 γly

x − vt
− α2 tan−1 γy

x − vt

)
uy =

bc2

2πv2

(
γl log

[
(x − vt)2 + γ2

l y
2
]
−

−
α2

γ
log

[
(x − vt)2 + γ2y2

] )
,

(41)

where

α =

√
1 −

v2

2c2 , (42)

γl =

√
1 −

v2

c2
l

(43)

and cl is the speed of longitudinal deformations given by

cl =

√
2µ̄0 + λ̄0

ρ̄0
. (44)

This solution again results in a non-zero R.H.S. of the edge
dislocation displacement equation (16) as required, and (16)
can be evaluated to give a value of ε as in Section 4.3. This
solution simplifies to the case of the stationary edge disloca-
tion when the speed v = 0.

The non-zero components of the stress tensor in carte-
sian coordinates are given by [14, see pp. 189–190] [11, see

pp. 39–40]

σxx =
bc2y

πv2

(
λ̄0γ

3
l − (2µ̄0 + λ̄0)γl

(x − vt)2 + γ2
l y

2
+

+
2µ̄0α

2γ

(x − vt)2 + γ2y2

)
σyy =

bc2y

πv2

(
(2µ̄0 + λ̄0)γ3

l − λ̄0γl

(x − vt)2 + γ2
l y

2
−

−
2µ̄0α

2γ

(x − vt)2 + γ2y2

)
σzz =

1
2

λ̄0

µ̄0 + λ̄0

(
σxx + σyy

)
=
λ̄0b
π

c2

c2
l

−γly

(x − vt)2 + γ2
l y

2

=
b
π

λ̄0µ̄0

2µ̄0 + λ̄0

−γly

(x − vt)2 + γ2
l y

2

σxy =
µ̄0bc2(x − vt)

πv2

(
2γl

(x − vt)2 + γ2
l y

2
−

−
α2(γ + 1/γ)

(x − vt)2 + γ2y2

)
.

(45)

It is important to note that for a screw dislocation, the
stress on the plane x − vt = 0 becomes infinite at v = c.
This sets an upper limit on the speed of screw dislocations
in the spacetime continuum, and provides an explanation for
the speed of light limit. This upper limit also applies to edge
dislocations, as the shear stress becomes infinite everywhere
at v = c, even though the speed of longitudinal deformations
cl is greater than that of transverse deformations c [14, see
p. 191] [11, see p. 40].

The non-zero components of the strain tensor in carte-
sian coordinates are derived from εµν = 1

2 (uµ;ν + uν;µ) [1, see
Eq.(41)]:

εxx =
bc2y

πv2

(
−γl

(x − vt)2 + (γly)2 +
α2γ

(x − vt)2 + (γy)2

)
εyy =

bc2y

πv2

(
γ3

l

(x − vt)2 + (γly)2 −
α2γ

(x − vt)2 + (γy)2

)
εxy =

bc2(x − vt)
2πv2

(
2γl

(x − vt)2 + (γly)2−

−
α2(γ + 1/γ)

(x − vt)2 + (γy)2

)
(46)

in an isotropic continuum.
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Non-zero components involving time are given by

εtx = εxt =
1
2

(
∂ux

∂(ct)
+
∂ut

∂x

)
εty = εyt =

1
2

(
∂uy
∂(ct)

+
∂ut

∂y

)
εtx =

b
2π

c
v

(
γly

(x − vt)2 + γ2
l y

2
−

−α2 γy

(x − vt)2 + γ2y2

)
εty = −

b
2π

c
v

(
γl(x − vt)

(x − vt)2 + γ2
l y

2
−

−
α2

γ2

γ(x − vt)
(x − vt)2 + γ2y2

)

(47)

where ut = 0 has been used. This assumes that the edge
dislocation is fully formed and moving with velocity v as de-
scribed. Using (20), the non-zero stress components involv-
ing time are given by

σtx =
bµ̄0

π

c
v

(
γly

(x − vt)2 + γ2
l y

2
−

−α2 γy

(x − vt)2 + γ2y2

)
σty = −

bµ̄0

π

c
v

(
γl(x − vt)

(x − vt)2 + γ2
l y

2
−

−
α2

γ2

γ(x − vt)
(x − vt)2 + γ2y2

)
.

(48)

4.3 Edge dislocation strain energy density

As we have seen in Section 3.3, the screw dislocation is mass-
less as ε = 0 and hence E‖ = 0 for the screw dislocation: it
is a pure distortion, with no dilatation. In this section, we
evaluate the strain energy density of the edge dislocation.

As seen in [1, see Section 8.1], the strain energy density
of the spacetime continuum is separated into two terms: the
first one expresses the dilatation energy density (the mass lon-
gitudinal term) while the second one expresses the distortion
energy density (the massless transverse term):

E = E‖ + E⊥ (49)

where
E‖ =

1
2
κ̄0ε

2 ≡
1

32κ̄0

(
ρc2

)2
≡

1
2κ̄0

t2
s (50)

where ε is the volume dilatation and ρ is the mass energy
density of the edge dislocation, and

E⊥ = µ̄0eαβeαβ ≡
1

4µ̄0
tαβtαβ. (51)

where from [1, see Eq. (36)] the energy-momentum stress ten-
sor Tαβ is decomposed into a stress deviation tensor tαβ and a
scalar ts, according to

tαβ = Tαβ − tsg
αβ (52)

where ts = 1
4 Tα

α. Then the dilatation strain energy density
of the edge dislocation is given by the (massive) longitudinal
dilatation energy density (50) and the distortion (massless)
strain energy density of the edge dislocation is given by the
transverse distortion energy density (51).

4.3.1 Stationary edge dislocation energy density

We first consider the case of the stationary edge dislocation of
Section 4.1. The volume dilatation ε for the stationary edge
dislocation is given by

ε = εαα = εxx + εyy (53)

where the non-zero diagonal elements of the strain tensor are
obtained from (40). Substituting for εxx and εyy from (40),
we obtain

ε = −
b
π

µ̄0

2µ̄0 + λ̄0

y

x2 + y2 . (54)

In cylindrical polar coordinates, (54) is expressed as

ε = −
b
π

µ̄0

2µ̄0 + λ̄0

sin θ
r
. (55)

We can disregard the negative sign in (54) and (55) as it can
be eliminated by using the FS/RH convention instead of the
SF/RH convention for the Burgers vector [14, see p. 22]).

As mentioned in Section 4.1, the volume dilatation ε can
be calculated from the edge dislocation displacement (longi-
tudinal) equation (16), viz.

∇2uν
‖

= −
µ̄0 + λ̄0

µ̄0
ε;ν.

For the x-component, this equation gives

∇2ux =
∂2ux

∂x2 +
∂2ux

∂y2 = −
µ̄0 + λ̄0

µ̄0
ε,x. (56)

Substituting for ux from (38), we obtain

∇2ux = −
2b
π

µ̄0 + λ̄0

2µ̄0 + λ̄0

xy
(x2 + y2)2 = −

µ̄0 + λ̄0

µ̄0
ε,x. (57)

Hence

ε,x =
2b
π

µ̄0

2µ̄0 + λ̄0

xy
(x2 + y2)2 (58)

and

ε =
2b
π

µ̄0

2µ̄0 + λ̄0

∫
xy

(x2 + y2)2 dx. (59)
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Evaluating the integral [40], we obtain

ε = −
b
π

µ̄0

2µ̄0 + λ̄0

y

x2 + y2 (60)

in agreement with (54).
Similarly for the y-component, substituting for uy from

(38), the equation

∇2uy =
∂2uy
∂x2 +

∂2uy
∂y2 = −

µ̄0 + λ̄0

µ̄0
ε,y (61)

gives

ε,y = −
b
π

µ̄0

2µ̄0 + λ̄0

x2 − y2

(x2 + y2)2 . (62)

Evaluating the integral [40]

ε = −
b
π

µ̄0

2µ̄0 + λ̄0

∫
x2 − y2

(x2 + y2)2 dy, (63)

we obtain
ε = −

b
π

µ̄0

2µ̄0 + λ̄0

y

x2 + y2 (64)

again in agreement with (54).
The mass energy density is calculated from (4)

ρc2 = 4κ̄0 ε = 2(2λ̄0 + µ̄0) ε (65)

where (3) has been used. Substituting for ε from (54), the
mass energy density of the stationary edge dislocation is gi-
ven by

ρc2 =
4b
π

κ̄0µ̄0

2µ̄0 + λ̄0

y

x2 + y2 . (66)

In cylindrical polar coordinates, (66) is expressed as

ρc2 =
4b
π

κ̄0µ̄0

2µ̄0 + λ̄0

sin θ
r
. (67)

Using (54) in (50), the stationary edge dislocation longi-
tudinal dilatation strain energy density is then given by

E‖ =
b2

2π2

κ̄0 µ̄
2
0

(2µ̄0 + λ̄0)2

y2

(x2 + y2)2 . (68)

In cylindrical polar coordinates, (68) is expressed as

E‖ =
b2

2π2

κ̄0 µ̄
2
0

(2µ̄0 + λ̄0)2

sin2 θ

r2 . (69)

The distortion strain energy density is calculated from
(51). The expression is expanded using the non-zero elements
of the strain tensor (40) to give

E⊥ = µ̄0

(
exx

2 + eyy2 + exy
2 + eyx

2
)
. (70)

As seen previously in (33),

eαβ = εαβ − esg
αβ (71)

where es = 1
4ε is the volume dilatation calculated in (54) and

eαβeαβ =

(
εαβ −

1
4
εgαβ

) (
εαβ −

1
4
εgαβ

)
. (72)

For gαβ = ηαβ, the off-diagonal elements of the metric tensor
are 0, the diagonal elements are 1 and (70) becomes

E⊥ = µ̄0

(εxx −
1
4
ε

)2

+

(
εyy −

1
4
ε

)2

+ 2ε2
xy

 . (73)

Expanding the quadratic terms and making use of (53), (73)
becomes

E⊥ = µ̄0

(
ε2

xx + ε2
yy −

3
8
ε2 + 2ε2

xy

)
(74)

and finally

E⊥ = µ̄0

(
5
8
ε2 − 2εxxεyy + 2ε2

xy

)
. (75)

Substituting from (40) and (54) in the above,

E⊥ =
5
8

b2µ̄0

π2

(
µ̄0

2µ̄0 + λ̄0

)2
y2

(x2 + y2)2 +
b2µ̄0

2π2

y2
[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0)x4 − 2µ̄2

0x2y2 − µ̄2
0y

4
]

(2µ̄0 + λ̄0)2(x2 + y2)4
+

+
b2µ̄0

2π2

(
µ̄0 + λ̄0

2µ̄0 + λ̄0

)2 x2(x2 − y2)2

(x2 + y2)4 .

(76)

which becomes

E⊥ =
b2

2π2

µ̄0

(2µ̄0 + λ̄0)2

1
(x2 + y2)4{

5
4
µ̄2

0 y
2 (x2 + y2)2 −

−y2
[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0)x4 − 2µ̄2

0 x2y2 − µ̄2
0 y

4
]
+

+ (µ̄0 + λ̄0)2 x2(x2 − y2)2
}
.

(77)

In cylindrical polar coordinates, (77) is expressed as

E⊥ =
b2

2π2

µ̄0

(2µ̄0 + λ̄0)2

{
5
4
µ̄2

0
sin2 θ

r2 −
sin2 θ

r2[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0) cos4 θ−

−2µ̄2
0 cos2 θ sin2 θ − µ̄2

0 sin4 θ
]
+

+ (µ̄0 + λ̄0)2 cos2 θ

r2

(
cos2 θ − sin2 θ

)2
}

(78)
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or

E⊥ =
b2

2π2

µ̄0

(2µ̄0 + λ̄0)2

{
5
4
µ̄2

0
sin2 θ

r2 −

−
[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0) cos4 θ

sin2 θ

r2 −

−2µ̄2
0 cos2 θ

sin4 θ

r2 − µ̄2
0

sin6 θ

r2

]
+

+(µ̄0 + λ̄0)2 cos2 2θ
cos2 θ

r2

}
.

(79)

4.3.2 Moving edge dislocation energy density

We next consider the general case of the moving edge disloca-
tion in the spacetime continuum of Section 4.2, with cartesian
coordinates (x, y, z). We first evaluate the volume dilatation ε
for the moving edge dislocation. The volume dilatation is
given by

ε = εαα = εxx + εyy (80)

where the non-zero diagonal elements of the strain tensor are
obtained from (46). Substituting for εxx and εyy from (46) in
(80), we notice that the transverse terms cancel out, and we
are left with the following longitudinal term:

ε =
bc2y

πv2

γ3
l − γl

(x − vt)2 + γ2
l y

2
(81)

This equation can be further reduced to

ε =
bc2

πv2

v2

cl
2

γly

(x − vt)2 + γ2
l y

2
(82)

and finally, using c2/cl
2 = µ̄0/(2µ̄0 + λ̄0) (see (9) and (44)),

ε(xi, t) =
b

2π
2µ̄0

2µ̄0 + λ̄0

γly

(x − vt)2 + γ2
l y

2
. (83)

As seen previously, the mass energy density is calculated
from (65):

ρc2 = 4κ̄0 ε = 2(2λ̄0 + µ̄0) ε. (84)

Substituting for ε from (83), the mass energy density of an
edge dislocation is given by

ρ(xi, t) c2 =
b

2π
8κ̄0µ̄0

2µ̄0 + λ̄0

γly

(x − vt)2 + γ2
l y

2
. (85)

Using (83) in (50), the edge dislocation longitudinal dilatation
strain energy density is then given by

E‖ =
1
2
κ̄0

 b
2π

2µ̄0

2µ̄0 + λ̄0

γly

(x − vt)2 + γ2
l y

2

2

. (86)

The distortion strain energy density is calculated from
(51). The expression is expanded using the non-zero elements
of the strain tensor (46) and (47) and, from (71) and (72), we
obtain [1, see Eqs.(114–115)])

E⊥ = µ̄0

[ (
εxx −

1
4
ε

)2

+

(
εyy −

1
4
ε

)2

−2εtx
2 − 2εty

2 + 2ε2
xy

]
.

(87)

Expanding the quadratic terms and making use of (53) as in
(74), (87) becomes

E⊥ = µ̄0

(
ε2

xx + ε2
yy −

3
8
ε2 − 2εtx

2 − 2εty
2 + 2ε2

xy

)
. (88)

Substituting from (46), (47) and (82),

E⊥ = µ̄0

(
b

2π
c2

v2

)2 {
−

3
8

2 v2

cl
2

γly

(x − vt)2 + γ2
l y

2

2

+

+4
 −γly

(x − vt)2 + γ2
l y

2
+

α2γy

(x − vt)2 + γ2y2

2

+

+4
 γ3

l y

(x − vt)2 + γ2
l y

2
−

α2γy

(x − vt)2 + γ2y2

2

−

−2
v2

c2

 γly

(x − vt)2 + γ2
l y

2
− α2 γy

(x − vt)2 + γ2y2

2

−

−2
v2

c2

 −γl(x − vt)
(x − vt)2 + γ2

l y
2

+
α2

γ2

γ(x − vt)
(x − vt)2 + γ2y2

2

+

+2
 2γl(x − vt)

(x − vt)2 + γ2
l y

2
−
α2(γ + 1/γ)(x − vt)

(x − vt)2 + γ2y2

2 }

(89)

which simplifies to

E⊥ = µ̄0
b2

2π2

c4

v4

{
α4 (3 + γ2)

(x − vt)2 + γ2y2−

−2α2

(
3 + 1

γ2

)
γl γ (x − vt)2 +

(
2γ2

l −
v2

c2

)
γl γ y

2(
(x − vt)2 + γ2

l y
2
) (

(x − vt)2 + γ2y2
) +

+

(3 + γ2)γ2
l (x − vt)2 + 2

(
α2 + γ4

l −
3
8
v4

c4
l

)
γ2

l y
2(

(x − vt)2 + γ2
l y

2
)2

}
.

(90)

We consider the above equations for the moving edge dis-
location in the limit as v→ 0. Then the terms

γy

(x − vt)2 + γ2y2 →
sin θ

r
(91)

and
x − vt

(x − vt)2 + γ2y2 →
cos θ

r
(92)

296 Pierre A. Millette. Dislocations in the Spacetime Continuum: Framework for Quantum Physics



Issue 4 (October) PROGRESS IN PHYSICS Volume 11 (2015)

in cylindrical polar coordinates. Similarly for the same terms
with γl instead of γ.

The volume dilatation obtained from (83) is then given in
cylindrical polar coordinates (r, θ, z) by

ε→
b

2π
2µ̄0

2µ̄0 + λ̄0

sin θ
r
. (93)

The mass energy density is obtained from (85) to give

ρc2 →
b

2π
8κ̄0µ̄0

2µ̄0 + λ̄0

sin θ
r
. (94)

From (86), the edge dislocation dilatation strain energy den-
sity is then given by

E‖ →
b2

2π2

κ̄0 µ̄
2
0

(2µ̄0 + λ̄0)2

sin2 θ

r2 . (95)

These equations are in agreement with (55), (67) and (69)
respectively.

The edge dislocation distortion strain energy density in
the limit as v → 0 is obtained from (89) by making use of
(91) and (92) as follows:

E⊥ → µ̄0
b2

4π2

c4

v4

{
−

3
2
v4

cl
4

sin2 θ

r2 +

+4
(
−

sin θ
r

+ α2 sin θ
r

)2

+ 4
(
γ2

l
sin θ

r
− α2 sin θ

r

)2

−

−2
v2

c2

(
sin θ

r
− α2 sin θ

r

)2

−

−2
v2

c2

(
−γl

cos θ
r

+
α2

γ

cos θ
r

)2

+

+2
(
2γl

cos θ
r
− α2

(
γ +

1
γ

)
cos θ

r

)2 }
.

(96)

Simplifying,

E⊥ → µ̄0
b2

4π2

c4

v4

{
−

3
2
v4

cl
4

sin2 θ

r2 +

+4
(
−1 + α2

)2 sin2 θ

r2 + 4
(
γ2

l − α
2
)2 sin2 θ

r2 −

−2
v2

c2

(
1 − α2

)2 sin2 θ

r2 −

−2
v2

c2

(
−γl +

α2

γ

)2 cos2 θ

r2 +

+2
(
2γl − α

2
(
γ +

1
γ

))2 cos2 θ

r2

}
.

(97)

Using the definitions of γ2, γ2
l and α2 from (27), (42) and (43)

respectively, using the first term of the Taylor expansion for

γ and γl as v → 0, and neglecting the terms multiplied by
−2v2/c2 in (97) as they are of order v6/c6, (97) becomes

E⊥ → µ̄0
b2

4π2

c4

v4

{ [
−

3
2
v4

cl
4 +

v4

c4 +

+4
1 − v2

c2
l

− 1 +
v2

2c2

2 ]
sin2 θ

r2 +

+4
1 − 1

2
v2

c2
l

− 1 +
v2

2c2

2 cos2 θ

r2

}
.

(98)

Squaring and simplifying, we obtain

E⊥ → µ̄0
b2

4π2

c4

v4

{ 5
2
v4

cl
4 + 2

v4

c4 + 4
v4

c2
l c2

 sin2 θ

r2 +

+

 v4

cl
4 +

v4

c4 − 2
v4

c2
l c2

 cos2 θ

r2

} (99)

and further

E⊥ → µ̄0
b2

2π2

{ 1 + 2
c2

c2
l

+
5
4

c4

cl
4

 sin2 θ

r2 +

+
1
2

1 − 2
c2

c2
l

+
c4

cl
4

 cos2 θ

r2

}
.

(100)

Using c2/cl
2 = µ̄0/(2µ̄0 + λ̄0) (see (9) and (44)), (100) be-

comes

E⊥ → µ̄0
b2

2π2

{(
1 +

2µ̄0

2µ̄0 + λ̄0
+

+
5
4

µ̄2
0

(2µ̄0 + λ̄0)2

)
sin2 θ

r2 +
1
2

(
1−

−
2µ̄0

2µ̄0 + λ̄0
+

µ̄2
0

(2µ̄0 + λ̄0)2

)
cos2 θ

r2

}
.

(101)

This equation represents the impact of the time terms inclu-
ded in the calculation of (87) and the limit operation v → 0
used in (89).

5 Curved dislocations

In this section, we consider the equations for generally curved
dislocations generated by infinitesimal elements of a disloca-
tion. These allow us to handle complex dislocations that are
encountered in the spacetime continuum.

5.1 The Burgers displacement equation

The Burgers displacement equation for an infinitesimal ele-
ment of a dislocation dl = ξdl in vector notation is given
by [14, see p. 102]

u(r) =
b
4π

∫
A

R̂ · dA
R2 −

1
4π

∮
C

b × dl′

R
+

+
1

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0
∇

[ ∮
C

(b × R) · dl′

R

] (102)

Pierre A. Millette. Dislocations in the Spacetime Continuum: Framework for Quantum Physics 297



Volume 11 (2015) PROGRESS IN PHYSICS Issue 4 (October)

where u is the displacement vector, r is the vector to the dis-
placed point, r′ is the vector to the dislocation infinitesimal
element dl′, R = r′ − r, b is the Burgers vector, and closed
loop C bounds the area A.

In tensor notation, (102) is given by

uµ(rν) = −
1

8π

∫
A

bµ
∂

∂x′α
(
∇′2R

)
dAα−

−
1

8π

∮
C

bβ εµβγ ∇′2R dx′γ−

−
1

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0

∮
C

bβ εβαγ
∂2R

∂x′µ ∂x′α
dx′γ

(103)

where εαβγ is the permutation symbol, equal to 1 for cyclic
permutations, −1 for anti-cyclic permutations, and 0 for per-
mutations involving repeated indices. As noted by Hirth [14,
see p. 103], the first term of this equation gives a discontinuity
∆u = b over the surface A, while the two other terms are con-
tinuous except at the dislocation line. This equation is used
to calculate the displacement produced at a point r by an ar-
bitrary curved dislocation by integration over the dislocation
line.

5.2 The Peach and Koehler stress equation

The Peach and Koehler stress equation for an infinitesimal el-
ement of a dislocation is derived by differentiation of (103)
and substitution of the result in (20) [14, see p. 103–106]. In
this equation, the dislocation is defined continuous except at
the dislocation core, removing the discontinuity over the sur-
face A and allowing to express the stresses in terms of line
integrals alone.

σµν = −
µ̄0

8π

∮
C

bα εβαµ
∂

∂x′β
(
∇′2R

)
dx′ν−

−
µ̄0

8π

∮
C

bα εβαν
∂

∂x′β
(
∇′2R

)
dx′µ−

−
µ̄0

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0

∮
C

bα εβαγ(
∂3R

∂x′β ∂x′µ∂x′ν
− δµν

∂

∂x′β
(
∇′2R

))
dx′γ.

(104)

This equation is used to calculate the stress field of an arbi-
trary curved dislocation by line integration.

6 Framework for quantum physics

In a solid, dislocations represent the fundamental displace-
ment processes that occur in its atomic structure. A solid
viewed in electron microscopy or other microscopic imaging
techniques is a tangle of screw and edge dislocations [10, see
p. 35 and accompanying pages]. Similarly, dislocations in the
spacetime continuum are taken to represent the fundamental
displacement processes that occur in its structure. These fun-
damental displacement processes should thus correspond to

basic quantum phenomena and provide a framework for the
description of quantum physics in STCED.

We find that dislocations have fundamental properties that
reflect those of particles at the quantum level. These include
self-energy and interactions mediated by the strain energy
density of the dislocations. The role played by virtual par-
ticles in Quantum Electrodynamics is replaced by the inter-
action of the energy density of the dislocations. This theory
is not perturbative as in QED, but rather calculated from ana-
lytical expressions. The analytical equations can become very
complicated, and in some cases, perturbative techniques are
used to simplify the calculations, but the availability of ana-
lytical expressions permit a better understanding of the fun-
damental processes involved.

Although the existence of virtual particles in QED is gen-
erally accepted, there are physicists who still question this in-
terpretation of QED perturbation expansions. Weingard [41]
“argues that if certain elements of the orthodox interpretation
of states in QM are applicable to QED, then it must be con-
cluded that virtual particles cannot exist. This follows from
the fact that the transition amplitudes correspond to super-
positions in which virtual particle type and number are not
sharp. Weingard argues further that analysis of the role of
measurement in resolving the superposition strengthens this
conclusion. He then demonstrates in detail how in the path in-
tegral formulation of field theory no creation and annihilation
operators need appear, yet virtual particles are still present.
This analysis shows that the question of the existence of vir-
tual particles is really the question of how to interpret the
propagators which appear in the perturbation expansion of
vacuum expectation values (scattering amplitudes).” [42]

The basic Feynman diagrams can be seen to represent
screw dislocations as photons, edge dislocations as particles,
and their interactions. The exchange of virtual particles in in-
teractions can be taken as the forces resulting from the over-
lap of the dislocations’ strain energy density, with suitably
modified diagrams. The perturbative expansions are also re-
placed by finite analytical expressions.

6.1 Quantization

The Burgers vector as defined by expression (5) has similari-
ties to the Bohr-Sommerfeld quantization rule∮

C
p dq = nh (105)

where q is the position canonical coordinate, p is the momen-
tum canonical coordinate and h is Planck’s constant. This
leads us to consider the following quantization rule for the
STC: at the quantum level, we assume that the spacetime
continuum has a granularity characterized by a length b0 cor-
responding to the smallest elementary Burgers dislocation-
displacement vector possible in the STC. The idea that the
existence of a shortest length in nature would lead to a natu-
ral cut-off to generate finite integrals in QED has been raised
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before [43]. The smallest elementary Burgers dislocation-
displacement vector introduced here provides a lower bound
as shown in the next section. Then the magnitude of a Burg-
ers vector can be expressed as a multiple of the elementary
Burgers vector:

b = nb0. (106)

We find that b is usually divided by 2π in dislocation equa-
tions, and hence we define

b̄ =
b

2π
, (107)

and similarly for the elementary Burgers dislocation-displa-
cement vector b0,

b̄0 =
b0

2π
. (108)

6.2 Screw dislocations in quantum physics

Screw dislocations in the spacetime continuum are identified
with massless, transverse deformations, specifically photons.
Consider the displacement of a stationary screw dislocation
as derived in Section 3.1:

uz =
b

2π
θ = b̄ θ. (109)

Taking the derivative with respect to time, we obtain

u̇z = vz =
b

2π
θ̇ =

b
2π

ω. (110)

The speed of the transverse displacement is c, the speed of
light. Substituting for ω = 2πν, (110) becomes

c = b ν. (111)

Hence
b = λ, (112)

the wavelength of the screw dislocation. This result is illus-
trated in Fig. 5. It is important to note that this relation applies
only to screw dislocations.

The strain energy density of the screw dislocation is given
by the transverse distortion energy density derived in Section
3.3. For a stationary screw dislocation, substituting (107) into
(35),

E⊥ =
µ̄0 b̄2

2
1
r2 . (113)

The total strain energy of the screw dislocation is then
given by

W⊥ =

∫
V
E⊥ dV (114)

where the volume element dV in cylindrical polar coordinates
is given by rdr dθ dz. Substituting for E⊥ from (113), (114)
becomes

W⊥ =

∫
V

µ̄0 b̄2

2r2 rdr dθ dz. (115)

Fig. 5: A wavelength of a screw dislocation.

From (106), b̄ can be taken out of the integral to give

W⊥ =
µ̄0 b̄2

2

∫ Λ

b

1
r

dr
∫
θ

dθ
∫

z
dz (116)

where Λ is a cut-off parameter corresponding to the radial
extent of the dislocation, limited by the average distance to
its nearest neighbours.

The strain energy per wavelength is then given by

W⊥
λ

=
µ̄0 b̄2

2
log

Λ

b

∫ 2π

0
dθ (117)

and finally
W⊥
λ

=
µ̄0 b2

4π
log

Λ

b
. (118)

The implications of the total strain energy of the screw
dislocation are discussed further in comparison to Quantum
Electrodynamics (QED) in Section 7.

6.3 Edge dislocations in quantum physics

The strain energy density of the edge dislocation is derived in
Section 4.3. The dilatation (massive) strain energy density of
the edge dislocation is given by the longitudinal strain energy
density (50) and the distortion (massless) strain energy den-
sity of the edge dislocation is given by the transverse strain
energy density (51).

For the stationary edge dislocation of (79), using (107)
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into (79), we have

E⊥ =
2b̄2µ̄0

(2µ̄0 + λ̄0)2

{
5
4
µ̄2

0
sin2 θ

r2 −

−
[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0) cos4 θ

sin2 θ

r2 −

−2µ̄2
0 cos2 θ

sin4 θ

r2 − µ̄2
0

sin6 θ

r2

]
+

+(µ̄0 + λ̄0)2 cos2 2θ
cos2 θ

r2

}
.

(119)

The distortion strain energy of the edge dislocation is then
given by

W⊥ =

∫
V
E⊥ dV (120)

where the volume element dV in cylindrical polar coordinates
is given by rdr dθ dz. Substituting for E⊥ from (119) and tak-
ing b̄ out of the integral, (120) becomes

W⊥ =
2b̄2µ̄0

(2µ̄0 + λ̄0)2

∫
z

∫
θ

∫ Λ

b0

{
5
4
µ̄2

0
sin2 θ

r2 −

−
[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0) cos4 θ

sin2 θ

r2 −

−2µ̄2
0 cos2 θ

sin4 θ

r2 − µ̄2
0

sin6 θ

r2

]
+

+(µ̄0 + λ̄0)2 cos2 2θ
cos2 θ

r2

}
rdr dθ dz

(121)

where again Λ is a cut-off parameter corresponding to the ra-
dial extent of the dislocation, limited by the average distance
to its nearest neighbours.

Evaluating the integral over r,

W⊥ =
2b̄2µ̄0

(2µ̄0 + λ̄0)2
log

Λ

b0

∫
z

∫ 2π

0

{
5
4
µ̄2

0 sin2 θ−

−
[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0) cos4 θ sin2 θ−

−2µ̄2
0 cos2 θ sin4 θ − µ̄2

0 sin6 θ
]
+

+(µ̄0 + λ̄0)2 cos2 2θ cos2 θ

}
dθ dz.

(122)

Evaluating the integral over θ [40], we obtain (123) at the
top of the next page. Applying the limits of the integration,
both the coefficients of λ̄2

0 and µ̄0λ̄0 are equal to 0 and only the
coefficient of µ̄2

0 is non-zero. Equation (123) then becomes

W⊥ =
2b̄2µ̄0

(2µ̄0 + λ̄0)2
log

Λ

b0

∫ `

0

9π
4
µ̄2

0 dz. (124)

where ` is the length of the edge dislocation.

Evaluating the integral over z, we obtain the stationary
edge dislocation transverse strain energy per unit length

W⊥
`

=
9π
2

b̄2µ̄0

(
µ̄0

2µ̄0 + λ̄0

)2

log
Λ

b0
. (125)

We find that the stationary edge dislocation transverse strain
energy per unit length (where we have added the label E)

WE
⊥

`
=

9
8π

b2µ̄0

(
µ̄0

2µ̄0 + λ̄0

)2

log
Λ

b0
(126)

is similar to the stationary screw dislocation transverse strain
energy per unit length

WS
⊥

`
=

1
4π

b2µ̄0 log
Λ

b0
(127)

except for the proportionality constant.
Similarly, the longitudinal strain energy of the stationary

edge dislocation is given by

WE
‖ =

∫
V
E‖ dV. (128)

Substituting for E‖ from (69), this equation becomes

WE
‖ =

∫
V

b2

2π2

κ̄0 µ̄
2
0

(2µ̄0 + λ̄0)2

sin2 θ

r2 dV. (129)

Similarly to the previous derivation, this integral gives

WE
‖

`
=

1
2π

b2 κ̄0

(
µ̄0

2µ̄0 + λ̄0

)2

log
Λ

b0
. (130)

The total strain energy of the stationary screw and edge
dislocations have similar functional forms, with the differ-
ence residing in the proportionality constants. This is due
to the simpler nature of the stationary dislocations and their
cylindrical polar symmetry. This similarity is not present for
the general case of moving dislocations as evidenced in equa-
tions (37), (86) and (90).

For the moving edge dislocation in the limit as v → 0,
subsituting for (101) in (120) and using (107), we have

WE
⊥ → 2b̄2µ̄0

∫
z

∫
θ

∫ Λ

b0

rdr dθ dz{ 1 +
2µ̄0

2µ̄0 + λ̄0
+

5
4

µ̄2
0

(2µ̄0 + λ̄0)2

 sin2 θ

r2 +

+
1
2

1 − 2µ̄0

2µ̄0 + λ̄0
+

µ̄2
0

(2µ̄0 + λ̄0)2

 cos2 θ

r2

} (131)

where again Λ is a cut-off parameter corresponding to the ra-
dial extent of the dislocation, limited by the average distance
to its nearest neighbours.
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W⊥ =
2b̄2µ̄0

(2µ̄0 + λ̄0)2
log

Λ

b0

∫
z

[
5
4
µ̄2

0

(
θ

2
−

1
4

sin 2θ
)
−

−(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0)
(
θ

16
+

1
64

sin 2θ −
1
64

sin 4θ −
1

192
sin 6θ

)
+

+2µ̄2
0

(
θ

16
−

1
64

sin 2θ −
1

64
sin 4θ +

1
192

sin 6θ
)
+

+µ̄2
0

(
5θ
16
−

15
64

sin 2θ +
3

64
sin 4θ −

1
192

sin 6θ
)
+

+(µ̄0 + λ̄0)2
(
θ

4
+

3
16

sin 2θ +
1

16
sin 4θ +

1
48

sin 6θ
) ]2π

0
dz

(123)

Evaluating the integral over r,

WE
⊥ → 2b̄2µ̄0 log

Λ

b0

∫
z

∫ 2π

0
dθ dz{ 1 +

2µ̄0

2µ̄0 + λ̄0
+

5
4

µ̄2
0

(2µ̄0 + λ̄0)2

 sin2 θ+

+
1
2

1 − 2µ̄0

2µ̄0 + λ̄0
+

µ̄2
0

(2µ̄0 + λ̄0)2

 cos2 θ

}
.

(132)

Evaluating the integral over θ [40] and applying the limits of
the integration, we obtain

WE
⊥ → 2b̄2µ̄0 log

Λ

b0

∫ `

0
dz{ 1 +

2µ̄0

2µ̄0 + λ̄0
+

5
4

µ̄2
0

(2µ̄0 + λ̄0)2

 (π) +

+
1
2

1 − 2µ̄0

2µ̄0 + λ̄0
+

µ̄2
0

(2µ̄0 + λ̄0)2

 (π)
} (133)

and evaluating the integral over z, we obtain the moving edge
dislocation transverse strain energy per unit length in the limit
as v→ 0

WE
⊥

`
→

3
4π

b2µ̄0

(
1 +

2
3

µ̄0

2µ̄0 + λ̄0
+

+
7
6

µ̄2
0

(2µ̄0 + λ̄0)2

)
log

Λ

b0

(134)

where ` is the length of the edge dislocation.

6.4 Strain energy of moving dislocations

In the general case of moving dislocations, the derivation of
the screw dislocation transverse strain energy and the edge
dislocation transverse and longitudinal strain energies is more
difficult. In this section, we provide an overview discussion
of the topic.

6.4.1 Screw dislocation transverse strain energy

The transverse strain energy of a moving screw dislocation,
which also corresponds to its total strain energy, is given by

WS
⊥ =

∫
V
ES
⊥ dV (135)

where the strain energy density ES
⊥ is given by (113), viz.

ES
⊥ =

1
2

b̄2 µ̄0
γ2

(x − vt)2 + γ2y2 (136)

and V is the 4-dimensional volume of the screw dislocation.
The volume element dV in cartesian coordinates is given by
dx dy dz d(ct).

Substituting for ES
⊥, (135) becomes

WS
⊥ =

∫
V

1
2

b̄2 µ̄0
γ2

(x − vt)2 + γ2y2 dx dy dz d(ct). (137)

As before, b̄ is taken out of the integral from (106), and the
integral over z is handled by considering the strain energy per
unit length of the dislocation:

WS
⊥

`
=

b̄2 µ̄0

2

∫
ct

∫
y

∫
x

b2≤x2+y2≤Λ2

γ2

(x − vt)2 + γ2y2 dx dy d(ct) (138)

where ` is the length of the dislocation and as before, Λ is a
cut-off parameter corresponding to the radial extent of the dis-
location, limited by the average distance to its nearest neigh-
bours.

Evaluating the integral over x [40],

WS
⊥

`
=

b̄2 µ̄0

2
γ2

∫
ct

∫
y

dy d(ct)

[
1
γy

arctan
(

x − vt
γy

) ]√Λ2−y2

√
y2−b2

(139)
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where the limits corresponding to the maximum cut-off pa-
rameter Λ and minimum cut-off parameter b are stated ex-
plicitly. Applying the limits of the integration, we obtain

WS
⊥

`
=

b̄2 µ̄0

2
γ2

∫
ct

∫
y

dy d(ct){
1
γy

arctan

 √
Λ2 − y2 − vt

γy

−
−

1
γy

arctan

 √
y2 − b2 − vt

γy

 }.
(140)

This integration over y is not elementary and likely does
not lead to a closed analytical form. If we consider the fol-
lowing simpler integral, the solution is given by∫

y

1
γy

arctan
(

x − vt
γy

)
dy =

−
i
2

[
Li2

(
−i

x − vt
γy

)
− Li2

(
i

x − vt
γy

)] (141)

where Lin(x) is the polylogarithm function. As pointed out
in [44], “[t]he polylogarithm arises in Feynman diagram inte-
grals (and, in particular, in the computation of quantum elec-
trodynamics corrections to the electrons gyromagnetic ratio),
and the special cases n = 2 and n = 3 are called the dilog-
arithm and the trilogarithm, respectively.” This is a further
indication that the interaction of strain energies are the phys-
ical source of quantum interaction phenomena described by
Feynman diagrams as will be seen in Section 7.

6.4.2 Edge dislocation longitudinal strain energy

The longitudinal strain energy of a moving edge dislocation
is given by

WE
‖ =

∫
V
EE
‖ dV (142)

where the strain energy density EE
⊥ is given by (86), viz.

EE
‖ =

1
2
κ̄0 b̄2

 2µ̄0

2µ̄0 + λ̄0

γly

(x − vt)2 + γ2
l y

2

2

(143)

and V is the 4-dimensional volume of the edge dislocation.
The volume element dV in cartesian coordinates is given by
dx dy dz d(ct).

Substituting for EE
‖

, (142) becomes

WE
‖ =

∫
V

1
2
κ̄0 b̄2

 2µ̄0

2µ̄0 + λ̄0

γly

(x − vt)2 + γ2
l y

2

2

dx dy dz d(ct).

(144)

As before, b̄ is taken out of the integral from (106), and the
integral over z is handled by considering the strain energy per

unit length of the dislocation:

WE
‖

`
= 2 κ̄0 b̄2 µ̄2

0

(2µ̄0 + λ̄0)2∫
ct

∫
y

∫
x

b2≤x2+y2≤Λ2

(γly)2(
(x − vt)2 + γ2

l y
2
)2 dx dy d(ct)

(145)

where ` is the length of the dislocation and as before, Λ is a
cut-off parameter corresponding to the radial extent of the dis-
location, limited by the average distance to its nearest neigh-
bours.

The integrand has a functional form similar to that of
(138), and a similar solution behaviour is expected. Evalu-
ating the integral over x [40],

WE
‖

`
= 2 κ̄0 b̄2 µ̄2

0

(2µ̄0 + λ̄0)2

∫
ct

∫
y

dy d(ct)[
1
2

x − vt
(x − vt)2 + (γly)2 +

+
1

2γly
arctan

(
x − vt
γly

) ]√Λ2−y2

√
y2−b2

(146)

where the limits corresponding to the maximum cut-off pa-
rameter Λ and minimum cut-off parameter b are stated ex-
plicitly. Applying the limits of the integration, we obtain

WE
‖

`
= 2 κ̄0 b̄2 µ̄2

0

(2µ̄0 + λ̄0)2

∫
ct

∫
y

dy d(ct){
1
2

√
Λ2 − y2 − vt

(
√

Λ2 − y2 − vt)2 + (γly)2
−

−
1
2

√
y2 − b2 − vt

(
√
y2 − b2 − vt)2 + (γly)2

+

+
1

2γly
arctan

 √
Λ2 − y2 − vt

γly

−
−

1
2γly

arctan

 √
y2 − b2 − vt

γly

 }.

(147)

This integration over y is again found to be intractable,
including that of (140), and likely does not lead to a closed
analytical form. In the arctan Λ integral of (140) and (147),
we can make the approximation

√
Λ2 − y2 ' Λ and evaluate

this term as seen in (141):∫
y

1
γly

arctan
(
Λ − vt
γly

)
dy =

−
i
2

[
Li2

(
−i

Λ − vt
γly

)
− Li2

(
i

Λ − vt
γly

)] (148)

where Lin(x) is the polylogarithm function as seen previously.
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6.4.3 Edge dislocation transverse strain energy

The transverse strain energy of a moving edge dislocation is
given by

WE
⊥ =

∫
V
EE
⊥ dV (149)

where the strain energy density EE
⊥ is given by (90), viz.

EE
⊥ = 2µ̄0 b̄2 c4

v4

{
α4 (3 + γ2)

(x − vt)2 + γ2y2−

−2α2

(
3 + 1

γ2

)
γl γ (x − vt)2 +

(
2γ2

l −
v2

c2

)
γl γ y

2(
(x − vt)2 + γ2

l y
2
) (

(x − vt)2 + γ2y2
) +

+

(3 + γ2)γ2
l (x − vt)2 + 2

(
α2 + γ4

l −
3
8
v4

c4
l

)
γ2

l y
2(

(x − vt)2 + γ2
l y

2
)2

}
(150)

and V is the 4-dimensional volume of the edge dislocation.
The volume element dV in cartesian coordinates is given by
dx dy dz d(ct).

Substituting for EE
⊥ as before, taking b̄ out of the integral

from (106), and handling the integral over z by considering
the strain energy per unit length of the dislocation, (149) be-
comes

WE
⊥

`
= 2µ̄0 b̄2 c4

v4

∫
ct

∫
y

∫
x

b2≤x2+y2≤Λ2

dx dy d(ct)

{
α4 (3 + γ2)

(x − vt)2 + γ2y2−

−2α2

(
3 + 1

γ2

)
γl γ (x − vt)2 +

(
2γ2

l −
v2

c2

)
γl γ y

2(
(x − vt)2 + γ2

l y
2
) (

(x − vt)2 + γ2y2
) +

+

(3 + γ2)γ2
l (x − vt)2 + 2

(
α2 + γ4

l −
3
8
v4

c4
l

)
γ2

l y
2(

(x − vt)2 + γ2
l y

2
)2

}
(151)

where ` is the length of the dislocation and as before, Λ is a
cut-off parameter corresponding to the radial extent of the dis-
location, limited by the average distance to its nearest neigh-
bours.

Again, the integrand has functional forms similar to that
of (138) and (145). A similar, but more complex, solution
behaviour is expected, due to the additional complexity of
(151).

7 Dislocation interactions in quantum physics

As mentioned is Section 6, the basic Feynman diagrams can
be seen to represent screw dislocations as photons, edge dislo-
cations as particles, and their interactions. More specifically,
the external legs of Feynman diagrams that are on mass-shell
representing real particles correspond to dislocations, while
the virtual off mass-shell particles are replaced by the inter-
action of the strain energy densities. The exchange of virtual

particles in QED interactions can be taken as the perturba-
tion expansion representation of the forces resulting from the
overlap of the strain energy density of the dislocations. The
Feynman diagram propagators are replaced by the dislocation
strain energy density interaction expressions.

The properties of Burgers vectors and dislocations [14,
see pp. 25-26] have rules similar to those of Feynman dia-
grams, but not equivalent as virtual particles are replaced by
dislocation strain energy density interactions. A Burgers vec-
tor is invariant along a dislocation line. Two Burgers circuits
are equivalent if one can be deformed into the other with-
out crossing dislocation lines. The resultant Burgers vector
within equivalent Burgers circuits is the same.

Dislocation nodes are points where multiple dislocations
meet. If all the dislocation vectors ξi are taken to be positive
away from a node, then

N∑
i=1

ξi = 0 (152)

for the N dislocations meeting at the node. Burgers vectors
are conserved at dislocation nodes.

In this section, we consider the interactions of disloca-
tions which are seen to result from the force resulting from
the overlap of their strain energy density in the STC [14, see
p. 112].

7.1 Parallel dislocation interactions

From Hirth [14, see pp. 117-118], the energy of interaction
per unit length between parallel dislocations (including screw
and edge dislocation components) is given by

W12

`
= −

µ̄0

2π
(b1 · ξ) (b2 · ξ) log

R
RΛ

−

−
µ̄0

π

µ̄0 + λ̄0

2µ̄0 + λ̄0
(b1 × ξ) · (b2 × ξ) log

R
RΛ

−

−
µ̄0

π

µ̄0 + λ̄0

2µ̄0 + λ̄0

[(b1 × ξ) · R] [(b2 × ξ) · R]
R2

(153)

where ξ is parallel to the z axis, (bi · ξ) are the screw compo-
nents, (bi × ξ) are the edge components, R is the separation
between the dislocations, and RΛ is the distance from which
the dislocations are brought together, resulting in the decrease
in energy of the “system”.

The components of the interaction force per unit length
between the parallel dislocations are obtained by differentia-
tion:

FR

`
= −

∂(W12/`)
∂R

Fθ

`
= −

1
R
∂(W12/`)

∂θ
.

(154)
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Substituting from (153), (154) becomes

FR

`
=

µ̄0

2πR
(b1 · ξ) (b2 · ξ) +

+
µ̄0

πR
µ̄0 + λ̄0

2µ̄0 + λ̄0
(b1 × ξ) · (b2 × ξ)

Fθ

`
=

µ̄0

πR3

µ̄0 + λ̄0

2µ̄0 + λ̄0

[
(b1 · R) [(b2 × R) · ξ] +

+ (b2 · R) [(b1 × R) · ξ]
]
.

(155)

7.2 Curved dislocation interactions

In this section, we extend the investigation of curved disloca-
tions initiated in Section 5, to the interaction energy and in-
teraction force between curved dislocations [14, see pp. 106-
110]. The derivation considers the interaction between two
dislocation loops, but has much more extensive applications,
being extendable to the interaction energy between two arbi-
trarily positioned segments of dislocation lines.

If a dislocation loop 1 is brought in the vicinity of an-
other dislocation loop 2, the stresses originating from loop
2 do work −W12 on loop 1 where W12 is the interaction en-
ergy between the two dislocation loops. The work done on
loop 1 represents a decrease in the strain energy of the to-
tal system. In that case, if W12 is negative, the energy of the
system decreases and an attractive force exists between the
loops [14, see p. 106].

The interaction energy between the two dislocation loops
is given by [14, see p. 108]

W12 = −
µ̄0

2π

∮
C1

∮
C2

(b1 × b2) · (dl1 × dl2)
R

+

+
µ̄0

4π

∮
C1

∮
C2

(b1 · dl1) (b2 · dl2)
R

+

+
µ̄0

2π
µ̄0 + λ̄0

2µ̄0 + λ̄0

∮
C1

∮
C2

(b1 × dl1) · T · (b2 × dl2)
R

(156)

where T is given by

Ti j =
∂2R
∂xi∂x j

. (157)

The force produced by an external stress acting on a dis-
location loop is given by [14, see p. 109]

dF = (b · σ) × dl (158)

where σ is the stress tensor in the medium, b is the Burgers
vector, and dl is the dislocation element. This equation can
be used with (104) to determine the interaction force between
dislocation segments.

As each element dl of a dislocation loop is acted upon by
the forces caused by the stress of the other elements of the

dislocation loop, the work done against these corresponds to
the self-energy of the dislocation loop. The self-energy of a
dislocation loop can be calculated from (156) to give [14, see
p. 110]

Wsel f =
µ̄0

8π

∮
C1=C

∮
C2=C

(b · dl1) (b · dl2)
R

+

+
µ̄0

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0

∮
C1=C

∮
C2=C

(b × dl1) · T · (b × dl2)
R

(159)
where T is as defined in (157).

More complicated expressions can be obtained for inter-
actions between two non-parallel straight dislocations [14,
see pp. 121-123] and between a straight segment of a disloca-
tion and a differential element of another dislocation [14, see
pp. 124-131]. This latter derivation can be used for more ar-
bitrary dislocation interactions.

7.3 Physical application of dislocation interactions

In Quantum Electrodynamics, these correspond to particle-
particle and particle-photon interactions, which are taken to
be mediated by virtual particles. This is in keeping with
the QED picture, but as shown above, particle-particle and
particle-photon interactions physically result from the overlap
of their strain energy density which results in an interaction
force. Again, this improved understanding of the physical
nature of dislocation interactions demonstrates that the inter-
actions do not need to be represented by virtual particle ex-
change as discussed in Section 6.

This theory provides a straightforward physical explana-
tion of particle-particle and particle-photon interactions that
is not based on perturbation theory, but rather on a direct eval-
uation of the interactions.

7.4 Photons and screw dislocation interactions

Screw dislocations interact via the force resulting from the
overlap of the strain energy density of the dislocations in the
STC [14, see p. 112].

As seen in Section 6.2, screw dislocations in the space-
time continuum are identified with the massless, transverse
deformations, photons. As pointed out in [45], it has been
known since the 1960s that photons can interact with each
other in atomic media much like massive particles do. A
review of collective effects in photon-photon interactions is
given in [46].

In QED, photon-photon interactions are known as photon-
photon scattering, which is thought to be mediated by virtual
particles. This is in keeping with the QED picture, but as
shown in this work, photon-photon interactions physically re-
sult from the overlap of their strain energy density. This im-
proved understanding of the physical nature of photon-photon
interactions demonstrates that the interaction does not need to
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be represented by virtual particle exchanges, in that the nature
of the physical processes involved is now understood.

From (153), the energy of interaction per unit length be-
tween parallel screw dislocations (photons) is given by

W ss
12

`
= −

µ̄0

2π
(b1 · ξ) (b2 · ξ) log

R
RΛ

(160)

where ξ is parallel to the z axis, (bi · ξ) are the screw compo-
nents, R is the separation between the dislocations, and RΛ is
the distance from which the dislocations are brought together,
resulting in the reduction in the energy of the 2-photon “sys-
tem”.

From (155), the components of the interaction force per
unit length between the parallel screw dislocations are given
by:

F ss
R

`
=

µ̄0

2πR
(b1 · ξ) (b2 · ξ)

F ss
θ

`
= 0.

(161)

The interaction force is radial in nature, independent of the
angle θ, as expected.

8 Physical explanations of QED phenomena

As we have seen in previous sections, spacetime continuum
dislocations have fundamental properties that reflect those of
phenomena at the quantum level. In particular, the improved
understanding of the physical nature of interactions mediated
by the strain energy density of the dislocations. The role
played by virtual particles in Quantum Electrodynamics is
replaced by the work done by the forces resulting from the
dislocation stresses, and the resulting interaction of the strain
energy density of the dislocations. In this section, we exam-
ine the physical explanation of QED phenomena provided by
this theory, including self-energy and mass renormalization.

8.1 Dislocation self-energy and QED self energies

Dislocation self energies are found to be similar in structure to
Quantum Electrodynamics self energies. They are also diver-
gent if integrated over all of spacetime, with the divergence
being logarithmic in nature. However, contrary to QED, dis-
location self energies are bounded by the density of dislo-
cations present in the spacetime continuum, which results in
an upperbound to the integral of half the average distance be-
tween dislocations. As mentioned by Hirth [14], this has little
impact on the accuracy of the results due to the logarithmic
dependence.

The dislocation self-energy is related to the dislocation
self-force. The dislocation self-force arises from the force
on an element in a dislocation caused by other segments of
the same dislocation line. This process provides an explana-
tion for the QED self-energies without the need to resort to

the emission/absorption of virtual particles. It can be under-
stood, and is particular to, dislocation dynamics as disloca-
tions are defects that extend in the spacetime continuum [14,
see p. 131]. Self-energy of a straight-dislocation segment of
length L is given by [14, see p. 161]:

Wsel f =
µ̄0

4π

(
(b · ξ)2 +

µ̄0 + λ̄0

2µ̄0 + λ̄0
|(b × ξ)|2

)
L

(
log

L
b
− 1

)
,

(162)

where there is no interaction between two elements of the
segment when they are within ±b, or equivalently

Wsel f =
µ̄0

4π

(
(b · ξ)2 +

µ̄0 + λ̄0

2µ̄0 + λ̄0
|(b × ξ)|2

)
L log

L
eb
,

(163)

where e = 2.71828... . These equations provide analytic ex-
pressions for the non-perturbative calculation of quantum self
energies and interaction energies, and eliminate the need for
the virtual particle interpretation.

In particular, the pure screw (photon) self-energy

WS
sel f =

µ̄0

4π
(b · ξ)2 L log

L
eb

(164)

and the pure edge (particle) self-energy

WE
sel f =

µ̄0

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0
|(b × ξ)|2 L log

L
eb

(165)

are obtained from (163), while (163) is also the appropriate
equation to use for the dual wave-particle “system”.

8.2 Dislocation strain energy and QED mass renormal-
ization

This approach also resolves and eliminates the mass renor-
malization problem. This problem arises in QED due to the
incomplete description of particle energies at the quantum
level. This paper shows that the strain energy density of an
edge dislocation, which corresponds to a particle, consists of
a longitudinal dilatation mass density term and a transverse
distortion energy density term, as shown in (49), (50), and
(51).

QED, in its formulation, only uses the transverse distor-
tion strain energy density in its calculations. This is referred
to as the bare mass m0. However, there is no dilatation mass
density term used in QED, and hence no possibility of prop-
erly deriving the mass. The bare mass m0 is thus renormalized
by replacing it with the actual experimental mass m. Using
the longitudinal dilatation mass density term as in this paper
will provide the correct mass m and eliminate the need for
mass renormalization.

Pierre A. Millette. Dislocations in the Spacetime Continuum: Framework for Quantum Physics 305



Volume 11 (2015) PROGRESS IN PHYSICS Issue 4 (October)

9 Discussion and conclusion

This paper provides a framework for the physical description
of physical processes at the quantum level based on dislo-
cations in the spacetime continuum within the theory of the
Elastodynamics of the Spacetime Continuum (STCED).

We postulate that the spacetime continuum has a granu-
larity characterized by a length b0 corresponding to the small-
est elementary Burgers dislocation-displacement vector pos-
sible. One inference that comes out of this paper is that the
basic structure of spacetime consists of a lattice of cells of
size b0, rather than the “quantum foam” currently preferred
in the literature. The “quantum foam” view may well be a
representation of the disturbances and fragmentation of the
b0 lattice due to dislocations and other defects in the space-
time continuum.

There are two types of dislocations: Edge dislocations
correspond to dilatations (longitudinal displacements) which
have an associated rest-mass energy, and are identified with
particles. Screw dislocations correspond to distortions (trans-
verse displacements) which are massless and are identified
with photons when not associated with an edge dislocation.
Arbitrary mixed dislocations can be decomposed into a screw
component and an edge component, giving rise to wave-parti-
cle duality.

We consider both stationary and moving dislocations, and
find that stationary dislocations are simpler to work with due
to their cylindrical polar symmetry, but are of limited appli-
cability. Moving screw dislocations are found to be Lorentz
invariant. Moving edge dislocations involve both the speed of
light corresponding to transverse displacements and the speed
of longitudinal displacements cl. However, the speed of light
c upper limit also applies to edge dislocations, as the shear
stress becomes infinite everywhere at v = c, even though the
speed of longitudinal deformations cl is greater than that of
transverse deformations c.

We calculate the strain energy density of both stationary
and moving screw and edge dislocations. The strain energy
density of the screw dislocation is given by the transverse dis-
tortion energy density, and does not have a mass component.
On the other hand, the dilatation strain energy density of the
edge dislocation is given by the (massive) longitudinal dilata-
tion energy density, and the distortion (massless) strain en-
ergy density of the edge dislocation is given by the transverse
distortion energy density. This provides a solution to the mass
renormalization problem in QED. Quantum Electrodynamics
only uses the equivalent of the transverse distortion strain en-
ergy density in its calculations, and hence has no possibility
of properly deriving the mass, which is in the longitudinal di-
latation massive strain energy density term that is not used in
QED.

The theory provides an alternative model for Quantum
Electrodynamics processes, without the mathematical forma-
lism of QED. In this framework, self-energies and interac-

tions are mediated by the strain energy density of the disloca-
tions. The role played by virtual particles in Quantum Elec-
trodynamics is replaced by the interaction of the strain energy
densities of the dislocations. This theory is not perturbative
as in QED, but rather calculated from analytical expressions.
The analytical equations can become very complicated, and
in some cases, perturbative techniques will need to be used to
simplify the calculations, but the availability of analytical ex-
pressions permits a better understanding of the fundamental
physical processes involved.

We provide examples of dislocation-dislocation interac-
tions, applicable to photon-photon, photon-particle, and par-
ticle-particle interactions, and of dislocation self-energy cal-
culations, applicable to photons and particles. These equa-
tions provide analytical expressions for the non-perturbative
calculation of quantum self energies and interaction energies,
and provides a physical process replacement for the virtual
particle interpretation used in QED.

The theory proposed in this paper is formulated in a for-
malism based on Continuum Mechanics and General Rela-
tivity. This formalism is different from that used in Quantum
Mechanics and Quantum Electrodynamics, and is currently
absent of quantum states and uncertainties as is common-
place in quantum physics. Both formalisms are believed to be
equivalent representations of the same physical phenomena.
It may well be that as the theory is developed further, the for-
malism of orthonormal basis function sets in Hilbert spaces
will be introduced to facilitate the solution of problems.

As shown in [47], it is a characteristic of Quantum Me-
chanics that conjugate variables are Fourier transform pairs of
variables. The Heisenberg Uncertainty Principle thus arises
because the momentum p of a particle is proportional to its
de Broglie wave number k. Consequently, we need to differ-
entiate between the measurement limitations that arise from
the properties of Fourier transform pairs of conjugate vari-
ables, and any inherent limitations that may or may not ex-
ist at the quantum level, independently of the measurement
process. Quantum theory currently assumes that the inher-
ent limitations are the same as the measurement limitations.
As shown in [47], quantum measurement limitations affect
our perception of the quantum environment only, and are not
inherent limitations of the quantum level, i.e. there exists a
physical world, independently of an observer or a measure-
ment, as seen here. See also the comments in [48, pp. 3–15].

This framework lays the foundation to develop a theory
of the physical description of physical processes at the quan-
tum level, based on dislocations in the spacetime continuum,
within the theory of the Elastodynamics of the Spacetime
Continuum. The basis of this framework is given in this ini-
tial paper. This framework allows the theory to be fleshed
out in subsequent investigations. Disclinations in the space-
time continuum are expected to introduce new physical pro-
cesses at the quantum level, to be worked out in future in-
vestigations. Additional spacetime continuum fundamental
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processes based on ongoing physical defect theory investiga-
tions will emerge as they are applied to STCED, and will lead
to further explanation of current quantum physics challenges.
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42. Brown H. R. and Harré R. Philosophical Foundations of Quantum Field
Theory. Clarendon Press, Oxford, 1988, p. 3.

43. Hansson J. On the Origin of Elementary Particle Masses. Progress in
Physics, 2014, v. 10, 45–47.

44. Wolfram MathWorld Polylogarithm. mathworld.wolfram.com/Polylog-
arithm.html, June 2015.

45. Lukin M. D. Nonlinear Optics and Quantum Entanglement of Ultra-
Slow Single Photons. arXiv: quant-ph/9910094.

46. Marklund M., Shukla P. K. Nonlinear Collective Effects in Pho-
ton–Photon and Photon–Plasma Interactions. Rev. Mod. Phys., 2006,
v. 78, 591–637. arXiv: hep-ph/0602123.

47. Millette P. A. The Heisenberg Uncertainty Principle and the Nyquist-
Shannon Sampling Theorem. Progress in Physics, 2013, v. 9 (3), 9–14.
arXiv: quant-ph/1108.3135.

48. Auyang S. Y. How is Quantum Field Theory Possible? Oxford Univer-
sity Press, Oxford, 1995.

Pierre A. Millette. Dislocations in the Spacetime Continuum: Framework for Quantum Physics 307



Volume 11 (2015) PROGRESS IN PHYSICS Issue 4 (October)

A Planck Vacuum Pilot Model for Inelastic Electron-Proton Scattering
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This paper describes the scattering of an incident electron from a proton initially at
rest, under the assumptions: that the structureless electron interacts directly with the
proton and its structure; that the energy and “size” of the electron are determined by
its de Broglie radii; and that the shape of the inelastic scattering curve depends upon
how deeply the electron core penetrates the proton structure. Deep inelastic scattering
ends when the electron is small enough (energetic enough) to penetrate and destroy the
proton core and its derived mass.

1 Introduction

The current theory describing electron-proton (e-p) scatter-
ing is the Standard Model theory, where the incident electron
interacts with the proton via the exchange of a single virtual
photon [1, p. 160]. The present paper offers an alternative the-
ory that is based on the emerging Planck vacuum (PV) theory,
where the electron interacts directly with the proton [2–5].

In the PV theory both the electron and proton particles are
assumed to possess an invisible (vacuum) substructure, while
in addition the proton possesses a visible free-space struc-
ture due to its positive charge acting on the degenerate PV
quasi-continuum (Appendix A). The particle / PV forces and
potentials, and their corresponding Compton and de Broglie
radii, are associated with this vacuum substructure. The term
“structure” by itself refers in what follows exclusively to the
free-space proton structure.

2 Electron energy and size

The electron core (−e∗,me) exerts the two-term coupling for-
ce

(−e∗)(−e∗)
r2 − mec2

r
(1)

on the PV state, where the first (−e∗) belongs to the electron
and the second (−e∗) to the separate Planck particles making
up the PV continuum. This force difference vanishes

e2
∗

r2
e
− mec2

re
= 0 (2)

at the electron Compton radius re (= e2
∗/mec2). Treating this

vanishing force as a Lorentz invariant constant then leads to
the important Compton-(de Broglie) relations for the electron
[6]

re · mec2 = rd · cp = rL · E = e2
∗ (= c~) (3)

where p (= meγv) and E (= meγc2) are the relativistic mo-
mentum and energy of the electron, and e∗ is the massless
bare charge. The radii rd (= re/βγ) and rL (= re/γ) are the
electron de Broglie radii in the space and time directions on
the Minkowski space-time diagram, where β = v/c < 1 and
γ = 1/

√
1 − β2.

From (3) the size of the electron is taken to be the de
Broglie radii

rd =
re

βγ
≈ re

γ
= rL (4)

where the approximation applies to the high energy (β ≈ 1)
calculations of the present paper. With (4) inserted into (3),

cp =
e2
∗

rd
≈ e2

∗
rL

= E (5)

leading to

E = cp =
e2
∗

rd
. (6)

Thus to reduce the electron size to the proton Compton radius
(rd = rp) requires an electron energy equal to E = e2

∗/rp.
The comparisons to follow utilize

E =
e2
∗

rd
=

e2
∗

rp

rp

rd
= mpc2 rp

rd
(7)

to convert electron energies to rd/rp ratios. The Lorentz in-
variance of (2) ensures that equations (3) and (7) apply in any
inertial reference frame.

3 Proton structure

The proton substructure arises from the two-term coupling
force [7]

(e∗)(−e∗)
r2 +

mpc2

r
(8)

the proton core (e∗,mp) exerts on the PV state, where the force
vanishes at the proton Compton radius rp (= e2

∗/mpc2).
The proton also possesses a free-space structure (in con-

tradistinction to the electron) in the form of a spherical rest-
frame “collar” surrounding the proton core (Appendix A).
This collar may affect the formation of the proton de Broglie
radii; if, indeed, these radii even exist for the proton. Either
way, the following scattering calculations employ only the
proton Compton radius from the vanishing of (8).
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Fig. 1: A highly schematic cross section of the proton structure and
four electron-core “trajectories”. The radii rp and r2 (= rp/3.15)
represent respectively the proton Compton radius of the substructure
and the outer radius of the free-space proton structure.

4 e-p scattering

A highly schematic diagram of the proton cross section is pre-
sented in Fig. 1, where rp is the substructure Compton radius
for reference, r2 (= rp/3.15) is the outer radius of the proton
structure on whose surface resides the apparent charge e of
the proton, and r0 is the radius of the proton core. The lat-
ter radius is assumed to be no larger than rp/39000 [7]. Also
shown are four electron-core “trajectories” A, B, C, and D,
where A and B are propagating in free space and thus repre-
sent two elastic e-p scatterings.

Trajectory C (r0 < rd < r2) goes through the proton
structure, where the electron continuously looses energy (due
to excitations of that structure) between its entry and exit
points c and c′. Furthermore, since the electron possesses a de
Broglie radius (with a corresponding de Broglie wavelength
2πrd), it exhibits a wave-like nature throughout the trajectory.
This wave-like nature, and the finite length (c-c’) of the tra-
versed section, produce a resonance within the measured scat-
tering data.

Finally, when the electron energy is great enough (rd �
r0) to allow the electron core to penetrate the proton core, this
highly energized electron destroys the proton core, leading to
the destruction of the proton mass and Compton radius, with
a resulting hadron debris field (see Fig. 8.13 in [1, p. 199]).

Fig. 2 shows the experimental scattering data for a beam
of 4.879 GeV electrons (rd = rp/5.2 in (7)) from a proton
at rest. The elastic peak at the far right of the figure is rep-
resented by B in Fig. 1 with rd = r2. (This elastic peak is
shifted down from the incident electron energy 4.879 GeV
to approximately 4.55 GeV (rd = rp/4.9) by recoil effects.)
From the far right to approximately 2.9 GeV on the left the
scattering is represented by C in Fig. 1, where the destruction
of the proton core has not yet taken place. The three inelastic

Fig. 2: Elastic and inelastic electron scattering from protons, where
E′ represents the energy of the scattered electron [9, p. 14] [10]. The
scattering angle is 10◦. Electron loss increases from right to left.

resonance peaks from left to right in the figure correspond to
rd ≈ rp/(3.8, 4.1, 4.5) from (7).

Fig. 3 shows a repetition of Fig. 2 in a different format, for
various scattering angles of the electron. Once more, the de-
struction of the proton core has not taken place, but the idea of
the resonance scattering in the second and fourth paragraphs
above is reinforced by the set of five three-peaked curves in
the figure. The curves become monotonic when the trajectory
between c and c′ is deep enough to prevent constructive and
destructive interference between reflections at c and c′. Fur-
thermore, when the trajectory is deeper still, D (rd ≤ r0), the
electron core will scatter off the proton core.

Again, the proton core is destroyed when E � mpc2

(rd � r0). In this case the incident electron energy is suffi-
cient to overcome the loss sustained in crossing the structure
interval (r2 − r0 ≈ r2) to penetrate the proton core.

Appendix A: Structure

This appendix is a brief review of why the proton is structured
and the electron is not [7].

The electron and proton are assumed to exert the two cou-
pling forces

F(r) = ±
(

e2
∗

r2 −
mc2

r

)
(A1)

on the PV state, where the plus and minus signs refer to the
electron and proton respectively. In effect the negative charge
of the electron core (−e∗,me) in (1) repels the negative PV
charges (−e∗) away from this core; while the positive charge
in the proton core (e∗,mp) attracts the PV charges. These
oppositely charged Coulomb forces (the first terms in (A1)),
close to their respective cores, are the fundamental cause of
the structureless electron and the structured proton.

The potential energies associated with (A1) are defined
by [7]

V(r) − V0 =

∫ r

0+

F(r′) dr′ with V(rc) = 0 (A2)

William C. Daywitt. A Planck Vacuum Pilot Model for Inelastic Electron-Proton Scattering 309



Volume 11 (2015) PROGRESS IN PHYSICS Issue 4 (October)

Fig. 3: Inelastic e-p scattering as a function of electron scattering
angle [9, p. 17] [11]. Electron loss increases from left to right

where rc (= e2
∗/mc2) is the Compton radius of either particle

and the 0+ accounts for the finite (but small) size of the cores.
This definition leads to

Vp(r) ≥ 0 and Ve(r) ≤ 0 (A3)

where Vp and Ve are the proton / and electron / PV coupling
potentials.

It is shown in the Klein paradox [8, p. 127] that a suffi-
ciently strong positive potential acting on the vacuum state
can force a portion of that state into free space, where that
part of the vacuum can then be attacked by free-space parti-
cles. Thus the positive and negative potentials in (A3) imply
that the proton core, but not the electron core, forces a small
spherical (in the core’s rest frame) portion of the vacuum into
the free space around the proton core. This free-space vacuum
“collar” is identified in the PV theory as the proton structure.
Furthermore, this structure leads to an apparent spread in the
charge e∗ of the proton core (Appendix B).

Appendix B: Charge spread

The polarization of the proton structure by the proton core
leads to an apparent spread of the proton charge that is rough-
ly expressed in the proton electric field as

Ep(r) =
e(r)
r2 (B1)

where the spread is

e(r) =


e∗ , r < r0
< e∗ , r0 < r < r2
e = α1/2e∗ , r2 ≤ r

(B2)

r2 = rp/3.15, and α (≈ 1/137) is the fine structure constant.
The radius r2 defines the outer extent of the proton structure.

An important characteristic of this result is the large charge
gradient

∆e
∆r

=
e − e∗
r2 − r0

≈ −e∗(1 −
√
α)

r2
≈ −0.92e∗

r2
(B3)

between the core charge e∗ and the observed proton charge
e at r2. This result explains a similar gradient in the QED
spread depicted in Fig. 11.6 of [9, p. 319].
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Antiparticles and Charge Conjugation in the Planck Vacuum Theory
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This short paper defines charge conjugation in terms of the Planck vacuum substructure
rather than the particle equation of motion. As such, the corresponding operator applies
to the proton as well as the electron. Results show that, like their electron and pro-
ton counterparts, the positron is structureless while the antiproton possesses a structure
consisting of a small vacuum “collar” surrounding its charged core.

1 Introduction

At present the Planck vacuum (PV) theory includes a model
for both the electron and proton and the PV state to which
these two particles are coupled [1]. But there is a problem:
while the theory suggests a source for the negative bare char-
ge (−e∗) of the electron (the current PV state itself), it is mute
when it comes to the positive bare charge (e∗) of the proton.
What follows assumes a bifurcated vacuum state that includes
both negative and positive bare charges (∓e∗). This bifur-
cated state is understood to mean that at each point in free
space there exists a PV subspace consisting of a charge dou-
blet (∓e∗), to either branch of which a free particle charge can
be coupled.

The charge conjugation operator C from the quantum the-
ory is an operator that changes particles into antiparticles, and
visa versa [2, p. 118]. An analogous operator is defined below
to expand the PV model to include the particle-antiparticle
symmetries and a source for the proton charge (e∗).

2 Charge conjugation

The electron and proton cores, (−e∗,me) and (e∗,mp) respec-
tively, exert the two particle/PV coupling forces

±

(
e2
∗

r2 −
mc2

r

)
(1)

on the PV state, where the plus and minus signs in (1) refer
to the electron and proton respectively. At their respective
Compton radii these forces reduce to

Fe =
(−e∗)(−e∗)

r2
e

−
mec2

re
=

e2
∗

r2
e
−

mec2

re
= 0 (2)

and

Fp =
(e∗)(−e∗)

r2
p

+
mpc2

rp
= −

e2
∗

r2
p
−

mpc2

rp

 = 0 (3)

where re (= e2
∗/mec2) and rp (= e2

∗/mpc2) are the electron and
proton Compton radii. The first (−e∗) and second (−e∗) in (2)
belong to the electron core and PV charges respectively. The
charge (e∗) in (3) belongs to the proton core. The vanishing
forces Fe and Fp are Lorentz invariant constants; and the two

forces on the right side of (2) are the “weak” forces, while the
two on the right side of (3) are the “strong” forces.

If it is assumed that the charge conjugation operator C′

applies only to free-particle charges, then from (2) and (3)

C′Fe =
(e∗)(−e∗)

r2
e

−
mec2

re
= −

(
e2
∗

r2
e

+
mec2

re

)
, 0 (4)

and

C′Fp =
(−e∗)(−e∗)

r2
p

+
mpc2

rp
=

e2
∗

r2
p

+
mpc2

rp
, 0 (5)

both of which destroy the electron and proton Compton radii
because the equations are nonvanishing. Since the correspon-
ding antiparticles should possess a Compton radius like their
particle counterparts, the C′ operator is not a valid charge
conjugation operator.

If it is assumed, however, that the charge conjugation op-
erator C applies to both the free-space particle charge and the
PV charge doublet, then (2) and (3) yield

CFe =
(e∗)(e∗)

r2
e
−

mec2

re
=

e2
∗

r2
e
−

mec2

re
= 0 (6)

and

CFp =
(−e∗)(e∗)

r2
p

+
mpc2

rp
= −

e2
∗

r2
p
−

mpc2

rp

 = 0 (7)

where both the electron and proton Compton radii are pre-
served in their antiparticles. Equations (6) and (7) imply
that the equations in (1) are also the antiparticle/PV coupling
forces. It is clear from the first charges in (6) and (7), (e∗)
and (−e∗), that the positron is positively charged and that the
antiproton carries a negative charge.

3 Comments

The second charges (−e∗) in the first terms of (2) and (3),
and the second charges (e∗) in the first terms of (6) and (7),
suggest that free particles and their antiparticles exist in two
separate spaces, corresponding respectively to the negative
and positive branches of the PV charge doublet.

In addition to the C operator preserving electron and pro-
ton Compton radii, the form of the first terms in (6) and (7)
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imply that the positron is structureless and that the antiproton
has structure [1, App. A]. This mirrors those same qualities
in the electron and proton, the first terms in (2) and (3).

As an aside, it is interesting to apply C to the electron
equation of motion. The Dirac equation for the electron can
be expressed as [2, p. 74]

ic~
(
∂

c∂t
+ αα · ∇

)
ψ = mec2βψ (8)

or, using c~ = e2
∗,[

i(−e∗)(−e∗)
(
∂

c∂t
+ αα · ∇

)
− mec2β

]
ψ = 0 (9)

where the first (−e∗) belongs to the electron and the second
to the negative branch of the PV charge doublet. The corre-
sponding positron equation of motion is then obtained from
the charge conjugation of (9)

C
[
i(−e∗)(−e∗)

(
∂

c∂t
+ αα · ∇

)
− mec2β

]
ψ

=

[
i(e∗)(e∗)

(
∂

c∂t
+ αα · ∇

)
− mec2β

]
ψc = 0 (10)

where ψc is the positron spinor that obeys the same equation
(9) as the electron spinor ψ. Due to the second (e∗) in (10), it
is clear that the positron belongs in the positive branch of the
PV doublet.

The same calculations in (8)–(10) are not applicable to the
proton particle because, due to the vacuum “collar” (of radius
rp/3.15) surrounding the proton core (e∗,mp), the proton does
not obey a Dirac equation of motion. In effect, the proton
cannot be modeled as a point charge because of this “collar”,
even though its core (e∗,mp) is orders-of-magnitude smaller
than its Compton radius rp.
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and the Derivation of Planck’s Constant
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In a previous paper, a framework for the physical description of physical processes at

the quantum level based on dislocations in the spacetime continuum within STCED

(Spacetime Continuum Elastodynamics) was proposed and it was postulated that the

spacetime continuum has a granularity characterized by a length b0 corresponding to

the smallest elementary Burgers dislocation vector possible. Based on the identification

of screw dislocations in the spacetime continuum with photons, the relation between

the Burgers constant b0 and Planck’s constant h is determined. Planck’s constant is

expressed in terms of the spacetime continuum constants. The calculated value of b0 is

found to be equivalent to the Planck length within the approximations of the derivation.

Numerical values of the spacetime constants κ̄0, µ̄0 and ρ̄0 are derived. A consistent

set of the spacetime constants is proposed based on the Burgers spacetime dislocation

constant b0 being equivalent to the Planck length ℓP.

1 Introduction

A previous paper [1] provided a framework for the phys-

ical description of physical processes at the quantum level

based on dislocations in the spacetime continuum within the

theory of the Elastodynamics of the Spacetime Continuum

(STCED). Dislocations in the spacetime continuum represent

the fundamental displacement processes that occur in its stru-

cture, corresponding to basic quantum phenomena and quan-

tum physics in STCED.

Spacetime Continuum Elastodynamics (STCED) [2–5] is

based on analyzing the spacetime continuum within a con-

tinuum mechanical and general relativistic framework. As

shown in [2], for an isotropic and homogeneous spacetime

continuum, the STC is characterized by the stress-strain rela-

tion

2µ̄0ε
µν + λ̄0g

µνε = T µν (1)

where T µν is the energy-momentum stress tensor, εµν is the

resulting strain tensor, and

ε = εαα (2)

is the trace of the strain tensor obtained by contraction. λ̄0 and

µ̄0 are the Lamé elastic constants of the spacetime continuum:

µ̄0 is the shear modulus and λ̄0 is expressed in terms of κ̄0, the

bulk modulus:

λ̄0 = κ̄0 − µ̄0/2 (3)

in a four-dimensional continuum.

A dislocation is characterized by its dislocation vector,

known as the Burgers vector, bµ in a four-dimensional con-

tinuum, defined positive in the direction of a vector ξµ tangent

to the dislocation line in the spacetime continuum [6, pp. 17–

24].

As discussed in [1], the spacetime continuum, at the quan-

tum level, is assumed to have a granularity characterized by

a length b0 corresponding to the smallest elementary Burgers

dislocation vector possible in the STC. Then the magnitude

of a Burgers vector can be expressed as a multiple of the ele-

mentary Burgers vector:

b = nb0. (4)

We find that b is often divided by 2π in dislocation equations,

and hence the constant

b̄ =
b

2π
, (5)

is also defined.

In this paper, we explore the relation between the space-

time Burgers dislocation constant b0 and Planck’s constant,

and derive the value of the spacetime continuum constants.

2 Screw dislocations in quantum physics

There are two types of dislocations [1]: 1) Edge dislocations

corresponding to dilatations, longitudinal displacements with

an associated rest-mass energy, are identified with particles,

and 2) screw dislocations corresponding to distortions, trans-

verse displacements which are massless, are identified with

photons. Arbitrary mixed dislocations can be decomposed

into a screw component and an edge component, giving rise

to wave-particle duality [5].

Hence screw dislocations in the spacetime continuum are

massless, transverse deformations, and are identified specif-

ically with photons. As shown in [1], the screw dislocation

Burgers vector is equal to the wavelength of the screw dislo-

cation

b = λ. (6)

This result is illustrated in Fig. 1.

If we consider a stationary screw dislocation in the space-

time continuum, with cylindrical polar coordinates (r, θ, z),
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Fig. 1: A wavelength of a screw dislocation.

with the dislocation line along the z-axis (see Fig. 2), then the

Burgers vector is along the z-axis and is given by br = bθ = 0,

bz = b, the magnitude of the Burgers vector.

The only non-zero component of the deformation is given

by [6, pp. 60–61]

uz =
b

2π
θ = b̄ tan−1 y

x
. (7)

Similarly, the only non-zero components of the stress and

strain tensors are given by

σθz =
b

2π

µ̄0

r

εθz =
b

4π

1

r

(8)

respectively.

The strain energy density of the screw dislocation is given

by the transverse distortion energy density [2, Eq. (74)]. The

non-zero components of the strain tensor are as defined in (8).

Hence

E⊥ = µ̄0

(
εθz

2 + εzθ
2
)
. (9)

Substituting from (8),

E⊥ =
µ̄0 b2

8π2

1

r2
= E. (10)

3 Planck’s constant

Based on our identification of screw dislocations in the space-

time continuum with photons, we can determine the relation

between the Burgers constant b0 and Planck’s constant h.

Even though the photon is massless, its energy is given by

the strain energy density of the screw dislocation, equivalent

to the transverse distortion energy density. As shown in [2,

Eq. (147)],

p̂2c2 = 32κ̄0 E⊥, (11)

where p̂ is the momentum density. For a screw dislocation,

substituting for E⊥ from (10) in (11), we obtain

p̂2c2 = 32κ̄0
µ̄0 b2

8π2

1

r2
. (12)

The kinetic energy density p̂c has to be equivalent to the

wave energy density ĥν for the screw dislocation (photon):

p̂c = ĥν. (13)

The photon’s energy is given by

hν =

∫

V

ĥν dV = ĥνV (14)

where V is the volume of the screw dislocation. We consider

the smallest Burgers dislocation vector possible and replace b

with the elementary Burgers dislocation vector b0 and V with

the smallest volume V0 to derive Planck’s constant. Combin-

ing (14), (13) and (12), (14) becomes

h =

√
16κ̄0 µ̄0 b0

2

(2πr)2

V0

ν
. (15)

Using (6), the frequency ν = c/λ becomes ν = c/b0 for

the smallest Burgers dislocation vector considered. Substitut-

ing into (15), the equation becomes

h =
4
√
κ̄0 µ̄0 b0

2πr

V0b0

c
. (16)

The volume of one wavelength of the screw dislocation can

be approximated by a cylinder and, using (6), written as

V = πr2λ = πr2b, (17)

which in the limit as b→ b0, becomes

V0 = πr
2b0. (18)

Substituting for V0 into (16), the equation becomes

h =
4
√
κ̄0 µ̄0 b0

2πr

πr2b2
0

c
. (19)

Fig. 2: A stationary screw dislocation in cylindrical polar coordi-

nates (r, θ, z) [6, p. 60].
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Simplifying,

h =
2
√
κ̄0 µ̄0

c
rb3

0, (20)

and in the limit as r approaches b0, becomes

h = 2

√
κ̄0 µ̄0 b4

0

c
(21)

where the units of h are J-s as expected. This is the basic def-

inition of Planck’s constant h in terms of the Lamé spacetime

constants and the Burgers spacetime dislocation constant b0.

This relation can be further simplified using µ̄0 = 32κ̄0
from [2, Eq. (150)]. Then

h = 8
√

2
κ̄0 b0

4

c
=

1

2
√

2

µ̄0 b0
4

c
. (22)

Numerically,

µ̄0 b0
4 = 2

√
2 hc = 5.8 × 10−25 J m. (23)

The value of the spacetime shear modulus µ̄0 is not a known

physical constant, neither is the value of the spacetime bulk

modulus κ̄0. However, Macken [8] has derived a value of κ̄0 =

4.6×10113 J/m3 which as we will see in Section 4 is expected

to be a valid estimate. Using µ̄0 = 32κ̄0 from Millette [2,

Eq. (150)], this yields a value of

µ̄0 = 1.5 × 10115 J/m3. (24)

Note that the units can be expressed equivalently as N/m2 or

J/m3. Substituting for µ̄0 in (23), we obtain the value of the

elementary Burgers vector

b0 = 1.4 × 10−35 m. (25)

This value compares very favorably with the Planck length

1.6 × 10−35 m. Given the approximations used in its deriva-

tion, this suggests that the elementary Burgers vector b0 and

the Planck length are equivalent.

With these constants, we are now in a position to calculate

the remaining unknown spacetime constant, the density of the

spacetime continuum ρ̄0. Using the relation [2]

c =

√
µ̄0

ρ̄0

, (26)

the density of the spacetime continuum is

ρ̄0 = 1.7 × 1098 kg/m3. (27)

4 Analytic form of constants b0 and κ̄0

Blair [7, p. 3–4] writes Einstein’s field equation as

T =
c4

8πG
G,

where T is the stress energy tensor, G is the Einstein curvature

tensor and G is the universal gravitational constant. He notes

the very large value of the proportionality constant. This leads

him to point out that spacetime is an elastic medium that can

support waves, but its extremely high stiffness means that ex-

tremely small amplitude waves have a very high energy den-

sity. He notes that the coupling constant c4/8πG can be con-

sidered as a modulus of elasticity for spacetime, and identifies

the quantity c3/G with the characteristic impedance of space-

time [7, p. 45].

From this, Macken [8] derives an “interactive bulk modu-

lus of spacetime”, which we identify with the spacetime con-

tinuum bulk modulus, given by

κ̄0 =
c7

~G2
. (28)

The result obtained for the numerical value of b0 and its close

correspondance to the Planck length suggests that the value

of κ̄0 proposed in [8] is correct. From Millette [2, Eq. (150)]

we then have

µ̄0 = 32
c7

~G2
. (29)

From (23), we can write

b0
4 = 2

√
2

hc

µ̄0

. (30)

Substituting from (29), this relation becomes

b0
4 =

√
2π

8

~
2G2

c6
(31)

and finally

b0 =

(
π

4
√

2

) 1
4

√
~G

c3
= 0.86 ℓP (32)

where ℓP is Planck’s length, defined as [9]

ℓP =

√
~G

c3
. (33)

Hence, as mentioned in Section 3, this suggests that the ele-

mentary Burgers dislocation vector b0 and the Planck length

ℓP are equivalent within the approximations of the derivation.

5 Recommended constants

Starting from the statement that the Burgers spacetime dislo-

cation constant b0 is equivalent to the Planck length ℓP, we

derive the constant of proportionality of (21). We thus set

h = k

√
κ̄0 µ̄0 b4

0

c
(34)
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where k is the improved constant of proportionality for the

relation. Substituting for κ̄0 from (28), for µ̄0 from (29), and

setting b0 = ℓP from (33), the equation becomes

h = k
√

32
c7

~G2

1

c

~
2G2

c6
(35)

from which we obtain

k =
π

2
√

2
. (36)

Hence, with the Burgers spacetime dislocation constant

b0 equivalent to the Planck length ℓP, the basic definition of

Planck’s constant h in terms of the Lamé spacetime constants

and the Burgers spacetime dislocation constant b0 is given by

h =
π

2
√

2

√
κ̄0 µ̄0 b4

0

c
. (37)

In terms of κ̄0, we have

h = 2π
κ̄0 b4

0

c
(38)

or

~ =
κ̄0 b4

0

c
(39)

and in terms of µ̄0, we have

h =
π

16

µ̄0 b4
0

c
. (40)

As stated, the Burgers spacetime dislocation constant b0 is

given by

b0 = ℓP =

√
~G

c3
(41)

and the spacetime continuum Lamé constants are as per (28)

and (29):

κ̄0 =
c7

~G2

µ̄0 = 32
c7

~G2
.

(42)

It is recommended that the relations in this section be retained

as the official definition of these constants.

6 Discussion and conclusion

We have expressed Planck’s constant in terms of the space-

time continuum constants κ̄0, µ̄0, b0, and the speed of light

c. The calculated value of b0 compares very favorably with

the Planck length and suggests that the elementary Burgers

vector b0 and the Planck length are equivalent within the ap-

proximations of the derivation. An estimate of the numerical

values of the spacetime constants κ̄0, µ̄0 and ρ̄0 is also ob-

tained, based on Macken’s [8] derived value of κ̄0 which is

found to be a valid estimate, given the agreement between b0

and the Planck length ℓP.

A consistent set of recommended spacetime constants is

obtained based on setting the Burgers spacetime dislocation

constant b0 equivalent to the Planck length ℓP.
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Quantum Gravity Experiments
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A new quantum gravity experiment is reported with the data confirming the generali-
sation of the Schrödinger equation to include the interaction of the wave function with
dynamical space. Dynamical space turbulence, via this interaction process, raises and
lowers the energy of the electron wave function, which is detected by observing conse-
quent variations in the electron quantum barrier tunnelling rate in reverse-biased Zener
diodes. This process has previously been reported and enabled the measurement of the
speed of the dynamical space flow, which is consistent with numerous other detection
experiments. The interaction process is dependent on the angle between the dynamical
space flow velocity and the direction of the electron flow in the diode, and this depen-
dence is experimentally demonstrated. This interaction process explains gravity as an
emergent quantum process, so unifying quantum phenomena and gravity. Gravitational
waves are easily detected.

1 Introduction

The quantum theory of gravity explains the gravitational ac-
celeration of matter as caused by the refraction of quantum
waves by the time dependence and spatial inhomogeneities
of the dynamical space flow [1]. This has been tested against
numerous experimental gravitational phenomena [2]: bore
hole g anomalies, flat spiral galaxy rotation curves, black
hole systematics and star orbit data [3], lensing of light by
stars and galaxies, expanding universe supernova redshift-
brightness data without need for dark matter or dark energy
[4], anisotropic Brownian motion [5], directional dependence
of nuclear decay rates [6]. The key initial experiments de-
tected the dynamical space using light speed anisotropy gas-
mode Michelson optical interferometers and EM speed aniso-
tropy in RF coaxial cables. More recently quantum detectors
have been discovered that directly detected the space flow [7,
8]. All these different experimental techniques reveal a turbu-
lent space flow speed from direction RA ∼ 4.5hrs, Dec=80◦S,
with a speed of ∼500 km/s. These velocities are moderated
over a year by the orbital motion of the Earth.

The dynamical space quantum detectors, which use re-
verse biased Zener Diodes, Fig. 1 and Fig. 2, have given rise
to a new critical test of the quantum theory of gravity, re-
ported herein, namely an orientation dependent effect, which
directly tests the modified Schrödinger equation which in-
cludes the effects of the dynamical space. This uses collo-
cated quantum detectors which are either in parallel configu-
ration or anti-parallel configuration, Fig. 3.

2 Quantum gravity

Dynamical space is a phenomenon repeatedly detected by
a variety of experimental techniques [2]. The Schrödinger
equation must be extended to include the dynamical space by
using the Euler time derivative ∂/∂t → ∂/∂t +v(r, t)·∇, where
v(r, t) is the classical field description of the dynamical space

Fig. 1: Left: Circuit of Zener Diode Space Flow Detector, showing
1.5 V AA battery, two 1N4728A zener diodes operating in reverse
bias mode, and having a Zener voltage of 3.3 V, and resistor R=

10 KΩ. Voltage V across resistor is measured and used to determine
the turbulent space flow driven fluctuating tunnelling current through
the Zener diodes. Correlated currents from two collocated detectors
are shown in Fig. 4. Right: Photo of detector with 5 Zener diodes in
parallel.

velocity:

i~
∂ψ(r, t)
∂t

= −
~2

2m
∇2ψ(r, t) + V(r, t)ψ(r, t)

−i~v(r, t)·∇ψ(r, t) .
(1)

Here v(r, t) is the velocity field describing the dynami-
cal space at a classical field level, and the coordinates r give
the relative location of ψ(r, t) and v(r, t), relative to a Eu-
clidean embedding space, and also used by an observer to
locate structures. This is not an aether embedded in a non-
dynamical space, but a dynamical space which induces an
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Fig. 2: Electron wave function after barrier quantum transmission
and reflection from the LHS, with p and n denoting semiconduc-
tor type, showing partially transmitted component and partially re-
flected component, when the diode is operated in reverse-bias mode,
as shown in Fig. 1. Space flow fluctuations raise and lower the en-
ergy of the incident wave function, which changes the relative mag-
nitude of these two components.

Fig. 3: Left: Two collocated detectors in parallel configuration,
Right: anti-parallel configuration. The corresponding data is shown
in Fig. 4. The data in Fig. 5 was obtained with one of the detectors in
the parallel configuration shifted by 1cm, and together aligned with
the Earth’s spin axis.

embedding space or coordinate system. The Euler deriva-
tive was first introduced by Euler in 1757 when beginning the
study of fluids, and ensures that fluid dynamics are relative
to the fluid, and not fixed relative to an observer. Hertz in
1890 introduced this Euler derivative into Maxwell’s EM the-
ory, but was unaware of the meaning of v(r, t). The detection
of the dynamical space then mandates the use of the Euler
derivative in the Schrödinger equation [1].

A significant effect follows from (1), namely the emer-
gence of gravity as a quantum effect: an Ehrenfest wave-
packet analysis reveals the classical limit and shows that the
acceleration of a localised wave packet, due to the space terms
alone, when V(r, t) = 0, given by g = d2<r>/dt2, gives [1]

g(r, t) =
∂v
∂t

+ (v· ∇)v (2)

That derivation showed that the acceleration is independent
of the mass m: whence we have the derivation of the Weak
Equivalence Principle, discovered experimentally by Galileo.

Note that the emergent quantum-theoretic matter acceler-
ation in (2), is also, and independently, the constituent accel-

Fig. 4: Correlated current fluctuations, as indicated by voltage across
resistor R, and with DSO operated with 1 MΩ AC input, and no
filters. Top: From two collocated parallel detectors, as shown in
Fig. 1. Bottom: Anti-correlated current fluctuations from the two
collocated but anti-parallel detectors, also shown in Fig. 1. This data
confirms the dynamical consequences of the −i~v · ∇ψ term in the
new Schrödinger equation. This term is the origin of the quantum
gravity.

eration a(r, t) of the space flow velocity field,

a(r, t) = lim
∆t→0

v(r + v(r, t)∆t, t + ∆t) − v(r, t)
∆t

=
∂v
∂t

+ (v·∇)v .
(3)

which describes the acceleration of a constituent element of
space by tracking its change in velocity. This means that
space has a structure that permits its velocity to be defined
and detected, which experimentally has been done. This then
suggests, from (2) and (3), that the simplest dynamical equa-
tion for v(r, t) is

∇·

(
∂v
∂t

+ (v·∇)v
)

= −4πGρ(r, t); ∇ × v = 0 (4)

because it then gives ∇.g = −4πGρ(r, t), ∇ × g = 0, which
is Newton’s inverse square law of gravity in differential form.
Hence the fundamental insight is that Newton’s gravitational
acceleration field g(r, t) for matter is really the acceleration
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Fig. 5: Correlated current fluctuations, as indicated by voltage across
resistor R, and with DSO operated with 1 MΩ AC input, and no
filters. Detectors in parallel configuration, and orientated parallel to
Earth axis , but offset by 1 cm, and plotted with a time offset of 20 ns,
implying a speed of 500 km/s.

field a(r, t) of the structured dynamical space and that quan-
tum matter acquires that acceleration because it is fundamen-
tally a wave effect, and the wave is refracted by the acceler-
ations of space. While (4) is the simplest 3-space dynamical
equation, this derivation permits further terms which main-
tain Newton’s inverse square law external to a spherical mass,
but which otherwise leads to new observed aspects of gravity,
which have previously been ascribed to “dark matter”, but
which are now revealed to be a dynamical aspect of space.

3 Quantum gravity directional experiment

The presence of the −i~v ·∇ dynamical space term provides
a critical test of the emergent quantum gravity theory. For
plane wave electrons, ψ ∼ e(ik·r−iωt), the space interaction
term changes the energy of the electrons, for uniform v,

E = ~ω→ ~ω + ~k · v (5)

This space induced energy shift changes the potential energy
barrier electron quantum tunnelling amplitudes in a reverse-
biased Zener diode, Fig. 2. This effect is easily measured by
means of the circuit in Fig. 1. A critical implication is that
the electron tunnelling current must depend on the angle θ
between k and v, as in in k·v = kv cos θ. To test this effect two
collocated detectors were arranged as in Fig. 3, with parallel
and anti-parallel configurations. The resulting currents are
shown in Fig. 4, and confirm this angle dependence effect.

As well if one of the detectors in the parallel configura-
tion is moved by 1 cm, then a time delay effect of 20 ns is
detected, as in Fig. 5. This corresponds to a spatial speed of
∼500 km/s from a S direction, as detected in numerous other
experiments.

Fig. 6: Typical frequency spectrum data, showing Log[S [ f ]] plotted
against Log[ f ] from the current fluctuation data, showing slope of
−1.0, as the solid plot, revealing a 1/f spectrum, typical of Johnson
1/f electronic systems “noise”, and so explaining the origin of John-
son noise [10] , and also demonstrating again the fractal structure of
the dynamical space.

Most electronic devices exhibit Johnson noise [10], where
the electron current has a characteristic 1/f spectrum. The ori-
gin of this noise has never been explained until now. The fre-
quency spectrum for one of the current fluctuations in Fig. 4
is shown in Fig. 6, and exhibits a 1/f spectrum. This implies
that Johnson noise is a consequence of the fractal structure of
the space flow.

4 Conclusions

The experimental detection of dynamical space required gen-
eralisation of Maxwell’s EM Theory, Schrödinger’s Quan-
tum Theory and a corresponding generalisation of the Dirac
Quantum Theory [9], and the determination of a dynamical
theory for space. As a consequence it has been discovered
that gravity is an emergent quantum effect. Here we have
reported new key tests of this quantum theory of gravity by
detecting predicted angle dependencies of quantum barrier
electron tunnelling currents. The fluctuating electron cur-
rents amount to the detection of wave effects of the dynamical
space: gravitational waves [11].
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Astrophysical black holes are by now routinely identified with metrics representing eter-

nal black holes obtained as exact mathematical solutions of Einstein’s field equations.

However, the mere existence and discovery of stationary solutions is no guarantee that

they can be attained through dynamical processes. If a straightforward physical caveat

is respected throughout a spacetime manifold then the ingress of matter across an event

horizon is prohibited, in accordance with Einstein’s expectation. As black hole forma-

tion and growth would be inhibited, the various pathological traits of black holes such as

information loss, closed timelike curves and singularities of infinite mass density would

be obviated. Gravitational collapse would not terminate with the formation of black

holes possessing event horizons but asymptotically slow as the maximal time dilation

between any pair of worldlines tends towards infinity. The remnants might be better

described as dark holes, often indistinguishable from black holes except in certain as-

trophysically important cases. The absence of trapped surfaces circumvents topological

censorship, with potentially observable consequences for astronomy, as exemplified by

the remarkable electromagnetic characteristics, extreme energetics and abrupt extinc-

tion of quasars within low redshift galaxies.

1 Introduction

Quasars are exceptionally luminous objects located at cos-

mological distances [1]. Rapid fluctuations in their emissions

arguably provide the most compelling hints that black holes

of some description exist in nature. The empirically deter-

mined “M-sigma relation” points to a causal kinematic con-

nection between black hole growth and galactic evolution,

with motions of nearby gas and stars providing irrefutable

evidence that 106 ∼ 109 M⊙ black hole candidates are present

[2]. This has led many researchers to conclude that the uni-

verse is home to a multitude of black holes conforming to

one of the stationary, asymptotically flat, black hole metrics

– in accordance with the claim of a leading relativist that the

“black holes of nature are the most perfect macroscopic ob-

jects that are in the universe” [3].

Potentially pre-dating the earliest stars, quasars may have

fostered galaxy formation [4]. However, the question of how

their central engines operate remains clouded in considerable

uncertainty. Furthermore, astronomical observations have not

been satisfactorily reconciled with theory. For instance, the

abrupt cessation of quasar activity during the early universe

calls for some efficient shutdown mechanism [5]. It is now

generally believed that virtually all galactic nuclei harbour a

supermassive black hole, most galaxies have undergone a pe-

riod of quasar activity in the past, black holes have at present

scarcely lost any mass through Hawking radiation and a heal-

thy fraction of galaxies are still rich in gas. It is therefore puz-

zling that the temporary revival of quasar activity is not occa-

sionally observed, especially within gas-rich galaxy clusters.

A glaring inconsistency arises with the currently in vogue

gas-starvation model of quasar extinction.

Karl Schwarzschild provided the first solution to the field

equations of general relativity (GR), obtaining a spherically

symmetric metric describing an eternal black hole∗ with an

event horizon [6]. After lengthy deliberation, Einstein re-

mained dismissive of the notion that objects with an event

horizon might actually exist in nature, pointing out that a

clock arriving at an event horizon would totally cease to ad-

vance compared to more remotely situated clocks [7]. The

more interesting case of dynamic gravitational collapse with-

in GR, abandoning the assumption of stationary geometry,

was tackled analytically that same year by Oppenheimer &

Snyder [8]. The mathematical results, as valid now as they

ever were [9], establish that from the perspective of a dis-

tant observer the implosion initially accelerates until the con-

traction becomes relativistic, whereupon the implosion rate

declines – ultimately halting just as the critical radius is ap-

proached. From this vantage, an event horizon only forms in

an asymptotic sense, after the infinite passage of time.

Oppenheimer & Snyder also commented on their results

from the perspective of the infalling matter. They found that

as external time approaches infinity, the proper time along

the worldline of an infalling particle tends towards some fi-

nite value. They then considered what might happen at later

proper times of the infalling particle, apparently without pau-

sing to consider whether time could physically continue to

advance for the infalling particle: “after this time an observer

comoving with the matter would not be able to send a light

signal from the star”. It is currently fashionable to ignore

Einstein’s objection regarding infinite time dilation. But is

∗The term “black hole” was not coined until some years after Einstein’s

departure, the alternative “frozen star” had previously been widely used.
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that wise? The field of black hole physics is by now plagued

by a variety of serious difficulties. Closed timelike curves

seem to be unavoidable within rotating black hole spacetimes,

with potentially disturbing connotations for causality and he-

nce physics at its most fundamental level. The notion that

information might be captured and destroyed by black holes

has also troubled theoretical physicists for decades [10, 11].

This “information paradox” recently led to the suggestion that

black holes only possess apparent horizons [12] as opposed to

genuine event horizons: features traditionally regarded as the

defining hallmarks of true black holes [13].

There is also a widespread expectation that naturally oc-

curring black holes lack “hair” and comply with the princi-

ple of topological censorship [14], rapidly settling down ei-

ther to a Kerr-Newman or, more realistically, a Kerr geome-

try corresponding to an electrically uncharged, rotating black

hole. As will be discussed, astronomical observations cast

significant doubt on the reliability of this common assump-

tion. Moreover, due to the generality of results obtained in

dynamical collapse scenarios such as Oppenheimer & Sny-

der considered, there is a suspicion that Einstein was right:

it may be difficult or impossible to produce stationary black

holes through physically realistic processes.

The goal of this work is to argue that these various con-

ceptual problems can vanish, without departing from Ein-

stein’s gravitational theory, if a straightforward physical con-

sideration is respected throughout a spacetime manifold. This

caveat does not impinge upon general covariance and the ma-

thematical apparatus of general relativity is unchanged. A

discussion then follows of why quasar observations support

the contention that black holes lack event horizons and might

be better described as dark holes.

2 The Schwarzschild black hole

The Schwarzschild metric represents a non-rotating eternal

black hole with the spherically symmetric spacetime

ds2 =

(

1−
rs

r

)

c2dt2
−

(

1−
rs

r

)−1

dr2
−r2(dθ2+sin2 θdφ2) (1)

where ds is the spacetime interval, t represents the proper

time of a stationary clock at spatial infinity, (r, θ, φ) are the

usual spherical coordinates (2πr being the circumference of a

circle at radius r). The event horizon is located at r = rs =

2Gm/c2, known as the Schwarzschild radius of a black hole.

The gravitating mass of the black hole, m, is concentrated at

the origin.

As is well-known, if the metric is expressed in this way it

has a coordinate singularity at r = rs, the (critical) radius

of the event horizon, despite the lack of matter there (the

spacetime itself is only singular at r = 0). The exterior so-

lution, r > rs, accurately approximates the spacetime outside

a spherically symmetric star [15]. This region is well-behaved

and suffices for the present discussion.

For a particle following a timelike worldline, ds2 ≡ c2dτ2

where τ is the proper time of the particle and dτ ≡ 0 for null

particles (light rays). Therefore, along the worldline of any

particle, ds2
> 0, and the following inequality must hold:

(

1 −
rs

r

)

c2dt2
>

(

1 −
rs

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (2)

It is convenient to rearrange this expression to obtain

1

(1 − rs

r
)2















dr

dt















2

+
r2

1 − rs

r















dθ

dt















2

+
r2 sin2 θ

1 − rs

r















dφ

dt















2

6 c2. (3)

The Schwarzschild metric is asymptotically flat and, for

regions far outside the event horizon, r ≫ rs, the effects of

gravitational time dilation are negligible. One then finds that

(dr/dt)2 + r2 (dθ/dt)2 + r2 sin2 θ (dφ/dt)2
6 c2 which, con-

sidering the spherical coordinate system, confirms the expec-

tation that the speed of light is insurmountable in special rel-

ativity, with the possible exception of tachyonic particles.

3 Spacetime coherency

Spacetime is a four-dimensional continuum, a differentiable

and connected Lorentzian manifold. In general relativity it

is dynamically acted upon by gravitation so as to alter the

geodesics of motion. General relativity is a global theory: the

presence of mass-energy does not merely influence the local

spacetime, but the entire spacetime manifold. Thus, grav-

ity’s range is limited only by the size of the universe. Gen-

eral relativity abides by the principle of general covariance

allowing its physical laws to be expressed independently of

coordinates.

The order in which events occur is observer-dependent in

both special and general relativity. Nevertheless, the relative

rate at which time elapses along two worldlines (i.e. time di-

lation/contraction) can be uniquely defined whether the sep-

aration between the worldlines is timelike, null or spacelike.

Time dilation is a non-local, coordinate-independent quantity

encoding genuine physics which is necessary for global con-

sistency. For an arbitrary number n of distinct test particles

with proper times τ1, τ2 . . . τn, it must hold that

dτ1

dτn

×

n−1
∏

i=1

dτi+1

dτi

= 1. (4)

If general relativity is applied to the universe then the

proper elapsed time, τ, along any worldline cannot exceed the

time since the big bang, even if the universe is spatially infi-

nite. Hence, along any worldline, the proper time τ < ∞ and

the proper distance ℓ < ∞. Recognising that proper time τ is

an affine parameter along the worldline xα(τ), for a specified

spacetime manifold the demand of finite proper time along all

worldlines within the universe can be formally stated as

∀ xα(τ) : τ < ∞. (5)
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It should be self-evident that this constraint will be sat-

isfied by any physically realistic spacetime manifold. Non-

compliance, as would occur once the advancement of proper

times along any pair of worldlines could not proceed in tan-

dem, would break the global coherency and connectedness of

the spacetime continuum. Such a basic physical requirement

must have priority over all “philosophical” concerns, an issue

returned to in the discussion. Spacetime is not merely a local

union of space and time but a global one. Failure to appre-

ciate that localised physics can have wider implications for

a spacetime manifold may be at the root of some persistent

confusions in current black hole research.

4 Time dilation between arbitrary particles

For lightlike particles, the Schwarzschild metric provides a

relationship involving two time coordinates t and τ















dτ

dt















2

= αc2
−

1

α















dr

dt















2

− r2















dθ

dt















2

− r2 sin2 θ















dφ
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2

. (6)

The parameter α is defined as α ≡ 1 − rs/r for the range

r > rs so that α is strictly positive with 0 < α 6 1. This

expression allows the time dilation relative to Schwarzschild

time t, a coordinate independent physical quantity, to be de-

termined for an arbitrarily moving test particle located any-

where outside the event horizon.

Although particles travelling at the speed of light experi-

ence no passage of proper time (dτ = 0), photons travelling

radially towards the event horizon are eventually brought to a

halt since the original metric then reduces to (dr/dt)2 = α2c2

and, in the limit as r → rs, one sees that α → 0. This repre-

sents a worst case scenario since, for non-radial motion of the

photon, (dr/dt)2 < α2c2. For a purely radial ingoing photon,

dr/dt = −αc and so the minimum Schwarzschild time, ∆tmin,

required for a photon to travel from an initial radius r0 to a

final radius r∗, with r0 > r∗ > rs, is given by

∆tmin = t∗ − t0 =

∫ r∗

r0

(

dt

dr

)

dr =

∫ r0

r∗

dr

αc

=
1

c

∫ r0

r∗

r dr

r − rs

=
r0 − r∗

c
+

rs

c
ln

(

r0 − rs

r∗ − rs

)

. (7)

Due to the denominator in the logarithm term, as r∗ →

rs, this time interval grows without limit. Hence, regard-

less of the location at which photons are emitted outside the

black hole, gravitational time dilation prohibits them reach-

ing the event horizon in finite time according to the clock of

a Schwarzschild observer.

In order to broaden this result, a quantity v is now defined

such that

v2 =
1

α2

(

dr

dt

)2

+
r2

α

(

dθ

dt

)2

+
r2 sin2 θ

α

(

dφ

dt

)2

. (8)

With reference to (3), it is apparent that one can write

v2 6 c2. This is consistent with v representing a physical

velocity whose magnitude, corrected for relative motion and

gravitational time dilation, remains bounded by the speed of

light. It can then be seen from (6) that

(dτ/dt)2 = α(c2 − v2)

and consequently 0 6 (dτ/dt)2
6 1. The time dilation relation

between two arbitrary worldlines with proper times τ1 and

τ2 exploring the exterior Schwarzschild geometry can there-

fore be obtained from formula (9) where α1 = 1 − rs/r1 and

α2 = 1 − rs/r2 with subscripts referring to worldlines 1 and 2

respectively. Thus, α1 and α2 have the same range as α such

that consideration is strictly restricted to the region external

to the event horizon. Since v2
1
6 c2 and v2

2
6 c2, neither the

numerator nor denominator of (9) can be negative under any

circumstances.

If a timelike particle following worldline 2 approaches the

event horizon, r2 → rs, then α2 → 0 with the numerator of

(9) remaining positive. For a timelike observer moving along

worldline 1 sufficiently distant from the event horizon that

α1 ≫ α2 it is then apparent that dτ2/dτ1 → 0, meaning that

proper time ceases to advance along worldline 2. Noting that

timelike particles take longer to approach the event horizon

than light rays and that dτ1/dt remains finite for any time-

like observer comfortably outside the event horizon, one may

conclude that

According to any external observer following a

timelike worldline, light rays and timelike par-

ticles require infinite proper time to reach the

event horizon of a Schwarzschild black hole.

Because (5) must be respected it follows that

Since infalling particles cannot experience the

passage of time beyond that corresponding to in-

finite proper time along all other worldlines, they

are incapable of penetrating the event horizon of

a Schwarzschild black hole.

These statements are completely independent of the (arbi-

trary) choice of coordinate system. Furthermore, they do not

require that observers be either stationary or infinitely remote.

Indeed, observers could be relatively close to the event hori-

zon without violating the assumption that α1 ≫ α2. There is

no optical illusion at play associated with the time of flight of

photons – the conclusion holds for inanimate clocks lacking

the faculty of vision just as well as it does for conventional

observers.

Note also that there is no need for any special synchroni-

sation procedure between the two particles: infinite time di-

lation prevents the ingress of matter across an event horizon

as long as external clocks continue to mark time. If τ2 = 0

at the commencement of worldline 2 and the event horizon is

approached as τ2 → τh, a finite proper time, then regardless

of where and when worldline 1 commences it is still true that
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τ1 → ∞ as τ2 → τh. This is manifestly so because

τ1(τ2 → τh) =

∫ τh

0

(

dτ1

dτ2

)

dτ2

=

∫ τh

0

(

dτ2

dτ1

)−1

dτ2 → ∞. (10)

Proper times separating events along worldlines are in-

variant quantities, as are infinitesimal proper times. Thus, the

same can be said of the ratio of the rate of passage of proper

times along distinct worldlines. If the previous calculation

were to be repeated using so-called horizon-penetrating coor-

dinates (e.g. Lemaı̂tre, Novikov, Gullstrand-Painlevé, Krus-

kal-Szekeres, ingoing Eddington-Finkelstein [16]) the same

results would of course be obtained by virtue of general co-

variance. The fact that the time dilation approaches infinity

as r2 → rs has nothing to do with the Schwarzschild coordi-

nate singularity at rs, the coordinates being regular and well-

behaved for all r > rs, a range that was entirely adequate for

the purposes of this analysis.

Therefore, contrary to some common assertions, an as-

tronaut could not fall into a black hole without incident. Al-

though τ2 would remain finite in such circumstances, τ1 wo-

uld approach infinity as τ2 → τh. The astronaut encoun-

ters no immediate physical impediment at the event horizon

but, due to the demand of global coherency and the need

for proper times along worldlines to remain finite in (5), the

condition τ2 6 τh must be respected. Thus, the worldline

of the astronaut would terminate as τ2 → τh, correspond-

ing to a situation in which the spacetime manifold totally

ceases to evolve. The astronaut simply would not experience

proper times later than τh which, in effect, would be the mo-

ment when his or her worldline reaches future timelike infin-

ity within the Schwarzschild spacetime. Times τ2 > τh would

necessarily be fictitious and unphysical due to violation of (5).

For all τ2 < τh, there is no consistency problem. One is

not obliged to make an either or selection, exclusively choos-

ing between the infalling or remote observer perspectives –

they are mutually compatible projections of a globally coher-

ent spacetime manifold. However, if one insists on abandon-

ing coherency to consider the physically impossible case τ2 >

τh, a choice is then mandatory but the results are physically

meaningless. That infalling matter indefinitely hovers above

the horizon from the perspective of a distant Schwarzschild

observer is a well-established result [15, 17]. In order to fur-

ther clarify matters, it has been extended here to arbitrarily

situated and potentially moving external observers who may

be in quite close proximity to the event horizon.

The impermeability of the event horizon due to time dila-

tion effects has in recent years been highlighted in the context

of the black hole information paradox [18]. Furthermore, sev-

eral core arguments promulgating that belief that event hori-

zons are traversable have been dispelled [19]. While it is well-

known that nothing can escape from a black hole, this anal-

ysis suggests that event horizons cannot be traversed in any

direction whilst offering a readily comprehensible explana-

tion as to why that is. Although angular momentum has been

ignored here for simplicity, one would not expect its influ-

ence to alter the conclusions. Rotation would only represent

an additional barrier, further hindering the arrival of particles

at the event horizon of a Kerr black hole.

5 Dynamically formed black holes

A classic general relativity textbook originally published four

decades ago argued that eternal black holes provide an ex-

cellent approximation to the outcome of gravitational col-

lapse [15]. This advice may have been taken a tad too lit-

erally. Clearly, if event horizons are bidirectionally imperme-

able then the black hole information paradox would be triv-

ially resolved. The interior geometry of the Schwarzschild

metric may satisfy the field equations, but the constraint (5)

suggests it cannot be arrived at through gravitational collapse,

it is merely a hypothetical arrangement. Spacetime coherency

issues aside, the equivalent rest mass energy of the Schwarz-

schild singularity goes no way towards counterbalancing its

gravitational potential energy which, by any realistic assess-

ment, is infinitely negative. Therefore, a Schwarzschild black

hole and a collapsing star of the same mass forming a dark

hole frozen in time have vastly different energies and are hen-

ce inequivalent on energy conservation grounds.

If the proper time for an infalling particle is advanced

without regard for physics elsewhere then the spacetime can

decouple and become non-connected, leading to a host of

conceptual difficulties. For physically realistic gravitational

collapse, however, it is not that infalling matter would hover

in suspension above an event horizon – but that an event hori-

zon would never form, in keeping with the external observer

perspective of Oppenheimer & Snyder’s analysis. However,

in the unlikely event that the universe were host to fully-

formed eternal black holes, their event horizons would be-

have as impenetrable barriers to infalling matter. Due to time-

reversal symmetry, the geometry of spacetime in general rel-

ativity is as much a function of the future distribution of mass

and energy as the past distribution, endowing the theory with

a teleological quality. Thus, the event horizons of such hypo-
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thetical black holes could in principle expand in anticipation

of infalling matter so that time dilation halts the ingress of

matter sooner than it might otherwise do. Notice that such

expansion need not involve any increase in the gravitational

potential of infalling matter since the potential near the event

horizon is independent of black hole mass.

Hawking radiation arises due to separation of virtual par-

ticle pairs in the vicinity of a black hole event horizon [20],

causing eternal black holes to evaporate with a perfect ther-

mal spectrum, devoid of information content. Conversely,

frozen stars with their rich, history-dependent structure, are

able to radiate in the regular black body manner – thus avoid-

ing information loss [21]. However, this issue is of lesser

importance to the present discussion than the need for space-

time to remain coherent and connected. Black hole research

has not led to many testable predictions but this consideration

can have readily observable astronomical implications.

6 Topological admissibility

Trapped surfaces are defined as surfaces from which light

rays initially pointing outwards are obliged to converge in-

wardly. The existence of a trapped surface is a precondition of

several well-known theorems in general relativity. The event

horizon of a Schwarzschild black hole is a null surface inside

which surfaces equidistant from the horizon are all trapped.

According to the Penrose-Hawking singularity theorems [22–

24], a trapped surface inevitably leads to a geodesically in-

complete spacetime manifold, implying the imminent forma-

tion of a singularity. However, if time dilation and global

spacetime considerations prohibit the formation of event hori-

zons then trapped surfaces cannot naturally arise and the sin-

gularity theorems have no physical relevance. By the same

logic, the closed timelike curves of rotating eternal black ho-

les would be avoided. Speculations concerning the physics

internal to an event horizon are invulnerable to falsification

and hence, strictly speaking, outside the scope of empirical

science. However, although the presence of event horizons

cannot be directly verified [13], evidence of their non-existen-

ce could in principle be obtained.

Like the singularity theorems, the principle of topological

censorship [14] assumes the presence of a trapped surface.

Therefore, if time dilation guards against event horizon for-

mation, the gravitational collapse of a rapidly spinning cloud

of gas would be capable of forming an axisymmetric structure

of toroidal topology. Due to its dynamic nature, this scenario

also falls outside the scope of earlier constraints on black hole

topology [25, 26]. If physically realistic astrophysical black

holes can be toroidal, the astronomical implications could be

observable from afar.

Amongst the most energetic phenomena of the universe,

quasars outshine galaxies by as many as three orders of mag-

nitude. They were most abundant at redshifts of z ∼ 2 when

the universe was less than 20% its present age and are sig-

nificantly more scarce by now [27]. They create bipolar out-

flows [28], axially aligned relativistic jets penetrating inter-

galactic space and ultimately forming gigantic radio lobes as

their energy is dissipated. Often chaotically turbulent, the

jets are comprised of electrically charged particles which can

form knots via magnetohydrodynamic processes. The ori-

entation of the jets exhibits long-term stability, hinting at a

direct dependency on the angular momentum vector of a su-

permassive black hole as opposed to that of an accretion disk

of relatively low mass which is vulnerable to significant dis-

ruption by the assimilation of roving stars. This is another

weakness of models seeking to account for jet formation in

terms of a magnetised accretion disk.

The discovery of various metrics describing stationary sp-

acetimes in which black holes are completely described by

mass, angular momentum and electromagnetic charge alone

led to the “no-hair conjecture”. Though the Schwarzschild

and Kerr-Newman metrics are lacking in “follicles”, it is very

natural to expect macroscopic departures from these metrics

during realistic collapse scenarios. Furthermore, since the

formation of trapped surfaces would violate spacetime co-

herency (5), crucial assumptions underpinning the singularity

theorems and the principle of topological censorship may not

apply.

Providing its assumptions are satisfied, topological cen-

sorship requires the central aperture of a toroidal black hole

to seal up so rapidly that a ray of light lacks sufficient time to

traverse it. Numerical simulations have provided some sup-

port for this [29]. However, computational approaches almost

invariably adopt horizon-penetrating coordinates and fail to

enforce the physical requirement (5). Instead, event horizons

are located retrospectively after simulations terminate, with-

out global consistency checks.

Theoretically, metrics describing black holes with toroi-

dal event horizons have been obtained for anti-de Sitter back-

grounds with a negatively valued cosmological constant. In

such situations,Λ can be arbitrarily small [30]. Thus, toroidal

event horizons are only marginally prohibited when consid-

ering eternal black holes in asymptotically flat spacetimes.

However, if trapped surfaces cannot realistically form dur-

ing gravitational collapse then topological censorship is by-

passed entirely, leaving the toroidal dark hole (TDH) a viable

possibility. Most stars capable of undergoing core collapse

are massive, hence rapidly reaching the ends of their life-

cycles. They are likely to retain sufficient angular momen-

tum from their formation that during implosion their cores

will adopt a toroidal geometry, if only transiently. A toroidal

core can be supported by degeneracy (electron/neutron) pres-

sure but, for very massive and rapidly rotating stars, direct

collapse to a TDH is conceivable. Any of these eventuali-

ties could have potentially explosive consequences, scattering

ejecta deep into space [31].

The angular momentum of a Kerr black hole is bounded

by |J| 6 GM2/c. In the field of black hole thermodynam-
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ics, the temperature at which the event horizon radiates is

proportional to its surface gravity. This vanishes for an ex-

tremal black hole, implying extremality is unattainable by the

third law of black hole thermodynamics. However, for a TDH

lacking an event horizon, angular momentum should approxi-

mately scale with the major radius of the torus. Thus, the Kerr

bounds, −GM2/c < J < GM2/c, could easily be exceeded.

Accumulation of angular momentum beyond the Kerr limit

may buffer TDH topology, even if accretion is erratic. Ev-

idence has recently emerged of a supermassive black hole

within a galactic nucleus rotating at a near extremal rate [32].

Nature possesses only two long range forces and, of the

two, electromagnetism is far stronger than gravity. Further-

more, gravity is purely attractive, making it ill-suited as a

mechanism for launching relativistic jets of charged parti-

cles flowing directly away from a supermassive black hole.

Therefore, it is virtually certain that electromagnetism is pri-

marily responsible for jet production. There are no magnetic

monopoles in nature but electrically charged particles make

up all atoms. That ultrarelativistic jets of charged particles

can be sustained for millions of years strongly suggests that

the central black hole must itself be electrically charged.

Traditional models have nevertheless taken black holes to

be electrically neutral due to common assumptions regarding

their topology and the fact that plasma of a surrounding accre-

tion disk can swiftly neutralise any electrical charge accumu-

lating on a spheroidal black hole. A charged (Kerr-Newman)

black hole would necessarily possess a magnetosphere due to

its rotation but its flux lines would lead directly to the event

horizon: oppositely charged particles would be strongly at-

tracted to it, spiralling along the lines of magnetic flux to

swiftly neutralise the black hole. Hence, theorists have strug-

gled to explain the extreme energetics of quasars. The pop-

ular Blandford-Znajek mechanism [33] appeals to a strongly

magnetised accretion disk whose flux lines thread the event

horizon of an electrically neutral, Kerr black hole, enabling

some coupling to its rotational energy. However, the model

has been criticised because one would not expect an accre-

tion disk to become strongly magnetised and the degree of

magnetisation required seems infeasibly large [34].

The difficulty is overcome in the TDH case, a strong can-

didate for the central engine of quasars [31]. It has been

previously proposed that a toroidal black hole might be sta-

bilised by quantum gravitational effects [35] but in the present

work there is no need for any departure from classical gen-

eral relativity. If a TDH amasses an electrical charge, e.g.

via the proton-electron charge/mass ratio disparity, neutrali-

sation processes involving ambient plasma particles will be

suppressed due to topological considerations. Flux lines of

the induced dipolar magnetosphere along which charged par-

ticles tend to spiral would not lead towards the TDH. Instead,

they would locally run parallel to its surface, as depicted in

figure 1. Plasma from an orbiting accretion disk would be

channelled along the flux lines towards the central aperture,

Fig. 1: A rotating toroidal black hole with a non-zero electrical

charge generates a magnetic field whose flux lines are capable of

resisting a neutralising flow of charged particles from the plasma of

an orbiting accretion disk or imploding star. Flux lines point away

from the black hole along the rotation axis where, due to extraction

of the black hole’s rotational energy, biaxial jets may be launched

from the central aperture.

the region where the magnetic flux density is highest: the

only location where the flux lines lead directly away from the

TDH. Conditions for particle ejection are likely to be most

favourable at a small displacement along the rotation axis ei-

ther side of the symmetry plane. There, the magnetic field

remains strong and aligned with the observed jets – but grav-

itational time dilation is less pronounced [31]. The relatively

gentle decline in flux with axial displacement can be seen,

for example, by considering the magnetic field strength, B(z),

of a current, I, flowing along a circular path of radius r at a

distance z along the axis from the centre of symmetry:

B(z) =
µ0Ir2

2(z2 + r2)3/2
≈

µ0I

r(2 + 3z2/r2)
for z ≪ r. (11)

For a current loop spread over a toroidal surface, the flux

density within the central aperture, Bap, whose radius is a

can, due to the conservation of charge on the torus and the

integrated flux threading the aperture, be approximated by

Bap ≈ (r/a)2B(0) ≈ µ0Ir/2a2. Thus, the magnetic field would

be strongly amplified when the torus approaches pinch-off,

a ≪ r. Plasma magnetically siphoned into the aperture from

the surrounding accretion disk could interact directly with the

TDH via this magnetosphere. Furthermore, the lack of an

actual event horizon would not preclude an ergoregion [36].

Hence, energy extraction via the Penrose process [37] may

also contribute somewhat towards jet production. With lower

mass electrons being preferentially ejected, a net charge on

the TDH could be reliably maintained, thereby supporting the

black hole’s magnetosphere. Emitted particles would tend to
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emerge in cones around the rotation axis, their convergence

assisted by magnetohydrodynamic focusing. A population of

neutral atoms and free neutrons in the accretion flow could

feed TDH growth and support its long-term rotation against

angular momentum losses.

Additional support for this model comes from the ob-

served dichotomy between active and quiescent galaxies and

the curious fact that quasars have distinctly finite lifetimes.

Given that many galaxies still have ample reserves of gas to

sustain accretion disks around supermassive black holes, and

that the masses of these black holes cannot have decreased

appreciably with time, it is puzzling that quasar activity is in

such steep decline in the low redshift universe. One would

expect nearby supermassive black holes, in particular those

present in galaxy clusters, to at least feast upon stray mat-

ter sporadically. Only ∼10% of the primordial gas in galaxy

clusters has so far been utilised by star formation. For com-

parison, the figure for the Milky Way is closer to 90%. Nearly

all galaxies harbour supermassive black holes so one wonders

where are the vestigial traces of radio lobes caused by fleet-

ing flares? Observational data suggests that once a quasar

becomes quiescent there is little or no prospect of activity

being revived: the galactic nucleus not only seems dormant,

but utterly defunct. With regards to this finite lifetime riddle

and the apparent lack of even temporary revival of quasar ac-

tivity in quiescent galaxies, a topological transition offers a

very natural and appealing hysteresis mechanism [31,38,39].

It has long been appreciated that this is a difficulty for more

conventional models [40].

Once a dark hole grows too large, even a steadily sup-

plied accretion disc cannot maintain sufficient influx of an-

gular momentum to sustain the geometry. In addition, the

angular momentum of the TDH is continually being sapped

by jet generation. Closure of the central aperture is not eas-

ily reversed, especially as the ensuing charge neutralisation

is rapid when flux lines lead directly to the dark hole. A po-

tential explanation can also be found here for the gamma-ray

burst phenomenon, relatively short-lived affairs compared to

most supernovae. Such events may correspond to the tempo-

rary formation of a TDH/toroidal neutron degenerate struc-

ture during the core collapse of a massive spinning star.

7 Discussion

The development of general relativity was one of the great-

est triumphs not only of theoretical physics but of all science,

providing a description of gravitation compatible with the no-

tion that space and time are part of a unified four dimensional

continuum with experimentally verifiable implications. How-

ever, as with any intrinsically mathematical theory of physics,

its interpretation must be guided by physical considerations

and one should not lose sight of the scientific method. In-

deed, some existing solutions in general relativity are already

widely regarded as unphysical. Examples include the Tipler

cylinder and the Gödel metric, which exhibits closed timelike

curves threading all events within its spacetime. It is possi-

ble that Einstein’s intuition was correct and that all metrics

describing eternal black holes should be similarly regarded

with a healthy degree of scepticism and replaced with a new

dark hole paradigm.

The present work has attempted to reconcile astronomi-

cally observed characteristics of quasars, which have inspired

suggestions that their central engines may not abide by topo-

logical censorship, with a theoretical understanding of why

that might be. A global constraint has been highlighted whi-

ch, if respected everywhere within a spacetime manifold, ho-

lds considerable promise for resolving other long-standing

problems in black hole research. It requires merely that the

advancement of proper time along any worldline never ne-

cessitates the physically impossible advancement of proper

time along any other worldline. In many circumstances this

is trivially satisfied, but the situation changes radically within

a spacetime containing pairs of timelike worldlines for which

the relative time dilation grows without limit. Some parti-

cle worldlines will then reach future timelike infinity in finite

proper time, much as light rays/photons do. Worldlines of

timelike particles can thereby be truncated. In the case of par-

ticles approaching the event horizon of an eternal black hole,

this is a consequence of their asymptotically approached ap-

parent velocity – particles moving at the speed of light expe-

rience no passage of time. On the other hand, if a spacetime

manifold is initially free of event horizons or singularities, it

will always remain free of them. A picture emerges of gen-

eral relativity as a remarkably benign theory of gravitation

gracefully accommodating all eventualities. Analytical solu-

tions to the field equations of general relativity are confined to

highly idealised situations. More complex and realistic sce-

narios can only be studied numerically. Nevertheless, the ba-

sic conclusions drawn here concerning the non-formation of

event horizons for spherically symmetric situations are likely

to carry through to more general circumstances.

The present proposal differs significantly from the grav-

astar model [41] which invokes new physics, replacing the

interior black hole region with a de Sitter spacetime blend-

ing into the exterior Schwarzschild geometry via a carefully-

tailored transition layer [42]. It is also distinct from the eter-

nally collapsing object (ECO) scenario [43, 44] in that grav-

itational collapse can be stabilised without recourse to ra-

diation pressure. Furthermore, there is no need to invoke

the presence of some “firewall” or exotic new physics at or

near the horizon in order to overcome the information para-

dox [45].

For several decades now, black holes with event horizons

have been seriously entertained despite the lack of a single

mathematical example of an event horizon forming in finite

universal time and their dismissal by the architect of general

relativity. There is a deep-seated expectation amongst rel-

ativists that all observers should enjoy equal status but one
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must not overlook the fact that general relativity is a theory

in which global relationships exist between observers. By

tracing the progress of an infalling observer beyond the event

horizon, as Oppenheimer & Snyder did, one forsakes con-

cern for external observers. In such situations, the worldlines

of external observers must magically transcend what is, for

them, future timelike infinity – and indeed, therefore, future

timelike infinity for the entire spacetime manifold. Thus, the

original notion of a “democracy” amongst observers is naı̈ve

if one interprets it in a purely local manner, eschewing the

original spirit of relativity.

The proper times along all worldlines should remain finite

in any physically realistic spacetime manifold. Whilst self-

evidently true, this has profound repercussions for gravita-

tional collapse. Global relationships within a spacetime man-

ifold override local considerations. This can arrest dynam-

ical collapse, prohibiting both the initial formation of event

horizons and the ingestion of matter across pre-existing event

horizons. Hence, any theorems reliant on the presence of

trapped surfaces may have no physical bearing. Prevailing ex-

pectations that gravitational collapse inevitably leads to sin-

gularities and event horizons appear to be in error and fears

that black holes destroy information misplaced. Furthermore,

if topological censorship is circumvented, then electrically-

charged toroidal dark holes could form the central engines

of quasars, consistent with astronomical observations. Thus,

quasars may already provide intriguing hints that nature’s bla-

ck holes lack event horizons, and that various physically dis-

turbing pathologies associated with traditional black hole mo-

dels are obviated in realistic situations – without need for any

adjustment to Einstein’s theory of gravitation.
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LETTERS TO PROGRESS IN PHYSICS

Reservations on Cahill’s Quantum Gravity Experiment

Anton L. Vrba

Ryde, Isle of Wight, Great Britain. E-mail: vrba@iow.onl

Cahill reports in Progr. Phys., 2015, v.11(4), 317–320 [1] on the correlations of the

random noise generated by two Zener diodes, when they are linearly displaced or dif-

ferently orientated. His conclusions that this could be a detection, and evidence, of

quantum gravity variations are exciting, however in my opinion premature.

Semiconductor diodes have provided means for generating

noise [2] used in a variety of applications including cryp-

tography, signal jamming, sound masking, and instrument

calibration. The diode noise is usually amplified by factors

greater than 100 [3] to obtain a signals around the −50 dBm

levels, which are of same order magnitude that Cahill reports.

Referring to Cahill’s Figure 1, we can observe the inter-

nal arrangement of the apparatus consisting of a parallel con-

nected array of five diodes, which are serially connected to the

sensing resistor, switch and battery — these components, in

that particular arrangement, form an EM-sensing loop having

a substantial cross-section. There is no local amplification,

and buffering, of the noise signal contrary to Zener-diode

based noise generators. Figure 3, presumably, depicts the ex-

perimental configurations. In my Fig. 1 (guided by Cahill’s

Figure 3 right hand side) I reconstructed the experimental

electrical circuit diagrams of the inverted arrangement on a

common plane formed by the electrical loops defined by the

battery, Zener diode and resistor. From this figure it is evi-

dent that any EM-induced currents, marked Im, would induce

signals, marked Vm. These are of opposite polarity in the

inverted apparatus, as Cahill observed.

In my opinion, the experiment needs to be performed with

apparatus that reduce the effects of EM-induced interference

to a minimum, achieved by a symmetrical arrangement of the

diode array around the sensing resistor, as well as a soft steel

enclosure to ensure magnetic and electrical shielding. For

those wishing to duplicate the experiment, I propose arrang-

ing the components as sketched in Fig. 2, with the edition of a

decoupling filter, comprising of a resister R1 and the four ca-

pacitors marked C, that reduces the effect of induced EM in-

terference in the electrical loop formed by the battery circuit.

The noise-signal, generated by the four Zener diodes Z1–4,

is detected over R2. All components should be nicely, and

compactly, sandwiched between two printed circuit boards to

ensure symmetry around the longitudinal axis of R2. An EM-

induced current in, say, the loop Z1-C-R2 would be of the

same magnitude as induced in R2-C-Z2 and thus canceling

across R2.

Submitted on August 23, 2015 / Accepted on August 26, 2015

Fig. 1: Inverted Experimental Configuration

Fig. 2: Proposed Component Arrangement
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A Model of Dust-like Spherically Symmetric Gravitational Collapse
without Event Horizon Formation

Miquel Piñol

Unidad de Medicina Intensiva, Hospital La Fe, 46026, Valencia, Spain. E-mail: miquel.pinyol@gmail.com

Some dynamical aspects of gravitational collapse are explored in this paper. A time-
dependent spherically symmetric metric is proposed and the corresponding Einstein
field equations are derived. An ultrarelativistic dust-like stress-momentum tensor is
considered to obtain analytical solutions of these equations, with the perfect fluid con-
sisting of two purely radial fluxes — the inwards flux of collapsing matter and the
outwards flux of thermally emitted radiation. Thermal emission is calculated by means
of a simplistic but illustrative model of uninteracting collapsing shells. Our results show
an asymptotic approach to a maximal space-time deformation without the formation of
event horizons. The size of the body is slightly larger than the Schwarzschild radius
during most of its lifetime, so that there is no contradiction with either observations or
previous theorems on black holes. The relation of the latter with our results is scruti-
nized in detail.

1 Introduction

The aim of this paper is to discuss several open problems of
conceptual interest concerning black holes and, in particular,
to elaborate a simple model of dust-like spherically symmet-
ric gravitational collapse with account of both the inwards
flux of the collapsing matter and the outwards flux of emit-
ted thermal radiation. We illustrate how the latter may avoid
the formation of event horizons. The metric considered in
this work is time-dependent, unlike the Schwarzschild one.
Spherical polar coordinates will be used and there will be no
need for analytical extensions (such as the one given by the
Kruskal-Szekeres chart) because the occurrence of an event
horizon at the Schwarzschild radius will be avoided.

In Sec. 2 the main historical events concerning the devel-
opment of the well-known concept of black hole are reviewed
and its precise significance is shortly but precisely detailed. In
Sec. 3 some open problems of the common black hole model
are pointed out and their relationship with the corresponding
historical findings is emphasized. Section 4 deals with the
development of the metric of the present model: First of all,
in subsec. 4.1 a time-dependent spherically symmetric met-
ric in spherical polar coordinates is presented and the corre-
sponding Einstein field equations are specified. Secondly, a
dust-like energy momentum tensor for a purely radial motion
with account of an ultrarelativistic collapsing matter and ther-
mally emitted radiation is obtained in subsec. 4.2. Temporal
evolution of the metric components is studied in subsec. 4.3,
with the absence of emitted thermal radiation being detailed
as a particular case. Fourthly, in subsec. 4.4 it is shown that
there should exist a limit where the inwards flux of collaps-
ing matter and the outwards flux of thermal radiation become
compensated. It is also shown the asymptotic character of the
approximation to this limit. Some additional considerations
about the total mass and the edge of the collapsing body will

be made in subsec. 4.5. Finally, our results are discussed in
Sec. 5, paying a special attention to the plausibility of the
different hypothesis and the implications of their alternatives.

2 Important historical results concerning black holes

Several historical results in General Relativity led to the con-
cept of black hole. The following list includes some of the
most important ones:

1. K. Schwarzschild found in 1916 an exact solution of
the Einstein field equations describing the field created
by a point particle [1]. (According to Birkhoff’s theo-
rem, this solution is also valid for any spherically sym-
metric body at a distance larger than its radius [2].)

2. J. R. Oppenheimer and G. M. Volkoff discovered in
1939 the existence of upper limit for the mass of neu-
tron stars, above which gravitational collapse could not
be avoided [3].

3. In 1967 J. Wheeler used the term “black hole” to name
a “gravitationally completely collapsed star” [5].

4. S. Hawking and R. Penrose proved in 1970 that, un-
der certain circumstances, singularities could not be
avoided. This is known as the Hawking-Penrose the-
orem of singularity [6].
All these results concerning black holes arise basically
from Einstein’s General Relativity. On the other hand,
there exist two important features in the description of
black holes which require from both Thermodynamics
and Quantum Field Theory (QFT):

5. J. Bekenstein defined the entropy of black holes in 1972
and, based on thermodynamic grounds, deduced the
need for black-hole radiation [7].

6. In 1974 S. Hawking justified Bekenstein’s speculations
about the existence of black-hole radiation from the
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point of view of QFT. Hawking model implies the cre-
ation of particles of negative mass near the event hori-
zon of black holes. The conservation of information is
not clearly ensured by this model [8].

3 Some open problems in gravitational collapse

In this section we discuss if the previous historical results
genuinely imply the actual existence of black holes as physi-
cal objects. It is widely believed that these findings prove the
existence of black holes. The argument supporting black hole
formation is the following:

1. There exist stars which are massive enough to exceed
the Oppenheimer-Volkoff limit at the end of their “vital
cycle”. Those stars must finally enter collapse.

2. According to the Hawking-Penrose theorem of singu-
larity, all the mass inside an event horizon must reach a
single central point, that is, form a singularity.

3. The solution of the Einstein field equations for the met-
ric of a “point mass” is the Schwarzschild metric, that
describes a black hole.

Entering collapse, however, does not immediately lead to
the formation of an event horizon and, while the event hori-
zon is not formed, the Hawking-Penrose theorem of singu-
larity is not properly applicable (notice that one of its condi-
tions of application is equivalent either to the existence of an
event horizon, or to an expanding Universe taken as a whole).
Hence, a priori entering collapse must not necessarily lead to
a complete collapse.

Certainly, the period of time involved in the process of
collapse may be proven to be infinite from the point of view of
any external observer (that is, from our perspective on Earth).
On the other hand, a “free falling observer” would measure
a finite period of time for the collapse, at least if nothing de-
stroys it before reaching its goal [4, 10]. A well-known fea-
ture of General Relativity is that space and time are relative
but events are absolute. Consequently, it is necessary to rec-
oncile the observations from both reference frames.

It is usually assumed that the free falling observer actually
reaches the singularity in a finite time, and the infinite-lasting
collapse measured by the external observer is justified in the
following way: the free falling body has already reached the
central singularity, but as the light emitted from the body in-
side the black hole never escapes from it, we cannot see it
falling; furthermore, the light emitted near the event horizon
of the black hole comes to us with a great delay, making us
believe that it is still falling.

In fact, there are compelling reasons that make us doubt
about the previous explanation: The Schwarzschild metric
is symmetric under temporal inversion, which suggests that
trajectories in the corresponding space-time should be also
reversible, in contrast to the most common interpretation of
black holes and their event horizon. Furthermore, General

Relativity is not only intended to explain what an observer
“sees” in a given reference frame, but what truly “occurs” in
there. Additionally, S. Hawking defended the incompatibility
of event horizons with Quantum Mechanics [9].

Solution of this apparent paradox requires a careful analy-
sis of what an external observer would exactly see when look-
ing at a body free falling towards a black hole. On the one
hand, it would see the free-falling body approaching asymp-
totically to the event horizon of the black hole, without ever
crossing it. On the other hand, according to Hawking’s law of
black hole radiation, the observer should also see the whole
black hole evaporating in a very large, but finite period of
time. The evaporation of the whole mass of the black hole
must logically include that of the free-falling body as well.
Were it not to be like this, that is, if the crossing of the event
horizon had to be accomplished before the emission of ther-
mal radiation, it would never emit thermal radiation and the
laws of Thermodynamics would be infringed. As the tem-
poral order of causally-related events is always the same for
all reference frames, we must conclude that the free falling
observer should also observe its own complete evaporation
before having reached the event horizon. If it had reached the
singularity in a finite period of time, its complete evaporation
must have occurred in a finite and lesser period of time.

Not only should these considerations be valid for the free-
falling body approaching a black hole, but also for the pro-
cess of collapse itself [28]. Consequently, collapsing bod-
ies should never becomes black holes. On the contrary, they
should asymptotically tend to form an event horizon until the
time at which they become completely emitted in the form
of radiation. An equivalent thesis has already been defended
by Mitra [14–18], Robertson and Leiter [19–21], Vachaspati
et al. [11, 12], and by Piñol and López-Aylagas [13]. In ad-
dition, there exist some calculations in string theory which
point towards the same direction [22].

Thus, the metric of a collapsing body shall never be in a
strict sense Schwarzschild’s one (as it never completely col-
lapses) but a time-dependent metric. In the next section, we
solve the Einstein field equations of a time-dependent spher-
ically symmetric metric. Several simplifications are consid-
ered to make calculations plausible, but the essential Physics
of the problem is respected.

4 Deduction of a metric for gravitational collapse

4.1 Einstein field equations

As we have already pointed out, our goal in this paper is to
study the temporal evolution of a spherically symmetric grav-
itational collapse. Rotations and local inhomogeneities are
beyond the scope of the present work. Therefore, the starting
point shall be a time-dependent spherically symmetric metric,
which in spherical polar coordinates is given by the expres-
sion

dτ2 = eνdt2 − eλdr2 − r2dΩ2, (1)
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where ν = ν(r, t) and λ = λ(r, t). Notice that geometrized
units have been used (G = 1, c = 1). The corresponding Ein-
stein field equations for such metric are the following [23]:

8πT 0
0 = −e−λ

(
1
r2 −

λ′

r

)
+

1
r2 , (2)

8πT 1
1 = −e−λ

(
ν′

r
+

1
r2

)
+

1
r2 , (3)

8πT 2
2 = −

1
2

e−λ
(
ν′′ +

ν′2

2
+
ν′ − λ′

r
+
ν′λ′

2

)
+

+
1
2

e−ν
(
λ̈
λ̇2

2
−
λ̇ ν̇

2

)
,

(4)

8πT 3
3 = 8πT 2

2 , (5)

8πT 1
0 = −e−λ

λ̇

r
. (6)

Subtraction of 3 from 2 yields the identity

8π
(
T 0

0 − T 1
1

)
=

e−λ

r
(
ν′ + λ′

)
. (7)

It will be useful to define a function φ(r, t)

−2φ ≡ ν + λ (8)

so that

ν = −λ − 2φ , 8π
(
T 0

0 − T 1
1

)
=

e−λ

r
(
−2φ′

)
. (9)

A mathematical structure for the stress-momentum tensor
must be specified in order to solve the previous equations,
which will be discussed in next subsection.

4.2 A dust-like stress-momentum tensor of ultrarela-
tivistic particles

The stress-momentum tensor of a perfect fluid may be written
in terms of the energy density ρ, the pressure p and the four-
velocity uα as:

Tα
β = gβδ (ρ + p) uαuδ − ηαβ p . (10)

If the pressure appears to be very small compared to the
energy density, in the limit p → 0 one obtains the stress-
momentum tensor of dust:

Tα
β = gβδ ρ uα uδ. (11)

In our model we deal with a dust-like stress-momentum
tensor. For the sake of simplicity, we shall consider the per-
fect fluid splitting into two perfectly radial fluxes: a flux of in-
going collapsing matter and a second flux of outgoing thermal
radiation. Both the ingoing collapsing matter and the outgo-
ing thermal radiation are going to be dealt as ultrarelativistic

particles. It has been already established that the matter in
a process of gravitational collapse reaches celerities near the
speed of light [24]. It is also a well-known fact that, despite
photons being “massless”, a photon gas may be assimilated
to a gas of ultrarelativistic particles with an effective mass
density [25].

It could be expected that the relation between pressure
and mass-energy density should be given by the identity
p =

ρ
3 due to the particles being ultrarelativitic. A closer

insight into this points out that the above identity would only
be properly applicable to an isotropic gas and not to the higly
directed movement considered in the present work. The con-
sideration of two purely “radial” fluxes shall simplify calcula-
tions and it is in this sense that a “dust-like” stress-momentum
tensor may be used. A similar approach has been already
adopted by Borkar and Dhongle [26].

With account of the metric 1 the coefficients of the dust
energy-momentum tensor 11 become

T 0
0 = e−2φ e−λ ρ

(
u0

)2
, (12)

T 1
1 = − eλ ρ

(
u1

)2
, (13)

T 1
0 = e−2φ e−λ ρ u0 u1. (14)

For a purely radial movement (characterized by dΩ = 0)
Eq. 1 leads to the relation

dτ2 = e−2φe−λdt2 − eλdr2 (15)

which, with account of the identities dt
dτ ≡ u0 and dr

dτ ≡ u1,
becomes

1 = e−2φe−λ
(
u0

)2
− eλ

(
u1

)2
. (16)

Isolating
∣∣∣u1

∣∣∣ =

√(
u1)2, we obtain

∣∣∣u1
∣∣∣ = e−φe−λu0

1 − e2φeλ(
u0)2

 1
2

. (17)

In the ultrarelativistic limit u0 → ∞ (u0 � e2φeλ) the compo-
nent u1 of the four-velocity becomes∣∣∣u1

∣∣∣ = e−φe−λu0. (18)

Notice that this same relation could have been obtained by
imposing the identity dτ ∼ 0 in Eq. 15.

Concerning the sign of u1, it is clear that u1 < 0 for ingo-
ing matter and u1 < 0 for outgoing thermal radiation, i.e.

u1
in = −e−φ e−λ u0, (19)

u1
out = e−φ e−λ u0. (20)
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4.2.1 Stress-momentum tensor of the ingoing matter

If we denote the energy density of the infalling matter by ρin,
according to Eqs. 12, 13, 14 and 19 we have

T 0
0,in = e−2φ e−λ ρin

(
u0

)2
, (21)

T 1
1,in = −e−2φ e−λ ρin

(
u0

)2
= −T 0

0,in , (22)

T 1
0,in = −e−3φ e−2λ ρin

(
u0

)2
= −e−φ e−λ T 0

0,in . (23)

4.2.2 Stress-momentum tensor of the outgoing thermal
radiation

Denoting the energy density of the outgoing thermal radiation
by ρout, according to Eqs. 12, 13, 14 and 20 we obtain

T 0
0,out = e−2φ e−λ ρout

(
u0

)2
, (24)

T 1
1,out = −e−2φ e−λ ρout

(
u0

)2
= −T 0

0,out , (25)

T 1
0,out = e−3φ e−2λ ρout

(
u0

)2
= e−φ e−λ T 0

0,out . (26)

4.2.3 Total stress-momentum tensor of the collapsing
body

Addition of the stress-momentum tensors of both the infalling
matter and the outgoing thermal radiation leads to the to-
tal stress-momentum tensor of the collapsing body, which is
given by the expressions

T 0
0 = e−2φ e−λ (ρin + ρout)

(
u0

)2
, (27)

T 1
1 = −e−2φ e−λ (ρin + ρout)

(
u0

)2
= −T 0

0 , (28)

T 1
0 = −e−3φ e−2λ (ρin − ρout)

(
u0

)2
(29)

= −e−φ e−λ
(
ρin − ρout

ρin + ρout

)
T 0

0 .

Once the mathematical structure of the stress-momentum
tensor of the collapsing body is established, we are able to
study the temporal evolution of the collapse by solving the
Einstein field equations 2-6.

4.3 Temporal evolution of collapse

Substitution of T 1
0 by Eq. 27 in Eq. 6 leads to the following

equation:

−e−φ e−λ
(
ρin − ρout

ρin + ρout

)
8πT 0

0 = −e−λ
λ̇

r
. (30)

From this an expression for the temporal evolution of λ may
be isolated:

λ̇ = e−φ
(
ρin − ρout

ρin + ρout

)
8πrT 0

0 . (31)

Initially it is expected that ρin � ρout, as the amount of
energy emitted in the form of thermal radiation should rea-
sonably correspond to a very small proportion of the total en-
ergy of the collapsing body. In that case,

(
ρin−ρout
ρin+ρout

)
∼ 1 and

λ̇ ∼ e−φ
(
8πrT 0

0

)
, so that λ shall be a strictly increasing func-

tion with time and it is expected to acquire considerably large
values. In any case, for λ � 1 we have the asymptotic ex-
pression

8πT 0
0 =

1
r2 + O(e−λ) , (32)

and therefore,

λ̇ = e−φ
(
ρin − ρout

ρin + ρout

)
1
r

+ O(e−λ) . (33)

On the other hand, we need to estimate as well the value
of φ. From Eqs. 9 and 28 we obtain

φ′ = −
1
2

eλ 8πr
(
T 0

0 − T 1
1

)
= −eλ

(
8πrT 0

0

)
, (34)

which combined with Eq. 32 yields

φ′ = −
eλ

r
+

(
1
r
− λ′

)
∼ −

eλ

r
. (35)

According to Birkhoff’s theorem, outside the radius R of
the collapsing body the space-time geometry will be exactly
Schwarzschild-like, so that φ = 0 for r > R. Inside the col-
lapsing body T 0

0 > 0 and consequently φ′ < 0. This yields
φ > 0 for r < R and φ(R, t) = 0 because of the analytic char-
acter of this function.

Equations 33 and 35 are not trivial to resolve analytically.
For any time t, however, Eq. 33 and the fact that φ > 0 for
any r < R lead to the following inequality:

λ(t, r) < λ(0, r) +
t
r
. (36)

4.4 Asymptotic approach to a pseudo-stability phase

According to the results obtained in the previous section, for
any given time t the function λ(r, t) is analytic on the domain
r > 0. Nonetheless, as Eq. 36 is an inequality, no specific
values for this function have been provided.

It has been discussed that the ingoing flux of infalling
matter is initially expected to be much larger than the out-
going flux of thermal radiation. Despite this, as λ becomes
larger, according to Eq. 35 |φ′| must also increase. On the
other hand, as φ > 0 the ingoing flux must decrease accord-
ing to Eq. 23.

As the values of T 1
0,in may become as small as wanted, if λ

and φ were not upper bounded it would not be unreasonable
to think that the ingoing flux of infalling matter may even-
tually become compensated by the outgoing flux of thermal
radiation. It could be discussed as well that, according to Eq.
26, the flux of outgoing thermal radiation may also become
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arbitrarily small, but we proceed first to analyse the details
concerning the compesation of fluxes and the consequences
of this hypothesis.

The condition for the compensation of both fluxes is nat-
urally given by the equation

T 1
0,in,s + T 1

0,out,s = 0 . (37)

It must not be misunderstood as a transgression of Oppen-
heimer-Volkoff’s theorem. The star is not in equilibrium. It is
actually collapsing, as nothing prevents the infalling matter of
keeping in collapse. There would simply be an additional flux
(arguable in the basis of thermodynamic grounds, and justi-
fiable by the conversion of a portion of the collapsing matter
into thermal radiation due to the interaction of their respective
fields) that would compensate the energy interchange across
a given surface of r−radius.

In that hypothetical state of “stability”, from Eqs. 23 and
26 a relation between the energy densities ρin and ρout can be
derived

ρin,s = ρout,s =
1
2
ρs , (38)

where the subindex s stands for “stability” (notice that the
aforementioned relations are specific of that hypothetical
phase). Several considerations concerning the emission of
thermal radiation due to collapsing bodies must be made in
order to proceed further with the theoretical development.

4.4.1 A model of Hawking-like radiation

According to Hawking [8], the temperature of a black hole is
proportional to the inverse of its Schwarzschild radius (RS )
and the thermal radiation emission rate is proportional to the
inverse of the square of RS :

ṀH = −
k

R2
S

. (39)

We have denoted the thermal emission by ṀH as it implies a
loss in the total mass of the black hole.

In what follows, both the approach and the nomenclature
adopted in the study of the mass and its mathematical relation
with the components of the stress-momentum tensor and with
the functions ν(r, t) and λ(r, t) of the metric 1 are the ones
given in Ref. [23]. The total mass of a spherically symmetric
body of radius R is given by the following expression:

M =

∫ R

0
4πr2T 0

0 (r, t)dr. (40)

Analogously, the mass contained inside a surface of radius r
(concentric to the spherically symmetric body of interest) is
given by

m(r, t) =

∫ r

0
4πr̃2T 0

0 (r̃, t) dr̃. (41)

Comparing Eqs. 2 and 41, the following relation can be
set between m(r, t) and λ(r, t):

e−λ(r,t) = 1 −
2m(r, t)

r
, (42)

and therefore we have −e−λλ̇ = − 2ṁ
r or, equivalently,

λ̇ =
2ṁ
r

eλ. (43)

Despite the fact that there is solely “one” function λ(r, t),
it is useful to split λ̇ into the sum of λ̇in (due to the ingoing
flux ṁin of collapsing matter) and λ̇out (due to the outgoing
flux ṁout of thermal radiation). In so doing we obtain

λ̇ = λ̇in + λ̇out (44)

with
λ̇in =

2ṁin

r
eλ, λ̇out =

2ṁout

r
eλ. (45)

As pointed out before, the thermal emission of black holes
ṁH is given by Eq. 39. On the other hand, Vachaspati et al.
showed that the thermal emission of a collapsing shell ap-
proaching the Schwarzschild’s radius of a black hole would
follow a law of the same style [11]: according to their cal-
culations, the temperature of the collapsing shell turns out
to be proportional to the Hawking’s one (TV ∼ 2.4TH , where
TV stands for Vachaspati’s temperature and TH for Hawking’s
temperature).

With account of Eq. 42 the metric 1 becomes

dτ2 =

(
1 −

2m(r, t)
r

)
e−2φ(r,t) dt2 −

−

(
1 −

2m(r, t)
r

)−1

dr2 − r2 dΩ2,
(46)

where the resemblance with Schwarzschild’s metric results
evident. Certainly, there exist two main differences between
Eq. 46 and the Schwarzschild’s metric: 1) the mass is not a
constant, but a function of the radius. 2) there is an additional
factor e−2φ(r,t) in the coefficient g00.

However, if we 1) deal with motions whose variation in
the r-coordinate is small enough and 2) assume a temporal
proximity to the hypothetical stationary case that we postu-
lated (i.e., ṁ(r, t) ∼ 0 and φ̇(r, t) ∼ 0), then the metric 46 may
be locally transformed into the Scwarzschild’s one.

In fact, in the vicinity of a given radius Ra, where m(r, t) ∼
Ma and φ(r, t) ∼ Φa, we have

dτ2 ∼

(
1 −

2Ma

r

)
dt̃2 −

(
1 −

2Ma

r

)−1

dr2 − r2dΩ2, (47)

with
dt̃ ≡ e−Φa dt. (48)

At this point it is time to introduce our Hawking-like ra-
diation model. We will conceptually split the collapsing body
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into a sequence of concentric spherical shells, each of which
asymptotically approaches its corresponding radius r = 2Ma

in the coordinate system given by the metric 47. We as-
sume that these collapsing shells do not interact with each
other. Along the lines of Ref. [12] it can be deduced that
the radiation law obtained for a spherical shell asymptotically
approaching in time t the event horizon of a black hole is
also valid for any of the concentric shells asymptotically ap-
proaching in time t̃ its corresponding r = 2Ma radius in our
model. Consequently,

dmout

dt̃
= −

k
r2 (49)

and so

ṁout ≡
dmout

dt
=

dt̃
dt

dmout

dt̃
= −e−φ

k
r2 . (50)

From this, we straightforwardly obtain the identity

λ̇out =
2eλ

r

(
−e−φk

r2

)
= −e−φ

2k eλ

r3 . (51)

On the other hand, according to Eqs. 6 and 23 an equiva-
lent expression for λ̇in is given by

λ̇in = e−φ
(
8πrT 0

0,in

)
. (52)

From Eqs. 12, 21 and 32 we conclude that, asymptotically,

8πT 0
0,in =

ρin

ρin + ρout

1
r2 + O(e−λ) (53)

and therefore, with account of Eq. 38, we obtain

λ̇in = e−φ
(

ρin

ρin + ρout

)
1
r
' e−φ

1
2r

. (54)

The stability phase is naturally defined by the condition

λ̇s = 0 (55)

and therefore, from Eqs. 44, 51, 54 and 55 we obtain the re-
lation

−e−φs
2k eλs

r3 + e−φs
1
2r

= 0. (56)

Equivalently,

eλs =
1
4k

r2, (57)

from which a functional dependence of λ on r is obtained for
the stability phase

λs(r) = − ln (4k) + ln
(
r2

)
. (58)

Taking into account Eq. 35, from the previous equation
we easily obtain an expression for φs:

φ′s = −
eλs

r
= −

r
4k
. (59)

Integration over r with account of the contour condition
φ(R, t) = 0 ∀t discussed in the previous section yields the
identity

φs (r) =

∫ r

R
φ′s (r̃) dr̃ =

1
8k

(
R2 − r2

)
, (60)

and thus
e−φs(r) = e

−1
8k (R2−r2). (61)

It must be noticed that the existence of the postulated
stability phase is self-consistent and that it may be clearly
derived from equations 45: both

∣∣∣λ̇in

∣∣∣ and
∣∣∣λ̇out

∣∣∣ decrease as
φ(r, t) increases by a factor e−φ(r,t), but only

∣∣∣λ̇out

∣∣∣ increases as
λ(r, t) increases (by a factor eλ(r,t)). Consequently, even when
initially

∣∣∣λ̇out

∣∣∣ � ∣∣∣λ̇in

∣∣∣ at large enough times both quantities
should become of the same magnitude.

Nonetheless, a significant issue concerning the behaviour
of λ(r, t) for small values of r must be remarked. We are going
to deal it with detail in the following subsection.

4.4.2 Corrections to the equation of λs for small radii

From Eq. 42, as m(r, t) > 0 ∀r, t, it becomes evident that also
λ(r, t) must be > 0 ∀r, t. However, in Eq. 58, it can be checked
that it yields λs = 0 at r = 2

√
k and λs < 0 for r < 2

√
k.

Consequently, the mentioned expression cannot be valid for
small radii.

As it has been clearly established in subsec. 4.3, if no out-
wards flux of thermal radiation is taken into account the val-
ues of λ(r, t) would grow in an unlimited way. Thus, at large
times, it would become great enough to imply the T 0

0 compo-
nent of the stress-momentum tensor to approach the asymp-
totic expression given in Eq. 32. By contrast, in the previ-
ous subsection we have actually taken into account the emis-
sion of thermal radiation, and it has been performed with the
Hawking-like law specified in Eq. 39, which entails a most
prominent emission rate for inner shells. As a consequence,
λs values decrease at small radii (or, what is the same, it re-
sults to be a strictly increasing function with r).

For radii r � 2
√

k, all the calculations which have been
deduced after Eq. 32 are completely justified. Fortunately,
that corresponds to most values of r, since k � 1 (certainly,
the thermal evaporation process takes place at a considerably
slow rhythm).

Thus, the steps which we have followed in order to de-
termine λs(r) must be reviewed in order to obtain a valid ex-
pression for small radii. A suitable analytical solution to the
problem is far from being straightforward, but we are going
to analyse it a bit more of care in the following lines.

Firstly, the complete identity of T 0
0 in Eq. 2 must be used

instead of Eq. 32. Therefore, the expression for λin, instead
of the one specified in Eq. 54, according to 52 will be

λ̇in = e−φ
1
2r

(
1 − e−λ

(
1 − rλ′

))
. (62)
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From this, keeping the same radiation law of Eq. 39 and
the expression for λout of Eq. 51, it is not hard to follow that
the stability condition in Eq. 55 entails

eλs =
r2

4k

(
1 − e−λs

(
1 − rλ′s

))
. (63)

When λs � 1, Eq. 57 is recovered. As we had already
signalled, its resolution in the regions where the mentioned
limit ceases to be valid is far from being trivial. Nonetheless,
a possibility could consist in the application of an iterative
method. Instead of making eλs → 0, in the right side of the
equation we may use as a first approximation (well, actually
as a second approximation) the expression for λs obtained in
Eq. 58 (being its derivative λ′s = 2/r):

e∗λs ∼
r2

4k

(
1 −

4k
r2

(
1 − r

2
r

))
=

r2

4k
+ 1, (64)

where the asterisk (*) stands for “iterated”.
Thus,

λs∗ ∼ ln
(

r2

4k
+ 1

)
, (65)

which can be assimilated to Eq. 58 for large values, but that
has the advantage of accomplishing the necessary condition
λ(r, t) > 0 ∀r, t.

In the next subsection, we are not going to have longer
into account the corrections for small radii, but we will fo-
cus onto temporal variations of λ(r, t) when approaching the
stability phase described by 58 (only valid for r > 2

√
k).

4.4.3 Small variations of λ(r,t) before the stability phase

According to Eqs. 44, 51 and 54 we have

λ̇(r, t) = e−φ
(

1
2r
−

2keλ

r3

)
. (66)

In the stability phase, defined by Eq. 55, the functional
dependence of λ is given by Eq. 57. Now we proceed to study
small variations of λ(r, t) before it acquires the stability value,
that is,

λ(r, t) = λs(r) − λ∆(r, t) . (67)

Notice that, by definition, λ̇s(r) = 0. This fact implies

λ̇(r, t) = −λ̇∆(r, t) . (68)

Furthermore, because of the inequality λ∆ � λ, we will con-
sider φ ' φs. Therefore, from Eqs. 57, 66, 67 and 68 we
obtain the expression

λ̇∆ = −
e−φs

2r

(
1 − e−λ∆

)
. (69)

In the limit λ∆ � 1 we can approximate 1 − e−λ∆ ∼ λ∆,
so that

λ̇∆ = −
e−φs

2r
λ∆ + O

(
λ2

∆

)
, (70)

whose integration over t leads to the following solution

λ∆ = A(r) exp
(
−

e−φs

2r
t
)

= A(r) exp
(
−e

−1
8k (R2−r2) t

2r

)
, (71)

where A(r) is an arbitrary positive defined function depending
on the initial conditions of the problem.

Therefore, according to the hypothesis of the model, λ(r,t)
asymptotically approaches its stability value:

λ(r, t) = − ln(4k) + ln
(
r2

)
− A(r) exp

(
−e

−1
8k (R2−r2) t

2r

)
. (72)

4.5 Some considerations about the mass and the edge of
the collapsing body

From Eq. 19 the infalling velocity ṙin of any collapsing shell
in the present model is given by

ṙin ≡
dr
dt

=
dr
dτ

dτ
dt

=
u1

in

u0 = −e−φe−λ. (73)

According to Eqs. 42 and 73 and with account of the con-
tour condition φ(R, t) = 0 ∀t, the motion of the edge R of a
collapsing body of mass M must be given by the expression

Ṙ = −

(
1 −

2M
R

)
, (74)

whose solution for large enough times is

R = 2M + ∆R0e
−t
2M (75)

with ∆R0 being a constant depending on the initial conditions
of the collapse.

An important detail must be pointed out. In the previous
equations we have dealt with the total mass M of the collaps-
ing body as if it was a constant. It may be actually considered
constant in practice for long periods of time but, in fact, it
slowly diminishes due to the emission of thermal radiation,
unless the surrounding background presents a greater CMB
temperature or news amounts of infalling mass are provided.
Thus, having into account that RS = 2M, from Eq. 39,

Ṁ =
−k
R2

S

=
−k

4M2 . (76)

Therefore,

M(t) =

(
M3

0 −
3kt
4

) 1
3

, (77)

from which the evaporation time tv may be isolated:

tv =
4M3

0

3k
. (78)
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5 Discussion

The model of gravitational collapse presented in this paper
contains an important number of simplifications which have
allowed us to find analytical solutions of the coefficients of
the metric all over the space at any given time (for small ra-
dius values, we have seen that some special considerations
must be taken into account, but no essential contradiction is
risen). The results obtained are self-consistent and do not lead
to the formation of an event horizon, what would provide a
simpler interpretation of the information loss problem: if no
event horizon is formed, thermal radiation should be directly
emitted by the collapsing body. Hence, there is no need for
postulating a special mechanism of radiation such the one that
S. Hawking proposed ad hoc for black holes. Let us now anal-
yse more carefully the hypothesis that we have made, their
implications and the consequences that would have been de-
rived from making slightly different considerations.

Our starting point has been a time-dependent spherically
symmetric metric. It is a well-known fact that spherical sym-
metry is an almost universal approximate characteristic of any
celestial body. Two kind of phenomena certainly prevents it
from being perfect: the first one is rotation (which implies
the modification from spherical surfaces to ellipsoidal ones),
while the second one consists of the local inhomogeneities of
any real system.

Concerning rotation, it constitutes per se a very interest-
ing but mathematically complex problem. To deal properly
with a rotating process of gravitational collapse, a kind of
modified time dependent Kerr metric should be formulated
(in the same way that in this paper a kind of “time-dependent
Schwarzschild metric” has been proposed). From an intu-
itive point of view, however, one would expect that rotation
should lead to a genuinely slower collapsing process (due to
the “centrifugal” effect of angular momentum). Concerning
local inhomogeneities, a detailed study of the effect of small
perturbations on the metric could constitute another per se at-
tractive problem, but a priori it is not unreasonable to assume
that the emission of gravitational waves should tend to dimin-
ish these effects with time. This is a consequence of the “no
hair” theorem for black holes (even when we have found no
black hole in the mathematical development of this article).

About the temporal dependence of the metric coefficients,
it appears to be a strict logical requirement of the problem.
The displacement of the infalling matter along the collapsing
process must necessarily imply a temporal change in the met-
ric coefficients. In this sense, Schwarzschild metric -a good
solution for the stationary “punctual mass” problem- is not
the best choice for the question of collapse itself. In words
of J. A. Wheeler, “matter tells spacetime how to curve, and
curved spacetime tells matter how to move”. With our choice
of time-dependent metric, Kruskal-Szekeres coordinates are
not needed because the ordinary polar spherical coordinates
cover the entire spacetime manifold and the functions λ(r, t)

and ν(r, t) are analytic all over the space.

With respect to the choice of stress-momentum tensor,
its dust-like nature has been greatly aimed for the sake of
simplicity. As it has been already emphasized in the perti-
nent section, it seems paradoxal to consider simultaneously
the features of “dust-like” and “ultrarelativistic” because the
relation between pressure and energy density in an ultrarela-
tivistic gas turns out to be p = 1

3 ρ. Nonetheless, two subtle
points should be raised here: First of all, the concept of “ul-
trarelativistic dust” is not as strange as it appears to be, since a
privileged direction of motion has been considered (the ultra-
relativistic motion is highly “directed” towards purely radial
lines). Secondly, even if a relation of proportionality between
p and ρwould have been chosen, that would not have changed
the fact that all the other stress-momentum tensor components
could be expressed as a product of certain factors and T 0

0 . It
is straightforward to check that changing the aforementioned
factors would not alter drastically the subsequent mathemati-
cal development. As a matter of fact, the “linearity” between
T 1

0 and T 0
0 has allowed us to set a temporal dependence for λ.

In fact, as λ̇ turns out to be proportional to T 0
0 , the function λ

would only diverge if T 0
0 became infinite too. Nevertheless,

when λ increases T 0
0 does not diverge but tends to 1

8πr2 . In a
similar way, it may be proved that ν, or φ = − 1

2 (ν + λ), is also
a well-behaved function despite [reasonable] modifications in
the stress-momentum tensor.

Thus, whether we consider thermal radiation or not, the
study of the temporal evolution of a spherically symmetric
gravitational collapse in spherical polar coordinates does not
lead to incoherences, but constitutes a sensible alternative to
the usual black hole model. In addition, when thermal radi-
ation is considered, very high (but finite) values of λ are ob-
tained at any given r. Definitely, the radiation law proposed
in this paper has been deduced in a rather “heuristic” way
by assuming the extensibility of the calculations detailed in
Ref. [12] to a model of scarcely interacting collapsing shells.
Certainly, in the original paper by Vachaspati et al. the emis-
sion of radiation was calculated from a spherical Nambu-
Goto domain wall using the functional Schrödinger formal-
ism, with vacuum close to the wall. Therefore, our analytical
extension of their results to “inner shells” may be cautiously
considered, but it is a reasonable hypothesis, specially hav-
ing into account Birkhoff theorem (according to which, in a
system with spherical symmetry, the gravity in a surface is
basically determined by the mass of the matter contained in
the inner, not outer, shells). As a matter of fact, it is a much
more consistent assumption than some of those that may be
found in the published works, as the use of a strictu sensu
Hawking radiation in a process of gravitational collapse (as,
for instance, in Ref. [28]), as Hawking radiation implies (es-
sentialy, not just formally) a transition from vacuum, and in
truth a collapsing star is not void.

On the other hand, even if the genuine radiation law ap-
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peared to be completely different, it would still be true that an
asymptotic approach to a “stationary” phase (where the value
of λ would stop increasing) should happen. In fact, this phase
should be always reached just by assuming the reasonable hy-
pothesis that the outgoing flux of thermal radiation should not
diminish with time (the temperature of the collapsing body
should be expected to rise with the progression of collapse),
while the ingoing flux of collapsing matter should become
smaller as the spacetime deformation becomes larger.

In summary, even when several of the assumptions of the
model of gravitational collapse proposed in this paper may
be considered excessively “idealistic”, it provides an illustra-
tive description of how a time-dependent metric should be the
most logical choice for the study of gravitational collapse and
that the polar spherical coordinates of an asymptotic observer
(a scientific on the Earth, not an astronaut falling into a black
hole) are sufficient to cover the whole collapsing process.
The supposed completion of the collapsing process in a finite
proper time for a co-mobile observer would never be truly
accomplished due to the invariance of causal order for any
relativistic system (in a finite and lesser proper time, the co-
mobile observer would be fully evaporated by the emission
of thermal radiation). The astronomic objects already identi-
fied as “black holes” could equally correspond to “asymptot-
ically collapsing bodies”. Empirically, few differences would
be expected. From a theoretical point of view, the latter ones
may be obtained in a very natural way from the Einstein field
equations and avoid many of the paradoxes and illogical as-
pects of the former ones. Thus, according to Occam’s razor,
asymptotic collapse should be preferred to black holes.
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A return is proposed to the 6-years-long period before Einstein gave up on the global

constancy of the speed of light c in the vacuum. c-global remains implicit in Maxwell’s

equations and in quantum electrodynamics. Reluctantly, Einstein abandoned c-global

in 1911 after a 3 1
2

years long silence kept on gravitation during which he had tried in

vain to avoid the conclusion that c is only an everywhere locally but not a globally valid

constant of nature. It is shown that Einstein just overlooked a corollary to his own find-

ing of an optically reduced speed of an horizontal light ray downstairs in his constantly

accelerating long rocketship in outer space. The new corollary reads: slantedness rela-

tive to the tip of the locally horizontal light ray. Hence Einstein’s famous gravitational

redshift — the increase in wavelength compared to above of a vertically emitted light

ray — is accompanied by a proportional enlargement of space. The new horizontal size

increase is masked from above by the upwards slant valid relative to the tip. Einstein’s

gravitational time dilation thus goes hand in hand with an equal gravitational space di-

lation. Surprisingly, Quantum Mechanics enforces the same conclusion independently:

the reduced energy of the locally normal-appearing photons downstairs generates (via

Quantum Mechanics’ creation and annihilation operators) atoms of a proportionally re-

duced mass and hence proportionally enlarged size. Two disappointing implications

follow: c-global rules out both cosmological space expansion and black hole evap-

oration. The uplifting third implication is: c-global makes the equivalence principle

compatible with Quantum Mechanics for the first time. This new compatibility pre-

dictably extends to the implied “c-global-rescaled General Relativity”. Hence the “holy

grail of physics” is bound to exist. The cgr-GR only waits to be written down.

1 Foreword

The following text seems to represent a footnote on the early

prehistory of General Relativity, dealing only with long over-

hauled ways of thinking and of groping in the dark, because

since 1915 we have the indubitable final reality of the theory

of space and time in the large. The purpose of the present

note is to show that this is not so. In the very foundations of

the grandiose recipe, there is hidden a tiny minor oversight.

It has little influence on most implications, but it nonetheless

allows one to improve the theory eventually by at last putting

straight an element that belongs into it since 1915: the non-

globality of c.

Many specialists will strongly disagree with the view that

it could pay to return to the most early stage of this beautiful

superhuman theory to find a little oversight in it and repair it.

But this is exactly the purpose and aim of the following text.

As the reader will see, the consequences — if this friendly de-

tour into a long-gone stage of science is followed for the fun

of it for a short stretch since everything is maximally simple

on that level — are maximally far-reaching and rewarding.

Admittedly, such “nostalgic physics” à la Yul Brynner in

the movie “Westworld” is an unusual approach. It looks like

History of Science and has a dusty smell to it. But IF it un-

earths something that was really and actually overlooked, it

has an important role to play. So with this Foreword, which

owes its existence to a spirited written dialogue with the

Editor-in-Chief, the present note belongs into a twilight cate-

gory of theoretical physics. But it is the fruits that make re-

sults recognizable eventually. So if the result derived below, a

so far overlooked gravitational-redshift-proportional size in-

crease in gravitation, is correct — as is shown on the limited

level of knowledge available in 1907 below, aided only by an

independent development in physics that did not exist at the

time, quantum electrodynamics —, then a major progress in

today’s thinking occurs. So the paper which follows after this

acutely added preface is perhaps indeed worth the scrutiny of

the specialists.

It is rare that such a naive but rigorous spatial thinking

is used in theoretical physics. It reminds its author of the

early phase in chaos theory when “absurdly simple” geomet-

ric ideas, like overlaying two transparencies with an expand-

ing spiral drawn on each and defining straight threshold lines

of transitions between them, sufficed to catapult chaos the-

ory into the applied sciences. In that latter case, the special-

ists arrived at the same trick called “singular perturbation”

eventually. In the present case, a similar “canonization” is

hoped for.
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2 Introduction

Einstein’s biggest early discovery was an intuitive under-

standing of Maxwell’s c-global: he saw in his mind that a

light flash can expand as a sphere with the same speed c

around each of two observers who are passing by each other

at a high speed while the flash goes off at their feet at that

moment.

This logical impossibility (one expects two light spheres

around the two mutually fast receding observers) becomes a

logical truth if the simultaneities valid for the two runners

which coincide at the encounter, are mutually slanted as two

equal-rights cuts through the same light cone. This fact Ein-

stein was able to picture in his mind after a long nightly dis-

cussion with his by a few years older friend Michele Besso.

On the next morning, he excitedly returned to Besso’s front

door to tell him: “Thanks to you, I have solved the problem!”

This event Einstein reported to a Japanese audience 17 years

later when he had just received the news of his Nobel Prize.

His rare German phrase “Dank Dir” (thanks to you) got con-

founded with the conventional German phrase “danke Dir”

(thank you) in the ensuing translation — so the co-authorship

of Einstein’s lifelong friend Besso never became public.

The miracle of the individualized global constancy of c

fell in doubt with Einstein himself 2 1
2

years later, in Decem-

ber of 1907 [1], to be abandoned for good in mid-1911 [2].

By serendipity, c-global was retrieved a century later in 2007

as an allowed formal implication of the Schwarzschild met-

ric of General Relativity [3, 4]. Subsequently, c-global was

also discovered in the equivalence principle of Special Rela-

tivity [5], the very theory in which it had become questionable

in late 1907 and been abandoned in 1911.

3 Motivation

The return of c-global into the foundations is important be-

cause a “facelift of physics” is implicit. For instance, the

long-accepted paradigm of the Big Bang ceases to be ten-

able since it implies that two sufficiently distant objects on

the expanding “balloon” recede from each other at a superlu-

minal speed. As a second implication, black holes can now

no longer “evaporate” since the well-known infinite tempo-

ral distance of their surface (called horizon) from the out-

side world is, by virtue of the global c, accompanied by an

equally large spatial distance. Hence there can be no “tun-

neling” to the horizon anymore and thence no Hawking radi-

ation. Thirdly, metrology acquires a whole new face [5].

What is the best way to convince the reader that c-global

holds true again after a century? The answer lies in a return

to the early Einstein. In 1905, he had described two radically

new implications of c-global: the twins paradox (one twin

ageing faster as if in a Grimm Brothers’ fairy tale) and the

transversal Doppler effect, which had both been overlooked

by his great predecessors in the developing discovery of Spe-

cial Relativity, Lorentz and Poincaré.

4 Genealogy

The drama with c-global began in 1907 with the last step in

the discovery of the equivalence principle. The latter prin-

ciple [1, 6] had just yielded the absolutely incredible but in

retrospect true prediction of the gravitational redshift: inside

a constantly accelerating long rocketship in outer space de-

scribed by Special Relativity, a light pulse ascending with a

finite c from the bottom reaches the tip only when the latter

has picked up a fixed relative speed away from the original

emission point. The GPS satellites confirm this absurdly dar-

ing insight of “gravitational time dilation” downstairs every

minute.

Einstein’s look at a vertically emitted light ray was then

followed by his also having a look at a locally horizontal light

ray that hugs the flat bottom of the ignited rocketship. This

led him to his final discovery in the equivalence principle: a

horizontal light pulse automatically looks slowed by the grav-

itational redshift factor when watched from above [1] (see the

last unnumbered equation on the last-but-second page).

5 Main result

The second revolutionary finding of Einstein regarding grav-

itation is again absolutely correct notwithstanding its absur-

dity from a common-sense point of view. However, it hap-

pens to admit of a final touch. The latter takes the first Ein-

stein result (the fact that the bottom is in constant recession

relative to the tip) into account in the second (the apparent

transversal slowdown of c). The synthesis is that the locally

horizontal light ray hugging the floor is necessarily at the

same time slanted-upwards relative to the tip at every point

due to the continual falling-back of the bottom. Note that

when the light from the neighboring spatial cell downstairs

reaches the next, the latter is a bit faster already, etc. Ow-

ing to this new relative slant, the horizontal reduction of c

discovered by Einstein becomes a mere projection effect: the

new upwards slant restores c-global.

It is worth pointing out here that c-global formally under-

lies the equivalence principle from the outset since the latter is

exclusively based on Special Relativity with its built-in global

c. This fact was not sufficient, however, to directly rule out the

conclusion that c is locally reduced. The lack of confidence

shown has to do with the fact that the rocketship paradigm is

so impossibly hard to think-through in every respect [6].

The newly retrieved global speed of light c downstairs

in the equivalence principle now has its consequences: all

transversal lengths downstairs which at first sight look un-

changed from above are actually increased by the gravita-

tional redshift factor relative to the tip. They only look op-

tically compressed towards the original length by virtue of

the slant. The only readily visible consequence upstairs is the

seemingly reduced transversal speed of light c′ downstairs,

discovered by Einstein [1].
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6 Consistency

The new found transversal size increase downstairs matches

the increase in wavelength of all light emitted downstairs.

Moreover, these lower-energy photons emitted downstairs re-

main, with their locally unchanged-appearing frequencies, lo-

cally interconvertible with particles of matter (as in positron-

ium creation and annihilation) as a consequence of the much

later discovered quantum electrodynamics. Hence all local

atoms have a mass that is lower by the redshift factor valid

relative to above. This mass reduction, in turn, entails a pro-

portional size increase of these atoms via the Bohr radius for-

mula of Quantum Mechanics. Therefore, space is enlarged

downstairs, both by the c-global of Special Relativity and by

virtue of Quantum Mechanics, in an identical fashion. The

two theories confirm each other independently. The optically

unchanged-appearing horizontal distances downstairs with

their creeping c′ seen by Einstein do therefore indeed mask

a size increase proportional to the gravitational redshift.

Note that the thus doubly confirmed new Einstein effect of

“gravitational space dilation” exactly matches the old

Einstein effect of “gravitational time dilation” (implying c-

global). The equivalence principle thus becomes even more

powerful by the fact that the size change derived geometri-

cally in it via the laws of Special Relativity gets indepen-

dently confirmed by the creation and annihilation operators

of quantum electrodynamics.

Thus, the original interpretation of Einstein’s creeping ef-

fect (as a reduction in c [1, 2]) can be given up for good to

date. However, it is important to realize that in the days be-

fore the advent of quantum electrodynamics with its creation

and annihilation operators, the double-tiered consistency ob-

tained above was inaccessible. Hence the above-described

fractal-like relative local slant, which saves c-global on the

part of Special Relativity downstairs, was in the absence of

Quantum Mechanics’ own rest-mass-dependent size increase

impossible to spot. Einstein’s giving c-global up for good

in 1911 after more than 3 years of trying to preserve it was

therefore preprogrammed.

The new Einstein effect of “gravitational space dilation,”

when added to the old Einstein effect of “gravitational time

dilation” (so that c remains a global constant of nature), has

mind-boggling consequences like the two already mentioned

(no Big Bang and no Hawking evaporation). The second im-

plication is especially important in view of the fact that it ren-

ders the most hoped-for success of a currently running exper-

iment — generation of miniature black holes down on earth

— undetectable by virtue of the absence of their generally

expected Hawking signature. Any unrecognized success at

CERN will then grow exponentially inside earth [3]. So the

return to c-global implies “tangible consequences” for an ex-

periment rated innocuous in its last — still pre-c-global —

safety report LSAG of 2008. Einstein’s results are notorious

for entailing existential consequences.

7 Discussion

It is a good idea to “return to the mothers” from time to time,

poet Goethe advised. In the present case, a trip back to the

pioneer phase of relativistic gravitation theory was offered.

The retrieved crumb from Einstein’s table — c-global — is

still big enough to revolutionize cosmology and metrology.

All of this is only possible because in 1907, a young out-

sider dared think clearly in three dimensions with an almost

superhuman exactitude including motion effects and their en-

tailed delays — much as a computer-games freak of today

would do with the aid of modern simulation tools, cf. [7].

Composing the computer game “Einstein Rocket” and putting

it on the web will greatly aid physics. In this way, a modern

young Einstein may be enabled to let the only “to some ex-

tent accessible” [6] thought experiment of the younger Ein-

stein reveal its most important if presently still unfathomable

secret.

To conclude, a revolution in physics based on Einstein’s

early work was described. A corollary to his optically man-

ifest reduced speed of light c′ downstairs in gravitation was

pointed out — a gravitational-redshift proportional size

increase downstairs in gravity that is masked from above.

The new space dilation is proportional to the old time dila-

tion and thus restores c-global in accordance with the special-

relativistic nature of the equivalence principle of Einstein.

Consistency of the equivalence principle with Quantum Me-

chanics arises for the first time (the previous absence of this

feature had gone unnoticed). As a bonus, the new size dila-

tion predictably enables the long-missed unification of Gen-

eral Relativity with Quantum Mechanics — “the holy grail of

physics” [8].
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