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Some Expressions for Gravity without the Big G and their Possible
Wave-Theoretical-Explanation

Hasmukh K. Tank
Indian Space Research Organization, 22/693, Krishna Dham-2, Vejalpur, Ahmedabad-380015, India

E-mail: tank.hasmukh@rediffmail.com, hasmukh.tank1@gmail.com

This letter presents some new expressions for gravity without the big G and proposes
their possible wave-theoretical-explanation. This attempt leads to some insight that: (i)
We need the proportionality-constant G because we measure masses and distances in
our arbitrarily-chosen units of kg and meters; but if we measure “mass” as a fraction of
“total-mass of the universe” M0 and measure distances as a fraction of “radius-of-the-
universe” R0 then there is no need for the proportionality-constant G. However, large
uncertainties in the M0 and R0 limit the general application of this relation presently.
(ii) The strength of gravity would be different if the total-mass of the universe were
different. Then this possibility is supported with the help of wave-theory. (iii) This
understanding of G leads to an insight that Plancks-length, Planck-mass and Planck’s
unit of time are geometric-mean-values of astrophysical quantities like: total-mass of
the universe and the smallest-possible-mass hH0/c2. (iv) There appears a law followed
by various systems-of-matter, like: the electron, the proton, the nucleus-of-atom, the
globular-clusters, the spiral-galaxies, the galactic-clusters and the whole universe; that
their ratio Mass /Radius2 remains constant. This law seems to be more fundamental
than the fundamental-forces because it is obeyed irrespective of the case, whether the
system is bound by strong-force, electric-force, or gravitational-force.

1 Introduction

Sir Isaac Newton presented the quantitative description of
gravitational attraction between two massive bodies, that the
force of attraction is directly proportional to the product of
two masses, and inversely proportional to the square of
centre-to-centre distance between them; and the value of
proportionality-constant G was found to remain the same
even in the case of planets. But there has been no explana-
tion for why the value of G is this much. Einstein also made
extensive use of G by treating it as a fundamental-physical-
constant. Based on my previous works, [1-5] and the works
of researchers cited in these papers, this paper presents some
alternative expressions for gravity, without the big G, and pro-
poses a wave-theoretical-explanation for gravity.

2 New expressions of gravity without the big G

(i) R.K. Adair, in his book “Concepts in Physics” [6] has
given a derivation, that the sum of “gravitational-potential-
energy” and “energy-of-mass” of the whole universe is, strik-
ingly, zero! i.e.

M0c2 − GM0M0

R0
= 0

where M0 and R0 are total-mass and radius of the universe
respectively, and G is Newton’s gravitational constant; i.e.

GM2
0

R0
= M0c2

i.e.

G =
R0c2

M0
.

So, by substituting R0c2/M0 for G in Newton’s formula,
the gravitational potential energy Ug stored in a system of
masses M and m separated by a distance r can be expressed
as:

Ug =

M
M0

mc2

r/R0
. (1)

Newton’s law when expressed as shown in the expression-1,
shows that: if we measure masses as a fraction of total-mass
of the universe M0 and measure distances as a fraction of ra-
dius of the universe R0 then we do not need the big G.

However, large uncertainties in the M0 and R0 limit the
general application of this relation presently.

A brief discussion will be in order, how the “total-mass-
of-the-universe” and “radius-of-the-universe” are derived;
and what would be the uncertainties of these?
Total-mass-of-the-universe:
E.P. Hubble’s experimental-observations of the “cosmologi-
cal-red-shift”, when interpreted in terms of “recession-of-
galaxies”, gives a linear relation:

v = H0D

where: v is the “velocity-of-recession” of a galaxy, H0 is
Hubble’s constant and D the luminosity-distance of a galaxy.
From this relation we can get an estimate of “sum-total-of-
kinetic-energy-of-the-universe” Ku. This recession-of-gala-
xies, also known as: “expansion-of-the-universe”, can stop if
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and when “kinetic-energy-of-the-universe” Ku becomes equal
to “gravitational-potential-energy-of-the-universe” Uu. By
equating Ku = Uu, cosmologists have derived the value of
“total-mass-of-the-universe” M0.

It has been estimated [7] that the universe would have col-
lapsed to hot-death much sooner than the present-age of the
universe if total-mass of the universe were more than M0; and
it would have cooled down to cold-death much earlier than the
present-age of the universe if its total-mass were less than M0.
The present-age, of 14 billion years, imply that the total-mass
of the universe is indeed M0. M0 = 1082 pion-masses.

It is surprising [8] that cosmologists are so far able to ex-
perimentally detect only the baryonic-matter, which is hardly
4% of the total-mass M0! At least 70% of the total-mass M0
is believed to be in the form of “dark-energy”, and remaining
26% in the form of “dark-matter”. “Dark-matter” is needed
to explain the “flattening-of-galaxies-rotation-curves”. That
is, the estimates of total-mass of the universe depend on 26%
share from “dark-matter”, and 70% share from “dark-energy”
which are yet to be detected.
Radius-of-the-universe:
The distance at which a galaxy can attain the velocity-of-
light, that is, when Hubble’s expression becomes: H0R0 = c,
where c is the speed-of-light, this distance R0 is called: “the-
radius-of-the-universe”. Even if universe-tip may be moving
with speed higher than light-speed, the “visible” horizon will
be limited by the equation c = H0R0 [8]. So, the value of
radius of the universe is taken as 1026 meters, i.e. = 1040

classical-radius of the electron. Here H0 is Hubble’s constant.
As far as accuracy of the values of M0 and R0 are con-

cerned, there must be large amount of uncertainties. We can
not expect to improve current value of G form them. Our
expression of gravity without G can only help us to gain an
insight, that the strength of gravitational-force seems to de-
pend on total-mass and radius of the universe. Similarly, we
can gain some insight in to Planck’s natural units, and Mil-
grom’s new constant of nature a0, termed as the “critical-
acceleration” of Modified Newtonian Dynamics (MOND).
Now, let us move to some more expressions without the
big G.

(ii) Milgrom’s expression for the constant velocity v of the
stars at the out-skirts of a spiral-galaxy of mass M is conven-
tionally expressed as [7]:

v = (GMa0)1/4 . (2)

Since: G = R0c2/M0, and a0 = c2/R0, as discussed in [9],
the expression-2 can be re-expressed without G as:

v =

[
R0c2

M0
M

c2

R0

]1/4
i.e.

v = [M/M0]1/4c. (3)

In the expression-3, c is the speed of light in vacuum, and M0
and R0 are total-mass and radius of the universe respectively.

(iii) We can express the radii of the globular-clusters, the
spiral-galaxies and the galactic-clusters as:

Rglobu =

[
Mglobu

M0

]1/2
R0 = [rGgloR0]1/2, (4)

where rGglo is gravitational-radius of the globular-cluster.

Rgalaxy =

[
Mgalaxy

M0

]1/2
R0 = [rGgalR0]1/2, (5)

where rGgal is gravitational-radius of the galaxy.

Rgal−clust =

[
Mgal−clust

M0

]1/2
R0 = [rGgal−clustR0]1/2, (6)

where rGgal−clust is gravitational-radius of the galactic-cluster.
Even the classical-radius of the electron re = e2/mec2 can

also be expressed as:

re =

[
me

M0

]1/2
R0 = [rG−eR0]1/2, (7)

where rG−e is gravitational-radius of the electron.
Radius of the pi-meson rpi = Ng2/mpic2 can also be ex-

pressed as:

rpi =

[
mpi

M0

]1/2
R0 = [rG−piR0]1/2, (8)

where rG−pi is gravitational-radius of the pi-meson.
And the radius of nucleus of an atom rn can also be ex-

pressed as:

rn =

[
mn

M0

]1/2
R0 = [rG−nR0]1/2, (9)

where rG−n is gravitational-radius of the nucleus-of-atom.
The expressions (4) to (9) can be jointly expressed as [8]:

M0

R2
0

=
mP

r2
P

=
me
r2

e
=

mn

r2
n
=

Mgc
R2
gc
=

Mgal

R2
gal

=
Mcg

R2
cg
=

H0c
G
.

We shall consider a possible “wave-theoretical-explana-
tion” for the expressions (4) to (9) in the section-4.

Since the classical-radius of the electron re = e2/mec2,
radius of the pi-meson rpi = Ng2/mpic2 and the radius of nu-
cleus of an atom rn can also be expressed in the similar man-
ner by inserting the masses of the electron, the pi-meson and
the nucleus in the right-hand-sides of the above expressions,
though they are bound by electric-force, strong-force and the
nuclear-force respectively, it suggests a possibility that the
currently-believed fundamental-forces may not be truly fun-
damental; rather, the law followed by them, as expressed in
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the expressions (4) to (9), may be more fundamental than the
“fundamental-forces”; and the strengths of forces may be get-
ting decided by these expressions (4) to (9). It also suggests
a possibility that when a “black-hole” has some “mass” then
it has to have a “radius”.

(iv) We can express the cosmological red-shift zc smaller
than unity as:

zc =
D
R0
. (10)

And we can express the accelerated-expansion of the uni-
verse, the deceleration of the cosmologically red-shifted
photon, the deceleration of the Pioneer-10, 11, Galileo and
Ulysses space-probes and the “critical-acceleration” of
MOND as [9]:

a0 =
c2

R0
. (11)

3 Some insight into Planck’s units

From the law of equality of gravitational-potential-energy and
energy-of-mass of the universe we found that: G = R0c2/M0.
Now let us make use of this expression to get some insight
into Planck’s units of length, mass and time:
Planck’s-length L∗ = [hG/c3]1/2.

Substituting R0c2/M0 for G in the above expression,
Planck’s-length L∗ = [hR0c2/M0c3]1/2;
i.e. Planck’s-length

L∗ =
[

h
M0c

R0

]1/2
; (12)

i.e. Planck’s-length L∗ is a geometric-mean of: Compton-
wavelength and Gravitational radius of total-mass of the uni-
verse, because R0 = GM0/c2.
Planck-mass M∗ = [hc/G]1/2;
i.e. Planck-mass M∗ = [(h/R0c)(M0)]1/2; i.e. Planck-mass

M∗ =
[
hH0

c2 M0

]1/2
. (13)

That is Planck’s unit of mass is a geometric-mean of:
total-mass of the universe and smallest-possible-mass, corre-
sponding to Hubble’s constant (hH0/c2). Similarly, Planck’s
unit of time T ∗ is a geometric-mean of: age-of-the-universe
T0 and the period (h/M0c2): i.e.

T ∗ =
[
T0

h
M0c2

]1/2
. (14)

4 Possible wave-theoretical explanation for gravity

Let us assume that there are some most-fundamental-parti-
cles, and a long-range fundamental-force. We can take the
mass of the “most-fundamental-particle” as a unity, and think
that all the massive objects are collections of the “most-fun-
damental-particles”.

Now, by a “particle” we mean an entity which is localized
in an extremely small space; so, a “particle” can be math-
ematically represented in the space-domain as an impulse-
function. This impulse-function can be Fourier-transformed
into the “wave-number-domain”. Then assuming a constant
velocity of transmission of these waves, at the velocity of
light, we can represent these waves in the “frequency-
domain” as a wide band of frequencies. A particle of matter
has a wide band of frequency-spectrum and a definite phase-
spectrum. When this wide band of waves travels in space,
then a “particle” becomes manifest only at a place and time
when-and-where all the spectral-components add construc-
tively, and have a particular, definite phase-relation, otherwise
the particle remains dissolved in the un-manifest-state.

Secondly, we can not expect any coherence between the
spectral-components of one and the other “particle”. That
means, that when two or more such fundamental-particles
come close to each-other, the wide bands of their waves add
like the incoherent superimposition of wideband-noise.

We know that the superimposition of n number of wide-
band noise-sources of unit-amplitude is square-root-of n; like
the vector-sum of n mutually orthogonal unit-vectors. That
is:

N(t) =
[
(N1(t))2 + (N2(t))2 + (N3(t))2 · · · + (Nn(t))2

]1/2
.

Now, if the strength of “coupling-constant” of a funda-
mental-force is, say, e2, which is the strength of electric-force
of the proton, then the strength of “coupling-constant” of a
new “fundamental-force”, which is actually due to “incohe-
rent-superimposition”, within the system of n fundamental-
particles will be: (n1/2e2)/n. Since the total-mass of the uni-
verse M0 is 1080 proton-masses, the strength of gravitational-
force between the two protons is expected to be:

GM0mp = (Total−number of protons in the universe)1/2 e2

i.e.

Gm2
p =

√
1080e2

1080

i.e.
Gm2

p = 10−40e2. (15)

[Note: This is just an order-of-magnitude-estimate.]
Now, if the force within a system is stronger than grav-

ity by a multiplication-factor, say, k-times, then the density
of matter within that system is also logically expected to be
k-times higher. That is, in our example of proton and the uni-
verse:

e2

Gm2
p
=

[
M0

mp

]1/2
=

mp
4
3πr

3
p

M0
4
3πR

3
0

i.e.
e2

Gm2
p
=

[
M0

mp

]1/2
=

mpR3
0

M0r3
p

H.K. Tank. Some Expressions for Gravity without the Big G and their Possible Wave-Theoretical-Explanation 5
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i.e. [
M0

mp

]3/2
=

R3
0

r3
p

i.e. [
M0

mp

]1/2
=

R0

rp
=

e2

Gm2
p

(16)

i.e.
M0

R2
0

=
mp

r2
p
. (17)

The expression-16 was noticed as the “large-number-
coincidence” [LNC], whereas here we derived it with the help
of wave-theory.

Sivaram [10] had noticed a relation between masses and
radii of the electron, the proton the nucleus-of-atoms, the
globular-clusters, the spiral-galaxies, the galactic-clusters and
the universe as shown in the expression-18 below. The ex-
pression-18 is similar to the expression-17 derived by us us-
ing wave-theory. So our derivation based on wave-theory
matches with the observations presented by Sivaram.

M0

R2
0

=
Mgal−clust

R2
gal−clust

=
Mgal

R2
gal

=
Mglobu

R2
globu

=
mn

r2
n

=
mpi

R2
pi

=
me

r2
e
=

H0c
G

(18)

Even the mysterious-looking Weinberg-formula can be
re-written, and explained, as follows: Weinberg’s formula is:
m3

pi = h2H0/c G , which can be re-written as: mpi/(h/mpic)2

= H0c/G. Weinberg’s formula has an imbalance of one order
of magnitude which can be corrected by replacing Compton-
wavelength of the pion by radius of the pion, i.e. mpi/R2

pi =

H0c/G. So the mysterious-looking Weinberg-formula is also
a part of the expression-18.

5 Conclusion

Now we have an explanation for why we need the gravita-
tional constant G. The strength of gravity seems to depend
on the total-mass M0 and radius R0 of the universe. How-
ever, large uncertainties in the M0 and R0 limit the general
application of this relation presently. Secondly, gravity may
not be an independent “fundamental-force”; it may be arising
due to “in-coherent super-imposition” of wave-amplitudes of
very wide-band of waves of total number of fundamental-
particles contained in the universe. The theory also explained
the large-number-coincidence, and the mysterious-looking
Weinberg formula. We also gained some insight into Planck’s
units that: Planck-length, Planck-mass and Planck’s unit of
time are geometric-mean-values of astrophysical quantities
like: total-mass of the universe and the smallest-possible-
mass hH0/c2.

Submitted on: September 20, 2012 / Accepted on: September 28, 2012
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A Theoretical Description of U(5)-SU(3) Nuclear Shape
Transitions in the Interacting Boson Model
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∗Physics Department, Faculty of Science, Al-Azhar University, Egypt. E-mail: Ali-Khalaf43@hotmail.com
†Department of Physics, Faculty of Girls, Ain Shams University, Egypt. E-mail: tawwad12@hotmail.com

We investigated the evaluation of nuclear shape transition from spherical to axially rota-
tional shapes using the Coherent state formalism of the first version of interacting boson
model (sd IBM). The validity of such model is examined for rare-earth Nd/Sm/Gd/Dy
isotopic chains by analyzing the potential energy surface (PES’s). In this region, a
change from spherical to well-deformed nuclei is observed when moving from the
lighter to heavier isotopes.

1 Introduction

In recent years, the study of quantum phase transition (QPT)
is an important topic in the research of nuclear structure.
Some evidence of nuclear shape transition have been
observed. For instance, several isotopes have been found to
undergo shape phase evolution of first order from spherical
vibrator to deformed axially symmetric rotor and phase tran-
sition of second order from spherical vibrator to deformedγ−
soft [1–3].

The Hamiltonian describing this transition is a repulsive
boson pairing Hamiltonian that has the particularity of be-
ing exactly solvable allowing the study of very large systems.
The study of phase shape transitions in nuclei can be best
done in the interacting boson model (IBM) [4] which repro-
duces well the data in all transition regions [5–11].

The possible phases that can occur in the IBM have been
classified in a triangular Casten diagram [12], the three phases
correspond to the breaking of U(6) into its three subalgebras
U(5), SU(3) and O(6) [13]. TheX(5) critical point symme-
try [14] was developed to describe analytically the structure
of nuclei at the critical point of the transition from vibrational
U(5) to prolate axially symmetric SU(3) shapes. In addition
the symmetry E(5) [15, 16] have been introduced to describe
the nuclei at the critical point corresponding to second or-
der transition, nuclear examples of which were used [17].
Recently, the critical point in the phase transition from ax-
ially deformed to triaxial nuclei called Y(5), has been ana-
lyzed [18]. In all these cases, critical points are defined in the
context of the collective Bohr Hamiltonian [19].

Since the IBM was formulated from the beginning in
terms of creation and annihilation boson operators, its ge-
ometric interpretation in terms of shape variables is usually
done by introducing a boson condensate with two shape pa-
rametersβ and γ. The parameterβ is related to the axial
deformation of the nucleus, whileγ measures the deviation
from axial symmetry. The equilibrium shape of the nucleus
is obtained by minimizing the expectation value of the Hamil-
tonian in the intrinsic state.

In this paper, we discuss some aspects of the nuclear

shape phase transition in even-even nuclei using the IBM with
the intrinsic state formalism. The outline of the present paper
is as follows: In Section 2, we construct the IBM Hamiltonian
in terms of Casimir operators and using coherent state to get
the potential energy surface (PES). In section 3, we check that
results of the IBM with coherent state to agree for dynamical
limits U(5), SU(3) and O(6) in the limit of large N. In sec-
tion 4 we applied our model to the rare earth Nd/Sm/Gd/Dy
isotopic chains which evolve a rapid structural changes from
spherical to well-deformed nuclei when moving from lighter
to the heavier isotopes.

2 Coherent State Potential Energy Surface

We start by considering a general standard two-body sd IBM
Hamiltonian in the Casimir forms as:

H = εC1[U(5)] + K1C2[U(5)]

+K2C2[O(5)] + K3C2[O(3)]

+K4C2[S U(3)] + K5C2[O(6)]

(1)

HereCn[G]is the n-rank Casimir operator of the Lie group
G, with

C1[U (5)] = n̂d (2)

C2[U (5)] = n̂d (n̂d + 4) (3)

C2[O (5)] = 4[
1
10

(L̂ L̂) + T̂3 T̂3] (4)

C2[O (3)] = 2(L̂ L̂) (5)

C2[S U(3)] =
2
3

[

2
(
Q̂ Q̂

)
+

3
4

(L̂ L̂)

]

(6)

C2[O (6)] = 2
[
N(N + 4)− 4(P̂ P̂)

]
(7)

wheren̂d, P̂, L̂, Q̂, T̂3 and T̂4 are the boson number, pairing,
angular momentum, quadrupole, octupole and hexadecapole
operators defined as:

n̂d = (d† d̃)(0) (8)

P̂ =
1
2

(d̃ d̃) −
1
2

(s̃ s̃) (9)
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L̂ =
√

10
[
d† × d̃

](1)
(10)

T̂3 =
[
d† × d̃

](3)
(11)

T̂4 =
[
d† × d̃

](4)
(12)

where s†(s)and d†(d̃) are monopole and quadrupole boson
creation (annihilation) operators, respectively. The scalar
product is defined as

T̂L T̂L =
∑

M

(−1)MT̂L,M T̂L,−M (13)

whereT̂L,M corresponds to theM component of the operator
T̂L. The operatord̃m(−1)md−m and s̃ = s are introduced to
ensure the correct tensorial character under spatial rotations.

The Connection between the IBM, PES, geometric shapes
and phase transitions can be investigated by introducing a co-
herent, or intrinsic state which is expressed as a boson con-
densate [20]

|N, β, γ〉 =
1
√

N!

(
b†c

)N
|0〉 (14)

with

b†c =
1

√
1+ β2

(

s†+β cosγ d†o +
1
√

2
β sinγ(d†2+d†−2)

)

. (15)

|0〉 is the boson vacuum and the variablesβ andγ deter-
mine the geometry of nuclear surface. Spherical shapes are
characterized byβ = 0 and deformed ones byβ > 0. The
angleγ allows one to distinguish between axially deformed
nucleiγ = 0◦ for prolate andγ = 60◦ for oblate deformation
and triaxial nuclei 0◦ < γ < 60◦.

The expectation values of the Casimir operators equations
(2–7) in the ground state equation (14) is:

〈C1[U (5)]〉 =
N

1+ β2
β2 (16)

〈C2[U (5)]〉 =
5N

1+ β2
β2 +

N (N − 1)
(
1+ β2

)2
β4 (17)

〈C2[O (5)]〉 =
8N

1+ β2
β2 (18)

〈C2[O (3)]〉 =
12N

1+ β2
β2 (19)

〈C2[S U(3)]〉 =
20
3

N +
4
3

N (N − 1)
(
1+ β2

)2
∙

(

4β2 +
1
2
β4 + 2

√
2β3 cos(3γ)

) (20)

〈C2[O (6)]〉 = 2N(N + 4)−
1
2

N (N − 1)
(
1+ β2

)2

(
1− β2

)2
. (21)

The PES associated with the IBM Hamiltonian of equa-
tion (1) is given by its expectation value in the coherent state
and can be written as:

V (β, γ) = a◦
N

1+ β2
β2

+
N (N − 1)
(
1+ β2

)2

(
a1 + a2β

2+

a3β
3 cos(3γ) + a4β

4
)

(22)

where the coefficientsai are linear combinations of the pa-
rameters of the Hamiltonian and terms which do not depend
onβ and/or γ have not been included.

3 Shape Structure of the Dynamical Symmetries

The analysis of the three dynamical symmetry limits of the
IBM provides a good test of the formalism presented in the
previous section.

3.1 The U(5) Symmetry

The Hamiltonian of the vibrational limitU(5) can be written
down by puttingk4 = k5 = 0 in equation (1). This has the
consequence that inH remain only the terms which conserve
both the number of d-bosons and the one of the s-bosons. The
Hamiltonian operator of this approximation reads:

H[U (5)] = εC1[U (5)] + K1C2[U (5)]+

K2C2[O (5)] + K3C2[O (3)].
(23)

This yields the PES

E(N, β) = εd
N

1+ β2
β2 + f

N (N − 1)
(
1+ β2

)2
β4. (24)

This energy functional isγ− independent and has a mini-
mum atβ = 0, Special case forU (5) limit, when

H = εC1[U (5)], (25)

E(N, β) = ε
N

1+ β2
β2. (26)

3.2 The SU(3) Symmetry

In the parametrization equation (1), theS U(3) limit corre-
sponds toε = K1 = K2 = K5 = 0 and the Hamiltonian reads:

H[S U(3)] = K3C2[O(3)] + K4C2[S U(3)]. (27)

This yields the PES

E (N, β, γ) =

3(4k3 + k4)
N

1+ β2
β2 +

4
3

k4

[
N

1+ β2

(

5+
11
4
β2

)

+
N (N − 1)
(
1+ β2

)2

(

4β2 + 2
√

2β3 cos(3γ) +
1
2
β4

)
 .

(28)
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Fig. 1: Calculated PES’s as a function of the deformation parameter
β in U(5)-SU(3) transition for144−154Nd (with Nπ = 5 andNν = 1−6
neutron bosons) isotopic chain. The total number of bosons N=6-11
andχ = −

√
7/2).

Fig. 2: Calculated PES’s as a function of the deformation parameter
β in U(5)-SU(3) transition for146−154Sm (with Nπ = 6 andNν =

1− 5) isotopic chain. The total number of bosons N=6-11 andχ =

−
√

7/2).

This energy functional has a shape minimum atγ = 0 and
at a valueβ , 0.

Special case for SU(3) limit, when

H = aQ̂ Q̂ (29)

and if we eliminate the contribution of the one-body terms of
the quadrupole -quadrupole interaction, then, the PES reads

E (N, β, γ) = a
N (N − 1)
(
1+ β2

)2
(4β2±2

√
2β3 cos(3γ)+

1
2
β4). (30)

The equilibrium values are obtained by solving

∂E
∂β

=
∂E
∂γ

= 0 (31)

Fig. 3: Calculated PES’s as a function of the deformation parameter
β in U(5)-SU(3) transition for148−162Gd (with Nπ = 7 andNν =

1− 8) isotopic chain. The total number of bosons N=6-11 andχ =

−
√

7/2).

to giveβe =
√

2 andγ = 0◦ andγ = 60◦.

3.3 The O(6) Symmetry

For the O(6) limitε = K1 = K2 = 0 and the Hamiltonian
takes the form

H[O(6)] = K2C2[O(5)] + K3C2[O(3)] + K5C2[O(6)]. (32)

One then obtains the PES

E (N, β) = 12(2K2 + K3)
N

1+ β2
β2−

2k5N (N − 1)

(
1− β2

1+ β2

)2

.

(33)

This energy functional isγ−independent and has a min-
imum at a value|β| , 0. For largeN, the minimum is at
|β| = 1.

Special case forO(6) limit, when

H = aQ̂ (χ) Q̂ (χ) (34)

χ = 0 (35)

and if we eliminate the contribution of the one-body term of
the quadrupole-quadrupole interaction, then

E (N, β) = 4aN (N − 1)

(
β

1+ β2

)2

(36)

A. M. Khalaf and T. M. Awwad. A Theoretical Description of U(5)-SU(3) Nuclear Shape Transitions in the Interacting Boson Model 9
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Fig. 4: Calculated PES’s as a function of the deformation parameter
β in U(5)-SU(3) transition for150−166Dy (with Nπ = 8 andNν =

1− 9) isptopic chain. The total number of bosons N=6-11 andχ =

−
√

7/2).

the equilibrium value is given byβ = 1 corresponding to a
γ-unstable deformed shape.

4 Application to Rare-Earth Isotope Chains

Nuclei in the region of Sm are well known examples of U(5)-
SU(3) transition going from a vibrational into a rotational be-
havior. The validity of our model is examined for typical var-
ious even-even Nd/Sm/Gd/Dy isotopic chains with total num-
ber of bosons from N=6 to N=17.

The set of parameters of the model for each nucleus are
adjusted by using a computer simulated search program in
order to describe the gradual change in the structure as bo-
son number is varied and to reproduce the properties of the
selected states of positive parity excitation (2+

1 ,4
+
1 ,6

+
1 ,8

+
1 ,0

+
2 ,

2+3 ,4
+
3 ,2

+
2 ,3

+
1 and 4+2) and the two neutron separation energies

of all isotopes in each isotopic chain. The best fitting param-
eters obtained for each nucleus are given explicitly in Tables
(1,2).

The PES’s versus deformation parameterβ for rare earth
isotopic chain of nuclei evolving from spherical to axially
symmetric well deformed nuclei are illustrated in figures
(1-4). A first order shape phase transition with changes in
number of bosons when moving from the lighter to heavier
isotopes i.e. U(5)-SU(3) transitional region are observed. In
our selected region we assumed a valueχ = −

√
7/2 because

someGd isotopes clearly exhibit the character of the SU(3)

dynamical symmetry. AroundN = 90 these seems to be the
X(5)critical point symmetry. Each PES displays a relatively
similar shape with only a small increase in the sharpness of
the potential for increasing boson number.

5 Conclusion

In conclusion, the paper is focused on the properties of quan-
tum phase transition between spherical U(5) and prolate de-
formed SU(3) in framework of the simple version of interact-
ing boson model IBM-1 of nuclear structure.

The Hamiltonian was studied in the three different limits
of the IBM and formed by laking. A systematic study of rare
earth Nd/Sm/ Gd/Dy isotope chains was done using the co-
herent states. Nuclei located at or very close to the first order
transition were the N=90 isotones150Nd, 152Nd, 154Nd and
156Nd. They also follow theX(5) pattern in ground state en-
ergies. The geometric character of the nuclei was visualizes
by plotting the potential energy surface (PES’s). parameters
of our model were adjusted for each nucleus by using a com-
puter simulated search program, while the parameterX in the
quadrupole operator was restricted to fixed valuex = −

√
7/2.
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Fine Structure Constant as a Mirror of Sphere Geometry
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A path is defined as the vector’s sum of the translation and rotation component of the
length unit belonging to the mass entity in motion on the sphere. The fine structure
constant is an irrational number being a mirror of the path complexity as well as the
sphere curvature where the path is made. The inverse value inthe Euclidean plane yields
α−1 =

√
π2 + 1372. The inverse fine structure constant on the elliptic sphere is smaller

and on the hyperbolic sphere is greater. The electron in the Hydrogen atom should
move on the elliptic sphere of the radius of 3679 Compton wavelengths of the electron
according to the CODATA 2012 recommended empirical valueα−1 = 137.035999074.
Such a small sphere radius implies the heterogeneous curvature of the present universe.

1 Theoretical background

In motion is an entity having some mass. Respecting Comp-
ton the length unit is attributed to that mass:

λ =
h

mc
= 1 . (1)

The infinite mass and zero length unit are objectively un-
reachable. Nevertheless both can be theoretically approached
arbitrarily close by the sufficiently great finite mass.

A curved motion obeys the path complexity: it has the
translation and rotation component. Describing the curved
path the length unit becomes not only the translation unit but
the rotation unit, too. By the circumference of a circle con-
cluded paths, for instance, only apparently equals the trans-
lation n, actually it is greater for the average rotationπ made
around the start point of the length unit:

π =
0+ 2π × 1

2
. (2)

The actual path is the vectorial sum of both components: the
rotationπ as well as translationn:

−→s = −→π + −→n . (3)

The total rotation of the length unitπ equals the total Berry
phase at spin12 [1].

1.1 Path in the Euclidean plane

By the circumference of a circle concluded paths in the Eu-
clidean plane is calculated with the help of Pythagoras’ theo-
rem:

s2 = π2 + n2. (4)

1.2 Path on the elliptic sphere

By the circumference of a circle concluded paths on the el-
liptic sphere is calculated with the help of the spherical law
of cosines.

On the elliptic sphere of radiusR holds:

cos
s
R
= cos

π

R
cos

n
R
, (5)

cosx =
√

1− sin2x , (6)

1
R2
=

1

k2
1π

2
+

1

k2
2n2
−

k2
3s2

k2
1π

2 × k2
2n2
=

k2
1π

2 + k2
2n2 − k2

3s2

k2
1π

2 × k2
2n2

. (7)

The coefficients are expressed as

k1 =
sin πR
π

R

, k2 =
sin n

R
n
R

and k3 =
sin s

R
s
R

. (8)

They are arranged by size

1 > k1 > k2 > k3 . (9)

In the case ofR2 being a positive number Pythagoras’ theo-
rem holds only exceptionally. The next condition has to be
satisfied:

k2
1π

2 + k2
2n2
> k2

3s2 or
k2

1

k2
3

π2 +
k2

2

k2
3

n2
> s2. (10)

The ratios of coefficients
k2

1

k2
3

and
k2

2

k2
3

are according to (non)

equation (9) greater than 1 or at least equal 1, therefore we
write:

k2
1

k2
3

π2 +
k2

2

k2
3

n2
> π2 + n2

> s2. (11)

At the finite elliptic sphere radiusR Pythagoras’ theorem
fails, because at non-equal coefficients (9) the square area
upon hypotenuse is smaller than the sum of square areas upon
catheters:

s2 < π2 + n2. (12)

At R = ∞ and equal coefficients (9) the elliptic sphere trans-
forms into the Euclidean plane and Pythagoras’ theorem be-
gins to rule again (4).

1.2.1 Approximation for cosx

Hardy’s approximation [2] is close to the function cost
r :

H

(

2t
πR

)

= cos
t
R
≈ 1−

(

2t
πR

)2

2t
πR +

(

1− 2t
πR

)

√

2− 2t
πR

3

. (13)
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At very largeR Hardy’s approximation can be simplified:

H

(

2t
πR

)

= cos
t
R
≈ 1−

(

2t
πR

)2

. (14)

The spherical law of cosines (5) with the help of the simpli-
fied Hardy approximation (14) enables to calculate the ap-
proximate value of the sphere radius in cases of a tiny cur-
vature where Pythagoras’ theorem approximately rules. The
explicit relation is expressed as

R2 ≈
(2n)2

n2 + π2 − s2
. (15)

The similar approximation is obtained with the help of equa-
tion (7) at the assumption of coefficients approximate equal-
ity:

1 ≈ k1 ≈ k2 ≈ k3 . (16)

Then the sphere radius is expressed as

R2 ≈
(πn)2

n2 + π2 − s2
. (17)

1.3 Path on the hyperbolic sphere

By the circumference of a circle concluded paths on the hy-
perbolic sphere is calculated with the help of the hyperbolic
law of cosines.

On the hyperbolic sphere of radiusR holds:

cosh
s
R
= cosh

π

R
cosh

n
R
, (18)

coshx =
√

1+ sinh2x, (19)

1
R2
= −

1

k2
1π

2
−

1

k2
2n2
+

k2
3s2

k2
1π

2 × k2
2n2
=

=
−k2

1π
2 − k2

2n2 + k2
3s2

k2
1π

2 × k2
2n2

. (20)

The coefficients are expressed as

k1 =
sinh πR
π

R

, k2 =
sinh n

R
n
R

and k3 =
sinh s

R
s
R

. (21)

They are arranged by size

1 6 k1 6 k2 6 k3 . (22)

In the case ofR2 being a positive number Pythagoras’ theo-
rem holds only exceptionally.

The next condition has to be satisfied:

k2
3s2
> k2

1π
2
+ k2

2n2 or s2
>

k2
1

k2
3

π2 +
k2

2

k2
3

n2. (23)

The ratios of coefficientsk2
1/k

2
3 and k2

2/k
2
3 are according to

(non)equation (22) smaller than 1 or at most equal 1, therefore

we write:
k2

1

k2
3

π
2 +

k2
2

k2
3

n2
6 π

2 + n2
6 s2
. (24)

At the finite hyperbolic sphere radiusR Pythagoras’ theorem
fails, because at non-equal coefficients (22) the square area
upon hypotenuse is greater than the sum of square areas upon
catheters:

s2 > π2 + n2. (25)

At R = ∞ and equal coefficients (22) the hyperbolic sphere
transforms into the Euclidean plane and Pythagoras’ theorem
begins to rule again (4).

2 Fine structure constant and sphere radius

In the ground state of the Hydrogen atom the electron path
around the nucleus equals the ratio of the Compton wave-
length of the electronλ and the fine structure constantα. The
wavelength equals the unit, so the circular path equals the in-
verse fine structure constant:

s = α−1. (26)

2.1 Inverse fine structure constant on the non-Euclidean
sphere and Euclidean plane

At the finite sphere radiusR two possibilities are allowed ac-
cording the non-equations (12) and (25).

On the elliptic sphere holds:

α
−2
< π

2 + n2
. (27)

On the hyperbolic sphere holds:

α−2 > π2 + n2. (28)

At R = ∞ both non-Euclidean spheres transform into the Eu-
clidean plane and according to the equation (4) holds:

α−2 = π2 + n
2
. (29)

2.2 Calculation of the theoretical inverse fine structure
constant in the Euclidean plane

In the hydrogen atom the numbern = 137 is to the inverse
fine structure constantα−1 the closest natural number which
concludes the start and end point of Bohr orbit. The number
π is the total average rotation component of the length unit.

The theoretical inverse fine structure constant in the Eu-
clidean plane is calculated with the help of the equation (29).
Its value is an irrational number:

α
−1

EUCLID =
√

n2 + π2 ≈ 137.036015720. (30)

2.3 Calculation of the sphere radius on the atomic level

The inverse fine structure constant should be according to the
equations (27) and (28) on the elliptic sphere smaller and on
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the hyperbolic sphere greater thanα−1
EUCLID.

The recommended CODATA 2012 value of the inverse
fine structure constant is smaller than the theoretical value in
the Euclidean plane:

α−1
CODATA = 137.035999074< α−1

EUCLID ≈ 137.036015720. (31)

This implies the elliptic sphere in the Hydrogen atom.
The calculus of the radius of the elliptic sphere with the

help of the equation (5) yields:

R = 3679 Compton wavelengths of the electron. (32)

The estimate of the radius of the elliptic sphere with the help
of the simplified Hardy approximation (15) yields a little bit
greater value:

R ≈
2.137

√

1372 + π2 − α−2
CODATA

= 4057. (33)

2.4 Estimation of the inverse fine structure constant on
the macro level

Let us consider the radius of the observable universe of about
4× 1026m [3] as the sphere radius:

R ≈ 2× 1038 Compton wavelengths of the electron. (34)

This is a huge radius. A common calculator supports the
spherical law of cosines only for radius up to∼ 1015 Compton
wavelengths of the electron.

Fortunately a huge sphere radius is given by the simpli-
fied Hardy approximation (15) in the explicit relation with
the inverse fine structure constant:

R2 ≈
(2.137)2

π2 + 1372 − α−2
, (35)

α−1 ≈

√

π2+1372

(

1−
4

R2

)

=

√

π2+1372
(

1−10−76
)

≈

≈
√
π2 + 1372. (36)

If the sphere curvature on the atomic level equals the curva-
ture of the hypothetical elliptic observable universe, thein-
verse fine structure constant should not significantly differ
from the theoretical constant in the Euclidean plane.

3 Conclusion

If the inverse fine structure constant is a mirror of the path
complexity as well as the curvature of the sphere where the
path is made, its theoretical inverse value in the Euclidean
planeα−1=

√
π2 + 1372 and the recommended empirical CO-

DATA 2012 valueα−1= 137.035999074 express the electron
motion on the elliptic sphere of the radius of 3679 Compton
wavelengths of the electron. This implies a huge curvature of

the atomic world. If the sphere curvatures in the atomic and
the macro-world would be the same, the inverse fine structure
constant should not significantly differ from the theoretical
one in the Euclidean plane.

Submitted on: October 15, 2012/ Accepted on: October 23, 2012
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The Cosmological ConstantΛ within the modified form of the Einstein Field Equa-
tion (EFE) is now thought to best represent a “dark energy” responsible for a repulsive
gravitational effect, although there is no accepted argument for its magnitude or even
physical presence. In this work we compare the origin of theΛ argument with the
concept of unimodular gravity. A metaphysical interpretation of the Poisson equation
during introduction ofΛ could account for the confusion.

1 Introduction

In 1916, Einstein introduced his general theory of relativity
as a geometrical theory of gravity [4] resulting in the Einstein
field equation (EFE),

Rμν −
1
2
gμνR= Gμν =

8πG
c4

Tμν. (1)

It has been well documented and studied that the EFE did
not predict a stable static universe, as it was theorized to be
at the time [3]. The equation, however, did accurately predict
gravitational redshift, magnitudes of gravitational lensing and
account for Mercury’s precessing orbit, which the Newtonian
equation could not. In order to manufacture an equation that
could account for a static universe, but still be empirically
accurate, it is often stated that Einstein ad hoc threw in an-
other constantΛ which is known as the cosmological con-
stant. This would have been placed back into the EFE with
the metricgμν as

Rμν −
1
2
gμνR+ gμνΛ = Gμν. (2)

Once it was discovered that the universe actually appeared
to be in a decelerating or coasting expansion mode, Einstein
quickly removed theΛ term. Today, though, there is empiri-
cal evidence that a very small magnitudeΛ exists, but some
quantum field theorists estimate it as being over 120 orders
of magnitude smaller than their calculations, “probably the
worst theoretical prediction in the history of physics” [3]. In
addition, the observed small value ofΛ requires an extremely
high level of arbitrary fine tuning “for no good reason” and
is a “cosmologist’s worst nightmare come true” [6]. This
transformation from a minor but rich interest exploded (5000
papers submitted to date [10]) near the end of the past mil-
lennium due to a startling simultaneous discovery of positive
acceleration from two teams [7,8].

The source of this unforeseen positive acceleration has
come to be known as “dark energy”. The lack of progress
in explaining the phenomena led to the creation of a Dark
Energy Task Force in 2006 which stated in a report [1]:

“Most experts believe that nothing short of a rev-
olution in our understanding of fundamental

physics will be required to achieve a full under-
standing of the cosmic acceleration.”

This dark energy is currently expected to contribute over
73.4% [5] of the mass-energy of the universe, and there is no
sound logical theory for what it is. Consider that this leaves
some type of mysterious never-observed particle known as
dark matter to contribute another 22.2%, leaving only 4.4%
for the normal matter we are familiar with. With this in mind,
we propose that it is reasonable to re-examine any argument
that has lead us to our current state of physics.

2 Poisson Equation and Gauss’ Theorem

The Poisson equation,

−∇2u = f, (3)

is well known to relate the functionf as the “source” or
“load” of the effect onu of the left hand side. Let us ex-
amine what this meansexactlymore in depth and what we
can conclude from this tool. As an example, for a functionf
given on a three dimensional domain denoted byΩ ⊂ R3 we
have

αu+ β
∂u
∂n

= g on ∂Ω. (4)

This is a solutionu satisfying boundary conditions on
the boundary∂Ω of Ω. α andβ are constants and∂u

∂n rep-
resents the directional derivative in the direction normaln to
the boundary∂Ω which by convention points outwards. Al-
though ifα = 0 is referred to as a Neumann boundary con-
dition, even withα = constantthe solution is said to only be
unique up to this additive constant. Let us examine whether
this statement is entirely accurate.

2.1 Graphical Meaning of Poisson Equation

Let us take the divergence ofg so that

∇ ∙ αu+ ∇ ∙ β
∂u
∂n

= ∇ ∙ g (5)

and

0+ ∇ ∙ β
∂u
∂n

= ∇ ∙ g. (6)
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We can see that the presence ofαu seems arbitrary since it
has no effect. Let us examine a two dimensional slice of scalar
values inR3 to graphically give a better understanding. In Fig.
1 we have an example of Eq. 4 using a Euclidean coordinate
system.

Fig. 1: Two Dimensional Scalar Field

For any derivative of Eq. 5, the constant term of course
would result in no vector since there is no directional deriva-
tive fromαu.

We note that this equation can also be written as

αu− β
−∂u
∂n

= g, (7)

shown in Fig. 2, which does not mathematically make a dif-
ference but can, however, introduce a question of uniqueness.

Fig. 2: Alternate Two Dimensional Scalar Field

Let us define the previous scalar field u asu1 and a second
scalar field asu2. If ξ andγ are constants, then Eq. 8 and
Fig. 3 present a dilemma. While there may be no directional
derivatives from the constant term, we could also equivalently
model this as orthogonal vectors with the sum of 0.

ξu2 − γ
∂u2

∂n
= g2 (8)

Fig. 3: Second Two Dimensional Scalar Field

From this we can see that there are no unique solutions of
u for g from the Poisson equation, if

αu1 + β
∂u1

∂n
= g1 (9)

and

ξu2 − γ
∂u2

∂n
= g2 (10)

but also

∇ ∙ (αu1 + β
∂u1

∂n
) = ∇ ∙ g1 = ∇ ∙ g (11)

and

∇ ∙ (ξu2 − γ
∂u2

∂n
) = ∇ ∙ g2 = ∇ ∙ g (12)

if

β
∂u1

∂n
= −γ

∂u2

∂n
. (13)

2.2 Gauss Theorem

Like our above illustration of the Poisson equation, a misun-
derstanding of Gauss’ Theorem,

−
∫

∂Ω

∂u
∂n

= −
∫

Ω

∇2u =

∫

Ω

f (14)

could also cause confusion if

−
∫

∂Ω

β
∂u1

∂n
= −

∫

∂Ω

(

ξu2 − γ
∂u2

∂n

)

(15)

and

−
∫

Ω

∇2βu1 = −
∫

Ω

(

∇2ξu2 − ∇ ∙ γ
∂u2

∂n

)

. (16)

Equations 15 and 16 are easily understood graphically as tak-
ing the second derivatives of the plots in Fig. 4.

Fig. 4: Equivalent Areas From Gauss’ Theorem

3 Conclusion

Although we can assume that some functiong is causal to the
appearance of a vector, does the vector appear from nothing
or is it result of a change in what is already at that point? If
auexists, what does it physically represent? Calling any field
“attractive” or “repulsive” is nothing more than a metaphys-
ical convention, i.e. does the load function cause a change
in φ resulting in an attraction or a reduced repulsion, as in
Fig. 5? From this, we can conclude that although we may
possess measurements∇ u and∇2u, we cannot determine the
nature of the scalar field u simply from the Poisson equation
or Gauss’ Theorem.
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Fig. 5: Attraction or Reduced Repulsion?

4 Motivation: Cosmological Constant and General Rel-
ativity

Why is the previous figure important? Although there is a
great deal of literature concerningΛ, in order to start a new
perspective and to utilize the previous section, we re-examine
the first known published physical meaning of the constant.
In Einstein’s 1917 paperCosmological Considerations On
The General Theory of Relativity[2] the first equation Ein-
stein presents is the Poisson equation version of Newton’s
Law of Gravity

∇2φ = 4πκρ. (17)

Citing Newtonian concerns over the limiting value ofφ at
“spatial infinity” he proposes a modification of the equation
to

∇2φ − λφ = 4πκρ. (18)

This was from an early difficulty in that the derivation re-
quiredRμν = 0 when matter or energy was not present. Due
to cosmological observations though, and despite the rigor of
the derivation, this requirement was eventually relaxed [4, see
for relation toGμν = 0, p. 410] allowing the introduction of a
cosmological constant, even if it is not physically understood.

Setting the Poisson equation aside for the moment, it is
also known that one of the interpretations ofΛ or λ in Rie-
mannian geometry is as a four dimensional constant of inte-
gration, through what is referred to as Unimodular Gravity
[9]. This interpretation restricts allowable diffeomorphisms
to only those preserving the four volume, but to date this has
been treated as but a curious equivalent to General Relativity.

5 Introducing the Lorentz Tensor

Let us take a constant multiple of the metricgμν and refer to
it asΩ. We do not utilizeΛ or λ so as not to cause confu-
sion and to allow us to more easily retain a difference in our
understanding. Let us enforceRμν = 0 such that

Ωgμν = Gμν + Lμν (19)

whereGμν is the Einstein tensor andLμν is a tensor we pro-
pose to call the “Lorentz” tensor. We shall expand on our

reasoning for calling it this in subsequent papers. We can
readily see that

Gμν = Ωgμν − Lμν (20)

and that ifΩ = 0 then the Lorentz tensor is simply the nega-
tive of the Einstein tensor,

Gμν = −Lμν, (21)

and should have the same important properties, i.e.

Gμν;μ = −Lμν;μ. (22)

This of course results in

Rμν −
1
2
gμνR= Gμν = Ωgμν − Lμν. (23)

Note that for now cosmological models that rely on only a
multiple of the metric remaining with no matter present, such
as deSitter space, are not possible sinceRμν = 0.

Although there are physical arguments for equating the
Einstein tensor to the energy momentum tensor (Gμν = κTμν),
and thus into analogues for Newton’s Law of Gravity, we
note simply in this paper that Eq. 17 is ultimately arrived
at throughGμν. By the symmetry present in Eq. 23 and our
arguments concerning the Poisson equation and Gauss’ The-
orem, our future objective is to use our understanding of Fig.
6 to obtain a rigorous derivation of Fig. 7.

Fig. 6: Einstein Tensor to Poisson

Fig. 7: Alternate EFE to Reduced Repulsive Poisson

We do this also in order to ask, should matter subject to
the force represented by the vector present in Fig. 7 become
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zero after traveling a certain radius from a massive body, what
occurs at radii larger than this? It is our motivation to deter-
mine whether this is a plausible explanation for phenomena
attributed to positive accelerating expansion.

Submitted on: October 11, 2012/ Accepted on: October 17, 2012
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Sunspots and faculae are related phenomena and constitute regions of elevated magnetic
field intensity on the surface of the Sun. These structures have been extensively studied
in the visible range. In this regard, it has been recognized that the intensity contrast of
faculae, relative to the photosphere, increases considerably as the line of observation
moves from the center to the limb of the Sun. Such center to limb variation (CLV)
suggests that the directional spectral emissivity of the faculae increases at the same
time that photospheric directional emissivity decreases.Since the directional spectral
emissivity of faculae increases towards the limb, these structures, along with sunspots,
provide strong evidence for metallic behavior at the level of the solar surface. This
further strengthens claims that the body of the Sun is not gaseous, but rather, comprised
of condensed matter.

1 Introduction

In his popular work,The Birth and Death of the Sun, George
Gamow justified the gaseous nature of the Sun as follows:
“ . . . at 6000 degrees all the materials from which a furnace
might be constructed, including even such refractory substan-
ces as platinum or carbon, will be not only melted but com-
pletely evaporated. No material can exist at these high tem-
peratures in a state other than gaseous, and this is exactly
what we find on the surface of the Sun, where all elements
are present in vapour form” [1, p. 4–5]. Several prominent
members of the astronomy community, by utilizing similar
logic, had previously laid the foundation for a gaseous Sun
in the mid-1800s [2]. The contention that the Sun was too
hot to be anything but gaseous would persist throughout the
20th century [3]. Conversely, experiments had long indicated
that the phases of matter did not depend solely on tempera-
ture, but on factors such as external pressure, internal atomic
composition, and the nature of the lattice adopted in the con-
densed phase. Yet, using a single justification, the possibility
that certain materials might exist in liquid form within the
Sun continued to be ignored. Gamow’s argument [1, p. 4–5]
would discount Wigner and Huntington’s 1935 proposal [4]
that metallic hydrogen, a material existing in the condensed
phase, could be created at elevated temperatures and pres-
sures [5–7].

2 Metallic hydrogen on the Sun

Liquid metallic hydrogen [4] is a particularly alluring sub-
stance relative to condensed solar models [5–7], especially
given the observation that the Sun appears to be primarily
composed of this element [8–11]. Although metallic hydro-
gen was first proposed nearly eighty years ago [4], it remains
an elusive material in the laboratory [5]. Some claims of
synthesis have received broad international acclaim [12, 13],
often followed, by controversy [14–17] and slow dismissal.

Others, such as claims that certain forms of metallic hydro-
gen can be produced in Rydberg matter, have received less
attention [18].

There has recently been a new flurry of activity in the
quest to produce metallic hydrogen [4] in the laboratory. In
November 2011, Mikhail Eremets and Ivan Troyan published
a provocative report inNature Materials[19] which strongly
suggested that metallic hydrogen had indeed been synthe-
sized for the first time on the Earth. Nonetheless, given the
nature of the quest for metallic hydrogen [5], it seemed cru-
cial that more evidence be acquired [20–22]. Perhaps this
time, the synthesis of metallic hydrogen will be affirmed [5].

Beyond metallic hydrogen itself, dense hydrogen could
play an important role in the Sun, since the photosphere ap-
pears to be less metallic in nature than sunspots [5]. The
author has advanced arguments that the photosphere adopts
a layered lattice resembling graphite (a Type-1 lattice [5]),
while the lattice in sunspots has more metallic character
(a Type 2 lattice [5]). This is presumably due to slightly
decreased inter-atomic distances within the layered lattice of
sunspots. It is noteworthy that a report has recently demon-
strated that dense hydrogen could adopt a graphene-like struc-
ture at 220 GPa and 300 K [23, 24]. The need for emitting a
thermal spectrum provides strong motivation for considering
graphite-like layered structures, which can lead to hydrogen
in the metallic state, within liquid models of the Sun [5].

3 A liquid Sun

The idea that the Sun could be liquid dates back at least to
the days of Gustav Kirchhoff [2] and Sir James Hopwood
Jeans was its last major scientific champion [3]. Jeans was a
distinguished physicist [25] and Physical Sciences Secretary
of the Royal Society from 1919 to 1929 [26]. He was also
Sir Arthur Eddington’s principle antagonist [3]. For much of
his scientific career, Jeans advanced that heavy metals such
as uranium comprised the building blocks for a liquid Sun,
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in opposition to Eddington’s gaseous models [3]. When the
Sun was determined to be principally composed of hydro-
gen [9–11], Jeans was left without a structural material. Ed-
dington’s gaseous Sun went on to be widely accepted by as-
tronomy. Neither Jeans nor Eddington had anticipated the
postulate that metallic hydrogen could be formed at elevated
pressures [4]. For his part, Jeans abandoned the liquid model
[3], apparently without sufficiently considering that the ob-
servational evidence for condensed matter might continue to
mount [5–7, 27–29]. At the time, he had elucidated only
fragmentary proof for a liquid state (see [3] and references
therein).

Today, not a single observational line of evidence sup-
ports the idea that the Sun is gaseous, as simple temperature
arguments are fallacious. Much of the scientific discussion
appears centered on endowing gaseous solar models with the
ability to behave as condensed matter (e.g. [30]). By dis-
missing the facts, the existence of the solar surface has been
discounted [3], precisely because the gaseous models have
no means of accounting for such a structure [29]. All struc-
tural features associated with solar activity (sunspots, faculae,
prominences, flares, spicules, etc. . . ) tend to be explainedus-
ing magnetic fields, as the only means to impart structural fea-
tures to a gaseous entity which, in reality, can support none.

In sharp contrast, observational facts point to a liquid Sun,
including more than one dozen proofs for a condensed mat-
ter [5–7, 27–29]. Though the most convincing line of evi-
dence for a liquid Sun will always remain the thermal appear-
ance of the photospheric spectrum in the visible range [27],
some may not be able to appreciate the power and sufficiency
of this proof. In part, this is due to the introduction of local
thermal equilibrium reasoning in solar science [30]. Local
thermal equilibrium has come to cloud the requirements for
producing a thermal spectrum and mask the need for con-
densed matter [30]. Nonetheless, the arguments which sup-
port a liquid Sun based on its thermal emission are definitive
[30–33]. Thermal evidence will always remain paramount,
because it points to the existence of lattice order on the sur-
face of the Sun [31]. Nothing further is required to demon-
strate the presence of condensed matter, as Kirchhoff himself
indirectly understood in the mid-1800s [2]. For those who re-
quire additional illustrations, sunspots and faculae provide an
interesting proving ground.

4 Directional spectral emissivity of sunspots and faculae

As key structural elements on the surface of the Sun, sunspots
and faculae provide solar physicists ample opportunity forob-
servation and discussion. In the days of Galileo and Scheiner,
even the association of sunspots with the solar body was cause
for extensive debate [34]. Since that time, sunspots and facu-
lae have come to reveal much about the Sun, despite the be-
lief that their visual appearance on the photosphere remains
an optical illusion in modern solar theory [29].

4.1 Sunspots

As early as 1774, Alexander Wilson [35] noted that sunspots
appeared as slight depressions relative to the solar surface.
Wilson reached this conclusion based on geometry [35]. Ac-
cepted solar models currently account for the visual depres-
sion of sunspots, or “Wilson effect”, using optical depth argu-
ments (e.g [36, p. 189–190] and [37, p. 46]). Such complexity
must be invoked because modern theories are built around a
gaseous solar body. Since these models have long deprived
the Sun of a true surface [2,29], they cannot rest upon geomet-
rical arguments to account for the Wilson effect [35] and must
have recourse to explanations based on optical depth (e.g [36,
p. 189–190] and [37, 46]). Conversely, the author has argued
in favor of an authentic solar surface, thereby directly chal-
lenging accepted models [29]. Hence, the Wilson effect [35],
one of the oldest and simplest sunspot observation, has pro-
vided a basis for questioning the established gaseous models
of the Sun.

Modern astrophysics has advanced an understanding of
sunspots which, on cursory examination at least, appears to
be complete. In reality, the true physical nature of these struc-
tures has remained elusive, despite our arsenal of data. Still,
much has been learned about sunspots. The Wilson effect was
established at the end of the 18th century [35]. Schwab dis-
covered the eleven year sunspot cycle in 1843 [38]. In the
same period, Carrington used sunspot observations and out-
lined the differential rotation of the Sun in great detail [39].

In 1908, George Ellery Hale discovered that sunspots are
regions of powerful magnetic activity [40]. The intensity of
magnetic fields at the center of sunspots has been determined
to be primarily vertical and known to increase in the dark nu-
clei of the umbra (e.g. [37, p. 75] and [41, p. 80]). Helioseis-
mic analysis of the Sun has revealed that sound waves travel
faster within sunspots relative to the photosphere [42,43]. All
of these phenomena are highly suggestive of increased den-
sity and metallicity within sunspots and have been utilizedto
support the idea that the Sun is condensed matter [28]. Strong
magnetic fields and the science of seismology are always as-
sociated with condensed matter, not the gaseous state of solar
models.

Sunspots have also been reported to have directional
emissivities that increase with angle of observation, as the
observer follows their movement towards the limb of the Sun
[41, p. 75–77]. One of the earliest reports of increased sun-
spot emissivity relative to the photosphere dates back to 1875
and Samuel Langley∗: “With larger images and an improved
instrument, I found that, in a complete ring of the solar sur-
face, the photosphere, still brilliant, gave near the limb ab-
solutely less heat than the umbra of the spots” [44, p. 748].
Edwin Frost would soon echo Langley: “A rather surprising
result of these observations was that spots are occasionally

∗Translations from French of Langley’s work [44] were executed by the
author, P. M. Robitaille.
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relatively warmer than the surrounding photosphere”
[45, p. 143].

Should the directional emissivity of sunspots truly in-
crease near the limb, such behavior would be highly support-
ive of metallic character [28]. Non-metals usually display
directional spectral emissivities that tend to decrease with in-
creasing angle of observation [46–48]. Metals often pos-
sess lower normal emissivities with respect to their direc-
tional spectral emissivities. The directional spectral emissiv-
ities of metals typically rise with increasing angle, then fall
precipitously with orthogonal viewing [46–48]. Thus, a care-
ful analysis of emissivities can provide important clues asto
whether sunspots (or faculae) are behaving as metals, poten-
tially generating strong evidence for condensed matter on the
surface of the Sun.

Truly gaseous objects should be devoid of emissivities
which are directionally dependent. Thus, the increased direc-
tional spectral emissivity in sunspots could only be explained
with extreme difficulty using gaseous solar models and often
attributed to the effect of “stray light” [41, p. 75–77]. Stray
light arguments have played an important role in the mod-
ern dismissal of increased emissivity in sunspots towards the
solar limb. Thus, despite 100 years of study, the exact direc-
tional emissivity within these objects remains an unresolved
issue in solar physics. The same cannot be said of facular
directional spectral emissivity.

4.2 Faculae

The directional spectral emissivity contrast of faculae, with
respect to the photosphere, has long been known. George
Ellery Hale wrote, relative to the emissivity of the faculae:
“The bright faculae, which rise above the photosphere, are
conspicuous when near the edge of the Sun, but practically in-
visible when they happen to lie near the center of the disk. . .”
[49, p. 85–86]. Hale later re-emphasized the changing emis-
sivity of the faculae as a function of position on the solar disk:
“Mention has already been made of the faculae, which are
simply regions in the photosphere that rise above the ordinary
level. Near the edge of the Sun, their summits lie above the
lower and denser part of that absorbing atmosphere which
so greatly reduced the Sun’s light near the limb, and in this
region the faculae may be seen visibly. At times they may be
traced to considerable distances from the limb, but as a rule
they are inconspicuous or wholly invisible towards the central
part of the solar disk” [49, p. 90].

In 1961, Rogerson presented an elegant summary of the
increase in facular directional emissivity observed near the
solar limb [50]. This work was complemented with theory
and a few photographs [50]. Rogerson noted that the con-
trast variation between the faculae and photosphere increased
to a maximum of about 64% near the very limb of the Sun
[50]. Today, the center to limb variation (CLV) of facular
emissivity is widely accepted and studied [51–54], as has the

grouping of faculae with sunspots (e.g. [55, p. 42–43] and [56,
p. 248–249]), and the identification of faculae as regions of
intense magnetic activity [57–59].

The association of bright faculae with sunspots can be
traced at least to the middle of the 19th century. According to
de la Rue and his team, in 1865: “It would thus appear as if
the luminous matter being thrown up into a region of greater
absolute velocity of rotation fell behind to the left; and we
have thus reason to suppose that the faculous matter which
accompanies a spot is abstracted from that very portion of
the Sun’s surface which contains the spot, and which has in
this manner been robbed of its luminosity” [60]. This direct
association of sunspot and facular matter has recently been
re-emphasized as a result of studying large flares on the solar
surface [61].

While faculae display CLV with respect to their spectral
emissivity, their emissivity contrast remains highly associated
with the magnetogram signal [59]. Facular contrast, after in-
creasing to a maximum nearµ = 0.2 (whereµ = cosθ and
θ is the heliocentric angle between the pixel of interest and
direction of the Earth;r, the distance from the disk center, is
given byr = Rsinθ, if R represents the solar radius) has been
observed to drop rapidly when moving even closer towards
the limb [52]. This finding [52] appears to be in agreement
with Spruit’s “hot wall” model of facular emissivity [62,63].

Spruit’s “hot wall” model stated that faculae appeared
darker when viewed directly from above because very lit-
tle of the “hot wall” was visible. As the faculae moved to-
wards the limb, the “hot wall” became increasingly visible
and, hence, the structures appeared bright. With increasing
distance towards the limb, the “hot wall” once again fell out
of the line of sight, being obscured by the trailing wall, and
the faculae once again appeared darker (see [53] for addi-
tional detail). Others have reported that facular contrastcon-
tinues to increase towards the limb (e.g. [51]). This behav-
ior would be more consistent with the “hot cloud” model
[50, 64, 65]wherein the faculae are viewed as floating above
the photosphere [53]. Today, Spruit’s “hot wall” model has
gained almost universal acceptance, as more in accordance
with observation (e.g. [66,67]).

Alternatively, it is herein proposed that the directional
spectral emissivity observed in faculae constitutes one ofthe
most elegant proofs that the Sun is comprised of condensed
matter. The reasoning remains that advanced in section 3.1
(see also [28]), with the important distinction that the direc-
tional spectral emissivity changes in faculae, unlike sunspots,
are uncontested [51–54, 57–59, 66, 67]. Moreover, the obser-
vation that directional spectral emissivity contrast in faculae
increase towards the limb, before rapidly subsiding at the very
edge of the Sun [52], strongly supports metallic behavior in
these structures [28,46–48].

On the Earth, the existence of directional spectral emis-
sivity in condensed matter has been established [46–48, 68].
Materials display emissivities which always manifest their
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atomic nature and structure, in addition to the temperature
of observation [46–48,68]. Every material possesses a unique
signature and this constitutes a powerful lesson from the study
of condensed matter [46–48,68].

The idea that faculae are condensed matter based on di-
rectional emissivities also gains support from the realization
that these objects, like sunspots, are regions of intense mag-
netic activity [57–59]. The ideal means of accounting for
this activity remains the invocation of conduction bands. A
solar body which is comprised of liquid metallic hydrogen
and adopts a layered graphite-like lattice presents a wonderful
material to account both for the directional spectral emissivi-
ties of faculae and the associated high magnetic field [5, 28].
While condensed matter can easily support such fields, there
remains no evidence on the Earth that gases, in isolation,
can generate powerful magnetic fields. While it is true that
gaseous plasmas respond to the presence of magnetic fields,
they certainly do not possess the required structure to create
such phenomena.

5 Conclusion

Despite the wide acceptance of Spruit’s “hot wall” model of
facular emissivity [62] numerous problems exist with such
approaches.

First, modern models of solar emissivity are fundamen-
tally dependent on elemental and ionic opacities within the
Sun. However, the solar spectrum cannot be generated using
the sum of individual opacities. The author has designated
solar opacity as the Achilles’ heel of the gaseous solar mod-
els [30]. It is not reasonable to account for solar emission
with phenomena which cannot explain the simple emissivity
found on the Earth within graphite [30].

Second, a discussion of facular emissivity often focuses
on local thermal equilibrium (LTE) arguments (e.g. [66]) and
such arguments are not applicable to the Sun [30]. The Sun
operates well outside the confines of local thermal equilib-
rium and Milne’s argument in support of such a regimen [69–
72] leads to conduction, not equilibrium [30].

Third, the assignment of temperatures, based on emissiv-
ities on the solar surface, constitutes a direct violation of the
principles associated with thermal emission [30–33], as has
been highlighted by Max Planck himself [73,§101] and dis-
cussed in detail [74].

Finally, the idea that a fully gaseous object can support
structure remains contrary to the known principles of physics.
Objects such as “walls”, even when only considering emis-
sivity, require condensed matter. They cannot be mimicked
by gases with densities approaching that of the best vacuums
achievable on the Earth [27].

In modern solar theory, sunspots are thought to be dark,
as the magnetic fields they contain prevent hot gases from ris-
ing from the interior of the Sun (e.g. [75]). Conversely, the
brightness of faculae are explained when magnetic fields di-

lute the solar material beneath them and causes the light to
escape more easily. These explanations constitute stark con-
trasts with one another, while at the same time discounting
much of what is known on the Earth relative to thermal emis-
sivity. The fact remains that gases are unable to emit photons
in a directionally dependent manner. Astrophysical explana-
tions relative to the causes of directional emissivity, as related
to photospheric limb darkening, solar granulations, sunspots,
and faculae, with their reliance on “optical depth” and “solar
opacities”, remain at a serious disadvantage, relative to solar
models based on condensed matter [27–30].

Irrespective of the mathematical elegance associated with
modern solar models, there is no observational support that
the body of the Sun is a gas. Given the nature of the so-
lar spectrum, seismic activity, and the presence of structural
entities such as sunspots, prominences, and faculae, modern
theory must constantly resort to mathematical arguments, or
the presence of magnetic fields, in order to endow a gaseous
Sun with the properties of condensed matter [8–10]. In real-
ity, while the corona displays features consistent with gaseous
plasma, the photosphere, with its sunspots, faculae, and erup-
tive prominences, strongly manifests the condensed natureof
the solar body. The idea that solar temperatures forbid the
formation of condensed matter in the Sun ignores the reality
that the phases of matter are not solely determined by tem-
perature, but are a manifestation of many factors, including
pressure of formation and the internal physical propertiesof
materials [5–7].

Currently, numerous lines of evidence strongly support
the condensed nature of the Sun. These include:

1) the continuous nature of the thermal spectrum [6, 27–
30],

2) photospheric limb darkening [27,28],

3) the absence of solar collapse [5,6,27],

4) a solar density (1.4 g/cm3) consistent with a hydrogen
lattice [6,27],

5) the presence of seismic activity [6,27],

6) the behavior of mass displacement on the solar surface
[6,27],

7) the chromosphere and critical opalescence [27],

8) the existence of solar oblateness [6,27],

9) the extensive surface activity [6,27,28],

10) the orthogonal nature of photospheric/coronal
flows [27],

11) the ability to image the solar surface [6,27–29],

12) the presence of a powerful solar dynamo [27],

13) the nature and behavior of sunspots, including the Wil-
son effect [27,28], and

14) the structure and dynamic evolution of solar granula-
tion [28].
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Each of these phenomena can be readily incorporated into a
condensed model of the Sun. Conversely, gases can neither
support nor act as structural entities. A striking example rel-
ative to thermal emission and the solar opacity problem in
gaseous models has been addressed in detail [30].

In this work, a fifteenth line of evidence for the condensed
nature of the Sun is presented:

15) the directional spectral emissivity of faculae. Emis-
sivity fundamentally reflects a “Planckian proof” or a
“thermal proof” for condensed matter. Along with
1) the thermal appearence of the solar spectrum,
2) the limb darkening of the photosphere, 3) the di-
rectional spectral emissivity of sunspots, and 4) the di-
rectional spectral emissivity of granulations [28], the
emissivity of faculae constitutes one of the most pow-
erful lines of evidence that the Sun is condensed matter.
It therefore represents the fifth thermal proof for con-
densed matter on the surface of the Sun.

It remains highly likely that the Planckian proofs consti-
tute direct physical evidence for a solar lattice [31]. Through
the study of directional spectral emissivity, they argue for
metallicity both within sunspots and faculae. Such metallicity
represents a manifestation of the lattice and the conduction
bands which it supports. The Planckian proofs also remind
us of the need to properly address and understand complex
emission mechanisms. Driven by a desire to better compre-
hend the solar spectrum, perhaps someday, the physics com-
munity, at last, will link thermal emission to a unique physical
process as the author has suggested [31–33]. In so doing, con-
densed matter and theoretical physicists will finally conclude
the work initiated, but left unfinished, by Max Planck [73].
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The proposed model is based on J. Wheeler’s geometrodynamic concept, in which space
continuum is considered as a topologically non-unitary coherent surface admitting the
existence of transitions of the input-output kind between distant regions of the space in
an additional dimension. The existence of closed structures (macrocontours) formed at
the expense of interbalance of gravitational, electric, magnetic and inertial forces has
been substantiated. It is such macrocontours that have been demonstrated to form — in-
dependently of their material basis — the essential structure of stellar objects (SO) and
to determine the position of these objects on the Hertzsprung-Russell diagram. Mod-
els of the characteristic types of stellar objects: stars and compact bodies emerging in
the end of stellar evolution — have been presented, and their standard parameters at
different stages of evolution have been calculated. The existence of the Hertzsprung-
Russell diagram has been substantiated, and its computational analogue has been given.
Parallels between stellar and microcosmic objects are drawn.

Recognizing the Seeker, Nature
itself will come to meet him.

Rockwell Kent

1 Introduction

Wheeler’s geometrodynamic concept, in which microparti-
cles are considered as vortical oscillating deformations on a
non-unitary coherent surface, was earlier used by the author
to construct model objects of the microcosm [1, 2]. Those
works substantiated the existence of closed structures (con-
tours), determining the properties of microparticles. At the
same time, the idea about transitions between distant regions
of space in the form of Wheeler’s “wormholes” can be ex-
tended to the scale of macrocosm, and some contemporary
astrophysical theories has already made use of it [4]. In this
paper, the existence of closed contours is substantiated at the
cosmological scale, and grounds are given that they make the
basis of stellar objects (SO).

The work does not consider the nature of the cosmologi-
cal medium that forms stellar bodies, nor it does the nature of
mass/charge carriers, force interactions etc., or various phys-
ical manifestationsof the evolutionary behavior of stellar ob-
jects. These tasks are a subject of specific disciplines.

The model presented in the paper has an outline, illustra-
tive character and suggests a new look at the problem. For the
model, the only important thing is theexistenceof the afore-
mentionedentities, forming certain types of stellar structures
and determining their evolution. The work does use specific
SO terms, but only schematic SO models are considered, with
their evolution depending only on a few parameters reflecting
the most important features of the real objects.

The SO models used here are based on the balance be-
tween main interactions: electrical, magnetic, gravitational

and inertial — with no additional coefficients introduced. The
analysis gives good qualitative results and, in a number of
cases, plausible quantitative parameters for the statistically
averaged (typical) stellar objects.

2 Initial premises

As was shown earlier [1], from the purely mechanistic point
of view the so-calledchargeonly manifests the degree of the
nonequilibrium state of physical vacuum; it is proportional to
the momentum of physical vacuum in its motion along the
contour of the vortical current tube. Respectively, thespin
is proportional to the angular momentum of the physical vac-
uum with respect to the longitudinal axis of the contour, while
themagnetic interactionof the conductors is analogous to the
forces acting among the current tubes.

It is given that the elementary unit of such tubes is a unit
with the radius and mass close to those of a classical electron
(re andme).

It should be noted that in [1, 2] the expressions for the
electrical and magnetic forces are written in a “Coulombless”
form, with charge replaced by electron limiting momentum.
In this case, the electrical and magnetic constants (ε0 andμ0)
are expressed as follows:

ε0 =
me

re
= 3.33× 10−16 kg/m, (1)

μ0 =
1
ε0c2

= 0.0344 N−1. (2)

The electrical constant here is, in fact, the linear density
of the vortex tube, with the mass:

m= ε0 l , (3)
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wherel is the length of the vortex tube (thread) or contour.
To combine the interactions, let us express them in a di-

mensionless form with the common force dimension factor
1
μ0

. Taking into account (1) and (2),

Fe =
1
μ0

(
re

r0

)2

ze1ze2, (4)

Fm =
1
μ0

l
2πr0

r2
e

(c× [sec])2
ze1ze2, (5)

Fg =
1
μ0

1
f

(
re

r0

)2

zg1zg2, (6)

Fi =
1
μ0

re

r0

(v0

c

)2
zg, (7)

where v0, r0, ze, zg, f are the rotary velocity and rotary ra-
dius or distance between the vortex tubes, the relative values
of charge and mass in the parameters of electron charge and
mass and the ratio of electrical-to-gravitational forces, which,
under the given conditions, is expressed as follows:

f =
c2

ε0γ
= 4.16× 1042, (8)

whereγ is the gravitational constant.
The balance of electrical and magnetic forces Fe= Fm

gives a geometrical mean, a characteristic linear parameter
that is independent of the direction of the vortex tubes and
the number of charges

R� =
√

r0 l =
√

2π c× [sec]= 7.52× 108 m, (9)

a magnitude close to the Sun radius and the sizes of typical
stars.

Thebalance of magnetic and gravitational forces Fm= Fg
also results in a geometrical mean:

√
r0 l =

√
zg1zg2

ze1ze2

√
2π
f

c× [sec]=
√
ε

f
R� , (10)

where the ratio of the productsε= zg1zg2/ze1ze2 is an
evolutionary parameter, which characterizes the state of the
medium and its changes, as the mass carriers become pre-
dominant over the electrical ones and, as a matter of fact,
shows how the material medium differs from vacuum.

In the general case, expression (10) gives a family of
lengthy contours, consisting of contra-directional closed vor-
tex tubes (mg-contours). The evolutionary parameterε pro-
portionally increases the mass of the vortex tube for themg-
element:

m= εε0 l. (11)

The vortex tubes can consist, in their turn, of a number of
parallel vortex threads, whose stability is ensured by thebal-
ance of magnetic and inertial forces(Fm = Fi ; mi-zones). As
follows from this balance,

v0i =

√
ze1ze2

zg

√
re l
2π
× [sec−1] . (12)

Unidirectional vortex threads of the lengthl rotate, with
the rotary velocity v0i , about the longitudinal axis along an
orbit of indeterminate radius. When they are filled with the
chains of single charges, having the mass of an electron, and
their numberze = zg = l/re (or when the tubes consist of
single vortex threads in the quantity ofl/re), we get the fol-
lowing equation:

v0i =
l
√

2π
× [sec−1] . (13)

The balance of gravitational and inertial (centrifugal)
forces Fg = Fi gives avirial , from which one can derive the
maximal gravitational mass of the object, satisfying condi-
tion (9):

Mm =
R� c2

γ
= f R� ε0 = 1.012× 1036 kg. (14)

3 Structurizations of the primary medium and parame-
ters of stellar objects

Now let us consider objects in which more than one pair of
forces is balanced.

Let us assume that an initially unstructured maximal mass
evolves and becomes more complex — through the emer-
gence ofmi-zones, consisting of single elements of the length
li and massmi . As follows from the constancy ofμ0 in the
general case,

1
μ0

= ε0 c2 =
miv2

i0

ri
(15)

wheremi = ε0 li is the mass of a vortexmi-element. From
(13) and (15), one can obtain, having in mind (9), the ratio
for its geometrical parameters:

l3i
ri

= R2
� . (16)

Driven by gravitation, the single tubes (threads) will com-
bine into a local structure, the mass of which can also be cal-
culated from the virial:

Mi =
riv2

i0

γ
. (17)

Let the object containzi local zones; then its mass will
be M0 = zi Mi . Let us introduce a dimensionless parameter
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M = M0/Mm. Then, making some transformations, one can
eventually obtain uniform equations for all the parameters of
the evolving objects with an arbitrary relative massM:

number of local zones

zi =
1

M1/4
, (18)

zone radius
ri = M3/4R� , (19)

length of the vortex tube (thread)

li = M1/4R� , (20)

rotary velocity in the zone

v0i = M1/4 c, (21)

number of single vortex threads in the zone

n =
Mi

mi
= f M , (22)

and, having in mind (10), one can taken = ε.
Thus, as its mass decreases, theobject simultaneously be-

comes more and more complex, getting subtly structured with
mi-zones.

Let us assume that the initial state of SO is a rotating disk,
which can further develop into larger structures (mg-contours)
of the sizeR0 × d0, where the contour length isR0 = l and
diameter isd0 = r0. With these designations, equation (10)
will look as follows:

√
d0 R0 =

√
ε

f
R� . (23)

Let us accept, quite schematically and roughly, thatmg-
contours in the disk are oriented radially-spirally and are
pulled in towards the center by the radial components of the
gravitational forces. These forces are approximately equal to
(d0/R0)Fg. Then, from the balance of centrifugal and gravi-
tational forces,

v0 =

√
d0

R0

√
γm
R0
, (24)

wherem andR0 are themg-contour mass and the averaged
disk radius respectively.

Let us define the number ofmg-contours as

z0 =
R0

d0
. (25)

With equation (11) in mind, the total mass of the object
will amount to

MMm = z0 m= z0 εε0 R0. (26)

Taking into account equations (8), (9), (23–26) and mak-
ing some transformations, we can find parameters of the
structured disk:

R0 = M1/3 R� , (27)

z0 =
f M2/3

ε
, (28)

v0 =
εc

f M1/3
. (29)

The parameters found are averaged when the disk struc-
tural elements are tightly packed, and they determine the core
of the object. Let us define the object boundaries — under
the condition that, if the system ofmg-contours is rotating as
a rigid disk, the rotary velocity of contours at the periphery
must not exceed the speed of light. In this case, the maximal
radius of the disk will be:

Rm =
R0 c
v0

= z0 R� . (30)

Let us further assume — within the framework of our sim-
plified model — that the mass of the object is concentrated
either in the center (thestate of core) or at the periphery (the
state of outer layer). Obeying the angular momentum conser-
vation law, velocity at the periphery cannot be higher than:

vm =
v0R0

Rm
=

v2
0

c
. (31)

Let the periods of core and outer layer rotation be ex-
pressed asτ0 = R0/v0 and τm = Rm/vm respectively (the
duration of the inner and outer cycles).

Having in mind (27–31) and taking into account that√
2π = 2.51, we obtain

τ0 = 2.51M2/3 f
ε
, (32)

τm = 2.51M4/3

(
f
ε

)3

. (33)

Indeed, star cores rotate much faster that their outer layers
[5]. As the medium condenses and becomes more and more
different from vacuum, the evolutionary parameterε grows.
There are at least two characteristic values of this parameter
satisfying the following conditions:

1. The number ofmg-elementsz0 is equal to the number of
mi-structureszi , which should correspond to the most
stable orbalancedstate of SO in the process of its evo-
lution. In this case (zi = z0) — as it follows from (18)
and (28),

ε = f M11/12 . (34)

2. The number ofmg-elements is reduced to one, which
will include all the mi-structures. This state corres-
ponds to the end of a certain period of object’s evo-
lution, i.e., to thedegeneratestate. Here, from (28),

ε = f M2/3 . (35)
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In the state of degeneration, whenz0 = 1, the period of
core rotation will — as follows from (30), (32), (35) — be
constant for any masses and amount to 2.51 sec, whereas the
size of the outer layer will be equal to the standard radiusR�.
In the general case, one can write, combining (34) and (35):

ε = f Mk , (36)

where the parameterk > 2/3.
Visible dimensions of stars, i.e., radii of their photosphe-

res, depend on many a specific factor; as a rule, they do not
equal to the radiusRm and can be evaluated only roughly. The
same can be said about star temperatures. Let us take the mass
of the Sun as a standard (the validity of such a choice will
be justified later) and consider the radius of the solar photo-
sphere being close toR�. Then, within the limits of the main
sequence for the stable state and taking into account our disk
model, the relative radius of the photosphereRf for a star of
arbitrary mass can be expressed via the mass of the Sun. It is
evident that for atwo-dimensionalmodel,

Rf =

(
M
M�

)1/2

(37)

and in the general case,

Rf =

(
M
M�

)i

, (38)

where i = 1 . . . 1/3 is a coefficient reflecting the density of
packing ofmg-contours in the object.

To evaluate the model object temperature, let us consider
its radiation as that of black body. Let the maximal temper-
ature of radiation be achieved at the Compton wavelength of
electron,k = 2.426× 10−12 m, and let us assume that the
radiation wavelength is inversely proportional to the rotary
velocity of the contour vortex tubes at a given radius. Then,
from Wien’s formula,

T =
b
λ
, (39)

whereb = 0.0029× 106 m× ◦K. Having in mind this propor-
tion, the radiation temperatures at the radii of core and pho-
tosphere (and an arbitrary radius as well) can be expressed
as

T0 = Tk

(v0

c

)
(40)

and

Tf = Tk

(v0

c

) (R0

Rf

)

, (41)

whereas the energy of radiation (here and so forth, in keV) as

E = 511
v0

c
keV, (42)

whereTk is the limiting temperature, corresponding toλk and
equal to 1.19× 109 ◦K.

Parameters Balanced state Degenerate state

ε 2.47× 1037 6.56× 1038

z 26.6 1

The core

R0 0.0126 0.0126

v0 4.7× 10−4 0.0126

τ0, sec 66.9 2.51

T0
◦K 5.6× 105 1.5× 107

The outer layer

Rm 26.6 1

vm 2.21× 10−7 1.57× 10−4

τm, sec 3× 108 = 9.6 years 1.58× 104 = 4.4 hours

Tm
◦K 263 1.89× 105

The photosphere

Rf 1 1

Tf
◦K 7050 1.89× 105

Table 1: Note — radii and velocities are expressed as fractions ofR�
andc.

4 Model adequacy

It seems improbable that such a schematic and simple model
would yield plausible results towards stellar objects. Yet it
does. Let us calculate some parameters of asolar-mass star.
The mass of the Sun equals to 2× 1030 kg; in relative units,
upon division byMm, M� = 2× 10−6.

Table 1 shows the results of calculations according to the
formulas given above.

In our notation,angular momentumof the Sun is equal to

0.4(2× 1030) v0 R0 = 0.4 M23/12
� Mmc R� =

= 1.09× 1042 kg m2/sec, (43)

where the coefficient 0.4 takes account of the spherical shape
of the body.

Comparing the calculated equilibrium-state parameters of
this averaged standard object (a solar-type star) with the ac-
tual parameters of the Sun, one can see a close correspon-
dence between their sizes, surface and core temperatures and
periods of the solar cycle activity. The Sun’s angular momen-
tum is calculated with almostperfect precision.

By the end of evolution, upon reaching the degenerate
state (atz0 = 1), the periods of the inner (τ0) and outer (τm) cy-
cles diminish to their limits (Table 1). In this case, the single-
thread spiral structure would flatten into a disk — thick as the
size of the core (R0) and radiating to the sector of the disk
plane. The period of radiation will beτm = 4.4 h; impulse
duration,τ0 = 2.5 sec; and temperatures of the core and outer
layer correspond to energies, 6.4 and 0.08 keV respectively.
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The presence ofmi-zones in themg-contour will bring un-
certainty into the period of radiation, which will be inversely
proportional to the number ofmi-zones. For an object of
the solar mass, the uncertainty in the period of impulses will
amount toτm/zi = 4.4h/26.6 = 598 sec.

These parameters are typical and correspond well to the
x-ray sources,barsters. For example, they perfectly fit the
parameters of the X-ray source 3U 1820-30 in the globular
cluster NGC6624 [5] etc.

Of course, the model presented here reflects only some
essential features of stellar object structure. A stellar ob-
ject can consist of toroids (balance of magnetic and grav-
itational forces), whose current-conducting elements rotate
above the closed longitudinal axis of the tor (balance of mag-
netic and inertial forces), whereas the toroids themselves are
oriented in the plane of the rotating disk (balance of gravita-
tional and inertial forces). Such a system should hardly be
stable. The core would rotate faster than the periphery, and
themg-contours would coil up, with their kinetic energy trans-
forming into other forms (and then, probably, transforming
back). Describing such a system as a multiturn plane-spiral
mechanical pendulum might be nave, yet in any case, there
should take place anoscillatory process of the object’s gravi-
magnitodynamical structure. Indeed, the paired dark spots in
the equatorial zone of the Sun seem to be the outlet ofmg-
contours — undergoing magnetic reversal and changing their
intensity and polarity with the period of 11 years. Their regis-
tered quantity (from several to a hundred) does not contradict
the calculated meanz0 = 26.6.

Now let us calculate thedensity of the SO core. In the
atoms of stellar matter (hydrogen, for the most part), sub-
stance circulates, according to our model, withinp+− e− —
contours with the massε0 r0, and circulation speed cannot be
higher than that of light [1].

At the same time, the magnitude of the chargee0 is con-
stant at any quantum number and equals to the momentum of
the contour massε0 r0 v0. At v0→ c, r0→ r0min, therefore

r0min =
e0

ε0 c
= 1.65× 10−12 m . (44)

The density of maximally condensed hydrogen atoms will
amount (for a spherical volume) to

ρmax =
3mH

4πr3
0min

= 8.82× 107 kg/m3 , (45)

wheremH is the mass of a hydrogen atom.
Now let us represent the mean density of the core matter

as a ratio of the core mass to its cubic radius. Having in mind
the corresponding expressions, one can see that the density is
invariable and depends only on the gravitational constant:

ρ0 =
MMm

R3
0

=
Mm

R3
�

=
1

2πγ × [sec]2
=

= 2.38× 109 kg/m3 . (46)

Fig. 1: The diagram “evolutionary parameter — mass”.

As follows from the density ratio, a volume equal to that
of a single hydrogen atom should contain 27 atoms of the
initial matter, which corresponds, by the number of protons,
to atoms of the iron group. The density is typical for white
dwarfs, such as the famous Kuiper star.

It is interesting that the parameters obtained:R�, ρ0 and
τ0 = 2.51 sec — practically indistinguishable from the values
that should characterize the neck of a hypothetical magnetic
“wormhole” of the massMm [4].

5 Analogues of the Hertzsprung-Russell (H-R) diagram
and their applications

The Hertzsprung-Russell (H-R) diagram shows the evolution-
ary position of stellar objects on the “spectral class (temper-
ature) — luminosity” coordinate plane. Let us consider its
analogues: diagrams “evolutionary parameter — mass”, and
“temperature — mass”.

5.1 The diagram “evolutionary parameter — mass”

On such a diagram (Fig. 1),ε(M) dependencies would better
be plotted on a logarithmic scale. At anyk, the diagram rays
converge on a point corresponding to the limiting massMm

and limiting evolutionary parameterεmax = f .
Specific parameters of SO will depend on the position of

the object on the diagram. In general, with the converging
point Mm approached then, as follows from (27–33), (40),
(41), the number ofmg-contours will tend to 1; the rotary
velocity, to the speed of light; the core and outer layer radii,
to R�; the periods of the inner and outer cycles, to 2.51 sec;
and the core and outer layer temperatures, toTk.

Evidently, for any given SO, the course of evolution may
go both towards largerε values (condensation of medium),
up toz= 1, and smallerε values (depression of medium), up
to the shedding of the envelope at the end of the evolutionary
process.Using the microcosm analogies, one can compare
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these states to the Bohr and ionized atoms respectively.
Let consider a stellar object which is in the main sequence

and has a value of the evolutionary parameter corresponding
to the line of equilibrium atk = 11/12. At ε = const, the
equilibrium massM0 will correspond to a smaller massMp

on the line of degeneration, for whichk = 2/3 andz0 = 1
(Fig. 1). In this case, one can obtain a mass ratio from (34)
and (35):

Mp = M11/8
0 . (47)

Since the mass of the Sun is considered standard, we shall
take the evolutionary parameter value on the line of equilib-
rium for the solar massεst as standard too.

5.2 Collapsing red giants

At the end of their evolution, stars become red giants and then
shed their envelope (transfer to the state of the core), turning
to white dwarfs, neutron stars or, in the case of the largest
masses, “black holes”.

Let us consider a star of chosen characteristic mass, for
which everymg-contour on the line of equilibrium has the
mass of the Sun, i.e., satisfying the conditionM0 = z0 M�.
Taking into account (28) and (34), we obtainM0 = M4/5

� =

2.76× 10−5 = 13.8 s.m. (masses of the Sun). Let us calculate
the typical mass of a white dwarf forming from the core of
such a star. Let us assume that on the line of star equilibrium,
its core (and, therefore, the massMp as well) are on the line
of degeneration (Fig. 1). Then, having in mind (47),

Mp = M11/8
0 = M11/10

� = 5.38× 10−7 , (48)

which corresponds to 0.27 s.m.
After the envelope and core are separated, they can be

considered discretely. Let the envelope evolve to a standard
parameterεst, and the core delay at the critical stage of the
transformation process. Combining these states, let take the
white dwarf massMp be proportional to the number ofmg-
contourszp — of the total number ofmg-contoursz0 of the
massM0 atεst:

Mp =
M0 zp

z0
. (49)

Having in mind (28), (34) and (48), one can find the num-
ber ofmg-contours in the core:

zp =
f M25/24

0

εst
= M−1/12

� = 2.98. (50)

Therefore, the total mass of the star will be equivalent to
M0/Mp = M−3/8

0 = M−3/10
� = 51.2 white dwarf masses, which

corresponds to the number of nucleons in the nucleus of iron
(more precisely, ifzp = 3, thenM� = 1.9×10−6 and the num-
ber of “nucleons” is equal to 52). Here we see another anal-
ogy with the microcosm:a standard red giant, containing
52 white dwarf masses, and a white dwarf, containing three

Fig. 2: The diagram “temperature-mass”.

mg-contours, will match an atom of iron, containing 52 nu-
cleons, and a nucleon, consisting of three quarks. Later,
other analogies with the microcosm will come into view.

Thus, it seems that the mass of the Sun and its evolutional
parameterεst on the line of equilibrium are, indeed, standard.
At z0 = 3, the parameterk ≈ 0.75, and it changes slightly
in a wide range of masses. One can, therefore, expect that
the condition (50) is optimal for other masses as well. Then,
from (50),

εst =
f M25/24

0

3
. (51)

5.3 The diagram “temperature-mass”

Since logarithms of luminosity and mass are approximately
proportional within the limits of the main sequence, it would
be convenient to draw the H-R diagram analog in the coordi-
nates of “temperature — mass”.

From (27–30), (34), (40) and (41), one can obtain ex-
pressions of theT(M) form, corresponding to the equilibrium
temperatures at the radii of the outer layerRm and coreR0 at
k = 11/12. On a logarithmic scale (Fig. 2), they are straight
lines, converging on the pointMm (outside the diagram):

Tm = Tk M7/6 , (52)

T0 = Tk M7/12 . (53)

Stars of the main sequence have photospheres whose radii
are usually smaller thanRm. To construct dependenciesT(M)
for the photosphere, let us use formula (37). Taking into ac-
count (38), one can obtain, in the general case:

Tf = Tk Mi
� Mk−i . (54)
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For the equilibrium state atk = 11/12, we obtain three
lines corresponding to three possible variants of packing of
mg-contours: into one-, two- and three-dimensional structures
— i.e., ati = 1,1/2,1/3 (Fig. 2):

Tf1 = Tk M� M−1/12 , (55)

Tf2 = Tk M1/2
� M5/12 , (56)

Tf3 = Tk M1/3
� M7/12 . (57)

These lines converge on the point with coordinates close
to the real parameters of the Sun, and their crossing with the
outer-layer equilibrium line gives three characteristic masses:
M1, M2 andM3. The massM1 = M4/5

� = 13.8 s.m., i.e., this
mass also satisfies the conditionM1 = z0 M� and is equal to
the mass of a red giant, which was calculated in the previous
section. The massM2 = 79.4 s.m. is the largest possible
mass for a main-sequence star. According to (47), this mass
can give rise to an object whose mass will be 3 s.m., which
corresponds to the maximal mass of a neutron star. The mass
M3 = 277 s.m. is the largest possible mass for a star with the
most condense packing. According to our model, the struc-
ture of SO is two-dimensional; hence, stars of the main se-
quence are on the lineTf2 (bold line). Here, on the diagram
T-M, one can also see isolines of the parameterε, which, fol-
lowing (27–30), (41) and combining the constants, will look
as

Tf = 6.86× 10−77 ε
2

M2/3
. (58)

It should be noted that specific sequences of the globular-
cluster stars formed from a medium with the same evolution-
ary parameter are also located along their ownε isolines.

When stars leave the main sequence and evolve towards
lesserε andT (to the right on the diagram), SO parameters
change; particularly increasing is the envelope radius. Let us
assume that beyond the line of equilibrium,Rf = Rm (actu-
ally, the visible sizes of a star depend on many specific factors
but we shall abstract from them in our model).

When calculating temperatures of the star envelopes (41),
we implied that a part of the core radiation energy is trans-
formed into other forms or spent in the star inner processes.
But for the envelopes of giant stars, which are located to the
right of the equilibrium line on theT-M diagram, formula (41)
gives underrated results. The average density of giant stars is
extremely low, and the energy of hot core radiation will in-
significantly be absorbed by the rarefied atmosphere of these
stars. In this case, to determine temperature of the photo-
sphere, one can use the well-known formula for thermal radi-
ation power, considering core as a radiation source:

N = σT4S , (59)

whereσ is the Stefan-Boltzmann constant equal to 5.67×10−8

W m−2(◦K)−4. Having in mind the evident dependence of

temperature on the linear size, the temperature of the photo-
sphere can be expressed via the temperature of the core:

Tf = T0

(
R0

Rf

)1/2

. (60)

Taking into account (27–30), (40) and acceptingRf = Rm,
one can obtain, by analogy to (58),

Tf = 1.4× 10−55 ε
3/2

M1/2
. (61)

This formula should be used when the star evolves beyond
the equilibrium line and the radius of its envelope greatly in-
creases. It is evident that the formula gives a bit overrated
values ofTf . In Fig. 2, isolines plotted according to (61) are
indicated asεst.

Taking into account (51) and substituting theεst expres-
sion in (61), one can obtain the lineT(M), along which stars
turning into red giants are lined up:

Tfg = 0.192Tk M17/16
0 . (62)

The parameters of stars with the massesM1 andM2 cal-
culated for differentε values are shown in Table 2.

As for the “superstar” object, with the calculated mass
M3 = 277 s.m., its existence has been verified. The recently
discovered star R136a1 has the following parameters:M0 =

265 s.m.,Rf = 63R� andTf >40000◦K [7]. The calculated
parameters of such a star — assuming it to be on the extension
of the main sequence — are as follows:Tf2, according to
(56), is equal to 72500◦K; ε from (61) is equal to 4.8× 1038;
Rf = Rm and, according to (30), is equal to 57R�. In other
words, the object should be somewhere to the right of the
main sequence line.

Located in the bottom part of the diagram are red dwarfs.
Their typical parameters are the following: mass, 0.1, . . . , 0.8
s.m.; radius, 0.1 . . . 0.85R�; temperature, below 3800◦K [8,
9]. Since their radii are approximately proportional to their
masses, they are on the lineTf1, but their temperatures are
lower, so it looks like they are on the extension of the main
sequence. It is supposed that they evolve towards more con-
densed states, i.e., towards higherε andT.

Lying on the lower segment of theTf3 line are brown
dwarfs. Their typical parameters are: mass, 0.012. . . 0.08
s.m.; temperature, 3000. . . 300 ◦K. Their radii change in-
significantly over the range of masses and are approximately
equal to that of Jupiter [10, 11].

At the very bottom of the diagram is the massM4 =

1.95× 10−9 — the giant planet Jupiter. The temperature of
its outer layer on the lineTf3 is equal, according to (57), to
123◦K, i.e., it is close to the temperature of the outer atmo-
sphere layers. The densities of Jupiter, brown dwarfs and the
Sun are approximately equal; all these objects are near the
line Tf3.

Thus, all the types of SO are arranged logically on the
T-M diagram.
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Parameters M1 = 13.8 s.m M2 = 79.4 s.m

ε1 εst1 ε2 εst2 εst1

ε 2.76× 1038 2.47× 1037 1.37× 1039 1.53× 1038 2.47× 1037

v0 0.00219 0.000197 0.0061 0.00068 0.00011

R0 0.0302 0.0302 0.0542 0.0542 0.0542

Rm 13.8 153.4 8.9 80 495

Rf 3.7 153.4 8.9 80 495

τ0, sec 34.5 388 22.3 200 1242

τm, days 83 1.15× 105 7 5037 1.2× 106

τmz, days 6 752 0.78 63 2409

T0, ◦K 2.6× 106 2.34× 105 7.2× 106 8.07× 105 1.3× 105

Tm, ◦K 5710 3290 44000 21000 1370

Tf , ◦K 21200 3290 44000 21000 1370

Table 2: Note — radii and velocities are expressed as fractions ofR� andc.

5.4 Variability of stellar objects

The types of variability of SO radiation are very diverse, and
variability is intrinsic, to some degree, to all SO including the
Sun. The most common type of variability is optical alter-
nating variability (pulsations). According to our model, such
pulsations are a natural result of the existence of oscillatory
processes in the complex SO structure.

The most stable, in terms of amplitude and period of bril-
liancy oscillations, are pulsating stars of high luminosity —
Cepheids, yellow giant stars [12, 13]. On the diagramT-M,
their position would correspond to the massM1 on the equi-
librium line Tm, whereRf = Rm.

Leaving the main sequence, stars become variable upon
crossing the isolineε1 (instability strip), corresponding to the
equilibrium parameterε for the characteristic massM1. As
follows from the diagramT−ε, the parameterε decreases for
masses larger thanM1 and increases for masses smaller than
M1 — until it reaches the isolineε1.

The masses of Cepheids are in the range 4. . . 20 s.m. The
minimal Cepheids mass is defined by the intersection of the
isolineε1 and the lineTf2, giving M = 4.1 s.m. which agrees
with the value indicated in [14]. One should bear in mind that
this intersectionpoint on the diagramT-M corresponds to a
segmenton the diagramε-M — from the line of equilibrium
to ε1. This segment corresponds to the initial period when
the star begins to descend the main sequence. During this
process,Rf → Rm, which results in the star luminosity to
grow. The growth is not reflected on theT-M diagram; on the
diagramH − R, it corresponds to the initial segment of the
star’s evolutionary track.

Going on, stars evolve in the direction of lowerε val-
ues and reach the isolineεst1 (asymptotic branch of giants,
ABG). The isoline corresponds to the equilibrium parame-
ter εst for the standard solar mass (Fig. 1), under which the

sizes of the star envelopes and the periods of their outer cy-
cles reach their maxima. Located on ABG arelong-period
variable stars(with the period of brilliancy oscillations up to
1000 days),semi-regular variable stars(with the period of
brilliancy oscillations up to 2000 days) and so on. Within the
framework of our model, their variability can be explained
not only by the existence of the outer layer period,τm, but
also by a heterogeneity of their outer layer radiance [15, 16].
The heterogeneity results from the passage — along the star
disk perimeter with the intervals ofτmz— of hot (cold) zones,
containingmg-contours.

The calculated parametersRm, Tm and τmz for M1 (Ta-
ble 2) are in a reasonable agreement with the averaged obser-
vation data for Cepheids atε1 and for long-period variables
atεst1 [12, 17].

The parameters of SO of the massM2 on the line of equi-
librium atε2 approximately correspond to those of hot super-
giants PV Tel-type, with the period of pulsations from 0.1 to
1 day. On the lineTfg at εst2, they correspond to the parame-
ters ofα Cyg-type super-giants, with the periods from several
days to several weeks [12]. Further evolution of such stars in
the direction of smallerε values results in the formation of
red super-giants.

6 Compact stellar objects

This group of SO includes white dwarfs, having the maxi-
mally compact packing of atoms, with the densityρ0, and
stellar bodies based on neutron stars, whose matter is com-
pressed to the nuclear densityρ j . Such objects are formed in
the extreme cases, when SO evolve in the direction of either
the largestε values (whenRf → R�; “outer-layer state”) or
the smallest ones (when the envelope is shed; “core state”).
In both cases, the initial oscillatory process is replaced with
the rotation of the final compact object, of the massMp, with
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the rate vp.
At the final stage of evolution, there is, as indicated in

[18], the possibility of a physical “coupling” of the star enve-
lope with the core. Let us assume that there exists aprocess
analogous to the absorption of an electron by the proton;
i.e., the final compact object acquires the momentum of the
outer layer, with the transition to an “excited” state. We
cannot consider the mechanism of this phenomenon within
the framework of our model (moreover, the envelope and the
core are considered here as different states of the same single
object), so let us restrict ourselves to a formal application of
the momentum conservation law:

M0 vm = Mp vp. (63)

6.1 White dwarfs

A white dwarf resulting from the star evolution towards lesser
ε values, should inherit the parameters of the star core by the
moment of the envelope shedding. For a star of the massM1

the parameters will be as follows: core temperature,
234000◦K; period of rotation, 388 sec (Table 2). According
to (47), (27) and (46), the mass, radius and mean density of
white dwarfs are 0.27 s.m., 0.0082R� and 2.38×109 kg/m3 re-
spectively. Indeed, very young white dwarfs can be observed
in the X-ray range; the periods of their pulsations are in the
range of tens to thousands of seconds, and they have typi-
cal sizes and densities being in agreement with the calculated
parameters [12, 19, 20].

A white dwarf resulting from the evolution of a low-mass
star towards largerε values (without shedding of the enve-
lope) should have the massMp ≈ M0. Then, its vp ≈ vm.

Having in mind (29), (31) and (36), let us represent vm as

vm = cM2k−2/3
0 (64)

and the period of rotation as

τm =
R0

vm
= 2.51M1−2k

0 . (65)

At z= 1 andk = 2/3, an object of the mass 0.27 s.m. will
have the following parameters: vm/c = 6.7× 10−5; τm = 308
sec; and the energy of radiation, according to (42), equal to
0.034 keV (T = 79000◦K). Here, the calculated parameters
are, too, typical for a young white dwarf. As the object on
the T-M diagram shifts to the right, the parameterk grows,
which corresponds to the decline of the rotary velocity and
temperature of the white dwarf.

On the diagram“spectrum-luminosity”, the zone of white
dwarfs seems much narrower than that on the diagramT-M,
since their luminosity is determined by the radius, which, ac-
cording to (27), is proportional to cubic root of the object
mass.

6.2 Neutronization

In the context of our model, the process of neutronization can
be represented as a loss of stability of the structure ofmg-
contours and the transition of the structure (through its inver-
sion along the vertical axis) from the plain two-dimensional
into a one-dimensional configuration, which is energetically
more favorable. Let us assume that the result will be a single
mg-contour or just a single vortical tube (neutron object).

Roughly, the parameters of such a primitive object can be
defined as in Chapter 3. Placing the parameterR along the
vertical axis and consideringz= 1, one can obtain:

vn =
f Mn c
ε
, (66)

dn =
ε2R�
f 2Mn

, (67)

Rn =
f Mn R�
ε

, (68)

τn = 2.51
(ε/ f )3

M2
n
. (69)

Rotary velocity cannot exceed the speed of light. There-
fore, at vn 6 c, ε > f Mn. Thus, for compact objects, the
parameterk in (36) should be6 1 (in any event, as follows
from the comparison of the calculated and actual data,k can-
not be much larger than 1). Let us limit ourselves to defining
parameters at vn = c. Expressingε from (66), one can obtain:

dn = Mn R� , (70)

Rn = R� , (71)

τn = 2.51Mn. (72)

It should be noted that a high-frequency modulation with
τn up to 10−6 sec is present on the radiation diagrams of some
neutron stars — pulsars [6].

As the evolutionary parameter grows, the sizes of a neu-
tron object shrink along the axes, and on the line of degener-
ation, atz = 1, one can rewrite expressions (67–69), having
in mind (35), in the following form:

dn = Rn = M1/3
n R� , (73)

τn =
R�
c

= 2.51 sec. (74)

Of course, this scheme is ideal. In reality, the objects
based on neutron stars are in some intermediate state, and in
the general case,

dn = M j
n R�, (75)

where j = 1/3, . . . , 1 is a coefficient taking account of the
object packing (shape).

It seems that the neutron state should be realized, to some
extent, in the core of any star — and this can be proved. Let
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represent the mass of a single vortex tube as that of a cylinder
of the lengthRn and radiusdn. Taking into account (70) and
(71),

Mn Mm = ρn (MnR�)
2 R�, (76)

whereρn is the vortex tube averaged density. Let us assume
thatρn cannot exceed the nuclear densityρ j , which shall be
considered equal tomp/r3

e = 7.47× 1016 kg/m3, wheremp is
the mass of a proton. Then, as follows from (76),

Mmin >
Mm

ρ jR3
�

, (77)

which, upon substitution of values, gives 3.19×10−8Mm. This
mass corresponds to 0.016 solar masses or 17 Jupiter masses
— exactly what the smallest cosmological mass, which is still
considered a star, should be.

6.3 Masses of “black holes”

The diagramsε-M andT-M show the boundary of a critical
mode, where the rotary velocity of a vortex tube reaches that
of light. On the diagramε-M, the ray indicating the critical
situation looks — taking into account thatMn is the mass of
the compact object to be raised — as

ε = f Mn = f M11/8 . (78)

On the diagramT-M, the same ray has — upon substitu-
tion of ε in (61) — the following form:

Tf lim = Tk M25/16. (79)

As follows from this construction, a ray segment is lim-
ited by the ordinates of the massesM2 andM3 and intersec-
tion with the isolinesεst1 and εst2 — there are almost per-
fect ternary points of intersection. It is these masses that give
rise to neutron objects with the masses, according to (47),
3, . . . , 16 s.m., which are the sources of hard X-ray radiation
andcandidates for the star mass “black holes”[18].

Indeed, for giant stars of a massM2−M3, the critical mode
begins before the moment they reach the asymptotic branch
of giants (super-giants). With further decrease of the param-
eterε, a star should release the excess of angular momentum
— probably, by means of dropping the excess mass, which
can be interpreted as shedding of the envelope with the for-
mation ofsupernova. Next, the star core of a massMn < ε/ f
transforms to an object which presently is classified as the
“black hole” candidate. If neutronization of SO occurs far
beyond the critical boundary (at lowε values), the mass of
the emerging object will be very small. The latter might be
one of the causes of the supernova remnants to contain few
compact objects.

6.4 Radio pulsars

In our model, the simplest radio pulsar is a vortex tube which,
by definition, is in the regionY (“boson”). The vortex tube
is a macro-oscillator or radiator, with oscillations forming as
longitudinal vibrations along the entire tube, while propagat-
ing to theX region as a cross wave from their source (the en-
trance of the vortex tube to theY region; orifice) [2]. Presum-
ably, radiation in the observable regionX has a wavelength
λp commensurable with the characteristic size of a single el-
ement of the vortex tube. A vortex tube, according to (22),
consists ofn = ε single vortex threads — therefore, the char-
acteristic linear size of a single element (region of radiation)
will amount, under the condition of maximally compact pack-
ing of vortex threads in three dimensions, to

dp = ε1/3re . (80)

The speed of vortex tube rotation can be expressed as a
proportion of light speed — using the analogies described in
Chapter 3:

vp = c
λk

dp
. (81)

Taking into account (36) and combining the constants,
one can find the period of a pulsar:

τp =
dp

vp
=
ε2/3r2

e

cλk
= 282.5 M2k/3

p sec. (82)

Along the vortex tube of the pulsar, radiation is formed
by mi-zones, the number of which is determined by the pulsar
mass. The averaged profile of the radiation pulse is a result
of random superposition of many single pulses. Therefore
the duration of the generalized pulsar pulseτpi can be in the
range from the duration of a singlemi-zone pulse to the total
duration of pulses of all the zones, i.e. fromri/v0i to zi ri/v0i .
Having in mind (18), (19) and (21),

τpi = 2.51M1/2...1/4
p . (83)

For a pulsar, the standard mass is taken as 1.4 of that of
the Sun. Then the pulsar period atk = 2/3 . . . 1 will be, ac-
cording to (82), in the range from 0.97 to 0.045 sec; and the
duration of the generalized pulse will be, according to (83),
in the range from 0.1 to 0.0042 sec, this corresponding to the
temporal parameters of the majority of radio pulsars [21–23].

Radio radiation of pulsars covers a broad range and is ex-
tremely heterogeneous in time, intensity and frequency. Nev-
ertheless, there are stable averaged spectra of energy distri-
bution over frequency obtained by multiple instant measure-
ments of radiation at different frequencies over large periods
of time.

Let λp = 2πdp, then thefrequency of radiation, taking
into account (80–82), will be as follows:

νp =
c

2πdp
=

c

2πε1/3re
Hz, (84)
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which, having in mind (82), can be reduced to

νp = 1.77τ−1/2
p GHz. (85)

Sincedp is the minimal parameter provided thatmi-zone
are packed most compactly, expression (84) will givemaxi-
mal frequencies. However, the averaged spectrum extends far
in the region of low frequencies and has an energy maximum.
On the basis of our model, this fact can be accounted for by
pulsation of the vortex tube in the limits ofdn, formula (75),
and the existence of its optimal packing, less than 3, which the
pulsar assumes most of the time. As indicated in [3], it may
be the fractal dimensione = 2.72. In this case, the power
of the parameterε will be equal to 1/e, and, as follows from
(84), νp/νm = ε0.0345. Having in mind (82), one can obtain,
for the frequency of the maximum:

νm = 0.0804τ−0.55
p GHz. (86)

Formulas (85) and (86) are virtually identical to the inter-
polation formulas given in [23].

Although radiation of pulsars is not thermal, thepower of
radiation Np can be determined on the basis of a formal use
of the Boltzmann formula for thermal radiation of black body
under the following conditions:

• taken as the area of the radiating surface is the cross-
section of the vortex tube,S = d2

p;

• taken as the effective temperatureTe f is the tempera-
ture corresponding to the radio frequencyTν increased
proportionally to the relative length of the vortex tube
(i.e. proportionally to the ratio of the initial-object∗ ra-
dius to the diameter of the vortex tube,Te f = TνR0/dp).

Since, having in mind (39, 40),Tν = Tkλk/dp, one can ob-
tain, taking into account (36) and (80) and combining the
constants,

Te f = 1.06× 107M1/3−2k/3
p . (87)

Finally, after calculating the constants, we get an expres-
sion forNp:

Np = σT4
e f S = 1.45× 1020M4/3−2k

p W. (88)

Thus, our model predicts that atk → 2/3, a radio pulsar
should have alower limit for radiation power (Nmin), which
the pulsar will be approaching as its rotation is getting slower.
The limit Nmin is equal to 1.45× 1020 W and does not depend
on the pulsar mass. Atk = 1, expression (88) will give an
upper limit Np, which is dependent on the pulsar mass. The
limits do exist [23], and no pulsars has been found at the lu-
minosity belowNmin.

On the basis of (82) and (88), a dependenceN(τp) can
be constructed (Fig. 3), which corresponds to the correlation
given in [23]. To cover the zone of millisecond pulsars, the

∗The object of the initial mass (before neutronization).

Fig. 3: Dependence of the radio pulsar radiation power on its period.
Mp = 3 . . . 0.016 s.m.,k = 0.66. . . 1.

dependence is plotted in the range of masses 3. . . 0.016 s.m.
— i.e. up to the minimal masses still able to neutronize (see
Chapter 6.2). (The question on the range of radio pulsar
masses is still open, since they can be determined only in rare
cases).

6.5 Excited states. Gamma-pulsar

Essentially, pulsar or vortex tube is a lengthy solenoid. In
our model, the full length of a threadzi li does not depend,
according to (18) and (20), from the mass and is equal to
R�; the length of a turn is, in general case,πM j

p R�, and the
number of turns in the initial state is N= M− j/π.

Let us assume that the configuration of the vortex tube
can change — e.g., upon the formation of a secondary spiral
structure. In this case, the initial radius can diminish to the
minimal radius of the vortex tubedp, and the number of turns
can grow to the number Nm = R�/πdp. Then, taking into
account (36) and (80),

Nm

N
= 1.66× 109M j−k/3

p = 105 . . . 109, (89)

which will result in the correspondingly increased magnetic
power and activity of the pulsar.

This state can be considered as an “excited” state of the
radio pulsar. If the effective temperature grows proportion-
ally as well, the energy corresponding to this increase will be
transferred into the gamma range. Multiplying (87) by (89)
and taking into account that for the vortex tubej = 1, one can
obtain

Te f = 1.76× 1016M4/3−k
p . (90)

Thus, at certain combinations of the parameters, formula
(90) will give (upon conversion into electron-volts) values up
to 1013 . . . 1014 eV. This explains, for example, the observed
gamma radiation of the famous pulsar in the Crab Nebula
(more than 1012 eV). Ratio (89) serves estimation purposes,
yet it can be used in other cases as well.
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6.6 X-ray pulsars

Massive stars give rise to neutron objects. Let us assume
that such an object can be formed at any stage of star evolu-
tion, with the envelope momentum transferred to this newly
formed object. Let us also assume that further evolution of
this system as a whole can go both to the right (up to the state
of outer layer) and left (up to the state of core) of the equi-
librium line with the eventual formation of anx-ray pulsar of
the massMp.

As a rule, X-ray pulsars do not radiate in the radio range.
According to the model considered, we can assume this resid-
ual compact object to be already in the neutron state, while its
vortex tube (or a part of the tube) excited at the expense of an
additionally absorbed momentum to be still in theX region
and to radiate in the X-ray range.

Let us determine the pulsar’s parameters. Having in mind
(63) and (64) and substituting, according to (47),M8/11

p for
M0, one can obtain for the pulsar:

vp = cM1.454k−0.7575
p , (91)

Ep = 511M1.454k−0.7575
p keV . (92)

The pulsar perioddn/vp, in the case of arbitrary pulsar
form, will be equal to

τp =
M j

p R�
vp

= 2.51M0.7575−1.454k+ j
p . (93)

It should be noted that atk = 0.75 and j = 1/3, theMp

factor in (93) will be zero andτp = 2.51 sec — the same
period for any mass.

Let us consider the pulsar radiation to be mainly thermal.
Then, one can calculate its power according to the Boltzmann
formula, taking as theradiating surfacethat of the vortex
tube of the lengthR0 (i.e. S = πdp R0). In this case —
analogously to (88), taking into account (27), having in mind
Tp = (Tk Ep)/511 and after transformations — one can ob-
tain, for an X-ray pulsar:

Np = 1.22× 1038M6.15k−2.7
p W . (94)

The parameters of most of the known X-ray pulsars fit
into the intervals calculated according to (92–94) for the stan-
dard mass 1.4 s.m. atk = 2/3 . . . 1 and j = 1/3 . . . 1: τp =

0.002. . . 260 sec,Ep = 0.07. . . 35 keV, Np = 1020 . . . 1030

W. Periods of more than 1000 sec are characteristic for small
masses or for the cases when momentum is not fully trans-
ferred from the outer layer to the emerging compact object.
Thus, there exist restrictions on the magnitudes of periods,
energy and radiation power; and it is them that explain, to a
certain degree, the partially non-thermal form of the pulsars
energy spectrum (a cut-off in its high-energy region) [18, 24].

Radiating in the X-ray region are also some radio pul-
sars. Let us demonstrate the adequacy of our model on these

Fig. 4: Dependence of the radio pulsarx-ray luminosity on the
parameter (dτp/dk)/τ3.5p . Mp = 3 . . . 0.3 s.m., k = 0.66. . . 1,
j = 0.68. . . 0.73. Observation data are taken from [23].

objects — on the example of correlation betweenx-ray lu-
minosity and the parameter (dτ/dt)/τ3.5, given in [23]. The
period derivativedτ/dt, the rate of deceleration of pulsar rota-
tion, is determined from observations. In our model, rotation
slowdown is determined by the general process of evolution
of the object’s medium, i.e., by the parameterk. So let us use
a derivative of the period in respect tok, considering the pa-
rameterj constant and replace the aforementioned expression
by corresponding equivalent. In the end, differentiating (93)
and combining the constants, one can obtain

dτp/dk

τ3.5p
= −3.35 lgMp τ

−2.5
p . (95)

Fig. 4 shows the dependence of X-ray luminosity of a
radio pulsar on the parameter (dτp/dk)/τ3.5p in the range of
masses 3. . . 0.3 s.m. The dependence fits the observation data
at the values of the parameterj = 0.68. . . 0.73. In Fig. 4, the
size of squares is approximately proportional to the number
of observation points (41 points in total according to [23]). In
our case, the derivative does not require a scale coefficient to
satisfy the initial conditions.

It is known that duringoutbursts, the power of radiation
(luminosity) reaches a magnitude of the order of 1032 W and
higher [25]. According to our model, such an increase in lu-
minosity can be explained by periodical excitation of the vor-
tex tube (see Section 6.5). In this case, multiplying (94) by
(89), one can obtain

Npm = 2.03× 1047M5.82k+ j−2.7
p . (96)

Formula (96) gives rational results. For the massM = 1.4
s.m.,Np will reach, depending on the parameters, magnitudes
of 1038 . . . 1039 W, which agrees with the power of the giant
gamma-ray outburst from the source SGR 1900-14, which
was registered in August 1998 (about 1038 W) [27].
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Fig. 5: The solution region: dependence of the radio pulsar radiation
power on its period.Mp = 3 . . . 0.016 s.m.,k = 0.66. . . 1, j =

0.33. . . 1.

It would be interesting to get independent estimates of the
mass of compact objects, which, as one can see, have a sim-
ilar origin. Let us assume that in the process of their possi-
ble inter-transformations, their masses and periods change in-
significantly. Let the X-ray and radio pulsar periods are equal
in the marginal cases — when the initial SO, giving rise to
a compact object, evolves towards the largest or smallestε
values.

Let us consider the case when evolution goes towards
largerε. With ε increasing, the massMp should grow and
at z→ 1 become equal to the original massM0 (Fig. 1). Per-
haps, such a process should be associated withaccretion in
binary star systems. Proceeding to the massM0, let us sub-
stituteM11/8

0 for Mp in (91). Thendn = M j
0 R� and (93) will

take a form of
τp = 2.51M1.042−2k+ j

0 . (97)

Equating (82) to (97) for the periods, combining the con-
stants and making transformations, one can obtain in the end:

lg M0 =
2.052

1.042− 2.667k+ j
. (98)

In the limit, k = 2/3 and j = 1/3 (sphere), thenM0 =

8×10−6 or 4 s.m. This mass can be considered as the total one
of a low-mass binary star systemcontaining an X-ray pulsar,
this being in agreement with the accepted estimate (2.5 s.m.
+ 1.4 s.m.) [18]. Such a pulsar will have a relatively hard
X-ray radiation [25], and, with the growth of the parameters
j, its period will decrease.

The obtained mass value is, in fact, coincides with the
minimal mass of a Cepheids (see Section 5.4). Thus, an SO
with the mass 4 s.m. can evolve both to the right of the equi-
librium line (shedding the envelope) and to the left (forming
a binary star system). In both cases, a compact object will be
formed at the end of evolution, and one can suppose that the

Fig. 6: The solution region: dependence of the X-ray pulsar ra-
diation energy on its period.Mp = 3 . . . 0.3 s.m.,k = 0.66. . . 1,
j = 0.33. . . 1.

stellar mass of 4 s.m. is theminimal massable to give rise to
neutron stars.

Let an X-ray pulsar evolve towards lesserε values. Equat-
ing expressions (82) and (93), one can obtain

lg Mp =
2.052

0.7575− 2.121k+ j
. (99)

In the limit, k = 1 and j = 1 (vortex tube), thenMp =

2.3 × 10−6 or 1.15 s.m. Here, we have got a typical pulsar
mass. Such a pulsar will have a relatively soft X-ray radia-
tion, and with the parameterj growing, the pulsar period will
increase. Such objects can correspond tosingle neutron stars
[26]. Indeed, as follows from the observation data, pulsars of
binary systems will mainly speed up their rotation, whereas
single objects will slow down.

The properties of SO are determined by the totality of
their parameters; that is why two-parameter diagrams always
have a wide scatter of experimental points. Let us represent
the solution region of the dependenceN(τp) for radio pulsars
more extensively — expressing its period according to (93),
which contains the parameterj, and considering some radio
pulsars evolved from the X-ray ones, with their periods being
approximately the same (Fig. 5). The region of observation
values [23] fits well the solution region.

Analogously, using formulas (92) and (93), one can plot a
solution region of the dependenceE(τp) for the X-ray pulsars
(Fig. 6). Clusters on the images may indicate regions where
pulsars have preferable parameters — e.g., the right bottom
part in Fig. 6 may indicate, by the combination of parameters,
a region of single neutron stars.

There appears a question: can slow X-ray pulsars trans-
form into radio pulsars, whose period will not exceed several
seconds? One can suppose that comparatively to radio pul-
sars, X-ray ones have an excessive angular momentum (since
their radius in the regionX is much larger than that of ra-
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Fig. 7: The solution region: dependence of the radio pulsar radia-
tion power on its magnetic field —N(B) to the left; N(Bm) to the
right. Mp = 2 . . . 0.2 s.m.,τp = 0.003. . . 3 sec,k = 0.66. . . 1,
j = 0.33. . . 1. Observation data are taken from [23].

dio pulsars in the regionY, and as they “submerge” into the
regionY, their period shortens).

Thus, it can be supposed that gamma, X-ray and radio
pulsars are different forms of excited vortex tube or, using
another analogy with the microcosm, three species of neu-
trino. The primary state — radio pulsar — possesses only
the initial angular momentum of the vortex tube or spin.

6.7 Magnetic properties of pulsars

Our model explains the correlation between the magnitude of
the magnetic fieldB and other pulsar parameters. According
to SI definition, for a lengthy solenoid,B = μμ0 nI, wheren is
the number of turns per unit of length,I is the current strength
andμ is the relative magnetic permeability.

The initial solenoid length is equal toR0. Let n = N/R0.
Let us define the coefficientμ as the compactness of the sol-
enoid coil in the initial state Ndp/R0. The current strengthI in
the “Coulombless” form iszeme c(R�/re) × 1/[sec] (see Sec-
tion 2), whereze is the number of single charges per coulomb,
equal to 1/e0.

In our model, SI units forB are m−1. To switch from SI
to the Gaussian system of units, introduction of an additional
factor of 10−4 is needed. Opening the expressions forμ0, ε0
andR�, taking into account that N= M− j/π, as well as (27),
(36) and (80), and making transformations, one can finally
obtain

B = 1.27× 10−4Mk/3−2 j−2/3
p G. (100)

Many radio pulsars have largerB values. For the excited
state, multiplying (100) by (89), we will have

Bm = 2.1× 105M− j−2/3
p G. (101)

Fig. 7 shows the solution regions for the dependences
N(B) (to the left) andN(Bm) (to the right) calculated accord-
ing to formulas (88), (100) and (101) in the range of masses

Fig. 8: The solution region: dependence of the efficiency of transfor-
mation of rotation energy in-to radio radiation on the pulsar period
(initial state).Mp = 3 . . . 0.016 s.m.,k = 0.66. . . 1, j = 0.33. . . 0.55.

2 . . . 0.2 s.m. and periods 0.003. . . 3 sec. The figure also rep-
resents the observation data for the pulsars with smallB val-
ues taken from [23]. Masses and periods are connected using
formula (93), which contains the parameterj. It is known
that according to the strength of their magnetic field, pulsars
are clustered near values of the order of 109 and 1013 G [18],
which agrees, in general, with the distributions obtained.

To analyze pulsar parameters, the functionη(τp) is also
used, which includes the magnetic forceB [23]:

η =
3Np c3τ4p

8π4B2R6
∗
, (102)

whereη is the pulsar efficiency, i.e., the effectiveness of trans-
formation of the pulsar rotation energy into radio radiation.

According to [23], formula (102) takesR∗ = 106 cm. For
more objectiveness, let us replace this constant with the di-
ameter of the vortex tube according to (75). Having in mind
(82), (88) and (100), let us transform (102) to the form (in the
Gaussian system):

lg η = 8.5+ (2.667− 2 j) lg Mp . (103)

Together with formula (82), this gives the region ofη(τ)
solutions for radio pulsars (Fig. 8). Sinceη < 1, there are
limitations for some combinations of the parameters. In the
accepted, according to [23], range ofη values, the parameter
j is limited by the range 0.33. . . 0.55, which is characteristic
for pulsars with smallB values. The orientation of clusters on
the diagram indicates the increase ofη with the growth of the
period.

Analogously, substituting the parameterBm into (102),
one can obtain

lg η = −11.9+ (0.667k− 4 j + 2.667) lgMp. (104)

In this case (Fig. 9), in the accepted range ofη values,
the parameterj is limited by a narrow range of large values,
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Fig. 9: The solution region: dependence of the efficiency of transfor-
mation of rotation energy in-to radio radiation on the pulsar period
(excited state).Mp = 3 . . . 0.016 s.m.,k = 0.66. . . 1, j = 0.94. . . 1.

0.94. . . 1, which corresponds to pulsars with a strong mag-
netic field. In this range of parameters,η will grow as the pe-
riod decreases. These solution ranges complement each other
and agree with the body of the observation data of the dia-
gramη(τ) given in [23]. Thus, there are at least two pulsar
populations, with different magnitudes of their magnetic field
and different form factors (parameterj), which was also indi-
cated in [23].

From (101), one can find that the magnitude of the pulsar
magnetic field can reach 1014 . . . 1015 G. Such a growth of the
magnetic field also explains the phenomenon ofmagnetars
[27, 28].

As follows from our model — and it is getting evidence
now — there are no essential differences between magne-
tars and X-ray pulsars. For example, the sources SWIFT
J1822.31606 [29] and PSR J18460258 [30] possess features
of both objects.

7 Conclusion

Thus, our model, which is built exclusively on the balances of
basic interactions, describes different kinds of stellar objects.
It is shown that SO features are mainly determined by their
masses and the state of the evolving medium that they are
made of. Together with the basic constants, these parameters
(M andε) determine the evolutionary behavior of stellar ob-
jects and the very existence of the well-known Hertzsprung-
Russell diagram. In a number of cases, they are sufficient
for the calculation of basic SO parameters: the mass of the
final compact objects, radiation energy, radiation power and
periods or rotation.

The model reveals analogies between the macro- and mi-
crolevels of matter: cosmological masses and elementary par-
ticles.

Indeed, thegeneral range of stellar masses can be
roughly divided into three subranges — by the analogy with
the three families of elementary particles:

• stars with masses less than 4 s.m., which in the end of
evolution will become white dwarfs;

• giant stars with masses 4. . . 79 s.m., which in the end
of evolution will give raise to neutron stars;

• super-giant stars with masses 79. . . 277 s.m., which in
the end of evolution will give raise to X-ray sources —
candidates for black holes.

It is the stars of small masses and their final states (cold
white dwarfs, “protons”) that are the “first family” of stel-
lar population. They make the majority of it and are stable
on the cosmological scale, since their lifetimes are immeasur-
ably longer than the lifetimes of other stellar objects.

Hopefully, the results obtained and the presented model
can be useful for further theoretical studies in the field.
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Sampling the Hydrogen Atom

Norman Graves
192 Old Woosehill Lane, Wokingham, UK. E-mail: normangraves@btinternet.com

A model is proposed for the hydrogen atom in which the electron is an objectively real
particle orbiting at very near to light speed. The model is based on the postulate that
certain velocity terms associated with orbiting bodies can be considered as being af-
fected by relativity. This leads to a model for the atom in which the stable electron
orbits are associated with orbital velocities where Gamma isn/α, leading to the idea
that it is Gamma that is quantized and not angular momentum as in the Bohr and other
models. The model provides a mechanism which leads to quantization of energy levels
within the atom and also provides a simple mechanical explanation for the Fine Struc-
ture Constant. The mechanism is closely associated with the Sampling theorem and the
related phenomenon of aliasing developed in the mid-20th century by engineers at Bell
labs.

Since the emergence of quantum theory just over a cen-
tury ago every model that has been developed for the hy-
drogen atom incorporates the same basic assumption. From
Niels Bohr through de Broglie and Schrödinger up to and in-
cluding the Standard Model all such theories are based on an
assumption first put forward by John Nicholson.

Nicholson recognised that the units of Planck’s constant
are the same as those of angular momentum and so he rea-
soned that perhaps Planck’s constant was a measure of the
angular momentum of the orbiting electron. But Nicholson
went one step further and argued that Planck’s constant was
the fundamental unit or quantum of angular momentum and
therefore the angular momentum of the orbiting electron
could only take on values which were an integer multiple of
Planck’s constant. This allowed Bohr to develop a model in
which the energy levels of the hydrogen atom matched those
of the empirically developed Rydberg formula [1]. When
the Bohr model was superseded Nicholson’s assumption was
simply carried forward unchallenged into these later models.

Nicholson’s assumption however lacks any mathematical
rigour. It simply takes one variable, angular momentum, and
asserts that if we allow it to have this characteristic quantiza-
tion then we get energy levels which appear to be correct. In
so doing it fails to provide any sort of explanation as to just
why such a quantization should take place.

In the mid-20th century a branch of mathematics emerged
which straddles the boundary between continuous functions
and discrete solutions. It was developed by engineers at Bell
Labs to address problems of capacity in the telephone net-
work. While at first site there appears to be little to connect
problems of network capacity with electrons orbiting atomic
nuclei it is the application of these mathematical ideas which
holds the key to explaining quantization inside the atom.

In the 1930’s and 40’s telecommunications engineers
were concerned to increase the capacity of the telephone
network. One of the ideas that surfaced was called Time
Division Multiplexing. In this each of a number of incoming

telephone lines is sampled by means of a switch, the resulting
samples are sent over a trunk line and are decoded by a
similar switch at the receiving end before being sent on their
way. This allowed the trunk line to carry more telephone
traffic without the expense of increasing the number of cables
or individual lines. The question facing the engineers at the
time was to determine the minimum frequency at which the
incoming lines needed to be sampled in order that the tele-
phone signal can be correctly reconstructed at the receiving
end.

The solution to this problem was arrived at independently
by a number of investigators, but is now largely credited to
two engineers. The so called Nyquist-Shannon sampling the-
orem is named after Harry Nyquist [2] and Claude Shan-
non [3] who were both working at Bell Labs at the time. The
theorem states that in order to reproduce a signal with no loss
of information, then the sampling frequency must be at least
twice the highest frequency of interest in the signal itself. The
theorem forms the basis of modern information theory and
its range of applications extends well beyond transmission of
analogue telephone calls, it underpins much of the digital rev-
olution that has taken place in recent years.

What concerned Shannon and Nyquist was to sample a
signal and then to be able to reproduce that signal at some re-
mote location without any distortion, but a corollary to their
work is to ask what happens if the frequency of interest ex-
tends beyond this Shannon limit? In this condition, some-
times called under sampling, there are frequency components
in the sampled signal that extend beyond the Shannon limit
and maybe even beyond the sampling frequency itself.

A simple example can be used to illustrate the phe-
nomenon. Suppose there is a cannon on top of a hill, some
distance away is an observer equipped with a stopwatch.
The job of the observer is to calculate the distance from his
current location to the cannon. Sound travels in air at roughly
340 m/s. So it is simply a matter of the observer looking for
the flash as the cannon fires and timing the interval until he

Norman Graves. Sampling the Hydrogen Atom 41



Volume 1 PROGRESS IN PHYSICS January, 2013

hears the bang. Multiplying the result by 340 will give the
distance to the cannon in metres, let’s call this distanceD.

This is fine if the cannon just fires a single shot, but sup-
pose the cannon is rigged to fire at regular intervals, sayT sec-
onds apart. For the sake of argument and to simplify things,
let’s makeT equal to 1. If the observer knows he is less than
340 m from the cannon there is no problem. He just makes
the measurement as before and calculates the distanceD. If
on the other hand he is free to move anywhere with no re-
striction placed on his distance to the cannon then there is
a problem. There is no way that the observer knows which
bang is associated with which flash, so he might be located
at any one of a number of different discrete distances from
the cannon. Not just any old distance will do however. The
observer must be at a distance ofD or D + 340 orD + 680
and so on, in generalD + 340n. The distance calculated as a
result of measuring the time interval between bang and flash
is ambiguous. In fact there are an infinite number of discrete
distances which could be the result of any particular mea-
sured value. This phenomenon is known as aliasing. The
term comes about because each actual distance is an alias for
the measured distance.

Restricting the observer to be within 340 m of the can-
non is simply a way of imposing Shannon’s sampling limit
and by removing this restriction we open up the possibility of
ambiguity in determining the position of the observer due to
aliasing.

Let’s turn the problem around a little. If instead of mea-
suring the distance to the cannon the position of the observer
is fixed. Once again to make things simpler, let’s choose a
distance of 340m. This time however we are able to adjust
the rate of fire of the cannon until the observer hears the bang
and sees the flash as occurring simultaneously. If the rate of
fire is one shot per second then the time taken for the slower
bang to reach the observer exactly matches the interval be-
tween shots and so the two events, the bang and the flash are
seen as being synchronous. Notice that the bang relates, not
to the current flash, but to the previous flash.

If the rate of fire is increased then at first, for a small in-
crement, the bang and the flash are no longer in sync. They
come back into sync however when the rate of fire is exactly
two shots per second, and again when the rate is three shots
per second. If we had a fast enough machine gun this se-
quence would extend to infinity for a rate of fire which is an
integer number of shots per second. Notice that now the bang
no longer relates to the previous flash, but to a previous flash.
It is interesting to note also that if the rate of fire is reduced
from once per second then the observer will never hear and
see the bang and the flash in sync with one another and so
once per second represents the minimum rate of fire which
will lead to a synchronous bang and flash. In fact what we
have here is a system that has as its solutions a base frequency
and an infinite set of harmonic frequencies.

Suppose now that there is some mechanism which feeds

back from the observer to the cannon to drive the rate of fire
such that bang and flash are in sync, and suppose that this
feedback mechanism is such as to always force the condition
to apply to the nearest rate of fire which produces synchroni-
sation.

We now have a system which can cause a variable, in this
case the rate of fire of the gun, to take on a series of discrete
values even though, in theory at least, the rate of fire can vary
continuously. Equally important is that if the feedback mech-
anism is capable of syncing the system to the lowest such
frequency then all the multiples of this frequency are also so-
lutions, in other words if the base frequency is a solution then
so are harmonics of the base frequency.

This idea that there are multiple discrete solutions which
are harmonics of a base frequency is an interesting one since
it couples the domains of the continuous and the discrete. Fur-
thermore what the example of the cannon shows us is that
any system which produces results which are a harmonic se-
quence must involve some sort of sampling process. This
becomes clear if we consider the Fourier representation of
a harmonic sequence. A harmonic sequence of the type de-
scribed consists of a number of discrete frequencies, spread-
ing up the spectrum and spaced equally in the frequency do-
main with each discrete frequency represented by a so called
Dirac function. Taken together they form what is described
as a Dirac comb, in this case in the frequency domain. The
inverse Fourier transform of such a Dirac comb is itself an-
other Dirac comb, only this time in the time domain, and a
Dirac comb in the time domain is a sampling signal [4].

This link between a Dirac comb in the frequency domain
and a corresponding Dirac comb in the time domain means
that if ever we observe a set of harmonics in some natural
process there must inevitably be some form of sampling pro-
cess taking place in the time domain and vice versa.

One such example, in which this relationship has seem-
ingly been overlooked, is found in the structure of the hydro-
gen atom.

By the beginning of the 20th century it was becoming
evident that the universe was composed of elements which
were not smooth and continuous but were somehow lumpy
or granular in nature. Matter was made up of atoms, atoms
themselves contained electrons and later it emerged that the
atomic nucleus was itself composed of protons and neutrons.

Perhaps even more surprising was that atoms could only
absorb or emit energy at certain discrete levels. These energy
levels are characteristic of the atom species and form the ba-
sis of modern spectroscopy. The issue facing the scientists
of the day was that this discrete behaviour is not associated
with the discrete nature of the structure of the atom; that can
easily be explained by asserting that any atom contains an in-
teger number of constituent particles. Where energy levels
are concerned, the quantization effects involve some sort of
process that is taking place inside the atom.

The atom with the simplest structure is that of hydrogen,
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comprising a single proton surrounded by an orbiting electron
and work began to investigate its structure and to understand
the mechanisms which gave it its characteristic properties.

The first such theoretical model was proposed by Niels
Bohr [5]. Bohr used simple classical mechanics to balance the
centrifugal force of the orbiting electron against the electro-
static force pulling it towards the atomic nucleus. He needed
a second equation in order to solve for the radius and veloc-
ity of the orbiting electron and came upon the idea proposed
by John Nicholson [6]. Nicholson reasoned that the units of
Planck’s constant matched those of angular momentum and
so he proposed that the angular momentum of the orbiting
electron could only take on values which were an integer mul-
tiple of was Planck’s constant.

Bohr’s equations worked, but they threw up a strange
anomaly. In Bohr’s model each energy level is represented
by the orbiting electron having a specific orbit with its own
particular orbital velocity and orbital radius. The really
strange thing was that in order to fit with the conservation
laws, transitions from one energy state to another had to take
place instantly and in such a way that the electron moved
from one orbit to another without ever occupying anywhere
in between, a sort of discontinuity of position. This ability to
jump instantaneously across space was quickly dubbed the
Quantum Leap in the popular media, a phrase which still has
resonance today.

Bohr reasoned that

l = mvnrn = n~ (1)

Kq2

~c
=

mv2n
rn

(2)

which means

vn =
Kq2

n~
(3)

rn =
n2~2

mKq2
. (4)

wherem is the rest mass of the electron,q is the charge on the
electron,rn is the orbital radius for the nth energy level,vn is
the orbital velocity for the nth energy level,l is the angular
momentum,K is the Coulomb force constant,~ is Planck’s
constant.

Equation 1 represents Nicholson’s assumption that angu-
lar momentum can only take on values which are integer mul-
tiples of Planck’s constant.

Equation 2 balances the centrifugal force against the elec-
trostatic force.

Equation 3 shows that the orbital velocity decreases with
increasing energy level.

Equation 4 shows that the orbital radius increases as the
square of the energy level and leads directly to the idea of the
Quantum Leap.

It was widely accepted that the Bohr model contained
substantial flaws. Not only did it throw up the quirky quan-
tum leap, but it took no account of special relativity, it failed
to explain why the electron orbit did not decay due to syn-
chrotron radiation but most important of all it failed to explain
the nature of the quantization of angular momentum∗. The
fact is that the assumption that angular momentum is quan-
tized lacks any mathematical rigour, the assumption is arbi-
trary and expedient and fails to address the underlying ques-
tion as to why and how such quantization occurs but merely
asserts that if we make the assumption then the numbers seem
to fit. Nevertheless, and despite this, the Bohr assumption has
continued to be accepted and forms an integral part of every
theory which has come along since.

In a paper published in 1905 Einstein had shown that
light, which had hitherto been considered a wave, was in fact
a particle [7]. In an effort to explain quantization the French
mathematician Louis de Broglie turned this idea on its head
and suggested that perhaps the electron was not a particle
but should be considered as a wave instead. He calculated
the wavelength of the electron, dividing Planck’s constant by
the electron’s linear momentum and found that when he did
so the orbital path of base energy state contained one wave-
length; that of the second energy state contained two wave-
lengths and so on, in what appeared at first site to be a series
of harmonics†.

On any other scale the wavelength of an object in orbit
is associated with the orbital path length or circumference of
the orbit and can be derived as a result of dividing the an-
gular momentum of the orbiting object by its linear momen-
tum. De Broglie instead chooses to associate the wavelength
of the particle with the value of Planck’s constant divided by
the linear momentum, while at the same time assuming that
the angular momentum of the particle was an integer multi-
ple of Planck’s constant. In choosing to substitute Planck’s
constant in this way instead of the angular momentum when
calculating the wavelength, what de Broglie is doing is to co-
erce the wavelength of the electron to be an integer fraction
of the orbital path length. Viewed in this light de Broglie’s
contribution can be seen as less of an insight and more of a
contrivance.

If you were to observe an object in orbit, say a moon or-
biting Jupiter or the proverbial conker‡ whirling on the end
of a string, what you see is a sine wave. The orbiting object

∗At first site it appears that the energy of the electron in the Bohr atom
decreases with increasing energy level. However since the radius changes
with energy level, the potential energy does also. When these two effects are
combined, the energy levels increase with increasing energy level.

†In fact they are not harmonics of a single fundamental frequency, but
instead each harmonic relates to a different base frequency and these two
effects combine in such a way that they form a sub harmonic or inverse har-
monic sequence

‡A conker is a horse chestnut on a string often used in a children’s game
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subtends a wave to an external observer of the form:

d = Rsin(ωt) (5)

or
d = Rsin(2πFt) . (6)

whered is the displacement about some mean
For such a body we can easily calculate the orbital radius

if we know the angular momentum and the linear momentum.

R=
l
p
=

mvr
mv
. (7)

Furthermore we can identify the wavelength of such a
wave with the orbital circumference which is simply.

λ = 2πR. (8)

This is true for all orbiting objects no matter whether they
are the size of a planet or the size of a conker.

By what rational then does de Broglie identify the wave-
length of the orbiting electron, not with the angular momen-
tum in this way, but with Planck’s constant, which he be-
lieves, according to Bohr’s assumption, to be an integer frac-
tion of the angular momentum?

The alignment of wavelength with Planck’s constant in
this way cannot be justified either mathematically or mechan-
ically. It is a contrivance which leads to the idea that there is
some sort of wavelength which is an integer fraction of the or-
bital circumference. This is no miraculous discovery, not an
insight into the workings of the atom, but an artificial device
which reinforces and sustains the Bohr assumption without
any basis in mechanics.

Other later models, such as that of Schrödinger, are based
directly on the work of de Broglie and therefore inherently
follow Bohr’s assumption, up to and including the currently
proposed Standard Model. Having been adopted by Bohr,
later theorists simply continued with this working assumption
and incorporated it into all subsequent models for the atom,
without ever bothering to go back and justify it, until now
it has become an item of received wisdom and an article of
faith.

The trouble with all of these models is that the assump-
tion proposed by Nicholson and adopted by Bohr is not based
on finding any mechanism that leads to angular momentum
being quantized in this way. The assumption was simply ex-
pedient — it just happens to give the values for the absorption
and emission spectra of the hydrogen atom which match those
of the Rydberg formula.

The year 1905 was an eventful one for Albert Einstein. In
that year, he not only published his paper on the discrete na-
ture of the photon but he also published two further seminal
works as well as submitting his Ph.D. thesis. The most fa-
mous of his other papers concerned the dynamics of moving
bodies [8]. This is the paper whose later editions contained

the equatione = mc2. The paper was based on a thought ex-
periment and concerned the perception of time, distance and
mass as experienced by two observers, one a stationary ob-
server and one moving relative to the stationary observer at
speeds approaching that of light.

What Einstein showed is that time elapses more slowly
for a moving observer, that distances measured by a moving
observer are foreshortened relative to those same distances
measured by a stationary observer and that a stationary ob-
server’s perception of the mass of a moving object is that it
has increased. All three effects occur to the same extent and
are governed by a factorγ (Gamma). The time between two
events observed by the stationary observer as timet is seen by
the moving observer as timeT = t/γ. Similarly the distance
between two point measured by the stationary observer as dis-
tanced is seen by the moving observer as distanceD = d/γ.
As far as the stationary observer is concerned the mass of the
moving object is seen to increase by this same factorγ.

Gamma is referred to as the Lorentz factor and is given
by the formula:

γ =
c

√
c2 − v2

=
1

√
1− v

2

c2

. (9)

Both observers agree on their relative velocity but go
about calculating it in different ways. For the stationary
observer the velocity of the moving observer is the distance
travelled divided by the time taken as measured in his sta-
tionary domain. For the stationary observer the velocity
is:-

v =
d
t
. (10)

For the moving observer the distance as measured in his
own domain is foreshortened by the factor Gamma, but the
time taken to cover that distance reduced by the same factor
Gamma.

v =
D
T

=

d
γ

t
γ

=
d
t
. (11)

There is a great deal of experimental evidence to support
Einstein’s Special Theory. One of the more convincing exper-
iments was carried out at CERN in 1977 and involved mea-
suring the lifetimes of particles called muons in an apparatus
called the muon storage ring [9]. The muon is an atomic par-
ticle which carries an electric charge, much like an electron,
only more massive. It has a short lifetime of around 2.2 mi-
croseconds before it decays into an electron and two neutri-
nos.

In the experiment muons are injected into a 14m diam-
eter ring at a speed close to that of light, in fact at 99.94%
of the speed of light where Gamma has a value of around
29.33. The muons, which should normally live for 2.2 mi-
croseconds, were seen to have an average lifetime of 64.5 mi-
croseconds; that is the lifetime of the muon was increased
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by a factor Gamma. This comes about because the processes
which take place inside the muon and which eventually lead
to its decay are taking place in an environment which is mov-
ing relative to us at 99.94% of the speed of light and in which
time, relative to us, is running 29.33 times slower. Hence the
muon, in its own domain, still has a lifetime of 2.2 microsec-
onds, it’s just that to us, who are not moving, this appears as
64.5 microseconds.

Travelling at almost the speed of light a muon would
normally be expected to cover a distance of 660 metres
or roughly 7.5 times around the CERN ring during its 2.2
microsecond lifetime, but in fact the muons travelled almost
20,000 metres or 220 times around the ring. This is because
distance in the domain of the muon is compressed so what
we stationary observers see as being 20,000 metres the muon
sees as being just 660 metres.

Both parties agree that during its lifetime the muon com-
pletes some 220 turns around the ring. We stationary ob-
servers see this as having taken place in some 64.5 microsec-
onds, corresponding to a frequency of 3.4 MHz, while the
muon sees these 220 turns as having been completed in just
2.2 microseconds, corresponding to a frequency of 100 Mhz.
Hence for the muon and indeed all objects orbiting at close to
light speed orbital frequency is multiplied by a factor Gamma
relative to that of a stationary observer and it is this multipli-
cation of orbital frequency which holds the key to the discrete
energy levels of the atom.

As well as this effect on orbital frequency the muon ring
experiment serves to show that considerations of special rel-
ativity can be applied to objects in orbit, this despite the fact
that object in orbit are subject to a constant acceleration to-
wards the orbital centre. However where the orbital velocity
is constant, it is reasonable and correct to apply considera-
tions of special relativity around the orbital path. In effect
what we are doing is to resolve the orbital velocity into two
components, one tangential component which has a constant
velocity and one radial where there is a constant acceleration.

We have seen that speed is invariant with respect to rel-
ativity. Both the moving object and the stationary observer
agree on their relative speed. This invariance of speed is cen-
tral to the derivation of special relativity and so is deemed to
be axiomatic. There is however one circumstance where it is
reasonable to suggest that this need not be the case. For a sta-
tionary observer we normally require the use of two clocks in
order to measure velocity; one at the point of departure and
one at the point of arrival (at least conceptually). An object
which is in orbit however returns once per cycle to its point of
departure and so we can measure the orbital period of such an
object with a single clock provided we do so over a complete
orbit.

Thus for an object in orbit it is possible to define two ve-
locity terms relating to the tangential or orbital velocity∗. The

∗In fact it is possible to define a further two velocity terms, the relativis-

first of these I have called the Actual Velocity and is sim-
ply the distance around the orbit divided by the orbital period
as measured by the stationary observer. The second veloc-
ity term is the distance around the orbit as measured by the
moving observer divided by the orbital period as measured
by the stationary observer. Such a velocity term straddles or
couples the two domains, that of the orbiting object and that
of the stationary observer and so could sensibly be called the
”Coupling Velocity” or possibly the ”Relativistic Velocity”.
A simple calculation shows that the Relativistic Velocity is
related to the Actual Velocity by the same factor Gamma an
hence:

vR =
D
t
=

d
tγ

=
v

γ
. (12)

Thus far Relativistic Velocity is only a definition. How-
ever there is one set of circumstances where such a velocity
term can indeed be justified and that is when dealing with the
equations of motion relating to objects in orbit. It is consid-
ered here to be meaningful to use this Relativistic Velocity
term when dealing with orbital velocities such as occur when
calculating angular momentum, centripetal and centrifugal
force and acceleration.

Nicholson had suggested that because Planck’s constant
has the units of angular momentum that it was somehow as-
sociated with the angular momentum of the orbiting electron.
Here we take up that idea and suggest that the angular mo-
mentum of the orbiting electron is equal to Planck’s constant,
but reject his other idea that angular momentum is quantized.
Instead we assume that orbital velocity is affected by rela-
tivity and use this to derive the equations of motion of the
orbiting electron.

Planck’s constant is then seen, not as a fundamental quan-
tum of angular momentum but instead as providing a limiting
value for angular momentum. The effect would not be signifi-
cant at low velocities, but if the electron orbiting the hydrogen
atom were to do so at close to light speed then:

l = ~ = (mγ) r

(
c
′

γ

)

. (13)

wherel is the angular momentum,~ is Planck’s constant,m is
the mass of the electron,r is the orbital radius of the electron,
c
′
is the orbital velocity of the electron and is very close toc,

the speed of light.
Both the mass term and the velocity term are affected by

relativity. The mass term because mass increases by factor
Gamma as the object’s velocity approaches the speed of light
and in this case the velocity term is affected because we are
dealing with an object in orbit and it is therefore appropriate

tic distance divided by the relativistic time and the actual distance divided
by the relativistic time. The first of these is the invariant velocity discussed
earlier. As a stationary observer we do not have any direct access to the mov-
ing clock and so these velocities can only be described mathematically and
appear to have no physical significance.
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to use Relativistic Velocity which is the Actual Velocity di-
vided by Gamma. However since we are concerned here with
an orbital velocity very close to the speed of light, to a first
approximation we can substitutec for c

′
in Equation 13.

l = ~ = (mγ) r

(
c
γ

)

. (14)

The two Gamma terms will cancel. The terms for rest mass,
Planck’s constant and the speed of light are all constants,
which must therefore mean that the orbital radius is also a
constant

R=
~

mc
. (15)

This not unfamiliar term is known as the Reduced Comp-
ton Wavelength although here it takes on a new and special
significance as the characteristic radius at which an electron
will orbit at or near light speed. This serves to explain why the
orbiting electron does not emit synchrotron radiation. It does
not do so because it is not driven to orbit the atomic nucleus
by virtue of being accelerated by forces towards the orbital
centre in the normal way, instead it is constrained to orbit at
this radius by the limiting effect of Planck’s constant. It is as
if the electron is orbiting on a very hard surface from which it
cannot depart and which it cannot penetrate. Equation 15 also
means that there is no need to introduce the idea of a quantum
leap or later equivalents. If the electron is constrained to al-
ways orbit at a fixed radius, then changes in energy level have
to take place as a result of changes in orbital velocity, with
no accompanying change of radius. Indeed this idea that the
electron orbits at constant radius is a necessary condition for
the electron to be considered objectively real.

Substituting Relativistic Velocity into the force balance
equation that Bohr himself used, but at an orbital velocity
very close to that of light yields another interesting result∗

Kq2

~c
=

(mγ)
r

(
c
γ

)2

. (16)

Which combines with Equation 15 and simplifies to give:

Kq2

~c
=

1
γ
. (17)

Readers may be familiar with the term on the left of this
equation which is known as the Fine Structure Constant often
written asα (Alpha). So for the base energy state of the atom

γ =
1
α
. (18)

α has a value of 7.2973525698× 10−3

∗Once again since the orbital velocity is very close to the speed of light
we can, to a first approximation, substitute c as the Actual Velocity

From this and Equation 9 we can easily calculate the cor-
responding orbital velocity and frequency as measured by the
stationary observer.

v

c
=
√

1− α2 = 0.999973371. (19)

The orbital velocity turns out to be 99.9973% of the speed
of light c, thus vindicating the first approximation made in
Equation 14 and the frequency (in the domain of the station-
ary observer)

ω1 =
v

R
= 7.76324511× 1020 . (20)

The physicist Richard Feynman [10] once said of Alpha
that:

”It has been a mystery ever since it was discovered more
than fifty years ago, and all good theoretical physicists put
this number up on their wall and worry about it. Immediately
you would like to know where this number for acoupling†

comes from: is it related to pi or perhaps to the base of natu-
ral logarithms? Nobody knows. It’s one of the greatest damn
mysteries of physics: a magic number that comes to us with
no understanding by man. You might say the ”hand of God”
wrote that number, and ”we don’t know how He pushed his
pencil.” We know what kind of a dance to do experimentally
to measure this number very accurately, but we don’t know
what kind of dance to do on the computer to make this num-
ber come out, without putting it in secretly!”

Equation 18 effectively solves the mystery, providing an
explanation for the physical significance of the Fine Structure
Constant. It is seen simply as the ratio of two velocities, the
Relativistic Velocity and the Actual Velocity of the orbiting
electron. Since these two velocities share the same orbital pe-
riod, it can also be seen as the ratio of two orbital path lengths,
the one traversed at non-relativistic speeds to that traversed
by the orbiting electron at near light speed. The Fine Struc-
ture Constant is seen to be dynamic in nature. Its value relies
on the fact that the electron is in motion, orbiting at near light
speed; it does so at a speed that is necessary to maintain struc-
tural equilibrium within the hydrogen atom, since it is only by
travelling at this speed that the structural integrity of the atom
can be maintained. In the world of the atom, where there is no
friction and in the absence of any sort of external input, the
atom remains stable and, unless disturbed in some way, the
electron will continue in this state indefinitely. In this sense it
defines the speed at which the electron has to travel in order
to achieve a stable orbit.

So far we have only considered the lowest or base energy
state of the atom. We have seen that one of the effects of
relativity is to multiply frequency in the domain of a mov-
ing object by Gamma. The frequency in the domain of the

†My emphasis — the term Coupling Velocity resonates with the idea of
Alpha as a coupling constant.
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electron which corresponds to this stable state is simply cal-
culated by multiplying by Gamma — equivalent to dividing
by Alpha – to give.

Ω =
ω1

γ
= 1.06378925× 1023 . (21)

But just as was the case with the observer and the cannon if
there is a frequencyΩ at which the atom is stable then fre-
quencies ofnΩ must also be stable for alln = integer which
in turn means that there are stable states for all

γn =
n
α

(22)

and so

rn = R=
~

mc
(23)

and
vn
c

=

√
n2 − α2

n2
. (24)

Equation 23 shows that the orbital radius remains the
same for all energy levels, while Equation 24 describes the
orbital velocity for the nth energy state∗. Table 1 shows the
resulting orbital velocities for the first 13 energy states and
the theoretically infinite state of the hydrogen atom and as
you might expect they match the absorption and emission
spectra of the hydrogen atom perfectly.

During the 1930’s and 40’s Einstein and Bohr disagreed
over the nature of reality, with Bohr arguing that the laws of
physics were different on the scale of the atom and that as
a consequence reality becomes subjective in nature. Parti-
cles are not considered to discrete point particles in the clas-
sical sense, but instead are considered to be nebulous wave-
particles which manifest themselves as either particles or as
waves when subjected to some sort of observing process. Ein-
stein on the other hand took the view that reality had to be
objective and that particles must therefore be discrete point
particles having deterministic position and velocity.

In the end the debate was largely resolved by default.
Bohr simply outlived Einstein and so his ideas prevailed and
form the basis of today’s Standard Model. Einstein is nowa-
days often described as being an old man, set in his ways and
unable to accept the new ways of thinking. But this is to mis-
construe Einstein’s position, which was one of principle.

Einstein had argued that the laws of physics are the same
for all reference frames, while Bohr reasoned that the laws
of physics are different on the scale of the atom. Einstein
was concerned with reference frames of comparable scale that
were in motion with respect to one another but it is logical to
extend his idea to reference frames of differing scales. If we
start from this position and pursue the idea that particles are

∗Notice that since the orbital radius remains substantially the same for
all energy levels, there is no change in potential energy between the various
different energy levels, only a change in kinetic energy.

objectively real and that the laws of physics are the same in-
dependent of scale then it is necessary to question our current
understanding of the laws of physics. They must be deficient
in some way and it is necessary to find a way in which the
laws must be modified to describe the atom but which does
not affect our understanding on all other scales.

The idea of relativistic velocity postulated here does just
that. It provides a model for the structure and dynamics of
the hydrogen atom which is consistent with particles which
are objectively real. At the same time it does what all pre-
vious models have failed to do and provides a mechanism to
explain exactly why the energy levels of the atom are quan-
tized without the need of resorting to arbitrary assumptions.
The idea of a Relativistic Velocity or Coupling Velocity, a ve-
locity term which is affected by relativity, solves all of the
problems that faced Niels Bohr with his model and produces
a model for the hydrogen atom which matches the emission
and absorption spectra of the atom.

Here quantization takes place with respect to the variable
Gamma as the orbital velocity of the electron gets ever closer
to the speed of light with increasing energy level, and not with
respect to angular momentum as postulated by Bohr. Angu-
lar momentum for the orbiting electron remains substantially
constant and equal to Planck’s constant over all of its energy
levels as the orbital velocity varies from 99.99733% ofc for
the base energy state upwards as energy levels increase, al-
though never quite achieving the theoretical limit of 100%,
while Gamma is constrained to take on values which are inte-
ger multiples of a base value, that value being the reciprocal
of the Fine Structure Constant. Planck’s constant takes on a
new and special significance, not as the quantum of angular
momentum of the existing models, but as a lower limit for
angular momentum below which it cannot exist.

The orbital radius of the electron remains substantially
constant irrespective of the energy level of the atom, a neces-
sary condition for an objectively real electron, and so transi-
tions from one energy state to another take place without the
need to introduce the idea of discontinuity of position, inher-
ent in the Bohr model, or its equivalent probability density
functions and wave particle duality found in other more re-
cent models. Such transitions are easily explained as simple
changes in the orbital velocity of the electron over a dynamic
range which lies very close to the speed of light. With no
changes in orbital radius, changes in energy level involve no
change in potential energy, only the kinetic energy of the or-
biting electron changes between energy states.

Thus the morphology of the atom remains substantially
unaltered for all energy levels. This is consistent with the
atom having the same physical and chemical properties irre-
spective of energy level. The Bohr model, and indeed the
standard model, would have us believe that the morphology
of the atom changes substantially with energy level, with the
orbital radius increasing as the square of the energy level with
no theoretical upper limit. Such changes are difficult to rec-
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n vn/c 1/γn Energy eV ΔEnergy eV
1 0.999973371 0.007297559 7.76324511E+20 255485.925 13.607
2 0.999993343 0.003648853 7.76340016E+20 255496.130 3.402
3 0.999997041 0.002432577 7.76342887E+20 255498.020 1.512
4 0.999998336 0.001824435 7.76343892E+20 255498.682 0.850
5 0.999998935 0.001459549 7.76344357E+20 255498.988 0.544
6 0.999999260 0.001216291 7.76344610E+20 255499.154 0.378
7 0.999999457 0.001042536 7.76344762E+20 255499.255 0.278
8 0.999999584 0.000912219 7.76344861E+20 255499.320 0.213
9 0.999999671 0.000810861 7.76344929E+20 255499.364 0.168

10 0.999999734 0.000729775 7.76344977E+20 255499.396 0.136
11 0.999999780 0.000663432 7.76345013E+20 255499.420 0.112
12 0.999999815 0.000608146 7.76345040E+20 255499.438 0.094
13 0.999999842 0.000561366 7.76345061E+20 255499.452 0.081

∞ 1.000000000 0.000000000 7.76345184E+20 255499.532 0.000

Table 1:

oncile with an atom who’s physical and chemical properties
remain the same for all energy levels.

The model explains all of the shortcomings found in the
Bohr model, the absence of orbital decay due to synchrotron
radiation and the need for a quantum leap. Bohr had ignored
the effects of special relativity on the energy levels of the
atom, even though they should have been small but signifi-
cant at the velocities predicted by his model. Here they are
fully integrated into the model.

The model sheds a new light on the nature of the wave
particle duality. The electron is seen as a point particle in the
classical sense, having deterministic position and velocity∗.
Electrons are thus objectively real. The electron has wave-
like properties, but these derive from the orbital motion of an
objectively real particle. The waves are seen as the projec-
tion of the circular orbit of the objectively real electron onto
an external observer, in much the same way that we can de-
scribe the orbit of the moons of distant planets as having a
wavelike nature. There is no need to invent the ether or what
has more recently passed for the ether, the so called fabric of
space time, as a medium in which these waves exist. In the fi-
nal analysis where vacuum contains absolutely nothing, there
is nothing to wave except the particle and that is precisely
what the model provides.

The introduction of Relativistic Velocity has another ma-
jor implication. It extends the laws of physics down to the
scale of the atom and possibly beyond. With its introduction
the same set of physical laws extends from a scale of approx-
imately 10−20 m to 1020 m thus doing away with the notion
that a different set of physical law applies on the scale of the
atom. It is quite likely therefore that a single set of physical

∗This is not to say that uncertainty does not exist, it does, but it is seen
as a practical issue of measurement when the scale of the measurement tools
is similar to that of the measured object and not as being an intrinsic property
of the particle.

laws exists for all scales and throughout the universe.
Finally it provides a simple mechanical explanation for

the existence and the value of the hitherto mysterious Fine
Structure Constant.

Appendix 1 Derivation of Centripetal Acceleration under
relativistic conditions

The idea that orbital velocity is affected by relativity is central
to the theory presented here, so it is perhaps worthwhile ex-
amining this idea in a little more detail. Before doing so how-
ever it is necessary to restate that the use of Special Relativity
in dealing with objects which have constant orbital velocity is
entirely appropriate, this despite the fact that such objects are
subject to acceleration. The velocity of an object which is in
orbit can be considered as having two components, a tangen-
tial component and a radial component. For constant orbital
velocity, the tangential component is itself constant and there-
fore can be dealt with using Special Relativity which affects
the time and distance measured along the orbital path. Direct
evidence to support this comes in the form of the Muon ring
experiment described earlier.

Such an orbiting object is subject to constant acceleration
towards the orbital centre and it is this acceleration which in
effect maintains the circular path. Conventional wisdom has
it that this centripetal acceleration is not affected by relativity,
since it acts in a direction which is normal to the velocity of
the object. Here it is argued that this cannot be the case since
the distances involved in calculating centripetal acceleration
derive directly from the distances travelled around the orbital
path and that these distances are themselves affected by rel-
ativity. It can then be shown that this is equivalent to substi-
tuting Relativistic Velocity in place of Actual Velocity in the
standard formula for calculating centripetal acceleration.

Einstein showed that objects which are travelling at close
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to light speed are affected in three ways, time in the domain
of the moving observer advances at a slower rate than it does
for a stationary observer, distance for the moving object is
foreshortened in the direction of travel relative to that same
distance as measured by the stationary observer. The mass of
a moving object appears increased as far as the stationary ob-
server is concerned. All three effects occur to the same extent
by the factor Gamma (γ). Gamma is named after the Dutch
physicist Hendrik Antoon Lorentz (1853 — 1928). Gamma
is given by the formula

γ =
1

√
1− v

2

c2

. (25)

Examination of the effect of relativity on an object mov-
ing at close to the speed of light however reveals that both
time and distance are scaled by a factor 1/γ and so from
Equation 25

1
γ
=

√

1−
v2

c2
. (26)

It can be seen that this is the equation of a circle, more
specifically a quadrant of a unit circle, sincev is constrained
to lie between 0 andc as shown in Figure 1.

Fig. 1:

If the object under consideration is in circular orbit, then
this quadrant can be superimposed on the orbital path to form
a hemisphere. Objects orbiting at non-relativistic speeds see
the path length around the orbit as being equal in length to
the equator, while objects orbiting at higher speeds follow a
path length described by a line of latitude on the hemisphere.
An object orbiting at the theoretical maximum speed of light
would then be pirouetting at the pole. We can consider the
length of the orbital path as being represented by the line
of latitude formed by a slicing plane which cuts through the
hemisphere parallel to the equatorial plane. In Figure this is
at approximately 15% of the speed of lightc and so the orbital

path length is just a little less than the equatorial path length,
around 99%.

Fig. 2:

In Figure 3 the orbital velocity is approximately 80% of
the speed of light and so the orbital path length as seen by
the moving object is approximately 60% that for an object
moving at non-relativistic speed

Fig. 3:

In Figure 4 the orbital velocity is around 98% of the speed
of light and the corresponding orbital path length is approxi-
mately 20% of that for non-relativistic motion.

Fig. 4:

This hemispheric model of the motion of an orbiting ob-
ject is useful because it allows us to visualise the orbital path
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length as being foreshortened by relativity while at the same
time the radius of the orbit is unaffected by relativity. The or-
bital geometry is non-Euclidean and in reality all takes place
in just one plane. The introduction of this third dimension is
just a device to allow us to visualise what is going on. The
orbiting object sees the distance it travels around one orbit as
being reduced by a factor Gamma, but nevertheless sees the
orbital radius as being unaffected by relativity since this is at
right angles to the direction of travel. Thus we can represent
the radius of the orbit as being the distance from a point on
the relativistic orbit to the centre of the hemisphere.

The term Actual Velocity has been adopted to describe the
velocity of the orbiting object as seen by a stationary observer.
This is easily calculated as the circumference of the orbital
path, the equator of the hemisphere (d), divided by the orbital
period (t), both measured by the stationary observer.

The theory postulates that there is a velocity term which
is affected by Gamma. This is termed the Relativistic Veloc-
ity, but only becomes significant when the Actual Velocity
is close to the speed of light. This velocity term can be cal-
culated by taking the foreshortened distance around the line
of latitude, which represents the orbital path as seen by the
moving observer, divided by the orbital period as measured
by a stationary observer. The foreshortened distance around
the orbit is calculated asd/γ and the orbital period remains
the same as for Actual Velocity (t) and hence this Relativistic
Velocity is then easily calculated asvR = d/tγ.

We can use this term directly in calculating the angular
momentum of the orbiting object. This is simply a restate-
ment of the argument used earlier. Angular momentum is the
product of the mass, the velocity and the radius of an orbiting
point object. However the mass of the object is affected by
relativity, appearing to increase the mass by a factor Gamma
(γ) and so:

l = (mγ) r

(
vR
γ

)

. (27)

However since for Gamma to take on a significant valuevR
must be very close toc, the speed of light and so we can sub-
stitutec for vR. Also since the angular momentum of an elec-
tron in orbit around an atomic nucleus is given by Planck’s
constant we can substitute this forl in Equation 27 to give:

l = ~ = mcr . (28)

In effect we are simply substituting Relativistic Velocity
for Actual Velocity in the standard textbook formula for cal-
culating angular momentum. This is recognising that the or-
bital velocity is the distance around the orbit as measured by
the moving object divided by the orbital period as measured
by a stationary observer.

We can of course use this same argument to substitute
Relativistic Velocity for Actual Velocity in the formula for
centripetal acceleration and hence derive expressions for cen-
tripetal and centrifugal forces. However in the case of cen-

Fig. 5:

tripetal acceleration it is also useful to derive an expression
for the relativistic case from first principles.

The formula for centripetal force was first derived by
Christian Huygens in 1659 and describes a constant force
acting on a body in circular motion towards the centre of
the circle. When combined with Newton’s second law this
leads to the idea that a body in circular motion is subject to
a constant acceleration towards the centre called centripetal
acceleration.

It is customary when deriving the formula for centripetal
acceleration to use velocity vectors directly. Here we take
a slightly different approach and use the distance vectors in-
stead. This is because in the proposed theory only the dis-
tance component of velocity is affected by relativity and not
the time component. In other respects the derivation is the
same as that found in many standard texts.

Consider an object in orbit around a point C at radius R.
At a particular instantt the object is at point A and some short
interval of time laterΔt it is at point P, having moved through
an angle subtended at the centre of the circle ofΔθ.

The vector representing the distance moved in timeΔt is
AB and has lengthd and is tangential to the circle, hence CAB
is a right angle. Att + Δt the object is at P and has a distance
vector PQ, also of lengthd. We can translate the vector PQ
to A forming AD. The vector BD then represents the distance
moved towards the centre of the circle in timeΔt. Note that
for asΔθ tends to 0 the line BD tends to a straight line.

Then
d = RΔθ . (29)

Since APC and ABD are similar triangles (for smallΔθ)

e= dΔθ (30)

and the acceleration towards the centre of the circle is

a =
e
Δt2
. (31)
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Fig. 6:

Therefore

a =
RΔθ2

Δt2
. (32)

Multiplying both top and bottom byRgives

a =
R2Δθ2

RΔt2
. (33)

But since

v =
d
Δt

=
RΔθ
Δt
. (34)

Then

a =
v2

R
. (35)

When we take into consideration the effects of special rel-
ativity, the situation becomes a little more complicated. Al-
though the orbital path is foreshortened, as represented by
the line of latitude in Figure 6, and hence the circumference
of this circle is reduced by a factor Gamma, the radius of
the circle is not affected and remains the same as that for the
equatorial orbital path.

Figure 6 attempts to show this by introducing a third di-
mension and using the hemispherical representation devel-
oped above. In reality however the radius and the orbital path
are co-planar. It can be seen from Figure 6 that the angle
subtended by a short segment of the circumference is less for
the relativistic path than for the non-relativistic path. From
Figure 6 it is evident that

Δφ =
Δθ

γ
(36)

and

RΔφ =
RΔθ
γ
. (37)

Figure 7 shows the foreshortened orbital path in plan
view. The dashed circle represents the non-relativistic orbital

Fig. 7:

path while the radii are shown dotted to indicate that they are
not to scale in this representation.

The distance travelled during timeΔt is foreshortened by
relativity, instead of travelling a distance AB the object only
travels a distance A’B’=D in Figure 7.

D = RΔφ . (38)

Once again the triangles CA’B’ and A’B’D’ are similar
and so the distance travelled towards the centre of the orbit E
is

E = DΔφ . (39)

Once again the triangles CA’B’ and A’B’D’ are similar
and so the distance travelled towards the centre of the orbit E
is

A =
E
Δt2
. (40)

Which is also

A =
RΔφ2

Δt2
(41)

Again we can multiply both denominator and numerator
by R to give

A =
R2Δφ2

RΔt2
. (42)

Which gives

A =
R2Δθ2

RΔt2γ2
(43)

and so

A =
v2

Rγ2
. (44)

Equation 44 represents a more general case for calculat-
ing centripetal acceleration. When the orbital velocity is low,
under non-relativistic conditions, the value of Gamma is unity
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and the formula can be simplified to the more familiar one
shown in Equation 35. Effectively therefore the formula for
centripetal acceleration under relativity substitutes Relativis-
tic Velocity for Actual Velocity in the standard textbook for-
mula.

It is the geometry of the triangle AB’D’ which lies at the
heart of the argument. Here it is argued that the length B’D’
is affected by relativity even though it is measured in a di-
rection at right angles to the direction of travel. This comes
about because the lengths of the two sides AB’ and AD’ are
both themselves affected by relativity and the triangle must
have geometric integrity and so B’D’ must also be scaled by
relativity. If it was not then the triangle AB’D’ would be a
very strange triangle indeed. It would have to be an isosceles
triangle in which the third side could be longer than the sum
of the two other sides. The direction of the vectors AB’ and
AD’ could not be preserved. Even in non-Euclidian geome-
try such a triangle would not be possible and so B’D’ must be
scaled by Gamma.

The measurement of time on the other hand can only take
place in the domain of the observer, so the moving observer
sees his time in his own domain and the stationary observer
sees time in his domain. The two domains are related by a fac-
tor Gamma, but from the point of view of direct measurement
this is a theoretical connection. In other words the stationary
observer has no direct access to the moving clock and, vice
versa, the moving observer has no direct access to the station-
ary clock.

Appendix 2 An Analytical Method for calculating Actual
Velocity

A more analytical approach for calculating the value for c’
can be found without the first approximation used above:

The equation for the value of gamma

γ =
1

√
1− v

2

c2

. (45)

From which

v = c

√
γ2 − 1
γ2

. (46)

Substituting this into the force balance equation gives

m0c2(γ2 − 1)
Rγ3

=
Kq2

R2
. (47)

Recognising that~ = m0Rcand simplifying gives

γ2 − 1
γ3

=
Kq2

~c
. (48)

The term on the right hand side is the Fine Structure Con-
stant which is denoted byα. Substituting and rearranging
gives the following equation forγ.

αγ3 − γ2 + 1 = 0 . (49)

The numerical value forα∗ is 7.2973525698×10−3. Sub-
stituting this and calculating the three roots gives:
γ = 137.028700944403
γ = −0.996384222264
γ = 1.0036823521665
Only the first of these three values is significant. This cu-

bic equation gives a more precise value for Gamma. By rec-
ognizing thatv is very close toc in the force balance equation
the value of Gamma can be calculated as:

Substituting in the equation forγ gives a value forv:

v = c

√
γ2 − 1
γ2

= 0.999973371c . (50)

v is the Actual Velocity of the electron around its orbit and
as can be seen it is very close toc, the velocity of light, be-
ing some 99.9973371% ofc, which is in agreement with the
method of first approximation to the first 8 significant figures.

Appendix 3 The Rydberg Formula

Joseph Jakob Balmer (1825–1898) was a Swiss mathemati-
cian and numerologist who, after his studies in Germany, took
up a post teaching mathematics at a girls’ school in Basel. A
colleague in Basel suggested that he take a look at the spectral
lines of hydrogen to see if he could find a mathematical re-
lationship between them. Eventually Balmer did find a com-
mon factor† h = 3.6456× 10−7 which led him to a formula
for the wavelength of the various spectral lines.

λ =
hm2

m2 − 4
, (51)

wherem is an integer with value 3 or higher.
Balmer originally matched his formula form = 3,4,5,6

and based on this he predicted an absorption line form = 7.
Balmer’s seventh line was subsequently found to match a new
line in the hydrogen spectrum that had been discovered by
Ångstr̈om.

Balmer’s formula dealt with a particular set of spectral
lines in the hydrogen atom and was later found to be a special
case of a more general result which was formulated by the
Swedish physicist Johannes Rydberg.

1
λ
= RH




1

n2
1

−
1

n2
2


 , (52)

whereλ is the wavelength of the spectral line,RH is the Ryd-
berg constant for hydrogen,n1 andn2 are integers andn1< n2.

By settingn1 to 1 and allowingn2 to take on values of
2,3,4 . . .∞ the lines take in a series of values known as the
Lyman series. Balmer’s series is obtained by settingn1 = 2
and allowingn2 to take on values of 3,4,5 . . .∞. Similarly
for other values ofn1 series of spectral lines have been named
according to the person who first discovered them and so:

∗CODATA - http://physics.nist.gov/cgi-bin/cuu/Value?alph
†h here is not to be confused with Planck’s constant.
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n1 n2 Series

1 2. . .∞ Lyman series
2 3. . .∞ Balmer series
3 4. . .∞ Paschen series
4 5. . .∞ Brackett series
5 6. . .∞ Pfund series
6 7. . .∞ Humfreys series

Other series beyond these do exist, but they are not
named.

By substituting different values forR, it was found that
Rydberg’s formula worked for all so calledhydrogenic∗

atoms.
The value ofRH can be found by considering the case

wheren1 = 1 andn2 = ∞, a condition which represents the
maximum possible change in energy level within the hydro-
gen atom.RH is then the wavelength of the absorption line
associated with such an energy change and was calculated to
have a value of 1.097× 107

This was subsequently found to be given by the formula:

RH =
1
4π

m0cα2

~
. (53)

The highest possible energy level for the atom occurs
when n, the energy level, equals the theoretical value of
infinity. The corresponding value for the Actual Velocity
would then bec, the speed of light.

The equation for the energy of an orbiting body of mass
m with velocity v is easily obtained in any standard text and
is given by:

e=
1
2

mv2 . (54)

If we assume that the electron is orbiting at near light
speed then the maximum possible energy† of an electron or-
biting the hydrogen nucleus where the orbital velocity has a
theoretical value ofc, the speed of light and the mass of the
electron ism0 is

e=
1
2

m0c2 . (55)

The energy potential for a hydrogen atom in any arbitrary
energy staten is the difference between this maximum energy
value and the energy of thenth state

en =
1
2

m0c2 −
1
2

m0v
2
n =

1
2

m0(c2 − v2n) . (56)

∗A hydrogenic atom is one which is ionized such that it has only one
orbiting electron. In theory, at least, any atom can be ionized so as to become
hydrogenic.

†Note that the electron is orbiting at the same radius for all energy lev-
els, the potential energy of the electron therefore remains the same and all
changes in energy level which are then associated with changes in kinetic
energy and hence with the velocity of the electron.

We saw earlier that gamma could be expressed in terms
of c, the velocity of light andv, the Actual Velocity using
Einstein’s equation for special relativity and thatγn = nγ0

γn =
c

√
c2 − v2n

. (57)

This is easily rearranged to give an expression forc2 − v2

c2 − v2n =
c2

γ2
n

(58)

In the base energy staten = 0 andγ0 = 1/α

c2 − v20 = c2α2 (59)

Hence the maximum energy potential for the atom is

ep =
1
2

m0c2α2 . (60)

Substituting numerical values form0, c andα gives the
maximum energy potential of the atom as
ep = 2.18009839× 1018 Joules
or
ep = 13.6071 eV.

The energy potential for any arbitrary energy leveln is
given by

epn =
1
2

m0c2α2

n2
. (61)

Hence the difference between any two energy levelsn and
m is

en,m =
1
2

m0c2α2

(
1
n2
−

1
m2

)

. (62)

and the difference in orbital frequency is

ωn,m =
1
2

m0cα2

~

(
1
n2
−

1
m2

)

(63)

This can be expressed in terms of wavelength, similar to
the Rydberg formula, by dividing both sides by 2π to give

1
λn,m

=
1
4π

m0cα2

~

(
1
n2
−

1
m2

)

(64)

and

RH =
1
4π

m0cα2

~
. (65)
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The Elastodynamics of the Spacetime Continuum
as a Framework for Strained Spacetime

Pierre A. Millette
University of Ottawa (alumnus), K4A 2C3 747, Ottawa, Canada. E-mail: PierreAMillette@alumni.uottawa.ca

We derive the elastodynamics of the spacetime continuum by applying continuum me-
chanical results to strained spacetime. Based on this model, a stress-strain relation is
derived for the spacetime continuum. From the kinematic relations and the equilibrium
dynamic equation of the spacetime continuum, we derive a series of wave equations: the
displacement, dilatational, rotational and strain wave equations. Hence energy propa-
gates in the spacetime continuum as wave-like deformations which can be decomposed
into dilatations and distortions. Dilatations involve an invariant change in volume of
the spacetime continuum which is the source of the associated rest-mass energy density
of the deformation, while distortions correspond to a change of shape of the space-
time continuum without a change in volume and are thus massless. The deformations
propagate in the continuum by longitudinal and transverse wave displacements. This is
somewhat reminiscent of wave-particle duality, with the transverse mode correspond-
ing to the wave aspects and the longitudinal mode corresponding to the particle aspects.
A continuity equation for deformations of the spacetime continuum is derived, where
the gradient of the massive volume dilatation acts as a source term. The nature of the
spacetime continuum volume force and the inhomogeneous wave equations need further
investigation.

1 Introduction

Strained spacetime has been explored recently by Millette [1]
from a continuum mechanical and general relativistic per-
spective, and by Tartagliaet al in the cosmological context,
as an extension of the spacetime Lagrangian, to obtain a gen-
eralized Einstein equation [2,3].

As shown in [1], the applied stresses from the energy-
momentum stress tensor result in strains in the spacetime con-
tinuum. The presence of strains as a result of applied stresses
is an expected continuum mechanical result. The strains re-
sult in a deformation of the continuum which can be modeled
as a change in the underlying geometry of the continuum. The
geometry of the spacetime continuum of General Relativity
resulting from the energy-momentum stress tensor can thus
be seen as a representation of the deformation of the space-
time continuum resulting from the strains generated by the
energy-momentum stress tensor.

In this paper, we examine in greater details the elastody-
namics of the spacetime continuum as a framework for de-
scribing strained spacetime.

2 Elastodynamics of the Spacetime Continuum

2.1 Model of the Elastodynamics of the Spacetime Con-
tinuum

The spacetime continuum (STC) is modelled as a four-dimen-
sional differentiable manifold endowed with a metricgμν. It
is a continuum that can undergo deformations and support
the propagation of such deformations. A continuum that is
deformed is strained.

An infinitesimal element of the unstrained continuum is
characterized by a four-vectorxμ, whereμ = 0,1,2,3. The
time coordinate isx0 ≡ ct.

A deformationof the spacetime continuum corresponds
to a state of theSTC in which its infinitesimal elements are
displaced from their unstrained position. Under deformation,
the infinitesimal elementxμ is displaced to a new positionxμ+
uμ, whereuμ is the displacement of the infinitesimal element
from its unstrained positionxμ.

The spacetime continuum is approximated by a deforma-
ble linear elastic medium that obeys Hooke’s law. For a gen-
eral anisotropic continuum in four dimensions [4, see pp. 50–
53],

Eμναβεαβ = Tμν (1)

whereεαβ is the strain tensor,Tμν is the energy-momentum
stress tensor, andEμναβ is the elastic moduli tensor.

The spacetime continuum is further assumed to be isotro-
pic and homogeneous. This assumption is in agreement with
the conservation laws of energy-momentum and angular mo-
mentum as expressed by Noether’s theorem [5, see pp. 23–
30]. For an isotropic medium, the elastic moduli tensor sim-
plifies to [4]:

Eμναβ = λ0(gμνgαβ) + μ0(gμαgνβ + gμβgνα) (2)

whereλ0 andμ0 are the Laḿe elastic constants of the space-
time continuum.μ0 is the shear modulus (the resistance of
the continuum todistortions) andλ0 is expressed in terms of
κ0, the bulk modulus (the resistance of the continuum todi-
latations) according to

λ0 = κ0 − μ0/2 (3)
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in a four-dimensional continuum. Adilatation corresponds
to a change of volume of the spacetime continuum without a
change of shape while adistortion corresponds to a change
of shape of the spacetime continuum without a change in vol-
ume.

2.2 Stress-Strain Relation of the Spacetime Continuum

Substituting Eq.(2) into Eq.(1), we obtain the stress-strain re-
lation for an isotropic and homogeneous spacetime contin-
uum

2μ0ε
μν + λ0g

μνε = Tμν (4)

where
ε = εαα (5)

is the trace of the strain tensor obtained by contraction. The
volume dilatationε is defined as the change in volume per
original volume [6, see pp. 149–152] and is an invariant of
the strain tensor.

It is interesting to note that the structure of Eq.(4) is sim-
ilar to that of the field equations of General Relativity, viz.

Rμν −
1
2
gμνR= −KTμν (6)

whereK = 8πG/c4 andG is the gravitational constant. This
strengthens our conjecture that the geometry of the spacetime
continuum can be seen as a representation of the deformation
of the spacetime continuum resulting from the strains gener-
ated by the energy-momentum stress tensor.

Rest-Mass Energy Relation

As shown in [1], the contraction of Eq.(4) yields the rela-
tion

2(μ0 + 2λ0)ε = Tαα ≡ T (7)

whereTαα corresponds to the invariant rest-mass energy den-
sity

Tαα = T = ρc2 (8)

whereρ is the rest-mass density. The relation between the in-
variant volume dilatationε and the invariant rest-mass energy
density is thus given by

2(μ0 + 2λ0)ε = ρc2 (9)

or, in terms of the bulk modulusκ0,

4κ0ε = ρc
2. (10)

As we noted in [1], this equation demonstrates that rest-
mass energy density arises from the volume dilatation of the
spacetime continuum. The rest-mass energy is equivalent to
the energy required to dilate the volume of the spacetime con-
tinuum, and is a measure of the energy stored in the spacetime
continuum as volume dilatation. The volume dilatation is an
invariant, as is the rest-mass energy density.

Decomposition into Distortions and Dilatations

As also shown in [1], when the strain tensorεμν and the
energy-momentum stress tensorTμν are decomposed into a
deviation tensor (thedistortion) and a scalar (thedilatation),
the strain-stress relation then becomes separated into dilata-
tion and distortion relations:

dilatation :t = 2(μ0 + 2λ0)e= 4κ0e= κ0ε

distortion :tμν = 2μ0eμν
(11)

where
εμν = eμν + egμν (12)

with
eμν = ε

μ
ν − eδμν (13)

e=
1
4
εαα =

1
4
ε (14)

and similarly
Tμν = tμν + tgμν (15)

with
tμν = Tμν − tδμν (16)

t =
1
4

Tαα. (17)

The distortion-dilatation decomposition is evident in the
dependence of the dilatation relation on the bulk modulusκ0
and of the distortion relation on the shear modulusμ0. The di-
latation relation of Eq.(11) corresponds to rest-mass energy,
while the distortion relation is traceless and thus massless,
and corresponds to shear transverse waves. We also noted
in [1] that this decomposition of spacetime continuum defor-
mations into a massive dilatation and a massless transverse
wave distortion is somewhat reminiscent of wave-particle du-
ality.

3 Kinematic Relations

The strainεμν can be expressed in terms of the displacement
uμ through the kinematic relation [6, see pp. 149–152]:

εμν =
1
2

(uμ;ν + uν;μ + uα;μuα
;ν) (18)

where the semicolon (;) denotes covariant differentiation. For
small displacements, this expression can be linearized to give
the symmetric tensor

εμν =
1
2

(uμ;ν + uν;μ) = u(μ;ν). (19)

We use the small displacement approximation in this analysis.
An antisymmetric tensorωμν can also be defined from the

displacementuμ. This tensor is called the rotation tensor and
is defined as [6]:

ωμν =
1
2

(uμ;ν − uν;μ) = u[μ;ν] . (20)

56 Pierre A Millette. The Elastodynamics of the Spacetime Continuum as a Framework for Strained Spacetime



January, 2013 PROGRESS IN PHYSICS Volume 1

Where needed, displacements in expressions derived from
Eq.(19) will be written asu‖ while displacements in expres-
sions derived from Eq.(20) will be written asu⊥. Using differ-
ent symbolic subscripts for these displacements provides a re-
minder that symmetric displacements are along the direction
of motion (longitudinal), while antisymmetric displacements
are perpendicular to the direction of motion (transverse).

In general, we have [6]

uμ;ν = εμν + ωμν (21)

where the tensoruμ;ν is a combination of symmetric and anti-
symmetric tensors. Lowering indexν and contracting, we get
the volume dilatation of the spacetime continuum

uμ;μ = ε
μ
μ = u‖

μ
;μ = ε (22)

where the relation

ωμμ = u⊥
μ

;μ = 0 (23)

has been used.

4 Dynamic Equation

4.1 Equilibrium Condition

Under equilibrium conditions, the dynamics of the spacetime
continuum is described by the equation [4, see pp. 88–89],

Tμν;μ = −Xν (24)

whereXν is the volume (or body) force. As Wald [7, see
p. 286] points out, in General Relativity the local energy den-
sity of matter as measured by a given observer is well-defined,
and the relation

Tμν;μ = 0 (25)

can be taken as expressing local conservation of the energy-
momentum of matter. However, it does not in general lead to
a global conservation law. The valueXν = 0 is thus taken to
represent the macroscopic local case, while Eq.(24) provides
a more general expression.

At the microscopic level, energy is conserved within the
limits of the Heisenberg Uncertainty Principle. The volume
force may thus be very small, but not exactly zero. It again
makes sense to retain the volume force in the equation, and
use Eq.(24) in the general case, while Eq.(25) can be used at
the macroscopic local level, obtained by setting the volume
forceXν equal to zero.

4.2 Displacement Wave Equation

Substituting forTμν from Eq.(4), Eq.(24) becomes

2μ0ε
μν

;μ + λ0g
μνε;μ = −Xν (26)

and, using Eq.(19),

μ0(uμ;νμ + uν;μμ) + λ0ε
;ν = −Xν. (27)

Interchanging the order of differentiation in the first term and
using Eq.(22) to expressε in terms ofu, this equation simpli-
fies to

μ0uν;μμ + (μ0 + λ0)uμ;μ
ν = −Xν (28)

which can also be written as

μ0∇
2uν + (μ0 + λ0)ε;ν = −Xν. (29)

This is thedisplacement wave equation.
SettingXν equal to zero, we obtain the macroscopic dis-

placement wave equation

∇2uν = −
μ0 + λ0

μ0
ε;ν. (30)

4.3 Continuity Equation

Taking the divergence of Eq.(21), we obtain

uμ;νμ = ε
μν

;μ + ω
μν

;μ. (31)

Interchanging the order of partial differentiation in the first
term, and using Eq.(22) to expressu in terms ofε, this equa-
tion simplifies to

εμν;μ + ω
μν

;μ = ε
;ν. (32)

Hence the divergence of the strain and rotation tensors equals
the gradient of the massive volume dilatation, which acts as a
source term. This is the continuity equation for deformations
of the spacetime continuum.

5 Wave Equations

5.1 Dilatational (Longitudinal) Wave Equation

Taking the divergence of Eq.(28) and interchanging the order
of partial differentiation in the first term, we obtain

(2μ0 + λ0)uμ;μ
ν
ν = −Xν;ν. (33)

Using Eq.(22) to expressu in terms ofε, this equation sim-
plifies to

(2μ0 + λ0)ε;νν = −Xν;ν (34)

or
(2μ0 + λ0)∇2ε = −Xν;ν. (35)

SettingXν equal to zero, we obtain the macroscopic lon-
gitudinal wave equation

(2μ0 + λ0)∇2ε = 0. (36)

The volume dilatationε satisfies a wave equation known as
the dilatational wave equation [6, see p. 260]. The solutions
of the homogeneous equation are dilatational waves which
are longitudinal waves, propagating along the direction of
motion. Dilatations thus propagate in the spacetime contin-
uum as longitudinal waves.
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5.2 Rotational (Transverse) Wave Equation

Differentiating Eq.(28) with respect toxα, we obtain

μ0uν;μμ
α + (μ0 + λ0)uμ;μ

να = −Xν;α. (37)

Interchanging the dummy indicesν andα, and subtracting the
resulting equation from Eq.(37), we obtain the relation

μ0(uν;μμ
α − uα;μμ

ν) = −(Xν;α − Xα;ν). (38)

Interchanging the order of partial differentiations and using
the definition of the rotation tensorωνα of Eq.(20), the fol-
lowing wave equation is obtained:

μ0∇
2ωμν = −X[μ;ν] (39)

whereX[μ;ν] is the antisymmetrical component of the gradient
of the volume force defined as

X[μ;ν] =
1
2

(Xμ;ν − Xν;μ). (40)

SettingXν equal to zero, we obtain the macroscopic trans-
verse wave equation

μ0∇
2ωμν = 0. (41)

The rotation tensorωμν satisfies a wave equation known as
the rotational wave equation [6, see p. 260]. The solutions
of the homogeneous equation are rotational waves which are
transverse waves, propagating perpendicular to the direction
of motion. Massless waves thus propagate in the spacetime
continuum as transverse waves.

5.3 Strain (Symmetric) Wave Equation

A corresponding symmetric wave equation can also be de-
rived for the strainεμν. Starting from Eq.(37), interchanging
the dummy indicesν andα, adding the resulting equation to
Eq.(37), and interchanging the order of partial differentiation,
the following wave equation is obtained:

μ0∇
2εμν + (μ0 + λ0)ε;μν = −X(μ;ν) (42)

whereX(μ;ν) is the symmetrical component of the gradient of
the volume force defined as

X(μ;ν) =
1
2

(Xμ;ν + Xν;μ). (43)

SettingXν equal to zero, we obtain the macroscopic sym-
metric wave equation

∇2εμν = −
μ0 + λ0

μ0
ε;μν. (44)

This strain wave equation is similar to the displacement wave
equation Eq.(30).

6 Discussion and Conclusion

In this paper, we have proposed a framework for the analy-
sis of strained spacetime based on the elastodynamics of the
spacetime continuum (STCED). In this model, the emphasis
is on the displacements of the spacetime continuum infinites-
imal elements from their unstrained configuration as a result
of the strains applied on theSTCby the energy-momentum
stress tensor, rather than on the geometry of theSTCdue to
the energy-momentum stress tensor.

We postulate that this description based on the deforma-
tion of the continuum is a description complementary to that
of General Relativity which is concerned with modeling the
resulting geometry of the spacetime continuum. Interestingly,
the structure of the resulting stress-strain relation is similar to
that of the field equations of General Relativity. This streng-
thens our conjecture that the geometry of the spacetime con-
tinuum can be seen as a representation of the deformation of
the spacetime continuum resulting from the strains generated
by the energy-momentum stress tensor. The equivalency of
the strain description and of the geometrical description still
remains to be demonstrated.

The equilibrium dynamic equation of the spacetime con-
tinuum is described byTμν;μ = −Xν. In General Relativity,
the relationTμν;μ = 0 is taken as expressing local conserva-
tion of the energy-momentum of matter. The valueXν = 0
is thus taken to represent the macroscopic local case, while
in the general case, the volume forceXν is retained in the
equation. This dynamic equation leads to a series of wave
equations as derived in this paper: the displacement (uν), di-
latational (ε), rotational (ωμν) and strain (εμν) wave equations.

Hence energy is seen to propagate in the spacetime con-
tinuum as deformations of theSTC that satisfy wave equa-
tions of propagation. Deformations can be decomposed into
dilatations and distortions.Dilatations involve an invariant
change in volume of the spacetime continuum which is the
source of the associated rest-mass energy density of the de-
formation. Distortions correspond to a change of shape of
the spacetime continuum without a change in volume and
are thus massless. Dilatations correspond to longitudinal dis-
placements and distortions correspond to transverse displace-
ments of the spacetime continuum.

Hence, every excitation of the spacetime continuum can
be decomposed into a transverse and a longitudinal mode of
propagation. We have noted that this decomposition into a
dilatation with rest-mass energy density and a massless trans-
verse wave distortion, is somewhat reminiscent of wave-parti-
cle duality, with the transverse mode corresponding to the
wave aspects and the longitudinal mode corresponding to the
particle aspects.

A continuity equation for deformations of the spacetime
continuum is derived; we find that the divergence of the strain
and rotation tensors equals the gradient of the massive volume
dilatation, which acts as a source term.
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The nature of the spacetime continuum volume force re-
mains to be investigated. In addition, the displacement, di-
latational, rotational and strain inhomogeneous wave equa-
tions need further investigation.
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In this paper one generalizes the Lorentz Contraction Factor for the case when the
lengths are moving at an oblique angle with respect to the motion direction. One shows
that the angles of the moving relativistic objects are distorted.

1 Introduction

According to the Special Theory of Relativity, the Lorentz
Contraction Factor is referred to the lengths moving along
the motion direction. The lengths which are perpendicular on
the direction motion do not contract at all [1].

In this paper one investigates the lengths that are oblique
to the motion direction and one finds their Oblique-Length
Contraction Factor [3], which is a generalization of the
Lorentz Contraction Factor (forθ = 0) and of the perpen-
dicular lengths (forθ = π/2). We also calculate the distorted
angles of lengths of the moving object.

2 Length-Contraction Factor

Length-Contraction FactorC(v) is just Lorentz Factor:

C(v) =

√

1−
v2

c2
∈ [0,1] f or v ∈ [0,1] (1)

L = L′ ∙C(v) (2)

whereL = non-proper length (length contracted),L′ = proper
length.C(0) = 1, meaning no space contraction [as in Abso-
lute Theory of Relativity (ATR)].

C(c) = 0, which means according to the Special Theory
of Relativity (STR) that if the rocket moves at speed ‘c’ then
the rocket length and laying down astronaut shrink to zero!
This is unrealistic.

Fig. 1: The graph of the Time-Dilation Factor

3 Time-Dilation Factor

Time-Dilation Factor D(v) is the inverse of Lorentz Factor:

D(v) =
1

√

1−
v2

c2

∈ [1,+∞] f or v ∈ [0, c] (3)

Δt = Δt′ ∙ D(v) (4)

whereΔt = non-proper time and,Δt′ = proper time.D(0) = 1,
meaning no time dilation [as in Absolute Theory of Relativity
(ATR)]; D(c) = limv→c D(v) = +∞, which means according
to the Special Theory of Relativity (STR) that if the rocket
moves at speed ‘c’ then the observer on earth measures the
elapsed non-proper time as infinite, which is unrealistic.v = c
is the equation of the vertical asymptote to the curve ofD(v).

4 Oblique-Length Contraction Factor

The Special Theory of Relativity asserts that all lengths in the
direction of motion are contracted, while the lengths at right
angles to the motion are unaffected. But it didn’t say anything
about lengths at oblique angle to the motion (i.e. neither per-
pendicular to, nor along the motion direction), how would
they behave? This is a generalization of Galilean Relativity,
i.e. we consider the oblique lengths. The length contraction
factor in the motion direction is:

C(v) =

√

1−
v2

c2
. (5)

Suppose we have a rectangular object with widthW and
lengthL that travels at a constant speedv with respect to an
observer on Earth.

Fig. 2: A rectangular object moving along thex-axis
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Fig. 3: Contracted lengths of the rectangular object moving along
thex-axis

Then its lengths contract and its new dimensions will be
L′ andW′: whereL′ = L ∙ C(v) andW′ = W. The initial
diagonal of the rectangle ABCD is:

δ = |AC| = |BD| =
√

L2 + W2

=
√

L2 + L2 tan2 θ = L
√

1+ tan2 θ
(6)

while the contracted diagonal of the rectangleA′B′C′D′ is:

δ′ = |A′C′| = |B′D′|

=
√

(L′)2 + (W′)2 =
√

L2 ∙C(v)2 + W2

=
√

L2C(v)2 + L2 tan2 θ = L
√

C(v)2 + tan2 θ.

(7)

Therefore the lengths at oblique angle to the motion are
contracted with the oblique factor

OC(v, θ) =
δ′

δ
=

L
√

C(v)2 + tan2 θ

L
√

1+ tan2 θ

=

√
C(v)2 + tan2 θ

1+ tan2 θ
=

√
C(v)2 cos2 θ + sin2 θ

(8)

which is different from C(v).

δ′ = δ ∙OC(v, θ) (9)

where 0≤ OC(v, θ) ≤ 1.
For unchanged constant speedv, the greater isθ in

(
0, π2

)

the larger gets the oblique-length contradiction factor, and re-
ciprocally. By oblique length contraction, the angle

θ ∈
(
0,
π

2

)
∪

(
π

2
, π

)
(10)

is not conserved.
In Fig. 4 the horizontal axis represents the angleθ, while

the vertical axis represents the values of the Oblique-Length
Contraction FactorOC(v, θ) for a fixed speedv. HenceC(v)
is thus a constant in this graph. The graph, forv fixed, is

Fig. 4: The graph of the Oblique-Length Contraction FactorOC(v, θ)

periodic of periodπ, since:

OC(v, π + θ) =

√
C(v)2 cos2(π + θ) + sin2(π + θ)

=
√

C(v)2[− cosθ]2 + [− sinθ]2

=

√
C(v)2 cos2 θ + sin2 θ

= OC(v, θ).

(11)

More exactly about theOC(v, θ) range:

OC(v, θ) ∈ [C(v),1] (12)

but sinceC(v) ∈ [0,1] , one has:

OC(v, θ) ∈ [0,1]. (13)

The Oblique-Length Contractor

OC(v, θ) =
√

C(v)2 cos2 θ + sin2 θ (14)

is a generalization of Lorentz ContractorC(v), because: when
θ = 0 or the length is moving along the motion direction, then
OC(v, 0) = C(v). Similarly

OC(v, π) = OC(v, 2π) = C(v). (15)

Also, if θ = π
2, or the length is perpendicular on the mo-

tion direction, thenOC(v, π/2) = 1, i.e. no contraction oc-
curs. SimilarlyOC(v, 3π

2 ) = 1.

5 Angle Distortion

Except for the right angles (π/2,3π/2) and for the 0,π, and
2π, all other angles are distorted by the Lorentz transform.

Let’s consider an object of triangular form moving in the
direction of its bottom base (on thex-axis), with speedv, as
in Fig. 5:

θ ∈
(
0,
π

2

)
∪

(
π

2
, π

)
(16)

is not conserved.
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Fig. 5:

Fig. 6:

The side|BC| = α is contracted with the contraction fac-
torC(v) sinceBC is moving along the motion direction, there-
fore |B′C′| = α ∙ C(v). But the oblique sidesAB andCA are
contracted respectively with the oblique-contraction factors
OC(v, ]B) andOC(v, ]π −C), where]B means angle B:

∣∣∣A′B′
∣∣∣ = γ ∙OC(v, ]B) (17)

and
∣∣∣C′A′

∣∣∣ = β ∙OC(v, ]π −C) = β ∙OC(v, ]A+ B) (18)

since
]A+ ]B+ ]C = π. (19)

Triangle ABC is shrunk and distorted toA′B′C′ as in
Fig. 6.

Hence one gets:

α′ = α ∙C(v)

β′ = β ∙OC(v, ]A+ B)

γ′ = γ ∙OC(v, ] B)

(20)

In the resulting triangleA′B′C′, since one knows all its
side lengths, one applies the Law of Cosine in order to find
each angle]A′, ]B′, and]C′. Therefore:

]A′ = arccos
−α2 ∙C(v)2 + β2 ∙OC(v, ]A+ B)2 + γ2 ∙OC(v, ] B)2

2β ∙ γ ∙OC(v, ] B) ∙OC(v, ]A+ B)

]B′ = arccos
α2 ∙C(v)2 − β2 ∙OC(v, ]A+ B)2 + γ2 ∙OC(v, ] B)2

2α ∙ γ ∙OC(v) ∙OC(v, ] B)

]C′ = arccos
α2 ∙C(v)2 + β2 ∙OC(v, ]A+ B)2 − γ2 ∙OC(v, ] B)2

2α ∙ β ∙OC(v) ∙OC(v, ]A+ B)
.

As we can see, the angles]A′, ]B′, and]C′ are, in gen-
eral, different from the original anglesA, B, andC respec-
tively.

The distortion of an angle is, in general, different from the
distortion of another angle.
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Investigated idea was actuated by the old opinion that a measurement of a quantum ob-
servable should be regarded a as a single deterministic sampling. But, according to the
last decades studies, such observables are veritable random variables and their measure-
ments must imply significant sets of statistical samplings. So one finds the indubitable
caducity of the approached idea. Contiguously the respective finding allows to put into
a new light the controversial questions like the Schrödinger cat thought experiment or
description of quantum measurements.

1 Introduction

A recent highly authorized opinion [1] points out the exist-
ing deadlock that: “There is now . . . no entirely satisfac-
tory interpretation of Quantum Mechanics (QM)”. As major
question of that deadlock is recognized as being [2] the prob-
lem of Quantum Measurements (QMS), in whose center still
stands [3] the Idea about Wave Function Collapse (IWFC).
For IWFC, demarcated as above, the most known debates and
mainstream publications are reported in [1–3].

Here, in discussing the IWFC question, we try to present
a somewhat “unconventional” strategy based on viewpoints
promoted in our modest researches about QM, developed
over last few decades (see [4,5] and references).

Firstly we note the fact that, historically, IWFC emerged
at the same time with the inaugural ideas regarding the Con-
ventional Interpretation of Uncertainty Relations (CIUR). In
the main CIUR started [4, 5] by mixing the theoretical rep-
resentation (modeling) of a a physical quantity regarding a
quantum state/system with a “fictitious observation” (done
through some thought (gedanken) measuring experiment) of
the respective quantity. The mentioned mixing invented and
promoted the widespread term of “observable” for such a
quantity. Below, similarly to the nowadays publications, we
will use also the respective term.

After the alluded start CIUR coagulates in a form of an
apparent doctrine centered on two main pieces:

(i) Heisenberg’s thought-experimental formula and

(ii) Robertson- Schr̈odinger theoretical relation.

The respective doctrine can be incorporated [4,5] in few basic
items (presumptions/ assertions). A deep analysis shows [4,
5] that the respective items, considered as single or grouped
pieces, are incriminated by indubitable facts which are un-
surmountable within the framework of CIUR. Then CIUR
proves oneself to be deprived of necessary qualities for a valid
scientific construction. Consequently, in spite of its apology
in many modern texts (see references from [4]), CIUR must
be abandoned as a wrong conception without any real value
or scientific significance.

In its turn, IWFC continued to be present in important
publications (see [1–3] and references), with explicit or im-
plicit references to CIUR. It was aroused by the conflict be-
tween two items:

(i) The old opinion that a measurement of a quantum ob-
servable should be regarded a as a single deterministic
sampling and

(ii) The agreement, enforced by theoretical practice, that
studies of quantum systems use probabilistic (non-
deterministic) entities (wave functions and observ-
ables/operators).

For avoiding conflict and breaking a deadlock it was devised
the IWFC which, in different readings, was assumed in a large
number of publications. But, as a rule, such assumptions were
(and still are) not associated with adequate investigations re-
garding the truthfulness of the respective idea in relation with
the QM questions. A modest investigation of that kind we
will try to present below in the next sections.

Firstly, in Section 2, we point out the fact that in the main
(i.e. irrespectively of its readings) IWFC is nothing but an
useless fiction. Such a fact certainly shows the caducity and
failure of the respective idea. In Section 3 we discuss the
some aspects contiguous between failure of IWFC and fa-
mous subject of Schrödinger’s cat thought experiment. Then
within Section 4 we argue that alternatively to the IWFC we
have to reconsider our views about QM theory in relation with
QMS. So, for the readings of the respective theory, we must
to consider either a restricted-QM (r-QM) or an extended-QM
(e-QM) form. On the one hand the r-QM is essentially the
version promoted by usual QM textbooks [6, 7] and it deals
exclusively only with the modeling of intrinsic properties for
the studied systems. On the other hand e-QM must to contain
also obligatorily some additional elements regarding QMS
descriptions (i.e. theoretical models about characteristics of
measuring devices/procedures). Figuratively speaking e-QM
consists in r-QM united with QMS descriptions. An simple
exemplification of a QMS description, regarded in the men-
tioned sense, is presented in the end of the same Section 4. Fi-
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nally, in Section 5, are given some concluding remarks about
the views from this article.

2 Uselessness of IWFC

Now let us try to estimate the usefulness and truthfulness de-
grees of IWFC. Such an estimation can be obtained if IWFC
is regarded through the details of its constituent elements.
The before mentioned regard must be opened by observation
that the starting purpose of IWFC was to harmonize the fol-
lowing two conflicting Items (I ):

I 1 The old opinion (of the same time as CIUR) that a
measurement of a quantum observableA, specific to
a state/system at atomic scale, should be regarded as
a single sampling which gives an unique deterministic
result, sayai ;

I 2 The theoretical agreement that, due to the probabilis-
tic character of wave functionΨ describing the alluded
state/system, the observableA is endowed with a spec-
trum (set) of distinct values.

So came into an equivocal sight IWFC knew a lot of debates
(see [1–3] and references). In essence, the solution promoted
by the respective debates can be summarized within the fol-
lowing Subterfuge (S):

S The unique resultai and wave functionΨ, mentioned in
itemsI 1 andI 2, should be seen ( and described) through
the wave function collapseΨ 7−→ ψi , whereΨ depicts
the considered quantum state/system in its wholeness
while ψi is theai-eigenfunction of the operator̂A (as-
sociated to the observableA) — i.e Âψi = aiψi .

For a proper judgment of such a subterfuge we have to re-
consider the correctness of the itemsI 1 andI 2. In the light of
such a reason it must to note that studies from the last decades
(see [4–7] and references) consolidated beyond doubt the fact
that, mathematically, a quantum observableA (through of the
operatorÂ) is a true random variable. In a theoretical view-
point, for a given quantum state/system, such a variable is
regarded as endowed with a spectra of values associated with
corresponding probabilities (more exactly probability ampli-
tudes). Then, from an experimental perspective, a measure-
ment of a quantum observable requires an adequate number
of samplings finished through a significant statistical group of
data (outcomes).

Previous opinions about the randomness of quantum ob-
servables can be consolidated indirectly by mentioning the
quantum-classical probabilistic similarity (see [4, 8]) among
the respective observables and macroscopic variables stud-
ied within phenomenolgical (thermodynamic) theory of fluc-
tuations [4, 9–14]. In this way let us refer to such a macro-
scopic random observablêA. Its intrinsic (in) characteristics
are given in details by a continuous spectra of valuesA in-
side of spectra (range)Ωin (i.e. A ∈ Ωin), associated with a
probability densitywin = win(A). Then forÂ, in its fullness,

a single experimental sampling delivering an unique (individ-
ual) result, sayAi , is worthlessly. Such a sampling is not de-
scribed as a collapse of the probability densitywin(A). More-
over a true experimental evaluation ofÂ, in its wholeness and
regarded equivalently with a stationary random process, re-
quires [15] an adequate lot of samplings finished through a
significant statistical set of individual recordings. In a plausi-
ble modeling [16, 17] the mentioned recordings (rec) can be
described by another probability densitywrec = wrec(A).

The above notifications about quantum observables point
out clearly the complete incorrectness of itemI 1. Conse-
quently, even if in the main the itemI 2 is a true assertion,
the subterfugeS supporting IWFC proves oneself to be noth-
ing but an useless recommendation. Additionally note that,
in the mainstream of publications ( see [1–3] and references),
the respective subterfuge is not fortified with thorough (and
genuine) descriptions regarding the collapseΨ 7−→ ψi . Ev-
idently that the above revealed factspoint out the caducity
and failure of IWFC.

The previous discussions about IWFC lead us also to the
following more general Remark (R)

R A random variable should not be assessed (measured)
by an unique deterministic sampling (trial) but by a sta-
tistical ensemble of samplings.

3 Contiguities with the Schrödinger’s cat thought exper-
iment

As it is well known [18] the famous Schrödinger’s cat thought
experiment is a subject often displayed in debates (more or
less scientifically) about the significance/interpretations of
QM constituents. The essential element in the respective ex-
periment is represented by a killing single decay of a radioac-
tive atom. But the radioactive decays are random (probabilis-
tic) events. Then the mentioned killing decay is in fact a twin
analogue of the single sampling noted above in itemI 1 in
connection with IWFC.

The mentioned analogy motivates us to discuss on some
contiguities among questions specific to the alluded experi-
ment and those regarding IWFC. We think that, according to
the above remarkR, the main point of such motivated discus-
sions is to mark down the following Notification (N)

N When the variable of interest has random characteris-
tics it is useless (even forbidden) to design experiences
or actions that relies solely on a single deterministic
sampling of that variable.

In the light of such notification the Schrödinger experi-
ment appears to be noting but just a fiction (figment) without
any scientific value. That is why the statements like: “the
Schrödinger cat thought experiment remains a topical touch-
stone for all interpretations of quantum mechanics”, must be
regarded as being worthlessly. (Note that such statements are
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present in many science popularization texts, e.g. in the ones
disseminated via the internet.)

The above notificationN, argued for quantum level, can
be also of non-trivial significance (interest) at macroscopic
scale. For illustrating such a significance let us refer to the
thought experimental situation of a classical (macroscopic)
cousin of the Schr̈odinger cat. The regarded situation can be
depicted as follows. The cousin is placed in a sealed box to-
gether a flask of poison and an internal macroscopic hammer.
The hammer is connected to an macroscopic uncontrollable
(unobservable) sensor located within the circular error proba-
ble (CEP) of a ballistic projectile trajectory. Note that a ballis-
tic projectile is a missile whose flight is governed by the laws
of classical mechanics. CEP is defined as the radius of a cir-
cle, centered about the mean, whose boundary is expected to
include the landing points of 50% of the launching rounds (for
more details about ballistic terminology see [19]). The exper-
iment consists in launching of a single projectile, without any
possibility to observe the point where it hits the ground. Also
the projectile is equipped with a radio transmitter which sig-
nals the flight time. If the sensor is smitten by projectile the
hammer is activated releasing the poison that kills the cousin.
But as the projectile trajectory has a probabilistic character
(mainly due to the external ballistic factors) the hitting point
is placed with the probability of 50% within the surface of
CEP where the sensor is located. That is why, after the pro-
jectile time of flight and without opening the box, one can not
know the state of living for the cousin. So the whole situation
of the classical cousin is completely analogous with the one
of quantum Schr̈odinger’s cat. Therefore the thought experi-
ment with classical cousin makes evident oneself as another
fiction without any real significance.

We can add here another circumstance where the above
notificationN is taken into account (and put in practice) in a
classical context. Namely we think that, in the last analysis,
the respective notification is the deep reason of the fact that in
practice of the traditional artillery (operating only with ballis-
tic projectiles but not with propelled missiles) for destroying
a military objective one uses a considerable (statistical) num-
ber of projectiles but not a single one.

4 Contiguities with descriptions of quantum measure-
ments

It is easy to see the fact that the considerations from Section 2
are contiguous with the question of QMS descriptions. Such
a fact require directly certain additional comments which we
try to present here below. In our opinion the mentioned ques-
tion must be regarded within a context marked by the follow-
ing set of Topics (T):

T1 In its plenitude the QM theory must be considered in a
r-QM respectively in an e-QM reading. Fundamentally,
on the one hand, r-QM deals with theoretical models
regarding intrinsic properties of quantum (atomically

sized) systems. On the other hand e-QM has to take
into account both the characteristics of measured ob-
servable/system and the peculiarities of measuring de-
vices/procedures;

T2 Within r-QM a situation (state/system) is described
completely by its intrinsic (in) wave functionΨin and
operatorŝAk (k = 1,2, . . . , f ), associated to its specific
observablesAk. Expression ofΨin is distinct for each
situation while the operatorŝAk have the same math-
ematical representation in many situations. The con-
crete mathematical expression forΨin may be obtained
either from theoretical studies (e.g. by solving the ad-
equate Schr̈odinger equation) or from a priori consid-
erations (not supported by factual studies). For a given
state/system the observablesAk can be put into sight
through a small number of globalin-descriptors such
are: in-mean values,in-deviations or second or higher
order in-moments and correlations (for few examples
see below);

T3 A true experimental evaluation of quantum observables
can be obtained by means of an adequate numbers of
samplings finished through significant statistical sets of
individual recordings. For an observable the samplings
must be done on the same occurrences (i.e. practi-
cally on very images of the investigated observable and
state/system). As regards a lot of observables a global
and easy sight of the mentioned evaluation can be done
by computing from the alluded recordings some (ex-
perimental) exp-quantifiers (of global significance)
such are:exp-mean,exp-deviation respectivelyexp-
higher order moments;

T4 Usually, a first confrontation of theory versus experi-
ence, is done by comparing side by side thein-descrip-
tors andexp-quantifiers mentioned above inT2 andT3.
Then, if the confrontation is confirmatory, the investi-
gations about the studied observable/system can be no-
ticed as a fulfilled task. If the alluded confirmation does
not appear the study may be continued by resorting to
one or groups of the following upgradings (u):
u1) An amendment for expression ofΨin, e.g. through
solving a more complete Schrödinger equation or using
the quantum perturbation theory;
u2) Improvements of experimental devices and proced-
ures;
u3) Addition of a theoretical description for the consid-
ered QMS;

T5 Through the extension suggested in above upgrading
u3 the study changes its reading from a r-QM into an
e-QM vision, in the sense mentioned in topicT1. Such
an extension needs to be conceived as a stylized rep-
resentation through a mathematic modeling so that it
to include both intrinsic elements (regarding observ-
ables/states/systems) and measuring details. Also if the
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upgradingu3 is adopted then a true confrontation of
theory versus experience must be done not as it was
mentioned inT4 but by putting face to face the predic-
tions of QMS description with the experimental data.

For an illustration of the topicsT1–T5 let us regard as a
QM system a spin-less quantum particle in a rectilinear and
stationary movement along theOx axis. The QMS problems
will be reported to the orbital observables momentumpx and
energyE, denoted generically byA.

In terms ofT2 the probabilistic intrinsic (in) character-
istics of such particle are depicted by orbital wave function
Ψin = Ψin(x) (where coordinatex covers the rangeΩ). The
observablesA are described by the associated operatorsÂ ac-
cording the QM rules [6,7] (i.e. bŷpx = − i~ ∂

∂x respectively

by the HamiltonianĤ). Then from the class of globalin-
descriptors regarding such an observableA can be mentioned
the in-mean-value〈A〉in and in- deviationσin (A) defined as
follows

〈A〉in =
(
Ψin, Â Ψin

)

σin (A) =
√(
δinÂ Ψin, δinÂ Ψin

)




, (1)

where (f , g) denotes the scalar product of functionsf andg,
while δinÂ = Â− 〈A〉in.

An actual experimental measurement of observableA in
sense ofT3 must be done through a set of statistical sam-
plings. The mentioned set gives forA as recordings a collec-
tion of distinct values {α1 , α2, α3 , . . . , αr } associated
with the empirical probabilities (or relative frequencies)
{ν1 , ν2, ν3 , . . . , νr }. Usually, for a lower synthesized sight
about the mentioned measurement, as experimental (exp)
quantifiers are chosen theexp-mean〈A〉expandexp-deviation
σexp(A) given through the formulas:

〈A〉exp=

r∑

j=1

ν j ∙ α j

σexp(A) =

√√ r∑

j=1

ν j ∙
(
α j − 〈A〉exp

)2





. (2)

The above considerations about an experimental QMS
must be supplemented with the following Observations (O):

O1 Note that due to the inaccuracies of experimental de-
vices some of the recorded values{α1 , α2, α3 , . . . , αr }
can differ from the eigenvalues{a1 ,a2,a3 , . . . , as } of
the operator̂A.

O2 A comparison at first sight between theory and exper-
iment can be done by putting side by side the corre-
sponding aggregate (global) entities (1) and (2). When
one finds that the values of compared entities are in
near equalities, usually is admitted the following cou-
ple of linked beliefs (b):

b1) Theory is pretty correct and
b2) Measuring devices/procedures are almost ideal.
Thus, practically, the survey of debated QMS can be
regarded as a finished task.

O3 If instead of the mentioned equalities one detects (one
or two) flagrant differences at least one of the alluded
beliefs (b1) and (b2) is deficient (and unsustainable).
Such a deadlock can be avoided by one or groups of the
upgradings u1–u3 mentioned above within the
topicT4.

Generally speaking the the upgradingsu1–u2 are appreci-
ated and worked (explicitly or implicitly) in mainstream liter-
ature (see [1–3] and references). But note that, as far as know,
for u3 such an appreciation was neither taken into account nor
developed in details in the respective literature. It is our mod-
est task to present below a brief exemplification of upgrad-
ing u3 in relationship with the QMS question. The presenta-
tion is done in some simple terms of information transmission
theory.

An information theory modeling for QMS description

In a QMS process the input information regarding the in-
trinsic (in) properties of the measured system is converted
in predicted (pd) or output information incorporated within
the data received on a device recorder. That is why a QMS
appears as aninformation transmission processin which the
measuring device plays the role of ainformation transmis-
sion channel. So the QMS considered above can be symbol-
ized asΨin ⇒ Ψpd for the wave function while the operator
Â remains invariant. Such symbolization is motivated by the
facts that, on the one hand the wave functionΨ is specific
for each considered situation (state/system) whereas, on the
other hand the operator̂A preserves the same mathematical
expression in all (or at least in many) situations. Note that the
(quantity of) information is connected with probability den-
sitiesρη(x) and currents (fluxes)jη(x) (η = in, pd) defined in
terms ofΨη(x) as in usual QM [4–7]. Add here the fact that
ρη (x) and jη (x) refer to the positional respectively the mo-
tional kinds of probabilities. Experimentally the two kinds
of probabilities can be regarded as measurable by distinct de-
vices and procedures. Besides, as in practice, one can sup-
pose that the alluded devices are stationary and linear. Then,
similarly with the case of measurements regarding classical
random observables [4, 16, 17], in an informational reading,
the essence of here discussed QMS description can be com-
pressed [4,17] through the relations:

ρpd (x) =
∫

Γ
(
x, x′

)
ρin

(
x′
)
dx′

j pd (x) =
∫

Λ
(
x, x′

)
jin (x) dx′





. (3)
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Here the kernelsΓ(x, x′) andΛ(x, x′) include as noticeable
parts some elements about the peculiarities of measuring de-
vices/procedures. Mathematically,Γ(x, x′) andΛ(x, x′) are
normalized in respect with bothx and x′. Note that QMS
becomes nearly ideal when bothΓ(x, x′) → δ(x − x′) and
Λ(x, x′)→ δ(x− x′), (δ(x− x′) being the Dirac’sδ function).
In all other cases QMS appear as non-ideal.

By means of the probability densityρpd(x) and current
j pd(x) can be computed [4] some useful expressions like
Ψ∗pd (x) ÂΨpd (x). Then, for observableA, it is possible to
evaluate global indicators of predicted (pd) nature such are
pd-mean〈A〉pd and pd-deviationσpd (A) defined, similarly
with (1), as follows

〈A〉pd =
(
Ψpd, ÂΨpd

)

σpd (A) =
√(
δpdÂΨpd, δpdÂΨpd

)




. (4)

If as regards a quantum observableA, besides a true ex-
perimental evaluation, for its measuring process one resorts
to a (theoretical/informational) QMS description of the above
kind thepd-indicators (4) must be tested by comparing them
with their experimental (factual) correspondents (i.e.exp-
quantifiers) given in (2).

When the test is confirmatory both theoretical descrip-
tions, of r-QM intrinsic properties of system respectively of
QMS, can be considered as adequate and therefore the scien-
tific task can be accepted as finished. But, if the alluded test
is of invalidating type, at least one of the mentioned descrip-
tions must be regarded as inadequate and the whole question
requires further investigations.

For an impressive illustration of the above presented in-
formational QMS description we consider as observable of
interest the energyA = E = H regarding a QM harmonic
oscillator. The operator̂H associated to the respective ob-
servable is the Hamiltonian̂H = − ~

2

2m
d2

dx2 + 1
2mω2x2 (m and

ω denote the mass respectively the angular frequency of os-
cillator). The oscillator is considered to be in its lower en-
ergetic level, whose intrinsic state is described by the wave

functionΨin (x) ∝ exp
{
− x2

4σ2

}
(hereσ = σin (x) =

√
~

2mω de-
note thein-deviation of coordinatex). Then, becauseΨin is a
real function, for the considered state one findsj in = 0 — i.e.
the probability current is absent.

So for the regarded QMS description in (3) remains of in-
terest only first relation dealing with the changeρin → ρpd of
the probability density through the kernelΓ(x, x′). If the sup-
posed measuring device has high performancesΓ(x, x′) can

be taken [4] of Gaussian form i.e.Γ (x, x′) ∝ exp
{
− (x−x′)2

2γ2

}
, γ

being the error characteristic of the respective device. It can
been seen that in the case whenγ → 0 the kernelΓ(x, x′) de-
generates into the Dirac functionδ(x − x′). Thenρpd = ρin.
Such a case corresponds to an ideal measurement. Differ-
ently, whenγ , 0 one speaks of non-ideal measurements.

In the above modeling of QMS description for the energy
A = E = H one obtains [4] the followingin respectivelypd
means and deviations

〈H〉in =
~ω

2
; σin (H) = 0 , (5)

〈H〉pd =

ω
[
~2 +

(
~ + 2mωγ2

)2
]

4
(
~ + 2mωγ2

) , (6)

σpd (H) =

√
2mω2γ2

(
~ + mωγ2

)

(
~ + 2mωγ2

) . (7)

Relations (5) and (7) show that even ifΨin has the quality of
an eigenfunction for̂H (asσin(H) = 0), due to the measure-
mentΨpd is deprived of such a quality (becauseσpd(H) , 0).

5 Concluding remarks

We point out, on the one hand, the historical emergence of
the IWFC from the conflict between the itemsI 1 andI 2 men-
tioned in Section 2. Then we remind the fact that, on the other
hand, the modern studies certify the random characteristics of
quantum observables. Therefore a true measurement of such
an observable requires a whole set of statistically significant
samplings. The respective requirement invalidate indubitably
the alluded itemI 1. So IWFC is proved as a caducous and
useless recommendation.

Contiguously the respective proof allows to put into a new
light the famous Schrödinger’s cat thought experiment. We
argue in Section 3 that Schrödinger’s experiment is noting but
just a fiction without any scientific value. The argumentation
relies on the notification that: “When the variable of inter-
est has random characteristics it is useless (even forbidden)
to design experiences or actions that relies solely on a single
deterministic sampling of that variable”. The same notifica-
tion is useful in appreciating of some non-quantum problems
such are a Schrödinger’s-type experiment with a classical cat
or statistical practices in traditional artillery.

The question of IWFC caducity is contiguous also with
the problem of QMS descriptions. That is why in Section 4
we present some brief considerations about the respective
problem. Thus we propose that QM theory to be regarded
either in a r-QM or in an e-QM reading, as it refers to the
studied observables and systems without or with taking into
account the QMS descriptions. The proposal is consolidated
with simple illustration regarding a spin-less quantum oscil-
lator in a rectiliniar and stationary movement along theOx
axis. Particularly we suggest an approach of QMS descrip-
tions based on information transmission theory.

Of course that other different approaches about QMS de-
scriptions can be imagined. They can be taken into account
for extending QM theory towards an e-QM reading, as com-
plete/convincing as possible.
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The gravitational field shielding by scalar field and type II superconductors are theoret-
ically investigated. In accord with the well-developed five-dimensional fully covariant
Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity
and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space
as shown previously, but also flatten the space as indicated recently. The polariza-
tion of space decreases the electromagnetic field by increasing the equivalent vacuum
permittivity constant, while the flattening of space decreases the gravitational field by
decreasing the equivalent gravitational constant. In other words, the scalar field can
be also employed to shield the gravitational field. A strong scalar field significantly
shield the gravitational field by largely decreasing the equivalent gravitational constant.
According to the theory of gravitational field shielding by scalar field, the weight loss
experimentally detected for a sample near a rotating ceramic disk at very low tempera-
ture can be explained as the shielding of the Earth gravitational field by the Ginzburg-
Landau scalar field, which is produced by the type II superconductors. The significant
shielding of gravitational field by scalar field produced by superconductors may lead to
a new spaceflight technology in future.

1 Introduction

Gravitation is one of the four fundamental interactions of na-
ture. According to the Newtonian universal law of gravita-
tion, any two objects in the universe attract each other with
a force that is directly proportional to the product of their
masses and inversely proportional to the square of the dis-
tance between them. According to the Einsteinian general
theory of relativity, gravitation is directly related to the curva-
ture of spacetime. The Schwarzschild solution of the general
relativity for a static spherically symmetric body predicts the
perihelion precession of planets, the deflection of distant star
light by the Sun, the gravitational redshift of Sun’s light, and
the time delay of radar echoes, which have been well tested
by the measurements [1-4].

To study the shielding of the gravitational field in analo-
gous to the shielding of the electromagnetic field, Majorana
[5] in 1920 modified the Newtonian gravitational field of an
object with a nonzero extinction coefficienth , 0 as

g = gN exp

[

−h
∫

ρ(r)dr

]

, (1)

wheregN ≡ G0M/r2 is the Newtonian gravitational field with
G0 the gravitational constant,M the mass of the object, andr
the radial distance from the object center;ρ is the mass den-
sity of the object;h is the extinction coefficient. For a spheri-
cal object with a constant mass density and radiusR, Eq. (1)
after integrated becomes

g = gN exp

(

−
3hM
4πR2

)

. (2)

Laboratory measurements constrainedh . 10−15 m2/kg [6-
7]. Space measurements gaveh . 10−19 m2/kg [8-9]. These
measurements indicated that the gravitational field shielding
is negligible or undetectable in the case of weak fields.

On the other hand, Kaluza [10] in 1921 proposed a five-
dimensional (5D) theory to unify the Einsteinian general rela-
tivity and Maxwellian electromagnetic theory. The geometric
structure and property of the 5D spacetime were then stud-
ied by Klein [11-12]. The early Kaluza-Klein (K-K) theory
of unification was further developed with a scalar field [13],
which can modify both the electromagnetic and gravitational
fields. Some previous studies have shown that the scalar field
can reduce the electromagnetic field of a charged object and
thus polarize the space around the charged object or shield
the electromagnetic field from the charged object [14-15].
It is equivalent to increase the free space permittivity con-
stant. Recently, we has shown, in accord with a 5D fully
covariant K-K theory, that the scalar field can also reduce the
gravitational field of a body and thus flatten the space around
the body or shield the gravitational field from the body [16].
It is equivalent to decrease the gravitational constant in and
around the body [17].

The scalar field that was introduced to the cosmology in
various models has also been considered as a candidate of
dark energy for the acceleration of the universe. As the cos-
mic expansion, the scalar field of the universe changes over
time and became repulsive about many years ago and then
overcome the gravitational force to accelerate the expansion
of the universe. In addition, we have recently shown that a
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massive and compact neutron star can generate a strong scalar
field, which can significantly shield or reduce its gravitational
field, and thus can be more massive and more compact. The
mass-radius relation developed under this type of modified
gravity with a scalar field can be consistent with the measure-
ments of neutron stars [18].

In this paper, we will investigate the gravitational field
shielding by scalar field and type II superconductors. We sug-
gest that the scalar field generated by the type II superconduc-
tors has the same physics and thus addable to the scalar field
generated by any other types of matter. According to the five-
dimensional fully covariant K-K theory with a scalar field,
the scalar field of an object can shield its gravity or decrease
the equivalent gravitational constant in or around the object.
Therefore, the Ginzburg-Lanadu scalar field [19-20] gener-
ated by type II superconductors, if it has a similar physics and
thus addable to the scalar field of the Earth, can cause a sam-
ple to lose a few percent of its weight or the Earth’s gravity
as detected by [21]. This study will quantitatively analyze the
gravitational field shielding due to the scalar field generated
by type II superconductors.

2 Gravitational Shielding by Scalar Field

In the 5D fully covariant K-K theory with a scalar field that
has successfully unified the 4D Einsteinian general relativ-
ity and Maxwellian electromagnetic theory, the gravitational
field of a static spherically symmetric object in the Einstein
frame was obtained from the 5D equation of motion of matter
as [16, 22]

g =
c2

2Φ2

(
dΦ
dr

+ Φ
dν
dr

)

eν−λ, (3)

where the metric and scalar field solutions of the 5D fully
covariant K-K theory are given by [23]

eν = Ψ2Φ−2, (4)

eλ =

(

1−
B2

r2

)2

Ψ−2, (5)

Φ2 = −α2Ψ4 + (1+ α2)Ψ−2, (6)

with

Ψ =

( r − B
r + B

)1/
√

3

, (7)

B =
G0M

√
3(1+ α2)c2

, (8)

α =
Q

2
√

G0M
. (9)

HereM andQ are the mass and electric charge of the object.
For a neutral object (i.e.,α = 0 or Q = 0), the gravita-

tional field Eq. (3) obtained from the 5D fully covariant K-K
theory with a scalar field can be simplified to [17]

g = gN

(

1−
B2

r2

)−3

Φ−7 =
1
64

(
Φ
√

3 + 1
)6
Φ−7−3

√
3, (10)

where the scalar fieldΦ and the critical or singular radiusB
of the K-K solution are simplified as

Φ = Ψ−1, B =
G0M
√

3c2
. (11)

The singular radiusB of the K-K solution is a factor of
√

3/6
times smaller than the Schwarzschild radius. Eq. (10) indi-
cates that the gravitational field obtained from the 5D fully
covariant K-K theory with a scalar field is influenced by the
scalar fieldΦ. This type of influence can be understood as the
gravitational field shielding by scalar field.

In the case of weak fields (i.e.,B � r or in other words,
when the gravitational potential energy of a particle is much
smaller than the rest energy of the particle), we can approxi-
mately simplifyg as

g = gN

(

1−
14G0M

3c2r

)

= 1− 7δΦ. (12)

Here we have replacedΦ = 1 + δΦ. Comparing the field at
the surface of object between Eq. (2) and Eq. (12), we obtain
the extinction coefficient as

h =
56πG0R

9c2
∼ 1.5× 10−26R, (13)

which is abouth ∼ 1.5 × 10−26 m2/kg for an object with ra-
dius of one meter and abouth ∼ 10−19 m2/kg for an object
with the size of Earth. It is seen that the gravitational field
shielding by scalar field is undetectable in a laboratory ex-
periment since the extinction coefficient is very small for an
object with laboratory scale size. For an object with Earth’s
radiusR∼ 6.4×106 m, the extinction coefficient ish ∼ 10−19,
the order of the space measurements. This analysis is valid
only for the case of weak fields.

The reason for the gravitational field to be shed is the sig-
nificance of the scalar field, which rapidly increases as the
radial distance approaches to the singular radius, i.e.,r → B
(Top panel of Figure 1). The gravitational field is inversely
proportional to the scalar field with a power of 7−3

√
3 ∼ 1.8

if Φ � 1 as shown in Eq. (10). By writing Eq. (10) as the
Newtonian form of the gravitational field

g =
GM
r2

, (14)

where theG is defined as an equivalent gravitational constant

G = G0

(

1−
B2

r2

)−3

Φ−7 =
1
64

(
Φ
√

3 + 1
)6
Φ−7−3

√
3. (15)

This suggests that the gravitational field shielding occurs be-
cause the strong scalar field significantly varies or decreases
the equivalent gravitational constant around the object.

To investigate the gravitational shielding by scalar field in
the case of strong fields, we plot in the bottom panel of Fig-
ure 1 the gravitational field or constant ratio (g/gN or G/G0)
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Fig. 1: Scalar field and gravitational field shielding by scalar field.
Top panel: the scalar field (Φ) and bottom panel: the ratio be-
tween the K-K and Newtonian gravitational field or constant (g/gN

or G/G0) of a neutral object vs. the normalized radial distance
r/B [17].

as a function of the radius distance (r/B) [17]. It is seen that
the gravitational field is significantly reduced (or shed) by the
scalar field whenr is comparable toB. For instances, the
gravitational field is shed by∼ 10% (or the percentage of
weight loss for a sample object) atr = 100B, by ∼ 20% at
r = 35B, by ∼ 40% atr = 15B, by ∼ 80% atr = 5B, and
∼ 100% atr = B. Therefore, for a weak field, the relative
difference of the field is small and thus the shielding effect is
negligible. For a strong field, however, the gravitational field
or constant ratio is small or the relative difference of the field
is large so that the shielding effect is significant. The gravi-
tational field of an object, whenr = B or its mass-to-radius
ratio is aboutM/r ' 2×1027 kg/m, is completely shed by the
strong scalar field or by the huge amount of mass enclosed.
As shown in the top panel of Figure 1, the scalar field in-
creases asr approachesB. The scalar field is∼ 1.4 atr = 4B,
∼ 4 atr = 1.6B, and tends to infinity whenr → B. When the
scalar field is unity (i.e.,Φ = 1), we haveg/gN = 1, which
refers to that the gravitational field is not shed. When the

scalar field significantly departs from the unity, for instance,
atΦ = 1.2 or δΦ = 0.2, we haveg/gN ' 0.3, which refers to
that a 70% of gravitational field is shed by the scalar field.

3 Gravitational Shielding by Type II Superconductors

About two decades ago, Podkletnov and Nieminen [21] ex-
perimentally discovered that a bulk sintered ceramic (type II
superconductor) disk of YBa2Cu3O7−x can have a moderate
shielding effect against the gravitational field. This effect in-
creases with the speed of disk rotation and also depends on
the temperature. It was suggested that the shielding effect is
the result of a certain state of energy that exists inside the
crystal structure of the superconductor at low temperature.
This state of energy changes the interactions between electro-
magnetic, nuclear, and gravitational fields inside a supercon-
ductor, and is responsible for the observational phenomena.
But a shielding physics has not yet been developed.

Here, we propose a possible shielding physics to explain
this phenomena. According to the Ginzburg-Landau theory,
a rotating disk of type II superconductor at the phase transi-
tion with low temperature (e.g., 70K) generates a scalar field
[19-20, 24-30] that varies the equivalent gravitational con-
stant along with the Earth scalar field in and around the su-
perconductor and thus shields the gravitational field of the
Earth. According to the 5D fully covariant K-K theory and
solution, the scalar field of the Earth at the surface is about
the unity becauseB� r. Now, in the Podkletnov and Niemi-
nen’s experiment, the ceramic (or type II) superconductor can
produce an extra scalar fieldδΦ, which is responsible for the
small weight loss of the sample.

Based on the previously-developed Landau theory of the
second-order phase transition, Ginzburg and Landau [19, 30]
showed that the free energyF of a superconductor per unit
volume near the transition can be expressed in terms of a com-
plex order parameter fieldψ by

F = Fn + a|ψ|2 +
b
2
|ψ|4 +

1
2m
|(−i~ 5 −2e~A)ψ|2 +

|~B|2

2μ0
, (16)

where Fn is the free energy in the normal phase,a and b
are phenomenological parameters,m is an effective mass,e
is the charge of electron,~A is the magnetic vector poten-
tial and ~B is the magnetic field. The absolute value of the
complex order parameter field|ψ| can be considered as a real
scalar field called Ginzburd-Landau scalar field denoted here
by ΦGL ≡ |ψ|. Then, in Eq. (16), the second and third terms
are the scalar field potential energy; the first part of the fourth
term is the scalar field kinetic energy; and the other parts of
the fourth term give the energy that couples the scalar field
and magnetic field; and the last term is the energy of mag-
netic field.

By minimizing F with respect to fluctuations ofψ and ~A,
one can derive the Ginzburg-Landau equations [30-31]

aψ + b|ψ|2ψ +
1

2m
(−i~ 5 −2e~A)2ψ = 0, (17)
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Fig. 2: Gravitational field shielding by scalar field associated with
type II superconductor disk. The percentage of weight loss of the
sample is plotted as a function of the temperature of the type II su-
perconductors [17].

~j =
2e
m

Re[ψ∗(−i~ 5 −2e~A)ψ], (18)

where~j is the electrical current density, which is real.
For a homogeneous superconductor, in which~j = 0, Eq.

(17) can be simplified to

aψ + b|ψ|2ψ = 0. (19)

The solutionψ = 0 is trivial and corresponds to the normal
state of the superconductor above the superconducting tran-
sition temperatureTc. The non-trivial solution of Eq. (19)
determines the Ginzburg-Landau scalar field

ΦGL ≡ |ψ| =

√

−
a
b
=

√

−
a0

b
(T − Tc). (20)

Here, we have assumed the temperature dependence ofa to
be a = a0(T − Tc) with positive ratioa0/b. For the YBCO
superconductor,Tc ∼ 93 K. Suggesting all types of scalar
fields to be similar in physics and addable, we obtain the total
scalar field in or around a type II superconductor,

Φtotal = ΦEarth+ ΦGL

= 1+
2G0ME

3c2RE
+

√

−
a0

b
(T − Tc), (21)

whereME andRE are Earth’s mass and radius.
To quantitatively study the gravitational field shielding by

the Ginzburg-Landau scalar field along with the Earth scalar
field, we plot in Figure 2 the weight relative loss of the sam-
ple or the gravitational field relative change at the sample as
a function of the temperature of the type II superconductor.
It is seen that the weight relative loss of the sample or the
gravitational field relative change increases as the tempera-
ture decreases or as the ratioa0/b increases. AtT ∼ 70 K

anda0/b ∼ 10−8 − 10−6, the weight relative loss or the gravi-
tational field relative change is∼ 0.5− 3%, which can be the
order of measurements [21].

4 Discussion and Conclusion

For a rotating disk of type II superconductor, the accelera-
tion of inertially moving cooper pairs in the superconductor
is equivalent to a gravitational field, which may couple with
the Ginzburg-Landau scalar field to produce an extra shield-
ing effect on gravity as shown in [21]. In future study, we will
quantitatively analyze the rotation dependence for the gravi-
tational field shielding by the Ginzburg-Landau scalar field of
type II superconductors.

As a consequence, we have analytically studied the gravi-
tational field shielding by scalar field and type II supercon-
ductors, in accord with the 5D fully covariant K-K theory
with a scalar field and the Ginzburg-Landau theory for su-
perconductors. The results have indicated that the gravita-
tional field shielding by the scalar field of a body is very small
at an undetectable level if the field is weak. The extinction
coefficient derived from the comparison with the Majorana’s
gravitational field shielding theory is consistent with labora-
tory and space measurements. In the case of strong fields,
however, the gravitational field shielding effect can be signif-
icant. This will have important applications in strong-field
astrophysics and greatly impact the physics of supernova ex-
plosions, the models of neutron stars for their mass-radius
relations, and the theory of black hole formations.

Detection of the gravitational field shielding is a challenge
to a laboratory experiment, but possible especially when the
object becomes a superconductor. A type II superconduc-
tor may produce a significant Ginzburg-Landau scalar field at
the phase transition and thus may be used to shield gravity as
claimed by [21]. The result obtained from this study can be
consistent with the measurements. The significant shielding
of gravitational field by scalar field produced by supercon-
ductors may lead to a new spaceflight technology in future.
The gravitational field shielding by type II superconductors
still need further experimentally confirmed.
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Causal Version of Newtonian Theory by Time–Retardation of the Gravitational
Field Explains the Flyby Anomalies

Joseph C. Hafele
Retired Physicist; Home Office: 618 S. 24th St., Laramie, WY, USA

E-mail: cahafele@bresnan.net

Classical Newtonian gravitational theory does not satisfythe causality principle because
it is based on instantaneous action-at-a-distance. A causal version of Newtonian theory
for a large rotating sphere is derived herein by time-retarding the distance between
interior circulating point-mass sources and an exterior field-point. The resulting causal
theory explains exactly the six flyby anomalies reported by Anderson et al. in 2008.
It also explains exactly an anomalous decrease in the Moon’sorbital speed. No other
known theory has been shown to explain both the flyby anomalies and the lunar orbit
anomaly.

1 Introduction

In 2008 Andersonet al. reported that anomalous orbital-
energy changes have been observed during six spacecraft fly-
bys of the Earth [1]. The reported speed-changes range from a
maximum of+13.28 mm/s for the NEAR flyby to a minimum
of −4.6 mm/s for the Galileo-II flyby. Andersonet al. also
found an empirical prediction formula that gives calculated
speed-changes that are close to the observed speed-changes.
If the speed-change for the empirical prediction formula is
designated byδvemp, it can be expressed as follows

δvemp=
2veq

c
vin (cosλin − cosλout) =

= −
2veq

c
vin

∫ tout

tin

sin
(

λ(t)
) dλ

dt
dt , (1)

whereveq is the Earth’s equatorial rotational surface speed,
c is the vacuum speed of light,vin is the initial asymptotic
inbound speed,λin is the asymptotic inbound geocentric lati-
tude, andλout is the asymptotic outbound geocentric latitude.
If t is the observed coordinate time for the spacecraft in its
trajectory, thenλin =λ(tin) andλout= λ(tout). If dλ/dt= 0, then
δvemp= 0. An order of magnitude estimate for the maximum
possible value forδvemp is 2(5×102/3×108)vin ∼30 mm/s.

The following is a direct quote from the conclusions of
an article published in 2009 by M. M. Nieto and J. D. Ander-
son [2]:

“Several physicists have proposed explanations of the
Earth flyby anomalies. The least revolutionary invokes
dark matter bound to Earth. Others include modifica-
tions of special relativity, of general relativity, or of the
notion of inertia; a light speed anomaly; or anisotropy
in the gravitational field —- all of those, of course,
deny concepts that have been well tested. And none
of them have made comprehensive, precise predictions
of Earth flyby effects. For now the anomalous energy
changes observed in Earth flybys remain a puzzle. Are
they the result of imperfect understandings of conven-

tional physics and experimental systems, or are they the
harbingers of exciting new physics?”

It appears that a new and possibly unconventional theory is
needed.

The empirical prediction formula found by Anderson
et al. is not based on any mainstream theory (it was sim-
ply “picked out of the air”), but it is remarkably simple and
does produce calculated speed-changes that are surprisingly
close to the observed speed-changes. The formula forδvemp

(1) gives three clues for properties that need to be satisfied
by any theory that is developed to explain the flyby anomaly:
1) the theory must produce a speed-change that is propor-
tional to the ratioveq/c, 2) the anomalous force acting on the
spacecraft must change theλ component of the spacecraft’s
speed, and 3) the speed-change must be proportional tovin.

The objective of this article is threefold: 1) derive a new
causal version of classical acausal Newtonian theory, 2) show
that this new version is able to produce exact agreement with
all six of the anomalous speed-changes reported by Ander-
sonet al., and 3) show that it is also able to explain exactly a
“lunar orbit anomaly” that will be described below. The pro-
posed new version for Newtonian theory requires only main-
stream physics: 1) classical Newtonian theory and 2) the cau-
sality principle which requires time-retardation of the gravi-
tational field. It also satisfies the three requirements of the
empirical prediction formula.

The proposed theory is based on a simple correction that
converts Newton’s acausal theory into a causal theory. The re-
sulting causal theory has a new, previously overlooked, time-
retarded transverse component, designatedgtrt, which de-
pends on 1/cg, wherecg is the speed of gravity, which approx-
imately equals the speed of light. The new total gravitational
field for a large spinning sphere,g, has two components, the
standard well-known classical acausal radial component,gr,
and a new relatively small time-retarded transverse vortex
component,gtrt. The total vector fieldg= gr + gtrt. The zero-
divergence vortex transverse vector fieldgtrt is orthogonal to
the irrotational radial vector fieldgr.

Joseph C. Hafele. Causal Version of Newtonian Theory Explains the Flyby Anomalies 3
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The new total vector field is consistent with Helmholtz’s
theorem, which states that any physical vector field can be
expressed as the sum of the gradient of a zero-rotational scalar
potential and the curl of a zero-divergence vector potential
[3]. This means thatgr can be derived in the standard way
from the gradient of a scalar potential, andgtrt can be derived
from the curl of a vector potential, butgtrt cannot be derived
from the gradient of a scalar potential.

The proposed causal version can be derived by using the
slow-speed weak-field approximation for general relativity
theory.

2 Summary of the derivation of the formulas for the
time-retarded transverse gravitational field and the
predicted flyby speed-changes

In the section entitledThe Linear Approximation to GR in
W. Rindler’s popular textbookEssential Relativity [4], Rind-
ler derives the formulas for the time-retarded scalar potential
ϕ, the time-retarded “gravitoelectric” acceleration fielde, the
time-retarded vector potentiala, and the time-retarded “grav-
itomagnetic” induction fieldh. His formulas forϕ, e, a, andh
are derived from general relativity theory by using the slow-
speed weak-field approximation. They are as follows

ϕ = G
$

[

ρ

r′′

]

dV, a =
G
c

$
[

ρu
r′′

]

dV

e = −∇ϕ , h = ∇ × 4a























, (2)

whereρ is the mass-density of the central object,u is the
inertial velocity (the velocity in an inertial frame) of a source-
point-mass in the central object,r′′ is the vector distance from
an inner source-point-mass to an outer field-point, and the
square brackets [ ] mean that the enclosed function is to be
evaluated at the retarded time, i.e., the time retarded by the
light travel time from the source-point to the field-point.

Let the origin for an inertial (nonaccelerating and nonro-
tating) frame-of-reference coincide with the center-of-mass
of a contiguous central object. Letr′ be the radial vector from
the origin to a source-point-mass in the central object, andlet
r be the radial vector from the origin to an external field-point,
so thatr′′ = r− r′. The square brackets in the triple integrals
in (2) indicate that the integrands [ρ/r′′] and [ρu/r′′] are to
be integrated over the volume of the central object at the re-
tarded time.

Let m be the mass of a test-mass that occupies the field-
point at r, and letu be the inertial velocity of the test mass.
The analogous Lorentz force law, i.e., the formula for the
time-retarded gravitational forceF acting onm at r, is [4]

F = −m

(

e +
1
c

(u × h)

)

= −m∇

(

G
$

[

ρ

r′′

]

dV

)

−

–m

(

u ×

(

∇ ×

(

4G
c2

$
[

ρu
r′′

]

dV

)))

. (3)

Rindler’s time-retarded version for the slow-speed weak-
field approximation gives a complete stand-alone time-
retarded solution. The time-retarded fields were derived from
general relativity theory, but there is no need for further refer-
ence to the concepts and techniques of general relativity the-
ory. Needed concepts and techniques are those of classical
Newtonian theory.

Furthermore, Rindler’s formulas satisfy the causality
principle because the fields are time-retarded. Rindler’s ver-
sion gives a good first approximation only if

v2 ≪ c2, u2
≪ c2,

GM
r
= |ϕ| ≪ c2, (4)

whereM is the total mass of the central object.
Notice in (3) that the acceleration caused by the grav-

itoelectric field e is independent ofc, but the acceleration
caused by the gravitomagnetic induction fieldh is reduced
by the factor 1/c2. The numerical value forc is on the or-
der of 3×108 m/s. If the magnitude fore is on the order of
10 m/s2 (the Earth’s field at the surface), and the magnitudes
for u andu are on the order of 104 m/s, the relative magni-
tude for the acceleration caused byh would be on the order
of 10×4(104/3×108)2m/s2

∼ 10−8m/s2. This estimate shows
that, for slow-speed weak-field practical applications in the
real world, the acceleration caused byh is totally negligible
compared to the acceleration caused bye.

The empirical formula indicates that the flyby speed-
change is reduced by 1/c, not by 1/c2, which rules out the
gravitomagnetic field as a possible cause for the flyby anoma-
lies. The acceleration ofh is simply too small to explain the
flyby anomalies.

Consequently, the practicable version for Rindler’s Lo-
rentz force law becomes the same as a time-retarded version
for Newton’s well-known inverse-square law

F = −Gm∇
$

[

ρ

r′′

]

dV, (5)

whereF is the time-retarded gravitational force acting onm.
Let d3F be the time-retarded elemental force of an ele-

mental point-mass sourcedm′. The time-retarded version for
Newton’s inverse-square law becomes

d3F = −Gm
dm′

r′′2
r′′

r′′
, (6)

wherer′′/r′′ is a unit vector directed towards increasingr′′.
By definition, the gravitational field of a source atr′ is

the gravitational force of the sourcedm′ that acts on a test-
massm at r per unit mass of the test-mass. The traditional
symbol for the Newtonian gravitational field isg. Therefore,
the formula for the time-retarded elemental gravitationalfield
d3
g of an elemental point-mass-source atr′ for a field-point

at r becomes

d3
g =

d3F
m
= −G

dm′

r′′2
r′′

r′′
. (7)
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The negative sign indicates that the gravitational force isat-
tractive.

Let t be the observed coordinate time atr, let t′ be the
retarded time atr′, and letcg be the speed of propagation of
the gravitational field. The connection betweent andt′ is

t = t′ +
r′′

cg
, t′ = t −

r′′

cg
. (8)

Obviously, t(t′) is a function oft′, andvice versa, t′(t) is a
function oft. The Jacobian for the transformation fromt to t′

is given by

Jacobian=
dt
dt′
= 1+

1
cg

dr′′

dt′
. (9)

This Jacobian is needed to solve the triple integral over the
volume of the central object. It leads to the necessary fac-
tor 1/cg, wherecg is the speed of propagation of the Earth’s
gravitational field [5].

Let ρ(r′) be the mass-density of the central object atr′.
Then

dm′ = ρ(r′) dV. (10)

The resulting formula for the elemental total gravitational
field d3

g, which consists of the radial componentd3
gr and

the transverse componentd3
gtrt, becomesd3

g= d3
gr + d3

gtrt.
The differential formulas for each component become

d3
gr = −G

dm′

r′′2

(

r′′

r′′

)

r

, d3
gtrt = −G

dm′

r′′2

(

r′′

r′′

)

trt

, (11)

where (r′′/r′′)r is the radial component of the unit vector and
(r′′/r′′)trt is the transverse component of the unit vector. The
total field is obtained by a triple integration over the volume
of the central object at the retarded time.

Let (X, Y, Z) be the rectangular coordinates for the iner-
tial frame-of-reference, and let theZ-axis coincide with the
spin axis of the central object. LetRC be the relative radial
component, and letTCZ be the magnitude for theZ-axis com-
ponent of the relative transverse component. As can be seen
in Fig. 1, the formulas forRC andTCZ are related tor, r′,
andr′′ by

RC =
r · r′′

r′′r
=

r · r − r · r′

r′′r

TCZ =
(r × r′′)Z

r′′r
=

(r′ × r)Z

r′′r
=

r′XrY − r′YrX

r′′r































, (12)

whererX , rY are theX, Y components ofr, andr′X , r
′
Y are the

X, Y components ofr′.
The formula for the magnitude ofgtrt becomes [5]

gtrt =

$ (

−G
dm′

r′′2

)

(TCZ) (Jacobian) . (13)

The triple integral is rather easy to solve by using numer-
ical integration if the central object can be approximated by a
large spinning isotropic sphere. To get a good first approx-

Fig. 1: Depiction of the vector distancesr, r′, andr′′ and the com-
ponents of the vector fieldd3

g, d3
gr, andd3

gtrt.

imation, the Earth was simulated in [5] by a large spinning
isotropic sphere.

The formulas for the geocentric radial distance to the
field-point and its derivative are

r (θ) =
rp (1+ ε)

1+ ε cosθ
dr
dθ
=

r (θ)2

rp

ε

1+ ε
sinθ































, (14)

whereθ is the parametric polar coordinate angle for the space-
craft in the plane of the trajectory,rp is the geocentric radial
distance at perigee, andε is the eccentricity of the trajectory.

It is shown in [5] that the formula for the Jacobian is

Jacobian= 1+
1
cg

dr′′

dt
=

= 1−
r
cg

r′

r′′
(

Ωφ −ΩE

)

cosλ′ sinφ′. (15)

It is also shown in [5] that the only term ford3
gtrt that will

survive the triple integration is

d3gtrt = −Gρ̄ rE

Ωφ − ΩE

ΩE
cos2(λ) IG

dr′

rE

dλ′dφ′, (16)

whereρ̄ is the mean value forρ(r′) and the formula for the
integrand is

IG =
r3
E

r3

ρ(r′)
ρ̄

r′4

r4
E

cos3(λ′)
sin2 φ′

(1+ x)2
(17)

where the variablex is defined by

x ≡
r′2

r2
− 2

r′

r
cosλ′ cosφ′. (18)

It has been shown in [5] that the resulting formula for the
magnitude of the transverse component is

gtrt(θ) = −G
IE

r4
E

veq

cg

Ωφ(θ) −ΩE

ΩE
cos2

(

λ(θ)
)

PS
(

r(θ)
)

, (19)
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whereG is the gravity constant,IE is the Earth’s spherical
moment of inertia,rE is the Earth’s spherical radius,ΩE is the
Earth’s spin angular speed,veq is the Earth’s equatorial sur-
face speed,cg is the speed of propagation of the Earth’s gravi-
tational field,θ is the spacecraft’s parametric polar coordinate
angle in the plane of the orbit or trajectory,Ωθ = dθ/dt is the
spacecraft’s angular speed,Ωφ is the azimuthalφ-component
of Ωθ, λ is the spacecraft’s geocentric latitude,r is the space-
craft’s geocentric radial distance, andPS (r) is an inverse-
cube power series representation for the triple integral over
the Earth’s volume. The formula forPS (r) is [5]

PS (r) ≡
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,

where the values for the coefficients are

C0 = 0.50889, C2 = 0.13931,

C4 = 0.01013, C6 = 0.14671.

If the magnitude is negative, i.e., ifΩφ >ΩE (prograde),
the vector field componentgtrt is directed towards the east. If
Ωφ <0 (retrograde), it is directed towards the west.

The formula for the time-retarded transverse gravitational
field, gtrt, satisfies the first requirement of the empirical pre-
diction formula. It is proportional toveq/cg� veq/c. But the
empirical prediction formula also requires that the speed-
change must be in theλ-component of the spacecraft’s ve-
locity, uλ. The magnitude for theλ-component is defined by

vλ = rλ
dλ
dt
= rλ

dλ
dθ

dθ
dt
= rλΩθ

dλ
dθ
, (20)

whererλ is theλ-component ofr.
The velocity component,uλ, is orthogonal togtrt. Con-

sequently,gtrt cannot directly change the magnitude ofuλ
(it changes the direction).

However, a hypothesized induction-like field, designated
Fλ, can be directed perpendicularly togtrt in theuλ-direction.
Assume that theφ-component of the curl ofFλ equals
−kdgtrt/dt, wherek is a constant. This induction-like field
can cause a small change in the spacecraft’s speed. The recip-
rocal of the constantk, vk = 1/k, called the “induction speed”,
becomes an adjustable parameter for each case. The average
for all cases gives an overall constant for the causal theory.

The formula for the magnitude ofFλ has been shown in
[5] to be

Fλ =
veq

vk

rE

r (θ)

∫ θ

0

r (θ)

rE

Ωθ(θ)

ΩE

1

rE

dr
dθ

dgtrt

dθ
dθ . (21)

The acceleration caused byFλ satisfies the second require-
ment of the empirical prediction formula, the one that re-
quires the anomalous force to change theλ-component of the
spacecraft’s velocity.

The anomalous time rate of change in the spacecraft’s or-
bital energy is given by the dot product,u · Fλ. It has been
shown in [5] that the calculated asymptotic speed-change,
δvtrt, is given by

δvtrt = δvin + δvout , (22)
where

δvin = δv (θmin) , δvout = δv (θmax) , (23)

and

δv (θ) =
vin

2

∫ θ

0

rλ(θ) Fλ(θ)

v2in

dλ
dθ

dθ . (24)

The anglesθmin andθmax are the minimum and maximum val-
ues forθ. The initial speedvin = v (θmin). The speed-change
δv(θ) is proportional tovin, which satisfies the third require-
ment of the empirical prediction formula.

3 Summary of the change in the Moon’s orbital speed
caused by the Earth’s time-retarded transverse gravi-
tational field

In 1995, F. R. Stephenson and L. V. Morrison published
a remarkable study of records of eclipses from 700 BC to
1990 AD [6]. They conclude∗: 1) the LOD has been in-
creasing on average during the past 2700 years at the rate of
+1.70±0.05 ms cy−1 (i.e. (+17.0±0.5) × 10−6 s per year),
2) tidal braking causes an increase in the LOD of+2.3±0.1
ms cy−1 (i.e. (+23±1)×10−6 s per year), and 3) there is a non-
tidal decrease in the LOD, numerically−0.6±0.1 ms cy−1

(i.e. (−6±1)× 10−6 s per year).
Stephenson and Morrison state that the non-tidal decrease

in the LOD probably is caused by post-glacial rebound. Post-
glacial rebound decreases the Earth’s moment of inertia,
which increases the Earth’s spin angular speed, and thereby
decreases the LOD. But post-glacial rebound cannot change
the Moon’s orbital angular momentum.

According to Stephenson and Morrison, tidal braking
causes an increase in the LOD of (23±1)× 10−6 seconds per
year, which causes a decrease in the Earth’s spin angular mo-
mentum, and by conservation of angular momentum causes
an increase in the Moon’s orbital angular momentum. It has
been shown in [5] that tidal braking alone would cause an in-
crease in the Moon’s orbital speed of (19±1)× 10−9 m/s per
year, which corresponds to an increase in the radius of the
Moon’s orbit of (14±1) mm per year.

But lunar-laser-ranging experiments have shown that the
radius of the Moon’s orbit is actually increasing at the rateof
(38±1) mm per year [7]. This rate for increase in the radius
corresponds to an increase in the orbital speed of (52±2) ×
10−9 m/s per year. Clearly there is an unexplained or anoma-
lous difference in the change in the radius of the orbit of
(−24±2) mm per year (38−14=24), and a corresponding
anomalous difference in the change in the orbital speed of

∗LOD means length-of-solar-day and ms cy−1 means milliseconds per
century.
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Fig. 2: Required induction speed ratio (designated by•), vk/veq± an
estimate for the uncertainty, versus eccentricityε. The mean value
for all seven ratios is shown by the horizontal line.

(−33±3)× 10−9 m/s per year (52−19=33). This “lunar or-
bit anomaly” cannot be caused by post-glacial rebound, but
it can be caused by the proposed causal version of Newton’s
theory.

It has been shown in [5] that the causal version of New-
ton’s theory produces a change in the Moon’s orbital speed of
(−33±3) × 10−9 m/s per year if the value for the induction
speedvk = (8±1)veq. Therefore, the causal theory explains
exactly the lunar orbit anomaly. It gives a new closed orbit
case for anomalous speed-changes.

4 Calculated speed-changes caused by the time-retarded
version of Newton’s theory

It has been shown in [5] that the causal version of Newton’s
theory explains exactly the six flyby anomalies reported by
Andersonet al. [1]. The required values forvk cluster be-
tween 6veq and 17veq.

A graph of the required induction speed ratios,vk/veq, ver-
sus eccentricityε, Fig. 2, shows that the required value forvk
for the lunar orbit anomaly is consistent with the required val-
ues forvk for the six Earth flyby anomalies. The average±
standard deviation is

v̄k = (10± 4)veq = 5± 2 km/s. (25)

It will be interesting to compare this average, 5±2 km/s, with
parameter values for other flyby theories.

5 Predicted speed-changes for future high-precision
Doppler-shift experiments

The speed-change caused by the causal version of Newton’s
theory depends on the speed of gravitycg, the properties of
the central sphere; massME, radiusrE, angular speedΩE,
moment of inertiaIE, and equatorial surface speedveq, on the

rp/rE P δvyr δvryr
(hours) (mm/s per year) (mm/s per year)

2 11.2 +315 −517

3 20.7 +29.5 −76.8

4 31.8 +3.93 −21.0

5 44.4 +0.173 −7.97

6 58.4 −0.422 −3.69

7 73.6 −0.442 −1.95

8 89.9 −0.362 −1.14

Table 1: Calculated periodP (in hours) and predicted speed-change
for prograde orbitsδvyr (in mm/s per year), and the predicted speed-
change for retrograde orbitsδvryr (in mm/s per year), for a spacecraft
in a near-Earth orbit withε= 0.5,αeq=45◦, λp = 45◦, vk = 14veq, and
for rp ranging from 2rE to 8rE [5].

orbital properties of the spacecraft; radius at perigeerp, ec-
centricityε, inclination to the equatorial planeαeq, and lati-
tude at perigeeλp, and the induction speedvk. If ε= 0 or if
αeq=0, the speed-changeδvtrt = 0. Even ifε,0 andαeq,0,
δvtrt is still equal to zero if perigee is over the equator (λp=0◦)
or one of the poles (λp=±90◦). The maximum speed-change
occurs for spacecrafts in highly eccentric and inclined near-
Earth orbits.

Assumecg= c and the induction speed is its largest prob-
able value,vk =14veq. Suppose the orbital properties for a
spacecraft areε=0.5, αeq= 45◦, andλp= 45◦. Let rp range
from 2rE to 8rE. The periodP is given by Kepler’s 3rd law,
and the annual speed change for progradeδvyr =Nrevδvtrt, and
for retrogradeδvryr =Nrevδvtrt, whereNrev is the number of
revolutions per year. Calculated speed-changes are listedin
Table 1 [5].

6 Other theories which explain the Earth flyby anoma-
lies

There are at least two other published theories that explainthe
Earth flyby anomalies: 1) the 3-space flow theory of R. T. Ca-
hill [8], and 2) the exponential radial field theory of H. J. Bu-
sack [9].

In [8] Cahill reviews numerous Michelson interferome-
ter and one-way light-speed experiments which clearly show
an anisotropy in the velocity of light. His calculated flyby
speed-changes depend on the direction and magnitude for 3-
space inflow at the spacecraft on the date and time of the
flyby. Cahill found that the average speed for 3-space inflow
is 12±5 km/s. Cahill’s average, 12±5 km/s, essentially equals
the average value forvk (25), 5±2 km/s.

In [9] Busack applies a small exponential correction for
the Earth’s radial gravitational field. Iff (r, u) is Busack’s
correction, the inverse-square law becomes

gr(r, u) = −
GME

r2

r
r
(

1+ f (r, u)
)

,
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where f (r, u) is expressed as

f (r, u) = A exp

(

−
r − rE

B −C(r · u)/(r · uSun)

)

.

The velocityu is the velocity of the field-point in the “gravita-
tional rest frame in the cosmic microwave background”, and
uSun is the Sun’s velocity in the gravitational rest frame. Nu-
merical values for the adjustable constants are approximately
A=2.2×10−4, B=2.9×105 m, andC = 2.3×105 m. Busack
found that these values produce rather good agreement with
the observed values for the flyby speed-changes.

Both of these alternative theories require a preferred
frame-of-reference. Neither has been tested for the lunar orbit
anomaly, and neither satisfies the causality principle because
neither depends on the speed of gravity.

7 Conclusions and recommendations

This article shows conclusively that the proposed causal ver-
sion of Newton’s theory agrees with the now-known facts-
of-observation. It applies only for slow-speeds and weak-
fields. Effects of time retardation appear at the relatively large
first-orderv/cg level, but they have not been seen in the past
because they decrease inversely with the cube of the closest
distance. If perigee is very close, however, time retardation
effects can be relatively large. It is recommended that vari-
ous available methods be used to detect new observations of
effects of the causality principle.
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Dynamical 3-Space Gravitational Waves: Reverberation Effects
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Gravity theory missed a key dynamical process that became apparent only when ex-
pressed in terms of a velocity field, instead of the Newtoniangravitational acceleration
field. This dynamical process involves an additional self-interaction of the dynam-
ical 3-space, and experimental data reveals that its strength is set by the fine struc-
ture constant, implying a fundamental link between gravityand quantum theory. The
dynamical 3-space has been directly detected in numerous light-speed anisotropy ex-
periments. Quantum matter has been shown to exhibit an acceleration caused by the
time-dependence and inhomogeneity of the 3-space flow, giving the first derivation of
gravity from a deeper theory, as a quantum wave refraction effect. EM radiation is
also refracted in a similar manner. The anisotropy experiments have all shown 3-space
wave/turbulence effects, with the latest revealing the fractal structure of 3-space. Here
we report the prediction of a new effect, namely a reverberation effect, when the gravi-
tational waves propagate in the 3-space inflow of a large mass. This effect arises from
the non-linear dynamics of 3-space. These reverberations could offer an explanation for
the Shnoll effect, in which cosmological factors influence stochastic processes, such as
radioactive decay rates.

1 Introduction

Newton’s inverse square law of gravity, when expressed in
terms of an acceleration fieldg(r , t), has the differential form:

∇ · g = −4πGρ, ∇ × g = 0 (1)

where G is the gravitational constant andρ is the real mat-
ter density. Theg field was believed to exist within an actual
Euclidean space. It has become increasingly evident through
the observation of spiral galaxies, the expanding universeand
gravitational anomalies, that Newton’s inverse square lawis
an incomplete theory of gravity. However a unique gener-
alisation of (1) has lead to a resolution of these anomalies,
by writing the acceleration fieldg(r , t) in terms of the Euler
acceleration of a velocity fieldv(r , t) [1,2]:

g =
∂v
∂t
+ (v · ∇)v, (2)

∇ ·
(

∂v
∂t
+ (v · ∇)v

)

= −4πGρ, ∇ × v = 0. (3)

This approach utilises the the well known Galilean covariant
Euler acceleration for a fluidic flow of the substratum with
velocity v(r , t). The velocity field is defined relative to an
observer. The time dependent nature of the flow means that
Newtonian gravity, within this flow formalism, can support
wave phenomena. But a unique term can be added to (3) that
generalises the flow equation, but also preserves the Keple-
rian nature of the planetary motions that underlie Newton’s
gravity formalisation:

∇ ·
(

∂v
∂t
+ (v · ∇)v

)

+
α

8

(

(trD)2 − tr(D2)
)

= −4πGρ,

∇ × v = 0, Di j =
1
2

(

∂vi

∂x j
+
∂v j

∂xi

)

.

(4)

Analysis of Bore Holeg anomaly data revealed thatα is the
fine structure constant [1]. The additional dynamics explains
the “dark matter” effects, and so may be referred to as the
dark matter term:

ρDM(r ) =
α

32πG

(

(trD)2 − tr(D2)
)

(5)

whereby

∇ · g = ∇ ·
(

∂v
∂t
+ ∇

(

v2

2

))

= −4πG (ρM + ρDM) (6)

Dynamical 3-Space is unlike the dualistic space and aeth-
er theories of the past, as herein only space exists, and there
is no aether. This dynamical and structured space provides an
observable and observed local frame of reference. The flow of
the dynamical 3-space has been detected many times dating
back to the Michelson and Morley 1887 experiment, which
has always, until 2002, been mistakenly reported as a null ex-
periment. Wave effects, essentially gravitational waves, are
apparent in the data from various anisotropy experiments∗. A
large part of understanding gravitational waves lies in how
they originate, and also in understanding how they propagate.
This work herein investigated the propagation of these gravi-
tational waves within the background in-flow of a large mass,
such as the earth or the sun. In doing so it was discovered that
the dynamics of the propagation resulted in a reverberation
effect, caused by the non-linear nature of the flow dynamics,
apparent in (3) and (4).

∗Vacuum mode Michelson interferometers have zero sensitivity to these
waves. So such devices have a fundamental design flaw when intended to
detect such waves.
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2 3-Space flow dynamics

First we establish the in-flow of space into a spherical mass,
assuming for simplicity that the mass is asymptotically at rest,
which means that the in-flow has spherical symmetry. In the
case of the earth we know that the earth has a large velocity
with respect to to the local 3-space frame of reference, some
486 km/s in the direction RA= 4.3h, Dec= -75◦ [3]. Here
we restrict the analysis to the case of a spherically symmetric
inflow into a spherical mass, with densityρ(r) and total mass
M. Then (4) becomes (v′ ≡ ∂v(r, t)/∂r)

∂v′

∂t
+ vv′′ +

2vv′

r
+ (v′)2 +

α

2

(

v2

2r2
+
vv′

r

)

= −4πGρ (7)

which for a static flow has the exact solution

v(r)2 =
2β

r
α
2
+

2G
(1− α2 )r

∫ r

0
4πs2ρ(s)ds+

+
2G

(1− α2 )r
α
2

∫ ∞

r
4πs1+ α2 ρ(s)ds,

(8)

HereM is the total matter mass, andβ is a free parameter.
The term 2β/rα/2 describes an inflow singularity or “black
hole” with arbitrary strength. This is unrelated to the puta-
tive black holes of General Relativity. This corresponds toa
primordial black hole. As well the last term in (8) also has
a 1/rα/2 inflow-singularity, but whose strength is mandated
by the matter density, and is absent whenρ(r) = 0 every-
where. This is a minimal “black hole”, and is present in all
matter systems. The 2β/rα/2 term will produce a novel long
range gravitational accelerationg = αβ/2r1+α/2, as observed
in spiral galaxies. For the region outside the sun Keplerian
orbits are known to well describe the motion of the planets
within the solar system, apart from some small corrections,
such as the Precession of the Perihelion of Mercury, which
follow from relativistic effects in the more general form of
(2) [1]. The caseβ = 0 applies to the sun and earth, having
only induced “Minimal Attractor” black holes. These min-
imal black holes contribute to the externalg(r) = GM∗/r2

gravitational acceleration, through an effective mass

M∗ ≈ M +
α

2
M (9)

Outside of a spherical mass, with only an induced black
hole, (8) has a solutionv ∝ 1/

√
r , and thenρDM = 0 outside

of the sphere, which explains why theα−term in (4) went
undiscovered until 2005.

3 Gravitational wave reverberations

We now demonstrate that gravitational waves incoming on,
say, a star or planet develop reverberations, in which the wave
generates following copies of itself. For numerical accuracy
in solving for time dependent effects in (4), we assume a

Fig. 1: Inflowing 3-space perturbationw(r, t) (red) and un-perturbed
inflow v(r) (blue) velocity profiles outside a mass, with the waveform
w(r, t) also shown magnified (yellow).

spherically symmetric incoming wave, which is clearly un-
realistic, and so find numerical solutions to (7), by using the
ansatzv(r, t) = v(r) + w(r, t), wherev(r) ∼ −1/

√
r is the static

in-flow from (8), applicable outside of the star/planet, and so
ignoring the galactic background flow, and wherew(r, t) is the
wave effect, with the initial wavew(r, 0) having the form of
a pulse, as shown in fig.1, where the time evolution ofw(r, t)
is also shown. We see that the initial pulse develops follow-
ing copies of itself. This is a direct consequence of the non-
linearity of (4), or even (3).

These reverberations are expected to be detectable in EM
speed anisotropy experiments. However because the 3-space
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Fig. 2: Representation of the wave data revealing the fractal textured
structure of the 3-space, with cells of space having slightly different
velocities, and continually changing, and moving with respect to the
earth with a speed of∼500km/s, from [4].

is fractal, as illustrated in fig.2 [4], the reverberations are ex-
pected to be complex. As well all systems would generate
reverberations, from planets, moons, sun and the galaxy. The
timescale for such reverberations would vary considerably.
As well as being directly observable in EM anisotropy and
gravitational wave detectors, these reverberations wouldaf-
fect, for example, nuclear decay rates, as the magnitude of
the 3-space fractal structure is modulated by the reverber-
ations, and this fractal structure will stimulate nuclear pro-
cesses. Patterns in the decay rates of nuclei have been ob-
served by Shnollet al., with periodicities over many time
scales [5].

The 3-space is detectable because the speed of EM waves,
in vacuum isc ≈ 300, 000km/s with respect to that space it-
self, whereas an observer, in general, will observe anisotropy
when the observer is in motion with respect to the space. This
effect has been repeatedly observed for over 120 years. The
anisotropy detections have always revealed wave/turbulence
effects, including the original Michelson-Morley experiment.
These wave effects are known as ”gravitational waves”, al-
though a more appropriate description would be ”space wa-
ves”. In the limitα→ 0, (4) and also (7) still have space wave
effects, but these generate gravitational wave effects, namely
fluctuations in the matter acceleration fieldg(r, t), only when
α , 0. So theα-dynamical term is not only responsible for
the earth bore holeg anomaly, and for the so-called ”dark
matter” effects in spiral galaxies, but can also result in forces
acting on matter resulting from the space wave phenomena,
and will be large when significant wave effects occur, with
large wave effects being essentially a galactic effect.
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We derive Electromagnetism from the Elastodynamics of the Spacetime Continuum
based on the identification of the theory’s antisymmetric rotation tensor with the elec-
tromagnetic field-strength tensor. The theory provides a physical explanation of the
electromagnetic potential, which arises from transverse (shearing) displacements of the
spacetime continuum, in contrast to mass which arises from longitudinal (dilatational)
displacements. In addition, the theory provides a physicalexplanation of the current
density four-vector, as the 4-gradient of the volume dilatation of the spacetime con-
tinuum. The Lorentz condition is obtained directly from thetheory. In addition, we
obtain a generalization of Electromagnetism for the situation where a volume force is
present, in the general non-macroscopic case. Maxwell’s equations are found to remain
unchanged, but the current density has an additional term proportional to the volume
force.

1 Introduction

Since Einstein first published his Theory of General Relativ-
ity in 1915, the problem of the unification of Gravitation and
Electromagnetism has been and remains the subject of contin-
uing investigation (see for example [1–9] for recent attempts).
The Elastodynamics of the Spacetime Continuum [10, 11]
is based on the application of a continuum mechanical ap-
proach to the spacetime continuum(STC). Electromagnetism
is found to come out naturally from the theory in a straight-
forward manner.

In this paper, we derive Electromagnetism from the Elas-
todynamics of the Spacetime Continuum (STCED). This the-
ory thus provides a unified description of the spacetime de-
formation processes underlying general relativistic Gravita-
tion [11] and Electromagnetism, in terms of spacetime con-
tinuum displacements resulting from the strains generatedby
the energy-momentum stress tensor.

1.1 A note on units and constants

In General Relativity and in Quantum Electrodynamics, it is
customary to use “geometrized units” and “natural units” re-
spectively, where the principal constants are set equal to 1.
The use of these units facilitates calculations since cumber-
some constants do not need to be carried throughout deriva-
tions. In this paper, all constants are retained in the deriva-
tions, to provide insight into the nature of the equations being
developed.

In addition, we use rationalized MKSA units for Electro-
magnetism, as the traditionally used Gaussian units are grad-
ually being replaced by rationalized MKSA units in more re-
cent textbooks (see for example [12]). Note that the electro-
magnetic permittivity of free spaceǫem, and the electromag-
netic permeability of free spaceµem are written with “em”
subscripts as the “0” subscripts are used inSTCED constants.

This allows us to differentiate between for exampleµem, the
electromagnetic permeability of free space, andµ0, the Lamé
elastic constant for the shear modulus of the spacetime con-
tinuum.

2 Theory of Electromagnetism fromSTCED

2.1 Electromagnetic field strength

In the Elastodynamics of the Spacetime Continuum, the anti-
symmetric rotation tensorωµν is given by [11]

ωµν =
1
2

(uµ;ν − uν;µ) (1)

whereuµ is the displacement of an infinitesimal element of
the spacetime continuum from its unstrained positionxµ. This
tensor has the same structure as the electromagnetic field-
strength tensorFµν defined as [13, see p. 550]:

Fµν = ∂µAν − ∂νAµ (2)

whereAµ is the electromagnetic potential four-vector (φ, ~A),
φ is the scalar potential and~A the vector potential.

Identifying the rotation tensorωµν with the electromag-
netic field-strength tensor according to

Fµν = ϕ0ω
µν (3)

leads to the relation

Aµ = −1
2
ϕ0uµ⊥ (4)

where the symbolic subscript⊥ of the displacementuµ in-
dicates that the relation holds for a transverse displacement
(perpendicular to the direction of motion) [11].

Due to the difference in the definition ofωµν andFµν with
respect to their indices, a negative sign is introduced, andis
attributed to (4). This relation provides a physical explanation

12 Pierre A. Millette. Derivation of Electromagnetism fromthe Elastodynamics of the Spacetime Continuum
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for the electromagnetic potential: it arises from transverse
(shearing) displacements of the spacetime continuum, in con-
trast to mass which arises from longitudinal (dilatational) dis-
placements of the spacetime continuum [11]. Sheared space-
time is manifested as electromagnetic potentials and fields.

2.2 Maxwell’s equations and the current density four-
vector

Taking the divergence of the rotation tensor of (1), gives

ωµν ;µ =
1
2

(uµ;νµ − uν;µµ). (5)

Recalling (28) from Millette [11], viz.

µ0uν;µµ + (µ0 + λ0)uµ;µ
ν = −Xν (6)

whereXν is the volume force andλ0 andµ0 are the Lamé
elastic constants of the spacetime continuum, substituting for
uν;µµ from (6) into (5), interchanging the order of partial dif-
ferentiation inuµ;νµ in (5), and using the relationuµ;µ = ε

µ
µ =

ε from (19) of [11], we obtain

ωµν ;µ =
2µ0 + λ0

2µ0
ε;ν +

1
2µ0

Xν. (7)

As seen in [11], in the macroscopic local case, the volume
forceXν is set equal to zero to obtain the macroscopic relation

ωµν;µ =
2µ0 + λ0

2µ0
ε;ν (8)

Using (3) and comparing with the covariant form of Max-
well’s equations [14, see pp. 42–43]

Fµν;µ = µem jν (9)

where jν is the current density four-vector (c̺, ~j), ̺ is the
charge density scalar, and~j is the current density vector, we
obtain the relation

jν =
ϕ0

µem

2µ0 + λ0

2µ0
ε;ν. (10)

This relation provides a physical explanation of the cur-
rent density four-vector: it arises from the 4-gradient of the
volume dilatation of the spacetime continuum. A corollary of
this relation is that massless (transverse) waves cannot carry
an electric charge or produce a current.

Substituting forjν from (10) in the relation [15, see p. 94]

jν jν = ̺
2c2, (11)

we obtain the expression for the charge density

̺ =
1
2
ϕ0

µemc
2µ0 + λ0

2µ0

√

ε;νε;ν (12)

or, using the relationc = 1/
√
ǫemµem,

̺ =
1
2
ϕ0ǫemc

2µ0 + λ0

2µ0

√

ε;νε;ν. (13)

Up to now, our identification of the rotation tensorωµν of the
Elastodynamics of the Spacetime Continuum with the elec-
tromagnetic field-strength tensorFµν has generated consistent
results, with no contradictions.

2.3 The Lorentz condition

The Lorentz condition can be derived directly from the the-
ory. Taking the divergence of (4), we obtain

Aµ;µ = −
1
2
ϕ0u⊥

µ
;µ. (14)

From (23) of [11], viz.

ωµµ = u⊥
µ

;µ = 0, (15)

(14) simplifies to
Aµ;µ = 0. (16)

The Lorentz condition is thus obtained directly from the
theory. The reason for the value of zero is that transverse
displacements are massless because such displacements arise
from a change of shape (distortion) of the spacetime contin-
uum, not a change of volume (dilatation).

2.4 Four-vector potential

Substituting (4) into (5) and rearranging terms, we obtain the
equation

∇2Aν − Aµ;νµ = ϕ0ω
µν

;µ (17)

and, using (3) and (9), this equation becomes

∇2Aν − Aµ;νµ = µem jν. (18)

Interchanging the order of partial differentiation in the term
Aµ;νµ and using the Lorentz condition of (16), we obtain the
well-known wave equation for the four-vector potential [14,
see pp. 42–43]

∇2Aν = µem jν. (19)

The results we obtain are thus consistent with the macro-
scopic theory of Electromagnetism, with no contradictions.

3 Electromagnetism and the volume forceXν

We now investigate the impact of the volume forceXν on
the equations of Electromagnetism. Recalling (7), Maxwell’s
equation in terms of the rotation tensor is given by

ωµν;µ =
2µ0 + λ0

2µ0
ε;ν +

1
2µ0

Xν. (20)

Substituting forωµν from (3), this equation becomes

Fµν;µ = ϕ0
2µ0 + λ0

2µ0
ε;ν +

ϕ0

2µ0
Xν. (21)

The additionalXν term can be allocated in one of two ways:

Pierre A. Millette. Derivation of Electromagnetism from the Elastodynamics of the Spacetime Continuum 13
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1. either jν remains unchanged as given by (10) and the
expression forFµν;µ has an additional term as devel-
oped in Section 3.1 below,

2. orFµν;µ remains unchanged as given by (9) and the ex-
pression forjν has an additional term as developed in
Section 3.2 below.

Option 2 is shown in the following derivation to be the logi-
cally consistent approach.

3.1 jν unchanged (contradiction)

Using (10) (jν unchanged) into (21), Maxwell’s equation be-
comes

Fµν;µ = µem jν +
ϕ0

2µ0
Xν. (22)

Using (20) into (17) and making use of the Lorentz condition,
the wave equation for the four-vector potential becomes

∇2Aν − ϕ0

2µ0
Xν = µem jν. (23)

In this case, the equations forFµν;µ andAν both contain an
additional term proportional toXν.

We show that this option is not logically consistent as fol-
lows. Using (10) into the continuity condition for the current
density [14]

∂ν jν = 0 (24)

yields the expression
∇2ε = 0. (25)

This equation is valid in the macroscopic case whereXν = 0,
but disagrees with the general case (non-zeroXν) given by
(35) of [11], viz.

(2µ0 + λ0)∇2ε = −Xν;ν. (26)

This analysis leads to a contradiction and consequently is not
valid.

3.2 Fµν;µ unchanged (logically consistent)

Proper treatment of the general case requires that the current
density four-vector be proportional to the RHS of (21) as fol-
lows (Fµν;µ unchanged):

µem jν = ϕ0
2µ0 + λ0

2µ0
ε;ν +

ϕ0

2µ0
Xν. (27)

This yields the following general form of the current density
four-vector:

jν =
1
2
ϕ0

µem µ0
[(2µ0 + λ0)ε;ν + Xν]. (28)

Using this expression in the continuity condition for the cur-
rent density given by (24) yields (26) as required.

Using (28) into (21) yields the same covariant form of the
Maxwell equations as in the macroscopic case:

Fµν;µ = µem jν (29)

and the same four-vector potential equation

∇2Aν = µem jν (30)

in the Lorentz gauge.

3.3 Homogeneous Maxwell equation

The validity of this analysis can be further demonstrated from
the homogeneous Maxwell equation [14]

∂αFβγ + ∂βFγα + ∂γFαβ = 0. (31)

Taking the divergence of this equation overα,

∂α∂
αFβγ + ∂α∂

βFγα + ∂α∂
γFαβ = 0. (32)

Interchanging the order of differentiation in the last two terms
and making use of (29) and the antisymmetry ofFµν, we ob-
tain

∇2Fβγ + µem( jβ;γ − jγ;β) = 0. (33)

Substituting forjν from (28),

∇2Fβγ = − ϕ0

2µ0
[(2µ0+ λ0)(ε;βγ − ε;γβ) + (Xβ;γ − Xγ;β)]. (34)

(42) of [11], viz.

µ0∇2εµν + (µ0 + λ0)ε;µν = −X(µ;ν) (35)

shows thatε;µν is a symmetrical tensor. Consequently the dif-
ference term (ε;βγ − ε;γβ) disappears and (34) becomes

∇2Fβγ = −
ϕ0

2µ0
(Xβ;γ − Xγ;β). (36)

ExpressingFµν in terms ofωµν using (3), the resulting equa-
tion is identical to (39) of [11], viz.

µ0∇2ωµν = −X[µ;ν] (37)

confirming the validity of this analysis of Electromagnetism
including the volume force.

(28) to (30) are the self-consistent electromagnetic equa-
tions derived from the Elastodynamics of the Spacetime Con-
tinuum with the volume force. In conclusion, Maxwell’s equ-
ations remain unchanged. The current density four-vector is
the only quantity affected by the volume force, with the addi-
tion of a second term proportional to the volume force. It is
interesting to note that the current density obtained from the
quantum mechanical Klein-Gordon equation with an electro-
magnetic field also consists of the sum of two terms [16, see
p. 35].

14 Pierre A. Millette. Derivation of Electromagnetism fromthe Elastodynamics of the Spacetime Continuum



April, 2013 PROGRESS IN PHYSICS Volume 2

4 Discussion and conclusion

In this paper, we have derived Electromagnetism from the
Elastodynamics of the Spacetime Continuum based on the
identification of the theory’s antisymmetric rotation tensor
ωµν with the electromagnetic field-strength tensorFµν.

The theory provides a physical explanation of the electro-
magnetic potential: it arises from transverse (shearing) dis-
placements of the spacetime continuum, in contrast to mass
which arises from longitudinal (dilatational) displacements of
the spacetime continuum. Hence sheared spacetime is mani-
fested as electromagnetic potentials and fields.

In addition, the theory provides a physical explanation of
the current density four-vector: it arises from the 4-gradient
of the volume dilatation of the spacetime continuum. A corol-
lary of this relation is that massless (transverse) waves cannot
carry an electric charge or produce a current.

The transverse mode of propagation involves no volume
dilatation and is thus massless. Transverse wave propagation
is associated with the distortion of the spacetime continuum.
Electromagnetic waves are transverse waves propagating in
theSTC itself, at the speed of light.

The Lorentz condition is obtained directly from the the-
ory. The reason for the value of zero is that transverse dis-
placements are massless because such displacements arise
from a change of shape (distortion) of the spacetime contin-
uum, not a change of volume (dilatation).

In addition, we have obtained a generalization of Electro-
magnetism for the situation where a volume force is present,
in the general non-macroscopic case. Maxwell’s equations
are found to remain unchanged, but the current density has an
additional term proportional to the volume forceXν.

The Elastodynamics of the Spacetime Continuum thus
provides a unified description of the spacetime deformation
processes underlying general relativistic Gravitation and Ele-
ctromagnetism, in terms of spacetime continuum displace-
ments resulting from the strains generated by the energy-mo-
mentum stress tensor.
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Within the expanding cosmic Hubble volume, the Hubble length can be considered as
the gravitational or electromagnetic interaction range. The product of ‘Hubble volume’
and ‘cosmic critical density’ can be called the ‘Hubble mass’. Based on this cosmic
mass unit, the authors noticed three peculiar semi empirical applications. With these
applications it is possible to say that in atomic and nuclearphysics, there exists a cos-
mological physical variable. By observing its rate of change, the future cosmic accel-
eration can be verified, time to time Hubble’s constant can beestimated and finally a
unified model of the four cosmological interactions can be developed.

1 Introduction

If we write R0 � (c/H0) as a characteristic cosmic Hub-
ble radius then the characteristic cosmic Hubble volume is
V0 �

4π
3 R3

0.With reference to the critical densityρc �
3H2

0

8πG and
the characteristic cosmic Hubble volume, the characteristic
cosmic Hubble mass can be expressed asM0 � ρc ·V0 �

c3

2GH0
.

If we do not yet know whether the universe is spatially closed
or open, then the idea of Hubble volume [1–3] or Hubble
mass can be used as a tool in cosmology and unification. This
idea is very close to Mach’s idea of distance cosmic back-
ground. It seems to be a quantitative description to Mach’s
principle. In understanding the basic concepts of unifica-
tion of the four cosmological interactions, the cosmic radius
(c/H0) can be considered as the infinite range of the gravita-
tional or electromagnetic interaction. Within the Hubble vol-
ume it is noticed that: 1) Each and every point in free space
is influenced by the Hubble mass. 2) Hubble mass plays a
vital role in understanding the properties of electromagnetic
and nuclear interactions and 3) Hubble mass plays a key role
in understanding the geometry of the universe.

2 Application 1

Note that large dimensionless constants and compound phys-
ical constants reflect an intrinsic property of nature [4,5]. If
ρcc2 is the present cosmic critical energy density andaT 4

0
is the present cosmic thermal energy density, with thisM0

it is noticed that ln
√

aT 4
0

ρcc2 ·
4πǫ0GM2

0

e2 �
1
α

and at present if
T0 � 2.725 ◦K, obtainedH0 � 71.415 km/sec/Mpc [6,7].

It is also noticed that ln

[

ρm

ρc

√

4πǫ0GM2
0

e2

]

�
1
α

whereρm is the

present cosmic matter density. Obtainedρm � 6.70× 10−29

kg/m3 is matching with the matter density of spiral and el-
liptical galaxies. Please note that almost (60 to 70)% of the
galaxies are in the form of elliptical and spiral galaxies.

3 Application 2

With this M0 it is noticed that, ~c
Gmp

√
M0me

� 1 wheremp and

me are the rest masses of proton and electron respectively.
This is a very peculiar result. With this relation, obtained

value of the present Hubble’s constant is 70.75 km/sec/Mpc.
From this relation it is clear that, in the presently believed
atomic and nuclear “physical constants”, there exists one cos-
mological variable! By observing its cosmological rate of
change, the “future” cosmic acceleration can be verified.

4 Application 3

With reference to the Planck massMp �
√
~c/G and the ele-

mentary chargee, a new mass unitMC �
√

e2/4πǫ0G can be
constructed. WithM0 andMC it can be assumed that cosmic
thermal energy density, matter energy density and the critical
energy density are in geometric series and the geometric ratio

is 1+ ln
(

M0
MC

)

. Thus,
(

ρcc2

ρmc2

)

0
�

[

1+ ln
(

M0
MC

)]

and
(

ρcc2

aT 4

)

0
�

[

1+ ln
(

M0
MC

)]2
. It is another peculiar observation and the cor-

responding present CMBR temperature isT0 � 2.718 ◦K.
Independent of the cosmic redshift and CMBR observations,
with these coincidences it is possible to understand and de-
cide the cosmic geometry. The mystery can be resolved only
with further research, analysis, discussions and encourage-
ment.
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The problem of cosmological distances is approached using amethod based on the
propagation of light in an expanding Universe. From the change of measure between
Light Travel Time and Euclidean Distances, a formula is derived to compute distances
as a function of redshift. This formula is identical to Mattig’s formula (withq0 = 1/2)
which is based on Friedmann’s equations of general relativity.

1 Introduction

Euclidean Distances were introduced in [1], and it was sug-
gested that Euclidean Distances need to be used in order to
derive the galactic density profile which is the evolution of
galactic density over time. The LTD (Light Travel Distance)
is the distance traversed by a photon between the time it is
emitted and the time it reaches the observer, which may be
also referred to as the Light Travel Time. We define the Eu-
clidean distance as the equivalent distance that would be tra-
versed by a photon between the time it is emitted and the time
it reaches the observer if there were no expansion of the Uni-
verse.

In the present study, a time-varying Hubble coefficient
in the Euclidean framework is introduced assuming that the
Hubble law observed in the LTD framework is still applica-
ble in the Euclidean framework. The model provides a “kine-
matic age of the Universe” which is purely mathematical as
it is a result of the change of measure between LTDs and Eu-
clidean Distances. A proof is made that a flat Hubble constant
in the LTD framework (i.e that does not vary with LTD) is
equivalent to a second order forward time-varying Euclidean
Hubble coefficient in the Euclidean framework.

2 Foundations of the theory

The observed Hubble constant that is commonly referred to
in the literature is a measure of space expansion with respect
to LTDs. The Euclidean Hubble coefficient is being defined
as the space expansion with respect to Euclidean Distances.
This is a change of measure considering that the Euclidean
Hubble coefficient varies with time such that the Hubble law
is still applicable in the Euclidean framework. This leads to
the following equation

Hi(t) =
ȧ
a
, (1)

whereHi is the instantaneous Euclidean Hubble coefficient,ȧ
is the Universe expansion velocity anda the scale factor

The main postulate of the present study is that the Eu-
clidean Hubble coefficient needs to be used in order to com-
pute the scale factor in metric distances and not on the basis

of LTDs, see (1). If we did not compute the scale factor on
the basis of metric distances, the equation would fail to work
with cosmological redshifts, which are a homothetic transfor-
mation for describing the evolution of light wavelength.

The instantaneous Euclidean Hubble coefficient is defined
as the rate of expansion in Euclidean metrics at any given
point in time along the trajectory of a light ray reaching the
observer.

As space between the photon and the observer expands,
this expansion is added to the overall distance the photon has
to travel in order to reach the observer; therefore, the Eu-
clidean Distance between the photon and the observer is de-
fined by the following differential equations, respectively in
the temporal and metric form:

1) In the LTD framework (the temporal form)

dy
dt
= −c + H0 c T, (2)

where:y is the Euclidean Distance between the photon
and the observer,T the LTD between the observer and
the photon,c the celerity of light, andH0 the Hubble
constant as of today;

2) In the Euclidean framework (the metric form)

dy
dt
= −c + Hi(t) y , (3)

wherey is the Euclidean Distance between the photon
and the observer,c the celerity of light, andHi(t) the
Euclidean time-varying Hubble coefficient.

For the purpose of convenience let us consider the follow-
ing form for the Euclidean time-varying Hubble coefficient

Hi(t) =
n
t
, (4)

whereHi(t) is the Euclidean time-varying Hubble coefficient,
n the order of the time-varying Euclidean Hubble, andt the
time from the hypothetical big bang for which time was set to
zero.

Note that in the present study both the Hubble constant
and the Euclidean Hubble coefficient are expressed in units
of [time−1] by converting all distances into Light Travel Time,
and with the celerityc = 1.
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3 Proof that a flat Hubble constant in the LTD frame-
work is time varying of order two in the Euclidean
framework

First, let us solve the differential equation for the propagation
of light in the LTD framework assuming a flat Hubble con-
stant (i.e. that does not vary with LTD). Let us consider a
photon initially situated at a Euclidean Distancey0 from the
observer and moving at celerityc in the direction of the ob-
server. Let us sayT is the initial LTD between the photon
and the observer, and define the Hubble constant function of
LTDs.

The differential equation describing the propagation of
light in the LTD framework is described by (2). By setting
time zero at a referenceTb in the past, we havet = Tb − T ;
therefore,dt = −dT . Hence, (2) becomes

dy
dT
= c − H0 c T , (5)

with boundary conditionsy(T ) = y0, andy(0) = 0.
By integration from 0 toT , the following relationship re-

lating Euclidean Distancesy to Light Travel DistancesT is
obtained

y = c T −
c H0 T 2

2
. (6)

Now let us derive the differential equation for the propa-
gation of light in the Euclidean framework assuming the time-
varying Hubble coefficient from (4) (see Figure 1). From the
differential equation describing the propagation of light in the
Euclidean framework (3), we get

dy
dt
= −c +

n
t
y . (7)

By integrating this first order non-homogeneous differential
equation betweenTb − T and Tb, the following solution is
obtained which describes the relationship between Euclidean
Distances and LTDs

y =
c

n − 1

(

Tb − T − Tb1−n (Tb − T )n
)

. (8)

By settingn equal to 2 in (8) for a second order time-varying
Hubble coefficient, we get

y = c

(

T −
T 2

Tb

)

. (9)

Based on the recession speed, the relationship between the
Hubble constant defined function of LTDs, and the Euclidean
Hubble, forT small is as follows

H0 c T =
n

(Tb − T )
y . (10)

Hence, n
Tb

is obtained by computing the following limit

n
Tb
= lim

T→0

(

H0 c T
y

)

. (11)

Fig. 1: Schema to represent the propagation of light in an expand-
ing space in the Euclidean framework. WhereT is the Light Travel
Distance between the observer and the source of light,Tb is the kine-
matic age of the Universe, andn the order of the time-varying Hub-
ble coefficient (time zero set at timeTb from today).

By substitution ofy from (8), we get

n
Tb
= lim

T→0













(n − 1)T · H0

Tb − T − T 1−n
b (Tb − T )n













= H0 . (12)

Therefore, the “kinematic age of the Universe” is

Tb =
n

H0
, (13)

with H0 the Hubble constant as of today.
By substitution ofTb =

2
H0

into (9), we get

y = c T −
c H0 T 2

2
. (14)

This solution is identical to (6) relating LTDs to Euclidean
Distances for the flat Hubble constant in the LTD framework.
This is the proof that a flat Hubble constant in the LTD frame-
work is equivalent to a time-varying Hubble coefficient of or-
der two in the Euclidean framework. The equationHi(t) = 2/t
is the connection between (2) and (3).

We can easily show that the recession speed with the sec-
ond order time-varying Hubble coefficient in the Euclidean
framework is the same as the recession speed in the LTD
framework. The calculations are as follow

Hi(t) y =
2
t
y =

2c
Tb − T

(

T −
H0 T 2

2

)

. (15)

By substitution ofTb from (13) (with a second order time-
varying Hubble coefficient) into (15), we obtain

Hi(t) y = H0 c T , (16)

whereT is the LTD between the observer and the source of
light, andy the Euclidean Distance.

4 Evolutionary model of the scale factor

The differential equation describing the evolution of the scale
factora is as follows, identical to (1),

da
dt
= Hi(t) a . (17)
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As Hi(t) = 2
t , we get

∫ a0

a1

1
a

da =
∫ Tb

Tb−T

2
t

dt . (18)

By integrating (18) , we obtain

ln

(

a0

a1

)

= 2 ln

(

Tb

Tb − T

)

, (19)

which is equivalent to

a0

a1
=

(

Tb

Tb − T

)2

. (20)

5 Expression of distances versus redshifts

From cosmological redshifts, we have

1+ z =
a0

a1
, (21)

wherea0 is the present scale factor,a1 the scale factor at red-
shift z.

Combining (20) and (21), we get

T = Tb

(

1−
1
√

1+ z

)

. (22)

By substitution ofTb from (13) for a second order time-
varying Hubble coefficient, we get the following equation re-
lating LTD to redshifts

T =
2

H0

(

1−
1
√

1+ z

)

. (23)

6 Comparison with the equation of Mattig

The equation of Mattig [2] is as follows

rR0 =
1

H0q2
0(1+ z)

×

×
(

q0z + (q0 − 1)(
√

1+ 2q0z − 1)
)

, (24)

wherer is the distance,q0 is the deceleration parameter,R0

the present scale factor,z the redshift,H0 the present scale
factor.

For comparison purpose with the equation of the present
study, we should setq0 equal to 1/2 (flat matter dominated
Universe), andR0 to 1. Therefore, we obtain

r =
2

H0

(

1−
1
√

1+ z

)

. (25)

This formula is identical to (23). We have just shown that
the solution to our problem is identical to Mattig formula for
q0 equal to 1/2.

7 Discussion

Based on the change of measure between LTD and Euclidean
Distances, a formula that expresses distances versus redshifts
is obtained. From the change of framework between LTD
and Euclidean distances, it has been proved that a flat Hub-
ble constant (that does not vary with LTD) is equivalent to a
time-varying Euclidean Hubble coefficient of order two. Fi-
nally, the evolutionary model of the scale factor is derived
and matched to the cosmological redshift equation in order
to obtain the LTD versus redshift equation. This equation is
identical to Mattig’s formula (withq0 = 1/2) which is based
on Friedmann’s equations of general relativity. The Euclidean
Hubble coefficient was used in order to derive the evolution
of the scale factor in metric distances; otherwise, the cos-
mological redshift equation would not be applicable to light
wavelengths. This study proposes a new approach to compute
cosmological distances which is based on the introduction of
Euclidean Distances in addition to Light Travel Distances in
an expanding Universe, and a change of measure. The cal-
culations involved are quite simple and our definition of Eu-
clidean Distances may be used as a source of inspiration to
develop future cosmological models.
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The positive and negative parity states of100Ru isotope are studied within the frame
work of the interacting boson approximation model (IBA − 1). The calculated levels
energy, potential energy surfaces,V(β, γ), and the electromagnetic transition probabili-
ties,B(E1) andB(E2), show that100Ru isotope hasE(5) Characters. Staggering effect,
ΔI = 1, has been observed between the positive and negative parity states. The electric
monopole strength,X(E0/E2), has been calculated. All calculated values are com-
pared to the available experimental, theoretical data and reasonable agreement has been
obtained.

1 Introduction

The mass regionA= 100 has been of considerable interst for
nuclear structure studies as it shows many interesting fea-
tures. These nuclei show back bending at high spin and shape
transitions from vibrational toγ-soft and rotational charac-
ters. Many attempts have made to explore these structural
changes which is due mainly to the n-p interactions.

Experimentally, the nuclear reaction100Mo (α,xn) [1] has
been used in studying levels energy of100Ru. Angular dis-
tribution,γ-γ coincidences were measured, half-life time has
calculated and changes to the level scheme were proposed.
Also, double beta decay rate of100Mo to the first excited 0+

state of100Ru has been measured experimentally [2] using
γ-γ coincidence technique.

Doppler-shift attenuation measurements following the
100Ru (n, n‘γ) reaction [3] has used to measure the life times
of the excited states in100Ru. Absolute transition rates were
extracted and compared with the interacting boson model de-
scription. The 2+(2240.8 keV) state which decays dominantly
to the 2+ via 1701 keV transition which is almost pureM1 in
nature considered as a mixed-symmetry state. Again100Ru
has been studied [4] experimently and several levels were
seen where some new ones are detected below 3.2 MeV.

Theoretically many models have been applied to ruthe-
nium isotopes. Yukawa folded mean field [5] has applied to
100Ru nucleus while the microscopic vibrational model has
applied to104Ru and some other nuclei with their daughters
[6]. The latter model was successful in describing the yrast
0+ and 2+ states of most of these nuclei and also some of their
half-lives.

The very high-spin states of nuclei near A≈100 are inves-
tigated by the Cranked Strutinsky method [7] and many very
extended shape minima are found in this region. Interact-
ing boson model has been used in studyingRu isotopes using
a U(5)–O(6) transitional Hamiltonian with fixed parameters
[8-10] except for the boson numberN. Hartree-Fock Bo-
goliubov [11] wave functions have been tested by comparing
the theoretically calculated results for100Mo and 100Ru nu-
clei with the available experimental data. The yrast spectra,

reducedB(E2,0+→ 2+) transition probabilities, quadrupole
momentsQ(2+) and g factors, g(2+) are computed. A reason-
able agreement between the calculated and observed values
has been obtained.

The microscopic anharmonic vibrator approach (MAVA)
[12] has been used in investigating the low-lying collective
states in98-108Ru. Analysis for the level energies and elec-
tric quadrupole decays of the two-phonon type of states in-
dicated that100Ru can interpreted as being a transitional nu-
cleus between the spherical anharmonic vibrator98Ru and the
quasirotational102-106Ru isotopes.

A new emprical approach has been proposed [13] which
is based on the connection between transition energies and
spin. It allows one to distinguish vibrational from rotational
characters in atomic nuclei. The cranked interacting boson
model [14] has been used in estimating critical frequencies
for the rotation-induced spherical-to-deformed shape transi-
tion in A= 100 nuclei. The predictions show an agreement
with the back bending frequencies deduced from experimen-
tal yrast sequences in these nuclei.

The aim of the present work is to use theIBA−1 [15, 16]
for the following tasks:

1. Calculating the potential energy surfaces,V(β, γ), to
know the type of deformation existing for100Ru;

2. Calculating levels energy, electromagnetic transition
ratesB(E1) andB(E2);

3. Studying the relation between the angular momentum
I and the rotational angular frequency~ω for bending
in 100Ru;

4. Calculating staggering effect to see beat patterns and
detect any interactions between the (+ve) and (−ve)
parity states, and

5. Calculating the electric monopole strengthX(E0/E2).

2 (IBA-1) model

2.1 Level energies

IBA-1 model was applied to the positive and negative parity
states of100Ru isotope. The Hamiltonian employed in the
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nucleus EPS PAIR ELL QQ OCT HEX E2S D(eb) E2DD(eb)
100Ru 0.5950 0.000 0.0085 −0.0200 0.0000 0.0000 0.1160 −0.3431

Table 1: Parameters used in IBA-1 Hamiltonian (all in MeV).

present calculation is:

H = EPS ∙ nd + PAIR∙ (P ∙ P)

+ 1
2 ELL ∙ (L ∙ L) + 1

2 QQ ∙ (Q ∙ Q)

+5OCT ∙ (T3 ∙ T3) + 5HEX ∙ (T4 ∙ T4)

(1)

where

P ∙ p =
1
2




{
(s†s†)(0)

0 −
√

5(d†d†)(0)
0

}
x

{
(ss)(0)

0 −
√

5(d̃d̃)(0)
0

}




(0)

0

, (2)

L ∙ L = −10
√

3
[
(d†d̃)(1)x (d†d̃)(1)

](0)

0
, (3)

Q ∙ Q =
√

5




{

(S†d̃ + d†s)(2) −

√
7

2
(d†d̃)(2)

}

x

{

(s†d̃ + +d̃s)(2) −

√
7

2
(d†d̃)(2)

}




(0)

0

, (4)

T3 ∙ T3 = −
√

7
[
(d†d̃)(2)x (d†d̃)(2)

](0)

0
, (5)

T4 ∙ T4 = 3
[
(d†d̃)(4)x (d†d̃)(4)

](0)

0
. (6)

In the previous formulas,nd is the number of boson;P∙P,
L ∙ L, Q ∙Q, T3 ∙ T3 andT4 ∙ T4 represent pairing, angular mo-
mentum, quadrupole, octupole and hexadecupole interactions
between the bosons;EPS is the boson energy; andPAIR,
ELL, QQ, OCT, HEX is the strengths of the pairing, angular
momentum, quadrupole, octupole and hexadecupole interac-
tions.

2.2 Transition rates

The electric quadrupole transition operator employed in this
study is:

T(E2) = E2S D∙ (s†d̃ + d†s)(2)+

+ 1√
5

E2DD ∙ (d†d̃)(2) .
(7)

E2S DandE2DD are adjustable parameters.
The reduced electric quadrupole transition rates between

Ii → I f states are given by:

B(E2, Ii − I f ) =
[< I f ‖ T(E2) ‖ Ii >]2

2Ii + 1
. (8)

Fig. 1: A: Potential energy surfaces for100Ru. B: Comparison be-
tween exp. [19] and theoretical IBA-1 energy levels.

3 Results and discussion

3.1 The potential energy surfaces

The potential energy surfaces [17],V(β, γ), as a function of
the deformation parametersβ andγ are calculated using:

ENΠNν (β, γ) = <NπNν; βγ |Hπν|NπNν; βγ> =

= ζd(NνNπ)β
2(1+ β2) + β2(1+ β2)−2×

×
{
kNνNπ[4 − (X̄πX̄ν)β cos 3γ]

}
+

+

{

[X̄πX̄νβ
2] + Nν(Nν − 1)

(
1
10

c0 +
1
7

c2

)

β2

}

,

(9)

where

X̄ρ =

(
2
7

)0.5

Xρ ρ = π or υ. (10)

The calculated potential energy surfaces,V(β, γ), are
presented in Fig. 1A. The flat potential in the critical sym-
metry point has supported quite well theE(5) characters to
100Ru nucleus. Also, the energy ratios presented in Table 4
as well as the existance of100Ru isotope between the spher-
ical anharmonic vibrator98Ru andγ - soft 102Ru nuclei [9]
supported theE(5) characters.

3.2 Energy spectra

The energy of the positive and negative parity states of100Ru
isotope are calculated using computer code PHINT [18]. A
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I+i I+f B(E2) I+i I+f B(E1)

01 Exp*. 21 0.490(5) 11 01 0.0030

01 Theor. 21 0.4853 11 02 0.1280

21 01 0.0970 31 21 0.1211

22 01 0.0006 31 22 0.0415

22 02 0.0405 31 23 0.0002

23 01 0.0000 32 21 0.0024

23 02 0.0759 32 22 0.0197

23 03 0.0087 32 23 0.2126

24 03 0.0066 51 41 0.2533

24 04 0.0588 51 42 0.0480

41 21 0.1683 51 43 0.0006

41 22 0.0142 71 61 0.3950

41 23 0.0319 71 62 0.0446

61 41 0.2039 91 81 0.5439

61 42 0.0179 91 82 0.0342

61 43 0.0242 111 101 0.6983

81 61 0.2032

81 62 0.0183

81 63 0.0157

101 81 0.1678

101 82 0.0175

Table 2: CalculatedB(E2) andB(E1) in 100Ru.

I+i I+f I+′ f Xi f ′ f (E0/E2)100Ru

02 01 21 0.027

03 01 21 0.347

03 01 22 0.009

03 01 23 0.042

03 02 21 0.086

03 02 22 0.002

03 02 23 0.010

04 01 22 0.010

04 01 23 0.010

04 01 24 0.113

04 02 22 0.030

04 02 23 0.034

04 02 24 0.340

04 03 21 0.454

04 03 22 0.010

04 03 23 0.011

04 03 24 0.113

Table 3: CalculatedXi f ′ f (E0/E2).

Energy Ratios E4+1
/E2+1

E2+2
/E2+1

E(5) 2.19 2.20

Exp. [19] 2.27 2.52

IBA− 1 2.12 2.11

Table 4: Energy ratios ofE(5) characters to100Ru.

Fig. 2: A: Angular momentumI as a function of (~ω). B: (ΔI = 1),
staggering pattern for100Ru isotope.

comparison between the experimental spectra [19] and our
calculations, using values of the model parameters given in
Table 1 for the ground state band are illustrated in Fig. 1B.
The agreement between the calculated levels energy and their
correspondence experimental values are slightly higher espe-
cially for the higher excited states. We believe this is due to
the change of the projection of the angular momentum which
is due mainly to band crossing.

Unfortunately there is no enough measurements of elec-
tromagnetic transition ratesB(E1) or B(E2) for 100Ru nu-
cleus. The only measuredB(E2,0+1→ 2+1) is presented, in
Table 2 for comparison with the calculated values[20]. The
parametersE2S D andE2DD displayed in Table 1 are used
in the computer code NPBEM [18] for calculating the elec-
tromagnetic transition rates after normalized to the available
experimental values. No new parameters are introduced for
calculating electromagnetic transition ratesB(E1) andB(E2)
of intraband and interband.

The moment of inertiaI and angular frequency~ω are
calculated using equations (11, 12):

2I
~2

=
4I − 2

ΔE(I → I − 2)
, (11)

(~ω)2 = (I2 − I + 1)

[
ΔE(I → I − 2)

(2I − 1)

]2

. (12)

The plot in Fig. 2A show back bending at angular mo-
mentumI+ = 10. It means, there is a crossing between the
(+ve) and (−ve) parity states in the ground state band which
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was confirmed by calculating the staggering effect where a
beat pattern has been observed, Fig. 2B.

3.3 Electric monopole transitions

The electric monopole transitions,E0, are normally occurring
between two states of the same spin and parity by transferring
energy and zero unit of angular momentum. The strength of
the electric monopole transition,Xi f ′ f (E0/E2), [21] can be
calculated using equations (13, 14); results are presented in
Table 3

Xi f ′ f (E0/E2) =
B(E0, Ii − I f )

B(E2, Ii − I ′ f )
, (13)

Xi f ′ f (E0/E2) = (2.54× 109) A3/4×

×
E5
γ(MeV)

ΩKL
α(E2)

Te(E0, Ii − I f )

Te(E2, Ii − I ′ f )
.

(14)

Here: A is mass number; Ii is spin of the initial state where
E0 and E2 transitions are depopulating it; If is spin of the
final state of E0 transition; I′ f is spin of the final state of E2
transition;Eγ is gamma ray energy;ΩKL is electronic factor
for K,L shells [22];α(E2) is conversion coefficient of the E2
transition;Te(E0, Ii − I f ) is absolute transition probability of
theE0 transition betweenIi andI f states, andTe(E2, Ii − I ′ f )
is absolute transition probability of theE2 transition between
Ii andI ′ f states.

3.4 The staggering

The presence of (+ve) and (−ve) parity states has encouraged
us to study staggering effect [23–25] for100Ru isotope using
staggering function equations (15, 16) with the help of the
available experimental data [19].

S t(I ) = 6ΔE(I )− 4ΔE(I − 1)− 4ΔE(I + 1)+

+ΔE(I + 2)+ ΔE(I − 2) ,
(15)

with
ΔE(I ) = E(I + 1)− E(I ) . (16)

The calculated staggering patterns are illustrated in
Fig. 2B and show an interaction between the (+ve) and (−ve)
parity states for the ground state band of100Ru.

3.5 Conclusions

IBA-1 model has been applied successfully to100Ru isotope
and:

1. The levels energy are successfully reproduced;

2. The potential energy surfaces are calculated and show
E(5) Characters to100Ru;

3. Electromagnetic transition ratesB(E1) and B(E2)
are calculated;

4. Bending for100Ru has been observed at angular mo-
mentumI+ = 10;

5. Strength of the electric monopole transitions
Xi f ′ f (E0/E2) are calculated; and

6. Staggering effect has been calculated and beat pattern
has been obtained, showing an interaction between the
(−ve) and (+ve) parity states.
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A New Large Number Numerical Coincidences
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In this article, the author gives a set of new hypothesis wherein he presents new, ex-
act and simple relations between physical constants and numbers. The author briefly
analyses the discovered coincidences in terms of their accuracy and confidence, while
leaving himself aside any physical explanation of the presented formulas. Important:
all the found relations have a common nature of the “power of two”. The exact nature
of this remains unknown for yet, so it requires further research. The presented material
may also be viewed as a logical continuation and developmentof Dirac’s and Edding-
ton’s Large Numbers Hypothesis (LNH). However, in contrastto Dirac’s LNH, two of
the presented ratios are not approximate but manifest exactequality. This allows a the-
oretical prediction of the Universe’s radius as well as a calculation of the exact value of
Newtonian gravitational constantG, which all fall within the range of the current mea-
surement data and precision. The author formulates these Large Number Numerical
(LNN) coincidences by realizing that further discovery of their meaning may lead to a
significant change in our understanding of Nature. In this work, SI units are used.

Introduction

Many attempts of bringing together physics and numerology
had been done before but a very important step was done in
1938 by Arthur Eddington. According to Eddington’s pro-
posal the number of protons in the entire Universe should be
exactly equal to:NEdd = 136× 2256 ≈ 1079 [1, 2, 17]. So, it
was hypothesised that square root ofNEdd should be close to
Dirac’s Big numberN ≈

√
136× 2256 =

√
136× 2128. Later

on, Eddington changed 136 to 137 and insisted that the fine
structure constant has to be precisely 1/137, and then his the-
ory seemed to fail at this cornerstone. However, Eddington’s
statement also had the number (2128)2 which has been left
without proper attention. Actually, few years earlier, in 1929,
it was German physicist R. Fürth who proposed to use 1632

(which is also 2128) in order to connect gravitation to atomic
constants [10]. However, all these coincidences have been
left unexplained until present time. As G. Gamov said [16]:
“Since the works of Sir Arthur Eddington, it has become cus-
tomary to discuss from time to time the numerical relations
between various fundamental constants of nature”. For exam-
ple, another interesting attempt to use “a log-base-2 relation”
between electromagnetic and gravitational coupling constant
was made by Saul-Paul Sirag, the researcher from San Fran-
cisco in 1979 [12]. Particularly, as noted, power of 2 should
have significant role in numerical relations for physics con-
stants according to the author’s idea.

Suggested four Large Number Numerical (LNN) relations
or coincidences are presented below. These coincidences are
not dependent and related to each other, so prove or disprove
of one of them does not mean the same for the others. They
all have common number of 2128. First two relations seem
to be exact equations, and second two are valid with defined
uncertainty. Because of that their nature is more hypothetical,
so second two relations are also called “weak”.

1 Cosmological coincidence

The relation is analogous to famous Dirac’s ratioRU/re ∼ 1040

which relates the Universe radius with classical
electron radius. However, Dirac’s ratio is actually valid only
approximately (with precision of “the same order of mag-
nitude”), in opposite, the suggested replacement is an exact
equation given as follows:

RU

λe
= 2128, (1)

whereRU is value for the radius of the observable Universe
andλe = ~/mec ≈ 3.86 × 10−13 (m) is electron’s reduced
Compton wavelength (De Broglie wave). The relation (1)
provides us with precise size and age of the observable Uni-
verse. So it leads to exact value for the Universe radius of
RU = 1.314031× 1026 meters corresponding to the Universe
age of 13.8896 billion years.

Recently F.M.Sanchez, V.Kotov, C.Bizouard discovered
that the use of the reduced electron Compton wavelength is
decisive for the compatibility of the Hubble-Lemaitre length
with 2128 [13–15]. They use this length unit because of pro-
posed holographic relation involving it. Here, the author in-
dependently developes this idea suggesting that (1) is an exact
relation.

The age of the Universe, according to the Wilkinson Mi-
crowave Anisotropy Probe (WMAP) 7-year results, is 13.75±
0.13 billion years [9]. Latest NASA observation by Hubble
gives the age of the Universe as 13.7 billion years [3]. It is
very close to the obtained value and lies in the existing er-
ror range. So, the coincidence (1) seems to define the exact
Universe elapsed life time as:

TU =
λe

c
2128. (1.1)
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Important to note, that having (1.1), initial Dirac’s relation
may be expressed in the following form:

N1 =
RU

re
= α−1 2128, (1.2)

whereα−1 = 137.036 is inverted fine structure constant and
re = ke2/(mec2) — classical electron radius with eliminated
numerical factor (i.e. equal to unity) andN1 is exact value for
the large number introduced by Dirac (4.66× 1040). As we
know for sure that the Universe is expanding andRU(t) is de-
pendent on time, so the equation (1) suggest that one or few of
the fundamental constants (h, c, me) should also vary in time.
However, current uncertainty inRU measurement still leaves
a room for other alternative ideas and possible coincidences.
For example, noting thatmp/me ∼ 40/3 × α−1, relation (1)
can have another form:

RU =
mp

me

1
4

(

3
10

ke2

mec2

)

2128 (1.3)

which would correspond to 13.95809 Gyr. As this value is
currently out of the present WMAP data frame, therefore it is
not supported by the author here.

2 Electron-proton radius coincidence

Another interesting idea connects the classical proton radius
and gravitational radius of the electron by an exact equation
as follows:

rp

rge
= 2128, (2)

where rp =
1
2

3
5 ke2/(mpc2) — classical proton radius and

rgp = 2Gme/c2 — gravitational electron radius (i.e. the
Schwarzschild radius for the electron mass). Of course some
comments are required regarding coefficients 1

2 and 3
5. Usu-

ally numerical factors are ignored or assumed to be close
to unity when defining classical (electron) radius. However,
suggested new definition has exact numerical factor3

10 =
3
5 ×

1
2, so it is obvious to have the following explanations for

that one by one:

• Ratio 3
5 is classical proton radius definition. The only

important difference with modern representation of the
classical radius is the coefficient 3

5. It is well known
from electrostatics that the energy required to assem-
ble a sphere of constant charge density of radius r and
charge r isE = 3

5 ke2/r. Usually these factors like35 or
1
2 are ignored while defining the classical electron ra-
dius. Surprisingly, the coincidence advices the use of
3
5 which means that charge is equally spread within the
sphere of the electron (or proton) radius.

• Ratio 1
2 in classical proton radius definition. Usual def-

inition of the classical radius does not require having
1
2 because initially one relates total electrostatic energy
(Ee) of the electron (or proton) to rest mass energy as

following: Ee = mc2. The factor1
2 appears if one pos-

tulates that electromagnetic energy (Eem) of the elec-
tron or proton is just a half of particle’s rest mass en-
ergy as:Eem =

1
2 mc2. There are two possible alterna-

tive explanations for this:

1. The Virial Theorem that tells us that the potential
energy inside a given volume is balanced by the
kinetic energy of matter and equals to half of it.
So if one considers electromagnetic energy as ki-
netic and rest mass as potential energy we would
have:Eem =

1
2 mc2;

2. Simply assuming that half of total energy may be
magnetic energy or of another nature. One may
also propose that there could be no1

2 in classical
proton radius definition, but there is 2129 instead
of 2129 in formula (2). From the author’s point
of view this does not correspond to reality, and
particularly the number 2128 should have strong
presence in all numerical expressions of Nature.

It can be easily seen thatrp = (me/mp)re, so another way
to rewrite (2) is:

re

rge
=

mp

me
2128. (2.1)

And this leads to another possible representation of the initial
formula as: re

rgp
= 2128, (2.2)

where re is classical electron radius,rgp is gravitational
(Schwarzschild) radius of the proton. The expression (2.2)
is very similar to (2). So, we may actually combine them into
another interesting equation:

rp rgp = re rge. (2.2a)

The precision of the Electron-protoncoincidence given by
(2) is smaller than 0.02%. From the author’s point of view this
deviation originates from current uncertainty in gravitational
constant (G) measurement. If we consider that the relative
G uncertainty nowadays is around and not less than 0.02%
then we must accept this amazing and unexplained coinci-
dence that allows us to predict the exact value for the grav-
itational constant (G). So, this finding suggests that the fol-
lowing possible consequences are valid. Firstly, because of
3
5 ratio proton or electron still may be considered as classical
particle with uniform charge density inside its radius. And
secondly, directly from (2) one can express the value of the
Newtonian constant of gravitation (G) exactly as follows:

G =
3
20

ke2

mpme
2−128. (2.3)

It leads to exact value forG = 6.674632× 10−11. This
value is within the frame of 2010 CODATA-recommended
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value with standard uncertainty given by: 6.67384±0.00080×
10−11 [6] (See also figure). One may compare this expression
with the similar one obtained in 1929 by R. Fürth [10]:

G =
hc

π(mp + me)2
= 1632

that is read in SI units forG as:

G =
2~c

(mp + me)2
16−32.

It is interesting to compare it to (2.3) to note obvious sim-
ilarity. However, one may see that the expression is not satis-
factory because it leads to the value of (G = 6.63466×10−11)
which has significant deviation (0.59%) and is far out of 2010
CODATA range. So, the expression 2.3 (which fits well to
modern data) is quite challenging because it may be con-
firmed or disproved by future experimental data forG.

Fig. 1: The figure with recent experimental data for the Newtonian
constant of gravitationG. The vertical line corresponds to the value
obtained from (2.3).

Though the obtained value fits quite well into current ex-
perimental data, the author does not exclude some possible
small deviations caused by vacuum polarisation and conse-
quent slight deviation from the uniformity of the charge dis-
tribution (like Uehling Potential). So we will look at this in
future works.

It is also important to stress that the use of classical pro-
ton radius here is very provisional and in principle could be
avoided: so the same result forG may be obtained using only
the electron’s classical radius.

It is easy to note also that Dirac’s Large NumberN pre-
cisely equals to:

N =
ke2

mpme
=

20
3

2128. (2.4)

This means that variation of Dirac’s Large Number (N)
in time is hardly possible, because 2128 represents simply the

constant number. So the ratio of the electromagnetic force
to the gravitational one remains always constant during the
current epoch.

3 Weak cosmological coincidence

2c3

G
≈

mp

tp
2128, (3)

where c is speed of light,G is the gravitational constant,
tp = ~/(mpc2)-period of reduced Compton wave of the pro-
ton. This equation may be interpreted as relation of rate of
mass growth or the expansion rate of the Universe [4, 5] to
harmonic properties of the proton as wave. However the rel-
ative precision of (3) is 0.48% (or even 0.49% if we accept
definition of G as in 2.3) which is unsatisfactory for mod-
ern measurements and it makes the expression valid only ap-
proximately. In order to become more precise the expression
should have the following representation:

2c3

G
≈

mp + 9me

tp
2128. (3.1)

Or alternatively (to become exactly precise):

2c3

G
=

mp

tp

20
3
α−1 2128. (3.2)

But further discussion of this topic will be explored in
future works.

4 Weak electron-proton mass ratio

The attempts to explain large numbers by placing inverted
fine structure constant in exponential function have been done
many times before [11, 12]. Another interesting hypothesis
could relate proton to electron mass ratio with fine structure
constant and the number 2128 in the following manner:

mp

me
≃

7
2

2(α−1−128). (4)

However the relative precision is comparably high (0.06%)
and is out of the error frame of the current experimental data.
However, using this relation as approximation, one can find
similar connections of derived formulas to the similar onesin
work [12].

Conclusion

The basic meaning of all these relations may be viewed in
the form of exact equality for large Dirac’s numberN (see
2.4). However, all these proposals disprove one of the Dirac’s
hypothesis regarding the equality of the big numbers [2, see
p. 200]. So, the author has shown that the numberN, which is
the ratio of the electromagnetic force to its gravitationalforce
given by (2.4), is actually not equal to numberN1 which is
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the ratio of Universe radius to classical electron radius (1.2).
However these two differ only by the numerical factor of
20.55= α−1 × (3/20). So, the main conclusions of this study
are as follows:

• Current Universe age and radius can be calculated ex-
actly (13.8896 Gyr);

• The value of Newtonian constant of gravitation (G) can
be derived exactly (6.674632× 10−11);

• The number 2128 should have a real significance in the
constants of Nature.

Generally the concept of “power of two” could be re-
garded as having two properties in science. Firstly, it is digital
(logical) math where power of two has common use. So this
may support an idea of holographic concept of the Universe
or some of the fractal theories. Secondly, it is used in wave
mechanics, and it could be viewed in accordance with wave
properties of the elementary particles in quantum physics.In
terms of wave concept, the number of 2128 corresponds to
the tone of 128-th octave or to some higher harmonic (“over-
tone”) of the main tone. It is interesting to mention that a
very close idea has been brought few years ago. The idea re-
lates particles mass levels within two sequences that descend
in geometric progression from the Plank Mass. Sub-levels
are arranged in subsequence of common ratio which uses a
power of 2 [7, 8]. The author is also very supportive to the
point of view given in [13–15], however it is important to
stress that physics should be free from approximate relations
and should have only precise equalities and formulas. Some
of the exact formulas which may help to support such general
ideas have been presented in this work. If new suggested re-
lations for Large Numbers are correct then it should probably
lead to new search for its hidden meaning. As always, we
must accept the fact that in often cases new findings lead to
new questions instead of the answers and that might become
a new challenge for new investigations and theories. Assum-
ing that at least one of the discovered relations is correct in
the future we may become a bit closer to the true view on
physical reality.
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It is desirable to understand the movement of both matter andenergy in the universe
based upon fundamental principles of space and time. Time dilation and length contrac-
tion are features of Special Relativity derived from the observed constancy of the speed
of light. Quantum Mechanics asserts that motion in the universe is probabilistic and
not deterministic. While the practicality of these dissimilar theories is well established
through widespread application inconsistencies in their marriage persist, marring their
utility, and preventing their full expression. After identifying an error in perspective the
current theories are tested by modifying logical assumptions to eliminate paradoxical
contradictions. Analysis of simultaneous frames of reference leads to a new formula-
tion of space and time that predicts the motion of both kinds of particles.Proper Space
is a real, three-dimensional space clocked by proper time that is undergoing a densi-
fication at the rate ofc. Coordinate transformations to a familiarobject spaceand a
mathematicalstationary spaceclarify the counterintuitive aspects of Special Relativity.
These symmetries demonstrate that within the local universe stationary observers are
a forbidden frame of reference; all is in motion. In lieu of Quantum Mechanics and
Uncertainty the use of the imaginary numberi is restricted for application to the label-
ing of mass as either material or immaterial. This material phase difference accounts
for both the perceived constant velocity of light and its apparent statistical nature. The
application of Proper Space Kinematics will advance more accurate representations of
microscopic, macroscopic, and cosmological processes andserve as a foundation for
further study and reflection thereafter leading to greater insight.

1 Introduction

The planets dancing in the heavens, an apple falling to earth
each kindle curiosity about the dynamical universe. The mys-
teries of the unseen world and its apparent influences on daily
life inspire wonder and imagination. Such observations drive
the search for hidden constraints that govern the actions of
atomic particles and molecules, ballistic objects, and celes-
tial bodies. Guided by tools of logic, intuition, and creativity
philosophers, scientists, and mathematicians strive to model
laws that describe movement in each realm. Many years of
disparate effort and the resulting accumulation of knowledge
demonstrate that there are underlying commonalities that ap-
ply across all physical scales. This connectedness prompts
the realization that searching for unifying first principles
based upon fundamental aspects of space and time is an at-
tainable goal. Understanding the foundation that the universe
is built upon enables the continuing pursuit of deeper and
more profound truths and further illuminates the miracle of
human existence.

In 1905 Albert Einstein published his landmark work
Zur Elektrodynamik bewegter Körper[1] (translated as
On the Electrodynamics of Moving Bodies[2]). He stated
that it was well known that under transformation to a moving
reference frame Max-well’s equations acquired asymmetries
that were not present in nature. Einstein resolved these incon-
sistencies by introducing two fundamental principles [2]:

1. The laws by which the states of physical systems un-
dergo change are not affected, whether these changes

of state be referred to the one or the other of two sys-
tems of co-ordinates in uniform translatory motion.

2. Any ray of light moves in the “stationary” system of
co-ordinates with the determined velocity c, whether
the ray be emitted by a stationary or by a moving body.

The first postulate identified inertial frames of reference.The
second postulate emphasized the constancy of the speed of
light. From these followed the development of Special Rela-
tivity as a basis for motion.

Although the efficacy of Special Relativity cannot be de-
nied it is a mathematical physics derived from the observa-
tions of light approaching any observer at the same speed re-
gardless of the specific frame of reference. Any element of
a theory that behaves identically under all applications must
itself lie outside this theory and for this reason the actionof
discrete quanta requires a separate and distinctly different ex-
planation.

This leads to the hard-fought and hard-won triumph of
the Copenhagen interpretation of Quantum Mechanics culmi-
nating in its emergence as the preeminent theory of modern
physics [3]. Owing to their experimental origins the compo-
sition of each theory contains mathematical elements that are
not immediately obvious and consequently can act as obsta-
cles to understanding and usage. If the basic realities of space
and time are known then it is possible to properly explain the
curious details of motion of all objects in the native environ-
ment and show that they proceed in a logical and intuitive
way from this physical foundation.
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This research is motivated by a personal failure of under-
standing attributable to the lack of a fundamental mechanics
capable of explaining all rudimentary motion in the universe
as derived from the basic condition of spacetime. Guided by
instinct and curiosity the contemporary scientific theories and
the corresponding philosophies are explored through a care-
ful analysis of perspective; long-held premises are testedand
discarded by virtue of the necessity to eliminate contradic-
tion. The result of the methodology described in this paper
addresses a kinematics which describes free motion without
forces and interactions and with no regard for collisions and
the associated quantities of energy, momentum and mass. A
first principles theory is significant in that it can immeasur-
ably improve physics on every level by serving as a foun-
dation for the advancement of larger fields of research. The
sluggish pace of grand unification, the overwrought complex-
ity of string theory, the extremes of quantum gravity, the per-
plexity of dark matter, and the simplistic seeming three body
problem are currently unresolved issues in physics [4]. These
problems along with technological improvements to solar cell
efficiency and medical scanning devices are among those that
can potentially benefit from the application of Proper Space
Kinematics.

2 Methodology

As a part of natural skepticism and scientific inquiry it is of-
ten useful to be able to replicate the research process both as
a test of results and as a guide to understanding. In theoretical
work much of the effort is introspective and it is impossible to
retrace the labyrinthine mental pathways that lead to thesere-
sults. In light of this difficulty it is practical to detail the initial
impetus that motivated the author and to provide an overview
of the techniques employed in the striving for enlightenment.

It is always more difficult to understand the fundamental
principles that govern a system when the only perspectives
available lie within the system itself. For this reason it isde-
sirable to find a vantage point or frame of reference that lies
outside the system so as not to be influenced by or subject to
whatever constraints are imposed upon its occupants. In re-
viewing the basic elements of Special Relativity it is troubling
that there are inconsistencies in the currently used theorybe-
tween the common explanations and the mathematical model.
While the equations purport to explain motion from an exte-
rior viewpoint it is a theory ofrelativemotion that performs
as if a massive object occupies the choice of origin. This
fallacy compounds the suspicion that an accurate picture of
reality may not be known and necessitates the need for fur-
ther exploration of this phenomena the source of which must
thereafter be inferred from these confused aspects. In a sim-
ilar mien the self-circular reasoning involved in using light
itself as a mediator to measure lightspeed is also an obsta-
cle to understanding and conceals basic mechanisms that are
vital to accurately model the system mathematically.

Other concerns arise from a thoughtful analysis of the
present philosophy. If the lightspeed barrier is a limitingcon-
dition then this implies that the velocity of an object is a more
important kinematical consideration than position or acceler-
ation. A cursory examination of the invariant interval sug-
gests that its spatial and temporal components act in opposi-
tion to each other across varied reference frames although the
use of hyperbolic functions would conversely imply a con-
junction of underlying influences. The question of balance
imparts an impression of rotation along a spectrum instead of
a deviation from zero which is compounded by the inability to
rotate a vector of zero length and might lead to the conclusion
that nothing is static. The Quantum Mechanical proposition
that the universe is unknowable at its most basic level and the
ensuing enigma of wave-particle duality raise further reserva-
tions. Intuitively the structure of the universe should be based
on the least number and simplest of principles although wis-
dom dictates that allowances be made for the possibility of
deliberate design.

Logic is a weak tool for dissecting a system that is known
to have defects in its application and for this reason a trial-
by-solution is likely to be ineffective. Therefore the course
of action must include an exploration using physical intuition
and not only a mathematical manipulation of equations. This
is accomplished through repeated testing of both implicit and
explicit assumptions to find the origins of paradoxical situ-
ations and then to remove these faults. The movements of
both energy and matter in spacetime are studied with care-
ful consideration of perspective in an attempt to unravel the
knot of relativity and to imagine an extrauniversal viewpoint.
Producing an accurate answer to the dilemmas detailed here
requires substantial time for trial calculations, for searching
through potentially applicable literature, and for reevaluating
conventional concepts through quiet reflection.

3 Results

The natural universe is undergoing a process ofdensification
and is described here as being composed of three real spatial
coordinates and one real monodirectional temporal counter.
Densification is defined for this demesne as an increase in the
density of space that occurs in the measure of distance be-
tween any two disparate points clocked by proper time and
progressing at the rate ofc. Previously referred to as light-
speed the particular value of thecharacteristic velocityas it
has been measured serves as a label for the universe as well as
all residents. It is further assumed that the inhabited universe
is infinite though possibly bounded, is fixed relative to any
preternatural background, if one exists, and is not undergoing
additional physical alteration. The kinematics of finitesimal
objects is derived for the movement of noninteracting rigid
bodies traveling at constant speed. The premise of constant
speed translates across allspaces. Initially this derivation is
done without the qualification of particles as either matteror
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energy. For the purposes of this paper it is practical and suf-
ficient for understanding to consider equations of motion of
only one dimension since any path traversed at constant speed
can be parameterized as such and densifies at the same rate;
extrapolation to all three dimensions is a straightforwardtask.

Length and time are measured with a ruler and a clock [5].
Proper Spaceis denoted by the variablez and experiences
densification dependent on proper time which is denoted by
the independent variable tauτ. In this case the clock is also
embedded within the ruler and is not considered an addi-
tional physical dimension. Inobject spacespace and time are
treated on equal footing as independent dimensions and are
denoted byx andt, respectively. These variables have local
values that manifest densification as contraction and dilation
in mimicry of many of the details of Special Relativity and
continue to suffer from dependence on frame-specific relative
velocity.

Measurements of physical observables are made in object
space and converted to values in proper space where the ac-
tion originates. The coordinate transformation for lengthor
displacement involves the scale change

dz = f dx. (1)

The unitless scale factorf is defined for densification as a
density of pointswhich is represented by a ratio of infinities
increasing from unity as

f =

(

dx+ cdt
dx

)

= 1+

(

cdt
dx

)

. (2)

Simple substitution of(2) into (1) yields the coordinate trans-
formation between spaces

dz = dx+ cdt. (3)

This is the conversion for points in space with an explicit de-
pendence on elapsed time. Contrary to expectation with den-
sification a scale transformation from object space to proper
space takes a form that is reminiscent of a Galilean boost [6].

The burgeoning density of proper space requires the use
of additional notation for the properwaxing velocity, denoted
byw, while in object space the concept of velocity is retained
as it is traditionally used and remains denoted byv. The rela-
tionship between the two quantities is

w ,
dz
dτ
= α (v + c) . (4)

Values for the velocity in object space persist within the range
of (−c, c) while values for the waxing velocity are always pos-
itive within the range of [c, 0). Open endpoints of each in-
terval are forbidden for the same reason; denizens of the uni-
verse must always experience the advancement of proper time
in some nonzero fraction. Accordingly values for thetempo-
ral dilation coefficient, marked by alphaα, vary as [1, 0). In-
finite dilation is taboo and is expressed by the avoidance of
an asymptotic value of zero forα.

In a break from prior theories of motion it is important
that velocities in all spaces are measured from a special class
of perspectives hereinafter referred to asproper frames. The
choice of axes may be made without particular regard for po-
sition but must be boosted to the specific velocity wherebyt
reaches the maximum expression ofτ and experiences densi-
fication at its fullest flowering. Proper frames can be thought
of as critical points and specific values associated with these
perspectives arew= c, v=0 andα=1.

For the sake of completeness it is worthwhile to also de-
fine astationary space, denoted byy, which advances with
the preceding variable of proper timeτ. This nonphysical
construct may be mathematically advantageous as it allows
for the use of global variables that forgo dependence on rel-
ative perspective but carries the caveat that the space is not
demonstrative of physical reality. The scale-densification —
to — boost technique above is repeated to provide the trans-
formation to proper space as

dz = dy + cdτ. (5)

Measurements of length or distance are converted from object
space to corresponding values in stationary space through the
transitive property with application of(3) and (5) to yield

dy + cdτ = dx+ cdt. (6)

For stationary space apseudovelocityis defined asu and takes
on the values(−c, c). Values ofu are somewhat analogous to
velocitiesv in object space e.g., adopting the value of zero
in a proper frame wheredt = dτ. The relation for the two
quantities is

u ,
dy
dτ
= α (v + c) − c. (7)

As proper space and stationary space both share the variable
τ as proper time the relationship between velocities is more
simple as

w = u+ c. (8)

The choice of alphabetically proximate variables is a mne-
monic convenience that is intended to be familiar and resem-
ble current definitions but not to imply any other mathemat-
ical relationship including equivalence with commonly used
spatial unit vectors. The invariant variables is reserved for
possible future use.

4 Discussion

Change is the true nature of the universe and the densifica-
tion of proper space depicts the most authentic representation
of space and time. A static ruler of fixed length is a forbid-
den item; an absolutely stationary observer is a nonsensical
frame of reference that does not exist. Although this picture
of reality is not mathematically convenient it is the correct
philosophy to accurately model basic kinematics. Object(-
ive) space is the milieu where action is perceived and mea-
surements are made. The coordinate transformation to proper
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space takes the form of a boost centered oncwhich arises, not
surprisingly, from the defining feature of the universe. This
conversion yields the advantage to the waxing velocity which
can always be rotated since it is never zero as objects must
experience some positive slice of proper time. Objects mov-
ing at the same rate as densification do not experience the
passage of proper time and therefore cannot inhabit this uni-
verse. It should not be overlooked that the transformation is
originally a scale change whereby the size of massive objects
is growing relative to the coordinate system with the densifi-
cation. It is the growth of the span between the center of mass
of an object and any other contained point within that same
object that is seemingly retarded in entities not occupyinga
proper frame of motion. Consideration of the action of only
infinitesimal points does not reveal this detail. It is helpful
if the time-dependent metric tensor is visualized as the ruler
growing shorter and shorter thus creating an illusion of infla-
tion. The author supposes that the idea of densification within
fixed boundaries is an option that Einstein either discardedor
failed to consider and is the source of his self-critical vacilla-
tion regarding the Cosmological Constant [7].

In a brief departure from kinematics an examination of
multiple perspectives clarifies the necessity for a preferred
frame of interaction. Collisions cannot have different out-
comes in different frames otherwise every incident can be
transformed into a destructive event. Synchronization to a
proper frame is a sufficient condition to preserve the integrity
of any physical interaction; the regimentation also reempha-
sizes the significance of velocity. This interpretation of simul-
taneity provides the means to intellectually resolve the well-
known gedanken paradox [8]: what are the ages of the travel-
ing twins? There currently exists an abundance of experimen-
tal and observational data which can be used to determine the
validity of proper frames. The incongruity of superluminal
travel can be rectified by application of the results discussed
here and the presence of tachyons is discarded.

Terminology relating to motion must be used cautiously
since the concepts involved vary among the different spaces
despite a similarity in formulation. Calculations done in sta-
tionary space remove some of the difficulties of perspective
that are inherent to the other spaces but readers are warned to
remember that this is not a physical reality. In object space
it is time that slows and space that contracts as a function
of speed to the detriment of the occupying objects. A se-
quence of snapshots in proper space shows that movement in
any direction produces an apparent spatialand temporal di-
lation based upon the movement of a mass impinging on the
budding densification. Part of the virtue of proper space is
that the object itself is not actually altered and the percep-
tion of dilation occurs only in the direction of motion while
densification continues unabated along all other axes. Along
with the increase in movement this retardation of proper space
and proper time is demonstrated as a decrease in the wax-
ing velocity although the moving particle still perceives den-

sification continuing atc. A reasonable choice for a func-
tional definition ofw is the hyperbolic secant as a function
of the angle of dilation, represented by phiϕ, and demon-
strated inw= csech(ϕ) making it more akin to a speed than
a velocity. The positive-definite, even function is a rotation
of phi through the real interval(−∞,∞) as measured from a
proper frame and this run equates with the previously detailed
bounds forw of [c, 0). The choice of hyperbolic functions is
preferred over the circular transcendental equations as the hy-
perbolics are independent of the imaginary numberi.

Consideration of the relative velocity between bulk ob-
jects with determinate length requires the use of a proper
frame. A measurement of relative velocity is inadequate to
completely determine the true states of objects in the system;
two measurements are required to establish the correct scal-
ings for space and time. Take the example in object space of
two massesat restto a specific proper frame as well as to each
other; the waxing velocity of each frame in proper space isc.
While the relative velocity in object space between the centers
of mass remains at zero in proper space the relative velocity
is characteristic and not zero as might be anticipated. This
discrepancy can be partly reconciled by acknowledging the
supplemental velocity acquired in proper space which is im-
parted by the densification of the gap between the two masses.
Accordingly the correct velocities between the center of mass
frames are emphasized by primed coordinates and subscripts
enumerate the frames of reference for separate and distinct
objects as

u′ , u2 − u1, (9.1)

w
′
, u′ + c, (9.2)

and v′ ,

(

w
′

α′

)

− c. (9.3)

The sense of relative motion is preserved by these transfor-
mations; the distinction of analias versus analibi transfor-
mation is highlighted [9]. To determine the relative velocity
in object space measurements are made there first, converted
to pseudovelocities and the relative velocity calculated then
reverted to object space. All direct measurements are relative
with v′ equal tov from a proper frame. Although this compu-
tation avoids direct expression of quantities in proper space
the kernel of the action lies there.

The primed alpha coefficientα′ serves as both the relative
temporal dilation between objects as well as the transforma-
tion between frames in proper space. It is defined as a ratio
in the range of real positive numbers(0,∞) and is most eas-
ily understand as an exponential with argument given as the
difference between two angles and shown here

α
′
,

(

α2

α1

)

= e−(ϕ2−ϕ1)
. (10)

These definitions in combination with some computation re-
store the hyperbolic tangent in a composition of velocitiesin
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object space and yield a result that is in correspondence with
rapidity [10]. The assertion that values ofα′ can exceed 1
is a specific deficiency in the conventional measurement of
relative velocity. Attend to these calculations with care as
variables of the traditional theory are ill-defined by the mud-
dled use of mixed perspective due to a misconception in the
choice of laboratory frame.

The derivation is accomplished to this point without the
need fori; further descriptions of the manifest complexity of
nature require the use of imaginary numbers. The kinematics
is extended to distinguish between the movements of the two
types of mass by applying a label ofmaterialor immaterial
(i-material) to all particles whether they are matter or energy;
the two types are interchangeable provided the exchange is
done en masse. Real and imaginary objects occupy overlap-
ping worlds within the same universe because the phase di-
chotomy causes a perception of near invisibility between the
two categories of mass in which the contrary object collapses
to a dimensionless point. As seen before with dilation the
flattening is perceptual and not actual. The alternately phased
object appears to ignore densification and to therefore exist
in a forbidden state. In that the object doesn’t seem to expe-
rience scaling it performs as with a waxing velocity of zero
and erroneously claims relative velocities asw′ = c ± c and
v
′ =0 ± c. The relative motion of the oppositely phased ob-

jects either approaches or recedes depending on the relative
angle of dilation. The tipping point occurs whenϕ1= ϕ2 and
α
′ = 1 and can serve as a test provided it is possible to produce

a series of identical immaterial objects. The author defersthe
specific method for this production to the expertise of exper-
imentalists.

The expressionE=mc2 acquires a new complexion after
revisiting the outmoded concepts of the rest mass of matter
and the mass equivalence of energy. The characteristic ve-
locity measured between real and imaginary particles is su-
perficial and acts as a screening value whereby information
is hidden from the casual observer but still preserved. Rely-
ing only on light as a mediator to comprehend motion intro-
duces inaccuracies that must be corrected. A single physical
measurement of an immaterial object is underdetermined and
wrongly constrains the associated parameters of velocity and
imaginary mass. Consequently the sources of wave nature
are found to originate from the complex quality of mass and
not directly from the tableau of spacetime. The seeming lack
of determinate states which is the hallmark of Quantum Me-
chanics illustrates its subservience to statistical models and
elucidates its failure of completeness and its misappropria-
tion of fundamental reality.

5 Conclusions

Maintaining an open-minded attitude of skepticism lies at the
heart of the scientific method; challenging established ideas is
not necessarily an effort towards rebellion and anarchy. Per-

sistent testing is an important undertaking in the quest to fur-
ther humanity’s understanding of life, the universe and ev-
erything. The author is awakened to the fact that the peculiar
consequences of Albert Einstein’s Special Relativity and sub-
sequent geometric interpretation of space and time originate
from observation and the theory does not proceed directly
from a foundational source. Relying on relative viewpointsto
predict motion has an inherent handicap and in combination
with the confused measurement of lightspeed initially serve
as motivation for study. The approach to creating a kinemat-
ics involves keeping a critical eye on perspective and attempt-
ing to dispel paradoxes in order to see through to the meta-
physical center. It is a mistake to rely totally on mathematical
models of nature as they are ultimately flawed and physicists
must constantly endeavor to look beyond constructed images
of reality. If the basic realities of space and time are known
then it is possible to properly explain the curious details of
motion of all objects in the native environment and show that
they proceed in a logical and intuitive way from this physi-
cal foundation. The success of such a hypothesis would be
the pedestal on which the future of physics could be built and
would have a far-reaching influence on science and greatly
impact its application to technology in addition to answering
important philosophical questions.

The elegance of Proper Space Kinematics is that it pro-
ceeds directly from the fundamental concept that the fabric
of the universe densifies at the unique quantity and quality
of the characteristic velocityc maturing with an inescapable
duration of proper time. This insight into the inner workings
of space and time solidifies realizations regarding the arrow
of time and the spectre of irreversible entropy. It is not sur-
prising that in a study of motion appearances are deceiving
and this deception necessitates a transformation to positions
in other spaces which are difficult to visualize since the use of
a time-dependent metric is not a well-developed field of study
with much pertinent literature. Spatial densification is under-
stood by a study of the steadily mounting density of points
(Mind the infinities!) whereby a scale change converts the
growing size of objects to the form of a boost. Care at the
beginning: reconceptions of velocity and movement lead to
new definitions such as proper space’s waxing velocity and
the interrelated temporal dilation coefficient. Additionally
boosting perspective to any proper frame provides the link-
age that shows these points of view can be logically related
and provides for surety over the use of four-vectors and four-
velocities. Scrutiny of these results discerns that stationary
space is a fictitious point of view that proves to be a useful
tool.

Densification clarifies the observed nuances of motion
more clearly than Special Relativity by eschewing stationary
states and shedding new light on the evolution of the aging
universe. Scale expansion of objects is found to be a new
source of motion where movement hinders the passage of
time and limits experience. Thought problems are revisited
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and explained by the introduction of new concepts such as
proper frames providing ample opportunity for testing the va-
lidity of these new ideas; experimental and mathematical ver-
ification have many available avenues to explore. This kine-
matics shows that the movement of objects does not cause
a physical change but merely alters appearances. As parti-
cles always experience their own perspective as characteristic
the presented composition of velocities accurately details the
difference between spectators and participants. The duality
of mass shows that the landscape of space is a perpendicular
reality for matter and energy which can be tested by manu-
facturing an experimental watershed. The screening between
imaginary material phase shifts creates a Quantum confusion
due to underdetermined measurements that the author feels
does finally vindicate Einstein’s intuition. (No Dice!)

As a first principles theory which meets the onus of the
stated hypothesis Proper Space Kinematics claims jurisdic-
tion over all motion in the universe. Proper motion supplants
the golden relics of relative and absolute motion; the dubi-
ous lessons of Quantum nature must be extracted and dis-
tilled for their essential truths. As seen with Isaac Newtonin
his 1687Philosophiae Naturalis Principia Mathematica[11]
in the continuing quest for deeper insight new ideas are a
harbinger for chaos as fundamental changes in understand-
ing prompt the reevaluation of physics on every level and in
every niche. The potential impact on science and its appli-
cation expands from the theoretical to the technological to
hopefully improve the quality of human life and reinvigorate
the search for profundity. The author proposes that the next
step in this study is to complete a mechanics in full gener-
ality with metric-tensor formalism to include a derivationof
canonical coordinates with energy and momentum and an ex-
amination of accelerating objects with interactions via both
collisions and forces-at-a-distance. Delving further raises a
rich multitude of questions: Is densification in the universe
constant? What does this mean for cosmology and the birth
and death of the universe? Are there other characteristic par-
allel universes that are unseen? Is there a greater realm? How
do these results apply to the standard model? Was the cre-
ation of life and homo sapiens sapiens an accident? Why are
we here? Physicists have always searched the universe for
bedrock on which to stand but to live in harmony with our
world we must instead navigate the rising tide of space and
time and learn to walk on water.
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Before a solar model becomes viable in astrophysics, one must consider how the ele-
mental constitution of the Sun was ascertained, especiallyrelative to its principle com-
ponents: hydrogen and helium. Liquid metallic hydrogen hasbeen proposed as a solar
structural material for models based on condensed matter (e.g. Robitaille P.-M. Liq-
uid Metallic Hydrogen: A Building Block for the Liquid Sun.Progr. Phys., 2011,
v. 3, 60–74). There can be little doubt that hydrogen plays a dominant role in the uni-
verse and in the stars; the massive abundance of hydrogen in the Sun was established
long ago. Today, it can be demonstrated that the near isointense nature of the Sun’s
Balmer lines provides strong confirmatory evidence for a distinct solar surface. The
situation relative to helium remains less conclusive. Still, helium occupies a prominent
role in astronomy, both as an element associated with cosmology and as a byproduct
of nuclear energy generation, though its abundances withinthe Sun cannot be reliably
estimated using theoretical approaches. With respect to the determination of helium lev-
els, the element remains spectroscopically silent at the level of the photosphere. While
helium can be monitored with ease in the chromosphere and theprominences of the
corona using spectroscopic methods, these measures are highly variable and responsive
to elevated solar activity and nuclear fragmentation. Direct assays of the solar winds
are currently viewed as incapable of providing definitive information regarding solar
helium abundances. As a result, insight relative to helium remains strictly based on the-
oretical estimates which couple helioseismological approaches to metrics derived from
solar models. Despite their “state of the art” nature, helium estimates based on solar
models and helioseismology are suspect on several fronts, including their reliance on
solar opacities. The best knowledge can only come from the solar winds which, though
highly variable, provide a wealth of data. Evaluations of primordial helium levels based
on 1) the spectroscopic study of H-II regions and 2) microwave anisotropy data, re-
main highly questionable. Current helium levels, both within the stars (Robitaille J. C.
and Robitaille P.-M. Liquid Metallic Hydrogen III. Intercalation and Lattice Exclusion
versus Gravitational Settling, and Their Consequences Relative to Internal Structure,
Surface Activity, and Solar Winds in the Sun.Progr. Phys., 2013, v. 2, in press) and
the universe at large, appear to be overstated. A careful consideration of available ob-
servational data suggests that helium abundances are considerably lower than currently
believed.

At the age of five Cecilia [Payne] saw a meteor, and
thereupon decided to become an Astronomer. She
remarked that she must begin quickly, in case there
should be no research left when she grew up.

Betty Grierson Leaf, 1923 [1, p. 72–73]

1 Introduction

Knowledge that helium [2,3] was first observed in the Sun by
Pierre Jules César Janssen [4] and Joseph Norman Lockyer
[5], before being discovered on Earth by William Ramsay [6],
might prompt the belief that the element was abundant on the
solar surface. In fact, helium has never been identified in the
absorption spectra of the quiet Sun. Janssen and Lockyer’s
fortunate discovery was restricted to helium lines appearing
within the prominences of the corona and within the disturbed
chromosphere [4,5]. While the element was easily detectable

in these regions [7], helium has remained relatively spectro-
scopically silent on the Sun. Conversely, the stars and the
Sun display signs of extreme hydrogen abundance, as first ob-
served by Cecilia Payne [8], Albrecht Unsöld [9], and Henry
Norris Russell [10]. Few would take issue with the conclu-
sion that the visible universe is primarily comprised of hydro-
gen. Helium abundances present a more arduous question.

Despite all the difficulties, several lines of reasoning sus-
tain the tremendous attention that solar helium levels have
received in astronomy. First, helium is the end product of
the nuclear reactions currently believed to fuel many of the
stars, either in the pp process or the CNO cycle [11–15]. Sec-
ond, solar helium levels are inherently linked to the gaseous
models of the Sun [16–18] and the application of theoretical
findings to the interpretation of helioseismic results [19–23].
Finally, helium is thought to be a key primordial element in
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Big Bang cosmology [3, 24–30]. As a result, the evaluation
of helium levels in the Sun brings a unified vision of astro-
physics, wherein accepted solar values lend credence to our
current concept of the formation of the universe. Still, ques-
tions remain relative to the accuracy of modern helium deter-
minations.

A flurry of initial studies had suggested that helium abun-
dances in the stars approached 27% by mass (see [3] for a
review). The findings provided support for those who pro-
posed primordial formation of helium prior to the existenceof
the objects which populate the main sequence [3, 24]. How-
ever, these ideas were challenged when it was discovered that
certain B-type stars, which should have been rich in helium
lines, were almost devoid of such features [3]. As a result,
in certain stars, helium was said to be gravitationally settling
towards the interior [3,31]. The desire to link helium levels in
the Sun with those anticipated from the primordial synthesis
continues to dominate modern solar theory [18]. Nonethe-
less, it can be demonstrated that the methods used to estimate
primordial helium levels in the universe [24] are either highly
suspect or implausible. Given these complexities, it is appro-
priate to compose a critical review of how helium abundances
have been historically obtained and how they are currently de-
termined, both in the Sun and in the universe at large.

2 Assessing elemental abundances in stellar spectra

2.1 The Saha Equations

Reasoning, like Lindemann [32] and Eggert [33] before him,
that the fragmentation of an atom into an ion and an electron
was analogous to the dissociation of a molecule, Megh Nad
Saha [34, 35] formulated the ionization equations [36, 37] in
the early 1920s. In so doing, he called upon the Nernst equa-
tion [38] and suggested that the free electron could be viewed
as an ideal gas. He also relied on thermal equilibrium and
the ionization potentials of the elements. Since Saha’s equa-
tion was inherently related to parameters associated with the
ideal gas (i.e. [39, p. 29–36] and [40, p. 107–117]) he demon-
strated that the level of ionization could be increased either
with elevated temperature or decreased pressure. Saha hy-
pothesized that the pressure of the reversing layer approached
0.1–1 atm [36, p. 481] and was the first to utilize this assump-
tion to account for the appearance of spectral lines across
stellar classes as simple functions of temperature [36, 37].
He was concerned with the marginal appearance of spectral
lines [36,37], that point at which these features first appeared
on a photographic plate. Cecilia Payne [1, 41] would soon
estimate the abundance of the elements in the universe using
the same criterion [8].

In his initial work, Saha would comment on the impos-
sibility of solar temperatures increasing as one moves from
the photosphere to the upper chromosphere: “Lockyer’s the-
ory. . . [that elements become more ionized as higher eleva-
tions are reached within the chromosphere] . . . would lead us

to the hypothesis that the outer chromosphere is at a sub-
stantially higher temperature than the photosphere, and the
lower chromosphere; and that the temperature of the sun in-
creases as we pass radially outwards. This hypothesis is,
however, quite untenable and is in flagrant contradiction to
all accepted theories of physics” [36, p. 473]. Saha had not
suspected that 20th century solar theorists would maintain
such a position. Lockyer’s analysis was correct: ionization
increased with elevation in the chromosphere. This was an
important lesson relative to thermal equilibrium. In any case,
Saha did observe that hydrogen was not fully ionized in the
chromosphere, since the lines from Hα and Hβ were evident at
this level. He also recognized that hydrogen should be essen-
tially ionized in O class stars and that the lines coincidentwith
the Balmer series in these stars had originated from ionized
helium. At the same time, he outlined that the same spec-
tral lines for classes later than B2A were completely due to
hydrogen [37, p. 151].

Subrahmanyan Chandrasekhar’s (Nobel Prize, 1983 [42])
thesis advisor, Sir Ralph H. Fowler [43], had provided signifi-
cant insight and criticisms into Saha’s second manuscript [37,
p. 153] and the resulting text was masterful. In 1927, Megh
Nad Saha was elected a Fellow of the Royal Society [34].

In the meantime, Fowler [43] and Edward Arthur Milne
[44] would collaborate and construct a wonderful extension
[45,46] of Saha’s seminal papers [36,37]. They improved the
treatment of ionization to consider not only principle lines
arising from atoms in their lowest energy states, but also the
subordinate lines produced by excited atoms and ions [45,46].
For his part, Saha had concentrated on the excitation and ion-
ization of the neutral atom [36, 37]. Fowler and Milne un-
derstood that the marginal appearance of a spectral line could
be used in determining relative concentrations and provided
some indication of the minimum number of atoms necessary
for appearance [45, 46]. They emphasized the idea that: “the
intensity of a given absorption line in a stellar spectrum is
proportional to the concentration of atoms in the stellar at-
mosphere capable of absorbing the line” [45, p. 404]. Their
first paper also highlighted the value of the maximum of a
spectral line in assessing the temperature and pressure of the
reversing layer and outlined that this problem was not affected
by the relative abundance of the element studied [45]. Using
stellar data from the lines of Ca, Mg, Sr, and Ba they deter-
mined that the electron pressure of the reversing layer was
on the order of 10−4 atm [45]. Fowler and Milne understood
that electron pressure,Pe, of the reversing layer was not de-
termined by a single ionization process, but by the ionization
of many elements: “In thus regarding Pe as fundamental we
are in effect assuming that, due to the presence of more eas-
ily ionised atoms, there are so many electrons present that
the partial electron pressure is practically independent of the
degree of ionization of the element under discussion” [45,
p. 409]. They expressed concern that their results led to the
assumption that absorbing species had very large absorption
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coefficients [45]. Milne had already determined that the ab-
sorption coefficients should be very large [47] and would later
devote another theoretical paper to their determination [48].
In their work together, Fowler and Milne explicitly assumed
that the reversing layer could be treated as existing under
conditions of thermal equilibrium, as Saha’s treatment re-
quired [36]. The validity of such assumptions is not simple to
ascertain.

At Cambridge, Milne met Cecilia Payne [1, p. 121], a stu-
dent at Newnham College [1, p. 112] and learned of her im-
pending access to the vast collection of photographic plates
used to generate the Henry Draper Catalogue at the Harvard
Observatory [1, p. 144–153]. Prior to the advent of the mod-
ern MKK classification [49], the Henry Draper Catalogue was
the largest stellar library collection, with over 200,000 classi-
fied stars [1, p. 144–153]. Milne suggested that “if he had. . .
[Payne’s] . . . opportunity, he would go after the observations
that would test and verify the Saha theory” [1, p. 155]. Cecila
Payne soon left Cambridge and sailed to America.

2.2 Cecilia Payne: What is the universe made of?
“I remember when, as a student at Cambridge, I de-
cided I wanted to be an astronomer and asked the
advice of Colonel Stratton, he replied, “You can’t
expect to be anything but an amateur”. I should have
been discouraged, but I wasn’t, so I asked Edding-
ton the same question. He (as was his way) thought
it over a very long time and finally said: “I can see
no insuperable obstacle” [50, xv].

Nineteenth century scientists had little on which to base their
understanding of the composition of the universe. Their clues
could only come from the Earth itself and from the meteorites
which occasionally tumbled onto its surface. Consequently, it
was not unreasonable to expect that the universe’s composi-
tion matched the terrestrial setting. However, stellar spectra,
already stored on photographic plates throughout Europe and
especially in the vast Henry Draper Collection, were hiding
a drastically altered viewpoint. With the arrival of yet an-
other woman at the Harvard Observatory [51–60], the stars
could not much longer conceal their story. Surrounded by
Pickering’s Harem [51–60], Cecilia Payne [1, 41] completed
her classic report on the abundance of the elements [8] and
became the first to underscore the importance of hydrogen as
the constitutive atom of universe. Her thesis had been care-
fully prepared and presented supportive laboratory evidence,
not only of ionization potentials, but of the validity of Saha’s
treatment [8, p. 105–115].

Stellar spectra signaled hydrogen [61] was so abundant
that several scientists, including Henry Norris Russell, could
not fully accept the conclusion. Payne had written an early
manuscript detailing the tremendous presence of hydrogen [1,
p. 19]. Her thesis advisor, Harlow Shapley, forwarded the
work to Russell who commented: “It is clearly impossible
that hydrogen should be a million times more abundant than

the metals” [1, p. 19]. That early manuscript was never pub-
lished and has since been lost [1, p. 20]. Tempered by Rus-
sell and Shapley, Cecilia Payne finally produced her famous
PhD dissertation:Stellar Atmospheres: A Contribution to the
Observational Study of High Temperature in the Reversing
Layers of Stars[8]. She would comment on hydrogen in this
manner: “Although hydrogen and helium are manifestly very
abundant in stellar atmospheres, the actual values derived
from the estimates of marginal appearance are regarded as
spurious” [8, p. 186]. A little later she would add: “The out-
standing discrepancies between the astrophysical and terres-
trial abundances are displayed for hydrogen and helium. The
enormous abundance derived for these elements in the stel-
lar atmospheres is almost certainly not real” [8, p. 188] and
“The lines of both atoms appear to be far more persistent,
at high and low temperatures, than those of any other ele-
ment” [8, p. 189].

For her part, Payne privately maintained that hydrogen
was tremendously abundant in the stars: “When I returned to
visit Cambridge after I finished this first essay in astrophysics,
I went to see Eddington. In a burst of youthful enthusiasm, I
told him that I believed that there was far more hydrogen in
the stars than any other atom. ‘You don’t mean in the stars,
you mean on the stars’, was his comment. In this case, indeed,
I was in the right, and in later years he was to recognize it
too” [1, p. 165].

Payne’s work also highlighted the importance of helium
in the O and B class stars [8]. For the first time, hydrogen
and helium became the focus of scrutiny for their role as po-
tential building blocks of the stars and the cosmos [8]. She
emphasized that: “there is no reason to assume a sensible de-
parture from uniform composition for members of the normal
sequence” [8, p. 179] and “The uniformity of composition of
stellar atmospheres is an established fact” [8, p. 189]. She
also held, as Eddington and Zeipel had advanced, that given
their gaseous nature: “an effect of rotation of a star will be
to keep the constituents well mixed, so that the outer portions
of the sun or of a star are probably fairly representative of
the interior” [8, p. 185]. Still, Payne was cautious relative to
extending her results as reflecting the internal composition of
the stars: “The observations on abundances refer merely to
the stellar atmosphere, and it is not possible to arrive in this
way at conclusions as to internal composition. But marked
differences of internal composition from star to star might be
expected to affect the atmosphere to a noticeable extent, and
it is therefore somewhat unlikely that such differences do oc-
cur” [8, p. 189].

Payne would conclude her thesis with a wonderful expo-
sition of the Henry Draper Classification system [8, p. 190–
198]. Otto Struve would come to regard the study as “the most
brilliant Ph.D. thesis ever written in astronomy” [41]. Edwin
Hubble would comment relative to Payne: “She’s the best
man at Harvard” [1, p. 184]. As Milne suggested, the first
dissertation of the Harvard College Observatory was founded
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upon the application of the ionization equations [36,37,45,46]
to the detailed analysis of spectral lines across stellar classes.
It did not specifically address elemental abundances in the
Sun. Nonetheless, Payne’s 1925 dissertation heralded the ap-
plication of quantitative spectral analysis in astronomy [8].

2.3 Albrecht Unsöld, hydrogen abundance, and evi-
dence for a solar surface

Albrecht Unsöld extended Payne’s studies with a focus on
the solar spectra [9]. Following in her footsteps [8], in 1928
[9], he applied the ionization formula [36, 37] to the chro-
mosphere and estimated the levels of sodium, aluminum, cal-
cium, strontium, and barium. In addition, Unsöld determined
that the electron gas pressure in the chromosphere stood at
∼ 10−6 atm [9]. He also concluded that hydrogen must be
about one million times more abundant than any other ele-
ment in the Sun [9, 62]. William McCrea was soon to echo
Unsöld, finding that hydrogen was a million times more abun-
dant than Ca+ within the chromosphere [62,63].

Importantly, Unsöld also documented that the absorbance
of the hydrogenβ, γ, and δ lines did not decrease across
the Balmer series (Hα =1; Hβ = 0.73; Hγ = 0.91; Hδ = 1.0) as
expected from quantum mechanical considerations (Hα =1;
Hβ = 0.19; Hγ =0.07; Hδ =0.03) [9]. This was an important
finding relative to the nature of the Sun. Recently, the be-
havior of hydrogen emission lines has been analyzed with
non-LTE methods [64]. It has been concluded that the “n=3
and higher levels are in detailed balance deep in the photo-
sphere, but they develop a non-LTE underpopulation further
out. However, the levels with higher n-values stay in detailed
balance relative to each other at these atmospheric depths,
and they also collisionally couple tightly to the continuum”
[64]. Yet, in the gaseous models of the Sun, the continuum is
not composed of condensed matter [65]. It represents an area
of profoundly increased solar opacity [65]. Nevertheless,the
behavior of the Balmer series in the solar atmosphere strongly
supports the idea that the Sun is comprised of condensed mat-
ter. Only a physical entity of sufficient density, such as a
surface, can permit tight collisional coupling to the contin-
uum, as it is impossible to couple to the opacity changes
which characterize the continuum in gaseous models [65].
These findings comprise the sixteenth and seventeenth lines
of evidence that the Sun is comprised of condensed matter.
The others are outlined by the author in recent publications
(e.g. [66]).

2.4 Henry Norris Russell: Inability to estimate Helium
from spectral lines

Soon Henry Norris Russell [67] surpassed Unsöld in his anal-
ysis of solar spectral lines and provided a detailed composi-
tional analysis of the Sun. Relative to the occupied energy
levels within atoms on the Sun, Russell affirmed that: “It must
further be born in mind that even at solar temperatures the

great majority of the atoms of any given kind, whether ionized
or neutral, will be in the state of lowest energy” [10, p. 21]. At
the same time, Russell realized that this rule was not observed
by hydrogen, leading him to the conclusion that the element
was extremely abundant in the Sun: “One non-metal, how-
ever, presents a real and glaring exception to the general rule.
The hydrogen lines of the Balmer series, and, as Babcock
has recently shown, of the Paschen series as well, are very
strong in the Sun, though the energy required to put an atom
into condition to absorb these series is, respectively, 10.16
and 12.04 volts - higher than for any other solar absorption
lines. The obvious explanation — that hydrogen is far more
abundant than the other elements — appears to be the only
one” [10, p. 22]. In fact, even the hydrogen Brackett lines
can be visualized in the infrared spectrum of the Sun [68].
Russell also highlighted Unsöld’s observation [9] that the hy-
drogenβ, γ, andδ lines did not decrease as expected. That
the hydrogen lines were extremely broad in the Sun had al-
ready been well established. Russell echoed some of his con-
temporaries and suggested that this might result from a Stark
effect [10, p. 50].

Finally, Russell accepted Payne’s findings relative to hy-
drogen and reported her numbers for the elements without
comment in his table XVI [10, p. 65]. He stated that: “The
most important previous determination of the abundance of
the elements by astrophysical means is that by Miss Payne. . .”
[10, p. 64]. Russell found the correlation between their works
to display “a very gratifying agreement” [10, p. 65]

Like Payne, Russell had relied on the work of Fowler and
Milne [45, 46] to set the composition of the Sun. He imple-
mented their suggestion that electron pressures,Pe, could be
gathered by considering the spectra and the ionization poten-
tial for elements like Ca, Sc, Ti, Sr and Yt. From these, he de-
duced aPe of 3.1×10−6 atm, in close agreement with Milne
(2.5×10−5 atm), and Payne and Hogg (2.54×10−6 atm) in
class G0 stars [10, p. 54–55]. Along with John Quincy Stew-
art, Russell had previously considered various means of deter-
mining the pressures at the Sun’s surface and had determined
that the pressure of the reversion layer could not be more than
10−4 atm [69]. But Russell reported a factor of at least 10 in
discordance in calculating electron pressures based on either
the ionization formula or the numbers of metallic atoms and
ions [10, p. 70–71]. He would resolve the difficulty at the end
of his treatise when setting the final elemental composition
for the Sun [10, p. 72].

At the same time, while Payne had understood the impor-
tance of local thermal equilibrium (LTE) for the proper appli-
cation of Saha’s equation [8, p. 92–101], she did not attempt
to make an explicit correction for the lack of equilibrium.
Conversely, Russell placed a correction factor in his work for
departure from LTE: “We have finally to take into consider-
ation the fact that the atmosphere may not be in thermody-
namic equilibrium. The comparison of solar and stellar spec-
tra affords evidence that this is the case” [10, p. 52]. Relative
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to his final abundances he commented: “The main source of
uncertainty which affects them is the magnitude of the cor-
rection for departure from thermodynamic equilibrium” [10,
p. 58] and “If the correction for departure from thermody-
namic equilibrium should be wholly disregarded, the calcu-
lated abundance of hydrogen — already very great — would
be increased thirty fold” [10, p. 62]. In the 1920s, of course,
there was hesitancy concerning the tremendous levels of hy-
drogen observed in the solar atmosphere.

For Russell, oxygen appeared as abundant as all other
metals combined. He also argued against, although did not
fully dismiss, gravitational settling in the Sun for the heaviest
metals: “It does not appear necessary, therefore, to assume
that downward diffusion depletes the sun’s atmosphere of the
heavier elements, though the possibility of such an influence
remains” [10, p. 59]. Importantly, he noted: “The statement
that enhanced lines are found in the sun for those elements
which have lines of low excitation potential in the accessible
region has therefore few exceptions” [10, p. 35]. At the same
time, he advanced that for those elements “which fail to show
enhancement lines in the sun, the excitation potentials forthe
accessible lines are high in every case for which they have
been determined” [10, p. 35]. Furthermore Russell hypoth-
esized that: “It appears, therefore, that the principle factor
which is unfavourable to the appearance of a spectral line in
the sun is a high excitation potential” [10, p. 35]. This was
precisely the case relative to helium.

With respect to the second element, Russell wrote: “There
is but one element known to exist in the sun for which no esti-
mate of abundance has now been made - and this is He. The
intensity of its lines in the chromosphere shows that it mustbe
present in considerable amount, but no quantitative estimate
seems possible” [10, p. 62]. Here was an explicit admission
that solar helium abundances could not be ascertained using
spectral data.

Helium was abundantly visible in early type stars, as Ce-
cilia Payne had already discovered [8] and Paul Rudnick [70]
and Anne Underhill continued to confirm [71–73]. Estimates
of the number of hydrogen to helium atoms in O and B type
stars varied from values as low as 3.2 to more than 27 [73,
p. 156]. A factor of nearly 10 in relative abundances from
spectral lines in such stars was hardly reassuring. Nonethe-
less, Underhill still surmised that the number of helium atoms
was at the 4–5% level [73]. Yet for the Sun, data about helium
abundance remained wanting.

2.5 Local Thermal Equilibrium

Milne was perhaps the greatest authority relative to local ther-
mal equilibrium (LTE) in astronomy [74–77] and many of
the most salient aspects of his arguments have been reviewed
[78]. Milne advocated that LTE existed in the center of a
star and that his treatment permitted “us to see in a gen-
eral way why the state of local thermodynamic equilibrium

in the interior of a star breaks down as we approach the sur-
face” [77, p. 81–83]. In 1928, Milne would express concern
relative to the appropriateness of the inferred thermal equi-
librium in the reversing layer, as required by the Saha equa-
tions [36, 37], although he believed that studies based on the
validity of the ionization equations should be pursued: “The
recent work of Adams and Russell brings forward evidence
that the reversing layers of stars are not in thermodynamic
equilibrium. This suggests a degree of caution in applying the
fundamental method and formulae of Saha to stellar spectra.
Nevertheless, departure from thermodynamic equilibrium can
only be found by pushing to as great a refinement as possible
the theory which assumes thermodynamic equilibrium” [48].
Gerasimovic had already advanced corrections for small de-
viations from thermal equilibrium [79] and Russell applied
corrections directly in his work [10]. By 1925, the Saha equa-
tions had been generally confirmed under experimental con-
ditions (e.g. [8, p. 111–112] and [80]), but only in the broad-
est sense. Over time, the ionization equations continued tobe
widely studied and the problems considered were extended
to include two-temperature plasmas (e.g. [81]), high pres-
sures (e.g. [82]), varying opacities (e.g. [83]), and non-LTE
(e.g. [84–88]). The Saha equations eventually became a use-
ful staple in the treatment of plasma physics [89, p. 164] and
stellar atmospheres [90–92].

As Auer highlighted relative to solar models [88], under
non-LTE, a set of rate equations enters into the problem of
determining the abundance of any given electronic state. Fur-
thermore, the radiation field is introduced directly into the
equations [88] utilized to calculate both opacities and pop-
ulations. The problem therefore becomes dependent on “si-
multaneous knowledge of the radiation field at all frequencies
and all depths” [88, p. 576].

While ionization appeared tractable given modern com-
puting, the solution became linked to the knowledge of stel-
lar opacities, an area of theory whose weaknesses have al-
ready been outlined [78]. Nonetheless, non-LTE approaches
have been successful in addressing the spectra of early type
stars [93–95]. Today, such methods also account for elec-
tronic, atomic, and ionic collision processes [64]. Non-LTE
approaches have provided considerable insight into the Bal-
mer and Paschen series associated with the hydrogen spec-
trum of the Sun [64].

Finally, it appears that the treatment adopted by Cecilia
Payne might not have been too far afield [8]. For many of
the cooler stars, simple LTE seems sufficient to address ion-
ization problems [94]. Non-LTE methods become most im-
portant for the O and A class stars [93–95]. In any case,
helium cannot be assessed on the Sun using the ionization
equations due to the lack of appropriate spectral lines. As a
result, while the LTE and non-LTE settings may be funda-
mental to the proper treatment of spectral lines, the methods
have little bearing on the proper evaluation of helium levels
in the Sun.
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3 Helium from solar theory

3.1 Henry Norris Russell

Since Russell was not able to extract helium abundances di-
rectly from spectral lines, he did so, without further scientific
justification, by assuming that the Sun had an mean molecu-
lar weight of∼2 [10, p. 72–73]. Such a value had also been
suggested by Saha [36, p. 476], who had in turn adopted it
from Eddington [96, p. 596]. As for Eddington, he had pre-
viously examined the radiation equilibrium of the stars using
a mean molecular weight of 54 [97]. In 1916, this value had
been selected based on the belief that the stars were princi-
pally composed of elements such as oxygen, silicon, and iron
prior to full ionization [1, viii]. Eddington lowered the mean
molecular weight to a value of 2 in 1917 [96, p. 596], based
on the idea that the elements would be fully ionized in the
stars. In the fully ionized state, hydrogen has a mean molec-
ular weight of 0.5, helium of∼1.3, and iron of∼ 2 (see [40,
p. 102–104] for a full discussion of mean molecular weights
in astrophysics). It was this value which Russell was to adopt
in his calculations.

Using a mean molecular weight corresponding to a metal
rich star, Russell concluded that helium was 13% as abun-
dant as hydrogen by weight [10, p. 73]. He then computed
that the Sun had equal percentages of oxygen and other met-
als (∼24% each) and that hydrogen comprised just under half
of the constitution (∼ 45%) by weight (see table XX in [10,
p. 73]. If Russell had selected a mean atomic weight of∼0.5,
there would be dramatic changes in the calculated helium
levels.

3.2 Early abundance calculations

In arbitrarily selecting mean molecular weights [96, 97], Ed-
dington determined the mean central stellar temperatures and
pressures along with the acceleration due to gravity at the sur-
face (e.g. [97, p. 22]). In turn, these parameters altered the
calculated absorption coefficient, and hence opacity, of stel-
lar interiors [97, p. 22]. Consequently, the setting of mean
atomic weight had a profound implication on nearly every
aspect of stellar modeling, but opacity would always remain
paramount. In 1922, Eddington had derived a relationship
between opacity and temperature [98] which would become
known as Kramer’s law [99].

Soon, Strömgren introduced an interesting twist to Ed-
dington’s approach [100, 101]. Rather than assuming a mean
atomic weight, Strömgren began his calculations by comput-
ing opacity values, and from there, estimating the fractional
composition of hydrogen within several stars [100], relying
in part on Russell’s elemental composition [10]. He con-
cluded that the fractional abundance of hydrogen was∼ 0.3
and maintained that the presence of helium would have little
effect on these calculations since “hydrogen and helium do
not contribute to the opacity directly” [100, p. 139]. Ström-
gren would write: “we have neglected the influence of helium.

The helium proportion is rather uncertain and the error in-
troduced by neglecting helium altogether small[100, p. 142].
Modern stellar theory would come to rely greatly on the opac-
ity contributions of the negative hydrogen ion (H−) [102].
Strömgren’s assumptions were premature. Still, he champi-
oned the idea of initially computing opacity, and from these
values obtaining both solar parameters and elemental abun-
dances [100,101].

Following the publication of a key modeling paper by
Cowling [103], Martin Schwarzschild was to take the next
theoretical step [104]. First, he made use of the mass-
luminosity relation while expressing mean molecular weight
and opacity as a function of elemental composition (X = hy-
drogen,Y = helium) [104]. Then, reasoning that the energy
output in the Sun from the CNO cycle [13] was directly re-
lated to elemental composition, he derived a fractional el-
emental composition for hydrogen, helium, and the metals
equal to 0.47, 0.41, and 0.12, respectively [104]. The results
were once again critically dependent on estimated opacities,
which Schwartzchild, like Strömgren before him [100, 101],
assumed to display Eddington’s [98]−3.5 power dependence
on temperature (see Eq. 9 in [104]). In fact, Schwarzschild
utilized an even greater dependence on temperature for en-
ergy production, allowing a 17th power in the exponential
(see Eq. 11 in [104]). Yugo Iinuma then advanced a broader
approach to the stellar composition problem [105]. He was
concerned with ranges of reasonable starting points, both for
hydrogen concentration and average molecular weight. His
treatment remained dependent on opacity computations,
though less rigid in its conclusions [105]. Schwarzschild et
al. [106] then introduced the effects of inhomogeneity in the
solar interior and convective envelopes along with solar age
into the abundance problem. They reached the conclusion
that the temperatures at the core of the Sun were such that
the carbon cycle should start to contribute to the problem.
Hydrogen abundances were assumed in order to arrive both
at a convection parameter and at helium values [106]. The
critical link to opacity remained [106]. Weymann, who like
Schwarzschild, was also at the Institute for Advanced Study,
built on his findings [107]. Taking account of the carbon cy-
cle, Weymann found that the core of the Sun was not con-
vective [107]. Powers of 4 and 20 for temperature were as-
sumed in the energy generation laws associated with the pp
and CNO cycles [107]. The hydrogen fractional composition
of the Sun was assumed and ranged from 0.60 to 0.80 (see
Table 3 in [107]). This resulted in helium and metallic frac-
tional compositions of 0.19–0.32 and 0.01–0.08, respectively
(see Table 3 in [107]).

In 1961, Osterbrock and Rogerson would elegantly sum-
marize the situation relative to estimating helium abundances
in the Sun: “Though helium is observed in the upper chromo-
sphere and in prominences, the physical conditions in these
regions are too complicated and imperfectly understood for
the abundance ratio to be determined from measurements of
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these emission lines. Hence the only reliable way to find the
helium abundance in the Sun is by analysis of its internal
structure” [108]. Yet, given the progress to date, the deter-
mination of elemental compositions within the Sun had been
a complex adventure involving either assumed values of av-
erage molecular weights, hydrogen abundances, energy gen-
eration reactions, and opacity. The latter would eventually
present the greatest difficulties [78]. Osterbrock and Roger-
son would utilize Weymann’s calculation, along with making
an assumption by setting theZ/X ratio at 6.4×10−2 [108],
to estimate interior solar fractional abundances atX = 0.67,
Y = 0.29, andZ = 0.04. They were guided in this estimation
by the belief that: “the solar, planetary nebula, and interstel-
lar abundances are all essentially the same” [108, p. 132].
For the planetary nebula NGC 7027 they set the fractional
abundances atX = 0.64,Y = 0.32, andZ = 0.04 [108]. Solar
elemental composition became decidedly linked to estimates
from remote objects. The stage was set for conclusively link-
ing solar elemental composition to stellar evolution and pri-
mordial nucleosynthesis.

3.3 Modern abundance calculation

Eventually, the solar neutrino problem entered theoretical
modeling [16, 109]. In his simulations, John Bahcall would
utilize fractional abundances of relatively narrow range (X =
0.715− 0.80, Y = 0.19− 0.258 andZ = 0.01− 0.027), set-
ting the central densities and temperatures near 150 g/cm3

and 15 million Kelvin, respectively [16]. The results, as be-
fore, were reliant on the use of solar opacity estimates [78].
By the beginning of the 1970s, fractional abundances for he-
lium and the metals were settling on values near 0.28 and
0.02 [25]. Solar models became increasingly complex, re-
lying on stellar opacity tables [110–118], energy generation
equations, neutrino flux, and solar age to arrive at internally
consistent results [17, 18]. Complexity was also introduced
by considering helium and heavy element diffusion through-
out the solar body [17, 18, 119, 120]. It became important to
establish not only modern helium content, but also the initial
helium abundance in the Sun [17,21,121]. Gough had already
suggested that helioseismology could be used to help estab-
lish fractional abundances: “Thus one might anticipate infer-
ring the hydrogen-helium abundance ratio by comparing the
measured values with a sequence of model solar envelopes”
[19, p. 21]. Helioseismological results became strongly incor-
porated into solar modeling [20–23] and “helioseismic tech-
niques . . . [became] . . . the most accurate way to determine
the solar helium abundance” [20, p. 235]. The techniques re-
mained linked to the equations of state which contained six
unknowns including: elemental composition, density, tem-
perature, and pressure [20, p. 224]. Moreover, the problems
required an explicit knowledge of opacity [20, p. 224] from
its associated tables [110–118].

Relative to solar models, the central problem remains

linked to the determination of internal solar opacity. The
questions are complex and have been addressed in detail al-
ready by the author [78]. In the end, opacity tables [110–118]
have no place in the treatment of stellar problems, precisely
because they are incapable of reproducing the thermal emis-
sion spectrum required [78]. They simply mask ignorance
of a fundamental problem in astronomy: the mechanism for
the production of a thermal spectrum. Their inability to ac-
count for the production of a single photon by graphite on
Earth [78], establishes that stellar opacity derived from iso-
lated atoms and ions can play no role in the proper under-
standing of thermal emissivity in the stars. As a result, he-
lium levels can never be established using theoretical model-
ing based on the gaseous equations of state and their inherent
association with stellar opacity tables [78].

4 Primordial helium abundances

The quest to understand helium levels in the stars has been
further complicated by the inferred association of this ele-
ment with primordial nucleosynthesis in Big Bang cosmol-
ogy [24–30]. Early on, Alpher, Bethe, and Gamow postulated
that the elements had been synthesized in a primordial fire-
ball [122]. This nucleosynthesis was proposed to include the
entire periodic table and even unstable elements, with short
lifetimes, of greater atomic number [122]. Soon, the idea that
the composition of the stars was largely related to primordial
conditions was born, especially relative to hydrogen and he-
lium [24, 123]. No other scheme appeared likely to explain
the tremendous He levels in stellar atmospheres, which ap-
proached 27% by weight [3,24]: “It is the purpose of this ar-
ticle to suggest that mild ‘cooking’ [such as found in stars]
is not enough and that most, if not all, of the material of
our everyday world, of the Sun, of the stars in our Galaxy
and probably of the whole local group of galaxies, if not the
whole Universe, has been ’cooked’ to a temperature in excess
of 1010K” [123, p. 1108]. By then, the astrophysical commu-
nity had already accepted that the heavy elements, which con-
stituted trivial amounts of matter compared to hydrogen and
helium, had largely been synthesized in the stars [14]. Only
1H, 2H, 3He, 4He, and7Li became candidates for synthesis
through a primordial process [124,125].

The postulate that “helium abundance is universal and
was generated in a Big Bang” [125] eventually came to wide
acceptance. The entire theory was hinged on elevated helium
abundances: “We can now say that if the Universe originated
in a singular way the He/H ratio cannot be less than about
0.14. This value is of the same order of magnitude as the
observed ratios although it is somewhat larger than most of
them. However, if it can be established empirically that the
ratio is appreciably less than this in any astronomical object
in which diffussive seperation is out of the question, we can
assert that the Universe did not have a singular origin” [123,
p. 1109]. Elevated helium levels, along with the discovery
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of the microwave background [126] and the red-shifts of dis-
tant galaxies [127, 128] became one of the three great pillars
of Big Bang cosmology [24, 129, 130]. This explained why
gravitational settling had become critical in discountinglow
helium abundances of certain B type stars [3, 30, 31]. If em-
pirical helium levels fell into question and a mechanism ex-
isted to accept the tremendously decreased helium levels in
these special B type stars [3, 31] by preventing gravitational
settling [131], Big Bang cosmology could not survive. Stel-
lar and solar helium abundances cannot be allowed to drop in
modern cosmology.

Today, the quest to link helium abundances and primor-
dial nucleosynthesis has continued [26–30] using two lines
of reasoning: 1) the analysis of anisotropy in the microwave
background [132, 133] and 2) the observation of helium and
hydrogen lines from low-metallicity extragalactic HII regions
[26,134–137].

Unfortunately, the use of anisotropy data [132,133] to an-
alyze primordial helium abundances are highly suspect. First,
insurmountable problems exist with the WMAP data sets, as
already highlighted by the author [138]. WMAP suffers from
significant galactic foreground contamination which cannot
be properly removed [138]. In addition, the WMAP team
cannot distinguish between signal arising from a hypotheti-
cally primordial origin from those produced throughout the
universe as a result of normal stellar activity [138]. While
evident ’point sources’ are taken into account, it remains im-
possible to determine, on a pixel by pixel basis, whether the
signal has a primordial origin, or originates from an uniden-
tified non-cosmological object [138]. Furthermore, WMAP
raw data has proven to be unstable from year to year in a
manner inconsistent with the hypothesized cosmological ori-
gins of these signals [138]. The data suffers from poor signal
to noise and the ILC coefficients used for generating the final
anisotropy maps do not remain constant between data releases
[138]. Most troubling, the data sets cannot be combined us-
ing a unique combination of spectral channels [138]. As a
result, since no unique anisotropy data set can be extracted
[138], the data has no scientific value in analyzing helium
abundances. Similar problems will occur when data from the
Planck satellite finally becomes available [139]. As a result,
all helium abundances derived from microwave anisotropy
data sets must be viewed with a high degree of suspicion.

On the surface, the extraction of primordial helium abun-
dances from H II regions appears more feasible [26, 134–
137]. H II regions are rich in both hydrogen and helium but
have low heavy element abundances (∼1/40 solar) [140]. Un-
like H I regions (∼60K), H II regions exist at temperatures
between 7,500 and 13,000 K [141]. In H II regions “the4He
abundance is derived from the recombination lines of singly
and doubly ionized4He; neutral 4He is unobserved” [140,
p. 50]. Unfortunately, experiments which utilized H II re-
gions to assess primordial helium cannot easily ascertain that
the sample has a uniform elemental composition. Further-

more, the use of H II regions for this purpose discounts the
idea that helium has been synthesized locally. Such a sug-
gestion should not be easily dismissed, as the temperatures
of observation [141] are well above those in equilibrium with
the hypothesized residual temperature of the Big Bang (∼3K)
[130]. Only low metallicity supports the idea that these he-
lium concentrations are primordial. Nothing should prevent
stellar systems from creating regions of low metallicity out-
side of a cosmological context. In this regard, the elevated
temperatures of H II regions suggest that a process well be-
yond primordial considerations is now influencing elemental
abundances in these regions. As such, it is imprudent to de-
rive primordial helium abundances from H II regions.

We do not know, and will probably never be able to ascer-
tain, primordial helium abundances. In order to observe he-
lium in astronomy, elevated temperatures are required. These
immediately imply that the processes observed are no longer
in thermal equilibrium with those of interest in cosmology
[130].

5 Solar winds: The key to understanding helium

Helium abundances can also be monitored in the solar wind
[143–152]. Presumably, the results are so dynamic that they
cannot be utilized to establish helium levels in the Sun itself.
However, solar winds [143–152] have presented astronomy
with a wealth of scientific information, which could be used
to profoundly alter our understanding of the Sun [131].

Already in 1971, it was recognized that solar wind helium
abundance measurements gave values which were lower than
those ascertained from theoretical experiments [143, p. 369].
The study of solar winds became linked to models of the
corona. Although the relative abundance and velocities of hy-
drogen to helium were advanced as profoundly dependent on
location [143], it remained evident that solar winds harbored a
great deal of reliable information. Early on, it was known that
helium to hydrogen density ratios in the solar wind could ex-
perience dramatic fluctuations [144], especially in slow winds
[147], though values appeared more stable at high solar wind
speeds [145]. Extremely low ratios of 0.01, rising to 0.08,
with an average of 0.037, were reported [144]. Clearly, such
values were in direct conflict with the elevated helium lev-
els expected in the Sun from primordial arguments [123]. As
such, solar wind measurements became viewed as unreliable
relative to estimating helium abundances in the Sun [148].

Nonetheless, something truly fascinating was present in
solar wind data. The Sun appeared to be expelling helium
(J. C. Robitaille, personal communication [131]) with in-
creased activity. The helium to hydrogen ratio was observed
to increase in association with the onset of geomagnetic
storms [144] and was highly responsive to the solar cycle
[146, 149, 151]. The helium abundance could rise from av-
erage values of less than 2% at the solar minimum to around
4.5% at maximum [149]. After the early 1970s, the vari-
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ation in solar wind helium abundance became increasingly
pronounced. By 1982, helium abundances in the solar wind
came to vary from values as low as 0.001 to as elevated as
0.35 [147]. A single value as high as 0.40 was reported [147].
At least half of all elevated helium abundance events were
related to a transient interplanetary shock wave disturbance
[147], though a significant portion were not associated with
such events. Each of these extremes highlighted something
phenomenal relative to solar winds. To explain the variabil-
ity, theoretical models turned to the large scale structureof
plasma. It was assumed that elevated helium abundance orig-
inated in regions of high magnetic field activity in the corona
[131]. It was found that helium abundance “enhancements of-
ten have unusually high ionization temperatures, indicative of
an origin in active solar processes. . . Collectively, theseob-
servations suggest that. . . [helium abundance] . . . enhance-
ments in the solar wind signal the arrival of plasma ejected
from low in the corona during a disturbance such as a large
solar flare or an eruptive prominence” [147]. While solar
winds had a close link to the “composition of the source ma-
terial” it could then “be modified by the processes which op-
erate in the transition zone and in the inner corona” [148].
Primordial helium abundances within the Sun could be saved
by discounting that solar wind helium abundances had any
meaning whatsoever relative to the composition of the Sun
itself. The idea that solar activity reflected the expulsionof
helium from the Sun (J. C. Robitaille, personal communica-
tion [131]) was never advanced. While the scientific com-
munity maintained that helium abundances were not reliable,
they claimed that it was possible to ascertain the fractional
isotopic composition of the elements in the solar wind and re-
late them directly to the solar convective zone: “The variabil-
ity of the elemental abundances in the solar wind on all time
scales and the FIP. . . [first ionization potential] . . . effect,
and its variability, will make it difficult to derive accurate
solar abundances from solar wind measurements, with the
exception of isotopic determinations” [150]. Of course, iso-
tope analysis could never constitute a challenge to the exis-
tence of large amounts of primordial helium in the Sun [123].
Solar wind helium abundances had to be simply correlated
to the coronal magnetic field, although the correlation coeffi-
cient was not powerful (σ∼0.3) [152]. Nonetheless, helium
abundance depressions could not be explained under such a
scenario [152]. At the same time, it is currently believed that
“solar wind abundances are not a genuine, unbiased sam-
ple of solar abundances, but they are fractionated. One such
fractionation depends on the first ionization potential (FIP):
When comparing solar wind to solar abundances, elements
with low FIP (<10 eV) are enriched by a significant factor, the
FIP bias, over those with a high FIP . . . Another fractionation
process affects mainly helium, causing its abundance in the
SW to be only about half of the solar abundance. . . It is most
likely due to insufficient Coulomb drag between protons and
alpha particles in the accelerating solar wind” [154, p. 16].

Herein was an explicit admission that the cause of extremely
low helium levels in the solar wind could not be adequately
understood. Conversely, fractionation models continued to
insist that elevated helium abundances were linked to the frac-
tionation of large atoms by collisions with protons [152,153].
Nothing could be gathered about solar helium abundances
from solar winds precisely because theoretical constructsfor-
bade such conclusions.

6 Conclusions

Modern day reports of elemental abundances in the Sun [154–
156] maintain that the Sun has a relatively large proportionof
helium withY values typically near 0.248 and primordial val-
ues of 0.275. These values come from theoretical modeling,
as helium remains spectroscopically silent in the photosphere
and solar winds are viewed as unreliable [155, p. 166]. There-
fore, claims that helium has “very high abundance” [155,
p. 166] in the Sun are not supported by observational fact.
In the end, mankind understands much less about this cen-
tral element than a cursory review of the literature might sug-
gest. Careful consideration of solar modeling establishesthat
all theoretical estimates of helium levels in the Sun cannot
be relied upon, given their dependence of solar opacity ta-
bles [78]. This also applies to theoretical results which at-
tempt to extract helium levels from helioseismology [156].
For this reason, it is simply not possible to establish elevated
helium levels in the Sun from theory. As helium levels can-
not be established spectroscopically, we are left with the solar
winds for guidance.

Currently, solar winds are viewed as too complex to yield
information relative to solar abundances. In large measure,
this is because scientists are trying to understand this data in
the context of an object whose helium abundance has been
largely set in primordial times [24, 123, 155]. The idea that
the Sun and the stars are actively working to control their he-
lium levels has never been previously considered [131]. Nev-
ertheless, the association of solar activity and elevated helium
levels [146, 149, 151] strongly suggests that the active Sunis
expelling helium and excluding it from its hydrogen based lat-
tice (J. C. Robitaille, personal communication [131]). Herein
can be found the cause of extremely low helium abundance
often obtained in the slow solar wind: the Sun works to keep
its helium levels low and solar activity represent a direct man-
isfestation of this fact. In the quiet Sun the slow solar winds
can report fractional abundances of less than 2% and these
should be viewed as steady state helium removal from the
convective zone of the Sun. Such an idea strongly supports
the contention that the Sun and the stars are primarily com-
prised of hydrogen in the liquid metallic state [131,157].

In advancing that the universe is largely composed of hy-
drogen and that helium is being excluded from the stars
(J. C. Robitaille, personal communication [131]), perhapsit is
appropriate to turn once again to Cecilia Payne, as the first as-
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tronomer to highlight the tremendous abundance of hydrogen
in the universe [8]. As a child, she had been eager to become
an astronomer “in case there should be no research left when
she grew up” [1, p. 72–73]. Yet, her position changed dra-
matically with age: “Looking back on my years of research,
I don’t like to dwell only on my mistakes; I am inclined to
count my blessings, and two seem to me to be very especially
valuable. The first blessing is that the process of discovery
is gradual — if we were confronted with all the facts at once
we should be so bewildered that we should not know how to
interpret them. The second blessing is that we are not immor-
tal. I say this because, after all, the human mind is not pliable
enough to adapt to the continual changes in scientific ideas
and techniques. I suspect there are still many astronomers
who are working on problems, and with equipment, that are
many years out of date. Now that I am old, I see that it is dan-
gerous to be in too much of a hurry, to be too anxious to see
the final result oneself. Our research does not belong to us, to
our institution, or to our country. It belongs to mankind. And
so I say to you, the young generation of astronomers: more
power to you. May you continue to expand the picture of the
universe, and may you never lose the thrill it gave you when it
first broke on you in all its glory” [Cecilia Payne-Gaposchkin,
April 10, 1968 [50, p. xv]].

Dedication

This work is dedicated to my oldest son, Jacob.
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12 Septembre, 1953, 374–386.

74. Milne E.A. Selective radiation-pressure and the structure of a stellar
atmosphere.Mon. Not. Roy. Astron. Soc., 1927, v. 87, 697–708.

75. Milne E.A. The effect of collisions on monochromatic radiative equi-
librium. Mon. Not. Roy. Astron. Soc., 1928, v. 88, 493–502.

76. Milne E.A. Bakerian Lecture: The structure and opacity of a stellar
atmosphere.Phil. Trans. Roy. Soc. London, 1929, v. 228, 421–461.

77. Milne E.A. Thermodynamics of the stars. Handbuch der Astrophysik,
1930, v.3, Part 1, 65–255 (also in Menzel D.H. Selected Papers on the
Transfer of Radiation: 6 papers by Arthur Schuster, K. Schwarzschild,
A.S. Eddington, S. Rosseland, E.A. Milne. Dover Publications, Inc.,
New York, 1966, 77–269).

78. Robitaille P.M. Stellar opacity: The Achilles’ heel of the gaseous Sun.
Progr. Phys., 2011, v. 3, 93–99.

79. Gerasimovic B.P. On the correction to Saha’s formula forsmall devi-
ations from thermodynamic equilibrium.Proc. Nat. Acad. Sci. USA,
1927, v. 13(4), 180–185.

80. Noyes A.A. and Wilson H.A. The thermal ionization of gaseous el-
ements at high temperatures: a confirmation of Saha theory.Astro-
phys. J., 1923, v. 57, 20–32.

81. van der Mullen J.A.M., Benoy D.A., Fey F.H.A.G. and van der Sijde
B. Saha equation for two-temperature plasmas: Theories, experimental
evidence, and interpretation.Phys. Rev. B, 1994, v. 50(5), 3925–3934.

82. Sweeney M.A. Thermodynamic inconsistency of the modified Saha
equation at high pressures.Astrophys. J., 1978, v. 220, 335–338.

83. Pottasch S.R. and Thomas R.N. Departures from the Saha equation
under varying conditions of Lyman continuous opacity.Astrophys. J.,
1959, v. 130, 941–953.

84. Krawec R. Steady-state composition of low-density nonequilibrium hy-
drogen plasma. NASA Technical Note D-3457, Washington, D.C., Oc-
tober 1966.

85. Kurochka L.N. Saha’s equation under deviation from thermodynamic
equilibrium. Bull. Astron. Inst. Czechoslovakia, 1973, v. 24(4), 210–
212.

86. Avrett E.H. Solution of non-LTE transfer problems.J. Quant. Spec-
trosc. Radiat. Trans., 1971, v. 11(6), 511–529.

P.-M. Robitaille. A Critical Assessment of Current and Primordial Helium Levels in the Sun 45



Volume 2 PROGRESS IN PHYSICS April, 2013

87. Canal G.P., Luna H., Galvão R.M.O. and Castell R. An approach to a
non-LTE Saha equation based on Druyvesteyn energy distribution func-
tion: A comparison between electron temperature obtained from OES
and the Langmuir probe analysis.J. Phys. D: Appl. Phys., 2009, v. 42,
135202 (6 pages).

88. Auer L.H. The stellar atmosphere problem.J. Quant. Spectrosc. Radiat.
Transfer, 1971, v. 11, 573–587.

89. Fridman A.A. and Kennedy L.A. Plasma physics and engineering. Tay-
lor & Francis, New York, N.Y., 2004.

90. Mihalas D. Stellar atmospheres (2nd Edition). W.H. Freeman and Com-
pany, San Francisco, CA, 1978

91. Hubeny I. Theory and modeling of stellar atmospheres.AIP Conf.
Proc., 2010, v. 1268, 73–115.

92. Werner K. and Dreizler S. The classical stellar atmosphere problem.J.
Comp. Appl. Math., 1999, v. 109(1–2), 65-93.

93. Lecar M. Departures from local thermodynamic equilibrium in an A0
stellar atmosphere. NASA Technical Note, D 2110, 1964.

94. Przybilla N., Nieva M.-F. and Butler K. Testing common classical LTE
and NLTE model atmosphere and line-formation codes for quantita-
tive spectroscopy of early-type stars.J. Phys. Conf. Ser., 2011, v. 328,
012015 (12 pages).

95. Nieva M.F. and Przybilla N. Hydrogen and helium line formation in
OB dwarfs and giants: A hybrid non-LTE approach.Astron. Astrophys.,
2007, v. 467, 295–309.

96. Eddington A.S. Further notes on the radiative equilibrium of the stars.
Mon. Not. Roy. Astron. Soc., 1917, v. 77, 596–612.

97. Eddington A.S. On the radiative equilibrium of the stars. Mon. Not.
Roy. Astron. Soc., 1916, v. 77, 16–35.

98. Eddington A.S. On the absorption of radiation inside a star. Mon. Not.
Roy. Astron. Soc., 1922, v. 83, 32–46.

99. Kramers H.A. XCIII. On the theory of x-ray absorption andof the con-
tinuous x-ray spectrum.Phil. Mag., 1923, 46(275), 836–871.
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Hierarchical relationships between physical theories are discussed. It is explained how
a lower rank theory imposes constraints on an acceptable structure of its higher rank
theory. This principle is applied to the case of quantum mechanics and quantum field
theory of massive particles. It is proved that the Dirac equation is consistent with these
constraints whereas the Klein-Gordon equation, as well as all other second order quan-
tum equations are inconsistent with the Schrödinger equation. This series of arguments
undermines the theoretical structure of the Standard Model.

1 Introduction

The equations of motion are regarded as the basis of a physi-
cal theory. A mathematical analysis of these equations yields
the complete form of a given theory and of its details. The
validity of a mathematically correct physical theory should
be consistent with two kinds of tests. Thus, it must agree
with relevant experimental data and it must also be consis-
tent with well established physical principles. (Evidently, the
latter represent many experimental data in a concise form.)
The following simple example illustrates the latter point. A
new theory is unacceptable if its final results are inconsistent
with the law of energy conservation. This point shows the
significance of physical constraints that restrict the number
of acceptable physical theories and guide theoretical and ex-
perimental efforts to take promising directions.

The definition of a domain of validity is an important ele-
ment of a theory. For example, mechanics is the science used
for predicting the motion of bodies. It is very successful in
the case of the motion of planets moving around the sun. On
the other hand, it cannot predict the motion of an eagle flying
in the sky. This example does not mean that mechanics is in-
correct. It means that mechanics is a very satisfactory science
for a set of experiments. For example, Newtonian mechanics
is acceptable for cases where the following conditions hold:
the velocity is much smaller than the speed of light, the clas-
sical limit of quantum mechanics holds, and the force can be
calculated in terms of position, time and velocity. The set of
experiments where a given theory is successful is called the
theory’s domain of validity. This issue is used in the rest of
this work.

The definition of the domain of validity illustrates an im-
portant aspect of the correctness of a physical theory. Indeed,
this notion should be regarded in a relative sense. Thus, many
measurements are given together with experimental error. For
this reason, even if we know that a given theory is not perfect,
it still can be regarded as a correct theory for cases where the
theory’s errors are smaller than the experimental errors.

In this work units where ℏ = c = 1 are used. In this system
of units one kind of dimension applies and here it is the length
[L]. Thus, the dimension of every physical quantity takes

an appropriate power of [L]. For example, mass, energy and
momentum take the dimension [L−1]. The metric is diagonal
and its entries are (1,−1,−1,−1). Greek indices run from 0 to
3. The subscript symbol ,µ denotes the partial differentiation
with respect to xµ.

2 The dimensions of quantum fields

Consider the two sets of experiments S A and S B defining the
domains of validity of the physical theories A and B, respec-
tively.

Fig. 1 illustrates the hierarchical relationships between
theories A and B. Here the sets S A and S B consist of all ex-
periments that are described correctly by theory A and B, re-
spectively. The set S A is a subset of S B. This relationship
means that all experiments that are described successfully by
theory A are also described successfully by theory B, but not
vice versa. For this reason it can be stated that theory B has
a more profound meaning because it is also valid for cases
where theory A is useless. However, this fact does not mean
that theory A is wrong, simply because this theory can be
used successfully for all cases that belong to its domain of
validity S A.

This kind of relationships between theories has been rec-
ognized a long time ago. For example, A. Einstein men-
tions special relativity and general relativity and explains why
special relativity should not be regarded as a wrong theory.
The reason is that special relativity holds in cases where a
flat space-time can be regarded as a good description of the

Fig. 1: Domains of validity of two theories (see text).
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physical conditions. Similarly, considering electrostatics and
Maxwellian electrodynamics, he explains why electrostatics
is a good theory for cases where the charge carriers can be
regarded as motionless objects (see [1], pp. 85, 86).

The issue of hierarchical relationships between theories is
also discussed in Rohrlich’s book (see [2], pp. 1–6). Here one
can find explanation showing the hierarchical relationships
between several pairs of theories. This discussion provides
the reader with a broader overview of the structure of existing
physical theories and of their hierarchical relationships.

As pointed out above, a physical theory that takes a higher
hierarchical position has a more profound meaning. The rest
of this work relies on another result obtained from these re-
lationships. Thus, a well established physical theory imposes
constraints on appropriate limits of a higher rank theory. For
example, this requirement is satisfied by relativistic mechan-
ics, whose low velocity limit agrees with Newtonian mechan-
ics (see [3], pp. 26–30). Similarly, the classical limit of
quantum mechanics agrees with classical physics (see [4], pp.
19–21 and [5], pp. 133–141). Below, this principle is called
constraints imposed by a lower rank theory. It is shown in
this work that this principle provides powerful constraints on
the acceptability of physical theories.

3 Hierarchical Relationships Between Quantum Theo-
ries

Let us discuss the hierarchical relationships between three
quantum theories of massive particles: non-relativistic quan-
tum mechanics (QM), relativistic quantum mechanics (RQM)
and quantum field theory (QFT) (see fig. 2). Thus, QM takes
the lowest hierarchical rank because it is valid for cases where
the absolute value of the momentum’s expectation value is
much smaller than the particle’s self-mass. RQM is valid for
cases where the number of particles can be regarded as a con-
stant of the motion. QFT is a more general theory and RQM
is its appropriate limit. The inherent relationships between
these theories are well documented in the literature. Thus,
S. Weinberg makes the following statement. “First, some
good news: quantum field theory is based on the same quan-
tum mechanics that was invented by Schrödinger, Heisen-
berg, Pauli, Born, and others in 1925-1926, and has been used
ever since in atomic, molecular, nuclear and condense matter
physics” (see [6], p. 49).

The Schrödinger equation takes the following form

i
∂ψ

∂t
= − 1

2m
∆ψ + Uψ. (1)

An analysis of this equation yields an expression for a
conserved current whose density is (see e.g. [4], pp. 53–55)

ρ = ψ∗ψ. (2)

Relation (2) proves that the dimension of the Schrödinger
function is

[ψ] = [L−3/2]. (3)

Fig. 2: Hierarchical relationships between three quantum theories
(see text).

Here the expression for density depends only on the wave
function and contains no derivatives. The form of the density
(2) is an important element of the theory because it enables a
construction of a Hilbert space of the time-independent func-
tions which belong to the Heisenberg picture.

Let us examine the structure of QFT. The vital role of
the Lagrangian density in QFT can be briefly described as
follows. The phase is an indispensable element of quantum
theories. Being an argument of an exponent which can be ex-
panded in a power series, the phase must be a dimensionless
Lorentz scalar. Thus, the phase is defined as a Lorentz scalar
action (divided by ℏ). The following expression shows how
the action is obtained from a given Lagrangian density L

S =
∫
L d4x. (4)

This expression proves that a dimensionless Lorentz
scalar action is obtained from a Lagrangian density that is
a Lorentz scalar whose dimension is [L−4].

This property of the Lagrangian density is used in an ex-
amination of two kinds of QFT theories. Let us begin with the
first order Lagrangian density of a free Dirac field ψD (see [7],
p. 54)

LD = ψ̄D[γµi∂µ − m]ψD. (5)

Now, the dimension [L−4] of the Lagrangian density and
the dimension [L−1] of the operators ∂µ and m prove that the
dimension of the Dirac field ψD is [L−3/2]. This value agrees
with that of the Schrödinger function (3). It means that the
Dirac field theory satisfies the dimension constraints imposed
by the lower rank theory of QM.

A different result is obtained from the second order com-
plex Klein-Gordon (KG) equation. The Lagrangian density
of this equation is (see [7], p. 38)

LKG = g
µνϕ∗,µϕ,ν − m2ϕ∗ϕ. (6)

Here the dimension of the operators is [L−2]. Using the
dimension [L−4] of the Lagrangian density, one infers that the
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dimension of the KG function ϕ is [L−1]. On the other hand,
it is shown in (3) that the dimension of the Schrödinger wave
function is [L−3/2]. This outcome means that the complex
KG function ϕ violates a constraint imposed by a lower rank
theory.

It turns out that this inconsistency holds for other quantum
equations where the dimension of their field function is [L−1].
Thus, a dimension [L−1] is a property of the following field:
the Yukawa particle (see [8], p. 211), the electroweak W±,Z
bosons (see [9], p. 307) and the Higgs boson (see [10], p.
715). For this reason, quantum theories of all these particles
are inconsistent with the dimensional constraint imposed by
the Schrödinger equation.

One can also see immediately that the Yukawa and the Z
fields introduce to the Lagrangian density an interaction term
with a fermion ψ which takes the form

LInt = gψ̄ϕψ. (7)

This kind of interaction means that the field ϕ of each
of these particles is a real field (in a mathematical sense).
This conclusion stems from the facts that the action and the
integration factor d4x are real. These properties mean that all
terms of a Lagrangian density must be real. Now, since g and
the product ψ̄ψ are real, one finds that ϕ is real. Evidently, a
theory of a real field is inconsistent with another constraint of
QM. Indeed, QM uses a complex wave function and for this
reason the non-relativistic limits of the real field of Yukawa
and of Z particles also violate a second kind of constraint.

4 Concluding Remarks

It is explained in this work how hierarchical relationships
between physical theories can be used for deriving neces-
sary conditions that an acceptable higher rank theory must
satisfy. This issue is applied to QFT theories and the non-
relativistic limit of their field function is compared with prop-
erties of non-relativistic quantum mechanics. It is explained
how such a comparison provides a powerful criterion for the
acceptability of physical theories. The discussion examines
the dimension of quantum functions of several specific theo-
ries and compares the dimension of QFT theories with that of
the lower rank non-relativistic Schrödinger theory. It turns
out that the Dirac field satisfies this criterion whereas the
Klein-Gordon and the Yukawa theories as well as those of
the W±, Z and the Higgs boson fail to satisfy this criterion.

An important evaluation of a theoretical idea is a compar-
ison of its outcome with experimental results. Referring to
this issue, one should note that a field function ψ(xµ) which is
used in QM, RQM and QFT depends on a single set of four
space-time coordinates xµ. For this reason, ψ(xµ) describes
an elementary point-like particle. The following example il-
lustrates this matter. A pion consists of a quark-antiquark
pair of the u, d flavor and each quark is described by a func-
tion that depends on its own 4-coordinates xµ. Hence, a pion

cannot be described by a function ψ(xµ), simply because this
function has a smaller number of independent coordinates.
It turns out that experimental data of all spin-1/2 Dirac par-
ticles, namely, leptons and quarks, are consistent with their
pointlike attribute. On the other hand the pion, which was
the original KG candidate is not pointlike and the π± mesons
have a charge radius which is not much smaller than that of
the proton [11]. There is still no experimental data concern-
ing pointlike properties of the W±,Z and the Higgs boson.

As is well known, the W±,Z and the Higgs bosons are cor-
nerstones of the Standard Model. It means that the series of
arguments presented in this work undermines the theoretical
structure of the Standard Model. Evidently, a physical the-
ory that has an inconsistent structure is unacceptable. Hence,
people who still adhere to the Standard Model must show why
the arguments presented above are incorrect. It is also inter-
esting to note that the results of this work are consistent with
Dirac’s lifelong objection to the second order KG equation of
a spin-0 boson (see [12], pp. 3, 4).
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In the framework of the Geometric Collective Model (GCM), quantum phase transition
between spherical and deformed shapes of doubly even nuclei are investigated. The
validity of the model is examined for the case of lanthanide chains Nd/Sm and actinide
chains Th/U. The parameters of the model were obtained by performing a computer
simulated search program in order to obtain minimum root mean square deviations be-
tween the calculated and the experimental excitation energies. Calculated potential en-
ergy surfaces (PES’s) describing all deformation effects of each nucleus are extracted.
Our systematic studies on lanthanide and actinide chains have revealed a shape transi-
tion from spherical vibrator to axially deformed rotor when moving from the lighter to
the heavier isotopes.

1 Introduction
The nuclear shape transitions were studied within the nu-
clear interacting boson model (IBM) [1–3]. The IBM-1 de-
scribes a system of a fixed number N of spin zero and two
bosons (s and d bosons) subject to one- and two-body inter-
actions. The IBM-1 reveals a transparent algebraic structure
with U(6) as the dynamical group. Varying six free param-
eters of the model, one can reach three standard dynamical
symmetries U(5), SU(3) and O(6) and two additional ones
SU(3)∗ and O(6)∗ [2]. It turns out that these dynamical sym-
metries provide an appropriate framework for the description
of low-energy collective motions of real nuclei with certain
shape symmetries: The U(5) limit corresponds to spherical
nuclei, the SU(3) and SU(3)∗ limits to axially symmetric nu-
clei with quadruple deformation (prolate and oblate shapes)
and the O(6) and O(6)∗ limits to quadruply deformed nuclei
that are unstable against the axial symmetry breaking. This is
represented in the so called Casten triangle [2,4] with vertices
corresponding to the standard dynamical symmetries and the
other points to various transitional cases. Phase transitions
between these shapes were studied, and it is known that the
phase transition from U(5) to O(6) is second order, while any
other transition within the Casten triangle from a spherical to
a deformed shape is first order [5–15].

Alternative descriptions of nuclei at the critical point of
phase transitions from spherical vibrator to deformedγ soft
E(5) [16], and from spherical vibrator to deformed axially
symmetric rotor X(5) [17], were proposed. These analytic
solutions are obtained by introducing a square well potential
in the Bohr Hamiltonian and yield parameter free predictions
for both energies and electromagnetic transition probabilities.
Empirical examples were suggested for both the proposed
symmetries [18]. It was found [19, 20] that the X(5) predic-
tions cannot be exactly reproduced by any point in the two pa-
rameter space of the IBM, whereas best agreement is obtained

for parameters corresponding to a point close to, but outside,
the shape phase transition region of the IBM. Since the IBM
was formulated from the beginning in terms of creation and
annihilation boson operators, its geometric interpretation in
terms of shape variables is usually done by introducing a bo-
son condensate with two shape parametersβ andγ through
the intrinsic state formalism (coherent state) [21]. The pa-
rameterβ is related to the axial deformation of the system,
while γ measures the deviation from axial symmetry. The
equilibrium shape of the system is obtained by minimizing
the intrinsic state. It is well know that the dynamical sym-
metry associated with U(5) corresponds to a spherical shape
β = 0, the dynamical symmetry SU(3) is associated with an
axially deformed shapeβ , 0 andγ = 0, π/3 and the dynam-
ical symmetry O(6) is related to aγ-unstable deformed shape
β , 0 andγ-independent.

A very flexible and powerful approach to describe nu-
clear collective excitations which is an extension of the Bohr-
Mottelson vibrational Hamiltonian [22] is the GCM essen-
tially based on the quadruple degrees of freedom [23,24]. The
problem of nuclear collective motion is formulated by Bohr
and Mottelson from the beginning in terms of the intrinsic pa-
rametersβ, γ and the three Euler angelsωi that characterize
the orientation of a deformed nucleus.

The GCM is a macroscopic nuclear structure model in the
sense that it considers the nucleus as a charged liquid drop
with a definite surface, rather than a many-body system of
constituent particles.

Neodymium isotopes are the members of the chain of nu-
clei which represent an ideal case for studying the influence
of the shape transition from spherical to deformed nuclei.
Therefore, in the chart of nuclei there is a very important lan-
thanide Nd/Sm transition region which exhibit a rapid struc-
tural change from spherical to well deformed when moving
from the lighter to the heavier isotopes. Although this tran-
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sitional region has been studied extensively in the framework
of the IBM, the discussion of phase transitions has not always
been treated in a proper way.

In the present paper, we have analyzed systematically the
transitional region and phase transition in lanthanide and ac-
tinide chains of isotopes in the framework of GCM. For each
isotope chain a fitting procedure is performed to get the model
parameters. We have generated the PES to classify phase
transitions and to decide if a nucleus is close to criticality.
In these chains, nuclei evolve from spherical to deformed
shapes.

2 The GCM Hamiltonian and the PES’s

The Hamiltonian of the GCM [23] represents a concrete re-
alization of the general Bohr Hamiltonian [22] describing the
quadruple oscillations of the nuclear surface. The collective
Hamiltonian restricted to quadruple deformations can be writ-
ten in the notation of Rajah for tensor products of irreducible
tensor operators. Theα′s are the well known collective co-
ordinates, which are defined by the usual expansion of the
nuclear radius in terms of spherical harmonics. The ˆπ is the
covariant tensor of the canonically conjugate momenta. We
start by writing the GCM Hamiltonian as:

Ĥ = T̂ + V̂. (1)

The kinetic energŷT up to second order is given by [2].

T̂ =
1
B2

[π × π]0 +
P3

3

[
[π × α](2) × π̂

](0)
(2)

whereB2 is the common mass parameter andP3 is an enhar-
monic kinetic term which for simplicity, we set to zero here.
A transformation to the intrinsic body fixed system leads to
a formal separation of the rotational and vibrational variables
expressed by the Euler angles and the shape parametersβ and
γ respectively. The potential energyV is given by

V = C2[α × α](2) + C3

[
[α × α](2) × α

](0)
+

+C4[α × α](0)[α × α](0)+

+C5[α × α](0)
[
[α × α](2) × α

](0)
+

+C6

[
[α × α](2) × α

](0) [
[α × α](2) × α

](0)
+

+D6[α × α](0)[α × α](0)[α × α](0).

(3)

The six stiffness parametersC2,C3,C4,C5,C6 andD6 occur-
ring in the collective potential energy are constants for each
nucleus. They are treated as adjustable parameters which
have to be determined from the best fit to the experimental
data, level energies, B(E2) transition strengths and
quadruple moments. They depend however on the proton and
neutron numbers due to shell structure. The potential energy,

expressed in terms of the intrinsic variablesβ andγ, is

V(β, γ) = C2
1√
5
β2 −C3rub

√
2
35 β

3 cos(3γ)+

+C4
1
5 β

4 −C5

√
2

175 β
3 cos(3γ)+

+C6
2
35 β

6 cos2(3γ) + D6
1

5
√

5
β6

= Vs(β) + VPo(β, γ) + Vna(β, γ).

(4)

Roughly speaking theC2, C4 and D6 terms describe theγ-
independent features of the PES. They form the contribution
Vs(β). TheC3 andC5 terms are responsible for the prolate-
oblate energy differences in the PES and are represented by
Vpo(β, γ). The C6 term is symmetric about theγ = π/6
axis and therefore can be used for the generation of non ax-
ial shapeVna(β, γ). The selection of the eight parameters of
the GCM Hamiltonian is impractical and difficult, because
the available observation data are usually not sufficient to
establish the qualitative nature of the GCM potential. It is
therefore, often desirable to use a more tractable form of the
model. In practice simplification for the GCM is to use a
maximum of three parameters to describe all limits of nuclear
structure: vibrator, rotor andγ-soft nuclei and transition re-
gions in between. Then the potential energy up to the fourth
power ofβ is simplified to be:

V(β, γ) = C2
1
√

5
β2 −C3

√
2
35
β3 cos(3γ) + C4

1
5
β4 (5)

whereβ ∈ [0,∞] andγ ∈ [0,2π/3].

3 Critical Point Symmetries

The equilibrium shape associated with the GCM Hamiltonian
can be obtained by determining the minimum of the energy
surface with respect to the geometric variablesβ andγ, i.e.
where the first derivative vanish.

Since the parameterC3 controls the steepness of the po-
tential, and therefore, the dynamical fluctuations inγ, it stron-
gly affects the energies of excited intrinsic states. The param-
eter C3 = 0 gives aγ-flat potential and an increase ofC3

introduces aγ-dependence in the potential with a minimum
atγ = 0. ChangingC3 will indeed induce aγ-unstable to the
symmetric rotor transition; it is best to simultaneously vary
C2 andC4 as well.

The shape transition from vibrator to rotors is achieved
by starting from the vibrator limit, loweringC2 from positive
to negative value, increasingC4 to large positive value, with
gradually increasingC3 (loweringC2 from positive to nega-
tive value, introducing a large positiveC4 and a positiveC3).

4 Numerical Results Applied to Lanthanide and Actin-
ide chains

The first nucleus to be identified as exhibiting transition from
spherical to axially deformed shapes was152Sm [18], fol-
lowed by150Nd [24]. Further work on152Sm [25] and150Nd
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[25,26] reinforced this conclusion. In our calculation we will
examine and systematically study the lanthanide144−154Nd
and 146−156Sm, isotopes and actinide224−234Th and230−238U
isotopes because of the richness of available experimental
data indicating a transition of nuclear shapes from spherical
to deformed form. The optimized model parameters for each

Table 1: The GCM parameters by (MeV) as derived in fitting proce-
dure used in the calculation.

Nucleus C2 C3 C4
144Nd 12.46084 1.06407 −26.29034
146Nd 7.98904 8.46249 −5.34827
148Nd −19.84450 41.41216 105.62500
150Nd −56.19267 83.37305 248.96600
152Nd −73.70551 104.57310 319.48270
154Nd −84.13947 118.02790 362.71460

146Sm 14.49576 1.27688 −30.52593
148Sm 8.89235 9.87290 −5.28215
150Sm −23.19850 47.32818 121.87500
152Sm −63.80397 93.79468 281.39990
154Sm −82.44842 116.19230 356.21830
156Sm −93.05583 129.83070 400.10950

224Th 0.55766 4.96951 6.10300
226Th −0.11521 6.38937 9.70762
228Th −0.83906 7.98671 13.68875
230Th −1.63871 9.76153 18.10188
232Th −2.59264 11.71384 23.12250

230U −1.67560 9.76153 18.18437
232U −2.63289 11.71384 23.21250
234U −3.77666 13.84363 28.92012
236U −4.90299 16.15090 34.85125
238U −6.23928 18.63565 41.51437

nucleus was adjusted by fitting procedure using a computer
simulated search program in order to describe the gradual
change in the structure as neutron number varied and to re-
produce the properties of the selected reliable state of positive
parity excitation (2+1 ,4

+
1 ,6

+
1 ,8

+
1 ,0

+
2 ,2

+
3 ,4

+
3 ,2

+
2 ,3

+
1 , and 4+2) and

the two neutron separation energies of all isotopes in each iso-
topic chain. The resulting parameters are listed explicitly in
Table 1. For the isotopic chains investigated here, the collec-
tive properties are illustrated by representing the calculated
PES describing all deformation effects of the nucleus. We in-
vestigated the change of nuclear structure within these chains
as illustrated in Figures 1-4. The PES’s versus the deforma-
tion parameterβ for lanthanide and actinide isotopic chains of
nuclei evolving from spherical to axially symmetric well de-
formed nuclei. We remark that for all mentioned nuclei, the
PES is not flat, exhibiting a deeper minimum in the prolate
(β > 0) region and a shallower minimum in the oblate (β < 0)

region. Relatively flat PES occur for the N= 86 nuclei146Nd
and148Sm. A first order shape phase transition with change in
number of neutrons when moving from the lighter to heavier
isotopes,i.eU(5) - SU(3) transitional region are observed.

Fig. 1: PES calculated with GCM as a function of the shape param-
eterβ for shape phase transition from spherical to prolate deformed
for Neodymium isotope chain144−154Nd.

The present results for146−156Sm is in good agreement
with Nilsson-Strutinsky (BCS)-calculations [26]. However,
the existence of a bump in the PES is related to the success of
the confinedβ-soft (BCS) rotor model, employing an infinite
square well potential displaced from zero, as well as to the
relevance of Davidson potentials [27, 28]. It also is related
to the significant five-dimensional centrifugal effect [28, 29].
The actinide228−234Th and234−238U are all well-deformed ro-
tors with energy ratioE(4+1)/E(2+1) close to (3.3).

5 Conclusion

A simple approach of the GCM is discussed which repro-
duces the basic features of the three limits of the nuclear
structure: spherical vibrator, axially symmetric rotor andγ-
soft rotor, as well as the three phase shape transition regions
linking them. The Hamiltonian is expressed as a series ex-
pansion in terms of surface deformation coordinates and a
conjugate momentum. We considered only the lowest kinetic
energy terms, so that the eigen problem for our Hamiltonian
reduces to Schrodinger equation in five dimensional spaces.
All calculations are performed for reference value of the com-
mon mass parameter, only a maximum of three parameters of
the truncated form of GCM potential instead of the six are
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Fig. 2: PES calculated with GCM as a function of the shape param-
eterβ for shape phase transition from spherical to prolate deformed
for Samarium isotope chain146−156Sm.

Fig. 3: PES calculated with GCM as a function of the shape param-
eterβ for shape phase transition from spherical to prolate deformed
for Thorium isotope chain224−234Th.

Fig. 4: PES calculated with GCM as a function of the shape param-
eterβ for shape phase transition from spherical to prolate deformed
for Uranium isotope chain230−238U.

used. The parameter values for the description of a particu-
lar nucleus have been found through automated fitting of the
nuclear energy levels.

The systematics of shape transitions versus neutron num-
ber is studied by the GCM. The capabilities of the model and
the illustrative way of representing the collective properties
by potential energy surfaces are demonstrated. For neutron
number N= 90, the nucleus has a substantial static deforma-
tion, but for N= 80 the nucleus is soft or transitional and
cannot be described as deformed.
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The paper proposes a simplified theoretical approach to infer some essential concepts
on the fundamental interactions between charged particles and their relative strengths
at comparable energies by exploiting the quantum uncertainty only. The worth of the
present approach relies on the way of obtaining the results, rather than on the results
themselves: concepts today acknowledged as fingerprints of the electroweak and strong
interactions appear indeed rooted in the same theoretical frame including also the basic
principles of special and general relativity along with the gravity force.

1 Introduction

The state of a classical particle is specified by its coordinates
and momentum; the dynamical variablesx, px, y, py, z, pz, as-
sumed known at any time, define the 6-dimensional space
usually called “phase space”. Knowing the state of a parti-
cle means determining these six quantities that describe its
motion and energy. Since the state of a classical system is
identified by the distribution of corresponding points in the
phase space, any finite volumeVps = (δxδyδz)(δpxδpyδpz)
should seemingly contain an infinite number of states. Be-
cause of the uncertainty principle, however, these six quanti-
ties are not simultaneously known; the impossibility of defin-
ing the corresponding points in the phase space compels in-
stead introducing a lower limit to the volume of phase space
physically significant. Since such an elementary volume has
sizeVo

ps = (dxdydz)(dpxdpydpz) = ~3, any finite volumeVps

enclosing measurable combinations of coordinates and con-
jugate momenta consists of a finite numberVps/Vo

ps of el-
ementary volumes. The quantum uncertainty was inferred
by W. Heisenberg as a consequence of the operator formal-
ism of wave mechanics, on which relies the quantum theory:
the wave functionψ = ψ(x, t) replaces the lack of definable
quantum values ofx concurrently associable to the conju-
gate px. However most physicists believe unsatisfactory a
theory based on the wave functionψ without direct physical
meaning [1]; indeedψψ∗ only has the statistical meaning of
probability density and contains the maximum information
obtainable about a physical system. The wave function char-
acterizes a pure state, represented by a single ”ket” vector
to which corresponds a well defined eigenvalue, whereas in
general a particle is found in a mixture of states; so the re-
sult of a measurement on a quantum state represents a prob-
ability distribution of finding the particle in a given volume
of phase space. The density matrix is the mathematical tool
to describe mixed quantum states by means of a distribution
function of coordinates and momenta. Owing to the statis-
tical character of the knowledge we can afford in the quan-
tum world, the Wigner functionW(x, p) [2] aims to repre-
sent a quantum state in terms of a joint probability distri-
bution involving both coordinates and momenta, in formal
analogy with the classical statistics; the former is therefore

a correction to the latter. The quantumx and p distributions
are appropriately described by the respective marginal dis-
tributions ∫

+∞
−∞ W(x, p)dp and ∫

+∞
−∞ W(x, p)dx under the nor-

malization condition∫
+∞
−∞ ∫

+∞
−∞ W(x, p)dpdx= 1, whereas the

expectation value for any operator function is weighed by
W(x, p) as ∫

+∞
−∞ ∫

+∞
−∞ W(x, p) f (x, p)dpdx. Other relevant fea-

tures ofW(x, p), well known [3], are omitted here for brevity.
Also the Wigner function, however, although providing sig-
nificant information about the quantum states, presents con-
ceptual difficulties: it is not a real probability distribution in
the classical sense, it is a quasi-probability that can even take
negative values; moreover it can represent the average value
of an observable but not, in general, also its higher power
moments.

To bypass both these difficulties inevitably inherent the
wave formalism, the present theoretical model implements an
approach conceptually different: it exploits directly the sta-
tistical formulation of quantum uncertainty, which therefore
becomes itself a fundamental assumption of the model and
reads in one space dimension

ΔxΔpx = n~ = ΔtΔε. (1,1)

This set of 2n equation disregards since the beginning the
local dynamical variables of the particles forming the quan-
tum system and simply counts its numbern of allowed states.
Are therefore required the following positions

xi → Δxi , t → Δt, i = 1..3. (1,2)

No hypotheses are made about the uncertainty ranges,
which are by definition unknown, unknowable and arbitrary.
In quantum mechanics the square complex wave function of
space and time variables contains the maximum information
about a quantum system, which has therefore probabilistic
character. The present model intends instead starting from a
minimal information about any quantum system, still based
on the failure of the physical concept of points definable in
the quantum phase space but trusting on the idea that a min-
imum information is consistent with the maximum general-
ity: despite the knowledge of one dynamical variable only is
in principle allowed even in the quantum world, the present
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model disregards “a priori” the local values of both conjugate
dynamical variables. This means renouncing even to the con-
cept of probability density provided by the wave function of a
particle, while also disregarding the related concept of wave
packet to describe its propagation; in the present model it is
only possible to say that if the particle moves during a time
rangeΔt throughout its uncertainty rangeΔx, then its average
velocity component isvx = Δx/Δt regardless of any local fea-
ture of its actual delocalization motion. So eqs (1,1) require
by definitionΔε = vxΔpx. In fact the positions (1,2) ignore
both local dynamical variables, not as a sort of approximation
to simplify some calculation but conceptually and since the
early formulation of any quantum problem; accordingly, the
delocalization of a quantum particle in its uncertainty range
is conceived in its most agnostic form, i.e. waiving any kind
of information about its position and motion. Thus, regarded
in this way, eqs (1,1) exclude the concept itself of probability
density and contextually also the definition of Wigner func-
tion linking the Schrodinger equation to the marginal distri-
butions in the phase space; both equations are bypassed along
with the concept of wave equation itself. Eqs (1,1) merely list
the eigenvalues of pure states, indeed they are a set of equa-
tions corresponding to the respective values ofn; so they also
skip the probability with which in a mixed state each eigen-
value could be measured. Despite waiving themselves the
concept of probability density through the positions (1,2), eqs
(1,1) enable however also this kind of probabilistic informa-
tion; it is essential indeed to mention that the wave formalism
is obtainable as a corollary of eqs (1,1) [4], which means that
all considerations previously introduced are in fact comprised
also in the present theoretical model: one infers first from eqs
(1,1) the operator formalism and then proceeds as usual. In
this way the wave formalism, with its conceptual weakness,
loses its rank of fundamental root of our knowledge about
the quantum world, becoming indeed a mere by-product of
eqs (1,1); yet, even so it still represents an added value to the
physical information by introducing the concept of probabil-
ity density that partially overcomes the total agnosticism of
eqs (1,1).

What however about the chance of formulating any phys-
ical problem exploiting directly the eqs (1,1) only? Is legiti-
mate the belief that the equations enclosing conceptually the
wave formalism as a corollary also enclose the inherent phys-
ical information. The question that arises at this point con-
cerns just the real chance of obtaining physical information
once abandoning the typical ideas and mathematical tools of
wave mechanics: is really redundant the concept of proba-
bility density? Several papers have demonstrated the effec-
tiveness of this alternative approach, e.g. [5,6]; moreover,
without the need of hypotheses onn and on the uncertainty
ranges defined by eqs (1,1), the paper [7] has shown the pos-
sibility of extending the mere quantum horizon of these equa-
tions, initially concerned, also to the special and general rel-
ativity. The positions (1,2) compel focusing the attention on

the uncertainty ranges and related numbers of states, i.e. on
the phase space, rather than on the specific coordinates of
the particles concerned by the particular physical problem.
In fact, the local dynamical variables are conceptually dis-
regarded since the beginning in the present model. Put for
instanceΔx = x − xo: if either boundary coordinate, sayxo,
is defined by the origin of the coordinate systemR, then it
determines the position ofΔx in R; the other boundary coor-
dinatex determines its size. The crucial point is that bothxo

andx are arbitrary, unknown and unknowable by fundamen-
tal assumption; the reference systemR is therefore ”a priori”
arbitrary, unspecified and unspecifiable as well, whence the
equivalence of all reference systems whenever implementing
the positions (1,2) to describe the quantum world. Otherwise
stated, eqs (1,1) do not specify any particular reference sys-
tem because analogous considerations hold for all uncertainty
ranges they introduce. Moreovern is itself arbitrary as well; it
merely symbolizes a sequence of numbers of allowed states,
not some specific value in particular. Let therefore eqs (1,1)
be defined in anyRand rewrite them asΔx′Δp′x = n′ = Δε′Δt′

in any R′: it is self-evident that actually these equations are
indistinguishable becausen andn′ do so as well. Whatever
a specific value ofn might be inR, any change ton′ e.g.
because of the Lorentz transformations of the ranges is phys-
ically irrelevant: it means replacing an arbitrary integer in
the former set with another integer of the latter set. In ef-
fect, two examples of calculation reported below highlight
that modifying the range sizes from primed to unprimed val-
ues does not affect any result, in agreement with their pos-
tulated arbitrariness: no range size is expected to appear in
the quantum eigenvalues. Hence the eqs (1,1) have general
character, regardless of any particular reference system to be
appropriately specified; this holds also ifRandR′ are inertial
and non-inertial, since no hypothesis has been assumed about
them [7]. On the one hand this entails obtaining the indis-
tinguishability of identical particles as a corollary, regardless
of which particle in a set could be that actually delocalized
in a given uncertainty range; indeed no particle is specifically
concerned “a priori”. On the other hand it also entails that
the properties of motion of the particle, and thus the marginal
distributions of its dynamical variables, are disregarded by as-
sumption and skipped by consequence when formulating any
physical problem. To better understand the following of the
paper, these remarks are now exemplified examining shortly
the non-relativistic quantum angular momentumM , on the
one side to highlight how to exploit the positions (1,2) and on
the other side to show why the minimal information accessi-
ble through eqs (1,1) is in fact just that available through the
usual operator formalism of wave mechanics.

Consider the classical componentMw = r × p ∙ w of M
along an arbitrary direction defined by the unit vectorw, be-
ing r the radial distance of any particle from the origin of
an arbitrary reference system and its momentum. The po-
sitions (1,2) compelr → Δr and p → Δp and enable the
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numberl of states to be calculated only considering the total
rangesΔr andΔp of distances and momenta physically al-
lowed to the particle, about which no hypothesis is necessary;
let us show that the random local valuesr andp themselves
have instead no physical interest. SoMw = (Δr × Δp) ∙ w =

(w × Δr ) ∙ Δp, i.e. Mw = ΔW ∙ Δp, whereΔW = w × Δr .
If and ΔW are orthogonal, thenMw = 0; else, rewriting
ΔW ∙ Δp as(Δp ∙ ΔW/ΔW)ΔW with ΔW = |ΔW|, the com-
ponent±ΔpW = Δp ∙ ΔW/ΔW of Δp alongΔW yields Mw =

±ΔWΔpW.

Thus, according to eqs (1,1),Mw = ±l~, beingl the usual
notation for the number of states of the angular momentum.
As expected,Mw is a multi-valued function because of the
uncertainties initially postulated forr and p. One compo-
nent ofM only, e.g. along thez-axis, is knowable; repeating
the same approach for they and x components would triv-
ially mean changingw. Just this conclusion suggests that
the average values< M2

x >, < M2
y > and< M2

z > should
be equal; so the quantity of physical interest to describe the
properties of quantum angular momentum isl, as a function
of which M2 is indeed inferred as well. The components av-
eraged over the possible states summing (l~)2 from−L to+L,
whereL is an arbitrary maximum value ofl, yield < M2

i >=∑li=L
li=−L (~l)2/(2L+1) and thusM2 =

∑3
i=1 < M2

i >= L(L+1)~2.

The physical definition of angular momentum is enough
to find quantum results completely analogous to that of the
wave mechanics even disregarding any local detail about the
angular motion. This result has been reminded here as it in-
troduces several significant considerations useful in the fol-
lowing: (i) eqs (1,1) and the positions (1,2) plug the classical
physics into the quantum world; (ii) no hypothesis is neces-
sary about the motion of the particle nor about its wave/matter
nature to infer the quantum result; (iii) trivial algebraic ma-
nipulations replace the solution of the pertinent wave equa-
tion; (iv) the result inferred through eqs (1,1) only is consis-
tent with that of the wave mechanics; (v) the local distance
between the particles concerned in the angular motion does
not play any role in determiningl; (vi) the number of allowed
states plays actually the role of angular quantum number of
the operator formalism of wave mechanics; (vii) the amount
of information accessible for the angular momentum is not
complete like that of the classical physics, but identical to
that of the wave formalism; (viii) eqs (1,1) rule out “a priori”
any chance of hidden variables hypothetically encodable in
the wave function, i.e. local values of any kind that could in
principle enhance our knowledge aboutMw andM2 to obtain
a more complete description of the angular quantum system;
(ix) the eigenvalues, i.e. the physical observables, are actu-
ally properties of the phase space rather than properties of
specific particles, whence the indistinguishability of identical
particles here inferred as a corollary of eqs (1,1); (x) the num-
bers of states are here simply counted; (xi) the positions (1,2)
are consistent with the concept of classical coordinate in the

limit caseΔx → 0, which means that the random local vari-
ablexo ≤ x ≤ x1 tends to a classical local value uniquely and
exactly defined; (xii) the total arbitrariness of the boundary
values of the ranges is necessary to ensure that any local value
is allowed for the corresponding classical variables; (xiii) the
range sizes do not play any role in determining the eigenval-
ues of angular momentum, their conceptual reality, i.e. the
total uncertainty about both conjugate dynamical variables of
a quantum particle, is the unique hypothesis of the present
model. The same holds of course for any other uncertainty
range.

These ideas have been extended and checked in the papers
[5,6] also for more complex quantum systems like hydrogen-
like and many electron atoms/ions and diatomic molecules;
also these papers allowed concluding that eqs (1,1) efficiently
replace the standard approach of wave mechanics, without
requiring the concept of probability density and thus without
need of calculating marginal distributions in the phase space
through the Wigner functions. In these papers the interac-
tion is described via the Coulomb potential energy between
charged particles; in other words, one assumes already known
the Coulomb law to calculate for instance the energy levels of
hydrogenlike atoms. This point is easily highlighted consid-
ering for simplicity the non-relativistic hydrogenlike energy
levels; also this topic, already introduced in [5], is reported
here for completeness.

Assuming the originO of an arbitrary reference system
R on the nucleus, the classical energy isε = p2/2m− Ze2/r
beingm the electron mass. Sincep2 = p2

r + M2/r2, the po-
sitions (1,2)pr → Δpr and r → Δr yield ε = Δp2

r /2m +

M2/2mΔr2 − Ze2/Δr. Two numbers of states, i.e. two quan-
tum numbers, are expected because of the radial and angu-
lar uncertainties. Eqs (1,1) and the previous result yieldε =

n2~2/2mΔr2 + l(l + 1)~2/2mΔr2 − Ze2/Δr that readsε = εo +

l(l + 1)~2/2mΔr2 − Eo/n2 with Eo = Z2e4m/2~2 andεo =

(n~/Δr − Ze2m/n~)2/2m. Minimize ε puttingεo = 0, which
yields Δr = n2~2/Ze2m and ε = [l(l + 1)/n2 − 1]Eo/n2;
so l ≤ n − 1 in order to getε < 0, i.e. a bound state.
Putting thusn = no + l + 1 one finds the electron energy
levelsεel = −Eo/(no + l + 1)2 and the rotational energyεrot =

l(l+1)Eo/n4 of the atom as a whole aroundO. Hold also here
all considerations introduced for the angular momentum, in
particular it appears that the range sizes do not play any role
in determining the energy levels. The physical meaning of
Δr, related to the early Bohr radius, appears noting that

εel = −
Eo

n2
= −

Ze2

2Δr
, Δr =

n2~2

Ze2m
, Eo =

Z2e4m
2~2

, (1,3)

i.e. εel is due to charges of opposite sign delocalized within
a diametric distance 2Δr apart. As previously stated, nucleus
and electron share a unique uncertainty radial range: in gen-
eral, the greaterm, the closer its delocalization extent around
the nucleus. Also note thatn and l are still properties of the
phase space, but now they describe the whole quantum sys-

58 Sebastiano Tosto. Quantum Uncertainty and Fundamental Interactions



April, 2013 PROGRESS IN PHYSICS Volume 2

tem ”nucleus+ electron” rather than the nucleus and the elec-
tron separately. Since the first eq (1,3) does not depend ex-
plicitly on the kind of particles forming the concerned hydro-
genlike atom,m or the reduced mass are actually hidden into
Δr; it is possible to linkεel to the known conditionnλ = 2πΔr,
according which an integer number of steady electron wave-
lengths is defined along a circumference of radiusΔr. For
such electron waves one finds

εel = −
πZe2

nλ
= −

α

n
Zpλc

2
, pλ =

h
λ
, α =

e2

~c
. (1,4)

Note that introducingα to express the quantum energy
levels compels defining the De Broglie momentum. Even in
this form εel is still related to the reduced mass of the sys-
tem, which can be introduced via the momentumpλ; thus eq
(1,4) holds in general for any system of charges. Moreover,
the factorZ/2 apart, appears interesting that the energy levels
of the systemεel are linked to the kinetic energypλc of the
running electron wave circulating along the circumference of
radiusΔr via the coefficientα/n. On the one hand, this result
emphasizes the electromagnetic character of the interaction
between electron and nucleus; on the other hand, the key role
of the quantum uncertainty in determining the allowed energy
levels of eqs (1,3) also evidences the kind of interaction itself.
The more general question that arises at this point is therefore:
do eqs (1,1) provide themselves any hint also about the phys-
ical essence of the fundamental interactions? The standard
model [8-11] provides a satisfactory description of the funda-
mental forces of nature. So the present paper does not aim
to replicate the electro-weak model or the chromodynamics,
which indeed would be useless and unexciting; nevertheless
seems useful to propose a simplified approach aimed to show
(i) that the fundamental interactions are inferable from eqs
(1,1) only and (ii) that exists a unique conceptual root com-
mon to all fundamental interactions. This task is in effect
particularly valuable because the present model has already
accounted for the gravity force [7] and for the basic princi-
ples of special and general relativity.

The purpose of the paper is to examine the ability of eqs
(1,1) to describe also other kinds of possible interactions and
their relative strengths at comparable energies; it will be also
shown that further information is obtained about the vector
bosons associated with the respective kinds of interactions.
Therefore the worth of the present paper rests mostly on the
chance of finding concepts today known as fingerprints of the
electroweak and strong interactions in the frame of a unique
logical scheme based on the quantum uncertainty and includ-
ing the relativity. The paper [7] has somewhat concerned
the electromagnetic interactions, while also showing that all
concepts of quantum wave formalism are indeed obtained
through the present approach. Here we concern in particular
the weak and strong interactions between nuclear and sub-
nuclear particles. The next sections will describe the possible
features of these interactions.

2 Physical background of the interactions

Let us show that the concept of interaction relies in the frame
of the present model entirely on eqs (1,1). Consider first an
isolated particle of massm and momentum componentp∞x
free to move in an ideal infinite range. When confined in a
time-space uncertainty rangeΔx, however, its energy changes
by an amountΔε given by

Δp2
x/2m= (n~)2/2mΔx2, Δpx = pcon f

x − p∞x ;

i.e. Δpx is by definition the range including any change of
local momentum componentpx occurring when the free par-
ticle turns from a non-confined to a confined state withinΔx.

Since no process occurs instantaneously in nature, letΔt
be the confinement time range corresponding toΔpx: to the
confinement process corresponds thus the arising of a force
field whose componentΔFx = Δpx/Δt = Fcon f

x − F∞x is re-
lated toΔε, being clearlyΔFx = Δε/Δx = Δp2

x/2mΔx3. By
definitionΔFx includes any randomF∞x ≤ Fx ≤ Fcon f

x : in
the present model the local dynamical variables are replaced
by corresponding ranges of values, so the classical forceFx

at the local coordinatex is replaced by a range of possible
forces active withinΔx. Actually the resultΔpx/Δt = Δε/Δx
could have been inferred directly from eqs (1,1) without need
of any remark; yet these considerations highlight that a force
field in a space time uncertainty range is the only information
available on the particle once accepting the eqs (1,1) as the
unique assumption of the model.

Clearly, once concerning one particle only, energy and
force component cannot be related to any form of interaction;
rather both have mere quantum origin. Also,Δε andΔFx

tend obviously to zero forΔx → ∞; hence if p∞x changes
to pcon f

x concurrently with the arising of a force component
acting on the particle, thenp∞x must be constant by defini-
tion as it represents the momentum of the particle before its
confinement driven perturbation. This again appears from the
standpoint of eqs (1,1):Δx → ∞ requiresΔpx → 0 for any
finite number of states regardless ofΔt. Since an uncertainty
range infinitely small tends to a unique classical value of its
corresponding quantum random variable and since this holds
regardless ofΔt, then the limit value must be a constant: so
p∞x = constcorresponds by necessity toF∞x = 0.

Despite the present model allows reasoning onΔFx only,
a first corollary is the inertia principle that holds for a lonely
particle in an infinite space time delocalization range. Other
interesting consequences follow for any finiteΔx = x2 − x1:
the notation emphasizes that instead of considering the parti-
cle initially in an infinite unconfined range, we are now inter-
ested to describe its behavior in a confined state, e.g. in the
presence of two infinite potential wallsΔx apart. Clearly this
means introducing the correspondingΔpx = pcon f

2 − pcon f
1 :

again the eqs (1,1) compel writingΔε/Δx = Δp2
x/2mΔx3

when p∞x has turned into a localpcon f
1 ≤ px ≤ pcon f

2 , which
entails once moreΔFx = Δpx/Δt within Δx. These ideas are
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now extended to the interaction forces. Rewrite first the force
field componentΔε/Δx = Δp2

x/2mΔx3 of a particle confined
within Δx as follows

ΔFx =
~2

2
n
m

n
V
, V = Δx3. (2,1)

Even the one-dimensional case defines the delocalization
volumeV because, beingΔx, Δy andΔz arbitrary, any value
allowed toΔxΔyΔz is also allowed toΔx3. Is crucial the fact
that the range of each force component is proportional ton/m,
number of allowed states per unit mass, timesn/V, num-
ber of allowed states per unit delocalization volume. Con-
sider now two free particlesa andb in their own uncertainty
rangesΔxa andΔxb; hold separately for them the relation-
shipsΔεa = (na~)2/2maΔx2

xa andΔεb = (nb~)2/2mbΔx2
xb.

These particles are non-interacting, as theirna andnb are as-
sumed independent each other likeΔxa andΔxb themselves;
nothing in these equations accounts for the most typical and
obvious consequence of any kind of interaction, i.e. some
relationship between their allowed states or between their de-
localization ranges. Two free particles do not share by defi-
nition any kind of link, any possible coincidence of allowed
states would be accidental and transient only. Consider now
their possible interaction; a reasonable chance of linking their
allowed states is to assume, for instance, that the particles
share the same uncertainty range. IfΔx is unique for both par-
ticles, then their allowed states must be somehow linked be-
cause of eqs (1,1); in other words, even being stillna , nb, the
random values of local momentum componentspxa and pxb

are subjected to the constrainna/Δpxa = nb/Δpxb = Δx/~.
Note for instance thatΔr of eq (1,3) includes by definition all
possible distances between electron and nucleus, which im-
plicitly means that both particles share the same uncertainty
range where the interaction occurs; son andl characterizing
the electron energy levels of the hydrogenlike system result
from the change of the early quantum numbers, e.g.nf ree and
l f ree = 0, owned by each particle independently of the other
before interaction. In this respect two relevant points are: (i)
the interaction driven changeδn of the numbern of states and
(ii) the physical meaning of the relatedδ[(n/m)(n/V)].

As concerns the point (i), considerΔεΔt = n~ in an arbi-
trary reference systemR and letn be allowed to change from
any initial valuen1 to any successive valuen2 during a fixed
time rangeΔt; whatevern1 andn2 might be, this is admissi-
ble becauseΔt is arbitrary. The notation emphasizes that a
given value ofδn = n2 − n1 is obtainable regardless of the
initial value n1 becausen2 is arbitrary; soδn = 1,2, .. any-
way, regardless of the specific value ofn1. Calculate next the
changeδΔε of Δε as a function ofδn duringΔt, which reads
now (Δεn2 − Δεn1)/Δεn1 = δn/n1 with obvious meaning of
symbols. Note that in general the series expansion of log(Δε)
around log(Δεn1) reads

log
(
Δεn2

)
= log

(
Δεn1

)
+
Δεn2 − Δεn1

Δεn1

−
1
2

(
Δεn2 − Δεn1

Δεn1

)2

+ ∙∙

so that

log

(
Δεn1+δn

Δεn1

)

=
δn
n1
−

1
2

(
δn
n1

)2

+
1
3

(
δn
n1

)3

− ∙∙

Δεn1 =
n1~

Δt
, δn = 1,2, . . . (2,2)

This equation describes the size change of the energy
rangeΔεn1 as long as the number of allowed states increases
with respect to the initial valuen1: soΔεn1+δn with δn = 1
describes the first increment of energy range size with respect
to Δεn1, thenδn = 2 the next size increment and so on; in
short, eq (2,2) describes how are modified the random local
valuesεn1+δn included inΔεn1+δn at δn progressively increas-
ing. InsteadΔεn1 plays here the role of a fixed reference range
with respect to which is calculatedΔεn1+δn. For reasons that
will be clear in the next section 5, it is mostly interesting to
examine the particular case ofn1 such that

Δεn2 − Δεn1 << Δεn1, δn/n1 << 1. (2,3)

Let us truncate thus the series expansion (2,2) at the first
order of approximation under the assumption (2,3) and sim-
plify the notation puttingi = δn; one finds (i=1,2,...)

n1 log

(
Λi

Λ

)

= i, Λi = Δεn1+δn, Λ = Δεn1. (2,4)

Despite the generality of eqs (2,2), is particularly signifi-
cant for the purposes of the present paper the case of a quan-
tum system consisting of an arbitrary number of particles,
each one delocalized in its own uncertainty range: if these
latter are non-interacting, then let the energy of the system
be included within the rangeΔεn1 and ben1 its total number
of states; if instead all particles are delocalized in the same
space-time range, then their interaction changes the energy
range of the system toΔεn1+δn characterized of course by a
new number of statesn2 = n1 + δn.

As concerns the point (ii), we expect according to eq (2,1)
that fromΔεa andΔεb of the two free particles follow because
of the interaction the changesδΔεa = (~2/2)δ(n2

a/maΔx2
a)

andδΔεb = (~2/2)δ(n2
b/mbΔx2

b). The expressions of the cor-
responding changes of the initial confinement force compo-
nentsΔFxa = Δεa/Δxa andΔFxb = Δεb/Δxb from the non-
interacting to the interacting state read thus

δΔFxa = (~2/2)δ [(na/ma)(na/Va)]

δΔFxb = (~2/2)δ [(nb/mb)(nb/Vb)] .

These equations agree with the previous idea, i.e. the
forces are related to changes of the allowed numbers of states
per unit mass and delocalization volumes of the particlesa
andb: in effect the interaction between two particles consists
of forces acting on both of them and requires that the respec-
tive numbers of states are affected as well. More precisely
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δ [(n/m)(n/V)] means that are modified during the interac-
tion not only the states allowed to the particles themselves,
but also that of the delocalization space surrounding them.
Clearly the former are consequences of the latter. In other
words, the fact thatδ(n/m) requires explicitly also the con-
currentδ(n/V) compels thinking: (i) that a particle interacts
with another particle because it generates a field that propa-
gates outwards through the space volumeV and (ii) that just
in doing so this field changes the number of states allowed to
the other particle; i.e. the changes of number of states of each
particle are somehow correlated, as previously stated. Since
no event occurs instantaneously in nature,δ(n/V) requires an
appropriate time range to be realized, i.e. the propagation
rate is finite in agreement with the existence of an upper limit
obliged by eqs (1,1) [7]; in this way the interaction exchanges
information about physical features and strength of the re-
lated force between particles. The most natural way to ac-
knowledge this way of regarding two interacting particles is
to admit that they exchange intermediate virtual particles that
propagate, whenceδ(n/V), and carry the necessary informa-
tion that affects in turn the real particles themselves, whence
δ(n/m); indeedn defining n/V is the same as that defining
n/m, i.e. the changeδ(n/m) of states allowed to the particle is
actually just thatδ(n/V) of the space around it. Strictly speak-
ing, however, one should say more appropriately space-time,
and not simply space: indeedΔx definingV in eq (2,1) is ac-
tually Δx = Δx(Δt) because of eqs (1,1) themselves. So the
finite time range required forδ(n/m) to occur is nothing else
but the finite time range required to propagateδ(n/V) and to
come back, i.e. to allow exchanging the interaction carriers.
Interaction force and propagation of force carriers through
V are therefore according to eq (2,1) two basic aspects of
the interaction. In principle these carriers could be massive
or massless, in which case one expects (~2c2)δ [(n/ε)(n/V)],
but they must have anyway boson character in order that the
aforesaid forces affect the allowed states of the interaction
partners while minimizing their exchange energy. It has been
already demonstrated in [7] that as a consequence of eqs (1,1)
integer or half-integer spin particles have a different link to
the respective numbers of allowed states: an arbitrary number
of the former can be found in a given quantum state, instead
one particle only of the latter kind can be found in a given
quantum state. Consider a multi-body interaction, where an
arbitrary number of force carriers is to be expected: fermion
carriers would require a corresponding number of quantum
states with energy progressively increasing, whereas a unique
ground state allows any number of boson carriers; as it will
be shown below, the former case would be incompatible with
a unique amount of energy to be transferred between all in-
teracting particles and thus with at a minimum transfer en-
ergy. The corpuscles that mediate the fundamental forces of
nature are indeed well known in literature as vector bosons,
which also suggests the existence of a pertinent boson energy
field. An interesting consequence of eq (2,1) comes from the

chance of rewriting it as (m/n~)ΔFx = (~/2)(n/V). Note that
at left hand side appears the ratio~/mhaving physical dimen-
sions of diffusion coefficient; write thereforeΔFx = D∗n~/2V
with D∗ = n~/m. Moreover the fact that the physical dimen-
sions ofF/D∗ aremass/(length× time) suggests the position

ΔFx

D∗
=
~

2
n
V

=
duω
dω

, D∗ =
n~
m
, (2,5)

having at the moment mere formal meaning: ifω represents
a frequency anduω an energy density, the physical dimen-
sions of both sides areenergy × time/volume. So ΔFx =

D∗duω/dω agrees with the idea that the force field is due
to a diffusion-like flux of particles. This appears properly
handlingduω/dω: indeed it is possible to writeduω/dω =

ωVdC/dxonce more via dimensional requirement, being C=

m/V or C = ε/c2V the concentration of massive or massless
carriers. HenceΔFx = ωVD∗dC/dx i.e. ΔFx = −ωVJx; the
minus sign means of course an incoming flux of messenger
particles if Jx > 0, yet both signs possible fordC reveal a
complex fluctuation driven space distribution of interaction
carriers randomly moving forwards and backwards between
the real particles. This result is easily understood: in a volume
V where are delocalized interacting particles, boson carriers
with density C are exchanged at frequencyω according to a
Fick-like law that generates the force fieldΔFx; the flowJx of
vector bosons crosses an ideal plane perpendicular to the flow
moving at rateωΔx consistently with an energyΔFxΔx/V
per unit volume. The diffusion coefficient of the bosons is
quantized. In [12] has been demonstrated the quantum na-
ture of the diffusion process and also the link between particle
flow and concentration gradient driven Fick’s law, as a conse-
quence of which the statistical nature of the entropy also fol-
lows; this latter result is further inferred in the next section 7
in an independent way, see eqs (7,7). Eq (2,5) is immediately
verifiable considering the cubic volumeV = Δx3 of space
of eq (2,1) filled with photons. LetΔx = λ be the longest
wavelength allowed inV to a steady electromagnetic wave
with nodes at the opposite surfaces of the cube, whose side
is thereforeλ/2; thusV = (λ/2)3, whereasuω = (~ω/2)/V
is the corresponding zero point energy density of the oscil-
lating electromagnetic field. So, withλ = c/ν one finds
duω = 4n(ν/c)3~dω; since by definition~dω = hdν, and thus
duω = (2π)−1duν, this result readsduν = (8π(ν/c)3hdν)n.
In section 7 it will be shown that the number of statesn
allowed to the photons trapped within the cube is given by
(exp(hν/kT) − 1)−1, whence the well known result

duν
dν

=
8πhν3

c3
n, n =

1
exp(hν/kT) − 1

. (2,6)

It is interesting the fact that the black body law comes
immediately from the same idea that shows the existence of
messenger bosons mediating the interaction between parti-
cles. ClearlyΔx3 represents the black body volume.
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Recall now that, in agreement with the arbitrariness of
n, the ranges of eqs (1,1) can be regarded as arbitrary func-
tions of time throughΔt; read for instanceΔx = x − xo with
x = x(Δt) andxo = xo(Δt), being in generalx(Δt) andxo(Δt)
different time functions. Of course no hypothesis is neces-
sary about these functions, which are undefined and undefin-
able. Hence the size ofΔx is in general an arbitrary function
of time itself, whereas the concept of derivative relies in the
frame of eqs (1,1) only as mere ratio of uncertainty ranges.
This idea generalizes the previous definition of force field
ΔFx = Fcon f

x − F∞x . For instanceΔpx/Δt takes the physical
meaning of force field componentΔε/Δx generated within
Δx by the change rate of allpx compatible withΔpx during
Δt, whatever the physical reason affectingpx might be. More-
over, being the range sizes arbitrary, these ratios can even take
the local physical meaning elucidated by the familiar nota-
tionsΔε→ dε, Δt → dt andΔpx → dpx. In other words, the
local concept of derivative is here a particular case of that of
ratio of arbitrarily sized uncertainty ranges. There is no con-
tradiction betweenΔε/Δt anddε/dt, which have both mere
conceptual meaning and in fact are both indeterminable: the
former because of the arbitrariness of the range boundaries,
the latter because the local variablespx and t around which
shrink the respective ranges are arbitrary as well. The consis-
tency of this position with the concept of covariancy has been
concerned in [7]; in this paper and in [4] has been also shown
that just the evanescent concept of distance required by the
agnostic positions (1,2) in fact determines the non-locality
of the quantum world. Exploit now eqs (1,1) to calculate
in any reference systemR an arbitrary size changedΔpx of
Δpx = px − pox as a function of that,dΔt, of the time un-
certainty rangeΔt, assuming thatn remains constant during
dΔt; hence duringdΔt the size ofΔx necessarily changes by
an amountdΔx as well. Of course this reasoning can be re-
versed: a force field arises within the space-time rangeΔx
because of its deformationdΔx that in turn, because of eqs
(1,1), requires the momentum rangeΔpx deformation as well
[7]. Is evident the link of these ideas with the foundations
of relativity. Differentiating eqs (1,1) and dividing bydΔt,
one findsdΔpx/dΔt = −(nx~/Δx2)(dΔx/dΔt). Of course, in
R′ one would obtaindΔp′x/dΔt′ = −(n′x~/Δx′2)(dΔx′/dΔt′);
yet any consideration carried out about the unprimed equation
can be identically carried out on the primed equation. In the
present model there is no local value defined inR that changes
into a new value inR′, while any uncertainty range undefined
in R remains undefined inR′ too; so considering primed and
unprimed range sizes means actually renaming a unique un-
defined range. The same holds of course for the ratios of any
two ranges. If in particularΔt = t− to is defined with constant
to, since actually even this latter could be itself a function of
t without changing anything so far introduced, then one finds
in anyR

dΔpx

dt
= −

nx~

Δx2
v′x = Fx − Fox, (2,7)

Fx = ṗx, Fox = ṗox, v′x =
dΔx
dΔt

.

Having replaced any local distancex with the uncertainty
rangeΔx including it, the local forceFx is replaced by a cor-
responding rangeΔFx including local values of force. The
notationnx emphasizes that the arbitrary numbern of states
refers here to thex components ofΔp, v′, F andFo; of course
are likewise definableny andnz too. Moreover note thatv′x is
conceptually different fromvx introduced in section 1: despite
both have formally physical dimensions of velocity, the latter
only is the actual average velocity of any real particle travel-
ing through its delocalization rangeΔx duringΔt, the former
is the deformation extentdΔx of Δx during the time increment
dΔt. Sovx is self-defined without need of further considera-
tions, the physical meaning ofv′x is instead strictly related to
that of Fx concurrently inferred. This distinction is inherent
the character of the present theoretical model that, as previ-
ously remarked, concerns the uncertainty ranges of the phase
space where any particle could be found rather than the par-
ticle itself; however the examples of the angular momentum
and hydrogenlike energy levels have shown that working on
the uncertainty ranges that define a physical property allows
to gain information on the related behavior of the particle and
on the given law itself. Eqs (2,7), reported here for clarity,
have been early introduced in [7] and therein exploited to in-
fer as a corollary in the particular case of constantpox (i) the
equivalence principle of general relativity, (ii) the coincidence
of gravitational and inertial mass and then (iii) the Newton
gravity law as a particular case; actually this law results to
be the first order approximation of a more general equation
allowing to calculate some interesting results of general rela-
tivity, for instance the perihelion precession of planets.

Also in the present model, therefore, the deformation of
the space time quantum delocalization range entails the aris-
ing of a force as a corollary of eqs (1,1). In this paper we
propose a further way of handling eq (2,7): in agreement with
the purpose of this paper, i.e. to infer various forms of interac-
tion between particles from a common principle, it is enough
to rewrite eqs (2,7) in different ways and examine the respec-
tive consequences. The fine structure constantα enables~ to
be eliminated from eqs (2,7), which read in c.g.s. units for
simplicity

Fx − Fox = ±
e′e
Δx2

, e′ = ±
nxv
′
x

αc
e. (2,8)

Here ΔFx = Fx − Fox is the force field between two
chargese ande′ interacting through their linear charge den-
sitiese/Δx ande′/Δx: i.e. even the electric interaction force
relies on a physical basis similar to that of the gravity force.
The double sign accounts for both chances thatΔx expands
or shrinks at deformation rate±v′x, which is a decisive param-
eter to express the respective states of charge. Ifv′x = 0 then
e′ = 0, i.e. it corresponds to a chargeless particle; of course
the related electric force is null, i.e.Fx = Fox accounts for
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other forces possibly acting on the particle, for instance the
gravity; this case, concerned in [7] to emphasize the link be-
tween quantum theory and relativity, is skipped here. More-
over holds an obvious boundary condition onnx, i.e. a value
of nx must necessarily exist such thate′ = ±e. Ben′ this value
such that by definitionn′v′x = αc; beingn′x arbitrary integer
and v′x arbitrary as well, this position is certainly possible.
Then

e′ = ±(nx/n
′)e. (2,9)

Here the double sign agrees with the chances allowed for
e depending on the expansion or contraction ofΔx. It is rea-
sonable to assume thatn′ = 3; considering also the deforma-
tion rates±v′y and±v′z of Δy andΔz defined likewise tov′x,
the number of states is actually counted asn′ = nx + ny + nz

with ground valuesnx = ny = nz = 1, while being 1≤ nxi ≤
n′ depending on the number of respective force components
Fxi − Foxi actively contributing ton′. Consider first thex-
component, eq (2,7), only. Ifnx = n′ = 3, thene′(3) = ±e cor-
responds to electron and proton charges;Fx−Fox of eq (2,8) is
the related Coulomb force component. The casenx = 2 yields
e′(2) = ±(2/3)e, whereasnx = 1 yieldse′(1) = ±(1/3)e; accord-
ingly Fx − Fox must have a characteristic physical meaning
that will be concerned in section 5. The same result would
be obtained considering they or zcomponents corresponding
to eq (2,7). Hence fractional charges are in principle to be
expected in nature. It is easy guess how many particles with
fractional charges, the well known quarks, are to be expected.
Consider the four chances corresponding to the double signs
of e′(1) ande′(2) and the three deformation ratesv′x, v

′
y andv′z; the

previous discussion has exemplified the link ofe′ with v′x only,
yet an analogous reasoning holds of course also forv′y and
v′z. Instead three different situations are in general compatible
with e′(1) ande′(2) when (i)v′x , 0 only, (ii) v′x , 0 andv′y , 0
only, (iii) v′x , 0 andv′y , 0 along withv′z , 0 too. Since
nx, ny, nz are independent and arbitrary, one could replace the
second eq (2,8) for instance with±nxv

′
x/αc±nyv′y/αc, obtain-

ing thus±(nx±ny)/n′ as done to infer eq (2,9); then one could
combinenx andny in order to obtain again ratios having the
same values±1/3 and±2/3 previously found, but involving
now bothv′x and v′y instead ofv′x only. Analogous consid-
erations hold for the case (iii) that involves alsov′z. In (i) the
vectorF−Fo is oriented along one of the axes, here thex-axis,
in (ii) it lies on one coordinate plane, here thex−y plane; the
components ofF − Fo arbitrarily oriented correspond in gen-
eral to (iii), whereas a null vector is instead related tov′ = 0
i.e. e′ = 0. Anyway, whatever the linear combination ofv′x,
v′y andv′z might be, it is reasonable to think that these ways of
inferringe′(1) ande′(2) are physically different from that involv-
ing v′x only; otherwise stated, to the various ways of finding a
given kind of charge correspond different particles. With the
aforesaid 3 chances for each sign ofe′(1) ande′(2) we expect
therefore a variety of 12 particles in total. Since this number
is reasonably expected to include particles and antiparticles,

a sensible conclusion is that we should have 6 quarks and 6
antiquarks: for instance, to the (nx − ny)e/n′ quark charge
corresponds the (ny − nx)e/n′ antiquark charge. Now the first
problem is how to sort the charge signs between particles and
antiparticles; in principle one could think the former as the
ones havinge′(1) = +e/3 ande′(2) = +2e/3, the latter as the
ones with both negative signs. In this way, however, consid-
ering all values of charges compatible withn from 1 ton′, one
should conclude that in nature the mere charge signs discrim-
inate particles and antiparticles. Since this is not the case, it is
more sensible to expect thate′(1) = −e/3 ande′(2) = +2e/3, for
instance, identify quarks whereas the inverted signs identify
the corresponding antiquarks: likewise exist as a particular
case particles with either integer charge whose antiparticles
have either opposite charge.

Moreover if two charge states−e/3 and+2e/3 are con-
sistent with six particles physically distinguishable, then each
quark requires three chances of a new property, which is in-
deed well known and usually called color charge: each quark
can exist in three quantum states, i.e. it can take three dif-
ferent color states. Being the quarks characterized by sev-
eral quantum numbers, this way of justifying their number
does not mean a specific color uniquely assigned to each one
of them; rather it means introducing a number of internal
freedom degrees of color that make two fractional charges
consistent with six distinguishable particles. Anyway, since
also anti-quarks exist for which hold the same considerations,
three anti-colors must exist too.

Eventually, let us calculate how many kinds of bosons are
necessary to describe the interactions between quarks via bo-
son exchanges able to modify their initial color states. Con-
sider for instance a charmed meson identically symbolized as
{cc̄} or {c̄c} and assume that each boson mediating the quark
interaction is specifically entrusted with changing one couple
color-anticolor only: let for instance the exchange of one bo-
son turnr into r̄ and vice-versa. The mesons{cc̄} and{c̄c}, for-
mally obtained by quark-antiquark and antiquark-quark ex-
changes, are clearly identical and indistinguishable. Imagine
therefore of turning all colors ofc, whatever they might be,
into the corresponding anticolors of ˉc, whose anticolors are at
once turned into the respective colors. How many exchanges
of color states into the respective anticolor states are consis-
tent with the identity ofcc̄ andc̄c? Given two objects,c and
c̄, each one of which can be found in three quantum states, the
three colors, the trivial answer is 23; eight exchanges are not
only enough to turn all color states ofc into the respective an-
ticolor states, which means by definition obtaining ˉc from c,
but also purposely necessary, as each single exchange gener-
ates a new quantum configuration of states physically distin-
guishable from that previously existing. Since a total of eight
color-anticolor exchanges are required to account for as many
different configurations, eight is also the number of differ-
ent bosons required to make the aforesaid couple of identical
mesons effectively indistinguishable. These different chances

Sebastiano Tosto. Quantum Uncertainty and Fundamental Interactions 63



Volume 2 PROGRESS IN PHYSICS April, 2013

of interaction, each one characterized by its own specific en-
ergy, should be someway correlated to and described by the
existence of as many such particles representing the possible
exchanges, i.e. just eight vector bosons. Also these particles
are well known and usually called gluons. Is this reasoning
extensible also to three-quark particles like neutron or pro-
ton? The quark-gluon plasma of these latter is necessarily
more complex than that of the mesons, so the question arises
whether the 8 gluons previously introduced are enough to de-
scribe also such three quark systems. Consider the protonuud
and the antiproton ˉuūd̄. The conversionuu→ ūū has been al-
ready described. As concernsd→ d̄, still holds an analogous
reasoning: a specific kind of gluon undertakes to change one
color into the anticolor, another kind of gluon does the same
with another color and so on. However the kind of gluon ex-
changes that turns red into antired of the quarku cannot differ
from that acting similarly on the quarkd: it would mean that
each gluon ”recognizes” its own quark on which to act, i.e.
we should admit that differentδ(n/m) require differentδ(n/V)
depending on the respectivem. But nothing in the previous
eq (2,1) allows this conclusion, rather it seems true exactly
the contrary becauseΔx definingV has nothing to do with
m therein delocalized: indeed, as above stated, the indistin-
guishability of identical particles is just due to the possibility
that any particle could be found in a given range. So it is more
reasonable to think that each kind of gluon exchange affects a
specific color, not the color of specific quark only; otherwise
stated, the total number of gluons in a nucleon is greater than
that in a meson without necessarily compelling a new kind
of gluons, i.e. any gluon in the tree-quark system turns one
specific color regardless of whether that color is of a quarkd
or u. This way of thinking allows that the gluons transmit the
interaction between different quarks modifying theirδ(n/m),
i.e. their color quantum states, regardless ofm. So, when
counting the number of different gluons that allow the three-
quark particle/ antiparticle exchanges the result is the same as
that previously computed.

These short remarks are enough for the purposes of the
present paper; further considerations on other properties like
strangeness, isospin and so on, whose conservation rules are
necessary for instance to describe the decay of complex par-
ticles consisting of two or three quarks, are well known and
thus omitted here for brevity. The remainder of the paper aims
to describe the fundamental interactions by implementing the
ideas hitherto exposed.

3 The quantum interactions

Divide all sides of eqs (1,1) bye2Δx and recall that in general
Δpx = (vx/c2)Δε. An intuitive hint to this equation, already
concerned in [7] and important also for the present purposes,
is quickly reported here for completeness. Let in an arbi-
trary reference systemR a photon travel at speedc through
an arbitrary delocalization rangeΔx(c), so that eqs (1,1) read

Δx(c)Δp(c)
x = n(c)~ = Δt(c)Δε(c); the superscripts emphasize

that the ranges are sized in order to fulfill this delocaliza-
tion condition during an appropriate time rangeΔt(c). Then
cΔp(c)

x = Δε(c). To find how scale the sizes of the momentum
and energy ranges with respect toΔp(c)

x andΔε(c) in the case
of a massive particle traveling at slower ratevx < c through
Δx(c), write Δx(c)Δp(v)

x = n(v)~ = Δt(c)Δε(v). Since neither
vx nor c appear explicitly in this equation, it is also possible
to write n(v)~ = Δt(c)Δε(c) = Δt(v)Δε(v); this is indeed true if
Δt(c) andΔε(c) scale likeΔt(v) = (c/vx)Δt(c), as it is reason-
able, andΔε(v) = (vx/c)Δε(c). Replacing these positions in the
former equation yieldsΔx(c)Δp(v)

x = Δt(c)(vx/c)Δε(c) whence
cΔp(v)

x = (vx/c)Δε(c). Actually the superscripts can be omit-
ted because they do not identify particular range sizes; both
Δp(v)

x andΔε(c) are indeed arbitrary likevx itself. The su-
perscripts are also irrelevant as concerns the functional rela-
tionship between the local values of the respective variables,
which readspx = (vx/c2)ε regardless of how the respective
uncertainty ranges are defined. Note thatpx andε, exactly de-
termined in classical physics and in relativity, are instead here
random values within the respective uncertainty ranges. Also
note that an identical reasoning inR′ solidal with the parti-
cle would yieldp′x = (v′x/c

2)ε′: this is therefore a quantum
expression relativistically invariant. This kind of reasoning
has been carried out in [7] to show the connection between
quantum mechanics and relativity. Now instead consider for
the next discussion the following equations directly inferred
from eqs (1,1)

n~vx

Δx
= Δε, vx =

Δx
Δt
, vx ≤ c. (3,1)

The last position does not merely emphasize a feature in
principle expected for any velocity, it takes a special rele-
vance in the present context. BeingΔε andΔx arbitrary, one
could writeΔpx = Δεovox/c

2 too, with vox andΔεo still fulfill-
ing the givenΔpx. The total arbitrariness of the range sizes
plays a key role in the following reasoning based onvxΔε =

voxΔε
o: if vx = c, then necessarilyvox < c andΔεo > Δε. Ex-

amine step by step this point writing identically eq (3,1) as
follows

e2

Δx
=
α

n

vox
c
Δεo,

vxv
o
x

c2
=

Δε

Δεo
, Δε ≤ Δεo. (3,2)

The last position emphasizes that both chancesΔεo = Δε
andΔεo , Δε are equally possible. IfΔε = Δεo, thenvx = vox
compels concludingvx = vox = c only; so eqs (2,7) and (3,2)
yield e2/Δx = χΔε, beingχ = α/n a proportionality fac-
tor. This means correlating the potential energye2/Δx of two
electric charges toΔε, introduced throughΔpx and thus hav-
ing the meaning of kinetic energy range. On the one hand
Δεo , Δε requires differentvox andvx, thus both velocities or
at least either of them smaller thanc, whence the inequality;
on the other hand, relating the physical meaning of the ve-
locities hitherto introduced to that of the boson carriers that
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mediate the interaction force between particles:vox = c re-
quires massless bosons,vox < c massive bosons. Therefore the
arbitrariness ofΔε andΔεo justifies the conclusion that either
chance of range sizes prospects different results for eqs (3,2)
and (3,1), despite their common origin from eqs (1,1). Two
questions arise at this point: (i) whether these equations de-
scribe two different interactions or two different appearances
of a unique interaction, (ii) whether or not it is possible to
infer from both equations a relationship likee2/Δx = χΔε
despite their formal difference. The answers rely on the fact
that in eq (3,2) appears explicitly the Coulomb chargee inher-
ent the definition ofα, in eq (3,1) it does not necessarily hold;
nothing compels assuming that even the energyn~vx/Δx is by
necessity referable to a Coulomb energy.

If n~vx/Δx does, then the common origin of these equa-
tions from eqs (1,1) is a good reason to expect that the chances
of massive or massless vector bosons are merely two different
ways of manifesting a unique kind of interaction; rewriting
the inequality asΔεo = Δε + δε, with δε ≥ 0 of course arbi-
trary likeΔε andΔεo, both chances are in principle acceptable
depending on the amount of energy at which the interaction
occurs. In other wordsδε > 0 is an additional energy range
motivated by the arbitrariness ofΔε, which indeed admits in-
troducing alsoΔεo too, and justifying the presence of mas-
sive vector bosons. By consequence the chance of finding a
unique link likee2/Δx = χΔε between potential and kinetic
energies is to be reasonably expected; so, fixing an arbitrary
Δε allows assessing viaχ the relative strengths of both inter-
actions at comparable values ofΔε and respective character-
istic lengthsΔx. The physical consequences of this reasoning
are exposed in section 4.

If insteadn~vx/Δx is an energy not referable to that be-
tween integer charges, in fact nothing hinders thinking that it
is directly related to the aforesaid fractional charges; accord-
ing to eq (2,8),vx = Δx/Δt is physically different fromv′x =

dΔx/dΔt. Then eq (3,1) describes an interaction prospec-
tively different from that of eq (3,2); so the former equation
must be considered regardless of the latter to check what kind
of physical information follows from the considerations of
section 2. Also the consequences inferred from these equa-
tions are expectedly different; in particular the linkχ between
potential and kinetic energies should be reasonably different
in either case just mentioned. In other words,χ can be com-
pared for similare2/Δx andΔε to characterize the relative
strengths of the various kinds of interactions. The physical
consequences of this reasoning are exposed in section 5.

These are the key ideas to be further highlighted below.
The dual way of elaborating a unique principle, the statistical
formulation of quantum uncertainty, has an intrinsic physi-
cal meaning coherent with the purposes of the present paper,
i.e. to demonstrate that kinds of interaction apparently differ-
ent are in fact consequences of a unique principle. In other
words, eqs (3,2) and (3,1) are the starting point to distinguish
two cases, which will be discussed separately under the only

conceptual constraint of being mutually self-consistent. The
following sections 4 and 5 aim to outline the respective ways
to link the potential and kinetic energies.

4 The interaction according to eqs (3,1) and (3,2)

The following discussion concerns the ways to reduce the eqs
(3,1) and (3,2), regarded together, to the forme2/Δx = χΔε
in both casesδε = 0 andδε > 0. Consider firstδε = 0, which
requiresvox = vx = c and thus massless boson carriers. So the
unique result possible is

e2

Δx
= χemΔε, χem=

α

n
. (4,1)

Hereα/n emphasizes the electromagnetic interaction in anal-
ogy with eq (1,4).

The further chanceδε > 0 requiring the conditionvox < c
prospects instead the presence of massive boson carriers; thus
δε > 0, related to the formation of massive carriers, repre-
sents reasonably the energy gap with respect to the former
case of eq (4,1) involving massless carriers only. While heavy
vector bosons are the physical consequence of the concurring
inequalitiesvox < c andδε > 0, the arbitrariness ofvox prevents
the possibility of deciding a priori either chance forδε and
compels the conclusion that a unique kind of interaction is
actually compatible with both chances. It will be shown that
the interaction energy related to the possible size ofΔx dis-
criminates either chance. Despite both chances are incorpo-
rated into a unique conceptual frame, further considerations
are necessary in this case. Write the first eq (3,2) as follows

e2

Δx
=
α2

n2

Δεo

qo
, qo =

e2

n~vox
, vx < c. (4,2)

Since eqs (3,2) requireΔεo/qo = (c/vx)(n/α)Δε, the ob-
vious inequality

(n/α)2 > vx/c (4,3)

yieldsΔεo/qo > (α/n)Δε. Hence a valueqw > qo certainly
exists such that

Δεo/qw = (α/n)Δε. (4,4)

Replacing this result into the first eq (4,2), one finds

e2

Δxw
= χwΔε, χw =

(
α

n

)3
, Δxw =

qw
qo

Δx. (4,5)

The first equation is formally analogous to eq (4,1) a scale
factorqw/qo for Δx apart, whileα/n is replaced by the much
smaller quantity (α/n)3; hold however forχw considerations
analogous to that previously carried out forχem, i.e. it links
kinetics and potential energies. The explicit form of the in-
equality (4,3) reads (n~c)2 > e4(vx/c), so that (n~c/Δx)2 >
(e2/Δx)2(vx/c) and thus (cΔpx)2 > (e2/Δx)2(cΔε/voxΔε

o); as
cΔpx = Δεovox/c, i.e. cΔpx = (qwvoxα/nc)Δε according to eq
(4,4), the inequality (4,3) reads

(ζΔε)3 > (e2/Δx)2Δε, ζ =
qwvoxα

nc
= w

( n
α

)2
. (4,6)
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Hence an energyε0 > 0 certainly exists such that

ζ3Δε3 − (e2/Δx)2Δε − ε3
0 = 0. (4,7)

Regardingζ as a constant through an appropriate choice
of qw, not yet specified and here accordingly defined, let us
solve the eq (4,7) in order to introduce three real sizesΔε j ,
j = 1,2,3. Note that this does not mean assigning definite
values to the size ofΔε, which remains indeed arbitrary and
unknown like any uncertainty range because ofΔx; solving
eq (4,7) means examining the physical information consis-
tent with some particular range sizes that fulfil the inequality
(4,6). One finds

ε0 =



2
√

3
9




1/3

ζ−1/2 e2

Δx
, Δε1 =

2

ζ3/2
√

3

e2

Δx
, (4,8)

Δε2,3 = Δε2 = Δε3 = −
1

ζ3/2
√

3

e2

Δx
.

The former equation is the condition to make null the
imaginary parts of the rootsΔε2 andΔε3 that, as emphasized
by the last equation, result by consequence coincident. As ex-
pected, all quantities expressed here as a function ofΔx are in
fact arbitrary like this latter. The constantζ can be eliminated
from the equations; so

Δε1

ε0
=

2

ζ
√

3

(
9

2
√

3

)1/3

,
Δε1

ε3
0

=
3

(e2/Δx)2
, (4,9)

e2

Δx
= ε0

√

3
ε0

Δε1
.

It is interesting to rewrite eq (4,7) as (ζ3Δε2−(e2/Δx)2)Δε
= ε3

0, which yields

Δt = n~ζ3 (e2/Δx)
2

ε3
0




(
Δε

e2/Δx

)2

− ζ−3


 .

In this wayΔε3 splits into a multiplicative factorΔε, re-
lated toΔt through eqs (1,1), times a factor merging together
Δε2 and (e2/Δx)2. Let us specify in particularΔx asΔxw of
eq (4,5); owing to the last eq (4,9), one finds then

Δtw =
3n~ζ3

Δε1w




(
n3

α3

)2

− ζ−3


 , Δε1w =

2

ζ3/2
√

3

e2

Δxw
. (4,10)

DespiteΔx is unknown and arbitrary by definition, when
it is specified as the rangeΔxw purposely pertinent to eq (4,5)
the former equation takes the formΔt ∝ (n/α)6 plus a term
τ = 3n~/Δε1w. If Δε1w andn are large enough so thatτ <<
(n/α)6, thenΔtw and the factorχw linking e2/Δxw andΔε of
eq (4,5) fulfill the well known condition

Δtw ∝ χ
−2
w .

Note now that

Δε1 + Δε2 + Δε3 = 0 (4,11)

and that eq (4,7) is directly related tovox/c < 1 because it
comes from the inequalities (4,2) and (4,3). Moreover each
energy range by definition introduces its own random value
of energy; this suggests that are related to eq (4,5) three char-
acteristic energies, i.e. three corresponding massive particles,
whose energies are by definition included within the uncer-
tainty ranges of eqs (4,11).

Consider in general three energy rangesΔε j = ε′j − ε
′′
j ,

being j = 1..3, of course with bothε′j andε′′j arbitrary and
unknown; define then the energiesη j included within them
asη j = (ε′j + ε′′j )/2, i.e. as average values of the respective
boundary values. It is immediate to realize that the condi-
tion

∑
Δε j = 0 is compatible with

∑
η j , 0; indeed

∑
(ε′j −

ε′′j )/2 = 0 reads identically
∑

(ε′j + ε
′′
j )/2−

∑
ε′′j = 0, whence

in general
∑
η j =

∑
ε′′j , 0. Repeat this reasoning regarding

η j as the average values of the specific energy ranges of eq
(4,11). The fact thatηtot = η1 + η2 + η3 , 0 agrees with the
idea of interaction energy; indeed no constrain could be de-
finable for three independent free particles. On the one hand
the chance of replacing any quantum range with its average,
as done here forΔε j andη j , has a general valence because the
range sizes are arbitrary, undefined and undefinable like the
average value inferred from their boundaries. Since any value
allowed to the former is also allowed to the latter, consider-
ing η j instead ofΔε j does not exclude the point of view of
eqs (1,1): replacing an arbitrary value with another arbitrary
value corresponds to replacen with n′, which is however im-
material because both symbolize sets of integer values and not
specific values. On the other hand the ranges (4,11), regarded
all together, fulfill globally the energy conservation regard-
less of whetherΔε j , 0 orΔε j = 0; as just shown, however,
the same does not necessarily hold forηtot. To make also this
latter compliant with the eq (4,11), let us assume therefore
that ηtot has a finite lifetime of the order of~/ηtot. Let Δtw
be this lifetime. In agreement with eq (4,10), duringΔtw the
sum

∑
Δε j is still globally null likewise as before and after

their actual transient appearance; in this way the massive par-
ticles concerned by the respective energy ranges are jointly
involved as concurrent physical properties inherent eq (4,5)
and thus the present kind of interaction. The physics of the
weak interactions is well known. Here, as a significant check
of these ideas, we propose a simple energy balance to infer
the energiesη j and thusηtot exploiting just the requirement
that theη j must be regarded all together.

A possible interpretation of the equal sizes and negative
signs ofΔε2 andΔε3, despite in the present model the ranges
are always introduced positive by definition, is that their sum
with Δε1 equal to zero requires interacting particles; as ex-
plained in section 2, no relationship would be possible by
definition for free particles. Let two of them, sayη2 andη3,
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interact in order to release the energy necessary to form also
η1. The fact thatη2 = η3 because ofΔε2 = Δε3 means that
their interaction occurs regarding identically either of them in
the field of the other one; together, therefore, these particles
provide the energy necessary to allow the kind of interaction
here concerned. The simplest hypothesis is that the particles
η2 andη3 have charges of opposite signs whereasη1 is neu-
tral, thus fulfilling the global charge conservation before, dur-
ing and after their lifetime; if so, the energy gain of Coulomb
energy at an appropriate interaction distance justifies also the
neutral particleη1. In this way the model allows the existence
of three range sizes whose finite lifetimes agree with the finite
values of the respective heavy bosonsη j . This conclusion is
summarized as follows

ηtot = η1 + (η2 + η3), η2 = η3.

The second equation emphasizes that actuallyη2 andη3

form a Coulomb system of charges, whose energy transient
uniquely defined likewiseεel of eq (1,4) characterizes the
present kind of interaction. This idea suggests to estimateηtot

just computing the energy levels of the system of chargesη2

andη3 by analogy with that of a hydrogenlike atom. Exploit
for simplicity the previous non-relativistic equations (1,3) and
(1,4); owing to the generality of these equations, there is no
reason to exclude that analogous considerations hold at least
approximately also here putting of course the chargeZ = 1
and describing the system of charged bosonsη2 andη3 as due
to −εel = πe2/nλ. It is necessary to take into account how-
ever that now also the neutral particleη1 contributes toηtot,
in agreement with the idea of regarding the particles all to-
gether. Guess first according to eqs (4,8) that the mass ofη1

should have the same order of magnitude ofη2 andη3, so that
ηtot ≈ 3η2; the chance of identifyingηtot with −εel is consis-
tent with this idea simply putting

ηtot = πη2, η2 = η3 = e2/nλ, η1 = (π − 2)e2/nλ. (4,12)

In other words, eq (1,4) suggests that the expected co-
efficient ≈ 3 must be actually regarded asπ. Despite the
non-relativistic reasoning, these conclusions are correct be-
cause confirmed by the experience. The experimental masses
of the W± andZ0 vector bosons aremW± = 80.39 GeV and
mZ0 = 91.19 GeV respectively, for a total mass ofmtot =

251.97 GeV; in effect

mtot = 3.134mW± mZ0 = 1.134mW±

are compatible with the values expected forπ andπ−2. Triv-
ial considerations show that the reduced Compton lengths ˉλ
of the vector bosons consistent withe2/nλ areλ̄η1 = nλ/((π −
2)α) andλ̄η2 = λ̄η3 = nλ/α, having introduced explicitly the
massesmj = η j/c2. These results are confirmed consid-
ering the zero point energyΔp2

j /2mj of the vector bosons
η j , whereΔpj = p2 − p1 is the gap between its momen-
tum p2 after confinement within a given delocalization range

Δxw and its initial momentump1 in an ideal unconfined state;
hence the corresponding energy gap after confinement within
Δxw resulting from thex, y andz components isΔp2

j /2mj =

3(n2~2/2mjΔx2
w). Assume now that the confinement energy

Δp2
j /2mj is just the energyη j = mjc2 itself that determines

the space-time scale of this kind of interaction, i.e.

η j =
3
2

c2Δp2
j

η j
; (4,13)

thenΔxw = (3/2)1/2n~c/η j , i.e. forη2 andη3

Δxw = (3/2)1/2n2λ(~c/e2). (4,14)

For n = 1 thereforeΔxw coincides with ˉλη2 = λ̄η3 a trivial
numerical factor

√
3/2 apart; an identical conclusion holds

of course forη1 too, the numerical factor (π − 2)
√

3/2 apart.
This confirms the assumed link between delocalization ex-
tent and energy of the force carriers, which allows identifying
ηtot = −εel in agreement with eq (1,3).

Put firstn = 1 in eqs (4,12). The value ofλ corresponding
to the energies of the particlesη2 andη3 isλ = 1.79×10−20 m,
so that ˉλη2 = λ̄η3 = 2.45× 10−18 m and ˉλη1 = 2.15× 10−18 m;
the characteristic rangeΔxw of interaction is thus of the order
of 10−18 m. Since the classical proton radiusr p = e2/mpc2 is
about 0.8768 fm according to recent measurements [13], the
above energies concern a sub-nuclear scale interaction; vice-
versa, one could estimate the correct scale of energy of the
vector bosons requiring an interaction that occurs at the sub-
nuclear extent at which one calculatesχw = α3 = 3.9× 10−7.

So far we have consideredn = 1. What however about
n > 1? First of all,Δxw becomesn times larger than the afore-
said Compton lengths ofη j ; this deviation means a longer
range allowed to the interaction. Moreover, according to eqs
(4,12)ηtot → 0 for n → ∞; at this limit the aforesaid space
scale of interaction is inconsistent with the corresponding en-
ergies of massive boson carriers, which therefore should ex-
pectedly require an appropriate threshold energy to be acti-
vated. Forn → ∞ is thus allowed the less energy expen-
sive and longer range interaction withδε = 0 only, in agree-
ment with the initial idea thatδε , 0 is related to the boson
masses. This conclusion is intuitively clear, but what about
the energy threshold? According to the eqs (4,12) the ener-
giesη1, η2 andη3 downscale withn, whereas according to
eq (4,14)Δxw upscales withn2; so the lower threshold for
the existence of massive bosons, i.e. for the validity of these
equations themselves, concernsn of η(n)

tot = −εel(Z = 1,n) =

(π/n)e2/λ: it is required that the interaction distance of the
hydrogenlike system of charges enable the energy to create
vector bosons. The inequalityη(n)

tot > e2/λ, which holds for
n ≤ 3, ensures that, whatever the massesη(n)

2 andη(n)
3 might

be, the energy gain due to their Coulomb interaction accounts
not only for the energye2/λ of the system of charged parti-
cles themselves but also for the surplus required by the neu-
tral particleη(n)

1 . Clearly the threshold corresponds to the
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valueη(3)
tot = (π/3)e2/λ, i.e. about 81 GeV; the correspond-

ing Compton lengths of the bosons are ˉλ(3)
η2

= λ̄(3)
η3

= 3λ/α and
λ̄(3)
η1

= 3λ/((π − 2)α). In fact even forn = 3 these lengths
are of the order of 10−17 m, i.e. still consistent with a sub-
nuclear range. At energy below this threshold, i.e.n ≥ 4,
eq (4,1) only describes the interaction. Of course the most
favorable condition for this interaction to occur is that with
n = 1, which ensures the maximum binding energy given by
eq (4,12) and corresponds to the shortest interaction distance
and maximum values of the three boson masses in fact ex-
perimentally detected. The model admits however even the
possible existence of lighter bosons. In conclusion, the dif-
ferent energy scales characterize the features of eqs (4,1) or
(4,5) because of different values ofn; both equations describe
however the same kind of interaction.

5 The interaction according to eq (3,1)

The starting point of this section is the eq (3,1) that reads

n~vx

Δx
= χsΔε, χs = 1. (5,1)

The lack of coefficient at right hand side of eq (3,1) is ten-
tatively interpreted here as the presence of coefficientχs = 1.
Beingvx andn arbitrary, it is certainly possible to introduce a
proportionality constantξ defined asn~vx = ξe2; so eq (3,1)
reads (ξe2/Δx)/Δε = 1. Usually a proportionality constant
linking two quantities that fulfill a given condition or a given
physical law is of the order of the unity, unless some specific
reason compels an appropriate hypothesis about its actual or-
der of magnitude. Since here evenΔx andΔε are arbitrary,
however, it is difficult to guess a valid reason to compelξ very
different from the unity. So, in terms of order of magnitude,
the positionξ ≈ 1 seems reasonable although not thoroughly
demonstrated, whence the tentative conclusion quoted in eq
(5,1). On the other hand, once having reduced this equation
to the form (e2/Δx)/Δε = χs, one can compareχs = ξ−1 ≈ 1
with χem≈ α andχw ≈ α3 defined by the equations (4,1) and
(4,5) formally similar, of course under the assumption that the
ranges at left hand sides defining these values are comparable
as well. Even without a specific reason to exclude the plain
ideaχs ≈ 1, a better assessment of this conclusion appears
however necessary: the lack ofe2 at left hand side, replaced
by n~vx, allows handling eq (5,1) in order to introduce the in-
teraction between the fractional charges concerned in section
2; but this chance, suggested by eqs (2,8) and (2,9) that any-
way do no exclude themselvesξ ≈ 1, is justified only revising
the terme2/Δx.

Consider again the eq (2,7)Fx = −a′/Δx2 + Fox with
a′ = n~v′x in the simplest case where botha′ andṗox = Fox are
constants. Actually these constants could likely be first order
approximations only of series developments whose higher or-
der terms are neglected; yet, even this approximate meaning
of the eq (2,7) is enough for the present discussion. Assum-
ing Fox < 0 likewise as the first addend in order to describe

an attractive force,Fx is compatible with a potential energy
Ui of the i-th quark having the form

Ui = −
a
Δx

+ bΔx+ U0 (5,2)

beingU0, a andb appropriate integration constants; the lat-
ter is clearly related toFox. ConsideringΔUi = Ui − U0

one recognizes a well know formula, the so called “asymp-
totic freedom”, describing the interaction between quarks; of
course in the present model where any local distancex ran-
domly included by its quantum uncertainty range is replaced
by a range of distancesΔx, the local value of potential energy
Ui turns into a rangeΔUi of allowed values. Let us examine
the eq (5,2) in two particular cases where (i)a/Δx ≈ bΔx and
(ii) a/Δx ≈ U0; the arbitrary size ofΔx justifies in principle
both chances. The former case holds whenΔx(i) ≈

√
a/b and

yields U(i)
i ≈ U0; according to the chance (ii)Δx(ii) ≈ a/U0

yields insteadU(ii)
i ≈ bΔx(ii) = ba/U0. This means that a

delocalization extent of the system quark+ gluons around
Δx(i) the potential energy is approximately of the order ofU0,
around a rangeΔx(ii) the potential energy increases linearly
with Δx. Definea andb in agreement with eqs (2,8) and (2,9)
in order that eq (5,2) takes a reasonable form. Puta propor-
tional to the electric chargec2

i = (±(ni/n′)e)2, i.e. a = aoc2
i

via the proportionality constantao; also, let analogously beb
proportional to the color quantum numberCj , i.e. b = boC2

j
with j = 1 ∙ ∙3. The subscripts symbolize thei-th quark in
the j-th color quantum state; in this wayb = 0 for a color-
less Coulomb particle withni = n′, in which case the eq (5,2)
turns, according to eq (2,9), into the classical potential en-
ergy−e2/Δx′ + U0 of two Coulomb charges attracting each
other. This reasoning suggests that the color quantum number
should have the formCj = f j1(n′ − ni)2 + f j2(n′ − ni)4 + ∙∙,
where f j1 and f j2 are appropriate coefficients of series expan-
sion fulfilling the actual value ofCj whatever it might be; it is
interesting the fact that the electric charge depends onni/n′,
the color charge onn′ − ni . As concernsΔx′ = Δx/ao, note
that multiplying the size ofΔx by any factor yields a new
range still arbitrary and thus still compliant with eqs (1,1);
for the same reasons introduced in the previous section, i.e.
because any size possible forΔx is allowed toΔx′ as well,
the notationΔx′ means in fact nothing else but renamingΔx.
In summary, the Coulomb potential appears to be a particu-
lar case of eq (5,2), whose local features are described by the
aforesaid chances; the expressions ofU(i)

i andU(ii)
i are

Δx(i) =

√
a
b
, U(i)

i = U0,

a = laεa

(ci

e

)2
, b =

εb

lb
C2

j ,

Δx(ii) =
a

U0
,

U(ii)
i =

ab
U0

=
εaεb

U0

la
lb

(
ciCj

e

)2

= bΔx(ii) .

(5,3)

68 Sebastiano Tosto. Quantum Uncertainty and Fundamental Interactions



April, 2013 PROGRESS IN PHYSICS Volume 2

The constant energiesεa andεb together with the constant
lengthsla andlb describe the physical dimensions ofa andb
without need of proportionality factors. Note thatlb → ∞,
compelsΔx(i) → ∞ andb→ 0; as the color is introduced by
b, this agrees with a constant Coulomb potentialU(i)

i = U0

of a colorless particle. By definition thereforelaεa = e2 for
ni/n′ = 1, whereas it is expected to take a different value for
ni/n′ < 1: the new value oflaεa/e2 whene2 is replaced by
(ni/n′)e2 is known in the literature asαs ≈ 1. In summary,
eqs (5,3) yield

U(i)
i = U0, U(ii)

i = U′0

(ci

e

)2
, U′0 =

αsεbe2C2
j

lbU0
. (5,4)

Appears here once more the importance of the delocal-
ization rangeΔx: in eq (4,14)Δxw controlled either appear-
ance of the electroweak interaction, in eqs (5,3) two different
range sizesΔx ≈ Δx(i) or Δx ≈ Δx(ii) emphasize either fea-
ture ofUi : in (ii) it depends upon the fractional charge, in (i)
it does not because−a/Δx is balanced bybΔx despite both
terms describe attractive force.

Let us concern now eq (5,2) in a more general way. The
features ofUi as a function ofΔx are related toδ[(n/m)(n/V)]
becauseΔx definesV, eq (2,1), and also because the eq (5,2)
comes directly fromΔFx of eq (2,7). What is distinctive here
with respect to the gravitational or Coulomb interaction is the
mere fact of having putFox , 0; so the consequent form of
Ui with b , 0 describes a peculiar kind of attractive force that
increases withΔx. Another remarkable point is thatΔFx is
not necessarily that between different quarks only, because
eq (2,7) concerns a mere effect of confinement that holds
even for an isolated quark; rather it seems more appropriate
to think that the interaction between different quarks strictly
replicates an intrinsic feature of the potential energy due to
the confinement effect even of a single particle, which also
involves its messenger bosons. In fact, in the present model
Δx is by definition the delocalization range of one particle;
the arising of any form of interaction is due to the presence
of a further particle that possibly shares the same delocaliza-
tion range. In general the number of states within a system of
interacting particles is related to their energy, to their masses
and to the whole space volume in which they are delocalized:
eq (2,2) shows indeed that ifn1 is the number of states of the
system with its particles supposed non-interacting, thenδn is
the change consequent to their interaction, whileΔεn1+δn is
the concurrent energy change from the initialΔεn1. Accord-
ing to the considerations of section 2, in the present caseV
is the time space delocalization volume of one quark and its
interaction messengers, the gluons. If a further quark could
share thisV, then the quarks interact. If the delocalization
volumeV is filled with gluons of both quarks mediating their
interaction, then the changeδ(n/V) stimulates a question: are
the particles that mediate the interaction interacting them-
selves? Clearly, from the standpoint of eqs (2,7) and (5,2)

this question holds even for one quark only withinV. A pos-
itive answer would explain whyΔFx increases when pulling
apart the interacting quarks, e.g. of a nucleon or meson, or
even a lonely quark and its gluon system; in the latter case
a greater delocalization range describes indeed the chance of
mowing away the gluons from their own quark, which how-
ever increases the energy of the system. To emphasize how
the positionFox , 0 answers the question, suppose that the
quark-gluon and gluon-gluon interactions does not allow dis-
tinguishing the interaction between a quark and ”its own”
gluons from that of these latter with another identical quark;
this would mean distinguishing identical particles, which is
however forbidden by eqs (1,1) [7]. If the gluons are not
mere interaction messengers but rather self-interacting mes-
sengers, then eq (5,2) describes the asymptotic freedom sim-
ply as a feature of one quark and its own system of gluons, i.e.
even without necessarily requiring a further quark; otherwise
stated, a net splitting of gluons from a quark interferes even
with their propensity to follow another quark. The concept of
asymptotic freedom is linked to the energy constrain that ex-
plains why do not exist bare quarks without gluons and bare
gluons without quarks. Calculate the change ofUi as a func-
tion of Δx asΔUi = (∂Ui/∂Δx)Δx at the first order; the force
field ΔFx = −∂Ui/∂Δx acting on quark and its gluon system
delocalized inΔx can be calculated in particular at the delo-
calization extentsΔx(i) or Δx(ii) . Replacing here the previous
results, one findsΔF(i)

x = −2b andΔF(ii)
x = −b(1+ U0/U(ii) ).

It will be shown in the next section thatU′0 ≈ 2U0 ≈
1 MeV; so, beingUi a monotonic function ofΔx, results
Δx(ii) <∼Δx(i) becauseU(ii)

i
<∼U(i)

i according to eq (5,4). IfΔx(ii)

is of the order of the proton radius, i.e. 10−15 m, then accord-
ing to eq (5,3)b results of the order of 1 GeV/fm, as it is well
known. Then, inside a proton the force field at (i) is about
twice than that at (ii); of coursebΔx further increases for
Δx > Δx(i) , i.e. outside the actual radius of the proton. This
means that extending delocalization range of the quark/gluon
system fromΔx(ii) to Δx(i) and then to anyΔx > Δx(i) , i.e.
allowing quark and gluons to have more space to move apart
each other, corresponds to a greater energy; this is not sur-
prising once having found thatU(ii)

i is already in the region
of linear increase ofUi as a function ofΔx. The dependence
of Ui onΔx is trivially self-evident; the reasoning aboutΔx(ii)

andΔx(i) allows to quantify this evidence with specific refer-
ence to the sub-nuclear length scale.

The behavior ofUi and the concept of asymptotic free-
dom equation are straightforward consequences of eq (2,7)
and thus of eqs (1,1); this feature of the strong interaction is
indeed characterized by the concept of uncertainty, which in
particular prevents specifying the actual size ofΔx. From the
present standpoint only, therefore, no kind of correlation ap-
pears in principle between quark generations and chances (i)
and (ii) inherent the eq (5,2). Yet, it seems intuitive that either
chance forΔx and thus either behavior of potential energy
should be selectively related to the energies characteristic of
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the three generations of quarks. This supposition will be con-
firmed in the next section, at the moment one must only admit
that both chances are allowed to occur.

Now let us revert to the opening question of this section,
i.e. how to regard the energy termn~vx/Δx andχs of eq (5,1).
The conceptual analogy ofχs with χemandχw of eqs (4,1) and
(4,5) was in principle legitimated by the arbitrariness ofvx in
defining (e2/Δx)/Δε = χs with χs expectedly of the order of
the unity. Exploit now eq (2,2), for simplicity regarded again
at the first order only

n1 =
δn

δ log(Δη′)
, δ log(Δη′) = log(Δεn1+δn) − log(Δεn1),

introducing two further energy uncertainty rangesΔεo and
Δε whose sizes are by definition intermediate between that of
Δεn1 and that ofΔεn1+δn, i.e. Δεn1 ≤ Δεo < Δε ≤ Δεn1+δn.
Hence eq (2,2) rewritten as a function of these new ranges
takes the form

γn1 =
ζδn

δ log(Δη)
, γ = γ(Δη), ζ = ζ(Δη),

δ log(Δη) = log(Δε) − log(Δεo).
(5,5)

Now Δεo plays the role of fixed reference energy range,
likewise as the earlyΔεn1 did. The correction coefficientsγ
andζ account for the fact thatn1 andδn = n2 − n1 were early
defined forΔεo ≡ Δεn1 andΔε ≡ Δεn1+δn, being therefore
γ = 1 andζ = 1; having changed the ranges at right hand
sides, clearlyγ andζ must be replaced here byγn1 andζδn
with γ , 1 andζ , 1, whence their definitions of functions of
Δε once having fixedΔεo. So the previous eq (2,2) becomes
a particular case of the present result (5,5), which reads now

β(Δη) =
δg

δ log(Δη)
, β(Δη) = γn1,

δg = ζn2 − ζn1 = δ(ζn). (5,6)

The third equation is interesting as it defines the new
rangeδg. Let the functionζ be someway proportional toΔη,
i.e. letζ decrease withΔη; also, consider the particular case
whereΔη is so small that the notationδg can replaced by the
familiar differential symboldg whatever the actualδn might
be. Being the range sizes arbitrary, this position aboutδg
is not a hypothesis; it focuses the attention on a particular
chance ofΔη that must be taken into account simply because
it is allowed and thus to be actually expected. Since a smaller
and smaller uncertainty range identifies better and better a lo-
cal value of the random variable included by its boundaries,
δ log(Δη) tends tod log(η); hence the former equation (5,6)
tends to the known beta functionβ(η) = dg/d log(η) defin-
ing the coupling constantg at the energy scale defined byη.
This particular limit case helps thus to understand the phys-
ical meaning of the ratio in the first eq (5,6), merely written
as a function of ranges instead of local values. It is clear the

interest to take nowΔη comparable withΔε of eq (4,1) and
(4,5) in order to infer fromβ(Δη) the functiong(Δη) ≡ χs to
be compared with the respectiveχem andχw. The next task
is to calculate the first eq (5,6) in order to confirm thatχs is
of the order of the unity. To this purpose let us expandβ in
series of powers ofδg, i.e. β = βo+β1δg+β2δg

2+ ∙∙: the coef-
ficientβo must be equal to zero because of eqs (5,6), whereas
β1 = 0 as well to fulfill the reasonable condition∂β/∂(δg) = 0
of minimumβ for δg = 0. Henceβ = β2δg

2, neglecting the
higher order terms, requiresδg = (β2δ log(Δη))−1; this ap-
pears replacing 1/(δ log(Δη)) in eq (5,6), which indeed turns
into β(Δη) = β2(δg)2. According to the fourth eq (5,5),δg =

β2/(log(Δε/Δεo)) is reducible to the well known form

δg =
ξ

ζ log(Δη2/Δε2
o)
,

2ζ
ξ

= β2, Δεo ≈ 0.2 GeV. (5,7)

The order of magnitude ofΔεo is easily justified recall-
ing the eq (2,5) of section 2 and the conclusions thereafter
inferred:Δεo implies that toΔt ≈ ~/Δεo corresponds the path
δx ≈ ~c/Δεo of gluons moving at the light speed to carry the
interaction between quarks. The given value ofΔεo is there-
fore consistent with the order of magnitudeδx ≈ 10−15 m
previously quoted for the strong interaction. The result (5,7)
and the value ofΔεo are well known outcomes of quantum
chromodynamics; further considerations, in particular about
the constantsξ andζ, are omitted for brevity. This paper aims
indeed to show the consistency of the present model based
uniquely on eqs (1,1) with the standard features of the strong
interactions, not to repeat known concepts.

6 The quark and lepton masses

This section consists of two parts, the first of which concerns
the ability of eq (2,4) to describe the ideal masses of iso-
lated quarks. Correlating these masses to the energy ranges
Λi ≡ Δεn1+δn is in principle sensible first of all regarding the
various quarks as a unique class of particles: there would be
no reason to expect that different kinds of particles of dissim-
ilar nature are all described by a unique law simply chang-
ing a unique distinctive index, here represented byi ≡ δn.
Moreover must hold for the energies of the various quarks
a common sort of functional dependence uponδn like that
of Δεn1+δn. Eventually, this dependence must still hold even
replacing these ranges with the respective average energies
< εn1+δn > calculated as described in section 4. This last re-
quirement suggests correlating the quark masses with these
averages in agreement with the eq (2,4), tanks to the fact that
both< εn1+δn > andΔεn1+δn are consistent with their ownδn.
Indeed an incremental indexδn representing the quark ener-
gies is defined replacing in eq (2,2) log(Δεn2) and log(Δεn1)
with log(< εn1 >) and log(< εn2 >); a procedure completely
analogous yields an equation of the average quantities fully
corresponding to eq (2,4). The second point has been ex-
plained: the self-interaction of quarks justifies in principleδn
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simply admitting that the various quarks are characterized by
different self-interaction strengths and thus by distinctively
different values ofδn. So the critical step is the first one,
i.e. whether or notΔFx of eq (2,5) really governs the self-
interactions of all quarks in order that all of them are related
to a unique law (2,4) ofδn. This means in practice: (i) re-
garding one quark delocalized in its own uncertainty range;
(ii) thinking that various quarks are characterized by different
δ(n/m) because of their own kind of self-interaction; (iii) as-
suming that in fact the eq (2,4) accounts for the different num-
bers of states that characterize uniquely the various quarks. If
the functional dependence described by the eq (2,4) is con-
sistent with the three points just mentioned, thenΛi describes
the ideal masses of the quarks as a function ofi; also, the
point (ii) shows that the energies of this class of particles are
really related to their number of allowed states through the
self-interaction between quark and gluons.

The estimated massesQi of the quarks quoted in literature
[14] are reported here:

Qu = 1.7↔ 3.3 MeV
Qd = 4.1↔ 5.8 MeV
Qs = 80↔ 130 MeV
Qc = 1.18↔ 1.34 GeV
Qb = 4.13↔ 4.85 GeV
Qt = 170.7↔ 173.3 GeV

(6,1)

The mass interval of the ”b” quark actually merges two in-
tervals, that reported for theMS ”mass-independent subtrac-
tion scheme” and that of the ”1S mass” scheme [14]; the re-
spective mass intervals are 4.19+0.18

−0.06 GeV and 4.67+0.18
−0.06 GeV

[15].
It is known that these literature data represent estimates

instead of experimental values, as actually isolate quarks do
not exist; because of their confinement, the masses are indi-
rectly inferred from scattering experiments. In fact the masses
depend on their different combinations in various hadrons
and mesons. So the values quoted above must be regarded
with carefulness when compared with the results of theoreti-
cal calculations. Nevertheless the intervals of values (6,1) do
not overlap, which suggests that their order of magnitude is
somehow related to and thus at least indicative of the ideal
masses of isolated quarks; by consequence it seems also sen-
sible to expect that the sought values of quark masses should
fall within these intervals. In lack of further information,
therefore, exploit the intervals (6,1) to calculate the average
valuesQi :

Qu
(2/3) = 2.50 MeV

Qd
(−1/3) = 4.95 MeV

Qs
(−1/3) = 105 MeV

Qc
(2/3) = 1.26 GeV

Qb
(−1/3) = 4.49 GeV

Qt
(2/3) = 172 GeV

(6,2)

The superscripts indicate the charges of the respective

quarks. These averages have neither specific physical mean-
ing nor come from some particular assumption, they merely
represent preliminary starting points defined within realistic
intervals; thus their worth is that of reasonable inputs to carry
out calculations. The validity of the results inferred in this
way relies mostly on their self-consistency; the only initial in-
formation is that any sensible output calculated starting from
the values (6,2) should expectedly fall within the intervals
(6,1). Regard therefore the available data as mere reference
values to clarify with the help of eq (2,4) what doQi vs i
might actually mean in the present context. According to the
reasoning carried out in the previous section let us try prelim-
inarily to correlateQi with Λi puttingΛi/Λ = ((Qi/Ui)/q)1/b,
whereq is a proportionality constant andb a coefficient to be
determined by successive calculations; this coefficient fulfills
the chance that if< Δεn2 >≈< Δεn1 >, i.e. < εn2 >≈< εn1 >,
then the corresponding ratio (Qi/Uiq)1/b with increasingb
anyway matches the limit behavior ofΛi/ΛwhateverqandUi

might be. InitiallyUi is justified as mere dimensional factor
to be determined; the next results will show that actually it re-
sults to be just the potential energy of eq (5,2). Let us sort now
the variousQi by increasing value to check if really the esti-
mated quark masses fulfill the logarithmic dependence of eq
(2,4) upon the incremental number of statesi, which therefore
takes from now on values from 1 to 6. In this way each mass is
progressively related to its own increasingi. This expectation
is indeed reasonable becausei ≡ δn definesΛi ≡< εn1+δn >
with respect to a ground reference state number, to which cor-
responds the reference energy rangeΛ ≡< εn1 >. Being by
definitionΛi ≡ Λ for δn = 0, one also expects that holds for
the eq (2,4) the boundary condition

Q0/U0 ≡ q i = 0 (6,3)

whateverb might be; this fact justifies the proposed notation.
When handling sets of data, regression calculations are in
general needed; the outcomes of these calculations are usu-
ally expressed as power series development of an appropriate
parameter. Implementing the linear eq (2,4) with the values
(6,2) as a function ofi, means therefore calculating the best fit
coefficientsa andb of the form log(Qi/Ui) = a+ ib; clearlyn1

has been included in the regression coefficients. This is easily
done regardingΛi andΛ of eq (2,4) as follows

log(Qi/Ui) = a+ bi, a = log(q), 1 ≤ i ≤ 6. (6,4)

The factorq linking Ui to the reference energyΛ is deter-
mined by the boundary condition (6,3); this holds of course
even in the presence of higher order terms. The plain first or-
der approximation decided fori agrees with the intent of the
present paper: to describe the quarks through an approach as
simple as possible and compatible with the minimum amount
of input data needed for an unambiguous assessment of re-
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sults. So, owing to eqs (5,3) and (5,4), one expects

a+ bi =





log(Qi/U0)

log
(
Qi/U′0(ci/e)2

)
U′0 =

αsεbe2C2
j

lbU0

(6,5)

Now theΔx-dependent behavior ofUi can be checked:
if these equations ofUi and the positionΛi/Λ ∝ (Qi/Ui)1/b

are correct, then both chances (5,3) should somehow appear
when exploiting the logarithmic law. A series of plots shows
this point step by step starting from the raw data (6,2).

The variousQi are preliminarily plotted vsi taking allUi

equal to a constant; this first result is reported in fig 1. The
boxes represent the input data, the letters between{} iden-
tify the quarks, the dot lines describe tentatively their possi-
ble connection; the best fit dashed line has a mere indicative
meaning of preliminary reference trend. The various points
are not completely random, rather they roughly follow an
identifiable increase withi. It appears that couples of the var-
ious Qi lie along three lines reasonably parallel each other;
so, according to eq (6,4), these lines should be characterized
by a unique best fit coefficientb and differ by the coefficient
a only. Yet, since each line must be handled in order to fulfill
the condition (6,3), the differenta are irrelevant: indeed the
three regression lines log(Qi) = ak + bi, with k = 1..3, must
be actually plotted as log(Qi/qk) = bi putting ak = log(qk).
In effect the fig 2 shows that once having forced the three
dotted connections to cross the origin, all quark masses are
perfectly aligned along a unique best fit line, whose regres-
sion coefficients are:ak = 4.7, 5.1, 5.4; the respective values
of b range between 0.967 and 0.985, i.e. it is reasonably un-
changed. Clearly are here concerned the masses of isolated
quarks, since the raw data (6,2) have been plotted one by one
independently each other. The relevant conclusion is that of
having confirmed the validity of eq (2,4) and (2,1):Δx has
physical meaning of delocalization range of a unique quark.
Considering that the masses spread over 5 orders of magni-
tude, the result is certainly interesting. If one would calculate
the masses of quarks through this plot, however, four con-
stants must be known: threeak andb: too many, to consider
physically meaningful this way of exploiting eq (2,4). The
worth of fig 2 is merely heuristic. It must be noted, however,
that significant information aboutb can be obtained through
very simple considerations. In the linear regression (6,4), the
best fit coefficientb weights the increase of log(Qi) as a func-
tion of the incremental number of statesi. Consider in partic-
ular the highest massQ6 of the top quark, corresponding to
i = 6: the greaterb, the greater the calculated value ofQ6.
Sob is expected to be proportional toQ6. Moreover for the
same reasonb controls also the masses of lighter quarks for
i < 6; the link ofQ6 with the masses of all quarks, inherent the
plot of fig 2, suggests that the proportionality constant should
reasonably have form and physical dimensions somehow re-
lated to all quark masses. Put thereforeb = (

∑6
i=1 Qi)−1Q6,

Fig. 1: Plot of log(Qi/q) vs i; q is a best fit constant. The boxes
represent the theoretical quark mass estimates (6,2), the dot lines
are tentative connections between couples of quarks, the dashed line
represents a preliminary best fit trend of all masses.

Fig. 2: Plot of log(Qi/qk) vs i; three values ofqk calculated via the
boundary condition (6,3) enable a unique trend line of the quark
masses with a unique constantU0.

in which caseQ6 is normalized with respect to the total en-
ergy of all possible states allowed betweenΔεn1 andΔεn1+δn.
Hence the estimates (6,2) yield

Q6
∑6

i=1 Qi

= 0.967.

In effect, the value ofb calculated in this way is very close
to that determined in (6,6) via best fit regression.

Yet even three input data to calculate the quarks masses
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Fig. 3: Plot of log(Qie2/c2
i q
′) vs i.

Fig. 4: Plot of log(Q∗i /q
′) vs i with Q∗i = Qi/x2

i : herexi = constfor
the quarks{c} and{s} andxi = ci/e for the other quarks.

are still too many; certainly there is something else not yet
evidenced by the plot of fig 2. Moreover this result, while
showing that the idea of concerning the masses of isolated
quarks is basically correct, does not highlight anything about
the potential energiesUi of eqs (6,5), at the most it could ac-
count for U0 only. Since the idea of consideringQi/qk is
theoretically too naive, let us regard the variousQi all to-
gether. If so however, despite the previous warnings, the plot
of fig 1 is unsatisfactory; owing to the logarithmic ordinate
scale, the deviations of the variousQi from the best fit line
are markedly large. Seems however decipherable an unam-
biguous configuration of these points; this plot prospects the
chance of better results. An improved connection between

Fig. 5: Plot of log(Q∗i /q
′
k) vs i; xi are defined in fig 4,q′k, with k =

1,2, are calculated in order to fulfil the condition (6,3).

quark masses andi must have exclusively physical valence:
here the problem does not concern a random dispersion of ex-
perimental measurement errors, but the relationship between
masses of isolated quarks and bound quarks on the basis of
data extrapolated from the experience; the challenge is to ex-
tract the former from the latter trusting to their initial order of
magnitude only. The fig 3 reports a new plot where the ratios
(Qi/U0)/q are replaced by the respectiveQie2/q′c2

i , beingci

the electric charges of the various quarks;e is clearly intro-
duced for dimensional reasons. The chanceQie/qci is not
mentioned because found of scarce interest after preliminary
checks. From a numerical point of view, therefore, the plain
Qi are now corrected by fractional charge factors (−1/3)2 and
(2/3)2. In this way the logarithmic terms are handled exactly
as before, which allows the comparison with the former plot:
the figure 3 reports again a new best fit line. Now the linear
trend of log(Qie2/q′c2

i ) as a function ofi is significantly better
than that of fig 1; the{s} and{c} quarks only, both second gen-
eration quarks, deviate appreciably from the best fit line; their
calculated values consistent with the linear best fit trend are
respectively 51 MeV and 1.9 GeV, well outside the literature
intervals (6,1). Considering that the orders of magnitude cal-
culated are however globally correct, two chances are in prin-
ciple admissible: either the literature estimates of the masses
of these quarks must be replaced by the values calculated here
or some further physical reason, not yet taken into account,
enables to modify just these values and align them with the
others. The former option is in principle acceptable accord-
ing to the previous warnings on the literature quark masses,
but would conflict with the plot of fig 1: both masses of these
quarks were correctly aligned on a similar best fit line before
introducing the correction due to their electric charges. So the
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latter option seems more stimulating.
Replace thereforeQie2/q′c2

i of the quarks{c} and{s} only
with Qi/const. This idea works well definingconstappro-
priately, i.e. in order to fitQi of these two quarks to the
main best fit line of the other quarks. The fig 4 reports the
same data of fig 3, yet replacinge2/c2

i of the quarks{s} and
{c} only with a unique value not dependent onci ; now Q∗i /q

′

with Q∗i = Qi/x2
i includes both chances throughxi . The ideal

line joining these quark masses is reasonably parallel to the
four quark best fit line, i.e. the plot of these two quarks dif-
fers trivially from that of the other quarks by the value of the
constanta only. As before, in fact this means admitting two
values ofa: one for the main best fit line, another one for the
second generation quark best fit line; of course both values
must make the best fit lines compliant with the condition (6,3)
via a uniqueb. The result is shown in fig 5: despite replac-
ing ci/ewith a unique constant is certainly an approximation,
nevertheless all quark masses are reasonably represented by
a unique eq (2,4). In conclusion, the path from fig 1 to fig 5
was aimed to verify that effectively the logarithmic law (2,4)
is expressed via the ratioQi/Ui vs the incremental numberi
of states. The plot of the quark massesQi is described by the
following equation

log

(
Q∗i
Q0

)

= bi Q∗i =
Qi

x2
i

b = 0.9723

xi = ci/e Q0 = 0.556 MeV 1st,3rd gen.
xi = 0.3644 Q0 = 1.118 MeV 2nd generation

(6,6)

So b is very similar to that of fig 2. The double value
of U0 corresponds to the two regression constantsa allowing
to merge the best fit lines of fig 4 according to the condition
(6,3);Q∗i plays the role of an ”effective mass” of quarks. The
reliability of the results inferred from the plots is assessed
recalculating via eqs (6,6) the quark masses and comparing
them to the starting values (6,2); one finds 2.32, 5.44, 1.22×
102, 1.14× 103, 4.50× 103, 1.69× 105 MeV that agree rea-
sonably with the literature intervals (6,1). As mentioned at
the beginning of this section, this is the basic requirement
to be fulfilled. To assess this result also note however that
the values (6,2) do not have the rank of experimental data,
to be necessarily matched as exactly as possible; as stated
before, they have a mere indicative meaning of reference val-
ues. Hence the conclusion is that the eqs (6,6) yield a sensible
result, while having also the merit of verifying the positions
(6,5) strictly related to eqs (5,3). But the most interesting re-
mark concernsUi , which depends explicitly on the chargesci

in the first and third generation of quarks only; in the second
generation it does not, which brings to mind the respective
limit cases introduced in eqs (5,3) and further emphasized in
eqs (6,5). The generations of quarks are indeed described by
log(Qi/Ui) = bi with Ui defined by the following equations

U(ii)
i = 0.556(ci/e)2 MeV 1st,3rd generation,

U(i)
i = 0.148 MeV 2nd generation.

The superscripts are assigned to the generations of quarks
by comparison with eqs (5,4) and (6,5); soU0 = 0.148 MeV
andU′0 = 0.556 MeV.

Some further remarks on this result are also useful. The
first concerns the plots of figs 2 and 5: despite the former has
been obtained from log(Qi/qk) and the latter from log(Qi/Ui)
that involves the potential energy, both plots look like and fit
surprisingly well the logarithmic law (2,4) despite the quark
masses spread over 5 orders of magnitude. These plots are
not trivial duplicates: it is interesting the fact thatQi/Ui takes
both formsQi(e/ci)2 andQi/const, while are determinedU0

and U′0. On the one hand is remarkable the fact of having
identified the mass range as the reason that discriminates the
chances (i) and (ii) of eqs (6,5): indeed the mass range of the
second generation of quarks is well defined with respect to
that of the first and third generations. On the other hand, the
fact that both chances are merged in the same plot is itself
a further fingerprint of the quantum uncertainty, early intro-
duced because of the mere arbitrariness ofΔx. The third re-
mark confirms the fact thatΔx is not necessarily the distance
between two quarks, it can also be the delocalization range of
one quark only; the fact that the plot of fig 5 overlaps very
well that of fig 2 shows that even isolated quarks must be
regarded as self-interacting and that the interaction potential
energy between quarks, the well known eq (5,2) is a replica
of the self-interaction potential energy. This conclusion, also
supported by the fact that the plot of fig 5 is better than that
of fig 1 by introducingQi/c2

i and notQi/ci , explains why
eq (5,2) describing the interaction between different quarks
holds also for isolated quarks. The fourth remark concerns
the values of the constantsU0 andU′0 reported in eqs (6,6),
which describe the asymptotic freedom introduced in the pre-
vious section.

Note eventually that the considerations hitherto carried
out have assumed already known the quark masses; also, in
eqs (6,6) appear several constants to be known ”a priori” to
carry out the calculations. Moreover, the literature estimates
(6,1) appear now as values well configured in the frame of
eq (2,4) but not directly supported by experimental measure-
ments. In this respect, a sound proof of their meaning would
be to calculate them contextually to other well known and
well determined particle mass. The merit of this first part of
the section is to have checked the eqs (5,2) and (5,3) via the
logarithmic law of eq (2,4). Yet it is also possible to extend
further this idea considering together both lepton and quark
masses. Indeed a simple question arises at this point: does
the eq (6,4) hold also for the leptons? The fact that quarks
and leptons are both fundamental bricks of matter suggests
the idea that the eq (6,4) could hold for both classes of parti-
cles. Moreover note an interesting coincidence: the number
of leptons is 6, like that of the quarks. Is this a mere accident
or is there some correlation between each quark and each lep-
ton? The next part of the section will show that considering
together both kinds of particles allows obtaining all of their
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masses as a consequence of a unique principle.
The literature data on the massesLi of the 6 leptons are

summarized here:

e→ 0.51 MeV, μ→ 105.66 MeV,
τ→ 1776.84 MeV, νe→ < 2.2 eV,
νμ → < 170 KeV, ντ → < 15.5 MeV.

(6,7)

The difficulty of comparing calculated and experimental
masses concerns now the neutrinos, because of their very
scarce interaction with matter and because the neutrino fla-
vor eigenstates are not the same as the mass eigenstates due
to the neutrino oscillations [17]. However, being the masses
of electron, muon and tau well known, the strategy to carry
out the next calculations is: (i) to assume preliminarily the
eq (6,4) for the masses of the leptons; (ii) to fit the masses
of the neutrinos to the profile required by the logarithmic law
via an appropriate correction factor downscaling their upper
limit values (6,7); (iii) to look for a unique best fit calculation
including both leptons and quarks; (iv) to infer some conclu-
sion about the physical meaning of such a result.

Since the most important task of this section is to find a
correlation between the lepton and quark masses previously
determined and to confirm the validity of the previous results,
the approach proposed here does not concern directly eq (2,4)
rewritten in the form (6,4) log(Li) = a′+b′i involving the lep-
ton masses only; rather we start looking since the beginning
for a connection betweenLi andQi . Let us show first of all
that such a link actually exists, i.e. that are physically sensi-
ble logarithmic laws having the forms log

(
Q∗i

)
± log(Li) with

Q∗i defined in eqs (6,6). From log(Q∗i ) = aQ + bi + ci2 + ∙∙
and log(Li) = aL + b′i + c′i2 + ∙∙, with aQ = log(Q0) and
aL = log(L0) regression constants, one finds first log(Q∗i ) ±
log(Li) = aQ ± aL+ (b± b′)i+ (c±c′)i2+ ∙∙; the higher powers
of i have been skipped for brevity, whereas the dimensional
factorsQ0 and L0 are included in the constantsaQ and aL

as in eq (6,4). The fig 6 evidences that the idea of plotting
log(Q∗i )+ log(Li) and log(Q∗i )− log(Li) vs i is sensible: in fact
both curves are reasonably definable through appropriate best
fit coefficients. To obtain these plots, the neutrino masses,
quoted in literature through the respective upper limits only,
have been downscaled to the following values

νe = 1.802 eV, νμ = 3481.6 eV, ντ = 1.549× 107 eV. (6,8)

Moreover the variousLi have been sorted by increasing
mass like the respectiveQ∗i . This sorting criterion establishes
a one-to one correspondence between leptons and quarks that
reads

leptons νe νμ e ντ μ τ
l l l l l l

quarks u d s c b t
(6,9)

Before commenting this correspondence and confirming
the validity of eq (2,4) also for the leptons, let us repeat here

Fig. 6: Plot of log(Q∗i /Q0) ± log(Li/L0) vs i; Q0 andL0 are dimen-
sional best fit constants.Q0 is defined in eqs (6,6).

preliminarily the reasoning previously carried out for the
quarks. Calculate (

∑6
i=1 Li)−1L6 exploiting the values (6,7)

and (6,8); one finds

L6
∑6

i=1 Li

= 0.935




Q6
∑6

i=1 Qi




2

= 0.936

which shows that the lepton equation is related to that of the
quarks. To explain this result assume that the normalized val-
ues ofL6 andQ6 are correlated, i.e.L6/

∑
j L j = b′Q6/

∑
jQj ,

beingb′ a constant; imposing thenb′ = b, in order that also
L6/

∑
j L j be proportional tob of eq (6,5) for the same afore-

said reasons, one finds the given result. These considerations
put a constrain on the best fit coefficients ofQi andLi vs i.
The fig 6 suggests the reasonable chance of introducing a fur-
ther arbitrary constantbo that defines the more general linear
combinations log

(
Q∗i

)
± bo log(Li) = a′′Q ± boa′′L + b′′± i + ∙∙.

Hence, multiplying side by side these equations and collect-
ing the constants at right hand side, it must be also true that

(
log(Q∗i )

)2 − b2
o
(
log(Li)

)2
= a′′Q

2 − b2
oa′′L

2
+ ∙∙

skipping even the first power ofi. In effect the advantage
of having introduced the arbitrary coefficientbo is that it can
be defined in order to make even the first order term negli-
gible with respect to the constant term, whence the notation
reported here; so, neglecting all powers ofi, the right hand
side reduces to a constant. The last equation reads thus

(
log(Q∗i )

)2
= a+

(
log(Li)

)2b, a = a′′Q
2 − b2

oa′′L
2, b = b2

o.

Now implement again the input data listed in (6,7), (6,8)
and (6,2) to check if this last equation correlates sensibly the
sets of leptons and quark masses via two constantsa andb
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only; these constants are clearly best fit coefficients that de-
scribe the correspondence (6,9). If the zero order approxi-
mation just introduced is correct, then trivial regression cal-
culations should yield a sensible statistical correlation of all
masses. The best fit coefficients consistent with the zero order
approximation of the last equation are

a = 45.49178521, b = 1.039628847. (6,10)

So the best fit equation is

log
(
Qb f

i /x
2
i

)
= ±

√
a+ b

(
log(Li)

)2;

the notation stresses thatQ∗i of eqs (6,6) are replaced by val-
uesQb f

i of Qi determined by the regression, while the various
xi are of course still that defined in eq (6,6). This result is
readily checked calculating

Qb f
i = x2

i × 10±
√

a+b(log(Li ))2

(6,11)

via the respective lepton massesLi listed in (6,7), (6,8) and
comparing withQi reported in (6,1). Note that, because of
the exponentials, the decimal places of the regression coeffi-
cients are important to reproduce the results of the following
calculations. All of the values calculated with the positive
sign in eq (6,11)

Qb f
u = 2.50× 106 eV Qb f

d = 4.97× 106 eV
Qb f

s = 1.08× 108 eV Qb f
c = 1.22× 108 eV

Qb f
b = 4.45× 109 eV Qb f

t = 1.75× 1011 eV
(6,12)

fit surprisingly well the values (6,2) and, mostly important,
fall within the estimated intervals (6,1); it is worth noticing
that the agreement is much better than that obtained through
eqs (6,6). A further remark in this respect is the following.
When carrying out the regression calculations with random
input data, have been traced the percent deviations of the re-
sulting values of quark and lepton masses with respect to the
respective input values; the best self-consistency was found
with the true data; the conclusion is that the regression is not
mere calculation procedure, but rather a real physical rep-
resentation of the masses. This also supports the idea that
the average values (6,2) of the estimated intervals (6,1) could
have an actual physical meaning. Yet are also allowed the
following results calculated with the minus sign

qb f
u = 7.91× 10−8 eV qb f

d = 2.48× 10−9 eV
qb f

s = 1.64× 10−10 eV qb f
c = 1.45× 10−11 eV

qb f
b = 2.77× 10−12 eV qb f

t = 1.13× 10−12 eV
(6,13)

The former set of energies has a literature check through
the estimates (6,1), the latter set does not; yet there is no rea-
son to exclude the values (6,13), whose physical meaning will
appear shortly. In the latter case the subscripts have a formal

physical meaning only, merely reminiscent of the respective
quark masses (6,12); nevertheless, it is possible to show the
key role of these further energies for the physics of quarks
and leptons.

Any statistical regression concerns by definition whole
sets of values; here eq (6,11) correlates all masses of leptons
and that of all quarks reported in (6,2) and (6,7), (6,8) ac-
cording to their representation (6,9). The best fit coefficients
(6,10) are therefore the fingerprint ofall masses. Various sim-
ulations have been indeed carried out (i) altering deliberately
some selected input values of either set of masses, (ii) alter-
ing either whole set of masses and (iii) altering both whole
sets of masses by means of arbitrary multiplicative factors
to find out how the corresponding results are affected; the
results, compared with that of eq (6,11) obtained from true
values, confirm of course that anyway the new regression co-
efficients differ from (6,10). The obvious conclusion is that,
for some specific reason, just the quoted coefficients (6,10)
identify uniquely the fundamental masses of our universe:a
is related to their measure units, as previously explained,b
controls instead the link between quarks and lepton masses at
increasing values ofi. Actually one coefficient only is enough
to identify all masses; the other is merely associated to it, be-
ing concurrently calculated. Otherwise stated, one could as-
sume as a fundamental assumption one of these coefficients
only, the other one results consequently determined by the
unique set of quark and lepton masses consistent with the for-
mer one. Is clear the importance of understanding the spe-
cific physical meaning of the particular couple of coefficients
(6,10) able to account for the fundamental masses of our uni-
verse as a function ofonepredetermined input. Besides the
numerical calculation of these masses, however, it seems rea-
sonable to expect that some physical idea is still hidden in eq
(6,11).

To investigate this point consider the following equation

qo
i = x2

i × 10±
√

a+(log(Li ))2

(6,14)

inferred from (6,11) leaving unchangeda while replacing in-
steadb with the unity. This equation results formally from
(
log(qo

i )
)2

=
(
log(Li)

)2
+ a, which is interesting becauseqo

i
andLi can be interchanged simply changing the sign ofa but
not its absolute value. Of course the variousqo

i so defined are
no longer quark masses; being still related to the respective
true lepton massesLi , however, alsoqo

i are somehow related
to Qi .

It is very significant to regard eqs (6,14) thinkingQi corre-
lated toLi , which in turn are correlated toqo

i via one additive
constanta only.

So far the experimental masses of quarks and leptons have
been introduced as a matter of fact, thus finding that a unique
equation, (6,11), accounts for all of them simply postulating
a well defined and unique couple of regression constants. Eq
(6,14) adds to this standpoint a new perspective: the existence
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of a field whose quanta are related to theqo
i , as a function of

which are first calculatedLi via eq (6,14) and thenQi via eq
(6,11). The number of input data confirms that highlighted
before, i.e. the quoted value ofa only; the masses of both
quarks and leptons appear then as consequences of a unique
kind of particles, just theqo

i , since the only possible regres-
sion of Li with Qi consistent with the givena is that with
the concurrent valueb. This explains whyqo

i have been de-
fined keepinga and changingb only; even without appearing
explicitly appearing in eq (6,14), we know that the latter is
required to be just that consistent with the former.

Note now that also eq (6,14) allows two sets of of values,
qo+

i andqo−
i , defined by either possible sign of the exponen-

tial; it is easy to realize that, likewise as the values (6,12) and
(6,13), also now from a numerical point of viewqo+

i >> qo−
i .

This appears regarding allqo
i together: the resulting total en-

ergies corresponding to the positive and negative signs are∑6
i=1 qo+

i = 1.29× 1011 eV and
∑6

i=1 qo−
i = 8.189× 10−8 eV.

Define therefore the linear combinationqo+
i − qo−

i and sum
together alli-th terms; one obtains again a total energy

εH = 129 GeV.

Regardless of the numerical values, however, the physical
meaning of each termqo+

i − qo−
i is profoundly different from

that of the termsqo+
i andqo−

i regarded separately: the masses
mi , chargesci , spinssi , colorsCi and so on of these virtual
particles, expectedly the same forqo+

i andqo−
i whatever they

might be as a consequence of eq (6,14), subtract each other
and thus do no longer appear inqo+

i −qo−
i . This point is easily

highlighted and explained. Actually the eq (6,14) establishes
the numerical values of the new energiesqo+

i andqo−
i , not their

specific forms about which nothing has been hypothesized or
is known. The most natural way to regard these quantities,
in full line with the basic ideas of the present model, is to re-
late the variousqo

i to appropriate energy uncertainty ranges as
done in eq (2,4); this means assuming for instance

qo+
i = ε+i (mi , ci , si ,Ci , ..) − ε+i (0,0,0,0, ..)

qo−
i = ε−i (mi , ci , si ,Ci , ..) − ε−i (0,0,0,0, ..)

with
ε−i (mi , ci , si ,Ci , ..) ≈ ε

−
i (0,0,0,0, ..)

as well. As repeatedly stressed, both boundaries of any uncer-
tainty ranges are arbitrary. Here we are interested to consider
in particular ranges fulfilling the following condition about
the upper boundaries:

ε+i (mi , ci , si ,Ci , ..) = ε−i (mi , ci , si ,Ci , ..).

These positions agree withqo+
i >> qo−

i and also yield

qo+
i − qo−

i = ε−i (0,0,0,0, ..) − ε+i (0,0,0,0, ..)

that definesqo+
i − qo−

i as the energy uncertainty range of a
massless, spinless, chargeless, colorless,.. virtual particle,

having in particular boson character. So, when summing up
all these terms one finds a total boson energy having the value
just quoted. This peculiar energy that accounts for the lepton
and quark masses corresponds to acompositeparticle con-
sisting of the sum of 6 termsqo+

i − qo−
i rather than to a truly

elementary particle. This conclusion is supported by the fact
that the lifetimeΔtH of such a particle should reasonably re-
sult from that of its longest life constituent term withi = 1,
i.e. ΔtH = ~/(qo+

1 − qo−
1 ); one calculates in this way via eq

(6,14)

qo+
1 − qo−

1 = 2.50 MeV, ΔtH = 2.63× 10−22 s.

These last results are reasonable and fully agree with the out-
comes of recent experimental measurements.

7 The quantum statistical distributions

This section investigates further consequences of eq (2,2).
This part of the paper is thus significant because just this
equation leads to eq (2,4), which has been heavily involved
to infer the asymptotic freedom equation (5,7) of quarks and
the masses of quarks and leptons; confirming once more eq
(2,2) means therefore to correlate these results to another fun-
damental topic of quantum physics concerned in the present
section, i.e. the statistical distributions of quantum particles.
Eqs (1,1) link the energy rangeΔε including the possible en-
ergies of a quantum system to its numbern of allowed states:
the change of energy range sizeδΔε = (~/Δt)δn during a
given time rageΔt has been concerned in section 2 to cal-
culate the related changeδn = n2 − n1 of n, thus obtaining
eq (2,4). In that casen1 was regarded as a fixed quantity,
i.e. as a reference number of states as a function of which
to defineδn. Now we generalize these ideas: bothn1 andn2

are allowed to change in a quantum system characterized by
an initial number of statesno. If so ~/Δt can be identically
rewritten as~/Δt = Δεn1/n1 or ~/Δt = Δεn2/n2, because both
right hand sides are equivalent reference states in definingδn.
So, being both chances alike as well, it is reasonable to expect
that~/Δt ∝ Kt/(n1n2) with Kt = Kt(Δt) proportionality fac-
tor having physical dimensions of an energy. This position is
possible in principle becauseΔt is arbitrary; so, whatevern1

andn2 might be, certainly exists a time lengthΔt = Δt(n1,n2)
that fulfills the proposed correlation. From a formal point
of view, assume thatΔε/n of the system is described dur-
ing Δt by the linear combinationa1Δεn1/n1 + a2Δεn2/n2, be-
ing a1 anda2 appropriate time dependent coefficients; if so,
thenKt = a1n2Δεn1 +a2n1Δεn2 is defined just by the equation
δΔε/δn = ~/Δt = Kt/(n1n2). Since all quantities at right hand
side are arbitrary, for simplicity let us approach the problem
in the particular case whereKt is regarded as a constant in the
following. This chance is obviously also obtainable defining
appropriatelya1 or a2 or both duringΔt. The following dis-
cussion will show that even this particular case is far reaching
and deserves attention.

Sebastiano Tosto. Quantum Uncertainty and Fundamental Interactions 77



Volume 2 PROGRESS IN PHYSICS April, 2013

Write n2 = no ± j andn1 = ± j, beingno a reference fixed
number of states andj a variable integer accounting for the
change ofn1 andn2; of course bothno and j are arbitrary and
independent each other, which yields indeedn2 − n1 = no or
n2−n1 = no±2δ j depending on the signs ofj. In this way it is
possible to describe a steady system with itsno initial states or
an evolving system where is allowed a new numbern′ , no of
states; since now bothn1 andn2 are allowed to change,δn =

±2δ j. Simplifying the notations, the equation inferred from
δΔε/δn = Kt/(n1n2) of interest for the following discussion
reads

δΔε j

δ j
=

2K
j(no ± j)

, δ j = 1, 2, .. (7,1)

whereK must be intended as the constant replacingKt pre-
viously introduced; it is allowed to take both signs, which is
avoids writing explicitly±δ j. The notationΔε j emphasizes
the variable number of states appearing at right hand side. To
proceed on, consider the case where bothj andno are large
enough to regard approximately the former as a continuous
variable, so thatδ j << j; so the left hand side can be handled,
for mere computational purposes only, asdΔε j/d j; henceΔε j

calculated solving the differential equation, results to be

Δε j = (K′εo/no) log(no/ j ± 1)+ const, 2K = −K′εo, (7,2)

beingconstthe integration constant;K′ is an arbitrary dimen-
sionless constant andεo an arbitrary constant energy. Con-
sider now two boundary conditions of eq (7,2) concerning
the respective limit cases (i)no << j and (ii) no >> j. From
a mathematical point of view, note that eq (7,2) is obtained
by integration of eq (7,1) with respect toj regardless ofno;
hence one could think the cases (i) and (ii) as due to fixed in-
tegration limits ond j for two different values ofno consistent
with either inequality, of course without modifying the result
of the integration and the subsequent considerations.

In the case (i) holdsno/ j + 1 only; puttingconst= 0 and
expanding in series the logarithmic term, the right hand side
of eq (7,2) reads

Δε j =
w jK′εo

j
,

w j = 1−
no

2 j
+

n2
o

3 j2
− . . . , 0 < w j < 1.

(7,3)

Let j be defined between two arbitrary numbers of states
j1 and j2 > j1; moreover define nowK′ in order that the
sum of all termsK′w j introduced in the last equation over all
values ofj fulfills the following condition

j1 ≤ j ≤ j2, π j = K′w j , K′
j2∑

j1

w j =

j2∑

j1

π j = 1;

then the result is

π j =
jΔε j

j2∑

j= j1
jΔε j

, εo =

j2∑

j= j1

jΔε j ,
no

j1
<< 1. (7,4)

The inequality ensures that is fulfilled the initial condition
of the case (i) concerned here, whereas the first eq (7,4) shows
the probabilistic character ofπ j resulting from the previous
positions.

Consider now the limit case (ii). Despite the second eq
(7,3) requires in principle a very large number of series terms
to expressno/ j >> 1, even tending to infinity, there is no rea-
son to exclude that the second equation (7,4) definingjΔε j

still holds: beingK′ arbitrary, it can be still defined in order
to fulfill the inequalityK′Σ j(1−no/2 j+n2

o/3 j2+ ..) < 1 what-
ever the rationo/ j might be. On the one hand this inequality
can be accepted in principle even though the series consists
of an infinite number of terms; in fact the series does not
need to be explicitly computed, which makes plausible also
the positionπ j = K′w j . On the other hand, however, in this
way the resultjΔε j = K′εow j is not explicitly inferred: the
left hand side of the last inequality is indeed undefined. Oth-
erwise stated, without the straightforward hint coming from
the case (i) the eqs (7,4) could have been hypothesized only
and then still introduced in the case (ii) as plausible inputs
but without explanation. Actually, the assessment of the limit
case (i) and the subsequent considerations onw jK′ are the
points really significant of the present reasoning: while ex-
tending the physical meaning ofπ j and jΔε j also to the case
(ii), they ensure the compatibility of the limit cases (i) and
(ii). Once again, the arbitrariness of the numbers of states
plays a key role to carry out the reasoning.

Looking back to eq (7,2) and multiplying byj both sides,
let us write

jΔε j = K′εo( j/no) log(no/ j ± 1) + const j. (7,5)

According to eqs (7,4)jΔε j/K′εo = w j ; so, neglecting 1 with
respect tono/ j in agreement with the present limit case (ii)
and summing all termsw j , eq (7,5) yields

W = −
j2∑

j= j1

(
j

no

)

log

(
j

no

)

− σ
const
K′εo

, σ =

j2∑

j= j1

j. (7,6)

It is useful now to rewrite eq (7,6) as a function of a new
variableξ j

W = −q
j2∑

j= j1

ξ j log(ξ j), const= −
K′εo

no
log(q), ξ j =

j
noq

,

whereq is a proportionality factor not dependent onj; it has
been defined according to the second equation to eliminate
the second constant addend of eq (7,6). The next step is
to define j, so far simply introduced as an arbitrary integer
without any hypothesis on its actual values, in order thatW
has specific physical meaning with reference to a thermody-
namic system characterized by a numbers of freedom de-
grees. To this purpose assume thatj can take selected values
ns only, with n arbitrary integer. This is certainly possible:
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nothing hinders calculating the eq (7,2) as a function ofno/ns

instead of anyj progressively increasing; in this way also
the eq (7,6) accordingly calculated takes a specific physical
meaning consistent with that of the ratiosns/no. Clearly this
does not mean trivially renamingj: now ns readsΔxΔp/~s,
whereΔx = Δx1 ∙ ∙Δxs andΔp = Δp1 ∙ ∙Δps. Since there-
fore ΔxΔp symbolizes a volume in as-dimensional phase
space,ΔxΔp/~s represents the number of states allowed in
this volume. It is known that this ratio introduces the statis-
tical formulation of the entropy [16]; so puttingconst/K′εo

proportional to a new quantityS0, one finds

S = −q
n2∑

n=n1

ξn log(ξn), S0 = −q log(Ω),

const
K′εo

=
1
ζ

S0

q
, Ω = qζ/no.

(7,7)

The notation of the first sum emphasizes that nowj takes
values corresponding to the possiblens. The constant of eq
(7,6) has been therefore related in the last equation toS0. The
second equation can be regarded as a particular case of the
former when the thermodynamic probabilitiesξ j are all equal;
while in eq (7,2)j was an arbitrary number progressively in-
creasing froj1 to j2, in eq (7,7) its relationship tons does not
exclude the chance of coincident values for equal volumes of
phase space. It is well known that the results so far exposed
introduce the statistical definition of entropy a trivial propor-
tionality factor apart. Note that this result has been obtained
in a very different context [12], i.e. to show the quantum
character of the Fick diffusion laws as a consequence of eqs
(1,1) only; despite the different topic, the theoretical frame is
however exactly the same as that hitherto concerned.

Let us return now to the early eq (7,2). Define as usual
the energy range asΔε j = ε′′ − ε′, so that the eq (7,2) reads
no(const+ ε′ − ε′′)/K = log(no/ j ± 1). Exploit once again
the fact that in general the boundary values of the uncertainty
ranges are arbitrary; hence, whatever the sign and values of
K andconstmight be, the left hand side can be rewritten as
(ε j − εo)/K, being of course bothε j andεo still arbitrary. So
the number of statesj of the eq (7,2) reads

j =
no

exp((ε j − εo)/K) ∓ 1
, Δε = ε j−εo = no(const+ε′−ε′′).

The second equation reports again the starting point from
which is inferred the former equation to emphasize that, de-
spite the arbitrariness of the boundary values that define the
size of the energy uncertainty range, the specific problem de-
termines the values of physical interest. For instance in eq
(2,6) has been inferred the Planck law identifyingΔε j with
hΔν j ; clearly the number of states therein appearing is to be
identified here withj, whereasno can be taken equal to 1 be-
cause the photons are bosons. Here the upper sign requires
signs ofK and ε j − εo such that (ε j − εo)/K > 0 because
the number of statesj must be obviously positive; instead the

lower sign allows in principle bothεo < ε j and εo > ε j , as
in effect it is well known. To understand these conclusions,
let us exploit the reasonable idea that the numberj of states
allowed for a quantum system is related to the numberN of
particles of the system. Recall another result previously ob-
tained exploiting eqs (1,1) [7]: half-integer spin particles can
occupy one quantum state only, whereas one quantum state
can be occupied by an arbitrary number of integer spin parti-
cles. In the former case thereforej is directly related toN, i.e.
j = N andno = 1, in the latter case instead in generalN >> j
without a specific link betweenj andN. Yet the arbitrariness
of no makesj suitable to represent anyN also in this case as
N =

∑
j = no

∑
(exp(Δε j/K) − 1)−1. In the classical case

whereΔε j >> K, this equation is the well known partition
function.

8 Discussion

After the early papers concerning non-relativistic quantum
physics [5,6], the perspective of the eqs (1,1) was extended to
the special and general relativity; the gravitational interaction
was indeed inferred as a corollary just in the present theoret-
ical frame. The problem of examining more in general also
other possible forms of quantum interaction appeared next as
a natural extension of these results. This paper aimed indeed
to infer some basic concepts on the fundamental interactions
possible in nature. Even without ambition of completeness
and exhaustiveness, the chance of finding some outstanding
features unambiguously typical of the electromagnetic, weak
and strong interactions has the heuristic value of confirming
the fundamental character of eqs (1,1): seems indeed signif-
icant that the weird peculiarities of the quantum world are
directly related not only to the physical properties of the ele-
mentary particles but also to that of their fundamental inter-
actions, which are described in a unique conceptual frame in-
cluding also the gravity and the Maxwell equations [7]. Now
also the gravitational coupling constant, so far not explicitly
concerned, is inferred within the proposed conceptual frame.
The starting point is again the eq (2,7) rewritten as follows

v′x = −
ΔFxΔx2

n~
, v′x =

dΔx
dΔt

, ΔFx = Fx − Fox. (8,1)

By means of this equation the paper [7] has emphasized
the quantum nature of the gravity force, approximately found
equal toΔFx = Gmamb/Δx2 for two particles of massma and
mb; also, the time dependence ofpx or pox of Δpx = px − pox

was alternatively introduced to infer the equivalence princi-
ple of relativity as a corollary. In the present paper, instead,
both boundary values of the momentum component range
have been concurrently regarded as time dependent to infer
the expected potential energy (5,2) of the strong interactions:
the reasoning is in principle identical, although merely car-
ried out in a more general way; the form of eq (5,2) comes
putting in eq (2,7) both ˙px , 0 and ṗox , 0, which is the
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generalization of the relativistic reasoning carried out in [7].
In fact the eq (2,7), straightforward consequence of eqs (1,1)
and thus valid in general, has been reported also in the present
paper to better understand these results through its underlying
reasoning: what changes is the way it can be exploited to de-
scribe specific physical problems, as it has been also empha-
sized about the physical meaning ofv′x. Now we are interested
to implement a particular case of eq (2,7), i.e. the Coulomb
law quoted in eq (2,8). The procedure followed below does
not need any additional hypothesis with respect to these con-
siderations: it is enough to specify appropriatelyΔFx in eq
(8,1).

Consider first the eq (2,8): in the particular casee′ = e it
yields the Coulomb lawFx−Fox = ΔFx = ±e2/Δx2. Replace
this expression into eq (8,1), which reads then

v′x = ±e2/n~. (8,2)

The± sign is a trivial feature of the velocity component
v′x along the arbitraryx-axis, it is in fact of scarce interest for
the purposes of the present discussion. More interesting is
the fact that puttingv′x = (α/n)c, as done to infer eq (2,9),
one obtains the identityα/n = e2/n~c. This result supports
the idea thatv′x/c of eq (8,2) effectively represents a coupling
constant: it readsα/n, just the electromagnetic coupling con-
stant found in eq (1,4).

Consider now the gravity forceΔFx = Gmamb/Δx2 and
replace this expression into eq (8,1): sov′x = Gmamb/n~.
Comparing this result with the case of the electric force prop-
agating between charged masses, one finds

αG = v′x/c = Gmamb/n~c. (8,3)

Is obvious the reason why the gravitational coupling con-
stant, recognizable at the right hand side, has been formally
obtained through elementary considerations identical to that
of eq (8,2): the unique eq (8,1) turns into either result sim-
ply depending on whether one replacesΔFx with e2/Δx2 or
Gmamb/Δx2. Eqs (8,2) and (8,3) suggest that the gravitational
and electromagnetic field propagate at the same ratec: as em-
phasized when discussing the physical meaning ofvx andv′x
in section 2, the latter is the deformation rate of the space-
time rangeΔx that determinesΔFx, whereas is insteadvx the
real propagation rate of the respective messenger particles in
the interaction space-time rangeΔx; in both casesΔx/Δt = c.

These results are not end points, they have heuristic char-
acter. Let us start from eq (8,3) considering for simplicity
ma = mb = m, so thatm = mP

√
nαG; i.e. anym is pro-

portional to the Planck mass, the proportionality factor being
just
√

nαG. Owing to the small values ofαG, one expects that
large values ofn are required to fit even small masses. Al-
thoughαG depends in general on the specific values of the
masses, it is interesting to examine its minimum value cor-
responding to the particular case where bothma andmb rep-
resent the lightest elementary particle, the electron neutrino.

As concerns the ratiomνe/mP note thatmνe is a real particle,
mP is a mere definition; so for the former only holds the idea
that any particle confined in an arbitrary uncertainty rangeΔx
is characterized in principle by a momentum component gap
Δpx = pcon f

x − p∞x with respect to an ideal unconfined state,
see eq (2,1). For the reasoning is irrelevant how an electron
neutrino could be confined in practice, becauseΔx is arbi-
trary; it could even be the full diameter of the whole universe.
It is instead significant in principle that, as already shown in
section 4 about the weak interaction boson vectors, it is pos-
sible to write for the electron neutrino a delocalization energy
Δενe = Δp2

x/2mνe valid for any real object; this reasoning has
been in effect exploited in eq (4,13). These considerations
aim to conclude that, whateverΔpx might be, the equation

mνe = Δp2
x/2Δενe Δενe = mνec

2 (8,4)

suggestsmνe proportional to a reciprocal energy rangeΔενe
that in turn should be proportional toc2. If this reasoning
is physically sensible, thenmνe/mP ∝ c−2 suggests by con-
sequencemνe/mP ∝ α2; since the fine structure constant is
proportional itself toc−1, this position simply means includ-
ing e2/~ into the proportionality constant. Write therefore

mνe/mP = α2/N

having called 1/N the proportionality constant. The ratio at
left hand side is immediately calculated with the help of the
first value (6,8), it results equal to 1.5 × 10−28; the factor
α2 ≈ 5.3× 10−5 calculatesN equal to 3.5× 1023, a value sur-
prisingly similar to well knownN = 6.02×1023 for the ratio at
right hand side. The agreement between these values is really
unexpected: while the positionmνe/mP ∝ α2 could be accept-
able at least in principle, is really difficult to understand what
the Avogadro number has to do with the present problem. A
reasonable idea is to regardα2/N, perhaps a mere numerical
accident, as a whole factor between ordinary mass units and
Planck mass units. To support this statement replace in eq
(8,4)Δενe with mνec2, regarded as the average of the bound-
ary values ofΔενe; for the following order of magnitude esti-
mate this replacement is acceptable. So, recalling thatΔp2

x =

(n~/Δx)2 and that actually to calculateΔενe one should con-
siderΔp2

x + Δp2
y + Δp2

z, eq (8,4) readsΔx = n~c
√

3/2/mνec2;
putting n = 1, one findsΔx = 1.3 × 10−7m. Replace now
Δενe with (N/α2)Δενe: the factor previously found to con-
vertmνeinto Planck mass units should now convert the energy
ενe from the ordinary units into Plank energy units. Indeed
Δx = n~c

√
3/2α2/Nmνec2 calculated again withn = 1 re-

sults equal to 1.1× 10−35m, which is reasonably comparable
with the Planck lengthlP = 1.6×10−35m. Actually this result
could be expected, because it is based on regarding the energy
Δενe = Δp2

x/2mνe asΔενe = Δp2
xc

2/2Δενe, as already done in
section 4; accordingly, this means identifyingΔενe calculated
from the confinement uncertainty equation with the massmνe
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of the particle itself via the factorc2. This idea was found rea-
sonable to calculate the characteristic length of the weak in-
teraction, eq (4,14), and appears adequate also here because it
shows that the conversion factor ofmνe into mP also converts
ενe into EP.

The main reason for having proposed this result is to stim-
ulate (i) further considerations on the link betweenα andα(νe)

G
and (ii) a greater attention toN when searching fundamental
relationships between the constants of nature. Another nu-
merical accident, which is worth noticing here because per-
haps of possible interest, concerns the key coefficients (6,10);
indeedπa/b = 137.469, which differs from 137.036 by about
0.3% only. It has been remarked the obvious fact that even
small deviations of any lepton or quark mass from the input
values (6,2) and (6,7), (6,8) affect the regression coefficients
(6,10). So, at least from a numerical point of view, it is sen-
sible to suppose that a very fine-tuning of some among these
input values could match exactly the fine structure constant.
This optimization is certainly justified: indeed the electron,
muon and tau masses only are experimentally known with a
degree of accuracy such to exclude any minimum revision;
instead, for the reasons previously remarked, there are am-
ple margins of small adjustment for the neutrino and isolate
quark masses implemented in the present calculations. On the
one hand, such an effort is physically sensible only guessing a
good physical reason to expect that the regression coefficients
should be actually related toα; on the other hand is evident
the interest to provide such an explanation, wholly physical
and not merely numerical, of the coefficients that determine
the fundamental masses of our universe.

Some further points are still to be better clarified; they
pose several questions, some of which are still unanswered.
One of them concerns the correspondence (6,9) between lep-
tons and quarks: is it really mere consequence of the increas-
ing order of their masses, thus a mere definition to exploit
eq (2,4), or is it actually due to something else still hidden
in the correspondence (6,9) and not yet evidenced? But per-
haps the most amazing point is that also the leptons fulfill the
eq (2,4) just thanks to this correspondence. In the case of
quarks, the dependence of their masses oni ≡ δn was ten-
tatively explained through the self-interaction of bare quarks
with their own clouds of gluons and the self-interaction be-
tween these latter: with reference to eq (2,1), a different in-
teraction strength is related both to a dissimilarn/m and to
a dissimilarn/V, thus explaining not only the differentm of
the various quarks but also the equations (5,3) and (6,5). Yet
thereafter also the leptons have been handled through the eq
(2,4) simply guessing an analogy of behavior for both kinds
of fundamental particles of our universe. But, strictly speak-
ing from a physical point of view, why should the lepton
masses depend onδn? On the one side the extension of the
eq (2,4) certainly works well, because the well known masses
of electron, muon and tau particles fit the proposed scheme;
the fact of having included these masses among the results

calculated through eq (6,10) supports also the values of the
masses not experimentally available. On the other side, how-
ever, in lack of a self-interaction mechanism characteristic
of the quarks only, the question arises: is justified a simi-
lar mechanism for the vacuum polarization around the real
charges with formation of virtual particle-antiparticle pairs?
Does the interaction between these couples of virtual parti-
cles/antiparticles surrogate the self-interaction of the quark-
gluon plasma? Work is in advanced progress on these points.
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We investigate the strain energy density of the spacetime continuum in the Elasto-
dynamics of the Spacetime Continuum by applying continuum mechanical results to
strained spacetime. The strain energy density is a scalar. We find that it is separated
into two terms: the first one expresses the dilatation energydensity (the “mass” longitu-
dinal term) while the second one expresses the distortion energy density (the “massless”
transverse term). The quadratic structure of the energy relation of Special Relativity is
found to be present in the theory. In addition, we find that thekinetic energypc is car-
ried by the distortion part of the deformation, while the dilatation part carries only the
rest-mass energy. The strain energy density of the electromagnetic energy-momentum
stress tensor is calculated. The dilatation energy density(the rest-mass energy density
of the photon) is found to be 0 as expected. The transverse distortion energy density
is found to include a longitudinal electromagnetic energy flux term, from the Poynting
vector, that is massless as it is due to distortion, not dilatation, of the spacetime con-
tinuum. However, because this energy flux is along the direction of propagation (i.e.
longitudinal), it gives rise to the particle aspect of the electromagnetic field, the photon.

1 Introduction

The Elastodynamics of the Spacetime Continuum (STCED) is
based on the application of a continuum mechanical approach
to the analysis of the spacetime continuum [1–3]. The ap-
plied stresses from the energy-momentum stress tensor result
in strains in, and the deformation of, the spacetime continuum
(STC). In this paper, we explore the resulting strain energy per
unit volume, that is the strain energy density, resulting from
the Elastodynamics of the Spacetime Continuum. We then
calculate the strain energy density of the electromagneticfield
from the electromagnetic energy-momentum stress tensor.

2 Strain energy density of the spacetime continuum

The strain energy density of the spacetime continuum is a
scalar given by [4, see p. 51]

E =
1
2

Tαβεαβ (1)

whereεαβ is the strain tensor andTαβ is the energy-moment-
um stress tensor. Introducing the strain and stress deviators
from (12) and (15) respectively from Millette [2], this equa-
tion becomes

E =
1
2

(

tαβ + tgαβ
) (

eαβ + egαβ
)

. (2)

Multiplying and using relationseαα = 0 andtαα = 0 from the
definition of the strain and stress deviators, we obtain

E =
1
2

(

4te + tαβeαβ
)

. (3)

Using (11) from [2] to express the stresses in terms of the
strains, this expression becomes

E =
1
2
κ0ε

2 + µ0eαβeαβ (4)

where the Lamé elastic constant of the spacetime continuum
µ0 is the shear modulus (the resistance of the continuum to
distortions) andκ0 is the bulk modulus (the resistance of the
continuum todilatations). Alternatively, again using (11)
from [2] to express the strains in terms of the stresses, this
expression can be written as

E =
1

2κ0
t2 +

1
4µ0

tαβtαβ. (5)

3 Physical interpretation of the strain energy density

The strain energy density is separated into two terms: the first
one expresses the dilatation energy density (the “mass” lon-
gitudinal term) while the second one expresses the distortion
energy density (the “massless” transverse term):

E = E‖ + E⊥ (6)

where

E‖ =
1
2
κ0ε

2 ≡
1

2κ0
t2 (7)

and

E⊥ = µ0eαβeαβ ≡
1

4µ0
tαβtαβ. (8)

Using (10) from [2] into (7), we obtain

E‖ =
1

32κ0

[

ρc2
]2
. (9)
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The rest-mass energy density divided by the bulk modulusκ0,
and the transverse energy density divided by the shear modu-
lusµ0, have dimensions of energy density as expected.

Multiplying (5) by 32κ0 and using (9), we obtain

32κ0E = ρ2c4 + 8
κ0

µ0
tαβtαβ. (10)

Noting thattαβtαβ is quadratic in structure, we see that this
equation is similar to the energy relation of Special Relativity
[5, see p. 51] for energy density

Ê2 = ρ2c4 + p̂ 2c2 (11)

whereÊ is the total energy density and ˆp the momentum den-
sity.

The quadratic structure of the energy relation of Special
Relativity is thus found to be present in the Elastodynamics
of the Spacetime Continuum. Equations (10) and (11) also
imply that the kinetic energypc is carried by the distortion
part of the deformation, while the dilatation part carries only
the rest mass energy.

This observation is in agreement with photons which are
massless (E‖ = 0), as will be shown in the next section, but
still carry kinetic energy in the transverse electromagnetic
wave distortions (E⊥ = tαβtαβ/4µ0).

4 Electromagnetic strain energy density

The strain energy density of the electromagnetic energy-mo-
mentum stress tensor is calculated. Note that Rationalized
MKSA or SI (Système International) units are used in this
paper as noted previously in [3]. In addition, the electromag-
netic permittivity of free spaceǫem and the electromagnetic
permeability of free spaceµem are written with “em” sub-
scripts as the “0” subscripts are used in the spacetime con-
stants. This allows us to differentiate betweenµem andµ0.

Starting from the symmetric electromagnetic stress tensor
[6, see pp. 64–66]

Θµν =
1
µem

(

FµαFαν +
1
4
gµνFαβFαβ

)

≡ σµν, (12)

with gµν = ηµν of signature (+ - - -), and the field-strength
tensor components [6, see p. 43]

Fµν =





0 −Ex/c −Ey/c −Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0





(13)

and

Fµν =





0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0





, (14)

we obtain [6, see p. 66] [7, see p. 141],

σ00 = 1
2

(

ǫemE2 + 1
µem

B2
)

= 1
2ǫem

(

E2 + c2B2
)

σ0 j = σ j0 = 1
cµem

(E × B) j = ǫemc (E × B) j = 1
c S j

σ jk = −
(

ǫemE jEk + 1
µem

B jBk
)

+ 1
2δ

jk
(

ǫemE2 + 1
µem

B2
)

= −ǫem

[(

E jEk + c2B jBk
)

− 1
2δ

jk
(

E2 + c2B2
)]

(15)

whereS j is the Poynting vector, and where we use the nota-
tion σµν ≡ Θµν as a generalization of theσi j Maxwell stress
tensor notation. Hence the electromagnetic stress tensor is
given by [6, see p. 66]:

σµν =





1
2 ǫem (E2+c2B2) S x/c S y/c S z/c

S x/c −σxx −σxy −σxz

S y/c −σyx −σyy −σyz

S z/c −σzx −σzy −σzz





, (16)

whereσi j is the Maxwell stress tensor. Using the relation
σαβ = ηαµηβνσ

µν to lower the indices ofσµν, we obtain

σµν =





1
2 ǫem (E2+c2B2) −S x/c −S y/c −S z/c

−S x/c −σxx −σxy −σxz

−S y/c −σyx −σyy −σyz

−S z/c −σzx −σzy −σzz





. (17)

4.1 Calculation of the longitudinal (mass) term

The mass term is calculated from (7) and (17) of [2]:

E‖ =
1

2κ0
t2 =

1
32κ0

(σαα)
2. (18)

The termσαα is calculated from:

σαα = ηαβσ
αβ

= ηα0σ
α0 + ηα1σ

α1 + ηα2σ
α2 + ηα3σ

α3

= η00σ
00 + η11σ

11 + η22σ
22 + η33σ

33.

(19)

Substituting from (16) and the metricηµν of signature
(+ - - -), we obtain:

σαα =
1
2
ǫem

(

E2 + c2B2
)

+ σxx + σyy + σzz. (20)

Substituting from (15), this expands to:

σαα =
1
2 ǫem

(

E2 + c2B2
)

+ ǫem

(

Ex
2 + c2Bx

2
)

+

+ǫem

(

Ey2 + c2By2
)

+ ǫem

(

Ez
2 + c2Bz

2
)

−

− 3
2 ǫem

(

E2 + c2B2
)

(21)
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and further,

σαα =
1
2 ǫem

(

E2 + c2B2
)

+ ǫem

(

E2 + c2B2
)

−

− 3
2 ǫem

(

E2 + c2B2
)

.

(22)

Hence
σαα = 0 (23)

and, substituting into (18),

E‖ = 0 (24)

as expected [6, see pp. 64–66]. This derivation thus shows
that the rest-mass energy density of the photon is 0.

4.2 Calculation of the transverse (massless) term

The transverse term is calculated from (8), viz.

E⊥ =
1

4µ0
tαβtαβ. (25)

Given thatt = 1
4 σ
α
α = 0, thentαβ = σαβ and the terms

σαβσαβ are calculated from the components of the electro-
magnetic stress tensors of (16) and (17). Substituting for the
diagonal elements and making use of the symmetry of the
Poynting component terms and of the Maxwell stress tensor
terms from (16) and (17), this expands to:

σαβσαβ =
1
4 ǫ

2
em

(

E2 + c2B2
)2
+

+ǫ2em

[(

ExEx + c2BxBx

)

− 1
2

(

E2 + c2B2
)]2
+

+ǫ2em

[(

EyEy + c2ByBy
)

− 1
2

(

E2 + c2B2
)]2
+

+ǫ2em

[(

EzEz + c2BzBz

)

− 1
2

(

E2 + c2B2
)]2
−

−2
(

S x/c
)2
− 2

(

S y/c
)2
− 2

(

S z/c
)2
+

+2 (σxy)2 + 2 (σyz)2 + 2 (σzx)2.

(26)

The E-B terms expand to:

EBterms= ǫ2em

[

1
4

(

E2 + c2B2
)2
+

+
(

Ex
2 + c2Bx

2
)2
−

(

Ex
2 + c2Bx

2
) (

E2 + c2B2
)

+

+
(

Ey2 + c2By2
)2
−

(

Ey2 + c2By2
) (

E2 + c2B2
)

+

+
(

Ez
2 + c2Bz

2
)2
−

(

Ez
2 + c2Bz

2
) (

E2 + c2B2
)

+

+ 3
4

(

E2 + c2B2
)2

]

.

(27)

Simplifying,

EBterms= ǫ2em

[ (

E2 + c2B2
)2
−

(

Ex
2 + c2Bx

2+

+Ey2 + c2By2 + Ez
2 + c2Bz

2
) (

E2 + c2B2
)

+

+
(

Ex
2 + c2Bx

2
)2
+

(

Ey2 + c2By2
)2
+

+
(

Ez
2 + c2Bz

2
)2

]

(28)

which gives

EBterms= ǫ2em

[ (

E2 + c2B2
)2
−

(

E2 + c2B2
)2
+

+
(

Ex
2 + c2Bx

2
)2
+

(

Ey2 + c2By2
)2
+

+
(

Ez
2 + c2Bz

2
)2

]

(29)

and finally

EBterms= ǫ2em

[ (

Ex
4 + Ey4 + Ez

4
)

+

+c4
(

Bx
4 + By4 + Bz

4
)

+

+2c2
(

Ex
2Bx

2 + Ey2By2 + Ez
2Bz

2
) ]

.

(30)

Including the E-B terms in (26), substituting from (15), ex-
panding the Poynting vector and rearranging, we obtain

σαβσαβ = ǫ
2
em

[ (

Ex
4 + Ey4 + Ez

4
)

+ c4
(

Bx
4 + By4+

+Bz
4
)

+ 2c2
(

Ex
2Bx

2 + Ey2By2 + Ez
2Bz

2
) ]

−

−2ǫ2emc2
[ (

EyBz − EzBy
)2
+ (−ExBz + EzBx)2+

+
(

ExBy − EyBx

)2
]

+ 2ǫ2em

[ (

ExEy + c2BxBy
)2
+

+
(

EyEz + c2ByBz

)2
+

(

EzEx + c2BzBx

)2
]

.

(31)

Expanding the quadratic expressions,

σαβσαβ = ǫ
2
em

[ (

Ex
4 + Ey4 + Ez

4
)

+ c4
(

Bx
4 + By4+

+Bz
4
)

+ 2c2
(

Ex
2Bx

2 + Ey2By2 + Ez
2Bz

2
) ]

−

−2ǫ2emc2
[

Ex
2By2 + Ey2Bz

2 + Ez
2Bx

2 + Bx
2Ey2+

+By2Ez
2 + Bz

2Ex
2 − 2

(

ExEyBxBy + EyEzByBz+

+EzExBzBx

)]

+ 2ǫ2em

[(

Ex
2Ey2 + Ey2Ez

2+

(32)

84 Pierre A. Millette. Strain Energy Density in the Elastodynamics of the Spacetime Continuum and the Electromagnetic Field



April, 2013 PROGRESS IN PHYSICS Volume 2

+Ez
2Ex

2
)

+ 2c2
(

ExEyBxBy + EyEzByBz+

+EzExBzBx

)

+ c4
(

Bx
2By2 + By2Bz

2 + Bz
2Bx

2
) ]

Grouping the terms in powers ofc together,

1
ǫ2em
σαβσαβ =

[ (

Ex
4 + Ey

4 + Ez
4
)

+ 2
(

Ex
2Ey

2+

+Ey2Ez
2 + Ez

2Ex
2
)]

+ 2c2
[(

Ex
2Bx

2 + Ey2By2+

+Ez
2Bz

2
)

−
(

Ex
2By2 + Ey2Bz

2 + Ez
2Bx

2 + Bx
2Ey2+

+By2Ez
2 + Bz

2Ex
2
)

+ 4
(

ExEyBxBy + EyEzByBz+

+EzExBzBx

)]

+ c4
[ (

Bx
4 + By4 + Bz

4
)

+

+2
(

Bx
2By2 + By2Bz

2 + Bz
2Bx

2
) ]

.

(33)

Simplifying,

1
ǫ2em
σαβσαβ =

(

Ex
2 + Ey

2 + Ez
2
)2
+

+2c2
(

Ex
2 + Ey2 + Ez

2
) (

Bx
2 + By2 + Bz

2
)

−

−2c2
[

2
(

Ex
2By2 + Ey2Bz

2 + Ez
2Bx

2+

+Bx
2Ey2 + By2Ez

2 + Bz
2Ex

2
)

− 4
(

ExEyBxBy+

+EyEzByBz + EzExBzBx

)]

+ c4
(

Bx
2 + By2 + Bz

2
)2

(34)

which is further simplified to

1
ǫ2em
σαβσαβ =

(

E4 + 2c2E2B2 + c4B4
)

−

−4c2
[ (

EyBz − ByEz

)2
+ (EzBx − BzEx)2+

+
(

ExBy − BxEy
)2

]

.

(35)

Making use of the definition of the Poynting vector from
(15), we obtain

σαβσαβ = ǫ
2
em

(

E2 + c2B2
)2
−

−4ǫ2emc2
[

(E × B)x
2 + (E × B)y

2 + (E × B)z
2
]

(36)

and finally

σαβσαβ = ǫ
2
em

(

E2 + c2B2
)2
−

4
c2

(

S x
2 + S y

2 + S z
2
)

. (37)

Substituting in (25), the transverse term becomes

E⊥ =
1

4µ0

[

ǫ2em

(

E2 + c2B2
)2
−

4
c2

S 2

]

(38)

or

E⊥ =
1
µ0

[

Uem
2 −

1
c2

S 2

]

(39)

whereUem =
1
2 ǫem (E2 + c2B2) is the electromagnetic field

energy density.

4.3 Electromagnetic field strain energy density and the
photon

S is the electromagnetic energy flux along the direction of
propagation [6, see p. 62]. As noted by Feynman [8, see
pp. 27-1–2], local conservation of the electromagnetic field
energy can be written as

−
∂Uem

∂t
= ∇ · S, (40)

where the termE · j representing the work done on the matter
inside the volume is 0 in the absence of charges (due to the
absence of mass [3]). By analogy with the current density
four-vectorjν = (c̺, j), where̺ is the charge density, andj is
the current density vector, which obeys a similar conservation
relation, we define the Poynting four-vector

S ν = (cUem, S), (41)

whereUem is the electromagnetic field energy density, andS
is the Poynting vector. Furthermore, as per (40),S ν satisfies

∂νS
ν = 0. (42)

Using definition (41) in (39), that equation becomes

E⊥ =
1
µ0c2

S νS
ν. (43)

The indefiniteness of the location of the field energy referred
to by Feynman [8, see p. 27-6] is thus resolved: the elec-
tromagnetic field energy resides in the distortions (transverse
displacements) of the spacetime continuum.

Hence the invariant electromagnetic strain energy density
is given by

E =
1
µ0c2

S νS
ν (44)

where we have usedρ = 0 as per (23). This confirms thatS ν

as defined in (41) is a four-vector.
It is surprising that a longitudinal energy flow term is part

of the transverse strain energy density i.e.S 2/µ0c2 in (39).
We note that this term arises from the time-space components
of (16) and (17) and can be seen to correspond to the trans-
verse displacements along thetime-space planes which are
folded along the direction of propagation in 3-space as the
Poynting vector. The electromagnetic field energy density
termUem

2/µ0 and the electromagnetic field energy flux term
S 2/µ0c2 are thus combined into the transverse strain energy
density. The negative sign arises from the signature (+ - - -)
of the metric tensorηµν.
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This longitudinal electromagnetic energy flux is massless
as it is due to distortion, not dilatation, of the spacetime con-
tinuum. However, because this energy flux is along the direc-
tion of propagation (i.e. longitudinal), it gives rise to the parti-
cle aspect of the electromagnetic field, the photon. As shown
in [9, see pp. 174-5] [10, see p. 58], in the quantum theory of
electromagnetic radiation, an intensity operator derivedfrom
the Poynting vector has, as expectation value, photons in the
direction of propagation.

This implies that the (pc)2 term of the energy relation of
Special Relativity needs to be separated into transverse and
longitudinal massless terms as follows:

Ê2 = ρ2c4

︸︷︷︸

E‖

+ p̂2
‖c

2 + p̂2
⊥c2

︸         ︷︷         ︸

massless E⊥

(45)

wherep̂‖ is the massless longitudinal momentum density. E-
quation (39) shows that the electromagnetic field energy den-
sity termUem

2/µ0 is reduced by the electromagnetic field en-
ergy flux termS 2/µ0c2 in the transverse strain energy den-
sity, due to photons propagating in the longitudinal direction.
Thus the kinetic energy is carried by the distortion part of the
deformation, while the dilatation part carries only the rest-
mass energy, which in this case is 0.

As shown in (9), (10) and (11), the constant of propor-
tionality to transform energy density squared (Ê2) into strain
energy density (E) is 1/(32κ0):

E‖ =
1

32κ0

[

ρc2
]2

(46)

E =
1

32κ0
Ê2 (47)

E⊥ =
1

32κ0

[

p̂2
‖c

2 + p̂2
⊥c2

]

=
1

4µ0
tαβtαβ. (48)

Substituting (39) into (48), we obtain

E⊥ =
1

32κ0

[

p̂2
‖c

2 + p̂2
⊥c2

]

=
1
µ0

[

Uem
2 −

1
c2

S 2

]

(49)

and

p̂2
‖c

2 + p̂2
⊥c2 =

32κ0
µ0

[

Uem
2 −

1
c2

S 2

]

(50)

This suggests that

µ0 = 32κ0, (51)

to obtain the relation

p̂2
‖c

2 + p̂2
⊥c2 = Uem

2 −
1
c2

S 2. (52)

5 Discussion and conclusion

In this paper, we have analyzed the strain energy density of
the spacetime continuum inSTCED and evaluated it for the
electromagnetic stress tensor. We have found that the strain
energy density is separated into two terms: the first one ex-
presses the dilatation energy density (the “mass” longitudinal
term) while the second one expresses the distortion energy
density (the “massless” transverse term). We have found that
the quadratic structure of the energy relation of Special Rel-
ativity is present in the strain energy density of the Elasto-
dynamics of the Spacetime Continuum. We have also found
that the kinetic energypc is carried by the distortion part of
the deformation, while the dilatation part carries only therest
mass energy.

We have calculated the strain energy density of the elec-
tromagnetic energy-momentum stress tensor. We have found
that the dilatation longitudinal (mass) term of the strain en-
ergy density and hence the rest-mass energy density of the
photon is 0. We have found that the distortion transverse
(massless) term of the strain energy density is a combina-
tion of the electromagnetic field energy density termUem

2/µ0

and the electromagnetic field energy flux termS 2/µ0c2, cal-
culated from the Poynting vector. This longitudinal electro-
magnetic energy flux is massless as it is due to distortion,
not dilatation, of the spacetime continuum. However, be-
cause this energy flux is along the direction of propagation
(i.e. longitudinal), it gives rise to the particle aspect ofthe
electromagnetic field, the photon.
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Liquid Metallic Hydrogen III. Intercalation and Lattice Exclusion Versus
Gravitational Settling and Their Consequences Relative to Internal Structure,

Surface Activity, and Solar Winds in the Sun
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Invocation of a liquid metallic hydrogen model (Robitaille P.M. Liquid Metallic Hydro-
gen: A Building Block for the Liquid Sun.Progr. Phys., 2011, v. 3, 60–74; Robitaille
P.M. Liquid Metallic Hydrogen II: A Critical Assessment of Current and Primordial He-
lium Levels in Sun.Progr. Phys., 2013, v. 2, 35–47) brings with it a set of advantages
for understanding solar physics which will always remain unavailable to the gaseous
models. Liquids characteristically act as solvents and incorporate solutes within their
often fleeting structural matrix. They possess widely varying solubility products and
often reject the solute altogether. In that case, the solute becomes immiscible. “Lattice
exclusion” can be invoked for atoms which attempt to incorporate themselves into liquid
metallic hydrogen. In order to conserve the integrity of its conduction bands, it is antic-
ipated that a graphite-like metallic hydrogen lattice should not permit incorporation of
other elements into its in-plane hexagonal hydrogen framework. Based on the physics
observed in the intercalation compounds of graphite, non-hydrogen atoms within liq-
uid metallic hydrogen could reside between adjacent hexagonal proton planes. Conse-
quently, the forces associated with solubility products and associated lattice exclusion
envisioned in liquid metallic hydrogen for solutes would restrict gravitational settling.
The hexagonal metallic hydrogen layered lattice could provide a powerful driving force
for excluding heavier elements from the solar body. Herein lies a new exfoliative force
to drive both surface activity (flares, coronal mass ejections, prominences) and solar
winds with serious consequences relative to the p–p reaction and CNO cycle in the Sun.
At the same time, the idea that non-hydrogen atomic nuclei can exist between layers of
metallic hydrogen leads to a fascinating array of possibilities with respect to nucleosyn-
thesis. Powerful parallels can be drawn to the intercalation compounds of graphite and
their exfoliative forces. In this context, solar winds and activity provide evidence that
the lattice of the Sun is not only excluding, but expelling helium and higher elements
from the solar body. Finally, exfoliative forces could provide new mechanisms to help
understand the creation of planets, satellites, red giants, and even supernova.

Science is a living thing, not a dead dogma. It fol-
lows that no idea should be suppressed. That I to-
tally disagree with what you say, but will defend to
the death your right to say it, must be our underlying
principle. And it applies to ideas that look like non-
sense. We must not forget that some of the best ideas
seemed like nonsense at first. The truth will prevail
in the end. Nonsense will fall of its own weight, by
a sort of intellectual law of gravitation. If we bat it
about, we shall only keep an error in the air a little
longer. And a new truth will go into orbit.

Cecilia Payne-Gaposchkin[1, p. 233]

1 Introduction

As humanity will always be unable to conduct experiments
on the stars, insight into stellar physics can only be gained in
four steps: 1) the phase of the solar body must be properly
ascertained from observational evidence, 2) the substance of

which it is comprised must be identified, 3) stellar data must
be acquired, and 4) the properties of earthly materials, whose
physics might provide at least some level of understanding
relative to astrophysical questions, must be taken into ac-
count. While such an approach cannot be assured of definitive
conclusions, it can nonetheless provide a framework through
which the stars can be “understood”. Within this context, so-
lar and stellar observations become paramount, as they alone
can offer the necessary clues to build realistic models of the
stars. Astrophysical data forms the proper foundation for any
mathematical treatment. Devoid of observation, theory lacks
guidance and leads to stellar models stripped of physical re-
ality.

The postulate that the solar body exists in a liquid state [2,
3] has substantial implications with respect to internal struc-
ture and photospheric activity. To understand how the pres-
ence of layered graphite-like liquid metallic hydrogen [2, 3]

Joseph Christophe Robitaille and Pierre-Marie Robitaille. Intercalation and Lattice Exclusion in the Sun 87



Volume 2 PROGRESS IN PHYSICS April, 2013

might alter our insight relative to the Sun, one must turn to-
wards condensed matter physics and the intriguing phenom-
ena associated with both graphite and liquid metallic hydro-
gen. The consequences are far reaching, touching upon vir-
tually every aspect of astrophysics and provide an elegant
setting through which one can begin to understand the most
complex observations. Condensed matter offers many advan-
tages not available to gaseous solar models and numerous
facts now support a liquid state [4–20].∗ For instance, evi-
dence suggests that the solar body and the photosphere are
behaving as condensed matter [2, 3, 10, 14, 15, 20]. It is not
simply that the photosphere gives the appearance of a surface
as a result of opacity changes: it is acting as one [14]. The
same can be said of every structural element on the Sun, in-
cluding sunspots, faculae, and granules [15, 20]. The solar
body is also behaving as a liquid in sustaining the oscillations
which currently occupy helioseismologists. Seismology is a
science of the condensed state [10]. Thus, there can be little
doubt that the body of the Sun is condensed matter.

Though Gustav Kirchhoff had promoted the idea that the
photosphere was liquid, the prevailing models of the period
already focused on the gaseous state [21]. By 1865, con-
densed matter merely floated on the gaseous solar body [21].
Fragmented liquid or solid surfaces continued to survive as a
strange addition to gaseous stars [21], but the idea that they
were fully liquid never truly materialized in modern astron-
omy [21]. Finally, liquid stars were definitively abandoned in
the days of Sir James Jeans, their last major advocate [22].
Jeans had been unable to identify a proper structural material
for his models [22].

Then, in 1935, Wigner and Huntington proposed that
pressurized hydrogen could assume a low energy configu-
ration with graphite-like lattice order (see Fig. 1) [23]. In
doing so, they unknowingly provided Jeans with a candidate
for the solar substance [2, 3], though it is likely that he re-
mained unaware of their solution’s value. A layered graphite-
like structure was critical to proper solar modeling, as this
lattice configuration was closely linked with the study of ther-
mal emission on Earth [24,25]. Carbon-based materials, such
as graphite and soot, are the closest naturally occurring ex-
amples of blackbodies [24,25]. Consequently, they have con-
tinued to be vital in the production of such cavities in the lab-
oratory [24, 25]. Thus, a hydrogen based lattice which could
adopt a graphite-like structure provides an interesting frame-
work for assembling the Sun. Wigner and Huntington [23]
had endowed astrophysics with the perfect candidate for so-
lar material.

In this work, we wish to briefly highlight some of the as-
trophysical benefits which accompany a liquid metallic hy-
drogen [23] model of the Sun [2, 3]. Through the liquid mo-
del, not only are features on the solar surface given a proper

∗The senior author has provided a complete list of his relevant papers to
help facilitate the study of this new model.

structural foundation, but the entire set of solar observations
becomes easily understood [2, 3, 10, 14, 15, 20]. Unlike the
gaseous models and their reliance on magnetic fields to ex-
plain all aspects of solar activity, the liquid model can se-
cure answers without recourse to such phenomena. Magnetic
fields become an effect, not an underlying cause. At the same
time, there are ramifications associated with condensed solar
matter, especially with respect to gravitational settling, so-
lar activity, and nucleosynthesis. These should be addressed
both in the context of existing gaseous models and of the new
liquid models of the stars [2,3].

Fig. 1: Schematic representation of the layered hexagonal lattice
structure found within graphite and proposed for the liquid metallic
hydrogen lattice of the Sun.

2 Solar collapse versus incompressibility

The prevention of solar collapse has always been a central
problem with the gaseous models. Theoretical arguments
were based on the existence of both gas and radiation pres-
sures in order to balance the masses of the stars against the
forces of gravity. In the days of Arthur Stanley Eddington, ra-
diation pressure was believed to play an important role in pre-
venting solar collapse [26]. Over time, this process became
generally restricted to supermassive stars [27, p. 180–186].
Solar collapse was prevented by gas pressure [27, p. 132] and
radiation thought to contribute only a tiny fraction of the re-
quired forces [27, p. 212].

The idea that gas pressure could exist within a star was
awkward. On Earth for instance, the atmosphere can be up-
held by gas pressure as the planet has a surface through which
gas atoms can build positive pressure. Furthermore, the pres-
sure-volume relationship developed using the ideal gas law
implied enclosures and rigid surfaces. It was their presence
that gave meaning to gas pressure precisely since a rigid com-
partment defined the volume of interest. But within gaseous
stellar models, there are no surfaces. As such, no mechanism
exists for speaking of gas pressure.

In his classic text, Donald Clayton would describe the
problem as follows: “The microscopic source of pressure in
a perfect gas is particle bombardment.1 The reflection (or
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absorption) of these particles from a real (or imagined) sur-
face in the gas results in a transfer of momentum to that sur-
face. By Newton’s second law(F = dp/dt), that momen-
tum transfer exerts a force on the surface. The average force
per unit area is called the pressure. It is the same mechan-
ical quantity appearing in the statement that the quantity of
work performed by the infinitesimal expansion of a contained
gas is dW= PdV. In thermal equilibrium in stellar interi-
ors, the angular distribution of particle momenta is isotropic;
i.e., particles are moving with equal probabilities in all direc-
tions. When reflected from a surface, those moving normal to
the surface will transfer larger amounts of momentum than
those that glance off at grazing angles” [28, p. 79]. Clayton’s
footnote stated: “In a nonperfect gas strong forces between
the particles will represent an additional source or sink of
energy for expansions and will therefore contribute to pres-
sure” [28, p. 79].

There are two problems with Clayton’s argument. First,
surfaces do not exist within a gaseous Sun. Secondly, by
modeling the stars using the ideal gas law, astronomy was
requiring elastic collisions between atoms. Yet, if the colli-
sions are elastic, an atom which is moving towards the in-
terior of the Sun could transfer all of its momentum to an-
other atom, without reversing its own direction towards the
exterior. In fact, it would simply propel a stationary atom in
the interior further inside the Sun. This principle has been
well established in the game of billiards. The cue ball can
remain completely stationary upon transferring essentially all
of its energy to another ball. It is only when a ball hits the
banks of the billiard table, or makes use of spin and frictional
forces associated with the table surface itself, that it can re-
verse its momentum. This explains, in the simplest terms,
why gas pressure cannot exist within a gaseous Sun devoid
of real surfaces and subject to elastic collisions. No net force
can be generated with “imaginary surfaces” as the particles
have equal probabilities of moving in all directions and trans-
fer their momentum perfectly with no change of direction. A
real surface is required to generate a net directional force and
such structures cannot exist within a gaseous Sun. Therefore,
modern solar models are unable to prevent internal collapse
by resorting to gas pressure. In the absence of sufficient ra-
diative forces, gaseous stars collapse.

At the same time, the use of gas models introduced many
complications in astronomy. The first was summarized in Ed-
dington’s concern regarding internal heating, as stars became
increasingly dense: “I can hardly see how a star which has
once got into this compressed condition is ever going to get
out of it. . . Imagine a body continually losing heat but with in-
sufficient energy to grow cold” [29, p. 172]. Ralph H. Fowler
would solve Eddington’s dilemma. In 1926 [30], he adapted
Fermi-Dirac statistics to stellar problems (e.g. [27, p. 118–
128]). Stars could now grow cold. Donald Clayton high-
lighted the salient aspects of Fowler’s solution: “The physi-
cal basis for the resolution of this problem is the thermody-

namic peculiarity of a degenerate gas: the temperature no
longer corresponds to kinetic energy. The electrons in a zero-
temperature degenerate gas must still have large kinetic en-
ergy if the density is great” [28, p. 104]. In fact, Fowler’s
treatment was so theoretically powerful and the arguments so
elegant [30], that gaseous stellar models now dominate as-
tronomy. Nonetheless, no mechanism existed for generating
gas pressure within Sun-like stars behaving as ideal gases [27,
p. 130–132]. Fowler’s solution addressed much later stages of
stellar evolution [30].

Conversely, liquids are, by their nature, essentially in-
compressible. Thus, the problem of solar collapse does not
occur within the condensed matter context [2, 3], because
the layered graphite-like structure of liquid metallic hydro-
gen (see Fig. 1) would act to uphold the solar mass. Still,
it is anticipated that the hexagonal lattice of metallic hydro-
gen can become slightly compressed with increasing internal
solar pressures. The essentially incompressible nature of liq-
uids implies that, while resisting compression, they remain
subject to pressure effects to a small extent. Therefore, it
is reasonable to anticipate that liquid metallic hydrogen be-
comes more metallic farther in the solar interior assuming a
Type II lattice [2, 3]. The lower pressures of the photosphere
would be conducive to supporting a less dense solar lattice
(Type-I) with associated decreased metallicity [2, 3]. Con-
versely, since the Wilson effect [31] implies that sunspots are
depressed relative to the photospheric level, it is reasonable to
infer the presence of a Type-II lattice with its increased metal-
licity in these structures [2,3]. In addition, as facular material
is tightly associated with sunspots and may well have been
ejected from such regions, it was not unreasonable to extrap-
olate that their increased metallicity occurs as a result of as-
suming a Type-II lattice, despite the fact that they appear to
float on the photospheric surface [20].

3 Gravitational Settling Versus Restricted Diffusion

Within the context of the gaseous models [32, 33] atoms and
ions can diffuse freely within stellar bodies. At the same time,
since certain elements are heavier than others, it could be ex-
pected that they would slowly move towards the interior of a
star through the action of gravitational settling. In fact, such
a concept was advanced to explain the lack of helium lines
in certain B type stars [34]. Long before, Henry Russell had
minimized the idea that heavy elements were gravitationally
settling in the Sun: “It does not appear necessary, therefore,
to assume that downward diffusion depletes the sun’s atmo-
sphere of the heavier elements, though the possibility of such
an influence remains” [35, p. 59]. Of course, gravitational set-
tling could potentially invalidate all elemental abundances in
stellar atmospheres obtained from spectroscopic lines.

Kippenhahn and Weigert discussed both temperature and
pressure diffusion (gravitational settling) in their text on
“Stellar Structure and Evolution” [27, p. 60–61]. They con-
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cluded that temperature diffusion was astrophysically irrele-
vant in the Sun and that diffusion effects were, in general,
important only in “special cases” not including the Sun [27,
p. 60–61]. Today, the effect of gravitational settling has been
included in the calculation of standard solar models [32, 33].
In part, this was because it improved the agreement with the
p-mode oscillations from helioseismology: “One of the prin-
cipal improvements that has been made in recent years is to
include in the calculations the effects of element diffusion. In
the absence of an external field, diffusion smooths out vari-
ations. However, in the case of the Sun, the stronger pull
of gravity on helium and the heavier elements causes them
to slowly diffuse downward (towards the solar interior) rela-
tive to hydrogen . . . Models that include at least helium dif-
fusion agree with helioseismological determinations of the
depth of the convective zone, while neglecting diffusion en-
tirely leads to disagreement with the helioseismological data”
[33]. Gravitational settling was embraced; for gaseous mod-
els had no other means of accounting for helioseismological
observations.

Within a liquid metallic hydrogen model of the Sun, the
free diffusion of the elements becomes highly restricted, as
the layered lattice structure of the solar body acts to inhibit
the flow of atoms. Rapid diffusion of elements should occur
primarily in the layers between the hexagonal liquid metal-
lic hydrogen planes. Such motion may be facilitated by lat-
tice distortions in the hexagonal hydrogen planes in a manner
similar to that observed in graphite intercalation compounds.

4 Intercalation and Graphite

Graphite [36–38] can be made to interact with various rea-
gents such that non-carbon atoms occupy lattice points be-
tween the hexagonal carbon planes forming intercalation
compounds [39–43]. Layered intercalation compounds (see
Fig. 2) are created when intraplanar binding forces are much
stronger than interplanar forces: “The most important struc-
tural characteristic of graphite intercalation compounds is
the occurrence of separate graphite and intercalate layers
due to the very strong intraplanar binding and the weak in-
terplanar binding. Thus, the graphite layers retain the basic
properties of pristine graphite, and the intercalate layers be-
have similarly to the parent intercalate material” [39, p. 36].

In the graphite case, the hexagonal plane excludes non-
carbon atoms, the intercalant. In doing so, intercalant atoms
can profoundly alter the electrical, thermal, magnetic prop-
erties of graphite by acting as electron donors (i.e. Li, K),
or acceptors (i.e. FeCl3, HF, BF3), to the hexagonal plane
[39–43]. As a result, graphite intercalation compounds can
range from superconductors to insulators [39] with their con-
ductivity often exceeding that of classic metals [43, p. 190].
They consequently occupy an important place in solid state
physics. Graphite intercalation compounds can also undergo
phase transitions including “changes in interlayer ordering

Fig. 2: Schematic representation of an intercalation compound.
Non-carbon elements are located between layers of pristine graphite.

and changes in intralayer or in-plane ordering, magnetic
transitions, and superconductive transition. Structural phase
transitions have been induced by variation of the tempera-
ture, pressure, and in some cases by variation of the vapour
pressure of the intercalant” [39, p. 55–56]. The presence of
intercalated atoms can weaken the interlayer attractive forces
within graphite. Since the concentrations of the intercalate
can be varied, it is possible to build intercalation compounds
wherein many adjacent graphite layers are interrupted by the
occasional intercalate layer (see Fig. 3). The stage index,n,
characterizes the number of graphite layers between interca-
lation layers (e.g. [39] and [43, p. 88]). In the laboratory,n
usually ranges from 1 to 10 [39].

Fig. 3: Schematic representation of the stage index, n, in an interca-
late compound, where n= 6.

90 Joseph Christophe Robitaille and Pierre-Marie Robitaille. Intercalation and Lattice Exclusion in the Sun



April, 2013 PROGRESS IN PHYSICS Volume 2

Graphite intercalation compounds are known to relieve
internal strains by undergoing exfoliation [39, p. 9] whereby
a great expansion along the c-axis (see Fig. 1) occurs usually
due to elevated temperatures [44]. The temperature required
for exfoliation is linearly dependent on applied load against
the sample [44]. Higher breakaway temperatures, or temper-
atures of exfoliation, are required under increased pressure.
Expansions of the c-axis lattice dimensions of up to a fac-
tor of 300 have been reported [44]. These can be violent,
even explosive, events wherein layers of material can be torn
away from the underlying structure (see e.g. [39, p. 9] and [43,
p. 403–413]). They occur as a result of gases being expelled
from the graphite intercalated compound. The resultant prod-
ucts are characterized as “spongy, foamy, low-density, high-
surface-area carbon materials” [43, p. 403].

Martin and Broklehurst [44] performed detailed studies
of exfoliation which involved the effect of “restraining loads
on suppressing the onset of exfoliation” [43, p. 406]. Enoki et
al. describe the situation as follows: “According to [Martin
and Broklehurst’s] model, the intercalate undergoes a phase
change to the vapor phase, forming disk-shaped bubbles of
radius r and height Ic in the interlayer region between gra-
phite planes, with gas pockets accumulating in certain re-
gions where diffusion is facilitated by the presence of defects.
Exfoliation then occurs when the gas pressure exceeds the in-
ternal stress parallel to the c-axis” [43, p. 406]. Expressions
for the forces involved can be derived, assuming the ideal gas
law [44].

Lattice exclusion remains the central lesson of these ex-
periments: the graphite hexagonal planes continue to exclude
the intercalate and struggle to remain “pristine” even at the
cost of exfoliation. Such behavior has strong ramifications
when considering the graphite-like liquid metallic hydrogen
lattice believed to exist within the Sun [2,3].

5 Intercalation and Stellar Matter

Graphite’s tendency to remain pristine and exclude other el-
ements from its hexagonal plane, even through the process
of exfoliation, has important consequences for solar physics.
Thermal emission arguments have led Robitaille [2] to pos-
tulate that liquid metallic hydrogen in the Sun must adopt
a graphite-like layered arrangement. Should this be correct,
then liquid metallic hydrogen should be excluding other el-
ements from its hexagonal plane and constantly working to
drive them out of the solar body. Such lattice exclusion and
the possibility that stars might undergo processes like exfolia-
tion could play a crucial role in at least five separate aspects of
solar and stellar dynamics: 1) supplying the driving forces for
solar winds, 2) generating the settings for flares, coronal mass
ejections, and prominences, 3) accounting for the eleven year
solar cycle, 4) providing an alternative explanation for planet
and satellite formation, and 5) explaining the existence of red
giants and supernovae. Each of these areas could consume

many years of study as the liquid metallic hydrogen model
of the Sun is adopted. Suffice it, for now, to address these
briefly.

5.1 Solar Winds

In modern gaseous models, magnetic fields are thought to be
produced by the flow of isolated charged particles within the
solar body. In order to prevent collapse, the Sun remains in
perfect hydrostatic equilibrium wherein the forces of gravity
are balanced by gas and radiation pressure [27, p. 6–7]. How-
ever, the preservation of hydrostatic equilibrium severely lim-
its all proposals advanced for the existence of solar winds. An
object in equilibrium cannot easily be driving material away
from itself.

Conversely, in a condensed model of the Sun, a layered
liquid metallic hydrogen lattice exists (see Fig. 1) which is
dominated by hexagonal hydrogen planes [2, 3]. Such a lat-
tice restricts the translation of protons within each hexagonal
hydrogen layer while permitting electrons to flow in the asso-
ciated conduction bands [2]. The ability to create conduction
bands provides the interatomic binding forces needed to sta-
bilize the hydrogen framework. Proton-proton distances are
restricted in order to establish optimal quantum mechanical
conditions for these conduction bands. This alone stabilizes
the lattice. Since hydrogen atoms possess a single electron
and these are restricted to the conduction bands, no conven-
tional bonding can occur. All elements other than hydrogen
would be excluded from the hexagonal layer in order to main-
tain its structural integrity and electronic structure. Protons
could be thought of as constantly working to expel elements
from the hexagonal planes. This would severely limit the flow
of non-hydrogen elements. Each hydrogen layer would act
as a barrier to diffusion along the c-axis (see Fig. 1), while
providing a channel for rapid elemental diffusion in the re-
gion between two hexagonal layers. Herein can be found the
driving force for the solar winds and the variable elemental
compositions they present due to solar activity [3].

5.2 Flares, Coronal Mass Ejections, and Prominences

In the gaseous models of the Sun, solar flares and coronal
mass ejections are considered to be magnetic phenomena
[45–48] and are produced by invoking magnetic reconnec-
tion [49, 50]. As a gaseous Sun is devoid of a real surface,
no other means of generating the required energy is avail-
able: “The magnetic energy stored in the corona is the only
plausible source for the energy released during large solar
flares. During the last 20 years most theoretical work has
concentrated on models which store magnetic energy in the
corona in the form of electrical currents, and a major goal of
present day research is to understand how these currents are
created, and then dissipated during a flare” [50]. In such a
scenario, the corona provides the driving force for expelling
atoms from the Sun.
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Solar flares are well known to produce helium abundance
enhancements (HEA) and have been suggested as the cause of
significant3He HEAs [45]. In an impulsive flare, the3He/4He
ratio can be assumed to approach 1 [51] and thousand-fold
enhancements of the ratio have been reported [52] . Solar en-
ergetic particle events can result in 100–10,000 fold enhance-
ments of heavy element to oxygen ratios relative to the quiet
corona [52]. Solar atmospheric ratios of Mg/O, Si/O, Fe/O
and Ne/O can all be substantially elevated with flare activ-
ity [51]. In active coronal regions, significant (3–4 fold) ele-
mental enhancements of elements with a first ionization po-
tential (FIP) less than 10 eV can be observed with respect to
the quiet photosphere [53,54]. Within bright active regions, a
further twofold elemental enhancement can be detected [55].
The absolute abundance of potassium and calcium are greater
in flare plasma than in the photosphere [54].

Magnetic reconnection [49, 50], the physical mechanism
invoked to drive solar flares in the gaseous models, cannot
easily account for the variable elemental abundances associ-
ated with flares and coronal mass ejections [56, 57]. As a
parallel, models of quiescent coronal loops result in a 10 fold
excess of helium to hydrogen when a 10% helium abundance
is assumed for the chromosphere [58]. Such tremendous ex-
cesses of helium call for much lower chromospheric helium
abundances, but these are incompatible with levels required
to account for helium in the solar winds [58]. In addition,
in order to explain O and Ne abundances in the fast solar
winds, a coronal He abundance of 20–40% is required [59].
The model assumes gravitational settling in the corona [59],
which is highly unlikely to take place. As such, the gaseous
models are struggling to coherently resolve elemental abun-
dances in the solar winds as a result of the interaction between
coronal loops, the chromosphere, and the corona. The situa-
tion relative to understanding elemental abundances in flares
and coronal mass ejections is equally tenuous.

Long ago, Friedrich Z̈ollner recognized that solar flares
required regions of increased pressure in the solar interior
[60]. He placed a liquid layer within his gaseous Sun: “we
must therefore conclude that the layer of division consists
of an incandescent liquid” [60]. The need to generate pres-
sure was justified, but could not easily survive within a fully
gaseous solar model.

In the liquid metallic hydrogen model of the Sun, solar
flares, coronal mass ejections, and prominences can be ex-
plained by the process of intercalation and exfoliation, as de-
scribed above by Martin and Broklehurst [44]. The pressure
anticipated by Z̈ollner [60] is produced when the intercalate
atoms increasingly populate the region between two adjacent
hydrogen layers. A rapid increase in temperature in this re-
gion, presumably due to localized nuclear reactions (see sec-
tion 5), generates a gaseous phase whose elevated pressures
manifest as solar activity. Therefore, solar flares, coronal
mass ejections, and prominences share a common mecha-
nism of formation. Their subtle differences result only from

the depth of formation. Magnetic fields are not required to
produce these phenomena. They are merely altered by their
presence.

5.3 The Eleven Year Solar Cycle

The existence of the eleven year solar cycle remains incom-
pletely understood [61–66]. Nonetheless, increased solar ac-
tivity is associated with changes in the solar dynamo which
characterize the 11 year cycle [61,64]. Cycle periods as great
as 2,400 years have been postulated [66]. Solar inertial mo-
tion (SIM), wherein the location of the center of the Sun’s
mass in the solar system drifts due to interaction with the gi-
ant planets [61–66], has been postulated as a possible cause
of increased activity. Still, as Cionco and Compgnucci high-
light: “at present there is no clear physical mechanism relat-
ing these phenomena” [64]. How can planetary rotations and
the associatedSIM trigger solar activity? Perhaps the Sun is
already predisposed to increased surface turbulence and re-
quires only a simple disturbance to initiate activity. In this
regard, insight can be gained from the condensed model of
the Sun [2,3].

In the context of a liquid metallic hydrogen model [2, 3],
non-hydrogen elements reside in the layers between hydro-
gen hexagonal planes forming an intercalate arrangement (see
Fig. 2). With solar nuclear activity (see section 5), these in-
terplanar regions become increasingly populated and possible
intercalate lattice points occupied. Eventually, localized sat-
uration of a given intercalate layer takes place. The maximal
concentration of intercalating atoms has been reached. When
this occurs, only slight disturbances, such as found through
solar inertial motion, could trigger solar activity and cause
the intercalate atoms to be ejected from interior layers. Solar
activity then becomes linked to the need to eject saturating
levels of non-hydrogen elements from the solar body. As the
rate of nuclear activity must remain rather constant over the
time frames involved, the Sun is constantly building elements
in its interior (see section 5), degassing, and repeating the en-
tire process. The driving force for degassing becomes lattice
exclusion, but the trigger to release the instability may, or may
not, remain linked to solar inertial motion.

5.4 Planet, Red Giant, and Supernova Formation

The formation of planets around a star presents unique chal-
lenges to astronomy. Many ideas have surfaced and are taught
in introductory astronomy courses [67, p. 285–290]. With
time, Laplace’s Nebular Hypothesis [68, 69], initially pro-
posed by Emanuel Swedenborg [70, p. 240–272], evolved in-
to the Solar Nebular Disk Model (SNDM) [71]. The latter
continues to be the most widely accepted theory for the for-
mation of the solar system [71]. Yet, the problem of planet
and satellite formation is far from resolved (e.g. [72–74]). In
part, this is because the planets cannot be currently conceived
as ejected from a young active gaseous solar mass. The prob-
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lem is removed when the Sun becomes condensed matter and
exfoliative forces can be harnessed to promote planet forma-
tion, especially for the solid planets of the inner solar system.
The central requirement appears to be that interlayer elemen-
tal abundance must be permitted to increase dramatically in
one region of the solar interior, followed by ejection from the
hydrogen lattice. Over time, the Sun could thus transfer some
of its angular momentum to the planets. A similar approach
could be utilized to help explain satellite formation around
the giant planets, as they are also rich in hydrogen [75–77].

On a tangential note, exfoliation might well account for
the very low density and great dimensions of the red giants,
as the experiments of Martin and Broklehurst suggest [44].
A red giant would remain condensed matter in that it was
formed through a process of exfoliation from a star which
had permitted a nearly uniform stage index to develop in its
interior. A trigger finally turned the intercalate rapidly into
the gaseous phase resulting in a red giant. In the final ex-
panded star the dimensions would be enormous and the den-
sity greatly reduced, despite the preservation of condensed
matter for the metallic hydrogen framework. Interlayer gas
pressure between the layers of the expanded star would help
to maintain its structural integrity. Supernova could be envi-
sioned as produced in a similar manner, but with non-uniform
staging in the interior. For instance, a band or core of interca-
late material in the precursor star rapidly enters the gas phase
and explodes its liquid metallic hydrogen envelope, while
compressing its hydrogen core. In the end, the advantages
of adopting a liquid metallic hydrogen model for the Sun are
numerous and its consequences extend much beyond the solar
system.

6 Evolution and Nuclear Reactions in Gaseous Stars

With the publication of theOrigin of Species[78] Charles
Darwin would send shock waves not only throughout the bi-
ological sciences, but also in areas seemingly as far removed
as astronomy. The great American father of solar astronomy,
George Ellery Hale, commented as follows in the first line
of his text devoted to stellar evolution and experimental as-
tronomy: “It is not too much to say that the attitude of sci-
entific investigators towards research has undergone a rad-
ical change since the publication of the Origin of Species”
[79]. Hale expanded on this concept throughout his first chap-
ter, as he elegantly intertwined biological evolution and as-
tronomy. Hale also highlighted the conflict which Herbert
Spencer [21], the prominent evolutionist, had with the as-
tronomers: “convinced that the principle of evolution must
operate universally, and that the stars must have their origin
in the still unformed masses of the nebulae, [Spencer] ven-
tured to question the conclusion that the resolution of nebulae
into stars was only a question of resolving power. He had not
long to wait . . .” [79, p. 47].

Given Hale’s fame as an observer for first reporting the

presence of magnetic fields on the Sun [80], his leadership
in constructing four record setting telescopes (at Yerkes (1),
Mount Wilson (2), and Palomar (1) [81]), and his role in es-
tablishing theAstrophysical Journal[82], it is not surpris-
ing thatThe Study of Stellar Evolution[79] has profoundly
affected the course of modern astrophysics. George Ellery
Hale’s interest in stellar evolution [28, 83–87] was certain to
ascend to a preeminent position in modern astronomy. At the
same time, since prolonged biological evolution was also as-
sociated with increased functional abilities, astronomers
quickly adopted the same concepts relative to the stellar evo-
lution. As stars aged their core temperatures increased and
gradually acquired the ability to make heavier elements. As-
tronomers began to see the stars not only as progressing
through a life cycle, but also, as endowed with different syn-
thetic abilities. Older stars possessed hotter cores, and hence,
could sustain nuclear processes thought to require higher tem-
peratures – the synthesis of heavier and heavier elements. On
the surface at least, the theory was elegant with the excep-
tion of one very serious consideration: the gaseous Sun was
deprived of the ability to directly synthesize the elements.

Early on, the fathers of stellar nucleosynthesis, such as
Gamow [88, 89], Bethe [90–92], von Weizsäcker [93], and
Hoyle [94, 95] would advance the idea that helium could be
built from hydrogen within the stars. From the onset, nucle-
osynthesis was linked to stellar evolution [88, 89]. Gamow
believed that “different rates of energy liberation must be due
to different physical conditions inside the stars and chiefly to
differences in their central temperature” [83, p. 116]. The p–p
reaction [90], which assembled helium directly from proton
combinations while relying on positron and neutrino emis-
sion, was believed to be active only in low weight main se-
quence stars [83, p. 118]. However, for stars larger than the
Sun much of the synthesis of4He came from the carbon-
nitrogen-oxygen (CNO) cycle which had been independently
proposed by Bethe and von Weizsäcker [91–93]. Interest-
ingly, while the cycle required three elements of intermediate
weight, Hans Bethe insisted that: “no element heavier than
4He can be built up in ordinary stars” [92]. He argued, “The
heavier elements found in stars must therefore have existed
already when the star was formed” [92]. With those words,
most of the stars were deprived of their ability to make any
element beyond helium, despite the fact that mankind would
eventually synthesize much heavier elements.

Bethe, of course, based his ideas on the probability of nu-
clear reactions in the gas phase [92, p. 435]. This was ap-
propriate for gaseous solar models. Reaction energies were
derived using accelerators and nucleosynthesis in the stars be-
came strictly dependent on our understanding of reactions in
gases. The idea that many particles could be combined simul-
taneously within a condensed lattice would have greatly low-
ered the energy required to synthesize the heavier elements.
Such a concept was never applied to the Sun. Soon a detailed
work by Burbidge et. al [96] organized the entire field into an
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elaborate theory of nucleosynthesis which covered all of the
elements. This work would continue to influence nucleosyn-
thesis in the stars until the present day [97]. Nonetheless, the
Sun itself had been crippled. All of the elements in the solar
system, other than helium, had been produced by early gen-
eration stars which no longer existed.

7 Nucleosynthesis and Condensed Matter

Perhaps the greatest advantage of the liquid metallic hydro-
gen model of the Sun rests in the fact that atomic positions be-
come restricted to lattice points and subject to the forces asso-
ciated both with solar pressures and lattice vibrations. Hydro-
gen is confined to its hexagonal planes and all other elements
to the intercalate positions between the hydrogen planes. The
synthesis of helium would be driven by the need to relieve the
strains of stellar pressures on the underlying lattice. Two pro-
tons combine to form a deuteron, with positron and neutrino
emission as in the p–p reaction [98]. Upon formation, the
deuteron could immediately combine with another in-plane
proton resulting in the formation of3He, which would be
ejected from the lattice plane into the intercalate layer. As
p–p reactions continue, the population of3He would expand,
and soon continue to react producing4He, as expected from
branch 1 of the p–p chain [98]. With time, the intercalate
region would become the birthplace of all the elements. Pres-
sure and lattice vibrations alone can be viewed as controlling
the reactions with protons readily available from the hexag-
onal plane. All stars gain the ability to synthesize every ele-
ment [19]. Multiple elements could react simultaneously in
the intercalate layer because of lattice vibrations. This greatly
lowers the energy requirements on a given species for nu-
clear reaction. Eventually, as elemental concentrations build,
the stresses against the hexagonal hydrogen planes would in-
crease. These could then break and the intercalate region ex-
pand beyond the confines of strict lattice points. Intercalation
now abandoned in this region, thick layers of non-hydrogen
elements could arise. These would continue to act as nuclear
furnaces. During periods of increased solar activity, localized
changes in temperature could vaporize these areas and release
newly synthesized elements to the stellar atmosphere beyond
the solar surface. During planet formation, such regions could
simply be expelled, with (or perhaps without) vaporization,
from the interior of the Sun.

8 Conclusions

Much speculation has been offered in this work and the end
result was deliberate. In order to consider the condensed
models of the Sun, scientists must ponder upon the ability
to explain the highest amount of observable phenomena in a
manner consistent with known physics. The great solar physi-
cist John Bahcall once commented: “Science progresses as a
result of the clash between theory and experiment, between
speculation and measurement” [99]. In earlier work, con-

siderable focus was placed on establishing what was known
about the Sun and the evidence it displayed with respect to
its phase and composition [2–20]. Ample proof supports the
idea that the Sun exists in the condensed state and Occam’s
razor would slice in its favor.

Given the elevated levels of hydrogen in the universe
[100], a liquid metallic hydrogen framework appears not only
reasonable but, in light of its thermal emission, necessary
[2,3]. The unique link between graphite and the layered form
of metallic hydrogen, as first proposed by Wigner and Hunt-
ington [23], presents enormous potential to refine our concept
of the stars. In this regard, graphite intercalation compounds
bring a wealth of behavioral and structural information cru-
cial to understanding the heavens [39–44]. The layered nature
of liquid metallic hydrogen [23] would not only support the
Sun from collapse, but would also severely limit any gravita-
tional settling. Furthermore, exfoliation in graphite interca-
late compounds [44] has profound consequences, regarding
stellar structure and behavior. Solar winds and solar activity
(flares, coronal mass ejections, prominences) become inher-
ently linked to preserving the hydrogen nature of the Sun [3].
The conversion of intercalated atoms from the liquid to the
gas phase, as proposed by Martin and Broklehurst [44], has
profound implications towards driving solar activity which
will forever remain unavailable to gaseous models. The hy-
pothesis that the solar cycle originates from the degassing
of non-hydrogen elements and their expulsion from the in-
terior is unique to the liquid metallic hydrogen model. For
the first time, a reasonable thesis is being advanced to ex-
plain both solar activity and cycles. A mechanism thereby
becomes available to those who believe that solar inertial mo-
tion might trigger solar activity [61–66]. In addition, the idea
that a layered metallic hydrogen lattice will choose to exclude
non-hydrogen elements and sequester them within the Sun
could add much needed insight relative to the formation of
the planets. Exfoliation of a metallic hydrogen lattice of uni-
form stage might well account for both the size and density
of the red giants. Most importantly, this model enables el-
emental synthesis in the stars. Hexagonal hydrogen planes
harbor the p–p reactions, while the interlayers between pro-
ton planes become furnaces of more advanced nuclear syn-
thesis.

There is a great deal to be gained by considering a liquid
metallic hydrogen model of the Sun. Yet, in this approach,
the solar lattice appears to possess long range order on par
with solids, despite its liquid state [18]. Given the dimen-
sions involved on the solar surface, even solids might appear
to act as liquids. But nonetheless, the model claims the liquid
state as more in keeping with observation. In this respect, the
authors emphasize that long range lattice order seems to be
preserved in the liquid metallic hydrogen framework of the
photosphere and solar body. The Sun is fully behaving as
condensed matter. As such, this thesis has been built on ob-
servation, in keeping with the philosophy of Cecilia Payne:
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“The future of a subject is the product of its past, and the
hopes of astrophysics should be implicit in what the science
has already achieved. Astrophysics is a young science, how-
ever, and is still, to some extent, in a position of choosing its
route; it is very much to be desired that present effort should
be so directed that the chosen path may lead in a permanently
productive direction. The direction in which progress lies will
depend on the material available, on the development of the-
ory, and on the trend of thought . . . The future progress of the-
ory is a harder subject for prediction, than the future progress
of observation. But one thing is certain: observation must
make the way for theory, and only if it does can the science
have its greatest productivity . . . There is hope that the high
promise of astrophysics may be brought to fruition.”

Cecilia Payne-Gaposchkin [1, p. 199–201]
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To give the characteristics of the evolution of the collectivity in even-even nuclei, we
studied the behavior of the energy ratios R(4/2) and R(6/4). All chains of lanthanides
begins as vibrational with R(4/2) near 2.0 and move towards rotational (R(4/2) −→
3.33) as neutron number increases. A rabid jump in R(4/2) near N=90 was seen. The
plot of R(4/2) against Z shows not only the existence of a shape transitions but also the
change in curvature in the data for N=88 and 90, concave to convex. For intermedi-
ate structure the slopes in E-GOS (Eγ over spin) plots range between the vibrator and
rotor extremes. The abnormal behavior of the two-neutron separation energies of our
lanthanide nuclei as a function of neutron number around neutron number 90 is cal-
culated. Nonlinear behavior is observed which indicate that shape phase transition is
occurred in this region. The calculated reduced B(E2) transition probabilities of the low
states of the ground state band in the nuclei 150Nd/152Sm/154Gd/156Dy are analyzed and
compared to the prediction of vibrational U(5) and rotational SU(3) limits of interacting
boson model calculations.

1 Introduction

The interacting boson model (IBM) [1, 2] and the geomet-
ric collective model (GCM) [3–5] represent two major phe-
nomenological approaches that successfully describe nuclear
collectivity. While the IBM model is purely algebraic, based
on a bosonized form of the many-body problem with even
numbers of fermions, the GCM model follows from a geo-
metric description of nuclei using the Bohr-Mottelson (BM)
Hamiltonian [6].

Quantum phase transitions are of great interest in many
areas of physics, and their manifestations vary significantly
in different systems. For nuclear systems, the IBM reveals
rich features of their shape phase transitions [7–16]. Three
dynamical symmetries in the IBM were shown to correspond
to three typical shape phase of nuclei, known as the spher-
ical U(5) symmetry, axially deformed SU(3) symmetry and
γ-soft deformed O(6) symmetry shapes. It is also known that
phase transitions coincide with transitions between dynami-
cal symmetries, with a first order phase transition taking place
in the U(5)-SU(3) transition, and a second order phase transi-
tion happening in the U(5)-O(6).

A new class of symmetries that applies to systems local-
ized at the critical points was proposed. In particular the criti-
cal symmetry E(5) [17] has been suggested to describe critical
points in the phase transition from spherical vibrator U(5) to
γ-unstable rotor O(6) shapes, while X(5) [18] is designed to
describe systems lying at the critical point in the transition
from spherical to axially deformed systems. These are based
originally on particular solutions of the Bohr-Mottelson dif-
ferential equations, but are usually applied in the context of
the IBM [1], since the IBM provides a simple but detailed
framework in which first and second order phase transitions
can be studied. In the IBM language, the symmetry E(5) cor-

responds to the critical point between U(5) and O(6) sym-
metry limits, while X(5) symmetry should describe the phase
transition region between the U(5) and the SU(3) dynamical
symmetries.

The purpose of this paper is to disuse the main concepts
of the rapid changes in structure of lanthanide and actinide
nuclei by using some good indicators like energy ratios, two-
neutron separation energies and reduced electric quadruple
transition probabilities.

2 Energy Ratios and Nuclear Shape Transition

Nuclear shape phases are the manifestation of the collective
motion modes of nuclei. One of the best signatures of shape
transition is the behavior of the ratio between the energies of
the first 4+ and 2+ states

R(4/2) =
E(4+1 )
E(2+1 )

(1)

along the isotopic chain. The members of vibrational nuclei
have excitation energies

E(I) = C(I), (2)

where C is the vibrational constant. So that the energy ratios
are

R((I + 2)/I)vib =
I + 2

I
. (3)

The yrast energies of the harmonic vibrator can be written
as

E(I) = nE(2+1 ), (4)

where n is the phonon number. The γ-ray energies within the
yrast band are given by

Eγ(I) = E(I) − E(I − 2)
= E(2+1 ). (5)
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It is interesting to discuss the energy levels by plotting the
ratio of Eγ(I) to spin I (E-Gamma Over Spin) (E-GOS) [19]
against spin I. This is not helpful to identify the structure of
the nucleus, but also to discern changes as a function of spin.
Therefore, the E-GOS for vibrational nuclei can be written as

(Eγ/I)vib = E(2+1 )/I (6)

which decreases hyperbolically from E(2+1 )/2 to zero. In the
rigid rotor, the energies of the yrast states are:

E(I) = AI(I + 1), (7)

where A is the rotational parameter (A = ℏ2/2J, where J rep-
resents the moment of inertia), so that the energy ratios are

R((I + 2/I))rot =
(I + 2)(I + 3)

I(I + 1)
. (8)

Then The γ-ray energies within the yrast band are given
by

Eγ(I) = A(4I − 2) (9)

and so the E-GOS is

(Eγ/I)rot = A
(
4 − 2

I

)
=

E(2+1 )
3

(
2 − 1

I

)
.

(10)

In units of A, this evolves from 3 for I=2 up to 4 for high
I, and so gradually increasing and asymptotic function of I.
Also E-GOS for γ-unstable nuclei is given by

(Eγ/I)γ−so f t =
E(2+1 )

4

(
1 +

2
I

)
. (11)

The R(4/2) varies from the value which correspond to vi-
brations around a spherical shape of vibrational nuclide
R(4/2)=2 to the characteristic value for excitations of well-
deformed rotor R(4/2)=3.33. That is, the energy ratio R(4/2)
exhibits sharp change in rapid transitional region. Even-even
nuclei can be classified roughly according to ratios R(4/2) as:

1.0 < R(4/2) < 2.0 for magic nuclei,
2.0 < R(4/2) < 2.4 for vibrational nuclei,
2.4 < R(4/2) < 2.7 for γ-unstable nuclei,
2.7 < R(4/2) < 3.0 for transitional nuclei,

3.00 < R(4/2) < 3.33 for rotational nuclei.
To give the characteristics of the evolution of the col-

lectivity in even-even nuclei, we study the behavior of the
energy ratios R(4/2) and R(6/4). For the nuclei included in
our study, all chains of lanthanides begins as vibrational with
R(4/2) near 2.0 and move towards rotational (R(4/2)−→3.33)
as neutron number increases. For intermediate structure the
slopes in E-GOS plots range between the vibrator and rotor
extremes. One particular case of interest is R(4/2)=3.0 which

traditionally marks the boundary where axial rotation begins
to set in. A very general phenomenological model is that of
the an harmonic vibrator (AHV) [20]. In this model the yrast
energies are given by

E(I = 2n) = nE(2+1 )
n(n − 1)

2
ϵ4, (12)

where
ϵ4 = E(4+1 ) − 2E(2+1 ) (13)

is the an harmonically of the 4+ state, that is, its deviation in
energy from twice the 2+ energy, and n = I/2, n is the phonon
number in a vibrational nucleus. For ϵ4 = 0 equation (12)
gives the harmonic vibrator

E(I) =
1
2

E(2+1 )I (R(4/2) = 2). (14)

For ϵ4 = (4/3)E(2+1 ), it gives the rigid rotor expression

E(I) =
1
6

E(2+1 )I(I + 1) (R(4/2) = 10/3). (15)

For ϵ4 = E(2+1 ), it gives

E(I) =
1
8

E(2+1 )I(I + 2) (R(4/2) = 3.0). (16)

E(I)/I is constant and that the E-GOS plots is flat. So,
interestingly the phase transition point (R(4/2) 3.0) roughly
serves to section E-GOS plots into two classes of increasing
and decreasing with I, so that nuclei on the vibrator side of
the phase transition are down-sloping while these to the rotor
side are up-sloping.

The systematics of energy ratios of successive levels of
collective bands in medium and heavy mass even-even nu-
clei were studied [21]. A measure of their deviation from the
vibrational and rotational limiting value was found to have
different magnitude and spin dependence in vibrational, rota-
tional and γ-unstable nuclei. For a given band for each spin I,
the following ratios were constructed to define the symmetry
for the excited band of even-even nuclei

r((I + 2)/I) =
R((I + 2)/I)exp − R((I + 2)/I)vib
R((I + 2)/I)rot − R((I + 2)/I)vib

=
R((I + 2)/I)exp − (I + 2)/I

2(I + 2)
I(I + 1)

,
(17)

where R((I + 2)/I)exp is the experimental value of the ratio.
In equation (17), the value of energy ratios, r have changed
between 0.1 and 1 for yrast bands of even-even nuclei. The
ratio r should be close to one for a rotational nucleus and
close to zero for a vibrational nucleus, while it should have
intermediate values for γ-unstable nuclei:

0.10 ≤ r ≤ 0.35 for vibrational nuclei,
0.4 ≤ r ≤ 0.6 for transitional nuclei,
0.6 ≤ r ≤ 1.0 for rotational nuclei.
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3 Electromagnetic Transition Strengths

When the nucleus is deformed it acquires an electric-multiple
moment. Consequently as it oscillates, in λµ mode, it emits
electric λµ radiation. Now to calculate the radiative transition
rates between vibrational states, we need the nuclear electric
multiple operator M̂. This is given by

M̂(Eλ, µ) =
∫
τ

dτρc(r)rλYλµ(θ, ϕ), (18)

ρc(r) is the charge density of the nucleus. The electric multi-
pole moment is defined by Q̂λ

Q̂λ =
(

16π
2λ + 1

)1/2

M(Eλ, 0). (19)

We now discuss the electric quadruple moment (λ = 2) in
more detail because the electric quadruple moment Q2 of a
nucleus is a measure of the deviation of the charge distribu-
tion from spherical symmetry. We define the reduced transi-
tion probability as:

B(E2, Ii −→ I f ) =
∑

M f |⟨IiMi|Q2|I f M f ⟩|2

= 1
2Ii+1 |⟨Ii||Q2||I f ⟩|2,

(20)

where |⟨Ii||Q2||I f ⟩| is a reduced matrix element defined by the
Wigner-Eckart theorem

⟨IiMi|M(Eλ, µ)|I f M f ⟩| = ⟨IiMiλµ|I f M f ⟩
|⟨Ii||M(Eλ)||I f ⟩|

(2Ii + 1)1/2 .

The reduced transition probability B(E2, IiK −→ I f K)
for an electric quadruple transition between two members of
same rotational band with quantum number K is:

B(E2, IiK −→ I f K) =
5

16π
e2Q2

0⟨IiK20|I f K⟩2, (21)

where Q0 is the transition intrinsic quadruple moment and we
have used ∑

m1m2,m

|⟨I1m1I2m2|Im⟩|2 = 2I + 1. (22)

For even-even nuclei, K = 0 and when Ii = I and I f =

I −2, we get the familiar relations between B(E2, I −→ I −2)
and the intrinsic quadruple moment Q0 are:

B(E2, I −→ I − 2) =
5

16π
e2Q2

0
3
2

I(I − 1)
2(2I − 1)(2I + 1)

. (23)

As a special case for the transition 2+ −→ 0+, yields

B(E2, 2+ −→ 0+) =
5

16π
e2Q2

0. (24)

For the transition Ii = I and I f = I + 2, yields

B(E2, I −→ I + 2) =
5

16π
e2Q2

0
3
2

(I + 2)(I + 1)
2(2I + 1)(2I + 2)

(25)

and for special case for the transition 0+ −→ 2+, yields

B(E2, 0+ −→ 2+) =
5

16π
e2Q2

0. (26)

That is

B(E2, 2+ −→ 0+) = 0.2 B(E2, 0+ −→ 2+). (27)

From equation (21), the intrinsic quadruple moment Q0
for a K = 0 band of an axially symmetric rotor is extracted.
For the special transition 0+ −→ 2+, we get

eQ0 =

[
16π

5
B(E2, 0+ −→ 2+)

]1/2

(28)

in units of 10−24 cm2.
The electric reduced transition probability B(Eλ) can be

obtained from the transition probability per unit time for emis-
sion of photon of energy ℏω, angular momentum λ and of
electric type with the nucleus going from a state i to a state f
defined by

T (Eλ) =
8π(λ + 1)
λ[(2λ + 1)!!]2

1
ℏ

(
Eγ
ℏc

)(2λ+1)

. (29)

T (Eλ) for electric quadruple has the from

T (E2) =
4π
75

1
ℏ

(
Eγ
ℏc

)5

B(E2). (30)

For the quadruple transition T (E2) can be derived exper-
imentally from the relation

T (E2, 2+ −→ 0+) =
ln2

(1 + α)τ1/2
, (31)

where α is the total conversion coefficient taken from the tab-
ulated values given by Rose [22] and τ1/2 is the half life time.
From equations (30) and (31), one can find B(E2):

B(E2, 2+ −→ 0+) =
75ℏ
4π

(
ℏc
E2+

)5 ln2
(1 + α)τ1/2

= 0.565502
(

100
E2+

)5 1
(1 + α)τ1/2

,

(32)

where B(E2) is in units of e2b2 when E2+ is in units of MeV
and τ1/2 in units of nanosecond.

4 The two–neutron Separation Energies

The energy required to remove a neutron from a nucleus with
Z proton and N neutron is called separation energy and is
defined as:

S n(Z,N) = [M(Z,N − 1) + Mn − M(Z,N)]C2. (33)
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Fig. 1: Systematics of low-lying yrast level energies in even-even
lanthanides Nd/Sm/Gd/Dy isotopes. The 2+, 4+, . . . , 10+ level ener-
gies are plotted. The states are labeled by Iπ.

This expression can be rewritten in the form of binding
energy as:

S n(Z,N) = B(Z,N) − B(Z,N − 1). (34)

The definition of the two-neutron separation energies is the
following:

S 2n = B(N) − B(N − 1), (35)

where N denotes the number of valence nucleon pairs and it
is assumed that we are treating nuclei belonging to the first
half of the neutron shell (50 - 82) filling up with increasing
mass number.

5 Numerical Calculations and Discussions

The systematics of the excitation energies of the low-lying
states as a function of neutron number changing from 84 to
100 in the even-even lanthanides Nd/Sm/Gd/Dy isotopes in
the mass region 144–166 and the actinide Th/U isotopes in
the mass region 224–238 are presented in Figures (1,2). Only
the yrast state of positive parity and spin Iπ = 2+, 4+, 6+, 8+

and 10+ has been included.
The trend of increasing excitation energy of 2+ state with

decreasing neutron number, implying a corresponding fall in
deformation as the N = 82 shell closure is approached. The
energies of the 4+ and 6+ states also display the same trend.
For lanthanides isotopes we can see that the energy values
for each spin I states change almost linearly for N ≤ 88 and
become quite flat for N ≥ 90. This is consistent with the
onset of the Z = 64 sub-shell effect. Furthermore, the linear
falling of the energy value for each I state as N goes from
86 to 88 seems to justify the linear variation of the effective
proton-boson number in each isotope series.

As an example Figure (1) shows that the limits (spherical
shape and well deformed rotor) are fulfilled in the Neodymium
144Nd and 152−156Nd isotopes respectively, and also that there

Fig. 2: The same as Fig. (1) but for actinides Th/U isotopes.

is a smooth transition between them. The 148Nd isotopes
could be considered as a transitional nucleus in the calcula-
tions. A rapid rise in R(4/2) between N = 88 and 90 is shown,
where it increases from values of ≃2.3 typical of actual vibra-
tional nuclei to 3.0, the traditional borderline value separating
spherical from deformed nuclei to ≃3.3 the limiting value of
the axial rotor model. As a matter of fact, if we compare the
X(5) results (first order phase transition from a spherical vi-
brator to an axially deformed rotor is called X(5)) with the
energy levels in 148Nd, we find striking similarities, it sug-
gested that the nucleus 148Nd display the X(5) symmetry.

The nature of the low-lying states in our lanthanides and
actinides chains of isotopes can be illustrated in Figures (3,4)
by examining the ratios of the excitation energies R(4/2) and
R(6/4) as a function of neutron number. The limiting values
for R(4/2) and R(6/4) for harmonic vibrator are 2.0 and 1.5
and for rigid symmetric rotor are 0.33 and 2.1 respectively.

In lanthanides the calculated values increases gradually
from vibrational value to transitional value near N=90 to rotor

Fig. 3: Evolution of energy ratios R(4/2) and R(6/4) for lanthanides
Nd/Sm/Gd/Dy isotopes as function of increasing neutron number.
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Fig. 4: The same as Fig. (3) but for actinides Th/U isotopes.

Fig. 5: The plot of R(4/2) values in the Nd/Sm/Gd/Dy region against
Z. We see change in curvature in the data for N=88 and N=90 con-
cave to convex.

value in the heavier isotopes. The energy ratios R(4/2) and
R(6/4) for even A, N=88 isotopes are essentially constant for
Sm, Gd and Dy.

The same data for lanthanides is plotted between R(4/2)
against Z instead of N, see Figure (5). We see a rapid jump
in R(4/2) near N=90. Here, the plot of R(4/2) against Z
shows not only the existence of a shape transitions but also
the change in curvature in the data for N=88 and 90, concave
to convex. For Gd nuclei for N≤88 the behavior is typically
closed shell, while for N ≥ 90 the behavior appears to be near
mid shell.

The nuclei of lanthanides region would therefore be can-
didates for a shape transition from vibrator to axially rotator
and the N = 90 isotopes 150Nd, 152Sm, 154Gd and 156Dy are
ideal candidates for X(5). Historically, sensitive studies [23]
of the 152Sm level scheme led to a suggestion that this nucleus
gave evidence for a first order phase transition [24], its R(4/2)
value is intermediate between vibrator and rotor [25]. Addi-
tional X(5) candidate in the lanthanides region have subse-
quently been identified in 150Nd [26], 154Gd [27], 156Dy [28]

Fig. 6: Comparison of R(I/2) and E-GOS plots for three kinds of
collective modes vibrator, rotor and R(4/2)=3 modes.

Fig. 7: The r((I + 2)/I) energy ratios for the ground state bands
of even-even Lanthanides Nd/Sm/Gd/Dy isotopes as a function of
spin I.

and 162Yb [29]. Fig. (6) shows R(I/2) and E-GOS plots for a
vibrator, a rotor and R(4/2)=3 modes.

To investigate the dependence of energy ratios on the an-
gular momentum, the useful criterion r((I + 2)/I) are exam-
ined for distinguishing between different kinds of collective
behavior. In Figures (7,8) we show the results of our calcula-
tions for the ground state bands of the selected lanthanides
and actinides isotopes. The study supports the interpreta-
tion of 150Nd and 152Sm as a critical point nucleus. Hence,
the isotopes 150Nd and 152Sm are associated to X(5) sym-
metry. For the vibrational nuclei 152Gd and 154Dy, the ratios
r((I + 2)/I) start with a small value and then increases with I,
more rapidly in the beginning and slower at higher I’s. On the
other hand for rotational nucleus 162Dy the ratios r((I + 2)/I)
start with a value very close to one and then constantly de-
crease.

As an example, the abnormal behavior of the two-neutron
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Fig. 8: The same as Fig. (7) but for Actinides Th/U isotopes.

Fig. 9: Two-neutron separation energies S 2n for the chains
Nd/Sm/Gd/Dy isotopes as a function of the number of neutrons.

separation energies S 2n of nuclei Nd/Sm/Gd/Dy as a function
of neutron number around neutron number 90 is illustrated
in Fig. (9), the nonlinear behavior of S 2n indicates that shape
phase transition may occur in this region. It is commonly
assumed that the ratio of the B(E2) reduced transition proba-
bilities between the levels of the ground state band takes the
values between vibrational and rotational limits. In the inter-
acting boson model IBM [1] both these limits are corrected
because the number of the quadruple bosons cannot exceed
some maximum value N.

In the U(5) vibrational limit of IBM,

B(E2, I + 2→ I)
B(E2, 2+ → 0+)

=
1
2

(I + 2)
(
1 − 1

2N

)
and in the SU(3) rotational limit of IBM,

B(E2, I+2→ I)
B(E2, 2+ → 0+)

=
15
2

(
1− 1

2N

) (
1− 1

2N+3

)
(I+2)(I+1)

(2I+3)(2I+5)
.

Our GCM calculated values of these ratios are put be-
tween these limits, i.e., the IBM calculations can reproduce
the E2 transition probabilities.

Fig. 10: The ratio dB(E2,I+2−→I)
B(E2,2+−→0+ of reduced transition probabilities

between the levels of the ground state band of 150Nd, 152Sm, 154Gd
and 156Dy as compared to the U(5) and SU(3) of IBM calculations
(• for U(5), ◦ for SU(3) and x for present calculation).

Table 1: The GCM parameters as derived in fitting procedure used
in the calculation.

Nucleus I U(5) SU(3) Present
Vibrator Rotor calculations

150Nd (N=9) 0 0.94444 0.98941 0.75812
2 1.88888 1.41345 1.45375
4 2.63333 1.55677 1.71683
6 3.77777 1.62962 2.19186
8 4.72222 1.67381 2.46675

152Sm (N=10) 0 0.95 0.99130 0.68900
2 1.90 1.41614 1.45137
4 2.85 1.55973 1.71262
6 3.80 1.63272 1.98838
8 4.75 1.67700 2.23512

154Gd (N=11) 0 0.95454 0.99272 0.77300
2 1.90909 1.41818 1.52393
4 2.86363 1.56197 1.79560
6 3.81818 1.63507 1.97412
8 4.77272 1.67941 2.23803

156Dy (N=12) 0 0.95833 0.99382 0.87381
2 1.91666 1.41975 1.51345
4 2.87500 1.56370 1.92725
6 3.83333 1.63688 2.35673
8 4.79166 1.68127 2.53512

The calculated B(E2, I + 2 −→ I)/B(E2, 2+ −→ 0+) ra-
tios using GCM for the ground state bands of the low-lying
state are presented in Table (1) and Fig. (10) together with
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the results for the vibrator and rotor limits of IBM for 150Nd,
152Sm, 154Gd and 156Dy.

Submitted on January 15, 2013 / Accepted on January 21, 2013

References
1. Iachello F. and Arima A. The Interacting Boson Model. Cambridge

University Press, Cambridge, England, 1987.

2. Frank A. and VanIsacker P. Algebraic Methods in Molecular and Nu-
clear Structure Physics. Wiley, New York, 1994.

3. Eisenberg J. and Greiner W. Nuclear Theory, Vol. I, Nuclear Mod-
els: Collective and Single-Particle Phenomena. North-Holland, Ams-
terdam, 1987.

4. Troltenier D., Hess P.O. and Maruhn J. Computational Nuclear Physics,
Vol. I, Nuclear Structure. Springer, Berlin, Heidelberg, New York,
1991.

5. Troltenier D. Das Generalisierte Kollektivmodell. Frankfurt am Main,
Germany, Report No. GSI-92-15, 1992.

6. Bohr A. and Mottelson. Nuclear Structure v. II. Benjamin, New York,
1975.

7. Jolie J. et al. Two-Level Interacting Boson Models Beyond The Mean
Field. Physical Reveiw, 2007, v. C75, 014301R–014310R.

8. Iachello F. and Zamfir N.V. Quantum Phase Transitions in Mesoscopic
Systems. Physical Review Letters, 2004, v. 92(3), 212501–212504.

9. Cejnar P., Heinze S. and Dobes J. Thermodynamic Analogy for Quan-
tum Phase Transitions at Zero Temperature. Physical Review, 2005,
v. C71, 011304R–011309R.

10. Rowe D.J. Quasi Dynamical Symmetry in an Interacting Boson Model
Phase Transition. Physical Review Letters, 2004, v. 93, 122502–
122505.

11. Liu Y.X., Mu L.Z. and Wei H. Approach to The Rotation Driven Vibra-
tional to Axially Rotational Shape Phase Transition Along The Yrast
Line of a Nucleus. Physics Letters, 2006, v. B633, 49–53.

12. Zhang Y., Hau Z. and Liu Y.X. Distinguishing a First Order From a
Second Order Nuclear Shape Phase Transition in The Interacting Boson
Model. Physical Review, 2007, v. C76, 011305R–011308R.

13. Arios J.M., Dukelsky J. and Garcia-Ramos J.E. Quantum Phase Transi-
tions in the Interacting Boson Model: Integrability, Level Repulsion
and Level Crossing. Physical Review Letters, 2003, v. 91, 162502–
162504.

14. Garcia-Ramos J.E. et al. Two-Neutron Separation Energies, Binding
Energies and Phase Transitions in The Interacting Boson Model. Nu-
clear Physics, 2001, v. A688, 735–754.

15. Liu M.L. Nuclear Shape-Phase Diagrams. Physical Review, 2007,
v. C76, 054304–054307.

16. Heyde K. et al. Phase Transitions Versus Shape Coexistence. Physical
Review, 2004, v. C69, 054304–054309.

17. Iachello F. Dynamic Symmetrcies at The Critical Point. Physical Re-
view Letters, 2000, v. 85, 3580–3583.

18. Iachello F. Analytic Prescription of Critical Point Nuclei in a Spheri-
cal Axially Deformed Shape Phase Transtion. Physical Review Letters,
2001, v. 87, 052502–052506.

19. Regan P.H. et al. Signature for Vibrational to Rotational Evolution
Along the Yrast Line. Physical Review Letters, 2003, v. 90, 152502–
152505.

20. Zamfir N.V. et al. Study of Low-Spin States in 122Cd. Physical Review,
1995, v. C51, 98–102.

21. Bonatsos D. and Skoures L.D. Successive Energy Ratios in Medium-
and Heavy-Mass Nuclei as Indicators of Different Kinds of Collectivity.
Physical Review, 1991, v. C43, 952R–956R.

22. Rose M.E. Internal Conversion Coefficients. Amsterdam, North Hol-
land . North-Holland, Publishing Company 1958.

23. Casten R.F. The First Excited 0+ State in 152Sm. Physical Review, 1998,
v. C57, 1553R–1557R.

24. Casten R.F. Kusnezov D. and Zamfir N.V. Phase Transitions in Finite
Nuclei and The Integer Nucleon Number Problem. Physical Review
Letters, 1999, v. 82, 5000–5003.

25. Clark R.M. et al. Searching For X(5) Behavior in Nuclei. Physical Re-
view, 2003, v. C68, 037301–037304.

26. Krücken R. et al. B(E2) Values in 150Nd and The Critical Point Sym-
metry X(5). Physical Review Letters, 2002, v. 88, 232501–232501.

27. Tonev D. et al. Transition Probabilities in 154Gd: Evidence for X(5)
Critical Point Symmetry. Physical Review, 2004, v. C69, 034334–
034339.

28. Caprio M.A. et al. Low-Spin Structure of 156Dy Through γ-ray Spec-
troscopy. Physical Review, 2002, v. C66, 054310–054328.

29. McCutchan E.A. et al. Low Spin States in 162Yb and The X(5) Critical
Point Symmetry. Physical Review, 2004, v. C69, 024308–024317.

104 Khalaf A.M. and Ismail A.M. Structure Shape Evolution in Lanthanide and Actinide Nuclei



April, 2013 PROGRESS IN PHYSICS Volume 2

Double Surface and Fine Structure
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Previously [1], one concluded that the atomic world should be elliptic and therefore
the present universe which on the macro level looks like Euclidean is obviously to be
heterogeneous. In this paper, one tries to solve the enigma proposing the double elliptic-
hyperbolic surface. As a result of the effort, a new candidate for the exact inverse fine
structure constant is given:α−1 = 137

(

2− 1/
√

1+ π2/1372
)

= 137.0360062543. . . .

1 Theoretical background

Let us consider our experience of the world is not what that
world in reality is but rather how it is observed and measured.
The distinction between to observe and to measure is made in
this paper. The former means to count the units in the image,
denoted as the averagex. The latter means to count the units
in the inverse image, denoted as the averagex−1. For the
different values ofxi we have to deal with the next inequality:

x × x−1 , 1. (1)

Then the surface we live on is not, for instance, the Euclidean
plane or the sphere very close to it [1], but could be, instead
of it, the double elliptic-hyperbolic surface which is observed
as the Euclidean plane. The average sphere is not proposed to
be the triple elliptic-Euclidean-hyperbolic surface unless the
Euclidean plane is not assigned to have its own identity. Let
us propose that this leaves a footprint in the inverse fine struc-
ture constantα−1 which is in some way observed. Actually
in the observation we count the number of the length unitsλ
which are correlated with the inverse fine structureα−1:

α−1
observed = α

−1
euclidean =

α−1
elliptic + α

−1
hyperbolic

2
. (2)

And the measured elliptic fine structure constant on the atom
level does not reflect exclusively the elliptic sphere, since it is
the mirror of the hyperbolic sphere, too. Let us propose that
this leaves a footprint in the fine structure constantα which
is in some way measured. Actually in the measurement we
count the number of the inverse length unitsλ−1 = mv/h
which are correlated with the fine structureα:

αmeasured =
αelliptic + αhyperbolic

2
. (3)

Consequently the different inverse fine structure constants are
explicitly expressed as

α−1
measured = α

−1
elliptic















2−
α−1

elliptic

α−1
euclidean















, (4a)

α−1
elliptic = α

−1
euclidean−

√

α−1
euclidean

(

α−1
euclidean − α

−1
measured

)

, (4b)

α−1
hyperbolic = α

−1
euclidean +

√

α−1
euclidean

(

α−1
euclidean − α

−1
measured

)

, (4c)

α−1
sphere = α

−1
euclidean ∓

√

α−1
euclidean

(

α−1
euclidean − α

−1
measured

)

. (4d)

It is easily seen that if the measured inverse fine structure con-
stant equals the observed Euclidean one, the elliptic and hy-
perbolic inverse fine structure constant are identical and no
average makes sense. Only in that case what is observed and
measured is also real.

Let us also recall the value of the hypothetical Euclidean
inverse fine structure constant [1]:

α−1
euclidean =

√

π2 + 1372. (5)

2 The fine structure constant and the Hydrogen atom

The elliptic sphere of the radius of about 3679 Compton wave-
lengths of the electron was proposed in the Hydrogen atom
previously [1], based on the assumption that only one type of
the sphere is possible. If the elliptic and hyperbolic sphere
coexists, the fine structure constant is a mirror of their aver-
age geometry, and what results is a different sphere picture.
Without going into the details of how it looks like, some cal-
culations can be made.

2.1 Calculation of the sphere paths

Taking into account the equation (5) and inserting in the equa-
tions (4b) and (4c), the CODATA 2012 recommendedα−1 =

137.035999074 for theαmeasured , the elliptic and hyperbolic
path s in the Hydrogen atom are given in units of Compton
wavelengths of the electron as:

selliptic(α
−1
elliptic) = 136.988254898· · · < n = 137

shyperbolic(α−1
hyperbolic) = 137.083776540· · ·

(6)

The path on the elliptic sphere being smaller than the
translation componentn is not plausible and leads one to the
conclusion that the recommended empirical value ofα−1 sho-
uld be of a little greater size.

2.2 Calculation of the inverse fine structure constants

The translation componentn = 137 Compton wavelengths of
the electron equals the elliptic circular paths and the latter
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expresses the elliptic inverse fine structure constant [1]

α−1
elliptic = 137, since:

n = s = 137 Compton wavelengths of the electron.
(7)

The theoretical inverse fine structure constant deduced from
the average path on the double elliptic-hyperbolic surfaceis
given with the equations (4a) and (5):

α−1
theoretical = 137

(

2− 1/
√

1+ π2/1372
)

= 137.0360062543· · · < α−1
euclidean

(8)

The calculated constant is a little greater than the recommended
CODATA 2012 α−1 but smaller than the hypothetical Eu-
clidean one given by (5). The hyperbolic inverse fine structure
is given by (4c):

α−1
hyperbolic = 137.0720314399· · · (9)

3 Conclusion

According to the proposed model, the electron in the Hy-
drogen atom moves on the elliptic-hyperbolic double surface,
since the measured inverse fine structure constant is smaller
than the hypothetical Euclidean one. And we live in the ap-
parent Euclidean macro-world, since the observed inverse fine
structure constant does not seem to differ from the hypothet-
ical Euclidean one. The difference between what is observed
on the macro level and what is measured in the atom world
implies that neither what is observed nor what is measured
is real. If the elliptic and hyperbolic sphere can coexist in
the present world, a new candidate for the exact inverse fine
structure constant is given by

α−1
theoretical = 137

(

2− 1/
√

1+ π2/1372

)

= 137.0360062543· · ·
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Špela.

Submitted on January 28, 2013/ Accepted on February 7, 2013

References
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High energy gamma-ray flares are almost always observed near the limb of the Sun
and are seldom, if ever, visualized in the central region of the solar disc. As such, they
exhibit a powerful anisotropy best explained by invoking a true photospheric surface. In
this regard, the anisotropic nature of the gamma-ray emissions from high-energy flares
constitute the eighteenth line of evidence that the Sun is condensed matter.

Every body has a surface.

St. Thomas Aquinas [1]

In the middle ages, as St. Thomas Aquinas was reflecting
uponThe Infinity of God, he was confronted with this objec-
tion relative to objects and their surfaces [1]. Thomas would
answer that: “It is one thing to be infinite in essence, and an-
other to be infinite in magnitude” [1]. Though nearly a mil-
lennium has passed since the Dominican Friar contemplated
The Infinity of God, the fact remains that, in the physical
world, one is primarily considering magnitude, not essence:
on a macroscopic scale, every physical body does indeed have
a surface. Failure to meet this criterion results in an assembly
of many bodies.

These ideas have consequences for astronomy. Within the
context of accepted solar models, the Sun must be viewed as
an assembly of bodies, since it has long ago been deprived of
a real surface by gaseous constructs [2].

Conversely, the author has argued that the Sun does in-
deed possess a real surface [3] and he has recently assembled
a wide variety of proofs that highlight its condensed state of
matter (see e.g. [4] and references therein). In this brief work,
an 18th line of evidence is provided.

In 1989, Erich Rieger published a paper inSolar Physics
entitled “Solar Flares: High Energy Radiation and Parti-
cles” [5]. In this report, Rieger provided strong evidence that
flares with emissions>10 MeV are visible only near the so-
lar limb (see Fig. 1). Rieger’s findings would be highlighted
by R. Ramaty and G. M. Simnett in their review on acceler-
ated particles in solar flares: “Gamma-ray emitting flares are
observed from sites located predominantly near the limb of
the Sun (see, e.g. Rieger 1989). This effect was observed for
flares detected at energies>0.3 MeV, but it is at energies>10
MeV that the effect is particularly pronounced . . . Since in
both of these cases the bulk of the emission is bremsstrahlung
from primary electrons, these results imply that the radiating
electrons are anisotropic” [6, p. 237]. It was then postulated
that: “. . . the anisotropy could result from the mirroring of the
charged particles in the convergent chromospheric magnetic

fields” [6, p. 237] based on a theoretical analysis by Miller
and Ramaty [7]. These authors comment that the emissions
are “. . . strongly anisotropic, with more emission in the direc-
tions tangential to the photosphere than in directions away
from the Sun” [7]. In order to account for the anisotropy of
the gamma-ray emission from high energy solar flares, they
invoke electron transport in the coronal region and magnetic
mirroring of converging magnetic flux tubes beneath the tran-
sition region [7]. As the gaseous models of the Sun cannot
support the existence of a real surface, then another mecha-
nism must be created to “act as a surface”.

Fig. 1: Schematic representation of the relative position of flares
with >10 MeV of energy on the solar disk displaying their predom-
inance near the limb. This figure is meant only for illustrative pur-
poses and is an adaptation based on Fig. 9 in [5] which should be
examined for exact flare locations.

Within the gaseous models, the photosphere merely rep-
resents a region of increasing opacity, best regarded as an
“optical illusion” [3]. The gaseous Sun possesses no sud-
den change in density which could allow tangential emission
to its surface. In fact, modern solar models assume a density
of only 10−7 g/cm3 for the photosphere [8, p. 32], a density
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lower than some of our earthly vacuums. Hence the use of
magnetic mirroring and the convergence of field lines in or-
der to generate surface effects in the absence of condensed
matter.

In the end, the simplest way to account for the strongly
anisotropic nature of high energy solar flares is to recognize
the existence of a discrete surface on the Sun. This most ele-
gantly explains why the emissions aretangential to the pho-
tosphere. As flares rise from the solar interior [4] they even-
tually arrive at the photospheric layer. High energy gamma
rays are emitted tangentially to this boundary, as a real phys-
ical surface, not to an illusion [3], has been encountered.

Acknowledgment

Luc Robitaille is recognized for the preparation of Figure 1.

Dedication

Dedicated to Dominican Friars of the Province of St. Joseph.

Submitted on: January 17, 2013/ Accepted on: January 18, 2013
First published in online on: January 28, 2013

References
1. Aquinas, Thomas. ST I,7,iii: Cosimo Inc., New York, 2007.

2. Robitaille P.M. A thermodynamic history of the solar constitution — I:
The journey to a gaseous Sun.Progr. Phys., 2011, v. 3, 3–25.

3. Robitaille P.M. On the Presence of a Distinct Solar Surface: A Reply to
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Helioseismological studies have the ability to yield tremendous insight with respect to
the internal structure and shape of the solar body. Such observations indicate that while
the convection zone displays differential rotation, the core rotates as a rigid body. The
latter is located below the tachocline layer, where powerful shear stresses are believed
to occur. Beyond simple oblateness, seismological studies indicate that the Sun displays
significant higher order shape terms (quadrupole, hexadecapole) which may, or may not,
vary with the solar cycle. In this work, such seismological findings are briefly discussed
with the intent of highlighting that 1) the differential rotation of the convection zone,
2) the rigid body rotation of the core, 3) the presence of the tachocline layer and 4)
the appearance of higher order shape terms, all lend support to the idea that the solar
body is composed of material in the condensed state. In this regard, the existence of the
tachocline layer in the solar interior and the solid body rotation of the core constitute
the nineteenth and twentieth lines of evidence that the Sun is condensed matter.

In brief, every rotating body conducts itself either
as if it is it were purely liquid, or as if it were
purely gaseous; there are no intermediate possibil-
ities. Observational astronomy leaves no room for
doubt that a great number of stars, perhaps even all
stars . . . behave like liquids rather than gases.

Sir James Hopwood Jeans, 1929 [1]

For much of his life, James Jeans believed that stars were
rotating liquids [1, 2]. On the basis of the tremendous abun-
dance of binary systems [2], he had claimed that there could
be no doubt of their condensed nature. Yet, in the paragraph
which followed that quoted above, Jeans also argued:“we
are totally unable to check our theoretical results by observa-
tion” [1, p. 219]. This apparent contradiction was previously
highlighted by Alan B. Whiting [3, p. 209]. Eventually, Jeans
lost sight of the observational evidence which had so con-
vinced him. By 1944, he had abandoned liquid stars [2,4] and
so did astrophysics; although in the 1960s, Subrahmanyan
Chandrashekar would devote nine years of his life to the study
of rotating liquid bodies [4,5]. With time however, astronomy
would add to the arsenal of evidence that the Sun was liquid
(see [6–8] and references therein).

Seismology, the study of low frequency waves within con-
densed matter, would also contribute to our understanding
[9, 10]. Indeed, the mere application of seismology to the
Sun has been heralded as a proof for condensed matter (see
proof 5 in [8]). It is not reasonable to claim that the solar
photosphere, with a density of only 10−7 g/cm3 [11], can act
as a mere optical illusion relative to the presence of a distinct
surface [12], while at the same time forming the confines of a
resonant cavity for seismological studies [13]. The author has

already argued that it is not possible to conduct seismological
observations on a surface whose density remains inferior to
some of the best vacuums on Earth [8], despite the apparent
agreement with the gaseous solar models [14, 15]. Seismol-
ogy has been, and always will remain, linked to the study of
condensed matter.

In this regard, seismology has brought some interesting
insight into the internal structure of the Sun. The fact that
the convection zone undergoes differential rotation appears
well established, as is the presence of a prolate tachocline
layer [9,10]. The tachocline region acts as a shear layer which
separates the differential rotation in the convection zone from
the solid body rotation observed in the solar core. Shear
forces imply area and surface. As such, the presence of the
tachocline layer in the solar interior is now advanced as the
nineteenth line of evidence that the Sun is condensed mat-
ter. Furthermore, the solar core is rotating as a solid body
(e.g. [10]) and this remains impossible for a gaseous object.
Solid body rotation involves strong internal cohesive forces
which gases cannot possess. Consequently, the solid body ro-
tation of the solar core is now invoked as the twentieth line of
evidence that the Sun is condensed matter.

Finally, it is well established that the Sun is not perfectly
spherical but oblate (see [15, 16] and references therein). In-
deed, the presence of solar oblateness could be related to
Jean’s arguments for liquid stars [2]. Since the creation of an
oblate object requires internal cohesive forces which can only
characterize a liquid or solid rotating sphere, solar oblate-
ness has already been invoked as the eighth line of evidence
that the Sun is condensed matter [8]. Yet, the solar shape is
even more complex, characterized by quadrupolar and hex-
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adecapolar terms [16], the latter of which appears dependent
on the solar cycle. These additional features on the solar
sphere served to complement the eighth line of evidence (so-
lar shape [8]) that the Sun is condensed matter.
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In modern solar theory, the photospheric surface merely acts as an optical illusion.
Gases cannot support the existence of such a boundary. Conversely, the liquid metallic
hydrogen model supports the idea that the Sun has a distinct surface. Observational as-
tronomy continues to report increasingly precise measuresof solar radius and diameter.
Even the smallest temporal variations in these parameters would have profound impli-
cations relative to modeling the Sun and understanding climate fluctuations on Earth. A
review of the literature convincingly demonstrates that the solar body does indeed pos-
sess a measurable radius which provides, along with previous discussions (Robitaille
P.M. On the Presence of a Distinct Solar Surface: A Reply to Hervé Faye. Progr.
Phys., 2011, v. 3, 75–78.), the twenty-first line of evidence that the Sun is comprised of
condensed-matter.

But however difficult it may be for present theories to
account for the tenuity of the solar atmosphere im-
mediately above the photosphere, and however read-
ily the same fact may be accounted for by the theory
of Schmidt, it is certain that the observer who has
studied the structure of the Sun’s surface, and par-
ticularly the aspect of the spots and other markings
as they approach the limb, must feel convinced that
these forms actually occur at practically the same
level, that is, that the photosphere is an actual and
not an optical surface. Hence it is, no doubt, that
the theory is apt to be more favorably regarded by
mathematicians than by observers.

James Edward Keeler, 1895 [1]

James Edward Keeler was a distinguished observational as-
tronomer [2]. Along with George Ellery Hale, he had es-
tablishedThe Astrophysical Journalin 1895 [2]. In the first
volume of this journal, Keeler objected to Schmidt’s model
of a fully gaseous Sun whose surface merely represented an
optical illusion (see [3] for a full discussion). Hale echoed
Keeler’s objections stating,“As a theoretical discussion the
theory is interesting and valuable, but few observers of the
Sun will consider it capable of accounting for the varying
phenomena encountered in their investigations”[4]. Thus,
two of the greatest observational astronomers of the nine-
teenth century expressed serious reservations relative tothe
idea that the solar surface was illusionary.

Today, much effort continues to be focused on establish-
ing a proper value for the solar radius ( [5–12] and references
therein). Such reports constitute a clear sign that observa-
tional astronomers recognize, at least in practice, the exis-
tence of a distinct solar surface. In fact, the measurement of
the solar radius not only occupies amateur astronomers, as

they map the transits of Mercury and Venus [11,12], but also
attracts the attention of our helioseismologists [5–10]. This
is not solely because of the obvious implications for climate
change [9]. For theoretical solar physicists, any variation in
the dimensions of the Sun would have severe consequences
with respect to the gaseous models [5–10]. The latter would
be hard-pressed to account for fluctuations in radius. This
helps to account for the reassurance experienced when the
solar radius is perceived as constant [5–7].

Nonetheless, the solar radius has not definitively been es-
tablished as fixed. Values obtained in the past thirty years
range from 958′′.54± 0′′.12 to 960′′.62±0′′.02 (see [10] for
a complete table). In 1980, Irwin Shapiro argued that the so-
lar radius had not decreased over time [13]. Currently, these
issues cause little debate, though cyclical variations continue
to be gently questioned (see [10–13] and references therein).

Perhaps the most interesting aspect of solar radius deter-
minations remains the increased precision of the measure-
ments over the years. Emilio et al. estimate the solar radius
at 960′′.12± 0′′.09 [10]. This corresponds to 65 km for a ra-
dius of more than half a million kilometers (696,342 km) – an
error of better than 1 part in 10,000. Others report errors on
the order of 0′′.02 [10], a relatively tiny distance of less than
15 km – an error of only 2 parts in 100,000. This precision
argues strongly for a distinct solar surface and the existence
of a condensed solar body. It is inconceivable that a gaseous
Sun would be able to create such a defined “optical illusion”.
The gaseous solar models argue for smoothly varying density
changes, even in the region of the photosphere. As a result,
the extreme precision of the solar radius determinations inthe
visible range, along with previous arguments for a distinctso-
lar surface [3], constitute the twenty-first line of evidence that
the Sun is condensed matter.
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Additional Note

Chapman et al. [14] have recently reported variability in the
Sun’s diameter in association with the solar cycle. As previ-
ously mentioned, this is a topic of interest to many, though it
is only quietly pursued [15]. Variations in the solar diameter
with the activity cycle could produce changes in total solar
irradiance, beyond the effects produced by sunspots and fac-
ulae [16, 17]. While the question of varying solar radius has
not been resolved, such phenomena could be accounted for
by invoking exfoliative forces within the liquid metallic hy-
drogen model of the Sun [18]. Exfoliation would be charac-
terized by the production of gases within the condensed solar
structure, potential resulting in an expansion of the solarra-
dius. In sharp contrast, changes in radius remain essentially
insurmountable within the context of the gaseous models.
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While mankind will always remain unable to sample the interior of the Sun, the presence
of sunspots and coronal holes can provide clues as to its subsurface structure. Insight
relative to the solar body can also be gained by recognizing that the Sun must exist in the
condensed state and support a discrete lattice structure, as required for the production
of its continuous spectrum. In this regard, the layered liquid metallic hydrogen lattice
advanced as a condensed model of the Sun (Robitaille P.M. Liquid Metallic Hydrogen:
A Building Block for the Liquid Sun.Progr. Phys., 2011, v. 3, 60–74; Robitaille P.M.
Liquid Metallic Hydrogen II: A Critical Assessment of Current and Primordial Helium
Levels in Sun. Progr. Phys., 2013, v. 2, 35–47; Robitaille J.C. and Robitaille P.M.
Liquid Metallic Hydrogen III. Intercalation and Lattice Exclusion Versus Gravitational
Settling and Their Consequences Relative to Internal Structure, Surface Activity, and
Solar Winds in the Sun.Progr. Phys., 2013, v. 2, in press) provides the ability to add
structure to the solar interior. This constitutes a significant advantage over the gaseous
solar models. In fact, a layered liquid metallic hydrogen lattice and the associated
intercalation of non-hydrogen elements can help to account for the position of sunspots
and coronal holes. At the same time, this model provides a greater understanding of the
mechanisms which drive solar winds and activity.

As the laws of a liquid are different from those of
a gas, a liquid star will behave differently from a
gaseous star, and before we can predict the be-
haviour of a star we must know the state of the mat-
ter composing it.

James Hopwood Jeans, 1928 [1]

Coronal holes are strange entities, in part due to their sparse
nature [2,3]. At first glance, they seem to offer little of value
with respect to our understanding of the Sun. What can be
gained from “looking into a hole”? Within the context of the
liquid hydrogen model of the Sun (see [4–10] and references
therein), there is a great deal to be learned.

In the broadest terms, coronal holes can be described as
follows: “Coronal holes are regions of low-density plasma
on the Sun that have magnetic fields that open freely into
interplanetary space. During times of low activity, coronal
holes cover the north and south polar caps of the Sun. Dur-
ing more active periods, coronal holes can exist at all solar
latitudes, but they may only persist for several solar rotations
before evolving into a different magnetic configuration. Ion-
ized atoms and electrons flow along the open magnetic fields
in coronal holes to form the high speed component of the so-
lar wind” [2]. When the Sun is quiet, coronal holes appear
to be“anchored” onto the polar regions of solar surface (see
Fig. 1): “coronal holes, in fact, appear to display rigid rota-
tion as if they are attached to the solar body”[11, p. 24].

The anchoring of coronal holes to the solar surface can
be viewed as the twenty-second line of evidence that the Sun

Fig. 1: Schematic representation of coronal holes over the polar caps
of a quiet Sun. This figure is an adaptation based on Fig. 2 in [2].

is comprised of condensed matter. The other lines of evi-
dence have already been published (see [4–10] and references
therein). Rigid rotation and anchoring cannot be easily ex-
plained using the gaseous solar models. As a result, the an-
choring of coronal holes is best understood in the context of
a condensed solar model.

In order to comprehend why the Sun possesses coronal
holes, it is best to turn to the lattice configuration of the solar
material. Robitaille and Robitaille [7] have recently advanced
the hypothesis that the Sun is comprised of liquid metallic
hydrogen, wherein protons are arranged in layered hexagonal
planes and all other atoms exist in intercalate layers located
between the hydrogen planes. Such a structure has been based

Pierre-Marie Robitaille. Insight Relative to Coronal Holes, Sunspots, and Solar Activity. L7



Volume 2 PROGRESS IN PHYSICS April, 2013

on the need to properly explain the thermal emission of the
Sun [5], while at the same time, taking into account the struc-
tural tendencies of layered materials such as graphite [7].

Within the intercalation compounds of graphite, elemen-
tal diffusion orthogonal to the hexagonal carbon planes is hin-
dered, while rapid diffusion can occur in the intercalate re-
gions between the planes (see Fig. 2 in [7]). The same ten-
dencies have been inferred to exist within the liquid metallic
hydrogen lattice of the Sun: elemental diffusion is restricted
in the direction orthogonal to the hexagonal proton planes and
is greatly facilitated within each intercalate layer [7].

Hence, in order to explain the existence of coronal holes,
the hexagonal liquid metallic hydrogen lattice of the Sun must
be placed in a direction which is orthogonal to the solar sur-
face at the poles. This would explain why the expulsion of
ions and electrons from the Sun is facilitated. The subsurface
orthogonal placement of the liquid metallic hydrogen hexag-
onal planes thus accounts for the origin of fast solar winds
in these regions. During the quiet periods of the solar cycle,
the relative orientation of the hydrogen lattice at the poles
forms conduits to drive non-hydrogen elements out of the so-
lar body. As a result, the travel time from the solar core to
the surface may well be extremely brief. Given a solar ra-
dius of∼696,342 km (see [10] and references therein) and a
fast solar wind of 800 km/s [2], an atom could conceivably
leave the solid core of the Sun and escape at the level of the
photosphere on the poles in only fifteen minutes.

Nonetheless, during the quiet period of the solar cycle,
the equatorial regions of the Sun are unable to sustain fast
solar winds. This is likely to occur because the hexagonal
layers of liquid metallic hydrogen are parallel to the solar
surface in this region. Such an arrangement would restrict
the free diffusion of elements from the solar body near the
equator, resulting in the absence of fast solar winds. Only the
slow component of the solar wind would be observed, pre-
cisely because of restricted diffusion of the elements across
the hexagonal hydrogen planes [7]. As a result, the concen-
trations of non-hydrogen elements in the equatorial region of
the interior would increase. Eventually, the Sun would be-
come active in order to finally expel these elements from the
hydrogen lattice, as was previously stated [7].

Sunspots would be created as hexagonal hydrogen layers
are propelled through the solar surface by the force of un-
derlying non-hydrogen elements which have now entered the
gaseous phase [7]. This has been illustrated in Fig. 2. Note
how the “buckling” of metallic hydrogen could result in the
simultaneous formation of two sunspots of opposite polarity
(Fig 2, as is usually observed), or of a single sunspot (Fig.
3, as is sometimes observed). Such as scenario also explains
why the Sun has relatively “erratic” field lines. These con-
stitute simple extensions of a metallic hydrogen lattice whose
internal orientation can be highly variable.

The existence of coronal holes has implications relative
to the density of the solar atmosphere. Currently, the gaseous

Fig. 2: Schematic representation of the appearance of a pair of
sunspots on an active solar surface. The horizontal thick line il-
lustrates the location of the photosphere, the thin lines the layers
of metallic hydrogen, and the dashed lines the magnetic field. The
two shaded circles outline the position of sunspots. In the lower
portion of the figure, the layers of metallic hydrogen are below the
level of the photosphere, but are being pushed up by intercalate ele-
ments which have entered the gas phase [7]. In the upper portion of
the figure, the layers of metallic hydrogen have now broken through
the photospheric level. The two sunspots are being linked solely
by magnetic field lines, as the metallic hydrogen which once con-
tained them has vaporized into the solar atmosphere. This figure is
an adaptation based on Fig. 22 in [12].

solar models are used to assign photospheric and chromo-
spheric densities on the order of 10−7 g/cm3 and 10−12 g/cm3,
respectively [12]. In contrast, within the context of the liquid
metallic hydrogen model, a photospheric density of∼1 g/cm3

is invoked [4–10].
At the same time, the presence of coronal holes directly

suggests that chromospheric and coronal densities cannot be
spherically uniform. When the Sun is quiet, coronal and chro-
mospheric densities should be lower at the poles and possibly
much higher at the equator. Fast solar winds do not typi-
cally exist in the equatorial region of the quiet Sun. In fact,
it appears that the presence of magnetic field lines restrict the
outward movement of ions and electrons away from the solar
surface under such conditions. Such realities, when combined
with the enormous mass of the Sun, suggest that, contrary to
the gaseous solar models, the density of the chromosphere, in
the equatorial regions of the quiet Sun, may be many orders
of magnitude higher than currently believed. It would be rea-
sonable to suggest that atmospheric densities just above the
photospheric layer might far surpass those currently associ-
ated with the density of the Earth’s atmosphere at sea level.
This highlights the problems with extracting densities from
regions of the solar atmosphere which are clearly not in local
thermal equilibrium, as previously discussed [6].

The liquid metallic hydrogen model [5–7] provides an ex-
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Fig. 3: Schematic representation of a single sunspot on a quiet Sun
as in Fig. 2. In this figure, the layers of metallic hydrogen are below
the level of the photosphere, but are being pushed up by an adjacent
layer of metallic hydrogen which in turn has been displaced by inter-
calate elements which have entered the gas phase [7]. The sunspot
is characterized by strong open magnetic field lines, as the metallic
hydrogen which once contained them has vaporized into the solar
atmosphere.

cellent framework through which solar activity can be under-
stood. Over the course of the solar cycle, the Sun is alter-
natively degassing the poles and then the equator. It does so
through the orientation of its liquid metallic hydrogen lattice.
When the Sun is quiet, much of its interior is constantly be-
ing degassed through the action of the fast solar winds exit-
ing at the poles. During this time, degassing is restricted over
equatorial regions. Eventually, the Sun becomes active. This
change in state is directly associated with degassing the solar
interior in the regions of the equator. This helps to explain
why sunspots and high energy flares are always restricted to
the lower latitudes. They occur in order to degas the equa-
torial regions of the solar interior. Such a problem does not
occur at the poles, since, during the quiet solar period, those
internal regions are constantly being degassed by the fast so-
lar winds.

In the end, how the liquid metallic hydrogen layers are
oriented within the solar interior reveals a great deal with re-
spect to the formation of sunspots, coronal holes, and mea-
sures of solar activity. The magnetic field lines that are ob-
served above the photosphere are a direct consequence of this
orientation. Conversely, in the gaseous models of the Sun, the
origin of magnetic field lines, coronal holes, sunspots, flares,
coronal mass ejections, prominences, and fast or slow solar
winds remain areas of profound mystery. This is precisely
because these models can offer no structural support for the
existence of these phenomena. In order to begin to understand
the Sun, structure is required. The continuous solar spectrum
requires a lattice for formation. The ideal lattice would re-
semble the layered one adopted by graphite, as dictated by
the needs of thermal emission. Wigner and Huntington have
already proposed that metallic hydrogen could adopt a simi-

lar lattice [13], creating an ideal structural foundation for the
Sun. Furthermore, layered materials, which mimic graphite
in their structure, should be prone to forming intercalate re-
gions, as a consequence of lattice exclusion forces [7]. In this
regard, the author believes that lattice exclusion, as first pos-
tulated by Joseph Christophe Robitaille, along with the for-
mation of intercalate regions within layered metallic hydro-
gen [7], constitutes the central thesis for understanding solar
structure and activity.
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Coronal rain represents blobs of solar material with a widthof ∼300 km and a length of
∼700 km which are falling from the active region of the corona towards the solar surface
along loop-like paths. Conversely, coronal showers are comprised of much larger bulks
of matter, or clumps of solar rain. Beyond coronal rain and showers, the expulsion
of solar matter from the surface, whether through flares, prominences, or coronal mass
ejections, can result in massive disruptions which have been observed to rise far into the
corona, return towards the Sun, and splashdown onto the photosphere. The existence of
coronal rain and the splashdown of mass ejections onto the solar surface constitute the
twenty-third and twenty-fourth lines of evidence that the Sun is condensed matter.

As the laws of a liquid are different from those of
a gas, a liquid star will behave differently from a
gaseous star, and before we can predict the be-
haviour of a star we must know the state of the mat-
ter composing it.

James Hopwood Jeans, 1928 [1]

The presence of coronal rain within the active atmosphere
of the Sun has been recognized for less than a decade [2–5].
Coronal rain corresponds to“cool and dense matter and not
waves” [5]. It appears to be“ubiquitous” and“composed of
a myriad of small blobs, with sizes that are, on average 300
km in width and 700 km in length”[5]. When it aggregates,
coronal rain can lead to larger clumps called“showers” [5].
Their rate of descent towards the solar surface can approach
120 km s−1. However, such rates of descent are inferior to
those inferred from the Sun’s gravitational field, suggesting
that they are restricted in their downward motion by gas pres-
sure in the underlying solar atmosphere [5]. These findings
are incongruent with the idea that the density of the chromo-
sphere is in the 10−12 g/cm3 range, as currently advanced by
the gaseous solar models [6]. Such densities would be asso-
ciated with very good vacuums on Earth. As such, it does
not seem reasonable, based on these findings, that the chro-
mospheric densities associated with the gaseous models can
be correct [7]. At the same time, theoretical models relative
to coronal rain now rely on“heating and condensation cy-
cles” [4, 5], despite the fact that the gaseous models of the
Sun preclude all material condensation. In the end, it remains
more plausible to account for the behavior of coronal rain
by invoking true condensation, as seen in the liquid metallic
model of the Sun [7]. This constitutes the twenty-third line
of evidence that the Sun is comprised of condensed matter
(see [7] and references therein for the others).

In addition to coronal rain, the mass ejection event, wit-
nessed on June 7, 2011, was particularly instructive relative

to the nature of the Sun [8,9]. On that day, a tremendous dis-
ruption occurred on the solar surface which projected material
well into the corona, prior to its subsequent descent back onto
the Sun. Upon striking the solar body, the multiple points of
impact immediately brightened – revealing clear and distinct
surface behavior on the photosphere [9]. Such visualizations
highlight that the solar surface is not an optical illusion,but,
indeed, acts as a real surface. Such “splashdowns” constitute
the twenty-fourth line of evidence that the solar body is com-
prised of condensed matter. In addition, they provide comple-
mentary evidence that flares, prominences, and coronal mass
ejections are also characterized by the existence, at leastin
part, of condensed matter.

Impressive disruptions of the solar surface have also been
associated with comets, although intial analysis apparently
revealed that such events were not associated with the impact
of such objects onto the photosphere [10]. In the end, addi-
tional study may well reveal that comets have the ability to
disrupt the solar surface, either directly through impact or in-
directly by disrupting magnetic field lines above the surface.

Such visualizations highlight that the solar surface is not
an optical illusion. It appears and behaves as a true liquid
surface. In addition, coronal rains and mass ejection splash-
downs indicate that the outer atmosphere of the Sun can sup-
port localized regions of condensed matter.
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The apparent depletion of lithium represents one of the greatest challenges to modern
gaseous solar models. As a result, lithium has been hypothesized to undergo nuclear
burning deep within the Sun. Conversely, extremely low lithium abundances can be
easily accounted for within the liquid metallic hydrogen model, as lithium has been
hypothesized to greatly stabilize the formation of metallic hydrogen (E. Zurek et al.
A little bit of lithium does a lot for hydrogen.Proc. Nat. Acad. Sci. USA, 2009, v. 106,
no. 42, 17640–17643). Hence, the abundances of lithium on the solar surface can be
explained, not by requiring the nuclear burning of this element, but rather, by suggesting
that the Sun is retaining lithium within the solar body in order to help stabilize its
liquid metallic hydrogen lattice. Unlike lithium, many of the other elements synthesized
within the Sun should experience powerful lattice exclusionary forces as they are driven
out of the intercalate regions between the layered liquid metallic hydrogen hexagonal
planes (Robitaille J.C. and Robitaille P.M. Liquid Metallic Hydrogen III. Intercalation
and Lattice Exclusion Versus Gravitational Settling and Their Consequences Relative
to Internal Structure, Surface Activity, and Solar Winds inthe Sun.Progr. Phys., 2013,
v. 2, in press). As for lithium, its stabilizing role within the solar interior helps to account
for the lack of this element on the surface of the Sun.

As the laws of a liquid are different from those of
a gas, a liquid star will behave differently from a
gaseous star, and before we can predict the be-
haviour of a star we must know the state of the mat-
ter composing it.

James Hopwood Jeans, 1928 [1]

Solar lithium abundance [2], as determined at the photo-
spheric level, are reduced∼140 fold when compared to me-
teorites [3]. Such a paucity of lithium has presented a chal-
lenge for the gaseous models of the stars, as they attempt to
account for the relative absence of this element on the solar
surface [2,3]. Consequently, solar scientists hypothesized that
lithium is being burned deep within the convection zone [2,3].
Lithium is thought to be easily destroyed [7Li(p,α)4He] at
temperatures above 2.6 x 106 K [4]. Mild mixing of lithium
also helps to account for the surface depletion [4–6]. In this
regard, it has been postulated that“stars that host planets ex-
perience more mixing in their internal environment”[7]. As a
result, those who adhere to the gaseous models have proposed
that greater lithium depletion occurs in stars that have orbit-
ing planets [8], although such claims have been refuted [9].
Nonetheless, such works [7, 9] highlight the significance of
the solar lithium abundance problem in astrophysics. In this
regard, solar lithium abundances might be better understood
within the context of the liquid metallic hydrogen model of
the Sun [10–13].

Along with Neil Ashcroft, Eva Zurek and her cowork-
ers recently advanced [14] that lithium could greatly stabilize

the formation of metallic hydrogen [15,16]. This finding has
tremendous implication relative to understanding the fateof
lithium within the Sun, if indeed, the solar matrix is com-
prised of liquid metallic hydrogen [10–13].

When the Sun was hypothesized to be built from liquid
metallic hydrogen, it was important that the resulting lattice
adopt a layered structure similar to graphite in order to prop-
erly account for thermal emission [11]. Thus, it was fortunate
that Wigner and Huntington [15] had said that metallic hydro-
gen could exist in a layered lattice resembling graphite. Atthe
same time, since graphite was known to form intercalation
compounds, the extension of such chemistry to the layered
form of metallic hydrogen proved natural [13]. Therefore, it
was thought that the Sun would maintain the integrity of its
layered hexagonal hydrogen lattice and associated conduc-
tion bands, by permitting non-hydrogen elements to reside
within intercalation zones [13]. In addition, since the interca-
lation compounds of graphite are known to undergo exfolia-
tive processes wherein intercalate atoms are driven out of the
graphitic structure, the same mechanism was applied to the
Sun [13]. Solar activity became linked to lattice exclusionand
the associated expulsion of non-hydrogen atoms from the so-
lar interior [13]. Nonetheless, it was already recognized [11]
that lithium should stabilize the metallic hydrogen lattice. As
a result, unlike the case for most elements, the Sun should
not be working to expel lithium. Such a scenario elegantly
accounts for the significant reductions in lithium abundances
observed on the surface of the Sun while, at the same time,
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permitting elevated lithium levels in meteorites, or otherob-
jects, which have been first synthesized within the stars. Con-
versely, the idea that lithium is being burned preferentially
within the stars, as proposed by the gaseous models, makes
it difficult to account for elevated lithium levels elsewhere in
the astrophysical world. Herein lies the merit of sequestering
lithium within the solar body and permitting it to participate
in nuclear reactions, without preferential burning, in thecon-
text of the liquid metallic hydrogen model [10–13].
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On the Propagation of Light in an Expanding Universe

Yuri Heymann

3 rue Chandieu, 1202 Geneva, Switzerland. E-mail: y.heymann@yahoo.com

The equation of the propagation of light in an expanding Universe is derived based on
the definition of comoving distances. A numerical method is proposed to solve this
equation jointly with the Friedmann equation. As the equation of the propagation of
light in an expanding Universe defines a horizon of the visible Universe, this puts a con-
straint on cosmological models in order to be consistent with an upper limit for redshifts
observed from galaxies. This puzzle is challenging currentexpansionist cosmological
models.

1 Introduction

Euclidean Distances were introduced in [1] in order to derive
the galactic density profile which is the evolution of galac-
tic density over time. We define the Euclidean Distance as
the equivalent distance that would be traversed by a photon
between the time it is emitted and the time it reaches the ob-
server if there were no expansion of the Universe. The co-
moving distance is the distance between two points measured
along a path defined at the present cosmological time. The
comoving distance between objects moving with the Hubble
flow is deemed to remain constant in time. The Euclidean
Distance is also the proper distance at the time of emission
for a source of light, which is the comoving distance multi-
plied by the scale factor at the time of emission. From this
relationship, the equation of the propagation of light in anex-
panding Universe is derived.

2 Equation of the propagation of light in an expanding
Universe

As the Euclidean Distance is the proper distance at the time
light was emitted from a source of light, it is equal to the co-
moving distance times the scale factor at the time of emission.
By convention the scale factor is equal to one at the present
time. Therefore, we have

y = a(t) χ , (1)

and

χ = c
∫ Tb

t=Tb−T

dt
a(t)
, (2)

whereχ is the comoving distance,y the Euclidean Distance,
a the scale factor,Tb the time from the hypothetical big bang
(which is the present time), andT the light travel time be-
tween observer and the source of light.

By differentiating (1) with respect to time we get:

dy
dt
= ȧχ + a χ̇ . (3)

As I =
∫ t2

t1
f (t) dt leads todI

dt =
dt2
dt f (t2) − dt1

dt f (t1), from (2)
we get:

χ̇ = −
c

a(t)
. (4)

As H(t) = ȧ/a, (1) leads to:

ȧχ = yH(t) , (5)

Combining (3), (4) and (5) we get:

dy
dt
= −c+ H(t) y , (6)

wherey is the Euclidean Distance between the observer and
a photon moving towards the observer.

We have just derived the equation of the propagation of
light in an expanding Universe from the definition of comov-
ing distances. This equation defines a horizon of the visible
Universe atdydt = 0.

3 Numerical method to compute Euclidean Distances
from the Friedmann equation

Equation (6) can be solved numerically using a discretization
method. Let us sett = Tb − T with Tb the hypothetical time
since the big bang, andT the light travel time between ob-
server and the photon. Therefore,dt = −dT, and (6) can be
rewritten as follows:

dy
dT
= c− H(T) y . (7)

By discretization over small intervals∆T, (7) leads to:

yn+1 − yn

∆T
= c− H(Tn) yn . (8)

Therefore, we obtain:

yn+1 = c∆T + yn (1− H(Tn)∆T) , (9)

with initial conditions:y0 = 0 andT0 = 0, andTn+1 = Tn +

∆T.
The Friedmann equation expressesH as a function of red-

shift z. We still need a description ofH as a function ofT in
order to solve (9). For this purpose we compute a curve for
the light travel timeT versus redshiftz using the Friedmann
equation, with (11). Then we fit an empirical equation for
H(T) over the curveH(z) versusT.

Yuri Heymann. On the Propagation of Light in an Expanding Universe 3
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The light travel time versus redshift is computed as fol-
lows (derived fromdt = da/ȧ):

T = c
∫ 1

1/(1+z)

da
ȧ
. (10)

BecauseH = ȧ/a, (10) can be rewritten as follows:

T = c
∫ 1

1/(1+z)

da
H a
. (11)

This integral is solved numerically using a solver such as
Matlab.

The Friedmann equation that is used in this problem is as
follows:

H = H0

√

ΩRa−4 + ΩMa−3 + Ωka−2 + ΩΛ , (12)

with ΩR the radiation energy density today,ΩM the matter
density today,Ωk the spatial curvature density today, andΩΛ
a cosmological constant for the vacuum energy density today.
We may alternatively expressH as a function of redshift from
cosmological redshift relationship by settinga = 1

1+z, where
the scale factor is equal to unity as the present time.

4 Results and discussion

First let us solve the above problem with the assumptions
used in the lambda-cdm model [2]. The radiation energy
density is generally considered neglegible, henceΩR = 0.
The common assumption in the lambda-cdm is thatΩk is
equal to zero, andΩΛ = 1 − ΩM. To obtain a description
of H as a function ofT, we fit a polynomial function of
order six to theH(z) curve, which gives the following em-
pirical formula forΩM = 0.3 andH0 = 71km s−1 Mpc−1:
H(T) = 0.074663−0.049672T+0.056296T2

−0.021203T3+

0.0036443T4
−0.00029054T5+0.0000088134T6, with T in

Glyr and H(T) in Glyr−1. From the discretization method
(9) we obtain an horizon of the visible Universe at redshift
z = 1.6. A variant of the lambda-cdm model would be to re-
move the cosmological constant for the vacuum energy den-
sity (ΩΛ = 0), and replace this term by the spatial curvature
densityΩk = 1− ΩM. This variant gives almost the same re-
sult with a horizon of the visible Universe at redshiftz= 1.5.
On the other hand ifH is constant over time, the horizon of
the visible Universe would have a redshift that tends to infin-
ity.

The results obtained with the equation we derived for the
propagation of light solved jointly with the Friedmann equa-
tion are inconsistent with observations as it is common to ob-
serve galaxies with redshifts up to 6, and more recently be-
yond 8.5 [3]. This problem has been raised in the past – the
recession velocity of all galaxies withz≥ 1.5 has been found
to exceed the speed of light in all viable cosmological mod-
els [4]. A calculation based on null geodesics using gravita-
tional radius is proposed in [5]. Their hypothesis is that the

comoving distance and proper distance do not track the prop-
agation of light through the Hubble flow. The puzzle of the
propagation of light in an expanding Universe and the horizon
of the visible Universe appears to be an interesting challenge
for current expansionist cosmological models.
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By differentiating luminosity distance with respect to time usingits standard formula
we find that the peculiar velocity is a time varying velocity of light. Therefore, a new
definition of the luminosity distance is provided such that the peculiar velocity is equal
to c. Using this definition a Hubble constantH0 = 67.3 km s−1 Mpc−1 is obtained from
supernovae data.

1 Introduction

The luminosity distance is an important concept in cosmol-
ogy as this is the distance measure obtained from supernovae
data using the distance modulus. The standard formula of
the luminosity distance isdL = (1 + z) dM = dM/a, where
dL is the luminosity distance anddM the comoving transverse
distance [1, p. 421]. As shown below this definition implies
that the peculiar velocity is a time varying velocity of light,
and therefore a new definition is proposed where the speed of
light is constant.

2 Definition of the luminosity distance and the peculiar
velocity from light propagation

From there we will use the notationrL for the luminosity dis-
tance as it represents the radius of a sphere for light propagat-
ing from the center which is the point of emission of the light
source. The standard formula of the luminosity distance fora
flat Universe is as follows:

rL =
χ

a
, (1)

and

χ = c
∫ t0

0

dt
a
, (2)

whererL is the luminosity distance,χ the comoving distance,
a the scale factor at the time of emission,t the time which is
equal to zero at the origin set at the center of the sphere from
which light is emitted, andt0 the time when light reaches the
earth.

Let us apply the change of coordinatesT = t0− t, whereT
is the light travel time between the observer and the photon.
Hence,dt = −dT , and (2) can be rewritten as follows:

χ = −c
∫ 0

T

dT
a
= c
∫ T

0

dT
a
. (3)

By differentiating (1) with respect toT we get:

drL

dT
=
χ̇

a
−

ȧ
a2
χ . (4)

As I =
∫ t2

t1
f (t) dt leads todI

dt =
dt2
dt f (t2) − dt1

dt f (t1), from (3)
we get:

χ̇ =
c
a
. (5)

Using (1) we get:
ȧ
a2
χ =

ȧ
a

rL . (6)

BecauseH = 1
a

da
dt = −

1
a

da
dT , equation (6) can be rewritten as

follows:
ȧ
a2
χ = −H rL . (7)

Combining (4), (5) and (7) we get:

drL

dT
=

c
a2
+ H rL . (8)

The termH rL represents the expansion for the radius of our
sphere, andc

a2 is the peculiar velocity. From light propaga-
tion we see that the standard formula of luminosity distance
implies a time varying velocity of light.

A new equation is proposed for the luminosity distance
where the peculiar velocity is always equal toc. Considering
a sphere of radiusr′L for the propagation of light emitted from
a point at the center, and that the sphere inflates over time due
to the expansion of the Universe and the velocity of light, we
obtain:

dr′L
dT
= c + H r′L , (9)

with boundary conditionr′L = 0 at T = 0 . Wherer′L is the
luminosity distance,T the light travel time between emission
and reception of the light source, andH the Hubble constant
at timeT .

3 Solving the equation of the luminosity distance

In this section we assume that the Hubble constant does not
vary over time and is always equal toHo.

By integrating (9) we get:

r′L =
c

H0

(

exp(H0 T ) − 1
)

. (10)

This equation can be rewritten as follows:

T =
1

H0
ln
(

1+
H0

c
r′L

)

. (11)

The expression of the light travel time versus redshift is as
follows:

T =
∫ 1

1/(1+z)

da
H a
=

1
H0

ln(1+ z) . (12)
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By combining (11) and (12) we get:

r′L =
c

H0
z . (13)

4 Calculation of the Hubble constant from supernovae
data

Let us compute the Hubble constant from supernovae using
the relationship in (13) . In order to compute the luminosity
distance we use the redshift adjusted distance modulus pro-
vided in [2] which is as follows:

m − M = −5+ 5 logr′L + 2.5 log(1+ z) . (14)

The distance modulusµ = m − M is the difference between
the apparent magnitudem and the absolute magnitudeM.

Fig. 1: Luminosity distance in Glyr versus redshift plot forsuper-
novae. Data source: http://supernova.lbl.gov/Union/

In Fig. 1 we have a plot of the luminosity distance versus
redshift that was obtained with (14) using supernovae data.
This plot is rectilinear with a slope of 14.65 where the lumi-
nosity distance is expressed inGlyr (billion light years). The
Hubble constant which is the inverse of the slope from (13) is
equal toH0 = 67.3 kms−1 Mpc−1.

5 Conclusion

In this study it has been shown that the standard formula of
the luminosity distance implies that the peculiar velocityis a
time varying velocity of light. Given our choice for the lumi-
nosity distance equation which is based on a peculiar velocity
always equal toc, we find that the solution to this equation
requires a Hubble constant that does not change over time in
order to fit the supernovae data.
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In this article, the gravitational scalar potential due to an oscillating electric dipole an-
tenna placed in empty space is derived. The gravitational potential obtained propagates
as a wave. The gravitational waves have phase velocity equalto the speed of light in
vacuum (c) at the equatorial plane of the electric dipole antenna, unlike electromagnetic
waves from the dipole antenna that cancel out at the equatorial plane due to charge
symmetry.

1 Introduction

Gravitational waves were predicted to exist by Albert Einstein
in 1916 on the basis of the General Theory of Relativity. They
are usually produced in an interaction between two or more
compact masses. Such interactions include the binary orbitof
two black holes, a merge of two galaxies, or two neutron stars
orbiting each other. As the black holes, stars, or galaxies orbit
each other, they send out waves of “gravitational radiation”
that reach the Earth. A lot of efforts have been made over
the years to detect these very weak waves. In this article,
we show theoretically, how the gravitational potential of an
electric dipole antenna placed in empty space propagates as
gravitational waves.

2 Gravitational radiation from an electric dipole an-
tenna

Recall that an electric dipole antenna is a pair of conduct-
ing bodies (usually spheres or rectangular plates) of finite
capacitance connected by a thin wire of negligible capaci-
tance through an oscillator. The charges reside on the con-
ducting bodies (electrodes) but may travel from one to the
other through the wire. The oscillator causes the charges to
be built up on the electrodes such that at any time they are
equal and opposite and the variation is sinusoidal with angu-
lar frequencyω [1].

Let the electric dipole antenna be represented by a pair of
spheres seperated by a distances with a sinusoidal chargeQ
as shown in figure 1.

If the total mass of each sphere at any time isM0 and
its radiusRs and assuming an instantaneous mass distribution
which varies with the motion of electrons, then at each time
t, the mass densityρ0 is given by

ρ0 = Λ0 + ρe sinωt (1)

where

Λ0 =
M0

4πR3
s

and

ρe =
Nme

4πR3
s

Fig. 1: Amplified diagram of an electric dipole antenna.

whereN is the number of electrons moving in the dipole an-
tenna andme is the electronic mass. For this mass distribu-
tion, the gravitational field equation can be written as [2]

∇
2Φ =

{

0 if r > R
4πGρ0 if r < R

(2)

Now, consider a unit mass placed at a pointR in empty
space, far off from the electric dipole as in figure 1, then by
Newton’s dynamical theory, the gravitational scalar potential
Φ at R at any timet can be defined as

Φ(r̄, t) =
GMa(r̄a, t)
|r̄ − r̄a|

+
GMb(r̄b, t)
|r̄ − r̄b|

. (3)

To maintain equal and opposite charges at the electrodes, the
sinusoidal movement of electrons must be in such a way that
the masses of the two spheres are the same and determined at
pointR to be given by

Ma(r̄a, t) = Mb(r̄b, t) = M0eiω(t′). (4)

Thus, the gravitational potential atR becomes

Φ(r̄, t) =
GM0eiω(t′)

ra
+

GM0eiω(t′′)

rb
. (5)
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Using the fact that gravitational effects propagate at the
speed of lightc from General Relativity [3], equation (5) can
be written as

Φ(r̄, t) =
GM0eiω(t− ra

c )

ra
+

GM0eiω(t−
rb
c )

rb
. (6)

From figure 1 and the cosine rule it can be shown that

ra ≈ r −
s
2

cosθ = r
(

1−
s

2r
cosθ

)

and
rb ≈ r +

s
2

cosθ = r
(

1+
s

2r
cosθ

)

and assuming thatr ≫ s then

t −
ra

c
= t −

r
c
+

s
2c

cosθ (7)

t −
rb

c
= t −

r
c
−

s
2c

cosθ. (8)

Substituting equations (7) and (8) into equation (6) yields

Φ(r̄, t) =
GM0

r
eiω(t− r

c )













e
is
2Ż cosθ

1− s
2r cosθ

+
e−

is
2Ż cosθ

1− s
2r cosθ













(9)

whereŻ = λ
2π =

c
ω

. λ is the wavelength of the gravitational
wave.

Series expansion of the exponential term and denomina-
tor of the fractions in the brackets of equation (9) to the first
power of s

Ż
and s

r yields

Φ(r̄, t) =
2GM0

rŻ
eiω(t− r

c )

(

Ż +
is2

4r
cos2 θ

)

. (10)

Equation (10) is valid provideds << r ands << λ for arbi-
trary s andλ.

But from complex analysis it can be shown that,

Ż +
is2

4r
cos2 θ =

(

Ż
2 +

s4 cos4 θ
16r2

)1/2

eiσ (11)

where

σ = arctan

(

s4 cos4 θ
16r2Ż2

)

.

Thus equation (10) becomes,

Φ(r̄, t) =
2GM0

rŻ
eiω(t− r

c )

(

Ż
2 +

s4 cos4 θ
16r2

)1/2

eiσ (12)

or

Φ(r̄, t) =
2GM0

rŻ

(

Ż
2 +

s4 cos4 θ
16r2

)1/2

eiω(t− r
c+

1
ω
σ). (13)

From equation (13), it is deduced that the gravitational poten-
tial propagates as a wave with phaset − r

c +
1
ω
σ.

The following remarks can be deduced from the expres-
sion of gravitational potential in this field:

• For
s4 cos4 θ ≫ 16r2

Ż
2

it is clear that

arctan

(

s4 cos4 θ
16r2Ż2

)

≈
π

2
.

Thus in this case, the phase velocity of the gravitational
potential isc.

• If s4 cos4 θ is not much greater than 16r2
Ż

2 then the
phase velocity of propagation is larger thanc. This pro-
vides a crucial condition for the propagation of gravi-
tational waves from an electric dipole antenna at veloc-
ities greater than the speed of light.

• At the equatorial plane of the electric dipole antenna,
θ = π2 and

Φ(r̄, t) =
2GM0

r
eiω(t− r

c ).

This indicates that at the equatorial plane; the gravita-
tional wave propagates at a phase velocity ofc, unlike
in the case of electromagnetic waves, where fields of
the two electrodes cancel out each other due to charge
symmetry.

• Also, the gravitational field varies as1r and thus the
wave dies out as one moves away from the dipole an-
tenna. This is in agreement with the prediction by
Astrophysicists that as gravitational waves travel from
galaxies towards the Earth, their intensities die off and
they become too weak when they get to planet Earth.

3 Conclusion

The major significance of this article is that, although the
electric dipole antenna is not made up of massive compact
bodies, the generation of gravitational radiation has been
shown theoretically. Hence, this article highlights the fact
that gravitational radiation can be produced by an interaction
of two masses irrespective of their sizes. The use of gravita-
tional potential which is a dynamical parameter also signifies
that the existence of gravitational waves can also be predicted
using Newton’s theory of gravitation.
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The derivation of the Heisenberg Uncertainty Principle (HUP) from the Uncertainty
Theorem of Fourier Transform theory demonstrates that the HUP arises from the de-
pendency of momentum on wave number that exists at the quantum level. It also es-
tablishes that the HUP is purely a relationship between the effective widths of Fourier
transform pairs of variables (i.e. conjugate variables). We note that the HUP is not a
quantum mechanical measurement principleper se. We introduce the Quantum Me-
chanical equivalent of the Nyquist-Shannon Sampling Theorem of Fourier Transform
theory, and show that it is a better principle to describe themeasurement limitations of
Quantum Mechanics. We show that Brillouin zones in Solid State Physics are a manifes-
tation of the Nyquist-Shannon Sampling Theorem at the quantum level. By comparison
with other fields where Fourier Transform theory is used, we propose that we need to
discern between measurement limitations and inherent limitations when interpreting the
impact of the HUP on the nature of the quantum level. We further propose that while
measurement limitations result in our perception of indeterminism at the quantum level,
there is no evidence that there are any inherent limitationsat the quantum level, based
on the Nyquist-Shannon Sampling Theorem.

1 Introduction

The Heisenberg Uncertainty Principle is a cornerstone of qua-
ntum mechanics. As noted by Hughes [1, see pp. 265–266],
the interpretation of the Principle varies

• from expressing a limitation on measurement as orig-
inally derived by Heisenberg [2] (Heisenberg’s micro-
scope),

• to being the variance of a measurement carried out on
an ensemble of particles [3] [4],

• to being inherent to a microsystem [5], meaning essen-
tially that there is an indeterminism to the natural world
which is a basic characteristic of the quantum level.

Greenstein retains only the first and last alternatives [6, see
p. 51].

However, the Heisenberg Uncertainty Principle can be de-
rived from considerations which clearly demonstate that these
interpretations of the principle are not required by its mathe-
matical formulation. This derivation, based on the application
of Fourier methods, is given in various mathematical and en-
gineering textbooks, for example [7, see p. 141].

2 Consistent derivation of the Heisenberg Uncertainty
Principle

In the Fourier transform literature, the Heisenberg Uncertain-
ty Principle is derived from a general theorem of Fourier the-
ory called the Uncertainty Theorem [7]. This theorem states
that the effective width of a function times the effective width
of its transform cannot be less than a minimum value given
by

W( f ) W( f̃ ) > 1/2 (1)

where f is the function of interest and̃f is its Fourier trans-
form. W( f ) is the effective width of functionf , defined by

|W( f )|2 =

∫ ∞
−∞ | f (u)|2[u− M( f )]2du

∫ ∞
−∞ | f (u)|2du

(2)

andM( f ) is the mean ordinate defined by

M( f ) =

∫ ∞
−∞ | f (u)|2udu
∫ ∞
−∞ | f (u)|2du

. (3)

There are several points that must be noted with respect
to this derivation:

Eq.(1) applies to a Fourier transform pair of variables.
Taking the simple case of timet and frequencyν to illustrate
the point: If we consider the functionf to be the function that
describes a time functiont, then the width of the function,
W( f ), can be denoted asW( f ) = ∆t. The Fourier transform
of functiont is the frequency functionν and the width of this
function can be denoted asW(t̃) = W(ν) = ∆ν. Substituting
in (1), the Uncertainty Theorem then yields

∆t∆ν > 1/2. (4)

However, if one wishes to use the circular frequencyω =
2πν instead, (4) becomes

∆t∆ω > π. (5)

It is thus necessary to take special care to clearly identifythe
Fourier transform variable used as it impacts the R.H.S. of
the resulting Uncertainty relation (see for example [8] and[9,
pp. 21–22]).
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Equations (4) and (5) above correspond to the following
definitions of the Fourier transform respectively [8]:

Equation (4):

f (t) =
∫ ∞

−∞
f̃ (ν) exp(2πiνt)dν (6)

f̃ (ν) =
∫ ∞

−∞
f (t) exp(−2πiνt)dt (7)

Equation (5):

f (t) =
1
2π

∫ ∞

−∞
f̃ (ω) exp(iωt)dω (8)

f̃ (ω) =
∫ ∞

−∞
f (t) exp(−iωt)dt (9)

Sometimes the factor 1/2π is distributed between the two
integrals (the Fourier and the Inverse Fourier Transform In-
tegrals) as 1/

√
2π. In Physics, (8) and (9) are preferred, as

this eliminates the cumbersome factor of 2π in the exponen-
tial (see for example [10, p. 12]), but care must then be taken
to ensure the resulting factor of 1/2π in (8) is propagated for-
ward in derivations using that definition.

Using the relationE = hν, whereh is Planck’s constant,
in (4) above, or the relationE = ~ω, where~ = h/2π, in
(5) above, one obtains the same statement of the Heisenberg
Uncertainty Principle namely

∆E∆t > h/2 (10)

in both cases.
Similarly for the positionx, if we consider the function

f to be the function that describes the positionx of a parti-
cle, then the width of the function,W( f ), can be denoted as
W( f ) = ∆x. The Fourier transform of functionx is the func-
tion x̃ = λ−1 and the width of this function can be denoted as
W(x̃) =W(λ−1) = ∆(λ−1) which we write as∆λ−1 for brevity.
You will note that we have not used the wavenumber function
k, as this is usually defined ask = 2π/λ (see for example [11]
and references). Substituting in (1), we obtain the relation

∆x∆λ−1
> 1/2. (11)

In terms of the wavenumberk, (11) becomes

∆x∆k > π. (12)

Given that the momentum of a quantum particle is given
by p = h/λ or by p = ~k, both (11) and (12) can be expressed
as

∆x∆p > h/2. (13)

Equations (10) and (13) are both different statements of the
Heisenberg Uncertainty Principle.

The R.H.S. of these equations is different from the usual
statement of the Heisenberg Uncertainty Principle where the

value~/2 is used instead of the valueh/2 obtained in this
analysis. The application of (4) to circular variables (i.e. us-
ing ω in (4) instead of (5)) would result in the (incorrect)
expression

∆t∆ω > 1/2 (14)

and the more commonly encountered (incorrect) expression

∆E∆t > ~/2. (15)

However, Heisenberg’s original derivation [2] had the R.
H.S. of (13) approximately equal toh, and Greenstein’s re-
derivation [6, see p. 47] of Heisenberg’s principle resultsin
the valueh/2. Kennard’s formal derivation [12] using stan-
dard deviations established the value of~/2 used today. This
would thus seem to be the reason for the use of the value~/2
in the formulation of the Heisenberg Uncertainty Principle.

Recently, Schürmann et al [13] have shown that in the
case of a single slit diffraction experiment, the standard devi-
ation of the momentum typically does not exist. They derive
the conditions under which the standard deviation of the mo-
mentum is finite, and show that the R.H.S. of the resulting
inequality satisfies (13). It thus seems that (13) is the more
general formulation of the Heisenberg Uncertainty Principle,
while the expression with the value~/2 derived using stan-
dard deviations is a more specific case.

Whether one uses~/2 orh/2 has little impact on the Hei-
senberg Uncertainty Principle as the R.H.S. is used to provide
an order of magnitude estimate of the effect considered. How-
ever, the difference becomes evident when we apply our re-
sults to the Brillouin zone formulation of Solid State Physics
(as will be seen in Section 5) since this now impacts calcula-
tions resulting from models that can be compared with exper-
imental values.

3 Interpretation of the Heisenberg Uncertainty Princi-
ple

This derivation demonstrates that the Heisenberg Uncertainty
Principle arises becausex andp form a Fourier transform pair
of variables. It is a characteristic of Quantum Mechanics that
conjugate variables are Fourier transform pairs of variables.
Thus the Heisenberg Uncertainty Principle arises because the
momentump of a quantum particle is proportional to the de
Broglie wave numberk of the particle. If momentum was
not proportional to wave number, the Heisenberg Uncertainty
Principle would not exist for those variables.

This argument elucidates why the Heisenberg Uncertainty
Principle exists. Can it shed light on the meaning of the
Heisenberg Uncertainty Principle in relation to the basic na-
ture of the quantum level? First, we note that the Uncertainty
Principle, according to Fourier transform theory, relatesthe
effective width of Fourier transform pairs of functions or vari-
ables. It is not a measurement theoremper se. It does not
describe what happens when Fourier transform variables are
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measured, only that their effective widths must satisfy the Un-
certainty Principle.

Indeed, as pointed out by Omnès [14, see p. 57], ”it is
quite legitimate to write down an eigenstate of energy at a
well-defined time”. Omnès ascribes this seeming violationof
the Heisenberg Uncertainty Principle to the fact that time is
not an observable obtained from an operator like momentum,
but rather a parameter. Greenstein [6, see p. 65] makes the
same argument. However, timet multiplied by the speed of
light c is a component of the 4-vectorxµ and energyE divided
by c is a component of the energy-momentum 4-vectorPµ.
The time component of these 4-vectors should not be treated
differently than the space component. The operator versus
parameter argument is weak.

What Omnès’ example shows is that the impact of the ef-
fective widths∆t and∆E of the Heisenberg Uncertainty Prin-
ciple depends on the observation of the time functiont and
of the energy functionE that is performed. A time interval
∆t can be associated with the time functiont during which is
measured the energy eigenstate functionE which itself has a
certain width∆E, with both widths (∆) satisfying (10). This
example demonstrates that the Heisenberg Uncertainty Prin-
ciple is not a measurement theorem as often used. Rather,
it is a relationship between the effective widths of Fourier
transform pairs of variables that can have an impact on the
observation of those variables.

A more stringent scenario for the impact of the energy-
time Heisenberg Uncertainty Principle is one where the time
and energy functions are small quantities. For example, we
consider the impact of∆t on the observation ofτn, the lifetime
of an atom in energy eigenstaten, and the impact of∆E on
the transition energyEmn, for a transition between statesn and
m during spectral line emission. The conditions to be able to
observeτn andEmn are:

τn > ∆t (16)

Emn > ∆E. (17)

Using (10) in (16),

τn > ∆t > h/(2∆E). (18)

Hence

∆E >
h
2

1
τn
. (19)

As staten increases, the lifetimeτn decreases. Eq.(19) is thus
more constrained in the limit of largen. Using the following
hydrogenic asymptotic expression forτn from Millette et al
[15]

τn ∼
n5

ln(n)
(20)

into (19), (17) becomes

Emn > ∆E &
h
2

k
ln(n)
n5

(21)

where 1/k is the constant of proportionality of (20) given by

k =
26

3

√

π

3
Z2α3cRH (22)

whereZ is the nuclear charge of the hydrogenic ion,α is the
fine-structure constant, andRH is the hydrogen Rydberg con-
stant. Eliminating the middle term, (21) becomes

Emn &
h
2

k
ln(n)
n5
. (23)

Applying L’Hôpital’s rule, the R.H.S. of the above equation
is of order

R.H.S. ∼ O

(

1
n5

)

asn→ ∞ (24)

while the L.H.S. is of order [16, see p. 9]

L.H.S. ∼ O

(

1
n2

)

asn→ ∞. (25)

Given that (24) tends to zero faster than (25), (23) is satisfied.
Both τn, the lifetime of the atom in energy eigenstaten, and
the transition energyEmn for the transition between statesn
andm satisfy the conditions for observation of the spectral
line emission. Thus for the time interval∆t, given by (16),
associated with the time functionτn for the transition energy
function Emn which itself has a certain width∆E, given by
(17), both∆’s satisfy (10) as expected, given the observation
of spectral line emission.

4 Quantum measurements and the Nyquist-Shannon
Sampling Theorem

At the quantum level, one must interact to some degree with a
quantum system to perform a measurement. When describing
the action of measurements of Fourier transform variables,
one can consider two limiting measurement cases: 1) trunca-
tion of the variable time series as a result of a fully interacting
measurement or 2) sampling of the variable time series at in-
tervals which we consider to be regular in this analysis, in
the case of minimally interacting measurements. As we will
see, the action of sampling allows for measurements that oth-
erwise would not be possible in the case of a single minimal
interaction.

It should be noted that the intermediate case of a partial
measurement interaction resulting for example in a transfer
of energy or momentum to a particle can be considered as
the truncation of the original time series and the initiation
of a new time series after the interaction. The advantage
of decomposing measurement actions in this fashion is that
their impact on Fourier transform variables can be described
by the Nyquist-Shannon Sampling Theorem of Fourier trans-
form theory. This theorem is a measurement theorem for
Fourier transform variables based on sampling and truncation
operations.
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The Nyquist-Shannon Sampling Theorem is fundamental
to the field of information theory, and is well known in digital
signal processing and remote sensing [17]. In its most basic
form, the theorem states that the rate of sampling of a signal
(or variable) fs must be greater than or equal to the Nyquist
sampling ratefS to avoid loss of information in the sampled
signal, where the Nyquist sampling rate is equal to twice that
of the highest frequency component,fmax, present in the sig-
nal:

fs > fS = 2 fmax. (26)

If the sampling rate is less than that of (26), aliasing occurs,
which results in a loss of information.

In general, natural signals are not infinite in duration and,
during measurement, sampling is also accompanied by trun-
cation of the signal. There is thus loss of information during
a typical measurement process. The Nyquist-Shannon Sam-
pling theorem elucidates the relationship between the process
of sampling and truncating a variable and the effect this ac-
tion has on its Fourier transform [18, see p. 83]. In effect, it
explains what happens to the information content of a vari-
able when its conjugate is measured.

Sampling a variablex at a rateδx will result in the mea-
surement of its conjugate variable ˜x being limited to its max-
imum Nyquist range value ˜xN as given by the Nyquist-Shan-
non Sampling theorem:

x̃ 6 x̃N (27)

where
x̃N = 1/(2δx). (28)

Combining these two equations, we get the relation

x̃δx 6 1/2, for x̃ 6 x̃N. (29)

Conversely, truncating a variablex at a maximum valuexN

(x 6 xN) will result in its conjugate variable ˜x being sampled
at a rateδx̃ given by the Nyquist-Shannon Sampling theorem
δx̃ = 1/(2xN) resulting in the relation

δx̃ x6 1/2, for x 6 xN. (30)

The impact of the Nyquist-Shannon Sampling theorem is
now considered for a particle’s positionx and momentump.
Applying the theorem to the case where a particle’s trajectory
is truncated toxN, we can write from (30), forx 6 xN,

xδλ−1
6 1/2, for x 6 xN (31)

or
xδk 6 π, for x 6 xN (32)

which becomes

xδp 6 h/2, for x 6 xN (33)

whereδp is thep-domain sampling rate and thex values can
be measured up toxN (corresponding to the equality in the
equations above).

Conversely, applying the theorem to the case where a par-
ticle’s trajectory is sampled at a rateδx, one can also write
from (29), for x̃ 6 x̃N, wherex̃ stands for either ofλ−1, k, or
p,

δxλ−1
6 1/2, forλ−1

6 λ−1
N (34)

or
δx k6 π, for k 6 kN (35)

which becomes

δx p6 h/2, for p 6 pN (36)

whereδx is the x-domain sampling rate andkN is the wave
number range that can be measured. For the case where the
equality holds, we havekN = π/δx wherekN is the Nyquist
wave number, the maximum wave number that can be mea-
sured with aδx sampling interval.

Sampling in one domain leads to truncation in the other.
Sampling (δx) and truncation (xN) in one domain leads to
truncation (kN) and sampling (δk) respectively in the other.
As x andk form a Fourier transform pair in quantum mechan-
ics, the Nyquist-Shannon Sampling theorem must also apply
to this pair of conjugate variables. Similar relations can be
derived for theE andν pair of conjugate variables.

5 Implications of the Nyquist-Shannon Sampling Theo-
rem at the quantum level

Equations (32) and (35) lead to the following measurement
behaviors at the quantum level:

Lower-bound limit: If the position of a particle is mea-
sured over an intervalxN, its wave number cannot be resolved
with a resolution better than sampling rateδk as given by (32)
with x = xN. If the momentum of a particle is measured over
an intervalkN, its position cannot be resolved with a resolu-
tion better than sampling rateδx as given by (35) withk = kN.

Upper-bound limit:If the position of a particle is sampled
at a rateδx, wave numbers up tokN can be resolved, while
wave numbers larger thankN cannot be resolved as given by
(35). If the momentum of a particle is sampled at a rateδk,
lengths up toxN can be resolved, while lengths longer than
xN cannot be resolved as given by (32).

The lower-bound limit is similar to how the Heisenberg
Uncertainty Principle is usually expressed when it is used as
a measurement principle, although it is not strictly equiva-
lent. The Nyquist-Shannon Sampling Theorem provides the
proper formulation and limitations of this type of measure-
ment.

The upper-bound limit suggests a different type of quan-
tum measurement: regular sampling of a particle’s position
or momentum. In this case, one can obtain as accurate a mea-
surement of the Fourier transform variable as desired, up to
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the Nyquist-Shannon Sampling limit ofh/2 (i.e. in the inter-
val [0, h/2]).

An example of this phenomenon occurs in Solid State
Physics where the translational symmetry of atoms in a solid
resulting from the regular lattice spacing, is equivalent to an
effective sampling of the atoms of the solid and gives rise to
the Brillouin zone for which the valid values ofk are governed
by (35). Settingδx = a, the lattice spacing, and extending
by symmetry thek values to include the symmetric negative
values, one obtains [19, see p. 34], [20, see p. 100], [10, see
p. 21]:

−π/a 6 k 6 π/a (37)

or alternatively

k 6 |π/a|. (38)

This is called the reduced zone scheme andπ/a is called the
Brillouin zone boundary [21, see p. 307]. The Brillouin zones
of Solid State Physics are thus a manifestation of the Nyquist-
Shannon Sampling theorem at the quantum level.

In essence, this is a theory of measurement for variables
that are Fourier transform pairs. The resolution of our mea-
surements is governed by limitations that arise from the Ny-
quist-Shannon Sampling theorem. Equations (32) and (35)
are recognized as measurement relationships for quantum-
mechanical conjugate variables. Currently, Quantum Mecha-
nics only considers the Uncertainty Theorem but not the Sam-
pling Theorem. The two theorems are applicable to Quantum
Mechanics and have different interpretations: the Uncertainty
Theorem defines a relationship between the widths of conju-
gate variables, while the Sampling Theorem establishes sam-
pling and truncation measurement relationships for conjugate
variables.

The valueδx is a sampled measurement and as a result
can resolve values ofp up to its Nyquist valuepN given by
the Nyquist-Shannon Sampling theorem, (36). This is a sur-
prising result as the momentum can be resolved up to its
Nyquist value, in apparent contradiction to the Heisenberg
Uncertainty Principle. Yet this result is known to be correct
as demonstrated by the Brillouin zones formulation of Solid
State Physics. Physically this result can be understood from
the sampling measurement operation which builds up the mo-
mentum information during the sampling process, up to the
Nyquist limit pN. It must be remembered that the Nyquist
limit depends on the sampling rateδx as per the Nyquist-
Shannon Sampling theorem, (36). The Nyquist value must
also satisfy (26) to avoid loss of information in the sampling
process, due to aliasing.

This improved understanding of the Heisenberg Uncer-
tainty Principle and its sampling counterpart allows us to clar-
ify its interpretation. This is based on our understanding of
the behavior of the Uncertainty Theorem and the Nyquist-
Shannon Sampling Theorem in other applications such as, for
example, Digital Signal Processing.

6 Measurement limitations and inherent limitations

It is important to differentiate between the measurement lim-
itations that arise from the properties of Fourier transform
pairs previously considered, and any inherent limitationsthat
may or may not exist for those same variables independently
of the measurement process. Quantum theory currently as-
sumes that the inherent limitations are the same as the mea-
surement limitations. This assumption needs to be re-exami-
ned based on the improved understanding obtained from the
effect of the Uncertainty and Sampling Theorems in other ap-
plications.

The properties of Fourier transform pairs considered in
the previous sections do not mean that the underlying quanti-
ties we are measuring are inherently limited by our measure-
ment limitations. On the contrary, we know from experience
in other applications that our measurement limitations do not
represent an inherent limitation on the measured quantities in
Fourier Transform theory: for example, in Digital Signal Pro-
cessing, a signal is continuous even though our measurement
of the signal results in discrete and aliased values of limited
resolution subject to the Nyquist-Shannon Sampling Theo-
rem (analog and digital representation of the signal). The ef-
fective width of the signal and its transform are related by the
Uncertainty theorem. Even though the time and frequency
evolution of a signal that we measure is limited by our mea-
surement limitations, the time domain and frequency domain
signals are both continuous, independently of how we mea-
sure them.

The measurement limitations apply equally to the macro-
scopic level and to the quantum level as they are derived from
the properties of Fourier transform pairs of variables which
are the same at all scales. However, at the quantum level, con-
trary to our macroscopic environment, we cannot perceive the
underlying quantities other than by instrumented measure-
ments. Hence during a measurement process, the quantum
level is limited by our measurement limitations. However,
assuming that these measurement limitations represent inher-
ent limitations and form a basic characteristic of the quantum
level is an assumption that is not justified based on the preced-
ing considerations. Indeed, the Nyquist-Shannon Sampling
Theorem of Fourier Transform theory shows that the range of
values of variables below the Heisenberg Uncertainty Princi-
ple value ofh/2 is accessible under sampling measurement
conditions, as demonstrated by the Brillouin zones formula-
tion of Solid State Physics.

7 Overlap of the Heisenberg Uncertainty Principle and
the Nyquist-Shannon Sampling Theorem

Brillouin zone analysis in Solid State Physics demonstrates
that one can arbitrarily measurek from 0 up to its Nyquist
limit, as long as the variablex is sampled at a constant rate
(rather than performing a singlex measurement). The Ny-
quist-Shannon Sampling Theorem can thus be considered to
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cover the range that the Heisenberg Uncertainty Principle ex-
cludes.

However, one should recognize that the coverage results
from two disparate theorems, and one should be careful not
to try to tie the two Theorems at their value of overlapπ. The
reason is that one expression involves the widths of conjugate
variables as determined by (1) to (3), while the other involves
sampling a variable and truncating its conjugate, or vice versa
as determined by (32) and (35). The equations are not contin-
uous at the point of overlapπ. Indeed, any relation obtained
would apply only at the overlapπ and would have no appli-
cability or physical validity on either side of the overlap.

8 Discussion and conclusion

In this paper, we have shown that a consistent application of
Fourier Transform theory to the derivation of the Heisenberg
Uncertainty Principle requires that the R.H.S. of the Heisen-
berg inequality beh/2, not ~/2. This is confirmed when
extending the analysis to the Brillouin zones formulation of
Solid State Physics.

We have noted that the Heisenberg Uncertainty Principle,
obtained from the Uncertainty Theorem of Fourier Transform
theory, arises because of the dependency of momentum on
wave number that exists at the quantum level. Quantum me-
chanical conjugate variables are Fourier Transform pairs of
variables.

We have shown from Fourier Transform theory that the
Nyquist-Shannon Sampling Theorem affects the nature of-
measurements of quantum mechanical conjugate variables.
We have shown that Brillouin zones in Solid State Physics
are a manifestation of the Nyquist-Shannon Sampling Theo-
rem at the quantum level.

We have noted that both the Sampling Theorem and the
Uncertainty Theorem are required to fully describe quantum
mechanical conjugate variables. The Nyquist-Shannon Sam-
pling Theorem complements the Heisenberg Uncertainty Pri-
nciple. The overlap of these Theorems at theh/2 equality
value is a mathematical artifact and has no physical signifi-
cance.

We have noted that the Uncertainty Theorem and the Ny-
quist-Shannon Sampling Theorem apply to Fourier Transf-
orm pairs of variables independently of the level at which
the theorems are applied (macroscopic or microscopic). Con-
jugate variable measurement limitations due to these Theo-
rems affect how we perceive quantum level events as these
can only be perceived by instrumented measurements at that
level. However, based on our analysis, quantum measurement
limitations affect our perception of the quantum environment
only, and are not inherent limitations of the quantum level,
as demonstrated by the Brillouin zones formulation of Solid
State Physics.

The application of the Nyquist-Shannon Sampling Theo-
rem to the quantum level offers the possibility of investigat-

ing new experimental conditions beyond the Brillouin zone
example from Solid State Physics considered in this paper,
allowing a unique vista into a range of variable values previ-
ously considered unreachable due to the Heisenberg Uncer-
tainty Principle. Regular sampling of position allows us to
determine momentum below its Nyquist limit, and similarly
the regular sampling of momentum will allow us to determine
position below its Nyquist limit.

Submitted on February 21, 2013/ Accepted on March 04, 2013
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The law of selfvariations quantitatively determines a slight increase of the masses and
charges as the common cause of quantum and cosmological phenomena. It predicts and
explains the totality of the cosmological data. In this article we present the prediction of
the law concerning the increased luminosity distances of distant astronomical objects.
The prediction we make is in agreement with the cosmologicaldata for the luminosity
distances of type Ia supernovae.

1 Introduction

The science of Physics possesses today a plethora of knowl-
edge that allows us to seek the first principles governing phys-
ical reality. We can search for a small number of propositions-
axioms that could reproduce the totality of our knowledge in
Physics. The theory of selfvariations has emerged along this
line of reasoning.

We make two hypotheses: The rest masses and electric
charges of the material particles increase slightly with the
passage of time (selfvariations), and the consequences of this
increase propagate in four-dimensional spacetime with a van-
ishing arc length. Starting from these two hypotheses we con-
clude that the selfvariations occur in a strictly defined man-
ner. We call the quantitative mathematical determination of
the way in which the selfvariations occur, the law of selfvari-
ations.

The law of selfvariations contains an exceptionally large
amount of data and information. It is related to the quantum
phenomena, the potential fields, and the cosmological data.
With the evidence we have in our disposal, and the mathe-
matical calculations we have performed, we can propose the
law of selfvariations as the common cause of quantum phe-
nomena and cosmological data. The consequences of the law
of selfvariations extend from the microcosm up to the obser-
vations we conduct billions of light years away. Equation

(

m0c2 + ih
ṁ0

m0

)·

= 0,

with unique unkown the rest massm0 of particles, both con-
tains as physical information, and justifies, the whole corpus
of the current cosmological observational data.

Specifically for the cosmological data, the law of selfvari-
ations predicts and justifies: the redshift of distant astronom-
ical objects and Hubble’s law, the cosmic microwave back-
ground radiation, the large-scale structures of matter in the
Universe, the fact that the Universe is flat, the fact that the
total energy-content of the Universe is zero, the fact that the
very early Universe went through a phase of ionization, the
arrow of time in the macrocosm and its breakdown in the

microcosm, the fact that the luminosity distances of distant
astronomical objects will always be measured larger than the
actual distances. It is this last prediction that we presentin
the current article.

Since the observations of distant astronomical objects cor-
respond to past time, the rest masses of the material particles
in these objects are smaller than the corresponding masses we
measure in the laboratory, due to the selfvariations. There-
fore, the energy resulting from fusion and fission in distant
astronomical objects is less than expected. These distant as-
tronomical objects are fuelled with a smaller than expected
amount of energy in order to emit the electromagnetic radia-
tion we observe today from Earth. This fact reduces the lu-
minosity of distant astronomical objects.

In the last decade of the previous century two independent
research groups under A.G. Riess and S. Perlmutter, mea-
sured the decrease of the luminosity for a large number of
type Ia supernovae at great distances. In order to explain the
observational data within the framework of the standard cos-
mological model, the hypothesis of dark energy was intro-
duced.

We have today a large amount of observational data con-
firming the decrease of luminosity at large distances. All
these measurements result in a specific diagram correlating
the luminosity-distance with the redshift of distant astronom-
ical objects. This diagram, as it results from the cosmological
data, is exactly the same with the one predicted theoretically
by the law of selfvariations. In the next paragraph we present
the diagram that we theoretically predict.

2 The luminosity distances of distant astronomical ob-
jects will always be measured greater than their real
distances

The law of selfvariations [1,2] predicts the relation

r =
c
k

ln

(

A
1− (1+ z)(1− A)

)

,

between the distancer and the redshiftz of distant astronom-
ical objects. For the dimensionless parameterA, it holds that
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A→ 1−, since it obeys the inequality

z
1+ z

< A < 1,

for every value of the redshiftz. The parameterk is constant,
and is related to the Hubble parameterH through equation

kA
1− A

= H.

The law of selfvariations predicts that the energyE(z) re-
sulting from fusion, and which powers the distant astronom-
ical objects, is decreased compared with the corresponding
energyE measured in the laboratory, according to relation

E(z) =
E

1+ z
.

Because of this, the luminosity of distant astronomical ob-
jects is decreased, relative to the expected one. This has asa
consequence that the luminosity distancesR of distant astro-
nomical objects are measured larger than the actual distances
r, R > r. From the mathematical calculations [1,2] we obtain

R = r
√

1+ z ,

between the distancesR andr.
Combining the previous equations we get the luminosity

distanceR as a function of the redshiftz of distant astronom-
ical objects:

R =
cA
√

1+ z
(1− A)H

ln

(

A
1− (1+ z)(1− A)

)

.

In the diagram in figure 1 we present the diagram ofR =
R(z) for A = 0.975, A = 0.990, A = 0.995, A = 0.999,
H = 60 km/s Mpc, c = 3 × 105 km/s up toz = 1.5. In or-
der to explain the inconsistency of the Standard Cosmologi-
cal Model with the diagram in figure 1, the existence of dark
energy was invented and introduced.

Type Ia supernovae are astronomical objects for which we
can measure their luminosity distance for great distances.The
measurements already conducted [3, 4] agree with the dia-
gram in figure 1.

In the measurements conducted for the determination of
the Hubble parameterH, the consequences of equationR =
r
√

1+ z have not been taken into account. For small values
of the redshiftz, the valueH = 60 km/sMpc results. The
measurements made up to date, have included astronomical
objects with a high redshiftz, thus raising the value of param-
eter H to between 72 and 74 km/s Mpc. Today we perform
measurements of very high accuracy. Taking into consider-
ation the consequences of equationR = r

√
1+ z, we predict

that the value of parameterH will be measured independently
of the redshiftz of the astronomical object. We, of course, re-
fer to measurements of the parameterH that are based on the
luminosity distance of the astronomical objects.

Submitted on: March 03, 2013/ Accepted on March 08, 2013

Fig. 1: The diagram ofR = R(z) for A = 0.975, A = 0.990, A =
0.995,A = 0.999,H = 60 km/s Mpc,c = 3× 105 km/s up toz = 1.5.
The measurement of the luminosity distances of type Ia supernova
confirms the theoretical prediction of the law of selfvariations.
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According to a revised quantum electrodynamic theory, there are models of leptons
such as the electron which possess both a net integrated electric charge and a much
larger intrinsic charge of both polarities. From estimates based on such models, the
corresponding Coulomb force due to the intrinsic charges then becomes two orders of
magnitude larger than that due to the conventional net charge. This intrinsic charge
force can also have the features of a short-range interaction. If these results would
generally hold true, the intrinsic charge force could either interact with a strong force of
different origin and character, or could possibly become identical with the strong force.

1 Introduction

According to quantum mechanics there exists a nonzero low-
est energy level, the Zero Point Energy. The vacuum is there-
fore not merely an empty space, but includes a “photon gas”
of related electromagnetic vacuum fluctuations. The pressure
of this gas is a physical reality, as demonstrated by the force
between two metal plates proposed by Casimir [1] and first
confirmed experimentally by Lamoreaux [2].

These circumstances have formed the starting point of
a revised quantum electrodynamical approach by the author
[3]. In the latter a nonzero electric field divergence div E is
introduced in the vacuum state. In its turn, the nonzero elec-
tric field divergence admits an additional degree of freedom
into the electromagnetic field equations. The latter then pos-
sess new solutions both in the steady and the time-dependent
states, having applications to modified models of leptons and
photons.

In this paper an example is given in Section 2 on the con-
sequences of a nonzero electric field divergence in a steady
state. It demonstrates that the local variations of the charge
density ρ̄=ε0div E can result in considerable intrinsic charges
of both signs, being much larger than the total net integrated
charge. The possible effects of the intrinsic charges on the
Coulomb interaction will then be outlined in Section 3, first
in respect to the magnitude of the resulting forces, and then
to the range of the same forces in a simple “Gedanken experi-
ment”. In Section 4 a comparison is finally made to the strong
nuclear force.

2 An Example given by the Revised Electron Model

In the revised quantum electrodynamic theory there are
steady states which do not exist in conventional theory [3].
These states include net as well as intrinsic electric charges,
electric currents, static electromagnetic fields and related
forces. To illustrate the resulting charge distributions, an ex-
ample is here taken from a corresponding electron model.
The features of the model will shortly be summarized here,
with reference to details in the original descriptions [3].

In the revised theory the field configuration is shown to

become derivable from a generating function

F = G0 G (ρ, θ) G = R (ρ) · T (θ) (1)

in spherical coordinates (r, θ, φ) of an axisymmetric case
being independent of the angle φ. Here G0 stands for a char-
acteristic amplitude, ρ= r/r0 with r0 as a characteristic radial
length, and

R = ρ−γe−ρ γ > 0 (2)

T = 1 + a1 sin θ + a2 cos 2θ + a3 sin 3θ + a4 cos 4θ +. . . (3)

with a1, a2, a3, . . . as constant amplitude factors. The radial
function R has to be divergent at the origin r= 0 to result in
a net integrated charge. Thereby a revised renormalisation
procedure is applied to make this divergence result in a finite
net integrated charge. This leads to forms of the net charge q0,
magnetic moment M0, rest mass m0, and angular momentum
(spin) s0 as given by

q0 = 2πε0crGAq, (4)

s0 =
1
2
π
(
ε0

c2

)
Cc2

rGAs, (5)

M0m0 =

(
πε0

c

)2
Cc3

rGAMAm. (6)

Here C = ± c, crG is a finite counter factor in the renor-
malisation process, and

Ak =

∫ π
0

Ikθ dθ k = q,M,m, s (7)

with Ikθ being functions of the amplitude factors of equation
(3) and the variable s≡ sin θ. The factor crG includes the am-
plitude G0 which can have either sign and becomes negative
in the case of the electron.

Two quantum conditions are considered here. The first
is s0 = ± h/4π on the spin which results in a normalized net
charge

q∗ =
∣∣∣∣∣q0

e

∣∣∣∣∣ =
 f0A2

q

As

1/2 f0 =
2ε0ch

e2 (8)
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where e is the experimentally determined elementary charge
and f0 � 137.036 is the inverted value of the fine-structure
constant. The second condition concerns the magnetic mo-
ment and becomes

M0m0

q0s0
=

AMAm

AqAs
= 1 + δM (9)

with δM = 1/2π f0 � 0.0011614. Here it has to be observed
that the fourteenth term in equation (7.56) of Reference [3]
should read −699.7897637a2a3.

In the four-amplitude case (a1, a2, a3, a4) the normalized
charge q∗ will here be studied with conditions (8) and (9) im-
posed, and as functions of a3 and a4 in a3a4-space. Then q∗

is found to have a minimum for large positive values of a3
and a4, within a narrow channel positioned around a plateau
defined by the experimental value q∗ = 1. The width of the
channel is only a few percent of q∗. At the plateau the ampli-
tude values are therefore replaced by

āi = ai/a∞ a∞ ≫ 1 i = 1, 2, 3 . . . (10)

As an illustration of the resulting intrinsic and net elec-
tric charges, we now use an example where ā1 = − 1.91, ā2 =

-2.51, ā3 = ā4 = 1. The corresponding integrand Īqθ of equa-
tion (7) in the plateau region then becomes

Īqθ = 2sT − 4s3T − sDθT +

+ 2s3DθT + 2sDθ
(
s2T
)
− sDθ

(
s2DθT

)
=

= 44.9s + 288s2 − 2159s3 − 1320s4 +

+ 7559s5 + 1120s6 − 5760s7 (11)

with the operator

Dθ = −
∂2

∂θ2
− cos θ

sin θ
∂

∂θ
. (12)

From the corresponding equation (7) this yields Āq � 4.600,
ĀM � 4.37, Ām � 2832, Ās � 2648 and results in

ĀM Ām

ĀqĀs
� 1.017

and q∗ � 1.046.
The obtained value of Āq corresponds to the net charge q0

of equation (4). The detailed charge distribution as a function
of s is given by equation (11) and has been plotted in Fig.
1. According to the figure the negative part of the intrinsic
charge in the range 0< θ <π is estimated to have the corre-
sponding value Āq− � 117.3 . The positive part of the intrinsic
charge further corresponds to Āq+ = Āq− + Āq � 121.9.

In the example given here there is thus an outbalanced
intrinsic charge proportional to Āq− = Āq+ − Āq, plus a net in-
tegrated charge proportional to Āq. The ratio between these
charges becomes

cin =
Āq−

Āq
. (13)

Fig. 1: The local contribution Īqθ of equation (10) to the electric
charge integral Āq as a function of the polar coordinate θ, in the
range 0< θ < π/2 and with θ given in degrees.

In the example of Fig. 1 it has the value cin � 26.5, thus
indicating that the intrinsic charge considerably exceeds the
net charge.

Also the electromagnetic force

f = ρ̄ (E + C × B) (14)

per unit volume has to be taken into account. It consists of the
electrostatic and magnetostatic contributions ρ̄E and ρ̄C×B
where E and B are the electric and magnetic field strengths,
the velocity vector C has the modulus |C|= ± c and c is the
velocity of light. In a cylindrically symmetric case the lo-
cal electric and magnetic contributions can outbalance each
other, but only partly in a spherical axisymmetric case [3]. In
the latter case the average radial force can on the other hand
be balanced at least for specific solutions of the field equa-
tions, but this requires further detailed analysis in every case.

3 Intrinsic Coulomb Forces

The intrinsic charge ratio cin is likely to have consequences
when considering the mutual Coulomb forces.

3.1 General Aspects

For any distribution of electric charges the local contribution
∆ f12 to the mutual Coulomb force becomes

∆ f12 =
(∆q1) (∆q2)

4πε0r2
12

(15)

where and ∆q1 and ∆q2 are two interacting charge elements
separated by the distance r12. The charge ratio of equation
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(13) thus predicts that the intrinsic Coulomb forces in some
cases even may be represented by a factor c2

in as compared to
those in a conventional analysis. For the values of c2

in � 702
in the example of Section 2 these forces could then roughly
be estimated to be more than two orders of magnitude larger
than the conventional ones. However, the effective magnitude
of the intrinsic charge force will also depend on the specific
geometry of the charge distribution, as being demonstrated by
a simple discussion in the following subsection.

3.2 A Gedanken Experiment

To crudely outline the forces which can arise from the in-
trinsic charges, a simple “Gedanken experiment” is now per-
formed according to Fig. 2. It concerns the interaction be-
tween two rigid mutually penetrable spherical configurations,
(1) and (2), of charge +Q at their centra and charge −Q at
their peripheries. The resulting electrostatic field strengths
are E1 and E2, and the external space is field-free. When these
configurations, being simulated as “particles”, are apart as in
Fig. 2(a), their mutual interaction force F12 remains zero. As
soon as particle (2) starts to penetrate particle (1), part of the
negative charge cloud at the periphery of particle (2) will in-
teract with the electric field E1 of particle (1). This generates
an attractive force F12 > 0, as shown by Fig. 2(b). When par-
ticle (2) further penetrates into the field region of particle (1),
however, the mutual interaction force F12 < 0 changes sign
and becomes repulsive as shown in Fig. 2(c). Between cases
(a) and (b) there is an equilibrium with F12 = 0.

The relative magnitude of the maximum force F12 in the
case of Fig. 2(b) can be estimated by noticing that it is gen-
erated by the fraction g2 of the charge −Q at the periphery
of particle (2), in the field E1 of particle (1). With the charge
ratio

cin =
Q
e

(16)

of the particles (1) and (2) this yields an estimated ratio

fin = g2 c2
in (17)

between the intrinsic forces and those which would have been
present in a conventional case. With an estimated factor
g2 � 1/4 for the fraction of negative charge of particle (2)
being present in the field E1 of Fig. 2(b), and with cin � 702
due to the example of Section 2, this results in the force ratio
fin � 176.

In reality, however, the mutual interaction in Fig. 2(b) and
Fig. 2(c) becomes more complex and includes a rearrange-
ment of the charge geometry. Thus, even if these simple
considerations are somewhat artificial, they appear to indi-
cate that the intrinsic Coulomb forces can become about two
orders of magnitude larger than the conventional ones. The
intrinsic forces can also in some cases have the character of a
short-range interaction.

Provided that the present model of charged leptons also
can be applied in a first crude approximation to a bound

Fig. 2: “Gedanken experiment” where two rigid mutually penetrable
spherical configurations (“particles”), (1) and (2), are approaching
each other. The “particles” have charges +Q at their centra, and −Q
at their peripheries, resulting in the internal electric field strengths E1

and E2. The mutual interaction force F12 is zero when the particles
are apart in (a), F12 > 0 is attractive when they first start to interact
in (b), and F12 < 0 is finally repulsive when they are close together
in (c).

quark, its characteristic radius rε can be estimated. It would
become rε = crG/cG where crG and cG are counter factors of a
revised renormalisation procedure [3]. This results in radii in
the range 10−16 < rε < 10−14 m for the u, d and s quarks.

4 A Comparison to the Strong Force

The strong force keeps the atomic nucleus together, and it
acts on its smallest constituents, the quarks. As concluded
from experiments on deep inelastic scattering of energetic
electrons by hadrons, the latter include the quarks. According
to reviews by French [4], Walker [5] and others, these strong
forces have the following features:

• They are primarily attractive.

• They seem to be essentially the same for neutrons and
protons.

• Their range is short and not greater than 2 × 10−15 m.

• Within this range they are very strong, i.e. two orders
of magnitude larger than those due to conventional
electromagnetics.

The strong force can be compared to the intrinsic Coulomb
force discussed in this context, also in respect to a possible
quark model being somewhat similar to that of the electron as
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described in Section 2. The following points should then be
noticed:

• The present considerations suggest that the intrinsic
charge force can become two orders of magnitude
larger than that due to the conventional net charge. The
intrinsic charge force thus appears to be of the same or-
der as the strong force, and may also appear in terms
of a short-range interaction, on scales of the order of
10−15 m.
• It then follows that the intrinsic charge force either will

interact with a strong force of different origin and char-
acter, or will possibly become identical with the strong
force.
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Relations between Distorted and Original Angles in STR
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Using the Oblique-Length Contraction Factor, which is a generalization of Lorentz Con-
traction Factor, one shows several trigonometric relations between distorted and original
angles of a moving object lengths in the Special Theory of Relativity.

1 Introduction

The lengths at oblique angle to the motion are contracted with
the Oblique-Length Contraction Factor OC(ν, θ), defined as
[1-2]:

OC(ν, θ) =
√

C(ν)2 cos2 θ + sin2 θ (1)

where C(ν) is just Lorentz Factor:

C(ν) =

√
1 − ν

2

c2 ∈ [0, 1] for ν ∈ [0, c]. (2)

Of course
0 ≤ OC(ν, θ) ≤ 1. (3)

The Oblique-Length Contraction Factor is a generalization of
Lorentz Contractor C(ν), because: when θ = 0, or the length
is moving along the motion direction, then OC(ν, 0) = C(ν).
Similarly

OC(ν, π) = OC(ν, 2π) = C(ν). (4)

Also, if θ = π/2, or the length is perpendicular on the motion
direction, then OC(ν, π/2) = 1, i.e. no contraction occurs.
Similarly OC(ν, 3π

2 ) = 1.

2 Tangential relations between distorted acute angles vs.
original acute angles of a right triangle

Let’s consider a right triangle with one of its legs along the
motion direction (Fig. 1).

Fig. 1:

tan θ =
β

γ
(5)

tan(180◦ − θ) = − tan θ = −β
γ

(6)

After contraction of the side AB (and consequently contrac-
tion of the oblique side BC) one gets (Fig. 2):

Fig. 2:

tan(180◦ − θ′) = − tan θ′ = −β
′

γ′
= − β

γC(ν)
. (7)

Then:

tan(180◦ − θ′)
tan(180◦ − θ) =

− β

γC(ν)

−β
γ

=
1

C(ν)
. (8)

Therefore
tan(π − θ′) = − tan(π − θ)

C(ν)
(9)

and consequently

tan(θ′) =
tan(θ)
C(ν)

(10)

or
tan(B′) =

tan(B)
C(ν)

(11)

which is the Angle Distortion Equation, where θ is the angle
formed by a side travelling along the motion direction and
another side which is oblique on the motion direction.
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The angle θ is increased (i.e. θ′ > θ ).

tanφ =
γ

β
and tanφ′ =

γ′

β′
=
γC(ν)
β

(12)

whence:

tanφ′

tanφ
=

γC(ν)
β
γ

β

= C(ν). (13)

So we get the following Angle Distortion Equation:

tanφ′ = tanφ ·C(ν) (14)

or
tan C′ = tan C ·C(ν) (15)

where φ is the angle formed by one side which is perpendicu-
lar on the motion direction and the other one is oblique to the
motion direction.

The angle φ is decreased (i.e. φ′ < φ). If the traveling
right triangle is oriented the opposite way (Fig. 3)

Fig. 3:

tan θ =
β

γ
and tanφ =

γ

β
. (16)

Similarly, after contraction of side AB (and consequently con-
traction of the oblique side BC) one gets (Fig. 4)

tan θ′ =
β′

γ′
=
β

γC(ν)
(17)

and

tanφ′ =
γ′

β′
=
γC(ν)
β

(18)

tan θ′

tan θ
=

β

γC(ν)
β

γ

=
1

C(ν)
(19)

or

tan θ′ =
tan θ
C(ν)

(20)

Fig. 4:

and similarly

tanφ′

tanφ
=

γC(ν)
β
γ

β

= C(ν) (21)

or
tanφ′ = tanφ ·C(ν). (22)

Therefore one got the same Angle Distortion Equations for a
right triangle traveling with one of its legs along the motion
direction.

3 Tangential relations between distorted angles vs.
original angles of a general triangle

Let’s suppose a general triangle ∆ABC is travelling at speed
v along the side BC as in Fig. 5.

Fig. 5:

The height remains not contracted: AM ≡ A′M′. We can split
this figure into two traveling right sub-triangles as in Fig. 6.

In the right triangles ∆A′M′B′ and respectively ∆A′M′C′

one has

tan B′ =
tan B
C(ν)

and tan C′ =
tan C
C(ν)

. (23)

Also

tan A′1 = tan A1C(ν) and tan A′2 = tan A2C(ν). (24)
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Fig. 6:

Fig. 7:

But

tan A′ = tan(A′1 + A′2) =
tan A′1 + tan A′2

1 − tan A′1 tan A′2

=
tan A1C(ν) + tan A2C(ν)

1 − tan A1C(ν) tan A2C(ν)

= C(ν) · tan A1 + tan A2

1 − tan A1 tan A2C(ν)2

= C(ν) ·

tan A1 + tan A2

1 − tan A1 tan A2
· (1 − tan A1 tan A2)

1 − tan A1 tan A2C(ν)2

= C(ν) · tan(A1 + A2)
1

· 1 − tan A1 tan A2

1 − tan A1 tan A2C(ν)2 .

tan A′ = C(ν) · tan(A) · 1 − tan A1 tan A2

1 − tan A1 tan A2C(ν)2 . (25)

We got

tan A′ = tan(A) ·C(ν) · 1 − tan A1 tan A2

1 − tan A1 tan A2C(ν)2 (26)

Similarly we can split this Fig. 7 into two traveling right
sub-triangles as in Fig. 8.

Fig. 8:

4 Other relations between the distorted angles and the
original angles

1. Another relation uses the Law of Sine in the triangles
∆ABC and respectively ∆A′B′C′:

α

sin A
=
β

sin B
=
γ

sin C
(27)

α′

sin A′
=
β′

sin B′
=
γ′

sin C′
. (28)

After substituting

α′ = αC(ν) (29)

β′ = βOC(ν,C) (30)

γ′ = γOC(ν, B) (31)

into the second relation one gets:

αC(ν)
sin A′

=
βOC(ν,C)

sin B′
=
γOC(ν, B)

sin C′
. (32)

Then we divide term by term the previous equalities:

α

sin A
αC(ν)
sin A′

=

β

sin B
βOC(ν,C)

sin B′

=

γ

sin C
γOC(ν, B)

sin C′

(33)

whence one has:

sin A′

sin A ·C(ν)
=

sin B′

sin B · OC(ν,C)

=
sin C′

sin C · OC(ν, B)
.

(34)

2. Another way:

A′ = 180◦ − (B′ +C′) and A = 180◦ − (B +C) (35)

tan A′ = tan[180◦ − (B′ +C′)] = − tan(B′ +C′)

= − tan B′ + tan C′

1 − tan B′ · tan C′
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= −

tan B
C(ν)

+
tan C
C(ν)

1 − tan B · tan C/C(ν)2

= − 1
C(ν)

· tan B + tan C
1 − tan B · tan C/C(ν)2

= − tan(B +C)
C(ν)

· 1 − tan B tan C
1 − tan B · tan C/C(ν)2

= −− tan[180◦−(B +C)]
C(ν)

· 1 − tan B · tan C
1− tan B · tan C/C(ν)2

=
tan A
C(ν)

· 1 − tan B · tan C
1 − tan B · tan C/C(ν)2 .

We got

tan A′ =
tan A
C(ν)

· 1 − tan B · tan C
1 − tan B · tan C/C(ν)2 . (36)
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The Electron-Vacuum Coupling Force in the Dirac Electron Theory and its
Relation to the Zitterbewegung

William C. Daywitt
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From the perspective of the Planck vacuum theory, this paperargues that the standard
estimate of the onset radius for electron-positron pair production as the Dirac electron is
approached (in its rest frame) is significantly overestimated. The standard value is taken
to be the electron Compton radius, while the estimate derived here from the coupling
force is over four times smaller. The resulting separation of the Compton radius from
the onset radius leads to a clear explanation of the zitterbewegung in terms of vacuum
dynamics, making the zitterbewegung a relevant part of the electron theory.

1 Dirac Electron

The size of the electron has been a long debated question. In
classical physics the idea that the electron radiusr0 is purely
electromagnetic leads to the calculation

r0 =
e2

mc2
= 2.82× 10−13 (1)

centimeters, while the electron’s Compton radius

rc =
e2

αmc2
=

e2
∗

mc2
= 3.86× 10−11 (2)

is larger by the factor 1/α (≈ 137), whereα (= e2/e2
∗) is the

fine structure constant. The standard caveat at this point in
the calculations is that, for any radius smaller thanrc (like
r0), classical considerations are irrelevant due to the possible
appearance of electron-positron pairs. So the onset radiusfor
electron-position pair production is an important parameter in
the Dirac theory of the electron. What follows takes a detailed
look at the structure of the second ratio in (2) and suggests
that an onset radius derived from the coupling force the Dirac
electron (De) exerts on the vacuum state produces a better
estimate of that radius.

In the Planck vacuum (PV) theory [1] the producte2
∗ =

(−e∗)(−e∗) in (2) consists of two distinctively different
charges. One of the bare charges belongs to the De (a mas-
sive point charge (−e∗,m) that obeys the Dirac equation and
that is coupled to the Dirac vacuum [2]), and the other to the
separate Planck particles constituting the PV negative-energy
state. In addition, it can be argued [3] that the force

e2
∗

r2
(3)

is a polarization-distortion force that the free-space De exerts
on the omnipresent PV state. Since this force exists between
the electron charge and the individual Planck-particle charges
within the PV, a potential

V(r) = −
∫ r

r1

e2
∗

r2
dr =

(
1
r
−

1
r1

)
e2
∗ (4)

can be defined for the De-PV system, except for the difficulty
in determining the integration constantr1.

The massive point charge (−e∗,m) has two parts, its
charge (−e∗) and its massm. Thus, in addition to the polar-
ization force (3), the De distorts the PV due to a gravitational-
like attraction between its mass and the individual masses of
the Planck particles in the PV. This curvature force is given
by [3]

−
mc2

r
= −

mc2G
r G

= −
mm∗G

r∗r
(5)

wherem∗ andr∗ are the mass and Compton radius of the indi-
vidual Planck particles andG is Newton’s gravitational con-
stant. (G = e2

∗/m
2
∗ ande2

∗ = r∗m∗c2 are used in deriving the
final ratio in (5).) This force is the force of attraction the
massive point charge at〈r〉 ≈ 0 exerts on the negative-energy
Planck particle at a radiusr from that charge. Now the total
De distortion force becomes

e2
∗

r2
−

mc2

r
(6)

and, as seen in the next section, ther1-problem of the previous
paragraph disappears. Part of the response to the De force
(6) acting on the PV is hidden in the Dirac equation as the
zitterbewegung.

[The average〈r〉 ≈ 0 signifies a small, but unknown,
radius encircling the massive point charge (−e∗,m) and in
which the electron mass is created (see the Appendix). This
average is more properly expressed as

√〈
r2

〉
≪ rc.]

2 Dirac Equation

The force difference in (6) vanishes at the De’s Compton ra-
dius

rc =
e2
∗

mc2
(7)

which is that radius where the polarization and curvature
forces have the same magnitude. This is a central parame-
ter in the theory of the electron-positron system, for the free-
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particle Dirac equation can be expressed as (usingc~ = e2
∗)

[4, p. 74]

ie2
∗

(
∂

c∂t
+ αα · ∇

)
ψ = mc2βψ or

irc

(
∂

c∂t
+ αα · ∇

)
ψ = βψ (8)

where, in the rest frame of the De, the parameterrc represents
the radius of an imaginary sphere surrounding the massive
point charge and on which the PV is undistorted (where (9)
and (10) vanish).

Now the De-PV coupling force

F(r) =
e2
∗

r2
−

mc2

r
(9)

leads, in place of (4), to the potential

V(r) = −
∫ r

rc

F(r)dr =

(
1
r
−

1
rc

)
e2
∗

−mc2 ln
rc

r
(r 6 rc) (10)

with no undetermined constants.
Recalling that any sufficiently strong positive potential

acting on the vacuum state enables electron-positron pair pro-
duction to take place in free space (see any relativistic discus-
sion of the Klein Paradox, e.g. [4, p. 131]), it is reasonableto
conclude that the point at which pairs may begin to show up
as the De is approached is whereV(r) = 2mc2 since the posi-
tive energy in free space and negative energy of the PV begin
to overlap at this potential. Then solving (10) forr yields the
quadrature formulas

rc

r
− ln

rc

r
= 3 or

exp (rc/r)
rc/r

= e3 (11)

either one of which producesr ≈ rc/4.5. This pair-production
onset radius is significantly smaller than the standard estimate
(r ∼ rc) because the curvature-force term in (9) compresses
the PV state, countering the polarization force that expands
that state and exposes its energies to free space. This impor-
tant result implies that, for anyr > rc/4.5, there can be no ex-
change of free electrons with electrons from electron-positron
pairs associated with the PV state.

3 QED Comparison

The standard estimate of the onset radius is based on virtual
electron-positron transitions and the time-energy uncertainty
relation [5, p. 323]

∆t∆E ∼ ~ −→ c∆t ∼
c~
∆E
=

e2
∗

2mc2
=

rc

2
(12)

where the original free electron jumps into the positron hole
and the electron from the pair becomes the new free elec-
tron. As this process takes place at a high rate, the resulting
cloud of “hide-and-seek” electrons is perceived as a spread-
out point electron with a radiusr ∼ rc/2. This radius is usu-
ally rounded off to r ∼ rc. It is interesting that arbitrarily
replacingr1 in (4) by rc leads to the estimater = rc/3.

Whatever the true magnitude of the onset radius, it is
worth noting the following quantum electrodynamic conclu-
sions [5, pp. 402–403]: the interaction of the De with the
quantum vacuum spreads out the point-like nature of the De
and leads to a natural scalerc for the model; the De in some
respects behaves as though it increases in size from a point
particle to a particle with a radius of about onerc; it is improb-
able that the electron has “structure”; and the apparent spread
of the De does not alter the fact that the electron in QED is
still regarded as a pure point particle. In addition to thesecon-
clusions, high-energy scattering experiments probing small
distances indicate that the electron, if not a point particle, is
certainly not larger than about 10−15 cm (rc/39, 000).

Except for the magnitude of the onset and spread radii,
the calculations in Sections 1 and 2 are mostly in agreement
with the spirit of the QED conclusions of the previous para-
graph. Also the earlier assumption at the end of Section 1,
that 〈r〉 ≈ 0, is in line with the experimental result
(rc/39, 000) at the end of the previous paragraph.

Since the onset radius is an important concept in the elec-
tron model, a definitive calculation of this radius is crucial to
understanding the electron — indeed, contrary to the standard
view, it is shown in the present paper that the Compton radius
rc and the pair-creation onset radiusrc/4.5 are twodistinctly
different parameters, the first referring to the vanishing-
coupling-force sphere centered on the point electron (in its
rest frame), and the second to the possible onset of electron-
positron pairs. This separation of the Compton and onset radii
leads to a believable zitterbewegung model.

4 Zitterbewegung

The zitterbewegung (a highly oscillatory, microscopic motion
with velocity c) has been a long-time mathematical conun-
drum. Barut and Bracken [6, p. 2458] reexamine the Schrö-
dinger calculations leading to the zitterbewegung and replace
his “microscopic momentum” vector with a “relative momen-
tum” vector in the rest frame of the particle. Of interest here
are the two resulting commutator brackets (~ = rcmc and
c~ = e2

∗ are used)

[Q j,Hr] = irccP j and

[P j,Hr] = −4i
mce2

∗

r2
c

Q j (13)

from the theory, where (j = 1, 2, 3) andHr = mc2β is the
Dirac Hamiltonian in the rest frame.
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Applying the Heisenberg-picture time derivative

Ȧ =
i
~

[Hr, A] (14)

to the commutators in (13) leads to the “relative momentum”

P j = mQ̇ j and Ṗ j = −4

(
e2
∗

r3
c

)
Q j (15)

which describes the dynamics of a harmonic oscillator with
angular frequency

ω =

(
4 · e2

∗

mr3
c

)1/2
=

(
4 · rcmc2

mr3
c

)1/2
=

2c
rc
. (16)

Since the Compton relation derives from the equality of
the polarization- and curvature-force magnitudes on therc-
sphere surrounding the massive point charge, the oscillator
dynamics must be due to a reaction of the PV to the De per-
turbing forcee2

∗/r
2−mc2/r, not to a direct dynamical involve-

ment of the massive point charge itself. This latter conclusion
is supported by the fact that the eigenvalues of theQ̇ j oper-
ator are±c, outlawing the involvement of a massive particle
whose velocity must be less thatc.

The “spring constant”, 4(e2
∗/r

3
c ), in (15) is easily shown to

be related to therc-sphere, forr = rc + ∆r in (9) leads to

F(rc + ∆r) =
e2
∗

(rc + ∆r)2
−

mc2

rc + ∆r

= −
(e2
∗/r

3
c )∆r

(1+ ∆r/rc)2
≈ −

(
e2
∗

r3
c

)
∆r (17)

whereF(rc) = 0, and∆r ≪ rc in the final ratio.
The Schrödinger “microscopic coordinate”

ξξ =

[
αα(0)−

mc2

H
p̂

mc

]
·

irc

2
mc2

H
exp

[
−i

2c
rc

H
mc2

t

]
(18)

is retained in the Barut-Bracken analysis [6, eqn. 19]. The
first part of this operator equation corresponds to the macro-
scopic motion of the massive point charge and the second part
to the high-frequency zitterbewegung superimposed on the
macroscopic motion. In the rest frame of the massive charge
(18) reduces to [6, eqn. 34]

Q j(t) = [ξξr(t)] j = α j(0) ·
irc

2
βexp

[
−i

2c
rc
βt

]
, 0 (19)

the nonvanishing of which emphasizes again that the zitter-
bewegung is not fundamentally associated with the motion of
the particle, as the particle leading to (19) is at rest. (The
rest frame operatorsHr = mc2β andH−1

r = β/mc2 are used
in (19)).

5 Comments and Summary

The preceding calculations have separated the Compton ra-
dius (rc) from the onset radius (rc/4.5), with the result that
the Compton radius is no longer associated with electron-
positron pair production, being outside the onset radius. Thus
the zitterbewegung is not related to the pair-production char-
acteristic of an over-stressed (V(r) > 2mc2) PV state. Instead,
the zitterbewegung is seen to be the consequence of a PV-
resonance phenomenon (with the resonant frequency 2c/rc)
associated with therc-sphere. Also, most of the confusion
surrounding the zitterbewegung is the result of attemptingto
attribute the phenomenon directly to the dynamics of the elec-
tron particle rather than the dynamics of the vacuum state.
Finally, the zitterbewegung can now be seen, not as a mathe-
matical curiosity, but as an integral part of the Dirac electron
theory.

The following picture of the Dirac electron emerges: cen-
tered at the origin of the rest frame is the massive point charge
with an effective volumetric radius〈r〉 ≈ 0; surrounding this
charge is a hypothetical sphere of radiusrc/4.5 within which
the positive energy of the free electron and the negative en-
ergy of the PV overlap, allowing electron-positron pairs tobe
excited; surrounding this combination is a spherical annulus
of radiusrc/4.5 < r 6 rc, where pair production does not oc-
cur; and beyond therc-sphere (r > rc) is a region of diminish-
ing PV stress, a compression that decreases with increasingr
according to the force difference (9).

Appendix: Electron Mass

The massless point charge is denoted by (−e∗) and the mas-
sive point charge by (−e∗,m), wherem is the electron mass.
In the PV theory this mass is an acquired property of the elec-
tron, resulting from the point charge being driven by the ran-
dom electromagnetic zero-point background field [7,8]. Fur-
thermore, the energy absorbed by the charge from the field
is re-radiated back into free space in a detailed-balance man-
ner, leaving the isotropy and spectral density of the zero-point
background unchanged [9].

The derived mass is

m =
4rce2

∗

9r2
∗c2

〈
(dr′/dt)2

〉

c2
(A1)

wheree∗r′ is the dipole moment of the point charge (−e∗)
aboutr′ = 0 as it is being driven by the zero point field.
The relative root-mean-square velocity of the charge within
〈r〉 ≈ 0 is [7]



〈
(dr′/dt)2

〉

c2



1/2

=
3
2

r∗
rc
∼ 10−22 (A2)

which is vanishingly small because of the large density
(∼ 1/r3

∗) of Planck particles in the PV contributing simultane-
ously to the zero-point background field; endowing the corre-
sponding field spectrum with frequencies as high as∼ c/r∗,
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wherer∗ is the Planck length. It is predominately the high
frequencies in the spectrum that define the mass and pre-
vent the r-m-s velocity from significantly increasing in mag-
nitude [10].

The squared chargee2
∗ in (A1) comes from squaring the

time derivative of the dipole momente∗r′. Thus (A1) implies
thatthe center-of-mass and the center-of-charge are the same.
The question of centers often comes up in the discussion of
the zitterbewegung [11, pp. 62–64] and is a reflection of the
fact that the zitterbewegung is being explained in terms of
the massive-charge motion rather than the 2c/rc resonance
associated with therc-sphere and the vacuum state.
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Geometrical Derivation of the Lepton PMNS Matrix Values
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The linear superposition of generators of the 3 discrete binary rotational subgroups
[332], [432], [532] of the Standard Model determine the PMNS matrix elements. The 6
leptons are 3-D entities representing these 3 groups, one group for each lepton family.

1 Introduction

Numerous attempts to derive the neutrino PMNS matrix from
various discrete group horizontal symmetries have led to par-
tial success. Herein I determine the true source of the PMNS
matrix elements by using the linear superposition of the gen-
erators for 3 discrete binary rotational subgroups of the Stan-
dard Model (SM) electroweak gauge group SU(2)L x U(1)Y .

In a series of articles [1–4] I have proposed 3 discrete bi-
nary rotational subgroups of the SM gauge group for 3 lepton
families in R3 and the related 4 discrete binary rotational sub-
groups in R4 for 4 quark families, one binary group for each
family. The generators for these 7 binary groups are quater-
nions operating in R3, in R4, and in C2. I use these binary
group quaternion generators to calculate the matrix elements
for the PMNS mixing matrix for the leptons.

In another article under preparation I use the same ap-
proach, with an important modification, to calculate the stan-
dard CKM mixing matrix for the quarks as well as a proposed
CKM4 mixing matrix for four quark families.

The SM local gauge group SU(2)L x U(1)Y x SU(3)C de-
fines an electroweak(EW) interaction part and a color inter-
action part. The EW isospin states define the flavor of the
fundamental lepton and quark states. However, experiments
have determined that these left-handed flavor states are linear
superpositions of mass eigenstates.

For the 3 lepton families, one has the neutrino flavor states
νe, νµ, ντ and the mass states ν1, ν2, ν3 related by the PMNS
matrix Ui j 

νe

νµ

ντ

 =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3



ν1

ν2

ν3


From experiments [5], the PMNS angles have been estimated
to be

θ12 = 32.6◦ − 34.8◦, θ13 = 8.5◦ − 9.4◦,

θ23 = 37.2◦ − 39.8◦, δ = (0.77 − 1.36)π.

Consequently, for the normal hierarchy of neutrino masses,
one has the empirically determined PMNS matrix

0.822 0.547 −0.150 + 0.038i

−0.356 + 0.0198i 0.704 + 0.0131i 0.614
0.442 + 0.0248i −0.452 + 0.0166i 0.774



which can be compared to my resultant derived PMNS matrix
in the standard parametrization

0.817 0.557 −0.149e−iδ

−0.413 − 0.084eiδ 0.605 − 0.057eiδ −0.673
−0.383 + 0.090eiδ 0.562 + 0.061eiδ 0.725


In the SM the EW isospin symmetry group that defines

the lepton and quark flavor states is assumed to be the Lie
group SU(2) with its two flavor eigenstates per family. In
this context there is no fundamental reason for Nature to have
more than one fermion family, and certainly no reason for
having 3 lepton families and at least 3 quark families. As far
as I know, this normal interpretation of the SM provides no
answer that dictates the actual number of families, although
the upper limit of 3 lepton families with low mass neutrinos
is well established via Z0 decays and via analysis of the CMB
background. There are claims also that one cannot have more
than 15 fundamental fermions (plus 15 antifermions) without
violating certain cosmological constraints.

My geometrical approach makes a different choice, for I
utilize discrete binary rotational subgroups of SU(2) instead,
a different subgroup for each family. Each discrete binary
group has two eigenstates and three group generators, just like
SU(2). Whereas the three generators for the SU(2) Lie group
are essentially the 2 x 2 Pauli matrices, the three generators
for each of the 3 lepton discrete binary groups [332], [432],
[532], (also labeled 2T, 2O, 2I) in R3 and the 4 quark discrete
groups [333], [433], [343], [533], (also labeled 5-cell, 16-cell,
24-cell, 600-cell) in R4 are not exactly the Pauli matrices.

I propose that this difference between the discrete sub-
group generators and the Pauli matrices is the fundamental
source of the lepton and the quark mixing matrices, and the
calculated results verify this conjecture. In other words, one
requires the mixing of the different family discrete groups in
order to have a complete set of three generators equivalent to
the three SU(2) generators, separately for the leptons and for
the quarks. The mixing matrices, PMNS and CKM4, express
this linear superposition of the discrete group generators.

2 The PMNS calculation

In order to calculate the PMNS values one can use either
unit quaternions or unitary 2x2 complex matrices. The unit
quaternion generators are equivalent to the SU(2) generators.
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The unit quaternion q = a + bi + cj + dk, where the coef-
ficients a, b, c, d are real numbers for the one real and three
imaginary axes. The unit quaternion spans the space R4 while
the imaginary prime part spans the subspace R3. With i2 = j2

= k2 = -1, the quaternion can be expressed as an SU(2) matrix a + bi c + di

−c + di a − bi


Both the quaternions and the SU(2) matrices operate in the
unitary plane C2 with its two orthogonal complex axes, so the
quaternion can be written also as q = u + vj, with u = a + bi
and v = c + di. The three Pauli matrices σx, σy, σz, are the
simple quaternions k, j, and i, respectively.

For the three lepton families, each family representing its
own binary rotational group, [332], [432], and [532], two of
the three generators Ri, i = 1, 2, 3, in each group are equiv-
alent to two of the three Pauli matrices. Therefore, only the
remaining generator for each lepton family contributes to the
mixing that produces the PMNS matrix. That is, in the nota-
tion of H.M.S. Coxeter [6], R1 = j, R3 = i, and

R2 = −i cos
π

q
− j cos

π

p
+ k sin

π

h
(1)

for the three binary groups [p q r] and the h values 4, 6, and
10, respectively.

Defining the golden ratio ϕ = (
√

5+1)/2, the appropriate
generators R2 are listed in the table. The sum of all three R2
generators should be k, so one has three equations for three
unknowns, thereby determining the listed multiplicative fac-
tor for each R2 generator’s contribution to k after overall nor-
malization.

Table 1: Lepton Family Discrete Group Assignments

Family Group R2 Factor Angle◦

νe, e [332] − 1
2 i − 1

2 j + 1√
2
k -0.2645 105.337

νµ, µ [432] − 1
2 i − 1√

2
j + 1

2 k 0.8012 36.755

ντ, τ [532] − 1
2 i − ϕ2 j + ϕ

−1

2 k -0.5367 122.459

The resulting angles in the table are determined by the
arccosines of the factors, but they are twice the rotation angles
required in R3, a property of quaternion rotations. Using one-
half these angles produces

θ1 = 52.67◦, θ2 = 18.38◦, θ3 = 61.23◦, (2)

resulting in

θ12 = 34.29◦, θ13 = −8.56◦, θ23 = −42.85◦. (3)

Note that | θ12 - θ13 | = | θ23 | because of normalization.
Products of the sines and cosines of these angles in the

standard parameterization are the PMNS entries, producing

matrix values which compare favorably with the empirical
estimates, as shown earlier. One has sin2 θ12 = 0.3176 and
sin2 θ13 = 0.0221, both within 1σ of the empirically deter-
mined values from the neutrino experiments, according to the
Particle Data Group in 2012. However, sin2 θ23 = 0.4625 is
outside the PDG 1σ range but agrees with the recent T2K [7]
estimate sin2 2θ23 = 1.0, making | θ23 | = 45◦ with δ ≃ 0.

3 Conclusions

This fit of the PMNS mixing matrix derived from the three
separate R2 generators indicates that the lepton families faith-
fully represent the discrete binary rotational groups [332],
[432], and [532] in R3 that were introduced first in my ge-
ometrical approach back in 1986 and expanded in detail over
the past two decades. In particular, the 6 lepton states are
linear superpositions of the two degenerate basis states in
each of the 3 groups. My approach within the realm of the
Standard Model local gauge group makes the ultimate unique
connection to the discrete group Weyl E8 x Weyl E8 in 10-D
spacetime and to the Golay-24 code in information theory [1].

One can conclude that leptons are 3-dimensional objects,
geometrically different from the quarks which require a 4-
dimensional space for their existence. Their mass ratios de-
rive from a mathematical syzygy relation to the j-invariant of
elliptic modular functions associated with these specific bi-
nary groups. In addition, one can predict that no more lepton
families exist because the appropriate binary rotational sym-
metry groups in 3-D space have been exhausted. However,
sterile neutrinos remain viable [1, 4].
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A Higgs-like particle having zero net electric charge, zero spin, and a nonzero rest mass
can be deduced from an earlier elaborated revised quantum electrodynamical theory
which is based on linear symmetry breaking through a nonzero electric field divergence
in the vacuum state. This special particle is obtained from a composite longitudinal
solution based on a zero magnetic field strength and on a nonzero divergence but a van-
ishing curl of the electric field strength. The present theory further differs from that of
the nonlinear spontaneously broken symmetry by Higgs, in which elementary particles
obtain their masses through an interaction with the Higgs field. An experimental proof
of the basic features of a Higgs-like particle thus supports the present theory, but does
not for certain confirm the process which would generate massive particles through a
Higgs field.

1 Introduction

As stated in a review by Quigg [1] among others, the Higgs
boson is a particle of zero electric charge and nonzero rest
mass. The magnitude of the mass is, however, so far not pre-
dicted by theory. Several authors and recently Garisto and
Argawal [2] have further pointed out that this particle is a
spin-zero boson.

In this investigation will be shown that a particle with
such basic properties can be deduced from an earlier elab-
orated revised quantum electrodynamical theory [3], and the
consequences of this will be further discussed here.

2 Steady Axisymmetric States of Revised Quantum
Electrodynamics

For the field equations of the revised theory to be used in this
context, reference is made to earlier detailed deductions [3].
The latter are based on a broken symmetry between the field
strengths E and B, through the introduction of a nonzero di-
vergence div E= ρ̄/ε0 as being based on the quantum me-
chanical Zero Point Energy of the vacuum state. In a spheri-
cal frame (r, θ, φ) of reference in an axially symmetric steady
state with ∂/∂φ= 0 and ∂/∂t= 0, this leads to a magnetic vec-
tor potential A= (0, 0, A) and a space charge current density
j= (0, 0,Cρ̄) due to the source ρ̄. Here C = ± c represents the
two spin directions, with c standing for the velocity constant
of light. Introducing the normalized radius ρ= r/r0 with r0 as
a characteristic length, and the separable generating function

F (r, θ) = CA − ϕ = G0G (ρ, θ) = G0R (ρ) · T (θ) (1)

where ϕ is the electrostatic potential, this yields

CA = − (sin θ)2 DF (2)
ϕ = −

[
1 + (sin θ)2 D

]
F (3)

ρ̄ = − ε0

r2
0 ρ

2
D

[
1 + (sin θ)2 D

]
F (4)

with the operator

D = Dρ + Dθ

Dρ = − ∂
∂ρ

(
ρ2 ∂

∂ρ

)
Dθ = − ∂

2

∂θ2
− cos θ

sin θ
∂

∂θ
.

(5)

The field strengths then become

B = curl A = curl
[
0, 0,− 1

C
(sin θ)2 DF

]
(6)

E = −∇ϕ = ∇
{ [

1 + (sin θ)2 D
]

F
}

(7)

for an elementary mode generated by a given function F de-
termined by the radial and polar parts R(ρ) and T (θ). Here
curl E= 0.

As a first step we consider the convergence properties of R
and the symmetry properties of T with respect to the equato-
rial plane θ= π/2. There are four alternatives of which there
is one with a divergent R at the origin ρ= 0 and with a T
of top-bottom symmetry, thereby leading to a net integrated
electric charge q0 and magnetic moment M0. The other three
alternatives all lead to vanishing q0 and M0 [3], and we can
here choose any of these. Then the local electric field and its
divergence are still nonzero, whereas the net integrated elec-
tric charge vanishes.

As a second step two elementary modes (+) and (−) are
now considered for which C = ±c and there is the same func-
tion F. For these modes the corresponding field strengths are
related by

B+ = −B− E+ = E− (8)

according to Equations (6) and (7). Since the field equations
are linear, the sum of the two solutions (+) and (−) also be-
comes a solution of the field equations, thereby resulting in
the field strengths

BH = B+ + B− = 0 (9)
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EH = E+ + E− = ∇
{ [

1 + (sin θ)2 D
]

2F
}
. (10)

These strengths then stand for a “composite” mode having
zero integrated charge qo, zero magnetic moment M0, and
zero spin s0, but a nonzero rest mass

m0 =
4πε0

c2 r0G2
0Jm =

(
1
2
ε0E2

eq

) (
4
3
πr3

0

)
. (11)

Here E2
eq = 6(G0/r0)2Jm, the dimensionless integral is

Jm =

∞∫
0

π∫
0

Im dρ dθ Im = fg (12)

and
f (ρ, θ) = − (sin θ) D

[
1 + (sin θ)2 D

]
G (13)

g (ρ, θ) = −
[
1 + 2 (sin θ)2 D

]
G (14)

when a convergent radial part R is now being chosen [3].
It has first to be observed that this composite mode can

be related to an option of the Higgs boson which is not truly
a fundamental particle but is built out of as yet unobserved
constituents, as also stated by Quigg [1]. Moreover, the van-
ishing magnetic field BH of Equation (9) is in a way related
to the longitudinal “S-wave” of the earlier theory [3], as well
as to the longitudinal state of a massive boson mentioned by
Higgs [4]. Finally, the magnitude of the nonzero mass is so
far not predicted by theory [1]. From Equation (11) it should
be due to the energy density of an equivalent electric field Eeq.
The absence of a magnetic field may also make the particle
highly unstable.

3 Discussion

An experimental proof of an existing Higgs-like particle with
zero net electric charge, zero spin, and nonzero rest mass
could thus be taken as support of the present revised quan-
tum electrodynamical theory [3]. The latter is characterized
by intrinsic linear symmetry breaking, leading in general to
nonzero rest masses of elementary particles.

Such a proof does on the other hand not for certain be-
come a full experimental confirmation also for the same parti-
cle to provide all other elementary particles with mass through
the completely different spontaneous nonlinear symmetry
breaking interaction between the Higgs field and massless
particle concepts of the Standard Model [1, 4].

Possible the present approach [3] and that of Higgs [1, 4]
could have a point in common. This is trough the Zero Point
Energy field being present all over space on one hand [3], and
a generally existing Higgs field in space on the other [1, 4].
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A new possible explanation to the luminosity distance (DL) and redshift (Z) measure-
ments of type Ia supernovae (SNeIa) is developed. Instead of modifying the theory of
general relativity or the Friedmann equation of cosmology with an extra scalar field
or unknown energy component (e.g., dark energy), we re-examine the relationship be-
tween the luminosity distance and the cosmological redshift (DL − Z). It is found that
the DL−Z relation previously applied to connect the cosmological model with the mea-
sured SNeIa data is only valid for nearby objects with Z ≪ 1. The luminosity distances
of all distant SNela with Z ≳ 1 had been underestimated. The newly derived DL − Z re-
lation has an extra factor

√
1 + Z, with which the cosmological model exactly explains

all the SNeIa measurements without dark energy. This result indicates that our universe
has not accelerated and does not need dark energy at all.

1 Introduction

There are five possible ways to explain the luminosity dis-
tance (DL) and redshift (Z) measurements of type Ia super-
novae (SNeIa) according to the general relativity (GR), which
derives the Friedmann equation (FE) with the Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric of the 4D space-
time (Figure 1).

The most simple and direct way is the famous Lambda
Cold Dark Matter (ΛCDM) model, currently accepted as the
standard one, which introduces a cosmological constant Λ to
the field equation of GR (Eq. 1), referred as a candidate of
dark energy [1-2],

Gµν + Λgµν =
8πG
c4 Tµν, (1)

where Gµν is the Einsteinian curvature tensor of spacetime,
Tµν is the energy-momentum tensor of matter, c is the light
speed in free space, and G is the gravitational constant. The
cosmological constant Λ was first introduced actually by Al-
bert Einstein himself into his field equation, Eq. (1), in order
to have a static universe about a century ago, and then dis-
carded after the universe was found to be expanding [3].

The second way that has also been comprehensively stud-
ied is the scalar-tensor (S-T) theory, which introduces a scalar
field Φ, usually time-dependent, to the action of spacetime
(S G) [4-5]. This category includes also the four-dimensional
f (R), galileon, and five-dimensional Kaluza-Klein theories
with scalar fields [6-12]. The third way is the scalar perturba-
tion (SP) theory, which inputs perturbation scalars Ψ and Φ,
usually time-independent, into the FLRW metric rather than
into the action S G [13-15]. The S-T and SP theories may be
equivalent because both attempt to modify the curvature of
spacetime. The cosmological constant Λ can also be added to
S G for a less curvature of spactime or to the action of matter
S M for an extra energy component. The fourth possible way

is according the black hole universe (BHU) model, recently
developed by the author [16-18], in which the expansion and
acceleration of the universe are driven by the external energy.

The procedures that the above four models commonly fol-
low in the explanation of the SNeIa measurements include the
following four steps: (1) Modifying the FE with an appropri-
ate input of Λ, scalar field, perturbation, or external energy;
(2) Determining the expansion rates (Hubble parameter) of
the universe according to their modified FEs; (3) Submitting
their expansion rates into the DL − Z relation; (4) Comparing
the obtained redshift dependence of their luminosity distances
with the SNeIa measurements. Fitting the models to the data
determines the amount of the input such as ΩΛ ∼ 0.73 for
the ΛCDM model [1-2] and M̈(t) ∼ 1017 kg/s2 for the BHU
model [18].

In this paper, a new and most probable explanation for
the SNela measurements is developed without attempting to
modify the theory of gravitation or the model of cosmology
by inserting one or more fields or constants into GR or FE.
Instead, we will re-examine the DL − Z relationship that con-
nects the cosmological model with the SNela data. We will
derive a new DL − Z relation and further compare this new
relation with the SNela measurements to examine whether or
not our universe needs the dark energy or has recently accel-
erated.

2 Mystery of Dark Energy

The greatest unsolved problem in the modern cosmology is
the mystery of dark energy [19]. This currently most accepted
hypothesis for the standard cosmological model to quantita-
tively explain the measurements of distant type Ia supernovae
strongly relies on the DL−Z relation that is used to bridge the
measured SNeIa data and the theoretical model of cosmology.

However, the DL − Z relation that was usually applied to
analyze the measurements of distant type-Ia supernovae,
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Fig. 1: Flow chat for five possible ways to explain the luminosity
distance and redshift measurements of type Ia supernovae. They
are: (1) GR with the cosmological constant Λ; (2) Gravitational the-
ory with a scalar field Φ; (3) FLRW metric with perturbations Φ and
Ψ; (4) Black hole universe model with increasing input of external
energy M̈ > 0; and (5) Luminosity distance-redshift relation with a
factor of

√
1 + Z. This Study focuses on the fifth possible explana-

tion.

DL ≃ c(1 + Z)R(to)
∫ to

te

dt
R(t)
, (2)

is an approximate expression that is only valid for nearby ob-
jects with Z ≪ 1 in a flat universe [20]. Here te is the time
when the light is emitted, to is the time when the light is
observed, R(t) is the scale factor, which is defined from the
FLRW metric [21-24],

ds2 = −c2dt2 + R2(t)
[

dr2

1 − kr2 + r2
(
dθ2 + sin2 θdϕ2

)]
, (3)

and governed by the Friedmann equation [25],

H2(t) ≡ Ṙ2(t)
R2(t)

=
8πGρM(t)

3
− kc2

R2(t)
+
Λ

3
, (4)

according to the standard cosmological model, where ρM(t)
is the matter density, k is the curvature (k = 0 for a flat
universe), Λ is the cosmological constant (or a candidate of
dark energy), the coordinates {t, r, θ, ϕ} are co-moving coordi-
nates, and H(t) is the Hubble parameter, which, at the present
time, is called the Hubble constant and measured at H0 ∼ 70
km/s/Mpc [3, 26-27].

In the FLRW universe due to the time dependent scalar
factor, light gets redshifted. According to the theory of GR,
light travels on null geodesics (i.e., ds2 = 0). Then along a
radial light path, we have

cdt
R(t)
=

dr
√

1 − kr2
. (5)

It follows from Eq. (5) that∫ to

te

cdt
R(t)
=

∫ to+δto

te+δte

cdt
R(t)
=

∫ 0

r1

dr
√

1 − kr2
. (6)

Subtracting the first integral from the second and assuming
δte, δto << R(t)/Ṙ(t), we get

δte
R(te)

=
δto

R(to)
. (7)

Since δte = 1/νe = λe/c and δto = 1/νo = λo/c, the
cosmological redshift Z can be determined according to the
scale factor R(t) as

1 + Z ≡ λo

λe
=
νe
νo
=
δto
δte
=

R(to)
R(te)

. (8)

Here λ and ν are the light wavelength and frequency, respec-
tively. Light from a source object is redshifted because the
time interval or scale factor is increased. The reason for an in-
dividual photon to be observed with smaller frequency (or en-
ergy) is due to that the time interval of observation is greater.

The scale factor is related to the energy and curvature via
Eq. (4) and to the redshift via Eq. (8). In terms of Eqs. (4)
and (8), the luminosity distance-redshift relation Eq. (2) can
be reformed as

DL ≃ c(1 + Z)
∫ Z

0

dz′

H(z′)

=
c

H0
(1 + Z)

∫ Z

0

dz′√
ΩM(1 + z′)3 + ΩΛ

,

(9)

with 1 = ΩM + ΩΛ. For an arbitrary k, Eq. (9) is generally
represented as

DL ≃ c

H0
√
|Ωk |

(1 + Z)S
(√
|Ωk | ×∫ Z

0

dz′√
ΩM(1 + z′)3 + Ωk(1 + z′)2 + ΩΛ

 , (10)

where

S (x) =


sin(x), if k < 0
x, if k = 0
sinh(x), if k > 0

(11)

and 1 = ΩM + ΩΛ + Ωk.
Comparing the luminosity distance and redshift measure-

ments of distant SNeIa with the luminosity distance-redshift
relation determined in terms of Eqs. (2), (4), and (8) or Eq.
(9) or Eq. (10) with k = 0, two supernova research groups
[1-2], respectively, claimed that the universe has recently ac-
celerated, so that the universe is dominated (ΩΛ ∼ 0.73) by
the dark energy.

However, re-examining the derivation of the luminosity
distance-redshift relation, Eq. (2) so that Eqs. (9) and (10),
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Fig. 2: Quantities used in the calculation of parallaxes and apparent
luminosities [20]. The angles and the curvature of the light ray are
greatly exaggerated.

we find that this relation is just an approximate relation only
valid for nearby objects with Z ≪ 1. Certainly, we cannot
use it to correctly figure out the measurements of distant type
Ia supernovae with Z ≳ 1. In the following, we will derive a
new, more accurate and applicable also to distant objects, lu-
minosity distance-redshift relation, which is perfectly consis-
tent with all the measurements of type Ia supernovae without
the input dark energy.

3 New DL − Z Relation

Now, the luminosity distance-redshift relation is derived by
following the standard method as shown by [20] that calcu-
lates the parallaxes and apparent luminosities according to
the path of light rays that leave from a source at t = te and
r = re = R(te)r1 and pass to the observer at t = to near r = 0
(see Figure 2). At the observation time t = to, the light source
locates at r = ro = R(to)r1. Here, r1 is the commoving dis-
tance defined by

r1 = c
∫ to

te

dt
R(t)
, (12)

from the FLRW metric.
In the coordinate system x′µ in which the light source is

at the origin, the ray path is given by a position vector

x⃗′ = n⃗ρ, (13)

where n⃗ is a fixed unit vector and ρ is a variable positive pa-
rameter describing positions along the path. The coordinate

system x′µ can be transformed to another coordinate system
xµ in which the observer is at the origin (e.g., the center of the
telescope) and the light source is at x⃗1. In the observer coor-
dinate system, the ray path can be represented by (Eq. 14.4.2
of [20])

x⃗ = x⃗′ + x⃗1

(1−kx′2
)1/2 −

{
1−

(
1−kx2

1

)1/2
} (x⃗ · x⃗1)

x2
1

 . (14)

For a flat universe (k = 0), the ray path in the coordinate
system (Eq. 14) can be simplified as

x⃗ = x⃗′ + x⃗1. (15)

The parametric equation of the ray path, given by substituting
Eq. (13) in Eq. (15), is then

x⃗(ρ) = n⃗ρ + x⃗1. (16)

The distance of light ray to the origin in the observer co-
ordinate system will be

|x⃗ | =
√(

x⃗′ + x⃗1

)
·
(
x⃗′ + x⃗1

)
=

√
x2

1 + ρ
2 − 2x1ρ cos ϕ

∼
√

(x1 − ρ)2 + x1ρϕ2,

(17)

where we have considered the angle ϕ between n⃗ and −x⃗1 is
small and thus cos ϕ ∼ 1 − ϕ2/2.

At the emission time te, we have

ρ|t=te = 0, (18)

|x⃗ |t=te = |x⃗1|t=te = re = r1R(te), (19)

ϕ|t=te = |⃗ϵ |, (20)

while at the observation time to, we have

ρ|t=t0 = ro = r1R(to), (21)

|x⃗ |t=to = b, (22)

|x⃗1|t=to = ro = r1R(to), (23)

ϕ|t=to = θ = |⃗ϵ |R(to)/R(te). (24)

Substituting the quantity properties Eqs. (21)-(24) at t = to
into Eq. (17), we obtain the impact parameter as

b = R(to)r1θ =
R2(to)
R(te)

r1 |⃗ϵ |. (25)

To calculate apparent luminosities, we consider a circular
telescope mirror of radius b, placed with its center at the ori-
gin and its normal along the line of sight to the light source.
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The fraction of all emitted photons that reach the mirror is the
ratio of the solid angle to 4π,

π|⃗ϵ |2
4π
=
πb2

4πr2
1

R2(te)
R4(to)

. (26)

Since light is red-shifted, the energy or frequency of each
photon observed is reduced in comparison with the photon
emitted by a factor of R(te)/R(to). This energy or frequency
reduction is equivalent to the increase of the time interval for
observation relative to that for emission. If the effect of the
redshift on the apparent luminosity is considered, then we
should not consider the effect of the time interval increase
on the apparent luminosity. This is also consistent with the
electromagnetic wave theory of light, from which the energy
emitted per unit time of emission is only one redshift factor
greater than the energy observed per unit time of observation.
Therefore, the total power P received by the mirror is the total
power emitted by the source, its absolute luminosity L, times
a factor R(te)/R(to), and times the fraction (Eq. 26):

P = L
πb2

4πr2
1

R3(te)
R5(to)

. (27)

The apparent luminosity l is the power per unit mirror area

l =
P
πb2 =

L
4πr2

1

R3(te)
R5(to)

. (28)

Then the luminosity distance can be obtained

DL =

( L
4πl

)1/2

= r1R(to)
[
R(to)
R(te)

]3/2

= c(1 + Z)3/2R(to)
∫ to

te

dt
R(t)
. (29)

The luminosity distance Eq. (29) derived here is
√

1 + Z
times that we conventionally used, Eq. (2). This factor leads
to an explanation of type Ia supernova measurements without
dark energy. Using Eqs. (4) and (8) for a flat universe (k = 0)
without dark energy (Λ = 0), we can integrate Eq. (29) and
obtain the luminosity distance-redshift relation as

DL =
2c
H0

(1 + Z)
(√

1 + Z − 1
)
. (30)

Eq. (30) dees not include any free parameter and reduces to
the Hubble law at Z ≪ 1.

The two significant corrections, which have been made
in the above derivation of the luminosity distance in compar-
ison with the derivation done in [20] are: 1) θ is not about
equal to |⃗ϵ| for a distant light source but increased by a fac-
tor R(to)/R(te), and 2) the light is red-shifted and the time
interval increases are equivalent in physics νo/νe = δte/δto =
R(te)/R(to) and thus they reduce the apparent luminosity only

by R(te)/R(to) rather than its square. This is also supported
by the electromagnetic wave theory of light.

The early derivation, including the simplified version as
given in [28] and other cosmological books, the fraction of
the light received in a telescope of aperture πb2 on earth is
πb2/[4πr2

1R2(to)] and so the factor 1/d2 in the formula for the
apparent luminosity l was replaced by 1/[r2

1R2(to)]. This re-
placement or modification for the apparent luminosity l was
made according to the view of the emitter rather than from
the view of the observer. From the view of the emitter (or a
person standing on the source object), all light rays radially
diverge from the source object isotropically and in straight
lines. All the photons emitted at te reach the surface of the
sphere drawn around the source object by radius r1R(to). The
angle of emission of a photon from the source object is equal
to the angle of incidence of the photon to the mirror of tele-
scope.

From the view of the observer, however, the source ob-
ject is moving away in an increasing speed. The light rays
travel in curved lines and anisotropically as shown in Figure
2. The angle of emission of a photon from the source object
|⃗ϵ | is smaller than the angle of incidence of the photon to the
mirror of telescope θ by a factor of R(te)/R(to). That is, from
the view of the observer, the factor 1/d2 in the formula for
l must be replaced with 1/[r2

1R4(to)/R2(te)] as shown in Eq.
(26). On the other hand, according the electromagnetic wave
theory, the energy of radiation does not depend on the fre-
quency. Only the increase of time interval would reduce the
apparent luminosity. This may be examinable in experiments
using a sound wave.

Figure 3 plots the luminosity distance-redshift relation
(red line) along with the type Ia supernova measurements
(blue dots. Credit: Union 2.1 compilation of 580 SNIA data
from Supernova Cosmology Project). In this plot the Hubble
constant is chosen to be H0 ∼ 70 km/s/Mpc. In the upper
panel of Figure 3, the distance modulus, which is defined by
µ = 5 log10 DL − 5 with DL in parsecs, is plotted as a function
of redshift; while in the lower panel of Figure 3, the distance
modulus difference between the measured SNeIa data and an-
alytical results derived from Eq. (30). The chi-square statistic
is obtained as

χ2 =

580∑
j=1

(
µobs

j − µthe
j

)2

σ2
j

∼ 589. (31)

Then the reduced chi-square is given by χ2
red = 589/580 ∼

1.015. It is seen that the derived luminosity distance-redshift
relation is perfectly consistent with the measurements of type
Ia supernovae. Therefore, with the new luminosity distance-
redshift relation, the SNeIa measurements do not show the
existence of dark energy.

The analysis and measurements for the structure and weak
lensing of the CMB might not be accurate enough as were
thought to provide an independent check or evidence on the
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Fig. 3: Luminosity distance-redshift relation of type Ia supernovae.
Blue dots are measurements credited by the Union2 compilation of
580 SNeIa data from Supernova Cosmology Project. Red lines are
analytical results from this study. The upper panel plots the distance
modulus as a function of redshift, while the lower panel plots the
distance modulus difference between the measurement data and the-
oretical results.

existence of dark energy [29-30]. Recently, Sawangwit and
Shank [31-32] looked at the CMB observations and find the
errors in the data to be much larger than previously thought.
The CMB power spectrum is very sensitive to the beam pro-
files. If their results are further confirmed to be correct, then
it will also become less likely that dark energy dominates the
universe.

4 Summary

The luminosity distance-redshift relation that we previously
applied to connect the models with the SNeIa measurements
is an approximate expression only valid for nearby objects.
This is because that the traditional derivation of the DL−Z re-
lation has the following two defects: (1) the light emitting an-
gle is about equal to the light incident angle, which is not true
for light from a distant source object according to the view

of the observer on the earth, and (2) the redshift of light and
the increase of time interval doubly reduce the energy flux
of the received light, which is physically incorrect because
the redshift of light is caused by the increase of time inter-
val. The electromagnetic wave theory of light also supports
that the apparent luminosity is reduced only by one redshift
factor due to the time interval increase. We have corrected
these defects and derived a new relationship between lumi-
nosity distance and redshift with a factor of

√
1 + Z. With

this new DL − Z relation, we have perfectly explained the
SNela measurements according to the standard cosmological
model without dark energy (Λ = 0). Therefore, we can con-
clude that the universe has not accelerated and does not need
the dark energy at all. The luminosity distance-redshift rela-
tion often used previously is only valid for nearby objects and
thus the luminosity distances of all distant type Ia supernovae
had been underestimated. This study provides us a possible
solution to the mystery of dark energy.
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The spins, transition energies, rotational frequencies, kinematic and dynamic moment
of inertia of rotational bands of signature partners pairs of odd–A superdeformed bands
in A∼190 region were calculated by proposing a simple model based on collective rota-
tional model. Simulated search program was written to determine the model parameters.
The calculated results agree with experimental data for fourteen signature partner pairs
in Hg/Tl/Pb/Bi/nuclei. We investigated the ∆I=1 signature splitting by extracted the
difference between the average transitions I+2 −→ I and I −→ I-2 energies in one band
and the transition I+1 −→ I-1 energies in its signature partner. Most of the signature
partners in this region show large amplitude staggering. The signature splitting has the
effect of increasing dynamical moment of inertia J2 for favored band and decreasing J2

for the unfavored band.

1 Introduction

Since the first observation of superdeformation in 152Dy [1]
and in 191Hg [2] more than 350 settled SD bands in more
than 100 nuclei have been will established in several mass re-
gions of nuclear chart A∼190, 150, 130 [3–6]. With the aid
of large γ-ray detectors arrays, new regions of SD nuclei have
been discovered encircle mass A∼80, 60, 70, 90 regions. The
A∼190 mass region is of special interest, more than 85 SD
bands have now been observed in this mass region alone in
Au, Hg, Tl, Pb, Bi and Po nuclei. The SD states in A∼190
mass region have been observed down to quite low spin also
many SD bands in the A∼190 show the same smooth rise in
the dynamical moment of inertia as rotational frequency in-
crease, which is associated [7–9] with the successive gradual
alignments of a pair of nucleons occupying specific high-N
intruder orbitals in the presence of pairing correlations.

Spin assignment is one of the most difficult and still un-
solved problems in the study of nuclear superdeformation, be-
cause spins have not been determined experimentally in SD
nuclei. This is due to the difficulty of establishing the exci-
tation of a SD band into known yrast states. Several related
approaches to assign the spins of SD bands in terms of there
observed γ-ray energies were proposed [10–28]. For all ap-
proaches an extrapolation fitting procedure was used.

The development of large γ-ray arrays has allowed exper-
imentalists to find new phenomena at high angular momenta.
For example some SD nuclear bands in mass regions A∼150
and A∼190 show an unexpected regular staggering effects in
the transition energies Eγ (a zigzag behavior as a function of
rotational frequency or spin). At high rotational frequencies a
∆I=2 staggering was observed [29–39]. It has attracted much
attention and interest, and has thus become one of the most
frequently debated subjects.

The ∆I=2 rotational bands are perturbed and two ∆I=4
rotational sequences emerge with an energy splitting of about

some hundred eV. This is commonly called ∆I=4 bifurcation
or as C4 oscillation, because the SD-energy levels are conse-
quently separated into two spin sequences with spin values I0,
I0+4, I0+8,... and I0+2, I0+6, I0+10,. . . respectively.

Many ∆I=1 signature splitting have been observed in ND
nuclei for different bands, like odd-even staggering (OES) in
the gamma vibrational band at low spin [40], the beat odd-
even ∆I=1 staggering patterns observed in the octuple bands
[41] and the ∆I=1 odd-even staggering structure of alternat-
ing parity bands in even-even nuclei [42, 43].

There is another kind of staggering happens in SD odd-A
nuclei, the ∆I=1 signature splitting in signature partner pairs.
It was seen that most of SD rotational bands in odd-A nuclei
in the A∼190 region are signature partners [44–53]. Most of
these signature partners show large amplitude signature split-
ting and the bandhead moments of inertia of each pair are
almost identical.

2 Sketch of the Model

In the model used, the excitation energy of a SD State E(I)
and spin I is expressed as:

Î2 = I (I + 1) =
∑

n

bn En(I). (1)

With Î [I (I + 1)]1/2. If we restrict to three terms only, then

I(I + 1) = b0 + b1E(I) + b2E2(I). (2)

Solving for E(I) we get the two-parameters formula for E(I)

E(I) = E0 + a
(
[1 + bI(I + 1)]1/2

)
(3)

with a,b and E0 simply expressed by b0, b1 and b2

a =
1

2b2
[b2

1 − 4b0b2]1/2 (4)
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b =
4b2

b2
1 − 4b0b2

(5)

E0 = a − b1

2b2
(6)

where b characterizes the nuclear softness.
The rigid rotor limit corresponds to b−→0 and a, E0 keep-

ing finite. The value of the parameter a increases slowly with
I. It is expected that a better expression may be obtained if a
weak I dependence of the parameter a is taken into account.
So equation (3) is tentatively modified as follows:

E(I) = a
(
[1 + b(I)(I + 1)]1/2 − 1

)
+ cI(I + 1) (7)

with an additional parameter c. Leading to a form for the
gamma transition energies

Eγ(I) = a
(
[1+bI(I+1)]1/2 − [1+b(I−2)(I−1)]1/2

)
+2c(2I+1).

(8)

The kinematic J1 and dynamic J2 moment of inertia as-
sociated with the a, b, c, formula are:

J1 = ab[1 + bI(I + 1)]1/2 +
1
2c

(9)

J2 = ab[1 + bI(I + 1)]3/2 +
1
2c
. (10)

The bandhead moment of inertia is

J0 =
ℏ2

ab + 2c
.

Each SD nucleus is described by three adjustable parameters
a, b and c which are determined by fitting procedure of all
known levels.

For the SD bands, one can extract the rotational frequen-
cy, dynamic and kinematic moment of inertia by using the
experimental intra band E2 transition energies as follows:

ℏω =
1
4

[Eγ(I + 2) + Eγ(I)] (11)

J2(I) =
4 ℏ2

△Eγ
(12)

J1(I − 1) =
ℏ2(2I − 1)

Eγ
(13)

where
Eγ = E(I) − E(I − 2),

△Eγ = Eγ(I + 2) − Eγ(I).

It is seen that whereas the extracted J1 depends on I pro-
position, J2 does not.

3 Analysis of ∆I=1 signature splitting in SD signature
partner

To investigate the ∆I=1 staggering in signature partner pairs
of odd SD band, one must extract the differences between the
average transition I+2−→I and I−→I-2 energies in one band
the transition I+1−→I and I−→I-1 energies in the signature
partner

△2Eγ(I) = 1
2

[
Eγ(I+2 −→ I) + Eγ(I −→ I−2)

−2Eγ(I+1 −→ I−1)
]

where Eγ(I) is proposed in equation (8).

4 Numerical Calculation and Discussions

Our selected data set includes fourteen signature partner pairs
in ten odd SD nuclei in the A∼ 190 mass region, namely:

191Hg (SD2, SD3) 193Hg (SD1, SD2) 193Hg(SD3, SD4)
193Hg (SD3, SD4) 195Hg (SD3, SD4) 191Tl(SD1, SD2)
193Tl (SD1, SD2) 195Tl (SD1, SD2) 193Pb(SD3, SD4)
193Pb (SD5, SD6) 195Pb (SD1, SD2) 195Pb(SD3, SD4)
197Pb (SD1, SD2) 197Bi (SD2, SD3)

The experimental transition energies are taken from ref-
erence [3]. To parameterize the spins of the SD bands, we
assumed various values for the bandhead spin I0 for each SD
band and the model parameters a, b and c are adjusted by us-
ing a computer simulated search program in order to obtain a
minimum root mean square deviation

χ =

 1
N

N∑
i=1

Eexp
γ (I) − ETheor

γ (I)

△Eexp
γ (I)

1/2 .
Of the calculated energies Ecal

γ from the observed ener-
gies Eexp

γ , where N is the number of data points considered
and △Eexp

γ is the uncertainty of the γ-transition energies. The
fitting procedure was repeated with spin I0 fixed at the nearest
half integer.

Table (1) gives the optimized model parameters a, b, c,
the bandhead spin proposition I0 and the lowest transition en-
ergies Eγ (I0+2 −→ I0) for each SD band.

The systematic behavior of kinematic J1 and dynamic J2

moments of inertia are guideline for the spin prediction and
to understand the properties of the SD bands. We studied the
variation of J1and J2as a function of rotational frequency ℏω.
The value of J1and J2 approaches each other at the bandhead
spin I0 . The J1 moment of inertia is found to be smaller
than that of J2 for all values of ℏω. Both J1and J2 plots
are concave upwards. In general the bandhead moments of
inertia in our selected signature partners odd-A SD nuclei
J0 � (94 ± 4)ℏ MeV−1 are longer than that of the yrast SD
bands in neighboring even-even nuclei. The best fitted param-
eters were used to calculate the theoretical transition energies
extracted from our proposed model.
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Table 1: The calculated best model parameters a, b, c and suggested bandhead spins I0 for our selected signature partners in the odd SD
nuclei in A ≃ 190 region.

SD Bands a b c I0 Eγ
MeV 10−4 MeV MeV ℏ keV

191Hg(SD2) 19074.6639 3.0809 2.3765 10.5 252.4
191Hg(SD3) 15810.8517 3.6987 2.4037 11.5 272
193Hg(SD1) 1569.7883 23.4445 3.7662 9.5 233.2
193Hg(SD2) 12654.6097 4.3858 2.6051 10.5 254
193Hg(SD3) 12243.4329 4.4984 2.6289 9.5 233.5
193Hg(SD4) 12654.6098 4.3858 2.6051 10.5 254
195Hg(SD3) 72779.9405 1.8708 -0.9723 10.5 284.5
195Hg(SD4) 22034.6647 2.4110 2.4673 15.5 341.9
191Tl(SD1) 307519.2819 0.7272 -5.7903 11.5 276.77
191Tl(SD2) 249002.6385 0.8532 -5.2350 12.5 296.75
193Tl(SD1) 13573.6592 3.7666 2.6759 9.5 227.3
193Tl(SD2) 6380.8736 5.3776 3.5196 8.5 206.6
195Tl(SD1) 6380.8738 5.3776 3.5196 5.5 146.2
195Tl(SD2) 33124.3911 2.4266 1.2551 6.5 167.5
193Pb(SD3) 4702.3802 6.2778 3.8243 10.5 251.5
193Pb(SD4) 16892.1756 3.5957 2.2986 11.5 273
193Pb(SD5) 4337.5276 8.2523 3.6196 8.5 213.2
193Pb(SD6) 3574.7877 9.4219 3.7378 9.5 234.6
195Pb(SD1) 600.9413 13.4593 4.6737 7.5 162.58
195Pb(SD2) 15864555.765 0.0139 -5.9659 6.5 182.13
195Pb(SD3) 2362.3559 13.4225 3.9167 7.5 198.2
195Pb(SD4) 18884.3711 3.5500 2.0732 8.5 213.6
197Pb(SD1) 9713.0371 2.5870 3.8497 7.5 183.7
197Pb(SD2) 724986.6813 0.1798 -1.3692 6.5 204.6
197Bi (SD2) 6.09E+08 8.24E-07 -245.7806 8.5 166.2
197Bi (SD3) 6.09E+08 8.24E-07 -245.7806 9.5 186.7

To investigate the ∆I=1 signature splitting, the difference
between the averaged transitions I+2−→I and I−→I-2 ener-
gies in one band and the transition I+1−→I-1 energies in its
signature partner △2Eγ(I) are determined and its value as a
function of spin I for each signature partner pairs are plotted
in figure (1). Most of there signature partners show large am-
plitude staggering with the exception of 193Hg (SD1, SD2),
193Pb (SD5, SD6) and 195Pb (SD3, SD4).

A clear out amplification of △2E(I) is seen in 193Pb (SD3,
SD4). For most cases one finds that △2E(I) is very small at
lower spins, increasing faster and faster as the spin I increase.
The of △2E(I) in 193Tl (SD1, SD2) and 195Tl (SD1, SD2) are
remarkable similar.

5 Conclusion

The nuclear superdeformed rotational bands of signature part-
ners of odd-mass number in the A∼190 region have been
studied in the framework of a simple formula based on col-
lective rotational model containing three parameters. The for-
mula connected directly the unknown spin and the energy of

the level the spins of the observed levels were extracted by
assuming various values to the lowest spin of the bandhead at
the nearest half integer. The optimized three parameters have
been deduced by using a computer simulated search program
in order to obtain a minimum root mean square deviation of
the calculated transition energies from the measured energies.

The calculated transition energies, level, spins, rotational
frequencies, kinematic and dynamic moments of inertia are
examined for fourteen signature partner pairs. To investigate
the ∆I=1 signature splitting for each signature partner pair,
we calculated the difference between the average transitions
I+2 −→I and I−→I-2 energies in one band and the transition
I+1−→I-1 energies in its signature partner. Most of the signa-
ture partners in this region show large amplitude ∆I=1 stag-
gering.
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The values of the potential energy surface (PES) for the even-even isotopic chains of
Nd/Sm/Gd/Dy are studied systematically using the simplified form of interacting boson
model (IBM) with intrinsic coherent state. The critical points have been determined
for each isotope chain. The phase diagrams exhibits first-order shape phase transition
from spherical U(5) to deformed axial symmetric prolate SU(3) when moving from
light isotopes to heavy ones.

1 Introduction

We note that in the interacting boson model-1 (IBM-1) [1, 2]
one describes an even-even nucleus as a system of N bosons
able to occupy two levels, one with angular momentum re-
stricted to zero (s boson) and one with angular momentum 2
(d boson).

The bosons are assumed to interact via a two-body resid-
ual interaction. Denoting by bi (i=1,...,6) the creation (anni-
hilation) operators for bosons (b1 = s, b2,...,6 = d) it is easy
to see that the 36 operators Gii− = b†i bi− close under the Lie
algebra of U(6). This simple model allows the utilization of
algebraic symmetric for approaching different type of nuclear
spectra, known as dynamical symmetries and corresponding
to un-harmonic vibrator (U(5) Symmetry) [3], rigid deforma-
tions (SU(3) Symmetry) [4] and γ-instability (O(6) Symme-
try) [5]. In these special cases it is possible to find analytical
solutions of the boson Hamiltonian and deal with small de-
viations from these symmetries using different perturbation
methods.

However, real nuclei may deviate considerably from the
simple dynamical limits. This is represented in the Casten
triangle [1–6] with vertices corresponding to the standard dy-
namical symmetries and the sides of the triangle represent
direct transition between the limiting cases, whereas all com-
plex transition regions are contained in the area. Phase tran-
sitions between these shapes were studied, and it is known
that the phase transition from U(5) to O(6) is second order,
while any other transitions within the Casten triangle from a
spherical to deformed shape is first order [7–23].

Now, there is a class of symmetries that are formulated
in terms of the Bohr Hamiltonian and that can be applied to
critical point situation [24–26]. In particular, at the critical
point from spherical to γ-unstable shapes, called E(5) [24], at
the critical point from spherical to axially deformed shapes,
called X(5) [25] and the critical point from axially deformed
shapes to triaxial shapes, called Y(5) [26]. Since the intro-
duction of these limits many theoretical [27–32] and experi-
mental [33–39] studies have been presented in order to look

for nuclei that exhibit the properties of critically and to clas-
sify the corresponding phase transitions. Many studies have
extended these original models to more complex situations
[40–44].

The relation between the Bohr-Mottelson collective
model [45] and the IBM was established [46, 47] on the ba-
sis of an intrinsic (or coherent) state for the IBM. Via this
coherent state formalism, a potential energy surface (PES)
E(β, γ) in the quadruple deformation variables β and γ can
be derived for any IBM Hamiltonian and the equilibrium de-
formation parameters β0 and γ0 are then found by minimizing
E(β, γ). The deformation parameter β measures the axial de-
viation from sphericity, while the angle variable γ controls
the departure from axial symmetry.

In the present work, we investigate shape phase transition
within the IBM-1 using coherent state formalism for various
rare earth isotopic chains. The paper is organized as follows.
First the IBM and the symmetry triangle used in the present
work is briefly described in section 2. In this variation of the
IBM, the coherent state approach is treated to produce PES’s
in section 3. The location of the critical point in the shape
transition is identified in section 4. We review the concept of
dynamical symmetry in section 5. In section 6 a systematic
study of isotopic chains on Nd/Sm/Gd/Dy related to the U(5)-
SU(3) shape transition is given and main conclusions arising
from the present results are discussed.

2 The IBM-1 Hamiltonian and Coherent State

Denoting by Cn[G] the nth-order Casmir operator of the Lie
group G, the general sd-IBM Hamiltonian with up to two-
body interactions can be written in the following form:

H = ϵC1[U(5)] + k1C2[U(5)]
+ k2C2[O(5)] + k3C2[O(3)] (1)
+ k4C2[S U(3)] + k5[O(6)]

The Casmir operators are defined by the following equations

C1[U(5)] = n̂d (2)
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C2[U(5)] = n̂d(n̂d + 4) (3)

C2[O(5)] = 4
[

1
10

(L̂.L̂ + T̂3.T̂3)
]

(4)

C2[O(3)] = 2(L̂.L̂) (5)

C2[S U(3)] =
2
3

[
2(Q̂.Q̂) +

3
4

(L̂.L̂)
]

(6)

C2[O(6)] = 2
[
N(N + 4) − 4(P̂.P̂)

]
(7)

where n̂d, P̂, L̂, Q̂ and T̂3 are the boson number, pairing, an-
gular momentum, quadruple and octuple operators defined as

n̂d = (d†d̃)(0) (8)

P̂ =
1
2

(d̃d̃) − 1
2

(s̃s̃) (9)

Q̂[χ] = [d† s̃ + s†d̃]2 + χ[d†xd̃](2) (10)

L̂ =
√

10[d†xd̃](1) (11)

T̂3 = [d†xd̃](3) (12)

where s†(s) and d†(d) are monopole and quadruple boson
creation (annihilation) operators respectively. The study of
shape phase transition in even-even nuclei can be well done
from the simple two parameter IBM Hamiltonian, the well
known consistent-Q Hamiltonian

H = εn̂d − kQ̂(χ) · Q̂(χ). (13)

The symbol (·) represents the scalar product and the scaler
product of two operators with angular momentum L is defined
as T̂L.T̂L = ΣM(−1)MT̂LMT̂L−M where T̂LM corresponds to the
M component of the operator T̂L.

The Hamiltonian of equation (13) describes the main fea-
tures of collective nuclei, it contains the dynamical symme-
tries of the IBM for spherical choices of the coefficients ε, k
and χ, and allows to describe the transitional regions between
any of symmetry limits as well. In discussing phase transi-
tions, it is convenient to introduce the control parameter η,
such as:

η

1 − η =
1
N
ε

k
(14)

where N is the total number of boson. Hamiltonian(1) can be
written in the second form

H = C
[
ηn̂d −

1 − η
N

Q̂(χ).Q̂(χ)
]
. (15)

With
C = ε + Nk, η =

ε/k
N + ε/k

. (16)

The second form equation (15) avoids the infinities inher-
ent in the use of the ratio of ε/k as η varies from 0 to 1. The
factor C in equation (15) is only a scale factor and η and χ
are therefore the two parameters that determine the structure.
The values of the control parameter η ranges from 0 to 1 and
χ is located in the interval of −

√
7/2 (-1.32) to

√
7/2 (+1.32).

Let us consider the Hamiltonian of equation (5) and the
effects of its two parameters η and χ. Clearly, one of the most
important features of the IBM is the existence of three dis-
tinct dynamical symmetries (DS), each representing a well
defined phase of nuclear collective motion. The three DS
are: the U(5) symmetry for spherical vibrational nuclei (η=1),
the SU(3) symmetry for prolate deformed nuclei (η=0, χ=
−
√

7/2) and the O(6) symmetry for γ-unstable deformed nu-
clei (η=0, χ=0), the SU(3) symmetry for oblate deformed nu-
clei corresponding to (η=0, χ=+

√
7/2). For intermediate val-

ues of the control parameters η and χ, the potential energy
surface (PES) function will describe a certain point on the
IBM symmetry triangle located between the three limits.

Comparing the simplified Hamiltonian equation (15) with
equation (1) we see that only two terms of the general form
are considered. Rewriting equation (15) in the form of equa-
tion (1), we get:

H =

η + 2
7N

(1 − η)χ
χ + √7

2

C1[U(5)]

+
2

7N
(1 − η)χ

χ + √7
2

C2[U(5)]

+
1
N

(η − 1)
(
1 +

3
√

7
χ +

2
7
χ2

)
C2[O(5)]

+
1

14N
(1 − η)χ

(
χ + 2

√
7
)
C2[0(3)]

+
1
√

7N
(η − 1)χC2[S U(3)]

+
1
N

(1 − η)
1 + 2

√
7χ

C2[O(6)].

(17)

In IBM-1, the intrinsic coherent normalized state of a nu-
cleus with N valence bosons outside the doubly-closed shell
state is given by:

|Nβγ⟩ = 1
√

N!
(Γ†C)N |0⟩ (18)

where |0⟩ denotes the boson vacuum, and

Γ
†
C =

1√
1 + β2

[
s† + β cos γd†0 +

1
√

2
βsinγ(d†2 + d†−2)

]
. (19)

Here β ≥ 0 and 0 ≤ γ ≤ π/3 are intrinsic shape parame-
ters. We get the PES by calculating the expectation value of
Hamiltonian (17) on the boson condensate equation (18). The

Khalaf A.M., Hamdy H.S. and El Sawy M.M. Nuclear Shape Transition Using IBM with the Intrinsic Coherent State 45



Volume 3 PROGRESS IN PHYSICS July, 2013

corresponding PES as a function of the deformations β and γ
is given by:

E(N, η, χ, β, γ) =

= −5(1 − η) + 1
(1 + β2)2{ [

Nη − (1 − η)
(
4N + χ2 − 8

)]
β2

+

[
Nη − (1 − η)

(
(2N + 5)

7
χ2 − 4

)]
β4

+4N(1 − η)
√

2
7χβ

3 cos 3γ
}

(20)

3 Location of the Critical Symmetries

Minimization of the PES equation (20) with respect to β for
given values of the control parameters η and χ, gives the equi-
librium value βe. The phase transition is signaled by the con-
dition at β = 0

d2E
dβ2 = 0, (21)

which fixes the critical value of the control parameter η. The
critical point in the above equation (20) is given by the value
of η where the coefficient at β2 vanishes, i.e.

ηcritical =
4N + χ2 − 8
5N + χ2 − 8

. (22)

At this value, the second β derivative for β = 0 changes
its sign, which means that β = 0 maximum becomes a local
minimum. Note that the critical point (22) depends on χ, it
changes between: η(−

√
7/2) = (16N − 25)/(20N − 25) at

U(S)-SU(3) side if the symmetry triangle, and η(0) = (16N −
32)/(20N − 32) at the U(5)-O(6) side, condition (12) gives in
the case of large-N limit the value 4/5.

If we ignore the contribution of one-body term of the
quadruple-quadruple interaction and in large N limit (N-1≃N)
and γ = 0, equation (20) takes the form

E(N, η, χ, β) =
Nβ2

(1 + β2)2

5η−4 + 4

√
2
7
βχ(1−η)

+β2
(
η − 2

7
χ2(1−η)

)]
.

(23)

The deformation parameter β = 0 is always a stationary
point. For η < 4/5, β = 0 is a maximum, while for η > 4/5,
it becomes a minimum. In the case of η = 4/5, β = 0 is an
inflection point. The η = 4/5 is the point at which a mini-
mum at β = 0 starts to develop and defines the antispinodal
line. For χ , 0, there exists a region, where two minima, one
spherical and one deformed, coexist. This region is defined by
the point at which the β = 0 minimum appears (antispinodal
point) and the point at which the β , 0 minimum appears
(spinodal point). For η = 1, the system is in the symmetry

Fig. 1: Potential energy surface (PES) equation (3) for N=10 cal-
culated with IBM without normalization along the axial trajectory
γ = 0◦, 60◦ as a function of the shape parameter β. The curves
describe the first order shape phase transition between spherical to
prolate deformed U(5)-SU(3) for control parameter η: η = 0.900,
η = 0.820 (spinodal), η = 0.818 (critical point), η = 0.800 (antispin-
odal) and η = 0.750.

Fig. 2: For two cases in the coexistence region η = 0.817 and
η = 0.819.

phase since the PES has a unique minimum at β = 0. When
η decreases, one reaches the spinodal point η = 0.820361 for
χ = −

√
7/2 as illustrated in Fig. (1) for boson number N=10.
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Fig. 3: For χ = 0.

In the coexistence region, the critical point is at the situa-
tion in which both minima of spherical point is at the situation
in which both minima of spherical and deformed are degen-
erate. At the critical point, the two degenerated minima are
at β0 = 0 and β0 = −

√
7/4 and their energy is equal to zero.

The critical point line is at ηc = (4 + 2/7χ2)/(5 + 2/7χ2).
The χ = −

√
7/2 provides ηc = 9/11 (0.818181). Ac-

cording to the previous analysis, a first order phase transition
appears for η , 0, χ , 0, while for χ = 0 there is an iso-
lated point of second order phase transition as a function of
η. Spinodal, antispinodal and critical point coincide at the
critical value η = 4/5.

We show in Figures (1,2,3) a sketch at this evolution for
the special case χ = −

√
7/2, the two cases in the coexistence

region and for χ = 0. From Figure (3), we observe the evo-
lution from the spherical potential η = 0.9, whose minima
is found at β = 0 to potentials with well-deformed minima
η = 0.75. For intermediate η values one finds a set of po-
tential energy curves which are practically degenerated along
the prolate axis in the interval [0, 0.4]. These curves show two
minima, on spherical and a prolate deformed one. In partic-
ular, for η = 0.81818, the spherical and the prolate deformed
minima are degenerate and this condition defines precisely
the critical point of the first order phase transition where the

order parameter is the deformation β.
For η = 1,the Hamiltonian H of equation (15) reduces to

the U(5) limit of the IBM corresponds to a spherical shape
with vibration

H(U(S )) = n̂d. (24)

The PES of H is given by:

E(U(5)) =
Nβ2

1 + β2 . (25)

The equilibrium value of the deformation parameter β is eas-
ily obtained by solving ∂E/∂β = 0 to give βe = 0 which
corresponds to a spherical shape.

For η = 0 and χ = ∓
√

7/2, the schematic Hamiltonian
of equation (15) reproduces the SU(3) Limit corresponds to a
shape of ellipsoid with rotation (or axial rotation)

H((S U(3)) = − 1
N

Q̂(χ).Q̂(χ). (26)

If we eliminate the contributions of the one-body terms of
quadruple-quadruple interaction, for this case the PES of H is
given by:

E((S U(3)) = − (N − 1)
(1 + β2)2 (4β2 +

1
2
β4 ± 2

√
2β3cos3γ). (27)

The equilibrium values are given by solving dE
dβ =

∂E
∂γ
= 0

to give βe =
√

2 and γe = 0 for χ = −
√

7/2 and by βe =
√

2
and γe = π/3 for χ =

√
7/2 corresponding to prolate and

oblate deformed shape respectively.
For η = 0 and χ = 0, one recovers the O(6) limit corre-

sponds to γ-unstable

H(O(6)) = − 1
N

Q̂(χ = 0).Q̂(χ = 0). (28)

Eliminating the one-body terms, the PES depends only on β

E(O(6)) = − (N − 1)
(1 + β2)2 4β2. (29)

The equilibrium value is given by βe = 1, corresponding to
a γ-unstable deformed shape. For intermediate values of the
control parameters η and χ, the PES function will describe a
certain point on the IBM symmetry triangle, located between
the three limits.

4 First-Order U(5)-SU(3) Phase Transition in Nd/Sm/
Gd/Dy Rare Earth Nuclei

In a first order phase transition, the state of the rearrangement
happens, which means that there involves an irregularity at
the critical point.

The study is carried out considering specific isotopic
chains of even-even rare earth nuclei 60Nd, 62Sm, 64Gd and
66Dy displaying first order phase transition from sphericity to
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Fig. 4: PES for first order shape phase transition between spheri-
cal to prolate deformed U(5)-SU(3) for Neodymium isotope chain
144−154

60Nd (with Nπ = 5 proton bosons and Nν = 1 − 6 neutron
bosons).

axial symmetric deformed U(S)-SU(3). That is for the nuclei
included in this study; all chains begin as vibrational with en-
ergy ratio R(4/2) = E(4+1 )/E(2+1 ) near 2.0 and move towards
rotational R(4/2) = 3.33 as neutron number is increased. For
control parameter η = 1, we get the U(5) limit and for η = 0
and χ = −

√
7/2 the SU(3) limit. For intermediate values

of the control parameters η and χ, the PES function will de-
scribe a certain point on the IBM symmetry triangle, located
between the U(5) and SU(3) limits. To describe a phase tran-
sition, one has to establish the values of the control parameter
for each nucleus.

For our rare- earth nuclei, we keep χ at the fixed value
χ = −

√
7/2, because some Gd isotopes clearly exhibit the

character of the SU(3) dynamical symmetry. This assumption

Fig. 5: The same as Fig. (4) but for Samarium isotope chain
146−160

62Sm (with Nπ = 6 proton bosons and Nγ = 1–8 neutron
bosons).

is very successful in describing the Sm nuclei which form
neighboring nuclei.

The system passes from the U(5) to the SU(3) limit when
the number of bosons is increasing from N=6 towards N=17.
The values of the control parameter η is adjusted for each nu-
cleus by using a computer simulated search program in order
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Fig. 6: The same as Fig. (4) but for Gadolinium isotope chain
148−162

64Gd (with Nπ = 7 proton bosons and Nγ = 1–9 neutron
bosons).

to describe the gradual change in the structure as boson num-
ber is varied and to reproduce the properties of the selected
states of positive parity excitation (2+1 , 4

+
1 , 6

+
1 , 8

+
1 , 0

+
2 , 2

+
3 , 4

+
3 ,

2+2 , 3
+
1 and 4+2 ) and the two neutron separation energies of all

isotopes in each isotopic chain. Typically, η decreasing from
1 to 0 as boson number increases and the nuclei evolve from
vibrational to rotational as expected. This trend is observed
for the studied isotopic chains and illustrated in figures (4-7)
by plotting the PES from Hamiltonian (12) as a function of
quadruple deformation parameter β for different values of the

Fig. 7: The same as Fig. (4) but for Dysprosium isotope chain
150−166

66Dy (with Nπ = 8 proton bosons and Nγ = 1–9 neutron
bosons).
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Fig. 8: Position of the absolute minima βmin versus the total number
of bosons N from N = 6 to N = 17.

Table 1: Neutron Number.

Nucleus η/Ncrit

66Dy 0.08183 0.07339 0.04166 0.00993
64Gd 0.08183 0.07339 0.04166 0.00993
62Sm 0.0982 0.08807 0.5 0.01192
60Nd 0.10911 0.09786 0.55555 0.01324

N 84 86 88 90

Nucleus η/Ncrit

66Dy 0.00149 0.0002 0.0000 0.0000
64Gd 0.00149 0.0002 0.0000 0.0000
62Sm 0.00179 0.00024 0.00003 0.0000
60Nd 0.00199 0.00027

N 92 94 96 98

the control parameter η and varying boson number N.

Here, we observe that the transition from spherical to pro-
late deformed occurs between N=9 and N=12. In the
144−154Nd, the nuclei 146−150Nd are transitional isotopes be-
tween the spherical nucleus 144Nd and the well prolate de-
formed nuclei 152−154Nd. The 150Gd nucleus still shows a vi-
brational structure while 156−162Gd are considered as rather
good SU(3) example.

The 158−162Gd are corresponds to η = 0. One can observe
a sudden transition in the Gd isotopes from a vibrational re-
gion into the rotational SU(3) limit. The control parameter
η for each nucleus is shown in Table (1). The position of the
absolute minimum βmin(N) of the different PES’s is illustrated
in Figure (8).

Table (1) lists values of the control parameter η/Ncrit for
each Nd/Sm/Gd/Dy isotopic chain as a function of the neu-
tron number.

5 Conclusion

In the present paper we have analyzed systematically the
PES ′s for the even-even Nd/Sm/Gd/Dy isotopes using the
simplified form of IBM in its sd-boson interaction. We have
analyzed the critical points of the shape phase transitional re-
gion U(5)-SU(3) in the space of two control parameters η and
χ.

In all isotopic chains one observes a change from spher-
ical U(5) shape to axially symmetric deformed shape SU(3)
when moving from the lighter to the heavier isotopes.
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According to recent work [13, 14], the Neptune Adams ring main arc Fraternité is re-
garded as captured by the corotation elliptic resonance (CER) potential of Galatea. The
minor arcs Egalité (2,1), Liberté, and Courage are located at positions where the time
averaged forces, due to the 42-43 corotation-Lindblad resonances under the central field
of Neptune, vanish. With adequately chosen Fraternité mass and Galatea eccentricity,
this model gives minor arc locations compatible to observed positions, and allows a
dynamic transport of materials among arcs. To complement this model, the effect of
self-gravity of Fraternité, with a distributed mass, is evaluated together with the CER
potential to account for its 10o longitudinal span. Although self-gravity is the collective
action of all the particles in the arc, each individual particle will see the self-potential
with a central maximum as an external potential generated by other particles.

1 Introduction
From the very first observations of the Neptune Adams ring
arcs [6, 12], plus the subsequent observations [2, 11], the A-
dams arcs seemed to change in arc locations and in bright-
ness. More recently, these dynamic natures of the arcs, Fra-
ternité, Egalité (2,1), Liberté, and Courage, have been con-
firmed beyond any doubt in another ground observation [1].
Measuring from the center of the main arc Fraternité, they
extend a total of about 40o ahead of Fraternité. Occasion-
ally, some arcs flare up and others fade away. Furthermore,
the arc configuration appears to be changing in time as well.
The leading arc Courage appears to have leaped over to an-
other CER site recently [1]. Although the twin arc Egalité
(2,1) is small, it is a very bright arc. According to de Pater et
al [1], its relative intensity to Fraternité varied from 17 per-
cent higher in 2002 to seven percent lower in 2003 totaling
a 24 percent relative change over a short period of time. The
angular span of the twin arc Egalité appeared to be 30 percent
larger in 2005 and 1999 publications than in 1989 Voyager 2
results. This widening of Egalité was accompanied by a cor-
responding narrowing of Fraternité, which indicated a likely
exchange of material between the two. As for Liberté, 1999
data showed it was about 3o ahead of its position in Voyager 2
pictures. For the 2005 results, the 2002 data appeared to show
Liberté as a twin arc separated by about 4.5o with the leading
twin at the original Voyager 1989 location, while in 2003 it
returned again as one single arc at the Voyager location. With
respect to the normally low intensity arc Courage, it flared in
intensity to become as bright as Liberté in 1998 indicating a
possible exchange of material between the two arcs. Most in-
terestingly, it was observed in the 2005 data that Courage has
moved 8o ahead from 31.2o to 39.7o [1].

According to the prevailing theories, based on the restrict-
ed three-body framework (Neptune-Galatea-arcs) with a con-
servative disturbing potential, these arcs are radially and lon-

gitudinally confined by the corotation resonance potential of
the inner moon Galatea. In order to account for these arcs, the
84/86 corotation resonance due to the inclination of Galatea
(CIR) had been invoked to give a potential site of 4.18o [4].
Later on, because of its eccentricity (CER), the 42/43 reso-
nance was considered giving a resonant site of 8.37o on the
Adams ring arcs [3, 5, 10]. The arc particles librate about the
potential maximum imposed by the corotational resonance
satellite Galatea. Dissipated energy of the particle is replen-
ished by the Lindblad resonance. Nevertheless, well estab-
lished as it is, there are several difficulties. Firstly, with Fra-
ternité centered at the potential maximum spanning approxi-
mately 5o on each side, it crosses two unstable potential poi-
nts which ought to reduce the angular spread. Secondly, the
minor arcs leading ahead of Fraternité are mislocated with
the CIR or CER potential maxima. Furthermore, should the
arcs were confined by the corotation potential, there ought to
be arcs in other locations along the Adams ring distributed
randomly instead of clustered near Fraternité.

2 Time-dependent arcs

Recently, there is a model that considers Fraternité as being
captured by the CER potential of Galatea. With Fraternité
having a finite mass, the minor arcs are clustered at locations
along the Adams ring where the time averaged force vanishes
under the corotation-Lindblad resonances [13, 14]. The finite
mass of Fraternité has been suggested by Namouni [9] and
Porco [10] to pull on the pericenter precession of Galatea to
account for the mismatch between the CER pattern speed and
the mean motion of the arcs. The arc locations are determined
by the Lindblad resonance reaction of the arc itself. Because
the force vanishes only on a time averaged base, as compar-
ing to the stationary CER potential in the rotating frame, the
arc material could migrate on a long time scale from one site
to another leading to flaring of some arcs and fading of oth-
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ers. This could also generate twin arcs (Egalité, Liberté) and
displace Courage from 31.2o to 39.7o (resonant jump) [1], as
required by observations. Although there are only arcs in the
leading positions ahead, arcs in the trailing positions behind
could be allowed in this model. According to this Lindblad
reaction model, only Fraternité f is confined by the externally
imposed CER potential of Galatea x which reads

Φc =
Gmx

ax

1
2

(
2n + ax

∂

∂ax

)
1
ax

b(n)
1/2(α) ex cos φ f x, (1)

where ~rx = (rx, θx) and ~r = (r, θ) are the position vectors of
Galatea x and Fraternité mass distribution, ax and a are the
respective semi-major axes, φx and ex are the arguments of
perihelion and eccentricity of x, φ f x = (nθ − (n − 1)θx − φx)
is the corotation resonance variable, b(n)

1/2(α) is the Laplace
coefficient, α = ax/a < 1, and n = 43. With ax = 61952.60
km, a = 62932.85 km, and α = 0.98444 [2, 11], the CER
potential is

Φc =
Gmx

ax
34 ex cos φ f x. (2)

To complement this model, we consider the self-gravity of
Fraternité, which has a distributed mass, on the CER potential
to account for its longitudinal 10o arc span. We first consider
a qualitative spherical self-gravity physical model to grasp the
10o arc span. We begin with the Gauss law of the gravitational
field

∇ · ~g(~r) = −4πGρ(~r), (3)

~g = +∇Φ. (4)

Under a qualitative physical model of arc span, we take a
spherical uniform mass distribution of radius r0. Solving for
the potential Φ(r∗) inside the sphere with ρ(~r) = ρ0 and out-
side the sphere with ρ(~r) = 0 respectively, where r∗ is mea-
sured from the center of Fraternité, and matching the potential
and the gravitational field across the boundary, we get

Φ f = −1
2

Gm f

r0

(
r∗
r0

)2

+
3
2

Gm f

r0
, 0 < r∗ < r0, (5)

Φ f = +
Gm f

r∗
, r0 < r∗ < ∞. (6)

This potential shows a normal 1/r∗ decaying form for r0 < r∗,
but a r2

∗ form for r∗ < r0. Writing in terms of ax and mx, we
have for 0 < r∗ < r0, δθ < δθ0,

Φ f = −1
2

Gm f

ax

ax

r0

(
r∗
r0

)2

+
3
2

Gm f

r0

= −1
2

Gmx

ax

m f

mx

ax

r0

(
a
r0

)2

(δθ)2 +
3
2

Gmx

ax

m f

mx

ax

r0
,

(7)

and for r0 < r∗ < ∞, δθ0 < δθ,

Φ f = +
Gm f

ax

ax

r∗
= +

Gmx

ax

m f

mx

1
δθ
, (8)
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Fig. 1: The CER sinusoidal potential of Galatea in thick line, the
self-potential of Fraternité with spherical model in thin line, and the
sum of the two in thick line are plotted in units of Gmx/ax.

where r∗ is now taken on the longitudinal direction along the
arc, so that we can write r∗ = aδθ and r0 = aδθ0 with δθ as the
angular span in radian. Taking m f /mx = 10−3, ex = 10−4, and
δθ0 = 5o = 0.087 rad, which are within the estimates of the
arc parameters [9], we have plotted in Fig. 1 the sinusoidal
CER potential in thick line with a minimum around δθ = 4o

and the self-potential in thin line in units of Gmx/ax. The su-
perposition of the two in thick line is also shown in the same
figure. The superimposed potential has a maximum at the
center and a minimum around δθ = 5o. Although self-gravity
is resulted from all the particles of the arc, each individual
particle will see the self-potential as an external potential.
The particles will girate in stable orbit about the central maxi-
mum of the superpositioned CER potential and self-potential.

3 Self-gravity

We now present an elongated ellipsoid model of self-gravity.
For an ellipsoidal mass distribution with uniform density ρ0
over a volume

(
x

a1

)2

+

(
y

a2

)2

+

(
z

a3

)2

= 1 , (9)

where a1 > a2 > a3, the potential in space for the gravita-
tional field ~g(~r) have been addressed in honorable treatises
such as Kellogg [7] and Landau and Lifshitz [8]. Here, we
follow the celebrated original work of Kellogg [7] especially
in Section 6 of Chapter 7. The potential in space of this ho-
mogeneous ellipsoid is given by

Φ f (x, y, z) = G ρ0 π a1a2a3 ×
∫ ∞

0

dλ
σ1/2(λ)

1 − x2

a2
1 + λ

− y2

a2
2 + λ

− z2

a2
3 + λ

 ,
(10)

where
σ(λ) =

(
a2

1 + λ
) (

a2
2 + λ

) (
a2

3 + λ
)
, (11)
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and where λ parameterizes a family of ellipsoids. Consider a
prolate ellipsoid with a1 > a2 = a3. This ellipsoid has a cir-
cular cross section on the y-z plane and an axis of symmetry
in x. The y-z plane of x = 0 is the equatorial plane. In this
prolate case, the self-potential inside and outside the ellipsoid
is given respectively by [7, Exercise 6, p.196]

Φ f (x, r) = G ρ0
4π
3

a1a2a3
1
f 2 ×

[ (
4x2 − 2r2 − f 2

) 1
2 f

ln
(

2a1 − f
2a1 + f

)1/2

+

+
4a2

1

(
2x2 − r2

)
− 2 f 2x2

2a1

(
4a2

1 − f 2
)

]
,

(12)

Φ f (x, r) = G ρ0
4π
3

a1a2a3
1
f 2 ×

[ (
4x2 − 2r2 − f 2

) 1
2 f

ln
(

s − f
s + f

)1/2

+

+
s2

(
2x2 − r2

)
− 2 f 2x2

s
(
s2 − f 2)

]
,

(13)

where (
f
2

)2

= a2
1 − a2

2,

r2 = y2 + z2,

f is the distance between the two foci, r is the perpendicular
distance to the axis of symmetry, s is the sum of distances
from the two foci to the point of interest ~r. The inside po-
tential can be obtained from the outside potential by using
s = 2a1. To evaluate the potential on the axis of symmetry,
we take r = 0. Denoting m f = ρ0(4π/3)a1a2a3 and consider-
ing a1 � a2, we get

Φ f (x) = −Gm f

ax

ax

4a1

[
ln

(
2a1

a2

)
− 1

] (
δθ

δθ0

)2

+

+
Gm f

ax

ax

4a1
ln

(
2a1

a2

)
, δθ < δθ0,

(14)

Φ f (x) = −Gm f

ax

ax

4a1

[
1
2

ln
(

x + f /2
x − f /2

) (
δθ

δθ0

)2

−

−
(
δθ

δθ0

) ]
+

Gm f

ax

ax

4a1

1
2

ln
(

x + f /2
x − f /2

)
, δθ0 < δθ,

(15)

for the self-potential inside and outside the ellipsoid respec-
tively. Taking again m f /mx = 10−3, with ax = 61952.60 km
for Galatea, and semi-major axes a1 = 5500 km and a2 =

55 km, the CER potenial, the self-potential, and the superpo-
sition of the two with a minimum around δθ = 5o are shown
in Fig. 2.
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Fig. 2: The CER sinusoidal potential of Galatea in thick line, the
self-potential of Fraternité with ellipsoidal model in thin line, and
the sum of the two in thick line are plotted in units of Gmx/ax.

With Fraternité 1 × 10−3 of the mass of Galatea, the self-
potential actually exceeds the CER potential in magnitude, as
shown in Fig. 2. Each test mass would be librating around
the potential maximum, dominated by the self-gravity of the
collective mass distribution. Should Fraternité be elongated
further while maintaining the total mass, it would increase the
semi-major axis a1 of the ellipsoid. This would reduce the
amplitude of the self-potential of (14) through the (ax/4a1)
factor in the constant term, and weaken the self-potential. The
elongation would feed the minor arcs. With this self-gravity
model, not just the minor arcs are dynamically changing [1],
the main arc Fraternité could be under a dynamical process as
well.

4 Conclusions
In order to explain the 10o arc span of Fraternité, we draw
attention to the fact that Fraternité, as an arc, has a significant
mass. This mass is a distributed mass, instead of a point-like
mass, such that its self-gravity should be taken into consid-
erations to account for its angular span. We have used two
models to evaluate the self-potential in the longitudinal direc-
tion. First is the tutorial spherical model, as a proof of prin-
ciple study, with a uniform mass distribution over a sphere
of radius r0. Second is the elongated ellipsoidal model for a
more realistic evaluation. Using the accepted range of Fra-
ternité parameters, the ellipsoid model shows that the self-
potential of the arc could be the cause of its angular span. For
a longer arc, the ellipsoid gets longer and the ratio a1/a2 be-
comes larger. Eventually, for a complete ring, the ellipsoid
is infinitely long and the self-potential in the longitudinal di-
rection becomes constant. The effects of self-gravity are felt
only in the transverse direction for a planetary ring.
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Probabilistic Factors as a Possible Reason of the Stability of Planetary
and Electronic Orbits

Anatoly V. Belyakov
E-mail: belyakov.lih@gmail.com

An explanation is proposed that probabilistic factors cause the existence of the stable
planetary orbits and electronic ones. It is confirmed when constructing frequency dis-
tributions of relevant virials.

Why there are stable planetary orbits and electronic ones, and
how are they formed at all? This is all the more incomprehen-
sible because the centrifugal forces and gravitational forces
(or electrostatic ones for the atom) have a different depen-
dence on the distance that leads only to an unstable equi-
librium. Sure, there are some hidden factors, they may be
probabilistic ones.

Thus, K. I. Dombrowski has revealed a possible connec-
tion of the sizes of planetary orbits to density of rational num-
bers on the number axis [1]. On the other hand, S. E. Shnoll
has experimentally observed dependence of the fine structure
of the normal distributions of various physical processes upon
the algorithms that determine these processes [2]. It can be
assumed that discrete nature of the normal distributions (and,
apparently, any others) has a fundamental character.

An array of numbers that are the result of some compu-
tation algorithm can be analyzed by means of the frequency
distribution∗. As an example, one considers the distribution
of orbits in the Bohr’s atom planetary model and in the solar
system.

It is known the orbital radii of the electron in the Bohr’s
atom to be proportional to the squares of integers. Though
the existence of the orbits, i.e. the certain electronic levels, is
due to quantum laws, however, this fact can also be explained
by probabilistic factors.

According to the Bohr’s model and proceeding from the
balance of the Coulomb’s and centrifugal forces, the orbital
radii of the electron are in the simplest case proportional to
expression (z/ν)2, where z can be regarded as a geometric
mean value between the number of the elementary charges
of a nucleus and electrons interacting with each other, and ν
is the orbital velocity of the electron in some dimensionless
units.

Let z and ν take arbitrary values, for example, from 1 to
100. Then the frequency distribution of the array of values of
the function (z/ν)2 has the form shown in Fig. 1.

One can see that the peaks of the first order along the Y-
axis (i.e. the most probable value) have next in values of the

∗Frequency distributions provide a possibility for bonding the probabil-
ity of the appearance of numerical values of a function in the area where it
exists. That is, the frequency distributions show the reproducibility of nu-
merical values of the function due to allowed varying its arguments. There
is a ready-to-use function “frequency” in Excel c©; any other software can be
applied as well.

Fig. 1: Frequency distribution obtained with number of the numeri-
cal values in the scale 9,800 (of those, nonzero intervals are 3,300).

function (z/ν)2 along the X-axis: 1, 4, 9, 16, etc., that is,
orbital radii in the Bohr’s atom are proportional to the squares
of integers, i.e. to the squares of electronic orbit numbers.
Such distributions (or quadratic parts thereof) were also found
in other, more complicated cases.

Let one consider the distribution of the planetary orbits
in the solar system. Their stability can to some extent be
explained by the phenomenon of orbital resonance, but this
explanation is certainly not enough. As for the well-known
Titius-Bode formula, then it should not be found in any of the
known laws.

The equation relating the orbital radius of a planet R0, its
orbital velocity ν0 and the mass M of a central body is:

R0 =
γ M
ν2

0

, (1)

where γ is the gravitational constant.
In this case it would seem the frequency distribution for

the orbit positions cannot be built because the function has
only one variable argument ν0, while others are permanent.
However, one can assume that during formation of the solar
system the mass of the central body has not been equivalent
to a point with a mass equal to the mass of the Sun, and other
disturbing factors could have been.
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Fig. 2: Frequency distribution obtained with number of the numer-
ical values in the scale 110,000 (of those, nonzero intervals are
48,800), j = 0.5 . . . 1.8, ν = 0.02 . . . 2.

Therefore one can introduce a varied factor j in the for-
mula and write (1) as follows:

R =
j
ν2 , (2)

where R is the radius of the planetary orbit in astronomical
units (a.u.), ν is the orbital velocity in the units of the orbital
velocity of the Earth.

Fig. 2 shows an example of the frequency distribution of
the array of values of the function (2) at j = 0.5 . . . 1.8 with
a step 0.025 and at ν = 0.05 . . . 2 with a step 0.01. Although
the form of the distribution depends on the range of variation
j and ν, the number of intervals they are divided, split range
mode (step-by-step or random), and the number of processed
values, but in all cases the amplitude peaks or the frequency
concentrations are revealed on graphs.

In Fig. 2 from left to right the peaks of the first order (the
highest) are located at the radii (in a.u.): 0.39, 0.50 (a possible
orbit), 0.70, 1.0, 1.55, 2.75, 6.2, 12.3, 18.7 (a second-order
peak), 25, 31 (a second-order peak), 50, and 74. Moreover,
most of the values are in good agreement with the actual or-
bital radii of the planets. In comparison, their actual values
are: 0.39, 0.72, 1, 1.52, 2.5-3.0, 5.2, 9.54, 19.2, 30.6, 30–50,
38–98, including the asteroids orbit (2.5–3.0) and the tenth
planet orbit (38–98).

Of course, such simple simulation can not give a com-
plete numerical coincidence. The more important thing is
a possibility for the frequency distributions to determine the
most probable values of the functions describing various pro-
cesses or objects; therefore, the most stable (preferred) states
of these processes or objects can also be determined [3, 4].
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Double Surface and Atom Orbit

JanežSpringer
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Previously (Progr. Phys., 2013, v. 2, 105–106), one introduced the double surface model
to explain the heterogeneous curvature of the present world. In this paper one investi-
gates the strength of the mentioned concept in the light of forming the stable electron
orbits around the atom nucleus. The conclusion is that the nature of the elliptic side of
the proposed double surface offers the possibility of providing the uniform motion of
the electron on the atom orbit as well as prevents the electron falling into the nucleus.

1 Theoretical background

The double surface [1] has the elliptic and hyperbolic side
where the path with its translation and rotation component [2]
is provided. According to this concept we have to deal with
two different paths whose average is a mirror of the inverse
fine structure constant. The fact that the elliptic paths can
equal its translation componentn [1] seems to be crucial for
forming the stable electron orbits around the atom nucleus.

1.1 The elliptic side

The path on the elliptic side of the double surface can be de-
scribed with the sphere law of cosines:

cos
s
R
= cos

n
R

cos
π

R
. (1)

On the left,s denotes the elliptic path. On the right,n and
π denote the translation and rotation component of that path,
respectively [2].

At s = n the elliptic radiusR has the potency to occupy
the infinite values, since

cos
π

R
= 1 , when

π

R
= 2mπ . (2)

The elliptic radius expressed in Compton wavelengths of the
electron is then related to the arbitrary natural numberm by

Relliptic =
1

2m
, where m ∈ N0 . (3)

For the electron only the first 431 radii are physically plausi-
ble unless one cannot imagine that the sphere could be smaller
than the physical body itself. In the units of Compton wave-
lengths of the electron the selected elliptic radii are the next:

Relliptic = R0,R1,R2 · · · ,R430

= ∞,
1
2
,

1
4
, · · ·

1
860
> relectron .

(4)

The greatest elliptic radius is infinite:

R0 = ∞ . (5)

The greatest finite elliptic radius is a half of the Compton
wavelength of the electron:

R1 =
1
2
. (6)

The smallest elliptic radius is a little bit greater than theclas-
sical electron radius itself:

R430 =
1

860
> relectron =

1
2πα−1

≈

1
861, 02

. (7)

1.2 The hyperbolic side

The path on the hyperbolic side of the double surface can be
described with the hyperbolic law of cosines:

cosh
s
R
= cosh

n
R

cosh
π

R
. (8)

On the left,s denotes the hyperbolic path. On the right,n and
π denote the translation and rotation component of that path,
respectively [2].

According to the double surface model [1] where the char-
acteristic values for the path and its translation component on
Bohr orbit ares = 137.072031· · · andn = 137 , the hyper-
bolic radiusR is calculated by the equation (8) as the only one
and finite:

Rhyperbolic ≈ 71, 520117 Compton wavelengths of the electron. (9)

2 Physical consequences on the atom level

In the double surface model Bohr radius expressed in the units
of Compton wavelengths of the electron is deduced from the
average path on the elliptic and hyperbolic side of the orbit:

RBohr =
α
−1
elliptic + α

−1
hyperbolic

4π
=
α
−1

2π
. (10)

The difference betweenα−1
observed andα−1

measured on the fifth dec-
imal which was important for predicting the exact inverse fine
structure previously [1], is not significant enough to be taken
into account in the calculations made in this paper. From the
relation (3) and (4) is seen that the radius of the elliptic side
of the double surface is greater than Bohr radius only once,
i.e. whenRelliptic = ∞. The infinite elliptic radius allows the
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electron to move uniformly on Bohr orbit. On the other hand
the 430 finite elliptic radii do not permit the electron to fall
into the nucleus, because they are always much smaller than
Bohr radius:

R1,2, ···430≪ RBohr,

since
1
2
,

1
4
, · · · ,

1
860
< RBohr ≈ 22, 81.

(11)

The conclusion would be the same, if the number of the finite
elliptic radii is infinite.

Thus according to the present concept the electron is clos-
ed on the elliptic sphere of the multi-sizable radius. Its destiny
is to be in some way glued on Bohr orbit in the Hydrogen
atom. In other atoms the similar phenomenon is expected,
because their atomic radii are greater than the Bohr one and
therefore still greater than the finite elliptic ones:

Ratom > RBohr ≫ R1,2, ···430 . (12)

3 Conclusion

The infinite elliptic radius of the double surface enables the
uniform motion of the electron on the atom orbit. The finite
radii prevent the electron falling into the nucleus. From this
point of view the concept of the double surface with its el-
liptic side as a sphere of the multi-sizable radius satisfiesthe
demand for forming the stable electron orbits around the atom
nucleus.

Respecting Plato the correct theory is only one amongst many
ones revealed in the realm of the reasonable ideas.
(The Author)
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Multi-planet Exosystems All Obey Orbital Angular Momentum Quantization
per Unit Mass predicted by Quantum Celestial Mechanics (QCM)

Franklin Potter
Sciencegems.com, 8642 Marvale Drive, Huntington Beach, CA 92646 USA. E-mail: frank11hb@yahoo.com

Quantum celestial mechanics (QCM) predicts that all orbiting bodies in gravitationally
bound systems exhibit the quantization of orbital angular momentum per unit mass.
I show that the 15 known multi-planet systems with four or more planets obey this
QCM prediction. This angular momentum constraint could be the explanation for their
orbital stability for billions of years, suggesting that viable models of the formation and
evolution of gravitational systems must include QCM.

1 Introduction

According to recent calculations, our Solar System is unsta-
ble [1] and should have existed for only a few 100 million
years! However, the Solar System has existed for more than
4.5 billion years. Obviously, some fundamental physics con-
cept is missing. H. G. Preston and I have proposed [2] that
the missing constraint is the quantization of orbital angular
momentum per unit mass for all orbiting bodies in gravita-
tionally bound systems. Herein I establish that all 15 known
multi-planetary systems with four or more planets exhibit this
constraint.

In several previous papers [2–4] we derived Quantum Ce-
lestial Mechanics (QCM) from the general theory of relativ-
ity and successfully applied QCM to numerous gravitation-
ally bound systems, including the planets of the Solar Sys-
tem, the moons of the Jovian Planets, the five moons of Pluto,
the Galaxy rotation velocity, gravitational lensing, clusters of
galaxies, the cosmological redshift of the Universe, the cir-
cumbinary planet Kepler-16, and the S-stars at our Galaxy
center.

QCM predicts that a body of mass µ orbiting a central
massive object in a gravitationally bound system obeys the
angular momentum L per unit mass quantization condition

L
µ

= mcH (1)

with m an integer and c the speed of light. The Preston grav-
itational distance H requires only two physical parameters to
determine all the possible QCM states in the system, the sys-
tem’s total angular momentum LT and its total mass MT :

H =
LT

MT c
. (2)

In order to use this restriction, one assumes that the or-
biting body is at or near its QCM equilibrium orbital radius
r and that the orbital eccentricity ε is low so that our nearly
circular orbit approximation leading to these particular equa-
tions holds true. Therefore, the L of the orbiting body will
agree with its Newtonian value L = µ

√
GMT r(1 − ε2).

Fig. 1: The HD10180 System fit to QCM.

Every Newtonian orbit is an equilibrium orbit, but not so
for QCM orbits. For a body not at the QCM equilibrium or-
bital radius for the QCM state or for particles near the QCM
equilibrium orbital radius that could collect into a massive
body, there exists a small QCM acceleration. Usually a time
frame of tens or hundreds of millions of years are needed to
achieve dynamic QCM equilibrium with its extremely small
remnant radial oscillations. Therefore, QCM is expected to
play an important role in the formation and eventual stability
of multi-planetary systems over billions of years.

For circular orbits or nearly circular orbits there is a prin-
cipal number n = m + 1 associated with the energy per unit
mass quantization for a QCM state

En

µ
= − r2

gc2

8n2H2 = −G2M2
T

2n2L2
T

(3)

with rg the Schwarzschild radius of the system. The derived
Schrodinger-like gravitational wave equation dictates all the
physics via solutions that are hydrogen-like wave functions.

The QCM fit to the orbital parameters of all known plan-
ets of a multi-planet system determines the total angular mo-
mentum of that system, a value which can be used to pre-
dict whether more planets can be expected and/or whether
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the equivalent of an Oort cloud is required. Recall that for our
own Solar System the Oort Cloud dominates the total angular
momentum, being a factor of at least 50 greater than the total
planetary orbital momentum. Without the Oort Cloud angular
momentum, QCM predicts that all the planetary orbital radii
would be within the radius of the Sun! By including the an-
gular momentum of the Oort Cloud, QCM suggests that the
planets formed near to their present orbital radii.

Many exoplanetary systems have their Jupiter size planets
at extremely small orbital radii, within about 1.5 AU from
the star, with many more smaller planets even closer. There
is the question of why such massive planets are so close to
their star. One possible answer is that the system total angular
momentum value is low compared to the QCM value needed
to “push” the system further out. That is, QCM predicts that
a larger total angular momentum for the system means larger
QCM orbital spacings.

2 Multi-planetary results

Multi-planet systems are in the database called the Exoplan-
ets Data Explorer [5], but complete data sets for HD 10180
[6], HD 40307 [7], Tau Ceti [8], GJ 676A [9], and Upsilon
Andromedae [10] are only in research articles. There are
hundreds of two and three planet systems which I choose to
exclude herein even though they also exhibit the QCM con-
straint. As more planets orbiting these systems are identified,
their fits to the QCM prediction can be determined.

In Table 1 are listed the host star, the star mass in solar
units, the number of planets N, their QCM m values, and the
slope b for L/µ = bx + a in the plot of L′ = L/µ versus
m for all the planets of the particular system. The plot for
HD10180 is shown as an example, with the uncertainty bars
for L′ within the circle data points. By using both the semi-
major axis and the orbital period as constraints, one obtains a
linear regression fit with R2 > 0.999. The system’s predicted
total angular momentum LT = b MT multiplied by 1015 kg
m2/s.

From the QCM predicted LT values, one learns that these
15 multi-planet systems have more angular momentum which
is to be contributed by additional orbiting bodies such as plan-
ets and/or the equivalent of the Oort Cloud.

3 Conclusions

All the 15 analyzed multi-planet systems obey the QCM or-
bital angular momentum per unit mass quantization condi-
tion. The integers for the m values are not sequential, imply-
ing that the history of each system plays an important role
in which orbital states are occupied. For example, mass de-
pletion in a region caused by the faster formation of a large
planet might not leave enough mass for another planet to form
at a nearby QCM equilibrium orbital radius.

The resulting fits are evidence that the quantization of or-
bital angular momentum per unit mass is an important phys-

Table 1: QCM Multi-Planet m Values
System Mass N m Values b
HD 10180 1.055 9 3,5,6,7,10,11,14,24,37 0.23
Sun 1 8 3,4,5,6,12,17,25,31 0.77
HD 40307 0.752 6 8,11,14,17,20,29 0.10
Kepler-11 0.954 6 10,11,13,15,17,23 0.13
Kepler-20 0.912 5 14,17,21,25,40 0.06
Kepler-33 1.291 5 8,11,13,15,16 0.16
Kepler-62 0.690 5 6,8,9,17,22 0.14
Tau Ceti 0.783 5 8,11,16,19,30 0.15
55 Cancri 1.026 5 4,10,16,27,76 0.13
GJ 581 0.311 4 7,9,12,21 0.05
GJ 676A 0.71 4 3,6,20,34 0.25
GJ 876 0.334 4 5,13,17,22 0.07
HR 8799 1.472 4 12,16,20,27 1.65
Mu Arae 1.077 4 4,12,15,29 0.38
Ups Andr 1.01 4 2,10,18,27 0.42

ical factor in planetary systems and should not be ignored in
studies of their formation, stability, and evolution.
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The Gravitational Field: A New Approach

Patrick Marquet
patrick.marquet6@wanadoo.fr

In this paper, we consider the Einstein field equations with the cosmological term. If we
assume that this term is slightly varying, it induces a vacuum background field filling the
space. In this case, inspection shows that the gravitational field is no longer represented
by a pseudo-tensor, but appears on the right hand side of the field equations as a true
tensor together with the bare mass tensor thus restoring thesame conservation condition
as obeyed by the Einstein tensor.

Introduction

Soon after his theory of General Relativity was published in
1916, Einstein rapidly turned to the unifying of the gravita-
tional field with electromagnetism (which at that time was
considered as the second fundamental field).

The quest for such an universal scheme ended in 1955
with the Einstein-Schrödinger theory (see for example [1])
definitely abandoned since as the quantum field theories
gained the increasing successes and have been long substan-
tiated by numerous experimental confirmations.

Basically, the unified principle adopted by the successive
authors (Kaluza-Klein, Weyl, Eddington, et al.) relied either
on extra dimensions, or on an extension of the Riemannian
theory with additional space-time curvatures introduced to
yield the electromagnetic field characteristics, and wherethe
stress-energy tensor regarded as provisional, will be eventu-
ally absent [2, 3, 4].

Total geometrization of matter and electromagnetism was
anyhow the original focus.

To understand this long period of research, one should re-
member that Einstein always claimed that the energy-
momentum tensor (s) which can appear in the right hand side
of his field equations, was “clumsy”; in short, he considered
this form as an unsatisfactory solution which had to fit differ-
ently in his equations.

Einstein’s argument is actually strongly supported by the
following fact: while his tensor exhibits aconceptuallycon-
served property, any corresponding stress energy-tensordoes
not, which leaves the theory with a major inconsistency.

When pure matter is the source, the problem has been
“cured” by introducing the so-called “pseudo-tensor” that
“conveniently” describes the gravitational field of this mass
so that the four-momentum of both matter and its gravity field
is conserved.

Unfortunately by essence this pseudo-tensor cannot ap-
pear in the field equations, and so the obvious physical defect
emphasized by Einstein, still remains to-day as a stumbling
block.

In this paper, we tackle this problems by proceeding as
follows: in contrast to the previous theories, the energy-
momentum tensor of the source is here strengthened,

although we restrict our study to neutral massive flow.
In this respect, it is shown that the gravitational field of a

massive body is no longer described by apseudo-tensor, but
appears as atrue tensorin the field equations as it should be,
in order to balance the conceptually conserved property of the
Einstein tensor.

To achieve this goal we do:

• We first formulate the field equations with a massive
source in density notation;

• We write the conservation law for the Einstein tensor
density derived from the Bianchi identities, which
cannot apply to the energy-momentum tensor density
as a source;

• We then include a variable term that supersedes the so-
called cosmological termΛgab in the field equations,
still complying with the conservation property of the
Einstein tensor density in GR;

• Under this latter assumption, we will then formally
show that the gravity field of a massive source is no
longer described by a vanishingpseudo tensorbut it
reduces to a true tensor describing apersistentvac-
uum background field resulting from the existence of
the variable term.

1 The field equations in General Relativity

1.1 The tensor representation

In the General Theory of Relativity (GR), it is well known
that by varying the action

S = LE d4x ,

where theLagrangian densityis given by

LE =
√
−gGab

({

e
ab

} {

d
de

}

+
{

d
ae

} {

e
bd

})

, (1.1)

g = det‖gab‖ (1.2)

one infers thesymmetric Einstein tensor

Gab = Rab−
1
2
gabR, (1.3)
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where

Rbc = ∂a

{

a
bc

}

− ∂c

{

a
ba

}

+
{

d
bc

} {

a
da

}

−
{

d
ba

} {

a
dc

}

(1.4)

is theRicci tensorwith its contractionR, thecurvature scalar,
while

{

e
ab

}

denote the Christoffel Symbols of the second kind.
The 10source free field equationsare

Gab = 0. (1.5)

The second rank Einstein tensorGab is symmetric and is
only function of the metric tensor componentsgab and their
first and second order derivatives.

The relation
∇a Ga

b = 0 (1.6)

is the conservation identities provided that the tensorGab has
the form [5]

Gab = k

[

Rab −
1
2
gab(R− 2Λ)

]

, (1.7)

k is a constant, which is here taken 1, is usually named cos-
mological constantΛ.

When a source is present, the field equations become

Gab = Rab−
1
2
gabR− gabΛ = κTab, (1.8)

whereTab is the energy-momentum tensor of the source.

1.2 The tensor density representation

We first set
g

ab =
√−g gab (1.9)

and the Einstein tensor density is

Gab =
√−g Gab, Gc

a =
√−gGc

a , (1.10)

Rab =
√
−g Rab. (1.11)

In density notations, the field equations with the source
(1.8) will read

Gab = Rab − 1
2
gabR − gabζ = κTab. (1.12)

Here in place of the constant cosmological termΛ
which should be here represented byΛ

√−g, we have intro-
duced ascalar densitydenoted as

ζ = Ξ
√
−g. (1.13)

Unlike Λ, the scalarΞ is slightly variable and represents
theLagrangiancharacterizing a specificvacuum background
field as will be shown below.

2 The conservation identities

2.1 Tensor version for the Einstein tensor

From the Bianchi identities applied to the Riemann tensor

Rci··
··bc; i + Rci··

··ib ; c + Rci··
··ci ; b = 0 (2.1)

we infer the conservation conditions which apply to the Ein-
stein tensor withoutΞ, and hereinafter denoted by

◦Ga
b = Ra

b −
1
2
ga

bR. (2.2)

The Einstein tensor thus satisfies intrinsically the conser-
vation law:

∇a
◦Ga

b = 0. (2.3)

2.2 Tensor density version for the Einstein tensor

In the same way, we start with the Einstein tensor density
without the cosmological term

◦Gab = Rab − 1
2
gabR. (2.4)

With (2.3), let us write down

∇a
◦Ga

b = ∂a
◦Ga

b+
{

a
ca

}

◦Gc
b−

{

c
ba

}

◦Ga =
∂a
◦Ga

b√−g
−

{

c
ba

}

◦Ga
c = 0,

which is easily found to be

∂a
◦Ga

b√−g
− 1

2
◦Gea∂b gea = 0 (2.5)

usingdgai =−gabgicdgbc anddgai =−gabg icdgbc the formula
(2.5) can be also written as

∂a
◦Ga

b −
1
2

Gea∂b gea = 0. (2.6)

The latter equation is the conservation condition for◦Gab

which is equivalent to (2.3).

2.3 Conservation of the energy-momentum tensor

2.3.1 Problem statement

Let us consider the energy-momentum tensor for neutral mat-
ter densityρ:

Tab = ρua ub (2.7)

as the right hand side of the field equations

◦Gab = Rab−
1
2
gabR= κTab. (2.8)

The conservation condition for this tensor are written

∇aTa
b =

1
√−g

∂aTa
b −

1
2

Tac∂b gac = 0 (2.9)
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with the tensor density

Ta
b =
√
−g Ta

b . (2.10)

However, across a given hypersurfacedSb, the integral

Pa =

∫

Tab √−g dSb (2.11)

is conserved only when

∂aTa
b = 0. (2.12)

From (2.6) inspection still shows that

∂aTa
b =

1
2

Tcd ∂b gcd (2.13)

but here, unlike the Einstein tensor◦Gab which is conceptu-
ally conserved(∇a

◦Ga
b = 0), the conditions

∇aTa
b = 0

or
∂aTa

b = 0

are thus never satisfied in a general coordinates system.
Therefore, the Einstein tensor◦Gab which intrinsically

obeys a conservation condition, is related with a massive ten-
sorTab(ρ) which obviouslyfails to satisfy the same require-
ment:

◦Gab = κTab. (2.14)

As a matter of fact, a correct formulation would consist
of explicitly writing down the mass density with its gravity
field, i.e. with a pseudo-tensor (tab) f ield.

As is known, the namepseudo-tensoris chosen since this
quantity can be transformed away by a suitable choice of co-
ordinates.

Hence, we should write

Gab = κ
[

(Tab)matter+ (tab) f ield

]

. (2.15)

This is classically interpreted by requiring that thetotal
4-momentum vectorPa of matterwith its gravitational field

Pa =
[

(Tab)matter+ tab) f ield

] √
−g dSb (2.16)

must be together conserved∗

∗Some authors [8] state that integrating∇kTk
i = 0 yields a conservation

law for a vectorPa = TabKb when the metric admits a Killing vectorK:
Pa

;a = Tab
;a Kb + TabKb;a and sinceTab is symmetric, we have for the Lie

derivativeKb;a =
1
2 LKgab = 0, thenPa

;a = 0.

2.3.2 The gravity pseudo-tensor

In order to follow this way, Landau and Lifshitz [6] started
from the unsuitable tensor equation (2.9)

∇kT
k
i =

1
√−g

∂kTk
i −

1
2

Tkl ∂i gkl = 0.

They thus consider a special choice of a set of the coor-
dinates which cancels out all first derivatives of thegik at a
given 4-space-time point.

In this system, the energy-momentum tensor expression
is given by

T ik =
1
2κ
∂e(−g)−1

[

∂d (−g)
(

g ikged− g iegkd
)]

. (2.17)

As
{

i
ke

}

are postulated to be zero at the considered point,

we may extract the factor (−g)−1 from the derivative in the
latter equation, so

(−g) T ik = ∂eHike =
1
2κ
∂e

(

∂dHiked
)

.

The quantity

Hiked = (−g)
(

g ikged− g iegkd
)

(2.18)

can be regarded as a “double tensor density” and is often
referred to, as the “superpotential of Landau-Lifshitz” [7].
Now, in any other arbitrary system, generally

∂eHike− (−g) T ik
, 0,

and so, we will have to bring a small tensor correctiontikLL

(Landau-Lifshitz pseudo-tensor) which is accepted as repre-
senting the gravitational field of matter:

∂eHike = (−g)
(

T ik + tikLL

)

.

This equation implies the condition

∂k

[

(−g)
(

T ik + tikLL

)]

= 0, (2.19)

which is the conservation law for the classical total four-
momentum vector density of both matter and gravitational
field written as

Pi =

∫

[

(−g)
(

T ik + tikLL

)]

dSk, (2.20)

(compare with (2.11)).
After a tedious calculation, the final form of the symmet-

ric tensortikLL as a function of thegik, is found to be

(−g) t ik
LL =

1
2κ

[

g
ik
, l g

lm
,m − g il

, l g
km
,m +

1
2
g ikglm g

ln
, p g

pm
,n −

−
(

g ilgmng
kn
,p g

mp
,l + g

klgmng
in
,p g

mp
,l

)

+ glm g
np
g

il
,n g

km
, p +

+
1
8

(

2g ilgkm− g ikg lm
) (

2gnpgqr − gpqgnr

)

g
nr
,l g

pq
,m

]

. (2.21)

64 Patrick Marquet. The Gravitational Field: A New Approach



July, 2013 PROGRESS IN PHYSICS Volume 3

Therefore, the Einstein field equations can be eventually
written in the form:

Hiked
····, kd = 2κ (−g)

(

T ie + tieLL

)

. (2.22)

Unfortunately, the quantitytieLL which now appears on the
right hand side of the field equations as it should be, is not a
true tensor.

Hence, we are once more faced with a contradiction: the
left hand side of the field equations for a massive source is a
true tensor, while the right hand side is not, which reveals a
major inconsistency within the theory.

2.4 Introduction of a background field tensor

Let us now try to remove this ambiguity.
We start by writing the global energy-momentum tensor

density of the massive source splitting up bare matter and
pure field:

Ta
b = (Ta

b)matter+ (ta
b) f ield. (2.23)

The field tensor density (ta
b) f ield is in turn composed of

two parts:gravity field+ vacuum background field

(ta
b) f ield = (ta

b)gravity + (ta
b)background f ield (2.24)

with

(tab)background f ield=
ς

2κ
gab =

Ξ
√−g
2κ

gab . (2.25)

According to the standard theory, we next re-formulate
the field equations with abaremassive source

Gab = Rab − 1
2
gabR − gabς = κ(Tab)matter (2.26)

under the form

Gab = Rab − 1
2
gabR = κ(Tab)matter+ g

abς. (2.27)

3 Expliciting the field equations in density notation

3.1 Taking account of the LagrangianΞ

Reverting to (2.13), we now write for thebarematter tensor
density

∂a(Ta
b)matter=

1
2

(Tcd)matter∂b gcd. (3.1)

Inspection then shows that

Ril dg il =
√
−g

[

−Rie +
1
2
g ieR

]

dgie =

= −κ(Tie)matterdgie. (3.2)

Taking now into account the Lagrangian formulation for
Ril , which is

Ril =
δLE

∂g il
= ∂k

∂LE

∂(∂kg il )
− ∂LE

∂g il
, (3.3)

we obtain

− κ(Til )matterdgil = ∂k
∂LE

∂(∂kg
il )
− ∂LE

∂g il
dg il =

= ∂k
∂LE dg il

∂(∂kg
il )
− ∂LE,

that is

− κ(Til )matter∂mgil = ∂k

[

∂LE∂m(∂g il )
∂(∂kg

il )
− δkm LE

]

=

= 2κ∂k(tk
m) f ield, (3.4)

where (tk
m) f ield denotes the field tensor density extracted from

2κ(tk
m) f ield =

∂LE∂m(∂g il )
∂(∂kg

il )
− δkmLE (3.5)

so, that we have the explicit canonical form

(tk
m) f ield =

1
2κ

[

∂LE∂m(∂g il )
∂(∂kg

il )
− δkmLE

]

(3.6)

and where

∂k(Tk
i )matter=

1
2

(Tek)matter∂kgei = −∂k(tk
i ) f ield.

that is, the required conservation relation

∂k

[

(Tk
i )matter+ (tk

i ) f ield

]

= 0. (3.7)

Then, re-instating the termζ according to (2.24) and
(2.25), the gravitational field tensor density now reads:

(tk
m)gravity =

1
2κ

[

∂LE∂m(∂g il )
∂(∂kg

il )

]

− δkm(LE − ζ). (3.8)

The presence of the scalar densityζ characterizing the
background field is here of central importance, as it means
that (tk

m)gravity can never be zero in contrast to the classical the-
ory, and as a result, it constitutes atrue tensor. Such a grav-
ity field never completely cancels out, but far from its matter
source, it sharply decreases down to the level of the back-
ground field described by the tensor density (tab)background f ield.

In addition, we clearly see thatζ represents thelagrang-
ian densitycharacterizing the background field, thus lending
support to our initial hypothesis regarding the lagrangianΞ.

In this picture, the vacuum is permanently filled with this
homogeneous background energy field ensuring a smooth
continuity with the gravitational field of a neighbouring mass.

3.2 Classical formulation

When the termΞ is kept constant like the cosmological term
Λ, the tensor density (3.8) reduces to

(tk
m)pseudogravity =

1
2κ

[

∂LE∂m(∂g il )
∂(∂kg

il )
− δkmLE

]

, (3.9)
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which is just the classicalgravity pseudo-tensor densitythat
may now vanish in a given space-time point.

In this case, expressed with the explicit form of the La-
grangian densityLE written in (1.1), the expression (3.9) be-
comes:

(tk
m)pseudogravity=

1
2κ

[{

k
i l

}

∂mg
il−

{

i
i l

}

∂mg
lk−δkmLE

]

. (3.10)

This is themixed Einstein-Dirac pseudo-tensor density
[9] which is not symmetric onk andm, and is therefore not
suitable for basing a definition of angular momentum on.

3.3 Field equations

The field equations with a massive source, which are

Gab = Rab− 1
2
gabR − gabζ = κ(Tab)matter, (3.11)

may be now eventually re-written

◦Gab = Rab− 1
2
gabR = κ

[

(Tab)matter+ (tab)gravity
]

(3.12)

with the explicit appearance of the gravity field as defined in
(3.8) and which is now represented by atrue tensor density.

Like we emphasized above, far from the mass, the ”source
free” field equations should always retain a non zero right
hand side

◦Gab = Rab − 1
2
gabR = κ(tab)background f ield, (3.13)

which are the analogue of (1.7):

Gab = Rab − 1
2
gabR − gabζ = 0. (3.14)

In this case, the conservation law applied to the right hand
side of the tensor field equations is straightforward:

∇a(tab)background f ield= ∇a

(

Ξ

2κ
δab

)

= 0, (3.15)

from which readily follows

∂a(ta
b)background f ield = ∂a

(

ζ

2κ
δab

)

= 0. (3.16)

3.4 Physical description

We would like now to give a simple but instructive picture
of the situation where a static mass is placed in the vacuum
background energy field. Let us write the energy-momentum
tensor for matter and its gravitational field as in (3.12):

Tab = (ρuaub)matter+ (tab)gravity. (3.17)

In virtue of the principle of equivalence, anybare mass
of volumeV together with its gravitational field, can be ex-
pressed through the time component of a 4-momentumPa

according to

P0 =

∫

(

T1
1 + T2

2 + T3
3 − T0

0

) √
−g dV, (3.18)

whereTa
a are the skew components of the energy-momentum

tensor (3.17), which implicitly contains the gravity field [10].
Now, we formulate (3.18) under the equivalent form:

P0 = P0 =

∫

(

T1
1 + T2

2 + T3
3 − T0

0

)

dV. (3.19)

In the immediate vicinity of the mass, it is easy, to show
that generalizing (3.19) leads to the 4-momentum vector that
includes the right hand side of (3.12):

Pa =

∫

[

(Tb
a)matter+ (tb

a)gravity
]

dSb. (3.20)

Far from the source, we have obviously

(Pa)background f ield=

∫

[

(tb
a)background f ield

]

dSb, (3.21)

where (tb
a)background f ield is a true tensor density, and the con-

servation law applied toPa holds for all configurations, in
accordance with (3.7) and (3.16).

4 Conclusions and outlook

In this short paper, we have sketched here a possible way out
of the gravitational field pseudo-tensor.

From the beginning of General Relativity, the cosmologi-
cal constantΛ has played an unsavory role. Einstein included
this constant in his theory, because he wanted to have a cos-
mological model of the Universe which he wrongly thought
static.

But to-day, a cosmological term seems to be badly needed
to explain some astronomical observed clues, within the basic
dynamical expanding model of Robertson-Walker [11], even
though its occurrence was never clearly explained.

However, there is no reasonà priori to consider this cos-
mological term as constant everywhere.

In this respect, the background field hypothesis is reward-
ing in terms of several physical advantages:

• The ill-defined gravitational pseudo-tensor is now
a true tensor, and it appears explicitly in the field equa-
tions with a massive source;

• The background persistent homogeneous energy field
is then formally shown to be a consequence of the
above derivation and it is actually regarded as the
(sharply decreasing) continuation of any mass gravity
field tensor;

• The inferred global energy-momentum tensor intrinsi-
cally satisfies the conservation law as well as the back-
ground field alone in the source free field equations,
without introducing any other arbitrary ingredients or
modification of the General Theory of Relativity.
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The Role of Evection in Optical Measurements of Light Beam Deflection
from the Sun’s Disk (the Einstein Effect)

Sergey N. Shapovalov

SCC RF Arctic and Antarctic Research Institute. 38 Bering St., St. Petersburg 199397, Russia
E-mail: shapovalov@aari.ru, tel.+7 (812) 3373157

The relationship between the optical results of light beam deflection from the disk of the
Sun (δϕ) obtained during observations of the total solar eclipses,from 1919 till 1973,
and the evection, the major perturbation from the Sun, basedon the theory of the Moon’s
motion, is analysed. The dependence ofδϕ upon the temporal changes of the evection
was found. The expectedδϕ optical results for the total solar eclipses, for the period
from 22.09.2003 till 29.12.2103, were calculated. Based onthe comparison of calcu-
lated evection values with fluctuations of intensity of solar radiation within 603–607
nm range obtained through the spectral observations on solar radiation in Antarctica,
the modulatory role of the evection in deflecting the light beam at the near-Earth space
was concluded.

Optical measurements of the star beam deflection from the
Sun disk were performed by a number of researchers during
the total solar eclipses, from 29.05.1919 till 30.06.1973,with
the purpose of checking theδϕ angle value (1.75′′) obtained
by Einstein, following his development of the General The-
ory of Relativity (GTR) [1]. In case the radio measurements
only are considered in the practical estimates of the Einstein
effect,δϕ values match with the theory within 1% range [2].
For example, an average value of 1.73′′(±0.07′′) was obtained
in radar measurements of Mercury, Venus and Mars, whereas
measurements of quasars and pulsars using radio interferom-
etry produced an estimate of 1.76′′(±0.08). Deflection of the
beam from the Sun disk is described by the equation:

δϕ = −
4GM⊙
R⊙c2

, (1)

where the “minus” sign corresponds to the deflection of the
beam to the center of the Sun;G = 6.67×10−11 H×m2/kg2 is
the gravitational constant;M⊙ = 1.99×1030 kg is the mass of
the Sun;c = 3×108 m/s is the speed of light;R⊙ = 6.96×108

m is the radius of the Sun.
Based on the optical observations of the eight total so-

lar eclipses, the author’s average result together with a confi-
dence interval of measurements makesδϕ = 1.83± 0.40, and
the recalculated measurement result isδϕ = 2.0±0.13, which,
in view of the low accuracy and the considerable spread of
measurements, is consistent with the GTR. According to the
published data [3–10], the results ofδϕ optical measurements
for the total solar eclipses observed from 1919 till 1973 were
as follows:

29.05.1919: (1.98, 0.93, 1.61),

21.09.1922: (1.42, 1.75, 2.16, 1.72, 1.83, 1.77),

09.05.1929: (2.24),

19.06.1936: (2.73, 2.13, 1.28),

20.05.1947: (2.01),

25.02.1952: (1.70, 1.82),

02.10.1959: (2.17),

30.06.1973: (1.66).

Observations referring to the date 19.06.1936 should be
considered as ineffectual, since the absolute value error ex-
ceeds 200%. To date, the list of known errors includes:

— Deviation of the Sun’s shape from the sphericity,
9.2′′×10−2;

— The Earth’s motion along the ecliptic (2.88′′×10−2);

— Beam refraction in the atmosphere of the Sun (0.004′′);

— Refraction and dispersion in the Earth atmosphere
(0.01′′–0.1′′);

— Offset of the observer from the Sun-Moon-Earth line;

— The influence of the gravitational field of the Moon and
the Earth during the total eclipse event, by an addition
to the relativistic beam deflection (5.8′′×10−4);

— Wavelength dependence of the light beam (2.5′′×10−4);

— Dependence on solar activity;

— Astroclimatic characteristics of a particular observation
station;

— Additive error caused by inaccurate scale matching be-
tween the day and night astroimages (0.25′′).

It should be noted that through the history ofδϕmeasure-
ments the list of errors has expanded considerably; however,
the accuracy of estimates is not yet improved. Summing the
values of all the errors, the magnitude of the total correction
is apparently insignificant. Therefore, dispersion ofδϕ results
is probably due to the influence of some unknown factors.

The major solar-induced disturbances are described by
terms in the formula of the geocentric ecliptic longitude of
the Moon [11, 12]. Full description of this formula includes
1,500 terms [13], where evection, variation and annual in-
equality are the most important. When limited to the largest
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Fig. 1: Comparison of the evection angle values with the results of optical measurements taken as average
values and excluding errors for the dates of the total solar eclipses, 1919–1973.

in amplitude terms, the formula is as follows:

λ = L + 6.289◦ sinl − 1.274◦ sin(l − 2D) +

+ 0.658◦ sin 2t + 0.214◦ sin 2l −

− 0.186◦ sinl′ − 0.114◦ sin 2F , (2)

whereL is the mean longitude (void of the periodic distur-
bances) of the Moon in the orbit,l, D, l′, F are the main
arguments in the lunar theory.

In the first five inequalities of the formula (2), the terms
bearing coefficients 6.289 and 0.214 are determined by el-
lipticity of unperturbed (Keplerian) orbit, whereas the terms
with coefficients 1.274 (evection, 31.8 days), 0.658 (varia-
tion, 14.8 days) and 0.186 (annual inequality, 186.2 days) are
caused by gravitational perturbations from the Sun. The pe-
riods of these inequalities, according to the theory of motion
of the Moon, exist in the short-period nutation of the Earth’s
axis, as well [14]. In this paper we consider the contribution
of the evection, the main and the largest in amplitude pertur-
bation from the Sun, as the most significant deviation of the
true motion of the Moon from its motion defined by Kepler’s
laws. Evection was discovered by Ptolemy (2AD) when ob-
serving the Moon in the 1st and 3rd quarters (in quadrature
points). The physical explanation of the evection was devel-
oped by Newton. Evection can be represented as a differ-
ence in the equation of the center [13] generated by the term
1.274◦ sin(l − 2D):

e⊙ = 5.02 sinl + 0.214 sin 2l , (3)

e⊙ = 7.56 sinl + 0.214 sin 2l . (4)

This effect is determined by the gravitational influence of the
Sun to the Moon. In syzygial points of the lunar orbit (new

moon and full moon), this term is subtracted from the senior
term of the equation (3), and it is added in quadrature. During
the new moon and full moon, 2D = 0◦, or 360◦ (3), which is
the same in the context of trigonometric functions. In the first
and last quarters,D = 90◦, or 270◦ (4). So, the known man-
ifestations of the evection in the near-Earth space motivated
the studies of its contribution to the results ofδϕ assessments
obtained during observations of the total solar eclipses, from
1919 till 1973.

Theevection values were calculated upon the Julian dates
of the total solar eclipses. Fig. 1 shows a comparison of
the evection angle values with the results of optical measure-
ments taken as average values and excluding errors for the
dates of the total solar eclipses. Anomalous results 0.93′′

(1919) and 2.73′′ (1936) were omitted from the calculations
of average values, as they fell outside the range of average
result and the confidence interval of all measurements.

Fig. 2 shows the distribution of dependency of optical
results from the evection. Continuous curve, which includes
0.93′′ (1919) and 2.73′′ (1936) values, represents averaging
of results depending on the evection and is described as:

δϕ(M) = 1.7227+ 0.2058x + 0.3163x2. (5)

The dotted curve, which excludes 0.93′′ (1919) and 2.73′′

(1936) values, represents averaging of results depending on
the evection and is described as follows:

δϕ(E) = 1.723+ 0.316x2. (6)

As demonstrated in the Figure,δϕ(M) has a lower left-
hand shift againstδϕ(E) characterized by the term 0.2058x
(5), due to the low values obtained during the observations
of 1919 (δϕ = 0.93′′) and 1936 (δϕ = 1.28′′). Accord-
ing to δϕ(E) distribution in Fig. 2, deflection of beams in
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Fig. 2: Distribution ofδϕ values according to theevection values,
1919–1973:δϕ(M) averaged optical results dependent on the evec-
tion, 0.93′′ (1919) and 2.73′′ (1936) values included;δϕ(E) averaged
optical results dependent on the evection, 0.93′′ (1919) and 2.73′′

(1936) values excluded.

the evection extremes (±1.274◦) should correspond toδϕ ≈
2.25±10%, and toδϕ ≈ 1.72 in case of 0, i.e., conform to the
Einstein result. Using the expression (6), the expectedδϕ val-
ues calculated for optical observations at the dates of the total
solar eclipse, from 23.11.2003 till 29.12.2103, are presented
in Table 1.

Along with the deviations in the motion of the Moon from
the Keplerian orbit and the short-period nutation of the Earth
axis, the evection mechanism is detected in spectral zenith
observations of the atmosphere at Novolazarevskaya station
(Antarctica). These observations are aimed to investigatethe
fluctuations of energy and intensity of scattered solar UV ra-
diation under the 11-year SA cycle. Measurements of fluc-
tuations are recorded in the following ranges: 303–305 nm,
331–332.5 nm, 329.5–334 nm, 336–345 nm, 297–307 nm,
321–331 nm, 297–330 nm, and 603–607 nm, during the po-
lar summer (September – February). Detailed description of
the methodology of observations is cited in [15].

To test the influence of the evection factor on variations
of the light flux, fluctuations measurements in the range of
603–607 nm (as the most proximate band to the central part
of the solar spectrum) were selected from the available set
of registered channels. Based on the observations during the
polar summer 2007–2008 and 2008–2009, data analysis of
the intensity channel was performed, in average daily stan-
dard deviation (SD) units, to build the time series and provide
temporal comparison with the calculated values of the evec-
tion. Figs. 3 and 4 show the distribution pattern of SD values
(603–607 nm), to be compared with the evection changes.

The figures show a reasonably good phase and periodic
matching between the SD (603–607 nm) dynamics and the
evection changes during the polar summer of 2007–2008.
However, Fig. 4 shows the broken phase matching at certain

Eclipses δϕ(E) Eclipses δϕ(E) Eclipses δϕ(E)

23.11.2003 1.75 26.12.2038 2.02 03.08.2073 2.11

08.04.2005 2.24 21.06.2039 1.82 27.01.2074 2.23

03.10.2005 2.09 15.12.2039 1.72 24.07.2074 2.13

29.03.2006 1.89 30.04.2041 2.23 16.01.2075 2.03

22.09.2006 1.74 25.10.2041 2.01 13.07.2075 1.76

07.02.2008 2.22 20.04.2042 1.81 06.01.2076 1.73

01.08.2008 2.16 14.10.2042 1.72 22.05.2077 2.19

26.01.2009 1.88 28.02.2044 2.22 15.11.2077 2.02

22.07.2009 1.74 23.08.2044 2.09 11.05.2078 1.83

15.01.2010 1.75 16.02.2045 1.89 04.11.2078 1.72

11.07.2010 1.9 12.08.2045 1.74 01.05.2079 1.86

20.05.2012 1.78 05.02.2046 1.74 24.10.2079 1.96

13.11.2012 1.72 02.08.2046 1.98 10.03.2081 1.82

10.05.2013 1.91 11.06.2048 1.74 03.09.2081 1.72

03.11.2013 2.11 05.12.2048 1.75 27.02.2082 1.79

09.03.2016 1.92 31.05.2049 1.89 24.08.2082 2.07

01.09.2016 2.02 25.11.2049 2.17 03.07.2084 1.72

26.02.2017 2.23 20.05.2050 2.22 27.12.2084 1.79

21.08.2017 2.23 30.03.2052 1.91 22.06.2085 1.98

02.07.2019 2.03 22.09.2052 2.01 16.12.2085 2.16

26.12.2019 2.2 20.03.2053 2.23 11.06.2086 2.24

21.06.2020 2.18 12.09.2053 2.2 21.04.2088 1.99

14.12.2020 2.11 24.07.2055 2.11 14.10.2088 2.09

10.06.2021 1.82 16.01.2056 2.19 10.04.2089 2.24

04.12.2021 1.72 12.07.2056 2.19 04.10.2089 2.14

20.04.2023 2.22 05.01.2057 2.02 23.09.2090 1.77

14.10.2023 2.1 01.07.2057 1.83 15.08.2091 2.18

08.04.2024 1.89 26.12.2057 1.73 07.02.2092 2.23

02.10.2024 1.75 11.05.2059 2.23 03.08.2092 2.13

17.02.2026 2.22 05.11.2059 2.01 27.01.2093 1.94

12.08.2026 2.17 30.04.2060 1.82 23.07.2093 1.77

06.02.2027 1.88 24.10.2060 1.72 16.01.2094 1.73

02.08.2027 1.74 20.04.2061 1.86 02.06.2095 2.19

26.01.2028 1.74 13.10.2061 1.96 27.11.2095 1.93

22.07.2028 1.99 28.02.2063 1.81 22.05.2096 1.76

01.06.2030 1.74 24.08.2063 1.72 15.11.2096 1.73

25.11.2030 1.75 17.02.2064 1.79 11.05.2097 1.85

21.05.2031 1.9 12.08.2064 1.98 04.11.2097 2.05

14.11.2031 2.1 22.06.2066 1.74 21.03.2099 1.82

09.05.2032 2.23 17.12.2066 1.8 14.09.2099 1.72

30.03.2033 1.78 11.06.2067 1.89 10.03.2100 1.78

20.03.2034 1.91 06.12.2067 2.17 04.09.2100 2.06

12.09.2034 2.02 31.05.2068 2.24 28.02.2101 2.21

09.03.2035 2.23 11.04.2070 2 15.07.2102 1.72

02.09.2035 2.19 04.10.2070 2.1 08.01.2103 1.79

13.07.2037 2.12 31.03.2071 2.23 04.07.2103 1.97

05.01.2038 2.19 23.09.2071 2.2 29.12.2103 2.22

02.07.2038 2.19 12.09.2072 1.77

Table 1: Expectedδϕ results for the total solar eclipses, from
23.11.2003 till 12.29.2103.
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Fig. 3: Comparison of temporal changes in the evection and the average daily standard deviation (SD)
of radiation intensity in the 603–607 nm (9 pt. mov. aver.) range, for the period from 01.09.2007 till
28.02.2008.

Fig. 4: Comparison of temporal changes in the evection and the average daily standard deviation (SD)
of radiation intensity in the 603–607 nm (9 pt. mov. aver.) range, for the period from 01.09.2008 till
28.02.2009.

extended sections. In our view, such failures may be related
to the SA stages. Among the above errors,δϕ dependence
from SA and astroclimatic characteristics of observation sta-
tions remain understudied. Astroclimatic characteristics are
determined by the weather conditions and optical properties
of the atmosphere and both are connected with the SA mani-
festations. Although the mechanism of SA effects on the sur-
face layer of the atmosphere remains unclear to date, this con-
nection is revealed by the long-term observations of weather
services.

In a brief discussion of relationship betweenδϕ and the
evection, previously disregarded in research practice, a 3-
body Einstein model should be mentioned, which considers
the Earth and the Moon as point-like objects. This model is
undeniable in the evaluation of mass gravitation of the Earth–
Moon and the Sun. The major solar disturbances cause devi-
ation from the Keplerian orbit of the Moon motion and, at the
same time, deviations in the Earth axis in the short-period nu-
tation (31.8 and 14.8 days), provide periodic gravitational in-
fluence on the Earth–Moon system. Obviously, this influence
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is manifested in the Einstein effect through the modulation
property of optical beams.

Conclusions

— The values ofδϕ optical results reveal statistical corre-
lation with the temporal change of the evection;

— In the evection extreme points (±1.274◦), deflection of
optical beams from the solar disk is expected to ap-
proachδϕ ≈ 2.25± 10%;

— When the evection values≈ 0◦, it is expected to ap-
proachδϕ = 1.72± 10%;

— In conformity with δϕ(E), introduction of correction
for the evection into the formula (1) is justified.
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The physical theories of the last century do not possess the completeness necessary in
order to justify the quantum phenomena and the cosmological data. In this article, we
present the law of selfvariations and suggest it as the common cause of quantum and
cosmological phenomena. There is an intermediate state between matter and the photon,
which is the cause of quantum phenomena. The cosmological data are condensed in a
single equation with one unknown. The consequences of the law of selfvariations extend
from the microcosm to the observations we make billions of light-years away.
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1 Introduction

The study we present in the current edition is based on two
assumptions that are taken as axioms. The first assumption is
that the rest masses m0 and electric charges q of material par-
ticles increase with the passage of time (selfvariations). The
second assumption is that the consequences of the selfvari-
ations propagate through four-dimensional spacetime with a
zero arc length: dS 2 = 0 . The set of consequences arising
from these two assumptions constitutes the “theory of self-
variations”.

An immediate consequence of the statements-axioms we
have introduced, is the concept of the generalized photon: a
particle carrying energy E, linear momentum P, and moving
with velocity υ, of magnitude ∥υ∥ = c, in every inertial frame
of reference. The generalized photon correlates the material
particle with its surrounding spacetime. In its simplest ver-
sion, the generalized photon is emitted by the material parti-
cle into its surrounding spacetime. When the material particle
is electrically charged, the generalized photon, apart from en-
ergy and momentum, also carries electric charge.

In figure 1, the arbitrary motion of a material point parti-
cle moving with velocity u in an inertial frame of reference
O(x, y, z, t) is represented.

A generalized photon is emitted by the material particle

at time w = t − r
c , from point E(xp(w), yp(w), zp(w), w), and

arrives at time t at point A(x, y, z, t). The velocity of the gen-
eralized photon in Figure 1, is

υ =
c
r

r

where r = ∥r∥. We express the vector υc in the trigono-
metric form

υ

c
=



υx

c
υy

c
υz

c


=

 cos δ
sin δ cosω
sin δ sinω

 .
Furthermore, we define the following two vectors

β =

 − sin δ
cos δ cosω
cos δ sinω


and

γ =

 0
− sinω

cosω

 .
The vectors υc ,β,γ constitute a right-handed, orthonor-

mal vector basis that accompanies the generalized photon in
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Fig. 1: A material point particle moving arbitrarily. As the ma-
terial particle moves from point E(xp(w), yp(w), zp(w), w) to point
P(xp(t), yp(t), zp(t), t), the generalized photon moves from point
E(xp(w), yp(w), zp(w), w) to point A(x, y, z, t).

its motion. The consequences of the selfvariations are ex-
pressed as functions of the parameters w = t − r

c , r, δ, ω. The
basic study of the selfvariations leads to two fundamental the-
orems: the “Fundamental Mathematical Theorem”, and the
“Trajectory Representation Theorem”. The first theorem al-
lows us to correlate any change in energy manifested on the
material particle at point E(xp(w), yp(w), zp(w), w) with a cor-
responding change in energy at point A(x, y, z, t) of Figure 1.
The second theorem represents the tangent vector, the curva-
ture and the torsion of the trajectory of the material particle
onto the geometric characteristics of the generalized photon
in the surrounding spacetime. The two theorems allow us to
express quantitatively the consequences of the selfvariations
on the surrounding spacetime of the material particle. As a
consequence of the selfvariations, in the surrounding space-
time of the material particle there is energy of density D

D = −c
∂m0

∂w

1

4πγ3r2
(
1 − υ · u

c2

)4

and momentum of density J

J = D
υ

c2

where
γ =

1√
1 − u2

c2

,

and u = u(w).
If the material particle is electrically charged, then in

the surrounding spacetime there is also electric charge of
density ρ

ρ = − ∂q
c∂w

1

4πγ2r2
(
1 − υ · u

c2

)3

and electric current of density j

j = ρυ.

The Lienard-Wiechert potentials

V =
q

4πε0r
(
1 − υ · u

c2

)
and

A =
q

4πε0c2r
(
1 − υ · u

c2

)u

are not compatible with the theory of selfvariations. There-
fore, they are replaced by the potentials of the selfvariations

V =
q
(
1 − u2

c2

)
4πε0r

(
1 − υ · u

c2

)2 +
q (υ · α)

4πε0c3
(
1 − υ · u

c2

)2

A = V
υ

c2

where α = α(w) is the acceleration of the material particle.
The potentials of the selfvariations are separated into two

individual pairs

Vu =

q
(
1 − u2

c2

)
4πε0r

(
1 − υ · u

c2

)2

Au = Vu
υ

c2

and
Vα =

q (υ · α)

4πε0c3
(
1 − υ · u

c2

)2

Aα = Vα
υ

c2 .

The (Vu, Au) pair gives the electromagnetic field (εu, Bu) that
accompanies the electrically charged material particle

εu =

q
(
1 − u2

c2

)
4πε0r2

(
1 − υ · u

c2

)3

(υ
c
− u

c

)

Bu =

q
(
1 − u2

c2

)
4πε0r2

(
1 − υ · u

c2

)3

u
c
× υ

c
.

The (Vα, Aα) pair gives the electromagnetic radiation

εα =
q

4πε0c2r
(
1 − υ · u

c2

)2


υ

c
α

1 − υ · u
c2

(υ
c
− u

c

)
− α
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Bα =
q

4πε0r
(
1 − υ · u

c2

)


υ
cα

1 − υ · u
c2

(u
c
× υ

c

)
− υ

c
× α

 .
The pair (Vα, Aα) of the electromagnetic radiation potentials
does not depend on the distance r. For each couple (ε, B) the
following relation holds

B =
υ

c2 × ε.

The energy-momentum tensor for the generalized photon that
results from the selfvariation of the rest mass m0 of the mate-
rial particle is given by the matrix Φi j

Φi j =
D
c2


c2 cυx cυy cυz

υxc υ2
x υxυy υxυz

υyc υyυx υ2
y υyυz

υzc υzυx υzυy υ2
z


where 

c
υx

υy
υz

 =

υ0

υ1

υ2

υ3

 , i, j = 0, 1, 2, 3.

The energy-momentum tensor for the generalized photon
that results from the selfvariation of the electric charge q of
the material particle is given by the matrix Φi j

Φi j =


W cS x cS y cS z

cS x σ11 σ12 σ13

cS y σ21 σ22 σ23

cS z σ31 σ32 σ33

 − ρVc2


c2 cυx cυy cυz

υxc υ2
x υxυy υxυz

υyc υyυx υ2
y υyυz

υzc υzυx υzυy υ2
z


where (S x, S y, S z) = S = ε0ε × B is the Poynting vector,

W =
1
2
ε0

(
ε2 + c2B2

)
and

σαβ = ε0

(
−εαεβ − c2BαBβ +Wδαβ

)
δαβ =

{
1, if α = β
0, if α , β

where α, β = 1, 2, 3 and

(ε1, ε2, ε3) = (εx, εy, εz) = ε

(B1, B2, B3) = (Bx, By, Bz) = B.

The energy-momentum tensors Φi j give us important in-
formation about the energy content of the surrounding space-
time of the material particle. Furthermore, they are related
with the gravitational and the electromagnetic interaction. As
we progress in our study however, it becomes evident that
there is information about the energy content and the proper-
ties of spacetime, that is not contained within the Φi j tensors.

The study we presented up to this point has been con-
ducted without a quantitative determination of the selfvaria-
tions. We made the assumption of the selfvariations in order
to undertake the relevant calculations, but we have not deter-
mined quantitatively the rate at which they evolve, i.e. the
∂m0
∂w

and ∂q
∂w

. In order to study the consequences of the self-
variations, we have to quantitatively determine these rates.

The quantitative determination of the selfvariations is
made on the basis of the total energy Es and the total mo-
mentum Ps emitted simultaneously in all directions, by the
material particle. The rest mass m0 and the electric charge q
of the material particle vary according to the operators

∂

∂t
→ − i
ℏ

Es

∇ → i
ℏ

Ps

where h is Planck’s constant, and ℏ = h
2π . The law of selfvari-

ations expresses a continuous interaction between the mate-
rial particle and the generalized photons.

The partial contribution of an individual generalized pho-
ton to the law of selfvariations is determined by the percen-
tage-function Φ. Due to this, function Φ has a fundamental
role in the energy content of the generalized photon.

The energy E and momentum P of the generalized photon
that is related to the selfvariation of the rest mass m0 of the
material particle, are given by the equations

E = Φ
iℏ

1 − υ · u
c2

∂m0

m0∂w
+ iℏ
∂Φ

∂t

P = Φ
iℏ

1 − υ · u
c2

∂m0

m0c∂w
υ

c
− iℏ∇Φ.

The equations that give the energy and momentum of the gen-
eralized photon that is related to the selfvariation of the elec-
tric charge of the material particle, are of similar form.

The energy E and the momentum P of the generalized
photon do not obey the simple relation

P = E
υ

c2 .

That relation is a special case of the general relation

P = E
υ

c2 −
iℏ
r
∂Φ

∂δ
β − iℏ

r sin δ
∂Φ

∂ω
γ.

The generalized photon determines the relation of the mate-
rial particle with the surrounding spacetime. Furthermore,
it is related with the energy content of spacetime and, hence,
with the very properties of spacetime. Because of this, a large
part of the study we present in the present edition concerns the
generalized photon and its properties. The resulting equations
contain an exceptionally large body of data and information.
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Thus, we shall confine ourselves to a brief report for the struc-
ture and the properties of the generalized photon.

The generalized photon carries four energy-momentum
pairs, each of which transforms autonomously, independently
of the rest, according to Lorentz-Einstein. Two of these pairs
do not possess rest energy, do not depend on the distance r
from the material particle, are defined both on the material
particle and on the surrounding spacetime, while they do not
possess intrinsic angular momentum (spin). The other two
energy-momentum pairs have, respectively, rest energy

±cℏ
r
∂Φ

∂δ

± cℏ
r sin δ

∂Φ

∂ω
.

Their energy and momentum are inversely proportional to the
distance r from the material particle, they are not defined on
the material particle but only on the surrounding spacetime,
while they possess intrinsic angular momentum (spin), given
respectively by

−iℏ
∂Φ

∂δ
γ

iℏ
sin δ

∂Φ

∂ω
β.

The total intrinsic angular momentum S of the generalized
photon is given by relation

S =
iℏ

sin δ
∂Φ

∂ω
β − iℏ

∂Φ

∂δ
γ.

The intrinsic angular momentum of the generalized photon
exhibits some remarkable properties. The first is that it does
not depend on the distance r from the material particle, while
it is also defined on the material particle itself. Furthermore,
the component

S u = iℏ
∂Φ

∂ω

in the direction of the velocity of the material particle, re-
mains invariant under the action of the Lorentz-Einstein trans-
formations and is, therefore, constant in all inertial reference
frames. Another property of the intrinsic angular momentum
of the generalized photon is that it does not vanish even if
we consider that the material particle is motionless. In other
words, the generalized photon carries intrinsic angular mo-
mentum even in the inertial reference frame in which the ma-
terial particle is at rest. In that sense, we can characterize
the intrinsic angular momentum of the generalized photon as
“rest angular momentum”. One final property, which is not
included in the present edition is the following: during the
interaction of the generalized photon with a material particle,
the variation ∆S of the angular momentum of the generalized
photon manifests a component along the direction of the vec-
tor υc .

Of particular interest is the fact that the generalized pho-
ton, in its general version, implies the existence of rest energy
in the surrounding spacetime of the material particle. The ex-
istence of this energy results as a general consequence of the
equations of the theory of selfvariations.

We remind that the law of the selfvariations has been
stated on the basis of the total energy Es and the total momen-
tum Ps of the generalized photons emitted simultaneously and
in all directions by the material particle. We can easily prove
that between the energy Es and the momentum Ps the follow-
ing relation holds

Ps = Es
u
c2

where u = u(w) is the velocity of the material particle at the
moment of emission of the generalized photons. The energy
Es is always correlated with a rest energy E0 (E0 , 0) through
equation Es = γE0, where γ = 1√

1− u2

c2

. Therefore, in the en-

ergy Es, which results from the aggregation of the generalized
photons, a rest mass of E0

c2 , 0 is implicit. The law of selfvari-
ations expresses exactly the interaction between the rest mass
m0 of the material particle, and the rest mass E0

c2 that results
from the aggregation of the generalized photons.

The physical object that results from the aggregation of
the generalized photons, always accompanies the material
particle. Because of this, we named it “accompanying par-
ticle”. The accompanying particle has rest mass E0

c2 , while
in the part of spacetime it occupies it holds that dS 2 = 0.
The combination E0

c2 , 0 and dS 2 = 0, leads to the conclu-
sion that the accompanying particle corresponds to an inter-
mediate state between “matter” ( E0

c2 , 0 ) and the “photon”
(dS 2 = 0). This intermediate state of matter is the cause of
quantum phenomena, and its prediction constitutes one of the
most important results of the theory of selfvariations.

In Nature, the system material particle-accompanying
particle exists and behaves as a “generalized particle” which
extends in a part of spacetime. The part of space occupied
by the generalized particle can be the point where the mate-
rial particle is located, or it can extend up to an infinite dis-
tance away from the material particle. In the part of spacetime
where the generalized particle extends, the trajectories and
velocities of the generalized photons are altered with respect
to the strictly defined trajectories and velocities presented in
Figure 1. There is an extreme case where the concepts of tra-
jectory and velocity of the generalized photon become mean-
ingless; they are not defined. The same is true for the trajec-
tory and velocity of the material particle in case it is located
in the part of spacetime occupied by the generalized parti-
cle. This prediction provides us with the basic idea about the
method we have to develop in order to study the generalized
particle.

One way in which to study the internal structure and phys-
ical properties of the generalized particle, is to eliminate the
velocity, which also represents the trajectory, from the equa-
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tions of the theory of selfvariations. This elimination of the
velocity can be accomplished in several ways. One is to intro-
duce into the equations of the theory of selfvariations the po-
tential energy U of the material particle. The resulting equa-
tion is the time-independent wave equation of Schrödinger

∇2Ψ = −2m0(ε − U)
ℏ2 Ψ.

The differential equations of the theory of selfvariations are of
first order. When we convert them to second order equations,
we can eliminate the velocity without having to introduce po-
tential energy, or any other physical quantity, into the equa-
tions. The elimination of velocity leads to the Klein-Gordon
equation. As a special case of the Klein-Gordon for m0 = 0,
we get the wave equation

∇2Ψ − ∂
2Ψ

c2∂t2 = 0

which appears in Maxwell’s theory of electromagnetism.
Observing the way in which we use Schrödinger’s opera-

tors in quantum mechanics, we realize that, what we are pri-
marily doing, is to eliminate the kinematic characteristics of
the material particle from the resulting differential equations.
Dirac does the same thing in the method he develops, in com-
bination, of course, with his additional assumptions, in order
to derive his eponymous equation.

In order to study the internal structure of the generalized
particle we have to answer specific questions. These ques-
tions, and more generally all the issues concerning the gen-
eralized particle, are completely different from the ones we
usually have to answer when we study physical reality.

The material particle can be located at any position in the
part of spacetime it occupies. Judging by the success of quan-
tum mechanics and by the high accuracy calculations it per-
mits, we conclude that statistical interpretation is one way
of studying the internal structure of the generalized particle.
However, the theory of selfvariations poses a question, the
answer to which, leads us to an unknown territory of physical
reality.

In order to study the internal structure of the generalized
particle we have to answer the question, how is the total rest
mass of the generalized particle distributed between the mate-
rial particle (m0) and the accompanying particle

(
E0
c2

)
. During

the quantitative determination of this particular distribution,
the Schrödinger and Klein-Gordon equations show up, to-
gether with the wave equation of Maxwell’s electromagnetic
theory. In the part of spacetime occupied by the generalized
particle, an external cause suffices to shift the rest mass to-
wards either the material particle or the accompanying par-
ticle. In the first case, the generalized particle behaves as a
material particle, which moves on a defined trajectory, with
defined velocity, energy, etc. In the second case, the gener-
alized particle spreads in spacetime, while the consequences

of the aggregation of the generalized photons are intensified.
This is the phenomenon we observe in the double-slit experi-
ment.

The law of selfvariations results in the differential equa-
tion (

m0c2 + iℏ
ṁ0

m0

)•
= 0

the only unknown being the rest mass m0 of the material par-
ticles. This simple equation contains as information and ra-
tionalizes, the totality of the cosmological data within a Uni-
verse that is flat and static, with the exception of a very slight
variation of the fine structure constant predicted by the equa-
tions of the theory of selfvariations for observations at dis-
tances greater than 6 × 109 ly. The redshift z of a distant
astronomical object located at distance r is given by equation

z =
1 − A exp

(
−kr

c

)
1 − A

− 1

where k is a constant and A is a scalar parameter that obeys
the inequality

z
1 + z

< A < 1

for every value of the redshift z. Therefore, the value of pa-
rameter A is close to 1, with A < 1. The distance r = r(z) of
a distant astronomical object as a function of the redshift z, is
given by equation

r =
c
k

ln
(

A
A − z(1 − A)

)
.

In figure 2 we present the plot of the function r = r(z) for
A = 0.900, A = 0.950, A = 0.990, A = 0.999 up to z = 5.
We observe that, as we increase the value of parameter A,
the curve tends to become a straight line. This result is not
accidental. It is proven that, for A → 1−, function r = r(z)
gives Hubble’s law.

The energy E(z) which fuels the radiance of astronomical
objects, and which originates from the process of fusion, and
generally from the conversion of mass into energy, is smaller
than the corresponding energy E in our galaxy, according to
equation

E(z) =
E

1 + z
.

Therefore, the intrinsic luminosity of the astronomical object
is lower than the standard luminosity we use. As a con-
sequence, the luminosity distance R we measure is in fact
greater than the real distance r of distant astronomical ob-
jects. The relevant calculations lead to equation

R = r
√

1 + z.

Consideration the arithmetic values of the parameters that
factor into function R = R(z), we obtain equation

R = 5000 z
√

1 + z
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Fig. 2: The plot r = r(z) of the distance of an astronomical object as
a function of redshift z, for A = 0.900, A = 0.950, A = 0.990, A =
0.999. As the value of the parameter A is increased, the curve r =
r(z) tends to a straight line.

where the luminosity distance R is given in Mpc. In figure 3
we present the plot of function R = R(z) up to z = 1.5.

Type Iα supernovae are cosmological objects for which
we can measure the luminosity distance at great distances.
At the end of the last century, these measurements were per-
formed by the independent scientific groups of Adam J. Riess
and Saul Perlmutter. The graph that results from those mea-
surements, exactly matches diagram in figure 3, which is the-
oretically predicted by the law of selfvariations. The con-
cept of dark energy was invented in order to justify the in-
consistency between the Standard Cosmological Model and
diagram in figure 3.

At cosmological scales, the rest mass m0(r) with which
an astronomical object exerts gravitational action at distance
r from itself, is given by equation

m0(r) = m0
0.001

1 − 0.999e−2×10−7r

where m0 is the laboratory value of the rest mass. The dis-
tance r is measured in Mpc.

For values of r of the order of kpc, it turns out that m0 =

m0(r). For r = 100 kpc we get m0(r) = 0.99999 m0. Con-
sequently, the strength of the gravitational interaction is not
affected on the scale of galactic distances. The selfvariations
do not affect the stability of the solar system and of galaxies.

On the contrary, at distances of the order of magnitude of
Mpc, a clearly smaller value of mass m0(r) compared to m0,
is predicted. For r = 100 Mpc we get m0(r) = 0.98 m0. For
even larger distances, the ratio m0(r)

m0
becomes even smaller.

For an astronomical object located at a distance correspond-
ing to redshift z = 9, it is m0(r)

m0
= 0.1. The strength of the

Fig. 3: The plot of the luminosity distance R of astronomical objects
as a function of the redshift z. The measurement of the luminosity
distances of type Iα supernova, confirms the theoretical prediction of
the law of selfvariations.

gravitational interaction exerted by an astronomical object
with z = 9 on our galaxy is just 10% of the expected. For
still greater distances, the gravitational interaction practically
vanishes. This is why gravity cannot play the role attributed
to it by the Standard Cosmological Model.

The Thomson scattering coefficient

στ =
8π
3

q4

m2
0c2

as well as the Klein-Nishina scattering coefficient

σ =
3
8
στ

m0c2

E

[
ln

(
2E

m0c2

)
+

1
2

]
obtain different values, namely

στ(r) =
8π
3

q4(r)
m2

0(r)c2

and

σ(r) =
3
8
στ(r)

m0(r)c2

E(r)

[
ln

(
2E(r)

m0(r)c2

)
+

1
2

]
respectively, at distant astronomical objects. The mathemati-
cal calculations give

στ(r)
στ
=
στ
σ
=


1 − A exp

(
−kr

c

)
1 − A


2

.
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At very large distances (r → ∞), and equivalently for the very
early Universe, we get

στ(r → ∞)
στ

=
σ(r → ∞)
σ

=

(
1

1 − A

)2

.

Because of the inequality z
1+z < A < 1 we see that A→ 1−

and, therefore, the Thomson and Klein-Nishina scattering co-
efficients obtain enormous values in the very early Universe.
Consequently, in its very early stages, the Universe went
through a phase during which it was opaque to electromag-
netic radiation. The cosmic microwave background radiation
originates from that period. The theory of selfvariations pre-
dicts that, in that phase, the temperature of the Universe was
slightly above 0 K. Furthermore, it predicts that the cosmic
microwave background radiation originates from the whole
extent of the space occupied by the Universe.

The ionization and excitation energy Xn(r) = Xn(z) of the
atoms of distant astronomical objects differs from the labora-
tory value Xn according to equation

Xn(z) =
Xn

1 + z
.

This equation has consequences regarding the degree of ion-
ization of distant astronomical objects. In other words, the
redshift z affects the degree of ionization of atoms in distant
astronomical objects. Boltzmann’s formula

Nn

N1
=
gn

g1
exp

(
− Xn

KT

)
gives the number of excited atoms Nn, that occupy the energy
level n on a stellar surface which is in thermodynamic equi-
librium. With Xn we denote the excitation energy from the
ground energy level 1 to the energy level n, T denotes the tem-
perature of the stellar surface in Kelvins K = 1.38×10−23 J

K is
Boltzmann’s constant, and gn is the degree of degeneracy of
energy level n (that is, the number of energy levels in which
the energy level n splits in a magnetic field). At distant astro-
nomical objects Boltzmann’s formula becomes

Nn

N1
=
gn

g1
exp

(
− Xn

KT (1 + z)

)
.

From this equation it follows that the degree of ionization
at distant astronomical objects is greater than expected. The
mathematical calculations lead to the conclusion that the Uni-
verse went through a phase of ionization. The dependence
of the degree of ionization, as well as of the Thomson and
Klein-Nishina scattering coefficients, on the redshift z, de-
mands an overall re-evaluation of the electromagnetic spectra
we receive from distant astronomical objects.

The law of selfvariations correctly predicts the structures
in the Universe. It predicts the monstrous webs of matter in
between vast expanses of empty space which we observe with

current observational instruments. At smaller scales, it pre-
dicts galaxies and galactic clusters.

The theory of selfvariations also solves a fundamental
problem concerning physical reality, which the physical the-
ories of the last century were unable to solve: the arrow of
time is included within the equations of the theory of selfvari-
ations. The Universe comes from the vacuum and evolves to-
wards a particular direction defined by the selfvariations. As
mentioned earlier, at cosmological scales, all the equations
resulting from the law of selfvariations give at the limit, for
r → ∞, that the initial form of the Universe only slightly dif-
fers from the vacuum at a temperature of 0 K. The origin of
matter from the vacuum, in combination with the principles
of conservation, with which the law of selfvariations agrees,
necessitate that the energy content of the Universe remains
zero. The selfvariations continually “remove” the Universe
from the state of the vacuum, while at the same time the Uni-
verse remains consistent with its origin.

In contrast to what happens at the macrocosm, the equa-
tions predict that in the laboratory the arrow of time does not
exist. This prediction definitively solves the problem with the
arrow of time.

A measure of the future evolution of the Universe is the
rate of increase of the redshift z predicted by the law of self-
variations. Substituting the arithmetic values of the parame-
ters into the corresponding equation, we get

ż = z · 6.3 × 10−11year−1.

It is very characteristic the fact that one simple differential
equation, having as a unique unknown the rest mass, con-
tains as information, and at the same time justifies, the total-
ity of the cosmological data, as we observe and record them,
from the time of Hubble up to the present. Generally, the
equations of the theory of Selfvariations contain an extremely
large amount of data and information.

2 The study of the selfvariations for an arbitrarily
moving point particle

2.1 Introduction

In this article we present the fundamental study for the mathe-
matical background of the theory of selfvariations. We prove
a set of equations which permits us the following: We can
represent in the surrounding spacetime of a material particle
any kinematic characteristic which concerns the material par-
ticle. At every point of spacetime, the velocity, the accelera-
tion, the tangent vector, the curvature and the torsion of the
trajectory of the material particle can be mapped in a one-to-
one correspondence. This mapping allows us to take the next
step: we exactly determine the contribution of the material
particle to the energy content of the surrounding spacetime.
What emerges is a continuous interaction of every material
particle with the surrounding spacetime. The equations are
proven for a material point particle in arbitrary motion. We
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present a more general statement of the equations in the para-
graph 8.

2.2 Arbitrarily moving material point particle

The theory of selfvariations is based upon two hypotheses
which are taken as axioms.

a) The rest mass and the electric charge of the material
particles increase slightly with the passage of time. We shall
call this increase “selfvariations”.

b) The consequences of the selfvariations propagate
within the four-dimensional spacetime with a vanishing four-
dimensional arc length:

dS 2 = 0.

In an inertial frame of reference, according to the second
postulate, the velocity of propagation of the selfvariations re-
mains constant as a vector

υ =

υx

υy
υz

 = constant. (1)

This vector has magnitude

∥υ∥ =
√
υ2

x + υ
2
y + υ

2
z = c. (2)

The selfvariations cause energy changes to every mate-
rial particle and, as a consequence, energy, linear momen-
tum and angular momentum propagate into the surrounding
spacetime.

We shall later call the carrier of this energy, “generalized
photon”. Initially, we will refer to the generalized photon as a
signal emitted by the material particle, moving with velocity
υ, and, as our study advances, its properties as a real physical
object will be revealed.

We consider an inertial frame of reference S (0, x, y, z, t)
and a material point particle moving with velocity u as de-
picted in figure 4.

At moment t, when the particle is located at point

P(xp(t), yp(t), zp(t), t),

the rest mass m0 and the electric charge q of the particle
act at point A(x, y, z, t) with the value they had at time ∆t =
∥r∥
c =

r
c , when the material particle was located at E(xp(t− r

c ),
yp(t − r

c ), zp(t − r
c ), t − r

c ). During the time interval ∆t = r
c the

material particle moved from point E to point P, while the
generalized photon moved from point E to point A. We now
denote

w = t − r
c
. (3)

Hence, the coordinates of E are

E(xp(w), yp(w), zp(w), w). (4)

Fig. 4: Material point particle in arbitrary motion. As the
material particle moves from point E(xp(w), yp(w), zp(w), w) to
point P(xp(t), yp(t), zp(t), t), a generalized photon moves from point
E(xp(w), yp(w), zp(w), w) to point A(x, y, z, t).

The vector r =
−−→
EA of figure 4 is given by

r =
−−→
EA =

x − xp(w)
y − yp(w)
z − zp(w)

 . (5)

The velocity of propagation of the selfvariations υ is given by

υ =
c
r

r =
c
r

x − xp(w)
y − yp(w)
z − zp(w)

 . (6)

Here,

r = ∥r∥ =
√(

x − xp(w)
)2
+

(
y − yp(w)

)2
+

(
z − zp(w)

)2
. (7)

The velocity u = u(w) of the material particle at point E,
where it emitted the generalized photon, is

u = u(w) =



dxp(w)
dw

dyp(w)
dw

dzp(w)
dw


. (8)

From equation (7) we have

∂r
∂t
=

1
2r

[
2
(
(x − xp(w))

(
−

dxp(w)
dw

∂w

∂t

))]
+

1
2r

[
2
(
(y − yp(w))

(
−

dyp(w)
dw

∂w

∂t

))]
+

1
2r

[
2
(
(z − zp(w))

(
−

dzp(w)
dw

∂w

∂t

))]
.
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Taking into account equations (5) and (6) we have

∂r
∂t
= −1

r
(r · u)

∂w

∂t
.

And with equation (3) we get

∂r
∂t
= −1

r
(r · u)

(
1 − ∂r

c∂t

)
.

Taking into consideration that r
r =

υ
c , as deduced by equation

(6) we obtain
∂r
∂t
= −υ · u

c

(
1 − ∂r

c∂t

)
and finally

∂r
∂t
= − υ · u

c
(
1 − υ · u

c2

) (9)

where u = u(w) and υ · u = uxux + uyuy + uzuz.
Similarly, starting from equation (7) and differentiating

with respect to x, y, z we get

∇r =



∂r
∂x
∂r
∂y
∂r
∂z


=

1

1 − υ · u
c2

υ

c
. (10)

From equation (3) we obtain initially

∂w

∂t
=

1

1 − υ · u
c2

. (11)

Similarly, from equation (3) we have

∇w = ∇
(
t − r

c

)
= −1

c
∇r

and, in combination with equation (10), we get

∇w = − 1

c2
(
1 − υ · u

c2

)υ. (12)

From equation (7) and after differentiating with respect to
x, we get

∂r
∂x

=
1
2r

[
2(x − xp(w))

(
1 −
∂xp(w)
∂x

)]
−

− 1
2r

[
2(y − yp(w))

∂yp(w)
∂x

]
−

− 1
2r

[
2(z − zp(w))

∂zp(w)
∂x

]
.

Equivalently,

∂r
∂x

=
1
r

[
(x − xp(w))

(
1 −

dxp(w)
dw

∂w

∂x

)]
−

−1
r

[
(y − yp(w))

(
dyp(w)

dw
∂w

∂x

)]
−

−1
r

[
(z − zp(w))

(
dzp(w)

dw
∂w

∂x

)]
and also,

∂r
∂x
=

x − xp(w)
r

− 1
r
∂w

∂x

[
(x − xp(w))

(
dxp(w)

dw

)]
−

−1
r
∂w

∂x

[
(y − yp(w))

(
dyp(w)

dw

)
+ (z − zp(w))

(
dzp(w)

dw

)]
.

Taking into account equations (8) and (6) we arrive at

∂r
∂x
=
υx

c
− υ · u

c
∂w

∂x

and substituting

∂w

∂x
= − υx

c2
(
1 − υ · u

c2

)2

as inferred from equation (12), we finally obtain

∂r
∂x
= − 1

c
(
1 − υ · u

c2

)υx. (13)

Following the same procedure differentiating with respect
to y and z, we finally have

∇r =
1(

1 − υ · u
c2

) υ
c
. (14)

Differentiating with respect to time t, we obtain from
equation (5)

∂r
∂t
=



−
∂xp(w)
∂t

−
∂yp(w)
∂t

−
∂xp(w)
∂t


=



−
dxp(w)

dw
∂w

∂t

−
dyp(w)

dw
∂w

∂t

−
dxp(w)

dw
∂w

∂t


.

Taking into consideration equation (8) ∂r
∂t = −

∂w
∂t u, and in

combination with equation (11), we finally get

∂r
∂t
= − 1(

1 − υ · u
c2

)u. (15)

From equation (6) we successively obtain

υ =
c
r

r
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∂υ

∂t
= − c

r2

∂r
∂t

r +
c
r
∂r
∂t

∂υ

∂t
= −1

r
∂r
∂t
υ +

c
r
∂r
∂t

(16)

taking into account that υ = c
r r. Substituting into equation

(16) the quantity ∂r
∂t , from equation (9), and ∂r

∂t , from (15), we
finally obtain relation

∂υ

∂t
=

c

r
(
1 − υ · u

c2

) [
(υ · u)

c2 υ − u
]
. (17)

Starting from equation (6) we get

υx =
c
r

(x − xp(w))

and differentiating with respect to x we get

∂υx

∂x
= − c

r2

∂r
∂x

(x − xp(w)) +
c
r

(
1 −
∂xp(w)
∂x

)
∂υx

∂x
= − c

r2

∂r
∂x

(x − xp(w)) +
c
r

(
1 −

dxp(w)
dw

∂w

∂x

)
.

Since dxp(w)
dw = ux, as arises from equation (8), we have

that
∂υx

∂x
= − c

r2

∂r
∂x

(x − xp(w)) +
c
r

(
1 − ux

∂w

∂x

)
and considering that ∂r

∂x = −
1

c
(
1− υ·u

c2

)υx from equation (13), and

that ∂w
∂x =

1
c2

(
1− υ·u

c2

)υx from equation (12), we get

∂υx

∂x
= − υ2

x

cr
(
1 − υ · u

c2

) + c
r

1 + υxux

c2
(
1 − υ · u

c2

)


and finally
∂υx

∂x
=

c
r
+
υx(ux − υx)

cr
(
1 − υ · u

c2

) . (18)

Working similarly, we finally obtain

∂υi

∂x j
=



c
r
+
υi(ui − υi)

cr
(
1 − υ · u

c2

) , for i = j

υ j(ui − υi)

cr
(
1 − υ · u

c2

) , for i , j
(19)

where i, j = 1, 2, 3 and (x1, x2, x3) = (x, y, z).
Equations (19) can be summarized in equation [1–3]

grad υ =
c
r

I +
1

r
(
1 − υ · u

c2

)
c
⊗ (u − υ) (20)

where,

grad υ =



∂υx

∂x
∂υx

∂y

∂υx

∂z
∂υy

∂x
∂υy

∂y

∂υy

∂z
∂υz

∂x
∂υz

∂y

∂υz

∂z


I =

1 0 0
0 1 0
0 0 1


α ⊗ β =

α1β1 α2β1 α3β1
α1β2 α2β2 α3β2
α1β3 α2β3 α3β3

 . (21)

This holds for any two arbitrary vectors

α =

α1
α2
α3

 and β =

β1
β2
β3

 .
We now have ∇υ = ∂υx

∂x +
∂υy
∂y
+
∂υz
∂z , and from equations (19)

we get

∇υ = 3c
r
+
υx(ux − υx) + υy(uy − υy) + υz(uz − υz)

cr
(
1 − υ · u

c2

)

∇υ = 3c
r
+
υxux + υyuy + υzuz −

(
υ2

x + υ
2
y + υ

2
z

)
cr

(
1 − υ · u

c2

)
and since υ2

x + υ
2
y + υ

2
z = c2 and υxux + υyuy + υzuz = υ ·u, we

see that

∇υ = 3c
r
+
υ · u − c2

cr
(
1 − υ · u

c2

) .
Finally, we arrive at relation

∇υ = 2c
r
. (22)

Now, we consider the curl of vector υ

∇ × υ = curl υ =



∂υz

∂x
−
∂υy

∂z
∂υx

∂z
− ∂υz

∂x
∂υy

∂x
− ∂υx

∂y


. (23)

Taking into account equations (19) we obtain

∇ × υ = curl υ =
1

cr
(
1 − υ · u

c2

) (υ × u) (24)
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where,

υ × u =

υyuz − υzuy
υzux − υxuz

υxuy − υyux

 .
We now consider the acceleration vector

α = α(w) =
du(w)

dw
=



dux(w)
dw

duy(w)
dw

duz(w)
dw


(25)

of the material particle at the moment w, located at point E of
figure 4. We have that

∂ux

∂t
=
∂ux(w)
∂t

=
dux(w)

dw
∂w

∂t
= αx

∂w

∂t

and since, from equation (11), it is ∂w
∂t =

1
1− υ·u

c2
, we get ∂ux

∂t =

αx
1− υ·u

c2
. Working similarly for the differentials ∂uy

∂t and ∂uz
∂t , we

get

∂u
∂t
=

1

1 − υ · u
c2

α. (26)

For the differentiation of the velocity u = u(w) with re-
spect to x, y, z we initially get

∂ux

∂x
=
∂ux(w)
∂x

=
dux(w)

dw
∂w

∂x
= αx

∂w

∂x
.

Similarly, from equation (12) we have that ∂w
∂x = −

ux

c2
(
1− υ·u

c2

) ,
hence ∂ux

∂x = −
υxαx

c2
(
1− υ·u

c2

) .
Working similarly we finally obtain

∂ui

∂x j
= −

υ jαi

c2
(
1 − υ · u

c2

) i, j = 1, 2, 3. (27)

Here we use the notation (x1, x2, x3) = (x, y, z) .
From equation (27) we obtain

gradu = − 1

r
(
1 − υ · u

c2

) υ
c
⊗ u. (28)

We now consider the vector

b = b(w) =
dα(w)

dw
. (29)

Working as we did in order to prove equations (17), (26)
and (27), we arrive at relations

∂α

∂t
=

1

1 − υ · u
c2

b (30)

∂αi

∂x j
= −

υ jbi

c2
(
1 − υ · u

c2

) i, j = 1, 2, 3 (31)

where (x1, x2, x3) = (x, y, z), and

grad α = − 1

c
(
1 − υ · u

c2

) υ
c
⊗ b. (32)

The equations of this paragraph express the fact that in
every inertial reference frame the velocity υ of the selfvaria-
tions remains constant as a vector with magnitude ∥υ∥ = c.
It can easily be proven that all the equations are consistent
with the Lorentz-Einstein transformations, as we pass from
one inertial reference frame to another. The equations we
have proven are fundamental for the theory of selfvariations.
As we advance our study, we will find that they allow us to
correlate any physical quantity defined on the material par-
ticle, with any physical quantity defined on the surrounding
spacetime. Using the concept of information, we can cor-
relate any information concerning the material particle with
any information concerning the surrounding spacetime. Part
of this information are the potential fields, while the quantum
phenomena arise spontaneously.

2.3 The trigonometric form of the velocity of
selfvariations

Starting from equation (2) we get
∥∥∥ υc ∥∥∥ = 1 for every iner-

tial reference frame. We express the unit vector υc into the
trigonometric form

υ

c
=



υx

c
υy

c
υz

c


=

 cos δ
sin δ cosω
sin δ sinω

 (33)

where δ = δ(x, y, z, t) and ω = ω(x, y, z, t) are functions of
the coordinates x, y, z, t in an inertial frame of reference
S (0, x, y, z, t).

From equation (33) we see that
υx

c
= cos δ =

υ

c
e1 (34a)

υy

c
= sin δ cosω =

υ

c
e2 (34b)

υz

c
= sin δ sinω =

υ

c
e3 (34c)

where

e1 = x̂ =

 1
0
0

, e2 = ŷ =

 0
1
0

, e3 = ẑ =

 0
0
1

.
We now consider the vectors

β =

 − sin δ
cos δ cosω
cos δ sinω

 (35)
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and

γ =

 0
− sinω

cosω

 . (36)

It is easily proven that the set of vectors { υc ,β,γ} form a
right-handed orthonormal vector basis which is defined at ev-
ery point A of figure 4. Furthermore, the following relations
hold:

∂

∂δ

(υ
c

)
= β

∂

∂ω

(υ
c

)
= sin δγ

∂β

∂δ
= −υ

c
∂β

∂ω
= cos δγ

∂γ

∂δ
= 0

∂γ

∂ω
= − sin δ

υ

c
− cos δβ

(37)

Differentiating the vectors υc ,β,γ with respect to x, y, z, t
we obtain the following equations:

∇ ·
(υ

c

)
= β · ∇δ + sin δγ · ∇ω (38a)

∂

∂t

(υ
c

)
=
∂δ

∂t
β + sin δ

∂ω

∂t
γ (38b)

∇ × υ
c
=∇δ × β + sin δ∇ω ⊗ γ (38c)

grad
υ

c
=∇δ ⊗ β + sin δ∇ω ⊗ γ (38d)

∇ · β = −υ
c
∇δ + cos δγ · ∇ω (39a)

∂β

∂t
= −∂δ
∂t
υ

c
+ cos δ

∂ω

∂t
γ (39b)

∇ × β =υ
c
× ∇δ − cos δγ × ∇ω (39c)

grad β = −∇δ ⊗ υ
c
+ cos δ∇ω ⊗ γ (39d)

∇ · γ = − sin δ
υ

c
∇ω − cos δβ · ∇ω (40a)

∂γ

∂t
= − sin δ

∂ω

∂t
υ

c
− cos δ

∂ω

∂t
β (40b)

∇ × γ = sin δ
υ

c
× ∇ω + cos δβ × ∇ω (40c)

grad γ = − sin δ∇ω ⊗ υ
c
− cos δ∇ω ⊗ β. (40d)

We prove indicatively equation (38)(a). The rest of the
equations are proven along similar lines. Taking into account
equation (33) we get

∇ ·
(υ

c

)
=
∂

∂x
(cos δ)+

∂

∂y
(sin δ cosω)+

∂

∂z
(sin δ sinω)=

− sin δ
∂δ

∂x
+ cos δ

∂δ

∂y
cosω + cos δ

∂δ

∂z
sinω

+ 0 − sin δ sinω
∂ω

∂y
+ sin δ cosω

∂ω

∂z

and considering equations (35) and (36), as well as relations

∇δ =



∂δ

∂x
∂δ

∂y
∂δ

∂z


, ∇ω =



∂ω

∂x
∂ω

∂y
∂ω

∂z


we finally obtain

∇ ·
(υ

c

)
= β · ∇δ + sin δγ · ω.

We now expand the vector of velocity u = u (w) with
respect to the vector basis { υc ,β,γ} as

u = u (w) = u1
υ

c
+ u2β+u3γ =

(
u · υ

c

) υ
c
+ (u · β)β+ (u · γ)γ

and combining with equations (17) we get

∂

∂t

(υ
c

)
=

1

r
(
1−υ·u

c2

) [
(υ·u)

c
υ

c
−

(
u
υ

c

) υ
c
− (u·β)β− (u·γ)γ

]
∂

∂t

(υ
c

)
=

1

r
(
1−υ · u

c2

) [
(u · β)β+ (u · γ)γ

]
.

Considering equations (38)(b) we get

∂δ

∂t
β + sin δ

∂ω

∂t
γ = − 1

r
(
1 − υ · u

c2

) [
(u · β)β+ (u · γ)γ

]
and finally

∂δ

∂t
= − u · β

r
(
1 − υ · u

c2

) (41)

sin δ
∂ω

∂t
= − u · γ

r
(
1 − υ · u

c2

) (42)

because of the linear independence of the vectors β and γ.
We now write vectors ∇δ and ∇ω as a linear combination

of vectors υc ,β,γ.

∇δ = λ1
υ

c
+ Kβ + Lγ (43)
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∇ω = λ2
υ

c
+ Mβ + Nγ. (44)

We combine equations (17) and (20), and get relation

∂

∂t

(υ
c

)
+

(
grad

υ

c

)
υ =

1

r
(
1 − υ · u

c2

) [(υ · u
c2

)
υ − u

]
+

+

1
r

I +
1

cr
(
1 − υ · u

c2

) υ
c
⊗ (u − υ)

υ =
1

r
(
1 − υ · u

c2

) [(υ · u
c2

)
υ − u

]
+

+
1
r
υ +

1

cr
(
1 − υ · u

c2

) (υ
c
⊗ (u − υ)

)
υ.

Using the identity

(α ⊗ β) c = (α · c)β (45)

which holds for every set of vectors α,β, c, we see that

∂

∂t

(υ
c

)
+

(
grad

υ

c

)
υ =

1

r
(
1 − υ · u

c2

) [(υ · u
c2

)
υ − u

]
+

1
r
υ+

1

r
(
1 − υ · u

c2

) (υ − u) =

1

r
(
1 − υ · u

c2

) (υ · u
c2

)
υ+

1
r
υ − 1

r
(
1 − υ · u

c2

)υ =
1

r
(
1 − υ · u

c2

) [(υ · u
c2

)
+

(
1 − υ · u

c2

)
− 1

]
υ = 0.

That is,
∂

∂t

(υ
c

)
+

(
grad

υ

c

)
υ = 0. (46)

Into equation (45) we replace ∂
∂t

(
υ
c

)
from equation (38)(b),

and grad υc from equation (38)(d), and obtain

∂δ

∂t
β + sin δ

∂ω

∂t
γ + (∇δ ⊗ β + sin δ∇ω ⊗ γ) υ = 0.

Using the identity (45) we get

∂δ

∂t
β + sin δ

∂ω

∂t
γ + (u · ∇δ)β + sin δ (υ · ∇ω)γ = 0

and due to the linear independence of the vectors β and γ we
see that

∂δ

∂t
+ υ · ∇δ = 0 (47)

∂ω

∂t
+ υ · ∇ω = 0. (48)

Combining equations (47) and (43) we obtain

∂δ

∂t
+ λ1 = 0

λ1 = −
∂δ

∂t
.

Through equation (41) we have that

λ1 =
u · β

r
(
1 − υ · u

c2

)
and replacing into equation (43) we get

∇δ = u · β

r
(
1 − υ · u

c2

) υ
c2 + Kβ + Lγ. (49)

Performing the corresponding combinations, we arrive at
equation

∇ω = u · γ

sin δr
(
1 − υ · u

c2

) υ
c
+ Mβ + Nγ. (50)

We shall now prove that K = 1
r , L = 0, M = 0, N = 1

r sin δ ,
hence equations (49) and (50) obtain their final form

∇δ = u · β

r
(
1 − υ · u

c2

) υ
c2 +

1
r
β (51)

∇ω = u · γ

sin δr
(
1 − υ · u

c2

) υ
c2 +

1
r sin δ

γ. (52)

We will prove that K = 1
r , L = 0. In a similar manner we

can also calculate the factors M,N. From equation (34)(a) we
successively obtain

cos δ =
υx

c
− sin δ∇δ = ∇

(
υx

c

)
.

We calculate ∇
(
υx
c

)
from equations (19), hence we have

− sin δ∇δ = 1
r

e1 −
υx − ux

r
(
1 − υ · u

c2

) υ
c

(53)

where e1 =

 1
0
0

.
We take the inner product of equation (53) with vector β

and obtain

− sin δβ · ∇δ = 1
r

e1 · β.
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From equation (49) we have β · ∇δ = K, hence we have

− sin δK =
1
r

e1 · β.

From equation (35) we obtain

e1 · β = − sin δ.

Therefore,

− sin δK =
1
r

(− sin δ) .

Finally, we obtain

K =
1
r
.

We take the inner product of equation (53) with vector γ
and obtain

− sin δγ · ∇δ = 1
r

e1 · γ.

From equation (49) it holds that γ · ∇δ = L, hence

− sin δL =
1
r

e1 · γ.

From equation (36) we see that e1 · γ = 0, therefore
− sin δL = 0, and finally L = 0.

The equations of this paragraph promote the theory of
selfvariations considerably, and their fundamental character
will become obvious as our study continues. One first fun-
damental conclusion emerges from equations (47) and (48).
The functions δ = δ (x, y, z, t) and ω = ω (x, y, z, t) remain in-
variable on the trajectory of the generalized photon. Through
equations (33), (35) and (36) we conclude that the vector ba-
sis { υc ,β,γ} accompanies without change, that is remaining
constant, the motion of the generalized photon. We can, of
course, straightforwardly prove that

∂

∂t

(υ
c

)
+

(
grad

υ

c

)
υ = 0

∂β

∂t
+

(
grad β

)
υ = 0

∂γ

∂t
+

(
grad γ

)
υ = 0

(54)

by combining equations (38), (39) and (40) with equations
(51) and (52).

2.4 The generalized photon as a geometric object.
Representation of the trajectory of a material point
particle

In the present paragraph we shall look for points Ai in the
neighborhood of point A (x, y, z, t) of figure 4, for which the
velocity of the generalized photon is the same with the ve-
locity at point A (x, y, z, t) at the same moment t. We use the
notation −−→

AAi = dR (55)

and we search for points Ai, i.e. vector dR, such that

υ (R+dR, t) = υ (R, t) . (56)

According to equations (33), equation (56) is equivalent
to the relations

δ (R+dR, t) = δ (R, t) (57)

and
ω (R+dR, t) = ω (R, t) . (58)

After expanding the functions δ (R, t) and ω (R, t) in Tay-
lor series up to the first order terms, we obtain

δ (R+dR, t) = δ (R, t) + dR · ∇δ
ω (R+dR, t) = ω (R, t) + dR · ∇ω.

Through equations (57) and (58) we have that

dR · ∇δ = 0 (59)

dR · ∇ω = 0. (60)

Combining equations (51) and (52) we obtain

t=∇δ × sin δ∇ω =
u · β

r2
(
1 − υ · u

c2

) υ
c
× γ + u · γ

r2
(
1 − υ · u

c2

)β × υ
c
+

1
r2β × γ =

− u · β

r2
(
1 − υ · u

c2

)β− u · γ

r2
(
1 − υ · u

c2

)γ + 1
r2

υ

c

taking into account that the set of the vectors { υc ,β,γ} form a
right-handed orthonormal vector basis. We now have

t =
1

r2
(
1 − υ · u

c2

) [(
1 − υ · u

c2

) υ
c
−

(u
c
· β

)
β −

(u
c
· γ

)
γ
]

t =
1

r2
(
1 − υ · u

c2

) [υ
c
−

(υ · u
c2

) υ
c
−

(u
c
· β

)
β −

(u
c
· γ

)
γ
]

and from equation (41) we get

t =
1

r2
(
1 − υ · u

c

) (υ
c
− u

c

)
, 0. (61)

According to equations (59) and (60) the vector dR is par-
allel to the vector t , 0, hence we finally arrive at relation

dR ∥
(υ

c
− u

c

)
(62)

Thus, we conclude that points A and Ai, at which the gen-
eralized photon moves with the same velocity υ, are arranged
parallel to the vector υc −

u
c . This conclusion is the result of

a more general theorem, which we present in the paragraph
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Fig. 5: A material point particle moves from point E to point P on
the curved trajectory Cp in the time interval from w = t − r

c to t. The
generalized photons emitted by the material particle with the same
velocity υ, in the time interval ∆t = t − w = r

c , are on curve C at
moment t.

8. For the case of a material point particle the theorem gives
relation (62).

In figure 4 and for the time interval from t− r
c to t, i.e. for

t− r
c ≤ w ≤ t, the generalized photons emitted by the material

point particle reside within a sphere with center

E
(
xp

(
t − r

c

)
, yp

(
t − r

c

)
, zp

(
t − r

c

)
, t − r

c

)
and radius r = ∥r∥. During the same time interval the material
particle moved from point E to point P

(
xp(t), yp(t), zp(t), t

)
.

We now consider a point Ei in the neighborhood of point
E and on the trajectory Cp of the material particle as it moves
from point E to point P, from which point Ei was emitted the
generalized photon which at moment t is located at point Ai,
as depicted in figure 5.

Point Ei has coordinates

Ei

(
xp

(
t − r′

c

)
, yp

(
t − r′

c

)
, zp

(
t − r′

c

)
, t − r′

c

)
,

where υ = c
r r = c

r′ r
′.

The points E, P, A appear in figure 4 as well as in figure 5,
while the points Ei and Ai are shown in figure 5.

For the vector
−−→
AAi = dr we have, according to figure 5

dr = −r +
−−→
EEi + r′

dr = −r + u
(

r
c
− r′

c

)
+ r′

dr = −υ
c

(
r − r′

)
+u

(
r
c
− r′

c

)

dr = − (
r − r′

) (υ
c
− u

c

)
. (63)

For the time interval dw, during which the material parti-
cle moved from point E to point Ei, it is

dw =
(
t − r′

c

)
−

(
t − r

c

)
=

r
c
− r′

c
,

therefore from equation (63) we obtain

−−→
AAi = dr = −c dw

(υ
c
− u

c

)
. (64)

In figure 5 we consider curve C which includes all the
generalized photons emitted by the material particle during
the time interval from w = t − r

c to t towards a particular
direction υc , that is, with the same velocity υ.

We now consider the tangent vector t [4] of the curve C at
point A

t =
dr
∥dr∥ =

u
c
− υ

c∥∥∥∥∥u
c
− υ

c

∥∥∥∥∥ =
u − υ
∥u − υ∥ (65)

as follows from equation (64). For the three-dimensional arc
length dS of curve C at point A we obtain from equation (64)

dS = ∥dr∥ = dw ∥u − υ∥ . (66)

Now, we calculate the curvature k and the torsion τ of
curve C at point A. First, we calculate the curvature vector k

k =
d t
ds
=

d t
dw ∥u − υ∥ =

1
∥u − υ∥

d
dw

(
u − υ
∥u − υ∥

)
. (67)

Taking into account that dυ
dw = 0, du

dw = α and ∥u − υ∥ =√
c2 + u2 − 2 (υ · u), we calculate the vector

n =
k
∥k∥ =

(u − υ) × [α × (u − υ)]
∥u − υ∥ ∥(u − υ) × α∥ . (68)

Combining equations (65) and (68), we calculate vector
b = t × n appearing in the Frenet formulas:

b =
(u − υ) × α
∥(u − υ) × α∥ . (69)

88 Manousos E. Mass and Charge Selfvariation: A Common Underlying Cause for Quantum Phenomena and Cosmological Data



July, 2013 PROGRESS IN PHYSICS Volume 3

We remind that the Frenet equations

d t
ds
= kn

dn
ds
= −k t+τb

db
ds
= −τn

(70)

uniquely determine the curve C. Having calculated vectors
t, n, b we now determine the curvature k and the torsion τ
of curve C from equations (70). After the necessary calcula-
tions, we obtain

k =

√
∥u − υ∥2 ∥α∥2 − [α · (u − υ)]2

∥u − υ∥3
(71)

τ =

α

[
(u − υ) × dα

dw

]
∥α∥2 ∥u − υ∥2 − [(u − υ) · α]2 ∥u − υ∥

2 . (72)

We repeat the same procedure deriving vectors t p, kp and
bp at point E of the curve Cp of the material particle. For
∥u∥ , 0 it is

t p =
u
∥u∥ (73)

while the three-dimensional arc length is

dS p = ∥u∥ dw. (74)

The curvature vector kp is given by

kp =
d t p

dS p
=

1
∥u∥

d
dw

(
u
∥u∥

)
=
α

∥u∥2
− (u · α)

∥u∥4
u

and finally,

kp =
u × (α × u)

∥u∥4
. (75)

From equation (75) we get for vector np

np =
kp∥∥∥kp

∥∥∥ = u × (α × u)
∥u∥ ∥α × u∥ . (76)

From equations (73) and (76) we get vector

bp = t p × np

bp =
u × α
∥u × α∥ . (77)

From the Frenet formulas (70) for curve Cp, we get for
the curvature kp and the torsion τp:

kp =

√
∥u∥2 ∥α∥2 − (u · α)2

∥u∥3
(78)

τp =

α ·
(
u × dα

dw

)
∥α∥2 ∥u∥2 − (u · α)2 ∥u∥

2 . (79)

Comparing equations (65), (68), (69), (71) and (72) for
curve C, with equations (73), (76), (77), (78) and (79) for
curve Cp we arrive at the following theorem:

Theorem 1. Trajectory representation theorem.
For every direction υc the following hold:

1. The map f : u → u − υ maps the trajectory Cp of
the material particle to the curve C of the generalized
photons moving with velocity υ

f :
(
t p, np, bp, kp, τp

)
→ (t, n, b, k, τ) .

2. The map f −1 : u − υ → u maps the curve C of the
generalized photons moving with velocity υ to the curve
Cp of the material particle:

f −1 : (t, n, b, k, τ)→
(
t p, np, bp, kp, τp

)
.

According to the theorem (1), if we know the position
P (x, y, z, t) of the material particle at moment t and the trajec-
tory Cp at some past time, we can determine the distribution
of the generalized photons the material particle has emitted in
this specific past time. We know exactly how each kinematic
characteristic of the material particle maps to its surrounding
spacetime.

2.5 The fundamental mathematical theorem

The interaction of the material point particle with the sur-
rounding spacetime depends on the following four parame-
ters:

• The moment w = t − r
c of emission of the general-

ized photon by the material particle. All the physical
quantities, such as the rest mass, the electric charge,
the velocity u = u (w) and the acceleration α = α (w)
of the material particle depend upon the moment w of
the emission of the generalized photon.
• The distance r = ∥r∥ of the arbitrary point A (x, y, z, t),

as depicted in figure 4, from the point of emission

E
(
xp (w) , yp (w) , zp (w) , w

)
of the generalized photon.
• The direction in space, i.e. the functions δ = δ (x, y, z, t)

and ω = ω (x, y, z, t) .

In this paragraph we will prove the fundamental equations
concerning these four parameters.

Initially we prove that the vectors ∇w, ∇δ and ∇ω are
linearly independent. Let us suppose that

λ1∇w + λ2∇δ + λ3∇ω = 0, λ1, λ2, λ2 ∈ R.
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Taking into account equations (12), (51) and (52), we ob-
tain

− λ1
1

c
(
1 − υ · u

c2

) υ
c
+ λ2

 u · β

r
(
1 − υ · u

c2

) υ
c
+

1
r
β

+
+ λ3

 u · γ

sin δr
(
1 − υ · u

c2

) υ
c
+

1
r sin δ

γ

 = 0.

From the linear independence of the vectors υc ,β,γ we
see that

−λ1

c
+ λ2

u · β
r
+ λ3

u · γ
r sin δ

= 0

λ2

r
= 0

λ3

r sin δ
= 0.

Finally, we have λ1 = λ2 = λ3 = 0. Therefore the vectors
∇w,∇δ,∇ω are linearly independent.

We now focus our attention on the variation of the quanti-
ties w, δ, ω and r on the trajectory of the material particle and
on the trajectory of the generalized photon. The following
two theorems hold:

Theorem 2.

∂w

∂t
+ u · ∇w = 1 (80a)

∂δ

∂t
+ u · ∇δ = 0 (80b)

∂ω

∂t
+ u · ∇ω = 0 (80c)

∂r
∂t
+ u∇r = 0. (80d)

Theorem 3.

∂w

∂t
+ υ · ∇w = 0 (81a)

∂δ

∂t
+ υ · ∇δ = 0 (81b)

∂ω

∂t
+ υ · ∇ω = 0 (81c)

∂r
c∂t
+
υ

c
· ∇r = 1. (81d)

From equations (11) and (12) we have

∂w

∂t
+ u · ∇w = 1

1 − υ · u
c2

− υ · u

c2
(
1 − υ · u

c2

) = 1−υ · u
c2

1−υ · u
c2

= 1

∂w

∂t
+ υ · ∇w = 1

1 − υ · u
c2

− ∥υ∥2

c2
(
1 − υ · u

c2

) = 0.

From equations (41) and (51) we have

∂δ

∂t
+ u∇δ = − u · β

r
(
1 − υ · u

c2

) + u

 (u · β)

r
(
1 − υ · u

c2

) υ
c2 +

1
r
β


= − u · β

r
(
1 − υ · u

c2

) + (u · β)
(
u
υ

c2

)
r
(
1 − υ · u

c2

) + u · β
r
=

=
u · β

r
(
1 − υ · u

c2

) [
−1 +

υ · u
c2 + 1 − υ · u

c2

]
= 0.

∂δ

∂t
+ υ · ∇δ = − u · β

r
(
1 − υ · u

c2

) + υ
 (u · β)

r
(
1 − υ · u

c2

) υ
c2 +

1
r
β


= − u · β

r
(
1 − υ · u

c2

) + (u · β)

r
(
1 − υ · u

c2

) ∥υ∥2
c2 +

υ · β
r
= 0

since ∥υ∥2 = c2 and υ · β = 0.
Similarly, starting from equations (42) and (52) we arrive

at equations (80)(c) and (81)(c).
From equations (9) and (10) we get

∂r
c∂t
+

u
c
∇r = − υ · u

c2
(
1 − υ · u

c2

) + u
c

 1

1 − υ · u
c2

υ

c

 = 0

∂r
c∂t
+
υ

c
∇r = − υ · u

c2
(
1 − υ · u

c2

) + υ
c

 1

1 − υ · u
c2

υ

c

 =
= − υ · u

c2
(
1 − υ · u

c2

) + 1

1 − υ · u
c2

=

1

1 − υ · u
c2

(
1 − υ · u

c2

)
= 1.

With the aid of the above theorems we can prove the fol-
lowing fundamental theorem:

Theorem 4. The Fundamental Mathematical Theorem. For
every function f = f (w, δ, ω, r) the following hold:

A)

∂ f
∂t
+ u · ∇ f =

∂ f
∂w

(82)

∂

∂t

(
f
υ

c

)
+

(
grad

(
f
υ

c

))
u =
υ

c
∂ f
∂w

(83)

∂

∂t
( fβ) +

(
grad (fβ)

)
u = β

∂ f
∂w

(84)
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∂

∂t
( fγ) +

(
grad (fγ)

)
u = γ

∂ f
∂w
. (85)

B)

∂ f
∂t
+ υ · ∇ f = c

∂ f
∂r

(86)

∂

∂t

(
f
υ

c

)
+

(
grad

(
f
υ

c

))
υ = υ

∂ f
∂r

(87)

∂

∂t
( fβ) +

(
grad (fβ)

)
υ = β

∂ f
∂r

(88)

∂

∂t
( fγ) +

(
grad (fγ)

)
υ = γ

∂ f
∂r
. (89)

We prove equations (82), (83) and (86). The rest of the
equations of the fundamental mathematical theorem are
proven similarly. For the proof of equation (82) we have

∂ f
∂t
+ u · ∇ f =

∂ f
∂w

∂w

∂t
+
∂ f
∂δ

∂δ

∂t
+
∂ f
∂ω

∂ω

∂t
+
∂ f
∂r
∂r
∂t

+u ·
(
∂ f
∂w
∇w + ∂ f

∂δ
∇δ + ∂ f

∂ω
∇ω + ∂ f

∂r
∇r

)
=
∂ f
∂w

(
∂w

∂t
+ u∇w

)
+
∂ f
∂δ

(
∂δ

∂t
+ u · ∇δ

)
+
∂ f
∂ω

(
∂ω

∂t
+ u · ∇ω

)
+
∂ f
∂r

(
∂r
∂t
+ u · ∇r

)
and taking into account equations (80) we obtain

∂ f
∂t
+ u · ∇ f =

∂ f
∂w
,

which is equation (82).
In order to prove equation (83) we use the identity

grad (fα) = ∇f ⊗ α + f grad α (90)

which holds for every vector α and scalar function f . We can
now prove equation (83) as:

∂

∂t

(
f
υ

c

)
+

(
grad

(
f
υ

c

))
u =

∂ f
∂t
υ

c
+ f
∂

∂t

(υ
c

)
+

(
f grad

υ

c
+ ∇f ⊗ υ

c

)
u.

Using identity (45) (α ⊗ b) c = (α · c) b we obtain

∂ f
∂t
υ

c
+ f
∂

∂t

(υ
c

)
+

(
f grad

υ

c

)
u+ (u · ∇ f )

υ

c
=(

∂ f
∂t
+ u · ∇ f

)
υ

c
+ f

(
∂

∂t

(υ
c

)
+

(
grad
υ

c

)
u
)
=

∂ f
∂w

υ

c

since ∂ f
∂t + u · ∇ f = ∂ f

∂w
, according to equation (82) and fur-

thermore

∂

∂t

(υ
c

)
+

(
grad
υ

c

)
u =

∂δ

∂t
β+ sin δ

∂ω

∂t
γ + (∇δ ⊗ β + sin δ∇ω ⊗ γ) u

according to equations (38)(b),(d). Hence we obtain

∂

∂t

(υ
c

)
+

(
grad
υ

c

)
u =

∂δ

∂t
β+ sin δ

∂ω

∂t
γ + (u · ∇δ) β + sin δ (u · ∇ω)γ =(

∂δ

∂t
+ u · ∇δ

)
β + sin δ

(
∂ω

∂t
+ u · ∇ω

)
γ = 0

according to equations (80)(b),(c).
The proof of equation (86) goes as follows:

∂ f
∂t
+ υ · ∇ f =

∂ f
∂w

∂w

∂t
+
∂ f
∂δ

∂δ

∂t
+
∂ f
∂ω

∂ω

∂t
+
∂ f
∂r
∂r
∂t

+υ ·
(
∂ f
∂w
∇w + ∂ f

∂δ
∇δ + ∂ f

∂ω
∇ω + ∂ f

∂r
∇r

)
=
∂ f
∂w

(
∂w

∂t
+ υ · ∇w

)
+
∂ f
∂δ

(
∂δ

∂t
+ υ · ∇δ

)
+
∂ f
∂ω

(
∂ω

∂t
+ υ · ∇ω

)
+
∂ f
∂r

(
∂r
∂t
+ υ · ∇r

)
.

Taking into consideration equations (81) we get

∂ f
∂t
+ υ · ∇ f = c

∂ f
∂r
,

which is equation (86).
An immediate consequence of the theorem (4) is the fol-

lowing lemma:
For every vector function F = F (w, δ, ω, r) the following

relations hold:

∂F
∂t
+

(
grad F

) · u = ∂F
∂w

(91)

∂F
∂t
+

(
grad F

)
υ = c

∂F
∂r
. (92)

The proof is done by writing the vector function F in the
form

F = F1 (w, δ, ω, r)
υ

c
+ F2 (w, δ, ω, r)β + F3 (w, δ, ω, r)γ

and applying the theorem.
The fundamental mathematical theorem determines the

variation of any scalar, vectorial and tensorial physical quan-
tity, both as defined on the material particle, as well as on the
surrounding spacetime. Of special interest are the applica-
tions of this theorem for the variations of the rest mass, the
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electric charge, the energy, the linear momentum, the angular
momentum, and any other conserved physical quantity, for
the system “material particle-generalized photon”. The fun-
damental theorem allows us to correlate the variations that
take place on the material particle with the corresponding
variations that take place in the surrounding spacetime.

2.6 The properties of the vector basis υc ,β,γ

The properties of the right-handed orthonormal vector basis
{ υc , β, γ} are given by equations (38), (39) and (40). In these
equations we already know their second parts from the study
conducted in the preceding paragraphs. Thus, we can express
them in a simpler form.

The first of equations (38), (39) and (40) can be written
as:

∇ ·
(
υ

c

)
=

2
r

(93)

∇ · β = − u · β

cr
(
1 − υ · u

c2

) + cos δ
r sin δ

(94)

∇ · γ = − u · γ

cr
(
1 − υ · u

c2

) . (95)

Equation (93) results directly from equation (22). But we
can also prove it in a different way, starting from the first of
equations (38)

∇ ·
(
υ

c

)
= β · ∇δ + sin δγ · ∇ω.

With the help of equations (51) and (52) we obtain

∇ ·
(
υ

c

)
=

1
r
+

1
r
=

2
r

taking into account that the set of the vectors { υc , β, γ} form a
right-handed, orthonormal vector basis.

From the first of equations (39) we obtain

∇ · β = −υ
c
∇δ + cos δγ · ∇ω.

Through equations (51) and (52) we get

∇ · β = − u · β

cr
(
1 − υ · u

c2

) + cos δ
r sin δ

.

From the first of equations (40) we have that

∇ · γ = − sin δ
υ

c
∇ω − cos δβ · ∇ω.

Using equation (52) we see that

∇ · γ = − u · γ

cr
(
1 − υ · u

c2

) .
Accordingly we can write in a simpler form the rest of the

equations (38), (39) and (40), whenever it is demanded by the
mathematical calculations performed.

2.7 List of auxiliary equations

We prove the following auxiliary equations:

∂ (υ · u)
∂t

=
υ · α

1 − υ · u
c2

+
(υ · u)2 − c2u2

c3r
(
1 − υ · u

c2

) (96)

∇ (υ · u) = − υ · α

c2
(
1 − υ · u

c2

)υ + c
r

u +
u2 − (υ · u)

cr
(
1 − υ · u

c2

) υ
c

(97)

∂ (υ · α)
∂t

=
υ · b

1 − υ · u
c2

+
(υ · u) (υ · α) − c2 (υ · α)

cr
(
1 − υ · u

c2

) (98)

∇ (υ · α) = − υ · b

c2
(
1 − υ · u

c2

)υ + c
r
α +

u · α − υ · α

cr
(
1 − υ · u

c2

)υ (99)

where α = α (w) = du(w)
dw and b = b (w) = dα(w)

dw and u2 = ∥u∥2.
Indeed, it holds that

∂ (υ · u)
∂t

= u
∂υ

∂t
+ υ
∂u
∂t

∂ (υ · u)
∂t

= u
∂υ

∂t
+ υ
∂u
∂w
· ∂w
∂t
.

Through equations (25) and (11) we obtain

∂ (υ · u)
∂t

= u
∂υ

∂t
+
υ · α

1 − υ · u
c2

.

With the help of equation (17) we get

∂ (υ · u)
∂t

=
c

r
(
1 − υ · u

c2

) [
(υ · u)2

c2 − u2
]
+
υ · α

1 − υ · u
c2

and performing the necessary algebraic transformations we
obtain equation (96).

In order to prove equation (97) we start from the identity

∇ (υ · u) =
(
gradTυ

)
u +

(
gradTu

)
υ

where gradTυ and gradTu are the transpose matrices of grad υ
and grad u.

From equations (20) and (28) we obtain

∇ (υ · u) =

c
r

I +
1

r
(
1 − υ · u

c2

) υ
c
⊗ (u − υ)


T

u−

− 1

c
(
1 − υ · u

c2

) (υ
c
⊗ α

)T
υ
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∇ (υ · u) =

c
r

I +
1

r
(
1 − υ · u

c2

) (u − υ) ⊗ υ
c


T

u−

− 1

c
(
1 − υ · u

c2

) (
α ⊗ υ

c

)
υ.

Using identity (45) we get

∇ (υ · u) =
c
r

u +
u · (u − υ)

r
(
1 − υ · u

c2

) · υ
c
− υ · α

c
(
1 − υ · u

c2

) υ
c

which is equation (97). We can similarly prove equations (98)
and (99). In order to prove the last equation we use equation
(32), in exactly the same manner we used equation (28). In
the same way, we can prove corresponding equations for all
of the inner products such as υ · b, u ·α etc., that appear in the
equations of the theory of selfvariations.

3 The study of the selfvariations for a material point
particle moving with constant speed

3.1 Introduction

In this paragraph we present the study of the selfvariations for
a material point particle moving with constant speed. This
study was regarded as necessary for two reasons. The first
is that constant-speed motion is the simplest possible and,
therefore, we are studying the consequences of the selfvari-
ations in their simplest version. The second reason is that ar-
bitrary motion can be considered as a multitude of successive
constant-speed motions.

By studying the constant-speed motion of a material par-
ticle we can derive the Lorentz-Einstein transformations for
the physical quantities w, δ, ω, r that appear in the equations
of the theory of selfvariations. Of special interest is the trans-
formation of the volume of the generalized photon, which dif-
fers from the volume transformation of material particles as
we know it within the framework of Special Relativity. Af-
ter having studied both the arbitrary motion, as well as the
constant-speed motion of the material particle, we have the
knowledge necessary for advancing our study in the forth-
coming paragraphs.

3.2 The case of a material point particle moving with
constant speed

We consider a material point particle with rest mass m0 and

electric charge q, which moves with velocity u =

 u
0
0

 in

the inertial frame of reference S (0, x, y, z, t), as depicted in
figure 6.

At moment t when the material particle is at point P(ut, 0,
0, t), the rest mass m0 and the electric charge q of the mate-
rial particle act at point A (x, y, z, t) through the generalized

Fig. 6: Material point particle moving with constant speed along the
x axis of the inertial reference frame S (0, x, y, z, t). As the material
particle moves from point E to point P, during the time interval ∆t =
r
c , a generalized photon moves from point E to point A.

photon that was emitted from point E and arrived at point A
moving with velocity c. Therefore, the coordinates of point E
are

E
(
ut − u

c
r, 0, 0, t − r

c

)
(100)

where r = ∥r∥ =
∥∥∥∥−−→EA

∥∥∥∥. Due to the selfvariations, the rest
mass m0 and the electric charge q of the material particle act
at point A (x, y, z, t) with the value they had at time

w = t − r
c

(101)

at point E
(
ut − u

c r, 0, 0, t − r
c

)
, and not with the value they

have at point P (ut, 0, 0, t) at time t. For the vector r we have

r =
−−→
EA =

 x − ut + u
c r

y
z

 . (102)

The magnitude of ∥r∥ = r can be derived from equations
(102) as

∥r∥ = r = γ2 u
c

(x − ut) + γ
√
γ2 (x − ut)2 + y2 + z2 (103)

where γ = 1√
1− u2

c2

.

Combining equations (102) and (103) we obtain

r =


γ2 (x − ut) + u

cγ

√
γ2 (x − ut)2 + y2 + z2

y
z

 . (104)

The velocity υ of the selfvariations has magnitude ∥υ∥ = c,
and is parallel to the vector r, thus we have

υ =
c
r

r =
c
r


γ2 (x−ut)+ u

cγ

√
γ2 (x−ut)2 +y2+z2

y
z

 . (105)
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The position vector R of point A (x, y, z, t) with respect to
point P (ut, 0, 0, t), where the material particle is located, is

R =
−−→
PA =

 x − ut
y
z

 . (106)

From equation (106) we obtain

∥R∥ = R =
√

(x − ut)2 + y2 + z2. (107)

From figure 6 we see that

r =
−−→
EA + R

r =
r
c

u + R.

Finally, we obtain

υ = u +
c
r

R (108)

R = r
(υ

c
− u

c

)
. (109)

Combining equations (100) and (101) we have for the co-
ordinates of point E

E (uw, 0, 0, w) . (110)

The relations between the scalar, vectorial and tensorial
quantities of this paragraph can be derived by the correspond-
ing relations proven in the second paragraph, considering that
the acceleration of the material body vanishes, that is α =
α (w) = 0, and that the velocity of the material particle is

u = u (w) =

 u (w)
0
0

 =
 u

0
0

.
3.3 The case of a material point particle at rest

We consider an inertial reference frame S ′ (0′, x′, y′, z′, t′)

moving with velocity u =

 u
0
0

 with respect to the inertial

reference frame S (0, x, y, z, t) of the previous paragraph. We
also suppose that for t = t′ = 0 the origins of the axes of coor-
dinates 0 and 0′ of these two frames coincide. In the way we
have chosen these two inertial frames, the material particle
is at rest in frame S ′ or, equivalently, frame S ′ accompanies
the material particle during its motion. Figure 7 is the one
corresponding to figure 6 for reference frame S ′.

At moment t′, when the material particle is located at
point P (0, 0, 0, t′), the mass mo and the electric charge q of the
material particle act at point A (x′, y′, z′, t′) through the gen-
eralized photon that was emitted from point E

(
0, 0, 0, t′ − r′

c

)

Fig. 7: A material point particle remains at rest at the origin
O′ (0, 0, 0, 0, t′) of the inertial reference frame S (0′, x′, y′, z′, t′). A
generalized photon moves from point E

(
0, 0, 0, 0, t′ − r′

c

)
and arrives

at point A (x′, y′, z′, t′), during the time interval ∆t′ = r′
c .

and arrived at point A (x′, y′, z′, t′) moving with velocity c.
Therefore, the coordinates of point E are

E
(
0, 0, 0, t′ − r′

c

)
(111)

where r′ = ∥r′∥ =
∥∥∥∥−−→EA

∥∥∥∥. Due to the selfvariations, the rest
mass mo and the electric charge q of the material particle act
at point A (x′, y′, z′, t′) with the value they had at time

w′ = t′ − r′

c
(112)

and not with the value they have at P (0, 0, 0, t′).
For the vector r′ it holds that

r′ =
−−→
EA =

 x′

y′

z′

 (113)

while its magnitude ∥r′∥ = r′ is given by∥∥∥r′
∥∥∥ = r′ =

√
x′2 + y′2 + z′2. (114)

The velocity of the selfvariations υ′ has magnitude ∥υ′∥ =
c, and is parallel to the vector r′, therefore it is

υ′ =
c
r′

r′=
c
r′

 x′

y′

z′

 . (115)

The position vector R′ of point A (x′, y′, z′, t′) with respect
to P (0, 0, 0, t′), where the material particle is located, is given
by

R′=
−−→
PA=

 x′

y′

z′

 = r′. (116)
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From equation (116) we get∥∥∥R′
∥∥∥ = R′ =

∥∥∥r′
∥∥∥ = r′ =

√
x′2 + y′2 + z′2. (117)

Combining equations (111) and (112) we obtain for the
coordinates of point E

E
(
0, 0, 0, w′

)
. (118)

The relations between the scalar, vectorial and tensorial
quantities of this paragraph can be derived from the corre-
sponding relations we proved in the second paragraph, con-
sidering that the acceleration and the velocity of the material
particle vanish, that is α = α (w) = 0 and u = u (w) = 0.

3.4 Lorentz-Einstein transformations of the quantities
w, δ, ω, r

In this paragraph we shall study the way in which the fun-
damental physical quantities appearing in the equations of
the theory of selfvariations transform under the action of the
Lorentz-Einstein transformations [5–11].

In the way we have chosen the inertial reference frames
S and S ′, the transformations of the coordinates in the four-
dimensional spacetime are given by the set of equations

x = γ (x′ + ut′)
y = y′

z = z′

t = γ
(
t′ +

u
c2 x′

)
x′ = γ (x − ut)
y′ = y
z′ = z

t′ = γ
(
t − u

c2 x
)

(119)

where γ = 1√
1− u2

c2

.

The coordinates of point E are given by relation (110),
and are E (uw, 0, 0, w) for inertial frame S , and by relation
(118), and are E (0, 0, 0, w′) for inertial frame S ′. Applying
transformations (119) we obtain

w = γw′. (120)

Indeed, based on the fourth equation of the first column of
transformations (119) for the coordinates of point E, we get

w = γ (w′ + u · 0)
w = γw′.

We now consider the trigonometric form of the velocity
υ, as defined in paragraph 2.2. From equations (34) we get
for reference frames S and S ′ respectively

cos δ =
υx

c
sin δ cosω =

υy

c

sin δ sinω =
υz

c

(121)

cos δ′ =
υ′x
c

sin δ′ cosω′ =
υ′y

c

sin δ′ sinω′ =
υ′z
c
.

(122)

From the Lorentz-Einstein transformations for the veloc-
ity we have

υx =
υ′x + u

1 +
uυ′x
c2

υ′x =
υx − u

1 − uυx

c2

υy =
υ′y

γ

(
1 +

uυ′x
c2

) υ′y =
υy

γ
(
1 − uυx

c2

)
υz =

υ′z

γ

(
1 +

uυ′x
c2

) υ′z =
υz

γ

(
1 − uυ′x

c2

) .
(123)

From transformation (123) and from equations (121) and
(122) the following transformations are derived for the func-
tions δ = δ (x, y, z, t) and ω = ω (x, y, z, t):

cos δ′ =
cos δ − u

c

1 − u
c

cos δ

sin δ′ =
sin δ

γ
(
1 − u

c
cos δ

)
ω′ = ω

cos δ =
cos δ′ +

u
c

1 +
u
c

cos δ′

sin δ =
sin δ′

γ
(
1 +

u
c

cos δ′
)

ω = ω′.

(124)

We shall prove the first equation. The rest are proven sim-
ilarly.

From the first equation of the second column of transfor-
mations (123) we obtain

υ′x =
υx − u

1 − uυx

c2

υ′x
c
=

υx

c
− u

c

1 − u
c
υx

c

.

Through equations (122) and (121) we get

cos δ′ =
cos δ − u

c

1 − u
c

cos δ
.

From equation (117) and transformations (119) we see
that

r′ =
√
γ2 (x − ut)2 + y2 + z2. (125)
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Combining equations (103) and (125) we get

r = γ2 u
c

(x − ut) + γr′

and since

γ (x − ut) = x′

from transformations (119) we obtain

r = γ
u
c

x′ + γr′. (126)

From equation (115) we see that

υ′x =
c
r′

x′

x′ = r′
υ′x
c
.

Substituting into equation (126) we get

r = γ
uυ′x
c2 r′ + γr′

r = γr′
(
1 +

uυ′x
c2

)
.

From equation (122) we obtain

r = γr′
(
1 +

u
c

cos δ′
)

and with the help of transformations (124) we get

r = γr′

1 + u
c

cos δ − u
c

1 − u
c

cos δ


r = γr′

1 − u2

c2

1 − u
c

cos δ

r =
r′

γ
(
1 − u

c
cos δ

)

r′ = γr
(
1 − u

c
cos δ

)
= γr

(
1 − υ · u

c2

)
. (127)

From transformations (124) we obtain

sin δ′ =
sin δ

γ
(
1 − u

c
cos δ

)

cos δ′
dδ′

dδ
=

cos δ
(
1 − u

c
cos δ

)
− sin δ

u
c

sin δ

γ
(
1 − u

c
cos δ

)2

cos δ′
dδ′

dδ
=

cos δ − u
c

γ
(
1 − u

c
cos δ

)2

cos δ − u
c

1 − u
c

cos δ

dδ′

dδ
=

cos δ − u
c

γ
(
1 − u

c
cos δ

)2

dδ′

dδ
=

1

γ
(
1 − u

c
cos δ

)

dδ′ =
1

γ
(
1 − u

c
cos δ

)dδ. (128)

Repeating the same procedure we also arrive at relation

∂

∂δ′
= γ

(
1 − u

c
cos δ

)
∂

∂δ
(129)

among the operators ∂
∂δ′ and ∂

∂δ
.

From equation (109) we get

R = r

√
1 +

u2

c2 − 2
υ · u
c2

R = r

√
1 +

u2

c2 − 2
u
c

cos δ. (130)

From equation (130) we are able, whenever it is neces-
sary, to derive the Lorentz-Einstein transformation of the
quantity R through the use of transformations (124) and (127).

We consider now the angle θ between the vectors R and u,
as depicted in figure 6. From the law of sines for the triangle
EAP we have that

sinϑ
r
=

sin δ
R

sinϑ =
r
R

sin δ.

Using equation (130) we obtain

sinϑ =
sin δ√

1 +
u2

c2 − 2
u
c

cos δ

. (131)
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Fig. 8: The infinitesimal volume of the generalized photon in the
vicinity of point A of the inertial reference frame S (0′, x′, y′, z′, t′).
The material point particle is at position P (0, 0, 0, t′). The infinites-

imal surface of area dA′ is vertical to the vectors r′ =
→

PA and
r′1 =

→
PA

1
. The points P, A and A1 are collinear.

From the familiar identity sin2 ϑ+cos2 ϑ = 1 we have that

cosϑ =
cos δ − u

c√
1 +

u2

c2 − 2
u
c

cos δ

. (132)

From transformations (124) we can, after applying equa-
tions (131) and (132), derive the Lorentz-Einstein transfor-
mations for the quantities sinϑ and cosϑ. Furthermore, in
the inertial reference frame S ′ it is θ′ = δ′, as can be seen
from figure 7.

3.5 The Lorentz-Einstein transformation of the volume
of the generalized photon

The generalized photon moves with velocity υ of magnitude
∥υ∥ = c in any inertial reference frame. This has as a conse-
quence that the following transformation does not hold:

dV ′ = γdV.

This transformation holds for the volume dV of a material
particle that is at rest in the inertial reference frame S ′. We
shall prove that the volume of the generalized photon trans-
forms according to relation

dV ′ =
dV

γ
(
1 − u

c
cos δ

) = dV

γ
(
1 − υ · u

c2

) (133)

for our chosen inertial reference frames S and S ′.
In the region of point A (x′, y′, z′, t′) of figure 7 we con-

sider the elementary area

dA′ = r′2 sin δ′dδ′dω′

Fig. 9: Figure 8 as modulated in the inertial reference frame
S (0, x, y, z, t), in which the material particle moves with constant
speed. The points P, A and A1 remain collinear, as results from the
Lorentz-Einstein transformations.

of a sphere with center O′ and radius r′. Furthermore, we
consider a point A1 close to point A on line OA, as depicted
in figure 8.

The elementary volume of the generalized photon in the
inertial reference frame S ′ is

dV ′ = dA′
∣∣∣∣∣∣∣∣−−−→AA1

∣∣∣∣ = r′2 sin δ′dδ′dω′
∣∣∣∣∣∣∣∣−−−→AA1

∣∣∣∣ (134)

assuming that A1 → A.
In figure 9 we present the volume dV occupied by the

generalized photon in the inertial frame of reference S .
The elementary area dA in S is

dA = r2 sin δdδdω

while the elementary volume dV is

dV = dA
∣∣∣∣∣∣∣∣−−−→HA1

∣∣∣∣ = r2 sin δdδdω
∥∥∥∥−−−→HA1

∥∥∥∥ (135)

since A1 → A.
From the Lorentz-Einstein transformations it directly fol-

lows that points P, A, A1, which are collinear in reference
frame S ′ are also collinear in reference frame S . The con-
clusions of paragraph 2.4 about the representation of the tra-
jectory of the material particle in the surrounding spacetime,
also lead to figure 9. Here, the trajectory of the material par-
ticle is on the x axis. We now use the following notation, as
depicted in figure 9.

r =
∥∥∥∥−−→EA

∥∥∥∥ (136)

r1 =
∥∥∥∥−−−−→E1A1

∥∥∥∥ (137)

according to the notation we have established. Similarly, in
figure 8 we use the notation
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r′ =
∥∥∥∥∥−−−→O′A

∥∥∥∥∥ (138)

r′1 =
∥∥∥∥∥−−−→O′A1

∥∥∥∥∥ . (139)

From figure 9 we have that∥∥∥∥−−−−→E1A1

∥∥∥∥ = ∥∥∥∥−−−→E1K
∥∥∥∥ + ∥∥∥∥−−→KH

∥∥∥∥ + ∥∥∥∥−−−→HA1

∥∥∥∥
and with equations (136) and (137) we get

r1 =
∥∥∥∥−−−→E1K

∥∥∥∥ + r +
∥∥∥∥−−−→HA1

∥∥∥∥
∥∥∥∥−−−→HA1

∥∥∥∥ = r1 − r −
∥∥∥∥−−−→E1K

∥∥∥∥ . (140)

From the triangle E1KE of figure 9 we see that

cos δ =

∥∥∥∥−−−→E1K
∥∥∥∥∥∥∥∥−−−→E1E
∥∥∥∥∥∥∥∥−−−→E1K

∥∥∥∥ = ∥∥∥∥−−−→E1E
∥∥∥∥ cos δ. (141)

Similarly, we have that∥∥∥∥−−−→E1E
∥∥∥∥ = u

r1 − r
c
= u dw (142)

since in the time interval ∆t = r1−r
c dw the point particle

moved from point E1 to point E. Combining equations (141)
and (142) we obtain∥∥∥∥−−−→E1K

∥∥∥∥ = u dw cos δ. (143)

Combining equations (140) and (143) we also get∥∥∥∥−−−→HA1

∥∥∥∥ = c dw
(
1 − u

c
cos δ

)
(144)

since r1 − r = cdw.
Combining equations (135) and (144) we get

dV = r2 sin δdδdωcdw
(
1 − u

c
cos δ

)
. (145)

From figure 8 we have that∥∥∥∥−−−→AA1

∥∥∥∥ = ∥∥∥∥∥−−−→O′A1

∥∥∥∥∥ − ∥∥∥∥∥−−−→O′A
∥∥∥∥∥

and with equations (138) and (139) we get∥∥∥∥−−−→AA1

∥∥∥∥ = r′1 − r′ = cdw′. (146)

Combining equations (135) and (146) we also get

dV ′ = r′2 sin δ′dδ′dω′cdw′. (147)

Combining equations (145) and (147) we get

dV ′

dV
=

r′2 sin δ′dδ′dω′cdw′

r2 sin δdδdωcdw
(
1 − u

c
cos δ

)
and with transformations (127), (124), (128) and (121) we get

dV ′

dV
= γ2

(
1 − u

c
cos δ

)2 1

γ2
(
1 − u

c
cos δ

)2

1
γ

1

1 − u
c

cos δ

dV ′

dV
=

1

γ
(
1 − u

c
cos δ

)
dV ′ =

dV

γ
(
1 − u

c
cos δ

) . (148)

This is equation (133). Given that u =

 u
0
0

 we arrive at

relation
υ · u
c2 =

u
c
υx

c
=

u
c

cos δ (149)

since, according to equation (121), cos δ = υx
c .

Combining equations (148) and (149) we have

dV ′ =
dV

γ
(
1 − u

c
cos δ

) = dV

γ
(
1 − υ · u

c2

) .
This is the final form of equation (133).
In the form

dV ′ =
dV

γ
(
1 − υ · u

c2

) (150)

transformation (133) also holds in the case of a material par-
ticle in arbitrary motion. In figure 5 the length of the three-
dimensional arc EEi equals

∥∥∥∥−−→EEi

∥∥∥∥ at first approximation, that
is, for an infinitesimal displacement of the material particle
from point E to point Ei. Thus, we have exactly the situa-
tion we describe in figure 9. On the other hand, for a finite,
but not infinitesimal, displacement

−−→
EEi of the material parti-

cle, the curvature kp (w) and the torsion τp (w) of curve Cp of
figure 5 enter the transformation of the volume.

4 The study of selfvariations at macroscopic scales

4.1 Introduction

In the present paragraph we study the consequences of the
selfvariations at macroscopic scales. The main conclusion we
derive is the existence of energy, momentum, electric charge
and electric current in the surrounding spacetime of the mate-
rial particle as a direct consequence of the selfvariations. We
calculate the density of energy, momentum, electric charge
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and electric current in the surrounding spacetime of an arbi-
trarily moving material point particle.

We present the four-dimensional electromagnetic poten-
tial which is compatible with the selfvariations. An important
element that emerges is the splitting of the electromagnetic
potential into two individual potentials, where the first one
gives the electromagnetic field that accompanies the material
particle in its motion, while the second one gives the electro-
magnetic radiation.

We prove that the selfvariations are compatible with the
principles of conservation of electric charge, energy, and mo-
mentum. This is accomplished through either direct calcula-
tion, based on the continuity equation, and also through the
energy-momentum tensor of the generalized photon. These
different approaches help the reader comprehend the physical
reality that prevails in the surrounding spacetime of material
particles.

In the preceding paragraphs we studied the generalized
photon as a geometric object. In this paragraph we shall see
for the first time that the generalized photon is a carrier of
energy, momentum, and electric charge. The density of elec-
tric charge and electric current in the surrounding spacetime
of the material particle is correlated with the electromagnetic
field that accompanies the material particle in its motion. The
electromagnetic radiation does not contribute to the density
of electric charge and electric current.

We calculate the energy-momentum tensor for the elec-
tromagnetic field and for the generalized photon. The energy-
momentum tensor describes the energy content of spacetime,
but only in macroscopic scales. In microscopic scales, the
energy-momentum tensor, as defined by the theory of Special
Relativity, cannot describe the energy content of spacetime.

4.2 The density of electric charge and electric current in
the surrounding spacetime of an electrically charged
point particle

In figure 6 the electric charge q acts at point A(x, y, z, t) with
the value it had at point E. Thus, we have q = q (w). Hence,
it follows that

∂q
∂t
=
∂q
∂w

∂w

∂t

∇q =
∂q
∂w
∇w

and with equations (11) and (12) we have that

∂q
∂t
=
∂q
∂w

1

1 − υ · u
c2

(151)

∇q = − ∂q
c∂w

1

1 − υ · u
c2

υ

c
. (152)

According to Special Relativity and the symbols we use

in figure 6, the intensity ε of the electric field at point A is

ε =
γq

4πε0r′3
R (153)

where R is given by equation (106), r′ by equation (117), and
γ = 1√

1− u2

c2

. From Gauss’s law [12–18] we obtain for the

electric charge density ρ at point A:

ρ = ε0∇ · ε

ρ = ε0∇ ·
(
γq

4πε0r′3
R
)

ρ =
qγ
4π
∇ ·

(
R
r′3

)
+
γ

4πR′3
R · ∇q. (154)

We can easily prove that

∇ ·
(

R
r′3

)
= 0. (155)

We can avoid the calculation, if we take into account that,
ignoring the selfvariations, for constant electric charge q,
classical Electromagnetism predicts that ρ = 0 at point A.
This is equivalent with equation (155).

Combining equations (154) and (155) we get

ρ =
γ

4πr′3
R · ∇q.

Using equation (152) we get

ρ = − ∂q
c∂w

γ

4πr′3
(
1 − υ · u

c2

) υ
c
· R.

After applying equation (109) we have that

ρ = − ∂q
c∂w

γr

4πr′3
(
1 − υ · u

c2

) υ
c

(υ
c
− u

c

)

ρ = − ∂q
c∂w

γr
4πr′3

1(
1 − υ · u

c2

) (
1 − υ · u

c2

)

ρ = − ∂q
c∂w

γr
4πr′3

.

Using transformation (127) we get

ρ = − ∂q
c∂w

1

4πγ2r2
(
1 − υ · u

c2

)3 . (156)

We can derive the same equation in a different way. We
will develop the second method in the next paragraph for the
calculation of the density of energy D due to the selfvariations
of the rest mass of the material particle, where we will not
be able to use Gauss’s law. The reader can easily apply the
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method of the next paragraph to the electric charge, and still
come up with equation (156).

The generalized photon moves with velocity υ, therefore
the current density j is given by equation

j =ρυ (157)

where the charge density ρ is given by equation (156). Equa-
tion (157) can also be easily inferred from Ampere’s law

∇ × B =µ0 j +
∂ε

c2∂t
. (158)

The intensity of the magnetic field B at point A of figure
6 is given initially by the Biot-Savart law:

B =
u
c2 × ε. (159)

Combining equations (153) and (109) we get

ε =
γq

4πε0r′3
r
(υ

c
− u

c

)
and from equation (127) we have

ε =
q

4πε0γ2r2
(
1 − υ · u

c2

)3

(υ
c
− u

c

)
. (160)

From equation (160) we get

u
c2 × ε =

υ

c
× ε

and from equation (159) we get

B =
υ

c2 × ε. (161)

In equation (161) the velocity υ of the generalized photon
refers to point A of figure 6. This has as a consequence that all
physical quantities B, υ, ε appearing in equation (161) refer
to the same point in spacetime. On the contrary, in equation
(159) the velocity u of the material particle does not refer to
point A, where the electromagnetic field is manifested. Equa-
tion (161) also holds for the case where the material particle
is in arbitrary motion, as we shall see in a later paragraph.

4.3 The density of energy and momentum in the sur-
rounding spacetime of a material point particle

In the case of the rest mass we cannot apply Gauss’s law in
order to calculate the energy density D in the surrounding
spacetime of the material particle. Because of this we will
develop a completely different proving procedure. We ini-
tially calculate the energy density D′ in the inertial reference
frame S ′ in which the material particle is at rest. At point A
of figure 7 the energy density D′ due to the selfvariations is

D′ = c2
m0

(
t′ − r′

c

)
− m0

(
t′ − r′ + dr′

c

)
4πr′2dr′

. (162)

From equation (112) and for a specific time t′ we have
that

dw′ = −dr′

c
and equation (162) becomes

D′ = c2

dm0

dr′
4πr′2

= −c

dm0

dw′
4πr′2

. (163)

We now consider the Lorentz-Einstein transformations
for the energy E and the momentum P of the generalized
photon:

E = γ
(
E′ + uP′x

)
Px = γ

(
P′x +

u
c2 E′

)
Py = P′y
Pz = P′z

E′ = γ (E − uPx)

P′x = γ
(
Px −

u
c2 E

)
P′y = Py
P′z = Pz.

(164)

Defining as dV the infinitesimal volume occupied by the
generalized photon at point A of figure 6 we have

D =
dE
dV
.

Applying the transformations (164) and (150) we get

D =
γ
(
dE′ + udP′x

)
γ
(
1 − υ · u

c2

)
dV ′

D =
dE′ + u

υ′x
c2 dE′(

1 − υ · u
c2

)
dV ′

D =
1 +

uυ′x
c2

1 − υ · u
c2

dE′

dV ′

D =
1 +

uυ′x
c2

1 − υ · u
c2

D′. (165)

From transformations (123) for the velocity we get

1 +
uυ′x
c2 = 1 +

u
c2

υx − u

1 − uυx

c2

=

1 − u2

c2

1 − uυx

c2

=
1

γ2
(
1 − uυx

c2

)
and since υ·uc2 =

u
c cos δ, we get

1 +
uυ′x
c2 =

1

γ2
(
1 − υ · u

c2

) . (166)
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Combining equations (165) and (166) we have

D =
1

γ2
(
1 − υ · u

c2

)2 D′

and with (163) we get

D = −c
1

γ2
(
1 − υ · u

c2

)2

dm0

dw′
4πr′2

.

Applying transformations (120) and (127) we obtain

D = −c
∂m0

∂w

1

4πγ3r2
(
1 − υ · u

c2

)4 . (167)

The generalized photon moves with velocity υ, so we
have

J = D
υ

c2 (168)

for the momentum density J at point A of figure 6.
Factor ∂m0

∂w
, which appears in the equations of this para-

graph, corresponds to factor ∂q
∂w

in the equations of the previ-
ous paragraph. In figure 6, the rest mass m0 of the point par-
ticle acts on point A (x, y, x, t) with the value it had at point E,
namely m0 = m0 (w). Therefore, we have

∂m0

∂t
=
∂m0

∂w

∂w

∂t

∇m0 =
∂m0

∂w
∇w

and with equations (11) and (12), we get

∂m0

∂t
=
∂m0

∂w

1

1 − υ · u
c2

∇m0 = −
∂m0

c∂w
1

1 − υ · u
c2

υ

c
.

(169)

These equations are analogous to equations (151) and (152)
for the electric charge.

4.4 The selfvariations are in accordance with the
principle of conservation of the electric charge

In figure 6 and for the time interval from w = t − r
c to t,

the generalized photons emitted by the material particle are
contained within a sphere with centre E and radius r. In order
for the conservation of the electric charge to hold, we have to
prove the validity of equation:

q
(
t − r

c

)
= q (t) +

∫
V
ρdV = q (t) + qi (170)

where V is the volume of the sphere with centre E and radius
r, and

qi =

∫
V
ρdV (171)

is the electric charge, due to the selfvariations, contained
within the sphere. From equation (145), we get for the in-
finitesimal volume dV

dV = b2
(
1 − u

c
cos δ

)
sin δdδdωcdw

0 ≤ δ ≤ π
0 ≤ ω < 2π
0 ≤ b ≤ r
t − r

c
≤ w ≤ t.

(172)

Combining equations (156) and (129) we get

ρ = − ∂q
c∂w

1

4πγ2r2
(
1 − u

c
cos δ

)3 . (173)

Combining equations (171) and (173) we also get

qi =
∫

V ρdV

qi = −
∫ π

0

∫ 2π

0

∫ t

t− r
c

∂q
c∂w

1

4πγ2b2
(
1 − u

c
cos δ

)3

b2
(
1 − u

c
cos δ

)
sin δdδdωcdw

qi = −
∫ π

0

∫ 2π

0

∫ t

t− r
c

∂q
∂w

sin δ

4πγ2
(
1−u

c
cos δ

)2 dδdωcdw

qi = −
1

2γ2

∫ π

0

∫ t

t− r
c

∂q
∂w

sin δ(
1 − u

c
cos δ

)2 dδdw. (174)

We now denote

λ = 1 − u
c

cos δ. (175)

Thus, we have
c
u

dλ = sin δdδ (176)

1 − u
c
≤ λ ≤ 1 +

u
c
. (177)

So we have∫ π

0

sin δ(
1 − u

c
cos δ

)2 dδ =
∫ 1+ u

c

1− u
c

c
u

dλ

λ2 = −
c
u

[
1
λ

]1+ u
c

1− u
c

=

− c
u

 1

1 +
u
c

− 1

1 − u
c

 = − c
u

−2
u
c

1 − u2

c2

=
2

1 − u2

c2

= 2γ2
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and equation (174) becomes

qi = −
∫ t

t− r
c

∂q
∂w

dw

qi = −
[
q (w)

]t
t− r

c

qi = q
(
t − r

c

)
− q (t)

q (t) + qi = q
(
t − r

c

)
which is equation (170).

We can also prove the conservation of the electric charge
through the equation of continuity

∂ρ

∂t
+ ∇ · j = 0. (178)

Indeed, taking into account equation (157) we have

∂ρ

∂t
+ ∇ · j =

∂ρ

∂t
+ ∇ · (ρυ)

∂ρ

∂t
+ ∇ · j =

∂ρ

∂t
+ υ · ∇ρ + ρ∇ · υ

and with equation (22) we get

∂ρ

∂t
+ ∇ · j =

∂ρ

∂t
+ υ · ∇ρ + 2c

r
ρ.

Applying equation (86) of the fundamental mathematical
theorem, for f = ρ, we get

∂ρ

∂t
+ ∇ · j = c

∂ρ

∂r
+

2c
r
ρ. (179)

From equation (173) we have

∂ρ

∂r
= −2ρ

r
. (180)

Combining equations (179) and (180) we finally get

∂ρ

∂t
+ ∇ · j = 0.

4.5 The selfvariations are in accordance with the conser-
vation principles of energy and momentum

In figure 6, for the time interval from w = t − r
c to t, the gen-

eralized photons emitted by the material particle due to the
selfvariation of the rest mass are contained within the sphere
with centre E and radius r. In order for the conservation of
energy to hold, it is enough to prove the validity of the fol-
lowing equation:

c2γm0

(
t − r

c

)
= c2γm0 (t) +

∫
V

DdV = c2m0 (t) + Ei (181)

where V is the volume of the sphere with centre E and radius
r, and

Ei =

∫
V

DdV (182)

is the energy due to the selfvariation of the rest mass, which is
contained within the sphere. Combining equations (167) and
(129) we get

D = −c
∂m0

∂w

1

4πγ3r2
(
1 − u

c
cos δ

)4 . (183)

Combining equations (182) and (183), and following the
notation of equation (172), we get

Ei = −c
∫ π

0

∫ 2π

0

∫ t

t− r
c

∂m0

∂w

1

4πγ3b2
(
1 − u

c
cos δ

)4

b2
(
1 − u

c
cos δ

)
sin δdδdωcdw

Ei = −
c2

4πγ3

∫ π

0

∫ 2π

0

∫ t

t− r
c

∂m0

∂w

sin δ(
1 − u

c
cos δ

)3 dδdωdw

Ei = −
c2

2γ3

∫ π

0

∫ t

t− r
c

∂m0

∂w

sin δ(
1 − u

c
cos δ

)3 dδdw. (184)

Using the notation of equations (175), (176), and (177)
we have∫ π

0

sin δ(
1 − u

c
cos δ

)3 dδ =
∫ 1+ u

c

1− u
c

u
λ3 dλ =

− c
2u

[
1
λ2

]1+ u
c

1− u
c

= − c
2u

 1(
1 +

u
c

)2 −
1(

1 − u
c

)2

 =
− c

2u

−4
u
c(

1 − u2

c2

)2 =
2(

1 − u2

c2

)2 = 2γ4.

Now (184) becomes

Ei = −c2γ

∫ t

t− r
c

∂m0

∂w
dw

Ei = −c2γ [m0]t
t− r

c

Ei = −c2γm0 (t) + c2γm0

(
t − r

c

)
c2γm0

(
t − r

c

)
= c2γm0 (t) + Ei

which is equation (181).
The conservation of energy can also be proven using the

continuity equation

∂D
c2∂t
+ ∇ · j = 0. (185)
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Indeed, if we take into account equation (168) we obtain

∂D
c2∂t
+ ∇ · j =

∂D
c2∂t
+ ∇ ·

(
D
υ

c2

)
∂D
c2∂t
+ ∇ · j =

∂D
c2∂t
+
υ

c2∇D +
D
c2∇ · υ

and with equation (22) we have

∂D
c2∂t
+ ∇ · j =

∂D
c2∂t
+
υ

c2∇D +
D
c2∇

2c
r
.

Using equation (86) of the fundamental mathematical the-
orem for f = D, we get

∂D
c2∂t
+ ∇ · j = c

∂D
c2∂r

+
D
c2

2c
r
. (186)

From equation (183) we have

∂D
∂r
= −2D

r
. (187)

Combining equations (186) and (187) we get

∂D
c2∂t
+ ∇ · j = 0.

In order to prove the conservation of momentum, it suf-
fices to prove the corresponding of equation (181), that is, it
is enough to prove equation

γm0

(
t − r

c

)
u = γm0 (t) u +

∫
V

JdV = γm0 (t) u + Pi (188)

where
Pi =

∫
V

JdV (189)

is the momentum due to the selfvariation of the rest mass,
contained within the sphere of centre E and radius r. Com-
bining equations (189) and (168) we obtain

Pi =

∫
V

D
υ

c2 dV. (190)

We first work on the x-axis:

Pix =

∫
V

D
υx

c2 dV.

Using equation (121) we get

Pix =

∫
V

D
cos δ

c
dV

and with equations (183) and (172) we get

Pix = −
∫ π

0

∫ 2π

0

∫ t

t− r
c

∂m0

∂w

cos δ

4πγ3b2
(
1 − u

c
cos δ

)4

b2
(
1 − u

c
cos δ

)
sin δdδdωcdw

Pix = −
∫ π

0

∫ 2π

0

∫ t

t− r
c

∂m0

∂w

cos δ sin δ

4πγ3b2
(
1−u

c
cos δ

)3 dδdωcdw

Pix = −
c

4πγ3

∫ π

0

∫ 2π

0

∫ t

t− r
c

∂m0

∂w

cos δ sin δ(
1 − u

c
cos δ

)3 dδdωdw

Pix = −
c

2γ3

∫ π

0

∫ t

t− r
c

∂m0

∂w

cos δ sin δ(
1 − u

c
cos δ

)3 dδdw. (191)

Using the notation appearing in equations (175), (176),
and (177) we have

∫ π

0

cos δ sin δ(
1 − u

c
cos δ

)3 dδ =
∫ 1+ u

c

1− u
c

c2

u2

1 − λ
λ3 dλ =

c2

u2

∫ 1+ u
c

1− u
c

(
1
λ3 −

1
λ2

)
dλ =

c2

u2

−1
2

[
1
λ2

]1+ u
c

1− u
c

+

[
1
λ

]1+ u
c

1− u
c

 =
c2

u2

−
1
2

(
1 +

u
c

)2
−

(
1 − u

c

)2

(
1 − u2

c2

)2 +

−2
u
c

1 − u2

c2

 =

c2

u2

−
1
2

−4
u
c(

1 − u2

c2

)2 −
2

u
c

1 − u2

c2

 =

2c
u


1(

1 − u2

c2

)2 −
1

1 − u2

c2

 =
2c
u(

1 − u2

c2

)2

(
1 − 1 +

u2

c2

)
=

2u
c(

1 − u2

c2

)2 = 2γ4 u
c

and equation (181) becomes

Pix = −uγ
∫ t

t− r
c

∂m0

∂w
dw = −uγ [m0]t

t− r
c

Pix = uγm0

(
t − r

c

)
− uγm0 (t) . (192)

Similarly for the y-axis we get

Piy = −
∫ π

0

∫ 2π

0

∫ t

t− r
c

∂m0

∂w

sin δ(
1 − u

c
cos δ

)3 υydδdωdw
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and with equation (121)

υy

c
= sin δ cosω

we get

Piy = −
∫ π

0

∫ 2π

0

∫ t

t− r
c

∂m0

∂w

c sin2 δ cosω(
1 − u

c
cos δ

)3 dδdωdw. (193)

The presence of factor cosω causes integral (193) to van-
ish, and we have

Piy = 0. (194)

We can similarly prove that

Piz = 0. (195)

Given that

u =

 u
0
0


equations (192), (194) and (195) can be written as

Pi = uγm0

(
t − r

c

)
− uγm0 (t)

which is equation (188).
From equation (181) we get

Ei =

∫
V

DdV = c2γ
(
m0

(
t − r

c

)
− m0 (t)

)
. (196)

From equation (188) we also have

Pi =

∫
V

JdV = uγ
(
m0

(
t − r

c

)
− m0 (t)

)
. (197)

Combining equations (196) and (197) we get

Pi = Ei
u
c2 (198)

and ∫
V

JdV =
u
c2

∫
V

DdV. (199)

Equations (198) and (199) hold for every volume V , i.e.
for every radius r of the sphere with centre E and radius r of
figure 6. Therefore, they also hold for r = 0, that is, on the
material particle at time w. Hence, the total energy Es and the
total momentum Ps emitted by the material particle at time w
in all directions, are connected through the relation

Ps = Es
u
c2 (200)

where u = u (w). This equation has fundamental consequen-
ces for the material particle, and we shall encounter them as
our study continues.

4.6 The electromagnetic field in the macrocosm. The
electromagnetic potential of the selfvariations

Using the symbols at point A (x, y, z, t) of figure 4, the scalar
potential V and the vector potential A of the selfvariations are
given by the following equations:

V =
q
(
1 − u2

c2

)
4πε0r

(
1 − υ · u

c2

)2 +
q (υ · α)

4πε0c3
(
1 − υ · u

c2

)2 (201)

A = V
υ

c2 . (202)

The intensity ε of the electric field, and the intensity B of
the magnetic field arising from these two potentials, are given
by

ε =

q
(
1 − u2

c2

)
4πε0r2

(
1 − υ · u

c2

)3

(υ
c
− u

c

)
+

+
q

4πε0r
(
1 − υ · u

c2

)2


(υ

c
α
)

1 − υ · u
c2

(υ
c
− u

c

)
− α


(203)

B =
q
(
1 − u2

c2

)
4πε0r2

(
1 − υ · u

c2

)3

u
c
× υ

c
+

+
q

4πε0r
(
1 − υ · u

c2

)


(υ
c
α
)

1 − υ · u
c2

(u
c
× υ

c

)
− υ

c
× α


(204)

where u = u (w) is the velocity, and α = α (w) is the accel-
eration of the material particle. Furthermore, the density of
electric charge at point A is

ρ = − ∂q
∂w

1

4πγ2r2
(
1 − υ · u

c2

)3 (205)

exactly as given by equation (156).
In equations (203) and (204) we recognize the electro-

magnetic field as we know it experimentally, but also as pre-
dicted by the Lienard-Wiechert potentials. However, the elec-
tromagnetic potentials of the selfvariations have a fundamen-
tal characteristic that is not shared by the Lienard-Wiechert
potentials. Namely, they split into two individual couples of
potentials

Vu =

q
(
1 − u2

c2

)
4πε0r

(
1 − υ · u

c2

)2

Au = Vu
υ

c2

(206)
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and

Vα =
q (υ · α)

4πε0c3
(
1 − υ · u

c2

)2

Aα = Vα
υ

c2 .

(207)

The (206) potentials express the electromagnetic field

εu =

q
(
1 − u2

c2

)
4πε0r2

(
1 − υ · u

c2

)3

(υ
c
− u

c

)

Bu =

q
(
1 − u2

c2

)
4πε0r2

(
1 − υ · u

c2

)3

u
c
× υ

c
.

(208)

that accompanies the material particle in its motion. The
(207) potentials express the electromagnetic radiation

εα =
q

4πε0c2r
(
1−υ · u

c2

)2


(υ

c
α
)

1−υ · u
c2

(υ
c
−u

c

)
−α


Bα =

q

4πε0r
(
1−υ · u

c2

)


(υ
c
α
)

1−υ · u
c2

(u
c
×υ

c

)
−υ

c
×α

 .
(209)

The (207) potential of the electromagnetic radiation does
not depend on the distance r, while it vanishes for υ · α = 0.
Furthermore, for each couple of the electromagnetic field we
can easily prove that equation (161) holds

Bu =
υ

c2 × εu (210)

Bα =
υ

c2 × εα. (211)

We remind the reader that the electromagnetic field can be
calculated from the electromagnetic potentials via equations

ε = −∇V − ∂A
∂t

(212)

B = ∇ × A (213)

where ∇V =


∂V
∂x
∂V
∂y
∂V
∂z

, and ∇ × A = curl A.

We shall now prove equation

εα = −∇Vα −
∂Aα
∂t

(214)

and the general equations (203) and (204) can be proven sim-
ilarly. We shall make use of the equations of paragraph 2.7.
From the (207) potentials we obtain

εα = −

 q (υ · α)

4πε0c3
(
1−υ · u

c2

)2

− ∂∂t
 q (υ · α)

4πε0c5
(
1−υ · u

c2

)2 υ


εα = −∇

 q (υ · α)

4πε0c3
(
1−υ · u

c2

)2

 − υ ∂∂t
 q (υ · α)

4πε0c5
(
1−υ · u

c2

)2


− q (υ · α)

4πε0c5
(
1 − υ · u

c2

)2

∂υ

∂t

εα = −
(υ · α)

4πε0

(
1 − υ · u

c2

)2

(
∇q +

∂q
c2∂t
υ

)
−

− q

4πε0

(
1 − υ · u

c2

)2

[
∇ (υ · α) +

∂ (υ · α)
c2∂t

υ

]
−

− 2q (υ · α)

4πε0c3
(
1 − υ · u

c2

)3

[
∇

(υ · u
c2

)
+
∂ (υ · u)

c4∂t
υ

]
−

− q (υ · α)

4πε0c5
(
1 − υ · u

c2

)2

∂υ

∂t
.

(215)

Combining equations (151) and (152) we get

∇q +
∂q

c2∂t
υ = 0. (216)

Combining equations (98) and (99) we get

∇ (υ · α) +
∂ (υ · α)

c2∂t
=

c
r
α − (υ · α)

cr
υ. (217)

Combining equations (96) and (99) we get

∇ (υ · u) +
∂ (υ · u)

c2∂t
υ = −c

r

(
(υ · u)

c2 υ − u
)
. (218)

We substitute equations (216), (217) and (218) into equa-
tion (215) and we obtain
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εα = −
q

4πε0c3
(
1 − υ · u

c2

)2

[
c
r
α − (υ · α)

cr
υ

]
+

+
2q (υ · α)

4πε0c5
(
1 − υ · u

c2

)3

c
r

[
(υ · u)

c2 υ − u
]
−

− q (υ · α)

4πε0c4
(
1 − υ · u

c2

)3

[
(υ · u)

c2 υ − u
]

εα = −
q

4πε0c3
(
1 − υ · u

c2

)2

[
c
r
α − (υ · α)

cr
υ

]
+

+
q (υ · α)

4πε0c4r
(
1 − υ · u

c2

)3

[
(υ · u)

c2 υ − u
]

εα =
q

4πε0c2r
(
1 − υ · u

c2

)2 ·−α + (υ · α)
c2 υ +

(υ · u) (υ · α)

c4
(
1 − υ · u

c2

)υ − (υ · α)

c2
(
1 − υ · u

c2

)u


εα =

q

4πε0c2r
(
1 − υ · u

c2

)2 ·−α + (υ · α)

c2
(
1 − υ · u

c2

) ((
1 − υ · u

c2

)
υ+

(υ · u)
c2 υ − u

)
εα =

q

4πε0c2r
(
1 − υ · u

c2

)2

−α + (υ · α)

c2
(
1 − υ · u

c2

) (υ − u)


which is equation (209) for the electric field εα.

In order to prove equations (208) we also need equations

∇
(
u2

)
+
∂
(
u2

)
c2∂t

υ = 0 (219)

∇r +
∂r

c2∂t
υ =
υ

c
. (220)

We can prove equation (219) as follows

∇
(
u2

)
+
∂
(
u2

)
c2∂t

υ =
∂u2

∂w
∇w + ∂u

2

c2∂w

∂w

∂t
υ

=
∂u2

∂w

(
∇w + ∂w

c2∂t
· υ

)
= 0.

This results immediately from the combination of equa-
tions (11) and (12). Equation (220) results from the combina-
tion of equations (9) and (14).

In order to prove equation (205), we denote

f =
1 − u2

c2

4πε0r2
(
1 − υ · u

c2

)3

(υ
c
− u

c

)
+

+
1

4πε0r
(
1 − υ · u

c2

)2


(
υ
cα

)
1 − υ · u

c2

(υ
c
− u

c

)
− α


(221)

and

g =
1 − u2

c2

4πε0r
(
1 − υ · u

c2

)3

(u
c
× υ

c

)
+

+
1

4πε0r
(
1 − υ · u

c2

)2


υ

c
α

1−υ · u
c2

(u
c
×υ

c

)
−υ

c
×α

 .
(222)

Using the notation of equations (221) and (222), and from
equations (208) and (209) we obtain

ε = εu + εα = q f (223)

B = Bu + Bα = qg. (224)

From Gauss’s law we have

ρ = ε0∇ · ε
and using equation (223) we have

ρ = ε0∇ · (q f )

ρ = ε0q∇ · f+ε0 f · ∇q. (225)

From classical electromagnetism we know that

∇ · f = 0.

Hence, equation (225) becomes

ρ = ε0 f · ∇q.

Using equation (216) we obtain

ρ = −ε0
∂q

c2∂t
υ · f . (226)

From equation (221) we see that

υ · f =
1 − u2

c2

r2
(
1 − υ · u

c2

)3

(
c2

c
− υ · u

c

)
+

+
1

4πε0r
(
1 − υ · u

c2

)2


(υ

c
u
)

1 − υ · u
c2

(
c2

c
− υ · u

c

)
− υ · α
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υ · f =
c
(
1 − u2

c2

)
4πε0r

(
1 − υ · u

c2

)2+

+
1

r
(
1 − υ · u

c2

)
 (υ · α)

1 − υ · u
c2

(
1 − υ · u

c2

)
− υ · α



υ · f =
c
(
1 − u2

c2

)
r2

(
1 − υ · u

c2

)2 + 0. (227)

Combining equations (226) and (227) we get

ρ = −ε0

1 − u2

c2

4πε0

(
1 − υ · u

c2

)2

∂q
∂t

and with equation (151) we finally obtain

ρ = − ∂q
∂w

1 − u2

c2

4πr2
(
1 − υ · u

c2

)3

which is equation (205), since

1
γ2 = 1 − u2

c2 .

Similarly we can prove equation

∇ · B = 0. (228)

From equation (224) we have that

∇ · B = ∇ · (qg)

∇ · B = q∇ · g + g · ∇q. (229)

From classical electromagnetism we know that

∇ · g = 0.

Thus, equation (229) becomes

∇ · B = g · ∇q

and with equation (216) we obtain

∇ · B = − ∂q
c2∂t
υ · g. (230)

From equation (222) it immediately can be seen that

υ · g = 0

and from equation (230) we also obtain

∇ · B = 0.

Combining equations (230) and (224) we have that

∇ · B = − ∂q
c2q∂t

υ · B. (231)

From equation (231) it follows that

∇ · B = 0

if and only if
υ · B = 0.

From equations (210) and (211) we get

B =
υ

c2 × ε. (232)

Therefore, it holds that

υ · B = 0

or equivalently
∇ · B = 0.

Combining equations (226) and (223) we get

ρ = −ε0
∂q

c2q∂t
υ · ε. (233)

From equation (233) it follows that

ρ = 0

if and only if
υ · ε = 0.

From equation (209) for the electric field εα, we can im-
mediately deduce that

υ · εα = 0. (234)

Therefore, the electromagnetic radiation does not con-
tribute to the charge density ρ. On the contrary, for the electric
field εu that accompanies the material particle, it holds that

υ · εu , 0

as follows from equation (208).
From equation (232) we obtain

B =
υ

c2 × ε

B2 =

( υ
c2 × ε

)2

B2 =

( υ
c2 × ε

)
·
( υ
c2 × ε

)
.
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After performing the necessary calculations we finally get

ε2 = c2B2 +

(υ · ε
c

)2
. (235)

We end this paragraph with an interesting observation.
Comparing equations (208) for the electric field εu with equa-
tion (65), we conclude that the vectors t and εu are parallel.
Then, the “trajectory representation theorem” informs us that
the direction of the electric field εu represents the tangential
vector t p of the trajectory Cp of the material particle.

4.7 The energy-momentum tensor of the electro-
magnetic field at macroscopic scales

The equations of this paragraph as well as of the remaining
paragraphs of this paragraph, could be stated differently, so
that they also hold for non-inertial reference frames. How-
ever, such a formulation does not serve the purposes of the
present edition. Therefore, we will formulate the equations
for an inertial reference frame, while simultaneously suggest-
ing the way in which the same equations can also be formu-
lated for a non-inertial reference frame.

From the axiomatic foundation of the theory of selfvaria-
tions, as stated in paragraph 2.2, we have that

dS 2 = 0

or, equivalently,

gikdxidxk = 0 i, k = 0, 1, 2, 3 (236)

where (
x0, x1, x2, x3

)
= (ct, x, y, z) (237)

and gik are the components of the metric tensor. In equation
(236) we use the Einstein summation convention for the in-
dices i and k.

We denote

υi =
dxi

dt
i = 0, 1, 2, 3 (238)

that is, (
υ0, υ1, υ2, υ3

)
=

(
c, υx, υy, υz

)
. (239)

From equation (236) we obtain

gik =
dx1

dt
dxk

dt
= 0

and with equation (238) we get

gikυ
iυk = 0 i, k = 0, 1, 2, 3. (240)

Using this notation, all the equations we will formulate
also hold for non-inertial reference frames if we replace dif-
ferentiation with respect to xk with covariant differentiation
with respect to xk, k=0,1,2,3.

We now denote the four-vector of velocity as

υ =


υ0

υ1

υ2

υ3

 =


c
υx

υy
υz

 (241)

and the four-vector of current density as

j =


j0

j1

j2

j3

 =

ρυ0

ρυ1

ρυ2

ρυ3

 =

ρc
ρυx

ρυy
ρυz

 (242)

as results from equations (156) and (157). Also, according to
equations (201) and (202), the four-vector of the electromag-
netic potential is

A =


A0

A1

A2

A3

 =



V
c
υ0

V
c
υ1

V
c
υ2

V
c
υ3


=



V

V
c
υx

V
c
υy

V
c
υz


. (243)

Subsequently we will symbolize the differentiation with
respect to ∂

∂xk with (, k), k=0,1,2,3.
We now consider the tensor of the electromagnetic field

T µν =
I

4π

(
FµαFνα −

1
4
gµνFαβFαβ

)
(244)

where gµν is the inverse of the matrix gµν, gµkgkν = δµν

δµν =


1 f or µ = ν

0 f or µ , ν
(245)

and Fµν is the Maxwell stress tensor

Fµν = Aν,µ − Aµ,ν. (246)

Using this notation and taking into account that in the sur-
rounding spacetime of the material particle there is an electric
current j, as given by equation (242), the energy-momentum
tensor [19–21] of the electromagnetic field is given by the
tensor

Φµν = T µν − jµAν. (247)

We now write the tensor T µν in the form

T i j =


W cS x cS y cS z

cS x

cS y σαβ
cS z

 (248)
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S = ε0ε × B (249)

where S is the Poynting vector, and ε and B are the intensities
of the electric and magnetic field, respectively. Taking into
account equations (210) and (211), as summarized in equa-
tion

B =
υ

c2 × ε (250)

equation (249) becomes

S = ε0

(
ε2

c2

)
υ − ε0

(υ · ε
c2

)
ε. (251)

The Maxwell stress tensor σαβ is given by relation

σαβ = ε0

(
−εαεβ − c2BαBβ +Wδαβ

)
(252)

where δαβ is given by relation (245), and

W =
1
2
ε0

(
ε2 + c2B2

)
(253)

ε =

 εx

εy
εz

 =
 ε1
ε2
ε3


B =

 Bx

By
Bz

 =
 B1

B2
B3

 .
Combining equations (247) and (248), we arrive at the

energy-momentum tensor

Φi j =


W cS x cS y cS z

cS x σ11 σ12 σ13
cS y σ21 σ22 σ23
cS z σ31 σ32 σ33

−

− ρV
c2


c2 cυx cυy cυz

υxc υ2
x υxυy υxυz

υyc υyυx υ2
y υyυz

υzc υzυx υzυy υ2
z

 .
(254)

We shall now prove that the scalar potential, as given by
equation (201), satisfies the relation

∂V
∂t
+ υ · ∇V = −υ · ε. (255)

From equation (212) we have that

−υ · ε = −υ
[
−∇V − ∂A

∂t

]
−υ · ε = υ

(
∇V +

∂A
∂t

)
.

Using equation (202) we have

−υ · ε = υ
(
∇V +

∂V
c∂t
υ

c
+

V
c
∂

∂t

(υ
c

))
−υ · ε = υ · ∇V +

∂V
∂t
+

V
c
υ · ∂
∂t

(υ
c

)
−υ · ε = υ · ∇V +

∂V
∂t
+

V
2c
∂

∂t

(
υ2

c

)
−υ · ε = υ · ∇V +

∂V
∂t

since υ2 = c2.
We will now prove the conservation of energy and mo-

mentum, as expressed by equation

Φ
i j
, j =
∂Φi j

∂x j = 0. (256)

We begin with an observation which allows us to avoid
complex calculations. Equation (256) holds in classical elec-
tromagnetic theory, i.e. if we ignore the consequences of
the selfvariations and consider the electric charge q constant,
both in the electromagnetic potential, as well as in the inten-
sity of the electromagnetic field. Furthermore, ρ = 0 in equa-
tion (254). Therefore, it is enough to prove that in equation
(256) the factors resulting from the selfvariation of the elec-
tric charge q, also vanish. Certainly, in equation (254) it holds
that ρ , 0, where the charge density ρ is given by equation
(205).

The energy density W of the electromagnetic field as
given by equation (253), as well as the Poynting vector S ,
given by equation (251), are proportional to q2. Therefore, in
our calculations we will have to take into consideration the
rate of change of the factor q2. From equations (151) and
(152) we have

∂q2

∂t
= 2q

∂q
∂t
=

2q

1 − υ · u
c2

∂q
∂w

∇q2 = 2q∇q = − 2q

1 − υ · u
c2

∂q
∂w

υ

c2 .

Thus, we arrive at equations

∂q2

∂t
=

2

1 − υ · u
c2

∂q
q∂w

q2 = −2λq2

∂q2

∂x
= 2λ

υx

c2 q2 ∂q2

∂y
= 2λ

υy

c2 q2

∂q2

∂z
= 2λ

υz

c2 q2

λ = − 1

1 − υ · u
c2

∂q
q∂w
.

(257)
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From equation (255), and for i = 0, we have that

∂Φ0 j

∂x j =
∂Φ00

∂x0 +
∂Φ01

∂x1 +
∂Φ02

∂x2 +
∂Φ03

∂x3 =

∂

c∂t
(W)

∂

∂x
(cS x) +

∂

∂y

(
cS y

)
+
∂

∂z
(cS z)

− 1
c2

[
∂

c∂t

(
ρVc2

)
+
∂

∂x
(ρVcυx)+

∂

∂y

(
ρVcυy

)
+
∂

∂z
(ρVcυz)

]
and using relations (257), which we apply on the quantities
W, S x, S y, S z, which are proportional to q2, we get

∂Φ0 j

∂x j = −2λW + 2λυxS x + 2λυyS y + 2λυzS z

−V
c

[
∂ρ

∂t
+
∂

∂x
(ρυx) +

∂

∂y

(
ρυy

)
+
∂

∂z
(ρυz)

]
−ρ

c

(
∂V
∂t
+ υx
∂V
∂x
+ υy
∂V
∂y
+ υz
∂V
∂z

)
∂Φ0 j

∂x j = 2λ
(
−W + υxS x + υyS y + υzS z

)
−V

c

[
∂ρ

∂t
+ ∇ · (ρυ)

]
− ρ

c

(
∂V
∂t
+ υ · ∇V

)
and from the equation of continuity, as well as equation (254),
we get

∂Φ0 j

∂x j = 2λ
(
−W + υxS x + υyS y + υzS z

)
+
ρ

c
(υ · ε)

and with equations (251) and (252) we get

∂Φ0 j

∂x j = 2λε0

−1
2
ε2 − 1

2
B2 +

υ2
x

c2 ε
2 − υxεx

(υ · ε
c2

)
+
υ2
y

c2 ε
2

−υyεy
(υ · ε

c2

)
+
υ2

z

c2 ε
2 − υzεz

(υ · ε
c2

)]
+ ρ

(υ · ε
c

)

∂Φ0 j

∂x j = −2λε0

−1
2
ε2 − 1

2
c2B2 +

υ2
x + υ

2
y + υ

2
z

c2 ε2

−
− 2λε0

[
− (υ · ε)

(
υxεx + υyεy + υzεz

)]
+ ρ

(υ · ε
c

)
and since it is υ2

x + υ
2
y + υ

2
z = c2 and also

υxεx + υyεy + υzεz = υ · ε,

we see that

∂Φ0 j

∂x j = −2λε0

[
−1

2
ε2 − 1

2
c2B2 −

(υ · ε
c

)2
]
+ ρ

(υ · ε
c

)
.

From equation (235) we obtain

∂Φ0 j

∂x j = −2λε0
1
2

(υ · ε
c

)2
+ ρ

(υ · ε
c

)
∂Φ0 j

∂x j =

(υ · ε
c

) [
ρ − λε0

υ · ε
c

]
= 0

since
ρ − λε0

υ · ε
c
= 0. (258)

Indeed, substituting the factor λ from equations (257), we
have

λε0
υ · ε

c
= − 1

1 − υ · u
c2

∂q
q∂w
ε0
υ · ε

c

λε0
υ · ε

c
= − 1

1 − υ · u
c2

∂q
q∂w
ε0
υ

c
(εu + εα).

From equation (234) we have

υ · εα = 0.

Hence, we see that

λε0
υ · ε

c
= − ε0

1 − υ · u
c2

∂q
q∂w
υ

c
εu

and with equation (208) for the electric field εu we get

λε0
υ · ε

c
= − ε0

1 − υ · u
c2

∂q
q∂w

q
(
1 − u2

c2

)
4πε0r2

(
1 − υ · u

c2

)3

υ

c

(υ
c
− u

c

)

λε0
υ · ε

c
= − ∂q
∂w

1 − u2

c2

4πr2
(
1 − υ · u

c2

)4

(
1 − υ · u

c

)

λε0
υ · ε

c
= − ∂q
∂w

1 − u2

c2

4πr2
(
1 − υ · u

c2

)3 .

Applying equation (205) we get

λε0
υ · ε

c
= ρ

ρ − λε0
υ · ε

c
= 0.

The validity of equation (256) for i = 1, 2, 3 is proven
similarly.

In paragraph 4.5 we proved that the selfvariations are in
agreement with the conservation of energy and momentum.
The proof was done in two different ways: by direct calcu-
lation, and by applying the continuity equation. While it is
of interest that the two different proofs, both lead to the con-
clusion that the selfvariations are compatible with the conser-
vation principles of Physics, the calculation for the energy-
momentum tensor was done for a completely different, and
very substantial, reason. At macrocosmic scales, that is at
large distances from the material particle, where equations
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(151) and (152) hold, the energy-momentum tensor Φi j, as
given by equation (254), indeed contains all the information
about the energy content of spacetime. At microcosmic scales
the equations of the theory of selfvariations highlight addi-
tional parameters about the energy content of spacetime.
These parameters bring the quantum phenomena to the fore-
front.

4.8 The energy-momentum tensor of the generalized
photon at macrocosmic scales

In this paragraph we shall study the energy-momentum tensor
for the generalized photon that balances the selfvariation of
the rest mass of the material particle. Using our notation the
energy-momentum tensor is given by

Φi j =
D
c2


c2 cυx cυy cυz

υxc υ2
x υxυy υxυz

υyc υyυx υ2
y υyυz

υzc υzυx υzυy υ2
z

 (259)

with the energy density D given by equation (167).
We shall prove the conservation of energy and momentum

as given by equation

Φ
i j
, j =
∂Φi j

∂x j = 0. (260)

For i = 0 we have

∂Φ0 j

∂x j =
∂Φ00

∂x0 +
∂Φ01

∂x1 +
∂Φ02

∂x2 +
∂Φ03

∂x3

∂Φ0 j

∂x j =
∂

c∂t

(
Dc2

c2

)
+
∂

∂x

( D
c2 cυx

)
+
∂

∂y

( D
c2 cυy

)
+
∂

∂z

( D
c2 cυz

)
∂Φ0 j

∂x j =
1
c

[
∂D
∂t
+ ∇ · (Dυ)

]
and with equation (168) we get

∂Φ0 j

∂x j = 0.

For i = 1 we have

∂Φi j

∂x j =
∂Φ10

∂x0 +
∂Φ11

∂x1 +
∂Φ12

∂x2 +
∂Φ13

∂x3

∂Φi j

∂x j =
1
c2

[
∂

∂t
(Dυx) +

∂

∂x
(Dυxυx) +

∂

∂y

(
Dυxυy

)]
+

+
1
c2

[
∂

∂z
(Dυxυz)

]
∂Φi j

∂x j =
1
c2

[
υx

(
∂D
∂t
+ ∇ · (Dυ)

)
+ D

(
∂υx

∂t
+ υ · ∇υx

)]

and with equation (168) we get

∂Φi j

∂x j = υx

(
∂D
∂t
+ ∇ · j

)
+

1
c2 D

(
∂υx

∂t
+ υ · ∇υx

)
and with (185) we arrive at

∂Φi j

∂x j =
D
c2

(
∂υx

∂t
+ υ · ∇υx

)
. (261)

From equation (33) we have

∂υx

∂t
+ υ · ∇υx =

∂

∂t
(c cos δ) + υ · ∇ (c cos δ)

∂υx

∂t
+ υ · ∇υx = −c sin δ

(
∂δ

∂t
+ υ · ∇δ

)
and with equation (81)(b) we get

∂υx

∂t
+ υ · ∇υx = 0. (262)

Combining equations (261) and (262), we see that

∂Φi j

∂x j = 0.

We can similarly prove the validity of equation (259) for
i = 2, 3.

By comparing the results of the last two paragraphs we
find substantial differences between the generalized photon
that counterbalances the selfvariation of the electric charge
and the generalized photon that counterbalances the selfvari-
ation of the rest mass of the material particle. Within the
energy-momentum tensor of the first, there appears the elec-
tromagnetic field, as expressed by the first matrix of the sec-
ond part of equation (254). On the contrary, in the expression
of the energy-momentum tensor of equation (259), no cor-
responding matrix appears. Therefore, the generalized pho-
ton counterbalancing the rest mass does not correspond to a
kind of field with the structure and content of the electromag-
netic field. Furthermore, by comparing the second matrix of
equation (254) with the matrix of equation (259), we observe
that in place of the potential V in the first, the factor c2 ap-
pears in the second. These observations hold even if we for-
mulate the equations for a non-inertial reference frame (we
have already suggested a way for formulating the equations
in non-inertial reference frames). By careful observation of
the equations appearing in paragraphs 4.2, 4.3 and 4.4, we re-
alize that the difference in the “behavior” of the couples (ρ, j)
and (D, J) is the result of the different way the electric charge
and the energy transform according to Lorentz-Einstein. It is
exactly this difference that is captured on tensors (254) and
(259). The generalized photon gives us the exact mechanism
of transport of energy and momentum from one material par-
ticle to the other. At the same time, it highlights the simi-
larities and differences between the electromagnetic and the
gravitational interaction.
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We could call the generalized photon that counterbalances
the selfvariation of the rest mass by a different name. In any
case it is obvious when we refer to the electric charge and
when we refer to the rest mass. We shall, therefore, keep the
name “generalized photon” for both cases.

The observation we made at the end of the previous para-
graph regarding the tensor given by equation (254), also holds
for tensor (259). It is valid at macrocosmic scales. At mi-
crocosmic scales, further parameters emerge from the the-
ory of selfvariations, which cannot be given by the energy-
momentum tensor.

4.9 The internality of the universe to the measurement
procedure

The selfvariations hypothesis brings to the foreground the
“internality of the Universe to the measurement procedure”.
Usually, in order to measure a physical quantity, we define
as unit an arbitrary quantity with which we compare other
physical quantities of the same kind. If the defined unit of
measurement depends on the rest mass or the electric charge,
then it is itself subject to the selfvariations. This fact must be
taken into account every time we perform a measurement.

The photon does not have rest mass or electric charge
and is, therefore, not affected by the selfvariations. The ev-
idence we have suggests that the selfvariations take place at
extremely slow rates. Therefore, the first consequence of the
selfvariations we expect to observe is the following: photons
with great lifetimes will be measured to have less energy than
expected.

The extremely slow rate of evolution of the selfvariations,
combined with the “internality of the Universe to the mea-
surement procedure”, do not allow their immediate observa-
tion in the laboratory. In the laboratory we only observe the
consequences of the selfvariations. These consequences are
the potential fields and the quantum phenomena.

5 The quantitative determination of the selfvariations

5.1 Introduction

In the present paragraph we develop the main axis of the
structure of the theory of selfvariations. We determine quan-
titatively the rate of evolution of the selfvariations, and for-
mulate the law of selfvariations.

The law of selfvariations dominates from the microcos-
mic scales up to the observations we conduct billions of light
years away. It reveals the causes of quantum phenomena,
while it contains as physical information the totality of the
cosmological observational data. At the same time, it sets
the path for understanding the interactions between material
particles.

The equations resulting from the law of selfvariations are
of fundamental nature for the science of Physics and the re-
lated Physical Sciences. They contain a large amount of phys-
ical information, which permits the full understanding of

physical reality.

5.2 The law of selfvariations

The conclusions derived in the previous paragraphs refer to
the surrounding spacetime of the material particle. These
conclusions are grounded on the second proposition-axiom
of the theory of selfvariations, which states that

dS 2 = 0. (263)

This proposition is equivalent to the relation ∥υ∥ = c
which holds in every inertial system of reference.

In figure 4 the rest mass m0 and the electric charge q of
the material particle act at point A(x, y, z, t) with the value
they acquired at the moment w = t − r

c . Thus, we have that
m0 = m0(w) and q = q(w). For the relevant calculations and
proofs we have taken into consideration the axioms of the the-
ory of selfvariations, but we have not yet defined the rate of
evolution of their manifestation. In order to study the con-
sequences of the selfvariations we have to determine quanti-
tatively the first proposition-axiom of the theory of selfvaria-
tions.

Equation (263), combined with the first proposition-
axiom of the selfvariations, leads directly to the concept of
the “generalized photon”. The material particle emits gener-
alized photons, and each generalized photon carries energyE
and momentum P, in order to counterbalance the change in
energy and momentum that results from the selfvariations of
the rest mass of the material particle. If the material parti-
cle also carries electric charge, then the generalized photon
carries electric charge as well, in order to counterbalance the
variation of the electric charge of the material particle due to
the selfvariations.

The rate of evolution of the selfvariations is determined
axiomatically with the help of the total energy Es and the total
momentum Ps, which is emitted simultaneously and in all
directions by the material particle, according to the following
proposition-axiom: “The rest mass m0 and the electric charge
q of every material particle vary according to the action of the
operators

∂

∂t
→ − i
ℏ

Es ∇ → i
ℏ

Ps (264)

where Es and Ps denote the total energy and total momentum
of the generalized photons emitted simultaneously by the ma-
terial particle in all directions, and ℏ = h

2π , where h is Planck’s
constant”.

Stated in the form of equations, relations (264) can be
written as

∂m0

∂t
= − i
ℏ

Esm0

∇m0 =
i
ℏ

Psm0

(265)
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and
∂q
∂t
= − i
ℏ

Esq

∇q =
i
ℏ

Psq.

(266)

In equations (265) and (266) we use the same symbol for
the energy Es and the momentum Ps. But these are not the
same physical quantities. In equations (265) the energy Es

and the momentum Ps counterbalance the consequences of
the selfvariations of the rest mass. In equations (266) they
counterbalance the consequences of the selfvariations of the
electric charge. Later, we shall modify equation (266) in or-
der to make this difference transparent.

The emission of generalized photons by the material par-
ticle comes about, initially, as a consequence of the principles
of conservation of energy, momentum and electric charge.
The operators given in relations (264) determine the relation
between the material particle and the generalized photons, in-
dependently from the principles of conservation. Equations
(265) and (266) express in a quantitative manner the law of
selfvariations.

According to the law of selfvariations the rest mass m0
and the electric charge q are functions of time t, as well as of
the position of the material particle

m0 = m0(Xp,Yp,Zp, t)
q = q(Xp,Yp,Zp, t).

(267)

The dependence of the rest mass and the electric charge,
not only on time, but also on the spatial position, is to be ex-
pected. Even if in some inertial frame of reference they only
depend on time, in another inertial frame of reference they
will also depend on the position, according to the Lorentz-
Einstein transformations.

From equation (200), and for u = 0, we take that Ps = 0,
so that the second equation of the couple of equations (265)
gives ∇m0 = 0, whereas the first equation can be written as

dm0

dt
= − i
ℏ

E0m0

ṁ = − i
ℏ

E0m0

E0 = iℏ
ṁ0

m0
. (268)

Here, we denote the differentiation with respect to time by
(•), and we set Es = E0 (the necessity of denoting Es = E0
will become apparent later on).

Furthermore, from the principle of conservation of energy
at the instant of emission of the generalized photons, we ob-
tain that

(m0c2 + E0)• = 0. (269)

Combining equations (268) and (269) we arrive at equa-
tion (

m0c2 + iℏ
ṁ0

m0

)•
= 0. (270)

Equation (270) both contains as physical information, and
justifies, the whole corpus of the current cosmological obser-
vational data, as described in paragraph 7.

5.3 The “percentage function” Φ

The law of selfvariations expresses the total interaction of the
generalized photons, which are emitted simultaneously by the
material particle, with its rest mass and electric charge. How-
ever, in a particular direction υ

c , the material particle emits
generalized photons of energy E and momentum P. There-
fore, we have to derive quantitatively the partial contribution
of a single generalized photon of energy E and momentum P
to the law of selfvariations.

We have to answer the following question:
“Which mathematical equation correlates the energy E

and the momentum P of a single generalized photon emit-
ted towards a particular direction υ

c , to the selfvariations of
the rest mass m0 and the electric charge q of the material par-
ticle?”

Thus, we are seeking the form of equations (265) and
(266) that correspond to a single generalized photon.

Based on the law of selfvariations, the answer to this
physical problem can only be given by the following state-
ment:

“The partial contribution of a single generalized photon to
the selfvariations of the rest mass m0 and the electric charge
q of the material particle is given by any mathematical ex-
pression which agrees with the operators defined in equations
(264). If we sum the contributions of the single general-
ized photons towards all directions, during their simultaneous
emission by the material particle, we have to end up with the
equations given in (265) and (266)”.

Considering this physical problem from its mathematical
aspect, we can choose arbitrarily any mathematical expres-
sion giving the partial contribution of a single generalized
photon according to the law of selfvariations, which satisfies
the operators (264). Then, we can compare the results ob-
tained by our particular choice with physical reality. On the
other hand, we can choose the mathematical expression tak-
ing into account some specific physical criteria beforehand.

A fundamental case for the partial contribution of a gen-
eralized photon according to the law of selfvariations arises
from the following observation: A single generalized pho-
ton counterbalances only a percentage of the total energy,
momentum and electric charge that result from the selfvari-
ations. Therefore, we must examine whether the contribution
of a single generalized photon to the law of selfvariations is
correlated with a percentage Φ of the rest mass m0 and elec-
tric charge q. In this case, the partial contribution to the law
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of selfvariations for a single generalized photon of energy E
and momentum P will be given by the set of equations

∂(Φm0)
∂t

= − i
ℏ

Em0

∇(Φm0) =
i
ℏ

Pm0

(271)

∂(Φq)
∂t

= − i
ℏ

Eq

∇(Φq) =
i
ℏ

Pq.
(272)

Summing in all directions of emission of generalized pho-
tons in the first equation of the set of equations (271), we ob-
tain relations ∑ ∂(Φm0)

∂t
= − i
ℏ

∑
Em0

∂

∂t

(∑
Φm0

)
= − i
ℏ

m0

∑
E

∂

∂t

(
m0

∑
Φ
)
= − i
ℏ

m0

∑
E.

Since it holds that
∑

E = Es and the total percentage of
the contributions is 1, that is

∑
Φ = 1, we get

∂m0

∂t
= − i
ℏ

m0Es.

This is the first equation of the set of equations (265).
Also, from the second equation of the set of equations

(271) we obtain relations∑
∇(Φm0) =

i
ℏ

∑
Pm0

∇
(∑

(Φm0)
)
=

i
ℏ

m0

∑
P

∇
(
m0

∑
Φ
)
=

i
ℏ

m0

∑
P.

Since
∑
Φ = 1 and

∑
P = Ps, we see that

∇m0 =
i
ℏ

m0 Ps.

This is the second of the equations given in (265).
We can perform the same procedure for equations (272)

as well. Therefore, a single generalized photon can contribute
to the selfvariation with a percentage Φ of the rest mass or
the electric charge, and then this contribution is expressed by
equations (271) and (272).

From equations (271) we obtain

Φ
∂m0

∂t
+ m0

∂Φ

∂t
= − i
ℏ

Em0

Φ∇m0 + m0∇Φ =
i
ℏ

Pm0.

From equations (169) we also obtain

Φ
1

1 − υ · u
c2

∂m0

∂w
+ m0

∂Φ

∂t
= − i
ℏ

Em0

−Φ 1

1 − υ · u
c2

∂m0

c∂w
υ

c
+ m0∇Φ =

i
ℏ

Pm0.

Eliminating from the equations the quantity m0, we obtain

1

1 − υ · u
c2

∂m0

m0∂w
+
∂Φ

∂t
= − i
ℏ

E

− 1

1 − υ · u
c2

∂m0

m0c∂w
υ

c
+ ∇Φ = i

ℏ
P.

Finally, we arrive at the set of equations

E = Φ
iℏ

1 − υu
c2

∂m0

m0∂w
+ iℏ
∂Φ

∂t

P = Φ
iℏ

1 − υu
c2

∂m0

m0c∂w
υ

c
− iℏ∇Φ.

(273)

The functionΦ can be any mathematical function, defined
on the material particle and obeying relation∑

Φ = 1 (274)

However, it has to be considered a function depending on
the direction in space, since this is implied by the summation
given in equation (274).

According to the operators defined in (264), the continu-
ous evolution of the selfvariations with the passage of time is
assured by the condition

Es , 0. (275)

This condition is a straightforward consequence of the
first proposition-axiom of the theory of selfvariations.

We are seeking now to derive the relation between the
total momentum Ps and the total energy Es. According to
equation (200) this relation can be written as

Ps = Es
u
c2 . (276)

Here, u denotes the velocity of the material particle at the
moment of the emission of the generalized photons.

This relation has to be reconsidered for the following rea-
son: During the proof of this relation in paragraph 4.3, we
have taken into consideration equation (168), that is equation

J = D
υ

c2 .
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This equation presupposes the validity of the condition

P = E
υ

c2 (277)

for every single generalized photon emitted towards any di-
rection defined by υc , as depicted in figure 6. However, equa-
tions (273) reveal a more complex, and certainly different re-
lation, between the momentum P and the energy E of a single
generalized photon. Therefore, we have to reconsider the va-
lidity of equation (276), since we cannot base its proof on
equation (277). As we shall see immediately, equation (276)
is of general validity, and is compatible with the set of equa-
tions (273).

We consider a material point particle at rest, as depicted
in figure 7. In order for this particle to remain at rest, the total
momentum emitted simultaneously and towards all directions
has to vanish, that is

P
′

s = 0. (278)

If the case were different, the material particle would un-
dergo an arbitrary motion, as a consequence of the princi-
ple of conservation of momentum. From equation (278), and
from the set of transformations (164) for the total energy Es

and the total momentum Ps, we arrive at equation (276).
Thus, we have

Es = γ
(
E
′
s + uP

′
sx

)
Psx = γ

(
P
′
sx +

u
c2 E

′

s

)
Psy = P

′
sy

Psz = P
′
sz.

Since, according to equation (278) it holds that(
P
′

sx, P
′

sy, P
′

sz

)
= (0, 0, 0) ,

we obtain the following relations

Es = γE
′
s

Psx = γE
′
s

u
c2

Psy = 0

Psz = 0.

We also have that u =

 u
0
0

, thus we obtain

Es = γE
′
s

Ps = γE
′
s

u
c2 .

Finally, we have

Es = γE
′
s

Ps = Es
u
c2 .

This is equation (276). Furthermore, we also obtain equa-
tion

Es = γE
′

s = γE0 =
E0√

1 − u2

c2

. (279)

Here, we denote
E
′

s = E0. (280)

A material particle at rest can emit generalized photons
of different energies for different directions. If the gener-
alized photons emitted in opposite directions have opposite
momenta, the material particle will remain at rest. But the
momentum of a generalized photon can also be balanced by
two other generalized photons emitted towards appropriate
directions and with appropriate energies. In reality, there is
an infinite number of combinations of emmision of general-
ized photons, with infinite combinations of energies and di-
rections of emission. In each of these cases where equation
(278) holds, the particle remains at rest. The case of emission
of identical generalized photons in all directions by a material
particle at rest is only one among the infinite number of cases
satisfying equation (278).

Therefore, by rotating the unit vector υ
′

c around the point
particle at rest, as depicted in figure 7, we expect a change in
the energy of the generalized photons. Exactly this is shown
by equations (273), while at the same time they highlight
the factors defining the energy and momentum of each sin-
gle generalized photon.

5.4 The accompanying particle

In the previous paragraph we proved equations (276) and
(279):

Ps = Es
u
c2

Es =
E0√

1 − u2

c2

. (281)

Equations (281) show that the total energy and momen-
tum emitted simultaneously and in all directions by the ma-
terial particle behaves as a particle moving with velocity u,
and accompanying the material particle. There is a definite
correspondence between equations (281) and equations

P = mu

m =
m0√
1 − u2

c2
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which give the momentum P and the mass m of the material
particle.

According to equations (281), the accompanying particle
has rest energyE0. This is the rest energy E

′
s from equation

(280). Therefore, the accompanying particle has a rest mass
given by E0

c2 .
According to the first proposition-axiom of the theory of

selfvariations, the rest mass E0
c2 of the accompanying particle

changes with the passage of time. Hence, we seek the coun-
terparts of equations (265), which define the rate of change of
the rest mass E0

c2 , or equivalently the rest energy E0. As such,
we obtain the corresponding form of equations (265)

∂E0

∂t
=

i
ℏ

mc2E0 =
i
ℏ
γm0c2E0 =

i
ℏ

m0c2√
1−u2

c2

E0

∇E0=−
i
ℏ

muE0=−
i
ℏ
γm0uE0=−

i
ℏ

m0√
1−u2

c2

uE0.

(282)

Equations (265) describe the effect of the generalized
photons on the rest mass of the material particle. In nature,
though, effects are always mutual. Hence, just as the general-
ized photons affect the material particle, the material particle
in turn affects the generalized photons, and these mutual in-
teractions must occur in the framework of the same physical
law. Therefore, from the outset the issue arises of the ex-
istence of a rest mass concealed within the operators (264),
and of a corresponding equation symmetrical to (265). The
quest for the partial contribution of a single generalized pho-
ton to the law of selfvariations revealed the existence of the
rest mass E0

c2 and equations (282). The existence of the rest
mass E0

c2 is predicted by the initial equations we formulated
for the macrocosmic scales, through equation (200).

A large part of the predictions of the theory of selfvari-
ations can be made without the aid of equations (282). For
example, the justification of the observational cosmological
data can be obtained from (270), which is proven indepen-
dently without resorting to equations (282). The same holds
for equations (273). However, the accompanying particle is a
direct consequence of the selfvariations. Indeed, if we com-
bine the second of equations (281) with relation (275) we see
immediately that

E0 , 0. (283)

The rest mass E0
c2 of the accompanying particle cannot

vanish. Therefore, in order to study the consequences of the
selfvariations in their totality, we have to take into account
the existence and the properties of the accompanying parti-
cle. In nature there is always the system “material particle-
accompanying particle”.

Let M0 be the rest mass of the system “material particle-

accompanying particle”, given by

M0 = m0 +
E0

c2 . (284)

We have that

∂M0

∂t
=
∂

∂t

(
m0 +

E0

c2

)
∂M0

∂t
=
∂m0

∂t
+
∂E0

c2∂t
.

Using the first equations of the sets of equations given in
(265) and (266), we obtain relation

∂M0

∂t
= − i
ℏ

Esm0 +
i
ℏ
γm0E0.

And using equation (279) we get

∂M0

∂t
= − i
ℏ
γE0m0 +

i
ℏ
γm0E0

∂M0

∂t
= 0.

(285)

Similarly, using the second equations of the sets of equa-
tions (265) and (282) we have that

∇M0 = 0. (286)

From equations (285) and (286) we conclude that the rest
mass M0 of the system “material particle-accompanying par-
ticle” is a physical quantity not affected by the process of
the selfvariations. Therefore, we can use the rest mass M0
and the rest energy M0c2 as a unit of measurement of mass
and energy, respectively. By this approach we circumvent the
methodological problems stemming from the principle of the
“internality of the universe with respect to the measurement
procedure”, as stated in paragraph 4.9.

The quantitative mathematical description of physical re-
ality depends on our ability to include in our equations the
consequences of the internality of the universe to the mea-
surement procedure. In the macrocosmic scales there is a very
simple way to accomplish this, as described in paragraph 7.
In the microcosmic scale we use as units of measurement of
mass and energy the quantities M0 and M0c2, respectively.

We rewrite now equations (265) in the form

∂

∂t

(
m0

M0

)
= − i
ℏ

Es

(
m0

M0

)
∇

(
m0

M0

)
=

i
ℏ

Ps

(
m0

M0

)
.

(287)

These equations have the exact same physical content as
equations (265). They give the rate of change of the rest mass
m0, since the rest mass M0 is not affected by the selfvaria-
tions, according to equations (285) and (286). At the same
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time, these equations highlight the action of the operators
(264) on the complex number m0

M0
∈ C, since the complex unit

i appears within the expressions of the operators. The same
procedure can be repeated for the case of equations (282) as
well, by introducing the number E0

M0c2 ∈ C, and for the whole
list of equations we have stated.

The accompanying particle has rest mass of magnitude
E0
c2 , which comes from the sum of the contributions of the gen-
eralized photons emitted simultaneously by the material par-
ticle. This is the physical content of equations (281). There-
fore, the mechanism through which the selfvariations occur
plays a fundamental role for the determination of the physical
properties of the accompanying particle, and eventually for
the physical properties of the actual system “material particle-
accompanying particle”.

5.5 The symmetrical law for the electric charge

From the study already conducted in paragraph 4.2 it follows
that the generalized photons counterbalancing the selfvaria-
tion of the electric charge q carry electric charge. Therefore,
the physical object resulting from their aggregation carries
electric charge qi.

The law of the selfvariations for the electric charge q is
given by equations (266)

∂q
∂t
= − i
ℏ

Esq

∇q =
i
ℏ

Psq.
(288)

In these equations we denote with Es and Ps the total en-
ergy and momentum emitted by the material particle simulta-
neously in all directions, and which counterbalances the vari-
ations in energy resulting from the selfvariation of the elec-
tric charge. Although we have kept the same notation, these
quantites are not the same as the ones appearing in equations
(265).

In order to repeat the study conducted for the rest mass
for the case of the electric charge, we have to define the equa-
tions symmetrical to (266). That is, we have to formulate the
counterparts of equations (266) for the electric charge qi.

The law of selfvariations for the electric charge (288) has
to be modified so that it will define the interaction of the elec-
tric charges q and qi, exactly as the law stated in equation
(265) determines the interaction of the rest masses m0 and
E0
c2 . Therefore, the second part of equation (288) has to be ex-
pressed such that the electric charge qi appears. This can only
be accomplished by the introduction of an electric potential V
through equation

Es = Vqi. (289)

With this notation, and taking into account equation

(276), equations (288) can be written as

∂q
∂t
= − i
ℏ

Vqiq

∇q =
i
ℏ

Vqi
u
c2 q.

(290)

Equations (290) and (288) have the same physical con-
tent, if and only if the electric potential V is independent of
the selfvariations.

Starting from equation (290), we can also deduce all
equations inferred in the previous paragraphs for the rest
mass, except now for the electric charge. The proof follows
similar paths, and we shall note repeat it here in full.

Firstly, it can be deduced that the potential V can be writ-
ten in the form

V = γV0 =
V0√

1 − u2

c2

. (291)

The potential V0 stays invariant under the action of the
Lorentz-Einstein transformations, and is independent of the
selfvariations. The corresponding expressions of equations
(268) and (270) are

qiV0 = iℏ
q̇
q(

q +
iℏ
V0

q̇
q

)•
= 0.

(292)

The corresponding equations to the ones given in (273)
for the generalized photon, can be formulated as

E = Φ
iℏ

1 − υ · u
c2

∂q
q∂w
+ iℏ
∂Φ

∂t

P = Φ
iℏ

1 − υ · u
c2

∂q
qc∂w

υ

c
− iℏ∇Φ.

(293)

The corresponding equations to the equations (282), that
is, the corresponding form of the law expressed in (290), are

∂qi

∂t
=

i
ℏ
γV0qqi

∇qi = −
i
ℏ
γV0q

u
c2 qi.

(294)

The corresponding relation to relation (283) is

qi , 0. (295)

The corresponding expression of equation (284), that is,
the electric charge Q of the system “material particle-accom-
panying particle” is

Q = q + qi. (296)
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The corresponding equations to equations (285) and (286)
take the form

∂Q
∂t
= 0

∇Q = 0.
(297)

The electric charge Q is not affected by the selfvariations.

5.6 Fundamental study of the generalized photon

In paragraph 4 we studied the consequences of the selfvaria-
tions in the surrounding spacetime of the material particle. In
that study we considered the validity of equation (168)

J = D
υ

c2

which presupposes the validity of equation

P = E
υ

c2 (298)

for the generalized photon.
We know by now that the energy E and the momentum

P of the generalized photon are not correlated through the
simple relation (298). For the generalized photon that results
from the selfvariation of the rest mass, equations (273) hold

E = Φ
iℏ

1 − υ · u
c2

∂m0

m0∂w
+ iℏ
∂Φ

∂t

P = Φ
iℏ

1 − υ · u
c2

∂m0

m0c∂w
υ

c
− iℏ∇Φ.

(299)

For the generalized photon that results from the selfvaria-
tion of the electric charge, equations (293) hold

E = Φ
iℏ

1 − υ · u
c2

∂q
q∂w
+ iℏ
∂Φ

∂t

P = Φ
iℏ

1 − υ · u
c2

∂q
qc∂w

υ

c
− iℏ∇Φ.

(300)

Equations (299) and (300) lead to a completely different
relation from (298), between the energy E and the momentum
P of a generalized photon.

We will study the generalized photon, as given in equa-
tions (299). The study of equations (300) is exactly the same.

The percentage-function Φ depends on the direction υ
c

and can, therefore, be written as Φ = Φ (δ, ω), and can also
depend on the moment, w = t − r

c , of emission of the general-
ized photon, so that

Φ = Φ (w, δ, ω) . (301)

From the first of equations (299) we have

E = Φ
iℏ

1 − υ · u
c2

∂m0

m0∂w
+ iℏ
∂Φ

∂t

and with equation (301), we get

E = Φ
iℏ

1 − υ · u
c2

∂m0

m0∂w
+ iℏ

(
∂Φ

∂w

∂w

∂t
+
∂Φ

∂δ

∂δ

∂t
+
∂Φ

∂ω

∂ω

∂t

)

and with equations (11), (41) and (42) we get

E = Φ
iℏ

1 − υ · u
c2

∂m0

m0∂w
+

+
iℏ

1 − υ · u
c2

(
∂Φ

∂w
− u · β

r
∂Φ

∂δ
− u · γ

r sin δ
∂Φ

∂ω

)
.

(302)

From the second of equations (299), we have

P = Φ
iℏ

1 − υ · u
c2

∂m0

m0c∂w
υ

c
− iℏ∇Φ

and with equation (301) we get

P = Φ
iℏ

1 − υ · u
c2

∂m0

m0c∂w
υ

c
− iℏ

(
∂Φ

∂w
∇w + ∂Φ

∂δ
∇δ + ∂Φ

∂ω
∇ω

)

and with equations (12), (51) and (52), we get

P = Φ
iℏ

1 − υ · u
c2

∂m0

m0c∂w
υ

c
+

+
iℏ

1 − υ · u
c2

∂Φ

∂w

υ

c2 −
iℏ
r
∂Φ

∂δ

 u · β
1 − υ · u

c2

υ

c2 + β

−
− iℏ

r sin δ
∂Φ

∂ω

 u · γ
1 − υ · u

c2

υ

c2 + γ

 .
(303)

We now denote

Ei = Φ
iℏ

1 − υ · u
c2

∂m0

m0∂w

Pi = Φ
iℏ

1 − υ · u
c2

∂m0

m0c∂w
υ

c

(304)
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EΦ = iℏ
∂Φ

∂t
=

iℏ

1 − υ · u
c2

∂Φ

∂w
− iℏu · β

r
(
1 − υ · u

c2

) ∂Φ
∂δ
−

− iℏu · γ

r
(
1 − υ · u

c2

)
sin δ

∂Φ

∂ω

PΦ = −iℏ∇Φ = iℏ

1 − υ · u
c2

∂Φ

∂w

υ

c2−

− iℏ
r
∂Φ

∂δ

 u · β
1 − υ · u

c2

υ

c2 + β

−
− iℏ

r sin δ
∂Φ

∂ω

 u · γ
1 − υ · u

c2

υ

c2 + γ

 .

(305)

With this notation, equations (302) and (303) can be writ-
ten as

E = Ei + EΦ
P = Pi + PΦ.

(306)

Combining equations (302) and (303), we obtain relation

P = E
υ

c2 −
iℏ
r
∂Φ

∂δ
β − iℏ

r sin δ
∂Φ

∂ω
γ (307)

relating the energy E and momentum P of the generalized
photon.

The energy-momentum pair (EΦ, PΦ) can be decomposed
into three partial pairs

Ew =
iℏ

1 − υ · u
c2

∂Φ

∂w

Pw =
iℏ

1 − υ · u
c2

∂Φ

∂w

υ

c2

(308)

Eδ = −
iℏu · β

r
(
1 − υ · u

c2

) ∂Φ
∂δ

Pδ = −
iℏ
r
∂Φ

∂δ

 u · β
1 − υ · u

c2

υ

c2 + β


(309)

Eω = −
iℏu · γ

r
(
1 − υ · u

c2

)
sin δ

∂Φ

∂ω

Pω = −
iℏ

r sin δ
∂Φ

∂ω

 u · γ
1 − υ · u

c2

υ

c2 + γ


(310)

EΦ = Ew + Eδ + Eω
PΦ = Pw + Pδ + Pω.

(311)

It is easy to prove that, in the case of constant-speed mo-

tion with velocity u =

 u
0
0

, each of the energy-momentum

pairs (Ei, Pi), (Ew, Pw), (Eδ, Pδ), (Eω, Pω) transforms auto-
nomously, independently of the rest, according to the
Lorentz-Einstein transformations. Furthermore, an invariant
amount of energy corresponds to each pair.

We shall calculate the four invariant amounts of energy. In
the same way, we can prove the independent Lorentz-Einstein
transformations of the four energy-momentum pairs.

From equation (305) we have

E2
i − c2 P2

i = E2
i − c2E2

i

( υ
c2

)2

and since υ2 = c2, we get

E2
i − c2 P2

i = 0. (312)

From equation (308) we have

E2
w − c2 P2

w = E2
w − c2E2

w

( υ
c2

)2

and from υ2 = c2, we get

E2
w − c2 P2

w = 0. (313)

From equation (309) we have

E2
δ − c2 P2

δ = −
ℏ2 (u · β)2

r2
(
1 − υ · u

c2

)2

(
∂Φ

∂δ

)2

+

+
c2ℏ2

r2

(
∂Φ

∂δ

)2
 u · β
1 − υ · u

c2

υ

c2 + β


2

and since it is u · β = 0, υ2 = c2,β2 = 1, we get

E2
δ − c2 P2

δ = −
ℏ2 (u · β)2

r2
(
1 − υ · u

c2

)2

(
∂Φ

∂δ

)2

+

+
ℏ2 (u · β)2

r2
(
1 − υ · u

c2

)2

(
∂Φ

∂δ

)2

+

(
cℏ
r
∂Φ

∂δ

)2

E2
δ − c2 P2

δ =

(
cℏ
r
∂Φ

∂δ

)2

. (314)

Similarly, from equations (310) we get

E2
ω − c2 P2

ω =

(
cℏ

r sin δ
∂Φ

∂ω

)2

. (315)
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From the transformations (127) we get

cℏ
r′
∂Φ

∂δ′
=

cℏ

γr
(
1 − u

c
cos δ

) ∂Φ
∂δ
γ
(
1 − u

c
cos δ

)

cℏ
r′
∂Φ

∂δ′
=

cℏ
γr
∂Φ

∂δ
. (316)

Therefore, the second part of equation (314) remains in-
variant according to the Lorentz-Einstein transformations.

From transformations (124) and (127) we have

cℏ
r′ sin δ′

∂Φ

∂ω′
=

cℏ

γr
(
1 − u

c
cos δ

) sin δ

γ
(
1 − u

c
cos δ

)
∂Φ

∂ω

cℏ
r′ sin δ′

∂Φ

∂ω′
=

cℏ
r sin δ

∂Φ

∂ω
. (317)

Therefore, the second part of equation (315) remains in-
variant under the Lorentz-Einstein transformations.

From equation (307) we can calculate the total invariant
energy of the generalized photon

E2 − c2 P2 = E2 − c2
(
E
υ

c2 −
iℏ
r
∂Φ

∂δ
β − iℏ

r sin δ
∂Φ

∂ω
γ

)2

and taking into consideration that the set of vectors υc ,β,γ
constitute an orthonormal basis, we get

E2 − c2 P2 = E2 − E2 +

(
cℏ
r
∂Φ

∂δ

)2

+

(
cℏ

r sin δ
∂Φ

∂ω

)2

E2 − c2 P2 =

(
cℏ
r
∂Φ

∂δ

)2

+

(
cℏ

r sin δ
∂Φ

∂ω

)2

. (318)

According to equations (316) and (317), the second part
of equation (318) remains invariant under the Lorentz-
Einstein transformations.

We will now prove that:
“In the case of constant-speed motion with velocity

u =

 u
0
0

 ,
pairs (Ei, Pi) , (Ew, Pw) correspond to a flow of energy and
momentum into the surrounding spacetime. On the contrary,
pairs (Eδ, Pδ) and (Eω, Pω) correspond to a redistribution of
energy and momentum in the surrounding spacetime”.

From equation (109) together with the second of equa-
tions (308), we get

Pi · R =
iℏ

1 − υ · u
c2

∂m0

m0∂w

υ

c2 r
(υ

c
− u

c

)

Pi · R =
iℏ

1 − υ · u
c2

∂m0

m0c∂w
r
(
1 − υ · u

c2

)

Pi · R = iℏr
∂m0

m0c∂w

Pi ·
R
r
= iℏ

∂m0

m0c∂w
. (319)

Similarly, from equation (109) together with the second
of equations (308) we get

Pw ·
R
r
= iℏ
∂Φ

c∂w
. (320)

We conclude that both the momentum Pi, as well as the
momentum Pw, have a component along the direction of vec-
tor R, as depicted in Figure 6.

Combining equation (109) with the second of equations
(309), we get

Pδ · R = −
iℏ
r
∂Φ

∂δ

 u · β
1 − υ · u

c2

υ

c2 + β

 r
(υ

c
− u

c

)

and since υ2 = c2 and υ · β = 0, we obtain

Pδ · R = −iℏ
∂Φ

∂δ

 u · β
1 − υ · u

c2

υ

c2

(υ
c
− u

c

)
− u · β

c


Pδ · R = −iℏ

∂Φ

∂δ


u
c
β

1 − υ · u
c2

(
1 − υ · u

c2

)
− u · β

c


Pδ · R = 0. (321)

Similarly, from equation (109) and the second of equa-
tions (310) we get

Pω · R = 0. (322)

Both the momentum Pδ, and the momentum Pω, are ver-
tical to the vector R of Figure 6.

We will now prove that:
“The generalized photon carries intrinsic angular momen-

tum S, independent of the distance r. The component Su of
the intrinsic angular momentum S along the direction of the
motion of the material particle does not depend upon the ve-
locity u of the motion”.
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In Figure 4, the angular momentum S of the generalized
photon with respect to the (constant) point of emission
E

(
xp (w) , yp (w) , zp (w) , w

)
is

S = r × P

and with equation (6) written in the form

r =
r
c
υ

we get

S =
r
c
υ × P =

r
c
υ × (Pi + Pw + Pδ + Pω) . (323)

Denoting
Si =

r
c
υ × Pi

Sw =
r
c
υ × Pw

Sδ =
r
c
υ × Pδ

Sω =
r
c
υ × Pω

(324)

equation (323) can be written as

S = Si + Sw + Sδ + Sω. (325)

From the first of equations (324) we have

Si =
r
c
υ × Pi

and with the second of equations (304) we get

Si = 0. (326)

From the second of equations (324) we have

Sw =
r
c
υ × Pw

and with the second of equations (308) we get

Sw = 0. (327)

From the third of equations (324) we have

Sδ =
r
c
υ × Pδ

and with the second of equations (309) we have

Sδ = −iℏ
∂Φ

∂δ

υ

c
×

 u · β
1 − υ · u

c2

υ

c2 + β


Sδ = −iℏ

∂Φ

∂δ

υ

c
× β

and since it is υc × β = γ, we get

Sδ = −iℏ
∂Φ

∂δ
γ. (328)

From the fourth of equations (324) we have

Sω =
r
c
υ × Pω

and with the second of equations (310) we get

Sω = −
iℏ

sin δ
∂Φ

∂ω

υ

c
×

 u · γ
1 − υ · u

c2

υ

c2 + γ


and since υc × γ = −β, we get

Sω =
iℏ

sin δ
∂Φ

∂ω
β. (329)

Equation (325) can now be written as

S =
iℏ

sin δ
∂Φ

∂ω
β − iℏ

∂Φ

∂δ
γ. (330)

We now calculate the component Su of the angular mo-
mentum S along the direction of motion of the material parti-
cle.

For u , 0 we have

Su =
u
∥u∥S

and with equation (330) we get

Su =
u
∥u∥

(
iℏ

sin δ
∂Φ

∂ω
β − iℏ

∂Φ

∂δ
γ

)
. (331)

For constant-speed motion with velocity u =

 u
0
0

, and

taking into consideration equations (35) and (36), we obtain
from equation (331)

S u =
iℏ

sin δ
∂Φ

∂ω
(− sin δ)

S u = −iℏ
∂Φ

∂ω
. (332)

In the case of constant-speed motion with velocity u =

 u
0
0

,
from the transformations of equations (124) ω′ = ω, we con-
clude that the angular momentum S u does not depend on the
inertial reference frame. Furthermore, it does not depend on
the angle δ, i.e. the angle formed between the direction of
emission υ

c of the generalized photon and the velocity u of
the material particle in Figure 6.

We will now study the changes in energy and momentum
that take place during the motion of the generalized photon
with velocity υ, after its emission by the material particle.
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From the fundamental mathematical theorem, specifically
from equation (86) for f = Ei, f = Ew, f = Eδ and f = Eω,
we have

∂Ei

∂t
+ υ · ∇Ei = c

∂Ei

∂r
∂Ew
∂t
+ υ · ∇Ew = c

∂Ew
∂r

∂Eδ
∂t
+ υ · ∇Eδ = c

∂Eδ
∂r

∂Eω
∂t
+ υ · ∇Eω = c

∂Eω
∂r

and with the first of equations (304), (308), (309) and (310),
we get

∂Ei

∂t
+ υ · ∇Ei = 0

∂Ew
∂t
+ υ · ∇Ew = 0

∂Eδ
∂t
+ υ · ∇Eδ = −

c
r

Eδ

∂Eω
∂t
+ υ · ∇Eω = −

c
r

Eω.

(333)

Similarly, after combining equations (87), (88), (89) with
the second parts of equations (304), (308), (309) and (310),
we get

∂Pi

∂t
+

(
grad Pi

)
υ = 0

∂Pw
∂t
+

(
grad Pw

)
υ = 0

∂Pδ
∂t
+

(
grad Pδ

)
υ = −c

r
Pδ

∂Pω
∂t
+

(
grad Pω

)
υ = −c

r
Pω.

(334)

From the equations of this paragraph we conclude that
there are physical quantities that do not depend on the dis-
tance r. Such physical quantities are the energy-momentum
pairs (Ei, Pi) and (Ew, Pw), as well as the angular momenta
S and S u. These quantities are defined for r = 0, that is, on
the material particle. On the contrary, the energy-momentum
pairs (Eδ, Pδ) and (Eω, Pω), as well as the rest energies cℏ

r
∂Φ
∂δ

and cℏ
r sin δ

∂Φ
∂ω

, are defined only in the surrounding spacetime of
the material particle, due to the appearance of the factor 1

r .
Furthermore, they vanish for r → +∞, while they attain large
values for small values of r, i.e. close to the material particle.

5.7 The simplest case of a generalized photon

The simplest generalized photon arises in the case where the
percentage Φ is constant:

∂Φ

∂t
= 0

∇Φ = 0.
(335)

In this case, equations (299) and (300) are rewritten, re-
spectively

E = Φ
iℏ

1 − υ · u
c2

∂m0

m0∂w

P = Φ
iℏ

1 − υ · u
c2

∂m0

m0c∂w
υ

c

(336)

E = Φ
iℏ

1 − υ · u
c2

∂q
q∂w

P = Φ
iℏ

1 − υ · u
c2

∂q
qc∂w

υ

c
.

(337)

From the second of equations (335) we obtain

∇Φ = 0

and from equation (301) we get

∂Φ

∂w
∇w + ∂Φ

∂δ
∇δ + ∂Φ

∂ω
∇ω = 0

and from the linear independence of the vectors ∇w,∇δ,∇ω
(paragraph 2.5) we get

∂Φ

∂w
= 0

∂Φ

∂δ
= 0

∂Φ

∂ω
= 0.

(338)

Replacing equations (338) into the equations of the last
paragraph causes the energy-momentum pairs

(Ew, Pw) , (Eδ, Pδ) , (Eω, Pω)

to become zero, the angular momentum S becomes zero, and
so do the rest energies cℏ

r
∂Φ
∂δ

and cℏ
r sin δ

∂Φ
∂ω

. The energy-mo-
mentum pair (Ei, Pi), as given by equations (336), does not
become zero. Therefore, the generalized photon is defined
for r = 0, i.e. on the material particle.

We shall now prove that the interaction of the material
particle with every generalized photon is instantaneous dur-
ing the moment w of the emission of the generalized photon.
More specifically, we shall prove that the generalized photon
keeps its energy E and moment P constant, after its emission
by the material particle.

From equation (86) of the fundamental mathematical
theorem, and for f = E, we have

∂E
∂t
+ υ · ∇E = c

∂E
∂r
. (339)

From the first of equations (336), and since it holds that
m0 = m0 (w), we get

∂E
∂r
= 0 (340)
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and from equation (339) we see that

∂E
∂t
+ υ · ∇E = 0. (341)

From equation (341) we conclude that the energy E of the
generalized photon remains constant during its motion with
velocity υ, after its emission by the material particle.

Combining equations (336) we obtain relation

P = E
υ

c2 (342)

between the momentum P and energy E of the generalized
photon.

From equation (87) for f = E
c , we obtain

∂

∂t

(
E
υ

c2

)
+

(
grad

(
E
υ

c2

))
υ =
υ

c
∂E
∂r

and with equations (340) and (342) we get

∂P
∂t
+

(
grad P

)
υ = 0. (343)

From equation (343) we conclude that the momentum P
of the generalized photon remains constant during its motion
with velocity υ, after its emission by the material particle.

According to equations (341) and (343), the generalized
photon does not exchange energy and momentum with the
material particle after its emission. The interaction between
the material particle and every generalized photon takes place
instantaneously at the moment of emission of the generalized
photon. Furthermore, according to equation (342), there is a
continuous flow of generalized photons moving with velocity
υ, from the material particle into the surrounding spacetime,
on the condition, of course, that the percentage Φ remains
constant.

We can undertake a similar study for the generalized pho-
ton resulting from the selfvariation of the electric charge. It
suffices to replace equations (336) with equations (337) in the
above study.

5.8 The cosmological data “condensed” into a single
equation

In the inertial frame of reference S ′, where the material par-
ticle is at rest, the first of equations (350) can be written as

E′ = Φiℏ
∂m0

m0∂w′
+ iℏ
∂Φ

∂t′
. (344)

Summing in all directions of emission of generalized pho-
tons, and taking into consideration that

∑
E′ = E0 and

∑
Φ =

1, from equation (344) we obtain

E0 = iℏ
∂m0

m0∂w′
. (345)

During the emission of the generalized photons by the
material particle it is r′ = 0, and equation (3) can be writ-
ten as w′ = t′, therefore we get ∂m0

∂w′ =
dm0
dw′ =

dm0
dt′ = ṁ0, and

equation (345) can be written as

E0 = iℏ
ṁ0

m0
(346)

which is equation (268).
In the inertial reference frame S ′, where the material par-

ticle is at rest, and for r′ = 0, hence for w′ = t′, the first of
equations (282) can be written as

Ė0 =
i
ℏ

m0c2E0. (347)

Eliminating the rest energy E0, we get(
iℏ

ṁ0

m0

)•
= i
ℏ
m0c2iℏ

ṁ0

m0(
iℏ

ṁ0

m0

)•
= −ṁ0c2

(
iℏ

ṁ0

m0
+ m0c2

)•
= 0 (348)

which is equation (270).
In paragraph 5.2 we derived equation (270) by combining

equation (346) with the principle of conservation of energy.
In the derivation we conducted in this paragraph we combined
equation (346) with the symmetric law (282). Furthermore,
from the derivation procedure we have followed, it becomes
obvious that the percentage-function Φ does not play any role
in equation (348), i.e. in equation (270).

If we borrow equation (394), E0 = iℏH, from paragraph
7, and combine it with equation (346), we obtain ṁ0

m0
= H ∼

2 × 10−18s−1. In the cosmological data we observe the conse-
quences of the real increase of the rest masses of the material
particles, which takes place at an extremely slow rate.

In paragraph 7 the differential equation (348) is solved.
As we shall see, this equation contains as information the to-
tality of the cosmological data. The cosmological data are
“condensed” within a single equation.

5.9 The generalized particle

From the previous study it becomes evident that the selfvari-
ations correlate every material particle with the surrounding
spacetime. Fundamental physical characteristics of the ma-
terial particle, like the rest mass and the electric charge, are
correlated with spacetime. Furthermore, each material parti-
cle contributes to the energy content of spacetime in a strictly
defined manner.

The relation between the material particle and the sur-
rounding spacetime is determined by two fundamental physi-
cal objects predicted by the theory of selfvariations: the gen-
eralized photon and the accompanying particle. These two
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physical objects are related to each other since the accompa-
nying particle results from the aggregation of the generalized
photons. All the equations we have stated in the preceding
paragraphs and preceding paragraphs, concern the relation of
the material particle either with the generalized photon, or
with the accompanying particle.

In the surrounding spacetime of the material particle, and
for each generalized photon, we know exactly what is ex-
pressed by equation (263), dS 2 = 0: the generalized photon
moves with velocity υ of magnitude ∥υ∥ = c in every inertial
frame of reference. According to the second statement-axiom
we have posed, equation dS 2 = 0 also holds for the accompa-
nying particle, which, as an aggregation of generalized pho-
tons, is related with the propagation of the selfvariations in
the four-dimensional spacetime. The question then arises, as
to how equation dS 2 = 0 is expressed in the part of spacetime
where the generalized photons aggregate.

The accompanying particle has rest energy E0 and, there-
fore, rest mass E0

c2 , 0. The combination dS 2 = 0 and
E0
c2 , 0 renders the accompanying particle an intermediate
state between “matter” and the “photon”. It is a completely
new physical object predicted by the theory of selfvariations,
which introduces us into an unknown territory of physical re-
ality. The first question we have to answer is how do the
relations dS 2 = 0 and E0

c2 , 0 become compatible with each
other.

About the intermediate state of matter we can give the
following interpretation:

The aggregation of the generalized photons implies the
co-incidence of different points (dS 2 = 0) in the part of space-
time where the aggregation takes place. This interpretation is
in agreement with the strict application of the axioms of the
theory of selfvariations.

At this point we are required to make two observations
about the relation of the theory of selfvariations with the the-
ory of relativity. These observations have to do with the rela-
tion between the energy content and the properties of space-
time.

For the derivation of the Lorentz-Einstein transformations
we consider two observers who exchange signals moving
with velocity c. If we consider the exchange of signals mov-
ing with a different velocity, for example acoustic signals,
we end up with different transformations. Judging by the re-
sult, both on theoretical, and on experimental grounds, we
know that the transformations derived by the first method are
correct, whereas the transformations derived by the second
method are wrong.

The theory of selfvariations predicts the generalized pho-
ton in the surrounding spacetime of the material particles.
There is a continuous exchange of generalized photons be-
tween the material particles, in other words, a continuous
exchange of signals moving with velocity c. The exchange
of signals with velocity c is not simply a hypothesis we can

make for the derivation of the Lorentz-Einstein transforma-
tions, but a continuous physical reality. Therefore, the theory
of selfvariations strengthens the theoretical background of the
special theory of relativity.

The general theory of relativity correlates the properties
of spacetime with its energy content. The theory of self-
variations gives us the detailed contribution of each mate-
rial particle to the energy content of spacetime. In the part
of spacetime where the aggregation of generalized photons
takes place, the material particle interacts with the accom-
panying particle. This interaction concerns a strictly distinct
subset of the total energy content of spacetime. While we as-
sume a unified spacetime, whose properties are defined by its
total energy content, each particle interacts and is correlated
with only a subset of the energy content of spacetime. In re-
ality, every material particle occupies its “own” spacetime.
For every material particle the properties of its “own” space-
time are determined by the generalized photons with which
it interacts. Therefore, the co-incidence of different points of
spacetime concerns the accompanying particle for every ma-
terial particle, and does not constitute a general property of
spacetime.

The law of selfvariations has been stated based on the ac-
companying particle. Relation (264), in combination with the
symmetric laws (282) and (290), expresses the continuous in-
teraction of the rest mass m0 and the electric charge q of the
material particle with the energy E0 of the accompanying par-
ticle. Therefore, we cannot refer just to the material particle,
or just to the accompanying particle. What exists in nature is
the system of the two particles, which behaves as a “general-
ized particle” that occupies a part of spacetime.

The co-incidence of different points in the part of space-
time occupied by the generalized particle alters the trajecto-
ries and velocities of the generalized photons compared to
the strictly defined trajectories and velocities we studied in
the preceding paragraphs. In the case of co-incidence of all
points belonging to this part of spacetime, the concepts of
trajectory and velocity of the generalized photons loose their
meaning. The trajectory and velocity of the material particle
will suffer the same consequences, if the material particle be-
longs to the part of spacetime where the aggregation of the
generalized photons takes place.

In Figures 4 and 6 imagine that, for the material particle,
the points of spacetime within the interior of a sphere of cen-
tre E and radius r coincide. The physical object in the interior
of the sphere constitutes a generalized particle with a specific
rest mass. In every point of the spherical surface, the gener-
alized photon moves with velocity υ of magnitude ∥υ∥ = c.
None of the axioms of special relativity and of the theory of
selfvariations are violated. Furthermore, the co-incidence of
different points of spacetime within the interior of the sphere,
concerns the material particle, and does not constitute a gen-
eral property of spacetime.

The investigation of the internal structure and physical
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properties of the generalized particle is the central issue for
the theory of selfvariations. We have to answer specific ques-
tions regarding the generalized particle, and develop specific
methods for the study of its physical properties.

A fundamental question concerns the distribution of the
total rest mass M0 of the generalized particle, between the
material particle (m0) and the accompanying particle

(
E0
c2

)
. Of

equal importance is the size of the portion of spacetime occu-
pied by the generalized particle.

A basic method for the study of the generalized particle
is the elimination of the velocity, which also represents the
trajectory, from the equations of the theory of selfvariations.
It is not the only method, though. In the following paragraph
we present the basic study for the generalized particle.

6 The quantum phenomena as a consequence of the
selfvariations

6.1 Introduction

The intermediate state between “matter” and “photon” pre-
dicted by the theory of selfvariations, is responsible for the
quantum phenomena. The study of the generalized photon
leads to the Schrödinger and the Klein-Gordon equations, as
well as to the wave equation of Maxwell’s theory of electro-
magnetism.

The elimination of the kinematic characteristics of the
material particle from the equations of the selfvariations,
emerges as the fundamental method for the study of the gen-
eralized particle and, eventually, of quantum phenomena.
This is what is actually done by all the theories developed
during the last century in order to interpret quantum phenom-
ena.

The basic method for the study of the generalized particle
is complemented by the percentage-function Φ. The Φ func-
tion has to do with the generalized photon and, by extension,
with the generalized particle. Furthermore, it is related with
the interactions of the material particles. Function Φ inex-
tricably links the quantum phenomena with the interactions
of the material particles. The investigation of its properties
furthers the theory of selfvariations beyond the bounds of the
present edition.

6.2 The distribution functions of the rest mass

According to equation (284)

M0 = m0 +
E0

c2 (349)

the rest mass M0 of the generalized particle is equal to the
sum of the rest masses of the material particle (m0) and the
accompanying particle

(
E0
c2

)
. One way of studying the inner

structure of the generalized particle is to study how the rest
mass M0 is distributed to each of the two particles. Knowing
the sum of the rest masses m0 and E0

c2 , it suffices to calculate

one of the “distribution functions”, that is, one of the complex
numbers X = m0

M0
, Ψ = E0

M0c2 , Z = m0c2

E0
.

But it is

X + Ψ =
m0c2

M0c2 +
E0

M0c2 =
m0c2 + E0

M0c2

and with equation (349) we get X + Ψ = 1. Therefore, it
suffices to study either function Ψ

Ψ =
E0

M0c2 (350)

or function Z

Z =
m0c2

E0
(351)

in order to determine the distribution of the rest mass M0 into
m0 and E0

c2 .
Initially, we will study the effects of the selfvariations on

the function Z. From equation (351) we have

∂Z
∂t
=

1
E0

∂m0c2

∂t
− m0c2

E2
0

∂E0

∂t

and with the firsts of equations (265) and (282) we get

∂Z
∂t
= − 1

E0

i
ℏ

Esm0c2 − m0c2

E2
0

i
ℏ
γm0c2E0

and with equation (279) we get

∂Z
∂t
= − 1

E0

i
ℏ
γE0m0c2 − m0c2

E2
0

i
ℏ
γm0c2E0

∂Z
∂t
= − i
ℏ

m0c2

E0
γ
(
m0c2 + E0

)
and with equation (349) we get

∂Z
∂t
= − i
ℏ

m0c2

E0
γM0c2

and with equation (351)

∂Z
∂t
= − i
ℏ
γM0c2Z. (352)

From equation (351) we obtain

∇Z =
1

E0
∇m0c2 − m0c2

E2
0

∇E0

and with the second of equations (265) and also (266) we get

∇Z =
1

E0

i
ℏ

Psm0c2 +
m0c2

E2
0

i
ℏ
γm0uE0

and with equation (276) we have

∇Z =
1

E0

i
ℏ

Es
u
c2 m0c2 +

m0c2

E2
0

i
ℏ
γm0uE0.
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Using equation (279) we get

∇Z =
1

E0

i
ℏ
γE0

u
c2 m0c2 +

m0c2

E2
0

i
ℏ
γm0uE0

∇Z =
i
ℏ

m0c2

E2
0

γ
(E0

c2 + m0

)
u.

Through equation (349) we get

∇Z =
i
ℏ

m0c2

E2
0

γM0u

and with equation (351) we get

∇Z =
i
ℏ
γM0uZ. (353)

The differential equations (352) and (353) offer the advan-
tage that the rest mass M0 that appears on their second part,
does not depend on the selfvariations. On the other hand,
they also have a disadvantage. We do not know the additional
conditions we have to introduce for the rest mass M0 in order
to solve the system of differential equations (352) and (353).
These additional conditions are related to a more general in-
vestigation of the equations of the theory of selfvariations,
which is not included in the present edition.

We shall now study how the selfvariations affect function
Ψ. From equation (350) we have

∂Ψ

∂t
=
∂

∂t

(
E0

M0c2

)
and with equation (285) we obtain

∂Ψ

∂t
=

1
M0c2

∂E0

∂t

and with the first of equations (282) we get

∂Ψ

∂t
=

1
M0c2

i
ℏ
γm0c2E0

and from equation (350) we get

∂Ψ

∂t
=

i
ℏ
γm0c2Ψ. (354)

From equation (350) we have

∇Ψ = ∇
(

E0

M0c2

)
and with equation (286) we obtain

∇Ψ = 1
M0c2∇ (E0)

and using the second of equations (282) we get

∇Ψ = 1
M0c2

(
− i
ℏ
γm0uE0

)

and with equation (350) we arrive at

∇Ψ = − i
ℏ
γm0uΨ. (355)

The differential equations (354) and (355) have the advan-
tage that the rest mass m0 of the material particle appears in
their second part. This fact allows us to introduce additional
conditions in order to solve the system of differential equa-
tions (354) and (355). We present this study in the following
two paragraphs.

The distribution functions determine the distribution of
the rest mass of the generalized particle between the mate-
rial particle and the accompanying particle. For every point
A (x, y, z, t) in the part of spacetime where the generalized par-
ticle can reside, these distribution functions acquire specific
values. These values, in turn, define the values of the rest
masses m0 and E0

c2 .
The behavior of the generalized particle can be influenced

by any cause that interacts with the generalized particle in the
part of spacetime it occupies. An external cause can redis-
tribute the rest mass of the generalized particle, directing it
either to the material particle, or to the accompanying parti-
cle. In the first case, the generalized particle will behave as
a material particle with a well-defined trajectory, energy, etc.
In the second case, the generalized particle will spread out
in spacetime, while the consequences resulting from the ag-
gregation of the generalized photons will be strengthened and
intensified. We observe such a case in the double-slit experi-
ment for the electron and for material particles in general (we
assume that the reader is familiar with the double-slit experi-
ment).

The study of the distribution functions is a fundamental
goal in order to understand the behavior of the generalized
particle.

6.3 The Schrödinger equation

From equation (354) we have

∂2Ψ

∂t2 =
i
ℏ
γm0c2 ∂Ψ

∂t
+

i
ℏ
γc2Ψ

∂m0

∂t

and with equation (354) and the first of equations (265), we
get

∂2Ψ

∂t2 = −
γ2m2

0c4

ℏ2 Ψ +
i
ℏ
γc2Ψ

(
− i
ℏ

Esm0

)
and with equation (279) we get

∂2Ψ

∂t2 = −
γ2m2

0c4

ℏ2 Ψ +
i
ℏ
γc2Ψ

(
− i
ℏ
γE0m0

)
∂2Ψ

∂t2 = −
γ2m2

0c4

ℏ2 Ψ +
γ2m0c2E0

ℏ2 Ψ

∂2Ψ

∂t2 = −
γ2m0c4

ℏ2

(
m0 −

E0

c2

)
Ψ. (356)
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From equation (355) we have

∇2Ψ = − i
ℏ
γm0u∇Ψ − i

ℏ
γΨu∇m0

and with equation (355) together with the second of equations
(265), we get

∇2Ψ = −
γ2m2

0
u2

ℏ2 Ψ − i
ℏ
γΨu

( i
ℏ

Es
u
c2 m0

)
and with equation (279) we get

∇2Ψ = −
γ2m2

0
u2

ℏ2 Ψ − i
ℏ
γΨu

( i
ℏ
γE0

u
c2 m0

)
∇2Ψ = −

γ2m2
0
u2

ℏ2 Ψ +
γ2m0E0u2

c2ℏ2 Ψ

∇2Ψ = −γ
2m0u2

ℏ2

(
m0 −

E0

c2

)
Ψ. (357)

We now consider the case where the rest mass M0 is
mainly distributed to the material particle. This happens when∥∥∥∥∥ E0

m0c2

∥∥∥∥∥ << 1

or when
E0 → 0.

Under these conditions equation (357) can be written as

∇2Ψ = −
γ2m2

0
u2

ℏ2 Ψ. (358)

We will now eliminate the velocity u from equation (358),
within the framework of the analysis we performed in para-
graph 5.9 for the generalized particle. For small velocities u,
it is γ ∼ 1, and equation (358) can be written as

∇2Ψ = −
m2

0
u2

ℏ2 Ψ. (359)

Furthermore, denoting by ε the constant sum of the ki-
netic energy 1

2 m0u2 and the potential energy U = U (x, y, z)
of the material particle, we have

1
2

m0u2 + U = ε

u2 =
2 (ε − U)

m0
.

Replacing factor u2 into equation (359) we obtain

∇2Ψ = −2m0 (ε − U)
ℏ2 Ψ (360)

which is the time-independent Schrödinger wave-function.

From the initial conditions,
∥∥∥∥ E0

m0c2

∥∥∥∥ << 1 or E0 → 0, we
set, and from equation (349) we obtain m0 → M0, therefore
equation (360) can be written in the form

∇2Ψ = −2M0 (ε − U)
ℏ2 Ψ. (361)

From the derivation process we have followed it becomes
obvious that the Schrödinger equation only approximately de-
scribes the internal structure of the generalized particle.

6.4 The Klein-Gordon equation

The way in which we chose to eliminate the velocity from
equation (358) had as a consequence the appearance of the
potential energy U in Schrödinger’s equation (360). We will
now eliminate the velocity u from function Ψin a different
manner. Combining equations (356) and (357), we obtain

∂2Ψ

∂t2 − c2∇2Ψ =

−γ
2m0c4

ℏ2

(
m0 −

E0

c2

)
Ψ +
γ2m0c2u2

ℏ2

(
m0 −

E0

c2

)
Ψ

∂2Ψ

∂t2 − c2∇2Ψ = −γ
2m0c4

ℏ2

(
1 − u2

c2

) (
m0 −

E0

c2

)
Ψ

and since γ = 1√
1− u2

c2

, we get

∂2Ψ

∂t2 − c2∇2Ψ = −m0c4

ℏ2

(
m0 −

E0

c2

)
Ψ

∂2Ψ

∂t2 − c2∇2Ψ +
m0c4

ℏ2

(
m0 −

E0

c2

)
Ψ = 0. (362)

In the case where
∥∥∥∥ E0

m0c2

∥∥∥∥ << 1 or E0 → 0, equation (362)
can be written as

∂2Ψ

∂t2 − c2∇2Ψ +
m0c4

ℏ2 Ψ = 0 (363)

which is the Klein-Gordon equation. With the conditions we
posed, it follows that m0 → M0 in equation (363).

Of particular interest is the case m0 = 0, where from equa-
tion (362) we obtain

∂2Ψ

∂t2 − c2∇2Ψ = 0

∇2Ψ − ∂
2Ψ

c2∂t2 = 0. (364)

From equation (349) for m0 = 0 we get E0 = M0c2.
Therefore, all of the rest energy of the generalized particle
has shifted to the accompanying particle. Furthermore, we
get ∥Ψ∥ =

∥∥∥∥ E0
M0c2

∥∥∥∥ = 1. In every case we solve the differen-
tial equation (364), we should modify the final solution such
that the wave-like behavior of a scalar quantityΨ appears, for
which we demand that ∥Ψ∥ = 1.
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6.5 The central role of the percentage function Φ in the
internal structure and the physical properties of the
generalized particle

According to equations (302) and (303) the energy E and the
momentum P of a single generalized photon depends on the
percentage function Φ. Furthermore, according to equation
(330), the intrinsic angular momentum S of a single gener-
alized particle depends exclusively on the percentage func-
tion Φ. The generalized particle emerges in the part of space-
time where the aggregation of the generalized photons takes
place. Therefore, the percentage function Φ plays a funda-
mental role, both for the internal structure, as well as for the
physical properties of the generalized particle.

Function Φ allows the comprehension of the extent of the
portion of spacetime occupied by the generalized particle. In
paragraph 5.6 we determined the physical quantities that can
only be defined in the surrounding spacetime of the material
particle. These physical quantities are inversely proportional
to the distance r. Therefore, the space occupied by the gen-
eralized photon can extend to infinity, with the consequences,
of course, predicted by the corresponding equations for its en-
ergy, momentum, and angular momentum. Since each gener-
alized photon can extend to infinity, the same also holds for
the part of space where the aggregation of the generalized
photons takes place. Therefore, the generalized particle can
extend to infinity.

In the case of the simplest generalized photon, as we stud-
ied it in paragraph 5.7, there results an instantaneous interac-
tion of the material particle with the accompanying particle.
This interaction takes place at the instant of emission of the
generalized photon, exactly at the point where the material
point particle resides. Therefore, in this case the generalized
particle is a point particle.

In conclusion, we can say that the generalized particle can
extend from a point of spacetime up to an infinite distance
from the material particle. Furthermore, in each case, the ex-
tent of the part of spacetime in which the generalized particle
extends, is determined by the percentage function Φ.

For the derivation of the Schrödinger and the Klein-
Gordon equations, we based our investigation on equation
(349), M0 = m0+

E0
c2 . A fundamental piece of information, re-

lated with the function Φ, is missing from this equation. The
generalized photon carries rest energy, according to equations
(314) and (315), which depends on the functionΦ and the dis-
tance r. In other words, right from the start, the generalized
photon, and therefore the generalized particle, are correlated
with a rest energy in the surrounding spacetime of the ma-
terial particle. The rest mass corresponding to this rest en-
ergy does not appear in equation (349). For the same reason,
the angular momentum does not appear in the Schrödinger
and the Klein-Gordon equations, since the internal angular
momentum of the generalized photon depends exclusively on
function Φ, according to equation (330).

Function Φ expresses the potential of a material particle
to emit generalized photons of different energies for differ-
ent directions. Theoretically, we cannot predict exactly how
function Φ depends on the internal structure of the material
particle. Quite likely we can do this by performing some
measurements. But we can predict theoretically an impor-
tant factor on which function Φ depends, that results from the
continuous exchange of generalized photons between mate-
rial particles. This exchange of generalized photons is equiv-
alent to a variation of function Φ. According to equations
(302), (303) and (330), the energy, momentum and intrinsic
angular momentum of the generalized photon are exactly cor-
related with the variation of function Φ. We, therefore, come
to the conclusion that the quantum phenomena are interre-
lated with the interactions of the material particles, the con-
necting link being function Φ. Function Φ is related with the
interactions between material particles, but also with the en-
ergy of the generalized photons and, by extension, with the
generalized particle.

In paragraph 5.9 we referred to the fundamental method
for studying the generalized particle. We analyzed the reasons
for which we have to expunge the velocity from the equations
of the theory of selfvariations in order to study the internal
structure and the physical properties of the generalized parti-
cle. Of equal importance is the inclusion of function Φ in the
study of the generalized particle.

Observing the Schrödinger operators [22–26], as used in
quantum mechanics, we realize that the first consequence of
their use is the elimination of the kinematic characteristics of
the material particle from the resulting differential equations.
Function Φ does not appear in the final equations, since it
does not exist as a concept within the physical theories of the
last century. It is represented, though, by the physical quanti-
ties related with the interactions in which the material particle
participates, by the potential energy or the generalized mo-
mentum of the material particle. Analogous is the procedure
followed by Dirac [27] for the derivation of his eponymous
equation.

One of the questions about the generalized particle, to
which we deliberately did not refer in paragraph 5.9, is the
probability of finding the material particle at a specific mo-
ment, in a specific position in the part of spacetime occupied
by the generalized particle. There are many physical quan-
tities related with the Schrödinger operators. Judging by the
success of quantum mechanics, one way to study the gener-
alized particle is through statistical interpretation. We must
not forget, though, that a single cause suffices in order to shift
the rest energy of the generalized particle, either towards the
material particle, or towards the accompanying particle. One
and only cause is sufficient for the corpuscular or wave-like
behavior of the generalized particle to emerge.

By investigating the properties of function Φ or by mak-
ing concrete hypotheses regarding function Φ, we can extend
our study of quantum phenomena and the interactions of par-
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ticles. On the contrary, in paragraph 5.8 we showed that equa-
tion (348) does not depend on function Φ. This allows us to
solve it and investigate it completely. We present that study
in the next paragraph.

7 The cosmological data as a consequence of the
selfvariations

7.1 Introduction

The origin of matter is already recorded in the cosmological
observational data. We just lacked a fundamental piece of
information in order to decode it: the law of selfvariations.

The redshift of distant astronomical objects, the cosmic
microwave background radiation and the information
obtained by the analysis of this radiation, the increased lu-
minosity distances of supernovae, the large-scale, as well as
small-scale, structure of matter in the universe, the large-scale
isotropy and flatness of the universe, the slight variation of the
fine structure constant, and the arrow of time, all share the law
of selfvariations as a common cause.

The law of selfvariations contains as information the en-
tire corpus of the cosmological observational data, as we ob-
serve and record them since the time of Hubble. Behind the
barrage of interventions made in order to bring the Standard
Cosmological Model in agreement with the cosmological ob-
servational data, lies our ignorance about the fundamental law
of selfvariations. The physical theories of the past century do
not possess the necessary completeness in order to explain the
cosmological observational data.

The improved scientific observation instruments we pos-
sess record persistently, and with ever increasing detail, the
consequences of the law of selfvariations.

7.2 The fundamental equations

The cosmological data concern the observation of the Uni-
verse at long distances, that is, in the past. At a distant as-
tronomical object, located at a distance r from Earth, the rest
mass m0 (r) of a material particle in the past is smaller, com-
pared to the laboratory rest mass m0 of the same material par-
ticle we measure “now” on Earth. The electric charge q (r)
also differs from the laboratory value q of the electric charge
as measured “now” on Earth. We calculate the quantity m0 (r)
as a function of m0, and q (r) as a function of q. In this man-
ner, we incorporate into our equations the consequences re-
sulting from the internality of the Universe to the process of
measurement.

In the following, and using the known physical laws, we
determine the consequences of the selfvariations for distant
astronomical objects. Furthermore, we can determine the
consequences of the selfvariations in the electromagnetic
spectra of the astronomical objects we receive “now” on
Earth. We shall prove that equation (348)(

m0c2 + iℏ
ṁ0

m0

)•
= 0 (365)

which holds for every material particle contains as informa-
tion the entirety of the cosmological data.

We will solve equation (365) for a material particle in the
case of a flat and static universe. This equation contains as
information the redshift of distant astronomical objects. Fur-
thermore, it predicts that the gravitational interaction cannot
play the role attributed to it by the Standard Cosmological
Model. It informs us that the gravitational interaction cannot
lead the Universe either to collapse or to expansion. Conse-
quently, there is no point of solving equation (365) within an
expanding Universe.

Equation (365) contains as information the fact that the
total energy of the Universe is zero. Therefore, after solving
the equation, it can be verified a posteriori that the Universe
is flat.

From equation (365) we have that(
m0c2 + iℏ

ṁ0

m0

)•
= 0(

i
ℏ

m0c2 − ṁ0

m0

)•
= 0

i
ℏ

m0c2 − ṁ0

m0
= k. (366)

Here, k is the constant of integration. From equation (366)
we see that

m0 = −
ikℏ
c2

1
1 − exp (kt + µ)

. (367)

Here, µ is the constant of integration.
Let us suppose that we observe “now” on Earth, the elec-

tromagnetic spectrum of an astronomical object located at a
distance r away from Earth. The emission of the electromag-
netic spectrum from the astronomical object took place be-
fore a time interval ∆t = r

c . According to equation (367) the
rest mass m0(r) of the material particle at the moment of the
emission of the corresponding electromagnetic spectrum was

m0 = −
ikℏ
c2

1

1 − exp
(
k
(
t − r

c

)
+ µ

) . (368)

Combining equations (367) and (368) we have that

m0(r) = m0
1 − exp (kt + µ)

1 − exp
(
k
(
t − r

c

)
+ µ

) .
Setting

A = exp (kt + µ) (369)

we obtain
m0(r) = m0

1 − A

1 − A exp
(
−kr

c

) . (370)

Equation (370) expresses the rest mass m0(r) of the ma-
terial particle in the distant astronomical object and before a
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time interval ∆t = r
c , compared with the laboratory value of

the rest mass m0 of the same material particle. In this way
we include in the equations we state the consequences of the
internality of the Universe with respect to the measurement
process, as set forth in paragraph 4.9.

If we remove the imaginary unit i from equation (365), or
replace it by any arbitrary constant b , 0, we will again end
up with equations (369) and (370). The problems caused by
the internality of the Universe with respect to the measure-
ment procedure can only be evaded through equation (370).
Only after comparing the rest masses m0(r) and m0 can we
measure the consequences of the selfvariations.

From equation (369) we obtain for the parameter A

dA
dt
= Ȧ = kA. (371)

From equation (367) we also obtain

ṁ0 = m0
k exp (kt + µ)

1 − exp (kt + µ)
.

Through equation (369) we see that

ṁ0 = m0
kA

1 − A
. (372)

Combining equations (268) and (372) we obtain

E0 = iℏ
kA

1 − A
. (373)

In the case of the electric charge the corresponding equa-
tion to equation (365) is the second of equations (292)(

q +
iℏ
V0

q̇
q

)•
= 0. (374)

This gives us the corresponding solution

q (r) = q
1 − B

1 − B exp
(
−k1r

c

) (375)

B = exp (k1t + µ1) (376)

dB
dt
= Ḃ = k1B. (377)

Here, k1 and µ1 are the constants of integration.
The corresponding equation to equation (372) is equation

q̇ = q
k1B

1 − B
. (378)

Combining the first of equations (292) with equation
(378) we obtain

qiV0 = iℏ
k1B

1 − B
. (379)

This equation is the corresponding equation to equation
(373).

If we remove from equation (374) the imaginary unit i, or
if we replace it by any arbitrary constant b , 0, we will still
arrive at equations (375) and (376). The problems caused by
the internality of the Universe with respect to the measure-
ment procedure can only be evaded through equation (375).
We can only measure the consequences of the selfvariations
by comparing the electric charges q (r) and q.

7.3 The redshift of the far distant astronomical objects

The wavelength λ of the linear spectrum of an atom is in-
versely proportional to the factor m0q4, where m0 is the rest
mass and q the electric charge of the electron. We denote by
λ the wavelength of the linear spectrum we observe “now”
on Earth, and which originates from the atoms of an astro-
nomical object located at distance r. With λ0 we denote the
wavelength of the same kind of atom as measured in the lab-
oratory “now” on Earth.

We have that

λ

λ0
=

m0q4

m0(r)q4 (r)
.

Using equations (370) and (375) we obtain

λ

λ0
=

1 − A exp
(
−kr

c

)
1 − A


1 − B exp

(
−k1r

c

)
1 − B


4

. (380)

For the redshift z of the astronomical object we obtain

z =
λ − λ0

λ0

z =
λ

λ0
− 1.

Using equation (380) we see that

z =
1 − A exp

(
−kr

c

)
1 − A


1 − B exp

(
−k1r

c

)
1 − B


4

− 1. (381)

This equation constitutes the full mathematical expres-
sion for the redshift z of the linear spectrum of distant as-
tronomical objects.

We shall now perform an approximation. From the cos-
mological data we know that the fine structure constant

α =
e2

4πε0cℏ

remains constant for observations we make at very large dis-
tances from Earth. Therefore, the value of the electric charge

130 Manousos E. Mass and Charge Selfvariation: A Common Underlying Cause for Quantum Phenomena and Cosmological Data



July, 2013 PROGRESS IN PHYSICS Volume 3

q (r) differs minimally from the laboratory value q in the re-
gion of the Universe we observe. Therefore, we can write
equation (381) in a simpler form, that is

z =
1 − A exp

(
−kr

c

)
1 − A

− 1. (382)

Here, we used the approximation q (r) = q.
Equation (382) holds for the regions of the Universe that

can be surveyed by the scientific observation instruments we
currently have at our disposal. We shall return to the issue of
the fine structure constant in another paragraph.

From equation (369) we see that

A > 0. (383)

According to equation (382), and since the value of the
redshift z increases with the distance r, it holds that

k > 0. (384)

From equation (382), and for r → +∞ , we obtain

zmax =
1

1 − A
− 1

zmax =
A

1 − A
. (385)

We have that zmax > 0, A > 0, as given in relation (383),
thus we get

1 − A > 0

A < 1. (386)

Now, it holds that

z < zmax.

Using equation (385) we obtain

z <
A

1 − A
.

Due to relation (386) we obtain

z(1 − A) < A
z − zA < A
z < (1 + z)A

z
1 + z

< A.

Through relation (386) we finally arrive at

z
1 + z

< A < 1. (387)

This inequality holds for every redshift z, and allows us to
estimate the range of values the parameter A acquires.

From equation (382), and for r = 0, we obtain z = 0, thus

z
′
=

dz
dr
=

1 − A exp
(
−kr

c

)
1 − A

kA exp
(
−kr

c

)
c (1 − A)

.

For r = 0 we get

z
′
(0) =

dz
dr

]
r=0
=

kA
c (1 − A)

.

We expand equation (382) giving z = z (r) into a Taylor
series, and only to first order terms

z (r) = z (0) + z
′
(0)

z (r) = 0 +
kA

c (1 − A)
r

cz =
kA

1 − A
r.

Comparing with Hubble’s law cz = Hr , we obtain

kA
1 − A

= H. (388)

where H is the Hubble parameter.
From equation (388) we obtain k = H 1−A

A . The range of
values of parameter A, as determined from inequality (387),
allows us to estimate the extremely small value of the con-
stant k. Now, according to equation (371), the parameter A
increases at an extremely slow rate, and remains practically
constant in the measurements we conduct.

For the energy E, which results during nuclear fission, nu-
clear fusion, and more generally, every case where the con-
version of rest mass into energy takes place, we obtain

E (r)
E
=

m0(r)c2

m0c2 .

Using equation (370) we see that

E (r)
E
=

1 − A

1 − A exp
(
−kr

c

)

E (r) = E
1 − A

1 − A exp
(
−kr

c

) . (389)

For the photons which result from the conversion of mass
into energy we have

λγ

λ0γ
=

ch
E (r)
ch
E

=
E

E (r)
.
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Using equation (389) we obtain

λγ

λ0γ
=

1 − A exp
(
−kr

c

)
1 − A

λγ − λ0γ

λ0γ
=

1 − A exp
(
−kr

c

)
1 − A

− 1

zγ =
1 − A exp

(
−kr

c

)
1 − A

− 1. (390)

Equations (390) and (382) are identical. However, beyond
the limits reached by our current observations, the redshift z
of the linear spectrum is given in general by equation (381).

From equation (382) we obtain

1 + z =
1 − A exp

(
−kr

c

)
1 − A

. (391)

Combining equations (370) and (391) we have that

m0(z) =
m0

1 + z
. (392)

Combining equations (389) and (391) we see that

E (z) =
E

1 + z
. (393)

Combining equations (373) and (388) we obtain

E0 = iℏH (394)

for the laboratory value of the energy E0.

7.4 The graphs of the functions r = r(z) and R = R(z)

From equation (382) we have that

z =
1 − A exp

(
−kr

c

)
1 − A

− 1

z =
A

1 − A
exp

(
−kr

c

)
.

Solving for r we obtain

r =
c
k

ln
(

A
A − z (1 − A)

)
. (395)

This equation gives the distance r of the astronomical ob-
ject as a function of the redshift z.

From equation (388) we obtain k = H 1−A
A , and after re-

placing the constant k into equation (395), we get

r =
c
H

A
1 − A

ln
(

A
A − z (1 − A)

)
. (396)

Fig. 10: The graph of distance r of a distant astronomical object as a
function of the redshift z. As we increase the value of the parameter
A from 0.900 to 0.999, the curve r = r (z) approaches a straight line.
The graph has been made with H = 60 km

sMpc as the value of Hubble’s
constant.

This equation is more convenient than equation (395),
since we know the value of the Hubble parameter H, as well
as the range of values of the parameter A from inequality
(387), that is

z
1 + z

< A < 1.

In Figure 10 we present the graph of the curve r = r (z)
for H = 60 km

sMpc , and for the values of A = 0.900, A = 0.950,
A = 0.990, A = 0.999 up to z = 5. We observe that as the
value of the parameter A increases, the curve tends to be a
straight line.

We shall now prove that for A → 1− the equivalent equa-
tions (382) and (396) tend to Hubble’s law

cz = Hr (397)

From equation (388) we have k = 1−A
A H, and after substi-

tuting into equation (382), we obtain

z =
1 − A exp

(
−1 − A

A
H
c

r
)

1 − A
− 1.

We denote by x = 1−A
A , therefore x→ 0+ for A→ 1−, and
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A = 1
x+1 , so we have

z =
1− 1

x + 1
exp

(
−x

Hr
c

)
1 − 1

x + 1

−1 =
x + 1− exp

(
−x

Hr
c

)
x

− 1

lim
A→1−

(z) = lim
x→0+

(z) = lim
x→0+


x + 1 − exp

(
−x

Hr
c

)
x

− 1


0
0
=

lim
x→0+

(
1 +

Hr
c

exp
(
−x

Hr
c

)
− 1

)
=

Hr
c
.

Equation (396) gives the distance r of the astronomical
object, when we know the value of its redshift z. On the other
hand, if we measure the distance based on the luminosity of
the astronomical object, we shall always find it to be larger
than the one given by equation (396). The reason is simple:
The energy feeding the radiation of the astronomical objects
originates from nuclear fusion, and more generally, from the
conversion of rest mass into energy. According to equation
(389), this energy E (r) is less than the expected energy E.
Therefore, the luminosity of the astronomical object is itself
lower than the standard luminosity we use.

The luminosity distance R of an astronomical object is
defined by equation

J =
1

4πR2

dE
dt
. (398)

In this equation, J denotes the power per unit surface we
receive from the astronomical object, whereas the power dE

dt
refers to the “standard candle” we are using.

If the real distance of the astronomical object is r, then we
obtain for the power per unit surface J

J =
1

4πr2

dE (r)
dt
. (399)

From equations (398) and (399) we get

1
R2

dE
dt
=

1
r2

dE (r)
dt
.

Using equation (393) we have that

1
R2

dE
dt
=

1
r2

1
1 + z

dE
dt

R2 = r2 (1 + z)

R = r
√

1 + z. (400)

Combining equations (400) and (396) we see that

R =
c
H

A
1 − A

√
1 + z ln

(
A

A − z (1 − A)

)
. (401)

Fig. 11: The graph of the luminosity distance R of astronomical ob-
jects as a function of the redshift z. The measurement of the luminos-
ity distances of type Ia supernova confirms the theoretical prediction
of the law of selfvariations.

The measurements conducted for the determination of
Hubble’s constant H, have not taken into account the conse-
quences of equation (400). Even for the case of small values
of the redshift z it holds that R > r. The measurement of Hub-
ble’s parameter H with the use of the luminosity distances of
astronomical objects is correct only for very small values of
z, where it holds that R ∼ r. Such measurements result in
a value of H = 60 km

sMpc . Measurements performed have in-
cluded astronomical objects with large values of the redshift
z, thus increasing the value of the parameter H to values rang-
ing between 72 and 74 km

sMpc .
Today, we perform measurements with high accuracy.

Taking into consideration the consequences of equation (400)
we expect the parameter H to be measured close to 60 km

sMpc ,
independently of the redshift z of the astronomical object.
We, of course, refer to measurements of the parameter H, on
the basis of the luminosity distances of astronomical objects.

Equally well to equation (401) we can also use the equa-
tion which results after combining equations (400) and (397),
that is

R =
c
H

z
√

1 + z. (402)

For H = 60 km
sMpc and c = 3 × 105 km

s this can be written as

R = 5000 z
√

1 + z. (403)

The luminosity distance R is given in Mpc. In the graph
of figure 11 we present the graph of the function R = R (z),
as given in equation (403) and up to values of the redshift
z = 1.5.
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Type Ia supernova are cosmological objects for which we
can measure their luminosity distance R. Furthermore, this
measurement can be conducted at large distances, where the
consequences of equation (393) are measurable.

At the end of the last century this kind of measurements
were conducted by independent scientific groups. The graph
thet results from these measurements exactly matches graph
7.4.2 which is predicted theoretically by the theory of self-
variations. In order to explain the inconsistency of the Stan-
dard Cosmological Model with graph 7.4.2, the existence of
dark energy was invented and introduced [28–30].

7.5 Gravity cannot play the role attributed to it by the
Standard Cosmological Model

From equation (388) we obtain k = 1−A
A H, and

k
c
=

1 − A
A

H
c
. (404)

For H = 60 km
sMpc , A = 0.999, c = 3 × 105 km

s we have that

k
c
= 2 × 10−7 1

Mpc
. (405)

We replace this value of k
c into equation (370) and obtain

m0 (r) = m0
0.001

1 − 0.999 exp
(−2 × 10−7r

) . (406)

Here, the distance r is measured in Mpc.
For values of r of the order of magnitude of kpc, equation

(406) gives that m0 (r) = m0. Therefore, the strength of the
gravitational interaction is not affected in the scale of galactic
distances. For example, for distance r = 100 kpc, equation
(406) gives m0 (r) = 0.99999 m0. Therefore, the selfvaria-
tions do not affect the stability of the solar system, galaxies,
and galaxy clusters.

On the contrary, for distances of order of magnitude of
Mpc, equation (406) predicts a clearly smaller value of m0(r),
compared to m0. For example, for r = 100 Mpc equation
(406) gives m0(r) = 0.98 m0. The strength of the gravitational
interaction exerted on our galaxy by a galaxy from a distance
of 100 Mpc is 98% of the expected. For r = 2 × 103 Mpc
equation (406) gives m0(r) = 0.7145 m0. The strength of the
gravitational interaction exerted by a galaxy, which is located
at a distance of 2000 Mpc, on our galaxy is only 71.45% of
the expected.

Therefore, we conclude that due to the selfvariations the
gravitational interaction is weakened at cosmological dis-
tances and cannot play the role attributed to it by the Standard
Cosmological Model. The gravitational interaction domin-
ates and rules at a local level, at scales of a few hundreds or
thousands of kpc.

We note that if we chose a different value for the param-
eter A, from the values permitted by inequality (387), all the

arithmetic values appearing in equation (406) shall be altered.
However, the same conclusions will be drawn about the rela-
tion between rest masses m0(r) and m0.

The rest mass is given as a function of the redshift z from
equation (392)

m0(z) =
m0

1 + z
.

For z = 0.1 we get m0(z) = 0.9091 m0, for z = 1 we
have m0(z) = 0.5 m0, and for z = 9 we see that m0(z) =
0.1 m0. The strength of the gravitational interaction exerted
by an astronomical object with redshift z = 9 on our galaxy
is only 10% of the expected.

For even greater distances the gravitational interaction
practically vanishes.

7.6 The very early Universe

All the equations we have stated in this paragraph are com-
patible with the condition r → ∞. The equations are stated
in such a way that the condition r → ∞ offers us information
about the very early Universe.

For r → ∞ equation (370) gives

m0 (r → ∞)→ m0 (1 − A) . (407)

The inequality (387)

z
1 + z

< A < 1

holds for every value of the redshift z, hence A → 1. There-
fore, from relation (407) we conclude that the initial form of
the Universe only slightly differs from the vacuum.

Similarly, from equation (375) we have that

q (r → ∞)→ q (1 − B) . (408)

This relation does not lead to the same consequences as
relation (407). We know that the electric charge exists in op-
posite physical quantities in the Universe. Because of this, the
total electric charge of the Universe is zero. Relation (407)
informs as that the energy content of the very early Universe
also tends to zero. The very early Universe only slightly dif-
fers from the vacuum. It possesses, though, a very important
property which determines its evolution. It is temporally vari-
able due to the selfvariations.

The increase of the rest masses and the electric charges
destroys the initial homogeneity and state of rest, induces the
first minute motions of the particles, and shifts the system
to a temperature slightly above 0 K (temperature reflects the
kinetic state of the particles in the system). The evolution of
the selfvariations with the passage of time leads the Universe
to the form in which we observe it today.

In general, this is the prediction for the begining and evo-
lution of the Universe from the equations we have stated. This
prediction is also verified from the calculations presented in
the following paragraphs.
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7.7 The Universe is flat

From the principle of conservation of energy we conclude that
the total energy content of the Universe is constant, and re-
mains the same at every moment. Relation (407) informs us
that the energy content of the very early Universe tends to
zero. Therefore, the same holds today as we observe the Uni-
verse. Because of this, the Universe is flat.

The difference between the current state of the Universe
and its initial state is the following: The rest masses of par-
ticles have increased, but this increase is counterbalanced by
the generalized photons that flood spacetime, and by the
strengthening of all kinds of negative potential energies that
result as a consequence.

The observations conducted by the COBE and WMAP
satellites confirm that the Universe is flat. Other observational
data lead us to the same conclusion.

7.8 The origin of the cosmic microwave background
radiation

The laboratory value for the Thomson scattering coefficient
[31, 32] is

στ =
8π
3

q4

m2
0c2
. (409)

Here, q and m0 are the electric charge and the rest mass
of the electron, respectively. At a distant astronomical object
the Thomson coefficient is

στ (r) =
8π
3

q4 (r)
m2

0 (r) c2
. (410)

Combining these equations we get that

στ (r)
στ

=

(
m0

m0(r)

)2 (
q (r)

q

)4

. (411)

From the observations we have made on the variation of
the fine structure constant we know that, for large distances r,
it holds that q (r) = q. Therefore, at a very good approxima-
tion, equation (411) can be written as

στ (r)
στ

=

(
m0

m0(r)

)2

.

Using equation (370) we obtain that

στ (r)
στ

=


1 − A exp

(
−kr

c

)
1 − A


2

. (412)

For very large distances (r → ∞) very close to the initial
state of the Universe, and at a temperature of about 0 K, equa-
tion (412) gives

στ (r → ∞)
στ

=

(
1

1 − A

)2

. (413)

But according to inequality (387), A → 1. Therefore, in
the very distant past, and for a temperature of the Universe
just slightly above 0 K, the Thomson scattering coefficient
acquires enormous values, rendering the Universe opaque.
The cosmic microwave background radiation we observe to-
day, originates in this phase of the evolution of the Universe.
The conditions we described refer to the whole expanse of
the Universe. That is why the cosmic microwave background
radiation seems to originate “from everywhere”.

Equation (412) gives the value of the scattering coefficient
at distant astronomical objects. Combining this equation with
equation (382) gives

στ (z)
στ

= (1 + z)2

στ (z) = στ (1 + z)2 . (414)

This equation is easier to use, since it expresses the Thom-
son scattering coefficient as a function of the redshift z of the
distant astronomical object. We can also write equation (414)
in the form

στ (z) =
8π
3

e4

m2
ec2 (1 + z)2 (415)

where e and me denote the electric charge and the mass of the
electron, respectively.

The Thomson coefficient concerns the scattering of pho-
tons of low energy E. For high energy photons it is replaced
by the Klein-Nishina coefficient, given in the laboratory by

σ =
3
8
στ

m0c2

E

[
ln

(
2E

m0c2

)
+

1
2

]
(416)

and by relation

σ (z) =
3
8
στ (z)

m0 (z) c2

E (z)

[
ln

(
2E (z)

m0 (z) c2

)
+

1
2

]
(417)

for the distant astronomical object.
From equations (392) and (393) we obtain

m0 (z) c2

E (z)
=

m0c2

E
.

Therefore, equation (417) can be written as

σ (z) =
3
8
στ (z)

m0c2

E

[
ln

(
2E

m0c2

)
+

1
2

]
.

Using equation (416) we have

σ

σ (z)
=
στ
στ (z)

.

Using equation (414) we take that

σ (z) = σ (1 + z)2 . (418)

The two scattering coefficients depend in the same way
upon the redshift z, and the distance r.
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7.9 The decrease of the atomic ionization energies at
distant astronomical objects

The ionization and excitation energy Xn of the atoms is pro-
portional to the factor m0q4, where m0 is the rest mass of the
electron and q is its electric charge. Thus, we have

Xn (r)
Xn

=
m0 (r)

m0

(
q (r)

q

)4

.

After applying the familiar approximation q (r) = q we
obtain

Xn (r)
Xn

=
m0 (r)

m0
.

Using equation (370) we have

Xn (r)
Xn

=
1 − A

1 − A exp
(
−kr

c

) . (419)

Through equation (382) we see that

Xn (z) =
Xn

1 + z
. (420)

According to this equation the redshift z affects the rate of
ionization of the atoms in distant astronomical objects. Boltz-
mann’s equation

Nn

N1
=
gn

g1
exp

(
− Xn

KT

)
(421)

expresses the number of the ionized atoms Nn occupying
the energy level n in a stellar surface which is at thermody-
namic equilibrium. With Xn we denote the excitation energy
from the energy level 1 to the level n, T stands for the tem-
perature of the stellar surface in Kelvin, K = 1.38× 10−23 J/K
is Boltzmann’s constant, and gn is the degree of degeneracy
multiplicity of level n, that is, the number of energy levels
into which level n splits in the presence of a magnetic field.

Combining equations (420) and (421), we obtain for the
distant astronomical object relation

Nn

N1
=
gn

g1
exp

(
− Xn

KT (1 + z)

)
. (422)

In the case of the hydrogen atom, for n = 2, X2 = 10.15
eV = 16.24 × 10−19 J, g1 = 2 , g2 = 8 and for a solar surface
temperature T ∼ 6000 K, equation (421) shows that only one
atom out of 108 occupies the n = 2 state. At the same temper-
ature, equation (422) gives that for a redshift value of z = 1
we have N2

N1
= 2.2 × 10−4, for z = 2 we have N2

N1
= 5.8 × 10−3,

and for z = 5 we have N2
N1
= 0.15.

The conclusions drawn from the current and the previ-
ous paragraph demand a reexamination of the conclusions we
have drawn from the observation of the electromagnetic spec-
trum of distant astronomical objects.

For very large distances, that is, in the very distant past,
equation (419) gives

Xn (r → ∞) = Xn (1 − A) . (423)

This equation informs us that the very early Universe was
ionized at some stage [33]. The ionization energies of the
atoms had very small values. We can reach the same conclu-
sion if we substitute into equation (420) very large values of
the variable z, or if in equation (421) we replace the energy
Xn with Xn (1 − A).

7.10 On the fine structure constant

In the preceding paragraphs we saw that due to the manifes-
tation of the selfvariations, energy, momentum, angular mo-
mentum and electric charge flow from the material particles
to the surrounding spacetime. The first consequence of the
selfvariations is the potential to transfer energy, momentum,
angular momentum and electric charge from one material par-
ticle to another, i.e. the interaction between the material par-
ticles. The gravitational and electromagnetic interactions de-
termine the starting point for the quantitative determination of
the selfvariations. Because of this, we supposed that the rest
masses and the electric charges, and not any other physical
quantity, vary with the passage of time. We offer this remark
since, at cosmological scales, equation (365) justifies all of
the cosmological observational data we possess, and it could
be supposed that the electric charge remains constant. Such
an assumption cannot hold within the framework of the the-
ory of selfvariations, where the selfvariations of the electric
charge are responsible for the electromagnetic field.

By analyzing the electromagnetic spectra reaching Earth
from distant quasars from distances up to 6 × 109ly [34–36],
the value of the fine structure constant α remains constant.
More precisely, there are indications of a very slight variation
of the parameter α.

The parameter α depends on the electron charge q, as
given in

α =
q2

4πε0cℏ
. (424)

Therefore, this parameter is not constant. We have

α (r)
α
=

(
q (r)

q

)2

.

Using equation (375) we also have

α (r)
α
=

(
q (r)

q

)2

=


1 − B

1 − B exp
(
−k1r

c

)


2

. (425)

From this equation it can be inferred that the parameter
α (r) (essentially the electric chargeq (r)), remains constant
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for large distances r when the constant k1 or the parameter B
acquire extremely small values. According to relation (408)
we have that

q (r → ∞)→ q (1 − B) .

This relation can be written as

α (r → ∞)→ α (1 − B)2 .

Therefore, the value of the electric charge and of the pa-
rameter α in the very early Universe are only determined by
the value of the parameter B. Hence, the parameter B has a
very small value, independently of the value of constant k1.

For very small values of the parameter B we see that

q (r → ∞)→ q (1 − B)→ q.

This prediction does not cause any problems at the initial
state of the Universe, since the electric charge exists in cou-
ples of opposite physical quantities. Such a relation cannot
hold for the case of the rest mass, and indeed we know that

z
1 + z

< A < 1

m0 (r → ∞)→ m0 (1 − A)→ 0.

From equation (376) we obtain B > 0. Thus, we arrive at
the conclusion that the parameterB acquires extremely small
positive values.

The extremely small value of the parameter B assures the
stability of the value of the parameter α for large distances
r. Hence, we turn our attention not to the arithmetic value
(which is likely to be extremely small, as is the case for the
constant k = 1−A

A H), but to the sign of the constant k1.
For k1 > 0 we obtain successively that

k1 > 0

−k1r
c
< 0

exp
(
−k1r

c

)
< 1, (B > 0)

B exp
(
−k1r

c

)
< B

−B exp
(
−k1r

c

)
> −B

1 − B exp
(
−k1r

c

)
> 1 − B,

(
1 − B exp

(
−k1r

c

)
> 0

)
1 − B

1 − B exp
(
−k1r

c

) < 1.

From equation (425) we have that

α (r)
α
=

(
q (r)

q

)2

< 1 k1 > 0.

Therefore, for k1 > 0 we will measure a slight decrease of
the parameter α at large distances. Similarly, it turns out that
for k1 < 0 we will measure a slight increase of the parameter
α at large distances [37]

α (r)
α
=

(
q (r)

q

)2

> 1, k1 < 0.

Based on the observational data we currently have, mea-
surements of the variation of the parameter α have to be con-
ducted for distances greater than 6 × 109 ly. The extremely
small value of the (positive) parameter B renders these mea-
surements difficult, in both cases.

7.11 The large structures in the Universe

The increase of the rest masses with the passage of time
strengthens the gravitational interaction and accumulates
matter towards various directions. The consequences of the
accumulation of matter depend upon the quantity of the ac-
cumulated matter, as well as on the volume it occupies. In
all cases, the total initial energy of the accumulated matter is
zero, according to relation (407).

At large scales, at distances of order of magnitude 109 ly,
the distribution of matter must have been determined by a
large-scale destruction of the absolute homogeneity of the
vacuum in the very early Universe. This explains the colossal
webs of matter through vast expances of empty space that we
observe with the modern observational instruments.

At smaller scales, within the dimensions of a galaxy, the
accumulation of matter increases the temperature, as a result
of the conversion of the gravitational potential energy into
heat. A percentage of the particles of matter accumulates in
a first central core of high temperature, while the remaining
percentage remains distributed in the surrounding space dur-
ing the period of accumulation. The slow rate at which the
selfvariations occur, strengthens, also at a slow rate, the mag-
nitude of the gravitational interaction, and allows a consider-
able percentage of the particles to remain in the surrounding
space.

A further accumulation of the first core will lead to the
formation of a second, more centralized core, until the tem-
perature reaches the point where nuclear fusion starts. The
initiation of nuclear fusion prevents the further accumulation
of matter.

We separated the process of the accumulation into two
phases, and we mentioned two cores for the following rea-
son: The initial percentage of matter which remained outside
the initial central core concerns the initial phase of the accu-
mulation and is at a low temperature, slightly above 0K [38].
However, the percentage of matter which stays outside the
second, and real central core, already has a high temperature.
If we take into account the very high value of the Reynolds
coefficient in this region, turbulent vortices will be generated.
Therefore, the formation of stars should occur in this region.

Manousos E. Mass and Charge Selfvariation: A Common Underlying Cause for Quantum Phenomena and Cosmological Data 137



Volume 3 PROGRESS IN PHYSICS July, 2013

In the final central core, the density of matter should be larger
than in the rest of the galaxy. Clusters of galaxies are formed
through similar processes.

Rough calculations give an equation correlating the mass
and the volume of a galaxy [39–42]. This relation is con-
sistent with the data we possess about galaxies (and galaxy
clusters). But in reality, the process of accumulation is not
separated into phases, but evolves in a continuous manner,
from its beginning up to the formation of a galaxy. There-
fore, we can only reach safe conclusions on the issue through
computer simulations.

7.12 The origin of matter and the arrow of time

The equations of the theory of selfvariations predict at the
limit, in the very distant past, that the beginning of the Uni-
verse was the vacuum. Therefore, we cannot consider a point
to be the beginning of the universe, as proposed by the Stan-
dard Cosmological Model. All the points within the Universe
are equivalent. The Universe originates “from everywhere”,
exactly as the cosmic microwave background radiation does
(paragraph 7.8). Which physical mechanism can lead to such
a result?

The theory of selfvariations predicts that the generalized
particle can behave in such a way. The correlation of the
vacuum with the condition dS 2 = 0 leads to such an
interpretation, as we analyzed it in paragraph 5.9 and in para-
graph 6.

What happens at the microcosm is a repetition at a local
level, in a region of spacetime, of the condition that dom-
inated throughout the spacetime occupied by the Universe
during its emergence from the vacuum. That is how the slight
perturbations of enormous spatial dimensions emerged within
the initial homogeneity of the vacuum.

These perturbations were recorded on the cosmic micro-
wave background radiation that followed (2.74 K) and which
also originates from the whole Universe, as discussed in para-
graph 7.8. Moreover, these perturbations are responsible for
the large-scale distribution of matter in the Universe (para-
graph 7.11).

The theory of selfvariations solves a fundamental prob-
lem of physical reality, which the physical theories of the last
century are unable to solve. The equations of the theory of
selfvariations include the arrow of time. The Universe origi-
nates from the vacuum and evolves towards a particular direc-
tion, which is determined by the selfvariations. The selfvari-
ations continuously “distance” the Universe from the state of
vacuum, but the Universe remains consistent with its origin:

The origin of matter from the vacuum, combined with the
principles of conservation, has as a consequence that the en-
ergy content of the Universe is zero.

In the laboratory, the internality of the Universe to the pro-
cess of measurement apparently “freezes” the time evolution
of the selfvariations. On the contrary, the consequences of

the selfvariations are directly imprinted on the observations
we conduct at large distances. The Universe we observe to-
day, and the complex processes taking place in Nature, are the
results of the evolution of the selfvariations with the passage
of time.

7.13 The future evolution of the Universe

The range of values parameter A takes is given by inequality
(387)

z
1 + z

< A < 1.

Furthermore, equation (371) informs us that the parame-
ter A approaches unity at an exceptionally slow rate, due to
the extremely small value of the constant k = 1−A

A H.
The parameter A appears in all of the equations we have

stated. Because of this, the evolution of this parameter
through time also determines the future evolution of the Uni-
verse, at least in the observations we will conduct in the far
future.

From equation (388) we have that

Ḣ = k
Ȧ (1 − A) + AȦ

(1 − A)2 .

Using equation (371) we obtain

Ḣ = k
kA

(1 − A)2

Ḣ =
1
A

(
kA

1 − A

)2

Ḣ =
1
A

H2.

For A ∼ 1,H = 60 km
sMpc = 2 × 10−18 s−1

Ḣ = 4 × 10−36s−2.

The Hubble parameter varies at an extremely slow rate.
We shall now see how the redshift z varies with the pas-

sage of time. From equation (382) we get

z =
1 − A exp

(
−kr

c

)
1 − A

− 1

z =
A

1 − A

(
1 − exp

(
−kr

c

))
.

(426)

For the same distance r we have that

ż =
( A
1 − A

)• (
1 − exp

(
−kr

c

))
ż =

Ȧ
(1 − A)2

(
1 − exp

(
−kr

c

))
.
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Using equation (371) we see that

ż =
kA

(1 − A)2

(
1 − exp

(
−kr

c

))
.

Considering equation (426) we obtain

ż =
k

1 − A
z

ż =
1
A

kA
1 − A

z.

Through equation (388) we arrive at

ż =
H
A

z. (427)

For H = 2 × 10−18s−1 = 6.3 × 10−11year−1 and A ∼ 1 we
obtain

ż = z · 6.3 × 10−11year−1. (428)

The rate of increase of the redshift z is a measure with
which to evaluate the future evolution of the Universe.

8 The Topographic Theorem

For a material point particle, the velocity υ of the selfvaria-
tions is defined by equation (6)

υ =
c
r

r. (429)

This equation refers solely to the material point particle.
On the contrary, equation (33)

υ

c
=

 cos δ
sin δ cosω
sin δ sinω

 (430)

has more general validity. The velocity in equation (430) sat-
isfies the relation ∥υ∥ = c, without necessarily having the
form (429). Therefore, we have to study the properties of the
velocity υ, as they follow from equation (430). The differ-
entiation between the two equations occurs in equations (43)
and (44)

∇δ = λ1
υ

c
+ Kβ + Lγ

∇ω = λ2
υ

c
+ Mβ + Nγ

which take the form

∇δ = − ∂δ
c∂t
υ

c
+ Kβ + Lγ

∇ω = −∂ω
c∂t
υ

c
+ Mβ + Nγ.

(431)

We will mention the general properties of the velocity υ,
without citing the relevant proofs.

The coefficients ∂δc∂t , K, L, ∂ωc∂t , M, N are not independent
from each other, but are constrained by the following com-
patibility equations:

∂δ

c∂t
(L − M sin δ) + (KM + LN) cos δ − γ · ∇K+

+β · ∇L = 0

∂ω

c∂t
(L − M sin δ) +

(
M2 + N2

)
cos δ − γ · ∇M+

+β · ∇N = 0

∂K
∂t
+ υ · ∇K = −c

(
K2 + LM sin δ

)
∂L
∂t
+ υ · ∇L = −cL (K + N sin δ)

∂M
∂t
+ υ · ∇M = −cM (K + N sin δ)

∂N
∂t
+ υ · ∇N = −c

(
LM + N2 sin δ

)
∂

∂t

(
∂δ

c∂t

)
+ υ · ∇

(
∂δ

c∂t

)
= −K

∂δ

∂t
− L sin δ

∂ω

∂t
∂

∂t

(
∂ω

c∂t

)
+ υ · ∇

(
∂ω

c∂t

)
= −M

∂δ

∂t
− N sin δ

∂ω

∂t
.

(432)

These equations are valid in every inertial frame of refer-
ence.

For the inertial reference frames S and S ′, as we defined
them in paragraph 3, the following Lorentz-Einstein transfor-
mations hold

∂δ′

c∂t′
=
∂δ

c∂t
+

u
c

K sin δ

1 − u
c

cos δ

K′ =
K

γ
(
1 − u

c
cos δ

) L′ =
L

γ
(
1 − u

c
cos δ

)
∂ω′

c∂t′
sin δ′ =

∂ω

c∂t
sin δ − u

c
M sin δ

sin δ

1 − u
c

cos δ

M′ sin δ′ =
M sin δ

γ
(
1 − u

c
cos δ

)
N′ sin δ′ =

N sin δ

γ
(
1 − u

c
cos δ

) .

(433)

We define the vector

t = ∇δ × sin δ∇ω = t1 υc + t2β + t3γ =

= (KN sin δ − LM sin δ)
υ

c
+

+

(
∂δ

c∂t
N sin δ − L

∂ω

c∂t
sin δ

)
β

+

(
K
∂ω

c∂t
sin δ − ∂δ

c∂t
M sin δ

)
γ.

(434)
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The topography of the generalized photon is defined by
the following theorem:

Theorem 5. The Topographic Theorem. For every inertial
frame of reference and for every generalized photon, the fol-
lowing hold:

1. If it is (t1, t2, t3) , (0, 0, 0), then the generalized photon
is of one spatial dimension. The material points of the
generalized photon are arranged on a curve. At each
point of the curve the vector t is tangent on the curve.

2. The generalized photon can have two spatial dimen-
sions, with its material points arranged on a surface.
Then at each point of the surface, the vector n, vertical
to the surface, is given by n = ∇δ

∥∇δ∥ =
∇ω
∥∇ω∥ .

3. If the material points of the generalized photon are ar-
ranged in the three-dimensional space, then it is K =
L = M sin δ = N sin δ = ∂δ

c∂t =
∂ω
c∂t sin δ = 0.

For the material point particle and for the velocity vector
(429), we obtain from equations (51) and (34)

∂δ

c∂t
= − u · β

cr
(
1 − υ · u

c2

)
K =

1
r

L = 0

sin δ
∂ω

c∂t
= − u · γ

cr
(
1 − υ · u

c2

)
M sin δ = 0 N sin δ =

1
r
.

Thus, we get

t1 = KN sin δ − LM sin δ =
1
r2 , 0

and, therefore, it is t , (0, 0, 0). Consequently, in the case
of equation (429) the generalized photon is of one spatial
dimension. Therefore, the trajectory representation theorem
emerges, as we saw in paragraph 2.4.

The topographic theorem permits the study of the self-
variations for non-point material particles.
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On the Uniform Dimension System. Is There the Necessity for Coulomb?

Anatoly V. Belyakov

E-mail: belyakov.lih@gmail.com

The dimensions of electrical units (Ampere, Coulomb, etc.)are surplus. It is shown
that the most appropriate is to replace the electric charge with the ultimate momentum
of the electron. Then all the dimensions of electrical and magnetic values get simplified
and assume physically obvious form.

Although electric and magnetic dimensions in systems CGSE
and CGSM are expressed in the terms of mass, length, and
time units (in SI units Ampere was added), they seem strange
and bizarre. The exception is a unit of capacity in the system
CGSE whose dimension (centimeters) looks convincing. Of
course, the dimensions are relative; however, it causes inter-
nal resistance, misunderstanding, and difficulties in the per-
ception of the relevant areas of physics, especially for stu-
dents. Is there need of having electrical values proper, above
all Ampere (or Coulomb)?

Indeed, the basic formulae (the electrical force between
the charges and the magnetic force between current-carrying
conductors) can be represented with a single dimensional fac-
tor of force. Only the number of electric chargesz is mean-
ingful for the force of electrical and magnetic interaction. In
the Coulomb formula a unit of the charge can be expressed
through the electron massme and the classical electron radius
re. Then Coulomb formula can be obtained as:

Fe =
me c2

re

( re

r

)2
z1 z2 ,

wherer, c, z1, z2 are, respectively, the distance between the
charges, the velocity of light, and the number of the electric
charges.

Here dimensional coefficient mec2/re is the centrifugal
force that occurs when an electron moves with the light ve-
locity c of the radiusre. This force is equivalent to the force
acting between two elementary charges by the given distance
and its numerical value is a very ordinary magnitude equal
29.06 N.

In what units electric charge should be measured? Ac-
cording to John A. Wheeler’ idea, the charged microparticles
are special points in the three-dimensional spatial surface of
our world, connected to each other through “wormholes” —
vortical tubes analogous to the lines of current working ac-
cording to the “input-output” (“source-drain”) principle, but
in an additional dimension of space (but that does not mean
that it is necessary to add a fourth spatial dimension [1]). In
this model the electric charge is not a special kind of mat-
ter: the electric charge only manifests the degree of the non-
equilibrium state of physical vacuum; it is proportional tothe
momentum of physical vacuum in its motion along the con-
tour of the vortical current tube.

Therefore, the most appropriate is to replace the elec-
tric charge in formulae Coulomb and Ampere with the ulti-
mate momentum of the electronmec. Then all the dimen-
sions of electrical and magnetic values get strikingly simpli-
fied and assume sensible and physically obvious form. So, in
SI units: current becomes force — [kgm/sec2] or [N], the po-
tential becomes velocity — [m/sec], capacity becomes mass
of the electrons accumulated on the plates of the capacitor
— [kg], conductivity becomes mass velocity — [kg/sec], in-
ductance becomes the reciprocal value of mass acceleration
— [sec2/kg], the magnitude of the solenoid magnetic field
becomes the number of turns per unit of solenoid length —
[m−1], etc.

The numerical values of the expressions for the electrical
and magnetic forces, written in a “Coulombless” form with
the charge replaced by the ultimate momentum of the elec-
tron, coincide with these values based on standard expres-
sions at the following conditions:

— the value 4πε0, which in SI units is 1.11×10−10

Farad/metre, is replaced by a new electric constantε0 =

me/re = 3.23×10−16 [kg/m];

— magnetic constantµ0, which in SI units is 4π×10−7

Henry/metre, is replaced by a new magnetic constant
µ0 = 1/ε0c2 = 0.0344 [N−1].

Thus, the electric constantε0 makes sense the linear den-
sity of the vortex tube current, and the magnetic constantµ0

makes sense the reciprocal value of the interaction force be-
tween two elementary charges.

With such mechanistic interpretation Wheeler’s scheme
numerical values of the electric charge and radiation con-
stants were successfully obtained [2]. In such system value
587mec [kgm/sec] is the momentum of the vortical tube cur-
rent the whole, it numerically corresponds to the electron
chargee0 = 1.602×10−19 Coulomb; at the same time the value
me c [kgm/sec] corresponds to the “point-like” electron
charge. The value of 587 [m/sec] corresponds to one Volt in
SI units, the value of 4π/5872 = 3.6×10−5 [kg] corresponds
to one Farad in SI units etc. Thus there would be no need
for the systems of CGSE units, CGSM units and the Gaus-
sian units. Replacing the dimensions and introducing new
electromagnetic constants is a purely technical problem, al-
though it is hardly practicable today. It is more important that
mechanistic interpretation of the electromagnetic parameters
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reveals theirs physical meaning and gives help understanding
the nature of phenomena.

For example, the electrical capacity of a sphere of radius
R = 1 [m] is equal to 3.23×10−16 [kg], which corresponds
to 3.5×1014 electrons distributed over its surface and be re-
sponsible for the movement of the charges, while the average
distance between the charges isr = π

√
Rre = 1.67×10−7 [m].

The capacitor charge is proportional to the potential, and
it is easy to determine the satiation potentialϕwhen the num-
ber of electric charges becomes equal with the number of
electrons carrying the charges. Since the “point-like” elec-
tron cannot carries momentum overmec, for an only charge:
ϕ = mec/me = c [m/sec] or, in SI units,c/587 = 511000
Volts. If this potential is exceeded the mentioned magni-
tude, the charge is spontaneously flowing into the surround-
ing space.

In these examples (and in others) quite reasonable values
have been obtained, which could not be if all above-stated
would be wrong. Of course, such associations of electrical
and magnetic values with mechanical ones do not yet mean
reduction of electromagnetic phenomena to mechanical ones.
The question immediately arises, how does the electron be
able to carry momentum which exceeds many times your own
one? However, this question implicitly always existed be-
cause the term “charge” is, in fact, the delicate symbol of not
properly understood electricity essence. To some extent, the
response has been received in this article, as well as in [2, 3].
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The structure of the Lagrangian density of quantum theories of electrically charged
particles is analyzed. It is pointed out that a well known and self-consistent expression
exists for the electromagnetic interactions of a spin-1/2 Dirac particle. On the other
hand, using the Noether theorem, it is shown that no such expression exists for the spin-0
Klein-Gordon charged particle as well as for the W± spin-1 particle. It is also explained
why effective expressions used in practical analysis of collider data cannot be a part of
a self-consistent theory. The results cast doubt on the validity of the electroweak theory.

1 Introduction

Since its very beginning, quantum theory has provided ex-
pressions describing electromagnetic interactions. In partic-
ular, the Dirac equation of spin-1/2 charged particle takes a
covariant form [1, see pp. 16–24]. As is well known, elec-
tromagnetic interactions of a Dirac particle have an extraor-
dinary experimental support. Later, a quantum theory of a
spin-0 Klein-Gordon (KG) charged particle was published [2,
see pp. 188–205]. In the electroweak theory which was con-
structed several decades later, the W± spin-1 charged boson
plays a cardinal role. The discussion presented in this work
examines the Lagrangian density of quantum theories. As
is well known, the electromagnetic interaction term of these
theories depends on a contraction of the charged particle’s 4-
current and the external 4-potential jµAµ. Thus, the Noether
theorem is used for deriving expressions for the charged par-
ticle’s 4-current. In this way the analysis proves that electro-
magnetic theories of spin-0 and spin-1 particles contain in-
herent contradictions.

Units where ~ = c = 1 are used in this work. Hence,
only one dimension is required and it is the length, denoted
by [L]. For example, mass, energy and momentum have the
dimension [L−1], etc. Greek indices run from 0 to 3 and the
diagonal metric used is gµν = (1,−1,−1,−1). The symbol
,ν denotes the partial differentiation with respect to xν. The
summation convention is used for Greek indices. The second
section presents theoretical elements that are used in the dis-
cussion. The third section contains a proof showing that elec-
tromagnetic interactions cannot be a part of a self-consistent
theory of spin-0 and of spin-1 quantum particles. Concluding
remarks can be found in the last section.

2 The theoretical basis of the analysis

The following discussion examines the structure of a quan-
tum theory of an electrically charged particle and its interac-
tion with electromagnetic fields. The need for a Lagrangian
density as basis for a relativistic quantum theory has become
a common practice. This issue can be derived from the fact
that the phase is an argument of an exponent. Thus, the power
series expansion of the argument proves that the phase must

be a dimensionless Lorentz scalar. This requirement is sat-
isfied if the action (divided by ~) is used for the phase and
the Lagrangian density is a Lorentz scalar whose dimension
is [L−4]. Indeed, in this case, the action

S =

∫
L d4x (1)

is a dimensionless Lorentz scalar.
The form of the required Lagrangian density is

L (Φ†,Φ†,µ,Φ,Φ,µ, Aµ, Fµν), (2)

where Φ denotes the function of the charged quantum par-
ticle and Aµ, Fµν denote the electromagnetic 4-potential and
its fields, respectively. In the discussion presented herein the
quantum function Φ represents either scalar, spinor or vec-
tor particle. In specific cases the notation φ represents a KG
charged particle, ψ denotes a Dirac particle and Wµ denotes
the W± particles. Evidently, (1) and (2) prove that the func-
tion Φ has dimension.

Maxwellian electrodynamics is derived from the follow-
ing Lagrangian density [3, see pp. 71–81]

L = − 1
16π

FµνFµν − jµAµ, (3)

where jµ denotes the charge’s 4-current and the last term of
(3) represents the electromagnetic interaction.

This expression demonstrates the crucial role of the 4-
current in a self-consistent theory of an electrically charged
particle. As is well known, the charge 4-current must satisfy
the continuity equation

jµ, µ = 0. (4)

The standard method used for constructing such a 4-current
relies on Noether’s theorem [4, see p. 20]. Thus, in the present
case, the expression for the 4-current boils down to the fol-
lowing form

jµ = i
∂L
∂Φ
†
, µ

Φ† − i
∂L
∂Φ, µ

Φ. (5)

(Note that due to the opposite phase sign of Φ† and Φ, cor-
responding terms derived from these functions have opposite
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sign.) Thus, in the case of a charged particle, the Noether 4-
current (5) is multiplied by the electric charge e. Relying on
(5), one concludes that the 4-current is derived from terms of
the Lagrangian density that contain a derivative of the field
function with respect to the coordinates xµ. The 0-component
of (5) represents the particle’s density. Hence, the dimension
of jµ is [L−3].

A standard method used for the introduction of electro-
magnetic interaction is to substitute the following transforma-
tion in the free Lagrangian density of the particle (see e.g. [1,
p. 10])

−i
∂

∂xµ
→ −i

∂

∂xµ
− eAµ(xν). (6)

Later, this substitution is called the standard form of elec-
tromagnetic interaction. This form as well as other forms of
electromagnetic interactions are discussed in the next section.

3 Quantum charged particles

The Dirac Lagrangian density of a free spin-1/2 particle is [4,
see p. 54]

L = ψ̄ [γµi∂µ − m]ψ. (7)

This expression is linear in the mass. Hence, the dimension
[L−4] of the Lagrangian density means that the dimension of
the Dirac function ψ is [L−3/2]. An application of the Noether
relation (5) for a construction of the 4-current yields the well
known Dirac expression [1, see pp. 23–24] which is written
below in the standard notation

jµ = e ψ̄γµψ. (8)

The dimension [L−3/2] of the Dirac function ψ shows that (8)
has the required dimension.

The case of the KG and of the W Lagrangian density is
different. Here the mass term takes the form (see [4, p. 26]
and [5, p. 309], respectively)

−m2Φ†Φ. (9)

Different numerical factors of (9) are not mentioned and the
same is true for the contraction of the 4 components of the
W function. Relationship (9) means that the dimension of the
KG and of the W functions is [L−1]. Thus, in order to sat-
isfy the [L−4] dimension of the Lagrangian density of these
particle, it must contain terms that are bilinear in derivatives
with respect to the space-time coordinates xµ. Applying the
Noether relation for the 4-current (5), one finds that the 4-
current of the KG and of the W particles contains a derivative
with respect to xµ. This property means that utilizing of the
standard form of the introduction of electromagnetic interac-
tions (6), one finds that the 4-current of the KG and of the
W particles depends linearly on the 4-potential of the elec-
tromagnetic fields. (This is certainly inconsistent with gauge
invariance, because here a gauge transformation alters charge
density and the associated field values as well. However, this

matter is not discussed in the present work.) The dependence
of the charged KG 4-current on the external electromagnetic
4-potential has already been shown a long time ago [2, see
p. 199].

Let us turn to the electromagnetic fields. The interaction
term of the Maxwellian Lagrangian density (3) is jµAµ. Now,
if the 4-current jµ of the KG and of the W particles depends
linearly on the 4-potential of electromagnetic fields then there
is a quadratic term of the 4-potential in the expression for the
interaction term in the Maxwellian Lagrangian density (3).
This is a contradiction because in Maxwellian electrodynam-
ics the interaction term must be linear in the 4-potential [3, see
pp. 78–79].

The foregoing discussion proves that there is no theoreti-
cally valid expression for the electromagnetic interaction of a
KG particle and of the W boson as well. Thus, in the case of
the W boson people resort to a phenomenological expression
that goes by the name effective Lagrangian density [6,7]. Us-
ing standard notation for the W field, one of the nonvanishing
electromagnetic interaction terms of the effective Lagrangian
density is

Lint = −ie (W†µνW
µAν −W†µWµνAν). (10)

The articles [6,7] have been cited many times and (10) is still
used in a collider data analysis [8, see eq. (1)] [9, see eq. (3)].

The following argument proves that (10) is indeed an ef-
fective expression which cannot be justified theoretically. Let
us assume that (10) is a term in a theoretically justifiable La-
grangian density. In this case the following expression

jν = −ie (W†ν
µ Wµ −W†

µWµν) (11)

represents the electric 4-current of the W boson. But (11) con-
tains the factors W†µν and Wµν, and by the definition Wµν =

∂µWν − ∂νWµ, each of which is a derivative with respect to
xµ. Therefore, due to the Noether theorem (5), the interaction
term (10) alters the 4-current of the W boson and adds to it a
troublesome term that is proportional the the external electro-
magnetic 4-potential Aµ. Hence, contrary to the assumption
examined herein, (11) does not represent the 4-current of the
W boson. This contradiction substantiates the proof.

A second electromagnetic term which is introduced into
the effective Lagrangian density of the W is [6–9]

Lint = ie W†
µWνFµν. (12)

This term is certainly inconsistent with electromagnetic in-
teractions because these interactions are proportional to the
4-current of the charged particle and the dimension of the 4-
current is [L−3]. On the other hand, it is proved above that
the dimension of the W function is [L−1] and that of W†

µWν is
[L−2]. Therefore, (12) cannot represent a consistent electro-
magnetic interaction.
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4 Conclusions

The solid mathematical structure of the spin-1/2 Dirac equa-
tion and its successful experimental status are pointed out
above. Here a self-consistent relativistically covariant elec-
tromagnetic interaction exists. Thus, nobody finds the need
to resort to “effective Lagrangian density”.

A different situation holds for the cases of spin-0 and spin-
1 elementary particles. It is proved in this work that for these
particles the standard methods used for constructing electro-
magnetic interactions fail. Furthermore, it is proved above
that the authors of [6, 7] are right in their description of the
W boson electromagnetic interaction (10) as an effective ex-
pression. However, a proof presented in the previous sec-
tion shows that (10) cannot be a part of a theoretically self-
consistent Lagrangian density. This outcome means that the
W boson cannot carry an electric charge. Now, the W boson
takes a vital part in the unification of electrodynamics with
weak interaction which is called electroweak theory. There-
fore, the results cast doubt on the validity of the electroweak
theory.

Another result of the discussion presented above is that
the experimentally detected W boson cannot be an elemen-
tary particle described by a field function that takes the form
W±µ(xν). Indeed, a dependence on a single set of space-time
coordinates xµ is a property of a structureless pointlike ele-
mentary particle like the electron etc. Thus, the actual W±

particles must be composite particles and it looks plausible to
regard them as a combination of mesons of the top quark and
either of the d, s, b antiquarks or vice versa. It turns out that
the conclusions of this work provide an independent support
to similar conclusions that have been published earlier [10].
It should also be noted that the results of this work are consis-
tent with Dirac’s lifelong objection to the KG equation [11].
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The paper presents the results of studies on pulsed signals in photocurrent (PCC-2 in-
strument), in the 565-nm LED spectrum, and in the atmospheric zenith spectrum (342.5
nm). According to the results of statistical analysis of data measurements for the period
from 24.04.04 till 01.02.06 a correlation between the temporal distribution of pulsed
signals in photocurrent PCC-2 and CA F10.7 cm (2800 MHz) index and the total solar
radiation (TSI) was established. In the course of the parallel measurements of photocur-
rent in PCC-2 and fluctuations in the spectra frequencies of the LED and the atmosphere
zenith, based on the average daily values of the standard deviation, the identical trend in
the photocurrent pulse signals (PCC-2) and the fluctuationsat 520-nm LED spectrum
and 342.5-nm atmosphere zenith spectrum was detected (AvaSpec–2048 spectrometer).

1 Introduction

The way towards recognition of the role of unknown cos-
mophysical effects on the Earth processes presents certain
difficulties. At the first stage of research, the existence of
non-electromagnetic radiation affecting the physical and bi-
ological systems was hypothesized. Among these, the con-
clusion about the advanced (4–6 days lead time) increase of
corynebacteria sensitivity to the emergence of active forma-
tions on the surface of the Sun made by A. L. Chizhevsky and
S. T. Velkhover [1] should be mentioned. It may be only as-
sumeday be tions ioned that these formations are linked to
perturbations in the deep spheres of the Sun and are accom-
panied by the topography changes in its gravitational field.
At least, this is supported by the existence of lead time phe-
nomenon undetected by other methods.

The applied research of the cosmophysical radiation and
its impact on physical systems started with the works of
N. A. Kozyrev [2], who had registered with a telescopic sys-
tem the effect of unknown factor of high penetrating power.
Due to the fact that the optical entrance of the telescope was
overlaid with a metal screen, a non-electromagnetic originof
the registered radiation may be suggested. The results re-
ceived by N. A. Kozyrev were confirmed later, in the experi-
ments of the workgroup headed by M. M. Lavrentiev, Fellow
Russian Academy [3]. Valuable results were obtained at the
recent stage of research [4–8].

2 Studies of pulsed signals in photocurrent measure-
ments with PCC-2

Technical characteristics of PCC-2 instrument: Photoelectric
concentration colorimeter (PCC-2) is designed for measuring
coefficients of transmission and optical density of solutions
in the range of 315–980 nm (a set of optical light filters), as
well as to determine the concentration of substances in solu-
tion by constructing calibration curves. Radiation detectors:
F-26 photocell for operating in 315–540 nm range and FD-
7K photodiode for operating in 590–980 nm range (Fig. 1).

Fig. 1: Photoelectric concentration colorimeter (PCC-2).

Recording device of the instrument is M 907-10 microamme-
ter with digitized scale for coefficients of transmission and
optical density. Power supply 220± 22 V, 50/60± 0.5 Hz.
The source of radiation – KGM 6.3 – 15 small-size halogen
lamp. The range of readings that characterizes random errors
does not exceed 0.3%.

The normal running conditions for PCC-2 are: temper-
ature (20± 5)◦C, relative humidity 45–80%, mains voltage
220 ± 4.4V, 50 Hz.

In the course of the Antarctic expedition to Mirny sta-
tion, 1996–1997, during measurements of the dynamics rate
of biochemical reactions [9], sharp microammeter deflections
on PCC-2 panel were recorded, which corresponded to the in-
creased optical density of the reaction under study. Since the
bursts are uncharacteristic of the instrument properties and
admissible estimates under the experimental procedure, itwas
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suggested that the reason for the observed bursts might be
associated with non-trivial fluctuations (pulsed signals)[10,
11]. The general characteristics of pulsed signals is as fol-
lows:

— The polarity of pulsed signals corresponded to the de-
crease of photocurrent magnitude;

— Pulsed signals were observed at any time of the day,
including around midnight;

— The duration of bursts was less than one second;

— Bursts were registered under various shielded condi-
tions in the laboratory building coated with duralumin
sheets (Antarctica); in ship-board space, multiple-
shielded by steel deck grillage (RSV “Akademik Fe-
dorov”); and in a cast-concrete building (AARI,
St.Petersburg). The intensity of pulsed signals in
Antarctica was considerably higher than
in St.Petersburg;

— Pulsed signals have no geographic restrictions, they
were recorded both in the Southern and Northern
hemispheres, from 70◦S (Antarctica, 2000) to
86◦N (Arctic, 2000).

Since the receiving unit in the instrument is represented
by a photocell, where the photocurrent is recorded with a
micro-ammeter, variation recording on the instrument panel
was transformed through the recording of photocurrent val-
ues in the absence of working substance. Testing of photocur-
rent measurements was performed in a cast-concrete building
(AARI, St. Petersburg) in automatic mode via the COM-
port of a PC, using DM3600 digital multimeter. The ex-
periment was supplemented by PCC-2 thermal stabilization
20◦C (±1). Uninterrupted power supply to the entire sys-
tem was ensured by UPS-525 bt. In the course of measure-
ments, abrupt changes of photocurrent in the form of a pulsed
signal, in the direction of its decrease, was recorded. Sam-
ple registration of pulsed signals in photocurrent is shown
in Fig. 2.

The practice of geophysical observation involves methods
of testing the effects of artificial electromagnetic interference
on the recording systems. Testing may be valid if the experi-
ment is placed away from the metropolis, to minimize the im-
pact of anthropogenic factors. Following these requirements,
photocurrent measurements with PCC-2 were conducted at
Novolazarevskaya station (Antarctica) in 2004.

3 Checking the integrity of the experiment

At the primary stage of automated measurements, PCC-2 sen-
sitivity to the effects of artificial electromagnetic field
(AEMF) was tested. The following instruments were used
in the experiment:

1. Coil–to generate an electromagnetic field:

— Radius of turn: 0.055 m;

Fig. 2: Sample registration of pulsed signals in photocurrent
(PCC-2)

— Coil dimensions: width of turn–0.07 m,
diameter–0.11 m;

— Number of turns: 17;

2. Self-contained DC power source: storage battery 24 V,
75 A×hour;

3. Dropping resistor RD = 2 Ohms;

4. “Mastech” M-832 digital multimeter;

5. Stationary recording magnetometer at Novolazarev-
skaya station;

6. PCC-2 photocurrent recording system:

— PCC-2 microphotocolorimeter;

— M3850D digital multimeter (with RS-232 cable
outlet);

— Power supply unit for multimeter.

The magnetic field was excited by a pulsed current with-
out a dropping resistor. The protocol of PCC-2 testing effects
is provided in Table 1.

3.1 Measurements of the magnetic field generated by
the coil

Measurements of the magnetic field induced by coil were
conducted with stationary recording magnetometer (SRM) at
Novolazarevskaya station. The magnetic field was excited by
a pulsed current without a dropping resistor, and by a constant
current with a dropping resistor (R= 2 Ohms). Generation of
DC magnetic field for longer than 1 second without limiting
resistance was not possible, because the strength of current
could be as high as 100A against the resistance of coil∼ 0.2
Ohms. For this case, the magnetic field of coil was measured
additionally with dropping resistor included in the circuit.

3.2 Measurement results

Since the three-component magnetic variometer can not be
considered as a point-source instrument at a distance of 1 me-
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Time (GMT) The distance to the PCC-2 The position of the coil The mode of influence Vector magnitude of induction
of a magnetic field (nT)

16:16:30 1.5 m vertical a single pulse 450 – 900
pulse duration∼ 0.2 c

16:17:00 1.5 m vertical a single pulse 450 – 900
pulse duration∼ 0.2 c

16:17:35 1.5 m vertical a single pulse 450 – 900
pulse duration∼ 0.2 c

16:18:20 1.5 m horizontal E-W a single pulse 450 – 900
pulse duration∼ 0.2 c

16:18:30 1.5 m horizontal E-W a single pulse 450 – 900
pulse duration∼ 0.2 c

16:18:40 1.5 m horizontal E-W a single pulse 450 – 900
pulse duration∼ 0.2 c

16:19:30 1.5 m horizontal N-S a single pulse 450 – 900
pulse duration∼ 0.2 c

16:19:45 1.5 m horizontal N-S a single pulse 450 – 900
pulse duration∼ 0.2 c

16:20:00 1.5 m horizontal N-S a single pulse 450 – 900
pulse duration∼ 0.2 c

16:20:15 1.5 m horizontal N-S a single pulse 450 – 900
pulse duration∼ 0.2 c

16:21:30 1.9 m vertical a single pulse 250 – 500
pulse duration∼ 0.2 c

16:21:40 1.9 m vertical a single pulse 250 – 500
pulse duration∼ 0.2 c

16:21:45 1.9 m vertical a single pulse 250 – 500
pulse duration∼ 0.2 c

16:22:00 1.9 m horizontal E-W a single pulse 250 – 500
pulse duration∼ 0.2 c

16:22:10 1.9 m horizontal E-W a single pulse 250 – 500
pulse duration∼ 0.2 c

16:22:15 1.9 m horizontal E-W a single pulse 250 – 500
pulse duration∼ 0.2 c

16:23:00 1.9 m horizontal N-S a single pulse 250 – 500
pulse duration∼ 0.2 c

16:23:10 1.9 m horizontal N-S a single pulse 250 – 500
pulse duration∼ 0.2 c

16:23:15 1.9 m horizontal N-S a single pulse 250 – 500
pulse duration∼ 0.2 c

Table 1: Results of AEMF testing effects on PCC-2.
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ter (three sensors located along a straight line, at a distance of
16 cm), the numeric value (module of vector) of magnetic
induction in the coil with current could be calculated only ap-
proximately, based on the data from three variometers. Vari-
ations in 3 components of the magnetic field were registered
– D (WE), H (SN), and Z (vertical). Module of the vector T
was calculated by the equation:

T =
√
∆D2 + ∆H2 + ∆Z2. (1)

The results of calculations are presented in Table 2.
Given that the value of coil resistance Rcat equaled 0.2

Ohms and in dropping resistor 2 Ohms, it could be expected
that the magnetic field in the coil carrying current would be
∼10 times higher with the switched dropping resistance than
without it. However, we did not account for the internal re-
sistance of the battery, which depends both on the current fre-
quency (essential in case of a current pulse) and its strength.
Table 2 demonstrates that other conditions being equal, a coil
powered by the same battery creates a magnetic field, which
is 4–5 times greater under dropping resistor, as compared to
the field generated without it. This ratio is probably even
more, due to the low frequency of ADC sampling used in
measurements of pulsed fields.

As is known, the maximum and minimum values of mag-
netic induction vector differ two-fold exactly, if measured
equidistant from the center of the magnetic dipole. The coil
size being∼ 0.1 m, the field of the coil can be regarded with
good accuracy as a dipole field, at a distance above 1 m from
its center. Thus, when the coil is powered by a battery in a
pulsed mode, magnetic induction measured at 1 m off the coil
center ranges from 1500 nT (in the plane perpendicular to the
coil axis) to 3000 nT (on its axis). The findings of the ex-
periment showed that the photocurrent readings in PCC-2 are
not affected by pulsed electromagnetic field with the magnetic
component value> 6000 nT, which is greater by 2–3 orders of
magnitude than the maximum amplitude of geomagnetic pul-
sations at 0.1–0.001 Hz frequencies, and several times higher
than the intensity of the strongest magnetic storms. The sec-
ond experiment on the effects on PCC-2 was conducted with
high-frequency transmitter (1782 MHz), ACS-1 radiosonde
aerological service at Novolazarevskaya station. Characteris-
tics of the transmitter: — Operating frequency 1782±20 MHz
— Pulse recurrence frequency 457.5±0.2 Hz — Pulse dura-
tion 1 mcs — Transmitter power 2 W/ 300 W The distance
between the PCC-2 location “geophysicists’ premises”) and
the aerological service was measured with a GPS receiver and
made 145±15) m along a straight line. Effects of ACS-1 were
estimated through sessions, of 18 minutes total duration, in 2
W and 300 W modes.

Emission series under transmitter power 2W: a) from 22h

34m till 22h at 37 m, at 0◦ vertical deviation b) from 22h 37m

till 22h 39m, at +1◦ vertical deviation c) from 22h 39m till
22h 43m, at+3◦ vertical deviation, aimed to receive the sig-
nal reflected from the adjacent rocks (∼ 50 m) and the ice cap

(∼ 500 m). The signal reflected from the ice cap was fixed
on the radar screen. The signal reflected from the rocks was
within the measurement error, due to time delay arising from
the proximity to the transmitter. Emission series under trans-
mitter power 300W: a) from 22h 51m till 22h 56m, at 0◦ ver-
tical deviation b) from 22h 56m till 22h 59m, at+1◦ vertical
deviation c) from 22h 59m till 23h 02m, at 1◦ vertical devia-
tion.

The experimental result proved that photocurrent readings
are unaffected by PCC-2 exposure to the high-frequency elec-
tromagnetic field.

4 Data analysis and search of driving factor

Data processing and analysis of photocurrent measurements
were carried out with “Statistica” software using the follow-
ing statistical methods:

— Calculation of the parameters of the distribution (stan-
dard error, standard deviation, variance);

S =

√

√

1
n− 1

n
∑

i=1

(xi − x̄)2. (2)

— Spectral (Fourier) analysis (periodograms, estimate of
the spectral density), cross-analysis, the value of coher-
ence;

— Identification of the time series model (trend analysis),
and analysis of the inadequacy of the model (analysis
of residuals),ei = (yi − yi − hat);

— Parabolic polynomial interpolation of the best approxi-
mationy = b0 + b1x+ b2x2 + b3x3 + ... + bnxn;

— Selection of the filtering method, use of the moving av-
erage (from 3 to 23 points);

— Cross-correlation, correlation factor (r).

During the period of photocurrent measurements with
PCC-2 at Novolazarevskaya station, from 24.04.2004 till
01.02.2006, over 20,000 events of pulsed signals were reg-
istered. The average daily number of signals comprised≈300
events, with a minimum of about 80 and a maximum of 580
events. All registered signals are characterized by the polar-
ity in the direction of decreasing photocurrent, 30–50%, on
average. The long-period variations of about one year du-
ration may be distinguished in the general distribution pat-
tern of pulsed signals (Fig. 3). The figure also reveals that
broad maxima correspond to the end periods of the polar night
(July–August). Hence, the number of signals (intensity) does
not depend on the influx of solar radiation. In search for the
connection of these variations with cosmophysical factors, at-
tention was given to the annual Earth motion along the orbit
(the ecliptic). As is known, the equation of time [12] is the
sum of two following components. These are theeccentricity
equationand theecliptic inclination equation(the declination
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Time (GMT) The distance to the SRM The position of the coil The mode of influence Vector magnitude of induction
of a magnetic field (nT)

15.07.2006 2 m horizontal E-W a single pulse ∼ 200 nT
14:03:10–14:03:16 pulse duration∼ 0.2 c

15.07.2006 1.5 m horizontal E-W a single pulse ∼ 700 nT
14:06:33–14:06:34 pulse duration∼ 0.2 c

15.07.2006 1 m vertical a single pulse ∼ 2500 nT
14:09:42–14:09:51 pulse duration∼ 0.2 c

20.07.2006 1 m vertical constant field ∼ 600 nT
10:43:30–10:44:00

20.07.2006 1 m vertical constant field ∼ 650 nT
10:51:00–10:51:35

20.07.2006 1 m vertical constant field ∼ 550 nT
10:53:45–10:54:15

20.07.2006 1 m horizontal E-W constant field ∼ 360 nT
10:56:45–10:57:15

Table 2: Results of AEMF testing effects on SRM.

of the Sun). While the bonding of the connection of the sig-
nals and theecliptic inclination equation, we obtained a cor-
relation whose coefficient is close tor ∼ 0.7. Fig. 3 (a, b) gives
the comparision of the numerical values of the daily impulse
signals in the photocurrent (KFK-2) and the numerical values
of the Sun’s declination during 24.04.2004–01.02.2006.

In general distribution of the signals, variations of differ-
ent duration are traced. Their behavior was identified by com-
paring the total signal distribution with the indices of solar ac-
tivity and the total solar radiation (TSI), as well as with fluxes
of solar cosmic rays and geomagnetic activity indices. These
comparisons revealed that the changes of the daily values of
signals best correspond to the SA F10.7 cm index changes
and the average daily standard deviation of energy TSI (SD).
Standard deviation (SD) shows the variance of the random
variable values, with respect to its statistical expectation, i.e.,
the rate of within-group variability of a given indicator. Com-
parisons of the series are shown in Figs. 4–5 (a, b). The less
pronounced relationship is viewed in case of K-index (Fig. 6)
and the SCR fluxes (Fig. 7). Figure 7 demonstrates good
matching in the value’s trends starting from 425 days (late
June 2005).

5 The parallel measurements of the photocurrent
(KFK-2) and the fluctuations at the 520 nm
wavelength, in the light-emitting diode 565 nm
(AvaSpec-2048).

Assuming that the effects in PCC-2 photocurrent were caused
by heliophysical impact, similar effects should be expected in
the readings of other instruments.

AvaSpec-2048 (www.avantes.com) is a multifunctional
fiber optic spectrometer intended for a wide range of studies
(Fig. 8). The spectrometer is designed on AvaBench-75 plat-
form with symmetric optical bench (Czerny-Turner). The el-
emental profile of spectral distribution is read by the operated

electronic board and is further transferred from the detector
matrix to PC via USB/RS-232.

The task of the second experiment was to conduct “PCC-
2 –AvaSPec–2048” parallel measurements referenced to GPS
universal time. The measurements were performed from
16.05.05 till 01.11.05, with spatial separation of the instru-
ments up to 5 m distance, in a continuous automatic mode.
When processing fluctuations in different LED (565nm) spec-
tral lines, the 520 nm line was selected, where the observed
pulsed signals had the same specifics as in PCC-2. Fig. 9
shows an example of the registration. The first estimates of
fluctuations comparing the two methods were obtained for the
period from 31.05.04 till 08.09.04. Figure 10 shows the tem-
poral comparisons for daily values of bursts in photocurrent
FD-7K and energy fluctuations the wavelength 520 nm con-
verted into the average daily standard deviation (SD).

6 Parallel measurements of photocurrent (PCC-2) and
fluctuations within the 339.5–346 nm range of the at-
mosphere zenith (AvaSpec–2048)

Measurements of fluctuations within the 339.5–346 nm range
of the atmosphere zenith were conducted with fiber optic
spectrometer AvaSpec–2048. The data acquisition chart on
spectral zenith observations of solar UV–radiation
is presented in Fig. 11.

The measurements were performed during the polar sum-
mer, in accordance with the methodology of zenith observa-
tions on the ozone content, at the Sun angle> 5◦. Data were
recorded in the files in automatic mode, with a sampling in-
terval of 2–3 seconds. Observations were accompanied by
time corrections from GPS. The initial phase of observations
aimed at the search of non-instrumental fluctuations at the full
range of frequencies, within 297–780 nm range. At 0.3 nm
resolution of diffraction grating, more than 1,300 spectrum
lines were analyzed. To conduct parallel measurements with
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Fig. 3: the comparison of the distributions of the daily numerical val-
ues of the impulse signals of KFK-2 and the general number poly-
nomial b) and the ecliptic inclination (the declination of the Sun)
during 24.04.2004–01.02.2006 (Novolazarevskaya station).

the spectrometer and PCC-2, four ranges of the atmosphere
zenith spectrum were selected (303–305 nm, 331–332.5 nm,
329.5–334 nm, 339.5–346 nm), for which the standard devi-
ation of energy (SDE) exceeded the instrumental fluctuations
by an order, or above [13, 14]. Figure 12 shows a sample
recording of fluctuations in the range of 339.5–346 nm. The
profile demonstrates bipolar fluctuations reaching 339.5 nm
and 346 nm levels, measured in the center of 342.5-nm fre-
quency range.

The energy estimates (eV/photon) of pulsed signals were
defined. For example, according to the formula:

photon energy E(λ) =
h c
λe
, (3)

Fig. 4: Comparison of temporal changes in solar activity index
F10.7 cm (2800 MHz) with distribution of the daily values of
pulsed signals in PCC-2, for the period 24.04.2004–01.02.2006
(Novolazarevskaya station).

where,h=Planck’s constant 6.62606876×10−34; c= velocity
of light, 2.998× 108 m/s;λ = wavelength in meters.

The average estimates of pulsed signals of energy within
the 339.5–346 nm range were as follows:

Emin (346nm)= 3.583 (eV/photons),

Emean(342.5nm)= 3.619 (eV/photons),

Emax(339.5nm)= 3.652 (eV/photons).

Comparison of fluctuations within the tested ranges with
pulsed signals in PCC-2 showed an ambiguous correlation.
The most consistent changes in PCC-2 pulsed signals were
observed within a 339.5–346 nm range. Comparison of the
series for the period from 25.09.07 till 17.12.07 illustrates this
example in Fig. 13.

7 Prognostic functionalities of the observed effects

In addition to the obtained results, the general distribution
pattern was detected in the daily values of pulsed signals mea-
sured with PCC-2, which corresponded to≈ 300-day cycle.
This period was revealed through the comparison of the an-
nual intervals of the general series, with a difference of about
two months. The second interval was compared to the first
against the difference minus≈ 60 days from the start of the
first interval. For example, the top graph in Figure 14 (a, b)
shows the intervals comparison for 24.04.2004–23.04.2005
and 21.02.2005–01.02.2006. On the bottom figure, the cross-
correlation function of two series by logs, with corresponding
correlation factors, is shown. It can be seen that the maximum
correlation value reachesr ∼ 0.7. Assuming all the above re-
lationships between pulsed signals and variations of the SA
index and TSI, a 300-day cycle was also detected in the F10.7
cm index and TSI. A comparison of F10.7 cm and TSI dis-
tribution patterns within the annual intervals is providedin
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Fig. 5: Comparison of temporal changes in energy TSI, and b) —
Comparison of the daily average standard deviation TSI (SD)with
distribution of the daily values of pulsed signals in PCC-2,for the
period from 24.04.2004 till 01.02.2006 (Novolazarevskayastation).

Fig. 6: Comparison of temporal changes in K-index variations with
distribution of the daily values of pulsed signals in PCC-2,for the
period from 24.04.2004 till 01.02.2006 (Novolazarevskayastation).

Fig. 15 (a, b): 24.04.2004–24.04.2005 and 24.02.2005–
01.02.2006. Figure 15 (a) indicates the matching of F10.7
cm index variation in phase opposition of variations.

Fig. 7: Comparison of the temporal changes in SCR electron vari-
ations (> 0.6 MeV) with distribution of the daily values of pulsed
signals in PCC-2, for the period from 24.04.2004 till 01.02.2006
(Novolazarevskaya station).

Fig. 8: Spectrometer AvaSpec-2048 (www.avantes.com).

Fig. 9: Sample recording of pulsed signals at 520-nm frequency
in 565-nm LED spectrum (AvaSpec–2048) (Novolazarevskaya sta-
tion).

Comparison is presented upon the unfiltered values (with-
out leveling). Unlike F10.7 cm, the daily average standard
deviation of the energy TSI reveal matching of variations in
the same phase character but if applying the moving average
filter to 21 pts. The maximum amplitude in SD (TSI) is asso-
ciated with a solar flare.

As regards the contribution of geomagnetic factors to the
300-day period, its manifestation was traced in the interplan-
etary magnetic field component (By). Figure 16 shows the
comparison of By values for the intervals 01.01.2003–
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Fig. 10: Comparison of daily values of bursts in photocurrent with
the average daily standard deviation (SD) of fluctuations atthe 520
nm wavelength (AvaSpec–2048), for the period from 15.05.05to
01.11.05 (Novolazarevskaya station).

Fig. 11: Data acquisition chart on spectral zenith observations of
solar UV–radiation in the atmosphere zenith (Novolazarevskaya sta-
tion).

Fig. 12: Sample registration of fluctuations in 339.5–346 nmrange
(AvaSpec–2048), at clear atmosphere zenith, from 07h 00m till 17h

00m (09.03.2005, Novolazarevskaya station).

01.01.2004 and 27.10.2003–27.10.2004. The identity in vari-
ations and the phase convergence of the series, as demon-

Fig. 13: Comparison of the daily average standard deviationof fluc-
tuations in energy (SDE) within the 339.5-346 nm range (AvaSpec-
2048) in the atmosphere zenith and PCC-2 pulsed signals, forthe
period from 23.09.07 to 20.11.07 (Novolazarevskaya station).

Fig. 14: Comparison of PCC-2 daily values of pulsed signals
within the intervals 24.04.2004–24.04.2005 (a) and 21.02.2005–
01.02.2006 (b) (Novolazarevskaya station).

strated in Figure 16, is the most indicative of the existence
of the 300-day cycle. As in the case with F10.7 cm, unfil-
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Fig. 15: Comparison of F10.7 cm and TSI distribution patterns
within the intervals 24.04.2004–24.04.2005 (a) and 24.02.2005–
01.02.2006 (b).

tered series were compared. This convincing fact is not yet
explained through the known mechanisms of solar-terrestrial
relationships.

Thus, pulsed signals bear prognostic characteristics asso-
ciated, in our opinion, with the unknown heliophysical factor.

Similar results were obtained under extensive laboratory
experiments conducted by Sergey Korotaev at Geoelectro-
magnetic Research Institute RAS (Troitsk, Moscow Region,
Russia) [6].

His publication considers the phenomenon of non-locality
and correlation of isolated dissipative processes, as wellas
description of the experiment and the results of investiga-
tions. Using two types of detectors based on the link between
the entropy and the potential barrier height U, reliable cor-
relations were established between: lead variations of dark
current and temporal events in the atmospheric pressure (69,
73 days), variations of geomagnetic activity (Dst-index) (33
days) and variations of the F10.7 cm index (42 days). Based

Fig. 16: Comparison of variations of the interplanetary mag-
netic field component By, by intervals: 01.01.2003–01.01.2004 and
27.10.2003–27.10.2004.

on the established correlations between the detectors and SA,
the author established a temporal range of the lead coupling,
from 42 to 280 days.

8 Conclusion

In our assumptions on the source of pulsed signals, the impact
of cosmic particles fluxes and their secondary radiation (pro-
tons and products of their interaction with atmospheric nuclei
— positrons, muons, pi-mesons, K-mesons, electron pairs,
gamma ray quanta, atmospheric neutrinos,etc.) should be
first considered. In determining the relation of the observed
pulsed effects to the secondary cosmic rays, a comparison of
distribution of pulse signals with variations of atmospheric
cosmic rays of geomagnetic, solar and galactic origin would
be quite sufficient. Assuming that similar pattern in temporal
variations of the compared series would persist for a long time
interval (within months), the penetrating component should
be identified, since pulses are observed in shielded condi-
tions. The penetrating component of cosmic rays can be de-
fined by the type of interaction of cosmic rays with the sub-
stance.

For instance, among those well-known are: the nuclear-
active component, soft component of secondary cosmic rays,
electron-photon showers and the penetrating component of
the secondary radiation — muons and neutrinos. Of the above
mentioned, muons are the most likely source, as the muon
flux represents a penetrating component and, against a rela-
tively moderate energy power (∼10 GeV), can easily enter the
atmosphere and penetrate the shielding conditions of PCC-2.
However, this version contradicts with the significant differ-
ences between the diurnal statistics of muons and neutrinos
and pulsed signals. E.g., according to the observations in NT-
200 neutrino telescope located at a depth of 1100–1200 m
in the Baikal Lake, the daily number of atmospheric muons
reaches≈1,000,000 and for atmospheric neutrinos – one oc-
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currence in two days, on average.∗

The hypothetical factor of heliophysical origin that causes
simultaneous effects in photocurrent, the LED spectrum, and
the zenith spectrum of the atmosphere, remains unknown. On
the one hand, a good coincidence between the number of sig-
nals and variations in F10.7cm and TSI is observed, which
may be regarded as conclusive indication of their solar ori-
gin. On the other hand, signals are registered, regardless of
the shielding conditions, which is indicative of a high pen-
etration capacity of the heliophysical factor. Further, nore-
liable evidence of a link between pulsed signals, cosmic ray
fluxes and geomagnetic activity is revealed. It is as well ob-
vious that the known mechanisms of the solar-terrestrial re-
lationships do not represent direct implications of the effects
observed in the experiment. An especially characteristic indi-
cator of the signal intensity is the statistical correlation with
the declination of the Sun, i.e., the position of the Earth onthe
orbit (the ecliptic). We do not exclude the assumption about
the directed impact of this “hypothetical” factor in the ecliptic
plane.

According to the results demonstrated in figures 14–16,
it is evident that the studied pulsed signals in photocurrent
have 60–65 days lead time, on average, compared to the so-
lar events. If such pattern is scaled against the 11-year cy-
cle of the solar activity (SA), we should expect that solar
variations, recurrent in 300 days, would return to the start-
ing point in 5.5 years (in our case, the measurement starting
point was 24.04.2004), which makes approximately a half of
the 11-year SA cycle. This presents a point of interest. The
solar cycles are known to have a progression: 11-year, 22-
year, 44-year, 88-year, etc. According to our results, we can
not exclude the possibility of declining values of the SA cy-
cles, down to 5.5 years, or less. Possibly, the 300-day cycle
refers to the initial cycles in this progression. Its physical
component may be determined by the processes occurring in
the central zone of the Sun.
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Is Space-Time Curved?

Benjamin Prather
E-mail: benjamin.prather@gmail.com

This paper considers the possibility of a teleparallel approximation of general relativity
where the underlying space-time of a compact massive sourceis related to the isotropic
coordinate chart rather than the geometric chart. This results in a 20 percent reduc-
tion of the expected shadow radius of compact objects. The observation of the shadow
radius of Sagittarius A* should be possible in the near future using VLBI. The theo-
retical reduction is within the uncertainty of the expectedshadow radius, however any
observation less than a critical radius would indicate thatgravity is not the result of
space-time curvature alone. If space-time curvature does not act alone it is simpler to
adopt the teleparallel view, with the tetrad field representing the index of refraction of
the required material field in a flat space-time.

Introduction

General relativity is highly successful in explaining the first
order corrective terms to Newtonian gravity observed in the
classical solar system test known at the time of its proposal.
Further, it has predicted higher order effects not originally
anticipated such as the orbital decay of binary pulsars. Any
competing theory of gravity must agree with general relativ-
ity in these predictions. The bounds on these measurements
have significantly improved since the introduction of general
relativity [1].

The central tenant of general relativity is that gravity is
a pseudo-force due to the curvature of space-time. This pro-
duces a theory lacking an absolute sense of parallelism. Gen-
eral relativity has been expressed as a teleparallel theory, thus
restoring absolute parallelism [2].

The teleparallel equivalent of general relativity allows the
curvature of a metric to be rephrased as contorsion in a flat
space-time due to a tetrad field [2]. The geodesic equation
becomes non-inertial forces as a result of the variation in the
local index of refraction and motion the tetrad field repre-
sents.

This paper considers the implications of a teleparallel the-
ory of gravity where the underlying space-time corresponds
to a flattened version of the isotropic solutions rather than
the usual geometric coordinates. This non-inertial flattening
process produces pseudo-forces, which are taken to be actual
forces due to the presence of a material field.

Globally, space-time is likely to be closer to a DeSitter
space-time than the Minkowski space-time used in the limit-
ing behaviour here. In this sense, space-time is demonstrably
curved. The issue here is the local nature of space-time in the
presence of strong gravitational fields.

1 Is space-time curved?

Despite its broad empirical success, and lack of any viable al-
ternatives, general relativity continues to generate detractors
who raise philosophical objections to its core propositions.

These detractors, near or beyond the fringe of science, often
lack the mathematical knowledge needed to properly discuss
general relativity in a rigorous setting. Indeed, many of these
objections stem from a rejection of the abstract mathematics
required for general relativity or perceived errors in general
relativity arising from subtle misunderstandings of thesead-
vanced notions.

The descendants of neo-Kantianism assert that space-time
curvature caused by matter and energy is impossible, since
matter and energy already require the concepts of space and
time. A Galilean space-time is also claimed by these critics
to be necessary to form an understanding of the world [3].

As Lie groups, however, the Poincaré group is equally
descriptive as the Galilean group. These differences in sym-
metries can be empirically measured, strongly favouring a
Minkowskian space-time over a Galilean space-time. In both
geometries it is almost always helpful to select a convenient
fixed frame to work within. General relativity, in its usual
presentation, breaks this Lie symmetry globally.

General relativity can also be expressed as a teleparallel
theory, restoring absolute parallelism by replacing the curva-
ture of space with an embedded tetrad field. Tetrad fields can
be viewed as representing the flow and refractive properties
of a Lorentzian aether.

In classical fluid mechanical one can use a Lagrangian
reference frame co-moving with a fluid or an inertial Eulerian
reference frame. In a relativistic aether, using the Levi-Civita
connection produces the Lagrangian description while using
the Weitzenböck connection produces the Eulerian descrip-
tion.

The geodesic equation then becomes changing speed due
to an index of refraction, bending due to Huygens’ princi-
ple and frame dragging due to advection. In the teleparallel
equivalent of general relativity this tetrad field exists asan in-
dependent structure. This can be viewed as a flowing index
of refraction emerging in the absence of a refractive medium.

This theory can be bashed into a flat model using a non-
inertial transformation. The use of a non-inertial reference
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frame introduces pseudo-forces to the equations of motion.
Interpreting these forces as originating from a material field
creates a flat theory of gravity while simultaneously providing
a material medium responsible for the tetrad field.

It is in this sense that the question is raised, is space-time
curved?

2 Flat teleparallel approximation

In general relativity, the gravity of a compact, spherically
symmetric, uncharged, acceleration-free and isolated mass
generates can be described by the well known Schwarzschild
metric in spherical coordinates.

rs =
2GM

c2
, (1)

gi j = diag
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)
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This solution implies that the speed of light depends on
the angle of inclination of the trajectory relative to the coor-
dinate chart. It is possible to transform the radial component
to a new chart where the speed of light is isotropic [4].
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A flat teleparallel approximation of general relativity can

be made by eliminating the
(

1+ rs
4r′

)4
coefficient. This results

in a flat space-time with an index of refraction.

gi j = diag

(

(4r′ − rs)2

(4r′ + rs)6
c2, 1, r2, r2 sin2 θ

)

. (5)

Determining the pseudo-forces caused by this non-inertial
transformation, much less the fields needed to generate them,
is beyond the scope of this paper. All that is of interest here
is that a model should exist with this geometry in the limit of
the Schwarzschild metric, and has an event horizon a quarter
the size of general relativity.

Bashing the Schwarzschild metric into a flat teleparallel
theory may be a convenient way to get a model that agrees
with observation, but is a very ad hoc way to approach the
problem. A far better approach would be to build a teleparal-
lel theory from the ground up based on first principles. Once
the numerous obstacles are overcome, any resulting theory
will agree with general relativity in the weak field limit.

This would require differences in the strong field limit to
distinguish between theories. Given the significant changein
event horizon radius, the optical shadow radius of a compact
object should provide a useful parameter to compare potential
theories in the strong field limit.

3 Optical shadow, General Relativity

An image showing the neighbourhood of the singularity, in-
cluding the event horizon, photon sphere and optical shadow
is given in Figure 1.

Fig. 1: Singularity Neighbourhood. The neighbourhood of a com-
pact gravitational source is shown, with the Schwarzschildsolution
to the left and the flattened version to the right. The centralblack
circle represents the event horizon, with a white circle showing the
location of the singularity. This is surrounded by a thin circle rep-
resenting the photon sphere. The outermost circle represents the
optical shadow of the black hole, which is shown extending tothe
left using a tangent line approximation.

The depicted shadow region is a right circular cylinder
with the singularity on its axis. The optical radius can be
defined as the largest radius such that no unbound trajectory
can have both an infinite length within the depicted shadow
region and avoid the event horizon. In general relativity, the
optical radius isrcrit =

3
2

√
3rs [5].

4 Optical shadow, flat teleparallel approximation

In the flat teleparallel approximation, the dynamics are ex-
pected to be identical except for a rescaling of the radius near
the singularity.

Almost all of the shadowing effect occurs near the singu-
larity. An estimate of the asymptotic trajectory can be made
using a tangent line to a circle about the singularity with a
radius ofrcrit. The radius of this circle is transformed by (3).
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≈ 0.8rcrit . (6)

This reduction in radius is accomplished by the forces
generated by a material component of the gravitational field.

5 VLBI measurements

Expected advances in submillimetre very long baseline inter-
ferometry are expected to be able to soon resolve the optical
shadow of the compact radio source Sagittarius A*, based on
the size expected by general relativity [5]. The factor of 0.8 is
close enough to unity that the flat teleparallel approximation
should produce a visible shadow under similar assumptions.

Observing the optical shadow is confounded by several
known issues, much less measuring the radius. The optical
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properties of the medium surrounding Sagittarius A*, the 20
percent uncertainty in the mass of and distance to Sagittarius
A* and the 10 percent uncertainty introduced by the depen-
dency on the optical shadow on the rotation of Sagittarius A*
are three significant issues [5].

A successful imaging of the shadow could help to deter-
mine some of these uncertainties, allowing a determinationto
be made between general relativity and any potential telepar-
allel theory including a material gravitational field.

While other effects can account for an optical shadow
larger thanrcrit within general relativity, an optical shadow
less thanrcrit = 30± 7µas cannot be reconciled with general
relativity [5].

6 Conclusion

Given that the event horizon in the flat teleparallel approxi-
mation is a quarter of that predicted by general relativity,the
reduction in optical shadow of 20 percent is a disappointingly
small change. This is less than the expected uncertainty in
the optical shadow of Sagittarius A* due to its uncertain mass
and possible rotation.

This also means that the same assumptions for observing
the shadow expected for general relativity using VLBI can be
applied to the flat teleparallel approximation. Such measure-
ments can be expected on the order of years, not centuries.

This reduction would vary for different models of the ma-
terial gravitational field, possibly resulting in a smalleroptical
radius. This would confound the ability to observe the optical
shadow but simplify the ability to distinguish the predictions
of general relativity and the model in question.

While other effects can account for an optical shadow
larger thanrcrit within general relativity, an optical shadow
less thanrcrit would indicate that gravity is not determined by
space-time curvature alone.

The teleparallel equivalent of general relativity phrases
the effects of gravity as due to an index of refraction in a flat
space-time. If this is not acting alone, it is simpler to viewthis
index of refraction as a property of the material field required
to explain the super compact optical shadow.

If a super compact optical shadow is demonstrated, space-
time curvature should then be abandoned in favour of a ma-
terial, refractive gravitational field in a flat or DeSitter space-
time.

Submitted on June 19, 2013/ Accepted on June 20, 2013
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More than 60 years ago, N. A. Kozyrev predicted the need for a second universal ve-
locity, one that is associated with rotational motion, in addition to the well-known first
universal velocity, the velocity of light, which is associated with linear motion. Kozyrev
predicted that there should be additional forces which act along the axis of rotation and
are on the order of 10−4 or 10−5 of the applied forces. For the neoclassical causal theory
(Hafele J. C.Zelm. Journ., 2012, v. 5, 134), the values for the ratios for the Moon are in
order of magnitude consistent with Kozyrev’s predicted ratios.

The neoclassical causal version for Newtonian gravitational
theory requires a hypothetical induction fieldFλ and a cor-
responding induction speedvk [1]. The purpose of this letter
is to indicate that, more than 60 years ago, N. A. Kozyrev de-
veloped a similar concept for rotational motion in classical
Newtonian theory [2].

The experimental verification of Kozyrev’s theoretical
concepts started in the winter of 1951–1952. Kozyrev stip-
ulates: 1) the velocity of light is a universal velocity thatis
to be associated with linear motion, and 2) there should be
a second universal velocity that is associated with rotational
motion. In his notation,c1 is the known speed of light, andc2

is an unknown rotational universal speed.
The following is a direct quote from page 199 of Kozy-

rev’s article [2]:

“Now, utilizing the Plank constant in any scalar univer-
sal constant, it is necessary to obtain a value having the
dimensionality of velocity. It is easy to establish that
the expression

c2 =
αe2

h
= α × 350 km/sec (7)

comprises a unique combination of this type. Here
e equals the charge of an elementary particle andα
equals a certain dimensionless factor. Then, based on
(6), atu = 100 m/s, the additional forces will be of the
order of 10−4 or 10−5 (at a considerableα-value) from
the applied forces.”

Kozyrev definesu to be the linear velocity of the rotat-
ing object. He finds that the value forα�2, and the value
for c2� 7×105 m/s�2.3×10−3c1 [2, p. 203]. He predicts that a
small additional force is proportional tou/c2� 100/7×105

�

� 1.4×10−4 [2, p.198], which is the basis for his “of the order
of 10−4 or 10−5”. (The numerical value fore2/h, 350 km/s, is
calculated according to CGS system of units.)

For the neoclassical causal theory, the ratio of the trans-
verse to the radial field for the NEAR flyby at perigee,

gtrt/gr �4×10−6 [1, p.169]. A better comparison with Kozy-
rev’s theory is obtained by using the case for the Moon, where
the orbital motion is nearly circular [1, p.172]. Letvco be the
orbital speed for an equivalent circular orbit. Then

vco � 1×103 m/s,
vco

c2
� 1.4×10−3,

which is within one order of magnitude of Kozyrev’su/c2.
Let 〈gtrt〉 be the RMS average value for the time-retarded
transverse field for the Moon, and let〈Fλ〉 be the RMS
average value for the induction field. Then

〈gtrt〉 � 1×10−11 m/s, 〈Fλ〉 � 1.4×10−14 m/s,

〈Fλ〉
〈gtrt〉

� 1.4×10−3.

These results show that the relative ratios for the secondary
fields are close to the same order of magnitude as they are for
Kozyrev’s theory.

More than 60 years ago, N. A. Kozyrev could not have
known about recently discovered flyby anomalies and a lu-
nar orbit anomaly, but he did have an uncanny insight that
has now been brought to fruition. If more attention had been
paid to Kozyrev’s theory, it may have preempted the neo-
classical causal theory. It may also be helpful in design-
ing a ground-based instrument for detecting the Earth’s time-
retarded transverse gravitational field.

Submitted on: April 10, 2013/ Accepted on April 24, 2013
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The chromosphere and corona of the Sun represent tenuous regions which are charac-
terized by numerous optically thin emission lines in the ultraviolet and X-ray bands.
When observed from the center of the solar disk outward, these emission lines experi-
ence modest brightening as the limb is approached. The intensity of many ultraviolet
and X-ray emission lines nearly doubles when observation isextended just beyond the
edge of the disk. These findings indicate that the solar body is opaque in this frequency
range and that an approximately two fold greater region of the solar atmosphere is being
sampled outside the limb. These observations provide strong support for the presence
of a distinct solar surface. Therefore, the behavior of the emission lines in this fre-
quency range constitutes the twenty fifth line of evidence that the Sun is comprised of
condensed matter.

Every body has a surface.
St. Thomas Aquinas [1]

Observationally, the chromosphere of the Sun represents
a rarefied region located immediately above the solar surface
[2–5]. In 1877, Father Angelo Secchi described the chromo-
sphere in detail including, most notably, a description of its
spicules [6, p. 31-36]. For just a few seconds prior to and fol-
lowing the onset of totality during solar eclipses, the “flash”
emission spectrum of the chromosphere can be detected. Typ-
ically, such studies focus on the visible and ultraviolet regions
of the electromagnetic spectrum.

The existence of the visible “flash” spectrum has been
known since the early days of spectral analysis. In fact, the
famous D3 line, first observed in a prominence during an
eclipse, would lead to the discovery of helium on the Sun
by Pierre Jules César Janssen and Joseph Norman Lockyer
[7, 8]. Since then, great attention has been given to iden-
tifying the lines which are contained within the flash spec-
trum of the chromosphere, particularly through the efforts
of astronomers like John Evershed [9, 10] and Donald Men-
zel [11, 12]. In 1909, George Ellery Hale and Walter Adams
photographed the flash spectrum outside of eclipse condi-
tions, opening up new avenues for the study of the chro-
mosphere [13, 14]. Today, spectroscopic emission lines in
the visible spectrum of the chromosphere and corona con-
tinue to be relevant and spectacular images of the solar at-
mosphere have now been obtained using spectroscopic lines
from highly ionized iron (e.g. FeX–FeXIV) [15–18].

Photographing the chromosphere is slightly more com-
plex in the ultraviolet range, since UV light is absorbed by
the Earth’s atmosphere. As a result, that spectral region ofthe
flash spectrum could not be sampled until the launch of scien-
tific rockets after World War II [3, p. 180]. In 1946, while at

the U.S. Naval Research Laboratory, Baum, Johnson, Oberly,
Rockwood, Strain and Tousey [19] obtained the first measure-
ments of the Sun’s ultraviolet spectrum using a V2 rocket. A
flurry of activity in this area soon followed [20–25] and the
ultraviolet spectrum of the Sun has now become a field of
great scientific interest [26–28].

Fig. 1: Schematic representation of path lengths present when the
outer atmosphere (area outlined by dashes) of the Sun (body in gray)
is viewed from the Earth. Paths 1 and 2 terminate on the solar sur-
face. Just beyond the limb, path 3 samples the front and back side of
the solar atmosphere, resulting in a two fold increase in line inten-
sity. This figure is an adaptation based on Fig. 2.4 in [28].

An elementary observation constitutes the focus of this
work: the intensity of ultraviolet and X-ray emission lines
increases dramatically, as observations are moved from the
center of the solar disk to the limb of the Sun. The problem
is illustrated in Figure 1. Harold Zirin describes the associ-
ated findings as follows:“The case in the UV is different,
because the spectrum lines are optically thin. Therefore one
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would expect limb brightening even in the absence of tem-
perature increase, simply due to the secant increase of path
length. Although the intensity doubles at the limb, where we
see the back side, the limb brightening inside the limb is min-
imal . . . Similarly, X-ray images show limb brightening sim-
ply due to increased path length.”[29]. This situation is ob-
served both in the ultraviolet and in the X-ray spectrum of
the Sun which sample processes in the chromosphere and the
corona [28, p. 38-39]. An exquisite image of this effect has
been published [28, p. 38].

Though this simple observation appears almost trivial as
a source of scientific comment, it nonetheless demands atten-
tion; for it provides strong evidence that the body of the Sun
is not gaseous in nature. If the Sun is gaseous, then these
effects should not be visible as sampling extends beyond the
solar limb. As such, this observation constitutes the twenty
fifth line of evidence that the Sun is comprised of condensed
matter (see [30–32] and references therein for the others).

Dedication

This work is dedicated to Amir Abduljalil in recognition of
his many years of faithful scientific collaboration throughout
my career in magnetic resonance imaging, and for his undy-
ing service to The Ohio State University relative to the de-
sign, assembly, and operation of the world’s first ultra high
field magnetic resonance imaging system [33].
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The continuous spectrum of the solar photosphere stands as the paramount observation
with regard to the condensed nature of the solar body. Studies relative to Kirchhoff’s
law of thermal emission (e.g. Robitaille P.-M. Kirchhoff’s law of thermal emission:
150 years.Progr. Phys., 2009, v. 4, 3–13.) and a detailed analysis of the stellar opacity
problem (Robitaille P.M. Stellar opacity: The Achilles’ heel of the gaseous Sun.Progr.
Phys., 2011, v. 3, 93–99) have revealed that gaseous models remainunable to properly
account for the generation of this spectrum. Therefore, it can be stated with certainty
that the photosphere is comprised of condensed matter. Beyond the solar surface, the
chromospheric layer of the Sun also generates a weak continuous spectrum in the visible
region. This emission exposes the presence of material in the condensed state. As a
result, above the level of the photosphere, matter exists inboth gaseous and condensed
forms, much like within the atmosphere of the Earth. The continuous visible spectrum
associated with the chromosphere provides the twenty-sixth line of evidence that the
Sun is condensed matter.

In order to explain the occurrence of the dark lines
in the solar spectrum, we must assume that the solar
atmosphere incloses a luminous nucleus, producing
a continuous spectrum, the brightness of which ex-
ceeds a certain limit. The most probable supposi-
tion which can be made respecting the Sun’s consti-
tution is, that it consists of a solid or liquid nucleus,
heated to a temperature of the brightest whiteness,
surrounded by an atmosphere of somewhat lower
temperature.

Gustav Robert Kirchhoff, 1862 [1]

When Gustav Kirchhoff was contemplating the origin of
the solar spectrum [1], he was probably unaware that struc-
tures beyond the photosphere also had the ability to emit con-
tinuous spectra. Still, he understood that continuous thermal
emission was a property of the condensed state [1]. Gases
emit in bands [2] and even compressed gases cannot produce
the required thermal spectrum, outside the confines of an en-
closure and in the absence of a perfect absorber [3,4].

Despite these physical realities, over the course of the
past 150 years, scientists have moved away from Kirchhoff’s
realization that the solar surface must be comprised of con-
densed matter. Instead, gaseous solar models were adopted
(e.g. [5, 6]). Sadly, Kirchhoff himself enabled this misstep
through his erroneous formulation of the law of thermal emis-
sion (see [3,4] and references therein). Discounting problems
with the law of emission [3,4], it can be said that the gaseous
models have been based on a false premise: that the thermal
spectrum of the Sun could be generated using a vast combi-
nation of non-thermal processes [7]. The solar opacity prob-
lem [7] reflects the fact that the gaseous models can never

properly account for the thermal spectrum. The generation of
a continuous solar spectrum has become an insurmountable
hurdle for these models [7]. Though gaseous opacity calcu-
lations have been used in an attempt to account for the Sun’s
emission, such calculations are of no value in mirroring the
simple graphitic spectrum on Earth, which the solar spectrum
strongly emulates. Therefore, gaseous opacity calculations
cannot have any lasting merit in generating the continuous
spectrum of the Sun [7]. The emission of a thermal spectrum
requires an underlying thermal mechanism, not a large sum
of non-thermal processes [7]. Condensed matter is required,
as illustrated by earthly black bodies (see [3,4] and references
therein). In fact, the continuous spectrum of the Sun acts as
the most important line of evidence that the Sun is condensed
matter (see [8–14] and references therein). This was recog-
nized long ago by Gustav Kirchhoff: gases cannot properly
account for the solar spectrum [1].

The presence of continuous thermal emission by the pho-
tosphere is complemented in the outer atmosphere of the Sun.
The chromosphere also supports weak continuous emission.
Hence, an additional line of evidence that the Sun is com-
prised of condensed matter can be harvested by extending
Kirchhoff’s insight to the solar atmosphere, above the pho-
tospheric surface.

The weak continuous spectrum of the chromosphere [15–
18] has drawn the attention of solar observers for over 100
years [19–22]. The great astronomer, Donald Howard Men-
zel [23], commented as follows on its nature:“. . . we as-
sumed that the distribution in the continuous chromospheric
spectrum is the same as that of a black body at 5700o, and

Pierre-Marie Robitaille. Continuous Emission and Condensed Matter Within the Chromosphere L5



Volume 3 PROGRESS IN PHYSICS July, 2013

that the continuous spectrum from the extreme edge is that
of a black body at 4700o. There is evidence in favor of a
lower temperature at the extreme limb in the observations
by Abbot, Fowle, and Aldrich of the darkening towards the
limb of the Sun”[22]. From early days, the continuous chro-
mospheric spectrum was known to vary in temperature with
height [24–27]. Consequently, solar observers rapidly in-
troduced temperature variations with increasing height into
their atmospheric models (e.g. [17, p. 187-213]; [18, p. 271–
352]; [24–31]).

At the same time, problems remained surrounding the for-
mation of the weak continuous chromospheric spectrum. This
layer of the Sun, in the context of the modern gaseous mod-
els, had an average density of only∼10−12 g/cm3 [32, p. 32].
In fact, as one proceeds out from the photosphere to the top of
the chromosphere, the density was hypothesized to be chang-
ing from∼10−7 g/cm3 to ∼10−15 g/cm3, respectively [33]. It
was known that in the chromosphere“. . . the intensity of the
emitted radiation is several tens of thousand times less than
that of the photosphere”[32, p. 32]. As a result, since the
gas models were reducing photospheric densities to the levels
of laboratory vacuums, the chromospheric densities had to be
even lower.

In order to explain the continuous chromospheric spec-
trum, theoretical approaches (e.g. [16, 25–27]) exactly par-
alleled the methods applied for treating the emission from
the photosphere (see [7] for a complete discussion). In early
contributions, attention focused on neutral H, H−, Rayleigh
scattering, and electron scattering (see [17, p. 151–157] and
[26, 27]). This was precisely because, devoid of condensed
matter, no other mechanism could be invoked. A continu-
ous spectrum, from which Menzel had extracted black body
temperatures [22], was being explained using processes un-
related to any experimental production of a thermal spectrum
on Earth [7]. Such approaches remain in use, but have al-
ready been dismissed relative to explaining the occurrenceof
continuous spectra [7].

Conversely, the position is now adopted that the presence
of a continuous spectrum in the visible range within the chro-
mosphere [15–18] represents a direct manifestation of con-
densed matter in this region of the solar atmosphere. The
proper means of explaining continuous emission in the visi-
ble region of the electromagnetic spectrum, especially when
it can be hypothesized to hold a thermal lineshape [22], will
always remain linked to the presence of condensed matter [7].

The chromosphere corresponds to a region of the Sun
where hydrogen atoms are re-entering the condensed state,
prior to their recombination with photospheric material.

However, unlike the liquid metallic hydrogen advanced to
be present in the solar body [8–14], chromospheric condensed
matter appears to lack metallic properties. Chromospheric
material, though in the condensed state, might therefore be
substantially different than photospheric material. Nonethe-
less, though the continuous spectrum of the chromosphere re-

mains weak, it demonstrates the presence of condensed mat-
ter within a gaseous matrix, much like drops of water can
exist within the gaseous atmosphere of the Earth. In this re-
gard, the intensity of the chromospheric emission spectrum
can provide some sense of material densities in this layer.
The presence of a continuous visible thermal spectrum in the
chromosphere thereby constitutes the twenty-sixth line ofev-
idence (and the sixth Planckian proof [34]) that the Sun is
comprised of condensed matter (see [8–14] and references
therein for the others).
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The K-corona, a significant portion of the solar atmosphere,displays a continuous spec-
trum which closely parallels photospheric emission, though without the presence of
overlying Fraunhofer lines. The E-corona exists in the sameregion and is character-
ized by weak emission lines from highly ionized atoms. For instance, the famous green
emission line from coronium (FeXIV) is part of the E-corona.The F-corona exists
beyond the K/E-corona and, like the photospheric spectrum, is characterized by Fraun-
hofer lines. The F-corona represents photospheric light scattered by dust particles in the
interplanetary medium. Within the gaseous models of the Sun, the K-corona is viewed
as photospheric radiation which has been scattered by relativistic electrons. This scat-
tering is thought to broaden the Fraunhofer lines of the solar spectrum such that they
can no longer be detected in the K-corona. Thus, the gaseous models of the Sun ac-
count for the appearance of the K-corona by distorting photospheric light, since they
are unable to have recourse to condensed matter to directly produce such radiation.
Conversely, it is now advanced that the continuous emissionof the K-corona and as-
sociated emission lines from the E-corona must be interpreted as manifestations of the
same phenomenon: condensed matter exists in the corona. It is well-known that the Sun
expels large amounts of material from its surface in the formof flares and coronal mass
ejections. Given a liquid metallic hydrogen model of the Sun, it is logical to assume
that such matter, which exists in the condensed state on the solar surface, continues to
manifest its nature once expelled into the corona. Therefore, the continuous spectrum
of the K-corona provides the twenty-seventh line of evidence that the Sun is composed
of condensed matter.

In order to explain the occurrence of the dark lines
in the solar spectrum, we must assume that the solar
atmosphere incloses a luminous nucleus, producing
a continuous spectrum, the brightness of which ex-
ceeds a certain limit. The most probable supposi-
tion which can be made respecting the Sun’s consti-
tution is, that it consists of a solid or liquid nucleus,
heated to a temperature of the brightest whiteness,
surrounded by an atmosphere of somewhat lower
temperature.

Gustav Robert Kirchhoff, 1862 [1]

Providence has made of the pastoral State of Iowa one of
the most important locations in the history of solar physics.
From primitive observatories in Des Moines and Burlington
respectively, William Harkness and Charles Young monitored
the total eclipse of August 7, 1869 [2,3], an event which still
has the power to redefine our understanding of the corona.

From the heart of Iowa, William Harkness“obtained a
coronal spectrum that was continuous except for a single
bright green line, later known as the coronal line K1474”
on the Kirchhoff scale [3, p. 199]. Harkness concluded that
the corona was“a highly rarefied self-luminous atmosphere
surrounding the Sun, and, perhaps, principally composed of

the incandescent vapor of iron”[3, p. 199]. Eventually, John
Evershed provided additional photographic evidence that the
corona displayed a continuous spectrum without Fraunhofer
lines and he established the wavelength of Harkness’ K1474
coronal line at 5303.3 Å [4]. In addition, Evershed would
document the presence of two other coronal spectral lines
[2–4]. Today, the gaseous models of the Sun do not support
the idea that the corona of the Sun is self-luminous. Rather,
it is currently believed that the continuous coronal spectrum
arises from the scattering of photospheric light by relativis-
tic electrons in the outer solar atmosphere. In this work,
Harkness’ conclusion will be re-evaluated, with the intentof
demonstrating that the K-corona is indeed self-luminous, as
first postulated in 1869 [3, p. 196–205].

To begin understanding the corona, it is important to prop-
erly classify the spectra which it produces. It was the spec-
trum of the inner corona, or K-corona, which was measured
long ago by Harkness, Young, and Evershed [2–4] and which
has been the subject of several classic reports [5–10]. For
nearly one hundred years, the inner coronal spectrum was
known to be polarized [6, 10]. According to Bernard Lyot,
this polarization did not extend beyond∼ 6′ from the limb,
increased rapidly as observations were made towards the Sun,
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and remained constant within∼ 3′ of the solar surface [6].∗

Textbooks now state that the polarized K-corona can extend
to distances approaching 10 solar radii (∼ 160′) [12, p. 187].

As Gustav Kirchhoff understood [1], Fraunhofer lines are
produced when light is absorbed by gaseous atoms located
above the level of the solar surface where the continuous pho-
tospheric spectrum is emitted. The absorption of light by
these atoms superimposes dark lines onto the thermal spec-
trum of the Sun. As a result, the photospheric spectrum is al-
ways characterized by the presence of Fraunhofer lines. Con-
versely, these dark lines are absent in the continuous spec-
trum of the inner corona [13–15]. This was certainly the find-
ing which convinced William Harkness that the corona was
self-luminous [3]. For if the inner corona was simply scatter-
ing light produced by the photosphere, the Fraunhofer lines
should be visible. This is the case in the outer corona, or F-
corona, where photospheric light is being scattered by dust
particles contained in the interplanetary medium [13, p. 33].

Within the gaseous models of the Sun, the absence of
Fraunhofer lines in the K-corona is explained by scattering
photospheric light with high energy electrons (see e.g. [13,
p. 33] and [16]. The corona in these models has no means
of directly generating a continuous spectrum. As a result,
gaseous models must assume that the continuous component
of coronal emission originates at the level of the photosphere.
Coronal electrons must then be used to broaden the Fraun-
hofer lines, making them disappear from the spectrum moni-
tored in the K-corona [13–16].

Oddly, while the gaseous models invoke electron based
scattering of Fraunhofer lines, causing them to disappear in
the K-corona, scattering by dust particles preserves the lines
of the F-corona. The situation is further complicated because
the K-corona is in the same physical space as the E-corona,
which is producing emission lines, including the coronal line
at 5303.3 Å [13–16]. The Fraunhofer lines are being broad-
ened by electrons in the K-corona, but emission lines from
the same region of the solar atmosphere, namely in the E-
corona, remain visible and sharp. Presumably, this occurs be-
cause only a small fraction of the photospheric light is being
scattered. By analogy, only a small fraction of the E-corona
should be scattered. Hence, it would not be expected that the
emission lines from the E-corona would be affected in a no-
ticeable manner.

The corona is so tenuous, its emission is∼1–100 mil-
lion times less intense than that of the photosphere [13, 15].
Still, the continuous nature of its emission, and the absence
of Fraunhofer lines in the inner corona has been well docu-
mented [2–10].

Speaking of the continuous coronal spectrum, Athay et
al. would comment that“It is well known (Grotrian 1931;
Allen 1946) that the coronal continuum is essentially a repro-

∗When visualized from the Earth, the solar diameter corresponds to
∼32′ or ∼1920′′ [11]. One arc-second, (′′), corresponds to∼700 km on
the Sun [12, p. 123].

duction of the photospheric continuum and does not change
color with height” [9]. Yet, Grotrian’s [5] and Ludendorff’s
discovery (see [9]) that“the color of the corona is the same as
that of the Sun”was not completely supported by Allen [8].
In fact, Athay [9] was misquoting Allen [8]. The latter actu-
ally found that“microphotograms for solar distances varying
from R=1.2s to R=2.6s show that the coronal radiation red-
dens slightly as the distance from the Sun is increased”[8].
Allen’s measurements had extended farther above the pho-
tosphere than those of Crotrian and Ludendorff, helping to
explain why his predecessors had not reported reddening [8,
p. 140].

Reddening of the continuous spectrum implied that the
corona was cooling when one moved away from the solar sur-
face, as would be expected. The presence of emission lines
from highly ionized atoms in the E-corona appeared to be
making the opposite point, the corona seemed to be much
warmer than the photosphere. This issue will be addressed in
detail in a separate treatment [17]. For the time being, suf-
fice it to emphasize that the K-corona possesses a continuous
spectrum which appears to be blackbody in nature and which
reddens slightly with distance from the solar surface.

In the end, the simplest means of accounting for the con-
tinuous emission observed in the K-corona, the absence of
overlying Fraunhofer lines, and the presence of sharp emis-
sion lines in this same region of the solar atmosphere, is to
invoke a condensed matter model of the Sun [18–20]. In
1869, William Harkness had concluded that the corona was
self-luminous, precisely as expected should this layer possess
condensed matter.

In this regard, when the Sun is active, it is known to expel
enormous amounts of material into its corona in the form of
flares and coronal mass ejections. Within the liquid metal-
lic hydrogen model of the Sun [18–20], the presence of con-
densed matter within the corona and the existence of an asso-
ciated continuous spectrum presents little difficulty, as metal-
lic hydrogen has already been hypothesized to be metastable
(see [17] for a detailed discussion). As a result, once con-
densed metallic hydrogen has been produced in the solar in-
terior, it is expected that it could retain its condensed state
under the lower pressures in the corona.

The presence of condensed matter in the K-corona imme-
diately accounts for the existence of a continuous spectrum
from this region of the solar atmosphere.

At the same time, the Fraunhofer lines are not visible be-
cause insufficient levels of gaseous atoms are present in the
K-corona to significantly absorb coronal radiation. There-
fore, scattering by relativistic electrons does not need tobe
invoked to account for the presence of a continuous spectrum
in the K-corona devoid of Fraunhofer lines. Conversely, the
F-corona is indeed produced by the scattering of photospheric
light by dust particles in interplanetary space.

As such, the continuous spectrum of the K-corona can
be said to represent the twenty-seventh line of evidence that
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the Sun is condensed matter and the seventh Planckian proof
(see [21,22] and references therein for the others).
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The solar corona and chromosphere are often marked by eruptive features, such as
flares, prominences, loops, and coronal mass ejections, which rise above the photo-
spheric surface. Coronal streamers and plumes can also characterize the outer atmo-
sphere of the Sun. All of these structures, fascinating in their extent and formation,
frequently emit continuous spectra and can usually be observed using white-light coro-
nagraphs. This implies, at least in part, that they are comprised of condensed matter.
The continuous spectra associated with chromospheric and coronal structures can be
viewed as representing the twenty-eighth line of evidence,and the eighth Planckian
proof, that the Sun is condensed matter. The existence of such objects also suggests that
the density of the solar atmosphere rises to levels well in excess of current estimates
put forth by the gaseous models of the Sun. In this work, the densities of planetary
atmospheres are examined in order to gain insight relative to the likely densities of the
solar chromosphere. Elevated densities in the solar atmosphere are also supported by
coronal seismology studies, which can be viewed as constituting the twenty-ninth line
of evidence that the Sun is composed of condensed matter.

In order to explain the occurrence of the dark lines
in the solar spectrum, we must assume that the solar
atmosphere incloses a luminous nucleus, producing
a continuous spectrum, the brightness of which ex-
ceeds a certain limit. The most probable supposi-
tion which can be made respecting the Sun’s consti-
tution is, that it consists of a solid or liquid nucleus,
heated to a temperature of the brightest whiteness,
surrounded by an atmosphere of somewhat lower
temperature.

Gustav Robert Kirchhoff, 1862 [1]

Observation of a white-light flare was initially reported by
Richard Carrington in 1859 [2]. Though once considered rare
events [3,4], the production of such emission has now become
associated with many, if not all, flares [5]. It has been well-
established that hard X-ray class flares (≥ M5) emit white-
light [3]. However, the mechanism for producing this light
has remained elusive [6, 7], despite the prevalence of these
objects [3–5]. Devoid of condensed matter, a gaseous model
has little means to account for the generation of white-light
flares. In 2010, Watanabe et al. [8] proposed that the emission
generated by white-light flares was associated with electrons
accelerated to half of the speed of light [9]. More than 150
years after Carrington’s discovery, astrophysicists advanced a
scenario through which white-light could be produced within
the theoretical constraints imposed by accepting the idea of a
gaseous Sun [10–14].

Beyond solar flares, many coronal structures are associ-
ated with the emission of white-light. These include promi-
nences and coronal mass ejections [15–23], streamers [24–
26], plumes [27], and loops [28–30]. Indeed, coronal struc-
tures have long been observed with white-light coronagraphs
[25,26], an instrument invented by Bernard Lyot [31,32].

The existence of white-light in coronal structures presents
a significant problem for the gaseous models of the Sun [10–
14]. In these models, white-light at the photosphere is pro-
duced by a vast sum of processes (bound-bound, bound-free,
free-free, and scattering) taking place within the Sun itself
(see [33] for a complete review of this topic). In order to gen-
erate the thermal spectrum at the surface, this light must leave
the hypothetically gaseous solar body through a photospheric
layer regarded as an ‘optical illusion’ created by a dramatic
change in solar opacity [34]. The current solution is so convo-
luted that it has been described by the author as the Achilles’
Heel of gaseous solar models [33]. In no other instance is a
simple spectroscopic line, such as the thermal spectrum of the
Sun, produced by the extensive summation of vastly unrelated
spectroscopic processes [33]. Furthermore, the mechanisms
associated with the generation of the solar spectrum are of
no value in explaining the thermal emission from graphite on
Earth, material from which Planckian radiation was initially
studied [33]. As a result, these approaches are not relevantin
accounting for the thermal signature of the Sun [33].

The observation of white-light in coronal structures only
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acts to accentuate this problem for the gaseous models. These
objects are fleeting and devoid of the long time-lines (millions
of years) currently required by the gaseous models to produce
white-light from the center of the Sun. Moreover, these struc-
tures lack the large complement of processes summed within
the gaseous models of the Sun to generate the white-light of
the photosphere [33]. As a result, though some of the same
mechanisms are invoked [3, 4], scientists who adhere to the
gaseous models must now have recourse to additional effects:
the scattering of photospheric light [16] or the acceleration of
electrons to sub-relativistic velocities [8].

In the end, the simplest means of accounting for the pres-
ence of white-light, both on the photosphere and within coro-
nal structures, is to recognize that the Sun is comprised of
condensed matter [35–37]. The material found on the photo-
sphere is being ejected into the solar atmosphere. Hence, it
can be found within the corona. In fact, since photospheric
metallic hydrogen has been hypothesized to be metastable
(see [35] and references therein), it is reasonable that material
ejected into the corona remains partially metallic in nature. In
time, sparse filaments of condensed metallic hydrogen might
come to constitute the framework for coronal streamers for in-
stance, helping to explain why these objects also emit white-
light. As a result, it is now advanced that the white-light emis-
sion of coronal structures constitutes the twenty-eighth line of
evidence (see [35–39] and references therein for the others),
and the eighth Planckian proof, that the Sun is comprised of
condensed matter.∗

Unlike the gaseous models of the Sun [10–14], the metal-
lic hydrogen model [35–37] advances that the solar body has
a nearly uniform density throughout which approaches∼1
g/cm3 at the level of the photosphere. Thus, the presence
of condensed matter, expelled from the photosphere into the
chromosphere and corona, strongly suggests that the densities
in these regions are not negligible. In sharp contrast, within
the context of a gaseous Sun and calculated electron densi-
ties, the coronal solar atmosphere is said to possess“densi-
ties which are many trillions times smaller than that of the
gas composing the Earth’s atmosphere; in fact, coronal den-
sities are low enough to be considered an almost perfect vac-
uum in laboratories”[40, p. 284]. These statements are di-
rectly linked to the use of the gaseous equations of state [10,
p. 130ff] and the belief that the solar body retains most of its
mass in its core [10–12]. As a result, the question must natu-
rally arise as to whether or not trillion fold decreases in densi-
ties, relative to the Earthly atmosphere, are reasonable for the
solar corona. This is especially concerning relative to there-
alization that the Sun is expelling condensed matter [35–39]
into its outer atmosphere.

∗The Planckian proofs are all related to thermal emission in condensed
matter. They do not imply that the objects which are the subject of these
proof necessarily display a perfect thermal spectrum. The proofs are invoked
when the spectrum is continuous and when an object’s emissivity is most
simply accounted for by invoking condensed matter.

To get some sense of reasonable densities for the corona,
one can have recourse to the characteristic features of plan-
etary atmospheres, with several important cautionary notes.
First, the temperatures around the Sun and the inner planets
are not at all comparable. Second, the molecular weight of
material around the Sun might be either much smaller, or in
the case of condensed hydrogen,much larger, than found in
planetary atmospheres. Thirdly, the solar atmosphere might
have substantial local density fluctuations well beyond any-
thing observed in planetary atmospheres. This is especially
relevant since condensed matter is being expelled into a par-
tially gaseous solar atmosphere. These factors will impactthe
comparisons that can be extracted.

Consider the known densities of the Earth’s atmosphere at
sea level (1.229 kg/m3 or 0.0012 g/cm3 [41]) while taking into
account that the Sun/Earth ratio of acceleration due to grav-
ity is a factor of 28 [42]. The simple product of these values
(ignoring temperature effects and assuming that the Sun’s at-
mosphere is composed of particles of the same mean molecu-
lar weight as in the Earth’s atmosphere (28.97 g/mole [43])),
results in a density of 0.0336 g/cm3 near the solar surface.
This is well above current estimates for the solar atmosphere.
In fact, the gaseous models of the Sun predict that, as one
proceeds out from the photosphere to the top of the chromo-
sphere, the density drops from∼10−7 g/cm3 to∼10−15 g/cm3,
respectively [44, p. 32].

In reality, the aforementioned assumption that the average
molecular weight in the lower solar atmosphere is similar to
the Earth’s cannot be correct. At the same time, temperature
effects should substantially raise the amount of material found
in the Sun’s atmosphere. The Sun is known to expel matter
into the corona and, if this is condensed matter, may have lo-
cal densities well beyond that found in the atmosphere of the
Earth at sea level. But even this simple calculation, based on
the characteristics of the Earth’s atmosphere, points to signifi-
cant problems with current estimates of chromospheric densi-
ties, inferred from gaseous solar model [44] which it exceeds
by a factor on the order of 105–1010. Similar conclusions can
be reached by considering Venus [45] or Mars [46].

Though some may dislike such comparisons, as too many
variables could alter the final result, the author is not attempt-
ing to set a final density for the lower atmosphere of the
Sun. The discussion rests simply in highlighting that the cur-
rently accepted solar values are well outside the bounds of
reason, especially when considering that the Sun is much hot-
ter than the inner planets and constantly expelling matter into
its corona. This implies that a much higher average molecu-
lar weight for the solar atmosphere can be expected than one
based on the atomic weight of hydrogen. Unlike the Sun,
the inner planets do not eject much material into their atmo-
spheres. As a result, the atmosphere of the Sun is likely to
possess great local variability in its densities. This may also
be true when comparing the atmosphere of the quiet Sun near
the solar poles with that above the equator, as a result of coro-
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nal holes above the former.
Finally, it remains highly significant that, when a comet

approaches the Sun, it can result in intense shock wave propa-
gation throughout the corona (e.g. [47]). Such behavior calls
for highly elevated atmospheric densities. It is not reason-
able to expect that shock waves and seismic activity could
propagate within a corona whose density remains inferior to
earthly vacuums. As such, seismological findings and shock
wave propagation are highly supportive of the realization that
the solar chromosphere and corona are much denser than cur-
rently surmised from the gaseous models of the Sun. Along
these lines, it is concerning that the Sun can be studied using
coronal helioseismology [48–51] which suggests a twenty-
ninth line of evidence that it is comprised of condensed mat-
ter. It is not possible to conduct coronal seismological studies
in an atmosphere sparser than the best laboratory vacuums.
Seismology is a science which can be applied exclusively to
the condensed states of matter.
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The chromosphere is the site of weak emission lines characterizing the flash spectrum
observed for a few seconds during a total eclipse. This layerof the solar atmosphere
is known to possess an opaque Hα emission and a great number of spicules, which can
extend well above the photosphere. A stunning variety of hydrogen emission lines have
been observed in this region. The production of these lines has provided the seventeenth
line of evidence that the Sun is comprised of condensed matter (Robitaille P.M. Liquid
Metallic Hydrogen II: A critical assessment of current and primordial helium levels
in Sun. Progr. Phys., 2013, v. 2, 35–47). Contrary to the gaseous solar models, the
simplest mechanism for the production of emission lines is the evaporation of excited
atoms from condensed surfaces existing within the chromosphere, as found in spicules.
This is reminiscent of the chemiluminescence which occurs during the condensation of
silver clusters (Konig L., Rabin I., Schultze W., and Ertl G.Chemiluminescence in the
Agglomeration of Metal Clusters.Science, v. 274, no. 5291, 1353–1355). The process
associated with spicule formation is an exothermic one, requiring the transport of energy
away from the site of condensation. As atoms leave localizedsurfaces, their electrons
can occupy any energy level and, hence, a wide variety of emission lines are produced.
In this regard, it is hypothesized that the presence of hydrides on the Sun can also fa-
cilitate hydrogen condensation in the chromosphere. The associated line emission from
main group and transition elements constitutes the thirtieth line of evidence that the Sun
is condensed matter. Condensation processes also help to explain why spicules manifest
an apparently constant temperature over their entire length. Since the corona supports
magnetic field lines, the random orientations associated with spicule formation suggests
that the hydrogen condensates in the chromosphere are not metallic in nature. Spicules
provide a means, not to heat the corona, but rather, for condensed hydrogen to rejoin
the photospheric layer of the Sun. Spicular velocities of formation are known to be
essentially independent of gravitational effects and highly supportive of the hypothesis
that true condensation processes are being observed. The presence of spicules brings
into question established chromospheric densities and provides additional support for
condensation processes in the chromosphere, the seventh line of evidence that the Sun
is comprised of condensed matter.

In order to explain the occurrence of the dark lines
in the solar spectrum, we must assume that the solar
atmosphere incloses a luminous nucleus, producing
a continuous spectrum, the brightness of which ex-
ceeds a certain limit. The most probable supposi-
tion which can be made respecting the Sun’s consti-
tution is, that it consists of a solid or liquid nucleus,
heated to a temperature of the brightest whiteness,
surrounded by an atmosphere of somewhat lower
temperature.

Gustav Robert Kirchhoff, 1862 [1]

Nearly 150 years have now passed since Kirchhoff wrote
about the Sun [1] and Father Angelo Secchi illustrated chro-
mospheric spicules for the first time [2, p. 32]. Secchi viewed
the chromospheric region as clearly defined on one side, like
the surface of a liquid layer [2, p. 33]. Though he had con-

cluded that the body of the Sun was gaseous, he believed that
condensed matter was “suspended” within the photosphere
[3]. Secchi would comment on the appearance of spicules and
the outer portion of the chromosphere:“In general, the chro-
mosphere is poorly terminated and its external surface is gar-
nished with fringes . . . It is almost always covered with little
nets terminated in a point and entirely similar to hair”.∗ Sec-
chi mentioned the tremendous variability in spicule orienta-
tion, their enormous size, and how these structures reminded
him of flames present in a field wherein one burns grasses af-
ter the harvest . . .“It often happens, especially in the region
of sunspots, that the chromosphere presents an aspect of a
very active network whose surface, unequal and rough, seems
composed of brilliant clouds analogous to our cumulus; the

∗All translations from French were accomplished by the author.
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disposition of which resembles the beads of our rosary; a few
of which dilate in order to form little diffuse elevations on
the sides”[2, p. 31–36]. He would emphasize that“there is
thus no illusion to worry about, the phenomena that we have
just exposed to the reader are not simple optical findings, but
objects which really exist, faithfully represented to our eyes
using instruments employed to observe them”[2, p. 35–36].

The chromosphere is a region of intense magnetic activ-
ity, but its nature, and in particular that of its mottles and
spicules [4–15], remains a mystery [16]. The low chromo-
sphere is dominated by emission lines from neutral atoms and
rare earths, but near its upper boundary strong lines from CaII
and H are present [16]. Harold Zirin highlights that“The
chromosphere is the least-well understood layer of the Sun’s
atmosphere. . . Part of the problem is that it is so dynamic and
transient. At this height an ill-defined magnetic field domi-
nates the gas and determines the structure. Since we do not
know the physical mechanisms, it is impossible to produce a
realistic model. Since most of the models ignored much of the
data, they generally contradict the observational data. Typ-
ical models ignore other constraints and just match only the
XUV data; this is not enough for a unique solution. It re-
minds one of the discovery of the sunspot cycle. While most
of the great 18th century astronomers agreed that the sunspot
occurrence was random, only Schwabe, an amateur, took the
trouble to track the number of sunspots, thereby discovering
the 11-year cycle”[16].

The struggle to understand the chromosphere is, in large
measure, a direct result of the adherence to gaseous mod-
els of the Sun and a rejection of condensed matter [17–21].
The chromosphere is hypothesized to be only 2–3,000 km
thick [7, p. 232]. Yet, chromospheric emission lines from
hydrogen, calcium, and helium can extend up to 10,000 km
above the solar surface [6, p. 8]. Zirin comments on the chro-
mosphere as follows:“Years ago the journals were filled with
discussions of ‘the height of the chromosphere’. It was clear
that the apparent scale height of 1000 km far exceeded that
in hydrostatic equilibrium. In modern times, a convenient so-
lution has been found – denial. Although anyone can mea-
sure its height with a ruler and find it extending to 5000 km,
most publications state that it becomes the corona at 2000 km
above the surface. We cannot explain the great height or the
erroneous models... While models say 2000 km, the data say
5000′′ [16].

Though the chromosphere contains bright floculi in the K
line of Ca II, which coincide in position with Hα rosettes [6,
p. 85–86], and though it is laced with bright/dark mottles and
spicules, gaseous solar models [22–24] have no direct means
of accounting for such structures [25].

It remains fascinating that spicule formation velocities ap-
pear to be largely independent of gravitational forces [9–15],
though some efforts have been made to establish such a re-
lationship [26]. In general, while most velocities of spicules
formation seem to move at nearly uniform speeds [4, p. 61],

some actually increase with elevation, rise in jerks, or stop
suddenly upon reaching their maximum height [6, p. 45–60].
Spicules have been said to“expand laterally or slit into two
or more strands after being ejected”[26]. Such behavior is
strongly suggestive of a condensation process.

Spicules are often associated with magnetic phenomena
in the chromosphere [4–15]. They can be represented as ly-
ing above photospheric intergranular lanes. In so doing, they
seem to be experiencing lateral magnetic pressure from the
material trapped within the field lines that originate in theso-
lar surface, as displayed in Fig. 1.

Fig. 1: Schematic representation of spicules overlying theintergran-
ular lane on the outer boundary of a supergranule and surrounded by
magnetic field lines emanating from the solar surface. This figure is
an adaptation based on Fig. IV–13 in [4, p. 162].

Numerous magnetic field lines escape from the solar in-
terior through the photospheric surface. These fields must
traverse the chromospheric material. As a result, most so-
lar observers believe that chromospheric structures are inher-
ently magnetic [4–15]. Spicules are though to be propelling
matter upwards into the corona [27] and not gathering matter,
through condensation, for rejoining the photosphere.

However, given the appearance of chromospheric struc-
tures, such as rosettes and mottles, and the somewhat random
orientations of spicules [4–15], it seems unlikely that these
objects can be of magnetic origin. What is more probable is
that, while non-metallic, chromospheric structures are being
confined by charged plasmas, or metallic hydrogen [17–21],
flowing in conjunction with the solar magnetic fields lines,
much as illustrated in Fig. 1.

Since the gaseous models [22–24] depend on excessive
temperatures in order to explain emission lines, spicules have
been advanced as partly responsible for heating the corona
[27]. Two forms of spicules were postulated from observa-
tions. Type I spicules can be viewed as classic spicules with
lifetimes on the order of 3–7 minutes [27]. Type II spicules
were believed to form rapidly, be short lived (10–150s) and
thin (<200 km), and capable of projecting material into the
upper chromosphere at great velocities [27]. Type I spicules
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were said to move up and down, while Type II spicules faded
[27]. Type II spicules were claimed to be potentially impor-
tant in heating the outer atmosphere [27]. But recently, their
existence and role appears to have been soundly refuted [28].

Though chromospheric observers remain intrigued with
structure [4–15, 26], they adhere to the gaseous solar mod-
els [22–24], even though gases cannot exhibit true conden-
sation. As a result, all chromospheric and coronal structures
must be viewed as gasoues plasmas of exceedingly low densi-
ties [7]. Since they are not condensed matter in the context of
the gaseous models [22–24], the strange properties of spicule
formation and the structures of rosettes and mottles, remain
an anomaly, rather than indicators of the nature of the chro-
mosphere.

In contrast, this work now advances that chromospheric
structures represent solar material in the condensed state[17–
21]. Matter in this region fluctuates between gaseous and con-
densed, as spicules and mottles form and dissipate [9–15,26].
This is reminiscent of phenomena such as critical opales-
cence [25]. The chromosphere appears to be a site of hy-
drogen condensation. The mystery lies only in how this can
be achieved.

In order to better understand the chromosphere, one can
revisit the classic work of Donald H. Menzel published 1931,
“A Study of the Solar Chromosphere”[29]. Within this vol-
ume, three revelations continue to make their mark. First,
there is an amazing prevalence of emission lines from a wide
variety of atoms within this layer of the Sun (see Table I [29,
p. 18–113]). Second, the chromosphere contains an exten-
sive group of emission lines from hydrogen (see Table 3 [29,
p. 128]). Menzel lists more than twenty-three hydrogen emis-
sion lines in his Table 3 [29]. Along with Cillié, Menzel soon
observed Balmer series emission up to H31, with higher states
limited only by resolution [30]. Third, he outlines a hydrogen
abundance in the chromosphere which is 100 times more el-
evated than in the Sun (see Table 20 [29, p. 281]). Menzel’s
chromospheric hydrogen abundance was nearly 1,000 times
more elevated [29, p. 275–281] than that which had been re-
ported by Henry Norris Russell from the Fraunhofer spectrum
of the Sun itself just a few years before [31].

While eighty years have passed since“A Study of the So-
lar Chromosphere”was published [29], much remains to be
understood relative to this region of the Sun. P. Heinzel writes
that“Moreover, the energy supply into these layers is largely
unknown, we only know that the radiation is not the domi-
nant source of heating. The solar chromosphere is probably
the least understood part of the Sun, even compared to the
solar interior on which helioseismology has focused during
last decades”[8]. Much like other physical processes in the
Sun, local heating is being tentatively attributed to magnetic
mechanisms. Yet, if the chromosphere remains a mystery, the
cause rests on the insistence that the Sun must exist in the
gaseous state. Donald Menzel reminds us,“The province of
the scientist is the untangling of mysteries, the renderingof

complex things into simple ones”[29, p. 1].
A condensed solar model provides elegant solutions to

the most perplexing questions relative to the chromosphere.
This is especially true relative to apparent heating, as best
understood through the careful consideration of how chromo-
spheric emission lines are produced.

Within gaseous models, line emission requires either pho-
ton absorption, or electron collision, to excite the emitting
atom [4, p. 228]. This represents an attempt to explain spec-
tra using random processes. In the condensed model [17–21]
spectra are tied to the formation of chromospheric structures.
Line emission becomes inherently linked to understanding
the very nature of the chromosphere.

The quest for answers begins with the consideration of
condensation processes in clusters, the smallest precursors to
condensed matter [32–37]. Clusters can be super-stable and
act as superatoms [38]. In addition, their most favorable con-
figurations can be linked to highest electron affinity and not to
the energy of the ground state [39]. Condensation processes
in clusters have been known to be associated with light emis-
sion [40, 41] and are exothermic. Thus, the apparent heating
of the chromosphere might best be understood by considering
these reactions.

In 1996, chemiluminescence was first reported to occur
during the agglomeration of silver clusters [40]. By necessity,
the reactions involved took place at low temperature (∼30K),
but the lessons learned directly translate to other conditions.
Gerhart Ertl (Nobel Prize, Chemistry, 2007) and his team
highlight: “Exothermic chemical reactions may be accompa-
nied by chemiluminescence. In these reactions, the released
energy is not adiabatically damped into the heat bath of the
surrounding medium but rather is stored in an excited state of
the product; decay from this excited state to the ground state
is associated with light emission”[40].

The reactions presented by Ertl [40], which are of inter-
est relative to the chromosphere, are illustrated by the con-
densation of two silver fragments, resulting in an activated
cluster species: Mn + Mm → M∗m+n. The activated clus-
ter returns to the ground state by ejecting an excited atom:
M∗m+n → Mm+n−1 + M∗. Finally, the excited silver atom is
able to relax to the ground state by emitting light: M∗ →M +
hv. Consequently, since condensation processes are exother-
mic, they are capable of producing excited atoms which re-
sult in emission. To extend these concepts to the solar chro-
mosphere, it is useful to consider the types of condensation
reactions which might be present in this region of the Sun.

In the chromosphere, it is possible to observe spectro-
scopic emission lines from atomic hydrogen corresponding to
the Lyman (n2 > 1→ n1=1 [42]), Balmer (n2 > 2→ n1= 2
[30]), and Paschen series (n2 > 3 → n1= 3 [43]).∗ Lyman
emission lines involve relaxation back to the ground state and

∗Up to eleven separate Lyman emission lines have been recorded (n2=7
through n2=17 [42, p. 47]), Balmer lines at least up to n2=31 [30], and at
least nine Paschen lines (n2=8 through n2=16) [43]
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can directly be deduced to arise from the condensation of hy-
drogen fragments, Hn + Hm→ H∗m+n, relaxation of the resul-
tant condensation product through the ejection of an excited
hydrogen atom, H∗m+n → Hm+n−1 + H∗, and finally the return
to the ground state of the excited hydrogen atom with light
emission, H∗ → H + hv.

In reality, it is reasonable to postulate that reactions in the
chromosphere primarily involves the combination of molecu-
lar hydrogen with much larger condensed hydrogen structures
or seeds, CHS, since this region of the Sun displays tangible
signs of condensed matter in the form of spicules and mot-
tles [9–15,26].

In this case, molecular hydrogen, H2, initially combines
with these larger structures, CHS+ H2 → CHS–H∗2, resulting
in mass increase, CHS–H, and the subsequent line emission
from the ejected hydrogen atom, H∗ → H + hv. Given the
extensive quantities of hydrogen in the Sun, it would be ex-
pected that numerous such reactions could take place simulta-
neously on any given CHS and result in the rapid appearance
of spicules and mottles in the solar atmosphere [9–15, 26].
Since these reactions are“not adiabatically dumped into the
heat bath of the surrounding medium”[40], condensation
processes could result in the emission of Balmer [30] and
Paschen lines [43]. In fact, the first line of the Balmer se-
ries (n2 = 3 → n1= 2), known as the Hα line, is responsible
for the reddish hue of the chromosphere [7, p. 232].

The aforementioned reactions depend on the presence of
molecular hydrogen in the chromosphere. Unfortunately, the
concentrations of molecular hydrogen are extremely difficult
to estimate in astrophysics, even if this species is widely con-
sidered to the most abundant molecule in the universe. The
difficulty in establishing molecular hydrogen concentrations
stems from the fact that all rotational-vibrational transitions
from the ground electronic state of this diatom are forbid-
den [44]. As a result, astronomers typically use indirect meth-
ods to compute molecular hydrogen fractions in the galax-
ies [44–47] and sunspot umbra where the molecule is thought
to be abundant [48].

Nonetheless, molecular hydrogen has been directly ob-
served in sunspots in the extreme ultra-violet, a region of the
electromagnetic spectrum were the emission lines are rela-
tively strong [49, 50]. Furthermore, Jordan et al. [49] report
a significant enhancement of the molecular hydrogen signal
when chromospheric material lies over the sunspot of inter-
est. While these signals are generally weak on the quiet Sun
and in the limb [51], the emission from flares [50] and chro-
mospheric plages [52] can be rather strong. Given the dif-
ficulty in observing molecular hydrogen in the ground state,
these findings are significant and highlight that this species
should be available to support condensation reactions in the
chromosphere.

Therefore, it is likely that the hydrogen emission lines at
the chromospheric level are related to the growth of CHS and
the recapture of hydrogen from the outer solar atmosphere.

Przybilla and Buttler have already simulated the linewidthof
hydrogen emission lines in the chromosphere and reached the
conclusion that some of the lines“couple tightly to the con-
tinuum” [53]. But within the context of the gaseous solar
models, it is impossible to“couple tightly to the continuum”,
as the latter merely represents an opacity change, not a phys-
ical structure [54]. It is for this reason that the emission lines
of hydrogen have already been ascribed to the seventeenth
line of evidence that the Sun is comprised of condensed mat-
ter [19]. Line emission can be linked to condensation, as
Ertl has already elegantly demonstrated [40, 41]. Moreover,
within the condensed models of the Sun, it would be natural
that hydrogen emission associated with condensation would
“couple tightly to the continuum”.

Before closing the discussion of hydrogen, it is important
to digress slightly from addressing emission in order to dis-
cuss the hydrogen Fraunhofer absorption lines of the Balmer
series. These lines are known to be broad and, as first reported
by Unsöld [55], their relative intensities do not decreasein
the manner predicted from quantum mechanical considera-
tions. This has already been discussed by the author [19].
Therefore, Fraunhofer lines are not directly related to con-
densation processes. Isolated atoms, unlike diatoms, lackthe
ability to add protons to condensed structures, while at the
same time removing heat. It is unlikely that isolated atoms
can condense onto larger structures. It is more probable that
they combine with one another to make a molecular species
which, in turn, can condense. Hence, the broadening associ-
ated with the Balmer Fraunhofer lines can be linked to colli-
sional processes whereby atoms are strongly interacting with
the condensed matter which surrounds them, but not condens-
ing. This represents, as previously mentioned, the sixteenth
line of evidence that the Sun is comprised of condensed mat-
ter [19].

Returning to line emission, in addition to molecular hy-
drogen, the chromosphere may well possess other species
which can facilitate the condensation of hydrogen atoms. In-
deed, many hydrides have been identified either on the solar
disk itself or within sunspots [56, 57], including CaH, MgH,
CH, OH, H2O, NH, SH, SiH, AlH, CoH, CuH, and NiH. The
presence of CaH and MgH in the Sun have been known since
the beginning of the 20th century [58]. In the laboratory hy-
drides from the main group elements (Li, Na, K, Rb, Cs, Be,
Mg, Ca, St, Ba, B, Al, Ga, In, Tl, C, Si, Ge, Sn, N, P, As, Sb,
Bi, O, S, Se, Te, F, Cl, Br, and I) and many of the transition
metals (including amongst others V, Fe, Co, Ni, Cu, Ag, Zn,
and Cd) are readily synthesized [59]. Hydrogen appears to
have a great disposition to form hydrides of all kinds and this
is an important realization relative to understanding the lower
solar atmosphere.

Interestingly, the emission lines from CaII and MgII are
particularly important in the chromosphere (e.g. [4, p. 361–
369]). The second ionization state is singly charged (Ca+ and
Mg+). But, the inert gas structure of these ions would demand
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a doubly charged species, i.e. Ca+2 and Mg+2. As such, why
is it that the most important ions of calcium and magnesium
on the Sun are singly charged? The answer is likely to rest
with their role in making hydrogen available for condensa-
tion.

Consider the reactions for calcium. It should be possible
for CaH and a condensed hydrogen structure to create an acti-
vated complex, CHS+ CaH→ CHS–HCa∗. This would then
be followed by an exothermic step involving the expulsion of
an activated CaII ion, CHS–HCa→CHS–H+Ca+∗, followed
by the line emission from CaII∗, Ca+∗ → Ca+ + hv.

An identical scenario could be advanced for all the mono-
hydrides, resulting in the observed line emission from their
associated cations. Indeed, chromospheric emission lines, in-
volving cations in modest oxidation states, are likely to be
generated following a very similar mechanism. Some atoms,
like oxygen or iron, may well exist as dihydride or higher
complexes of hydrogen. They should participate similarly in
condensation reactions, bringing in the process one or more
hydrogen atoms to the site of condensation. The metal hy-
drides thereby would constitute important building blocksin
the resynthesis of condensed forms of hydrogen.

When molecular hydrogen delivers a single proton to the
condensation reactions, it is also delivering a single electron,
if a neutral hydrogen atom subsequently emits. The same
can be said for all hydrides wherein neutral atoms are ejected
from the condensate to then produce emission lines. Atoms
like oxygen have higher ionization potentials that the alkali,
alkaline, or transition metals and may well prefer to hold on
to their electrons. Emission lines from neutral oxygen are
well know to be present during spicule formation [60].

Conversely, a species like CaH is delivering two electrons
when generating CaII, as the negative hydrogen ion is being
released. This suggests that condensed hydrogen structures,
CHS, in the chromosphere might have reasonable electron
affinities, though perhaps slightly less than that of oxygen in
the lower chromosphere.

Importantly, the delivery of hydrogen to condensed hy-
drogen structures will involve potentially strong interactions
between the carrier atoms (H, Ca, Mg, etc.) and the conden-
sate surface. This would be expected to result in substan-
tial line broadening of the ejected excited species. In support
of such an idea, CaII and MgII spicule lines are known to
be broad, and the Hα emission lines also display increased
linewidths (see e.g. [60–62]). Such findings suggest tight
coupling of these atoms to the condensate prior to ejection.
Conversely, spicule emission linewidths from the Hβ, Hγ, Hǫ
emission line, the D3 line from He, and the line from neu-
tral oxygen are all sharp [60] in spicules, suggesting weaker
coupling in those cases.

Contrary to gaseous models of the Sun which have as-
cribed no reasonable function to the chromosphere, the liquid
metallic hydrogen framework [17–21] appears to provide a
sound purpose for this layer. A condensed Sun does not per-

mit hydrogen to simply escape, without recovery, into extra-
solar space. Rather, molecular hydrogen and hydrides are
likely to be participating in the continued recondensationof
hydrogen within the chromosphere generating the observed
emission lines. The resulting material appears to be non-
metallic since spicules can display orientations which arenot
coupled to the magnetic field lines of the Sun [9–15]. This
material may then rejoin the photosphere and travel into the
solar interior, perhaps using intergranular lanes [63]. Once
in the interior of the Sun, pressure would facilitate the re-
synthesis of metallic hydrogen.

In summary, for the first time, it is advanced that com-
plex condensation reactions take place in the chromosphere.
These result in line-emission and provides a novel way to ex-
plain both spectra and structures on the Sun. The chromo-
sphere appears to be rich in atomic and molecular hydrogen.
Furthermore, a wide array of hydride based reactions seem
to occur within the chromosphere and these provide a power-
ful incentive to further the understanding of condensationand
hydride chemistry on Earth. In this respect, the presence of
metal hydrides [56–58] and the line emission of main group
and transition elements in the chromosphere constitutes the
thirtieth line of evidence that the Sun is comprised of con-
densed matter.
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The E-corona is the site of numerous emission lines associated with high ionization
states (i.e. FeXIV-FeXXV). Modern gaseous models of the Sunrequire that these states
are produced by atomic irradiation, requiring the sequential removal of electrons to in-
finity, without an associated electron acceptor. This can lead to computed temperatures
in the corona which are unrealistic (i.e.∼30–100 MK contrasted to solar core values
of ∼16 MK). In order to understand the emission lines of the E-corona, it is vital to
recognize that they are superimposed upon the K-corona, which produces a continuous
spectrum, devoid of Fraunhofer lines, arising from this same region of the Sun. It has
been advanced that the K-corona harbors self-luminous condensed matter (Robitaille
P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II.
Continuous Emission and Condensed Matter Within the Corona. Progr. Phys., 2013,
v. 3, L8–L10; Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the
Solar Atmosphere III. Importance of Continuous Emission Spectra from Flares, Coro-
nal Mass Ejections, Prominences, and Other Coronal Structures. Progr. Phys., 2013,
v. 3, L11–L14). Condensed matter can possess elevated electron affinities which may
strip nearby atoms of their electrons. Such a scenario accounts for the high ionization
states observed in the corona: condensed matter acts to harness electrons, ensuring the
electrical neutrality of the Sun, despite the flow of electrons and ions in the solar winds.
Elevated ionization states reflect the presence of materials with high electron affinities
in the corona, which is likely to be a form of metallic hydrogen, and does not translate
into elevated temperatures in this region of the solar atmosphere. As a result, the many
mechanisms advanced to account for coronal heating in the gaseous models of the Sun
are superfluous, given that electron affinity, not temperature, governs the resulting spec-
tra. In this regard, the presence of highly ionized species in the corona constitutes the
thirty-first line of evidence that the Sun is composed of condensed matter.

In order to explain the occurrence of the dark lines
in the solar spectrum, we must assume that the solar
atmosphere incloses a luminous nucleus, producing
a continuous spectrum, the brightness of which ex-
ceeds a certain limit. The most probable supposi-
tion which can be made respecting the Sun’s consti-
tution is, that it consists of a solid or liquid nucleus,
heated to a temperature of the brightest whiteness,
surrounded by an atmosphere of somewhat lower
temperature.

Gustav Robert Kirchhoff, 1862 [1]

Superimposed on the continuous spectrum of the inner
K-corona are emission lines, including one at 5303.3 Å, the
famous line from coronium, first discovered by Harkness and
Young [2, 3], photographed by Evershed [4], and eventually
identified as FeXIV by Bengt Edlén [5–7]. Walter Grotian
suggested that this line originated from highly ionized atoms,
supported by early reports of similar findings from Bengt
Edlén in such atoms [5–8]. The wonderful story of coro-
nium [5, 6], along with the roles played by Walter Grotian
and Bengt Edlén has been presented by Edward A. Milne [7].

Milne’s account provides a key fact relative to coronium:
the formation of FeXIV requires energy in the soft X-ray
range of the electromagnetic spectrum [7], but the Sun emits
very few of these rays. As such, how does one produce ions
with such elevated ionization states in the corona?

Today, X-ray spectroscopy reveals that the Sun can pro-
duce emission lines from ions with ionization states as high
as FeXXV [9]. Within the context of the gaseous models
[10–12], the formation of such species calls for the removal
of electrons from electronic shells to infinity, requiring ener-
gies associated with temperatures of∼30 MK [9, p. 26]. It has
also been postulated that superhot thermal components (>108

K) can be generated above the limb in association with some
flares [13] and radio studies initially called for temperatures
of 108–1010 K in the corona [14, p. 128].

In 2000, the Bastille Day flare produced FeXII lines, but
with a spine emmiting FeXXIV lines [9, p. 19]. If such find-
ings are to be explained within the context of a gaseous solar
model [10–12], it is not surprising that extreme temperatures
must be invoked. A gaseous Sun has no other means of pro-
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ducing highly ionized species.
At the same time, the extreme temperatures currently as-

sociated with the corona must be viewed with caution, given
that the core of the Sun has been postulated to harbor temper-
atures of only∼16 MK [10, p. 9]. In addition, it is claimed
that the energy source driving such extremes in temperature
“must be magnetic since all the other possible sources are
completely inadequate”[13]. Such statements, and the com-
puted temperatures from which they stem, directly reflect the
shortcomings of the gaseous solar models [10–12]. The need
to explain the synthesis of highly ionized ions in the corona
within a gaseous context is so acute that numerous schemes
have been advanced to heat the chromosphere and corona [15,
16]. Ulmschneider states that“The chromosphere and corona
are thus characterized as layers which require large amounts
of mechanical heating”[15, p, 235] and further“To clarify
the zoo of coronal heating processes much further work re-
mains to be done”[15, p. 278].

Since the corona must be excessively hot to produce such
ions in a gaseous context, the continuous spectrum of the K-
corona has been dismissed as a strange artifact, produced
by electronic scattering of photospheric light [17]. Other-
wise, the coronal continuous spectrum would be indicating
thatapparent coronal temperatures are no warmer than those
of the photosphere. It would be impossible for the gaseous
models [10–12] to account for the presence of highly ionized
species within the outer solar atmosphere. Consequently, suf-
ficient electron densities are inferred to exist in the corona to
support the idea that the spectrum of the K-corona is being
produced by the scattering of photospheric light:“The rea-
son we see the corona in white, or integrated, light is that the
photospheric light is scattered by coronal electrons: we see
the light that does not get through but is scattered towards
us. This scattered light is about 10−6 as intense as the photo-
spheric light, which means it has been scattered by 1019 elec-
trons; these are distributed along a path about equal to the
diameter of the sun, or 1.4 x 1011 cm, so the average coronal
density close to the surface must be 108 electrons/cm3” [14,
p. 75]. Much like the solar surface [18], the relevance of a
thermal spectrum in the K-corona has been rejected as little
more than an optical illusion [17].

In the end, all extreme temperatures obtained from line
emission should be dismissed as erroneous. Discovery of
FeXXV within X-ray flares suggests that we do not properly
understand the formation of emission lines with high ioniza-
tion levels in the corona. Current temperature estimates are
flirting with violations of both the first and second laws of
thermodynamics: it is difficult to conceive that localized tem-
peratures within flares and the corona could greatlyexceed
the temperature of the solar core.

Instead, line emission spectra from highly ionized ions
might best be viewed as direct evidence that materials with
elevated electron affinities exist within the corona. Such a
solution can be readily associated with the condensed nature

of the Sun [19–23].
In this regard, the continuous spectrum of the K-corona

must be regarded as genuine [17]. The slight reddening of
the K-corona, reported long ago by Allen [24], indicates that
apparentcoronal temperatures are gently decreasing with in-
creasing distance above the solar surface. The corona seems
to contain condensed matter of the same nature as found on
the photosphere, since the spectrum of the K-corona, though
devoid of Fraunhofer lines, is essentially identical to that pro-
duced by the solar surface [18]. This proposal is compelling,
given that the Sun is expelling material into its corona which
is also known to emit continuous visible spectra [25].

By extension,apparentcoronal temperatures, which are
likely to represent vibrational lattice phenomena [26–29], can
be no greater than those found on the surface of the Sun.
Therefore, contrary to popular scientific belief [15, 16], the
corona of the Sun isnot being heated. Rather, free atoms in
the corona are being stripped of their electrons, as they inter-
act with condensed matter which possesses much higher elec-
tron affinity. Neutral atoms have limited electron affinities,
but molecules can have higher values.∗ However, condensed
matter can develop enormous attractive forces for electrons.

This lesson is well manifested on Earth, as lightning at-
tempts to equalize charge imbalance between separate regions
of condensed matter [31–33]. Typically, lightning forms in
clouds containing solid or liquid water particles. But it can
also occur“above volcanoes, in sandstorms, and in nuclear
explosions”[33, p. 67]. Usually, lightning forms between dif-
ferent cloud regions, or between clouds and the Earth’s sur-
face [31–33]. Lightning represents the longest standing ex-
ample of the power of electron affinity in condensed matter.
In this respect, while temperatures in the tens of thousandsof
degrees could be inferred from Hα line analysis during light-
ning activity,† scientists do not claim that the atmosphere of
the Earth exists at these temperatures.

Thunderhead clouds can generate substantial steady elec-
tric fields on the order of 100 kVm−1 [33, p. 494]. Such fields
have have been associated with runaway electrons capable of
generating X-rays with energies of 100 KeV or more [33,
p. 493-495]. Nonetheless, these energies are not translated
into associated temperatures, as values in excess of 109 K
would be derived. Still, for the purpose of this discussion,
it is important to note that the presence of condensed matter
in the atmosphere of the Earth can lead to amazing phenom-
ena, when electric potentials are eliminated through charge
transfer.

The author has advanced that the corona of the Sun is
filled with sparse remnants of liquid metallic hydrogen [18]
which have been expelled from the body of the Sun [25].
Such material is expected to have a highly conductive nature

∗Of the elements, chlorine has the highest electron affinity at ∼3.6 eV,
calcium has the lowest value at∼0.02 eV; molecular RuF6 has a value of
∼7.5 eV [30]

†Peak temperatures of∼35,000 K have been reported [33, p. 163]
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and could be used to harvest electrons from the corona, help-
ing to ensure the continued neutrality of the solar body and
solar winds. The presence of metallic hydrogen in the corona
may then promote, through its elevated electron affinity, the
creation of highly ionized species.

For instance, when iron comes in contact with metallic
hydrogen, MH, it could initially form an activated complex,
MH–Fe∗, MH + Fe→ MH–Fe∗. This excited complex then
relaxes by capturingn electrons from the iron atom. This
could be accomplished with the simultaneous ejection of an
activated iron species, Fe+n∗, leading to the following reac-
tion: MH–Fe∗ → MH–n ē+ Fe+n∗. The resulting excited iron
could then relax back to the ground state through line emis-
sion, Fe+n∗ → Fe+n + hv. Depending on the local electron
affinity of metallic hydrogen,n could range from single digits
to ∼25 [9] in the case of iron. A similar process could be in-
voked to create the other highly ionized species of the corona.
In this regard, it is interesting to note that most of the ionsob-
served in the solar“XUV spectrum are principally those with
one or two valence electrons”remaining [14, 173].

In this scenario, the electron affinity of metallic hydrogen
in the outer atmosphere responds to charge imbalances, either
in the corona itself or on the surface of the Sun, by capturing
electrons locally. Metallic hydrogen in the corona thereby
acts as a conductive medium surrounding the solar body, con-
stantly ensuring overall charge neutrality for the Sun. Thear-
rangement of coronal steamers is highly suggestive of such a
role from these objects, though all coronal structures might
be involved in the recapture of electrons from the outer solar
atmosphere.

Outstanding images of the corona have been obtained us-
ing spectroscopic lines from highly ionized iron (e.g. FeX–
FeXIV) [34–37]. The presence of FeX–FeXIV throughout
the solar atmosphere strengthens the concept that interactions
between atoms and metallic hydrogen in the corona act to
maintain neutrality on the Sun by producing highly ionized
atoms throughout this region.

Moreover, flare studies indicate that coronal structures
can display highly organized local electron affinities. As men-
tioned earlier, the TRACE team has produced a flare image
where central spine structures produce line emission from
FeXXIV and CaXVII, while the exterior of the flare emits
in FeXII [9, p. 19]. Such images would be nearly impossi-
ble to explain in the context of a gaseous model of the Sun.
Instead, organized structures within the corona and its com-
ponents are strongly supportive of the idea that the Sun is
comprised of condensed matter.

In closing, the liquid metallic hydrogen model of the Sun
[19–23] provides an elegant solution for the production of
highly ionized species in the corona. The wide variety of ox-
idation states can be simply obtained by invoking regions of
varying electron affinity within the condensed structures that
comprise the corona. The complete, or significant, removal
of electrons from atoms can be explained using a single in-

teraction, namely the temporary contact between atoms and
metallic hydrogen.

The production of such ions in the gaseous models [10–
12] requires the repeated ejection of electrons from their or-
bitals in a multistage process, whereby up to two dozen events
must logically follow one another. Studies indicate the exis-
tence of species such as C+6, Fe+14 and Fe+16 in the solar
wind [38, p. 114]. Such ions require multiple steps for pro-
duction in a gaseous context [10–12] and would be the result
of random processes.

Conversely, the synthesis of highly ionized atoms requires
but a single step in the liquid metallic hydrogen model [19–
23]. The generation of such ions is no longer a random act,
but rather a direct manifestation of the function of the corona,
facilitation of electron capture in the outer atmosphere ofthe
Sun in order to preserve solar neutrality. The production of
highly ionized species throughout the corona therefore consti-
tutes the thirty-first line of evidence that the Sun is composed
of condensed matter.

Dedication

Dedicated to the poor, who sleep, nearly forgotten, under the
light of the Southern Cross.
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Molecular hydrogen and hydrides have recently been advanced as vital agents in the
generation of emission spectra in the chromosphere. This isa result of the role they
play in the formation of condensed hydrogen structures (CHS) within the chromosphere
(P.M. Robitaille. The Liquid Metallic Hydrogen Model of theSun and the Solar Atmo-
sphere IV. On the Nature of the Chromosphere.Progr. Phys., 2013, v. 3, 15–21). Next
to hydrogen, helium is perhaps the most intriguing component in this region of the Sun.
Much like other elements, which combine with hydrogen to produce hydrides, helium
can form the well-known helium hydride molecular ion, HeH+, and the excited neutral
helium hydride molecule, HeH∗. While HeH+ is hypothesized to be a key cosmological
molecule, its possible presence in the Sun, and that of its excited neutral counterpart,
has not been considered. Still, these hydrides are likely toplay a role in the synthesis
of CHS, as the He I and He II emission lines strongly suggest. In this regard, the study
of helium emission spectra can provide insight into the condensed nature of the Sun,
especially when considering the 10830 Å line associated with the 23P→23S triplet state
transition. This line is strong in solar prominences and canbe seen clearly on the disk.
The excessive population of helium triplet states cannot beadequately explained using
the gaseous models, since these states should be depopulated by collisional processes.
Conversely, when He-based molecules are used to build CHS ina liquid metallic hydro-
gen model, an ever increasing population of the 23S and 23P states might be expected.
The overpopulation of these triplet states leads to the conclusion that these emission
lines are unlikely to be produced through random collisional or photon excitation, as
required by the gaseous models. This provides a significant hurdle for these models.
Thus, the strong 23P→23S lines and the overpopulation of the helium triplet states pro-
vides the thirty-second line of evidence that the Sun is comprised of condensed matter.

In order to explain the occurrence of the dark lines
in the solar spectrum, we must assume that the solar
atmosphere incloses a luminous nucleus, producing
a continuous spectrum, the brightness of which ex-
ceeds a certain limit. The most probable supposi-
tion which can be made respecting the Sun’s consti-
tution is, that it consists of a solid or liquid nucleus,
heated to a temperature of the brightest whiteness,
surrounded by an atmosphere of somewhat lower
temperature.

Gustav Robert Kirchhoff, 1862 [1]

Estimates of solar helium abundances have varied widely
over the years. For instance,“di fferent methods and different
data sets give values ranging from 20% to 40% of the Sun’s
mass” [2, p. 381]. ‘Primordial’ helium levels strongly guide
all solar helium abundance determinations, as the amount of
helium in the stars is said to be closely correlated with the
synthesis of this element soon after the Big Bang [3–6]. He-
lium abundances currently act as one of the “Great Pillars” of

cosmology (see [7] for detailed discussion). As such, any at-
tempt to alter accepted helium levels within the Sun has great
implications throughout astrophysics.

Recently, the author has reviewed the determination of so-
lar helium abundances and reached the conclusion that these
levels are likely to have been overstated [7]. The most pru-
dent outlook remains that the Sun, like the visible universe,
is composed primarily of hydrogen, as first outlined by Ce-
cilia Payne [8]. In this regard, Robitaille and Robitaille have
highlighted that the solar body is apt to be excluding helium
from its interior [9]. It is well-known that this element canbe
expelled from the Sun during periods of elevated solar activ-
ity with widely varying quantities observed in the associated
solar wind [10–14]. As a result, it is unlikely that the Sun
is harboring much helium [7, 9]. Significant levels of helium
above the photosphere merely represent eons of helium syn-
thesis in a hydrogen based Sun. It can be hypothesized that
since helium cannot re-enter the Sun once expelled, it slowly
accumulates as a gas within the chromospheric region.

In his classic textbook,“Astrophysics of the Sun”, Harold
Zirin emphasized that the helium D3 line can be enhanced
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more than 20 fold, as viewing moves from the center of the
solar disk to just beyond the limb, displaying“a sharp spike”
[15, p. 199–200]. He outlined that this emission“comes from
a low thin layer” [15, p. 198]. Similarly, Zirin states that
the triplet He I transition at 10830Å is barely visible on the
disk, but almost as strong as Hα at the limb [15, p. 199–200].
Moreover, he adds that theλ1640 line is known to increase in
intensity at least fifteen times near the limb, while lines from
neutral helium are enhanced 50 fold [15, p. 199–200]. Since
helium emission peaks at∼1200 km above the photosphere,
these findings strongly suggest that the element is floating in
a cloud lying several hundred kilometers above the surface,
although He remains sparse over coronal holes [15, p. 198].

At the same time, though relatively faint, helium lines are
present in the spicules [16]. Since chromospheric structures,
like spicules, have been hypothesized to be the site of hy-
drogen condensation in the solar atmosphere, it is important
to understand why helium emission lines are associated with
such objects.

Based on the chemiluminescence observed when silver
clusters condense [17], the author has recently stated that
all emission lines originating in the flash spectrum are a di-
rect consequence of condensation in this region of the Sun
[18]. By necessity, these exothermic condensation reactions
involve the ejection of an excited atomic species from the
condensate which can then relax back to a lower energy level
through the emission of a photon. For instance, the Ca II
emission, which is so typical of the chromospheric spectrum,
has been hypothesized to involve the reaction of CaH and a
condensed hydrogen structure, CHS [18], to create an excited
complex, CHS+ CaH→ CHS–HCa∗. This step is then fol-
lowed by the exothermic expulsion of an excited Ca II ion,
CHS–HCa→CHS–H+Ca+∗, and later by line emission from
Ca II∗, Ca+∗ → Ca+ + hν. Similar reactions have been in-
voked for all the hydrides present on the Sun [18]. The most
significant of these take place using molecular hydrogen, and
this explains the prevalence of strong emission lines from this
element in the chromosphere. In order to account for the He I
and He II emission lines associated with the flash spectrum, a
directly analogous scenario must be invoked, which this time
requires a helium hydride molecular species.

Many charged molecular ions of helium have been stud-
ied. The most famous, helium hydride, HeH+, is ubiquitous
in discharges containing hydrogen and helium.”[19]. This
molecular cation was first discovered experimentally in 1925
by Hogness and Lunn [20]. It has been the focus of extensive
spectroscopic studies [21, 22] and also postulated to play a
key role in chemical astrophysics [23–25]. Wolfgang Ketterle
(Nobel Prize, Physics, 2001) was the first to obtain its spec-
troscopic lines [26, 27]. The molecule has a bond distance
of 0.77Å and a dissociation energy of∼44.6 kcal mol−1 [19].
Although it exists only in the gas phase, its Brønsted acidity
should be extremely powerful. As a result, the hydrogen hy-
dride cation should have a strong tendency to donate a proton,

Fig. 1: Schematic representation of possible pathways involved
when the helium hydride ion, HeH+, or the excited helium hydride
molecule, HeH∗, react with condensed hydrogen structures, CHS, in
the chromosphere of the Sun. The pathways presented can account
for all emission lines observed from He I and He II. Note in this
scheme that excited helium, He∗, is being produced initially through
the interaction of HeH+ with CHS. This excited helium, He∗, if it
assumes the triplet state (orthohelium — electrons in the same ori-
entation: spin up/up or down/down), will then become trapped in
the excited state. This triplet helium can then be used repeatedly,
in cyclic fashion, to condense hydrogen atoms onto chromospheric
structures, CHS (as shown in the lower half of the figure). Alterna-
tively, if excited helium He∗ is initially produced in the singlet state
(parahelium — electrons in different orientation: spin up/down),
emission can immediately occur generating the singlet lines from
He I. This scheme accounts for the strong triplet He I transition at
10830 Å observed in the flash spectrum of the chromosphere. Un-
like the situation in the gas models, random collisional or photon
excitations are not invoked to excite the helium atoms. As a result,
de-excitation processes would also be absent, helping to ensure the
buildup of triplet state orthohelium in this model.

without the concerted transfer of an electron.
In the chromosphere, the interaction between the helium

hydride ion, HeH+, and condensed hydrogen structures, CHS
[18], could lead to an array of reactions as outlined in Fig. 1.

The simple combination of HeH+ and CHS could form an
activated complex: CHS+ HeH+ → CHS–H–He+∗. Exother-
mic expulsion of an excited helium ion, He+∗, could follow
with full transfer of a proton and an electron to the condensed
hydrogen structure: CHS–HHe+∗ → CHS–H+ He+∗. The
resulting He+∗ would be able to relax back to a lower energy
state through emission, He+∗ →He+ + hν, leading to the well
known He II lines in the chromosphere (see Fig. 1).

Alternatively, when HeH+ reacts with CHS, it could lead
initially to the same condensation adduct, CHS–H–He+∗, but
this time, exothermic expulsion of an excited helium atom
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could follow (see Fig. 1). Since HeH+ should be a strong
Brønsted acid, the transfer of a proton to the CHS could occur
without electron transfer: CHS–HHe+∗ → CHS–H+ + He∗.
This leads to several phenomena.

First, the relaxation of an excited helium atom, does not
involve the same processes which occur in the helium ion.
This is because the He+∗ possesses only a single electron.
As such, the electron in He+∗ can simply relax back down
to any lower energy level, including the ground state, giving
the well-known He II lines on the Sun.

Conversely, because an excited helium atom contains two
electrons, the possible fate of this species is more compli-
cated. Since one of the electrons has not been excited, it re-
mains in the lowest energy state, with a given spin, either up
or down. The excited electron is only allowed by selection
rules to return to the ground state, if and only if, its spin is
opposed to that of the ground state electron.

If the ground state electron is ‘spin down’, then the ex-
cited electron can make the transition back to the ground state
if it is ‘spin up’. Helium in this case is known asparahelium
(or singlet helium), emphasizing that its two electrons have
spins with opposite orientation. The singlet He∗ would sim-
ply relax back to the ground state, given rise to the emission
lines from the neutral atom, He I, He∗ → He+ hν. Likewise,
if the ground state electron is ‘spin up’, the excited electron
must be ‘spin down’ to enable the transition, He∗

→ He +
hν, again producing the identical He I lines from singlet state
parahelium.

However, if the two electrons of He∗ have the same spin
(both up or both down), then the excited electron cannot re-
lax back to the ground state. It remainstrappedin the excited
state. Helium in this case is known asorthohelium(or triplet
state helium), emphasizing that its two electrons have spins
with the same orientation. It is the reactions of orthohelium
which are of particular interest in this work, as their existence
is elegantly accounted for through the condensation of hydro-
gen [18], as described below.

Since orthohelium is trapped in the excited triplet state, it
has an opportunity to once again react with hydrogen, as dis-
played in the lower portion of Fig. 1. Wolfgang Ketterle has
demonstrated that excited helium hydride also exists [28,29].
Therefore, given a lack of relaxation, triplet He∗ could capture
a hydrogen atom, forming neutral excited helium hydride:
He∗ + H → HeH∗. This species could once again react with
CHS [18], but this time forming a doubly activated complex:
CHS+ HeH∗ → CHS–H–He∗∗. The net transfer of a hydro-
gen atom in this case leads to release from the CHS of doubly
excited helium.∗ When this occurs, the He∗∗ atom is now able
to relax, as the excited electron which is now in the 2p or 3s
orbital, undergoes a transition down to the 2s orbital. The

∗We can assume that the ground state electron remains stationary, but
that the initially excited electron has now been transferred to an even higher
atomic orbital. Alternatively, both electrons could be excited, but this case
will not be considered.

23P→23S transition is associated with the strong triplet He I
line at 10830Å observed in the prominences and on the disk
of the Sun [30, p. 95]. Alternatively, a 33P→23S transition
produces the triplet He I line at 3890Å [30, p. 95].

As illustrated in Fig. 1, once the doubly excited helium
atom has partially relaxed to regenerate orthohelium, it can
react once again with atomic hydrogen, leading to the re-
newed synthesis of excited helium hydride, HeH∗. A cyclic
pathway has been created, wherein triplet hydrogen is pre-
served and continuously working to assist in the resynthesis
of condensed hydrogen structures, as the Sun recaptures any
atomic hydrogen lost to its atmosphere.

Importantly, the entire process is being ‘primed’ through
the use of a single HeH+ molecular ion and the intial trans-
fer of a single proton to the CHS. This feature is noteworthy,
since true condensation requires the transfer of electronsand
protons to the chromospheric structures. In this regard, the
generation of Ca II emission lines from analogous condensa-
tions of calcium hydride, involves the transfer of two elec-
trons per hydrogen atom [18]. Such parallel reactions could
help to ensure that overall charge balance in the building of
condensed hydrogen structures can be maintained.

In the end, this approach holds many advantages over the
random processes invoked by the gaseous models of the Sun
in order to account for line emission in the chromosphere.
All line emission in the chromosphere become directly asso-
ciated with ordered reactions, whose product, CHS, are vital
to preserving the solar mass. The Sun does not simply eject
hydrogen into its atmosphere, without any hope of regaining
these atoms. Rather, in the chromosphere, hydrogen atoms
are constantly being recaptured through hydride based reac-
tions. The triplet state of orthohelium, so strongly manifested
within prominences and in the chromospheric emission spec-
trum, becomes not an incidental artifact, but rather, a nec-
essary and direct manifestation that organized chemical re-
actions are taking place within the chromosphere. As such,
the existence of this abundant orthohelium and the strong
emission lines which it produces can be said to constitute the
thirty-second line of evidence that the Sun is comprised of
condensed matter.
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In the liquid metallic hydrogen model of the Sun, the chromosphere is responsible for
the capture of atomic hydrogen in the solar atmosphere and its eventual re-entry onto
the photospheric surface (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the
Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Prog. Phys.,
2013, v. 3, L15–L21). As for the corona, it represents a diffuse region containing both
gaseous plasma and condensed matter with elevated electronaffinity (P.M. Robitaille.
The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the
Nature of the Corona.Prog. Phys., 2013, v. 3, L22–L25). Metallic hydrogen in the
corona is thought to enable the continual harvest of electrons from the outer reaches
of the Sun, thereby preserving the neutrality of the solar body. The rigid rotation of
the corona is offered as the thirty-third line of evidence that the Sun is comprised of
condensed matter. Within the context of the gaseous models of the Sun, a 100 km thick
transition zone has been hypothesized to exist wherein temperatures increase dramati-
cally from 104–106 K. Such extreme transitional temperatures are not reasonable given
the trivial physical scale of the proposed transition zone,a region adopted to account
for the ultra-violet emission lines of ions such as C IV, O IV,and Si IV. In this work, it
will be argued that the transition zone does not exist. Rather, the intermediate ionization
states observed in the solar atmosphere should be viewed as the result of the simulta-
neous transfer of protons and electrons onto condensed hydrogen structures, CHS. Line
emissions from ions such as C IV, O IV, and Si IV are likely to bethe result of condensa-
tion reactions, manifesting the involvement of species such as CH4, SiH4, H3O+ in the
synthesis of CHS in the chromosphere. In addition, given thepresence of a true solar
surface at the level of the photosphere in the liquid metallic hydrogen model, it follows
that the great physical extent of the chromosphere is supported by gas pressure, much
like the atmosphere of the Earth. This constitutes the thirty-fourth line of evidence that
the Sun is comprised of condensed matter.

In order to explain the occurrence of the dark lines
in the solar spectrum, we must assume that the solar
atmosphere incloses a luminous nucleus, producing
a continuous spectrum, the brightness of which ex-
ceeds a certain limit. The most probable supposi-
tion which can be made respecting the Sun’s consti-
tution is, that it consists of a solid or liquid nucleus,
heated to a temperature of the brightest whiteness,
surrounded by an atmosphere of somewhat lower
temperature.

Gustav Robert Kirchhoff, 1862 [1]

1 Introduction

If our current understanding of the solar atmosphere appears
strained, it is because the gaseous models of the Sun offer
no means, other than elevated temperatures, to account for
the presence of highly ionized ions in the corona [2]. As
a consequence, temperature values ranging from 107–1011 K
have been inferred to exist in the solar atmosphere [3, p. 172].

Such extreme temperatures should have suggested long ago
that the methods utilized to infer coronal temperatures could
not be valid, given that the core of the Sun is believed to sus-
tain temperatures of only∼1.6×107 K [4, p. 9]. The claim that
temperatures in localized regions of the corona can be 1 000
times higher than within the solar core, challenges reason.

Furthermore, by accepting elevated coronal temperatures,
proponents of the gaseous models must discount the contin-
uous emission of the K-corona as illusionary and produced
by the photosphere (see [2] for a completed discussion). The
continuous spectrum of the K-corona, devoid of Fraunhofer
lines, does closely replicate the emission of the photosphere
itself, but the spectrum reddens with elevation [2]. If this
spectrum was considered as generated by the corona, then the
apparent temperature of the outer solar atmosphere would be
no higher than that observed on the surface of the Sun.∗

∗Note that the apparent temperature of the photosphere (∼6 000 K), does
not manifest the true energy content of this region. Rather,the author has
claimed that it reflects that amount of energy which is contained within the
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Should it be true that coronal apparent temperatures are
no greater than photospheric values, then it is impossible,
within the context of a gaseous Sun, to account for the pres-
ence of highly ionized ions (e.g. CaXVII and FeXXIV [6,
p. 19]) in the corona. Devoid of condensed matter, the only
possible means of generating such ions must rest on temper-
ature. As a result, despite the realization that the spectrum
of the K-corona implies that the corona is self-luminous and
displays an apparent temperature no higher than that of the
photosphere [2], advocates of the gaseous models of the Sun
have no choice but to postulate that coronal apparent temper-
atures far exceed those of the solar surface.

Two problems come to the forefront relative to using ele-
vated temperatures to explain the presence of highly ionized
species within the corona. First, extreme temperatures (107–
1011 K [3, p. 172]) must be assumed. Second, the continuous
spectrum of the K-corona must be discounted as a byproduct
of photospheric light which has been scattered in the solar
atmosphere by relativistic electrons (see [2] for a complete
discussion).

Moreover, in order to account for the emission lines from
ions such as C IV, O IV, and Si IV, gaseous models must in-
corporate an extremely thin transition zone, whereby appar-
ent temperatures rapidly rise from chromospheric to coronal
values over the span of 100 km or less, as illustrated in Fig. 1.

Fig. 1: Schematic representation of the temperature stratification in
the solar atmosphere displaying the pronounced increase inthe tran-
sition zone located at an elevation of∼2 000 km (dashed line). This
figure is based on a discussion presented by Phillips, Feldman, and
Landi [6] and is an adaptation of their Fig. 1.1.

2 Temperature Stratification

In his chapter on the chromosphere and corona, P. Ulmschnei-
der states,“While the corona extends to many solar radii the

vibrational degrees of freedom found in the photospheric lattice [5].

chromosphere is a layer of only 2 or 3 thousand km thick-
ness which becomes visible near the start and end of a total
eclipse. The chromosphere got its name from the prominent
red emission of the Hα line of neutral hydrogen at 6563Å.
The chromosphere is a layer where the temperature rises from
photospheric values of between 4 000 and 6 000 K to about
20 000 K and where neutral hydrogen is still present. In the
region of a few 100 km thickness between the chromosphere
and corona, called transition layer, hydrogen becomes ion-
ized and the temperature increases from 20 000 to millions
of K” [7, p. 232–233].

A. Bhatnagar outlines that“Between the upper layer of
the chromosphere and corona (although the demarcation is
not sharp) lies the ‘transition layer’, where the temperature
rises very steeply, from about 25 000 to 500 000 K in height
difference of just 1 000 km”expanding the extent of the tran-
sition region by a factor of 10 [8, p. 32]. Conversely, Phillips,
Felman, and Landi emphasize“Model calculations indeed
suggest that the transition zone is extremely thin, less than
100 km” [6, p. 220].

Such dimensions on the Sun are essentially beyond the
limit of reliable detection with current instrumentation.Thus,
it is interesting to highlight that“A growing corpus of obser-
vations, particularly those starting with the Skylab mission,
showed that the transition zone has a much larger extent than
was indicated in the earlier models, leading to a revision of
our ideas of its nature...”[6, p. 210].

Harold Zirin, in candid fashion, reminds his readers that
anyone with a ruler can establish that the chromosphere can
attain elevations of at least 5 000 km from Hα emissions [9].
He reports that, when viewed in Hα, macrospicules can be
seen to extend to 20 000 km [9]. How can neutral hydrogen
be found at these heights, if the corona already reaches tem-
peratures of 106 K just after the transition zone? If the corona
was at millions of degrees, neutral hydrogen should not be
found at 20 000 km, a region well within the coronal domain.

The situation is aggravated by the realization that HLym

lines have been known to exist in the corona beyond 1.5R⊙

for more than fourty years [10]. This region extends beyond
the entire vertical range displayed in Fig. 1. Furthermore,
Dermendjiev et al. report, from direct photographic visual-
ization in Hα, that faint lines from neutral hydrogen can be
observed far into the corona, causing the authors to postulate
how the corona could be ‘cooled’ to allow for the presence of
such a line [11]. Yet, models of the solar atmosphere predict
that neutral hydrogen should be absent at elevations beyond
2 000 km, where temperatures approaching 10 000 K already
result in the complete ionization of this element (see e.g. Ta-
ble 4.6 in [12, p. 146–147]).

At the same time, highly ionized Fe lines (FeX–FeXIV)
have been used to image the solar corona in great detail and
indicate that these species can be found at elevations well in-
ferior to the known locations of neutral hydrogen emission
lines [13–16]. Clearly, it is not possible for emission lines
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which, according to the gaseous models of the Sun, require
millions of degrees for formation (FeX–FeXIV) to be juxta-
posed with Hα lines which are unable to withstand such tem-
peratures. The only solution rests in recognizing that the for-
mation of highly ionized emission lines in the corona stems
not from extreme temperatures, but from electron affinity [2].
It should not be inferred that the outer atmosphere of the Sun
maintains a temperature stratification whichincreaseswith
increased distance away from the solar body.

3 On The Validity of Temperature Measurements

In order to support the gaseous models, coronal temperatures
have been estimated using four key methods [17, p. 178–185]:
1) doppler broadening of emission lines, 2) density gradients
in the corona, 3) radio brightness, and 4) ionization equi-
librium. All of these methods provide slightly differing an-
swers [3, p. 165–166], but they share a common overarching
result: coronal temperatures are thought to be extremely high.
In the end, careful analysis reveals that each of these methods
is problematic.

3.1 Doppler Broadening of Emission Lines

Doppler broadening of emission lines (e.g. [6, p. 41–43], [17,
p. 178–180], [18, p. 90–94]) has been used extensively to set
coronal temperatures. The broadening of an emission line,
in this case, is assumed to be thermal in nature. The prob-
lems of assigning temperatures with such methods are numer-
ous. Zirin [17, p. 178-180] outlines how separate elements
can easily produce differing line widths and associated tem-
peratures. Nonetheless, he concludes that valid coronal tem-
peratures can be derived from such methods.

More than fifty years ago, Jefferies and Orrall addressed
the problem of obtaining prominence temperatures by em-
ploying spectral line widths stating,“If the broadening is sup-
posed due to thermal motions of the emitting atoms, then, to
the extent that the profiles are Gaussian, the hydrogen line
widths imply temperatures of over a hundred thousand de-
grees and the metals of over five million degrees”[19]. How-
ever, it is not possible to have neutral hydrogen present at a
temperature of over a hundred thousand degrees, given that
the element has been modeled as fully ionized at∼10 000 K
(see e.g. Table 4.6 in [12, p. 146–147]).

Jefferies and Orrall continue,“To avoid the necessity of
considering such unacceptably high and discordant temper-
atures, the hypothesis is frequently made that the line broad-
ening is due both to thermal motions of atoms and to mass
motions of small prominence elements having a Maxwellian
distribution of velocities. One may, on this basis, comparethe
widths of lines from two ions of very different atomic weights
to find a hypothetical “temperature,” TH and “mean veloc-
ity,” ξH . If the hypothesis is wrong, TH andξH will, in gen-
eral, bear no obvious relationship to the kinetic temperature
or mean random-velocity fields which they are intended to de-

scribe. While the truth of the hypothesis has come more and
more to be taken for granted, it seems to us that the evidence
in its favor is rather slight and certainly insufficient to allow
its uncritical acceptance. We have already . . . suggested that
the hypothesis may be invalid for analyzing widths of hydro-
gen and helium lines in quiescent prominences; in this paper
we present evidence for its possible failure in active flare-type
events”[19].

Though the discussion by Jefferies and Orrall cannot be
cited in its entirety, the authors go on to make the point that
the use of line width analysis could, in fact, lead tonegative
temperatures. Furthermore, they clearly discount the exis-
tence of temperatures in the 500 000–1000 000 K range [19].

Despite Jefferies and Orrall [19], today it is commonplace
to infer temperatures from line widths and ascribe anyexces-
sive line shape distortionto velocity. That is, if the line shape
is distorted, either in the low (red) or high (blue) frequency
range, net velocities will be added (e.g. see Eq. 2.30 in [6])
which can help account for the distortion. Examples can be
found throughout the astrophysical literature (e.g. [20]).

The situation is complicated by the realization that, in
addition to thermal effects, the line widths of atoms can be
altered by pressure, Stark, and electron broadening mecha-
nisms [21, p. 202-233]. However, the derivation of tempera-
tures from line widths in the solar atmosphere is much more
precarious than these considerations or the discussions from
Jefferies and Orrall [19] might suggest.

Collisional line broadening with condensed matter could
greatly impact the line widths under observation. Such line
broadening will be affected by the abundances of condensed
material and gaseous atoms in the corona and, most impor-
tantly, by the extent of the interaction between any given ele-
ment and such objects. Furthermore, tight coupling between
gaseous atoms and condensed matter could dramatically alter
line shapes outside the effects of velocity. In light of the evi-
dence for the presence of condensed matter in the corona [2],
all temperature measurements from line widths should be re-
considered.

3.2 Density Gradients

Density gradient approaches rely on the use of the white-
light continuous spectrum observed in the corona [17, p. 178–
180] or chromosphere [22, p. 170–228]. Modern theory as-
sumes that this spectrum has been produced by scattering
photospheric light through the action of relativistic electrons,
thereby enabling a temperature for the corona to be inferred
[17, p. 111–121]. The difficulty with such an approach lies
in the assumption that the corona is not self-luminous and
that its spectrum arises from photospheric light which must
be scattered. However, if the corona is indeed self-luminous
and cool [2], as implied by the presence of neutral hydrogen
even up to 1.5R⊙ [10], then this entire line of reasoning must
be re-evaluated.
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3.3 Radio Measurements

Of the four methods for determining coronal temperatures,
the final two are perhaps the weakest [17, p. 178–180]. In
the end, radio measurements [18, p. 242–247] should be con-
sidered with great caution, even though Professor Zirin has
stated that they are“the most dependable data we have”[9].
Radio data are highly dependent on the input variables (i.e.
electron and ion density) which must be modeled in order to
obtain brightness temperatures (e.g. see Table I in [9], [12,
p. 133–141], and [23]). All determinations of solar bright-
ness temperatures are inherently linked toa priori knowledge
of electron densities [22, p. 265] which can only be estimated
using modeling,“. . . it is evident that the quantities Ne(h)
and Te(h) are too inextricably mixed to be seperately deriv-
able from radio observations alone”[12, p. 137]. Since radio
models cannot disentangle electron density from brightness
temperatures, they are often guided by results obtained using
optical density gradient methods [22, p. 266]. Direct mea-
surements of electron density remain unavailable and theo-
retical values may not be accurate.

Radio measurements of brightness temperatures are also
highly dependent on wavelength and scattering processes (see
e.g. [12, p. 133–141], [22, p. 261–271], and [23]). Widely
conflicting data can be obtained (e.g. temperatures of only
300 000 at 1.6R⊙ [23]). In fact, radio observations appear to
be the source of the most extreme temperature values 108–
1010 K [17, p. 128], while scientists remain confronted with
addressing values as low as 104 K obtained with such methods
(see e.g. [12, p. 133–141] and [23]). As a result, it would be
imprudent to place an emphasis on coronal or chromospheric
temperatures obtained from radio measurements.

3.4 Ionization Equilibrium

It has already been established that ionization calculations re-
sult in models of the solar atmosphere which greatly underes-
timates the presence of neutral hydrogen in the corona. Con-
sequently, it is evident that temperatures derived from ioniza-
tion equilibrium must be regarded with caution.

As a rule, coronal temperatures derived from ionization
equilibrium tend to be too low to accomodate the gaseous
models of the Sun [17, p. 181]:“We must admit, however,
that the ionization theory not only gives the wrong temper-
ature, but fails to account for the many stages of ionization
observed in the corona. It is possible that temperature vari-
ations explain that fact; we can only wait for better observa-
tions of the line profiles of intermediate ions to confirm the
existence of temperature differences. It is more likely that
there is something erroneous in our basic concept of how
ionization takes place; but so far, we do not know what this
is” [17, p. 183]. Immediately after writing these lines, Pro-
fessor Zirin offers what he believes to be the answer: recom-
bination, a process whereby a single electron is captured by
an ion leaving it in double excited state, could be much more

important in the corona, resulting in a calculated temperature
near 2 MK [17, p.184].

In 1966, Zirin had hoped that more UV data would soon
be available to lift the cloud of mystery which surrounded
ionization equilibrium calculations [17, p. 181–185]. In fact,
the new data only added further confusion. Thirty years later,
he would write,“One would think that observations of the
solar ultraviolet would solve many of the problems. How-
ever, the intensity of these lines was very much lower than ex-
pected and to this day images with adequate resolution have
not been obtained. While the UV mimics the radio images,
brightening in the network, it is impossible to tell if it comes
from the spicules or the magnetic regions at their base. The
lines show a deep minimum in intermediate ionization stages
of C, N, and O. . . and the brightness temperature in the ex-
treme ultraviolet scarcely exceeds 4 000 degrees. This gives a
remarkable contradiction. Lines are observed of high ioniza-
tion stages such as carbon 4, neon 5, oxygen 5, which are only
formed at temperatures of 100 000 degrees or more but with
brightness temperatures 20 times less”[9]. Nearly forty years
after Professor Zirin produced his classic text [17], coronal
temperatures from ionization equilibrium are still viewedas
too low [3, p. 165–166].

The proper discussion of ionization equilibrium is best
reserved for a full treatment. However, suffice to state that
methods which depend on the ionization equations are com-
plex (see [24] for a partial review), involving knowledge of
whether or not the region of interest can be considered to be
in local thermal equilibrium (LTE). E.A. Milne highlighted
that the exterior regions of the Sun cannot be considered to
adhere to LTE conditions [25, p. 81–83]. Even chromospheric
ionization processes depend on non-equilibrium treatments
[18, p. 194–198], even if LTE methods continue to be used
(see [26] for a brief discussion). Unfortunately, the fluxes
associated with such processes remain largely unknown and
numerous assumptions will be involved in extracting temper-
atures with such methods.

In the end, none of the methods utilized to extract coronal
temperatures are reliable. Rather, any perceived agreement
between approaches is likely to be the result of the desire to
set a reasonable temperature for the corona. Each method
contains enough latitude to permit conformity by altering the
value of those input parameters which can only be obtained
from theory.

4 The Corona Revisited

Professor Harold Zirin had suspected that“. . . there is some-
thing erroneous in our basic concept of how ionization takes
place” [17, p. 183]. However, given the belief that the Sun
was a gas, no other plausible mechanism of formation could
be advanced. Today, the situation has changed dramatically,
as a great deal of evidence is building that the Sun is con-
densed matter (see [2,24,27–30] and references therein).
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For instance, it is now understood that the corona pos-
sesses“. . . a radially rigid rotation of 27.5 days synodic pe-
riod from 2.5 R⊙ to>15R⊙” [3, p. 116]. This finding by Lewis
et al. [31] provides the thirty-third line of evidence that the
Sun is comprised of condensed matter. The rigid rotation of
the corona is highly suggestive that it possesses condensed
matter whose associated magnetic field lines are anchored at
the level of the photosphere. Such a structure, if endowed
with a elevated electron affinity [2], would provide an elegant
network for channeling electrons from the outer reaches of
the solar atmosphere onto the photospheric surface. Thus, the
corona should be viewed as being in direct contact with the
photosphere.

In order to understand ionization states it is important
to recognize that condensed matter controls the behavior of
the Sun. As previously stated [2], within the solar atmo-
sphere, atoms and ions are being stripped of their electrons
by metallic hydrogen present in the corona. Such a process
can help ensure that the solar body remains electrically neu-
tral, as electrons are continually conducted back onto the so-
lar surface from the far reaches of the corona. It is known that
the electrical conductivity of the corona is extremely high[3,
p. 174]. This is in accord with a condensed solar state, which
extends into the corona, even if gases are also present in this
region.

5 The Chromosphere Revisited

The author has already addressed the chromosphere in detail,
as a region of hydrogen re-condensation, superimposed on the
corona in the lower portion of the solar atmosphere [28, 29].
He has suggested, that unlike the corona, the chromosphere
is not composed of hydrogen in the metallic state. Rather,
in the chromosphere, atomic and ionic hydrogen is interact-
ing with other atoms to form hydrides [28, 29] which can be
used to build condensed hydrogen structures (CHS). CHS can
then bring the harvested hydrogen back onto the solar surface,
perhaps using intergrannular lanes [28]. As such, the chro-
mosphere overlaps with the corona. The two regions contain
different types of material: metallic in the corona [2] and non-
metallic in the chromosphere [28, 29]. Chromospheric mate-
rial will regain metallic properties once it enters the solar in-
terior, where increased pressures can be used to re-synthesize
metallic hydrogen [30].

The tremendous height, 5 000 to 10 000 km, of the chro-
mosphere has posed a longstanding problem for the gaseous
models of the Sun [3, p, 140-142]. Early chromospheric mod-
els inferred a density scale height of only 150 km [3, p. 140-
142]. McCrea [32] attempted to build additional scale height
by suggesting that turbulent motions might provide additional
support for the chromosphere [3, p. 140-142]. Modern mod-
els have extended the theoretical treatment of the scale height
problem (see [26] for a brief discussion). But, still today,it
remains difficult for the gaseous models of the Sun to account

for the presence and extent of the chromosphere. Zirin high-
lights,“It was clear that the apparent scale height of 1 000 km
far exceeded that in hydrostatic equilibrium. In modern times
a convenient solution has been found – denial . . . We cannot
explain the great height or the erroneous models . . . While
models place this at 2 000 km, the data say 5 000”[9]. If it
is impossible for the gaseous models to properly account for
the great height of the chromosphere, the cause is simple to
understand. It is not possible for a gas to support itself. But
relative to structural support, gas pressure has been utilized in
modern solar theory to explain why a gaseous Sun does not
collapse on itself. However, such arguments have been dis-
counted, precisely because a gaseous object cannot possess
true surfaces [33]. Without a support mechanism, a gaseous
Sun cannot exist [33].

Conversely, within the context of a condensed solar body
[33], the Sun does not collapse upon itself because liquids
and solids are essentially incompressible. Furthermore, un-
like the case with the gaseous Sun, the chromosphere can
now be easily supported using gas pressure. This same mech-
anism is responsible for the support of the Earth’s atmosphere
(see [33] for a larger discussion). When a gaseous atom en-
counters a real surface, it reverses its course creating a net
upward force. Such a mechanism provides a genuine means
of supporting the chromosphere and thereby constitutes the
thirty-fourth line of evidence that the Sun is condensed matter
(see [2,24,27–30,33] and references therein for the others).

6 The Transition Zone Revisited

Within the gaseous models of the Sun, a transition zone has
been conceived in order to account for the existence of ions
with intermediatelevels of ionization. Species such as C IV,
O IV, and Si IV come to mind in this regard. Since the in-
tensity of all transition zone lines are low, modern models
simply create an extremely narrow region of the solar atmo-
sphere to account for this lack of signal, as illustrated in Fig.
1. Nonetheless, C IV, O IV, and Si IV remain interesting, as
they could be created by stripping hydrides such as CH4,
H3O+, and SiH4 of their hydrogen [28]. The vibrational sig-
natures of these molecules (the C-H, O-H, and Si-H stretches)
have been observed on the Sun [34]. The author has already
suggested that the chromosphere is a region of hydrogen re-
condensation where hydrides play an important role [28,29].
It remains reasonable to conclude that the transition zone does
not exist. Rather, the ions which are currently associated with
this region of the solar atmosphere are simply involved in
the transfer of multiple protons and electrons onto the con-
densed hydrogen structures, CHS, which constitute the chro-
mosphere. This region of the solar atmosphere therefore plays
a vital role in preserving the mass of the Sun and ensuring that
metallic hydrogen can eventually be re-synthesized withinits
interior.
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7 Conclusion

Through a recent series of publications (most notably [2, 28,
29]), the author has endeavored to alter our understanding
of the solar atmosphere. Rather than a chaotic assembly of
gaseous plasma, the chromosphere and corona become the
site of both structure and function in the Sun. Such struc-
ture is dismissed by the gaseous models, whose advocates
prefer to speak of visualizing“force balance” [26], rather
than real objects. At the same time, the history observa-
tional solar physics is replete with scientists, like Father An-
gelo Secchi, who believed that they were seeing real struc-
tures on the Sun [35, 36]. In a parallel line of reasoning, the
gaseous models provide no true function, either for the chro-
mosphere or the corona. Conversely, in the liquid metallic
model, the corona harnesses electrons [2], the chromosphere
condenses hydrogen atoms [28, 29]. In the corona, highly
ionized ions are produced when their parent atoms, or ions,
come into contact with metallic hydrogen which possesses
an elevated electron affinity. They are thereby stripped of
their electrons [2]. The metallic hydrogen which is present
in the corona has been projected into the solar atmosphere
from its site of formation below the surface of the Sun [2].
Since condensed matter appears likely to exist in the corona,
it is not tremendously hot, but maintains an apparent tem-
perature which decreases with elevation from the solar body.
In the chromosphere, where non-metallic condensed hydro-
gen structures are formed, the ionization states revealledfrom
emission lines are linked to key hydride based chemical pro-
cesses [28, 29]. The transition zone does not exist. It serves
a purpose only in the context of the gaseous solar models.
Much has been advanced recently relative to the condensed
nature of the Sun [2, 24, 27–30, 33] and much remains to be
considered. In the end, given the ever mounting evidence
for condensed matter (see [2, 24, 27–30, 33] and references
therein), eventually the elegance and simplicity of these mod-
els will surely come to be recognized.
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Space-Time Uncertainty and Cosmology: a Proposed Quantum Model
of the Universe

Sebastiano Tosto
Italy, E-mail: stosto@inwind.it, stosto44@gmail.com

The paper introduces a cosmological model of the quantum universe. The aim of the
model is (i) to identify the possible mechanism that governs the matter/antimatter ratio
existing in the universe and concurrently to propose (ii) a reasonable growth mechanism
of the universe and (iii) a possible explanation of the dark energy. The concept of time-
space uncertainty, on which is based the present quantum approach, has been proven
able to bridge quantum mechanics and relativity.

1 Introduction

Physical cosmology is the science of the most fundamental
questions about past, present and future of the universe. Born
in the modern form with the early Einstein general relativ-
ity (1916), it involves today all branches of the theoretical
physics. The conceptual basis of cosmology relies not only
on the theories of gravity field, but also on the fundamental
interactions between elementary particles. Likely the first at-
tempt of extending the achievements of general relativity to
propose a model of universe based on a physical theory was
made by Einstein himself with the introduction of the cos-
mological constant Λ. At that time the quantum theory was
at its very early beginning, while the gravitational interaction
seemed the most general physical law governing the dynam-
ics of celestial bodies; so the relativity, with or without Λ,
soon appeared as the most valuable resource to proceed be-
yond the Newton physics.

The first milestone of the modern cosmology is due to
Friedmann (1922) and (1924); the hypothesis of universe ho-
mogeneous and isotropic allowed inferring the equations that
describe shape and expansion/contraction propensity of the
universe depending on the value of the density parameter Ω.
After these early contributions, have been proposed several
models of universe, e.g. by Lemaitre (1929) and Eddington
(1930).

The first experimental milestone of cosmology is due to
Hubble, who measured the Doppler shift of light emitted by
far galaxies (1929): the experimental data revealed the reces-
sion velocity law of galaxies with respect to earth. Since then,
any model of universe should allow for this experimental evi-
dence. The second experimental landmark was the discovery
of the cosmic microwave background radiation (Penzias and
Wilson, 1965).

An essential added value to the theoretical cosmology ca-
me from the almost simultaneous development of quantum
mechanics. Without this physical background and the re-
cent Standard Model, the modern cosmology would be in-
conceivable. The cosmic abundance of elements has been in-
vestigated by Weizsacker (1938) and then by Gamow et al
(1948); Chandrasekhar (1942) and more recently Fowler et al

[1] pointed out several processes in the stars that concurrently
account for the formation of heavy elements in the universe.

On the one hand, the understanding of the nuclear pro-
cesses explains the existence of stars and other objects (qua-
sars, white dwarf and so on); on the other hand, however,
is the general relativity that explains the existence and fea-
tures of the black holes. The crucial point of the modern
physics and cosmology is the difficulty of merging relativistic
and quantum theories. Several papers have been published on
quantum gravity, e.g. [2,3]. Today the string theory is deemed
to be a step towards the unification of both theories [4,5]; un-
avoidably the string theory has been also implemented by cos-
mologists to investigate problems of mere quantum nature,
like for instance the vacuum energy and the dark energy [6],
and the cosmological constant as well [7,8,9]. However, the
mathematical difficulties of these theories are daunting, and
their previsions hardly testable.

Yet to shed light on fundamental issues of cosmology are
also useful plain models that exploiting simple assumptions
allow reliable order of magnitude estimates; simplified mod-
els are functional to focus essential but even so significant
information.

The present paper aims to infer the order of magnitude es-
timates starting from a quantum standpoint. The input values
implemented in this paper are the literature estimates of the
universe diameter du = 8.7×1026 m and age tu = 4.3×1017 s.
The total mass of the universe reported in the literature is
estimated to be about mu = 3 × 1052 kg, counting however
the stars only. Thus it is reasonable to expect that the ef-
fective value Mu of total mass should actually be consider-
ably greater than mu. Indeed this latter does not include con-
tributions like the dark mass or the total mass of all black
holes possible existing in our universe, which instead should
be also taken into account when correlating these three main
features of the universe; this reasonably suggests Mu > mu.
The fourth key value to be introduced is the expansion rate on
the universe, usually expressed through the Hubble constant
H0 = 2.3 × 10−18 s−1; this number, which presumably aver-
ages the value of a true function of time, has been object of
great debate because of its importance in cosmology.
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2 Quantum background

Physicists believe unsatisfactory a theory based on the wave
function ψ without direct physical meaning, e.g. [10]; indeed
ψ∗ψ only has the statistical meaning of probability density
and contains the maximum information obtainable about a
physical system. Moreover also the Wigner function [11], al-
though providing significant information about the quantum
states, presents conceptual difficulties: it cannot be really re-
garded as a probability distribution in the classical sense, it
is a quasi-probability that can take negative values; more-
over it can represent the average value of an observable but
not, in general, also its higher power moments. These diffi-
culties, both inherent the wave formalism, are overcome in a
model that exploits directly the statistical formulation of the
quantum uncertainty, which becomes itself a fundamental as-
sumption of the model and reads in one space dimension

∆x ∆px = n~ = ∆ε∆t. (2,1)

The second equality is formally obtained from the former
rewritten (∆x/vx)(vx∆px) = n~ with the same number n of
states and defining vx = ∆x/∆t and ∆ε = vx∆px; these defini-
tion hold because n and the uncertainty ranges are arbitrary.
(2,1) compel the positions

x→ ∆x; px → ∆px; t → ∆t; ε→ ∆ε. (2,2)

No further hypothesis is necessary besides that of waiving the
random local values of the dynamical variables, considered
random, unknown and unpredictable. To clarify the kind of
quantum approach required by the positions (2,2) and high-
light why (2,1) have prospective interest also in cosmology,
are useful two examples shortly sketched below. The quan-
tum properties are inferred implementing directly the physi-
cal definitions of the observable of interest, without solving
the pertinent wave equations; note however that the operator
formalism of wave mechanics is also obtained as a corollary
of these equations [12], which explains why the results are
anyway the same.

The first example concerns the angular momentum M =

r × p whose component along the arbitrary unit vector w is
Mw = r × p · w; the vectors are defined in a reference sys-
tem R. The positions (2,2) compel r → ∆r and p → ∆p
to calculate the number l of states consistent with the ranges
∆r and ∆p physically allowed to the particle. Thus Mw =

(∆r × ∆p) · w = (w × ∆r) · ∆p yields Mw = ∆W · ∆p, where
∆W = w × ∆r. So Mw = 0 if ∆p and ∆W are orthogo-
nal; else, rewriting ∆W · ∆p = (∆p · ∆W/ |∆W|) |∆W| one
finds ±∆pW = ∆p · ∆W/ |∆W| and thus Mw = ±∆W∆pW ,
i.e. Mw = ±l~ according to (2,1). One component of M
only is knowable; repeating the same approach for another
component trivially means changing w. Therefore the av-
erage values < M2

x >, < M2
y > and < M2

z > calculated in
the same way should be equal. The components are aver-
aged over the possible states summing (l~)2 from −L to +L,

where L is an arbitrary maximum value of l; so < M2
i > =∑li=L

li=−L (~l)2/(2L + 1) i.e. M2 =
∑3

i=1 < M2
i >= L(L + 1)~2.

The mere physical definition of angular momentum is enough
to find quantum results completely analogous to that of the
wave mechanics without any hypothesis on the angular mo-
tion. The same holds for the energy levels of hydrogenlike
atoms. The concerned definitions are now the energy ε =

p2/2m−Ze2/r, being m the electron mass, and the momentum
p2 = p2

r + M2/r2. The positions (2,2) pr → ∆pr and r → ∆r
yield ∆ε = ∆p2

r/2m + M2/2m∆r2 − Ze2/∆r. Two numbers
of states are expected because of the radial and angular un-
certainties. The positions (2,2) and the previous result yield
∆ε = n2~2/2m∆r2 + l(l+1)~2/2m∆r2−Ze2/∆r that reads also
∆ε = εo + l(l + 1)~2/2m∆r2 − Eel with Eel = Z2e4m/2n~2 and
εo = (n~/∆r − Ze2m/n~)2/2m. Minimizing ∆ε with εo = 0
yields ∆r = n2~2/Ze2m; so l ≤ n − 1 in order to get ε < 0,
i.e. a bound state; εrot = l(l+1)Eo/n4 yields the rotational en-
ergy of the atom as a whole. Also here appears that the range
sizes do not play any role in determining the energy levels.
The physical meaning of ∆r, the early Bohr radius, appears
noting that actually Eel = −Ze2/2∆r, i.e. Eel is the energy of
two charges of opposite sign delocalized within a diametric
distance 2∆r apart. It appears now that the quantum numbers
of the eigenvalues are actually numbers of allowed states of
quantum systems.

The key point of this introduction is not the chance of
having found well known results, but the fact of having ex-
tended this kind of approach to the special and general rela-
tivity [13,14]; selected results of interest for the purposes of
the present paper are reported in the appendix. In this respect,
some relevant features of this approach will be exploited later
and thus deserve attention.

- Both time and space coordinates are by definition in-
herent any model based on (2,1).

- Any uncertainty range is defined by two boundary val-
ues, e.g. ∆x = x1 − x0; either of them is necessarily
defined with respect to the origin of a reference sys-
tem, the other one controls the range size. Since both
x0 and x1 are arbitrary, unknown and unknowable by
assumption, neither size nor reference system are spec-
ified or specifiable. Any result obtained from M = r×p
depends on the particular R where are defined r and
p. Yet, once having introduced the positions (2,2), any
reference to the initial R is lost, whereas the eigenval-
ues are correctly inferred from ∆r and ∆p only; indeed
∆M = ∆r × ∆p yields a range ∆M of angular mo-
menta corresponding to all values of the arbitrary num-
ber n of states concurrently introduced via (2,1). Oth-
erwise stated, the previous examples have shown that
the boundary values r0 and r1 of each i-th component
∆ri are unnecessary and do not play any role to find
the eigenvalues; so, since the same holds also for the
momentum range, once disregarding both coordinates
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neither the range sizes nor the reference system are in
fact specifiable. Hence, in general, privileged reference
systems are inherently excluded by the agnostic form of
space-time uncertainty of (2,1), i.e. the results hold in
any four dimensional reference system.

- These examples emphasize that both boundary coordi-
nates could even be time dependent without changing
approach or result: once ignoring the local dynamical
variables, conceptually and not to simplify or approxi-
mate some calculation, no information on the ranges is
actually required.

- The positions (2,2) skip the necessity of solving the
pertinent wave equations and allow working directly on
the physical definitions of the observables; (2,1) extract
the allowed quantum information from the analytical
form itself of the equation defining the observable.

- The concept of delocalization resulting from (2,1) has
more agnostic meaning than that of the wave formal-
ism: here is waived even the concept of probability
density.

- (2,1) and the positions (2,2) rule out the classical con-
cept of distance, because the local coordinates that de-
fine the distance are disregarded themselves “a priori”;
this means that comoving and proper distances cannot
in fact be calculated, while saving however their con-
ceptual physical meaning.

Two questions arise at this point: are (2,1) usefully ap-
plicable also in cosmology? If they really do, why not think
that even the physical dimensions of G could be regarded like
that of the angular momentum previously sketched? Noth-
ing excludes “a priori” positive answers, which however im-
ply clearly that the universe is understandable like a quantum
object. In fact is just this the crucial point that justifies the
present model. These quantum examples have been shortly
introduced to highlight the strategy of the present paper, i.e.
to emphasize the role of the space-time quantum uncertainty
in cosmology. The same kind of approach will be extended to
the physics of the universe exploiting both (2,1) to implement
G via its physical dimensions: the idea is to regard the physi-
cal definition of G likewise as done with the angular momen-
tum. Accordingly the gravity constant is not a mere numerical
value, but a physical amount defined by its dimensional fac-
tors. In effect, at least in principle, nothing prevents regarding
the numerical value of G as that resulting from a combination
of mass and time and space uncertainties; so these factors can
be replaced by the respective time-space ranges that charac-
terize the properties of the universe and handled exactly as
done previously. Three examples useful in the following are
highlighted below.

Write G = ∆r3m−1∆t−2 and calculate

δG = (dG/d∆r)0 δ∆r + (dG/d∆t)0 δ∆t + (dG/dm)0 δm

in an arbitrary reference system R; the subscript emphasizes
that the derivatives are calculated at arbitrary ∆r0, m0 and ∆t0.
Apparently a well defined value of gravity constant seems in-
consistent with the arbitrariness of ∆t, ∆r and m inherent its
physical dimensions and required by the positions (2,2). Yet
the chance of compelling δG = 0 establishes a constrain on
the variability of the constituent factors that makes the defi-
nition of G compatible even with a constant value; moreover
this constrain is ensured at any age of the universe just be-
cause of the arbitrary values of ∆r0 and m0 that represent its
size and total mass at any age ∆t0. So the problem is not the
constancy of G, but that of demonstrating a sensible physi-
cal meaning of the constrain itself. Divide both sides of the
previous expression by ∆r3

0/(m0∆t2
0) and put δG = 0; this is

not necessarily true because some theories regard G as time
dependent function [15, 16], yet let us implement for simplic-
ity this usual position. Here δm , 0 because some models of
universe, the so called self-creation cosmology models [17],
introduce mass production as a function of time. One finds
thus 3δ∆r/∆r0 − δm/m0 − 2δ∆t/∆t0 = 0. Exploit the fact that
the range sizes are arbitrary and that the increments δ∆r, δm
and δ∆t are arbitrary as well and of course defined indepen-
dently of ∆r0, m0 and ∆t0; then regard

(
3
2
− ∆r0

2m0

δm
δ∆r

)
δ∆r =

∆r0

∆t0
δ∆t

in order that this equation has in particular a physical meaning
of specific interest for the present model. So let us write

a(t) =
3
2
− ∆r0

2m0

δm
δ∆r

; c =
∆r0

∆t0
; δ∆r =

c
a(t)

δ∆t

where a(t) is a dimensionless arbitrary function of time. Con-
sider now the particular case of very small range size incre-
ments via the positions δ∆r → dr and δ∆t → dt, possible just
because of their arbitrariness, and integrate both sides of the
former equation between two arbitrary r1 and r2 to which cor-
respond the respective times t1 and t2 necessary for a photon
to travel the space range χ = r2 − r1. Of course the integra-
tion reads χ = ∫ t2

t1 a(t)−1cdt. Therefore with these integration
limits and this definition of the constant ratio ∆r0/∆t0, the
resulting equation has the well known physical meaning of
particle horizon distance and introduces the concept of scale
function a(t).

To complete this analysis on the physical dimensions of
G, put δm → dm consistently with dr and dt and consider
that the equation of a(t) takes the form dm = α(3/2− a(t))dr,
where α = 2m0/∆r0; having defined dr = cdt/a(t), one finds
dm/α = 3ca(t)−1dt/2 − cdt. The integral of this equation
between the fixed times t1 and t2 arbitrarily defined and the
corresponding m1 and m2 yields (m2 −m1)/α = 3(r2 − r1)/2−
c(t2 − t1). In general an equation having the form α−1δm =

3δr/2− cδt does not have specific physical meaning, because
the quantities at right hand side are arbitrary; for instance
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δm = 0 if in particular δr = 2cδt/3, whereas any other value
of δm , 0 would be in principle allowed as well. This simply
emphasizes that the physical meaning of a(t) is not hampered
by constrains on the values of δm or δ∆t or χ. Yet it is also
possible to split the equation into m2/α − 3r2/2 + ct2 = r0
and m1/α − 3r1/2 + ct1 = r0, with r0 arbitrary, which read
thus m2/α = δr∗2 and m1/α = δr∗1 with δr∗2 = r0 + 3r2/2 − ct2
and δr∗1 = r0 + 3r1/2 − ct1. These equations have in effect a
well defined physical meaning, because they read m2/δr∗2 =

m1/δr∗1 = const. The chance of having inferred from G an
equation having the form m/δr∗ = const is important because
it links uniquely any mass m to a corresponding range δr∗ via
a proportionality factor const; as this link must necessarily in-
volve G via a constant term, one expects by dimensional rea-
sons that necessarily const ∝ G/c2. Before concerning this
point, note that these results have been obtained simply defin-
ing G = ∆r3m−1∆t−2, rather than by implementing additional
hypotheses; thus this way of regarding G contains inherently
concepts essential to describe an expanding universe.

To better understand the last result, let us consider a fur-
ther way to exploit the physical dimensions of G via (2,1).
Rewrite G = ∆r3/(m∆t2) as ∆r = Gm/v2 with v = ±∆r/∆t;
so v is the average velocity necessary for a particle to travel
∆r during a time range ∆t in any R, as stressed before. The
maximum value allowed to v, defined along one coordinate
axis for simplicity, introduces a minimum range size ∆r0 of
∆r given by ∆r0 = Gm/c2. By definition ∆r0 is the distance
traveled by a photon starting from an arbitrary point, defined
without loss of generality as the origin of R. Since the photon
can move around the origin towards the negative or positive
side of the reference axis with equal probability, as indeed ei-
ther sign of v is identically admissible, ∆r0 is one half of a
total uncertainty range ∆rs where the photon is certainly en-
closed; so ∆rs = 2∆r0 yields

∆rs = 2Gm/c2 (2,3)

that defines therefore the boundary of the space range outside
which the photon cannot escape. This range size has a general
physical meaning characterized by the ratio m/∆rs only; also,
the same holds of course for a massive particle having v < c.
This equation, already inferred in a more general way still via
(2,1) only [18], has the same form just found examining a(t):
here we simply acknowledge that const = 2G/c2.

Consider eventually that (2,1) read ∆x = (∆ε/∆px)∆t;
moreover it is shown in the appendix that ∆px = vx∆ε/c2,
so that ∆x3 = (c2/vx)3∆t3. Dividing both sides of this equa-
tion by m∆t2 one finds ∆x3/(m∆t2) = (c2/vx)3∆t/m. Hence

∆x3

m∆t2 =
c3

ξ3

∆t
m

; vx =
c2∆t
∆x

; ξ =
vx

c
; ξ < 1. (2,4)

Define ξ = ξG ξc, so that the right hand side of the first (2,4)
reads (c/ξc)3∆t/m and the left hand side ξ3

G∆x3/(m∆t2). Mo-
reover regard in particular ∆t ≡ ∆tu and ∆x ≡ ∆ru; this is cer-
tainly possible because all range sizes of (2,1) are arbitrary,

so they can be regarded with reference to any specific case of
interest. It is also possible to define ξG in order that the left
hand side term corresponds to the value of G with the known
values of ∆ru and ∆tu, so that (2,4) yields also the value of ξc;
in other words (2,4) splits as follows

G = ξ3
G

∆r3
u

m∆t2
u

; G =
c3

ξ3
c

∆tu
m

; ξ = ξG ξc < 1. (2,5)

The previous considerations have evidenced that both expres-
sions are compatible with a constant value of G. The problem
is to show that in this way ξ effectively verifies the required
inequality. The numerical results for m ≡ mu yield ξG = 0.17
and ξc = 1.79, i.e. ξ = 0.3. According to (2,4) ξ does not
depend directly on m, whereas (2,5) show that ξG and ξc do.
For instance, repeating the calculation with m ≡ 10mu at the
same ∆tu one would find ξG = 0.36 and ξc = 0.84, of course
still consistent with the same ξ. In both cases ξG and ξc have
reasonable values, as in general a proportionality constant be-
tween two correlated quantities is expected to be of the or-
der of unity; if not, then some physical reason hidden in the
concerned correlation should account for its actual order of
magnitude. Actually the factor ten just introduced is not ac-
cidental, although it appears at the moment arbitrary and un-
justified; its physical meaning will be highlighted in the next
section. So are of interest the following values

Mu = 10mu; ξG = 0.36; ξc = 0.84; vu = 0.3c. (2,6)

These estimates imply that vx of (2,4) takes the meaning of re-
cession velocity vu of today’s universe boundary, being speci-
fically calculated via ∆ru at our current time ∆tu. Yet there is
no reason to think that the ratio ∆r/∆t is necessarily constant;
so (2,4) prospects in general a variable expansion rate con-
trolled by this ratio at different ages of the universe. More-
over, since vu should reasonably depend also on the amount
of mass within the universe, one expects a link between ∆ru

and mu or more likely Mu; in effect this conclusion will be
confirmed in the next section.

At this point, therefore, the first target of the present mo-
del is to highlight how vu is related to Mu via ∆ru, see in
particular the next equation (3,3) that is the key together with
(2,5) to link ∆ru and ∆tu to Mu. The model is described im-
plementing first these today data, useful to assess the results,
then it is also extended to past times when necessary. For
reasons that will be clear soon, it is useful to begin with the
matter era. The starting points of the present paper are not
the general relativity and the Friedmann equations, but the
quantum equations (2,1). The paper aims to check the ef-
fectiveness of this approach to formulate a possible model of
universe. The worth of the present approach relies in particu-
lar on the fact that just (2,1) have been proven suitable to link
the roots of the quantum mechanics to that of the special and
general relativity [13,14].
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3 Physical background of a possible model of the uni-
verse

According to (2,1) and positions (2,2), the key quantities of
the present paper are not ru and tu, but the ranges ∆ru = ru−r0
and ∆tu = tu − t0. Let ru be the current coordinate of the
boundary of the universe at the time tu, respectively defined
with respect to an arbitrary initial value r0 at the arbitrary
time t0. As previously emphasized, these latter coordinates
are in turn fixed in an arbitrary space-time reference system
R. Once accepting the quantum approach shortly introduced
in section 2 to describe the universe as a quantum system,
however, both r0 and t0 are deemed unknown and unneces-
sary to infer the eigenvalues of the physical observables, de-
scribed instead by ∆ru and ∆tu only; moreover no particu-
lar R is specifiable, in agreement with one of the basic hy-
potheses of the relativity according which all reference sys-
tems are equivalent to describe the physical systems. If the
uncertainty ranges only have physical meaning to define the
quantum eigenvalues describing the observables, as shortly
sketched in section 2, then this kind of universe has no de-
fined center; this latter should be determined with respect to
the origin of R, which however is undefined and indefinable
itself like r0 and t0. Hence the physical universe is a space-
time shell between the radii r0 and ru that define ∆ru. As
the same holds for the time, the beginning of time defining
the cosmological space-time is conceptually unidentifiable; it
could be t = 0 or t = t0 or any intermediate time. Strictly
speaking, ∆ru and ∆tu only characterize the actual physical
features of today’s quantum universe. It means that r0 and t0,
and in an analogous way ε0 and p0 of the respective ranges,
characterize a pre-universe only; i.e. they are precursors of
the space-time quantum ranges of (2,1) to which are actually
related the physical observables of the universe. In fact, the
following considerations will confirm the idea that trying to
determine the initial values r0 and t0 is in fact inessential. The
starting point of the present model is introduced as follows.
Consider ∆pr = n~/∆r putting ∆pr = h/λr − p0: coherently
with ∆r, also ∆pr defines an allowed range of local radial
momenta falling between h/λr and p0, both arbitrary. This
equation yields in particular, specifying ∆r = ∆ru,

nλu = 2π∆ru; λu = λrλ0/(λ0 − λr); λ0 = h/p0. (3,1)

Whatever λ0 might be, λr introduces a new wavelength λu;
this result has in principle general valence because of the fun-
damental character of (2,1). For instance (3,1) imply a con-
dition well known in quantum mechanics: an integer number
n of wavelengths λu around a circumference corresponds to
steady electron waves around a nucleus, in agreement with
the quantization here introduced just by n. As λu has been
defined without specifying the nature of the wave it charac-
terizes, let us concern the particular case of a steady electro-
magnetic wave of wavelength λu traveling on the surface of
a sphere. The assumption r0 � ru brings thus to mind a hy-

perspherical four dimensional closed universe of radius ∆ru

surrounded by a light wave running around any diametric cir-
cumference. This preliminary standpoint suggests in turn a
possible hypothesis about its hypervolume and hypersurface

Vu = (4π/3) ∆r3
u; Au = 4π∆r2

u (3,2)

filled with an amount of matter such to fulfill both (2,3) and
(3,1). This also suggests regarding the universe consistent
with the condition of “maximum growth efficiency”, i.e. like
a supermassive black hole; in effect, the previous considera-
tions show that this conclusion is compatible with the analysis
of the physical dimensions of G. Usually a black hole is al-
lowed to form when any system, e.g. a star of sufficient mass
at the end of its life cycle, collapses down to a critical radius
fulfilling (2,3); so is seemingly surprising an expanding uni-
verse regarded as a supermassive black hole. Yet there is no
physical reason to think that in general the shrinking process
is the distinctive condition allowing a black hole; this usual
idea implemented to explain observable events occurring in-
side the universe cannot be extrapolated to the behavior of
the whole universe itself. Indeed ∆rs has been inferred via
the physical definition of G simply exploiting (2,1), regard-
less of any specific reference to collapse events. Actually the
present hypothesis seems reasonable for a growing universe,
whose main requirement is to prevent mass and radiation en-
ergy losses outside it that could avert its possible evolution.
According to the Hawking mechanism based on the vacuum
polarization in the presence of a strong gravity field, a black
hole inside the universe is able to split a couple of virtual par-
ticles generated by vacuum quantum fluctuation; it captures
one of them, while releasing the other that thus appears as an
ordinary particle. Outside the universe however this mech-
anism does not hold, as the concept of vacuum is replaced
by that of “nothing”. So no energy can escape outside ∆ru.
The universe is thus a closed box unobservable from an ex-
ternal observer possibly existing. This point of view is as-
sessed preliminarily by introducing the Schwarzschild range
(2,3) and identifying ∆rs ≡ ∆ru and m ≡ mu; this position
yields ∆rs = 4.5× 1025 m, which is not very far from the esti-
mated literature radius of the universe. Considering however
that mu quoted above is surely underestimated, as already em-
phasized, it is not surprising a value of ∆rs smaller than the
expected ∆ru consistent with (2,3). Trust thus to the size of
∆ru and try to replace mu with a value Mu > mu defined by

∆ru = 2MuG/c2; (3,3)

one finds

Mu = 3 × 1053 kg; Mu = mu + m? ≈ 10mu (3,4)

i.e. a total mass higher than the literature estimate of the vis-
ible mu, as anticipated in section 2. This equation includes
both the visible mass mu plus a further contribution m? to be
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explained next. Actually nothing excludes in principle the hy-
pothesis (3,3), which in fact can be checked in several ways.
So in the following Mu only, and not mu, will be implemented.
Estimate with the help of (3,2) and (3,3) the average density
of the universe

ρu =
3c6

32πM2
uG3 =

3
8πG

(
c

∆ru

)2

(3,5)

which justifies why this paper starts just from the so called
matter controlled era.

The most direct consequence of (3,3) is the Hawking en-
tropy. Define first the circular frequencies of a light wave
trapped by gravity around the border of the universe as

ωn = nωu; ωu = c/(2π∆ru)

in agreement with (3,1); so the boundary layer of the universe
is marked out by the allowed frequencies of the electromag-
netic field surrounding the total mass Mu, whose energy εω is
given by

ωn = 1.1n × 10−19 s−1

εω =
n~c

2π∆ru
= 1.2n × 10−53 J.

(3,6)

Then let us concern also the total energy εu = Muc2 due to
the whole amount of mass present in the universe. Since one
expects that bulk energy εu and surface energy εω should be
someway correlated, the simplest hypothesis is to introduce a
dimensionless proportionality factor σH such that εu = σHεω.
To infer the physical meaning of σH, calculate the mean val-
ues of this equation, which reads < εu > = σH < εω >. Clear-
ly < εu > ≡ εu. The standard way to calculate < n~ωu > via
the partition function is well known; noting that ~ωu � kBT
is verified for T down to values of the order of 10−28 K, one
finds < n~ωu >≈ kBT . So kBσH defined by an energy over a
temperature can be nothing else but entropy. With the help
of the Plank length lP =

√
~G/c3, one finds indeed thanks to

(3,2) and (3,3)

σH =
<εu >

< n~ωu >
=

Au

4l2P
; ~ωu =

~c
2π∆ru

; εu =
c4

G
∆ru

2
.

In effect, σH coincides just with the well known Hawking
surface entropy in Boltzmann’s units.

Before discussing further evidences to support the idea of
black hole-like universe, as concerns in particular the value
of Mu hypothesized here, let us implement the right hand side
of (2,1): one finds ∆εu = ~/∆tu, whose physical meaning
is clearly that of energy uncertainty range within which is
defined the energy εu of the universe. Moreover, multiplying
both sides by Mu, one finds

∆εu =
~

∆tu
= 2.4 × 10−52 J; ∆pu =

√
Mu∆εu = 9 kg m/s.

So the uncertainty range of the momentum pu of the universe
has size of the order of the Planck momentum. The fact that
the size of ∆εu is very narrow means of course that εu, what-
ever its value might be, is defined almost exactly. It is interest-
ing to implement this result via the definition of G. Replace
m with Mu and ∆tu = ~/∆εu in the second (2,5); one finds
thus ∆εu = ~c3/(ξ3

cGMu) = 1.4ξ−3
c × 10−52 J. Therefore ∆εu

here calculated with ξc = 0.84, i.e. with the same value of
(2,6), agrees with that obtained here directly from (2,1) via
the age of the universe only. So this result on the one hand
supports the value of Mu previously found, on the other hand
it also confirms that the physical dimensions of G actually
summarize the quantum features of the universe.

Owing to (3,3), the second (2,4) reads

vu = c2 ∆tu
∆ru

=
c4

G
∆tu
2Mu

(3,7)

whose numerical value coincides of course with that of (2,6).
According to (2,5), an increasing ratio ∆tu/Mu means a small-
er mass at ∆tu and thus a greater vu, as it is natural to expect.

To implement further these considerations, note that
√
ρG

yields a frequency; so, replacing ρ with ρu of (3,5), one finds

√
ρuG = 2.4 × 10−19 s−1. (3,8)

This value is nicely twice the ground value of (3,6), even
though calculated via G only and regardless of the condition
(3,1); i.e. it requires n = 2. This result has a remarkable
physical meaning that will be highlighted later. After hav-
ing examined the physical meaning of the ratio ~ωn/εu let
us consider now the ratio ~ωn/∆εu: we emphasize that the
deviation of Mu from the visible mass mu is controlled by
the constrain between (3,6) and (2,4), i.e. between the sur-
face energy ~ωn=2 = ~c/(π∆ru) of the electromagnetic wave
surrounding the universe and the uncertainty energy range
∆εu = ~c3/(ξ3

cGMu) = ~/∆tu of the bulk universe; indeed
with the help of (3,3) and (3,6) we obtain

ωn∆tu =
nc∆tu
2π∆ru

=
nvu

2πc
;

~ωn

~/∆tu
=

n
2
ξ3

c

2π
≈ 0.05n (3,9)

according to the values (2,6), which yields ~ωn=2/(~/∆tu) ≈
0.1 = mu/Mu. This result is crucial to understand the physical
meaning of m?, as highlighted in section 4.

Consider now that the ratio c/∆ru of (3,5) has physical di-
mensions time−1; thus it is definable in general as ȧ/a, being
a a function of coordinate and time. It is known that ∆r−1

u de-
scribes the local curvature of a surface; so c/∆ru must be actu-
ally expressed as (ȧ + b)/a via an additive constant b, without
which the curvature of the universe would tend to zero merely
for a tending to a constant. Instead it seems more sensible to
think that even for constant ∆ru the curvature becomes con-
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stant itself, but not necessarily equal to zero. So (3,5) reads

8πρuG
3

=

( ȧ
a

)2
+

(
b
a

)2

+
2ȧb
a2

c
∆ru

=
ȧ
a

(
1 +

b
ȧ

) (3,10)

i.e., more expressively,

8πρuG
3H2 =

ρu

ρc
= 1 +

b
ȧ

(
2 +

b
ȧ

)
; ρc =

3H2

8πG
; H =

ȧ
a
.

Despite the quantum approach has been carried out regard-
less of the general relativity, the conclusion is that b/ȧ < 0 or
b/ȧ = 0 or b/ȧ > 0 depending on the ratio ρu/ρc; either sign
of b/ȧ depends on that of ȧ and b controlling the curvature
according to (3,10). Calling b = ±c and Λ = ∓6H/(ac) the
right hand side reads H2 + (c/a)2 − Λc2/3, i.e. this equation
reduces to the Friedmann equation; H is the Hubble parame-
ter and Λ the cosmological constant. The implications of the
Friedmann equation, as concerns in particular the parameter
k, are so well known that a detailed discussion of (3,10) is
superfluous. We emphasize the crucial role of (3,3) to obtain
directly from (3,5) this result, which however compels auto-
matically accepting here ρu/ρc > 1 once having hypothesized
since the beginning a closed universe with hyperspherical ge-
ometry. If this inequality is such that ρu/ρc & 1, then the pre-
vious considerations are consistent with an almost Euclidean
closed universe, in which case

b
ȧ

(
2 +

b
ȧ

)
& 0. (3,11)

This is verified by 0 < b � ȧ and b/ȧ & −2. Now, after
having preliminarily verified the hypothesis (3,3) suggested
by (3,1), let us check also the self-consistency of the consid-
erations hitherto exposed examining once more c/∆ru.

It is reasonable to think ∆ru proportional to the age ∆tu
of the universe; so it is possible to write a series expansion
defining ∆ru as ∆ru =

∑
j=1a j(c f ) j, where f = f (∆t) is an

appropriate function of time to be defined and a j are constant
coefficients of the series. Rewriting more conveniently this
series as ∆ru = a1c fϕ, where ϕ = 1 + a2c f /a1 + a3(c f )2/a1 +

···, one expects that a1 of the first order term should be close to
the unity for the aforesaid reasons. Implement once again the
physical dimensions of G similarly as done before and put in
particular f (∆t) ≡ ∆tu; if this position is correct, then ∆ru =

a1cϕ∆tu with ϕ ≈ 1 yields a1 ≈ 2c/ξ3
c . On the other hand

ξc of (2,6) has been calculated in order to fit the numerical
value of G = c3∆tu/(ξ3

c Mu) of (2,5), which results also in
agreement with that of (3,9); as this equation of G reads ∆ru =

(2c/ξ3
c )∆tu with the help of (3,3), one finds at the first order

a1 ≈ 2c/ξ3
c and thus ∆ru ≈ (2c/ξ3

c )ϕ∆tu. Also this result
agrees with the previous estimate of ξc defining ∆ru/∆tu: in
effect from (2,4) and (2,6), ∆ru = (c/ξ)∆tu compares well

with ∆ru = (2c/ξ3
c )∆tu because the values (2,6) verify ξ−1 =

2/ξ−3
c . This confirms that effectively ϕ ≈ 1. Hence defining

H0 =
1

ϕ∆tu

one finds with a1 ≈ 2c/ξ3
c and once more the given value of

ξc

H0 =
2c

ξ3
c ∆ru

= 2.4 × 10−18 s−1.

So at the first order H0 coincides with ∆t−1
u ; moreover the sec-

ond (3,10) yields H(1+b/ȧ) = ξ/(ϕ∆tu), i.e. 1+b/ȧ ≈ ξH0/H
and thus 1 + b/ȧ ≈ 1 in agreement with (3,11). The present
estimate of H0 fits well the average value of the Hubble con-
stant, which according to recent measurements falls in the
range (2.2 ÷ 2.6) × 10−18 s−1.

These results justify the advantage of introducing the pre-
sent quantum model with the matter era; once having esti-
mated H0 and inferred the Friedmann equation, it is easy to
describe also the radiation controlled era as shown below.

It is worth emphasizing the strategy of the present ap-
proach. The standard way to infer cosmological information
is to find the solution of the gravity field equations and next
to implement the Friedmann solutions: these equations pro-
vide information about the open or closed geometry of the
universe. Here a different approach has been followed. The
quantum equations (2,1) have been implemented since the be-
ginning to introduce the wavelength λu and formulate by con-
sequence the concurrent hypothesis (3,3) about a possible ge-
ometry of closed universe; thereafter this preliminary idea has
been checked to infer (i) the Hawking entropy, (ii) the link be-
tween mass density and curvature radius of the universe, (iii)
to obtain a Friedmann-like equation and (iv) to estimate the
Hubble constant. Moreover, exploiting the same approach
outlined in section 2 for the angular momentum, the factors
that define the physical dimensions of G allowed to correlate
correctly size, age and mass of the universe. The remain-
ders of this paper aim to implement these preliminary ideas
to show that further reasonable results are inferred hereafter.

3.1 The matter era

Let us estimate the average mass and energy densities ρu and
ηin = ρuc2 of the universe, which result to be with the help of
(3,2) and (3,5) of the order of

ρu =
Mu

Vu
=

3c2

2AuG
= 8.7 × 10−28 kg/m3

ηin =
Muc2

Vu
=

3c4

2AuG
= 7.8 × 10−11 J/m3.

(3,12)

These values reasonably agree with that calculated in a very
different way in [18]; the corresponding “non-visible” energy
density is instead of the order of

η? = 3m?c2/(4π∆r3
u) = 7 × 10−11 J/m3; m? ≈ 9mu.
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The ordinary visible mass of the universe is about 10% of
the total mass only, whereas the remainder mass m? accounts
for the 90% gravitational effect responsible of the black hole-
like behavior of the whole universe. The average density
ρu hides the physical nature of the actual total mass. More-
over, besides mu of visible stars, Mu consists of a preponder-
ant contribution m? of different physical nature: for instance
all black holes possibly existing in the universe, or interstel-
lar gas and dust, or free elementary particles, and so on in-
cluding also the so called dark mass. A complex system of
particles contributes to Mu, whose actual nature is however
not explicitly concerned in neither of (3,12). According to
some theories the elements were formed inside the stars by
neutron bombardment of light nuclei and subsequent β de-
cay, e.g. [19], other authors believed instead that elements
were formed during the early stages after the big bang, e.g.
[20]; more recently other authors returned to their formation
inside the star by virtue of several nuclear processes [1]. De-
spite (3,12) waive specific information about the actual com-
position of Mu, the assumption of large scale homogeneity
and isotropy of the universe supports the effective physical
meaning of average ρu. Moreover the concept of quantum
delocalization introduced by (2,1) stimulates itself the idea
of average mass spreading uniformly throughout the universe
likewise as the energy field of light radiation. This idea is
useful to link the matter era to the earlier radiation era. It will
be emphasized in the next subsection 3.2 that the radiation
field, almost mono-chromatic at the beginning of the radia-
tion era, turned into a more complex spectrum of wavelengths
because of the concurrent expansion of the universe; so quan-
tum fluctuations and possible events of constructive interfer-
ence, statistically allowed to occur anywhere in the radiation
field, promoted favorable conditions to form local couples of
virtual particles uniformly distributed in the available volume
of the early universe. It is known indeed that proton and an-
tiproton virtual couples are formed by vacuum fluctuations
and high order two-photon interactions during photon fluctu-
ations able to generate fermion-antifermion pairs [21]. So it
seems reasonable to guess that this mechanism triggered the
evolution of the early radiation field to couples of virtual par-
ticles continuously annihilating and re-materializing up to the
later formation of colder real matter. Some considerations on
this point will be shortly sketched in the appendix. For the
purposes of the present paper, however, it is enough to ac-
knowledge that today’s ρu corresponds on average to about
one half proton mass per cubic meter of universe and that
(3,12) hold identically while considering the mass of antipro-
tons. Despite this idea is mere statistical abstraction, (3,12)
are useful for the purposes of the present model; they imple-
ment the assumed homogeneity and isotropy of the universe
in its strongest form possible. Even with such information
only, i.e. whatever the actual abundances of the j-th elements
of mass m j might be today within each unit volume of uni-
verse, it is possible to introduce: (i) an elementary volume

V0 physically located anywhere and defined as that contain-
ing on average one proton or one antiproton and (ii) a linear
combination mp =

∑
jai jm j that accounts via the local co-

efficients ai j = ai j(xi, yi, zi, t,m j) for the actual composition
of real matter progressively formed everywhere after the ra-
diation era. These coefficients weight the time profile of the
local effective abundances, e.g.: they are null if the pertinent
coordinates of ai j correspond to an empty volume of universe
where m j = 0, moreover all ai j were equal to zero during the
early radiation era, and so on. Since the local coordinates are
conceptually disregarded by (2,1) and positions (2,2), how-
ever, let the indexes i and j number respectively the Nin ele-
mentary volumes V0i of the universe and the various elements
therein formed a time range ∆t after its birth. The abundances
are subjected to the boundary condition of the first (3,12); for
instance, at today’s ∆tu this point of view is summarized by
the sums

ρu =
1

Vu

∑

i, j

ai jm j

ai j = ai j(V0i,∆t,m j)
∑

i, j

ai jm j = Ninmp.

(3,13)

The first two equations emphasize the local composition of
ρu, the last one fits in particular the condition of today’s av-
erage density. In fact (3,13) regard the universe as a lattice,
whose elementary cells are the volumes V0i uniformly occu-
pied by one proton or one antiproton of every virtual couple
with equal probability. Each cell is therefore a possible al-
lowed state for either of them, i.e. the universe is statistically
described by a total number Nin = Vu/V0 ≈ 1.7 × 1080 of de-
generate states corresponding to ηin; also, since by definition
each V0 contains on average one proton mass, mpNin = Mu.
So according to (3,12) the energy levels εV0 of one proton
or one antiproton in the respective V0 states are mpc2/2 and
mp̄c2/2, i.e.

εV0 = 7.8 × 10−11 J; V0 ≈ 2 m3 (3,14)

in order that effectively Mu/Vu = mp/V0, in agreement with
(3,12). Of course εV0 includes also the interaction energy be-
tween charges in different cells, e.g. that of couples of all vir-
tual particles possibly generated together with energetic pro-
tons and antiprotons; this is possible because Muc2 involves
the visible mass energy muc2 plus the contribution of m?c2.
Note eventually that despite Muc2 results statistically equiva-
lent to the sums

∑

i

(εV0 prot + εV0 antiprot) = Ninmpc2/2 + Ninm p̄c2/2 (3,15)

over all the elementary volumes V0, it will be shown later
that an effective entropy driven mechanism in fact marked the
transition from the radiation era to the matter era; so the sum

10 Sebastiano Tosto. Space-Time Uncertainty and Cosmology: a Proposed Quantum Model of the Universe



October, 2013 PROGRESS IN PHYSICS Volume 4

of (3,15) reads actually
∑

i

(εV0 prot + εV0 antiprot) = Ninmpc2. (3,16)

Before describing this mechanism, the results so far obtained
are summarized as follows: (i) each cell is in fact an allowed
state for one proton or one antiproton; (ii) (3,14) represents
the excitation energy necessary to remove either of them from
its own V0 and leave behind an empty cell; (iii) the latter rep-
resents a vacuum state, whereas either particle present in V0
defines an occupied state.

To highlight the physical meaning of these points, con-
sider an arbitrary mass m at the boundary of the universe.
The shell theorem shows that the gravity force acting on m
is that due to Mu regarded in the ideal center of a spherical
body; so is accordingly calculated for a radius ∆ru its en-
ergy ε = GMum/∆ru that, exploiting once again (3,3), reads
also ε = mc2/2. If for instance m represents the mass of
one proton or one electron, mp = 1.7 × 10−27 kg and me =

9.1 × 10−31 kg, then one finds

εp = G
Mump

∆ru
=

mpc2

2
= 1.0 × 10−10 J

εe = G
Mume

∆ru
=

mec2

2
= 5.4 × 10−14 J.

(3,17)

The second (3,17) emphasizes that if the volume V0 would be
occupied by one electron with its own energy level mec2/2,
then V0 would represent a possible state for this electron. To
clarify where anyway does m come from, note that at today’s
∆tu the proton energy level εV0 inside any state V0 of the bulk
universe, (3,14), is equal to the energy εp, (3,17), of one pro-
ton at the boundary of the universe. So

εp = εV0 . (3,18)

This equation in fact reads c2/2 = MuG/∆ru, which is noth-
ing else but (3,3). Thus (3,18) and the first (3,17) do not de-
pend on the proton mass, and hold whatever else mp might
represent. Moreover neither the analytical form of ρu nor that
of ηin introduce explicitly mp. Rather, the latter introduces
the mere Planck force c4/G acting on the total surface Au of
the universe. There are two reasons why the average values
defined by (3,12) and (3,13) have importance for the follow-
ing discussion: on the one hand, the right side of (3,12) links
correctly energy density and pressure; on the other hand, be-
ing known that the pressure of a perfect gas is 2/3 of its en-
ergy density, the second (3,12) suggests regarding ηin in each
volume V0 as due to a proton/antiproton gas occupying uni-
formly all bulk states of the universe. As this average pressure
appears to be a physical property of all elementary volumes
V0, then the internal pressure that characterizes the whole uni-
verse results to be, again via (3,3),

Pin =
2
3

Muc2

Vu
=

c4

AuG
= 5.6 × 10−11 Pa. (3,19)

The fact that even Pin does not depend explicitly on mp sug-
gests that (3,12) have actual physical meaning. The factor
2/3, numerically irrelevant in the frame of the order of mag-
nitude estimates proposed here, is however conceptually sig-
nificant to check the physical meaning of (3,12). Taking into
account (3,16), (3,19) reads

PinVu =
2
3

E; Muc2 = E = Ninmpc2.

The surprising fact is that the mere definition of energy den-
sity, without any additional hypothesis, portrays the whole
universe as a container full of quantum or classical gas, whose
mass Mu exerts Planck force against its inner boundary; in-
deed the first equation holds for Boltzmann, Bose and Fermi
statistics, which confirms that effectively any kind of quan-
tum or classical particle, thus why not the proton, is com-
patible with Mu without affecting the validity of (3,19). Fur-
thermore this picture holds at any time, because the surface
Au can be replaced by any A likewise related to the pertinent
M/V whatever the numerical value of the ratio might be. For-
mally this is justified by the second equation, where E result-
ing from Muc2 is also associated to a number Nin of proton
masses fulfilling the global energy conservation. Yet the sim-
ple equivalence matter/energy does not seem enough to ex-
plain why chunks of matter like asteroids or stars or cosmic
powder could mimic the pressure of a proton gas of equiva-
lent total mass filling uniformly the universe. This is how-
ever a classical way to think the universe. More stimulating
appears in this respect the quantum character of the present
model. First of all, the couples proton/antiprotons have been
guessed as mere numerical hint due to the average value of
the mass resulting in (3,12); but in fact any gas could be con-
sistent with (3,19), which indeed does not make explicit ref-
erence to mp. The chance that any gas mixture could con-
tribute to E is a step towards introducing the actual existence
of chemical abundances symbolized by various m j; the first
(3,13) merely means that the degenerate proton or antipro-
ton energy levels mpc2/2 split into a complex system of non-
degenerate energy levels describing the local bound states of
cosmic matter. From this point of view, the energy conser-
vation between two different systems of quantum energy lev-
els appears more pertinent: since in principle one level could
split into several non-degenerate levels in an infinite number
of ways, the energy conservation appears as essential bound-
ary condition to calculate the latter from the former, rather
than a mere statistical abstraction. More significant is how-
ever the dual wave/corpuscle behaviour of matter. A body
of real matter is superposition of waves to form a group in
principle spreading from minus infinity to infinity but with a
maximum probability of being somewhere: the amplitude of
the wave packet rapidly decreases at the edge of a region that
determines the most probable position and the finite extent of
the body, whose possible motion is nothing else but the group
velocity of the wave packet. It is known that the electromag-
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netic waves exert a pressure, whence the photon gas physics:
why not to think the same about delocalized matter waves,
according to (2,1)? If so, then the matter era began when
matter waves started to appear in the pre-existing field of elec-
tromagnetic radiation according to the mechanism [21]. The
appendix gives some more hints on this topic.

On the one hand these considerations are interesting be-
cause Pin controls the expansion of the universe, as it will be
shown below; on the other hand the idea of V0 bulk states al-
lowed to protons and antiprotons, although suggested by the
numerical values of (3,12) only, is attracting because it links
radiation era and matter era, at the beginning of which cou-
ples of matter/antimatter particles were in fact formed. Any-
way the significant conclusion is that (3,17) to (3,19) skip mp

and thus can be further implemented in the following regard-
less of whether the volumes V0 are really occupied by protons
or any other mass.

Exploit (3,19) to infer the average temperature T related
to Pin in V0. Here T ≈ E/(NinkB) = mpc2/kB helps to estimate
the average temperature in each elementary volume V0; one
finds T ≈ 1013 K. This estimate fulfills the usual statistical
meaning of temperature, as the proton here concerned has a
statistical meaning itself. To better assess this result consider
the pressure P of an ideal gas of molecular weight Mmol and
average density ρ in the volume V0, so that ρ = PMmol/RT .
Exploiting (3,12) and (3,19) at the time ∆tu to express ρ ≡ ρu

and P ≡ Pin, one finds Mu/Vu = (2Muc2/3Vu)Mmol/RT , i.e.
T = 2c2Mmol/3R. Hence T is explicitly related to the specific
Mmol only, regardless of the time ∆tu and related universe vol-
ume Vu. A uniform distribution of hydrogen in each V0, i.e.
Mmol = 10−3 kg, estimates again T ≈ 1013 K, in agreement
with that inferred directly from mpc2/kB. Even the formation
of hydrogen will be justified in the subsection 3.4 as a conse-
quence of the step from (3,15) to (3,16). This large value is
enough for protons to form further couples of virtual photons
and fermions/antifer-mions; this supports the idea that effec-
tively the protons early formed trigger the successive energy
balance in V0 qualitatively indicated in (3,13).

The previous ways to estimate T refer to the time where
early hadrons began to form everywhere in the radiation field
of such universe and indicate a temperature corresponding to
a uniform distribution of virtual couples occupying the avail-
able states at the end of the radiation era. The same equa-
tions could in principle estimate the local T even during the
subsequent matter era, when the bombardment with energetic
neutrons allowed forming heavy elements; yet the concurrent
clustering of matter determined a structure of the universe lo-
cally inhomogeneous, so at that later time a unique average T
does no longer make sense. Actually both time and volume
of the universe determine the value of Mmol. In particular, the
expansion of the universe is crucial to determine the time pro-
file of T after the radiation era: the hypothesis (3,3) requires
M/∆r = const, which also compels that M/∆r3 is a decreas-
ing function of time for increasing ∆r. So an increasing frac-

tion of empty zones of the universe corresponds in principle
to a global decreasing value of T ; the calculation of the re-
spective temperatures is not as immediate and straightforward
as in the previous case, characterized by a uniform distribu-
tion of a unique kind of early particles. In this case both local
coefficients ai j and atomic weights of the elements m j must
be known: the sums of (3,13) are related to the abundances
within the various volumes V0i of cosmic objects, character-
ized by the different kinds of elements and local coefficients
ai j, and to empty parts of the universe.

A question arises now: did (3,3) and (3,18) hold even in
the past? In fact there is no reason to suspect that this con-
dition is an exclusive feature of the today space-time coor-
dinates ∆ru and ∆tu, which indeed have nothing special with
respect to any past or future ∆r and ∆t. The only necessary
hypothesis to answer affirmatively is that the current V0 grows
together with the size of the universe, which is possible if its
sizes are comoving distances. Otherwise stated, let V ′0 be the
past value of V0 at any ∆r < ∆ru and ∆t < ∆tu; we require
mpc2/2 = MmpG/∆r, being M the past total mass. This re-
quirement emphasizes the previous remarks: the actual na-
ture of proton mass mp is irrelevant as concerns (3,18), which
holds thus whatever mp stands for, i.e. whatever the relative
element abundance of (3,11) in V0 might have been at ∆t. On
the one hand c2/2G = Mu/∆ru requires Mu/∆ru = M/∆r
and thus M = c2∆r/2G, i.e. the black hole condition held
also in the past. On the other hand one expects that V ′0 scales
with ∝ ∆r3, in order that it be definable even for the smaller
universe sizes of the early matter era; so V ′0 = (∆r/∆ru)3V0,
i.e. V ′0 was reasonably much smaller than today’s V0. In
this way multiplying both sides by Nin one finds NinV ′0 =

(∆r/∆ru)3NinV0; since by definition NinV0 = Vu, (3,2) yield
NinV ′0 = (4π/3)∆r3, i.e. in the early hypersphere volume de-
fined by ∆r the number of elementary volumes and thus of
states allowed to the new born matter was the same as today’s
Nin. In summary

M =
∆r
∆ru

Mu; V ′0 =

(
∆r
∆ru

)3

V0; Nin = const. (3,20)

What is important for the following discussion is that un-
der reasonable assumptions the condition (3,18) could hold
also in the past and that Nin was since the beginning finger-
print of our universe. (3,20) help to guess the size of the
universe at the beginning of the matter era. It is instructive
to proceed stepwise calculating ∆r and V ′0 by trial and er-
ror, i.e. assessing these quantities as a function of sensible
values of M. If M would be the mass of one couple pro-
ton/antiproton only, then ∆r ≈ 4.9 × 10−54 m, which would
mean a volume V ′0 ≈ 2.9 × 10−240 m3, unrealistically smaller
than the expected order of magnitude of Planck volume. This
value of V ′0 suggests an early number of virtual couples much
higher than this. More reasonable results are obtained putting
V ′0 ≈ 4.2 × 10−105 m3 to estimate via the second equation the
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order of magnitude of ∆r, which results ∆r = 5.5 × 10−9 m;
with this range the first equation yields M = 3.8×1018 kg cor-
responding to about 2.2× 1045 protons, i.e. about 1045 virtual
couples proton/antiproton at the beginning of the matter era.
Note that Mc2 = 3.4 × 1035 J corresponds to an average fluc-
tuation energy ε f l = 3.4 × 10−10 J, i.e. 2.1 GeV, per virtual
couple of matter particles newly created: this is the fluctua-
tion energy of the radiation field able to create matter. It is
interesting the fact that with the given choice of V ′0 this result
fits well the energy of a couple of protons, despite it has been
calculated implementing Mu and ∆ru via (3,20) only; this sup-
ports the interpretation of (3,12). Supposing that on average
each couple of photons generates one virtual couple of mat-
ter/antimatter, the fluctuation extra energy of radiation field
increases the early Planck frequency of each couple of pho-
tons by about δω = 3.4 × 10−10/~ = 3 × 1024 s−1 to produce
matter. The obvious conclusion of this section is to admit
that before the time of mass production there was an earlier
massless era, i.e. the radiation era.

3.2 The radiation era

Consider the density ρ corresponding to M and ∆r of (3,20)
by replacing M with h/(λc); in this way the total mass of
the universe is expressed via the momentum h/λ of an elec-
tromagnetic wave propagating with velocity c. For simplic-
ity we have assumed that the refractive index of the medium
where the wave propagates is 1, although in principle this is
an approximation only; the aforesaid gamma-gamma physics
[21] predicts photon fluctuations resulting in charged fermion
-antifermion pairs, leptons or quarks, which couple with the
photons themselves. In the presence of electron-positron and
proton-antiproton couples of particles that typically also form
as a consequence of this kind of interaction, a refraction in-
dex equal to 1 is certainly an approximation; yet this is ac-
ceptable for the following reasoning and order of magnitude
estimates. So the late ρu = 3Mu/(4π∆r3

u) of matter era reads
ρr = 3h/(4πλc∆r3) at the time ∆t. A boundary condition
for λ comes from the fact that the early electromagnetic ra-
diation waves bounced between diametric distances 2∆r in-
side a sphere, i.e. still λ = 2∆r/n with n integer accord-
ing to eq (3,1); in this way steady waves were allowed to
fill the universe at any time ∆t. The internal bouncing of
radiation is justified even admitting that the early stages of
growth were allowed in non-equilibrium condition, owing to
the rapid growth of the universe size, and without radiation
energy loss unfavorable for the subsequent growth and evo-
lution of the new-born universe. So λ was a function of time
like ∆r, i.e. the number n of allowed frequencies increased
along with ∆r; it seems reasonable to guess that an initial field
almost monochromatic evolved towards a complex spectrum
of steady wavelengths. Anyway the density of the universe in
the radiation era reads

ρr =
3nh

8πc∆r4 =
3n~

4c∆r4 .

while (3,3) reads ∆r = 2hG/(λc3); so the condition λ =

2∆r/n yields ∆r =
√

nhG/c3. Hence increasing n means in-
creasing ∆r and the number of states allowed for the radiation
field. So radiation density, radiation energy density and pres-
sure during the radiation era read

ρr =
3c5

4n~G2 ; ηr
in =

3c7

4n~G2 ; Pr
in =

c7

4n~G2 .

At the beginning of the radiation era, therefore, ∆r =
√

hG/c3

with λ = ∆r and n = 1 has the expected order of the Planck
length with which in effect has been calculated the Planck
volume V ′0. Moreover estimating hc/λ with λ of the order
of the Planck length, ≈ 10−35 m, yields a temperature T ≈
hc/kBλ of the order of 1033 K. The fact that this charac-
teristic temperature is much higher than that estimated for
the proton in today’s V0, confirms that actually the radiation
era precedes the matter era. Putting ∆r of the order of the
Planck length, with n = 1 one finds ρr ≈ 4 × 1096 kg/m3 and
Pr

in ≈ 10113 Pa and ηr
in = 3.5×10113 J/m3; at this stage of evo-

lution of the universe the energy εr
in = (4π/3)∆r3Pr

in results
about εr

in ≈ 1.7×109 J, to which corresponds a temperature of
the order of εin/kB ≈ 1032 K in agreement with that already
estimated. Estimating an energy kBT ≈ 1.3 × 109 J of the
radiation field corresponding to this temperature, one finds
ωr = 1.6 × 109/~ ≈ 1.6 × 1043 s−1 i.e. a radiation field with
Planck frequency. These values correspond well therefore to
the Planck pressure, energy, frequency and temperature.

So, trying to understand the physical meaning of these re-
sults beyond the numerical estimates, the radiation era was
just after the very early time step of the creation of radiation
just concerned; this initial step can be therefore nothing else
but the Planck era. The huge internal pressure accounts for
the rapid volume of the universe. Note that the value of εr

in
is large, but not spectacularly high like Pr

in and ηr
in; these lat-

ter are due to the extremely small values of Planck volume.
These ideas explain thus the subsequent beginning of the mat-
ter era, during which however the expansion mechanism of
the universe was somehow different.

3.3 The universe expansion in the matter era

Comparing (3,17) and (3,14), it has been already noted the
similarity between the gravitational energy εp of one pro-
ton at the boundary distance ∆ru and the energy εV0 existing
within each V0 just because of the presence of the proton it-
self. (3,20) have been accordingly inferred. If the proton, or
whatever else its mass might actually represent, would be ide-
ally removed from any volume V0 internal to the universe and
displaced to the boundary of the universe, the energy lost by
V0 is balanced by that transferred to the boundary; within the
limits of the present order of magnitude estimates, there is no
net gain or loss of energy in this ideal process. This suggests
that creating a vacancy in the universe after ideally moving
its average amount of matter per unit cell just to the external
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boundary of the universe occurs at zero energy cost. Strictly
speaking εp should have been calculated in principle writing
Mu −mp, the numerical difference being however completely
irrelevant for one proton only. Actually this reasoning is ex-
tensible to describe a relevant number of protons regarded at
the boundary; as Mu/mp ≈ 1080, for a large number np of
protons such that 1 � np � Mu/mp still holds (3,18) be-
cause Mu ≈ Mu − npmp. This means that large numbers of
protons are expected to contribute to this ideal transfer pro-
cess, i.e. large numbers of empty cells are to be expected in
the universe. Of course the comparison between εV0 and εp

has statistical meaning only, despite the actual structure of the
visible mass in the universe and even regardless of the local
element abundances in the universe, hidden within the global
value of Mu and still undisclosed when reasoning about the
mere average distribution of Mu. The following remarks are
useful at this point.

- There is no actual flow of protons moving inwards or
outwards throughout the universe; the uncertainty in
the most agnostic form of (2,1) requires any quantum
particle completely delocalized everywhere in the who-
le universe. The diameter 2∆ru is a quantum delocal-
ization range inside which no information is concep-
tually allowed about the local position and dynamical
variables of any kind of particle, proton or else. So
any particle could be in V0 or at the boundary simply
provided that there are available allowed states; (3,18)
merely compares the energies of protons in two differ-
ent places where they could in fact be, i.e. everywhere
because V0 could be itself everywhere in the universe.

- Two states of equal energy are allowed to the proton:
the bulk state in V0 and the boundary state at the rim of
the universe. A proton at the boundary state leaves be-
hind an empty cell V0, i.e. a hole in one of the bulk al-
lowed states. In general occupied and empty states are
possible in the bulk and at the boundary of the universe.
The global electroneutrality is ensured by the identical
chance statistically allowed to antiprotons too.

- Both ideal chances are possible in principle despite the
black hole character of the universe: the protons do not
escape far from the boundary, they remain “glued” on
the boundary like any electromagnetic radiation possi-
bly arriving up there from the bulk of the universe. The
Hawking entropy supports this idea.

- The chance of either alternative is consequence of the
second law of thermodynamics; these bulk and bound-
ary chances concurrently possible for the protons in-
crease their number of allowed states and thus their
configuration entropy. This crucial point, which will be
further concerned later, agrees with the fact that (3,17)
describes identically the total mass Mu at the ideal cen-
ter of the universe and the mass mp at the boundary
∆ru apart or, vice versa, the mass mp at the ideal center

of the universe and the total mass Mu concentrated on
a point at the boundary ∆ru apart; indeed, according to
the considerations of section 2, the local position of any
particle is physically meaningless because of the quan-
tum delocalization within an uncertainty range. Ei-
ther extremal configuration, in principle possible for
the universe, is however unlikely by entropy consid-
erations.

- If V0 scales as described by (3,20), which is admissible
as no restraining hypothesis has been made on it, then
(3,18) previously introduced for the proton at the time
∆tu is unchanged at any ∆t < ∆tu; moreover the number
of states Nin is expected constant, as in effect it has been
found.

These ideas encourage regarding the proton in V0 as a sort
of template that symbolizes the average behavior of real mat-
ter in any bulk state and at the boundary state; as previously
remarked, this is certainly the strongest form to affirm the
large scale isotropy and homogeneity of the universe. Actu-
ally particles and antiparticles with the same mp concurrently
formed after the radiation era have statistically the same prob-
ability of being found in the boundary state; if so, the initial
configuration of coexisting protons and antiprotons uniformly
occupying all available bulk states generates subsequently a
boundary halo of virtual couples plus possible annihilation
photons along with corresponding vacuum states and matter
states in the bulk universe. This configuration change in-
creases the total entropy of the universe. In particular, the
surface entropy at the boundary of the universe consists of
the Hawking term σH plus a contribution related to the con-
figuration of boundary states shared with that of the bulk uni-
verse. The entropy will be considered in some more detail in
the next section. It will be shown that the way of thinking
based on the degenerate quantum states of the universe rather
than on the multiplicity of states describing its actual structure
of matter, helps formulating a possible growth mechanism of
the universe. Usually growth and expansion are synonyms;
the next section emphasizes why actually it is not so in the
present model, where growth does not merely mean swelling.

3.4 The universe growth in the matter era

Let the bulk universe at an arbitrary time after the big bang
consist of a number Nout of V0 empty cells and a correspond-
ing number Nin − Nout of filled V0 cells; the external bound-
ary is thus a layer formed by Nout glued protons and antipro-
tons missing in the bulk. So even this statistical picture of
universe is consistent with the existence of an empty part of
the real universe and its real matter structure: correspond-
ingly to the further redistribution of NoutV0 and (Nin−Nout)V0
volumes, in principle located randomly in the total volume
NinV0 available, clusters of matter tend to coalesce together
by gravitational interaction: the vacuum corresponds indeed
to the Nout residual holes left in between. Anyway, if clusters
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of empty cells and clusters of occupied cells are numerous
enough, then their random distribution within Vu is still con-
sistent with the assumption of overall statistical homogene-
ity and isotropy. This seems indeed the case, as the number
Nin of V0 volumes has been estimated of the order of the Ed-
dington number 1080. The chance of introducing arbitrary
numbers Nout and Nin − Nout of cells brings the universe to-
wards a situation of dynamical equilibrium between the for-
mer and the latter; yet this final configuration, somehow at-
tained, could be imagined as the conclusion of a gradual pro-
cess consisting of a first redistribution step Nin − N′out and
N′out of filled and empty cells, which in turn generates pro-
gressively a subsequent redistribution Nin − N′out − N′′out and
N′out + N′′out of new filled and empty cells along with possible
coalescence of cells still filled, and so on. This idea stimu-
lates considering the dimensionless entropy of a current con-
figuration, σb = Nin!/(Nout!(Nin − Nout)!), due to the fact that
all transient configurations compatible with zero energy bal-
ance are equiprobable; the subscript b stands for “bulk”. As
σb has a maximum as function of Nout, the formation of bulk
holes fulfills the second law until this maximum is reached.
Let σb describe a transient configuration at a given time and
σ′b = Nin!/(N′out!(Nin − N′out)!) that at a later time; the latter
is allowed if Nout and the subsequent N′out fulfill σ′b > σb.
Hence, after an arbitrary numbers of steps, are formed as a
function of time multiple clusters of matter aggregates subse-
quently attained and thus differently configured, together with
a progressive modification of the empty space between them.
At the dynamical equilibrium no net state exchange occurs.
Of course σb and σ′b neglect, for simplicity and brevity, the
further contributions σarr and σ′arr due to the ways to arrange
the respective clusters of matter into actual universe struc-
tures; yet σb and σ′b symbolize qualitatively the first concep-
tual step to understand the actual configuration of the uni-
verse. Clearly, by virtue of (3,13), the σarr driven final ar-
rangements of filled cells are nothing else but stars or galax-
ies or flows of elementary particles or any other observable
object. The existence of Pin related to the matter energy den-
sity agrees with and justifies the universe expansion, which
however at this point still seems like a mere bubble blow-
ing up by internal pressure effect. But just this point poses a
further question: does the universe in the matter era expand
freely or is it constrained by an external pressure Pout op-
posing to its expansion? In principle the expansion requires
Pin > Pout, not necessarily Pout = 0: the force that pushes
forwards the unit surface of universe boundary must simply
overcome that possibly tending to pull it backwards, i.e. to
squeeze the universe size towards a big crunch. If the for-
mer position is correct, then Pout tends to decrease the ac-
celeration with which the universe expands. Yet, what does
originate Pout? A possible answer relies just on the presence
of protons and antiprotons at the boundary states of the uni-
verse previously introduced. The boundary here introduced
is not mere spherical rim; in effect the plain idea of geomet-

rical margin would be unphysical itself. More sensibly, the
mobile contour of the universe is defined by a crowd of Nout

virtual protons and antiprotons along with electromagnetic
radiation trapped on a fading shell, recall the Hawking en-
tropy. In fact the previous considerations propose in a natural
way that the boundary should be a physical layer of finite vol-
ume and finite thickness; so the chance of defining an energy
density ηout due to these particles seems the most straightfor-
ward way to define Pout. In this respect, the further chance
of demonstrating that Pout , Pin is important not only to infer
information about the acceleration of the boundary of the uni-
verse, controlled by the net force Pin−Pout per unit surface of
boundary, but also to infer that the physical nature of the outer
layer must be different from that inside the universe. Before
assessing the importance of this conclusion as concerns the
matter/antimatter ratio, let us examine two points: the expan-
sion equation and the physical meaning of ηout, to which is re-
lated the pressure Pout equivalently as in (3,19). This external
pressure could be likewise regarded as external force acting
towards the center of the universe or resistance of the universe
to increase the total surface of its boundary. The latter idea
is more easily viable to introduce the existence of a boundary
layer, whose thickness surrounds the universe and character-
izes ηin , ηout; if the layer would have the same physical na-
ture of the bulk vacuum, then the boundary should be at rest
or steadily moving rather than accelerating. Let ρuVuc2 be
the energy stored inside the universe; since today’s universe
expands, according to the first law its total energy E must
also include a PVu-like term. Let δE = c2δ(ρuVu) + PnetδVu

be the change δE of total energy during the time interval δt,
where Pnet = Pin − Pout describes the net force pushing for-
wards the boundary. As no energy escapes outside of a black
hole universe Ė = ρ̇Vuc2 + ρV̇uc2 + (Pin − Pout)V̇u = 0; so
ρ̇ + ρV̇u/Vu + (Pin − Pout)V̇u/(Vuc2) = 0. According to (3,20),
the size of the elementary volume V0 scales as ∆r3, i.e. like
Vu = NinV0; then V̇u/Vu = 3ȧ/a, whence the well known
result

ρ̇ + 3
ȧ
a

(
ρ +

Pnet

c2

)
= 0; Pnet = Pin − Pout (3,21)

The notation emphasizes that the time derivative of the radius
defines the change rate of a co-moving length. The excess of
internal pressure means that the layer outside the boundary
is slightly different from the bulk. Note that also a negative
pressure Pout counteracting Pin has been introduced in this
reasoning.

Regard the boundary as if it would be a material layer
characterized by a contractive energy per unit surface γ =

εγ/l2 that opposes to its stretching during the expansion; for
instance, this effect can be guessed thinking to the opposite
charges of the particles/antiparticles that crowd the bound-
ary surface. Anyway the total contractive energy of a spheri-
cal bubble having internal radius ∆ru and volume Vu is εγ =

4π∆r2
uγ. Moreover the Young-Laplace equation of such sur-
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face tension-like model of boundary reads Pin−Pout = 2γ/∆ru

Suppose that Pout = Pin/2; then Pout = ηin/3, like that inside
a universe with radiation only. This is equivalent to say that
Pin is due to two contributions: one coming from its radia-
tion density content and one due to the ability of the radiation
to generate matter via quantum fluctuations. The former is
counterbalanced by Pout, the latter is the active energy ex-
cess pushing outwards the boundary. Hence the expansion
of the universe is controlled by the quantum contribution of
radiation fluctuation extra energy that generates matter, with-
out which the universe would still be a radiation volume. To
check this idea note that (3,3) yields M2

uG/∆ru = Muc2/2,
i.e. one half of the universe energy is equal to the first (3,17)
with the proton mass replaced by that of the whole universe.
The same holds for the energy density, obtained dividing both
sides by Vu. So if Pin/2 = ηin/3, then Pout = ηin/3 requires
ηout = ηin/2. Hence the right hand side yields

ηout =
M2

uG
Vu∆ru

≈ 4.2 × 10−11J/m3

Pout = 2.8 × 10−11Pa
(3,22)

as it reasonably appears comparing with ηin of (3,12). This
result implies interesting consequences. The total contrac-
tive energy of a spherical bubble of radius ∆ru and volume
Vu is εγ = 4π∆r2

uγ. Moreover the Young-Laplace equation
reads Pin − Pout = Pin/2 = 2γ/∆ru, so that γ = Pin∆ru/4
yields εγ = π∆r3

uPin = Muc2/2 thanks to (3,19). Hence
the whole energy of the boundary layer generating its con-
tractive surface tension is one half of the total bulk energy
of the universe, i.e. that corresponding to the net pushing
effect of the big-bang quantum fluctuation only. Also, this
confirms that Pout = Pin/2 is an external pressure opposite
to Pin and directed towards the universe center consistently
with the curvature radius ∆ru. The numerical value of γ is
≈ 6 × 1015 J/m2, corresponding to Muc2/2Au. It is interest-
ing the fact that the boundary layer can be regarded as a real
matter sheet curved by the pressure difference according to
the Laplace equation. The initial black hole condition (3,3) is
essential for this result. Note that it is possible to write

ηout =
3

16π∆r2
u

c4

G
=

3
4

c4

AuG
; γ =

c4∆ru

4AuG
(3,23)

i.e. the compression force at the boundary of the universe is
of the order of the Planck force acting on its total surface. It
is interesting to note that replacing Au = 4l2PσH, it is possible
to express γ as a function of the Hawking entropy. More-
over, once knowing ηout it is easy to find the thickness of the
boundary layer. This energy density is that stored in a layer
surrounding the universe δru thick. i.e. the boundary protons
and antiprotons are actually contained in a shell of volume
(4π/3)[(∆ru + δru)3 − ∆r3

u]; so

Vout = ζVu; ζ = (1 + δru/∆ru)3 − 1 (3,24)

which means that in fact the size of the universe is still de-
scribed just by its radius ∆ru via a correction factor ζ. Hav-
ing defined ηout at ∆ru, it is immediate to estimate also en-
ergy, mass and number of protons/antiprotons of the bound-
ary layer through the following equations

εout = Voutηout = ζM2
uG/∆ru = ζ

c4

4G
∆ru

mout ≈ εout/c2 = ζ
c2

4G
∆ru

nout ≈ mout/mp = ζ
c2

4Gmp
∆ru.

If δru � ∆ru , then ζ ≈ (δru/∆ru)3; if instead δru ≈ ∆ru,
then ζ ≈ 7. Moreover, trusting to the idea that δru � ∆ru at
the today time ∆tu, one finds ζ ≈ 3δru/∆ru and then Vout ≈
4π∆r2

uδru. Suppose that δru ≈ 10−15 m, which corresponds
to the size of the proton; then Vout ≈ 2 × 1039 m3 yields
εout ≈ 1029 J; i.e. the boundary layer consists of a total mass
mout ≈ 1012 kg, to which correspond about nout ≈ 6 × 1038

protons and antiprotons. It would be also easy with the help
of (3,20) to repeat the estimates also a different past times.
Going beyond the raw numerical estimates, one concludes:
(i) the number density nout/Vout is of the order of 1/3 proton
per cubic meter, a figure similar to that found in V0 of the bulk
universe; (ii) the number of boundary protons results � Nin,
as it must be according to the previous considerations; (iii) the
fact that the size of the proton is of the order of one fm means
that the boundary layer is actually formed by a monolayer of
protons and antiprotons; also this result seems in effect quite
reasonable. The connection of these conclusions with the pre-
vious (3,1), (3,6) and (3,8) will appear shortly.

Now let us explain why the presence of the proton/anti-
proton couples at the boundary is important for the growth
of the bulk universe. Assume that the empty V0 cells of the
universe, i.e. our core vacuum, actually includes couples of
virtual particles and antiparticles that annihilate and then re-
materialize: whatever their specific nature might be, a simple
reasoning shows that the main effect of sharing these virtual
couples between bulk states and boundary states is that of
transferring to the aforesaid boundary layer the properties of
the bulk universe. It is essential that both virtual particles and
antiparticles have equal probability of being in either state,
see the next section for more details; in this sense it is pos-
sible to regard them as a couple. These forerunner quantum
couples are the precursors that generate a new boundary of
the universe and activate its expansion. Indeed transferring
the energy early contained in any V0 towards the boundary
means reproducing at the boundary the quantum states char-
acterizing the bulk universe, i.e. not only that of protons and
antiprotons but also the vacuum energy fluctuation generat-
ing them. This also means that the universe grows by repli-
cating part of itself outside itself; the duplication concerns of
course also the virtual couples of particles and antiparticles
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characterizing the core vacuum, which once more confirms
why (3,12) and (3,14) have been calculated with Mu and not
with mu. So in the present model expansion does not mean
merely swelling: the chance that these couples annihilate and
rematerialize at the external boundary of the universe likewise
as they did inside the universe, means that even the external
boundary assumes the feature of the core cells V0. In effect
the previous figures recalculated with a value of δru slightly
larger than one proton monolayer yield a proton/antiproton
density comparable to that within V0 of the bulk universe;
this clearly indicates that increasing δru means increasing the
number of boundary states allowed to protons and antipro-
tons. Yet proton and antiproton density in the boundary layer
equal to that existing in V0 means that the bulk of the universe
has been in fact expanded by a supplementary layer & δru, i.e.
the actual boundary is located a step δru beyond the previous
one, and so on by successive steps consistent with a growth
rate presently given by vu of (2,6). The driving force of this
“onion growth” process is the entropy increase required by
the second law: all protons and antiprotons filling the bulk
universe only, anyhow distributed and arranged, would define
a degree of order greater than that where some of them have
the additional chance of being further arranged in the only re-
gion furthermore conceivable, i.e. that glued to the external
boundary of the black hole universe. Yet the key concept is
clearly the quantum uncertainty, in its most agnostic form of
(2,1): being completely delocalized everywhere in the uni-
verse, the particles can preferentially be in fact wherever they
ensure the most advantageous entropy and growth conditions.

However, the question that then arises immediately is:
does this chance expel to the boundary exactly equal amounts
of particles and antiparticles or is there preferential trans-
fer of either kind of them? From a statistical standpoint the
answer is indeed that reasonably couples of virtual particles
only should share this growth mechanism: drawing randomly
from a multitude of particles and antiparticles, the realistic
chance is that equal numbers of either kind are involved in
the quantum state change. Despite this statistical equivalence,
however, the next section will emphasize why the overall ef-
fect of the entropy increment is that of increasing the mat-
ter/antimatter ratio in the bulk universe.

3.5 The problem of matter and antimatter

This section describes a mechanism really possible soon after
the end of the radiation era; the couples proton/antiproton just
formed from the very hot radiation field have actual physical
meaning, instead of being mere statistical entities suggested
by (3,12). Is useful here a reasoning similar to that of the
Dirac sea, which in the present context seems physically even
more appropriate than the original one: are inherent here nei-
ther infinite states occupied by electrons with negative energy
nor the doubtful concept of “neutrality” conventionally de-
fined by the presence of infinite electrons in negative energy

occupied states; the Pauli principle is no longer necessary to
avert a weird radiation of negative energy.

In the original Dirac idea, a photon of energy ≥ 2mec2

excites an electron in the negative state above the forbidden
gap; as a result, the electron just removed appears as a stan-
dard electron that leaves behind a related positive hole, the
positron. Today we know that in fact two photons of suffi-
cient energy are able to create a couple particle/antiparticle
while fulfilling the conservation laws. Let us implement here
this standpoint, emphasizing however that the driving energy
has now entropic character: the energetic photons necessary
to modify the Dirac sea of negative energy electron states is
here replaced by the entropy increase TδS that results from
the combined configuration option, bulk state and boundary
state, allowed for each proton and each antiproton. The num-
ber of proton and antiproton quantum states is the large but
finite Nin. It has been already estimated that just after the ra-
diation era T was of the order of 1032 ÷ 1033 K; this range
of values seems high enough to account for a Dirac-like pro-
cess. Discuss separately what happens when one proton and
one antiproton pass from their own bulk states in V0 to their
respective boundary states; two V0 states are involved in the
process, the probability that this happens is equal for both.

One proton in the first V0 has the same energy as in the
boundary state; with the proton in this latter state a hole is left
behind in this V0, i.e. a neutral vacuum state forms in the bulk
universe. No constrain is necessary about the energy TδS to
allow the change from bulk to boundary state, either config-
uration is allowed at zero energy cost; now one V0 state is
chargeless, whereas one boundary state is positively charged.

The Dirac reasoning for an antiproton in the second V0
sounds as follows. A proton in the negative energy state in
this V0 is excited concurrently and with the same statistical
probability of the previous process; now a constrain about the
excitation energy is required and reads TδS ≥ 2mpc2 + mec2.
This proton is thus excited, leaves unoccupied its initial state,
overcomes the forbidden gap at the right hand side and ap-
pears as an ordinary proton; a negative hole, i.e. one antipro-
ton, results by consequence. This hole is to be regarded in the
boundary state, previously raised to a positive charge state by
the first proton, to ensure the local electric neutrality; the ordi-
nary proton co-generated in the second bulk state V0 remains
inside the bulk universe together with the negative charge of
one electron; this latter, necessary for the total spin conserva-
tion and for the overall bulk neutrality at the minimum energy
cost, occupies the former empty vacuum state V0 left behind
from the first proton.

Clearly this mechanism requires that both a proton and an
antiproton change contextually and with the same probabil-
ity their bulk states, in which case we have: (i) two bound-
ary states altogether neutral occupied by one proton and one
negative antiproton, which can yield by annihilation the elec-
tromagnetic radiation trapped at the boundary of the universe
and concerned since the beginning by (3,1), as confirmed by
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(3,6) and (3,8); (ii) a neutral bulk state formed by one pro-
ton and one electron occupying the two volumes V0 left va-
cant. Also the electroneutrality in the bulk universe is thus
fulfilled thanks to the electron energy included in the energy
balance of TδS . On the one hand, therefore, the equal prob-
ability of exciting statistically one proton or one antiproton
is essential to ensure the neutrality of both bulk and bound-
ary states; on the other hand, by consequence of this mech-
anism a couple proton/antiproton is formed in the boundary
state, whereas in the bulk one proton has replaced the an-
tiproton with the help of one electron. In fact this process
removes antimatter from the bulk universe, which appears
as electromagnetic radiation surrounding the universe via en-
tropy driven process; the holes of negative energy states, i.e.
protons, concurrently generated along with electrons appear
as bulk matter. Moreover just the annihilation electromag-
netic halo ensures the growth of the universe, which therefore
does not simply swell but replicates itself far at the boundary
via annihilation energy. The separation boundary-antimatter
from bulk-matter was likely allowed to occur just at the be-
ginning of the matter era, when the matter started being gen-
erated from the extremely hot radiation field consistent with
its TδS . It is reasonable to think that without this separation
the bulk universe would have remained in the radiation era,
because the two photon mechanism previously hypothesized
would have continued to produce virtual matter that however
endlessly annihilated with the virtual antimatter contextually
generated. Since no energy escapes from the black hole uni-
verse, TδS = δ(TS )−S δT caused decrease of internal energy
and cooling of the universe, until when the temperature de-
crease made impossible the radiation driven formation of vir-
tual proton/antiproton couples and the consequent antimatter
expulsion to the boundary along with the concurrent forma-
tion of low T matter. Begins just now the matter era. Of
course all this is possible because of the total uncertainty of
the quantum particles introduced in its most agnostic form
of (2,1): these particles do not need any actual travel to go
from bulk to boundary of the universe, being instead totally
delocalized; they are simultaneously everywhere without any
chance of specify their actual location. These ideas have been
exploited to discuss the EPR paradox in the frame of a relativ-
ity model entirely based on the space-time uncertainty [12].

As concerns the point (i) above, (3,6) to (3,9) and related
considerations about ~ωn=2 agree with the idea that both pro-
tons and antiprotons existing at the boundary of the universe
contribute with their annihilation to form the halo of electro-
magnetic radiation surrounding the universe.

As concerns the point (ii), the presence of the electron is
evidenced simply implementing the second (3,17): the elec-
tron energy εe early contributed by TδS replaces εp in the
empty V0 left behind by the previous proton now occupying
the boundary state, so the energy density in the bulk vol-
ume V0 becomes εe/V0. To confirm this mechanism, it is
enough to estimate T = (εe/V0a)1/4 via the black body con-

stant a = 5.67 × 10−16 J/m3K4; today’s V0 ≈ 2m3 yields T ≈
2.63 K. Of course in the past, when V ′0 � V0 according to
(3,20), the energy density was higher and thus the background
cosmic temperature accordingly higher; the low energy of the
present cosmic radiation is due to the swelling of the early
V ′0, formerly of the order of the Planck volume, to the size
of today’s V0 that decreases the electron energy density. This
conclusion agrees with the condition nλ = 2∆r previously in-
troduced to describe the evolution of the radiation field as a
function of the growing universe size during the radiation era.
The mechanism that originates the CBMR dates back to the
early beginning of the matter era when this mechanism took
place, but is operating even presently: the today wavelength,
due to the swelling of the early V ′0 to the current V0, is re-
lated to the virtual couples of particles/antiparticles that feed
the growth of the universe keeping constant its black hole ra-
tio Mu/∆ru according to (3,20) and the concept of vacuum.
The small % discrepancy from the experimental value 2.72 K
of today background cosmic radiation is due to having im-
plemented the mere rest mass of the electron, whose kinetic
energy instead is presumably not exactly zero; being the elec-
tron much lighter than the proton, a relativistic correction fac-
tor in the energy balance of TδS , corresponding to ve ≈ 0.5c
and reasonably expected, increases slightly the energy den-
sity in V0 and allows to fit exactly the experimental value.
Yet this is not the main point: the most important aim of the
model is to verify the sensibleness of estimated values with
respect to the available experimental data and assess the con-
ceptual consistency of the theoretical model with the current
knowledge of the universe.

4 The dark mass

A crucial point that deserves a rational explanation, hitherto
not yet concerned, regards the mass m?. Some comments on
this mass are here reported starting from (3,9) and (3,17) and
comparing the energy ~ωn with ∆εu = ~/∆tu. One finds

nc∆tu
2π∆ru

≈ n
20
. (4,1)

In effect, with the help of (3,1) and (3,3) the ratio at left
hand side is equal to about nξ/2π with ξ = 0.3 according
to (2,5) and (2,6). In section 3.1 it has been highlighted that
n = 2 means considering electromagnetic waves surround-
ing the universe whose energy corresponds to the annihilation
of several protons with antiprotons; also, in agreement with
(3,8), for n = 2 the right hand side of (4,1) becomes 10−1.
Recall now that just a factor ten has been already found in
(3,4), when describing the ratio Mu/mu. So it seems natural
to introduce this ratio into (4,1) that becomes therefore

Mu

mu

c∆tu
π∆ru

≈ 1. (4,2)

Very large numbers that fit such a simple numerical value sug-
gest a significant physical meaning hidden in the last equa-
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tion: the fact that Muc∆tu ≈ πmu∆ru is interesting because
it provides a new link between Mu and mu, i.e. according
to (3,4) muc2~/∆tu ≈ muc2~ωn=2 + m?c2~ωn=2 with ωn=2 =

c/π∆ru. Going thus beyond the mere numerical result, let
us generalize (4,2) to any ∆t by replacing 1 with a number
q = q(∆t,∆r); so the subscript u characterizing today’s quan-
tities will be omitted, whereas different values are expected
for ωn=2 and m?. Multiply both sides of the resulting equation
by c2; recalling again (3,4), (4,2) turns into

qmc2 ~

∆t
= mc2~ωn=2 + m?c2~ωn=2; ωn=2 =

c
π∆r

. (4,3)

This equation is interesting because its terms are cross linked:
a couple of terms shares mc2, another couple ~ωn=2. This
shows that m and m? are correlated. Moreover the fact that
this equation contains squared energy terms, brings to mind
an important equation inferred in the appendix, i.e.

ε2 = (pc)2 + ε2
rest. (4,4)

Add ζmc2~/∆t to both sides of (4,3); by comparison these
equations suggest the following correspondences

(q + ζ) mc2 ~

∆t
= ε2

mc2
(
~ωn=2 + ζ

~

∆t

)
= (pc)2

m?c2 ~ωn=2 = ε2
rest

(4,5)

being ζ = ζ(∆t,∆r) a function of ∆r and ∆t whose physi-
cal meaning will appear soon. In principle these correspon-
dences, merely based on the one-to-one association between
(4,3) and (4,4) having an analogous form, propose a possible
explanation of the mass m?.

The universe as a whole is to be regarded like a free spin-
less neutral macro-particle moving at uniform speed, whose
kinetic and total energy are respectively related to the terms
(pc)2 and ε2; accordingly m? accounts for the rest energy of
the macro-particle universe. It seems surprising that this link,
suggested by mere numerical analysis of the values of ~ωn=2
and ~/∆tu of (4,2), is provided by a formula of special relativ-
ity and not of general relativity. The energies of (4,3) concern
the universe as a whole and not the interaction of its parts,
galaxies and stars and so on, whose gravitational dynamics
is governed by the general relativity. In effect, (3,3) regards
the black-hole universe as a global object, a spinless macro-
particle, whose properties are due to its total mass and total
size only, regardless of its complex internal structure, mass
composition and mass distribution assumed homogeneous at
least on large scale. A valid support to propose a rectilinear
uniform motion of the whole universe comes from the fact
that indeed this idea cannot be excluded by any experiment:
since Galileo it is known that such an inertial motion cannot
be detected by any observer inside the universe. Perhaps a

harder implication of this idea could concern the hypotheti-
cal reference system Ru able to describe this motion; however
also this dilemma is actually a false problem in the present
model, once thinking the size of the universe as an uncertainty
range ∆r = r1 − r0 in principle similar to that introduced in
section 2 to describe energy levels and angular momentum of
the quantum particles. It has been emphasized: (i) that neither
r0 nor r1 must be specified to describe the quantum properties;
(ii) that in fact both coordinates are not specifiable; (iii) that
this conceptual lack of information prevents specifying the
reference system Ru where is defined r0 and the actual size of
∆r defined by r1. So it is conceptually impossible, but also
inessential, to specify such Ru as regards the quantum prop-
erties of a particle within the range ∆ru during the time range
∆tu: if the properties of the quantum macro-particle we call
universe do not depend on r0 or r1 but on ∆r only, then the
difficulty of defining Ru, e.g. its origin, becomes marginal.
Anyway, since (4,1) and (4,3) come directly from the exper-
imental values of ∆ru and ∆tu, there is no reason to reject
them; in effect (4,3) and its relativistic free particle interpre-
tation explain why one addend concerns the mass m? and its
energy m?c2 additional to the visible mass mu of stars. Now
is justified the function ζ knowing that ε = mc2/

√
1 − (v/c)2

and p = mv/
√

1 − (v/c)2; also these formulas are shown in
the appendix in the frame of the present model. Let us rewrite
the three terms of (4,4) that define the relativistic energy of
the free macro-particle universe of (4,5) as a function of its
displacement constant velocity vmp and mass Mmp; this means
replacing v and m with vmp and Mmp. Hence

(q + ζ) mc2 ~

∆t
=

M2
mpc4

1 − v2
mp/c2

mc2
(
~ωn=2 + ζ

~

∆t

)
=

M2
mpv2

mpc2

1 − v2
mp/c2

m?c2 ~ωn=2 = M2
mpc4.

(4,6)

Taking the ratio side by side of the first two equations one
finds with the help of (3,9)

v2
mp

c2 =
ωn=2∆t + ζ

q + ζ
; ωn=2∆t =

c
π

∆t
∆r

=
v
πc

(4,7)

where v is the average expansion rate of the universe at ∆t.
Now we impose that vmp is constant via the function ζ; so

vmp = ±c
√
ζ0; ζ =

ωn=2∆t − ζ0q
ζ0 − 1

; q =
M
m
ωn=2∆t (4,8)

i.e. q generalizes (4,2). Note that Mmp does not appear in
these equations; it is merely defined by the third (4,6) as a
function of m?, on which however no hypothesis has been
made. So the definitions of ζ and q hold regardless of Mmp.
An obvious condition is 0 < ζ0 < 1; moreover q + ζ > 0 and
ωn=2∆t + ζ > 0 are also evident because both sides of (4,6)
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and (4,7) are positive. The former condition reads q + ζ =

(ωn=2∆t − q)/(ζ0 − 1) > 0, the latter reads ωn=2∆t + ζ =

ζ0(ωn=2∆t − q)/(ζ0 − 1); owing to the expression of q both
reduce to the unique condition 1 − M/m < 0, which is in-
deed true as it has been introduced since the beginning in the
present quantum model. Impose also m?ωn=2 = const, which
yields m?c/π∆r = const: this equation extends (3,20) that
reads M/∆r = const = m/∆r + m?/∆r according to (3,4). In
this way Mmp becomes a constant. Note that owing to (3,8)
this result reads m?c2~

√
ρG = ε2

rest; being by definition ρ =

(m? +m)/V , one concludes that εrest is defined even during the
early the radiation era when the visible mass was m = 0 and
the universe volume of the order of the Planck volume VP. So,

with obvious meaning of symbols, ε2
rest = m(0)

? c2~
√

m(0)
? G/VP

and remained constant since then; hence the third (4,5) reads
m? = m(0)

?

√
ρ(0)/ρ, with ρ(0) = m(0)

? /VP. Of course, as al-
ready noted, 1/ρ is an increasing function of m? because the
black hole condition M/∆r = const requires M/V decreas-
ing function of ∆r3. In conclusion (4,5) are appropriate to
describe a free macro-particle of constant mass Mmp moving
at constant rate vmp. Eventually, note that the square ener-
gies of (4,5) are actually products of two different energies,
as if they would come from geometrical averages like for
instance < ε > = ±((q + ζ)mc2~/∆t)1/2. So the black hole
we call universe has, as a whole, the average energy < ε >
of a free particle that moves with average constant momen-
tum < pc > = ±(mc2(~ωn=2 + ζ~/∆t))1/2, whereas m?c2 and
~ωn=2 defining < εrest > = ±(m?c2~ωn=2)1/2 appear to be the
ingredients of its average rest energy. Otherwise stated, the
well defined mass balance between m? and mu proposed here
appears rationally motivated: mu is due to the capability of
the universe to create ordinary visible mass after the radiation
era exploiting the available big-bang fluctuation energy; the
additional mass m? ensures the existence of an efficient black
hole universe that does not waste uselessly its valuable energy
content. So it follows also the necessity of a displacing uni-
verse. Are unavoidable at this point at least three questions:
does actually the equation < ε > = ±

√
< pc>2+ < εrest>2

admit the minus sign? could an anti-universe actually ex-
ist with a matter/antimatter mechanism equal and opposite to
that described in the previous section? is our whole universe
a wave/corpuscle subjected itself to the uncertainty principle?

5 Discussion

The cosmology is probably the most difficult among the phys-
ical sciences because of both its multidisciplinary conceptual
basis and scarcity of experimental data, besides inferred in
a limited domain of time and space consistent with the light
speed: past, present and future of the whole universe must be
guessed despite the space-time horizon gives us access to a
limited window of observable objects only. Just for this rea-
son the theoretical models have a special role in cosmology.
Usually the experimental data validate a theoretical model;

here instead seems true the exact contrary, i.e. a sound self-
consistent model highlights the physical meaning of the avail-
able experimental data. In this particular context is crucial
the role of quantum mechanics. The correspondence princi-
ple states that the classical physics is the limit of quantum
physics for high quantum numbers, which implicitly means
that just the quantum principles are the true essence of physics
and thus of cosmology as well. This explains the attempt
of the present model, mostly based on quantum considera-
tions rather than on relativistic considerations. Two impor-
tant experimental values, the Hubble constant and the cosmic
background radiation temperature, have been estimated with
accuracy enough to conclude that the physical approach of
the present quantum model of the universe is basically cor-
rect. (2,1) enable the most important equations of quantum
mechanics and relativity to be inferred [12,13,14,18]; their
generality is also proven in particular by the ability of de-
scribing quantum fluctuations of a relativistic free particle.
For instance the appendix shows how to find the well known
equation p = vε/c2 via ∆p = v∆ε/c2, whose importance for
the present model has been already emphasized, e.g. (2,4)
and (3,7); however ∆p and ∆ε are not classical ranges but
quantum uncertainty ranges. So a quantum particle whose lo-
cal momentum and energy are included within the respective
ranges, recall the explicative results of section 2, is subjected
to quantum fluctuations of p and ε that expectedly alter also
its propagation rate. This fact prospects new chances for the
known equations of special relativity, which here appear in
fact as quantum equations subjected to the weirdness of the
quantum world. Further considerations on this topic are out-
side the purposes of the present paper. Yet it is worth men-
tioning that the EPR paradox, according which particles bil-
lions of light years apart can instantaneously exchange infor-
mation via the so called quantum entanglement, is explained
according to the agnostic physical meaning of (2,1); the con-
cept of distance becomes itself undetermined once disregard-
ing the local coordinates. Renouncing even to the concept
of probability density for any particle to be somewhere, re-
placed by the mere idea of delocalization within an uncer-
tainty range, the concept of distance is no longer definable.
So it is unphysical to expect a different quantum behavior for
particles definable very close or very far apart only classi-
cally. Certainly this odd conclusion is not the only weirdness
of the quantum world: as it is shown in section 2, this agnos-
tic standpoint has unexpectedly heuristic physical meaning.
One kind of weird phenomenon is the quantum fluctuation,
according which any macroscopic object at rest could sud-
denly excited to a self-perturbed state because of a transient
excess of energy, justifiable via the uncertainty principle only.
The behavior of a relativistic quantum particle during a quan-
tum fluctuation is quoted here because it is in effect pertinent
to the purposes of the paper. The considerations proposed
in the appendix usefully contribute to explain cosmological
problems like the inflationary era. In the paper [13] it was
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shown that (2,1) only are enough to infer the following corol-
laries: (i) equivalence of all reference systems in describing
the physical laws, (ii) existence of a maximum average dis-
placement rate allowed for any particle in its delocalization
range and (iii) invariance in all reference systems of such a
maximum velocity. These corollaries are in fact the basic
statements of special relativity. Moreover also the equiva-
lence principle of general relativity and the coincidence of
inertial and gravitational mass were also inferred [14] along
with the concept of mass as corollaries of the space-time un-
certainty.

6 Appendix

This appendix sketches shortly how the relativistic momen-
tum and energy are obtained exploiting (2,1) only; it aims to
make the present paper as self-contained as possible. Let the
arbitrary delocalization ranges be defined in an arbitrary ref-
erence system R, where a photon travels at speed c through
∆x(c); so ((2,1)) read ∆x(c)∆p(c)

x = n(c)~ = ∆t(c)∆ε(c). The su-
perscripts emphasize that the ranges are sized to fulfil the de-
localization condition during an appropriate time range ∆t(c).
Being by definition ∆x(c)/∆t(c) = c, then c∆p(c)

x = ∆ε(c). To
find how the momentum and energy ranges of a massive par-
ticle traveling at rate vx < c through ∆x(c) scale with respect
to ∆p(c)

x and ∆ε(c), write ∆x(c)∆p(v)
x = n(v)~ = ∆t(v)∆ε(v).

As neither vx nor c appear explicitly in this equation, write
n(v)~ = ∆t(c)∆ε(c) = ∆t(v)∆ε(v); this is true if ∆t(c) and ∆ε(c)

scale respectively like ∆t(v) = (c/vx)∆t(c), as it is reasonable,
and ∆ε(v) = (vx/c)∆ε(c), as a consequence. Replacing these
positions in the former equation, ∆x(c)∆p(v)

x = ∆t(c)(vx/c)∆ε(c)

yields c∆p(v)
x = (vx/c)∆ε(c). Actually the superscripts can be

omitted because they have been introduced for clarity of ex-
position only, not to identify particular range sizes; both ∆p(v)

x
and ∆ε(c) are indeed completely arbitrary like vx itself; the su-
perscripts are also irrelevant as concerns the functional rela-
tionship between the local values of the respective variables.
Hence

px = vxε/c2; ∆px = vx∆ε/c2 (A1)
regardless of how the respective uncertainty ranges are de-
fined. Since an identical reasoning holds in any other refer-
ence system R′, one concludes that p′x = v′xε′/c2 is an in-
variant of special relativity. In principle the component of ve-
locity defining the momentum component can be positive or
negative; yet squaring this equation one surely handles posi-
tive terms. So write ε2(vx/c)2 = (pxc)2; since vx/c < 1 for a
massive particle one finds ε2 > (pxc)2, which compels writ-
ing ε2 = (pxc)2 + ε2

o. Calculate the limit px/vx for v → 0;
denoting this limit as

lim
v→0

px

vx
= m (A2)

the concept of mass m is introduced as a consequence of the
uncertainty, whereas (A1) yields lim

v→0
ε = εrest = mc2 in agree-

ment with the idea that the limit must be finite; indeed no

reason requires ε → 0 for vx → 0. Thus px = mvx is the
non-relativistic form of (A1). So the previous equation yields
mc2 = ε2

o, i.e.
ε2 = (pc)2 + (mc2)2 (A3)

as it is well known. Hence (2,1) define themselves without
additional hypotheses the concept of mass and the relativis-
tic and non-relativistic form of the respective local variables
included in the ranges ∆p and ∆ε. Note that merging to-
gether both equations one finds the well known expressions
consistent with the Lorentz transformations. Also note that
the local values of px and ε are exactly definable in relativity,
which is substantially classical physics subjected to the co-
variancy principle in a four dimensional space-time context;
here instead, as shown in section 2, coordinates, momentum
and energy are dynamical variables random, unknown and
unknowable within the respective uncertainty ranges. This is
the conceptual key to understand the further considerations
of this appendix. In classical physics momentum and en-
ergy of a free particle are constants; yet it is not so in the
quantum world, where quantum fluctuations are allowed to
occur. The crucial point is that (A1) and (A3) are quantum
results, despite their form agrees of course with that of spe-
cial relativity; yet, being the particles completely delocalized,
the local p and ε must be intended as random values within
the respective uncertainty ranges. So these equations can be
accordingly handled. Let us admit that during a short time
range δt even the energy of a free particle is allowed to fluc-
tuate randomly by δε. Since during the time transient the
particle is expectedly allowed to move in a arbitrary way,
(A1) is now exploited to highlight the link between δε and
the related changes δp and δv. Differentiating (A1) one finds
δε = c2δp/v − p(c/v)2δv: with given p and v, this result de-
fines the functional dependence of δε upon arbitrary δp and
δv. Sum δε and (A1) to find ε + δε = c2(p + δp)/v − εδv/v.
In general δpδx = n~ reads (δp)2 = n~δp/δx, whereas in
an analogous way (δε)2 = n~δε/δt. Regard just in this way
ε + δε and p + δp; putting δx = vδt and replacing in the last
expression to calculate δ(ε + δε)/δt, one finds

(n~)−1(∆ε)2 = (n~)−1(∆pc)2 − εδω
∆ε = ε + δε; ∆p = p + δp.

(A4)

The term εδω results because v/δx has physical dimensions
of a frequency ω, so that δv/δx = δω. As n~ωδε = δ(εn~ω)−
εδ(n~ω), replacing this identity in the last equation one finds
(∆ε)2 = (∆pc)2 + n~ωδε − δ(εn~ω). Let us specify this result
via the position

n~ω = δε

which yields also (∆ε)2−(∆pc)2 = (δε)2−δ(εδε). At left hand
side appear terms containing the ranges ε+δε and p+δp only,
at right hand side the ranges δε and δp only. These latter are
both arbitrary; moreover ε and p are arbitrary as well. So it
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is reasonable to expect that the last equation splits into two
equations linked by a constant energy εo

(∆ε)2 − (∆pc)2 = ε2
o = (δε)2 − δ(εδε). (A5)

Indeed εo agrees with both of them just because it does not
depend upon neither of them. Trivial manipulations show that
the first equation yields

p = ± εov/c2

√
r2
ε − r2

p(v/c)2
; ε = ± εo√

r2
ε − r2

p(v/c)2

rp = 1 +
δp
p

rε = 1 +
δε

ε
.

(A6)

(A5) is fulfilled even during the transient. The value of the
constant εo is immediately found as a consequence of (A2):
in agreement with (A5) ε2

o = ε2
rest, because A6 hold during the

time transient allowing δε; before and after that transient one
must put δε = 0 and δp = 0 in order to have the “standard”
Einstein momentum and energy of the free particle, here in-
ferred from A1 to A3. So

ε2
Ein = c2 p2

Ein + ε2
rest

pEin = ± mv√
1 − (v/c)2

; εEin = ± mc2

√
1 − (v/c)2

.

It is easy now to calculate the energy and momentum gaps
during the time transient δt as a function of δp/p and δε/ε as
follows

δl


mv√

r2
ε − r2

p(v/c)2
− mv√

1 − (v/c)2

 = n f l~

δt


mc2

√
r2
ε − r2

p(v/c)2
− mc2

√
1 − (v/c)2

 = n f l~

(A7)

where δt is the time length of the fluctuation, δl the path trav-
eled by the particle during δt and n f l the number of states al-
lowed to the particle during the energy transient. These equa-
tions are in effect nothing else but the uncertainty equations of
the fluctuation gaps δp f l = p f l− pEin and δε f l = ε f l−εEin. Of
course δp→ 0 and δε→ 0 after the transient, so the amounts
within parenthesis vanish, while n f l = 0 too; i.e. the fluctua-
tion states are no longer accessible to the particle. Taking the
ratio of these expressions, one finds

δl
δt

= c
c
v
. (A8)

According to (A8), during a quantum fluctuation of time len-
gth δt the uncertainty range δl allowed to any quantum par-
ticle corresponds to an average displacement rate δl/δt =

c2/v > c, i.e. as if the particle would really propagate at

superluminal rate. The reasoning to explain this result is sim-
ilar to that explaining the recession motion of celestial objects
mostly as a consequence of the expansion of the space-time
itself. If the fluctuation modifies the size of the energy and
momentum ranges, then according to (2,1) it must modify
also the space and time range sizes. Yet the space range in-
cludes all local coordinates allowed to the particle: since this
latter is anywhere in the space range because it is delocalized,
and not because it really travels from point to point, modify-
ing the space size means affecting the ability of the particle
of being somewhere in the universe regardless of the veloc-
ity necessary to cover the path. This explains the apparent
anomaly of superluminal velocity to figure out a fluctuation
driven displacement. From a mathematical point of view, this
is indeed possible provided that (A7) verify two inequalities:
the first is rpv/crε < 1, to avoid imaginary quantities, the sec-
ond is r2

ε − r2
p(v/c)2 < 1 − (v/c)2, in order that both left hand

sides be positive. These inequalities merge into the unique
r2
ε − 1 < (r2

p − 1)(rε/rp)2, which yields 1 − r−2
ε < 1 − r−2

p

i.e. r−2
ε > r−2

p and thus r2
ε < r2

p. So, being δp/p > δε/ε ac-
cording to (A6), ε/p > δε/δp reads thanks to (A1) and (2,1)
v/c2 > δt/δx and thus δx/δt > c2/v even though v < c. (A8)
is confirmed noting that it could have been obtained more
quickly and easily: rewrite (2,1) as ∆x/∆t = ∆ε/∆px and
recall (A1) ∆ε/∆px = c2/vx; replacing the latter into the for-
mer one finds ∆x/∆t = c2/v. This result has the same form
of (A8) and (3,7); without the steps (A4) to (A8) however the
properties of the quantum fluctuation would not be evident.
Owing to the arbitrariness of the range sizes, nothing in prin-
ciple distinguishes ∆x and ∆t from δl and δt; yet (A7) empha-
size the specific link between δl and δt and their conjugate
momentum and energy just during the quantum fluctuation.
For instance, (A7) admit rε = 1 and rp = 1, i.e. δε = 0 and
δp = 0, in which case n f l = 0 because of course there are no
fluctuation states; instead ∆px = 0 and ∆ε = 0 are unphysical
because they deny the concept of quantum uncertainty.

In conclusion the theoretical analysis describes the effect
of the extra energy transient on the space-time uncertainty of
the particle during the quantum fluctuation: a massive par-
ticle can displace more than allowed by its actual velocity.
Transient displacement ranges δl > cδt are possible for the
boundary of the universe, even though forbidden in the early
Einstein derivation of momentum and energy. Indeed the rel-
ativity is substantially classical physics; yet the beauty of the
theory does not admit itself quantum phenomena like the fluc-
tuations. These phenomena are instead allowed when deriv-
ing the Einstein formulas in the quantum frame of (2,1).

It is worth emphasizing however that in the particular case
v = c even δl/δt remains always and invariably equal to c.

It is clear now that also the universe expansion is inter-
ested by these results: the previous quantum considerations,
unexpected in classical relativity, help to better understand
and describe the so called “inflationary era”. Regard the big
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bang as a vacuum fluctuation that begins at the arbitrary time
t0 and expands the primordial sphere of radius r0 according to
the concepts introduced at the beginning of section 3. During
δt the displacement δl of the boundary of the universe could
overcome cδt, in agreement with δε , 0 and δp , 0. Inflation
did occur when the radiation density was such that the pho-
tons were allowed moving in a medium with refractive index
nr > 1 and matter particles, virtual or not, were generated in
the radiation field during the early beginning of the later mat-
ter era. This idea agrees with the presence at the boundary of
the primordial universe of the virtual couples of particles and
antiparticles generating locally via their annihilation the halo
of electromagnetic radiation introduced in (3,1).

As in the present approach the ranges sizes are unknown
and conceptually unknowable, it is impossible to know ex-
actly how long lasts δt. Yet it is possible to say that after a
certain time range, when δε = 0 and δp = 0 i.e. after the end
of the fluctuation, the universe expansion continued at rate
compliant with the usual condition v < c.

Consider an arbitrary number of particles, assumed for
simplicity non-interacting; holds for i-th of them pi = viεi/c2.
Let ∆p and ∆ε be the momentum and energy ranges includ-
ing all pi and εi; being the range sizes arbitrary, it is possi-
ble to write ∆p = v∆ε/c2 with v defined in agreement with
(A1). Suppose that a quantum fluctuation starts at an arbi-
trary time and modifies momenta and energies of some of the
particles, so that the respective ranges are modified as well;
then (c2/v)∆p = ∆ε yields (c2/v)δ∆p − (c/v)2δv∆p = δ∆ε.
Moreover (2,1), which read ∆ε/2π = n~ω with ω = 2π/∆t
and ∆p/2π = n~k with k = 2π/∆x, yield δ∆ε/2π = n~δω
and δ∆p/2π = n~δk. The former is the Planck equation ex-
pressed as a function of ∆ε/2π instead of ∆ε, the latter is the
De Broglie equation also expressed as a function of ∆p/2π
instead of ∆p; however being the range sizes arbitrary, un-
knowable and inessential as concerns the eigenvalues of the
physical observables, as shown in section 2, the factor (2π)−1

is trivially irrelevant. It is remarkable instead that ∆x and ∆t
of (2,1) are regarded here as wavelength and frequency of a
wave, which is in fact possible in agreement with the general
character of (2,1). One finds concurrently

δω

δk
=
ω′

k
; ω′ = ω − ku;

u(ω, k) = n2
r
δv
δ∆p

∆p; nr =
c
v
.

(A9)

Being v and δv arbitrary, it is evident that these equations
hold whatever nr might be. This conclusion is interesting be-
cause in effect the physical meaning of these equations de-
pends just on the features of v. Call vp = ω/k and vg = ω′/k,
being thus ω′ = ω′(k). For v ≡ c (A1) reads ∆ε = c∆p
and describes a set of electromagnetic waves propagating in
the vacuum, whence u = 0 i.e. ω′/k ≡ ω/k ≡ c. If v < c
is again constant, then these equations still describe a set of
light waves propagating at the same rate vp in non-dispersive

medium with refractive index nr; yet they are also compati-
ble with a set of massive free particles displacing at the same
rate. The case where v < c depends on k is more interesting.
The equations describe light waves propagating with differ-
ent velocities in a dispersive medium dependent on nr; the
first (A9) defines the group velocity vg , vp of the whole
packet formed in the dispersive medium. Analogous conclu-
sion holds also for the matter waves: now the displacement
of matter wave packet at rate vg is related to the maximum
probability to find somewhere the set of particles; indeed the
first (A9) is also obtained from δ(ω′/k)/δk = 0, which sug-
gests that ω′/k corresponds to the rate with which moves the
maximum of the packet defined by the dispersion curve ω′/k
vs k. Both electromagnetic waves and matter particles, de-
spite their different physical nature, are thus compatible with
a unique kind of equation: their common feature is the dual
wave/corpuscle nature strictly connected with the quantiza-
tion condition of (2,1).

The changes δω and δk have been introduced as a con-
sequence of quantum fluctuation; in effect it would be also
possible to infer from δω = ωδk/k− uδk the Einstein formula
for the energy fluctuations of blackbody radiation. For brevity
this point is waived here; yet, is significant the ability of the
quantum fluctuation to generate packets of particle waves and
packets of electromagnetic waves having similar behavior.
This conclusion helps to figure out the formation of matter
in the radiation field during the radiation era as superposi-
tion of electromagnetic radiation and matter wave packets,
both propagating with their characteristic group velocities v(r)

g

and v(m)
g . This supports the idea of fermion/antifermion pairs

formed via photon fluctuations at appropriate energy fulfill-
ing momentum and angular momentum conservation rules.
The matter waves extended to all space time available justify
the presence of matter throughout the universe. Indeed it is
possible to write δω/δk = δω(r)/δk(r) + δω(m)/δk(m); then,
the addends at right hand side read δω(r)/δk(r) = v(r)

g and
δω(m)/δk(m) = v(m)

g . So the extra energy transient of the fluctu-
ation of the radiation field (term at left hand side, because δω
is proportional to δ∆ε) has generated a matter wave propagat-
ing at rate in general different from that of further radiation
(terms at right hand side); the quantum fluctuation of this lat-
ter could generate in turn further matter and further radiation
and so on, until the available energy is sufficient to repeat the
process. The matter particle propagates with a group velocity
v(m)
g having finite space length; in principle the matter wave

packet can also represent a chunk of matter having finite size
and given probability of being found somewhere and moving
in the universe. This supports the physical meaning of (3,12)
as discussed in section 3.1.
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Dynamical 3-Space: Black Holes in an Expanding Universe
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Black holes are usually studied without including effects of the expanding universe.
However in some recent studies black holes have been embedded in an expanding uni-
verse, in order to determine the interplay, if any, of these two dynamical processes.
Dynamical 3-space theory contains time independent solutions for black holes, which
are spatial in-flows, and separately the time dependent Hubble expansion. This theory
has explained numerous puzzles in observational astrophysics and contains 3 constants;
G, α - which from experimental data turns out to be the fine structure constant, and
δ - which is a small but nonzero distance, possibly a Planck-type length. The Hub-
ble expansion in the dynamical 3-space theory cannot be “switched off”, forcing the
study, first, of isolated black holes coexisting with the expanding universe. It is shown
that a time dependent black hole and expanding universe solution exists. The nature and
implications of these solutions are discussed as they evolve over time. A dynamical net-
work of black holes and induced linking cosmic filaments forming bubble structures is
discussed, as a consequence of dynamical 3-space undergoing a dynamical breakdown
of homogeneity and isotropy, even in the absence of baryonic matter.

1 Introduction

The motions of stars in galaxies are strongly affected by their
central massive black holes, and that of galaxies in clusters
are also affected by the expansion of the universe [13]. Then
the need arises to analyse black holes in the expanding uni-
verse, with the view to checking if that expansion affects
black hole characteristics. There is a long history of attempts
to model this phenomenon analytically; early attempts in-
clude the Einstein-Strauss model through embedding Schwar-
zschild black holes in the background (FLRW) universe [10],
and also the well known McVittie solution [16]. This grad-
ually lead to models (see [12] or [8] for overviews) which
include the cosmological constant. The currently accepted
work is based on theories of gravitation by Newton, and then
extended by Hilbert and Einstein. The use of these mod-
els has generated many questions about observational phe-
nomena, such as “supermassive” galactic central black holes
[11], bore hole anomalies [1, 23], flat spiral galaxy rotation
curves [20] and cosmic filaments [24]. The “dark matter”
and “dark energy” parameters introduced are required in or-
der to fit the Friedmann universe expansion equation to the
type 1a supernovae [19, 22] and CMB data [14]. A more
recent account of space and time [2] models time as a non-
geometrical process (keeping space and time as separate phe-
nomena), which leads to the dynamical 3-space theory. This
theory is a uniquely determined generalisation of Newtonian
Gravity (NG) expressed in terms of a velocity field, defined
relative to observers, rather than the original gravitational ac-
celeration field. This velocity field corresponds to a space
flow, which has been detected in numerous experiments. The-
se include gas-mode Michelson interferometer, optical fibre
interferometer and coaxial cable experiments, and spacecraft

Earth-flyby Doppler shift data [5]. The observational phe-
nomena mentioned above are now gradually becoming inter-
preted through understanding the dynamics of space, which
appears to offer an explanation for “dark matter” and “dark
energy” effects [6, 7]. A brief introduction to the dynami-
cal 3-space theory along with experimental and observational
tests is given in Sections 2-5. In Sections 6 and 7 we re-
port the discovery of exact black hole solutions embedded in
an expanding universe, and discuss the nature of their evolu-
tion over time, suggesting that primordial black holes develop
linking filaments, which in turn form a cosmic network with
bubble structures.

2 Dynamical 3–Space

Process Physics [2] is a theory of reality which models time as
a non-geometric process, with space-geometry and quantum
physics being emergent and unified phenomena. The emer-
gent geometry is thought of as a structured quantum-foam
“space” and is found to be dynamic and fractal in nature, with
its 3 dimensionality only approximate at micro scales. If non-
trivial topological aspects of the quantum foam are ignored,
it may be coarse-grain embedded in a 3-dimensional geomet-
rical manifold. This embedding ultimately allows us to de-
scribe the dynamics of the quantum foam, or space, using a
classical velocity field u(r, t), relative to an observer with co-
ordinate system r and t [6], and here assuming zero vorticity,
∇ × u = 0:

∇·
(
∂u

∂t
+ (u·∇) u

)
+

5α
4

(
(trD)2 − tr(D2)

)
+

+δ2∇2
(
(trD)2 − tr(D2)

)
+ ... = −4πGρ; Di j =

∂vi

∂x j

(1)
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where ρ = ρ(r, t) is the usual matter density. ∗

The first term involves the Euler constituent acceleration,
while the α− and δ− terms contain higher order derivative
terms and describe the self interaction of space at different
scales. Laboratory, geophysical and astronomical data sug-
gest that α is the fine structure constant ≈ 1/137, while δ
appears to be a very small but non-zero Planck-like length.
The emergence of gravity arises from the unique coupling
of quantum theory to the 3-space [3], which determines the
“gravitational” acceleration of quantum matter as a quantum
wave refraction effect,

g =
∂u

∂t
+ (u · ∇)u + (∇ × u) × uR − uR

1 − u
2
R

c2

1
2

d
dt


u2

R

c2

 + ... (2)

where uR = u0 − u is the velocity of matter relative to the local
space. The first two terms are the Euler space acceleration,
the second term explains the Lense-Thirring effect when the
vorticity is non-zero, and the last term explains the precession
of planetary orbits.

Neglecting relativistic effects (1) and (2) give

∇ · g = −4πGρ − 4πGρDM , (3)

where

ρDM(r, t) ≡ 5α
16πG

(
(trD)2 − tr(D2)

)
+

+
δ2

32πG
∇2

(
(trD)2 − tr(D2)

)
.

(4)

This is Newtonian gravity, but with the extra dynamical term
which has been used to define an effective ‘dark matter’ den-
sity. Here ρDM is purely a space/quantum foam self interac-
tion effect, and is the matter density needed within Newtonian
gravity to explain dynamical effects caused by the α and δ ef-
fects in (1). This effect has been shown to offer an explana-
tion for the ‘dark matter’ effect in spiral galaxies, anomalies
in laboratory G measurements, bore hole g anomalies, and
the systematics of galactic black hole masses, as noted below.
When α = 0 and δ = 0, (3) reduces to Newtonian gravity. The
α−term has the same order derivatives as the Euler term, and
so cannot be neglected a priori. It was, however, missed by
Newton as its consequences are not easily observable in the
solar system, because of the low mass of planets relative to
the massive sun. However in galaxies this term plays a major
role, and the Milky Way black hole data has given evidence
for that term and as well for the next higher order derivative
terms.

The spatial dynamics is non-local and instantaneous, whi-
ch points to the universe being highly connected, consistent

∗The α term in (1) has been changed by a factor of ten due to a numerical
error found in the analysis of borehole data. All solutions are also altered by
this factor.

with the deeper pre-space process physics. Historically this
was first noticed by Newton who called it action-at-a-distan-
ce. To see this, (1) can be written as a non-linear integro-
differential equation

∂u

∂t
= −∇

(
u2

2

)
−G

∫
d3r′

ρDM(r′, t) + ρ(r′, t)
|r − r′|3 (r − r′). (5)

This shows a high degree of non-locality and non-linearity,
and in particular that the behaviour of both ρDM and ρ man-
ifest at a distance irrespective of the dynamics of the inter-
vening space. This non-local behaviour is analogous to that
in quantum systems and may offer a resolution to the horizon
problem.

3 Evidence for the α- and δ-dynamical terms

3.1 δ = 0 – early studies of dynamical 3-Space

It has been shown that dynamical 3-space flows into matter
[3]. External to a spherically symmetric matter density ρ(r),
(1) has a time-independent radial inflow solution v(r) ∼ 1/r

1
2

leading to the matter inward acceleration g(r) ∼ 1/r2. This
happens because the α- and δ-dynamical terms are identically
zero for this inflow speed, and explains why these significant
terms were missed by Newton in explaining Kepler’s Plan-
etary Laws. However, inside a spherically symmetric mass,

Fig. 1: The Greenland ice bore hole g anomaly data, giving α ≈
1/137 from fitting the form in (6). The misfit at shallow depths arises
from the ice not having reached the ice-shelf full density, which is a
snow compactification effect. The Nevada rock bore hole data [23]
also gives α ≈ 1/137. The bore hole anomaly is that gravity is
stronger down a bore hole than predicted by Newtonian gravity.
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Fig. 2: The flat asymptotic star rotation speeds for the spiral galaxy
NGC3198, with upper flat plot from the dynamical 3-space, while
the lower form is from Newtonian gravity. The flat asymptotic form
arises when α , 0.

and in other circumstances, these terms play a significant dy-
namical role. Inside a spherically symmetric mass, such as
the earth, Newtonian gravity and the new dynamics predict
different matter accelerations,

∆g = gNG(d) − g(d) = 20παGρd + O(α2) (6)

where d < 0 is the depth. The Greenland [1] (see Fig. 1) and
Nevada bore hole data [23], reveal that α ≈ 1/137, the fine
structure constant known from quantum theory. This suggests
we are seeing a unification of gravity and the quantum theory.

In conventional theory black holes are required to have
enormous quantities of actual in-fallen matter compressed in-
to essentially a point-like region. Their g ∼ 1/r2 gravitational
acceleration field is unable to explain flat spiral galaxy rota-
tion curves, resulting in the invention of ‘dark matter’. Dy-
namical 3-space theory however also predicts black holes in
the absence of in-fallen matter, which produce a stronger ac-
celeration field g ∼ 1/r, as discussed below. They are spheri-
cally symmetric in-flows of space, with space not being con-
served. In the absence of matter, ρ = 0, we set (r, t) = v(r)r̂.
Previous work considered solutions of (1) when δ = 0, where
the black hole solutions were found to have the form

v(r) = − β

r
5α
2

(7)

where β is an arbitrary parameter for the strength of the black
hole. (1) also has straight-line filament solutions, with the
form, when δ = 0,

v(r) = − µ

r
5α
4

(8)

where r is the perpendicular distance from the filament and
µ is the arbitrary filament strength. The solutions (7) and (8)
contain a singularity at r = 0 where the in-flow speed be-
comes infinite. Asymptotically, even when ρ , 0, these black

hole solutions predict flat spiral galaxy rotation curves, for the
inflow in (7) gives g(r) = −5αβ2/2r1+5α ∼ −1/r, giving the
circular orbit speed v0(r) = (10αβ2)1/2/2r5α/2, and illustrated
in Fig. 2. This suggests that the ‘dark matter’ effect is caused
by the α-dynamical term, a space self-interaction.

The Maxwell EM equations take account of the 3-space
dynamics by making the change ∂/∂t → ∂/∂t + u · ∇. Then
we obtain strong galactic light bending and lensing caused
by the inflow speed in (7), or the solar light bending when
v ∼ 1/r

1
2 . There are also recent direct experimental detections

of the space flow velocity field by [5].

3.2 δ , 0 – black holes and filaments

More recently the δ , 0 scenario was considered. The form
of (1) is expected as a semi-classical derivative expansion of
an underlying quantum theory, where higher order derivatives
are indicative of shorter length-scale physics. (1) when ρ = 0
has exact two-parameter, v0 and κ ≥ 1, black hole solutions

v(r)2 = v2
0 (κ − 1)

δ

r

(
1 − 1F1

[
−1

2
+

5α
2
,−1

2
,− r2

δ2

])
−

− v2
0 κ

8
3

r2

δ2

Γ( 3−5α
2 )

Γ(−5α
2 )

1F1

[
1 +

5α
2
,

5
2
,− r2

δ2

] (9)

where 1F1[a, b, w] is the confluent hypergeometric function.
The parameters v0 and κ set the strength and structure of the
black hole, as discussed in [6]. (9) is a generalisation of (7),
and for r � δ gives

v(r)2 ≈ A
δ

r
+ B

(
δ

r

)5α

(10)

giving, from (2), g(r) = GM(r)/r2, where M(r) defines an
“effective mass” contained within radius r, but which does
not entail any actually matter,

M(r) = M0 + M0

(
r
rs

)1−5α

(11)

and rs is the distance where M(rs) = 2M0. This is shown in
Fig. 3 for the Milky Way SgrA∗ black hole. At large r the
in-flow speed becomes very slowly changing, thus predicting
flat rotation curves given by [6]

vorb(r)2 = GM0

( rs

r

)5α 1
rs
. (12)

Fig. 4 illustrates that for globular clusters and spheri-
cal galaxies the observational data implies the relationship
MBH = α

2 M. Again we see that the α-term dynamics ap-
pear to be the cause of this result, although this has yet to be
derived from (1). Exact filament solutions for (1) also exist
when δ , 0, as a generalisation of (8):

v(r)2 = v2
0

r2

δ2 1F1

[
1 +

5α
4
, 2,− r2

2δ2

]
. (13)
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Fig. 3: Effective mass data M(r) for the Milky Way SgrA* black
hole, from star and gas cloud orbital data, showing the flat regime
that mimics a point-like mass, but for which there is no actual matter
contained within the black hole, and the linearly rising form beyond
rs =1.33pc, as predicted by (11), but which is usually attributed to a
constant ‘dark matter’ density. This form is a direct consequence of
the 3-space self-interactions in (1). The offset of the last two points
indicate the presence of actual matter.

Here r is the distance perpendicular to the axis of the filament
and v(r) is the in-flow in that direction. The only known fil-
ament solution is for one that is infinitely long and straight.
Both (9) and (13) are well behaved functions which converge
to zero as r → 0, i.e. the in-flow singularities are removed.

4 Expanding universe

(1) contains a time dependent expanding universe solution.
Substituting the Hubble form u(r, t) = H(t)r, and then H(t)
= ȧ/a, where a(t) is the universe scale factor and ȧ(t) ≡
da(t)/dt, we obtain

4aä + 10αȧ2 = −16
3
πGa2ρ (14)

which is independent of δ. One of the key features in (14) is
that even when ρ = 0, i.e. no matter, and α = 0, ä(t) = 0
and a(t) = t/t0, and the universe is uniformly increasing in
scale. Here a(t0) = 1 and t0 is the current age of the uni-
verse. This expansion of space is because the space itself is a
dynamical system, and the (small) amount of actual baryonic
matter merely slightly slows that expansion, as the matter dis-

sipates space. Because of the small value of α = 1/137, the α
term only plays a significant role in extremely early epochs,
but only if the space is completely homogeneous. In the limit
ρ→ 0 we obtain the solution to (14)

a(t) =

(
t
t0

)1/(1+5α/2)

H(t) =
1

t(1 + 5α/2)

(15)

which, as also reasoned by [17], predicts the emergence of
a uniformly expanding universe after neglecting the α term.
This allows a fit to the type 1a supernovae magnitude-redshift
data (Fig. 5), as discussed in [7], and suggests that the dynam-
ical 3-space theory also offers an explanation for the ‘dark en-
ergy’ effect. The ΛCDM parameters ΩΛ = 0.73,ΩM = 0.27,
follow from either fitting to the supernovae data, or equally
well, fitting to the uniformly expanding universe solution in
(15) [7]. Via the dynamical 3-space solution the supernovae
data gives an age for the universe of t0 = 13.7 Gy.

5 Black hole – expanding universe

The Hubble solution (15) does not contain a free parameter,
i.e. in the dynamical 3-space theory the universe necessar-
ily expands, and hence it cannot be ignored when consider-
ing black holes and filaments. Since any radially flowing and
time dependent v(r, t) (i.e. containing both outflows and in-
flows) has spherical symmetry, (1) becomes, in the absence
of matter

∂

∂t

(
2v
r

+ v′
)

+ vv′′ + 2
vv′

r
+

+
(
v′
)2

+
5α
2

(
v2

r2 +
2vv′

r

)
+

+
δ2

4r4

(
2v2 + 2r2(v′)2 + 6r3v′v′′

)
+

+
δ2

4r4

(
−4rvv′ + 2r2vv′′ + 2r3vv′′′

)
= 0

(16)

where v′ ≡ ∂v/∂r. Now consider the black hole - expanding
universe ansatz

u(r, t) = H(t)r + w(r, t)r̂ (17)

where w(r, t) is the spherically symmetric black hole inflow.
After substituting this form we obtain a time dependent equa-
tion for w(r, t). However by setting w(r, t) = R(r)/t this time
dependence is resolved, and (16) now may be solved for R(r),
implying that the Hubble outflow and black hole inflow are
inseparable and compatible phenomena. Asymptotically, for
r � δ, the resulting equation for R(r) has the solution

R(r) = − ν

r
5α
2

, and so w(r, t) = − ν

r
5α
2 t

(18)

which is the original black hole solution (7), but now with an
inverse time dependence. (17) is for the black hole located at

28 D.P. Rothall and R.T. Cahill. Dynamical 3-Space: Black Holes in an Expanding Universe



October, 2013 PROGRESS IN PHYSICS Volume 4

Fig. 4: Black hole masses MBH vs mass M, in solar masses, for
the globular clusters M15 and G1, and spherical galaxies [15]. The
straight line is the relation MBH = α

2 M, where α is the fine struc-
ture constant ≈ 1/137. This demonstrates again the role of α in the
dynamics of space and black holes.

r = 0. For a black hole comoving with the local Hubble space
flow the solution of (1) is

u(r, t) = H(t)r′ + w(r′, t)r̂′ (19)

where r′ = r − a(t)rBH when the observer is at r = 0, and the
black hole is located at a(t)rBH . Macroscopic black holes are
expected to form from coalescence of mini primordial black
holes.

A consequence of (17) is that for any black hole there ex-
ists a critical radius rc where the spatial inflow into the black

Fig. 5: Supernovae magnitude-redshift data. Upper curve (light
blue) is ‘dark energy’ only ΩΛ = 1. Next curve (blue) is best fit
of ‘dark energy’-‘dark-matter’ ΩΛ = 0.73. Lowest curve (black)
is ‘dark matter’ only ΩΛ = 0. Second lowest curve (red) is the uni-
formly expanding universe, and also predicted by dynamical 3-space
(15).

hole is equal and opposite to the Hubble expansion (Fig. 6)
so defining a sphere of influence. Test particles placed inside
rc are attracted to the black hole due to gravity, while those
placed outside rc, and at rest with respect to the local space,
recede from it due to expansion. This critical radius is found
to remain independent of time, i.e. rc only depends on the
black hole strength ν. rc is expected to be sufficiently large
that the black hole-star distance r in a galaxy today is neg-
ligible compared to rc, i.e. r � rc, therefore not affecting
the size of the galaxies themselves. This effect would more
likely be evident at a distance which galaxies are separated
by, as suggested by the galaxy cluster data in [18]. For a
Hubble constant H0 = 74 km s−1 Mpc−1, and using (12) for
the in-flow speed, solving for vorb(rc) = H0rc for the Milky
Way SgrA∗ black hole data (Fig. 3) yields rc = 1.6 Mpc. For
multiple black holes in the expanding space, (1) implies a
more complex time evolution.

6 Induced filaments and bubble networks

We have seen that the dynamical 3-space theory offers pos-
sible explanations for many phenomena, including that of an
isolated black hole coexisting with the Hubble expansion. It
also has filament solutions, in the absence of the Hubble ex-
pansion. However with multiple black holes a new feature ap-
pears to emerge, namely cosmic networks of black holes and
induced filaments. First note that the black hole inflow speed
in (10) is essentially very long range, resulting in the matter
acceleration g(r) ∼ −1/r, which is a key feature of these black
holes, and may explain the “dark matter” effect. However this
long range in-flow raises the question of how multiple black
holes coexist when located within one another’s sphere of in-
fluence? Fig. 7 shows the vector addition of the inflows for
two black holes. This cannot be a solution of (1) as it is non-
linear and so does not have a superposition property. Whence
this flow must evolve over time. Indeed the evolving flow

Fig. 6: Schematic 3-space velocity for an isolated black hole em-
bedded in an expanding universe, see (17), showing radius at which
flow reverses, defining the black holes sphere of influence.
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Fig. 7: 3-space in-flow velocity for two black holes located within
their spheres of influence. Note the emergence of a filament form-
ing between the black holes, indicative of a black-hole - filament
network formation, see Fig. 8.

appears to form a filament connecting the two black holes.
However even then there remains a long range inflow, which
would lead to further filaments connecting black holes within
their range of influence. These black holes are remnants of
the early formation of space, and imply that (1) will undergo
a dynamical breaking of symmetry, from an essentially ho-
mogeneous and isotropic 3-space, to a network of black holes
and induced filaments. Note that the matter content of the
universe is very small, and does not play a key role in this
structure formation. A possible dynamically stable 3-space
structure is shown in Fig. 8, which entails this network form-
ing a bubble structure with the network defining a ‘surface’
for the bubbles. The stability of this is suggested by noting
that the Hubble expansion within the interior of each bub-
ble is now consistent with the inflow into the black holes and
filaments, and so there is no longer a dynamical clash be-
tween the long range flows. Bubble structures like these are
indeed found in the universe, where galaxies are observed to

Fig. 8: 2D schematic section of a cosmic network of black holes and
induced filaments. Vectors indicate 3-space flow, both within the
bubble from the Hubble space expansion, and inwards to black holes
(dots) and filaments (red lines). Only this bubble structure, shown
here in cross-section, appears to be stable wrt the Hubble expansion.

be joined by filaments lying on spherical surfaces, filled with
large voids [9, 21].

7 Conclusions

It is clear that instead of studying black-hole only cases, we
need to model astrophysical and cosmological phenomena
embedded in an expanding universe. The dynamical 3-space
theory naturally forces us to do this, as there is no free pa-
rameter to switch off the emergent expanding universe solu-
tion, and so must be included. It has been shown that the
long range black hole solutions found previously hold while
embedded in an expanding universe. It is suggested that the
time dependent nature of these new solutions explains in part
the observed cosmic web. It appears that the dynamics of
the 3-space, in the presence of primordial black holes, essen-
tially defects in the space emerging from the quantum foam,
renders a homogeneous and isotropic universe dynamically
unstable, even without the presence of matter, resulting in a
spatial bubble network. The long range g ∼ 1/r of both the
black holes and induced filaments will cause matter to rapidly
infall and concentrate around these spatial structures, result-
ing in the precocious formation of galaxies.
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We apply a natural decomposition of tensor fields, in terms of dilatations and distor-
tions, to the Ricci tensor. We show that this results in a separation of the field equations
of General Relativity into a dilatation relation and a distortion relation. We evaluate
these equations in the weak field approximation to show that the longitudinal dilatation
mass relation leads to Poisson’s equation for a newtonian gravitational potential, and
that the transverse distortion wave relation leads to the linearized field equation of grav-
ity in the Transverse Traceless gauge. The results obtained are in agreement with the
Elastodynamics of the Spacetime Continuum.

1 Introduction

In a previous paper [1], we proposed a natural decomposition
of spacetime continuum tensor fields, based on the continuum
mechanical decomposition of tensors in terms of dilatations
and distortions. In this paper, we apply this natural decom-
position to the Ricci tensor Rµν of General Relativity within
the framework of the Elastodynamics of the Spacetime Con-
tinuum (STCED) [2].

2 Decomposition of the Ricci tensor

As shown in [1], the stress tensor T µν of General Relativity
can be separated into a stress deviation tensor tµν and a scalar
ts according to

T µν = tµν + ts g
µν (1)

where
tµν = T µ

ν − ts δ
µ
ν (2)

ts =
1
4

Tα
α =

1
4

T. (3)

The Ricci curvature tensor Rµν can also be separated into a
curvature deviation tensor rµν (corresponding to a distortion)
and a scalar rs (corresponding to a dilatation) according to

Rµν = rµν + rs g
µν (4)

where similarly
rµν = Rµ

ν − rs δ
µ
ν (5)

rs =
1
4

Rα
α =

1
4

R (6)

where R is the contracted Ricci curvature tensor.
Using (1) to (6) into the field equations of General Rela-

tivity [3, see p. 72],

Rµν − 1
2
gµνR = −κT µν (7)

where κ = 8πG/c4 and G is the gravitational constant, we
obtain a separation of the field equations of General Relativity
into dilatation and distortion relations respectively:

dilatation : rs = −κts

distortion : rµν = κtµν.
(8)

The dilatation relation of (8) can also be expressed as

R = −κT. (9)

The distortion-dilatation separation of tensor fields is thus
also applicable to the field equations of General Relativity,
resulting in separated dilatation and distortion relations. This
result follows from the geometry of the spacetime continuum
(STC) used in General Relativity being generated by the com-
bination of all deformations present in the STC [2].

3 Weak field approximation

We evaluate these separated field equations (8) in the weak
field approximation to show that these relations satisfy the
massive longitudinal dilatation and massless transverse dis-
tortion results of STCED [2].

In the weak field approximation [4, see pp. 435–441], the
metric tensor gµν is written as gµν = ηµν + hµν where ηµν is the
flat spacetime diagonal metric with signature (− + + +) and
|hµν| � 1. The connection coefficients are then given by

Γµαβ =
1
2
ηµν(hαν,β + hβν,α − hαβ,ν) (10)

or, after raising the indices,

Γµαβ =
1
2

(hαµ,β + hβµ,α − hαβ,µ). (11)

The Ricci tensor is also linearized to give

Rµν = Γαµν,α − Γαµα,ν (12)

which becomes

Rµν =
1
2

(hµα,να + hνα,µα − hµν,αα − hαα,µν). (13)

The contracted Ricci tensor

R = gµνRµν ' ηµνRµν (14)

then becomes

R =
1
2
ηµν(hµα,να + hνα,µα − hµν,αα − hαα,µν) (15)

which, after raising the indices and re-arranging the dummy
indices, simplifies to

R = hαβ,αβ − hαα,ββ. (16)
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4 Dilatation (mass) relation

Making use of (16) and (6) into the dilatation relation (9), we
obtain the longitudinal dilatation mass relation

hαα,ββ − hαβ,αβ = κT (17)

and, substituting for κ from (7) and T = ρc2 from (30) of [2],

∇2hαα − ∂α∂βhαβ =
8πG
c2 ρ (18)

where ρ is the rest-mass density. This equation is shown to
lead to Poisson’s equation for a newtonian gravitational po-
tential in the next section.

The second term of (18) would typically be set equal to
zero using a gauge condition analogous to the Lorentz gauge
[4, see p. 438]. However, the second term is a divergence
term, and it should not be set equal to zero in the general case
where sources may be present.

4.1 Static newtonian gravitational field

We consider the metric perturbation [4, see pp. 412–416]

h00 = −2Φ/c2

hii = 0, for i = 1, 2, 3
(19)

where Φ is a static (i.e. time independent) newtonian gravita-
tional field. Then the term

hαβ,αβ = h00
,00 = 0 (20)

and (17) becomes
∇2h0

0 = κT. (21)

Using h00 from (19) and κ from (7), (21) becomes

∇2Φ =
4πG
c2 T. (22)

Substituting for T = ρc2 from (30) of [2], we obtain

∇2Φ = 4πGρ (23)

where ρ is the mass density. This equation is Poisson’s equa-
tion for a newtonian gravitational potential.

5 Distortion (wave) relation

Combining (13) and (16) with (5) and (6) into the distortion
relation of (8), we obtain the transverse distortion wave rela-
tion

1
2

(hµα,να + hνα,µα − hµν,αα − hαα,µν)−

−1
4
ηµν(hαβ,αβ − hαα,ββ) = κtµν

(24)

where tµν is obtained from (2) and (3). This equation can be
shown to be equivalent to the equation derived by Misner et al

[4, see their Eq.(18.5)] from which they derive their linearized
field equation and transverse wave equation in the Transverse
Traceless gauge [4, see pp. 946–950]. This shows that this
equation of the linearized theory of gravity corresponds to a
transverse wave equation.

This result highlights the importance of carefully select-
ing the gauge transformation used to simplify calculations.
For example, the use of the Transverse Traceless gauge elim-
inates massive solutions which, as shown above and in [2],
are longitudinal in nature, while yielding only non-massive
(transverse) solutions for which the trace equals zero.

6 Discussion and conclusion

In this paper, we have applied a natural decomposition of ten-
sor fields, in terms of dilatations and distortions, to the Ricci
tensor. We have shown that this results in a separation of the
field equations of General Relativity into a dilatation relation
and a distortion relation. We have evaluated these equations
in the weak field approximation to show that the longitudi-
nal dilatation mass relation leads to Poisson’s equation for a
newtonian gravitational potential, and that the transverse dis-
tortion wave relation leads to the linearized field equation of
gravity in the Transverse Traceless gauge. The results ob-
tained are thus found to be in accord with the Elastodynamics
of the Spacetime Continuum.
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Dark energy and dark matter constitute about 95% of the Universe. Nonetheless, not
much is known about them. Existing theories, including General Relativity, fail to pro-
vide plausible definitions of the two entities, or to predicttheir amounts in the Universe.
The present paper proposes a new special relativity theory,calledComplete Relativity
theory (CR) that is anchored in Galileo’s relativity, but without the notion of a preferred
frame. The theory results are consistent with Newtonian andQuantum mechanics. More
importantly, the theory yields natural definitions of dark energy and dark matter and
predicts the content of the Universe with high accuracy.

1 Introduction

1.1 Dark energy

The nature of dark energy ranks among the very most com-
pelling of all outstanding problems in physical science [1,
2]. Conclusive evidence from supernovas and other observa-
tions show that, despite gravitation, the Universe is expand-
ing with acceleration [3–6]. No existing theory is capable
of explaining what dark energy is, but it is widely believed
that it is some unknown substance with an enormous anti-
gravitational force, which drives the galaxies of our Universe
apart. It is also well established that at our time the Universe is
comprised of≈ 4.6% atoms,≈ 72% dark energy and≈ 23%
dark matter (see e.g., [1]). One explanation for dark energy
is founded on Einstein’s Cosmological Constant (λ), despite
the fact that Einstein himself abandoned his constant, calling
it his biggest mistake. According to this explanation the Uni-
verse is permeated by an energy density, constant in time and
uniform in space. The big problem with this explanation is
that forλ,0 it requires that the magnitude ofλ be ≈10120 (!)
times the measured ratio of pressure to energy density [1].

An alternative explanation argues that dark energy is an
unknown dynamical fluid, i.e., one with a state equation that
is dynamic in time. This type of explanation is represented
by theories and models which differ in their assumptions re-
garding the nature of the state equation dynamics [7–9]. This
explanation is no less problematic since it entails the predic-
tion of new particles with masses thirty-five orders of mag-
nitude smaller than the electron mass, which might imply the
existence of new forces in addition to gravity and electromag-
netism [1]. At present there is no persuasive theoretical ex-
planation for the existence, dynamics and magnitude of dark
energy and its resulting acceleration of the Universe.

1.2 Dark matter

Dark matter is more of an enigma than dark energy. Scientists
are more certain about what dark matter is not, than about
what it is. Some contend that it could be Baryonic matter

tied up in brown dwarfs or in chunks of massive compact
halo objects “or MACHOs” [10, 11], but the common prej-
udice is that dark matter is not baryonic, and that it is com-
prised of particles that are not part of the “standard model”
of particle physics. Candidates that were considered include
very light axions and Weakly Interacting Massive Particles
(WIMPs) which are believed to constitute a major fraction of
the Universe’s dark matter [2,12–14].

Given the frustrating lack of knowledge about the nature
of dark energy and dark matter, most experts contend that un-
derstanding the content of the Universe and its cosmic accel-
eration requires nothing less than “discovering a new physics”
[14]. As example, the Dark Energy Task Force (DETF), sum-
marized its 2006 comprehensive report on dark energy by
stating that there is consensus among most physicists that
“nothing short of a revolution in our understanding of funda-
mental physics will be required to achieve a full understand-
ing of the cosmic acceleration” [1, see p. 6]. This statement
includes the possibility of reconsidering Einstein’s Special
and General Relativity altogether.

The present paper meets the challenge by proposing a new
relativity theory. The proposed theory,which I term Complete
Relativity Theory (or CR), is anchored in Galileo’s relativity,
but without the notion of a preferred frame. Alternatively,the
theory could be seen as a generalization of the Doppler For-
mula [15, 16] to account for the relative dynamics of mov-
ing objects of mass. The theory’s results are consistent with
Newtonian mechanics and with Quantum mechanics. More
importantly, the theory yields relativistic definitions ofdark
energy and dark matter, describes their dynamics and predicts
the content of the Universe with impressive accuracy.

The following sections describe the theory for the special
case of zero forces, resulting in constant relative velocities. I
derive its time, distance, density, and energy transformations
(sections 2.1–2.3) and compare the derived energy-term with
Newton’s and Einstein’sSpecial Relativity terms. Section 3,
which constitutes the core of this paper, puts forward a rel-
ativistic definition of dark energy and dark matter, describes
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their dynamics as function of the relative velocityβ= v/c, and
calculates the present content of the Universe. Section 4 con-
cludes with a brief discussion.

2 Complete Relativity (CR) theory postulates and
transformations

CR theory rests on two postulates:

1. The magnitudes ofall physical entities, as measured
by an observer, depend on the relative motion of the
observer with respect to the rest frame of the measured
entities.

2. All translations of information from one frame of refer-
ence to another are carried by light or electromagnetic
waves of equal velocity.

Note that postulate 1 applies to all measured entities, includ-
ing the velocity of light. Thus,CR treats the velocity of light
as a relativistic quantity and not as an invariant one as postu-
lated by Einstein’sSR.

2.1 Time transformation

The derivation of the time transformation ofCR is similar to
the derivation of the Doppler Formula, except thatCR treats
the relative time of a moving object with constant velocity,
instead of the frequency of a traveling wave.

Consider the two frames of referenceF andF′ shown in
Figure 1. Assume that the two frames are moving away from
each other at a constant velocityv. Assume further that at
time t1 in F (and t′1 in F′) a body starts moving in the+x
direction from pointx1 (x′1 in F′) to point x2 (x′2 in F′), and
that its arrival is signaled by a light pulse, which emits exactly
when the body arrives at its destination. Denote the times of
arrivals inF andF′ by t2 andt′2, respectively. Finally, assume
that the start times inF and F′ are synchronized. Without
loss of generality, we can sett1= t′ = 0 andx1= x′1= 0.

Fig. 1: Two observers in two reference frames moving with velocity
v with respect to each other

The end timet2, measured inF, equals the end timet′2
plus the timeδt which takes the light beam signaling the
body’s arrival atx2 to reach the observer inF, or: t2= t′2+ δt.

But δt= d/c whered is the distance (measured inF) travelled
by F′ relative toF, andc is the velocity of light as measured
in F. But d = vt2, thus we can write:

t2 = t′2 +
vt2
c
= t′2 + βt2 , (1)

whereβ= vc . Definingt2= t, t2= t′ andt̂ = t/t′, we get:

t̂ =
t
t′
=

1
1− β

. (2)

Equation (2) is identical to the Doppler Formula, except that
the Doppler Effect describes red- and blue-shifts of waves
propagating from a departing or approaching wave source,
whereas the result above describes the time transformationof
moving objects. Note that 1/(1−β) is positive if F andF′

depart from each other, andnegative if they approach each
other.

For theround trip from F and back, synchronization of
the start time is not required. For this case the total relative
time is given by (See Appendix, section1):

t̂ =
t
t′
=

2
1− β2

. (3)

For the one-way trip and adeparting F′ at velocity β
(06β6 1), the proposed theory (CR) and Einstein’s Special
Relativity (SR) yield similar predictions, although the time
dilation predicted byCR is larger than that predicted bySR
(see Fig. 1Aa in the Appendix). Conversely, for anapproach-
ing F′ (β < 0), CR predicts that the internal time measured
at F will be shorter than that measured atF′. For the round
trip the results ofCR andSR (in −16 β6 1) are qualitatively
similar, except that the time dilation predicted byCR is larger
than that predicted bySR (see Fig. 1Ab in the Appendix). For
smallβ values the two theories yield almost identical results.

Note that the assumption that information is translated by
light should not be considered a limitation of the theory, since
its results are directly applicable to physical systems which
use different transporters of information between two refer-
ence frames.

2.2 Distance transformation

The time duration, in frameF, of the event described above
is equal to:

t2 =
x2 − x1

c
=

x2

c
, (4)

wherec is the velocity of light as measured inF. Similarly,
the time duration of the event inF′ could be written as:

t′2 =
x′2 − x′1

c′
=

x′2
c′
, (5)

wherec′ is the velocity of light as measured inF′. From
equations (4) and (5) we obtain:

x2

x′2
=

c′

c
t2
t′2
=

c + v
c

t2
t′2
=

(

1+
v

c

) t2
t′2
= (1+ β)

t2
t′2
. (6)
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Fig. 2: Distance transformation.

Substitutingt2/t′2 from (2) in (6) and denotingx2= x, x′2= x′

and x̂= x2/x′2 we get:

x̂ =
x2

x′2
=

1+ β
1− β

. (7)

The relative distance ˆx=∆x /∆x′ = (x2− x1) / (x′2− x′1) as
a function ofβ, together with the respective relative distance
according toSR (in dashed black) are shown in Figure 2.
As shown by the figure, whileS R prescribes that irrespective
of direction, objects moving relative to an internal frame will
contract,CR predicts that a moving object will contract or ex-
pand, depending on whether it approaches the internal frame
or departs from it. For relative velocities exceeding the veloc-
ity of light (β>1), CR predicts that ˆx will become negative.
Since∆x′ is positive, this implies that for bodies departing
from an internal frame with a velocity higher than the veloc-
ity of light, the length of a rod of rest-lengthl0, placed along
thex axis, will be negative.

2.3 Density and energy transformations

Similar analyses for the density and kinetic energy (see Ap-
pendix, section 2) yield the following transformations:

Density:

ρ̂ =
ρ

ρ′
=

(1− β)
(1+ β)

(8)

and energy:

E =
1
2

m0c2β2 (1− β)
(1+ β)

, (9)

wherem0 is the rest mass inF′. Note that forβ→ 0 (orv≪ c)
CR reduces to Newton’s mechanics (t̂= x̂= ρ̂=1, E = 1

2mv2).
Figures 3 (a & b) depict the density and energy as functions
of the velocityβ. As shown by the figure the density of de-
parting bodies relative to an observer inF is predicted tode-
crease with β, reaching zero for velocity equaling the speed of
light. For bodies approaching the observer (β< 1) CR, similar
to SR, predicts that the relative density will increase nonlin-
early, fromρ= ρ′ = ρ0 at β=0, to infinitely high values asβ

Fig. 3a: Density.

Fig. 3b: Energy.

Fig. 3: Density and energy as functions of velocity.

approaches−1. Forβ<−1 andβ > 1, CR predicts that the
relative density, as measured inF, will be negative.

The kinetic energy displays a non-monotonic behavior
with two maxima: one at negativeβ values (approaching bod-
ies) and the other at positiveβ values (departing bodies). The
points of maxima (see Appendix, section 2) areβ1= ϕ − 1≈
≈0.618, andβ2=− ϕ≈−1.618, whereϕ is the Golden Ra-

tio defined asϕ=
√

5+1
2 ≈ 1.618 (see derivation in Appendix,

section 2). The predicted decline in kinetic energy at veloc-
ities aboveβ≈0.618 (see Fig. 3b), despite the decrease in
velocity, suggests that mass and energy transform gradually
from normal mass and energy to unobservable (dark) mass
and energy.

The maximal kinetic energy atβ≈ 0.618 is equal to:

Emax =
1
2

m0c2(ϕ − 1)2
1− (ϕ − 1)
1+ (ϕ − 1)

=

=
1
2

m0c2(ϕ − 1)2
(2− ϕ)
ϕ
.

(10)

Sinceϕ − 1= 1
ϕ

(See Appendix, section 2), Eq. 10 could be
rewritten as:

Emax =
1
2

m0c2 (2− ϕ)
ϕ3

. (11)
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Fig. 4: Energy as a function of velocity according to three theories.

Substitutingϕ=
√

5+1
2 we obtain:

Emax ≈0.04508497m0c
2. (12)

Notably, the energy-mass equivalent according to Eq. 12 is
only ≈ 4.51% of the amount predicted by the Einstein’s fa-
mous equationE =mc2. The above result is consistent with
cosmological findings indicating that the percentage of Bary-
onic matter in the Universe is≈4.6%. No less important the
mass/energy conversion ratio (≈0.04508497) is precisely
half of L. Hardy’s probability of entanglement (0.09016994)
[17–19]. This result confirms with a recent experimental find-
ing [20], which demonstrated that applying a magnetic field
at right angles to an aligned chain of cobalt niobate atoms,
makes the cobalt enter a quantum critical state, in which the
ratio between the frequencies of the first two notes of the res-
onance equals the Golden Ratio; the highest-orderE8 sym-
metry group discovered in mathematics [21].

For positiveβ values (departing objects) Figure 4 depicts
CR’s energy functionE(β) together with the energy terms
of Newton and Einstein’s Special Relativity. As could be
seen, while the latter theories predict that energy is strictly
increasing with velocity,CR predicts a non-monotonic rela-
tionship with a maximum atβ≈0.618 (the Golden ratio). As
I shall show in the following section, this non-monotonic na-
ture holds the key for explaining dark matter and dark energy.

3 The content of the Universe

The energy function Eq. 9 suggests that dark energy at a given
velocity could be interpreted as thedifference between the en-
ergy measured at the internal frame and the energy measured
at the external frame. In other words,dark energy is defined
as the energy loss due to relativity. In formal terms, denote
the energy at the internal and external frames byE′ and E
respectively, the kinetic energy measured at the internal and
external frames could be expressed as:E(β)= 1

2m0c2β2 and

E′(β)= 1
2m0c2β2 (1−β)

(1+β) , respectively, and the amount of dark

Fig. 5: Comparison betweenCR’s prediction of the content of the
Universe and cosmological measurements

energy,DE(β), could be expressed as:

DE(β) = E′(β) − E(β) =

=
1
2

m0c2β2

(

1−
1− β
1+ β

)

= m0c2 β
3

1+ β
.

(13)

Similarly,dark matter, m(β), at a given velocity is defined as
the relativistic loss of matter at that velocity. In other words,
it equals the difference between the mass of normal matter
measured at the internal and external frames. In formal no-
tation: m (β)=m0−m(β). Using the density transformation
(Eq. 13), dark matter,m(β), could be expressed as:

m (β) = m0 − m(β) = m0

(

1−
1− β
1+ β

)

= m0

(

2β
1+ β

)

. (14)

The standard cosmological model of the Universe prescribes
that it is comprised mainly of dark energy and dark matter
(around 72% and 23%, respectively), with only less than 5%
normal (Baryonic) matter. To compare matter with energy I
use the matter-energy equivalence depicted in Eq. 12, accord-
ing to which every unit of mass is equivalent to≈0.045c2

energy units. Figure 5 depicts the dynamics of normal mat-
ter, dark matter, and dark energy as functions ofβ in the
range 06 β6 1. Calculating the percentage of each compo-
nent atβ=ϕ− 1≈0.618, or equivalently at redshiftz≈ 0.382
(see Appendix, section 3) (yields≈ 5.3% Baryonic matter,
≈21.4% dark matter, and≈73.3% dark energy, which is in
excellent fit with current cosmological observations
(See Fig. 6).

Statistical comparisons between the empirical and theo-
retical distributions of matter, dark matter, and dark energy,
show that the difference is not significant (p>0.699, Kolmo-
gorov-Smirnov test). For velocities higher thanβ= vc ≈ 0.618
we get slightly different compositions. For example, for
β=0.9 (redshift z≈ 0.474) we get ≈ 89.4% dark energy,
≈10% dark matter and≈ 0.6% Baryonic matter. The aver-
age proportions in the range 06 β6 1 are about 85.80% dark
energy, 12.35% dark matter and 1.85% Baryonic matter.
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4 Concluding remarks

The biggest challenge of standard cosmology nowadays is to
find a natural and more fundamental way to explain the de-
tected presence of dark energy and dark matter. Most physi-
cists agree that if this challenge is not met in the near future,
then nothing less than “discovering a new physics” [14] and
“a revolution in our understanding of fundamental physics”
[2] will be required.

The present paper responds to the challenge by propos-
ing a new relativity theory that is based on Galileo’s relativ-
ity, but without the notion of a preferred frame. The anal-
yses reveal that for low velocities the theory confirms with
Newtonian mechanics and for high velocities it confirms with
main predictions of quantum mechanics. More important for
the present context, the proposed theory puts forward, for the
first time, plausible definitions of dark matter and dark en-
ergy. The two entities are defined simply as the unobserved
(dark) side of the matter-energy in the Universe. This defini-
tion yields formal expressions for the two entities which en-
able to predict the present content of the Universe with high
accuracy. Two additional important results emerge from the
analysis, each deserving a comprehensive treatment, are men-
tioned here very briefly:

1. For departing objects relative to the laboratory the
mass-energy equivalence derived by the theory, is
found to be 0.04508497m0c2, which is exactly half
Hardy’s quantum coupling constant

2. The theory suggests a novel perspective of quantum
phenomena, according to which the observed wave
property of matter at high energies could be interpreted
as a gradual transition of normal matter and normal en-
ergy to dark matter and dark energy. Such interpre-
tation enables a long sought-after unification between
Quantum Theory, and Newtonian mechanics, without
leaving 95% of the Universe completely in the dark
side of our knowledge.
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Appendix

1. The time transformation for the round-trip

2. Derivation of the density and energy transformations

3. The relationship between velocity (β) and redshift (z)

4. References

1 The time transformation for the round-trip

t = tDepart + tArrive =

(

1
1− β

+
1

1+ β

)

t′ =

(

2
1− β2

)

t′, (A1)

or,

t̂ =
t
t′
=

2
1− β2

. (A2)

Figure A1 depicts the relative timêt as a function ofβ for the
one-way and round trip. The dashed lines depict the corre-
sponding predictions ofSR.
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Fig. A1a

Fig. A1b

Fig. A1: Time transformations for the one-way (Fig. A1a) and
round trip (Fig. A1b). The dashed lines depict the corresponding
SR results.

2 Derivation of the density and energy transformations

To derive the density and kinetic energy transformation, con-
sider the two frames of referenceF and F′ shown in Fig-
ure A2. Suppose that the two frames are moving relative to
each other at a constant velocityv.

Consider a uniform cylindrical body of rest massm′ =m0

and lengthl′ = l0 placed inF′ along its travel direction. Sup-
pose that at timet1 the body leaves pointx1 (x′1 in F′) and
moves with constant velocityv in the the+x direction, until it
reaches pointx2 (x′2 in F′) in time t2 (t′2 in F′).

The body’s density in the internal frameF′ is given by:

ρ′ =
m0

Al0
, (A4)

whereA is the area of the body’s cross section, perpendicular
to the direction of movement. InF the density is given by
ρ=

m0
Al , wherel is the object’s length inF. Using the distance

transformationl could be written as:

l = l0
1+ β
1− β

, (A5)

Fig. A2: Two observers in two reference frames, moving with ve-
locity v with respect to each other

which yields:

ρ =
m0

Al
=

m0

Al0

1− β
1+ β

= ρ′
1− β
1+ β

,

or:
ρ

ρ′
=

1− β
1+ β

. (A6)

Since the radius of the moving cylinder is perpendicular to the
direction of motion, an observer at the internal frameF will
measure a cylinder radius of∆r=∆r0. The kinetic energy of
aunit of volume is given by:

E =
1
2
ρv2 =

1
2
ρ0

1− β
1+ β

v2,

or:

E =
1
2
ρ0c2β2 1− β

1+ β
. (A7)

And the energy for a departing particle of rest massm0 is
given by:

E =
1
2

m0c2β2 1− β
1+ β

. (A8)

To calculate the valueβ= βcr.. which satisfiesE = Emax we

deriveβ2 1−β
1+β with respect toβ and equate the derivative to

zero. This yields:

d
dβ

(

β2 1− β
1+ β

)

= 2β
1− β
1+ β

+

+ β2 [(1 + β)(−1)− (1− β)(1)]
(1+ β)2

=

= 2β
(1− β2 − β)

(1+ β)2
= 0

(A9)

for β, 0 and we get:

β2 + β − 1 = 0 , (A10)

which yields:

β1 = −ϕ = −

√
5+ 1
2

≈ −1.618 (A11)
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and

β2 = ϕ − 1 =
1
ϕ
=

√
5− 1
2

≈ 0.618, (A12)

whereϕ is the Golden Ratio defined as:ϕ=
√

5+1
2 [A1-A3].

This is a striking result given the properties of this phenome-
nal number, due to its importance, together with the Fibonacci
numbers, in mathematics, aesthetics, art, music, and more
and its key role in nature, including the structure of plants,
animals, the human body, human DNA [A1-A8] and brain
waves [A9-A12] and in physics [A13]. The maximal kinetic
energy atβ≈ 0.618 is equal to:

Emax =
1
2

m0c2(ϕ − 1)2
1− (ϕ − 1)
1+ (ϕ − 1)

=

=
1
2

m0c2(ϕ − 1)2
2− ϕ
ϕ
.

(A13)

The term ϕ− 1 could be written as: ϕ−1=
√

5+1
2 − 1=

=
(
√

5+ 1)− 2
2 =

√
5− 1
2 Multiplying the numerator and denomi-

nator by
√

5+1√
5+1

yields:

ϕ − 1 =

√
5− 1
2

√
5+ 1
√

5+ 1
=

5− 1

2
√

5+ 1
=

=
2

√
5+ 1

=
1
√

5+1
2

=
1
ϕ
.

(A14)

Eq. (A14) could be rewritten as:

Emax =
1
2

m0c2 (2− ϕ)
ϕ3

. (A15)

Substitutingϕ=
√

5+1
2 we obtain:

Emax ≈ 0.04508497m0c
2. (A16)

3 The relationship between velocity and redshift

Redshift could be described as the relative difference between
the observed and emitted wavelengths (or frequency). Let
λ represents wavelength andf represents frequency (λ f = c
wherec is the speed of light), then the redshiftz is given by:

z =
λr − λs

λs
(or z =

fs − fr
fr

) , (A17)

whereλs( fs) is the wavelength (frequency) measured at the
source andλr( fr) is the wavelength (frequency) measured at
the receiver’s laboratory.

Substitutingfs =
1
ts

and fr = 1
tr

in (A17) above we obtain

z =
fs − fr

fr
=

1
ts
− 1

tr
1
tr

=
tr − ts

ts
=

tr
ts
− 1. (A18)

But from Eq. 2 we have:

tr
ts
=

1
1− β

. (A19)

Thus:

z =
1

1− β
− 1 =

β

1− β
(A20)

and
β =
v

c
=

z
1+ z

. (A21)
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A New Model of Black Hole Formation
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The formation of a black hole and its event horizon are described. Conclusions, which
are the result of a thought experiment, show that Schwarzschild [1] was correct: A
singularity develops at the event horizon of a newly-formed black hole. The intense
gravitational field that forms near the event horizon results in the mass-energy of the
black hole accumulating in a layer just inside the event horizon, rather than collapsing
into a central singularity.

1 Introduction

This article describes the formation of a black hole and the
physics of event horizon formation. In early 1916, a Ger-
man physicist, Karl Schwarzschild, published a short paper in
which he gave a solution to Einstein’s general relativity field
equations for spherically symmetric objects. Schwarzschild’s
solution “contains a coordinate singularity on a surface that
is now named after him. In Schwarzschild coordinates, this
singularity lies on the sphere of points at a particular radius,
called the Schwarzschild radius” [1] (emphasis added). The
significance of this paper has not been generally appreciated,
although it led physicists eventually to accept black holes as
real physical objects. Many black holes have been detected
in recent years using astronomical techniques. But physicists
in general have concluded that the singularity lies at the cen-
ter of the black hole rather than on its event horizon. They
have mostly ignored the results of Schwarzschild, who found
that the singularity occurred at the event horizon itself rather
than at the center of the spherical space enclosed by the event
horizon. In this article I show by means of a suitably chosen
thought experiment that Schwarzschild was correct.

2 A collapsing star

Following the occurrence of a Type 1a supernova, a neutron
star is usually formed. For neutron stars with a mass greater
than the Tolman-Oppenheimer-Volkoff limit (about 3 to 4 so-
lar masses), the star will collapse to form a black hole. We
need to follow the history of some points on and within the
collapsing star in order to find out what really happens when a
black hole is formed. To establish some boundary conditions,
note that a point at the center of the collapsing star will not
move with respect to a coordinate system centered on the star;
the center of the system does not participate in the collapse.
Of more interest is a point on the surface of the collapsing
star. This point will have a velocity vector directed toward
the center of the star with a speed that depends on the time
from the initiation of collapse until the formation of the event
horizon, at which time its speed is assumed to be the speed of
light, c. Assume that a point halfway between the surface and
the center will also have an inwardly directed velocity with
half the speed of the surface point. In other words, the con-

Fig. 1: Radial velocities in a collapsing star.

traction is radially linear. Some departure from this linearity
will not severely affect my conclusions.

Figure 1 shows qualitatively what these radial velocities
look like. The size of the star in the illustration is assumed
to be approaching the Schwarzschild radius. The black colors
indicate high radial velocity and white indicates small or zero
velocities. The figure was constructed using the gradient tool
in Photoshop and is linear in value from the center to the outer
boundary. In reality, the darkest black should be confined to
the very outer edges of the star and most of the interior should
be either white or light gray. Nevertheless, the picture does
give a good idea of the kind of radial velocities one would
find in the cross-section of a collapsing star.

Figure 2 shows the situation at the moment when the event
horizon forms. Note that the points at 0.995 Rs, where Rs

is the Schwarzschild radius, have 10 times their normal, or
rest, mass. The asymptote on the right goes to infinity at the
Schwarzschild radius, R = 1.0 in the illustration. This is the
singularity that Karl Schwarzschild discovered when he
solved Einstein’s field equations for a symmetrical, non-
rotating body. The equation used to plot the points for the
mass as a function of the radius is:

m
m0

=
1√

1 − v2/c2
≡ 1√

1 − R2
, 0 5 R < 1. (1)

The validity of this special relativity equation under the
conditions in the formation of an event horizon is unsure, but
since a singularity is a singularity, and this equation defines
one for v = c, it is likely as good as some other measure.
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Fig. 2: Mass distribution in a newly-formed black hole. Drawing by
the author.

The essential point is that most of the mass will be con-
centrated near the event horizon as soon as it forms. Thus the
gravitational field will be quickly reversed, and with it, the
velocity field inside the event horizon. Particles in the interior
of the new black hole will be strongly attracted to the event
horizon, since that is where most of the mass is located. This
implies that the entire mass of the collapsed star could end
up in a shallow region just inside the event horizon. There
is no way to determine from the outside whether or not this
happens.

In this scenario, the mass M is contained in a very thin
layer at the radius R and the interior is empty. But how does it
get there? According to Susskind [2, see p. 238] anything that
impacts the event horizon of a black hole is absorbed by it,
spreading over the entire extent of the event horizon the way
a drop of ink dissolves rapidly in a basin of warm water. What
if the event horizon itself comprises all of the mass contained
in the black hole, held in a layer perhaps one Planck length in
thickness? (Admittedly, that’s a guess on my part.) From the
outside, it would still behave like a black hole. All differences
would be on the inside.

In my model the material of a collapsing star would, as
soon as it has compacted enough to form a black hole, begin
to migrate to the event horizon, like iron filings attracted to
a magnet. The only place where the gravity of the material
comprising the event horizon layer is neutral would be the
exact, precise center of the black hole. But even so small a
particle as a hadron would, sooner or later, wander off center
— if for no other reason, because of the Heisenberg uncer-
tainty principle. It would then be instantly attracted to the
event horizon and would stick there like a bug on fly pa-
per. Eventually the entire inside of the black hole would be
empty. The layer comprising the event horizon layer may be
extremely thin, but it is most definitely not a singularity, a
mere mathematical point.

I recently discarded this possibility, but it appears that I
may have been too hasty in doing so.

3 What happens to the matter in a black hole?

In this reconsidered theory, the singularity at the event hori-
zon is only mathematical, not real. The mass of the collapsed
star is contained in a thin layer just inside the event horizon,
perhaps only a single Planck length thick. There is an external
complement to this idea. Leonard Susskind [2, see pp. 233–
234] writes:

The only [solution] consistent with the laws of
physics would be to assume that some kind of
super-heated layer exists just above the horizon,
perhaps no more than a Planck length thick. . .
the layer must be composed of tiny objects, very
likely no bigger than the Planck length. The hot
layer would absorb anything that fell onto the
horizon, just like drops of ink dissolving in wa-
ter. . . This hot layer of stuff needed a name. As-
trophysicists had already coined the name that I
eventually settled on. . . They had used the idea
of an imaginary membrane covering the black
hole just above its horizon to analyze certain
electrical properties of black holes. [They] had
called this imaginary surface the stretched hori-
zon, but I was proposing a real layer of stuff, lo-
cated a Planck length above the horizon, not an
imaginary surface.
I liked the sound of “stretched horizon” and
adopted it for my own purposes. Today the
stretched horizon is a standard concept in black
hole physics. It means the thin layer of hot micro-
scopic “degrees of freedom” located about one
Planck distance above the horizon.

I propose the name “Shell Theory” for my explanation of
black hole formation.∗ This theory posits a one-to-one cor-
respondence between the bits of entropy on the surface of the
event horizon of a black hole and the particles of the collapsed
star in the shell layer just inside the event horizon. The grav-
itational field and other external properties of the black hole
will be exactly the same as if an infinite singularity existed at
the center, because the amount of mass-energy in each case
will be identical. All that is necessary for this condition to be
true is that the distribution of mass inside the event horizon is
spherically symmetrical. The shell theory has the same spher-
ical symmetry as conventional theory with a singularity at the
center of the black hole.

In the shell theory evolution of a black hole, the collaps-
ing of the remnant star must stop as soon as the event horizon
is formed. The reversal would start at a time somewhat prior
to the formation of the event horizon. In figure 1 it is apparent
that even before the outer layer of particles achieves a veloc-
ity magnitude equal to the speed of light, the distribution of

∗For the purposes of this article, a “shell” is defined as the volume en-
closed between concentric spheres of different radii.
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mass within the collapsing object would favor the outer lay-
ers over the inner layers. This differential in the gravitational
field would build up rapidly as the size of the collapsing star
approached the Schwarzschild limit, so it would not be an in-
stantaneous reversal.

The mass of a differential shell from the collapsing star as
a function of the radius, assuming that the radial velocity of a
point inside the object is a linear function of the radius up to
the limit of v = c, at R = Rs, is:

d
m
m0

= 4πR2 m
m0

dR , (2)

where
m
m0

=
1√

1 − R2
. (3)

Therefore the total relative mass of a spherical shell is given
by the integral:

m
m0

=

∫
4πR2dR√

1 − R2
= 4π

[
1
2

sin−1(R) − 1
2

R
√

1 − R2

]
. (4)

This result must be evaluated at three points: R = 0; R = R;
and R = Rs. The result for R = 0 is simple: 0. For R = Rs the
term (1 − R2) becomes zero, and sin−1(1) is π

2 ; so the result
for R = Rs is π

4 (× 4π). Subtracting the two solutions from
each other (ignoring the common factor of 4π) and setting
the results equal to each other — so that we obtain the radius
within which and without which there is equal mass — we
have, after rearranging terms, the equation:

sin−1(R) =
π

4
+ R
√

1 − R2. (5)

This equation, (5), is difficult to evaluate in closed form, but
the result can be obtained easily through the process of suc-
cessive iterations. The solution is approximately R = 0.915
(the difference between the two sides of the equation is
9 × 10−4 out of 1.155), meaning that the outer 8.5% of the
sphere contains as much relativistic mass as the entire inner
91.5%.∗ This amply demonstrates that what was initially the
inward implosion of a neutron star will now be a radially out-
ward “explosion” within the confines of the event horizon —
the surface implied by Schwarzschild’s results.

4 Results and discussion

The likely end result will be that all of the mass-energy of a
collapsed star ends up confined to a very thin layer — prob-
ably only one Planck length thick — just inside the event
horizon. There may be a “ black hole” there, but its matter
will not be located in an infinitely dense singularity at the
center point.

Also notice that for a solid body of uniform density, the
gravitational field outside the surface is inversely proportional

∗A more precise result is 0.914554 ± 2 × 10−6.

to the square of the distance from the center of the body, but
for points inside the body the gravitational field is linear, di-
minishing to zero at the center. This reinforces the assumption
that the collapse of the neutron star should be linear in nature.
The effect as the radius of the shrinking star approaches and
attains the Schwarzschild radius is to change this linear gravi-
tational potential into a hyperbolic gravitational field, asymp-
totic to infinity at Rs.

The singularity at the Schwarzschild radius, or event
horizon, is mathematical only and does not affect any real
particles. The event horizon is described by a metric of points
distributed over a spherical manifold, and the term “point
mass” is an oxymoron since a point cannot have mass or any
other physical property. It is nothing more than a mathemati-
cal position in space-time. In this context, note that the inte-
gration in equation (4) does not diverge at R = Rs, as it would
if there were a true infinity at that point.

Where I have written the word “point” or “points”, this
term should not be taken literally. The reader should imag-
ine a tiny amount of matter, perhaps a cubic Planck length
(Planck volume) in size, located at a particular point in space-
time. An actual point has no dimensions and therefore cannot
have mass or any other physical property. The Planck volume
is believed by many to be a quantum unit of space.
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Shnoll has investigated the non-Poisson scatter of rate measurements in various phe-
nomena such as biological and chemical reactions, radioactive decay, photodiode cur-
rent leakage and germanium semiconductor noise, and attributed the scatter to cosmo-
physical factors. While Shnoll didn’t pinpoint the nature of the cosmophysical factors
the Process Physics model of reality leads to a description of space, which is dynamic
and fractal and exhibits reverberation effects, and which offers an explanation for the
scattering anomaly. The work presented here shows a new way of generating the effects
Shnoll discovered, through studying the phase difference of RF EM waves travelling
through a dual coaxial cable Gravitational Wave Detector experiment.

1 Introduction – Shnoll effect

Over sixty years ago Simon Shnoll discovered a scatter ano-
maly in the measurements of the reaction rates of ATP-ase in
actomyosin solutions over time that could not be explained
[1]. Extensive research into this scatter anomaly lead to the
conclusion that the reaction rates of the protein solution not
only varied with time, but followed a distribution with pre-
ferred (discrete) values instead of a typical Poisson distri-
bution. Over the following decades it was found that quite
different phenomena also displayed similar scatter anoma-
lies, ranging from chemical reactions to α-radiation activity
in 239Pu decay, photomultiplier dark noise and semiconduc-
tor noise fluctuations [2]. Shnoll’s investigation of the scatter
anomaly (referred to here as the Shnoll effect), between May
28 - June 01, 2004, produced 352,980 successive measure-
ments of the α decay of a 239Pu source [1]. Radioactive decay
is considered to be a stochastic process, i.e. a random pro-
cess with no preferred frequencies, and hence follows Pois-
son statistics. Fig. 1 is a layer histogram taken from Shnoll’s
data, with layer lines taken every 6000 measurements. The y-
axis represents the frequency of decay rates and the x-axis is
the number of decays per second - the decay rate. Over time
the layer lines of the histogram exhibit a fine structure which
become more prominent with more measurements, instead of
canceling out as in the case of a typical Poisson distribution.
This suggests that the radioactivity of 239Pu takes on discrete
values, and is not completely random.

Upon further study it was found that not only did the dis-
tribution (histogram) shapes vary over time, but the histogram
shapes also correlated between different experiments run in
parallel, regardless of whether they were located in the same
laboratory or separated by thousands of kilometres. This was
referred to as absolute time synchronism. Local-time syn-
chronism was also observed, where histogram shapes of one
experiment matched those of another with a time delay corre-
sponding to the difference in longitudes of the two locations
of the experiments (i.e. as the Earth rotates). A “near zone”
effect was also discovered, where consecutive histograms in

Fig. 1: Non-Poisson distribution of 352,980 measurements of 239Pu
α decay by Shnoll performed in 2004 (Fig. 2-2 of [1]). The layered
histograms are taken every 6000 measurements. The x-axis denotes
the number of decay events per second and the y-axis is the fre-
quency of decay rate measurements.

time of an individual experiment were found to be most sim-
ilar in shape, regardless of the time scale used to generate
the histograms, indicating the fractal nature of the scattering
anomaly. The main conclusions drawn from Shnoll’s research
was that the consistency of the “scattering of results” of mea-
surements in a time series arise due to inhomogeneities in
the “space-time continuum” [1, 7]. These inhomogeneities
are “caused by the movement of an object in the inhomoge-
neous gravitational field”, e.g. as the Earth rotates/orbits the
Sun, as the moon orbits the Earth, etc. While these inhomo-
geneities were not characterized by Shnoll there is a remark-
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Fig. 2: Reproduction of Fig. 8 (top) from [5] showing the travel time differences (ps) between the two coaxial cable circuits in [5] plotted
against local sidereal time, for the duration March 4 - 12, 2012. The smooth sine wave is a prediction made from the Dynamical 3-Space
theory using NASA spacecraft Earth-flyby Doppler shift data.

able amount of evidence supporting this conclusion.

2 Dynamical 3-Space

An alternative explanation of the Shnoll effect has been pro-
posed using an alternative theory known as dynamical 3-spa-
ce theory; see Process Physics [3]. This arose from mod-
eling time as a non-geometric process, i.e. keeping space
and time as separate phenomena, and leads to a description
of space which is itself dynamic and fractal in nature. It uses
a uniquely determined generalisation of Newtonian Gravity
expressed in terms of a velocity field u(r, t), defined relative
to an observer at space label coordinate r, rather than the orig-
inal gravitational acceleration field. The dynamics of space in
the absence of vorticity, ∇ × u = 0, becomes∗

∇·
(
∂u

∂t
+ (u·∇)u

)
+

5α
4

(
(trD)2 − tr(D2)

)
= −4πGρ (1)

Di j =
∂vi

∂x j
(2)

where ρ(r, t) is the usual matter density. The 1st term involves
the Euler constituent acceleration, while the α-term describes
a significant self interaction of space. Laboratory, geophysi-
cal and astronomical data suggest that α is the fine structure
constant ≈ 1/137. This velocity field corresponds to a space
flow which has been detected in all of the experiments listed
in section 3. In the spherically symmetric case and in the ab-
sence of matter ρ = 0, (2) contains solutions for black holes
(spatial inflows) and an expanding universe (Hubble expan-
sion) along with that for black holes embedded in an expand-
ing universe [4]. (2) also contains solutions for the inflow
of space into a matter density. Perturbing the spatial inflow

∗The α term in (2) has recently been changed due to a numerical error
found in the analysis of borehole data. All solutions are also altered by these
factors. (2) also contains higher order derivative terms - see [4] .

into matter (i.e. simulating gravitational waves) was shown
recently to produce reverberations in which the wave gener-
ates trailing copies of itself [8]. This reverberation effect is
caused by the non-linear nature of the flow dynamics evident
in (2) and will be shown in the coaxial cable data discussed
in section 3.

3 2012 Dual RF coaxial cable experiment

The Dynamical 3-Space theory was applied to an experiment
which studied the radio frequency (RF) electromagnetic (EM)
speed anisotropy, or ultimately the absolute motion of Earth
through space. The effect of absolute motion has previously
been studied using the results from Michelson - Morley, Mil-
ler, and DeWitte experiments [5]. These results are in remark-
able agreement with the velocity of absolute motion of the
Earth determined from NASA spacecraft Earth-flyby Doppler
shift data all revealing a light/EM speed anisotropy of some
486 km/s in the direction RA=4.3h, Dec = −75.0◦ [6]. The
actual daily average velocity varies with days of the year be-
cause of the orbital motion of the Earth - the aberration ef-
fect discovered by Miller, but also shows fluctuations over
time. The dual RF coaxial cable experiment, performed from
March 4 - 12, 2012, measures the travel time difference of
two RF signals propagating through dual coaxial cables [5].
The key effect in this 1st order in v/c experiment is the ab-
sence of the Fresnel drag effect in RF coaxial cables at a suf-
ficiently low frequency. The experiment is designed such that
one RF signal travels through one type of coaxial cable and
returns via another type of cable, while the other signal does
exactly the opposite. The cables are bound together such that
any travel time effects due to temperature changes cancel as
both cables are affected equally. Fig. 2 is a reproduction of
the data obtained from the experiment in March 2012 where
the travel time difference between the RF signals is plotted
against sidereal time. The data is fitted, smooth curve, using
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Fig. 3: Non-Poisson distribution of 155,520 measurements of the
travel time difference (ps) observed between the two coaxial cable
circuits of [5] from Mar 04, 2012 to Mar 12, 2012 in Adelaide. The
layered histograms are taken every 3350 measurements to show a
comparison with that of Fig. 1.

predictions from the NASA spacecraft Earth-flyby Doppler
shift data, where a flow of space traveling at a speed of 499
km/s and direction RA=2.75h, Dec = −77◦ predicts the over-
laid sine wave, with dynamic range ∼8 ps. The Earth rotation
effect, with respect to the galaxy, can be observed from the
data, as well as turbulence effects. Turbulence effects are be-
ginning to be characterized, and can be shown to correspond
to what are, conventionally known as gravitational waves, al-
though not those implied by General Relativity, but more pre-
cisely are revealing a fractal structure to dynamical 3-space,
as illustrated in Fig. 4.

A Fast Fourier Transform of the data in Fig. 2 was taken
to remove the Earth rotation effect (i.e. low frequency ef-
fects), and then a histogram taken of the resultant 155,520
measurements (after inverse FFT) to generate the layered his-
togram plot shown in Fig. 3. Layer lines are inserted every
3350 measurements to show a comparison with the Shnoll
plot in Fig. 1. Fig. 3 is remarkably comparable to Fig. 1, thus
suggesting that the Shnoll effect is also present in the coax-
ial cable EM anisotropy experiments. The structure observed
appears to build up over time instead of cancelling out. It ap-
pears slightly noisier but this may be due to the fewer data
points obtained than Shnoll (352,980 measurements). The
structure observed is found to persist regardless of the time
scale used for the phase difference, suggesting that the phe-
nomenon causing this has a fractal nature as depicted in Fig.4.
If this is indeed caused by a dynamical and fractal 3-space

Fig. 4: Representation of the fractal wave data as revealing the
fractal textured structure of the 3-space, with cells of space having
slightly different velocities and continually changing, and moving
with respect to the earth with a speed of ∼500 km/s.

then the persisting structure observed in Figures 1 and 3 cor-
respond to regions of space passing the Earth that have pre-
ferred/discrete velocities, and not random ones, as randomly
distributed velocities would result in a Poisson distribution,
i.e. no features. A likely explanation for this is that the gravi-
tational waves propagating in the 3-space inflow of the Earth
or Sun could become phase locked due to the relative loca-
tions of massive objects. This would cause reverberation ef-
fects, i.e. regions of space which have the same speed and
direction, which then repeat over time. The reverberations
would be detectable in many experiments such as EM aniso-
tropy, radiation decay, semiconductor noise generation, etc.
and could in the future be used to further characterize the dy-
namics of space.

4 Conclusion

The data from a dual RF coaxial-cable / EM anisotropy - gra-
vitatonal wave experiment displays the effect Shnoll observed
previously in radioactivity experiments. It is suggested that
these two experiments (along with other work by Shnoll) are
caused by the fractal nature of space, together with the rever-
beration effect from gravitational waves, as predicted by the
Dynamical 3-Space theory.
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The potentialities of a revised quantum electrodynamic theory (RQED) earlier estab-
lished by the author are reconsidered, also in respect to other fundamental theories such
as those by Dirac and Higgs. The RQED theory is characterized by intrinsic linear sym-
metry breaking due to a nonzero divergence of the electric field strength in the vacuum
state, as supported by the Zero Point Energy and the experimentally confirmed Casimir
force. It includes the results of electron spin and antimatter by Dirac, as well as the
rest mass of elementary particles predicted by Higgs in terms of spontaneous nonlinear
symmetry breaking. It will here be put into doubt whether the approach by Higgs is
the only theory which becomes necessary for explaining the particle rest masses. In
addition, RQED theory leads to new results beyond those being available from the the-
ories by Dirac, Higgs and the Standard Model, such as in applications to leptons and
the photon.

1 Introduction and background

The vacuum state is not merely that of an empty space. Its en-
ergy has a nonzero ground level, the Zero Point Energy, being
derived from the quantum mechanical energy states given e.g.
by Schiff [1]. An example on the related vacuum fluctuations
was provided by Casimir [2] who predicted that two closely
spaced metal plates will attract each other. This is due to
the fact that only small wavelengths can exist in the spacing,
whereas the full spectrum of fluctuations exerts a net force
on the outsides of the plates. The Casimir force was first
demonstrated experimentally by Lamoreaux [3]. It implies
that the vacuum fluctuations generate a real physical pressure
and pressure gradient. Part of the quantum fluctuations also
carry electric charges, as pointed out e.g. by Abbot [4]. The
observed electron-positron pair formation from an energetic
photon further indicates that electric charges can be created
out of an electrically neutral state.

These established facts form the starting point of a re-
vised quantum electrodynamic (RQED) theory by the author
[5]. The theory is thus based on the hypothesis of a nonzero
electric field divergence, div E, 0, in the vacuum. At the
same time there is still a vanishing magnetic field divergence,
div B = 0, due to the experimental fact that no magnetic mo-
nopoles have so far been observed. A nonzero electric field
divergence has the following fundamental consequences [5]:

• The symmetry between the electric and magnetic fields
E and B is broken.

• The nonzero electric charge density of a configuration
with internal structure can both lead to a net integrated
charge, and to intrinsic charges of both polarities.

• There exist steady electromagnetic states in the vac-
uum for which the energy density of the electromag-
netic field gives rise to nonzero rest masses of corre-
sponding particle models.

In the following treatise the basic field equations of RQED

theory are first shortly described in Section 2. This is fol-
lowed in Section 3 by a comparison to the related theories by
Dirac as summarized by Morse and Feshbach [6], and that by
Higgs [7]. The features and potentialities of RQED theory
have earlier been described by the author [5, 8]. In Section
4 some complementary points will be presented, with special
emphasis on results obtained beyond the Standard Model and
not being deducible from other theories.

2 Basic field equations of Revised Quantum Electrody-
namics

In four-dimensional representation the electromagnetic field
equations have the general form

(
1
c2

∂2

∂t2 − ∇2
)

Aµ = µ0Jµ µ = 1, 2, 3, 4 (1)

with the four-potentials Aµ = (A, iφ/c), A and φ as the mag-
netic vector potential and the electrostatic potential in three-
space, and the four-current

Jµ = (j, icρ̄) (2)

with j and ρ̄ as electric current density and electric charge
density in three-space. The form (1) is obtained from the
original set of equations through a gauge transformation in
which the Lorentz condition

div A +
1
c2

∂φ

∂t
= 0 (3)

is imposed.
The source term due to the four-current (2) in the right-

hand member of (1) has to satisfy the Lorentz invariance.
This implies that

j2 − c2ρ̄2 = const = 0 (4)
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when Jµ is required to vanish with the charge density ρ̄. This
finally results in a four-current

Jµ = ρ̄ (C, ic) (5)

where
C2 = c2 (6)

and C is a velocity vector with a modulus equal to the veloc-
ity constant c of light. Concerning (6) two points should be
observed [5]:

• The vector C both includes the case of a plane wave
propagating at the scalar velocity c, and three-dimen-
sional cases such as those of a cylindrical wave where
C has at least two spatial components. In this way (6)
can be considered as an extension of the Lorentz invari-
ance to three dimensions.

• Equation (6) is quadratic and leads to two solutions.
These represent the two resulting spin directions.

In a three-dimensional representation the field equations
in the vacuum now become

curl B
µ0

= ε0 (div E) C + ε0
∂E
∂t

(7)

curl E = −∂B
∂t

(8)

where
B = curl A div B = 0 (9)

E = −∇φ − ∂A
∂t

div E =
ρ̄

ε
. (10)

These equations are gauge invariant, as in all cases where
Maxwell’s equations also include source terms.

The basic features of the RQED field equations are thus
specified and summarized by the following points:

• The abolished symmetry between the electric and mag-
netic fields leads to equations having the character of
intrinsic linear symmetry breaking.

• The equations are both Lorentz and gauge invariant.

• There is a source given by the “space-charge current
density” of the first term in the right-hand member of
(7). Through the nonzero electric field divergence this
form introduces an additional degree of freedom, lead-
ing to new physical phenomena.

• Electromagnetic steady states with corresponding non-
zero rest masses occur on account of (7).

• New and modified wave modes arise from the extended
form (6) of Lorentz invariance.

• There is full symmetry between the solutions of pos-
itive and negative polarity, thereby realizing particle
models for matter as well as for antimatter.

As described by Schiff [1] among others, Maxwell’s equa-
tions are used as a guideline for proper interpretation of con-
ventional quantum electrodynamical theory. Thereby Heitler
[9] has shown that the quantized electrodynamic equations
become identical with the original classical equations in whi-
ch the electromagnetic potentials and currents merely become
replaced by their quantum mechanical expectation values. In
an analogous way, this also applies to the present RQED the-
ory.

2.1 Steady electromagnetic states

As an example on steady electromagnetic states, a particle-
shaped axisymmetric configuration is now considered in a
spherical frame (r, θ, ϕ) with a current density j = (0, 0,Cρ̄)
and a magnetic vector potential A = (0, 0, A). Here C = ± c
represents the two spin directions. From equations (7)–(10)
with ∂/∂t = 0, ∂/∂ϕ= 0, ρ= r/r0 and r0 standing for a charac-
teristic radial dimension, the result becomes [5]

CA = −
(
sin2 θ

)
DF (11)

φ = −
[
1 +

(
sin2 θ

)
D
]

F (12)

ρ̄ = − ε0

r2
0 ρ

2
D

[
1 +

(
sin2 θ

)
D
]

F (13)

where

D = Dρ + Dθ

Dρ = − ∂
∂ρ

(
ρ2 ∂

∂ρ

)
Dθ = − ∂

2

∂θ2 −
cos θ
sin θ

∂

∂θ

(14)

and there is a separable generating function

F (r, θ) = CA − φ = G0 ·G (ρ, θ)

G (ρ, θ) = R (ρ) · T (θ) .
(15)

With equations (11)–(15) the net electric charge q0, magnetic
moment M0, rest mass m0, and integrated spin s0 are then
given by

q0 = 2πε0r0G0Jq (16)

M0 = πε0Cr2
0G0JM (17)

m0 =
πε0

c2 r0G2
0Jm (18)

s0 =
πε0C

c2 r2
0G2

0Js (19)

where

Jk =

∫ ∞

ρk

∫ π

0
Ik dρ dθ k = q, M,m, s (20)

and Ik are differential expressions given in terms of the quan-
tities and operators of equations (11)–(15). In the integrals
(20) the radii ρk = 0 when G is convergent at ρ= 0, and ρk , 0
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are small radii of circles centered at ρ= 0 when G is diver-
gent at ρ= 0 and a special renormalisation procedure has to
be applied.

The form (15) of generating function has four alternatives.
When R(ρ) is divergent at ρ= 0 and T (θ) has top-bottom sym-
metry, there is a nonzero net charge q0 and magnetic moment
M0, leading to models of charged leptons. In the remaining
three cases both q0 and M0 vanish, thereby leading to neutral
leptons such as massive neutrinos.

In addition to the quantization leading to expectation val-
ues of the field vectors, relevant second quantization condi-
tions have to be imposed on the forms (16)–(19). These con-
cern the spin, the magnetic moment, and the total magnetic
flux [5].

2.2 New and modified wave modes

Due to experimental evidence, a model representing the wave
packet of an individual photon in the vacuum has to satisfy
the following general requirements:
• It should have a preserved and spatially limited geo-

metrical shape of a wave packet propagating in an un-
damped way and in a defined direction, even at cosmi-
cal distances.

• To limit its geometrical shape, no artificial boundaries
are to be imposed on the solutions of the field equa-
tions.

• The angular momentum in the direction of propagation,
the spin, should be nonzero and have the constant value
h/2π.

The field equations (7)–(10) have solutions satisfying the-
se requirements. This applies e.g. to cylindrical waves in a
frame (r, ϕ, z) with z along the direction of propagation. For
these waves the velocity vector has the form

C = c (0, cosα, sinα) (21)

with a constant angle α. Normal modes varying as
f (r) exp[i[−ωt + kz)] in an axisymmetric case lead to the dis-
persion relation

ω = kv v = c (sinα) (22)

having phase and group velocities equal to v. Expressions for
the components of E and B are then obtained from the separa-
ble generating function. A wave packet of narrow line width
at a main wavelength λ0 is further formed from a spectrum
of these elementary modes. This finally leads to spatially
integrated quantities such as net electric charge q, magnetic
moment M, total mass m, and total spin sz. The result is as
follows:
• Both q and M vanish.
• There is a finite nonzero spin

s = r × S
c2 S = E × B/µ0 (23)

where r is the radius vector, S the Poynting vector, and
sz = h/2π for the component of s in the z direction.

• A finite mass
m = m0/ (cosα) (24)

is obtained where m0 stands for a nonzero but very
small rest mass.

This solution leads to a characteristic radial dimension r̂
for two modes given by

r̂ =
λ0

2π (cosα)

{
1 (25a)
ε (25b)

where (25a) refers to a convergent generating function, and
(25b) to a generating function which is divergent at r = 0 and
where a special renormalisation procedure has to be applied.

The phase and group velocities of (22) are smaller than
the velocity constant c. Still this difference from c can be-
come small enough to be hardly distinguishable. An example
can be given by sinα= 1 − δ, 0< δ� 1, ε= cosα, 0<ε� 1,
and λ0 = 3× 10−7 m for a main wavelength in the visible ran-
ge. When δ= 10−10 this yields characteristic radii of about
3× 10−3 m and 5× 10−7 m due to equations (25a) and (25b).

3 Relations to other fundamental theories

It has further to be established how the present RQED ap-
proach is related to such fundamental theories as that by Dirac
[6] and by Higgs [7] with the associated Standard Model of
elementary particles.

3.1 The theory by Dirac

To bring wave mechanical theory into harmony with the the-
ory of relativity, Dirac adopted a new wave equation. Then it
need not to be assumed that the electron is spinning or turn-
ing on its axis. According to the theory the electron will have
an internal angular momentum (spin), and an associated mag-
netic moment. In fact there are four wave functions and cor-
responding matrices instead of one. These alternatives thus
correspond to two spin directions, and to the two possibilities
of matter and antimatter, such as in the form of the electron
and the positron.

As seen from the previous sections, the present RQED
theory is in full correspondence with that by Dirac, in includ-
ing the two spin directions as well as particles and antiparti-
cles. But the net elementary charge, e, and the finite electron
rest mass, me, are only included as given and assumed pa-
rameters in the theory by Dirac, whereas these quantities are
deduced from the field equations of RQED. The latter theory
also leads to other new results beyond those being available
from that by Dirac.

3.2 The theory by Higgs

The Standard Model of the theory on elementary particles is
based on the source-free solutions of the field equations in
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the vacuum as an empty space, i.e. (1) with a vanishing right-
hand member. This leads to the Hertz equations having a van-
ishing electric field divergence, and it results in massless par-
ticles, in contradiction with their experimentally confirmed
massive counterparts.

To resolve this contradiction, Higgs [7] proposed a spon-
taneous nonlinear mechanism of symmetry breaking by whi-
ch an unstable boson of unspecified but large nonzero rest
mass is formed, having vanishing spin and electric charge.
The Higgs boson then decays into a whole succession of mas-
sive elementary particles.

During many years attempts have been made to find the
Higgs boson. Finally the highly advanced and imposing ex-
periments performed by the projects ATLAS [10] and CMS
[11] at CERN have bebouched into the important confirma-
tion of an existing unstable Higgs-like boson. The latter has
been found to be characterized by vanishing electric charge
and spin, combined with a rest mass of about 125 GeV. It was
also observed to decay rapidly into successions of particles
with smaller nonzero rest masses.

However, it could here be put into doubt whether this im-
portant experimental result provides a unique confirmation of
the theory by Higgs, or if the theory described in Section 2 of
this paper could as well explain the results without reference
to the theory by Higgs. This question can be divided into two
parts, i.e. the formation of a Higgs-like particle, and its de-
cay. The first part thus concerns formation of a particle of
mass in the range of 125 GeV, having vanishing charge and
spin. Equations (11)–(15) imply that massive particles can
be created already from the beginning by the intrinsic linear
broken symmetry mechanism of RQED. Among the obtained
solutions there is one which is expected to become unstable,
having an unspecified but nonzero and large rest mass, as well
as vanishing charge and spin [12]. Such a particle of mass 125
GeV can thus be predicted. Concerning the second part of
the raised question, the resulting particle would, as in all ear-
lier known cases, decay into several other massive particles
in a way being independent of and not being unique for the
Higgs mechanism. In this connection it might at a first sight
be argued that the Higgs-like particle obtained from RQED
is not identical with that considered by Higgs. This would,
however, lead to the unlikely situation of two particles having
the same basic and initial data of mass, charge and spin and
resulting into the same decay processes, but still not being
identical.

There may finally exist a certain similarity between the
source of the Higgs field and that of the Zero Point Energy of
RQED.

4 New results beyond other approaches

There are results from RQED which are not deducible from
the Standard Model and other fundamental theories, as being
demonstrated here by a number of examples.

4.1 Models of leptons

The field equations (7)–(10) in a steady state ∂/∂t = 0 lead to
new results and solutions:

• Charged lepton models arise from a divergent generat-
ing function and result in a point-charge-like geometry
of small radial dimensions, such as that of the electron.

• A deduced elementary electric net charge is obtained.
It is located within a narrow parameter channel situated
around the experimental value, e, and having a width of
only a few percent of e.

• Through a revised renormalisation process all relevant
quantum conditions and all experimental values of cha-
rge, magnetic moment, rest mass, and spin can be re-
produced by the choice of only two free scalar parame-
ters, the so called counter-factors.

• The magnetic field contribution to equations (7)–(10)
prevents charged leptons from “exploding” under the
action of their electrostatic eigenforce.

• There are intrinsic electric charges of both polarities in
leptons, each being about an order of magnitude larger
than the net elementary charge e. It results in a Cou-
lomb interaction force between these particles, being
about two orders of magnitude larger than that due to
the net charge. If these conditions would also hold for
quarks, the total Coulomb force would become com-
parable and similar to the short-range interaction of
the strong force [13]. This raises the question whether
the intrinsic charge force will interfere with the strong
force, or even become identical with it.

4.2 Model of the photon

In the time-dependent state of wave phenomena, equations
(7)–(10) yield the following results:

• The Standard Model corresponds to a vanishing right-
hand member of (1), and leads to the set of Hertz equa-
tions with a vanishing electric field divergence. In its
turn, this gives rise to a vanishing photon spin as ob-
tained from (23) and its quantized equivalent [5, 14].
Due to RQED theory there is on the other hand a pho-
ton model based on the extended relativistic forms of
equations (6), (21) and (22), leading to a nonzero spin
and an associated nonzero but very small rest mass [5,
14]. Thereby the spin of a photon wave packet does
not merely have to be assumed in general terms, but
becomes deduced. The spin occurs at the expense of a
small reduction of the phase and group velocities in the
direction of propagation.

• The needle-like photon model represented by equations
(25a) and (25b) contributes to the understanding of the
photoelectric effect and of two-slit experiments, with
their wave-particle dualism.
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• The RQED theory on screw-shaped wave modes is con-
sistent with observed hollow geometry of corks-crew-
shaped light beams [5].

• The nonzero electric field divergence and its intrinsic
electric charges of alternating polarity also contributes
to the understanding of electron-positron pair forma-
tion from an electrically neutral and energetic photon.

5 Conclusions

The present revised quantum electrodynamic theory includes
the results of earlier fundamental theories, such as that by
Dirac on electron spin and antimatter, and that by Higgs on
massive elementary particles. It could thus be put into doubt
whether the theory by Higgs becomes necessary for explain-
ing the particle rest masses. In addition, the present theory
leads to new results beyond those available from these and
other so far established fundamental theories, as well as from
the Standard Model in general.
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The present paper utilizes the recently proposed Complete Relativity Theory (CR) for
the prediction of neutrino velocity in a prototypical neutrino velocity experiment. The
derived expression for the relative difference of the neutrino velocity with respect to
the velocity of light is a function of the anticipation timeδt, the traveled distance D
and the light velocityc, measured on Earth. It is independent neither on the traveling
particle type nor on its energy level. With regard to fast neutrinos it is shown that the
derived equation predicts with precision the results reported by OPERA, MINOS, and
ICARUS. Since CR postulates that all physical entities, including the velocity of light,
are relativistic entities, it follows that even though the results of the aforementioned
experiments fail to support the neutrino superluminality claim, their precise prediction
based on a theory that diametrically opposes SR, provides strong evidence for the inad-
equacy of SR in accounting for the dynamics of quasi-luminalparticles. The aforemen-
tioned notwithstanding, a direct calculation of SR’s predictions for the above mentioned
studies yields grossly incorrect results.

1 Introduction

The findings of several high energy experiments conducted
by MINOS, OPERA, ICARUS and other collaborations sug-
gest that neutrinos travel at super-luminal or quasi-luminal
velocities, e.g. [1–6]. The possibility of quasi-luminal neutri-
nos has been also confirmed by cosmological observations,
see, e.g. [7, 8]. Among all experimental findings, the one
that attracted most interest was the result reported in 2011
by OPERA [1], which (ostensibly) indicated that neutrinos
have travelled faster than light. The reported anticipation time
wasδt= 60.7±6.9 (stat.)± 7.4 (sys.) ns and the relative neu-
trino velocity was3n−c

c = (5.1±2.9)×10−5. Many physicists
have described the possibility that OPERA may have broken
the limit of light-velocity as one of the greatest discoveries
in particle physics, provided that it is replicated by an inde-
pendent group, and CERN’s Research Director announced in
a press conference that “If this measurement is confirmed, it
might change our view of physics” [9].

Within few months, numerous papers were written,
proposing that OPERA’s experimental design and/or mea-
surements were flowed, or suggesting various explanations
that accord with standard theories, see, e.g. [10–20]. Soon
after, the ICARUS collaboration reported a null result, which
contradicted OPERA’s superluminal one [3]. The anticipation
time measured by ICARUS was 0.3±4.0 (stat)± 9.0 (sys.)
ns, which is one order of magnitude lower than the result re-
ported by OPERA [1]. The following events witnessed the
discovery of hardware malfunctions which resulted in mea-
surement error and the publication of a corrected null
result [5].

Theoretically, the possibility of superluminal particleshas
been treated within the framework of General Relativity by
A. Zelmanov’s theory of “physically observable quantities”
[21,22]. Other models which entertain the possibility to con-
struct theories in which neutrinos travel faster than photons
have recently been proposed, e.g. [20,23].

Although many questions pertaining to the neutrino su-
perluminality issue remain open to theoretical inquiry, the
general stance among physicists contends that for the time be-
ing both superluminality and subluminality of neutrinos can-
not be dismissed by existing data, and that more investigation
of this issue is needed [23, 24]. The common view, which
I shall refute hereafter, contends that the null result based on
data aggregation from existing experiments, is consistentwith
Special Relativity and with the limits put on Lorentz viola-
tions, e.g. [12,15,24,25].

Here I shall show that for three experiments conducted
by MINUS, OPERA, and ICARUS, Special Relativity (SR)
yields grossly incorrect results and that an expression for
3n−c

c derived on basis of Complete Relativity Theory (CR),
detailed in [26] in this volume, yieldsprecise predictions for
the three aforementioned experiments.

The reminder of the paper is organized as follows: Sec-
tion 2 details a derivation of3n−c

c based on SR, and demon-
strates that it yields grossly incorrect predictions for all the
discussed experiments. Section 3 provides a brief description
of CR, and utilizes the one-way time transformation for de-
riving an expression for3n−c

c in a typical quasi-luminal neu-
trino experiment. The derived expression is then used to make
precise predictions for the results reported by the above men-
tioned studies. Section 4 ends with concluding remarks.
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2 Special Relativity predictions

In general, all neutrino-velocityexperiments utilized the same
technology. Thus, for the sake of convenience and without
loss of generality, I analyze the one implemented by OPERA
shown schematically in Fig. 1.

Fig. 1: The OPERA Setup.

From the perspective of Special Relativity (SR), the start
and end laboratoriesF′ andF′′ are stationed in one frame of
reference. The time dilation predicted by SR is given by:

∆S R = T ′′G.S asso − T ′CERN =
1

√

1−
(

3n

c

)2
T. (1)

Where∆S R is the time difference between the start and end
points,3n is the neutrino’s velocity,c is the velocity of light
as it is measured on earth (c=299792.458 km/sec) andT is
the rest time at the neutrino’s frame of referenceF given by:

T =
D
3n
. (2)

WhereD is the distance between the source of the neutrino
beam and the end point detector. Substituting the value ofT
in Eq. 1 we obtain:

∆S R =
1

√

1−
(

3n

c

)2

D
3n
. (3)

For an early neutrino arrival time (δt) with respect to light
photons we get:

∆S R =
D
c
− δt. (4)

Substituting the value of∆S R from Eq. (3) in Eq. (4) and solv-
ing for 3nc we obtain:

3n

c
= ±

√

√
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√
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√
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. (5)

For the result reported by ICARUS 2011:δt= (0.3±
± 4.0 (stat)±9.0 (sys.) and D=674.385km. Substituting in

Eq. 4 we get:
3n

c
≈ ±(0.86603+ 0.5i) (6)

And,
c − 3n

c
= ±(−0.13397+ 0.5i). (7)

Calculations of SR’s prediction ofc− 3nc for the results re-
ported by MINOS and OPERA (not reported here) yield sim-
ilar (incorrect) results.

3 Complete Relativity predictions

Complete Relativity Theory (CR) rests on two postulates:

1. The magnitudes of all physical entities, as measured
by an observer, depend on the relative motion of the
observer with respect to the rest frame of the measured
entities.

2. All translations of information from one frame of refer-
ence to another are carried by light or electromagnetic
waves of equal velocity.

It should be stressed that the first postulate applies to all mea-
sured entities,including the velocity of light. CR treats the ve-
locity of light as a relativistic quantity and not as an invariant
one as postulated by SR. The derivations of CR’s time, dis-
tance, mass-density and energy transformations are detailed
elsewhere in this volume [26].

The derivation of a theoretical expression for3n − c
c in a

typical superluminal neutrino experiment requires only the
one-way time transformation. Viewed in the framework of
CR, the experimental setup depicted in Fig. 1 includesthree
frames of reference:F′ at CERN,F′′ at Gran Sasso andF,
the neutrino rest frame.F is departing from F′ with velocity
3n andapproaching F′′ with velocity – 3n. F′ andF′′ are at
rest relative to each other. According to CR [26], the time
transformation for the one-way travel is given by:

t
t0
=

1

1−
3

c

(8)

Thus, we can write:

T ′CERN =
1

1−
3n

c

T. (9)

Where3n is the velocity of the neutrino relative to CERN’s
frame of referenceF′.

Since the neutrino travelledtowards Gran Sasso, applying
the time transformation toF′′ yields:

T ′′G.S asso =
1

1−
(

−3n

c

) T =
1

1+
3n

c

T. (10)
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Experiment Neutrino Anticipation Time (δ t) Experimental
3n − c

c
Theoretical

3n − c

c

MINOS
D= 734298.6 m

(

126± 32 (stat.)± 6 (sys.)
)

ns (5.1± 2.9) (stat)× 10−5 5.14 × 10−5

OPERA 2012
(corrected result)
D= 730085 m

(

6.5± 7.4 (stat.)
+9.2
−6.8

(sys.)
)

ns
(

2.7± 3.1 (stat.)
+3.8
−2.8

(sys.)
)

× 10−6 2.67 × 10−6

ICARUS 2012
D= 730478.56 m

(

0.10± 0.67 (stat.)± 2.39 (sys.)
)

ns
(

0.4± 2.8 (stat.)± 9.8 (sys.)
)

× 10−7 0.41 × 10−7

Table 1: Experimental results and theoretical predictionsfor three superluminal neutrino experiments.

The time difference between CERN and Gran Sasso’s could
be written as:

Dt = T ′′G.S asso − T ′CERN =

=
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1−
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T = −
2
3n

c

1−
(

3n

c

)2
T.

(11)

Substituting the value ofT in Eq. 11 we obtain:

Dt = −

2
3n

c

1−
(

3n

c

)2

D
3n
. (12)

For an early neutrino arrival time ofδt with respect to the
velocity of light we can write:

Dt = −

2
3n

c

1−
(

3n

c

)2

D
3n
=

D
c
− δt. (13)

WhereD
c is the light time arrival from CERN to Grand Sasso.

Solving Eq. 13 for3nc yields:

3n

c
=

√

√

√

√ 2

1−
cδt
D

− 1 . (14)

Or,

3n − c
c
=

√

√

√

√ 2

1−
cδt
D

− 1− 1. (15)

Predictions

For the OPERAcorrected result [2]

δt=
(

6.5±7.4 (stat.)
+9.2
−6.8

(sys.)
)

ns

andD= 730.085 km. Substituting in Eq. 15 we get:

3n − c
c
=

√

√

√

√

√ 2

1−
299792.458× 6.5× 10−9

730.085

− 1− 1 ≈

≈ 2.67 × 10−6
. (16)

Which is identical to the reported result of:

3n − c
c

(Exp.) =
(

2.7± 3.1 (stat.)
+3.8
−2.8

(sys.)
)

× 10−6
. (17)

Equation 15 was also used to calculate theoretical predictions
for the results reported by ICARUS [4] and MINOS [5]. The
results are summarized in Table 1, which depicts all three ex-
perimental results against the corresponding theoretical
predictions.

As could be seen in the table,CR yields accurate pre-
dictions forall three experimental results,including the null
ones.

4 Concluding remarks

In this article I applied a recently proposed Complete Rela-
tivity Theory (CR) to analyze the neutrino travel in a typical
neutrino-velocity experiment. CR treats all physical entities,
including light velocity, as relativistic entities. Accordingly
the measured velocity of light depends on the direction of the
light propagation vector, relative to the laboratory. In terms
of relative time, the start point laboratory (e.g., at CERN)will
measuretime dilation, whereas the end point laboratory (e.g.,
at Gran Sasso) will measuretime contraction. It is important
to note that the CR-based model presented in section 3 is in-
dependent of the particle type and its energy level. For the
prediction of3n−c

c only the anticipation timeδt and distance D
between the start and end points are required [see Eq. 15].

The analysis brought above shows that CR predicts with
near precision all the relative neutrino velocities3n−c

c obtained
in recent neutrino-velocity experiments. In contrast, SR’s pre-
dictions for all the discussed findings yields grossly incorrect
results. What becomes clear from the analysis brought above
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is that a breakdown of Einstein’s SR does not require that the
neutrino velocity exceeds the velocity of light.

Upon the announcement of the first null result, the leader
of ICARUS collaboration leader was quoted by the press say-
ing that had they found 60 nanoseconds, he would have sent
a bottle of champagne to OPERA, and that instead, he sus-
pects that he “will be toasting Einstein” [31]. The analysis
presented in the present paper suggests that the news about
rescuing SR were premature, and that it makes more sense to
keep the champagne in the frigidaire.

Submitted on May 14, 2013/ Accepted on August 19, 2013
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Nanotechnology Quantum Detectors for Gravitational Waves:
Adelaide to London Correlations Observed

Reginald T. Cahill

School of Chemical and Physical Sciences, Flinders University, Adelaide 5001, Australia. E-mail: reg.cahill@flinders.edu.au

The discovery of the nanotechnology zener diode quantum detector effect for gravita-
tional waves is reported, based upon the quantum to classical transition being induced
by dynamical 3-space fluctuations. Gravitational waves were detected by way of wave-
form correlations between time measurement in two Digital Storage Oscilloscopes, re-
vealing time delays of 13 to 20 seconds over 24 hrs for Adelaide to London travel,
varying as the earth rotates. The speed and direction were found, for January 1, 2013,
to be 512 km/s, RA = 4.8 hrs, Dec = 83 deg S. This velocity agrees with previous de-
tections using different techniques, such as the NASA spacecraft Earth-flyby Doppler
shifts, which found 491 km/s, RA = 5.2 hrs, Dec = 80 deg S, for December 8, 1992.
Consequently it was realised that nanotechnology zener diode quantum detectors have
been operating, for different reasons, for some 15 years, and are known as RNGs (Ran-
dom Number Generators) or REGs (Random Event Generators). The discovery herein
reveals that they are not random. Correlations between data from a REG in Perth and a
REG in London gave the speed and direction, for January 1, 2013, to be 528 km/s, RA
= 5.3 hrs, Dec = 81 deg S. We also report highly correlated current fluctuations from
collocated zener diode circuits. The GCP REG network constitutes an international
gravitational wave detector network, with currently some 60 REGs operating, and with
records going back to 1998. These detectors permit the study of dynamical 3-space
structure, and also apparent anomalous scattering of the waves when passing deeper
into the earth, solar flares, coronal mass ejections, earthquakes, and correlations with
fluctuations in various rate processes such as nuclear decays. The quantum to classical
transition is shown to be caused by 3-space dynamics, and so challenges the standard
interpretation of probabilities in quantum theory.

1 Introduction

The speed and direction of gravitational waves have been di-
rectly measured via waveform time delays from detectors lo-
cated in Adelaide and London, and separately from Perth and
London. The Adelaide to London correlations were detected
utilising the discovery that so-called “clock jitter” in two dig-
ital storage oscilloscopes (DSO) is actually correlated, with
the London signal delayed relative to the Adelaide signal by
13 to 20 seconds, depending on sidereal time, so that at least
part of the clock jitter is actually induced by passing gravi-
tational waves. Subsequently similar correlations were dis-
covered in Random Event Generator (REG) correlated data.
These detect the quantum to classical transition for electrons
tunnelling through a barrier in a tunnel diode, a nanotechnol-
ogy device. According to the standard interpretation of quan-
tum theory such electron current fluctuations should be com-
pletely random, which is why such devices are also known
as hardware Random Number Generators (RNG), and have a
variety of applications assuming such randomness.

These discoveries make the detection and study of gravi-
tational waves particularly simple, and easily extend to a net-
work of detectors, and for the REG technique an international
network of such detectors has existed since 1998, and so that
data is an extremely valuable to the characterisation of the

gravitational wave effect, and also other phenomena which
appear to be induced by more extreme fluctuations. Corre-
lations of the gravitational wave forms permit determination
of the speed and direction of space, which agrees with re-
sults from NASA Earth-flyby Doppler shift data, and with the
1925/26 Dayton Miller Mt.Wilson gas-mode Michelson in-
terferometer data. The correlation data also reveals two new
phenomena: a speed-up when the waves pass deeper into the
earth, and a wave reverberation effect. For collocated zener
diodes the current fluctuations are highly correlated, with no
time delay effects, as expected. The quantum to classical tran-
sition is thus shown to be caused by 3-space dynamics, and
so challenges the standard interpretation of probabilities in
quantum theory.

2 Classical physics gravitational wave detectors

Classical gravitational wave detectors have employed a num-
ber of physical effects and designs: gas-mode Michelson in-
terferometers, optical fibre Michelson interferometers, RF
coaxial cable travel time differential measurements, and more
compact RF coaxial cable – optical fibre measurements,
spacecraft Earth-flyby Doppler effects, and dual RF coaxial
cable travel time measurements [1,2]. All of these techniques
utilise light or EMR anisotropy speed effect in a single device.
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The key issue with such devices is that they are single-site de-
vices, and require a calibration theory, which depends upon
an assumed theory. For example the sensitivity of a Michel-
son interferometer, as indicated by the travel time difference
between the two arms, and detected by means of fringe shifts
as the detector is rotated, is given by

∆t = k2
Lv2

p

c3 cos(2(θ − ψ)) (1)

where L is the arm length, vP is the speed projected onto the
plane of the interferometer, and the angles measure the ro-
tation effect, see [1]. Eqn.(1) is applied to the data in con-
junction with terms accounting for the inclined mirrors and
temperature drift effects [1]. The critical factor k2 is the cal-
ibration constant. With a gas present in the light path, with
refractive index n, k2 ≈ n2 − 1 to a good approximation.
Results from two gas-mode Michelson interferometer exper-
iments are shown in Fig. 1. The results reveal significant
turbulence, which has been identified as gravitational waves,
and much greater in magnitude than expected. Michelson
and Morley in the 1st such experiment in 1887 assumed that
k2 = 1, whereas with air present, n = 1.00029, giving k2 ≈
0.0006, and so much less sensitive than assumed. Note that
a vacuum-mode Michelson interferometer has k2 = 0, and so
completely insensitive to gravitational waves.

A recent gravitational wave experiment used differential
travel time measurements in a dual RF coaxial cable array
[2]. This technique relies upon the absence of Fresnel drag
in RF coaxial cables, at least for low RF frequencies (∼10
MHz). The results agree with those form the Miller gas-mode
Michelson interferometer, and from the NASA flyby Doppler
shift data. The fluctuations were again observed to be a ∼20%
effect.

The interpretation of the magnitude of the detected effects
in these classical detector experiments all rely upon some cal-
ibration theory, and there has always been confusion. Fortu-
nately spacecraft flyby Doppler shift analysis does not suf-
fer from such problems, and has indeed confirmed the re-
sults from the classical detectors. We now report the dis-
covery that nanotechnology quantum detectors respond to the
fluctuations of the passing space, and when the data from
two well-separated detectors is subject to a correlation anal-
ysis of the two local waveforms the average speed and direc-
tion of the passing space is revealed, together with signifi-
cant wave/turbulence effects. This technique gives an abso-
lute measurement of travel times.

3 Quantum gravitational wave detectors

When extending the Dual RF Coaxial Cable Detector exper-
iment to include one located in London, in addition to that
located in Adelaide, an analysis of the measured DSO inter-
nal noise in each identically setup instrument was undertaken,
when the extensive RF coaxial cable array was replaced by

Fig. 1: Top: Speeds vP, of the space velocity v projected onto the
horizontal plane of the Miller gas-mode Michelson interferometer
located atop Mt.Wilson, plotted against local sidereal, for a com-
posite day, with data collected over a number of days in September
1925, see [1]. The data shows considerable fluctuations, from hour
to hour, and also day to day, as this is a composite day. The dashed
curve shows the non-fluctuating best-fit variation over one day, as
the earth rotates, causing the projection onto the plane of the inter-
ferometer of the velocity of the average direction of the space flow
to change. The maximum projected speed from the curve is 417
km/s, corresponding to a speed of 453 km/s, with a RA of ∼5 hrs,
which is very close to results reported herein. The Cassini flyby
Doppler shift data in August 1999 gives a RA = 5.2 hrs [1]. The
green data points, with error bars, at 7 hrs and 13 hrs, are from
the Michelson-Morley 1887 data. The ∼20% speed fluctuations are
seen to be much larger than statistically determined errors, reveal-
ing the presence of turbulence in the space flow, i.e gravitational
waves. Bottom: South celestial pole region. The dot (red) at RA
= 4.3h, Dec = 75◦S, and with speed 486 km/s, is the direction of
motion of the solar system through space determined from NASA
spacecraft earth-flyby Doppler shifts [1], revealing the EM radiation
speed anisotropy. The thick (blue) circle centred on this direction is
the observed velocity direction for different days of the year, caused
by earth orbital motion and sun 3-space inflow. The corresponding
results from the Miller gas-mode interferometer are shown by 2nd
dot (red) and its aberration circle (red dots). For December 8, 1992,
the velocity is RA = 5.2h, Dec = 80◦S, speed 491 km/s, see Table 2
of [1]. The thinner blue aberration circles relate to determination of
earth 3-space inflow speed, see [1].
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Fig. 2: Correlations in band-passed Adelaide-London DSO data
(top) and Perth (Australia)-London REG data (bottom), for January
1, 2013, with London data (red, open dots) advanced by 15 s in both
cases, over the same 200 s time interval. The data points are at 5 s
intervals. In-phase correlations from collocated Zener Diode Detec-
tors are shown in Fig. 7. The REG data was recorded every 1 s, and
has been averaged to 5 s intervals for ease of comparison with DSO
data. The data shows a quasi-periodicity of ∼20 s, related to the re-
verberation effect [3]. The UTC time at all detectors was determined
using internet timing applications, which have ms precision.

short leads. This was intended to determine the S/N ratio for
the joint Adelaide-London experiment. Surprisingly the in-
ternal noise was found to be correlated, with the noise in the
London DSO being some 13 to 20 seconds behind the Ade-
laide DSO∗ noise, see Fig. 2. The correlation data had a phase
that tracked sidereal time, meaning that the average direction
was approximately fixed wrt the galaxy, but with extensive
fluctuations as well from the gravitational wave/turbulence
effect, that had been seen in all previous experiments. The
explanation for this DSO effect was not possible as the DSO
is a complex instruments, and which component was respond-
ing to the passing space fluctuations could not be determined.
But the correlation analysis did demonstrate that not all of
the internal noise in the DSO was being caused solely by
some random process intrinsic to the instrument. Subsequent
experiments, below, now suggest that there are zener diodes
within the time difference measurements hardware within the
DSO.

The travel time delay τ(t) was determined by computing

∗LeCroy WaveRunner 6051A DSOs were used.

the correlation function

C(τ, t) =
∫ t+T

t−T
dt′S 1(t′ − τ/2)S 2[t′ + τ/2)e−a(t′−t)2

(2)

for the two detector signals S 1(t) and S 2(t). Here 2T = 200s
is the time interval used, about UTC time t. The gaussian term
ensures the absence of end-effects. Maximising C(τ, t) wrt τ
gives τ(t) - the delay time vs UTC t, and plotted in Figs. 3
and 4, where the data has been binned into 1hr time intervals,
and the rms also shown. The speed and direction, over a 24hr
period, was determined by fitting the time delay data using

τ =
R · v

v2 , (3)

where R is the Adelaide-London spatial separation vector,
and v(θ, δ) is the 3-space velocity vector, parametrised by
a speed, RA and Declination. This expression assumes a
plane wave form for the gravitational waves. The τ(t) delay
times show large fluctuations, corresponding to fluctuations
in speed and/or direction, as also seen in data in Fig. 1, and
also a quasi-periodicity, as seen in Fig. 2. Then only minimal
travel times, 10 s < τ < 22 s, were retained. Correlations, as
shown in Fig. 2, are not always evident, and then the correla-
tion function C(τ, t) has a low value. Only τ(t) data from high
values of the correlation function were used. The absence of
correlations at all times is expected as the London detector is
not directly “downstream” of the Adelaide detector, and so a
fractal structure to space, possessing a spatial inhomogeneity,
bars continuous correlations, and as well the wave structure
will evolve during the travel time. Fig. 2 shows examples of
significant correlations in phase and amplitude between all
four detectors, but with some mismatches. The approximate
travel time of 15 s in Fig. 2 at ∼4.2 hrs UTC is also apparent in
Fig. 3, with the top figure showing the discovery of the corre-
lations from the two DSO separated by a distance R ≈ 12160
km. That the internal “noise” in these DSO is correlated is a
major discovery.

There are much simpler devices that were discovered to
also display time delayed correlations over large distances:
these are the Random Number Generators (RNG) or Random
Event Generators (REG). There are various designs available
from manufacturers, and all claim that these devices mani-
fest hardware random quantum processes, as they involve the
quantum to classical transition when a measurements, say,
of the quantum tunnelling of electrons through a nanotech-
nology potential barrier, ∼10 nm thickness, is measured by
a classical/macroscopic system. According to the standard
interpretation of the quantum theory, the collapse of the elec-
tron wave function to one side or the other of the barrier, after
the tunnelling produces a component on each side, is purely a
random event, internal to the quantum system. However this
interpretation had never been tested experimentally. Guided
by the results from the DSO correlated-noise effect, the data
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Fig. 3: Travel times from DSO-DSO Adelaide-London data (top),
and REG-REG Perth-London data (bottom) from correlation analy-
sis using (2). The data in each 1 hr interval has been binned, and
the average and rms shown. The thick (red line) shows best fit to
data using plane wave travel time predictor, (3), but after excluding
those data points between 8 and 13 hrs UTC (top) and 10 and 15
hrs UTC (bottom), indicated by vertical band. Those data points are
not consistent with the plane wave modelling, and suggest a scatter-
ing process when the waves pass deeper into the earth, see Fig. 5.
The Perth-London phase is retarded wrt Adelaide-London phase by
∼1.5 hrs, consistent with Perth being 1.5 hrs west of Adelaide. The
Adelaide-London data gives speed = 512 km/s, RA = 4.8 hrs, Dec
= 83◦S, and the Perth-London data gives speed = 528 km/s, RA =
5.3 hrs, Dec = 81◦S. The broad band tracking the best fit line is
for ±1 sec fluctuations, corresponding to speed fluctuation of ±17
km/s. Actual fluctuations are larger than this, as 1st observed by
Michelson-Morley and by Miller, see Fig. 1.

from two REGs, located in Perth and London, was examined.
The data∗ showed the same correlation effect as observed in
the DSO experiments, see Figs. 2–4. However REGs typi-
cally employ a XOR gate that produces integer valued out-

∗The data is from the GCP international network: http://teilhard.
global-mind.org/

Fig. 4: Travel times from REG-REG Perth-London data for August
1, 2012. The data in each 1 hr interval has been binned, and the
average and rms shown. The thick (red line) shows best fit to data
using plane wave travel time predictor, (3), but after excluding those
data points between 18 and 23 hrs UTC, indicated by vertical band.
Those data points are not consistent with the plane wave modelling.
This data gives speed = 471 km/s, RA = 4.4 hrs, Dec = 82◦S. The
change in phase of the maximum of the data, from UTC = 22±2 hr,
for August 1, 2012, to UTC = 12±2 hr for January 2013 (Fig. 3),
but with essentially the same RA, illustrates the sidereal effect: the
average direction of the space flow is fixed wrt to the stars, apart
from the earth-orbit aberration effect, Fig. 1.

Fig. 5: Given measured space velocity, plots show maximum
earth penetration depth of space detected by London detectors for
Adelaide→London, Jan1, 2013 (red) and Perth→London, August 1,
2012 (blue), revealing that the anomalous scattering occurs when
deeper depths are “traversed”. The vertical shadings correspond to
those in Fig. 3 (top) and Fig. 4.

puts with a predetermined statistical form. To study the zener
diode tunnelling currents without XOR gate intervention two
collocated zener diode circuits were used to detect highly cor-
related tunnelling currents, Figs. 6 and 7. When the detectors
are separated by ∼0.5 m, phase differences ∼µs were observed
and dependent on relative orientation. So this zener diode cir-
cuit forms a very simple and cheap nanotechnology quantum
detector for gravitational waves.
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Fig. 6: Left: Circuit of Zener Diode Gravitational Wave Detector,
showing 1.5 V AA battery, 1N4728A zener diode operating in re-
verse bias mode, and having a Zener voltage of 3.3 V, and resistor
R = 10 kΩ. Voltage V across resistor is measured and used to de-
termine the space driven fluctuating tunnelling current through the
zener diode. Correlated currents from two collocated detectors are
shown in Fig. 7. This design avoids data degradation from the XOR
gate in commercial REGs. Right: Photo of zener diode showing size
in comparison to pencil tip. The zener diode costs $0.5.

4 Dynamical 3-space gravitational waves

It is necessary to give some background to the interpretation
of reported correlations as gravitational waves. Experiments
and theory have suggested that space is a dynamical system:

∇·
(
∂v
∂t
+ (v·∇)v

)
+

5α
4

(
(trD)2 − tr(D2)

)
+

δ2∇2
(
(trD)2 − tr(D2)

)
+ ... = −4πGρ, (4)

where Di j = ∂vi/∂x j and ρ(r, t) is the usual matter density.
This entails a velocity field v(r, t) describing the motion of
a structured 3-space relative to an observers frame of refer-
ence. This easily follows from writing Newtonian gravity
in terms of a velocity field, which then permits additional
terms, with coefficients α and δ. This field and its fluctuations
has been repeatedly detected over some 125 years. The 1st
term, the Newtonian gravity term, involves the Euler 3-space
constituent acceleration, while the α− and δ− terms contain
higher order derivative terms and describe the self interac-
tion of space. Laboratory, geophysical and astronomical data
suggest that α is the fine structure constant ≈ 1/137, while
δ appears to be a very small but non-zero Planck-like length.
The emergence of gravity arises from the unique coupling of
quantum theory to the 3-space, which determines the ‘gravi-
tational’ acceleration of quantum matter as a quantum wave
refraction effect,

g =
∂v
∂t
+ (v · ∇)v + (∇ × v)vR −

vR

1 −
v2

R

c2

1
2

d
dt

v2
R

c2

 (5)

where vR = v0 − v is the velocity of quantum matter relative
to the local space. The 1st two terms are the Euler 3-space

acceleration, the 2nd term explains the Lense-Thirring effect
when the vorticity is non-zero, and the last term explains the
precession of planetary orbits. Neglecting relativistic effects
(4) and (5) give

∇ · g = −4πGρ − 4πGρDM, (6)

where ρDM is the α and δ term, describing a 3-space self-
interaction effects, with the α term explaining the so-called
‘dark matter’ effects. The spatial dynamics is non-local and
exhibits instantaneous effects, which points to the universe
being highly connected, consistent with the deeper pre-space
Process Physics [6]. Historically this was first noticed by
Newton who called it action-at-a-distance. This shows a high
degree of non-locality and non-linearity, and in particular that
the behaviour of both ρDM and ρ manifest at a distance irre-
spective of the dynamics of the intervening space. A key im-
plication of (6) is that observed fluctuations in v(r, t) can only
generate gravitational effects via the ρDM processes. So the
velocity field is more fundamental than the Newtonian gravi-
tational acceleration field. Although not presented herein sig-
nificant fluctuations in v(r, t) were observed to be correlated
with solar flares, coronal mass ejections, and earthquakes.
These effects suggest that the 11 year solar cycle is caused by
galactic-scale larger than normal 3-space fluctuations. The
delay of several days between major fluctuations and solar
flares implies that the new 3-space/gravitational wave detec-
tors may be used as an early warning system for such solar
flares.

One consequence of the non-linearity of (4) is that fluctu-
ations in v(r, t) develop reverberations [3], which are clearly
apparent in the data in Fig. 2. Another implication suggested
by the data is that when the 3-space fluctuations penetrate the
earth the non-linearity cause the 3-space waveforms to man-
ifest at a distance, without propagating through the interven-
ing space, resulting in an apparent speed-up, as manifestly
evident in the data – an effect that had to be taken into ac-
count in the analysis based upon a normal plane-wave like
propagation, as indicated by the vertical bands in Figs. 3 and
4. The data from numerous experiments clearly shows that
the so-called “gravitational waves” have observed properties
very different from those commonly assumed.

5 Probability in Quantum Theory

The conventional quantum theories all have the generic form
iℏ∂ψ/∂t = Hψ, differing only by the configuration space on
which ψ is based, and the Hamiltonian. The interpretation has
been, as proposed by Born, that |ψ|2 is the probability density
for the location of a particle, which is assumed to exist apart
from ψ. However missing from this generic unitary time evo-
lution for ψ is (i) the existence of a dynamical 3-space, as
distinct from the usual frame of reference, and which leads to
gravity as am emergent phenomenon, and (ii) the existence of
terms which model the localisation of ψ in space by a clas-
sical detector of quantum waves [5]. In [6, p. 40], it was
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Fig. 7: Zener Diode tunnelling currents over 5 sec interval, showing higher time resolution than in Fig. 2. Band pass filter was used to
remove higher frequencies. Plots have been displaced vertically for ease of viewing. The two zener diode circuits were collocated with the
zener diodes separated by ∼30 mm. Highly correlated currents are observed, demonstrating that the tunnelling currents are not random, as
required by the conventional interpretation of quantum theory, and as 1st discovered in the Adelaide-London correlations.

argued that emergent classicality, including the ψ localisation
effects, are caused by fluctuations in the 3-space. This and
the present results would amount to the discovery that reality
is fundamentally only quantum waves embedded in a quan-
tum foam space, and that the classical world is an emergent
macroscopic phenomenon: our reality is induced by the na-
ture of 3-space fluctuations.

6 Conclusions

We have reported the discovery of the quantum detection of
gravitational waves, showing correlations between well sep-
arated locations, that permitted the absolute determination of
the 3-space velocity of some 500 km/s, in agreement with
the speed and direction from a number of previous analy-
ses, including in particular the NASA spacecraft earth-flyby
Doppler shift effect. This discovery enables a very simple
and cheap nanotechnology zener diode quantum gravitational
wave detection technology, which will permit the study of
various associated phenomena, such as solar flares, coronal
mass ejections, earthquakes, eclipse effects, moon location
effects, non-Poisson fluctuations in radioactivity [4], and
other rate processes, and variations in radioactive decay rates
related to distance of the earth from the Sun, as the 3-space
fluctuations are enhanced by proximity to the sun.
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Atomic Weights Confirm Bipolar Model of Oscillations in a Chain System
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We apply the bipolar model of oscillations in a chain system to the data set of standard
atomic weights. 90% of these masses could be reproduced by this model and were ex-
pressed in continued fraction form, where all numerators are Euler’s number and the
sum of the free link and all partial denominators yields zero. All outliers were either ra-
dioactive or polynuclidic elements whose isotopic compositions as found in samples on
Earth might not be fully representative for the mean values when considering samples
from all parts of the universe.

1 Introduction

In several previous papers we applied the model of oscilla-
tions in a chain system to various systems such as the solar
system [1], excited electronic states of atoms [2], the electron
density in the Hydrogen atom [3], and more recently to the
mass distribution of elementary particles [4].

Initially, this model was founded by Müller in three fun-
damental articles [5–7] and assumes that all protons in the
universe are oscillators, coupled through the physical vac-
uum. As a consequence we can consider (in the most simplest
case) a chain of equal harmonic proton oscillators with an as-
sociated logarithmic spectrum of eigenfrequencies which can
be expressed through continued fractions. In that way, every
mass is interpreted as a proton resonance state and expressed
in continued fraction form.

Recently, a bipolar version of this model was proposed
for the description of elementary particles [4], because the
traditional version could not reproduce their masses in a fully
satisfactory way. The idea of bipolarity postulates that the
fundamental spectrum of proton resonances has an opposite,
an anti-oscillation or inverted oscillation spectrum, and this is
the spectrum of electron resonances.

Mathematically, two opposite oscillation states are char-
acterized through equal continued fraction representations,
but with the difference that in one case all denominators, the
free link and the phase shift have been multiplied by (-1).
From the analysis of elementary particle masses it was sug-
gested to express the electron mass as a proton resonance and
the proton mass as an electron resonance through the follow-
ing equations (e is Euler’s number):

ln
melectron

mproton
= pp + (−6) +

e

12 +
e
−6

and
ln

mproton

melectron
= pe + 6 +

e

(−12) +
e
6

.

Numerically, pp was found to be ≈ −1.75 [4]; for these
phase shifts must hold pp = -pe.

In this article we show that the relative atomic masses can
be reproduced by almost the same the bipolar model. The
only parameter that must be adjusted is the phase shift (from
|p| ≈ 1.75 to |p| ≈ 1.79) and this is a very minor change.

2 Data sources and computational details

The standard atomic weights, including the proton and elec-
tron reference masses were taken from the web-site of the
National Institute of Standards (NIST) and were expressed
in the atomic mass unit u. The following abbreviations and
conventions for the numerical analysis hold:

The atomic masses are transformed into a continued frac-
tion according to the equations

ln
m

melectron
= pe + S , ln

m
mproton

= pp + S ,

where p is the phase shift (it must hold pp = -pe) and S is the
continued fraction (e is Euler’s number)

S = n0 +
e

n1 +
e

n2 +
e

n3 + ...

. (1)

The numerical value of the phase shift p is initially un-
known and must be adjusted in such a way that the largest
possible amount of atomic weights can be expressed through
a continued fraction.

The continued fraction representation p+S is abbreviated
as [p; n0 | n1, n2, n3, . . . ], where the free link n0 is allowed to
be 0,±3,±6,±9 . . . and all partial denominators ni can take
the values e+1,−e−1,±6,±9,±12 . . . . In the tables these ab-
breviations were marked with P or E, in order to indicate pro-
ton or electron resonance states.

The absolute value of the difference between the atomic
weight given by NIST and the atomic weight calculated from
the associated continued fraction representation is defined as
numerical error and listed in the tables.

An atomic weight is considered as an outlier when the
corresponding continued fraction representation provides a
mass value outside the interval “atomic mass ± standard
deviation”.
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Table 1: Continued fraction representations of the 20 most accurately determined atomic weights (Helium and the set of 19 mononuclidic
non-radioactive elements), x = 1.7918229 is the phase shift, SD = standard deviation.

Element Mass ± SD [u] Continued fraction representation(s) Numerical
symbol error [u]

He 4.002602 ± 2.0 × 10−6 P [-x; 3 | 15, e+1, -6, e+1, 33, (6, -e-1, -e-1, -51)] 1.2 × 10−9

Be 9.0121822 ± 4.0 × 10−7 P [-x; 3 | e+1, -e-1, e+1, -e-1, -e-1, e+1, -6, -6, 12, (-9, 6)] 4.3 × 10−8

F 18.99840322 ± 7.0 × 10−8 E [x; 9 | -9, e+1, -e-1, e+1, -e-1, -1680, (1680)] 2.6 × 10−9

Na 22.9897692809 ± 2.9 × 10−9 E [x; 9 | -18, -9, -9, -e-1, e+1, -33, 12, (48)] 7.9 × 10−10

Al 26.98153863 ± 1.2 × 10−7 P [0; 3 | 9, 6, 18, -6, -6, e+1, 9, (-e-1, 33)] 1.2 × 10−9

P 30.97376163 ± 2.0 × 10−7 P [-x; 6 | -e-1, 12, -e-1, 6, -15, e+1, 6, (-15, e+1)] 1.6 × 10−7

E [x; 9 | 18, 15, -18, 18, (-42)] 1.1 × 10−7

Sc 44.9559119 ± 9.0 × 10−7 P [0; 3 | e+1, -9, 9, -e-1, e+1, -21, e+1, (-e-1, 18, -e-1)] 4.5 × 10−7

E [0; 12 | -e-1, -12, e+1, -6, 126, e+1, -e-1, -120] 9.1 × 10−8

Mn 54.9380451 ± 7.0 × 10−7 P [0; 3 | e+1, -e-1, e+1, -e-1, e+1, -e-1, 6, 18, e+1, -e-1, e+1, -e-1, (-27)] 2.2 × 10−7

P [-x; 6 | -12, -e-1, e+1, -e-1, e+1, -6, 111, (-99)] 4.5 × 10−8

E [0; 12 | -6, 6, e+1, -24, e+1, -e-1, e+1, -6, (18, -e-1, -e-1)] 1.2 × 10−8

E [x; 9 | e+1, 63, -e-1, 6, -9, -18, (-51)] 3.6 × 10−10

Co 58.9331950 ± 7.0 × 10−7 E [0; 12 | -6, -6, e+1, -e-1, e+1, -e-1, e+1, -e-1, 162, (-162)] 5.7 × 10−8

E [x; 9 | e+1, -9, -6, -e-1, e+1, -24, -9, (-e-1, 39)] 4.4 × 10−9

As 74.9215965 ± 2.0 × 10−6 P [-x; 6 | 27, -30, -27, (24)] 2.3 × 10−7

Y 88.9058483 ± 2.7 × 10−6 P [-x; 6 | 9, e+1, -e-1, e+1, -e-1, -102, -e-1, (87, e+1)] 5.1 × 10−7

Nb 92.9063781 ± 2.6 × 10−6 P [-x; 6 | 9, -6, -e-1, 21, e+1, -e-1, (27, e+1, -57)] 2.2 × 10−8

E [0; 12 | 69, -e-1, -6, 18, -e-1, (-93, e+1, e+1)] 6.9 × 10−7

Rh 102.905504 ± 3.0 × 10−6 P [-x; 6 | 6, 6, -6, e+1, -e-1, -6, -6, -e-1, (e+1)] 9.1 × 10−7

I 126.904473 ± 4.0 × 10−6 P [-x; 6 | e+1, e+1, e+1, -93, 6, -e-1, e+1, (-e-1, 81, -e-1, -e-1)] 3.6 × 10−7

Cs 132.905451933 ± 2.4 × 10−8 E [0; 12 | 6, e+1, -6, 99, e+1, 6, -6, (-111, -e-1, -e-1)] 1.7 × 10−8

Pr 140.9076528 ± 2.6 × 10−6 P [-x; 6 | e+1, -330, -e-1, 6, -e-1, e+1, (-12, 330)] 4.4 × 10−8

E [0; 12 | 6, -63, -e-1, e+1, 9, -12, (48)] 2.5 × 10−7

Tb 158.9253468 ± 2.7 × 10−6 P [-x; 6 | e+1, -6, e+1, -e-1, -6, 525, (-519, -e-1)] 5.8 × 10−8

Ho 164.9303221 ± 2.7 × 10−6 P [0; 6 | -e-1, e+1, 18, e+1, -6, 6, 75, (-99, -e-1)] 5.2 × 10−9

Tm 168.9342133 ± 2.7 × 10−6 P [0; 6 | -e-1, e+1, e+1, 6, 6, 6, 12, (15, -e-1, -51)] 3.2 × 10−9

Au 196.9665687 ± 6.0 × 10−7 P [0; 6 | -e-1, -78, e+1, e+1, 6, -e-1, e+1, (15, -e-1, 51)] 7.1 × 10−9

E [0; 12 | e+1, -9, -e-1, -e-1, -15, e+1, 6, -e-1, e+1, -e-1, (e+1, 6)] 4.6 × 10−7

3 Results and discussion

It can be easily verified that the standard Müller model with
the phase shifts p = 0 and p = 1.5 does not apply at all to the
relative atomic weights, while the bipolar model with phase
shifts of approximately ± 1.75 (as used in a previous study
[4]) produces around 30% outliers. When working with the
complete data set, varying the phase shift does not lead to a
clear result. In that case we obtain a wealth of slightly differ-
ent phase shifts, all providing a quite similar number of out-
liers and a similar sum of squared residuals (sum of squared
numerical errors).

In order to arrive at a conclusion, the data set of 84 atomic
masses was divided into two parts. The first part is composed
of the element Helium (two stable isotopes, but still very low
standard deviation) and the set of 19 non-radioactive mononu-
clidic elements. Here, the maximum measurement error is
2.7×10−6 u. The second part consists of the remaining el-

ements; their standard deviations vary from ∼10−5 to 0.1 u
(Pb) due to isotopic variations found in samples taken at dif-
ferent locations on Earth.

It is fact that the “mean atomic mass” of a mononuclidic
element is everywhere in the universe exactly the same, while
we would expect some variations in the atomic masses of
polynuclidic elements when analyzing rock samples obtained
from different galaxies. It is reasonable to assume that the
conditions during the formation of the chemical elements
were subjected to variations throughout the universe.

Therefore we give priority to the atomic masses of the
mononuclidic chemical elements and only the first part of the
data set has been analyzed thoroughly. The phase shift was
adjusted in such a way that (a) the number of outliers, and
(b) the sum of squared residuals are minimized. This leads
to a phase shift of ≈ 1.79 (exact value is 1.7918229) which is
close to ln(6). Table 1 lists these atomic masses together with
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Table 2: Continued fraction representations of the atomic weights of polynuclidic elements, from H to Kr (except He), x = 1.7918229 is
the phase shift, SD = standard deviation.

Element Mass ± SD [u] Continued fraction representation(s) Numerical
symbol error [u]

H 1.00794 ± 7 × 10−5 P [0; 0 | 4128, (-4128)] 2.5 × 10−8

E [x; 6 | -9, e+1, 6, -e-1, e+1, -e-1, e+1, (-e-1, 9, -12)] 5.9 × 10−5

Li 6.941 ± 2 × 10−3 P [-x; 3 | e+1, 57, (e+1, -e-1, -e-1, -60)] 5.5 × 10−4

E [0; 9 | 6, 27, (-42)] 4.9 × 10−4

B 10.811 ± 7 × 10−3 P [0; 3 | -e-1, -e-1, -e-1, -9, (e+1, 6, e+1, e+1)] 2.0 × 10−4

E [0; 9 | e+1, -e-1, -6, -e-1, (21, -24, e+1)] 5.5 × 10−5

E [x; 9 | -e-1, e+1, 24, (-33)] 3.5 × 10−3

C 12.0107 ± 8 × 10−4 E [0; 9 | e+1, -e-1, e+1, -e-1, e+1, e+1, -6, (e+1, -9, 6, -e-1, -e-1, -e-1)] 1.4 × 10−6

E [x; 9 | -e-1, 9, -9, -e-1, e+1, (-9, e+1)] 6.8 × 10−4

N 14.0067 ± 2 × 10−4 E [x; 9 | -e-1, -6, e+1, e+1, -e-1, 9, (-12)] 6.2 × 10−5

O 15.9994 ± 3 × 10−4 P [0; 3 | -12, 6, 6, -e-1, (-e-1, 6, -9, e+1, e+1)] 9.0 × 10−7

Ne 20.1797 ± 6 × 10−4 P [0; 3 | -1056, (1053)] 2.3 × 10−5

E [x; 9 | -9, -e-1, 42, (-42, e+1)] 1.6 × 10−5

Mg 24.3050 ± 6 × 10−4 P [0; 3 | 15, -15, (-138, 135)] 8.4 × 10−9

E [x; 9 | -30, e+1, -18, (-e-1, 39)] 8.7 × 10−5

Si 28.0855 ± 3 × 10−4 P [0; 3 | 9, -e-1, -27, -e-1, e+1, (15, e+1)] 2.7 × 10−4

P [-x; 6 | -e-1, e+1, e+1, e+1, -6, 18, (-e-1, -18, -e-1)] 2.1 × 10−5

S 32.065 ± 5 × 10−3 P [0; 3 | 6, -27, -e-1, (e+1, 18)] 3.1 × 10−4

P [-x; 6 | -e-1, 33, (-33, -6, e+1)] 1.4 × 10−5

E [x; 9 | 15, -12, (6, -18)] 2.7 × 10−4

Cl 35.453 ± 2 × 10−3 E [0; 12 | -e-1, e+1, -12, -e-1, 6, (-6, e+1)] 9.1 × 10−5

Ar 39.948 ± 1 × 10−3 P [0; 3 | e+1, 9, e+1, -9, e+1, (-e-1, 6, -e-1, -e-1, -9)] 4.3 × 10−7

P [-x; 6 | -6, e+1, -6, e+1, -12, (18, -e-1, -e-1)] 6.8 × 10−4

E [0; 12 | -e-1, 9, -e-1, e+1, -e-1, (-21, e+1, e+1)] 3.9 × 10−4

E [x; 9 | 6, e+1, 348, (-e-1, -363)] 2.0 × 10−5

K [Outlier] 39.0983 ± 1 × 10−4 P [0; 3 | e+1, 6, e+1, 9, -e-1, e+1, -e-1, e+1, -e-1] 6.3 × 10−4

Ca 40.078 ± 4 × 10−3 P [-x; 6 | -6, e+1, -6, -e-1, 6] 1.1 × 10−3

E [0; 12 | -e-1, 9, -e-1, -e-1, -e-1, (-21, e+1, e+1, e+1, e+1)] 1.3 × 10−4

E [x; 9 | 6, e+1, 9, (-24, -e-1)] 8.0 × 10−4

Ti 40.078 ± 1 × 10−3 E [0; 12 | -e-1, -e-1, -6, e+1, 45, (-51, e+1)] 1.2 × 10−5

E [x; 9 | e+1, e+1, -e-1, 9, (-23202, -e-1, 23184)] 6.8 × 10−12

V [Outlier] 50.9415 ± 1 × 10−4 P [0; 3 | e+1, -e-1, 12, e+1, -e-1, e+1, -e-1, e+1, -e-1] 4.7 × 10−4

Cr 51.9961 ± 6 × 10−4 P [0; 3 | e+1, -e-1, 6, -9, -12, (12)] 1.8 × 10−5

E [0; 12 | -6, e+1, -e-1, e+1, -15, e+1, (-e-1, 9, -e-1)] 3.4 × 10−5

Fe 55.845 ± 2 × 10−3 P [-x; 6 | -15, e+1, -e-1, -30, (39)] 1.6 × 10−4

E [0; 9 | e+1, -69, 6, (54, -e-1)] 2.4 × 10−4

Ni 58.6934 ± 4 × 10−4 P [-x; 6 | -18, -e-1, e+1, -e-1, e+1, -e-1, (12, e+1)] 2.9 × 10−4

E [0; 12 | -6, -6, 9, -e-1, e+1, (-9)] 3.9 × 10−4

Cu 63.546 ± 3 × 10−3 P [-x; 6 | -42, -e-1, -15, (51, e+1)] 8.5 × 10−5

E [x; 9 | e+1, -e-1, -e-1, e+1, -75, (66)] 7.5 × 10−5

Zn 65.38 ± 2 × 10−2 P [-x; 6 | -78, e+1, (-e-1, 72)] 3.4 × 10−3

E [0; 12 | -9, 9, e+1, (-e-1, -12)] 4.4 × 10−3

E [x; 9 | e+1, -e-1, -12, e+1, (-21, 24, -e-1)] 9.8 × 10−5

Ga 69.723 ± 1 × 10−3 P [-x; 6 | 93, 6, e+1, (-105, -e-1)] 3.3 × 10−5

E [x; 9 | e+1, -e-1, e+1, 6, e+1, -e-1, e+1, -e-1, (-e-1, -15)] 4.5 × 10−6

Ge 72.64 ± 1 × 10−2 P [-x; 6 | 39, -12, (-33)] 1.1 × 10−3

Se 78.96 ± 3 × 10−2 P [-x; 6 | 18, -9, (-15)] 2.1 × 10−3

Br 79.904 ± 1 × 10−3 E [0; 12 | -24, -6, 6, (12)] 4.4 × 10−4

Kr 83.798 ± 2 × 10−3 P [-x; 6 | 12, e+1, -18, (6, -e-1, -6)] 3.4 × 10−5

E [0; 12 | -42, -e-1, e+1, e+1, (-e-1, 30)] 2.3 × 10−4
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Table 3: Continued fraction representations of the atomic weights of polynuclidic elements, from Rb to Os, x = 1.7918229 is the phase
shift, SD = standard deviation.

Element Mass ± SD [u] Continued fraction representation(s) Numerical
symbol error [u]

Rb 85.4678 ± 3 × 10−4 P [-x; 6 | 12, -9, 6, -6, -e-1, (-9, e+1)] 2.3 × 10−4

E [0; 12 | -63, e+1, -15, (66, -e-1)] 2.1 × 10−4

Sr 87.62 ± 1 × 10−2 E [0; 12 | -144, (132)] 5.8 × 10−3

Zr 91.224 ± 2 × 10−3 P [-x; 6 | 9, 21, e+1, (-36, -e-1)] 2.8 × 10−4

E [0; 12 | 126, 6, (-144)] 4.6 × 10−5

Mo [Outlier] 95.96 ± 2 × 10−2 E [0; 12 | 39, -e-1, e+1, -e-1, e+1] 5.7 × 10−2

Ru 101.07 ± 2 × 10−2 P [-x; 6 | 6, e+1, -9, -e-1, (6, -9)] 3.5 × 10−3

E [0; 12 | 21, e+1, -e-1, (12, -45)] 8.6 × 10−4

Pd 106.42 ± 1 × 10−2 P [-x; 6 | 6, 189, (6, -207)] 1.5 × 10−5

E [0; 12 | 15, 6, -6, (-27)] 8.2 × 10−3

Ag [Outlier] 107.8682 ± 2 × 10−4 E [0; 12 | 15, -e-1, -e-1, -6, e+1, -e-1, e+1, -e-1] 3.3 × 10−4

Cd [Outlier] 112.411 ± 8 × 10−3 E [0; 12 | 12, -15, e+1, -e-1, e+1, -e-1] 1.1 × 10−2

In 114.818 ± 3 × 10−3 P [-x; 6 | 6, -e-1, 6, -e-1, 6, e+1, (-24, e+1)] 2.5 × 10−3

Sn 118.710 ± 7 × 10−3 E [0; 12 | 9, 6, -e-1, e+1, -e-1, e+1, (-27)] 1.5 × 10−5

Sb 121.760 ± 1 × 10−3 P [-x; 6 | e+1, e+1, -e-1, 30, 6, (-42, -e-1)] 8.6 × 10−5

E [0; 12 | 9, -12, e+1, e+1, -e-1, e+1, (-e-1, -9, -e-1)] 6.3 × 10−4

Te [Outlier] 127.60 ± 3 × 10−2 P [-x; 6 | e+1, e+1, e+1, -e-1, e+1, -e-1, e+1] 7.2 × 10−2

Xe [Outlier] 131.293 ± 6 × 10−3 P [-x; 6 | e+1, 6, e+1, -e-1, e+1, -e-1, e+1, -e-1] 1.1 × 10−2

Ba 137.327 ± 7 × 10−3 P [-x; 6 | e+1, 21, 6, (-33, -e-1)] 4.9 × 10−3

E [0; 12 | 6, 9, -9, e+1, (-18, -e-1)] 8.9 × 10−4

La 138.90547 ± 7 × 10−5 P [-x; 6 | e+1, 42, -e-1, -e-1, -6, (-42, e+1)] 3.1 × 10−5

Ce 140.116 ± 1 × 10−3 P [-x; 6 | e+1, 132, 6, (-e-1, -144)] 5.8 × 10−4

E [0; 12 | 6, 84, e+1, -e-1 (-102)] 8.1 × 10−4

Nd 144.242 ± 3 × 10−3 E [0; 12 | 6, -9, e+1, -6, (9, -e-1, -12)] 8.9 × 10−4

Sm 150.36 ± 2 × 10−2 P [0; 6 | -e-1, e+1, -e-1, e+1, -e-1, -e-1, (-18, 12, e+1, e+1)] 1.9 × 10−4

P [-x; 6 | e+1, -9, 12, (-e-1, -9)] 2.8 × 10−3

Eu 151.964 ± 1 × 10−3 P [0; 6 | -e-1, e+1, -e-1, e+1, e+1, -6, (-69, -e-1, 69)] 8.3 × 10−6

E [0; 12 | 6, -e-1, e+1, 6, e+1, -24, (-e-1)] 8.7 × 10−5

Gd 157.25 ± 3 × 10−2 P [0; 6 | -e-1, e+1, -6, e+1, -e-1, e+1, (9, -e-1, -9)] 9.7 × 10−4

P [-x; 6 | e+1, -6, 6, -12, (-e-1, 6)] 1.2 × 10−3

Dy 162.500 ± 1 × 10−3 P [-x; 6 | e+1, -e-1, -e-1, -45, (e+1, 39)] 5.0 × 10−4

E [0; 12 | e+1, e+1, -6, -e-1, -9, -e-1, e+1, (-e-1, 9, -6)] 7.4 × 10−4

Er 167.259 ± 3 × 10−3 P [0; 6 | -e-1, e+1, 6, 6, e+1, (-18, -e-1)] 3.8 × 10−4

P [-x; 6 | e+1, -e-1, -27, 30, (-9)] 1.3 × 10−4

E [0; 12 | e+1, e+1, e+1, 63, (-e-1, -75, -e-1, -e-1)] 2.0 × 10−4

Yb 173.054 ± 5 × 10−3 P [0; 6 | -e-1, 6, -e-1, e+1, (222, e+1, -234)] 1.5 × 10−5

P [-x; 6 | e+1, -e-1, 6, e+1, 9, e+1, (-e-1, -e-1, -21)] 8.6 × 10−4

E [0; 12 | e+1, 6, e+1, -e-1, e+1, -e-1, -e-1, (-18)] 1.0 × 10−3

Lu 174.9668 ± 1 × 10−4 P [0; 6 | -e-1, 6, -6, 9, -e-1, e+1, e+1, (-15)] 1.4 × 10−5

P [-x; 6 | e+1, -e-1, 6, -e-1, e+1, -6, -e-1, e+1, -e-1, (-6, e+1)] 7.3 × 10−5

Hf 178.49 ± 2 × 10−2 P [-x; 6 | e+1, -e-1, e+1, -48, (-e-1, 42)] 1.9 × 10−3

Ta 180.94788 ± 2 × 10−5 E [0; 12 | e+1, 21, -39, -6, (-e-1, 12)] 1.1 × 10−5

W 183.84 ± 1 × 10−2 P [0; 6 | -e-1, 9, 9, -e-1, (e+1, -24, e+1)] 3.4 × 10−3

P [-x; 6 | e+1, -e-1, e+1, -e-1, e+1, -e-1, 15, (-21)] 2.3 × 10−3

E [0; 12 | e+1, 60, (-72, -e-1)] 1.8 × 10−3

Re 186.207 ± 1 × 10−3 P [0; 6 | -e-1, 12, -6, -12, (e+1)] 1.2 × 10−4

E [0; 12 | e+1, -135, (123, -e-1)] 5.8 × 10−4

Os 190.23 ± 3 × 10−2 E [0; 12 | e+1, -21, -e-1, (9)] 3.6 × 10−3
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Table 4: Continued fraction representations of the atomic weights of polynuclidic and radioactive elements, from Ir to U, x = 1.7918229 is
the phase shift, SD = standard deviation.

Element Mass ± SD [u] Continued fraction representation(s) Numerical
symbol error [u]

Ir 192.217 ± 3 × 10−3 E [0; 12 | e+1, -15, -e-1, -9, -e-1, (e+1, 12)] 1.1 × 10−3

Pt 195.084 ± 9 × 10−3 P [0; 6 | -e-1, 195, (-201, e+1)] 1.9 × 10−3

E [0; 12 | e+1, -12, e+1, 15, (-e-1, -e-1, -15)] 4.2 × 10−4

Hg 200.59 ± 2 × 10−2 P [0; 6 | -e-1, -21, 6, (e+1, 9)] 1.6 × 10−3

Tl 204.3833 ± 2 × 10−4 P [0; 6 | -e-1, -12, 6, -e-1, e+1, e+1] 1.9 × 10−4

E [0; 12 | e+1, -6, -12, 6, e+1, -e-1, (-e-1)] 5.4 × 10−5

E [x; 12 | -e-1, e+1, -e-1, -12, -27, (27, e+1)] 7.9 × 10−5

Pb 207.2 ± 0.1 P [0; 6 | -e-1, -9, 6, (12, -15, e+1)] 1.4 × 10−3

E [0; 12 | e+1, -6, 6, (27, -39, -e-1)] 8.4 × 10−5

E [x; 12 | -e-1, e+1, -6, e+1, -e-1, e+1, -e-1 (-6)] 6.8 × 10−2

Bi [Outlier] 208.98040 ± 1 × 10−5 E [0; 12 | e+1, -6, e+1, -9, -e-1, -e-1, 6, e+1, -e-1, e+1, -e-1] 1.8 × 10−5

Pa 231.03588 ± 2 × 10−5 E [x; 12 | -e-1, 6, -6, -e-1, -e-1, -18, -6, (e+1, e+1, e+1, 12)] 1.2 × 10−6

Th 232.03806 ± 2 × 10−5 E [0; 12 | e+1, -e-1, e+1, e+1, -9, e+1, e+1, -9, e+1, -e-1 (6, -e-1, -e-1, -e-1, -e-1)] 1.7 × 10−5

E [x; 12 | -e-1, 6, -12, -e-1, 6, 6, -e-1 (9, e+1, e+1, e+1, -27)] 5.0 × 10−7

U 238.02891 ± 3 × 10−5 E [0; 12 | e+1, -e-1, e+1, -6, e+1, e+1, -e-1, -15, (-e-1, -e-1, 9)] 1.8 × 10−5

the corresponding continued fraction representations and the
numerical errors. As it can be seen, no outlier is present.

Moreover, many continued fractions show the effect of
successively canceling denominators. For instance, the con-
tinued fraction representation for Be, as calculated by the
computer is: P [-x; 3 | e+1, -e-1, e+1, -e-1, -e-1, e+1, -6,
-6, 12, (-6, -360, . . . )]. The denominators in brackets are not
required to obtain a mass value inside the interval “atomic
mass ± SD”. Through a minimal manipulation, we obtain a
zero sum of all denominators and the free link, without signif-
icantly changing the value of the fraction: P [-x; 3 | e+1, -e-1,
e+1, -e-1, -e-1, e+1, -6, -6, 12, (-9, 6)]. As this procedure
can be applied in a similar way to all elements, we demon-
strate this and opted to express all continued fractions as a
zero sum. Only redundant denominators (given in brackets)
were manipulated to achieve the zero sums.

In a second step, the so-adjusted model was tested against
the remaining 64 chemical elements. Only eight outliers were
found (K, V, Mo, Ag, Cd, Te, Xe, Bi [radioactive]). Tables 2
to 4 show the results; for outliers, the best possible contin-
ued fraction is displayed (not as a zero sum), and it can be
seen that in most cases the atomic mass is reproduced with a
numerical error very little higher than the standard deviation.

4 Conclusions

The relative atomic masses are now the second data set that
can be described by the bipolar model of oscillations in a
chain system. In total, 10% outliers were found which might
be attributed to the fact that the isotopic compositions of these
outlier elements as found here on Earth are not good repre-
sentatives for the true mean compositions when considering
samples from distant parts of the universe.

Anyway, it is important to note that all mononuclidic ele-
ments can be described perfectly by this model.
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Time-Retarded Transverse Vector Potential
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This article provides the basic design for a laboratory instrument that may detect the
Earth’s time-retarded transverse vector potential [Hafele J.C.Zelm. Jour., 2012, v.5,
134]. The instrument is based on the compound pendulum used by N.A. Kozyrev
to measure the change in weight of a suspended aircraft navigation gyroscope
[Kozyrev N.A. Zelm. Jour., 2012, v.5, 188]. If such an instrument is developed to mea-
sure the strength of the Earth’s vector potential with a precision of about 1 part in 1000,
the neoclassical causal theory can be worked backwards to calculate the speed of the
Earth’s gravitational field.

Introduction

A new causal version for Newtonian gravitational theory has
been shown to explain exactly the six Earth flyby anomalies
reported by NASA in 2008, and also explain exactly an over-
looked lunar orbit anomaly [1, 2]. The new causal theory,
which retains the traditional acausal radial component, re-
quires in addition a small time-retarded transverse component
for the Earth’s gravitational field. The new transverse compo-
nent is orthogonal to the traditional radial component and is
directed along the east-west direction. It is well-known that
the traditional radial component can be derived from the gra-
dient of a scalar potential. However, the time-retarded trans-
verse component can be derived only from the curl of a vector
potential. The formula for the vector potential will be found
by using Stoke’s theorem. The resulting vector potential isdi-
rected along the north-south direction. The north-south com-
ponent of the gravitational field is given by the time-derivative
of the vector potential. By using an analogous Lorentz force
law, it will be shown that a small time-dependent radial com-
ponent is created by induction from the north-south gravita-
tional field. This small induced radial component can slightly
change the weight of a suspended gyroscope. By measuring
the change in weight, the neoclassical causal theory can be
worked backwards to deduce the strength of the vector poten-
tial, and thereby indirectly measure the speed of the Earth’s
gravitational field.

More than 60 years ago [3], N.A. Kozyrev used the caus-
ality principle to predict the need for a second universal veloc-
ity, one that is to be associated with rotational motion [4].He
designatesc2 as the speed for this second universal velocity.
He developed a theory that suggests that the numerical value
for c2 should be related to the fine structure constant [5]. In
electrostatic cgs units, the unit of electric charge is the stat-
coulomb.

The formula for the fine-structure constant, designated by
α, in cgs electrostatic units, becomes [5]

α =
2π
c

e2

h
�

1
137
, (1)

Fig. 1: Schematic of the compound pendulum developed by
N.A. Kozyrev to measure a change in the weight of a gyroscope sus-
pended from a balanced cross beam [6]. The preferred orientation
of the cross beam appears to have been along the north/south direc-
tion, and that for the rotational axis of the gyroscope’s rotor along
the east/west direction. In some cases a weight change was detected
by a small steady imbalance in the cross beam.

wherec is the well-known speed of light in vacuum,e is the
electronic charge in statcoulombs, andh is Plank’s constant.
The numerical value for the ratioe2/h is 350 km/s. Kozyrev
found by experiment thatc2� 700 km/s=2e2/h= c/430=
αc/π.

A schematic for the compound pendulum developed by
N.A. Kozyrev to measurec2 is shown in Fig. 1 [6]. Kozyrev
found that the weight of the gyroscope under certain condi-
tions would change when there is a vertical vibration of the
cross arm. Sometimes he observed a relative weight change
on the order of 10−5.

The objective ofthis article is to derive the effects of the
neoclassical causal theory on a suspended gyroscope. We will
find that the weight changes observed by N.A. Kozyrev may
have been caused by the causal version of Newton’s theory.

Parameter values and basis vectors

Numerical values for various parameters will be needed. Let
m be the mass of the gyroscope’s rotor, letR be its radius,

68 Joseph C. Hafele. Laboratory Instrument for Detecting the Earth’s Time-Retarded Transverse Vector Potential



October, 2013 PROGRESS IN PHYSICS Volume 4

let ωrot be its angular speed, letProt be the rotational period,
let Irot be the moment of inertia, letJrot be the angular mo-
mentum vector, and letErot be the rotational energy. Typical
numerical values for the parameters of an aircraft navigation
gyroscope are [4]

m = 0.1 kg,

R = 2× 10−2 m,

ωrot = 2π500 rad/s= 3.14× 103 rad/s,

Prot = 2π/ωrot = 2× 10−3 s,

Irot = mR2 = 4× 10−5 kg×m2,

Jrot = Irotωrot = 0.126 kg×m2/s,

Erot =
1
2

Irotω
2
rot = 197 kg× m2/s2.

(2)

Let the Earth be simulated by a spinning isotropic sphere of
radiusrE , massME , sidereal spin angular speedΩE , equato-
rial surface speed veq, moment of inertiaIE , surface gravita-
tional scalar potentialϕE , surface gravitational fieldgE, spin
energyEE , and spin angular momentumJE . Numerical val-
ues for the Earth’s parameters are [1]

G = 6.6732× 10−11 N ×m2/kg2,

rE = 6.37× 106 m,

ME = 5.98× 1024 kg,

ΩE = 7.29× 10−5 rad/s,

veq = rEΩE = 4.65× 102 m/s,

IE = 8.02× 1037 kg×m2,

ϕE =
GME

rE
= 6.26× 107 m2/s2,

gE =
GME

r2
E

= 9.83 m/s2,

EE =
1
2

IEΩ
2
E = 2.13× 1029 kg×m2/s2,

JE = IEΩE = 5.85× 1033 kg×m2/s.

(3)

Let (X,Y, Z) be the rectangular coordinates for an inertial
frame-of-reference, let the Earth’s center be at the origin, let
the (X,Y) plane coincide with the equatorial plane, and let
the axis of rotation coincide with theZ-axis. LeteX be a unit
vector directed outwardly along theX-axis, leteY be a unit
vector directed outwardly along theY-axis, and leteZ be a
unit vector directed outwardly along theZ-axis.

Let the spherical coordinates for an exterior field-point
be (r,φ,λ), wherer is the geocentric radial distance,φ is the
azimuthal angle, andλ is the geocentric latitude. Leter be
a unit vector directed upward alongr, let eφ be a unit vector
directed towards the east, and leteλ be a unit vector directed
towards the north. The triad (er,eφ, eλ) forms the basis for a
right-handed system of orthogonal spherical coordinates.

Effects of a vertical vibration of a suspended gyroscope

Let the field-point be at the center of the rotor of an aircraft
navigation gyroscope. Letλ be the geocentric latitude for the

gyroscope. Leth be the rotor’s height above the Earth’s sur-
face, leth0 be a constant altitude, leth1 be the vibration ampli-
tude, and letωh be the angular speed for a vertical vibration.
Then

h = h0 + h1 cosωht. (4)

The time dependent geocentric radial distance becomes

r = rE

(

1+
h0

rE
+

h1

rE
cos (ωht)

)

. (5)

Let rφ be the rotor’s geocentric radius of gyration

rφ = rE cosλ

(

1+
h0

rE
+

h1

rE
cos (ωht)

)

. (6)

Let v be the rotor’s vector inertial velocity

v = ervr + eφvφ + eλvλ. (7)

The formulas for vr and vφ are

vr =
dr
dt
= −h1ωh sin (ωht),

vφ = rφΩφ = rEΩE cosλ

(

1+
h0

rE
+

h1

rE
cos (ωht)

)

.
(8)

Let Er be the radial energy. If the radial energy isconstant,
then

constant = Er =
1
2

mv2r − mgEh =

=
1
2

mh2
1ω

2
h sin2 (ωht) − mgE(h0 + h1 cos (ωht)).

(9)
By using a trig identity for sin2(ωht), the time independent
part of (9) becomes

constant =
1
4

mh2
1ω

2
h − mgEh0. (10)

Suppose a gyroscope is suspended by a spring of unstretched
lengthℓ0 and spring constantk, as depicted in Fig. 2. Suppose
the upper end of the spring is connected to a vibrator which
can produce a time-dependent supporting force.

Fup = W + mhvibω
2
vib cos (ωvibt), (11)

whereW is the weight of the gyroscope. If the vibrator is
turned off, hvib = 0. In this case, the upper end of the spring
is attached to a fixed solid point, and the system becomes a
simple undriven harmonic oscillator.

Let δℓ0 be the stretch of the spring when the gyroscope is
attached. Thenk =W/δℓ0� mgE/δℓ0, wheregE is the Earth’s
radial gravitational field at the surface. Letδℓ0= h0. Then

k =
mgE

h0
. (12)
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Fig. 2: Schematic for a forced harmonic oscillator; a rotor of massm
suspended by a spring of spring constantk with an upward support-
ing forceFup. HereT is the spring tension pulling up on the rotor,
the weightW is the downward force of gravity on the rotor, andh
is the height of the center of the rotor above the surface. Assume
that the mass of the spring is negligible, and that the mass ofthe
gyroscope approximately equals the mass of the rotor.

If the system is enclosed in a glass box, the damping of small
amplitude free oscillations would be weak. The equation for
an undamped harmonic oscillator is [7]

d2h
dt2
+ ω2

kh = 0, (13)

where

ω2
k =

k
m
=
gE

h0
. (14)

If h0 � 10−4 m, thenωk � 313 rad/s or 50 Hz. Ifωh =ωk and
the constant of (10) is zero, the connection betweenh1 andh0

becomes
h1 = 2h0. (15)

This shows that the constanth0 is comparable with the ampli-
tudeh1.

Now consider the forced harmonic oscillator. Suppose
the vibrator is turned on and adjusted to an amplitudehvib and
angular speedωvib. In this case,

Fup = mgE + mhvibω
2
vib cos (ωvibt). (16)

If ωvib �ωk, the system is at or near resonance [7]. At res-
onance, if the damping is small, the speeddh/dt is in phase
with the driving forceFup, the average kinetic energy in the
system is at a maximum, and the amplitude at the rotorh1 can
be many times greater than the driver amplitudehvib.

The effects of vibration alone apply to any dead weight,
because vibration alone does not depend on the rotation of
the gyroscope’s rotor. Gyroscopic forces do depend on the
rotation of the rotor. Therefore, for a complete analysis, gy-
roscopic forces must be included.

Effects of gyroscopic forces

Gyroscopic forces cause precession and nutation [7, 8]. Pre-
cession is a steady revolution of the rotor around a vertical

Fig. 3: Depiction of the gyroscopic forces acting on a rotor of mass
m, radiusR, and angular momentum vectorJrot, which is supported
by an upward forceFup at a distanceb along the axel from the ro-
tor’s center to the support. AssumeJrot is in the horizontal plane. If
Fup =mgE , the precessional torque on the rotorτpcn = bmgE . In this
case, the rotor precesses around the support with an angularspeed
ωpcn = bmgE/mR2ωrot.

axis, and nutation is an up-down nodding motion of the rotor.
The general problem for motions of a spinning rigid body can
be quite complicated, but the problem is simplified for certain
special cases. The case for “THE HEAVY SYMMETRICAL
TOP WITH ONE POINT FIXED” is described in great detail
by H. Goldstein [8, p. 213].

Suppose the axel for a rotor is supported at a distanceb
from the center with an upward supporting forceFup and with
the angular momentum vectorJrot released in the horizontal
plane, as depicted in Fig. 3.

For a first case, suppose the supporting force is constant
and equal to the weight,Fup =mgE . Consider the case for
slow precession without nutation.

Let ωpcn be the precessional angular speed, and let vpcn

be the linear speed. Then the torqueτpcn = bmgE = Jrotωpcn.
Solving for the angular speed givesωpcn = bgE/R2ωrot.

If the distanceb=0.1 m, R=2×10−2 m, and ωrot =

3.14×103 rad/s, numerical values forωpcn and vpcn are

ωpcn =
bgE

R2ωrot
= 0.782 rad/s,

vpcn = bωpcn = 7.82× 10−2 m/s.
(17)

Thus we find that the precessional speed for this case would
be slow and constant at about 8 cm/s. Notice that this gyro-
scopic force supports the entire weight of the rotor.

Suppose the system is started withJrot at a small initial
angleδθ0 above the horizontal plane. Lethntn be the ampli-
tude for nutation, which is the initial height above the hori-
zontal plane. Then

hntn = b tanδθ0. (18)

When released, the rotor will precess with the angular speed
ωpcn of (17) and oscillate up and down with an upper maxi-
mum angleδθ0 and a lower minimum angleδθ1. Letωntn be
the angular speed for nutation. The formula forωntn can be
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found in [8, p. 221].

ωntn =
bgE

R2ωpcn
= ωrot = 3.1× 103 rad/s. (19)

Thus we find that the frequency for nutation is the same as
the frequency for the rotor, 500 Hz.

The formula for the difference sinδθ0− sinδθ1 can be
found in [7, p. 312].

sinδθ0 − sinδθ1 =
2gEb3

R4ω2
rot

.

If b=0.1 m, R=2×10−2 m, andωrot = 3.14× 103 rad/s, the
numerical value for the difference becomes

sinδθ0 − sinδθ1 = 1.24× 10−2, (20)

the amplitude
hntn = 6.2× 10−4 m, (21)

and the linear speed for nutation becomes

vntn = hntnωntn sin (ωntnt) � (1.9 m/s) sin (ωntnt). (22)

Now let’s change the length of the axel. Suppose the rotor’s
axel is extended on the other side of the support by the same
distanceb, and a dead weight that balances the cross beam
is attached. IfJrot is directed outward from the supporting
point, the dead weight would produce a torque equal in mag-
nitude but opposite to the direction forτpcn, which would can-
cel the precessional motion. But such a balance would not
cause any change in the nutational motion.

With the cross beam balanced in this manner, suppose
the vibrator that supports the cross beam is turned on and
adjusted to have an amplitude ofhntn and an angular speed
ωntn. This would induce an artificial nutation, but only if the
gyroscope’s rotor is spinning with an angular speedωrot. If
the radial gravitational field contains a small time-dependent
component with an angular speed nearωntn, there would be
interesting interference effects and beat frequencies that could
become visible in the balance of the cross beam.

The Earth’s time-retarded transverse gravitational field

To satisfy the causality principle, the neoclassical causal the-
ory postulates a new time-retarded transverse component for
the Earth’s gravitational field [1]. Letgφ be the Earth’s time-
retarded transverse component. The formula for the magni-
tude is [1]

gφ = Cφ

(

1−
Ωφ

ΩE

)

PS (r) cos2 λ, (23)

where the definition for the coefficient is

Cφ = Gρ̄rE
veq

cg
. (24)

HereG is the gravity constant,rE is the Earth’s spherical ra-
dius,ΩE is the Earth’s sidereal angular speed, ¯ρ is the Earth’s
mean mass density,cg is the speed of propagation of the
Earth’s gravitational field,r is the geocentric radial distance
to the field point,λ is the geocentric latitude for the field
point,Ωφ is the angular speed of the projection of the field
point onto the equatorial plane, andPS (r) is a power series
representation for a triple integral over the Earth’s volume.

The numerical value forCφ with cg = c is

Cφ = Gρ̄rE
veq

c
= 3.635× 10−6 m/s2. (25)

The formula for the power series is

PS (r)=
( rE

r

)3
(

C0+C2

( rE

r

)2
+C4

( rE

r

)4
+C6

( rE

r

)6
)

, (26)

where the values for the coefficients are

C0= 0.50889, C2=0.13931,

C4= 0.01013, C6=0.14671.
(27)

Let CPS 0 be the value forPS (rE). The definition and numer-
ical value are

CPS 0 = C0 +C2 +C4 + C6 = 0.805. (28)

Let JZ be the geocentric angular momentum for the rotor,
defined as

JZ = mr2
φΩφ (29)

By conservation of angular momentum,

constant =
Jz

m
= r2
φΩφ = r2

EΩE cos2 λ (30)

Solving (30) forΩφ gives

Ωφ � ΩE

(

1− 2
h0

rE
− 2

h1

rE
cos (ωht)

)

(31)

Then the difference

1−
Ωφ

ΩE
= 2

h0

rE
+ 2

h1

rE
cos (ωht). (32)

Substituting (32) into (23) produces

gφ = Cφ

(

2
h0

rE
+ 2

h1

rE
cos (ωht)

)

PS (r) cos2 λ. (33)

The numerical value forgφ with cg = c, r= rE , h0= h1=

10−4 m, andλ = 60◦, is

gφ =
(

2.3× 10−17 m/s2
)(

1+ cos (ωht)
)

. (34)

This result shows that the time-retarded transverse gravita-
tional field for a suspended gyroscope is totally negligible.
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Fig. 4: Depiction of the semicircular area to be used for Stoke’s
theorem. The contour for the line integral isA→ B→C→ A. Here
dℓ is an elemental path length vector, da is an elemental area vector,
andeλ is a unit vector forλ. The field-point is atr and the elemental
area da is atr ′.

The Earth’s time-retarded transverse vector potential

Let A be the vector potential forgφ. Then by definition

gφ = ∇ × A. (35)

Units for A arem2/s2, the same as the units for the scalar po-
tential. Because the divergence ofgφ is zero, the divergence
of A must also be zero, which means thatA cannot have a
component directed alonger. Consequently,A must be di-
rected alongeλ.

The needed elemental vectorsdℓ and da for integration
using Stoke’s theorem are depicted in Fig. 4. Stoke’s theorem
states that the line integral ofA • dℓ around a closed con-
tour equals the surface integral of∇× A • da over the surface
bounded by the contour. It is symbolically written as

∮

A • dℓ =
"
∇ × A • da. (36)

Consider the closed contour depicted in Fig. 4:A→ B→
C→ A. The left side of (36) becomes

∮

A→ B

A • dℓ = 0,
∮

B→ C → A

A • dℓ = Aλπr. (37)

The right side of (36) becomes
"
∇ × A • da = gφ

"
r′dr′dλ′ = gφ

π

2
r2. (38)

Next comes the solution

Aλ =
1
2

rgφ = A0 cos2 λ PS ′(r)

(

2
h0

rE
+ 2

h1

rE
cos (ωht)

)

(39)

where the definition forA0 and its numerical value withcg = c
and the definition for the power series forAλ are

A0 =
CφrE

2
= 11.6 m2/s2,

PS ′(r) =
r

rE
PS (r) =

= C0

( rE

r

)2
+C2

(rE

r

)4
+C4

( rE

r

)6
+ C6

( rE

r

)8
.

(40)

The formula that connectsgλ to the time-dependence ofAλ
is [9, p. 219].

gλ = −
1
vk

dAλ
dt
=

= 2
A0

vk
cos2 λ

(

h1ωh

rE
PS ′(rE) sin (ωht)−

−
dPS ′

dt

(

h0

rE
+

h1

rE
cos (ωht)

))

,

(41)

where vk is the “induction speed” for the neoclassical causal
theory.

The numerical value for the average induction speed has
been found to be [1]

v̄k � 5× 103 m/s. (42)

The coefficientA0 is inversely proportional tocg. It is interest-
ing to notice thatA0/vk with cg = c is inversely proportional
to cvk, and that

√
cvk � 11× 105 m/s= 1.7c2, (43)

wherec2 is Kozyrev’s secondary universal speed, the one that
is to be associated with rotational motion [4].

Let CPS ′0 be the value forPS ′ at r= rE .

CPS ′0 = PS ′(rE) = C0 +C2 +C4 +C6 = 0.805. (44)

The value fordPS ′/dt evaluated atr= rE is

dPS ′

dt

∣

∣

∣

∣

∣

r=rE

= (2C0+4C2+ 6C4+8C6)
h1ωh

rE
sin (ωht) =

= 2.81
h1ωh

rE
sin (ωht).

(45)

The formula forgλ to first order inh1/rE reduces to

gλ � Cλ cos2 λ
h1ωh

vk
sin (ωht), (46)
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where the definition and numerical value withcg = c for Cλ
are

Cλ = 0.805× 2
A0

rE
= 0.805Cφ = 2.926× 10−6 m/s2, (47)

andCφ is given by (24).
If h1=10−4 m, ωh =ωrot, vk = 5 km/s, andλ=60◦, the

numerical value forgλ reduces to

gλ = (4.6× 10−11 m/s2) sin (ωht) (48)

This result shows that the vector potential can produce a rela-
tively large value for the north/south transverse gravitational
field. The ratio forgλ/gφ, with gφ from (34), is on the order
of

gλ

gφ
∼ 2× 106. (49)

Secondary radial induction field

The analogous Lorentz force law for gravity [1, 2] states that
a north/south transverse gravitational field can induce a radial
gravitational field. Letgind be the induced gravitational field.
Then

gind =
v
vk
× g =

1
vk

∣

∣

∣

∣

∣

∣

∣

∣

er eφ eλ
vr vφ vλ
gr gφ gλ

∣

∣

∣

∣

∣

∣

∣

∣

. (50)

The induced gravitational field alonger is the only one of the
components that can change the weight of the rotor.

ergind = er

(

vφ
vk
gλ −

vλ
vk
gφ

)

� er
vφ
vk
gλ. (51)

Substituting (8) and (42) into (51) gives

gind � Cind sin (ωht), (52)

where

Cind = Cλ
h1ωh

vk

veq

vk
cos3 λ (53)

If λ= 60◦, h1= 10−4 m,ωh =ωrot, and vk = 5 km/s, the numer-
ical value forCind reduces to

Cind = 2.1× 10−12 m/s2. (54)

This result predicts a very small value forgind, but it is close to
the order of magnitude forgλ, which is predicted to be about
106 timesgφ. There may be some hidden effect that enhances
gind by 106, in particular the nutation effects of (21) and (22).
This question can be resolved only by experiment.

Conclusions and recommendations

It seems plausible but not proven that the weight changes ob-
served by N.A. Kozyrev may have been caused by the neo-
classical causal theory. Modern experimental techniques us-
ing digital electronics, sensitive strain gauges, sensitive ac-
celerometers, and computer controls, can greatly increasethe

sensitivity and reliability of laboratory instruments. Ifan in-
strument that can detect the Earth’s time-retarded transverse
vector potential is developed with a precision of about 1 part
in 1000, the theory can be worked backwards to provide a
measured value for the speed of the Earth’s gravitational field.
To accomplish this end, a dedicated effort to develop an in-
strument, and comprehensive systematic studies using such
an instrument, are highly recommended.
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In general, it is assumed in some non viscous flows that the flow velocity is constant
at a cross-section. In this paper, we impose more realistic boundary conditions by, for
example, introducing viscosity, and suction at walls, the net mass flow will change since
the continuity equation must hold. The convective acceleration terms will be products
of variables such that a non-linear behaviour will take place in the flow. The work will
consist of deriving all the equations and parameters needed to described this kind of
flow. An approximate analytic solution for the case of small Reynold number Re is
discussed using perturbation techniques. Expression for the velocity components and
pressure are obtained. The governing non-linear differential equation that cannot be
solved analytically is solved numerically using Runge-Kutta Program and the graphs of
axial and lateral velocity profiles are drawn.

1 Introduction

The problems of fluid flow through porous duct have arouse
the interest of Engineers and Mathematicians, the problems
have been studied for their possible applications in cases of
membrane filtration, transpiration cooling, gaseous diffusions
and drinking water treatment as well as biomedical engineer-
ing. Such flows are very sensitive to the Reynold number.

Berman was the first researcher who studied the problem
of steady flow of an incompressible viscous fluid through
a porous channel with rectangular cross section, when the
Reynold number is low and the perturbation solution assum-
ing normal wall velocity to be equal was obtained [1].

Sellars [2], extended the problem studied by Berman by
using very high Reynold numbers.

Also wall suctions were recognize to stabilize the bound-
ary layer and critical Reynold number for natural transition
46130 was obtained [3]. The stabilization effects of wall suc-
tion is due to the change of mean velocity profiles.

In the review of Joslin [4], it is also noticed that the uni-
form wall suction is not only a tool for laminar flow control
but can also be used to damped out already existing turbu-
lence.

The effects of Hall current on the steady Hartman flow
subjected to a uniform suction and injection at the boundary
plates has been studied [5].

Other reviews of flow in porous duct tend to focus only on
one specific aspect of the subject at a time such as membrane
filteration [8], the description of boundary conditions [6] and
the existence of exact solutions [7].

In this paper, we consider the steady two-dimensional
laminar flow of an incompressible viscous fluid between two
parallel porous plates with equal suction and assume that the
wall velocity is non uniform.

2 Formulation of the problem

The steady laminar flow of an incompressible viscous fluid
between two parallel porous plates with an equal suction at
walls and non uniform cross flow velocity is considered. The
well known governing equations of the flow are:

Continuity equation

∂u
∂x
+
∂v

∂y
= 0. (1)

Momentum equations (without body force)

u
∂u
∂x
+ v

∂u
∂y
= −1

ρ

∂p
∂x
+ ν

(
∂2u
∂x2 +

∂2u
∂y2

)
, (2)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p
∂y
+ ν

(
∂2v

∂x2 +
∂2v

∂y2

)
. (3)

Let us consider channel flow between uniformly parallel
plates with equal suction. Assuming that we are far down-
stream of the entrance, the boundary conditions can be de-
fined as

y = h, u = 0, v = vw, (4)

y = −h, u = 0, v = −vw. (5)

Let u(0) denote the average axial velocity at an initial sec-
tion (x = 0). Then it is clear from a gross mass balance that
u(x) will differ from u(0) by the amount vw

h x. This observation
led Berman(1953) to formulate the following relation for the
stream in the channel [9].

ψ(x, y) = (hu(0) − vwx) f (y∗). (6)

Where y∗ = y
h , ψ(x, y) is a stream function,u(0) is initial av-

erage axial velocity and f is dimensionless function to be de-
termined. The velocity components follow immediately from
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the definition of ψ:

u(x, y∗) =
∂ψ

∂y
=

(
u(0) − vwx

h

)
f ′(y∗) = u(x) f ′(y∗), (7)

v(x, y∗) = −∂ψ
∂x
= vw f (y∗) = v(y). (8)

The stream function must now be made to satisfy the mo-
mentum equations (2) and (3) for steady flow (2) and (3) will
now become

u
∂u
∂x
+
v

h
∂u
∂y∗
= −1

ρ

∂p
∂x
+ ν

(
∂2u
∂x2 +

1
h2

∂2u
∂y∗2

)
, (9)

u
∂v

∂x
+
v

h
∂v

∂y∗
= − 1

ρh
∂p
∂y∗
+ ν

(
∂2v

∂x2 +
1
h2

∂2v

∂y∗2

)
. (10)

Using (7) and (8) in (9) and (10), the momentum equa-
tions reduces to,

−1
ρ

∂p
∂x
=

(
u(0) − vwx

h

) (
vw
h

(
f f ′′ − f ′2

)
− ν

h2 f ′′′
)
, (11)

− 1
ρh

∂p
∂y∗
=
v2
w

h
f f ′ − νvw

h2 f ′′. (12)

Now differentiating (12) w.r.t x, we get

∂2 p
∂x∂y∗

=
∂2 p
∂x∂y

= 0. (13)

Differentiating (11) w.r.t y∗, we get

∂2 p
∂x∂y∗

=

(
u(0) − vwx

h

) d
dy∗

(
vw
h

(
f f ′′ − f ′2

)
− ν

h2 f ′′′
)
. (14)

From (13), (14) can be written as

d
dy∗

(
vw
h

(
f f ′′ − f ′2

)
− ν

h2 f ′′′
)
= 0, (15)

vw
h

(
f f ′′′ − f ′ f ′′

) − ν

h2 f ′′′′ = 0.

Let the suction Reynold number be Re = hvw
ν

and substi-
tute into above expression, we get

f ′′′′ + Re
(
f ′ f ′′ − f f ′′′

)
= 0. (16)

(16) has no known analytic-closed form solution, but it can
be integrated once i.e integrate (16) w.r.t y∗, we get

f ′′′ + Re
(

f ′2 − f f ′′
)
= K = const. (17)

The boundary conditions on f (y∗) 0f (4) and (5) can now be
written as,

f (1) = 1, f (−1) = −1, f ′(1) = 0, f ′(−1) = 0. (18)

Hence, the solution of the equations of motion and conti-
nuity is given by non-linear fourth order differential equation
(16) subject to the boundary condition (18).

3 Results

3.1 Approximate analytic solution (perturbation)

The non-linear ordinary differential equation (16) subject to
condition (18) must in general be integrated numerically.
However for special case when “Re” is small, approximate
analytic results can be obtained by the use of a regular per-
turbation approach. Note that perturbation method has been
used because the equations (16 and 18) are non-linear by us-
ing that technique, we get a linear approximated version of
the true equations. The solution of f (y∗) may be expanded in
power of Re [10]

f (y∗) =
∞∑

n=0

Ren fn(y∗) (19)

where fn(y∗) satisfies the symmetric boundary conditions

f0(0) = f ′0(1) = f ′′0 (0) = 0, f0(1) = 1 (20)

and
fn(0) = f ′n(1) = f ′′n (0) = 0, fn(1) = 1. (21)

Here fn are independent of Re. Substituting (19) in (16), we
get(

f ′′′′0 + Re f ′′′′1 + Re2 f ′′′′2

)
+ Re

[ (
f ′0 + Re f ′1 + Re2 f ′2

)(
f ′′0 + Re f ′′1 + Re2 f ′′2

)
−

(
f0 + Re f1 + Re2 f2

)(
f ′′′0 + Re f ′′′1 + Re2 f ′′′2

) ]
= 0.

Equating coefficients of Re, we get

f ′′′′o = 0, (22)

f ′′′′1 + f ′o f ′′o − fo f ′′′o = 0, (23)

f ′′′′2 + f ′o f ′′1 + f ′1 f ′′o − fo f ′′′1 − f1 f ′′′o = 0. (24)

The solution of (22) is of the form

fo(y∗) =
Ay∗3

6
+

By∗2

2
+Cy∗ + D,

where A,B,C and D are constants.
Applying the boundary condition (20) to the above equa-

tion, we get

fo(y∗) =
1
2

(
3y∗ − y∗3

)
. (25)

The solutions of Eq (23) and (24) subject to the boundary
condition (21), are:

f1(y∗) = − 1
280

(
y∗7 − 3y∗3 − 2y∗

)
, (26)

f2(y∗) =
1

1293600
×(

14y∗11 − 385y∗9 + 198y∗7 + 876y∗3 − 703y∗
)
. (27)
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Hence, the first order perturbation solution for f (y∗) is

f ′(y∗) = fo(y∗) + Re f1(y∗),

f 1(y∗) =
1
2

(
3y∗ − y∗3

)
− Re

280

(
y∗

7 − 3y∗3 − 2y∗
)
. (28)

The second order perturbation of solution for f (y∗) is

f 2(y∗) = fo(y∗) + Re f1(y∗) + Re2 f2(y∗),

f 2(y∗) =
1
2

(
3y∗ − y∗3

)
− Re

280

(
y∗7 − 3y∗3 − 2y∗

)
+

Re2

1293600

(
14y∗11 − 385y∗9 + 198y∗7

+876y∗3 − 703y∗
)
.

(29)

Hence, the first order expression for the velocity compo-
nents are:

u(x, y∗) =
[
u(0) − vwx

h

]
f ′(y∗) =[

u(0) − vwx
h

] 3
2

(
1 − y∗2

) (
1 − Re

420

(
2 − 7y∗2 − 7y∗4

))
, (30)

v(x, y∗) = vw f (y∗) =

vw

[
1
2

(
3y∗ − y∗3

)
− Re

280

(
y∗7 − 3y∗3 − 2y∗

)]
. (31)

For pressure distribution, from Eq. (11) we get

h2

ρν

∂p
∂x
=

[
u(0)− vwx

h

] [
f ′′′(y∗) + Re

(
f ′2(y∗) − f (y∗) f ′′(y∗)

)]
,

and since f ′′′(y∗) + Re
(

f ′2(y∗) − f (y∗
)

f ′′(y∗)) = K, from
(17), we have:

∂p
∂x
=

Kρν
h2

[
u(0) − vwx

h

]
=

Kµ
h2

[
u(0) − vwx

h

]
. (32)

Now, from Eq. (12), we have

∂p
∂y∗
=
µvw
h

f ′′(y∗) − ρν2 f (y∗) f ′(y∗). (33)

Since dp = ∂p
∂x dx + ∂p

∂y∗ dy
∗, then

dp =
Kµ
h2

[
u(0) − vwx

h

]
dx

+

[
µvw
h

f ′′(y∗) − ρν2 f (y∗) f ′(y∗)
]

dy∗.
(34)

Integrating (34), we get

p(x, y∗) = p(0, 0) − ρν
2

2
f 2(y∗) +

Kµ
h2

[
u(0)x − vwx2

2h

]
+
µvw
h

[
f ′(y∗) − f ′(0)

]
. (35)

The pressure drop in the major flow direction is given by

p(x, 0) − p(x, y∗) =
Kµ
h2

[
vwx2

2h
− u(0)x

]
. (36)

Fig. 1: Lateral velocity profiles for flow between parallel plates with
equal suctions for different values of Re.

Fig. 2: Axial velocity profiles for flow between parallel plates with
equal suctions for different values of Re.

3.2 Numerical solution

The approximate results of the previous section are not reli-
able when the Reynold number is not small. To obtain the
detail information on the nature of the flow for different val-
ues of Reynold number (i.e. Re = 0, 10, 20, 30), a numerical
solution to the governing equations is necessary. The Runge-
Kutta program App.C is used to solve Eq. (17) numerically.
One initial condition and constant (K) are unknown; i.e. start-
ing at y∗ = 1, then f ′′(1) and K were guessed and the solution
double-iterated until f (−1) = −1 and f ′(−1) = 0. The most
complete sets of profiles are shown in the figs. 1 and 2.

4 Discussion

The velocity profiles have been drawn for different values of
Reynold number (i.e. Re = 0, 10, 20, 30). The shapes change
smoothly with Reynold number and show no odd or unstable
behaviour. Suction tends to draw the profiles toward the wall.
From fig. (1), it is observed that for Re > 0 in the region
0 ≤ y∗ ≤ 1, f (y∗) decreases with the increase of Reynold
number Re. Also from fig. (2), it is observed that, for Re > 0,
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then f ′(y∗) decreases with an increase of the Reynold number
in the range of 0 ≤ y∗ ≤ 1.

5 Conclusion

In this paper, a class of solutions of laminar flow through
porous duct has been presented. Numerical approach is nec-
essary for arbitrary values of Re. Also, when a cross flow
velocity along the boundary is not uniform, a numerical tech-
nique is necessary to solve Eq. (2) and (3). Also, from the
results obtained in this article, we can now conclude that, the
non-linear effects of a flow of the porous duct is due to non
uniform cross flow velocity and non vanishing terms of con-
vective acceleration of momentum equations. The perturba-
tion solution obtained for this problem reduces to the results
of Berman [1].
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Nomenclature

A,B,C,D: Constants
K: Arbitrary Constant
f: Dimensionless function representing lateral velocity profile
h: Height of the channel
P: Pressure
x: Axial distance
y: Lateral distance
vw: Lateral wall velocity
u(x,y): Axial velocity component
v(x,y): Lateral velocity component
y∗ = y

h : Dimensionless lateral distance
Re = vwh

ν
: Wall Reynold number

Greek Symbols

µ: Shear viscosity
ν: Kinematic viscosity
ρ: Fluid density
ψ(x, y): Stream function.
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Understanding the Dirac Equation and the Electron-Vacuum System

William C. Daywitt

National Institute for Standards and Technology (retired), Boulder, Colorado. E-mail: wcdaywitt@me.com

It has been close to a century since the Dirac equation first appeared, but it has yet to be
understood on an intuitive, fundamental level. The reason for this lack of understanding
is twofold: the equation is expressed in terms of the secondary constant ℏ; and the
vacuum state and its coupling to the electron particle have not been developed as part of
the electron model. What follows briefly reviews the vacuum coupling and illustrates
it by deriving the Schrödinger and Pauli equations as derivatives of the Dirac equation,
and by explaining the zitterbewegung response that is a vacuum dynamic associated
with the coupling force. It is argued that the fields of quantum electrodynamics have as
their origin the degenerate vacuum state.

1 Introduction

The Dirac electron defined here is a massive “point” charge
(−e∗,m) that obeys the Dirac equation and is coupled to the
negative-energy Planck vacuum (PV) continuum via the two-
term coupling force [1]

e2
∗

r2 −
mc2

r
(1)

the massive charge exerts on the PV. The electron Compton
radius rc (= e2

∗/mc2) is that radius from the center of the mas-
sive charge (in its rest frame) to the radius rc where the cou-
pling force vanishes. The bare charge (−e∗) itself is massless,
while the electron mass m results from the bare charge being
driven by the zero-point electromagnetic field [2] [3]; corre-
sponding to which is a vanishingly small sphere containing
the driven charge whose center defines the center of both the
driven charge and its derived mass. It is from the center of
this small sphere that the position operator r for the massive
charge and the electron-vacuum complex is defined and from
which the radius r in (1) emerges.

The PV model of the complete electron consists of two in-
terdependent dynamics, the dynamics of the massive charge
in the previous paragraph and the dynamics of the PV con-
tinuum to which the massive charge is coupled. An example
of the latter dynamic is the (properly interpreted) zitterbewe-
gung [4] [1] that represents a harmonic-oscillator-type exci-
tation taking place at the r = rc sphere surrounding the mas-
sive point charge, an oscillation resulting from the vacuum
response to the vanishing of (1) at rc. The point-like nature
of the massive charge, in conjunction with the continuum na-
ture of the PV, are what give the electron its so-called wave-
particle-duality. Mathematically, the electron’s wave nature
is apparent from the fact that the spinor solutions to the Dirac
equation are spinor fields, and it is upon these fields that the
covariant gradient operator

∂µ =
∂

∂xµ
=

(
∂

c∂t
,∇

)
(2)

operates. Thus the spinors are associated with PV distortion
— with no distortion the gradients vanish, resulting in null
spinors and the dissolution of (3).

The free-particle Dirac equation can be expressed in the
form (from (A10) in Appendix A)

irc
∂

c∂t

(
ϕ

χ

)
+

(−→σ · irc∇χ
−→σ · irc∇ϕ

)
=

(
ϕ

−χ

)
(3)

in terms of the single constant rc, a constant that normalizes
the operator in (2). The free-space particle solution ϕ, and the
negative-energy vacuum solution χ, for this electron-vacuum
system are 2×1 spinors and −→σ is the Pauli 2×2 vector ma-
trix. The spinor solutions from the two simultaneous equa-
tions in (3) are strongly coupled by the inverted χ-ϕ spinor
configuration of the second term, showing the vacuum state
to be an integral part of the electron phenomenon. (It will be
seen that this coupling is even present in the nonrelativistic
Schrödinger equation.) The negative spinor (−χ) on the right
is a manifestation of the negative-energy nature of the vac-
uum. Equation (3) expresses the Dirac equation in terms of
the normalized PV gradients on the left of the equal sign.

What follows illustrates the previous ideas by reiterat-
ing the standard development of the free-particle Schrödinger
equation and the minimal coupling substitution leading to the
Pauli equation.

2 Schrödinger equation

The Dirac-to-Schrödinger reduction [5, p. 79] begins with
eliminating the high-frequency components from (3) by as-
suming (

ϕ

χ

)
=

(
ϕ0

χ0

)
e−imc2t/ℏ =

(
ϕ0

χ0

)
e−ict/rc (4)

where ϕ0 and χ0 are slowly varying functions of time com-
pared to the exponentials. Inserting (4) into (3) gives

irc
∂

c∂t

(
ϕ0

χ0

)
+

(−→σ · irc∇χ0
−→σ · irc∇ϕ0

)
=

(
0
−2χ0

)
(5)
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where the 0 on the right is a 2×1 null spinor. This zero spinor
indicates that the mass energy of the free particle is being ig-
nored, while the effective negative-mass energy of the “vac-
uum particle” has been doubled. In effect, mass energy for
the particle-vacuum system has been conserved by shifting
the mass energy of the free particle to the vacuum particle.

The lower of the two simultaneous equations in (5) can be
reduced from three to two terms by the assumption∣∣∣∣∣irc

∂χ0

c∂t

∣∣∣∣∣ ≪ |−2χ0| (6)

if the kinetic energy (from the first equation in (A2)) of the
vacuum particle is significantly less than its effective mass
energy. Inserting (6) into (5) yields

irc
∂

c∂t

(
ϕ0

0

)
+

(−→σ · irc∇χ0
−→σ · irc∇ϕ0

)
=

(
0
−2χ0

)
(7)

as the nonrelativistic version of (3). The mass energy of the
free particle, and the kinetic energy of the vacuum particle
(associated with the lower-left null spinor), are discarded in
the Schrödinger approximation.

Separating the two equations in (7) produces

irc
∂ϕ0

c∂t
+ −→σ · irc∇χ0 = 0 (8)

and
−→σ · irc∇ϕ0 = −2χ0 (9)

and inserting (9) into (8) leads to

irc
∂ϕ0

c∂t
− (−→σ · irc∇)2

2
ϕ0 = 0 . (10)

Finally, inserting the Pauli-matrix identity (A12)

(−→σ · irc∇)2 = I (irc∇)2 (11)

into (10) yields the free-particle Schrödinger equation

irc
∂ϕ0

c∂t
=

(irc∇)2

2
ϕ0 or iℏ

∂ϕ0

∂t
=

(iℏ∇)2

2m
ϕ0 (12)

where the two spin components in ϕ0 are ignored in this ap-
proximation. The scalar harmonic function

ϕ0 −→ exp [−i(Et − p · r)/ℏ)] (13)

satisfies both equations as it should, and leads to the nonrel-
ativistic energy-momentum relation E = p2/2m, where p =
mv. The equation on the left in (12) expresses the Schrödinger
equation in terms of PV gradients.

The vacuum property implied by (11), and the fact that ϕ0
is a spinor field, show that the vacuum state is a significant
(but hidden) part of the nonrelativistic Schrödinger equation.
The Dirac-to-Pauli reduction leads to the same conclusion.

3 Minimal coupling

By itself the coupling force (1) is insufficient to split the two-
fold degeneracy of the spinors in the free-particle Dirac (3)
and Schrödinger (12) equations. It takes an external field to
effect the split and create the well-known 1/2-spin electron
states. The following illustrates this conclusion for the case
of the minimal coupling substitution.

The minimal coupling substitution [5, p.78] is

pµ −→ pµ − eAµ/c (14)

where e is the magnitude of the observed electron charge,
pµ = (E/c,p) is the 4-momentum, and Aµ = (A0,A) is the
electromagnetic 4-potential. Inserting (14) with (A1) and
(A2) into the Dirac equation (A3) leads to(

iℏ
∂

∂t
− eA0

)
ψ − cαα ·

(̂
p − eA

c

)
ψ = mc2βψ (15)

which can be expressed as

irc
∂

c∂t

(
ϕ

χ

)
+

(−→σ · (irc∇ + a)χ
−→σ · (irc∇ + a)ϕ

)
= a0

(
ϕ

χ

)
+

(
ϕ

−χ

)
(16)

in the 2×1 spinor formulation, where a0 ≡ eA0/mc2 and a ≡
eA/mc2. Then proceeding as in Section 2 produces

irc
∂

c∂t

(
ϕ0

0

)
+

(−→σ · (irc∇ + a)χ0
−→σ · (irc∇ + a)ϕ0

)
= a0

(
ϕ0

χ0

)
+

(
0
−2χ0

)
. (17)

The Compton radius in (16) and (17) has been accounted
for as a gradient normalizer. The remaining constants (e and
m) appear only in association with the 4-potential Aµ — if
the external potential vanishes, the electron charge and mass
are removed (a0 = 0 and a = 0) from the equations, and
(16) and (17) reduce to (3) and (7) respectively. Furthermore,
the energy eA0 appears to increase the energy level of the
negative-energy PV continuum. This latter conclusion can
be appreciated by combining the two terms on the right side
of (17): ( (

eA0/mc2
)
ϕ0(

eA0/mc2 − 2
)
χ0

)
(18)

where a0 has been replaced by its definition. With a constant
potential energy eA0 = 2mc2, the lower parenthesis vanishes
and the free-space electron energy and the vacuum-energy
spectrum just begin to overlap [1]. This latter result is the
phenomenon that leads to the relativistic Klein paradox [5,
p. 127].

If it is further assumed that

|a0χ0| ≪ |− 2χ0| (19)

then (17) becomes

irc
∂

c∂t

(
ϕ0

0

)
+

(−→σ · (irc∇ + a)χ0
−→σ · (irc∇ + a)ϕ0

)
= a0

(
ϕ0

0

)
+

(
0
−2χ0

)
(20)
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which is the nonrelativistic version of (16). Then eliminating
χ0 from the two simultaneous equations in (20) leads to the
equation

irc
∂ϕ0

c∂t
=
−→σ · (irc∇ + a)−→σ · (irc∇ + a)

2
ϕ0 + a0ϕ0 (21)

for the spinor ϕ0. Equation (21) then leads to the Pauli equa-
tion [5, p.81].

Using (A11) to calculate the square of the numerator in
the first term on the right of the equal sign in (21) yields

irc
∂ϕ0

c∂t
=

(irc∇ + a)2

2
ϕ0 +

i−→σ · (irc∇ × a)
2

ϕ0 + a0ϕ0 (22)

remembering that ϕ0 post-multiplies the square before calcu-
lation. The first term in (22) contains the electron’s orbital
angular momentum; and the second its spin, as manifested in
the scaler product of −→σ and the curl of the vector potential A.
Using (A1), the corresponding spin operator can be expressed
as

ŝ =
ℏ−→σ
2
=

e2
∗
−→σ

2c
=

(−e∗)(−e∗)−→σ
2c

(23)

where one of the charges (−e∗) in (23) belongs to the massive
point charge (−e∗,m) and the other to the separate Planck par-
ticles (−e∗,m∗) within the PV. The product e2

∗ suggests that
the spin may be related to the interaction of the massive point
charge with the PV charges when the vacuum is under the
influence of a magnetic field B (= ∇ × A).

4 Conclusions and comments

The physics of the PV state [1, 6] has provided a simple intu-
itive explanation for the Dirac, Schrödinger, and Pauli equa-
tions in terms of the massive point charge (−e∗,m) and its
interaction (1) with the PV. It is the ignorance of this cou-
pling force that has obscured the meaning of the Dirac equa-
tion since its inception and, as seen in the next paragraph, the
meaning of the zitterbewegung frequency.

The electron Compton relation rcm = e2
∗ in (A1) holds

for both combinations (∓e∗,±m); so the vacuum hole (e∗,−m)
exerts a coupling force on the vacuum state that is the negative
of (1). The combination of the two forces explain why the
zitterbewegung frequency (2c/rc [1] [4]) is twice the angular
frequency (mc2/ℏ = c/rc) associated with the electron mass
(from Appendix B).

The purpose of this paper is to illustrate the massive-
charge-PV nature of the electron phenomenon; and to reestab-
lish the vacuum state as an essential and necessary part of a
complete electron theory, that part that has been superseded
by the idea of the quantum field. While the quantum field for-
malism, like the Green function formalism, is an important
tool [5, p. 143] [7], the present author believes that the corre-
sponding quantum field does not constitute an essential phys-
ical phenomenon apart from the dynamics of vacuum state
(from Appendix C).

Appendix A: Dirac equation

The PV is characterized in part by the two Compton rela-
tions [1]

rcmc2 = r∗m∗c2 = e2
∗ (= cℏ) (A1)

connecting the massive point charge (−e∗,m) of the electron
to the individual Planck particles (−e∗,m∗) within the degen-
erate PV, where rc and m, and r∗ and m∗ are the Compton
radius and mass of the electron and Planck particles respec-
tively. The bare charge (−e∗) is massless and is related to the
observed electronic charge (−e) via the fine structure constant
α = e2/e2

∗. From (A1), the energy and momentum operators
can be expressed as

Ê = iℏ
∂

∂t
= mc2

(
irc

∂

c∂t

)
and p̂ = −iℏ∇ = mc(−irc∇) (A2)

the parenthetical factors implying that the operators, operat-
ing on the Dirac spinors, provide a measure of the gradients
within the PV continuum. In the present free-electron case,
these gradients are caused solely by the coupling force (1)
and its negative (Appendix B).

The upper and lower limits to the PV negative-energy
spectrum are −mc2 and −m∗c2 respectively, where m∗ is the
Planck mass. The continuum nature of the vacuum is an ap-
proximation that applies down to length intervals as small as
ten Planck lengths (10 r∗) or so; that is, as small as ∼ 10−32cm.

Using (A1) and (A2), the Dirac equation [5, p.74]

ie2
∗
∂ψ

c∂t
+ αα · ie2

∗∇ψ = mc2βψ (A3)

can be expressed as

irc
∂ψ

c∂t
+ αα · irc∇ψ = βψ (A4)

where the 4×4 vector-matrix operator

αα =
( 0 −→σ
−→σ 0

)
(A5)

where −→σ = (σ1, σ2, σ3) and

σ1 =

( 0 1
1 0

)
σ2 =

( 0 −i
i 0

)
σ3 =

( 1 0
0 −1

)
(A6)

are the three 2×2 Pauli matrices. The 4×4 matrix operator

β =
( I 0

0 −I

)
(A7)

where I represents the 2×2 unit matrix and the zeros here and
in (A5) are 2×2 null matrices. The covariant gradient operator

∂

∂xµ
=

(
∂

∂x0 ,
∂

∂x1 ,
∂

∂x2 ,
∂

∂x3

)
=

(
∂

c∂t
,∇

)
(A8)

is seen in (A2) and (A4) to have its differential coordinates
normalized (∂xµ/rc) by the electron Compton radius.
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The 4×1 spinor wavefunction ψ can be expressed
as [5, p. 79]

ψ =

(
ϕ

χ

)
(A9)

where ϕ and χ are the usual 2×1 spinors, and where the two
components in each represent two possible spin states. The
spinor ϕ is the free-space particle solution and χ is the neg-
ative-energy hole solution. Inserting (A9) into (A4), and car-
rying out the indicated matrix operations, yields the Dirac
equation

irc
∂

c∂t

(
ϕ

χ

)
+

(−→σ · irc∇χ
−→σ · irc∇ϕ

)
=

(
ϕ

−χ

)
(A10)

in terms of the 2×1 spinors.
The following is an important property of the Pauli matri-

ces, and the PV state (because of −→σ): the vector Pauli matrix
−→σ obeys the identity [5, p.12]

(−→σ · a)(−→σ · b) = I a · b + i−→σ · a × b (A11)

where a and b both commute with −→σ, but are otherwise ar-
bitrary three-vectors. Using (A11) (with a = b = rc∇) leads
to

(−→σ · rc∇)2 = I (rc∇)2 (A12)

which connects the normalized ∇ operator in the relativis-
tic Dirac equation to the same operator in the nonrelativistic
Schrödinger equation.

Inserting the operators from (A2) into (A10) and rear-
ranging the result leads to the two simultaneous equations(

Ê − mc2
)
ϕ = c−→σ · p̂χ (A13)

and (
Ê + mc2

)
χ = c−→σ · p̂ ϕ . (A14)

Then, pre-multiplying (A13) by (Ê + mc2) and using (A14)
and (A11) leads to (

Ê2 − m2c4
)
ϕ = c2 p̂2 ϕ (A15)

and, after reversing the process, to an identical equation for χ.
Thus both ϕ and χ separately obey the Klein-Gordon equation
[5, p.31].

Appendix B: Zitterbewegung frequency

The following rough heuristic argument identifies the two
coupling forces that explain why the zitterbewegung frequen-
cy [1, 4] is twice the angular frequency (mc2/ℏ = c/rc) asso-
ciated with the electron mass energy.

The force the massive point charge (−e∗,m) exerts on the
PV is given by equation (1) which, using r = rc + ∆r and
rc = e2

∗/mc2, leads to

e2
∗

(rc + ∆r)2 −
mc2

rc + ∆r
= − (e2

∗/r
3
c )∆r

(1 + ∆r/rc)2 ≈ −
(

e2
∗

r3
c

)
∆r (B1)

for small ∆r/rc. This yields the harmonic oscillator motion
from Newton’s second law

d2∆r
dt2 = −

(
e2
∗

mr3
c

)
∆r = −

(
c
rc

)2

∆r (B2)

with the “spring constant” (e2
∗/r

3
c ) and oscillator frequency

c/rc. The corresponding motion that is due to the vacuum
hole (e∗,−m) (whose charge and mass fields exert a force that
is the negative of (1)) is

−d2∆r
dt2 = +

(
c
rc

)2

∆r (B3)

showing that the massive free charge and the vacuum hole
cause identical accelerations within the PV continuum.

The total vacuum acceleration is the sum of (B2) and (B3)

d2∆r
dt2 = −2

(
e2
∗

mr3
c

)
∆r = −2

(
c
rc

)2

∆r (B4)

with the corresponding harmonic oscillator frequency√
2e2
∗

mr3
c
=
√

2
c
rc

(B5)

which is
√

2 times the angular frequency associated with the
electron mass energy. Given the roughness of the calcula-
tions, this result implies that the combined massive-charge
forces, acting simultaneously on the PV continuum, are the
source of the zitterbewegung with its 2c/rc frequency.

Appendix C: Quantum field

The PV is envisioned as a degenerate negative-energy sea of
fermionic Planck particles. Because of this degeneracy, the
vacuum experiences only small displacements from equilib-
rium when stressed. Thus the displacements due to the cou-
pling force (1) are small, and so the potential energy corre-
sponding to the stress can be approximated as a quadratic in
those displacements. This important result enables the vac-
uum to support normal mode coordinates and their assumed
quantum fields, as explained in the simple demonstration to
follow.

The normal mode connection [8, pp. 109–119] to the
quantum field can be easily understood by examining a string,
stretched between two fixed points in a stationary reference
frame, that exhibits small transverse displacements from
equilibrium. In this case, the corresponding potential energy
can be expressed in terms of quadratic displacements. If the
displacements are represented by the function ϕ(t, x) at time t
and position x along the string, then the quadratic assumption
implies that the displacements must obey the wave equation

1
c2

∂2ϕ

∂t2 =
∂2ϕ

∂x2 (C1)
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where c is a propagation velocity. The string geometry leads
to the Fourier series representation

ϕ(t, x) =
N∑

n=1

an(t) sin (nπx/L) (C2)

for the standing wave on the string, where L is the string
length. Inserting (C2) into (C1) produces

än(t) = −ω2
n an(t) where ωn = nπc/L (C3)

and where the amplitude an(t) is that of a harmonic oscillator.
The constant characterizing the Dirac equation is the

Compton radius rc. So it is reasonable to set the string length
L ∼ rc to determine the fundamental frequency ω1 = πc/L
in (C3). Furthermore, the harmonics of ω1 can have wave-
lengths of the order of the Planck length r∗ (antiparticle ex-
citation is, of course, ignored in this rough argument); so the
length L can be subdivided

N =
L

minimum length division of string
∼ rc

r∗

=
3.86 × 10−11

1.62 × 10−33 ∼ 1022 (C4)

times, and ϕ in (C2) can be expressed as an integral if conve-
nient since r∗ ≪ rc.

The total energy of the vibrating string can thus be ex-
pressed as

E =
∫ L

0

ρ2
(
∂ϕ

∂t

)2

+
ρ

2
c2

(
∂ϕ

∂x

)2 dx (C5)

which, inserting (C2) into (C5), results in [8, p.117]

E =
L
2

N∑
n=1

[
ρȧ2

n

2
+
ρω2

na2
n

2

]
(C6)

where the first and second terms in (C5) and (C6) are the ki-
netic and potential string energies respectively (ρ is the string
density).

The crucial significance of (C6) is that it is a sum of inde-
pendent normal-mode energies, where the an(t) are the nor-
mal mode coordinates. From this normal mode setting, the
quantum field energy

E =
N∑

n=1

(
nn +

1
2

)
ℏωn = mc2

N∑
n=1

(
nn +

1
2

)
rckn (C7)

is defined, where nn is the number of normal modes associ-
ated with the wavenumber kn = ωn/c. In effect, the integers
nn (⩾ 0) determine the quantized energy level of each nor-
mal mode oscillator an(t). The 1/2 component in (C7) is the
zero-point energy of the string-vacuum system.

At this point the quantum-field formalism discards the
preceding foundation upon which the fields are derived, and
assumes that the fields themselves are the primary reality
[8, p. 119]. Part of the reason for this assumption is that, in
the past, no obvious foundation was available. However, the
demonstration here provides such a foundation on the simple,
but far-reaching assumption that the vacuum is a degenerate
state which can sustain a large stress without a correspond-
ingly large strain.
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Geometric Distribution of Path and Fine Structure
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Previously (Progr. Phys., v.2, 105–106) one predicted the exact value of the inverse fine
structure constant respecting the double surface concept on Bohr orbit. In this paper one
extends the same principle on the geometric distribution ofthe frequencies of the path
of the electron in the ground state of Hydrogen atom. The inverse fine structure constant
reflects the kind of the distribution and the later increasesthe constant in the range of
the fifth decimal fromα−1

0−sided > 137.036006 toα−1
∞−sided < 137.036018.

1 Theoretical background

The number 137 expresses the translation componentn of
the paths of the electron on Bohr orbit [1]. Let us consider
other translationsn around this value are also possible. Each
of them has its own frequency:

fz = f (z), where z = n − 137, n ∈ Z. (1)

It is also reasonable to assume the sum of the frequencies of
all translations equals the unit which is the frequency of the
whole translation of the path:

Fz =
∑

fz = 1. (2)

The two-sided distribution ranges from the translationn=−∞
to n=137 on Bohr orbit and further from there ton=∞.
Overall interval is opened since the frequencies at the infinite
endsf±∞ equal zero and can be ignored. There are also possi-
ble even-sided distributions provided on the arbitrary number
of two-sided dimensions. From this point of view the non-
distribution atn=137 is regarded as zero-sided.

Each translationn belongs to its pathsn so the frequency
of the former is identical to the frequency of the later. Product
of the given frequency of the pathfz and the pathsn itself is
the pondered partial pathfz · sn inside the whole distribution
of the path:

swhole · Fz = swhole =
∑

fz · sn . (3)

The inverse fine structure constant reflecting the whole distri-
bution of the path [2] can be then expressed as:

α−1
distributed =

∑

fz · sn. (4)

According to the double-surface concept [2] the value of the
pathsn depends on the translationn:

sn = n
(

2− 1
/√

1+ π2/n2
)

, where n ∈ Z. (5)

Knowing the type of the distribution function of frequencies
f (z) the inverse fine structure constantα−1

distributed can be cal-
culated. And vice versa, knowing the inverse fine structure

constantα−1
distributed the type of the distribution function of fre-

quenciesf (z) can be speculated.
Our subject of interest in this paper is the geometric dis-

tribution of the frequencies of the path with ratio 1/2 where
the jumping of the electron to the non-adjacent positions is
not allowed.

2 The two-sided geometric distribution

This is the symmetric distribution of the frequencies of the
path provided on and around the zero numbered positionz at
n=137:

fz =
1
3

1
2|z|
, where z ∈ Z. (6)

The sum of the frequenciesfz of all translationsn from −∞
to +∞ equals the unit:

Fz =

z=∞
∑

z=−∞

fz = 1,

since

z=∞
∑

z=−∞

1
3

1
2|z|
=

1
3

z=−1
∑

z=−∞

1
2|z|
+

1
3

z=0
∑

z=0

1
2z
+

1
3

z=∞
∑

z=1

1
2z
=

=
1
3
+

1
3
+

1
3
= 1.

(7)

The value of the inverse fine structure constant reflecting the
2-sided geometric distribution of the frequencies of the path
of the electron in the ground state of Hydrogen atom can be
calculated with the help of equations (1), (4), (5) and (6):

α−1
2−sided =

1
3

n=∞
∑

n=−∞

n
(

2− 1
/√

1+ π2/n2
)

2|n−137|
. (8)

The values of the frequencies of the pathfz rapidly lessen in
the negative as well as positive direction from the zero num-
bered positionz on Bohr orbit so the enough accurate value of
the constant can be calculated numerically on the appropriate
finite interval, for instancen= [104, 170]:

α−1
2−sided ≈ 137.036014. (9)
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3 The even-sided geometric distribution

On the arbitrary number of sides generalized distribution of
the frequencies of the path makes sense to be taken into ac-
count when some extra two-sided dimensions are proposed to
be involved. The distribution on the even number ofk sides is
then expressed as:

fz =
1

k + 1
1

2|z|
, where z ∈ Z and k = 2m, m ∈ N0. (10)

The sum of the frequenciesfz of the infinite number of trans-
lationsn on all k-sides and one zero position equals the unit:

Fz =

z=∞
∑

z=−∞

fz = 1,

since
z=∞
∑

z=−∞

1
k + 1

1
2|z|
=

k
2

z=−1
∑

z=−∞

1
k + 1

1
2|z|
+

z=0
∑

z=0

1
k + 1

1
2z
+

+
k
2

z=∞
∑

z=1

1
k + 1

1
2z
=

k
2

1
k + 1

+
1

k + 1
+

k
2

1
k + 1

= 1.

(11)

The value of the inverse fine structure constant reflecting the
k-sided geometric distribution of the path of the electron in
the ground state of Hydrogen atom is found with the help of
equations (1), (4), (5), (10) and (11):

α−1
k−sided =

k
2(k + 1)

n=136
∑

n=−∞

n
(

2− 1
/√

1+ π2/n2
)

2|n−137|
+

+
137
(

2− 1
/√

1+ π2/1372
)

k + 1
+

+
k

2(k + 1)

n=∞
∑

n=138

n
(

2− 1
/√

1+ π2/n2
)

2n−137
,

(12)

wheren ∈Z andk= 2m, m ∈N0.
The enough accurate value of the constant can be calcu-

lated numerically on the appropriate finite interval. For the
acceptable results rounded on the six decimals can be used
the finite intervalsn=137±33 instead of the infinite ones
n=137±∞. There is the infinite number of the even-sided
distributions available fromk= 0 to k=∞. The 2-sided dis-
tribution atk= 2 is only one of them.

4 The non-distribution

Such special distribution of the frequencies of the path of the
electron is considered on the zero position and zero sides on
Bohr orbit. Atk=0 the equation (10) and (11) are simplified
to fz =Fz = 1 so the equation (12) takes the known form use-
ful for the calculation of the theoretical inverse fine structure
constant[2],(5):

α−1
0−sided = 137

(

2− 1
/√

1+ π2/1372
)

> 137.036006. (13)

5 The infinite-sided geometric distribution

Such special distribution of the frequencies of the path of the
electron takes place on the infinite sides around Bohr orbit.At
k=∞ the equation (12) is shortened for the vanished middle
term and transformed into the next simplified form useful for
the finding the theoretical inverse fine structure constant:

α−1
∞−sided =

n=136
∑

n=−∞

n
(

2− 1
/√

1+ π2/n2
)

2|n−137|+1
+

+

n=∞
∑

138

n
(

2− 1
/√

1+ π2/n2
)

2n−137+1
< 137.036018.

(14)

6 The inverse fine structure reflecting the geometric
distribution

The distributed value of the inverse fine structure constant
seems to be greater than the non-distributed one since:

α−1
∞−sided ≈ 137.036018> α−1

2−sided ≈

≈ 137.036014> α−1
0−sided ≈ 137.036006.

(15)

The answer doesn’t lie in the frequency of the pathfz which
otherwise equally decreases on both sides of the number 137
but depends on the factor

(

2−1
/√

1+ π2/n2
)

which increases
more withn<137 than decreases withn>137. The overall
effect is thus the increasing value of the distributed inverse
fine structure constant inside the range of the fifth decimal.

7 Conclusions

According to the double surface concept the exact inverse fine
structure constant reflects the kind of the distribution of the
frequencies of the path of the electron in the ground state of
Hydrogen atom. The factor

(

2−1
/√

1+ π2/n2
)

asymmetri-
cally changes partial values of the constant what results the
increasing value of the whole constant. The number of sides
of the distribution influences the above change in the range of
the fifth decimal. The zero-, two- and infinite-sided geometric
distribution of the frequencies of the path yields on the sixde-
cimal rounded inverse fine structure constant of 137.036006,
137.036014 and 137.036018, respectively.
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A Prediction of an Additional Planet of the Extrasolar Planetary System
Kepler-62 Based on the Planetary Distances’ Long-Range Order

Felix Scholkmann
Bellariarain 10, 8038 Zürich, Switzerland. E-mail: felix.scholkmann@gmail.com

Recently, the discovery of the extrasolar planetary systemKepler-62 comprising five
planets was reported. The present paper explores whether (i) the sequence of semi-
major axis values of the planets shows a long-range order, and whether (ii) it is possible
to predict any additional planets of this system. The analysis showed that the semi-
major axis values of the planets are indeed characterized bya long-range order, i.e.
the logarithmic positions of the planets are correlated. Based on this characteristic, an
additional planet at 0.22 AU in the Kepler-62 system is predicted.

1 Introduction

In April 2013, NASA’s Kepler Mission reported [1] the detec-
tion of an extrasolar planetary system comprising five planets
(Kepler-62b, c, d, e and f) orbiting a star (Kepler-62) of spec-
tral type K2, luminosity class V, 69± 0.02% the mass and 63
± 0.02% the radius of the Sun. The Kepler-62 extrasolar plan-
etary system is located in the constellation Lyra,∼1200 light
years away from Earth. The five planets have a size of 1.31,
0.54, 1.95, 1.61 and 1.41 Earth radii (R⊕). The two outer-
most planets (e, f) are likely to be solid planets possibly with
liquid water on their surfaces since their position is within
Kepler-62’s Habitable Zone. The five planets were detected
by analyzing the brightness variations of Kepler-62 based on
images obtained by the Kepler spacecraft.

In an analysis of distances between planets of our so-
lar system (including the dwarf planet Pluto and the asteroid
Ceres) it was shown by Bohr and Olsen [2] that the sequence
of distances show a long-range order on a logarithmic scale,
i.e. the logarithmic positions of the planets are correlated and
follow a periodic pattern; they seem to obey a “quantization”.
The authors tested the statistical significance of the obtained
long-range order by using a permutation test, which revealed
that the regularity of the distances between the planets in our
solar system is very unlikely to have originated by chance.

In a subsequent study by the same authors [3], they ap-
plied their analysis to the extrasolar planetary system HD
10180 and determined that (i) the logarithmic position of the
six planets show also a long-range order, and (ii) that this
property is enhanced when including a seventh (hypotheti-
cally existing) planet at a position of 0.92± 0.05 AU, i.e.
between the planets HD 10180f and HD 10180g. Based on
this analysis, they postulated a possible additional planet in
the HD 10180 system at a distance of 0.92 AU.

The goal of the present analysis was to apply the same
data analysis approach [2,3] to the recently discovered extra-
solar planetary system Kepler-62 and thus to analyze whether
(i) the semi-major axis values of the planets show a long-
range order, and whether (ii) the analysis predicts additional
planets of this system.

2 Materials and methods

2.1 Data

The parameter values of the Kepler-62’s exoplanets were ob-
tained from the listing in Borucki et al. [1]. In particular,
two parameters were selected for the present analysis: the
semi-major axis (a) and the radius (r) of each planet. For the
values, see Table 1.

Planet i a [AU] a [km] r [R⊕] r [km] â

62b 1 0.0553 8.2728× 106 1.31 8355 2.1130
62c 2 0.0929 1.3898× 107 0.54 3444 2.6317
62d 3 0.120 1.7952× 107 1.95 12437 2.8877
62e 4 0.427 6.3878× 107 1.61 10269 4.1570
62f 5 0.718 1.0741× 108 1.41 8993 4.6767

Table 1: Kepler-62 system parameters according to [1].i: planet
number counting outwardly from the star Kepler-62,a: semi-major
axis,r: radius of the planet, ( ˆai = ln(ai/106 km)), a andr are given
in two different units ([AU], [km]) and ([R⊕], [km]), respectively.

2.2 Data analysis

For the analysis, the semi-major axis value (given in units of
106 km) of each exoplanet was first divided by 106 km, then
logarithmized ( ˆai = ln(ai/106 km)) and according to these
values a multimodal probability distribution function (PDF)
p(â), as introduced by Bohr and Olsen [2], was calculated by

p(â) =
N∑

i=1

αi e−β, (1)

with N = 5 (i.e. the maximum number of planets of Kepler-
62) andβ given as

β =
j − âi

wp /2
√

2 ln(2)
, (2)

for j = 1, 1.01, 1.02, . . . , 10, withwp the width (i.e. the full-
width-at-half-maximum) of each Gaussian peak of the PDF,
andαi a scale factor. The scale factor defined the magnitude
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Fig. 1: Results of the analysis of the multimodal PDFρ (â) (a1-a5) and the new oneρ (â′) with the additional hypothetical exoplanet
(marked with a cross in Fig. (b1) and (b2), and marked with a black are of the Gaussian peak in Fig. (b3)) found using the optimization
approach visualized in Fig. 2.

of each peak. For the present analysis, the scale factor was
assigned to the radius of the specific planet, i.e.αi = r i . The
rationale for this definition is that larger planets should be
contribute more to the overall multimodal PDF than smaller
planets. A linear relationship was chosen rather than the non-
linear one used by Bohr and Olsen [2, 3] in order to circum-
vent the definition of the specific type of non-linear relation-
ship which is unknown per se. For the width of each peak,
wp = 0.25 was used which ensures an optimum compromise
between a too strong overlap of the Gaussian peaks on the
one side and to small peaks on the other. Thus,ρ(â) repre-
sents a sum of Gaussian peaks located at the logarithmized
planets semi-major axis values ( ˆa) and weighted by (αi), the
individual radius value of the planet.

In the next step, the autocorrelation sequence of the mul-
timodal PDF was calculated according to

Rρ(â)(m) =
N−m−1∑

n=0

ρ(ân+m) ρ(ân), (3)

for m = 1, 2, . . . , 2 N − 1, with N the number of samples of
ρ(â). Then, the autocorrelation function (ACF) was deter-
mined by

Rρ(â)(m)′ =
1

Rρ(â)(1)
Rρ(â)(m), (4)

i.e. Rρ(â)(m) was normalized by its maximum value given
by Rρ(â)(1) so thatRρ(â)(1)′ = 1. The type and grade of the
order (short- or long-range) of the input sequence can be de-
termined using the ACF characteristics.

In order to quantify the periodicity in the ACF (i.e. the
long-range order of the input sequence), in the next step the

frequency-dependent power spectral density (PSD), i.e. the
power spectrum (PS), of the multimodal PDFρ(â) was cal-
culated by the periodogram method, which is the windowed
discrete Fourier transform (DFT) of the biased estimate of
autocorrelation sequence. For the calculation, 212 points in
the DFT were used by zero-paddingρ(â) to a length of 212

enabling a proper frequency resolution.
In order to analyze whether an additional hypothetical

planet increases the long-range order, the above-mentioned
signal processing steps (i.e. calculation of the multimodal
PDF, the ACF and the PS) were repeated with the input sig-
nal ρ(â) in which an additional Gaussian peak was inserted,
corresponding to the hypothetical exoplanet’s position. The
high of the peak was set to the mean values of the radius of
the five exoplanets. The new peak was introduced between
the peaks associated with values of Kepler-62e and Kepler-
62f since visual inspection reveals a gap in the multimodal
PDF in this region. The semi-major axis value was varied
between 0.15-0.38 AU and the corresponding ACF and PS
were calculated. For each PS, the maximum PSD value of
the fundamental frequency ofρ(â) (i.e. the first peak after
the global maximum at position 0) was calculated. From the
obtained values, the maximum was determined which indi-
cate the strongest long-range order of the corresponding se-
quence with the added new exoplanet. This new multimodal
PDF was denoted asρ(â′), with â′ the vector with the new
semi-major axis values.

3 Results

The analysis of the semi-major axis values of Kepler-62’s
planets b-f revealed an exponential like function (Fig. 1(a1))
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or a quasi linear one when logarithmized values were used
(Fig. 1(a2)).

The calculated multimodal PDF is shown in Fig. 1(a3).
The ACF and the PS are shown in Fig. 1(a3) and 1(a4), re-
spectively. The search of the optimal semi-axis value of the
additional (hypothetical) planet revealed that a global maxi-
mum of the PSD value in the frequency range of 1.1538 1/â
(≈ 0.6502 units of ˆa) can be clearly determined, as depicted
in Fig. 2. Thus, the analysis predicts an additional planet at a
distance of 0.22 AU from the star Kelper-62. The character-
istics of the resulting new multimodal PDFρ(â′) with all six
planets are shown in Fig. 1(b1-b5).

Fig. 2: (a) Color-coded visualization of the PSD values for theρ (â)
function with the added hypothetical exoplanet at different positions.
(b) Function of the PSD values for the frequency of 1.1538 1/â.
The global maximum indicates the value which corresponds tothe
strongest increase in the long-range order.

4 Discussion and conclusion

From the analysis conducted in the present study, the follow-
ing conclusions can be drawn:

(i) The positions of the exoplanets Kepler-62a–f show a
long-range order inferred from the peak-like structure
(four peaks) in the ACF which is captured by the power
spectrum as one single peak, corresponding to linear
periodicity of the logarithmized distances between the
planets.

(ii) The strength of the long-range order increases when
an additional planet with a distance of 0.22 AU from
the star is added to the five observed ones. This result
was obtained by an optimization procedure testing all
possible positions for this planet in the gap between
Kepler-62e and Kepler-62f.

A prediction of possible additional planets in the Kepler-
62 extrasolar system was put forward also recently by Bo-
vaird and Lineweaver [4]. They applied a two-parameter fit
to 68 different extrasolar planetary systems in total and pre-
dicted 141 additional planets. For the fitting they used a func-
tion (denoted by them as a modified Titius-Bode relation) of
the forman = αCn , with an an the semi-major axis, two free
parameters (α,C), andn a variable with the quantized values

n = 1, 2, 3, . . . . Based on their approach, they predicted for
the Kelpler-62 system 7 additional planets with semi-major
distance values of 0.07, 0.15, 0.20, 0.26, 0.33, 0.55 and 0.92
AU. Thus, the approach of Bovaird and Lineweaver predicts
a finer periodicity compared to the prediction (0.22 AU) de-
scribed by the present paper. Only the future will tell which
approach is better in modeling the exoplanetary characteris-
tics, i.e. the next discovery of an exoplanet of Kepler-62.

By the best of my knowledge, the two predictions (by Bo-
vaird and Lineweave, and the present one), are the only ones
published at the present concerning the extrasolar planetary
system Kepler-62.

For other extrasolar planetary systems, various authors
have reported a periodicity/quantization of the planetary po-
sitions and predicted additional orbits/planets based on this.

For example, Naficy et al. [5], recently compared two
approaches for modelling and predicting by using either a
squared model of the formrn = GM n2/(v20 k2) (with rn the or-
bital radius of then-th planet,G the gravitational constant,M
the mass of a central body of the system, and the free param-
etersv20, k, andn) or an exponential one given byrn = a eb n

(with a, b, n free parameters). In both cases, the parame-
ter values ofn are integers. The authors concluded that the
“exponential model has a better coincidence to observational
data” [5]. In addition they observed a relation between the
values of theb parameter and the mass of the central star of
the system, indicating a possible physical mechanism under-
lying the exponential model. The squared model was also
used in a study analyzing extrasolar planetary systems con-
ducted by Rubčić and Rubčić [11].

Another study based on an exponential model was con-
ducted by Poveda and Lara [24] to examine the extrasolar
planetary system 55 Cancri. However, problems with this
study were pointed out later [23].

In another study, Panov [6] applied an exponential model
of the typean = C e2n/k to extrasolar planetary systems and
reported a good fit as well as predictions of additional planets.

As early as 1996, Nottale found that “the distribution of
the semi-major axis of the firstly discovered exoplanets was
clustered around quantized values according to the lawa/GM
= (n/w0)2, in the same manner and in terms of the same
constantw0 = 144 km/s as in our own inner Solar System”
[7, 8]. This approach is a result of the “scale relativity” the-
ory developed by Nottale [9, 10, 32, 33]. In 2008, an updated
analysis involving 300 exoplanets was published [10] which
confirmed and extended the validity of the initial analysis of
1996.∗

An analysis with 443 exoplanets (i.e. all known in 2011)
was conducted by Zoghbi [26]. This revealed a quantization
of the planet’s angular momentum which was shown to have
a probability ofp < 0.024 being due to pure chance.

∗It would be worthwhile and interesting to repeat the analysis with the
presently 732 confirmed exoplanets (September 2013, http://exoplanets.org).
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In another study, using the equationrn = GM/(cαen),
with α the dimensionless fine structure constant of∼ 1/137
and c the speed of light, Pintr et al. [12] reported a strong
agreement between the orbital data of the two analyzed extra-
solar planetary system and the expected values. The interest-
ing thing about this work is that the equation is derived froma
physical theory describing the effects of electric and magnetic
effects on the evolution of a solar system.

Finally, as mentioned earlier, employing a similar method
to the one used in this paper (i.e. analysis of correlation
property of the logarithmized planetary positions), Olsenand
Bohr [3] analysed the extrasolar planetary HD 10180 and pre-
dicted an additional planet at 0.92± 0.05 AU.

Apart from analyzing extrasolar planetary systems, em-
pirical relationships for the distances of the planets of our so-
lar system started to be published centuries ago when J. D.
Titius (1729–1796) and E. Bode (1744–1826) described an
apparent regularity of the planetary radii, later known as the
Titius-Bode law (expressed in 1787 in its more modern math-
ematical form by Wurm: rn = 0.4 + 0.3 × 2n, n = −∞
(Mercury), 0, 1, 2, . . .) [13]. This equation predicted the po-
sition of Uranus, but failed to fit for the planetary positions
of Neptune and Pluto. Based on the many studies about reg-
ularities in planetary distances/radii conducted until now, the
Titius-Bode law can be regarded as a first phenomenological
description of a possible fundamental law of planetary spac-
ing. The work of Bohr and Olsen [2, 3] in particular strongly
suggests that the orbital spacing of planetary systems obeya
long-range order and not a simple short-range one, supporting
the notion that the quantization is not down to chance.

Concerning the physical mechanism involved in creating
a long-range order in planetary systems, this issue is not re-
solved yet. However, important approaches have been put for-
ward over the last decades. For example, Wells showed that
the planetary distances can be “accurately predicted by the
eigenvalues of the Euler-Lagrange equations resulting from
the variation of the free energy of the generic plasma that
formed the Sun and planets” [14, 15]. Further research of
the author led him to conclude that “a unification of the mor-
phology of the solar system” and other astrophysical phe-
nomena “can be accomplished by a basic consideration of
the minimum-action states of cosmic and/or virtual vacuum
field plasmas” [16]. Finally he came to the conclusion that
a unification of all physical forces can be derived based on
the assumption that they are regarded “as ‘fluid’ or ‘Magnus’
forces generated by vortex structures (particles) in the virtual
plasma gas” [15–17]. The work of Wells should be carefully
reconsidered since it might be a key to understanding regular
patterns, long-range orders and quantization of astronomical
systems and structures. In addition, analysis based on the the-
oretical framework of stochastic electrodynamics (SED) that
shed new light on the origin of the solar system [18], and also
the finding of Graner and Dubrulle [19, 20] that Titius-Bode-
like laws appear when assuming a scale and rotational invari-

ance of the protoplanetary system, might also be important
for an understanding of the observed patterns.

Other approaches worth exploring for further research are
that based on large-scale quantization in space plasmas [22],
modelling celestial mechanics using the Schrödinger equa-
tion [21, 27, 29, 39–41, 43], resonance effects [25, 28], or-
bital angular momentum quantization per unit mass [30, 37],
fractal scaling modeling using the continued fraction method
[31], conservation of mass and momentum, and stability of
the angular momentum deficit [35,36], the stochastisation hy-
pothesis [34], macroscopic quantization due to finite gravita-
tional propagation speed [38], and the Weyl-Dirac approach
to gravity [42].

One significant difficulty in explaining the observed reg-
ularities of distances is the fact that planets can migrate large
distances after their formation (e.g. [44–48]). A model that
gives an explanation of the regularities must include this ob-
served fact. One possible explanation might be to regard the
quantization pattern as an attractor in a phase-space of the
planet’s migration movements.

In conclusion, the present analysis of the extrasolar plan-
etary system Kepler-62 reveals that (i) the semi-major axis
values of the planets show a long-range order, and (ii) that
there might be an additional planet at the distance of 0.22 AU
between Kepler-62e and Kepler-62f.
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Our Sun has confronted humanity with overwhelming evidencethat it is comprised of
condensed matter. Dismissing this reality, the standard solar models continue to be an-
chored on the gaseous plasma. In large measure, the endurance of these theories can be
attributed to 1) the mathematical elegance of the equationsfor the gaseous state, 2) the
apparent success of the mass-luminosity relationship, and3) the long-lasting influence
of leading proponents of these models. Unfortunately, no direct physical finding sup-
ports the notion that the solar body is gaseous. Without exception, all observations are
most easily explained by recognizing that the Sun is primarily comprised of condensed
matter. However, when a physical characteristic points to condensed matter,a postori
arguments are invoked to account for the behavior using the gaseous state. In isolation,
many of these treatments appear plausible. As a result, the gaseous models continue to
be accepted. There seems to be an overarching belief in solarscience that the problems
with the gaseous models are few and inconsequential. In reality, they are numerous and,
while often subtle, they are sometimes daunting. The gaseous equations of state have
introduced far more dilemmas than they have solved. Many of the conclusions derived
from these approaches are likely to have led solar physics down unproductive avenues,
as deductions have been accepted which bear little or no relationship to the actual nature
of the Sun. It could be argued that, for more than 100 years, the gaseous models have
prevented mankind from making real progress relative to understanding the Sun and the
universe. Hence, the Sun is now placed on trial. Forty lines of evidence will be pre-
sented that the solar body is comprised of, and surrounded by, condensed matter. These
‘proofs’ can be divided into seven broad categories: 1) Planckian, 2) spectroscopic,
3) structural, 4) dynamic, 5) helioseismic, 6) elemental, and 7) earthly. Collectively,
these lines of evidence provide a systematic challenge to the gaseous models of the Sun
and expose the many hurdles faced by modern approaches. Observational astronomy
and laboratory physics have remained unable to properly justify claims that the solar
body must be gaseous. At the same time, clear signs of condensed matter interspersed
with gaseous plasma in the chromosphere and corona have beenregrettably dismissed.
As such, it is hoped that this exposition will serve as an invitation to consider condensed
matter, especially metallic hydrogen, when pondering the phase of the Sun.

The Sun is a world so different from our own . . .
However [relative to understanding its structure],
one must not lose heart; over the past few years sci-
ence has made a lot of progress, and those who come
after us will not fail to make even more.

Father Angelo Secchi, S.J., 1875 [1, p. 300, V. I]∗

1 Introduction

A long time ago, men like Gustav Kirchhoff, Johann Zöllner,
William Thomson (Lord Kelvin), and James Jeans viewed
the photosphere (or the solar body) as existing in the liquid
state [2, 3]. Despite their stature, scientists, since the days of
Herbert Spencer and Angelo Secchi, slowly drifted towards

∗Translations from French were executed by the author.

the concept that the Sun was a ball of gas surrounded by con-
densed matter [2,3].†

Others, of equal or greater prominence, including August
Ritter, Jonathan Lane, Franz Schuster, Karl Schwarzschild,
Arthur Eddington, Subrahmanyan Chandrashekhar, and John
Bahcall, would have their chance to speak [2, 3]. The Sun
became a fully gaseous plasma.

As a consequence, the gaseous Sun has imbedded itself
at the very foundation of astronomy. Few would dispute that

†In the mid-1800s, five great pillars had given birth to the gaseous
Sun: 1) Laplace’s Nebular Hypothesis, 2) Helmholtz’ contraction theory,
3) Cagniard de la Tour’s critical phenomena and Andrew’s critical tempera-
tures, 4) Kirchhoff’s formulation of his law of thermal emission, and 5) the
discovery of pressure broadening in gases. Each of these haspreviously been
addressed in detail [2].
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the Sun is a gas and that our understanding of all other stars
and the entire universe, is inherently linked to this reality.
Therefore, any endeavor to touch the phase of the Sun must
be viewed as an attempt to reformulate all of astronomy.

Yet, when astrophysics remained a young science, ob-
servational astronomers, such as James Keeler, Edwin Frost,
and Charles Abbot [4], objected to the theoretical basis for
a gaseous Sun. August Schmidt was the first to mathemati-
cally dismiss the solar surface as illusion. Speaking of him,
Charles Abbot, the director of the Smithsonian Observatory
would write, “Schmidt’s views have obtained considerable
acceptance, but not from observers of solar phenomena”[5,
p. 232]. In 1913, Charles Maunder made the point even more
forcefully, “But under ordinary conditions, we do not see the
chromosphere itself, but look down through it on the photo-
sphere, or general radiating surface. This, to the eye, cer-
tainly looks like a definite shell, but some theorists have been
so impressed with the difficulty of conceiving that a gaseous
body like the Sun could, under the conditions of such stupen-
dous temperatures as there exist, have any defined limit at all,
that they deny that what we see on the Sun is a real boundary,
and argue that it only appears so to us through the effects of
the anomalous refraction or dispersion of light. Such theories
introduce difficulties greater and more numerous than those
that they clear away, and they are not generally accepted by
the practical observers of the Sun”[6, p. 28]. Alfred Fowler,
the first Secretary of the International Astronomical Union,
shared these views,“The photosphere is thus regarded as an
optical illusion, and remarkable consequences in relationto
spots and other phenomena are involved. The hypothesis ap-
pears to take no account of absorption, and, while of a certain
mathematical interest, it seems to have but little application
to the actual Sun”[7].

With time, however, the voices of the observational as-
tronomers were silenced by the power and elegance of the
mathematical arguments [2, 3]. Those who could not follow
sophisticated theory could no longer become professional as-
tronomers. At Cambridge, the Mathematical Tripos became
and remained an accepted path to a Ph.D. degree in astron-
omy [8]. Theory [9–14],∗ rather than observation, came to
dictate the phase of the Sun and all solar phenomena were
explained in terms of a gaseous entity.

As gases are unable to support structure, additional means
were adopted to explain solar observations. Magnetic fields

∗Eddington’s mass-luminosity relationship [9, p. 145–179]stands as one
of the great triumphs of the gaseous models. Today, this finding is well es-
tablished in observational astronomy and Eddington’s derivation is worthy of
a detailed treatment. Due to space limitations, the topic will not be addressed
herein. Suffice it to state that Eddington’s derivation was dependent on the
validity of Kirchhoff’s law and no effort has been made to account for the
relationship if the stars were made of condensed matter. At the same time, it
must be noted that through the mass-luminosity relationship, an observation
linked to distant objects, came to dictate the phase of the Sun. The relation-
ship is not contingent on the behavior of the Sun itself, although the latter
does lie on the main sequence of the stars.

became the solution to every puzzle [12], even though gases
are incapable of their generation.† Over time, theoretical ap-
proaches claimed one victory after the next, until it seemed
as if the Standard Solar Models [11,13,14] were unshakable.
Gases were inappropriately endowed with all of the proper-
ties of condensed matter.

In reality, a closer examination would have revealed that
many theoretical achievements were inapplicable. Some of
the difficulties stemmed from improper experimental conclu-
sions. The universality of several laws [15–20], on which the
entire solar framework rested [9, p. 27–58], was the product
of faulty assumptions [21–24]. These errors were introduced
when theoretical physics remained in its infancy. But now,
they were governed by other branches of physics (i.e. black-
body radiation and condensed matter physics [15–20, 25]),
not by astronomy. The most pressing problems were never
properly solved by the physics community [21–24].

Solar theory was replete with oversights and invalid as-
sumptions, but the shortcomings would be extremely difficult
to detect. Problems which were ‘solved 100 years ago’ still
lurked in the background [19,20]. Too much forward progress
was desired with too little attention paid to the road traveled.
Most viewed that only a few minor problems remained with
gaseous equations of state [13,14]. Evidence that the Sun was
not a gas was dismissed with complex schemes often requir-
ing the suspension of objectivity.

Nonetheless, many lines of evidence had revealed that the
body of the Sun must be comprised of condensed matter (see
Table I). Slowly, arguments initially advanced by men like
Gustav Kirchhoff [26] and James Jeans [27, 28] began to re-
emerge. Moreover, they were joined by an arsenal of new
observations. Today, at least forty proofs can be found dis-
puting the gaseous nature of the Sun. There are surely more
to be discovered.‡ Conversely, not one direct proof exists that
the body of the Sun must be considered a gaseous plasma.

It is clear that the lines of evidence for condensed mat-
ter which are contained herein§ are worthy of a cohesive dis-
cussion. For the purpose of this presentation, they are subdi-
vided and reorganized into seven broad categories: 1) Planck-
ian, 2) spectroscopic, 3) structural, 4) dynamic, 5) helioseis-
mic, 6) elemental, and 7) earthly. Each proof will be dis-
cussed relative to the liquid metallic hydrogen (LMH) model
[36, 39, 47, 48] wherein condensed hydrogen, pressurized in
the solar interior, assumes a graphite-like lattice on the pho-
tosphere [39, 40, 45, 48], a more metallic nature in sunspots
and faculae [40,45,52], a diffuse presence in a somewhat cool

†Magnetic fields are the product of underlying microscopic structure in
condensed matter. As such, whenever a magnetic field is generated on Earth,
condensed matter must be involved, either to directly generate it, or to cause
the ordered flow of charge.

‡Solar astronomers, upon further consideration, will recognize that their
own subject areas might also provide additional lines of evidence. With time,
these complimentary proofs will eventually surface.

§The author presents a complete list of his relevant works [2–4, 29–62]
in order to facilitate the study of these problems.
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I. Planckian Lines of Evidence§2 p. 92 IV. Dynamic Lines of Evidence§5 p. 118
1. Solar Spectrum§2.3.1 p. 95 25. Surface Activity§5.1 p. 118
2. Limb Darkening§2.3.2 p. 97 26. Orthogonal Flows§5.2 p. 121
3. Sunspot Emissivity§2.3.3 p. 98 27. Solar Dynamo§5.3 p. 121
4. Granular Emissivity§2.3.4 p. 100 28. Coronal Rain§5.4 p. 122
5. Facular Emissivity§2.3.5 p. 101 29. Coronal Loops§5.5 p. 123
6. Chromospheric Emissivity§2.3.6 p. 102 30. Chromospheric Condensation§5.6 p. 124
7. K-Coronal Emissivity§2.3.7 p. 103 31. Splashdown Events§5.7 p. 125
8. Coronal Structure Emissivity§2.3.8 p. 103 32. Solar Winds and the Solar Cycle§5.8 p. 125

II. Spectroscopic Lines of Evidence§3 p. 104 V. Helioseismic Lines of Evidence§6 p. 127
9. UV/X-ray Line Intensity§3.1 p. 104 33. Solar Body Oscillations§6.1 p. 127

10. Gamma-Ray Emission§3.2 p. 104 34. Mass Displacement§6.2 p. 128
11. Lithium Abundances§3.3 p. 105 35. Higher Order Shape§6.3 p. 129
12. Hydrogen Emission§3.4 p. 106 36. Tachocline and Convective Zones§6.4 p. 129
13. Elemental Emission§3.5 p. 108 37. Solar Core§6.5 p. 129
14. Helium Emission§3.6 p. 109 38. Atmospheric Seismology§6.6 p. 129
15. Fraunhofer Absorption§3.7 p. 112
16. Coronal Emission§3.8 p. 112

III. Structural Lines of Evidence §4 p. 114 VI. Elemental Lines of Evidence§7 p. 129
17. Solar Collapse§4.1 p. 114 39. Nucleosynthesis§7.1 p. 129
18. Density§4.2 p. 115
19. Radius§4.3 p. 115
20. Oblateness§4.4 p. 115 VII. Earthly Lines of Evidence §8 p. 130
21. Surface Imaging§4.5 p. 116 40. Climatic§8.1 p. 131
22. Coronal Holes/Rotation§4.6 p. 116
23. Chromospheric Extent§4.7 p. 117
24. Chromospheric Shape§4.8 p. 118

Table 1: Forty Lines of Evidence for Condensed Matter — The Sun on Trial.

corona [57,58,60], and a solid character in the core [50].∗

Of these lines of evidence, the thermal proofs will al-
ways remain central to understanding the condensed nature
of solar material. They are tied to the most important ques-
tions relative to light emission [15–20] and have the ability
to directly link physical observation to the presence of a vi-
brational lattice, a key aspect of all matter in the condensed
phase [21–24]. Hence, the discussion begins with the thermal
lines of evidence, as inherently related to blackbody radia-
tion [15–25, 63] and to the earliest scientific history of the
Sun [2,3].

∗The model adopts a liquid state for the surface of the Sun, as this is
in keeping with macroscopic observations. However, an extended structural
lattice, not simply a random assembly of degenerate atoms, is required, as
demonstrated in§2. Of course, on the scale of solar dimensions, even a
material with the rigidity of a solid on Earth (i.e. with a high elastic modu-
lus), might well appear and behave macroscopically as a liquid on the photo-
sphere.

2 Planckian (or Thermal) Lines of Evidence

The Sun emits a spectrum in the visible and infrared region
of the electromagnetic spectrum (see Fig. 1) whose detailed
analysis provides a total of eight lines of evidence relative
to the presence of condensed matter.† For gaseous models,
solar emission must be explained using the most complex
of schemes, resting both on the validity of Kirchhoff’s law
of thermal emission [15, 16] and on the‘solar opacity prob-
lem’ [42].

Agassi reminds us that“Browsing through the literature,
one may find an occasional use of Kirchhoff ’s law in some

†These proofs require the longest descriptions, as they touch many con-
cepts in physics. Since they deal with thermal phenomena, they can also
be referred to as the‘Planckian’ lines of evidence, in recognition of Max
Planck’s contribution to this area of physics [19, 20]. Beyond physics, Max
Planck’s philosophical writings (see references in [64]) and personal con-
duct [65], despite the evil of his times, have much to offer to modern society.
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Fig. 1: Schematic representation of the visible spectrum ofthe Sun
(adapted from Fig. 1–3 in [66]). To a first approximation, theso-
lar spectrum is very nearly identical to that of a blackbody with a
temperature of∼5,800 K (dashed line).

experimental physics, but the only place where it is treatedat
all seriously today is in the astrophysical literature”[63]. In
reality, it would not be an overstatement to argue that Kirch-
hoff’s law [15, 16] constitutes the very core of accepted so-
lar theory. Any problems with its formulation would send
shock waves not only throughout stellar astrophysics, but to
every corner of modern astronomy. Hence, the discussion
with respect to the thermal lines of evidence commences with
a review of Kirchhoff’s law [15, 16] and of blackbody radia-
tion [17–25]. This will be followed by an overview of these
principles, as applied to the Sun and the resulting solar opac-
ity problem [42].

2.1 Blackbody Radiation and Kirchhoff’s Law

The author has previously stated that,“Kirchhoff ’s law is
one of the simplest and most misunderstood in thermodynam-
ics” [24].∗ Formulated in 1860 [15,16], the law was advanced
to account for the light emitted from objects in response to
changes in temperature. Typically, in the mid-1800s, the ob-
jects were black, as they were covered with soot, or black
paint, for best experimental results [21, 23, 24]. Thus, this
field of research became known as the study of‘blackbody
radiation’ [21, 23, 24]. Kirchhoff attempted to synthesize an
overarching law into this area of physics in order to bring a
certain unification to laboratory findings. At the time, physics
was in its infancy and theorists hoped to formulate laws with
‘universal’ consequences. Such was Kirchhoff’s goal when
his law of thermal emission was devised.

The heart of Kirchhoff’s law states that,“If a space be en-
tirely surrounded by bodies of the same temperature, so that
no rays can penetrate through them, every pencil in the in-
terior of the space must be so constituted, in regard to its
quality and intensity, as if it had proceeded from a perfectly
black body of the same temperature, and must therefore be

∗A detailed series of publications related to the analysis ofKirchhoff’s
law has previously appeared. These can be consulted by thosewho seek a
more extensive discussion of the subject matter (see [21–24]).

independent of the form and nature of the bodies, being de-
termined by the temperature alone . . . In the interior therefore
of an opake red-hot body of any temperature, the illumination
is always the same, whatever be the constitution of the body
in other respects”[16,§16].†

Blackbody radiation was governed strictly by the temper-
ature and the frequency of interest.The nature of the walls
was irrelevant. Kirchhoff introduced the idea that blackbody
radiation somehow possessed a‘universal’ significance and
was a property of all cavities [15,16].

Eventually, Max Planck [19, 20] provided a mathemati-
cal form for the spectral shape of blackbody emission sought
by Kirchhoff [15, 16]. Kirchhoff’s law became ingrained in
Planck’s formulation [20,§24–§62]. By extension, it also be-
came an integral part of the laws of Wien [17] and Stefan [18],
as these could be simply derived from Planck’s equation [20,
§31–§60]. In turn, the laws of radiation, came to form the
very foundation of the gaseous models (see e.g. [9, p. 27–58]).

Since blackbody radiation was thought to be of a‘univer-
sal’ nature andindependent of the nature of the walls, Max
Planck, was never able to link his equation to a direct phys-
ical cause [21, 23, 24].‡ He spoke of any such attempt as a
‘hopeless undertaking’[20, §41]. In this respect, blackbody
radiation became unique in physics. Planck’s equation was
not linked to anything in the material world, as Kirchhoff’s
law [15, 16] had dictated that the process was detached from
physical causality [20,21].

With his law, Gustav Kirchhoffwas informing the physics
community that the light emitted by an object will always
correspond to the same‘universal’ spectrum at a given tem-
perature, provided that the object be enclosed and the entire
system remain at thermal equilibrium. Any enclosure con-
tained the same blackbody radiation. The nature of the enclo-
sure was not relevant to the solution, given that it was truly
opaque. Perfectly reflecting enclosures, such as those made
from silver, should function as well as perfectly absorbing
enclosures made from graphite or coated with carbon black.

In reality, Kirchhoff erred in believing that the nature of

†Note how this last sentence immediately implied that, if thesolar inte-
rior could be viewed as enclosed, then the radiation existing within it must be
of the same form (intensity versus frequency) as that emitted by a blackbody
at the temperature in question.

‡In processes where light is emitted, there are five aspects toconsider:
1) the physical setting, 2) separate energy levels created in this setting,
3) a transition species which will make use of these energy levels, 4) the
production of a photon, and 5) an equation. For instance, forLyman-α ra-
diation these correspond to 1) the hydrogen atom, 2) the two electronic or-
bitals involved in the transition — principle quantum numbers N=2 and N=1,
3) the electron as the transition species, 4) the Lyman-α emission at 1216Å,
and 5) the Rydberg formula. Alternatively, in speaking of the proton nuclear
magnetic resonance line from water, these correspond to 1) the hydrogen
atoms of the water molecules placed in a magnetic field, 2) thehydrogen nu-
clear spin up or spin down states, 3) the hydrogen nuclear spin as a transition
species, 4) the hydrogen line at 4.85 ppm, and 5) the Larmor equation. Anal-
ogous entries can be made for any spectroscopic process in physics, with the
exception of blackbody radiation. In that case, only the 4thand 5th entries
are known: 4) the nature of the light and 5) Planck’s equation[21].
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the enclosure did not matter [21–24]. Perfectly reflecting en-
closures manifest the radiation of the objects they contain, not
blackbody radiation (see [22] for a proof). To argue otherwise
constitutes a violation of the First Law of Thermodynamics.
Furthermore, if Kirchhoff’s law was correct, any enclosed
material could serve as an experimental blackbody. But, lab-
oratory blackbodies are known to be extremely complex de-
vices, typically involving the use of specialized‘nearly per-
fectly absorbing’materials over the frequencies of interest.∗

Max Planck believed that“. . . in a vacuum bounded by
totally reflecting walls any state of radiation may persist”
[20, §61]. In itself, this was contrary to what Kirchhoff had
stated, as noted above,“. . . In the interior therefore of an
opake red-hot body of any temperature, the illumination is
always the same, whatever be the constitution of the body
in other respects”[16, §16]. Throughout his text on ther-
mal radiation [20], Max Planck repeatedly introduces a‘small
carbon particle’ to ensure that the radiation he was treating
was truly black [21, 23]. He viewed the particle as acata-
lyst and believed that it simply accelerated the move towards
black radiation. In reality, he had introduced a perfect ab-
sorber/emitter and thereby filled the cavity with the radiation
desired (see [22] for a proof). If Kirchhoff’s law was correct,
this should not be necessary. The carbon particle was much
more than a simple catalyst [21,23].

Another repercussion to Kirchhoff’s statement was the
belief that objects could radiate internally. In fact, Planck
would use this approach in attempting to derive Kirchhoff’s
law (see [20, p. 1–45]).† Yet, conduction and/or convection
properly govern heat transfer within objects, not internalra-
diation. Thermal radiation constitutes an attempt to achieve
equilibrium with the outside world.

The idea that all opaque enclosures contain blackbody ra-
diation was demonstrably false in the laboratory and Kirch-
hoff’s law of thermal emission, invalid [21–24].‡ Rather, the
best that could be said was that, at thermal equilibrium and
in the absence of conduction or convection, the absorption of
radiation by an object was equal to its emission. This was
properly formulated by Balfour Stewart in 1858, one year be-
fore Kirchhoff developed his own law [22,25].

∗For an extensive list of references on laboratory blackbodies and the
materials used in their preparation, see [23].

†In his derivation, Planck did not permit his volume-elements to reflect
light [20, p. 1–45]. As a result, all these elements became perfectly absorb-
ing and he was able to obtain Kirchhoff’s law. However, had he properly
included reflection, he would have convinced himself that Kirchhoff’s law
was invalid (see [21–24] for a complete discussion).

‡One cannot expect scientists to revisit the validity of every law upon
which they shall base their work. As such, if 20th century astronomers com-
mitted a misstep in applying Kirchhoff’s law to the Sun, it is not at all clear
how this could have been prevented. Indeed, when the author was first con-
sidering these problems, he actually believed that Kirchhoff’s law was valid
(i.e. [29]), but that the Sun simply failed to meet the requirements set forth
by enclosure. It was only later, following an extensive review of blackbody
radiation [21–24], that he came to realize that there was an error in the law
itself.

The universality which Kirchhoff sought was not present.
Regrettably, Max Planck had embraced this concept and, as
a direct consequence, blackbody radiation was never linked
to a direct physical cause. Tragically, the astrophysical com-
munity would come to believe that blackbody radiation could
be produced without the presence of condensed matter. Upon
thisex nihilogeneration, it built the foundations of a gaseous
Sun [9, p. 27–58] and the framework of the universe.

2.2 Kirchhoff’s Law, Solar Opacity, and the Gaseous
Models of the Sun

Given thermal equilibrium, Kirchhoff’s belief that all opaque
enclosures contained blackbody radiation had profound con-
sequences for astronomy. If the Sun was considered to be
an enclosure operating under thermal equilibrium, then by
Kirchhoff’s law, it was filled with blackbody radiation (e.g.
[9, p. 27–58]). Nothing was required to produce the radiation,
other than adherence to Kirchhoff’s condition. Even so, use
of the laws of thermal emission [15–20] explicitly required
the presence of thermal equilibrium in the subject of interest
(i.e. conduction and convection must not be present [21–24]).

As for the Sun, it operates far out of equilibrium by every
measure, emitting a large amount of radiation, but absorbing
essentially none. Furthermore, it sustains clear differential
convection currents on its surface, as reported long ago by
Carrington [67,68]. Consequently, how could the proponents
of the gaseous models justify the use of the laws of thermal
emission to treat the interior of the Sun [9,13,14]? How could
an object like the Sun be considered enclosed?

Arthur Eddington viewed the Sun as filled with radiation
which was essentially black. For him, the Sun acted like a
slowly leaking sieve [9, p. 18]. In speaking of the application
of Stefan’s law [18] to the solar interior, Eddington argued,
“To a very high degree of approximation the last two results
are immediately applicable to the interior of a star. It is true
that the radiation is not in an ideal enclosure with opaque
walls at constant temperature; but the stellar conditions ap-
proach the ideal far more closely than any laboratory exper-
iments can do”[9, p. 99–100]. He justified these statements
based on thevery opaquenature of stellar material which he
inferred by considering a distant star, Capella [9, p. 100].

Stefan’s law codified a fourth power dependence on tem-
perature (T4) [18]. At the same time, the gaseous Sun was
thought to sustain a core temperature of roughly 1.6×107 K
[13, p. 9] while displaying an apparent surface temperatureof
only 6,000 K. Therefore, application of Stefan’s law [18] to
imaginary concentric spheres [13, p. 2] located in the interior
of the Sun would result in a great deal more photons produced
in the core than ever emitted by its surface. Through the ap-
plication of such logic, the Sun could be viewed as a slowly
leaking sieve and essentially perfectly enclosed. Eddington
inferred that the opacity, or ability to absorb a photon, within
the Sun was extremely elevated. Under these circumstances,
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light produced in the solar interior could not travel very far
before being absorbed (see [9, p. 100] and [14, p. 185–232]).∗

Arthur Milne argued that the interior of a star could be
viewed as being inlocal thermal equilibrium, thereby insist-
ing that Kirchhoff’s law could be applied within the Sun.
Speaking of the solar interior, he stated,“If the atoms are
sufficiently battered about by colliding with one another, they
assume a state (distribution of stationary states) character-
istic of thermodynamic equilibrium at temperature T”[69,
p. 81–83]. Unfortunately, these words describe the conditions
required for the onset of conduction [70]. Thermal equilib-
rium could never exist at the center of the Sun, as the set-
ting prevailing at the core would facilitate a non-radiative pro-
cess [21–24].†

Max Planck has clearly stated that thermal equilibrium
can only exist in the absence of all conduction,“Now the con-
dition of thermodynamic equilibrium requires that the tem-
perature shall be everywhere the same and shall not vary with
time . . . For the heat of a body depends only on the heat radi-
ation, since on account of the uniformity in temperature, no
conduction of heat takes place.”[20, §24]. That is why he
insisted that the walls of the enclosure be rigid (e.g. [20,§24–
25]), as no energy must be carried away through the action of
the momentum transfer which accompanies collisions. Ac-
cordingly, Milne’s arguments, though they rest at the heartof
the gaseous solar models, are fallacious. It is inappropriate
to apply Stefan’s law to the interior of the Sun, as conductive
forces violate the conditions for enclosure and the require-
ments for purely radiative heat transfer.‡

In his treatise on heat radiation, Planck warned against
applying the laws of thermal emission directly to the Sun,
“Now the apparent temperature of the Sun is obviously noth-
ing but the temperature of the solar rays, depending entirely
on the nature of the rays, and hence a property of the rays
and not a property of the Sun itself. Therefore it would be
not only more convenient, but also more correct, to apply this
notation directly, instead of speaking of a fictitious tempera-

∗Eddington concluded that“the stars on the main series possess nearly
the same internal temperature distribution”and inferred core temperatures
in the millions of degrees [9, p. 177–178]. Given his belief that the laws of
thermal emission [15–20] could be applied to the core of the stars, the tem-
peratures he inferred would result in the production of photons with X-ray
energies. Over thousands of years, these photons would slowly work their
way out to escape at the photosphere. But as they traveled to the surface,
they would slowly lose energy and become shifted to ever lower frequencies.
Finally, upon reaching the surface, they would emit in the visible region of
the electromagnetic spectrum. To accomplish the feat, the gas models re-
quired that perfect and gradual changes in opacity enabled ablackbody spec-
trum produced at X-ray frequencies to be slowly converted toone existing in
white light. The issue has previously been addressed by the author [3,36,42]
and provides an example where accepted science required thesuspension of
disbelief.

†The density at the center of the Sun is believed to approach 150 g/cm3

[14, p. 483], a value compatible with conductive solids on Earth.
‡The Sun is known to possess powerful magnetic fields and a solar dy-

namo. Their existence strongly argues for conduction within condensed mat-
ter (see [35, 39] and§5.3).

ture of the Sun, which can be made to have meaning only by
the introduction of an assumption that does not hold in real-
ity” [20,§51]. Planck must have recognized that the Sun pos-
sessed convection currents on its surface [41], as Carrington’s
discovery [67] would have been well-established throughout
scientifically educated society.

To further complicate matters, astrophysics must create
sufficient opacity in the Sun. Opacity acts to contain and
shift the internal radiation essential to the gaseous models. It
has been said that absorption of radiation in the solar interior
takes place through the summation of innumerable processes
(including bound-bound, bound-free, free-free, and scatter-
ing reactions [14, p. 185–232]). Such a hypothesis consti-
tutes the‘stellar opacity problem’.§ The blackbody spectrum
which could be produced in the laboratory using simple ma-
terials like graphite, soot, or metal-blacks [21–24], at once re-
quired the summation of a large set of processes which were
not known to contribute to the production of the blackbody
spectrum on Earth [41,42]. The central problem for gas mod-
els is not that the Sun sustains clear convection at the level
of the photosphere, nor that inferred conduction exists at its
core. Rather, it was that Kirchhoff’s law was not valid and
that Planck’s equation had not been linked to the physical
world [21–24]. The laws of thermal emission could not be
applied to the Sun. It was not reasonable to account for the
production of a blackbody spectrum using opacity calcula-
tions which depended on processes unrelated to thermal emis-
sion [42]. The production of blackbody radiation required
much more than imaginary enclosures. It required the pres-
ence of nearly perfectly absorbing condensed matter, as well-
demonstrated by all laboratory experiments over the course
of more than 200 years (see [21–24] and references therein).

2.3 The Eight Planckian Lines of Evidence

The eight Planckian (or thermal) lines of evidence, on their
own, provide sufficient proof that the Sun is comprised of
condensed matter. Each of these proofs includes two com-
ponents 1) a discussion of some aspect of thermal radiation,
and 2) the associated structural implications. It has been well-
established in experimental physics that the thermal emissiv-
ity of a material is directly linked to its structure [71]. Fur-
thermore, condensed matter is known to possess varying di-
rectional emissivities which play a key role in understanding
the structures associated with the Sun, including the degree to
which one might infer that they are metallic [66,72,73].

2.3.1 Solar Spectrum #1

The blackbody lineshape of the solar spectrum (see Fig. 1) has
been known since the days of Samuel Langley (see [74, Plate
12 and 21] and [75, Plate IV]).¶ Still, though astrophysics

§The author has previously addressed the stellar opacity problem [42].
¶The first Planckian proof [45] was initially treated in [29,35,36,42,43].
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has tried to explain the production of this light for nearly 150
years [2, 3], little real progress has been made in this direc-
tion. As demonstrated in Section 2.2, the gaseous models fail
to properly account for the occurrence of the solar spectrum.
Gases are unable to emit a continuous spectrum. Rather, they
emit in bands (see [21,70] and references therein). Even when
pressure broadened, these bands cannot produce the black-
body lineshape. Moreover, when gases are heated, their emis-
sivity can actually drop [21,70], in direct contradiction of Ste-
fan’s law [18]. Under these circumstances, the answer cannot
be found in the gaseous state. One must turn to condensed
matter.

Throughout history, the production of a blackbody spec-
trum [21, 23, 24] has been facilitated by the use of graphite
[76–84] or soot. For this reason, even after the formulation
of Kirchhoff’s law, astronomers envisioned that graphite par-
ticles floated on the surface of the Sun [2,3]. Hastings recog-
nized that the solar surface was too hot to permit the existence
of carbon in the condensed state [85]. He noted that“Grant-
ing this, we perceive that the photosphere contains solid or
liquid particles hotter than carbon vapor, and consequently
not carbon” [85]. As a result, in 1881, he suggested that
“. . . the substance in question, so far as we know it, has prop-
erties similar to those of the carbon group”[85]. Hastings
wanted something which had the physical characteristics of
graphite, especially related to emissivity. Yet, the only aspect
of graphite which could contribute to its emissive character-
istics was its lattice structure. He was indirectly searching for
a material which might share the lattice arrangement known
to exist in graphite (see Fig. 2), but which might likewise be
reasonably expected to exist on the surface of the Sun.

Fig. 2: Schematic representation of the layered hexagonal lattice
found in graphite (adapted from Fig. 1 in [48]).

Eventually, Cecilia Payne determined that the stars were
largely made of hydrogen [86] and Henry Norris Russell [87]
extended the conclusion to the Sun.∗ Whatever was responsi-

∗See [47] for a detailed discussion on the composition of the Sun.

ble for the thermal spectrum had to be composed of hydrogen.
Then, in 1935, a seminal work appeared which had the

potential to completely alter our understanding of the stars
[36, 39]. Eugene Wigner (Nobel Prize, Physics, 1963) and
H.B. Huntington [88], proposed that at sufficient pressures,
hydrogen could become metallic. More importantly, they
would make a direct link between the structure of metallic
hydrogen and that of graphite itself,“The objection comes
up naturally that we have calculated the energy of a body-
centered metallic lattice only, and that another metallic lat-
tice may be much more stable. We feel that the objection is
justified. Of course it is not to be expected that another sim-
ple lattice, like the face-centered one, have a much lower en-
ergy, — the energy differences between forms are always very
small. It is possible, however, that a layer-like lattice has a
much greater heat of formation, and is obtainable under high
pressure. This is suggested by the fact that in most cases of
Table I of allotropic modifications, one of the lattices is layer-
like1. . . ” [88]. The footnote in the text began,“Diamond is a
valence lattice, but graphite is a layer lattice . . . ”[88].

With time, Brovman et al. [89] would propose that metal-
lic hydrogen might be metastable. Like diamonds, it would
require elevated pressures for formation, but remain stable at
low pressures once synthesized. Neil Ashcroft and his group
hypothesized that metallic hydrogen might be metastable be-
tween its solid and liquid forms [90,91].

Metallic hydrogen remains elusive in our laboratories (see
[39, 92] for recent reviews). Nonetheless, this has not pre-
vented astrophysics from invoking its existence within brown
dwarfs and giant planets [93–95], or even in neutron stars
[96]. In fact, based on expected densities, temperatures, and
elemental abundances obtained using the gaseous models for
the solar core, metallic hydrogen has been said to exist at the
center of the Sun [97–99].†

In previous astrophysical studies [93–99], thermal emis-
sion has not guided the selection of the form which metallic
hydrogen would adopt. As a result, they have sidestepped the
layered graphite-like structure first suggested by Wigner and
Huntington [88]. Nonetheless, it seems clear that metallic
hydrogen, based on the inferred solar abundance of hydro-
gen [86,87] and extensive theoretical support (see [39,92]for

†Setsuo Ichimaru was primarily concerned with nuclear reactions in
high density plasmas [97–99]. His work on the solar core is based on as-
sumptions for the composition of the solar interior [97, p. 2] which are de-
rived from the gaseous models,“In the Sun . . . the mass density and the tem-
perature are estimated to be 156 g/cm3 and 1.55x107, respectively. The mass
fraction of hydrogen near the core is said to be 0.36 and thus the mass density
of metallic hydrogen there is 56.2 g/cm3” [98, p. 2660]. Ichimaru places spe-
cific emphasis on the One-Component Plasma (OCP) [97, pp. 103& 209].
He assumed that the lattice points were those of a body-centered cubic [97].
The body-centered cubic is a solid structure. Its existencewithin the Sun had
not been justified beyond inferred densities. Ichimaru’s assumptions would
have been easily supported by recent seismological evidence which demon-
strates that the solar core experiences solid body rotation(see [50] and§6.5 in
this work). His supposition has important consequences fordriving nuclear
reactions within the Sun (see [44, 48] and§7.1 in this work).
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reviews), constitutes an ideal building material for the entire
Sun which is appropriate for 21st century thought.

Thus, theoretical condensed matter physics unknowingly
provided astronomy with everything needed to explain the
origin of the thermal spectrum (see Fig. 1). Payne and Rus-
sell had determined that the Sun was composed of hydro-
gen [86, 87]. Under the enormous pressures which existed in
the solar interior, Wigner and Huntington [88] allowed that
this hydrogen could be converted to the metallic state and
adopt the lattice structure of graphite. Work by Brovman et
al. [89] enabled metallic hydrogen, formed under high pres-
sure conditions within the solar interior, to be metastableat
the surface. Thermal emission could then result from lattice
vibrations [21], occurring within layered metallic hydrogen,
much like what occurs with graphite on Earth.

In contrast to the gaseous models, where photons take
millions of years to escape from the solar core [9], in a liq-
uid metallic hydrogen (LMH) Sun, light can be instantly pro-
duced at the level of the photosphere, using mechanisms iden-
tical to those found within graphite. Complex changes in in-
ternal solar opacities are not required [42]. The solar spec-
trum can be explained without recourse to unsuited gases [21,
70], imaginary enclosures [9], dismissal of observed conduc-
tion [69] and convection [67, 68], the need for local thermal
equilibrium [69], or Kirchhoff’s erroneous law [15, 16]. The
conjecture that solar thermal emission is produced by hydro-
gen in the condensed state on the surface of the Sun is simpler
than any scheme brought forth by the gaseous models. Fur-
thermore, it unifies our understanding of thermal emission in
the stars with that of laboratory models on Earth. But most
importantly, it results in the incorporation of a structural lat-
tice directly onto the photosphere, providing thereby a basis
upon which every other physical aspect of the Sun can be di-
rectly explained — from the presence of a true surface to the
nature of all solar structures. Hydrogen’s ability to existas
condensed matter within the solar body, photosphere, chro-
mosphere, and corona, appears all but certain. The remainder
of this work should help to further cement this conclusion.

2.3.2 Limb Darkening #2

According to Father Angelo Secchi, while Galileo denied the
existence of limb darkening (see Figs. 3, 4), the phenomenon
had been well established by Lucas Valérius of the Lincei
Academy,“. . . the image of the Sun is brighter in the center
than on the edges.”[1, p. 196, V. I].∗

In 1902, Frank Very demonstrated that limb darkening
was a frequency dependent phenomenon [101] which he at-
tributed to scattering in the solar atmosphere and reflection
with carbon particles.†

Very’s study of solar emission [101] eventually led to the
law of darkeninginitially developed by Karl Schwarzschild

∗The second Planckian proof [45] was initially treated in [3,35, 40, 42].
†As nearly perfect absorbers, carbon particles make for poorreflectors.

Fig. 3: Image of the Sun displaying how the intensity of the
disk decreases towards the limb [100]. Note this image was de-
scribed as follows,“Sunspot group in context. The diameter of
the Sun is 100 times larger than the diameter of the Earth. This
image was recorded with our finder telescope at about the same
time as the 15 July images and movies. Target: The Sun; Date:
15 Jul 2002”. It is reproduced herein thanks to the generosity
of the Royal Swedish Academy of Sciences (www.solarphysics.
kva.se/NatureNov2002/pressimageseng.html — accessed online
9/15/2013). The SST is operated on the island of La Palma by the
Institute for Solar Physics of the Royal Swedish Academy of Sci-
ences in the Spanish Observatorio del Roque de los Muchachosof
the Instituto de Astrofı́sica de Canarias.

Fig. 4: Schematic representation of the white light intensity variation
across the solar disk which is responsible for visible limb darkening.
The extent of intensity variation is frequency dependent [101].

[102], whereby the observed phenomenon could be explained
by relying on the assumption that radiative equilibrium ex-
isted within the stars. Once again, this was viewed as a great
triumph for gaseous models (see [3] for additional details).

Arthur Eddington would come to adopt Milne’s treatment
[103] of thelaw of darkening[9, p. 320–324]. However, all of
these approaches shared a common flaw: they were based on
the validity of Kirchhoff’s law [15,16]. Karl Schwarzschild’s
derivation began with the words,“If E is the emission of a
black body at the temperature of this layer and one assumes
that Kirchhoff ’s law applies, it follows that the layer will ra-
diate the energy Eadh in every direction”[102, p. 280 — in
Meadows].

Beyond the validity of Kirchhoff’s law, these derivations
sidestepped the reality that clear convection currents existed
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on the exterior of the Sun [67, 68]. Remarkably, just a few
years after publishing his classic derivation of the law of dark-
ening [103], Milne himself argued that local thermal equilib-
rium did not apply in the outer layers of the stars [69]. Arthur
Eddington also recognized that the laws of emission could not
be used to treat the photosphere,“The argument cannot apply
to any part of the star which we can see; for the fact that we
see it shows that its radiation is not ‘enclosed’ ”[9, p. 101].
As such, how could Kirchhoff’s law be invoked to explain
limb darkening?

To further complicate the situation, any explanation of
limb darkening for gaseous models would once again resur-
rect the solar opacity problem [42]. How could the exterior
of the Sun generate a perfect blackbody spectrum using an
assembly of processes not seen within graphite?

Gas models accounted for limb darkening by insisting
that the observer was sampling different depths within the
Sun (see Fig. 5). When viewing the center of the disk, our
eye was observing radiation originating further in the interior.
This radiation was being released from a layer which was at
a higher temperature. Hence, by the Wien’s law [17] it ap-
peared brighter. As for limb radiation, it was being produced
at shallower depths, thereby appearing cooler and darker.

These ideas were reliant on the belief that the surface of
the Sun was merely an illusion,∗ a conjecture which will be
refuted in§3.1,§3.2,§3.7,§4.3,§4.5,§5.1,§5.2,§5.5,§5.7,
§6.1,§6.2, and§6.3.

Fig. 5: Schematic representation of how limb darkening is explained
in the gas models. When viewing the center of the solar disk, the line
of sight travels to a greater depth (L), where it reaches a hotter layer
in the solar body. Conversely, when the limb is visualized, the line
of sight (L) is restricted to a cooler upper layer. One of the fallacies
of this explanation is that the outer layers of the photosphere cannot
be considered enclosed (i.e. we can see through them when we vi-
sualized the center of the disk). So, photospheric radiation could not
be blackbody, even assuming that Kirchhoff’s law was valid. Ed-
dington himself had reached this conclusion [9, p. 101].

In the end, the simplest explanation for limb darkening
lies in the recognition that directional spectral emissivity oc-

∗To this day, astronomy continues to maintain that the Sun’s surface is
an illusion, as seen in this text produced by the National Solar Observatory,
“The density decreases with distance from the surface untillight at last can
travel freely and thus gives the illusion of a visible surface” [104, p. 4].

curs naturally within condensed matter [66, 71–73]. Poor
conductors tend to have elevated normal emissivities which
gradually fall as the angle of observation is decreased (see
Fig. 6). This is precisely what is being observed across the
solar disk. Good conductors often display lower normal emis-
sivities, which can gradually increase as the angle of observa-
tion is decreased, prior to decreasing rapidly as the viewing
angle becomes parallel to the surface (see Fig. 6).

Fig. 6: Schematic representation of directional spectral emissivities
for non-conductors (A) and conductors (B). Note that in non-metals,
the spectral emissivity decreases monotonically with viewing angle.
Conversely, in metals, while the normal emissivity can be substan-
tially reduced, the emissivity can rise with increasing angle before
precipitously dropping (adapted from [72]).

Limb darkening revealed that the solar photosphere was
condensed, but not highly metallic.† Graphite itself behaves
as an excellent emitter, but only a modest conductor. It can
be concluded, based on Figs. 4 & 6, that the liquid metal-
lic hydrogen which comprises the solar surface is not highly
metallic. The inter-atomic distances in this graphite-like lay-
ered material (a Type-I lattice) would be slightly larger than
those found in the more metallic sunspots (a Type II lattice),
as previously described by the author [35,39,40].

2.3.3 Sunspot Emissivity #3

Galileo viewed sunspots (see Fig. 7) as clouds floating very
near the solar surface [105].‡ His great detractor, Christoph
Scheiner, initially saw them as extrasolar material [2], but
eventually became perhaps the first to view them as cavi-
ties [1, p. 15, V. I]. This apparent depression of sunspots was
confirmed by Alexander Wilson [2] who, in 1774 [106], used
precise geometric arguments to establish the effect which now
bears his name [1, p. 70–74]. In 1908, George Ellery Hale
discovered that sunspots were characterized by intense mag-
netic fields [107]. This remains one of the most far reaching
findings in solar science.

†As a side note, Frank Very had suggested [101] that the limb darkening
of the Sun might be associated with the solar granulations [3, 101]. As will
be seen in§2.3.4, the thought was not without merit.

‡The third Planckian proof [45] was initially the 13th line ofevidence
[35]. It has been presented, in greater detail, within [4, 40, 45].
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Fig. 7: Part of a sunspot group near the disk center acquired with the
Swedish 1-m Solar Telescope [100]. This image has been described
as follows by the Institute for Solar Research of the Royal Swedish
Academy of Sciences,“Large field-of-view image of sunspots in
Active Region 10030 observed on 15 July 2002. The image has
been colored yellow for aesthetic reasons. . . Dark penumbral
cores — Observations: Göran Scharmer, ISP; Image processing:
Mats Löfdahl, ISP; Wavelength: 487.7 nm; Target: AR10030;
Date: 15 Jul 2002”. This image is available for publication thanks
to the generosity of the Royal Swedish Academy of Sciences
(www.solarphysics.kva.se/NatureNov2002/pressimageseng.html
— accessed online 9/15/2013). The SST is operated on the island
of La Palma by the Institute for Solar Physics of the Royal Swedish
Academy of Sciences in the Spanish Observatorio del Roque delos
Muchachos of the Instituto de Astrofı́sica de Canarias.

In addition to the Wilson effect, sunspot emissivity has
been found to drop significantly with increasing magnetic
field strength [108, 109]. The magnetic fields within sunspot
umbra are known to have a vertical orientation. Their inten-
sity increases in the darkest regions of the umbra (e.g. [110,
p. 75] and [111, p. 80]). Sunspot emissivity has also been hy-
pothesized to be directional, with increasing emissivity to-
wards the limb [111, p. 75–77]. In this regard, Samuel Lan-
gley had observed,“With larger images and an improved in-
strument, I found that, in a complete ring of the solar surface,
the photosphere, still brilliant, gave near the limb absolutely
less heat than the umbra of the spots”[112, p. 748]. Edwin
Frost echoed Langley,“A rather surprising result of these ob-
servations was that spots are occasionally relatively warmer
than the surrounding photosphere”[113]. Today, the appar-
ent directional changes in the emissivity of sunspots has been
dismissed as due to‘stray light’ [111, p. 75–77].

Since a gaseous Sun is devoid of a real surface, the‘Wil-
son Effect’ cannot be easily explained within these bounds.
Once again, optical depth arguments must be made (e.g. see
[110, p. 46] and [114, p. 189-190]). In order to account for

the emissivity of sunspots, gaseous models propose that mag-
netic fields prevent the rising of hot gases from the solar in-
terior [104]. Hence, the spot appears cool. But sunspots
can possess light bridges (see Secchi’s amazing Fig. 33 in [1,
p. 69, V. I]). These are characterized by higher emissivities
and lower magnetic fields [111, p. 85–86]. The problem for
the gaseous models is that light bridges seem to‘float’ above
the sunspot. How could these objects be warmer than the
material below? Must a mechanism immediately be found
to heat light bridges? Sunspots are filled with substructure,
including that which arises from Evershed flow. Such sub-
structure is well visible in Fig. 7. However, gases are unable
to support structure. How can a gaseous solar model properly
account for Evershed flow, while dismissing the surface as an
illusion? The problem, of course, remains that all these illu-
sions actually are behaving in systematic fashion (see§5.1).
Furthermore, in modern astronomy, the apparent change in
sunspot emissivity towards the limb must be dismissed as a
‘stray light’ effect. But the most pressing complication lies
in the reality that gases are unable to generate powerful mag-
netic fields (see§5.3). They can respond to fields, but have
no inherent mechanism to produce these phenomena. Along
these lines, how can magnetic fields be simultaneously pro-
duced by gases while at the same time prevent them from
rising into the sunspot umbra? On Earth, the production of
powerful magnets involves the use of condensed matter and
the flow of electrons within conduction bands, not isolated
gaseous ions or atoms (see§5.3).

In contrast to the gaseous models, the idea that the Sun is
comprised of condensed matter can address all of these com-
plications. The‘Wilson Effect’, one of the oldest and sim-
plest of solar observations, can continue to be explained with-
out difficulty by using elementary geometry [106], precisely
because a true surface can be invoked [45]. The lowered
emissivity of sunspot umbra, in association with increased
magnetic field strengths, strongly suggests that sunspots are
metallic in nature. Langley’s observation that sunspots dis-
play increased limb emissivity relative to the photospherecan
be explained as related to metallic effects.∗ The increased
emissivity and lower magnetic field strength observed within
light bridges could be explained by assuming that they, like
the photosphere, are endowed with a Type I lattice [35, 39,
40] with lowered metallic properties. Conversely, the de-
creased normal emissivity of sunspot umbra along with their
increased magnetic field strength suggests a more metallic
Type II lattice [35,39,40] in these structures.

In sunspots, the electrons responsible for generating mag-
netic fields can be viewed as flowing freely within the con-
duction bands available in metallic hydrogen. This implies

∗This is not to say that stray light cannot present problems. However,
these effects should make faculae even less apparent towards the limb, fur-
ther highlighting the importance of the increase in emissivity which those
structures display (see§2.3.5). Definitive answers may come eventually by
examining large sunspots.

Pierre-Marie Robitaille. Forty Lines of Evidence for Condensed Matter — The Sun on Trial 99



Volume 4 PROGRESS IN PHYSICS October, 2013

that the lattice within sunspot umbrae are positioned so that
the hexagonal hydrogen planes (see direction A in Fig. 2)
are nearly orthogonal to the solar surface (see Fig. 8). In
the penumbra, they would be oriented more horizontally, as
demonstrated by the magnetic field lines in this region. The
accompanying emissivity would be slightly stronger, result-
ing in the penumbra appearing brighter. As such, the emis-
sivity in layered metallic hydrogen appears to be highly de-
pendent on the orientation of the hexagonal hydrogen planes.

Likewise, it has been observed that sound waves travel
faster within sunspots than within the photosphere [116,117].
These findings are supportive of the idea that sunspots are
denser and more metallic than the photosphere itself. The use
of condensed matter brings with it both structure and func-
tion.

Fig. 8: Schematic representation of the appearance of a pairof
sunspots on an active solar surface. The horizontal thick line il-
lustrates the location of the photosphere, the thin lines the layers of
metallic hydrogen, and the dashed lines the magnetic field. The two
shaded circles outline the position of sunspots. In the lower por-
tion of the figure, the layers of metallic hydrogen are below the level
of the photosphere, but are being pushed up by intercalate elements
which have entered the gas phase (see§5.1 in [48]). In the upper por-
tion of the figure, the layers of metallic hydrogen have now broken
through the photospheric level. The two sunspots are being linked
solely by magnetic field lines, as the metallic hydrogen which once
contained them has vaporized into the solar atmosphere. This figure
is an adaptation based on Fig. 22 in [115]. Along with this legend, it
previously appeared in [52].

2.3.4 Granular Emissivity #4

When observed at modest resolution, the surface of the Sun
is covered with granules (see Fig. 9).∗ The appearance of

∗The fourth Planckian proof [45] was initially part of the 14th line of
evidence [45]. It has been presented, in greater detail, within [40] which

these structures caused considerable controversy within as-
tronomy in the mid-1800s [40], but they have been well de-
scribed and illustrated [118–122] since the days of Father
Secchi [1, p. 48–59, V. I]. Individual granules have limited
lifetimes, can be arranged in mesogranules, supergranules, or
giant cell [40, 118–122], and seem to represent a convective
process.†

Fig. 9: High resolution image of solar granules acquired by Vasco
Henriques on May 23, 2010 using the Swedish 1-m Solar Tele-
scope (SST). Bright granules are surrounded by dark intergranu-
lar lanes which can contain magnetic bright points (see§2.3.5).
This image has been described as follows,“The SST is operated
on the island of La Palma by the Institute for Solar Physics ofthe
Royal Swedish Academy of Sciences in the Spanish Observatorio
del Roque de los Muchachos of the Instituto de Astrofı́sica de Ca-
narias — High resolution granulation — Observer: Vasco Hen-
riques; Image processing: Vasco Henriques Date: 23 May 2010”.
http://www.solarphysics.kva.se (accessed online 9/15/2013).

Though granules are dynamic convective entities which
are constantly forming and dying on the surface of the Sun,
they have been found to observe the laws of Aboav-Weaire
and of Lewis [123–125], along with the perimeter law, for
space filling structures in two dimensions [126]. That gran-
ules can be viewed as crystals was first hypothesized by Cha-
cornac in 1865 [127]. Clearly, the laws of space filling cannot
be applied to gases which expand to fill the space of con-
tainers. They cannot, on their own, restrict the spatial ex-
tent which they occupy. The laws of space filling can solely
be observed by materials which exist in the condensed state.
Adherence to these laws by granules [126] constitutes im-
portant evidence that these structures are comprised of con-
densed matter.

Studies reveal that granules can contain‘dark dots’ at
their center, linked to‘explosive’structural decay. Rast [128]
has stated that this decay“can be better understood if granu-

contains an extensive list of references on the subject.
†This aspect of solar granules will be discussed in§5.1 as it is linked to

activity on the solar surface. For the time being, the focus will remain on the
structural and emissive aspects.
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lation is viewed as downflow-dominated-surface-driven con-
vection rather than as a collection of more deeply driven up-
flowing thermal plumes”. These arguments depend on the
presence of a true solar surface. Noever has linked the de-
cay of granules associated with the appearance of‘dark dots’
to the perimeter law alone [126], once again implying that
structure determines dynamic evolution.

Granules are characterized by important emissive char-
acteristics. These structure tend to be brighter at their center
and surrounded by dark intergranular lanes (see Fig. 9) whose
existence has been recognized by the mid-1800s [40].

In order to account for the emissive properties of granules,
the gaseous models maintain that these structures represent
convective elements. Hot gases, rising from deep within the
Sun, emerge near the center of these formations, while cooler
material, held in the dark intergranular lanes, slowly migrates
towards the solar interior. In this case, emissivity is linked to
temperature changes alone, as dictated by Wien’s law [17].
This hypothesis rests on the validity of Kirchhoff’s law [15,
16, 20–24] and depends upon subtle changes in solar opacity
[42] in adjacent regions of the solar surface. As seen in§2.1
and§2.2, these arguments are invalid.

Within the context of the LMH model [35, 39], granules
are viewed as an integral portion of the true undulating sur-
face of the Sun. Their complex radiative properties can be
fully explained by considering directional spectral emissivity.
As sub-components of the photosphere, the same mechanism
invoked to understand limb darkening§2.3.2 can be used to
explain granular emissivity.

The normal emissivity of these bubble-like structures re-
mains somewhat elevated. As the viewing angle moves away
from the normal,∗ emissivity progressively drops in accor-
dance with the known behavior of non-metals (see Fig. 6). In-
tergranular lanes appear dark, not because they are cooler (an
unlikely scenario in the same region of the Sun), but rather,
because less photons are observed when the surface being vi-
sualized becomes increasingly coincident with the direction
of emission. In a sense, with respect to thermal emission,
each granule constitutes a mini-representation of the macro-
scopic limb darkening observed across the disk of the Sun
(see§2.3.2), an idea first expressed by Very [101].

In the LMH model, granules therefore possess a Type
I lattice [35, 39], which is somewhat less metallic than the
Type-II lattice found in sunspots. This is revealed by the lack
of strong magnetic fields associated with granules and by the
slowly decaying center-to-limb variation in directional emis-
sivity observed on the solar surface (see§2.3.2). In a man-
ner analogous to what is observed in sunspots, the emissiv-
ity of layered metallic hydrogen would imply that the hexag-
onal hydrogen planes are oriented parallel to the solar sur-
face at the center of a granules providing higher emissiv-

∗Normal viewing occurs when the line of sight is perpendicular to the
surface.

ity, or brighter appearance, in this instance. The orienta-
tion should become more vertical in the intergranular lanes,
thereby accounting for their darker appearance. The LMH
model [35,39] dispenses with optical depth and variable tem-
perature arguments. It elegantly accounts for solar emission
using a single phenomenon (directional spectral emissivity in
condensed matter) applicable across the full range of solar
observations.

2.3.5 Facular Emissivity #5

In visible light, faculae are difficult to observe at the center
of the solar disk, but often become quite apparent towards
the limb.† Father Secchi noted the difficulty of observing
faculae at the center of the disk [1, p. 49, V. I] and George
Ellery Hale commented on the enhanced emissivity of facu-
lae towards the limb,“The bright faculae, which rise above
the photosphere, are conspicuous when near the edge of the
Sun, but practically invisible when they happen to lie near the
center of the disk . . . ”[129, p. 85–86]. Solar faculae appear
to float on the photosphere itself. The structures have long
been associated with sunspots [130]. Wang et al. recently
postulated that these objects could result from the conversion
of sunspots, wherein the horizontal magnetic field contained
within penumbrae makes a transition to a vertical field in fac-
ulae [131]. Faculae are known to possess strong magnetic
fields [132–134].

The emissivity of faculae as they approach the solar limb
[135] cannot be reasonably explained within the context of
the gaseous models. The accepted scheme, Spruit’s‘hot wall’
[136, 137] model is illustrated in Fig. 10. When the facu-
lae are at the center of the disk, the observer is able to see
deeper into the Wilson depression to the flux tube‘floor’ [137,
p. 926]. This floor is thought to be at a lower temperature and,
according to the laws of blackbody emission [15–20], appears
relatively dark. As for the‘walls’ of the flux tube, they are
said to sustain elevated temperatures and appear bright when
compared to the deeper‘floor’ . As the flux tube moves to-
wards the limb, the observer can no longer observe the‘floor’
and one of the‘hot walls’ becomes increasingly visible. With
time, even that‘hot wall’ disappears. This agrees with obser-
vation: facular emissivity is initially indistinguishable from
that of the photosphere at disk center. It then increases and
becomes bright with respect to the rest of the solar surface,as
theses objects move towards the limb. Finally, the emissivity
decreases precipitously at the limb.

To help explain the emissivity of faculae, the gas models
suggest macroscopic structures,‘cool floors’ and‘hot walls’.
Gases are incapable of generating such features. In faculae,
flux tubes are said to be permitting heat from the solar interior
to rise into the‘hot walls’. Yet, to account for the darkness

†The fifth Planckian proof, as related to facular emissivity,was initially
presented as the 15th line of evidence [45].
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Fig. 10: Schematic representation of Spruit’s‘hot wall’ model [136,
137]. A) Faculae are represented as depressions in the solarsurface.
Depending on the line of sight, the observer will sample either a
‘cool floor’, or a ‘hot wall’ . B) When sampling at the center of
the solar disk, he/she will only be able to visualize a‘cool floor’
whose temperature approaches that of the granules on the surface.
Under the circumstances, the faculae are not visible. However, as
these objects move towards the limb, the line of sight will initially
sample more of the‘hot wall’ and the faculae appear brighter. When
the edge of the Sun is approached, the hot walls can no longer be
readily sampled and the emissivity of the faculae are perceived to
drop rapidly.

within sunspots, the models had required that field lines in-
hibited the upward flow of hot gases beneath the umbra (see
§2.2.3).

It is immediately apparent that the emissive behavior just
described within faculae exactly parallels the known radiative
properties of metals, as previously illustrated in Fig. 6. Facu-
lae possess strong magnetic fields [132–134]. In combination
with their directional emissivity, this all but confirms that they
are metallic in nature.

In addition to faculae, an extension of Spruit’s hot wall
model has been invoked to explain the presence of magnetic
bright points found within the dark intergranular lanes of the
granules [138]. As the name implies, magnetic bright points
are also believed to possess strong magnetic fields [12, 138,
139]. Moreover, they display powerful center-to-limb varia-
tions in their emissivity [138], being most visible at the cen-
ter of the solar disk within the dark intergranular lanes. In
the case of magnetic bright points, it is the‘floor’ which is
viewed as bright, as light is said to originate from“deeper
photospheric layers that are usually hotter”[138].∗

The problem rests in the realization that magnetic bright
points are located within the dark intergranular lanes. As a
result, in order to explain the presence of locally strong mag-
netic fields within these objects, it is hypothesized that an“ef-
ficient turbulent dynamo transforms into magnetic fields part
of the kinetic energy of the granular convection”[138]. This

∗These layers were not hotter in Spruit’s model [136, 137].

serves to emphasize the problems faced by the gas models.
Within the context of the LMH model [35, 36, 39], the

presence of faculae and magnetic bright points on the solar
surface are elegantly explained by invoking lattice structure.
Since faculae are associated with sunspots [130] and even
thought to be ejected from these structures [131], it is rea-
sonable to propose that they can be metallic in nature (see
Fig. 6), that their structural lattice mimics the type II lattice
found in sunspots, and that they have not yet relaxed back to
the Type-I lattice found in granules. In this case, the bright-
ness of faculae implies that their hexagonal hydrogen planes
lie parallel to the solar surface. This should account for both
emissivity and the presence of associated magnetic fields in
these structures.

In the end, the simplest explanation for the origin for mag-
netic bright points may be that they are nothing more than fac-
ular elements. Rising from internal solar regions, they have
not fully relaxed from a Type II to a Type I lattice, but have
been transported through granular flow to deeper intergran-
ular lanes. Their center-to-limb emissivity variations may
well rest in the realization that they are hidden from view by
the granules themselves as the limb is approached. Hence,
their numbers appear to fall towards the edge of the solar
disk [138].

2.3.6 Chromospheric Emissivity #6

While hydrogen-α emissions are responsible for the red glow
of the chromosphere visible during an eclipse, this region of
the Sun also emits a weak continuous spectrum [56] which
has drawn the attention of solar observers for more than 100
years [140–147].† Relative to this emission, Donald Menzel
noted,“. . . we assumed that the distribution in the continu-
ous chromospheric spectrum is the same as that of a black
body at 5700◦, and that the continuous spectrum from the ex-
treme edge is that of a black body at 4700◦. There is evidence
in favor of a lower temperature at the extreme limb in the
observations by Abbot, Fowle, and Aldrich of the darkening
towards the limb of the Sun”[142].

The gaseous models infer that the chromosphere has an
average density of∼10−12 g/cm3 [115, p. 32].‡ Despite a 105

drop in density with respect to the photosphere, these treat-
ments continue to advance that the continuous emission in the
chromosphere is being produced by neutral H, H−, Rayleigh
scattering, and electron scattering (see [145, 146] and [150,
p. 151–157]). But, none of these processes can be found in
graphite (see§2.1 and§2.2).

†The sixth Plankian proof [45] was initially presented as the26th line of
evidence [56].

‡In these models, the photosphere is assumed to have a densityof ∼10−7

g/cm3, while the outer chromosphere has a density of∼10−15 g/cm3 [148].
This constitutes an 8 order of magnitude decrease in just a few thousand
kilometers. As a point of reference, the density of the Earth’s atmosphere
at sea level is∼1.2×10−3 g/cm3 [149] or ∼10,000 greater than calculated
photospheric densities for the gas models.
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Alternatively, within the context of the LMH model, the
chromospheric continuous emission provides evidence that
condensed matter exists in this region of the solar atmosphere
[56]. This is in keeping with the understanding that continu-
ous spectra, which can be described using blackbody behav-
ior, must be produced by condensed matter [21–24]. In this
regard, the chromosphere may be viewed as a region of hy-
drogen condensation and recapture within the Sun. Though
generating condensed matter, the chromosphere is not com-
prised of metallic hydrogen.∗

2.3.7 K-Coronal Emissivity #7

The white light emitted by the K-corona is readily visualized
during solar eclipses.† Observing from Iowa in 1869, William
Harkness“obtained a coronal spectrum that was continuous
except for a single bright green line, later known as coronal
line K1474” on the Kirchhoff scale [151, p. 199]. Eventually,
it became clear that the continuous spectrum of the K-corona
was essentially identical to photospheric emission [152–156],
with the important distinction that the former was devoid of
Fraunhofer lines. In addition, the spectrum of the K-corona
appeared to redden slightly with increasing distance from the
solar surface,“microphotograms for solar distances varying
from R=1.2s to R=2.6s show that the coronal radiation red-
dens slightly as the distance from the Sun is increased”[156].
The reddening of the K-coronal emission suggested that the
corona was cooling with increased distance from the solar
surface.‡

Within the context of the gas models, the corona is ex-
tremely hot and thus, cannot be self-luminous in the visible
spectrum. Rather, these models maintain that coronal white
light must represent photospheric radiation. But as the ther-

∗Metallic hydrogen requires extreme pressures for formation [39, 92]
which can only exist within the solar body. As a result, though condensation
is occurring within the chromosphere and corona, the resulting products are
not metallic. Rather, it is likely that chromospheric material is comprised
of dense hydrogen wherein molecular interactions between hydrogen atoms
still persists [92]. Conversely, condensed matter which has been ejected from
the solar body can be metallic in character and has been proposed to become
distributed throughout the corona [60]. The solar atmosphere can simultane-
ously support the existence of two forms of hydrogen: chromospheric non-
metallic material, like as coronal rain or spicules (see§5.4,§5.6 and [53,59])
and coronal material which resembles photospheric Type-I metallic hydro-
gen (see§2.3.7 and§2.3.8) and [57, 58, 60]) and which can be found in the
corona and its associated structures (see§3.8, §4.6, §5.5, §5.7 and§6.6 for
complimentary evidence).

†The seventh Plankian proof [45] was initially presented as the 27th line
of evidence [57, 60].

‡Yet, the“single bright green line”which had been observed by Hark-
ness would eventually be identified as originating from highly ionized iron
(i.e. FeXIV). Within the gaseous context, the only means of generating these
ions would involve the presence of extreme temperatures in the corona. Con-
versely, the ions could be produced if condensed matter can be postulated
to exist in this region of the Sun. The origin of highly ionized ions in the
corona constitutes one of the most elegant lines of evidencefor the presence
of condensed matter in this region of the Sun, supporting theidea that the
corona is, in fact, cool (see [60] and§3.8 for a complete discussion).

mal spectrum from the photosphere is punctuated with Fraun-
hofer absorption lines (see§3.7), some mechanism must be
devised to explain their absence in coronal light. As such,
proponents of the gaseous models have proposed that coronal
light is being scattered by highly relativistic electrons [115,
148, 157, 158]. The Fraunhofer absorption lines are hypoth-
esized to become highly broadened and unobservable. Rel-
ativistic electrons require temperatures in the millions of de-
grees. These temperatures are inferred from the line emis-
sions of highly ionized ions in this region of the Sun (see
§3.8). Unfortunately, such a scheme fails to account for the
reddening of the coronal spectrum [156].

In contrast, the LMH model [35, 39] states that the solar
corona contains photospheric-like condensed matter (TypeI)
and is, accordingly,self-luminous[57]. It is well-known that
the Sun expels material into its corona in the form of flares
and coronal mass ejections. It is reasonable to conclude that
this material continues to emit (see§2.3.8) and may eventu-
ally disperse into finely distributed condensed matter in this
region of the Sun. The reddening of the coronal spectrum
implies that the apparent temperatures of the corona are no
greater than those within the photosphere.§ The apparent
temperature slowly decreases, as expected, with increased
distance from the solar surface. The production of highly
ionized ions in the corona reflects condensed matter in the
outer solar atmosphere (see§2.3.8,§3.8, and§5.5). As for
the Fraunhofer lines, they do not appear on the spectrum of
the K-corona owing to insufficient concentrations of absorb-
ing species exist in this region of the Sun. There is no need to
invoke scattering by relativistic electrons.

2.3.8 Coronal Structure Emissivity #8

The corona of the active Sun is filled with structures easily
observed using white-light coronographs [154, 155].¶ Flares
[159–162], prominences and coronal mass ejections [163–
171], streamers [172–174], plumes [175], and loops [176–
178], can all be visualized in white light.

The mechanism for generating white-light in this wide ar-
ray of structures remains elusive for the gaseous models, in
part because the densities, in which they are hypothesize to
exist, are lower than∼10−15 g/cm3 [148]. Moreover, the re-
lease of white-light by these structures tends to be explosive
in nature, particularly when flares are involved [179–186].
These phenomena cannot be adequately explained by rely-
ing on gradual changes in opacity [42] or the action of rela-

§The author has stated that the true energy content of the photosphere
would correspond to real temperatures in the millions of degrees. The vast
majority of this energy is trapped within the translationaldegrees of freedom
associated with the differential convection currents. The conduction bands
responsible for the solar magnetic fields likewise harness some of the solar
surface energy. The apparent temperature of∼6,000K corresponds to the en-
ergy contained within the photospheric vibrational degrees of freedom [41].

¶The eighth Plankian proof [45] was initially presented as the 28th line
of evidence [58].
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tivistic electrons to scatter photospheric light [160, 161, 164,
187,188]. Currently, many of these structures are believedto
derive their energy from coronal magnetic sources overlying
active regions [12]. That is a result having no other means of
accounting for this extensive and abrupt release of energy in
the gaseous Sun [179].

Within the context of the LMH model [35,39], the white-
light emitted by coronal structures is associated with their
condensed nature. Since many of these formations originate
from eruptions taking place at the level of the photosphere,
such a postulate appears reasonable. As a result, coronal
structures should be regarded asself-luminous. The explosive
increase in white-light is related to powerful lattice vibrations
associated with their formation [21]. Long ago, Zöllner [189]
had insisted that flares involved the release of pressurizedma-
terial from within the Sun [3]. These mechanisms remain the
most likely, as they properly transfer energy out of the solar
body, not back to the surface from the corona (see§5.1).

3 Spectroscopic Lines of Evidence

Though Gustav Kirchhoff erred [21–24] relative to his law of
thermal emission [15, 16], his contributions to solar science
remain unchallenged. Not only was he amongst the first to
properly recognize that the Sun existed in liquid state [2,26],
but as the father of spectral analysis, along with Robert Bun-
sen, he gave birth to the entire spectroscopic branch of solar
science [190, 191]. Using spectroscopic methods, Kirchhoff

successfully identified the lines from sodium on the Sun and
this led to an avalanche of related discoveries, spanning more
than a century [190, 191]. Indeed, all of the thermal proofs
discussed in§2, are the result of spectroscopic analysis, cen-
tered on the blackbody spectrum observable in visible and
infrared light. It is fitting that the next series of proofs are
spectroscopic, this time centering on line emission of indi-
vidual atoms or ions. These eight lines of evidence highlight
anew the power of Kirchhoff’s spectroscopic approaches.

3.1 UV/X-ray Line Intensity #9

The Sun is difficult to study in the ultraviolet (UV) and X-ray
bands due to the absorption of this light by the Earth’s atmo-
sphere.∗ As a consequence, instruments like the AIA aboard
NASA’s Solar Dynamic Observatory (see Fig. 11) are being
used for these observations [192, p. ix]. When the Sun is ob-
served at these frequencies, striking evidence is producedon
the existence of a real solar surface. Harold Zirin describes
the findings as follows,“The case in the UV is different, be-
cause the spectrum lines are optically thin. Therefore one
would expect limb brightening even in the absence of tem-
perature increase, simply due to the secant increase of path
length. Although the intensity doubles at the limb, where we
see the back side, the limb brightening inside the limb is mini-
mal . . . Similarly, X-ray images show limb brightening simply

∗This proof was first presented as the 25th line of evidence [55].

due to increased path length.”[193]. Fig. 11 presents this
phenomenon in X-Ray at 94Å, for a somewhat active Sun.†

Fig. 11: AIA X-Ray image of an active Sun obtained on 5/28/2010
at 94Å displaying limb brightening and surface activity. This im-
age (201005280130155120094.jpg) has been provided Courtesy
of NASA/SDO and the AIA, EVE, and HMI science teams using
data retrieval (http://sdo.gsfc.nasa.gov/data/aiahmi).

When the observer is directly examining the center of
the opaque solar disk, weak spectral lines are obtained at
these frequencies. The lines brighten slightly as observation
moves towards the limb, owing to a slightly larger fraction
of the solar atmosphere being sampled (line of sight 2 versus
1 in Fig. 12). However, immediately upon crossing the solar
limb, a pronounced increase in spectroscopic intensity canbe
recorded. In fact, it approximately doubles, because a nearly
two-fold greater line of sight is being viewed in the solar at-
mosphere. This can be understood if one would compare a
line of sight very near line 3 in Fig. 12 (but still striking the
solar disk) with line 3 itself.

In this manner, UV and X-ray line intensities can pro-
vide strong evidence that the Sun possesses an opaque sur-
face at these frequencies which is independent of viewing an-
gle. Limb darkening is not observed, as was manifested in
the visible spectrum (see§2.3.2), in that condensed matter is
not being sampled. Rather, the behavior reflects that gases are
being monitored above a distinct surface through which UV
and X-ray photons cannot penetrate.‡

3.2 Gamma-Ray Emission #10

Occasionally, powerful gamma-ray flares are visible on the
surface of the Sun and Rieger [194] has provided evidence
that those with emissions>10 MeV are primarily visualized

†A 171Å UV image from the quite Sun has been published [192, p. 38].
The Solar Dynamic Observatory website can be accessed for images at other
frequencies in the ultra-violet (http://sdo.gsfc.nasa.gov/data/aiahmi).

‡Note that these findings further bring into question the optical depth
arguments that had been brought forth to explain limb darkening within the
gaseous models in§2.3.3. Should the Sun truly possess a vacuum-like photo-
spheric density of only 10−7 g/cm3 [148], then the limb should not act as such
a dramatic boundary relative to the intensity of UV and X-rayemissions.
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Fig. 12: Schematic representation of path lengths present when the
outer atmosphere (area outlined by dashes) of the Sun (body in gray)
is viewed from the Earth. Paths 1 and 2 terminate on the solar sur-
face. Just beyond the limb, path 3 samples the front and back side
of the solar atmosphere, resulting in a two fold increase in line in-
tensity. This figure is an adaptation based on Fig. 2.4 in [192] and,
along with this legend, was previously published [55].

near the solar limb (see Fig. 13).∗ Speaking of Rieger’s find-
ings, Ramaty and Simnett noted that“Gamma-ray emitting
flares are observed from sites located predominantly near the
limb of the Sun . . . This effect was observed for flares de-
tected at energies>0.3 MeV, but it is at energies>10 MeV
that the effect is particularly pronounced . . . Since in both of
these cases the bulk of the emission is bremsstrahlung from
primary electrons, these results imply that the radiating elec-
trons(are)strongly anisotropic, with more emission in the di-
rections tangential to the photosphere than in directions away
from the Sun” [195, p. 237].

Fig. 13: Schematic representation of approximate flare positions
with >10 MeV of energy on the solar disk displaying their predom-
inance near the limb. This figure is meant only for illustrative pur-
poses and is an adaptation based on Fig. 9 in [194] which should
be examined for exact flare locations. This figure was previously
published in [49].

The production of anisotropic emission would typically
imply that structural constraints are involved in flare produc-
tion. Since the gaseous Sun cannot sustain structure, another
means must be used to generate this anisotropy. Based on
theoretical arguments, Ramaty and Simnett consequently ad-

∗This proof was first presented as the eighteenth line of evidence [49].

vance that: “. . . the anisotropy could result from the mirror-
ing of the charged particles in the convergent chromospheric
magnetic fields” [195, p. 237]. The anisotropy of gamma-ray
emission from high energy solar flares is thought to be gener-
ated by electron transport in the coronal region and magnetic
mirroring of converging magnetic flux tubes beneath the tran-
sition region [195]. The energy required for flare generation
could thereby be channeled down towards the solar surface
from the corona itself. Conveniently, the chromosphere in-
stantly behaves as an‘electron mirror’. Devoid of a real sur-
face, another mechanism was created toact as a surface.

The inability to generate flare anisotropy using the most
obvious means — the presence of a true photospheric surface
— has resulted in a convoluted viewpoint. Rather than obtain
the energy to drive the flare from within the solar body, the
gaseous models must extract it from the solar atmosphere and
channel it down towards the surface using an unlikely mech-
anism. It remains simpler to postulate that the anisotropy ob-
served in high energy solar flares is a manifestation that the
Sun has a true surface. The energy involved in flare gen-
eration can thereby arise from the solar interior, as postu-
lated long ago by Zöllner [189]. In this respect, the LMH
model [35, 39] retains distinct advantages when compared to
the gaseous models of the Sun.

3.3 Lithium Abundances #11

Kirchhoff’s spectroscopic approaches [190,191] have enabled
astronomers to estimate the concentrations of many elements
in the solar atmosphere.† Application of these methods have
led to the realization that lithium was approximately 140-fold
less abundant in the solar atmosphere than in meteors [196,
197].

In order to explain this discrepancy, proponents of the
gaseous stars have advanced that lithium must be transported
deep within the interior of the Sun where temperatures
>2.6×106 K are sufficient to destroy the element by convert-
ing it into helium [7Li (p,α)4He] [198]. To help achieve this
goal, lithium must be constantly mixed [198–200] into the
solar interior, a process recently believed to be facilitated by
orbiting planets [201,202]. Though these ideas have been re-
futed [203], they highlight the difficulty presented by lithium
abundances in the gaseous models.

As for the condensed model of the Sun [35, 39], it ben-
efits from a proposal [54], brought forth by Eva Zurek, Neil
Ashcroft, and others [204], that lithium can act to stabilize
metallic hydrogen [88, 92]. Hence, lithium levels could ap-
pear to be decreased on the solar surface, as a metallic hy-
drogen Sun retains the element in its interior. At the same
time, lithium might be coordinated by metallic hydrogen in
the corona, therefore becoming sequestered and unavailable
for emission as an isolated atom.

†This proof was initially discussed in [54]. See [47], for a detailed dis-
cussion of how elemental abundances have been estimated.
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In this manner, lithium might be unlike the other ele-
ments, as these, including helium, are likely to be expelled
from the solar interior (see§5.1) as a result of exfoliative
forces [48]. Lithium appears to have a low abundance, but,
in reality, it is not being destroyed. This would better rec-
oncile the abundances of lithium observed in the solar at-
mosphere with that present in extrasolar objects. Clearly,if
lithium is being destroyed within the stars, it becomes diffi-
cult to explain its abundance in meteors. This problem does
not arise when abundances are explained using a LMH model,
as metallic hydrogen can sequester lithium into its lattice.

3.4 Hydrogen Emission #12

The‘flash spectrum’associated with solar eclipses character-
izes the chromosphere.∗ The strongest features within this
spectrum correspond to line emissions originating from ex-
cited hydrogen atoms. As far back as 1931, the outstand-
ing chromospheric observer, Donald H. Menzel, listed more
than twenty-three hydrogen emission lines originating from
this region of the Sun (see Table 3 in [205, p. 28]). It is the
cause of these emissions which must now be elucidated. The
most likely scenario takes advantage of the condensation ap-
pearing to occur in the chromospheric layer (see§5.4 §5.6
and [56,59]).

By modern standards, the nature of the chromosphere re-
mains a mystery, as Harold Zirin reminds us,“The chromo-
sphere is the least-well understood layer of the Sun’s atmo-
sphere...Part of the problem is that it is so dynamic and tran-
sient. At this height an ill-defined magnetic field dominates
the gas and determines the structure. Since we do not know
the physical mechanisms, it is impossible to produce a real-
istic model. Since most of the models ignored much of the
data, they generally contradict the observational data. Typ-
ical models ignore other constraints and just match only the
XUV data; this is not enough for a unique solution. It re-
minds one of the discovery of the sunspot cycle. While most
of the great 18th century astronomers agreed that the sunspot
occurrence was random, only Schwabe, an amateur, took the
trouble to track the number of sunspots, thereby discovering
the 11-year cycle”[193]. But if mystery remains, it is resul-
tant of the denial that condensed matter exists in this layerof
the Sun.

The chromosphere is characterized by numerous struc-
tural features, the most important of which are spicules (see
Fig. 14) [59,150]. Even in the mid-1800s, Secchi would pro-
vide outstanding illustrations of these objects (see PlateA
in [1, V. II]). He would discuss their great variability in both
size and orientation,“In general, the chromosphere is poorly
terminated and its external surface is garnished with fringes
. . . It is almost always covered with little nets terminated in
a point and entirely similar to hair . . . it often happens, espe-

∗This proof was first presented as the seventeenth line of evidence [47,
59].

cially in the region of sunspots, that the chromosphere pre-
sents an aspect of a very active network whose surface, un-
equal and rough, seems composed of brilliant clouds analo-
gous to our cumulus; the disposition of which resembles the
beads of our rosary; a few of which dilate in order to form
little diffuse elevations on the sides”[1, p. 31–36, V. II].

Fig. 14: Schematic representation of spicules overlying the inter-
granular lane on the outer boundary of a supergranule and sur-
rounded by magnetic field lines emanating from the solar surface.
While simplistic, this illustration conveys the basic structural ele-
ments needed for discussion. This figure was previously published
in [59] and is an adaptation based on Fig. IV-13 in [206, p. 162].

At first glance, spicules are thought to have a magnetic
origin, as these fields seem to flood the chromosphere [148,
150, 206–215]. In reality, matter within the chromosphere
seems to form and dissipate quickly and over large spatial
extent, with spicules reaching well into the corona [148,150,
206–215]. The random orientation which spicules display,
as noted long ago by Secchi [1, p. 31–36, V. II], along with
their velocity profiles (see§5.6), should have dispelled the
belief that these structures are magnetic in origin. Rather,
they appear to be products of condensation (§5.6).†

If spicules and chromospheric matter are genuinely the
product of condensation reactions, then their mechanism of
formation might shed great light into the emissive nature of
this solar layer.

3.4.1 The Liquid Metallic Hydrogen Solar Model

The search for answers begins by considering condensation
processes known to occur on Earth [59].

In this respect, while studying the agglomeration of sil-
ver clusters, Gerhart Ertl’s (Nobel Prize, Chemistry, 2007)
laboratory noted that“Exothermic chemical reactions may
be accompanied by chemiluminescence. In these reactions,
the released energy is not adiabatically damped into the heat
bath of the surrounding medium but rather is stored in an ex-

†While non-magnetic, spicules might nonetheless be confinedby mag-
netic fields present in the charged plasmas or coronal metallic hydrogen that
surrounds them, much as illustrated in Fig. 14.
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cited state of the product; decay from this excited state to the
ground state is associated with light emission”[216].

The reactions of interest are seldom studied. Those which
must arouse attention involve the condensation of two silver
fragments and the formation of an activated cluster species:
Agn + Agm → Ag∗m+n [216]. With respect to the chromo-
sphere, the important features of these reactions involve the
realization that condensation processes are exothermic.

When silver clusters condense, energy must be dissipated
through light emission. This constitutes a vital clue in ex-
plaining why the chromosphere is rich in hydrogen emission
lines [59, 205]. Once an activated cluster is formed, it can
relax by ejecting an excited atom: Ag∗m+n → Agm+n−1 + Ag∗.
The reactions are completed when the ejected excited species
emits light to reenter the ground state: Ag∗ → Ag + hν.

Taking guidance from the work in metal clusters [216],
hydrogen emission lines in the chromosphere might be seen
as produced through the condensation of hydrogen fragments,
Hn + Hm→ H∗m+n. The resultant condensation product could
then relax through the ejection of an excited hydrogen atom,
H∗m+n→ Hm+n−1 + H∗, which finally returns to a lower energy
state with light emission, H∗ → H + hν. This could give rise
to all the Lyman lines (N2 > 1 →N1= 1). If one postulates
that the excited hydrogen atom can hold its electron in any
excited orbital N2 >2, H∗∗, then the remaining complement
of hydrogen emission lines could be produced H∗∗ →H∗ + hν
(Balmer N2 > 2→N1=2, Paschen series N2 > 3→N1=3,
and Brackett series N2 > 4→N1=4).

But since the chromosphere is known to possess spicules
and mottles [148, 150, 206–215], it is more likely that hy-
drogen is condensing, not onto a small cluster, but rather,
onto very large condensed hydrogen structures, CHS [59].∗

The most logical depositing species in these reactions would
be molecular hydrogen, as it has been directly observed in
sunspots [217, 218], on the limb [219], and in flares [218].
Importantly, the emission from molecular hydrogen is partic-
ularly strong in chromospheric plages [220], providing fur-
ther evidence that the species might be the most appropriate
to consider.

As a result, it is reasonable to postulate that molecular hy-
drogen could directly interact with large condensed hydrogen
structures, CHS, in the chromosphere [59]. The reaction in-
volved would be as follows: CHS+ H2 → CHS–H∗2. This
would lead to the addition of one hydrogen at a time to large
condensed structures and subsequent line emission from the
ejected excited species, H∗ → H + hν. Numerous reactions
could simultaneously occur, giving rise to the rapid growthof
chromospheric structures, accompanied with significant light
emission in all spectral series (i.e. Lyman, Balmer, Paschen,
and Brackett).

∗Chromospheric condensed hydrogen structures, CHS, are likely to be
composed of extremely dense condensed matter wherein molecular hydrogen
interactions linger [92].

3.4.2 The Gaseous Solar Models

The situation being promoted in§3.4.1, concerning hydrogen
line emission in the chromosphere, is completely unlike that
currently postulated to exist within the gaseous Sun [59]. In
the gas models, line emission relies on the accidental excita-
tion of hydrogen through bombardment with either photons
or electrons [206, p. 2]. The process has no purpose or rea-
son. Atoms are randomly excited, and then, they randomly
emit.

Przybilla and Butler have studied the production of hy-
drogen emission lines and the associated lineshapes in the
gaseous models. They reached the conclusion that some of
the hydrogen emission lines“collisionally couple tightly to
the continuum”[221]. Their key source of opacity rests with
the H− ion, which has previously been demonstrated to be in-
capable of providing the desired continuous emission [42].
Of course, it is impossible to“collisionally couple tightly
to the continuum”[221] in the gaseous models, as the con-
tinuum originates solely from opacity changes produced by
an array of processes [42]. In the chromosphere, where av-
erage densities are postulated to be extremely low (∼10−15

g/cm3 [148]), continuous emission is thought to be produced
by neutral H, H−, Rayleigh scattering, and electron scatter-
ing (see [145, 146] and [150, p. 151–157]). Clearly, it is not
possible to tightly couple to all of these mechanisms at once.

Przybilla’s and Butler’s computations [221] involve con-
sideration of line blocking mechanisms and associated opac-
ity distribution functions [222]. Stark line broadening mech-
anisms must additionally be invoked [223].

Beyond the inability of gases to account for the contin-
uous spectrum and the shortcomings of solar opacity calcu-
lations [42], the central problem faced in trying to explain
hydrogen emission and the associated line shapes rests in the
Stark mechanisms themselves. Stark line broadening relies
upon the generation of local electric fields near the emitting
hydrogen atom. These fields are believed to be produced by
ions or electrons which come into short term contact with the
emitting species [223]. On the surface at least, the approach
seems reasonable, but in the end, it relies on far too many
parameters to be useful in understanding the Sun.

In the laboratory, Stark broadening studies usually cen-
ter uponextremely dense plasmas, with electron numbers ap-
proaching 1017 cm−3 [224]. Stehlé, one of the world’s preem-
inent scientists relative to Stark linewidth calculations[223,
225, 226], has analyzed lineshapes to infer electron numbers
ranging from 1010 to 1017 cm−3 [227].† She initially assumes
that plasmas existing within the chromosphere (T=10,000K)
have electron numbers in the 1013 cm−3 range [223]. Other

†While the vast majority of plasma studies report electron densities in
the 1017 cm−3 range, the He I studies range from 1015 cm−3 to 1017 cm−3

[224]. The lowest electron numbers, 1015 cm−3, are produced using arc dis-
charge low density plasma settings. However, these could have little rele-
vance in the Sun, as arc experiments rely on the capacitive discharge of large
voltages. They do not depend on fluctuating electromagneticfields [228].
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sources call for much lower values. For instance, electron
numbers of∼1016 m−3 (or ∼1010 cm−3) are obtained from
radio measurements by Cairns et al. [229] and of no more
than∼1015 m−3 (or ∼109 cm−3) are illustrated in Dwivedi
Fig. 3 [157, p. 285]. Stark experiments on Earth typically uti-
lize electron numbers which are approximately 1–100 million
times greater than anything thought to exist in the chromo-
sphere.

A minor objection to the use of Stark broadening to ex-
plain the width of the hydrogen lines in the gaseous models
rests on the fact that the appropriate experiments on hydro-
gen plasma do not exist. The plasma form of hydrogen (H II)
is made of protons in a sea of electrons. It lacks the valence
electron required for line emission. The closest analogue to
excited hydrogen in the Sun would be ionized helium in the
laboratory [224], although ionized Argon has been used for
the Hβ profile [227].∗

However, the most serious problem rests in the realization
that these methods are fundamentally based on the presence
of electric or electromagnetic fields in the laboratory. Forin-
stance, the inductively produced plasmas analyzed by Stehlé
[227] utilize discharges on the order of 5.8 kV [227]. In-
ductively produced plasmas involve directionally-oscillating
electromagnetic fields. Spark or arc experiments utilize static
electric fields to induce capacitive discharges across charged
plates. In every case, the applied electric field hasa distinct
orientation. Such conditions are difficult to visualize in a
gaseous Sun, particularly within the spicules (see§3.4 and
§5.7), given their arbitrary orientations. Random field orien-
tations are incapable of line broadening, as well understood
in liquid state nuclear magnetic resonance.

Stark broadening requires constraints on the electric field.
In the gaseous models, these must take the form of a charged
particle which approaches, precisely at the correct moment,
an emitting species. The use of such mechanisms to account
for chromospheric line profiles is far from justified. But, as
the gaseous models cannot propose another explanation, ev-
erything must rest on Stark mechanisms, however unlikely
these are to be valid in this setting.

In the end, it is not reasonable that matter existing at the
concentration of an incredible vacuum (∼10−15 g/cm3 [148])
could be Stark broadened, given the extremely low electron
numbers associated with the chromosphere [157,229]. Com-
putations have merely extended our‘observational range’to
electron numbers never sampled in the laboratory. According
to the gas models, the chromosphere is a region of extremely
low density, but high density plasmas must be studied to en-
able Stark analysis. Then, while the results of Stark broaden-
ing calculations appear rigorous on the surface, they contain

∗The use of argon to represent hydrogen immediately suggeststhat these
methods are not relevant to the Sun. Unlike hydrogen, argon has valence
shells containing up to 18 electrons. This many electrons, when either ion-
ized or polarized, presents an analogue with little or no resemblance to hy-
drogen and its lone electron.

experimental shortcomings. Spatially aligned electric fields
cannot exist throughout the spicular region of a fully gaseous
solar atmosphere, lone electrons are unlikely to produce the
desired electric fields, and atoms such as argon have little rel-
evance to hydrogen. In any case, given enough computational
flexibility, any lineshape can be obtained, but opacity consid-
erations remain [42].

3.4.3 Summary

As just mentioned in§3.4.2, Stark experiments involve elec-
tron densities far in excess of anything applicable to the solar
chromosphere. Using the same reasoning, it could be argued
that metallic hydrogen has not been created on Earth [39,92].
The criticism would be justified, but this may be simply a
matter of time. Astrophysics has already adopted these ma-
terials in other settings [93–96] and experimentalists areget-
ting ever closer to synthesizing metallic hydrogen [39, 92].
The Sun itself appears to be making an excellent case that it
is comprised of condensed matter.

Unlike the situation in the gaseous solar models, where
hydrogen emission becomes the illogical result of random re-
actions, within the context of the liquid hydrogen model, it
can be viewed as the byproduct of systematic and organized
processes (see§3.4.1). An underlying cause is associated
with line emission, dissipation of the energy liberated dur-
ing condensation reactions. The driving force is the recapture
of hydrogen through condensation, leading ultimately to its
re-entry into the solar interior. This tremendous advantage
cannot be claimed by the gaseous models.

Pressure (or collisional) broadening can be viewed as the
most common mechanism to explain line broadening in spec-
troscopy. This mechanism can be invoked in the condensed
model, because the atmosphere therein is not devoid of matter
(see§2.3.6,§5.4,§5.5,§5.6,§6.6 and [56,58,59]).

It is possible that line broadening is occurring due to di-
rect interaction between the emitting species and condensed
hydrogen structures in the chromosphere. In this case, emis-
sion would be occurring simultaneously with the ejection of
hydrogen. Under the circumstances, hydrogen line shapes
may be providing important clues with respect to the interac-
tion between molecular hydrogen and larger condensed struc-
tures in the chromosphere. If Stark broadening mechanisms
play any role in the Sun, it will only be in the context of con-
densed matter generating the associated electric field.

3.5 Elemental Emission #13

Beyond hydrogen, the solar chromosphere is the site of emis-
sion for many other species, particularly the metals of the
main group and transition elements.† For gaseous models,
these emissions continue to be viewed as the product of ran-
dom events (see§3.4.2). However, for the LMH model, con-

†This proof was first presented as the thirtieth line of evidence [59].
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densation remains the focus (§3.4.1), but this time with the
assistance of the hydrides.

The solar disk and the sunspots are rich in hydrides in-
cluding CaH, MgH, CH, OH, H2O, NH, SH, SiH, AlH, CoH,
CuH, and NiH [230, 231]. CaH and MgH have been known
to exist in the Sun for more than 100 years [232]. Hydrogen
appears to have a great disposition to form hydrides and this
is important for understanding the role which they play in the
chromosphere.

At the same time, the emission lines from CaII and MgII
are particularly strong in the chromosphere [206, p. 361-369].
These represent emissions from the Ca+ and Mg+ ions. Yet,
the inert gas configurations for these atoms would lead one to
believe that the Ca+2 (CaIII) and Mg+2 (MgIII) lines should
have been most intense in the chromosphere. As such, why is
the Sun amplifying the CaII and MgII lines? Surely, this can-
not be a random phenomenon (§3.4.2),∗ as these should have
led to the buildup of the most stable electronic configuration.

The answer may well lie in reconsidering the condensa-
tion reactions presented in§3.4.1, but this time substituting
CaH for molecular hydrogen. It should be possible for CaH
and a condensed hydrogen structure, CHS, to interact, thereby
forming an activated complex, CHS+ CaH→ CHS-HCa∗.
This complex could then emit a CaII ion in activated state,
Ca+∗, and capture the hydrogen atom: CHS–HCa∗→CHS–H
+ Ca+∗. Finally, the emission lines from CaII would be pro-
duced, as Ca+∗ (CaII∗) returns to the ground state: Ca+∗ →
Ca+ + hν. As was the case when discussing the condensation
of molecular hydrogen (§3.4.1), if one permits the electrons
within the excited state of CaII to initially occupy any elec-
tronic orbital, CaII∗∗, then all possible emission lines from
CaII could be produced: Ca+∗∗ → Ca+∗ + hν. A similar
scheme could be proposed for MgH and the other metal hy-
drides, depending on their relative affinity for CHS.

There is an important distinction between this scenario
and that observed with molecular hydrogen (§3.4.1). When
metal hydrides are utilized in this scheme, the condensation
reactions are delivering both a proton andtwo electrons to
the condensed hydrogen structure. The reactions involving
molecular hydrogen delivered a single electron. This interest-
ing difference can help to explain the varying vertical extent
of the chromosphere when viewed in Hα, CaII, or HeII (see

∗Here is a brief list of interesting ions and the ionization energies
required for their production: HII=13.6 eV; HeII=24.6 eV; HeIII=54.4 eV;
MgII =7.6 eV; MgIII=15.0 eV; CaII= 6.1 eV; CaIII= 11.8 eV and
FeXIV=361 eV [233]. In this respect, note how the first ionized form
of helium, HeII, requires 24.6 eV for its production. The generation of
many triplet forms of orthohelium HeI∗ will demand energies of∼20 eV.
To remove two electrons from calcium yielding CaIII (the stable Ca+2 ion)
only requires 11.8 eV. As a result, how can the gas models account for the
presence of CaII lines at high altitude on the Sun (5-10,000 km), when this
ion only requires 6.1 eV for production? If such powerful HeII and HeI∗ can
be observed, why is CaIII, which requires only 11.8 eV for itsgeneration
and has the inert gas, [Ar], configuration, not the preferredform of calcium?
This provides a powerful clue that the presence (or absence)of an individual
ion on the Sun is related to chemistry and not to temperature.

§3.6 and§4.7).
When sampling the solar atmosphere, electron densities

appear to rise substantially as one approaches the photosphere
(see [229] and [157, p. 285]). Hence, the lower chromosphere
is somewhat electron rich with respect to the upper regions of
this layer. Thus, in the lower chromosphere, condensation re-
actions involving the ejection of atomic hydrogen and neutral
atoms can abound. As the altitude increases, a greater affin-
ity for electrons arises and condensation can now be facili-
tated by species like as the metal hydrides, which can deliver
two electrons per hydrogen atom.† This explains why CaII
lines in the chromosphere can be observed to rise to great
heights [193].

At the same time, lines from neutral metals, M, are more
prevalent in the lower chromosphere [193]. Since this area
is electron rich, a two electron delivery system is unneces-
sary and reactions of the following form can readily occur:
1) MH + CHS→ CHS-HM∗, 2) CHS–HM∗ → CHS–H+
M∗, and 3) M∗ → M + hν. In this case, only a single electron
has been transferred during hydrogen condensation.

Perhaps, it is through the examination of linewidths that
the most interesting conclusions can be reached. The emis-
sion lines of Hα, Ca, and Mg from spicules are very broad,
suggesting a strong interaction between CHS and the ejected
atoms, in association with ejection and light emission [234–
236]. In contrast, spicule emission linewidths from Hβ, Hγ,
Hǫ, the D3 line from He, and the neutral line from oxygen
are all sharp [234]. One could surmise that the interaction
between these species and condensed hydrogen structures are
weaker upon ejection.

It is reasonable to conclude that the hydrides play an im-
portant role in facilitating condensation within the chromo-
sphere [59]. Hydrides enable the delivery of hydrogen in a
systematic manner and, most importantly, either one or two
electrons, depending on the electron densities present on the
local level. Such an elegant mechanism to account for the
prevalence of CaII and MgII in the chromosphere cannot be
achieved by other models. Moreover, unlike the LMH model,
the gaseous models take no advantage of the chemical species
known to exist in the solar atmosphere.

3.6 Helium Emission #14

The analysis of helium emission in the chromosphere may
well provide the most fascinating adventure with regard to
the spectroscopic lines of evidence.‡ This stands as fitting
tribute to helium [47], as it was first observed to exist on the
Sun [237,238]. These seminal discoveries exploited the pres-
ence of helium within prominences and the disturbed chro-
mosphere [239, 240]. Astronomers would come to view so-
lar helium as extremely abundant [241, 242], but these con-

†As will be seen in§3.8, it is envisioned that the corona of the Sun is
harvesting electrons.

‡This proof was first presented as the 32nd line of evidence [61].
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clusions have been challenged and may need to be revisited
[47,48,61]. There is considerable reason to conclude that the
solar body is actively ejecting He from its interior [47,48].

Though helium can be found in spicules [193] and promi-
nences, it is difficult to observe on the solar disk. It can be
readily visualized in the chromosphere where the spatial ex-
tent of the 30.4 nm HeII emission lines can greatly exceed
those from Hα (see the wonderful Fig. 1 in [243]). With
increased solar activity, helium emission can become pro-
nounced in the solar atmosphere (see Fig. 15 and [244]).

Fig. 15: Image of consecutive years in the solar cycle taken
in the HeII line at 30.4 nm. NASA describes this image
as follows, “An EIT image in the 304 Angstrom wavelength
of extreme UV light from each year of nearly an entire so-
lar cycle”. Courtesy of SOHO/[EIT] consortium. SOHO is
a project of international cooperation between ESA and NASA.
(http://sohowww.nascom.nasa.gov/gallery/images/cycle002.html —
Accessed on 9/20/2013).

In the chromosphere, the helium which gives rise to emis-
sion lines can possess both of its electrons (HeI) or lose an
electron to produce an ion (HeII). HeII resembles the hydro-
gen atom in its electronic configuration. However, the situa-
tion concerning HeI can be more complex. When this species
exists in the ground state, both of its electrons lie in the 1Sor-
bital (N=1) with their spins antiparallel, as dictated by Pauli’s
exclusion principle. In the excited state (i.e. 1 electron in the
N=1 shell, and the second electron in any of the N>1 shells),
helium can exist either as a singlet (parahelium — spins re-
maining antiparallel to one another) or as a triplet (orthohe-
lium — spins assume a parallel configuration). Interestingly,
the line emissions from the triplet states of orthohelium can
be quite strong on the limb of the Sun.

For instance, a well-known triplet HeI transition occurs
at 1083 nm (10830Å) which is barely visible on the disk, but
it is nearly as intense as Hα on the limb [245, p. 199–200].
At the same time, the HeI triplet D3 line at 588 nm can be
enhanced 20 fold when visualization moves from the disk to
the limb [245, p. 199-200].∗

∗Lines from neutral helium can be enhanced 50 fold on the limb relative

During the eclipse of March 29, 2006, the triplet D3 line
was carefully examined. It appeared to have a binodal altitude
distribution with a small maximum at∼250 km and a stronger
maximum between 1300-1800km (see Fig. 6 in [244]). This
bimodal distribution was not always observed (see Fig. 7 in
[244]). But generally, the D3 line is most intense at an alti-
tude of∼2,000 km, with an emission width of approximately
1,600km. The triplet D3 lines show no emission near the
photosphere.

Within the context of gaseous models, it is extremely dif-
ficult to account for the presence of excited HeI triplet states
in the chromosphere. Helium requires∼20 eV† to raise an
electron from the N=1 shell to the N=2 shell. How can exci-
tation temperatures in excess of 200,000K be associated with
a chromosphere displaying apparent temperatures of 5,000-
10,000K, values not much greater than those existing on the
photosphere?

Therefore, since proponents of gaseous models are unable
to easily account for the powerful D3 line emission, they have
no choice but to state that helium is being excited by coronal
radiation which has descended into the chromosphere [244,
246]. In a sense, helium must be‘selectively heated’by the
corona. These proposals strongly suggest that the gaseous
models are inadequate. It is not reasonable to advance that
an element can be selectively excited by coronal radiation,
and this over its many triplet states. At the extreme, these
schemes would imply that coronal photons could strip away
all electrons from chromospheric atoms. Yet, even lines from
neutral atoms are observed.‡

On the other hand, helium emissions can be easily under-
stood in the LMH model [35, 36, 39], if attention is turned
toward condensation reactions believed to occur within the
chromosphere (see§3.4,§3.5 and [59,61]).

In this respect, it must be recognized that the famous he-
lium hydride cation (HeH+) “is ubiquitous in discharges con-
taining hydrogen and helium”[247].

First discovered in 1925 [248], HeH+ has been exten-
sively studied [249, 250] and thought to play a key role in
certain astrophysical settings [251–253]. In the laboratory, its
spectral lines were first observed by Wolfgang Ketterle (No-
bel Prize, Physics, 2001) [254, 255]. The author has previ-
ously noted,“Although it exists only in the gas phase, its
Brønsted acidity should be extremely powerful. As a result,
the hydrogen hydride cation should have a strong tendency
to donate a proton, without the concerted transfer of an elec-
tron” [61].

Turning to Fig. 16, it appears that the action of the helium
hydride cation, HeH+, can lead to a wide array of reactions
within the chromosphere. These processes are initiated with

to the disk [245, p. 199-200].
†1 eV=11,600 K ; 20 eV=232,000 K.
‡Selective excitation was also used to account for the emission lines

from molecular hydrogen [220]. But it is more likely that these reflect the
delivery of a hydrogen cluster (see§3.4.1) with H∗2 rather than H∗ expulsion.
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its transfer to condensed hydrogen structures, CHS, believed
to be be forming (see§2.3.6, §3.4, §3.5, §3.7, §5.4, §5.6,
§6.6) in this region of the solar atmosphere. As was the case
with hydrogen (§3.4) and elemental (§3.5) emission lines, ev-
erything hinges on the careful consideration of condensation.

Fig. 16: Schematic representation of possible pathways involved
when the helium hydride ion, HeH+, or the excited helium hydride
molecule, HeH∗, react with condensed hydrogen structures, CHS, in
the chromosphere of the Sun. The pathways presented can account
for all emission lines observed from He I and He II. Note in this
scheme that excited helium, He∗, is being produced initially through
the interaction of HeH+ with CHS. This excited helium, He∗, if it
assumes the triplet state (orthohelium — electrons in the same ori-
entation: spin up/up or down/down), will become trapped in excited
state. This triplet helium can then be used repeatedly, in cyclic fash-
ion, to condense hydrogen atoms onto chromospheric structures,
CHS (as shown in the lower half of the figure). Alternatively,if
excited helium He∗ is initially produced in the singlet state (parahe-
lium — electrons in different orientation: spin up/down), emission
can immediately occur generating the singlet lines from He I. This
scheme accounts for the strong triplet He I transition at 10830 Å ob-
served in the flash spectrum of the chromosphere. Unlike the sit-
uation in the gas models, random collisional or photon excitations
are not invoked to excite the helium atoms. De-excitation processes
would also be absent, helping to ensure the buildup of triplet state
orthohelium in this model. This figure, along with its legend, was
previously published in [61].

First, HeH+ and CHS react to form an activated complex:
CHS+ HeH+ → CHS-H-He+∗. If the expulsion of an excited
helium ion (He+∗) follows, full transfer of a proton and an
electron to CHS will have occurred (top line in Fig. 16). The
resulting He+∗ would be able to relax back to a lower energy
state through emission, leading to the well known He II lines
in the chromosphere (top right in Fig. 16).

Alternatively, when HeH+ reacts with CHS, the expulsion
of an excited helium atom (He∗) could follow (see Fig. 16) in-
volving the transfer of a proton — but no electron — to the
CHS. As a strong Brønsted acid, HeH+ should permit these

reactions (namely: CHS–HHe+∗ → CHS–H+ + He∗). Expul-
sion of an activated helium atom (He∗) can lead to two condi-
tions, depending on whether the electrons within this species
are antiparallel (parahelium) or parallel (orthohelium).
Within helium, the excited electron is allowed by selection
rules to return to the ground state, if and only if, its spin is
opposed to that of the ground state electron. As a result, only
parahelium can relax back to the ground state: He∗ → He+
hν. This leads to the HeI lines from singlet helium.

As for the excited orthohelium, it is unable to relax, as its
two electrons have the same spin (either both spin up or both
spin down).Trappedin the excited state, this species can at
once react with hydrogen, forming the excited helium hydride
molecule, which, like the helium hydride cation, is known to
exist [256,257]: He∗ + H→ HeH∗.

Excited helium hydride can react with CHS in the chro-
mosphere, but now resulting in a doubly activated complex:
CHS+ HeH∗ → CHS-H-He∗∗, wherein one electron remains
in the ground state and the other electron is promoted beyond
the 2S shell.∗ To relax, the doubly excited He∗∗ atom, must
permit an electron currently in the 2P or higher orbital, to re-
turn to the 2S or 2P orbitals.

The helium D3 line would be produced by a 33D→23P
transition [245, p. 95]. The 23P→23S transition is associated
with the strong triplet He I line at 10830Å [245, p. 95]. Alter-
natively, a 33P→23S transition produces the triplet He I line
at 3890 Å [245, p. 95].

Importantly, since excited orthohelium cannot fully relax
back to the ground state, it remains available to recondense
with atomic hydrogen in the chromosphere. This results in
its continual availability in the harvest of hydrogen. A cyclic
process has been created using orthohelium (He∗). The prim-
ing of this cycle had required but a single instance where hy-
drogen was transferred to CHS by HeH+, without the com-
plementary transfer of an electron (top line in Fig. 16).† In
this manner, much like what occurred in the case of molecu-
lar hydrogen (§3.4) and the metal hydrides (§3.5), the body of
the Sun has been permitted to recapture atomic hydrogen lost
to its atmosphere. It does not simply lose these atoms without
any hope of recovery [59,61,62].

Within the LMH model, the prominence of the helium
triplet lines can be elegantly explained. They result from the
systematic excitation of helium, first delivered to condensed
hydrogen structures by the helium hydride cation (HeH+), a
well-known molecule [247–254] and strong Brønsted acid.
The generation of triplet state excited helium can be explained
in a systematic fashion and does not require unrealistic tem-
peratures in the corona. It is not an incidental artifact pro-
duced by improbably selective excitations generated using

∗The possibility that He∗∗ could have no electrons in the ground state is
not considered.

†The production of Ca II emission lines from CaH had resulted in the
transfer of two electrons per hydrogen atom (see§3.5). This can help keep
charge neutrality in condensation reactions involving HeH+.
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coronal photons. Organized chemical reactions govern the
behavior of helium in the Sun, not random events.

3.7 Fraunhofer Absorption #15

When examined under high spectral resolution, the visible
spectrum of the Sun is punctuated by numerous absorption
lines, which appear as dark streaks against a brighter back-
ground.∗ These lines were first observed by William Hyde
Wollaston in 1802 [258]. They would eventually become
known asFraunhofer linesafter the German scientist who
most ably described their presence [259]. Fraunhofer lines
can be produced by many different elements. They manifest
the absorption of photospheric light by electrons, contained
within gaseous atomic or ionic species above the photosphere,
which are being promoted from a lower to a higher energy
level.

In 1862, Kirchhoff was the first to argue that the Fraun-
hofer lines provided evidence for a condensed solar body,“In
order to explain the occurrence of the dark lines in the solar
spectrum, we must assume that the solar atmosphere incloses
a luminous nucleus, producing a continuous spectrum, the
brightness of which exceeds a certain limit. The most proba-
ble supposition which can be made respecting the Sun’s con-
stitution is, that it consists of a solid or liquid nucleus, heated
to a temperature of the brightest whiteness, surrounded by an
atmosphere of somewhat lower temperature.”[190, p. 23].

Amongst the most prominent of the Fraunhofer lines are
those associated with the absorption of photospheric lightby
the hydrogen atoms. The preeminent Fraunhofer lines are
generated by the Balmer series. These lines are produced
when an excited hydrogen electron (N=2) absorbs sufficient
energy to be promoted to yet higher levels (HαN= 2→N=3
656.3 nm; Hβ N= 2→N=4 486.1nm; Hγ N= 2→N=5
434.1 nm; Hδ N= 2→N=6 410.2nm; etc). They can be
readily produced in the laboratory by placing hydrogen gas
in front of a continuous light source.

In 1925, Albrecht Unsöld reported that the solar Fraun-
hofer lines associated with hydrogen did not decrease as ex-
pected [260]. He noted intensities across the Balmer series
(Hα = 1; Hβ = 0.73; Hγ = 0.91; Hδ =1) which where highly
distorted compared to those expected in a hydrogen gas, as
predicted using quantum mechanical considerations (Hα =1;
Hβ = 0.19; Hγ = 0.07; Hδ =0.03) [260].

Hydrogen lines were known to be extremely broad from
the days of Henry Norris Russell and Donald H. Menzel, who
had observed them in association with solar abundance [87]
and chromospheric studies [205], respectively. Commenting
on the strength of the hydrogen Balmer series, Henry Norris
Russell would write,“It must further be born in mind that
even at solar temperatures the great majority of the atoms of
any given kind, whether ionized or neutral, will be in the state
of lowest energy. . .One non-metal, however, presents a real

∗This proof was first presented as the sixteenth line of evidence [47,59].

and glaring exception to the general rule. The hydrogen lines
of the Balmer series, and, as Babcock has recently shown, of
the Paschen series as well, are very strong in the Sun, though
the energy required to put an atom into condition to absorb
these series is, respectively, 10.16 and 12.04 volts — higher
than for any other solar absorption lines. The obvious expla-
nation — that hydrogen is far more abundant than the other
elements — appears to be the only one”[87, p. 21–22].

In the photospheric spectrum, the hydrogen absorption
lines are so intense that the observer can readily garner data
from the Lyman (N=1→ N=2 or higher), Balmer (N=2→
N=3 or higher), Paschen (N=3→N=4 or higher), and Brack-
ett (N=4→ N=6 or higher) series [87,205,260–264].

The central questions are three fold: 1) Why are the hy-
drogen lines broad? 2) Why does hydrogen exist in excited
state as reflected by the Balmer, Paschen, and Brackett lines?
and 3) Why is the normal quantum mechanical distribution of
the Balmer series distorted as first reported by Unsöld [260]?

In the gaseous models, different layers of the solar atmo-
sphere have to be invoked to account for the simultaneous
presence of Lyman, Balmer, Paschen and Brackett line pro-
files in the solar spectrum [261–264]. Once again, as when
addressing limb darkening (see§2.3.2), the models have re-
course to optical depth [261–264]. These approaches fail to
adequately account for the production of the excited hydro-
gen absorption.

As noted in§3.4, in the setting of the LMH model, ex-
cited hydrogen atoms can be produced through condensation
reactions occurring in the solar chromosphere. These atoms
could be immediately available for the absorption of photons
arising from photospheric emission. Hence, condensation re-
actions provide an indirect mechanism to support the genera-
tion of many hydrogen Fraunhofer line. Since these lines are
being produced in close proximity to condensed matter, it is
reasonable to conclude that their linewidths are determined
by their interaction with such materials and not from optical
depth and Stark mechanisms (see§3.4). This may help to ex-
plain why the intensity of the Balmer lines, as first reportedby
Unsöld [260], do not vary as expected in gases from quantum
mechanical considerations. Unsöld’s findings [260] strongly
suggest that the population of excited hydrogen atoms is be-
ing distorted by forces not known to exist within gases. Once
again, this calls attention to condensed matter.

3.8 Coronal Emission #16

As was discussed in§2.3.7, the K-corona is the site of con-
tinuous emission which reddens slightly with altitude, but
whose general appearance closely resembles the photospheric
spectrum [57].† This leads to the conclusion that condensed
matter must be present within this region of the Sun [57].
Still, the nature of the corona is more complicated, as the
same region which gives rise to condensed matter in the K-

†This proof was first presented as the 31st line of evidence [60, 62].
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corona is also responsible for the production of numerous
emission lines from highly ionized elements (e.g. FeXII-
FeXXV [192]) in the E-corona [60].∗

When examined in light of the gaseous solar models, the
production of highly ionized species requires temperatures in
the million of degrees [192]. Temperatures as high as 30 MK
have been inferred to exist in the corona [192, p. 26], even
if the solar core has a value of only 16 MK [13, p. 9]. Flares
have been associated with temperatures reaching 108 K [273],
and radio sampling has called for values between 108 and
1010 K [245, p. 128].

Given the temperatures inferred in attempting to explain
the presence of highly ionized atoms in the K-corona, pro-
ponents of the gaseous models deny that this region can be
comprised of condensed matter. Harold Zirin summarizes the
situation best,“. . . there is something erroneous in our basic
concept of how ionization takes place”[245, p. 183].

Rather than cause a dismissal of condensed matter, such
extreme temperature requirements should lead to the realiza-
tion that the gaseous models are fundamentally unsound [62].
It is not reasonable to assume that the corona harbors temper-
atures which exceed those found in the core. Furthermore, to
arrive at these extreme values, the corona must somehow be
heated. The“zoo” [148, p. 278] of possible heating mech-
anisms is substantial [148, p. 239–251]. According to E.R.
Priest, the hypothesized mechanisms are fundamentally mag-
netic in nature as“all the other possible sources are com-
pletely inadequate”[273]. The problem for gaseous models
can be found in the realization that their only means of pro-
ducing highly ionized atoms must involve violent bombard-
ment and the removal of electrons to infinity. These schemes
demand impossible temperatures.†

It is more reasonable to postulate that elements within
the corona are being stripped of their electrons when they
come into contact with condensed matter. The production
of highly ionized atoms involves electron affinity, not tem-
perature. The belief that the corona is a region characterized
by extremely elevated temperatures is erroneous. The cool
K-coronal spectrum is genuine. The associated photons are
directly produced by the corona itself, not by the photosphere
(see§2.3.7).

∗The story which accompanies the mystical element coronium (or
FeXIV) in the corona and its discovery by the likes of Harkness, Young,
Grotian, and Edlén [151–153] has been recalled [265–268].Wonderful im-
ages of the corona have recently been produced from highly ionized iron (e.g.
FeX-FeXIV) [269–272].

†It will be noted in §5.5, that the gaseous solar models infer widely
varying temperatures within thesameregions of the corona when analyzing
coronal loops (see Fig. 22). How could it be possible to sustain vastly dif-
fering values in thesameregion of the solar atmosphere? These findings are
indicative that we are not sampling temperature, but rathersubstructures with
distinct electron affinities. These substructures take advantage of a wide array
of species to transfer electrons. Evidence for such a solution can be found
in Fig. 1.10 of [192] which describes flare substructure and the associated
variations in emitting species (arcade emitting in FeXII — spine emitting in
FeXXIV and Ca XVII).

Moreover, condensed matter can have tremendous elec-
tron affinities. This is readily apparent to anyone studying
lightning on Earth. Thunderhead clouds have been associated
with the generation of 100 keV X-rays [274, p. 493-495], but
no-one would argue that the atmosphere of the Earth sustains
temperatures of 109 K. Lightning can form“above volcanoes,
in sandstorms, and nuclear explosions”[274, p. 67]. It rep-
resents the longest standing example of the power of electron
affinity, as electrons are transferred from condensed matter in
the clouds to the Earth’s surface, or vise versa [274–276].

Metallic hydrogen should exist in the K-corona, as Type-
I material has been ejected into this region (see§2.3.8) by
activity on the photosphere [58]. Electrical conductivityin
this region is thought to be very high [277, p. 174]. Thus,
the production of highly ionized elements can be explained if
gaseous atoms come into contact with this condensed matter.
For example, iron (Fe) could interact with metallic hydrogen
(MH) forming an activated complex: MH+ Fe→ MH–Fe∗.
Excited Fe could then be ejected with an accompanying trans-
fer of electrons to metallic hydrogen: MH–Fe∗ → MH–n ē+
Fe+n∗. The emission lines observed in the corona are then
produced when the excited iron relaxes back to the ground
state through photon emission, Fe+n∗ → Fe+n + hν. Depend-
ing on the local electron affinity of the condensed metallic
hydrogen, the number of electrons transferred,n, could range
from single digits to∼25 [192] in the case of iron.‡

The scheme formulated with iron can be extended to all
the other elements,§ resulting in the production of all coro-
nal emission lines. The governing force in each case would
be the electron affinity of metallic hydrogen which may in-
crease with altitude. Highly ionized species are not produced
through the summation of multiple electron ejecting bom-
bardments. Rather, multiple electrons are being stripped si-
multaneously, in single action, by transfer to condensed mat-
ter. In this manner, theelectron starvedcorona becomes en-
dowed with function,the harvesting of electrons from ele-
ments in the solar atmosphere, thereby helping to maintain
the neutrality of the solar body[60].

In this sense, the chromosphere and corona have compli-
mentary action. The chromosphere harvests hydrogen atoms
and protons. The corona harvests electrons.¶

As for the transition zone (see Fig. 1.1 in [192]), it does
not exist. This region was created by the gaseous models in
order to permit a rapid transition in apparent temperaturesbe-
tween the cool chromosphere and hot corona (see [62] for a
complete discussion). In the metallic hydrogen model, the ap-
parent temperatures in both of these regions are cool, there-

‡In this regard, it is important to note that most of the ions present in
the“XUV spectrum are principally those with one or two valence electrons”
[245, p. 173]. This observation is highly suggestive that systematic processes
are taking place, not random bombardments.

§A least one electron must remain for line emission.
¶While the corona is primarily composed of metallic hydrogen, as will

be seen in§5.4, it can provide a framework to allow for the condensationof
hydrogen in non-metallic form.
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fore a transition zone serves no purpose [62]. The changes
in atomic and ionic compositions observed in the solar at-
mosphere can be accounted for by 1) the varying ability of
molecular species to deliver hydrogen and protons to con-
densed hydrogen structures in the chromosphere as a func-
tion of altitude, and 2) to changes in the electron affinity of
metallic hydrogen in the corona.

This scenario resolves, at long last, the apparent violation
of the Second Law of Thermodynamics which existed in the
gaseous model of the Sun. It is not realistic that the center of
the Sun exists at 16 MK [13, p. 9], the photosphere at 6,000 K,
and the corona at millions of degrees. A solution, of course,
would involve the recognition that most of the energy of the
photosphere is maintained in its convection currents and con-
duction bands [37], not in the vibrational modes responsible
for its thermal spectrum and associated apparent temperature.
But now, the situation is further clarified. The corona is not
being heated — it is cool. No violation of the Second Law of
Thermodynamics exists, even if photospheric convection and
conduction are not considered.

4 Structural Lines of Evidence

The structural lines of evidence are perhaps the most physi-
cally evident to address, as they require only elementary me-
chanical principles to understand.

4.1 Solar Collapse #17

Should stars truly be of gaseous origin, then they are con-
fronted with the problem of solar collapse.∗ Somehow, they
must prevent the forces of gravity from causing the entire
structure to implode upon itself.

Arthur Eddington believed that stellar collapse could be
prevented by radiation pressure [9]. Photons could transfer
their momentum to stellar particles and thereby support struc-
ture. These ideas depend on the existence of radiation within
objects, a proposal which is counter to all laboratory under-
standing of heat transfer. Conduction and convection are re-
sponsible for the transfer of energy within objects [70]. Itis
only if one wishes to view the Sun as an assembly of separate
objects that radiation can be invoked.

Eventually, the concept that the Sun was supported exclu-
sively by radiation pressure was abandoned. Radiation pres-
sure became primarily reserved for super-massive stars [13,
p. 180-186]. Solar collapse was prevented using‘electron gas
pressure’[13, p. 132], with radiation pressure contributing lit-
tle to the solution [13, p. 212].

But the idea that‘electron gas pressure’can prevent a star
from collapsing is not reasonable [3, 35, 43, 48]. The genera-
tion of gas pressure (see Fig. 17) requires the existence of true
surfaces, and none can exist within a gaseous Sun.† When a

∗This proof was first presented as the third line of evidence [3,35,43,48].
†Conversely, the extended nature of our atmosphere is being maintained

through gas pressure precisely because our planet possesses a real surface.

particle travels towards the solar interior, it can simply un-
dergo an elastic collision, propelling a stationary particle be-
neath it even further towards the core. Without a surface, no
net force can be generated to reverse this process: the gaseous
Sun is destined to collapse under the effect of its own grav-
ity [48].

Fig. 17: Schematic representation of the generation of gas pressure.
As particles travel towards a real surface, they eventuallyundergo a
change in direction resulting in the creation of a net upwards force.

Donald Clayton, a proponent of the gaseous models, de-
scribes the situation as follows,“The microscopic source of
pressure in a perfect gas is particle bombardment. The reflec-
tion (or absorption) of these particles from a real (or imag-
ined) surface in the gas results in a transfer of momentum to
that surface. By Newton’s second law(F = dp/dt), that mo-
mentum transfer exerts a force on the surface. The average
force per unit area is called the pressure. It is the same me-
chanical quantity appearing in the statement that the quantity
of work performed by the infinitesimal expansion of a con-
tained gas is dW= PdV. In thermal equilibrium in stel-
lar interiors, the angular distribution of particle momenta is
isotropic; i.e., particles are moving with equal probabilities
in all directions. When reflected from a surface, those moving
normal to the surface will transfer larger amounts of momen-
tum than those that glance off at grazing angles” [14, p. 79].
The problem is that real surfaces do not exist within gaseous
stars and‘imagined’ surfaces are unable to be involved in a
real change in momentum.‘Electron gas pressure’cannot
prevent solar collapse.

Unlike the scenario faced by Eddington with respect to
solar collapse, James Jeans had argued that liquid stars were
immune to these complications,“And mathematical analysis
shews that if the centre of a star is either liquid, or partially
so, there is no danger of collapse; the liquid center provides
so firm a basis for the star as to render collapse impossi-
ble” [278, p. 287]. By their very nature, liquids are essentially
incompressible. Therefore, liquid stars are self-supporting
and a LMH Sun faces no danger of collapse.

When gas particles strike the Earth’s surface, they undergoan immediate
change in direction with upward directed velocities. Without the presence of
a true surface, a net change in particle velocity cannot occur.
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4.2 Density #18

Hot gases do notself-assemble.∗ Rather, they are well-known
to rapidly diffuse, filling the volume in which they are con-
tained. As a result, hot gaseous‘objects’ should be tenuous
in nature, with extremely low densities. In this respect, hot
gases offer little evidence that they can ever meet the require-
ments for building stars.

In an apparent contradiction to the densities expected in
gaseous‘objects’, the solar body has a substantial average
density on the order of 1.4 g/cm3 [279]. In gaseous mod-
els, the Sun is believed to have a density approaching 150
g/cm3 in its core, but only∼10−7 g/cm3 at the level of the
photosphere [148]. In this way, a gaseous star can be cal-
culated with an average density of 1.4 g/cm3. But gaseous
models would be in a much stronger position if the average
density of the Sun was consistent with that in a sparse gas,
i.e. ∼10−4 g/cm3, for instance. It is also concerning that the
average density of the Sun is very much coincident with that
observed in the outer planets, even though these objects have
much smaller total masses.† The giant planets are no longer
believed to be fully gaseous, but rather composed of metal-
lic hydrogen [93–95], suggestions which are contrary to the
existence of a gaseous Sun.

The Sun has a density entirely consistent with condensed
matter. If the solar body is assembled from metallic hydrogen
[35, 39], it is reasonable to presume that it has a somewhat
uniform distribution throughout its interior.‡ This would be
in keeping with the known, essentially incompressible, nature
of liquids.

4.3 Radius #19

Within gaseous models, the Sun’s surface cannot be real and
remains the product of optical illusions [2,4,51].§ These con-
jectures were initially contrived by the French astronomer,
Hervé Faye. In 1865, Faye [280] had proposed that the Sun
was gaseous [2,4] and would write,“This limit is in any case
only apparent: the general milieu where the photosphere is
incessantly forming surpasses without doubt, more or less,
the highest crests or summits of the incandescent clouds, but
we do not know the effective limit; the only thing that one
is permitted to affirm, is that these invisible layers, to which
the name atmosphere does not seem to me applicable, would
not be able to attain a height of 3’, the excess of the perihe-
lion distance of the great comet of 1843 on the radius of the
photosphere”[280]. With those words, the Sun lost its true
surface. Everything was only‘apparent’ (see§1). Real di-

∗This proof was first presented as the fourth line of evidence [35, 36].
†The Earth has a density of 5.5 g/cm3; Jupiter 1.326 g/cm3; Saturn 0.687

g/cm3; Neptune 1.638 g/cm3; Uranus 1.271 g/cm3 [279].
‡Setsuo Ichimaru had assumed, based on the gaseous models, that the

core of the Sun had a density of 150 g/cm3 when he considered that it could
be composed of metallic hydrogen [97–99]. He did not addressthe compo-
sition of the solar body or atmosphere.

§This proof was first presented as the 21st line of evidence [51].

mensions, like diameter or radius, no longer held any validity.
Nonetheless, Father Secchi considered the dimensions of the
Sun to be a question of significant observational importance,
despite problems related to their accurate measure [1, p. 200–
202, V. I].

Today, the radius of the Sun (∼696,342±65 km) continues
to be measured [51] and with tremendous accuracy — errors
on the order of one part in 10,000 or even 2 parts in 100,000
(see [281] for a table). Such accurate measurements of spatial
dimensions typify condensed matter and can never character-
ize a gaseous object.¶ They serve as powerful evidence that
the Sun cannot be a gas, but must be composed of condensed
matter.

The situation relative to solar dimensions is further com-
plicated by the realization that the solar diameter may wellbe
variable [282]. Investigations along these lines are only qui-
etly pursued [283], as the gas models are unable to easily ad-
dress brief fluctuations in solar dimensions. The stabilityof
gaseous stars depends on hydrostatic equilibrium and relies
on a perfect mechanical and thermal balance [13, p. 6–67].
Failing to maintain equilibrium, gaseous stars would ceaseto
exist.

Conversely, fluctuating solar dimensions can be readily
addressed by a liquid metallic hydrogen Sun, since this en-
tity enables localized liquid/gas (or solid/gas) transitions in
its interior (see [48,51,52] and§5.1).

4.4 Oblateness #20

James Jeans regarded the high prevalence of binaries as one of
the strongest lines of evidence that the stars were liquids [27,
28].‖ Indeed, it could be stated that most of his thesis rested
upon this observation. As a spinning star became oblate, it
eventually split into two distinct parts [27, 28]. Oblateness
can be considered as a sign of internal cohesive forces within
an object and these are absent within a gaseous star. As a
result, any oblateness constitutes a solid line of evidencethat
a rotating mass is comprised of condensed matter.

The physics of rotating fluid masses has occupied some
of the greatest minds in science, including Newton, Maclau-
rin, Jacobi, Meyer, Liouville, Dirichlet, Dedekind, Riemann,
Poincaré, Cartan, Roche, and Darwin [3]. The problem also
captivated Chandrashekhar (Nobel Prize, Physics, 1983) for
nine years of his life [284].

Modern studies placed the oblateness of the Sun at
8.77×10−6 [287]. Though the Sun appears almost perfectly

¶As a point of reference relative to the accuracy of measurements, ma-
chinists typically work to tolerances of a few thousands of an inch. Ac-
cording to a young machinist (Luke Ball, Boggs and Associates, Columbus,
Ohio), a“standard dial caliper is accurate to± 0.001”, and a micrometer
provides greater accuracy to± 0.0001”. The Mitutoyo metrology company
was founded in 1934, and they produce a digital high-accuracy sub-micron
micrometer that is accurate to .00002.”

‖This proof was first presented as the eighth line of evidence [3, 35, 36,
50].
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round, it is actually oblate [50].∗ To explain this behavior, as-
trophysicists invoked that the Sun possessed a constant solar
density as a function of radial position [287]. This proposal is
in direct conflict with the gaseous solar models [13,14] which
conclude that most of the solar mass remains within the cen-
tral core. An essentially constant internal density is precisely
what would be required within the context of a liquid metallic
Sun [35,39].

At present, helioseismic measurements (see§6) indicate
that the degree of solar oblateness may be slightly smaller
[288, 289], but the general feature remains. The degree of
solar oblateness may well vary with the solar cycle [290].
As was the case for variations in solar radius (§4.3), these
changes pose difficulties for the gaseous models. That the
Sun is slightly oblate provides excellent evidence for internal
cohesive forces, as seen in condensed matter.

4.5 Surface Imaging #21

With the advent of the 1-m Swedish Solar Telescope (SST),
the solar surface has been imaged with unprecedented resolu-
tion [100,291].† This resolution will increase dramatically in
a few years when the construction of the Advanced Technol-
ogy Solar Telescope is completed in Hawaii [104].

Using the SST, scientists report,“In these pictures we
see the Sun’s surface at a low, slanting angle, affording a
three-dimensional look at solar hills, valleys, and canyons”
[291]. . . “A notable feature in our best images of sunspots is
that many penumbral filaments, which are isolated from the
bulk of the penumbra and surrounded by dark umbra, show
dark cores”. . . “Inspection of our images shows numerous
varieties of other very thin dark lines in magnetic regions”
. . . “‘hairs’ that are seemingly emanating from pores into
the closest neighbouring granules, ‘canals’ in the granula-
tion near spots and pores, and running dark streaks crossing
penumbral filaments diagonally”[100].

Since antiquity, solar observers have been fascinated with
structure on the surface of the Sun. Now, as telescopic res-
olution continues to increase, they are documenting,almost
in 3D, the existence of structure on the solar surface with in-
creased certainty. They resort to words like‘hills’ , ‘valleys’,
and‘canyons’to describe the surface of the Sun and they fo-
cus increasingly on substructures, like the dark cores of the
penumbra. How can this structural detail be compatible with
gases? Structure remains a property of condensed matter and

∗As a point of interest, the Southern star Achernar, has a tremendous
oblateness which approaches 1.5 [285]. This value cannot beexplained using
the standard gaseous models wherein most of a star’s mass is restricted to the
core. As such, scientists have sought to find alternative means to account for
this oblateness [286].

†This proof was first presented as the eleventh line of evidence [4, 35,
36, 42]. Solar surface imaging can include frequencies outside visible light.
It continues to reveal the presence of new structures, not described in§2.
These, and those to come, are included herein as a separate line of evidence
as solar surface imaging exposes more structural complexity and temporal
evolution.

gases can support none. Moreover, if the solar surface is but
an ‘illusion’ , what point can there be in documenting the na-
ture of these structures? But the problem is even more vex-
ing for the gaseous models, as films are currently being taken
of the Sun in high resolution (see Supplementary Materials
for [100] on the Nature website), and our‘illusions’ arebe-
havingas condensed matter (see§5.1) [292,293].

Father Secchi, perhaps the most able solar observer of the
19th century, drew with painstaking attention numerous de-
tails on the solar surface which he viewed as real [1]. He
emphasized that“there is thus no illusion to worry about, the
phenomena that we have just exposed to the reader are not
simple optical findings, but objects which really exist, faith-
fully represented to our eyes using instruments employed to
observe them”[1, p. 35–36, V. II]. The authors of the won-
derful SST Nature paper [100] seem to discard illusions,“We
are, however, confident that the dark cores shown here are
real” [100]. Nonetheless, they maintain the language associ-
ated with the gaseous models,“A dark-cored filament could
be produced by an optically thin cylindrical tube with hot
walls—perhaps a magnetic flux tube heated on the surface
by the dissipation of electrical currents”[100].

Commenting on [100] in light of accepted theory, John
H. Thomas states,“Computer simulations of photospheric
magnetoconvection show very small structures, but the sim-
ulations have not yet achieved sufficient resolution to deter-
mine the limiting size. The horizontal mean free path — in
other words, the average distance traveled without interact-
ing — of a photon in the solar photosphere is about 50 km,
and so this might be expected to be the smallest observable
length scale, because of the smoothing effect of radiative en-
ergy transfer. But sophisticated radiative-transfer calcula-
tions show that fine structures as small as a few kilometers
should in principle be directly observable”[294].

The problem for the gas models rests in their prediction
that the photosphere has a density (∼10−7 g/cm3 [148]) which
is 10,000 times lower than that of the Earth’s atmosphere at
sea level — surpassing some of the best vacuums on Earth.
Structure cannot be claimed to exist in a vacuum and has
never been demonstrated to be associated with the equations
of radiation transfer (see [292, 294] and references therein).
It is inherently a property of condensed matter, without any
need for internal photons. As a result, modeling associated
with the analysis of structural entities on the solar surface,
which is fundamentally based on ideas of a gaseous Sun [292,
294], are unlikely to be of any lasting value with respect to un-
derstanding the complexities of the photosphere. The most el-
egant solution rests in accepting that these structures arereal
and comprised of condensed matter.

4.6 Coronal Holes/Rotation #22

Coronal holes (see Fig. 18) are believed to be regions of low-
density plasma that open freely into interplanetary space [52,
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295,296].∗ They are associated with the presence of fast solar
winds (see§5.8).

When the Sun becomes active, coronal holes can appear
anywhere on the solar surface [52, 295, 296]. In contrast,
when it is quiet, coronal holes are viewed as‘anchored’onto
the polar regions of the solar surface [297, p. 10]. This‘an-
choring’constitutes a powerful sign that the Sun is comprised
of condensed matter, as this behavior directly implies both
long-term structure within the corona and the existence of a
true solar surface.‘Anchoring’ requires two distinct regions
in the Sun which cooperate with each other to producestruc-
tural restriction.

Fig. 18: Schematic representation of coronal holes over thepolar
caps of a quiet Sun. This figure is an adaptation based on Fig. 2
in [295]. Along with its legend, it was previously publishedin [52].

The corona possesses“. . . a radially rigid rotation of 27.5
days synodic period from 2.5 R⊙ to >15R⊙” [277, p. 116]
as established by the LASCO instrument aboard the SOHO
satellite [298]. Rigid rotation of the entire corona strongly
suggests that the solar body and the corona possess condensed
matter.

Coronal material† contains magnetic fields lines which, in
turn, are anchored at the level of the photosphere [62].‘An-
choring’, once again, requires structure both within the solar
body and within the solar atmosphere. The condensed na-
ture of the corona and coronal structures has already been
discussed in§2.3.7,§2.3.8, and§3.8. It will be treated once
again in§5.5, and§6.6. The relevant structure of the solar
interior will be discussed in§5.1. The presence of‘anchor-
ing’ within coronal holes and the rigid rotation of the corona
is best explained by condensed matter.

4.7 Chromospheric Extent #23

Eddington recognized the great spatial extent of the chromo-
sphere and pondered on how this material was supported [9,

∗The anchoring of coronal holes was first presented as the 22ndline of
evidence [52], while the rigid rotation of the corona was once treated as the
33rd [62]. These two proofs, being closely related to one another, have now
been combined.

†See the wonderful Fig. 106 in [1, p. 310, V. I] relaying the corona during
the eclipse of July 8, 1842

p. 362].‡ At the time, he knew that chromospheric emission
lines (see§3.4,§3.5, and§3.6) could extend up to 14,000km
[9, p. 362]. For Eddington, the answer to chromosphere chro-
mospheric extent rested upon radiation pressure, but the solu-
tion would prove insufficient [62].

Bhatnagar and Livingston provide a lucid presentation of
the chromospheric scale height problem within the context of
the gaseous models [277, p. 140–145]. They recall how ini-
tial ‘hydrostatic equilibrium’arguments could only account
for a density scale height of 150 km [277, p. 141]. In order to
further increase this scale height to the levels observed, it was
hypothesized that the chromosphere had to be heated, either
through turbulent motion, wave motion, magnetic fields, or
5-minute oscillations [277, p. 140–145]. The entire exercise
demonstrated that the spatial extent of the chromosphere rep-
resented a significant problem for the gaseous models. The
great solar physicist Harold Zirin has placed these difficul-
ties in perspective,“Years ago the journals were filled with
discussions of ‘the height of the chromosphere’. It was clear
that the apparent scale height of 1000 km far exceeded that
in hydrostatic equilibrium. In modern times, a convenient so-
lution has been found — denial. Although anyone can mea-
sure its height with a ruler and find it extending to 5000 km,
most publications state that it becomes the corona at 2000 km
above the surface. We cannot explain the great height or the
erroneous models... While models say 2000 km, the data say
5000” [193].

Obviously, a gas cannot support itself [62]. Hence, the
spatial extent of the chromosphere constitutes one of the most
elegant observations relative to the existence of a condensed
solar photosphere. Within the context of the LMH model
[35, 39], the Sun possesses a condensed surface. This sur-
face provides a mechanism to support the chromosphere: gas
pressure (see Fig. 17) — the same phenomenon responsible
for the support of the Earth’s atmosphere [48].

It was demonstrated in§4.1, that electron gas pressure
cannot prevent a gaseous star from collapsing onto itself, be-
ing that these objects lack real surfaces. However, a liq-
uid metallic hydrogen Sun has a real surface, at the level
of the photosphere. When a gaseous atom within the solar
atmosphere begins to move towards the Sun, it will even-
tually strike the surface. Here, it will experience a change
in direction, reversing its downward vertical component and
thereby placing upward pressure on the solar atmosphere, as
displayed in Fig. 17. Gas pressure can simply account for the
spatial extend of the chromosphere in condensed solar mod-
els [35,39]. Moreover, under this scenario, the chromosphere
might be supported by the escape of gaseous atoms from the
solar interior as manifested in solar activity (see§5.1). This
provides an acceptable mechanism in the condensed models,
as they do not need to maintain the hydrostatic equilibrium es-
sential to the gaseous Sun. In any event, chromospheric heat-

‡This proof was first presented as the 34th line of evidence [62].
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ing, from turbulent motion, wave motion, magnetic fields,
or 5-minute oscillations [277], is not required to support the
great spatial extent of the chromosphere in the LMH model.

4.8 Chromospheric Shape #24

Secchi had observed that the diameter of the observable Sun
varied with filter selection (blue or red) during a solar eclipse
[1, p. 320, V. I]. Currently, it is well established that the di-
mensions of the chromosphere are perceived as vastly dif-
ferent, whether it is studied in Hα, or using the HeII line at
30.4 nm [243, Fig. 1]. The chromosphere also appears to be
prolate [243]. This prolateness has been estimated as∆D/D =
5.5×10−3 in HeII and 1.2×10−3 in Hα— more extended in
polar regions than near the equator [243]. The shape of this
layer has been demonstrated to be extremely stable, with no
significant variation over a two year period [243].∗

The prolate nature of the chromosphere and the extended
structure which the Sun manifests above the polar axis can-
not be easily explained by the gaseous models. A gaseous
Sun should be a uniform object existing under equilibrium
conditions, with no means of generating preferential growth
in one dimension versus another. When the Sun is quiet, the
greater extent of the chromosphere above the poles is asso-
ciated with the presence of large anchored coronal holes in
this region§(4.6). Coronal holes, in turn, manifest the pres-
ence of fast solar winds (see§5.8). A link to the fast solar
winds is made in the gaseous Sun [243], despite the recogni-
tion that the origins of these winds (§5.8), and of the coronal
holes with which they are associated (§4.6), remains an area
of concern within these models [48,52].

Even the oblate nature of the solar body had provided
complications for the gaseous Sun (§4.4). This oblateness
could be explained solely on internal cohesive forces and ro-
tational motion in the LMH model (§4.4). But, the prolate
nature of the chromosphere reflects something more complex.

According to the LMH model, fast solar winds (§5.8) are
produced when intercalate atoms (see§5.1 Fig. 19) are ac-
tively being expelled from the lattice of the solar body [48,
52]. During this processes, some hydrogen is ejected, but un-
like the other elements, it is often recaptured to help maintain
the solar mass. In this respect, the solar chromosphere has
been advanced as a site of hydrogen recondensation in the so-
lar atmosphere (see§5.4,§5.6 and [59,61]). It appears prolate
because, at the poles, more hydrogen is being expelled. Thus,
more is recaptured over a greater spatial area. In analogous

∗To fully understand this proof, it is necessary to simultaneously con-
sider the origins of surface activity (§5.1), coronal holes (§4.6), solar winds
(§5.8), Hα emission (§3.4) and HeII emission (§3.6). If the reader believes it
difficult to follow, he/she may wish to move to other lines of evidence and re-
turn to this section once a more complete picture has been gained. This proof
is listed as a structural proof (§3), even though it results from dynamic (§5)
and spectroscopic (§3) processes, because it is expressed as the steady state
appearance of the chromosphere when the Sun is quiet. In 1997, the sunspot
number was near minimum and the data presented in [243] was acquired at
that time.

fashion, the corona has been designated as a site of electron
recapture within the Sun [60]. With increasing distance from
the solar surface, coronal atoms are increasingly strippedof
their electrons. This is an electron affinity problem, wherein
metallic hydrogen in the solar atmosphere scavenges for elec-
trons and strips them from adjacent atoms [60]. Therefore,
the chromosphere [59] and corona [60] act in concert to re-
capture protons and electrons, bringing them back onto the
solar surface.

In §3.4, it was proposed [59] that the Hα emission is the
direct result of the recondensation of atomic hydrogen, deliv-
ered by molecular hydrogen, onto larger condensed hydrogen
structures, CHS, within the chromosphere. HeII emission re-
sults from the recondensation of atomic hydrogen, delivered
by the helium hydride molecular cation [61], onto these struc-
tures (see§3.6).

In the lower chromosphere, neutral molecular hydrogen
exists and can deliver atomic hydrogen with ease, resulting
in Hα emission. However, with increasing height, it becomes
more scarce, as the corona captures electrons. Once deprived
of its sole electron, hydrogen cannot emit.

In contrast, with increased elevation, the helium hydride
cation can become more abundant, as atomic helium can now
harvest lone protons. Of course, neutral helium hydride in the
ground state is not stable [256, 257]. Helium must first cap-
ture a lone proton (or first lose an electron to become He+ and
capture neutral hydrogen) to form the stable molecule. This
readily occurs with increased height. Thus, HeII emissions
are seen at the greatest chromospheric elevations. Since the
helium hydride cation produced at these elevations can mi-
grate towards the solar surface, one is able to observed HeII
lines all the way down to the level of the photosphere.

Such an elegant account, exploiting chemical principles
to understand line emission, cannot be framed by the gaseous
models relative to the prolate nature for the chromosphere.
This includes the possible causes for the differential spatial
extent of Hα versus HeII lines (see Fig. 1 in [243]).

5 Dynamic Lines of Evidence

The dynamic lines of evidence involve time or orientation re-
lated changes in solar structure, emission, flow, or magnetic
field. Along with many of the structural (§4) and helioseis-
mic (§6) lines of evidence, they are amongst the simplest to
visualize.

5.1 Surface Activity #25

The surface of the Sun is characterized by extensive activity.†

The solar surface is often viewed as‘boiling’ , or as a‘boiling
gas’. But, gases and a gaseous Sun are unable to‘boil’ . Gases
are the result of such actions. Only liquids can boil, while

†This proof was first presented as the ninth line of evidence [35, 36].
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solids sublime.∗

Since gases cannot boil, in order to explain activity on
the solar surface, the gaseous models must have recourse to
magnetic fields and flux tubes. In the case of sunspots (§2.3.3
[4, 40, 45]), faculae (§2.3.5 [45]), and magnetic bright points
(§2.3.5), these fields are located within the solar body. In the
case of the chromosphere (§5.6), flares (§2.3.8), and coronal
mass ejections (§2.3.8), they arise from the corona. The ar-
guments are fallacious, as magnetic fields themselves depend
on structure for formation. Unable to account for their own
existence (see§5.3), they cannot be responsible for creating
such features within a gaseous medium.

The only prominent active features of the Sun, whose for-
mation appears not to be inherently tied to magnetic fields,
are granules (§2.3.4 [40, 45]). These are thought to be gen-
erated by subsurface heat which is being transported to the
upper visible layers [40,118–122]. A change in‘gas density’
is required within the photospheric vacuum.

In actuality, those who model granules in the laboratory
(see [40] for a detailed review) understand that they are best
represented as the products of Bénard convection [314–318],
a process dominated by surface tension, not buoyancy [118,
p. 116]. The gaseous models, unable to provide for a real
surface on the Sun, must reject Bénard convection. The prob-

∗Descriptions of a Sun which is‘boiling’ can be found throughout the
printed word. Examples occur in 1) children’s books [299], 2) popular writ-
ings [300, 301], 3) university level communications [302–305], 4) scientific
news articles [306,307], or 5) scholarly publications [115,308–313]: 1)“The
sun is a boiling mass of hot gasses”[299, p. 21], 2)“It shows rather clearly
that the Sun is a boiling mass of energy, vastly violent and constantly chang-
ing” [300]; “Convection is also at work transferring energy from the radia-
tive zone to the photosphere, with a vertical boiling motion” [301], 3) “The
surface of the Sun shows us a pattern of boiling gas arranged in a distinctive
cellular pattern known as granulation”[302]; “Solar plasma emitted from
the Sun is a boiling off of the Sun’s atmosphere”[303]; “It is easy to think
of the sun as benign and unchanging, but in reality the sun is adynamic
ball of boiling gases that scientists are only beginning to understand”[304];
“Our Sun is an extremely large ball of bubbling hot gas, mostly hydrogen
gas” [305], 4) “We don’t yet have a model that explains these hills”[Jef-
frey R.] Kuhn said, although he suspects that they are caused by the inter-
action of boiling gas and the sun’s powerful magnetic field”[306]; “The
researchers found that, as expected, this tumultuous region resembles a pot
of boiling water: hot material rises through it, and cooler gases sink”[307],
5) “Under poor to fair seeing conditions, sometimes the solar limb appears
boiling, this gives some idea about the degree of air turbulence” [115, p. 54];
“The surface of the Sun boils in an active manner as the resultof the contin-
uous production of energy inside the Sun”[308]; “The hot corona boiling off
the surface of the Sun toward the cold void of interplanetaryspace consti-
tutes the solar wind”[309]; “The current general idea on the global balance
. . . is that energy conducted down from the low corona must ‘boil off ’ mass
from the chromosphere. . . ” [310]; “Near its surface, the Sun is like a pot of
boiling water, with bubbles of hot, electrified gas — actually electrons and
protons in the forth state of matter known as “plasma” — circulating up from
the interior, rising to the surface, and bursting out into space” [311]; “The
sun is a churning mass of hot ionized gas with magnetic fields threading their
way through every pore and core, driven by energies boiling out from the in-
terior where the fusion of hydrogen into helium at a temperature of 15 million
K liberates the nuclear energy that keeps the cauldron boiling” [312]; “The
magnetic field guides these flows, thus influencing on the average the radial
distribution in the ‘boiling’ layer” [313].

lem is further complicated with the realization that granules
obey the 2D laws of structure (see§2.3.4) and that explosive
phenomena, associated with‘dark dot’ formation, can be ex-
plained solely on the basis of structural considerations [126]
(see§2.3.4). To add to the suspension of disbelief, propo-
nents of the gaseous models maintain that the photosphere
exists at the density of an ultra-low pressure vacuum (∼10−7

g/cm3 [148]). With respect to surface activity, all efforts by
the gaseous models to understand the observed phenomena
can be seen to collapse, when faced with the simple challenge
that their solar surface is only an‘illusion’ [4]. Scientists are
confronted with the intellectual denial of objective reality.

The LMH model [35, 36] can account for solar activity,
since it allows for structure and takes advantage of the con-
sequences. Granular convection can be explained with ease,
as a LMH Sun possesses a true surface and the associated
tension required for Bénard convection [314–318].

The emissive behavior of the Sun (see§2.3) strongly ar-
gues that the photosphere is comprised of a layered struc-
ture much like that found in graphite (see Fig. 2) and first
proposed in metallic hydrogen [39] by Wigner and Hunting-
ton [88]. Layered materials like graphite are known to form
intercalation compounds [48, 79–83] when mixed with other
elements (see Fig. 19). In the case of metallic hydrogen, this
implies that the non-hydrogen elements occupy interlayer lat-
tice points [48], while the hexagonal hydrogen framework
remains intact. It is the science of intercalation compounds
which is most closely linked to the understanding of solar ac-
tivity [48].

Within graphite, the diffusion of elements across hexag-
onal planes is hindered (see [48] for references), while dif-
fusion within an intercalate layer is facilitated. The same
principles are being invoked within the layered metallic hy-
drogen layers thought to exist in the Sun. Graphite interca-
lation compounds [79–83] are known to undergo exfoliation,
an often violent process (see [79, p. 9] and [83, p. 406], where
sudden phase transitions in the intercalation region from con-
densed to gaseous results in the expulsion of the intercalate
atoms. In the laboratory, exfoliation can be associated with
a tremendous expansion of lattice dimensions, as the gaseous
expansion of the intercalate layers acts to greatly increase the
separation between groups of hexagonal planes [79–83].

It is the process of exfoliation which can guide our un-
derstanding of solar activity. Exfoliation can be seen to result
in the active degassing of the intercalation regions existing
within the Sun. When the Sun is quiet, it is degassing primar-
ily at the poles. This results in the fast solar winds (see§5.8)
and coronal holes (see§4.6 [52]) in this region. It leads to the
conclusion that the hydrogen hexagonal planes in the polar
convection zones† tend to be arranged in a direction which is
orthogonal to the solar surface.

However, in the equatorial convection zones, the hexago-

†A solar layer beneath the photosphere.
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Fig. 19: Schematic representation of a proposed metallic hydrogen
intercalation compound, wherein protons occupy the hexagonal lat-
tice planes and non-hydrogen elements are located in the intercala-
tion region. Intercalation compounds are characterized bya ‘stage
index’, n, which accounts for the number of hexagonal planes be-
tween intercalate layers. In this case, n=6. This figure was previ-
ously published as Fig. 3 in [48].

nal hydrogen planes are hypothesized to be oriented parallel
to the solar surface. Under the circumstances, atoms in the
intercalation regions cannot freely diffuse into the solar at-
mosphere. They remain essentiallytrapped within the Sun,
as reflected by the presence of slow solar winds above the
equator. Over half the course of the eleven year solar cycle,
intercalate elements slowly increase in number until, finally,
the Sun becomes active (see Fig. 15) and exfoliative processes
begin. The intercalate atoms begin to break and displace the
hexagonal hydrogen planes, as they work their way beyond
the confines of the photosphere. Coronal holes become vis-
ible at random locations throughout the Sun, indicating the
reorientation of hydrogen planes in the interior. With time,
the Sun degasses its equatorial region and returns to the quiet
state.

In this regard, the series of images displayed in Fig. 15
are particularly telling, as they illustrate that helium levels
in the lower solar atmosphere increase significantly with so-
lar activity (examine carefully the periphery of the central
image obtained in 2001 compared with images obtained in
1996 or 2005).∗ The Sun appears to be degassing helium, as
previously concluded [48]. This further strengthens the ar-
gument that it does not, as popularly believed, possess large

∗Best performed using the high resolution image on the NASA
SOHO website: http://sohowww.nascom.nasa.gov/gallery/images/large/
304cycle.jpg.

amounts of helium in its interior (see [47] for a detailed dis-
cussion). Rather, careful observation of the solar cycle reveals
that the Sun must be comprised primarily of hydrogen, as it
constantly expels other elements from its interior. The no-
table exception, as was seen is§3.3, relates to lithium [54].†

Relative to solar activity, the liquid metallic Sun allows
for the buildup of true pressure in its interior, as intercalate
elements enter the gas phase. This could account for changes
in solar dimension (§4.3) and shape (§4.4, §6.3) across the
cycle. It also explains the production of solar flares in accor-
dance with ideas coined long ago by Zöllner [3, 189]. In a
robust physical setting, mechanical pressure is all that isre-
quired, not energy from the corona. The same can be said of
prominences, whose layered appearance (Fig. 20) highly sug-
gests that they are the product of exfoliative forces withinthe
Sun. Prominences reflect the separation of entire sheets of
material from the Sun, exactly as found to occur when exfo-
liative forces act within graphite [48].

Fig. 20: An assembly of solar images obtained in the HeII line
at 30.4 nm displaying the layered appearance of prominences.
NASA describes this image as follows,“A collage of promi-
nences, which are huge clouds of relatively cool dense plasma
suspended in the Sun’s hot, thin corona. At times, they can erupt,
escaping the Sun’s atmosphere. For all four images, emission
in this spectral line of EIT 304Å shows the upper chromosphere
at a temperature of about 60,000 degrees K. The hottest areas
appear almost white, while the darker red areas indicate cooler
temperatures. Going clockwise from the upper left, the images
are from: 15 May 2001; 28 March 2000; 18 January 2000, and
2 February 2001.”. Courtesy of SOHO/[EIT] consortium. SOHO
is a project of international cooperation between ESA and NASA.
(http://sohowww.nascom.nasa.gov/gallery/images/promquad.html
— Accessed on 9/20/2013).

†Deuterium and tritium, as hydrogen isotopes, should remainin the
hexagonal proton planes. Like lithium, within a LMH model ofthe Sun, they
should be retained within the solar body, with only small numbers escaping
in the solar winds.
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5.2 Orthogonal Flows #26

The orthogonal nature of material flow in the photosphere and
corona (see Fig. 21) provides one of the simplest and most
elegant lines of evidence that the Sun is comprised of con-
densed matter.∗ In 1863, Carrington established the differen-
tial rotation of the photosphere [67, 68]. His studies revealed
that solar matter, at the level of the photosphere, experiences
a net displacement in a direction parallel to the solar surface.
Yet, solar winds (§5.8) are moving radially away from the
Sun. This orthogonal flow of matter at the interface of the
photosphere and the atmosphere just above it demands the
presence of a physical boundary. Such a surface is unavail-
able in the gaseous models, but self-evident in a liquid metal-
lic hydrogen setting.

Fig. 21: Schematic representation of the orthogonal photospheric
and coronal flows associated with Carrington’s differential rotations
[67] and the solar winds.

5.3 Solar Dynamo #27

As first noted by George Ellery Hale [107], the Sun possesses
strong magnetic fields which can undergo complex windings
and protrusions [12].† Magnetic fields are ubiquitous on the
solar surface and within the corona. They are not manifested
solely in sunspots (§2.3.3). As seen in§2.3.5, strong fields
can be observed in faculae and magnetic bright points, while
weak fields are present above the granules (§2.3.4) and in
coronal structures (§2.3.8).

Within the context of the gaseous models, solar magnetic
fields are believed to be produced by the action of a power-
ful solar dynamo [319, 320] generated at the base of the con-
vection zone near the tachocline layer, well beneath the solar
photosphere [12]. A dynamo represents a self-sustained am-
plification of magnetic fields, produced in conjunction with
flow in conducting fluids. In the laboratory, they are stud-
ied using liquid metals, typically molten sodium [321–324].

∗This proof was first presented as the tenth line of evidence [35, 36].
†This proof was first presented as the twelfth line of evidence[35].

Dynamo behavior must always involve the flow of conduc-
tive fluids across magnetic fields. This, in turn,“induces
electrical currents, which, under appropriate flow and mag-
netic field configurations, can sustain the field against dissi-
pation” [319].

Perhaps the greatest driving force for understanding the
behavior of dynamos in the laboratory has been the presence
of planetary and stellar magnetic fields [319–324]. It is not
reasonable to apply these studies to a gaseous Sun.

All dynamo laboratories rely on the use of molten sodium.
This substance acts as an incompressible conductive liquid
metal [321–324].‡ To generate dynamo effects under exper-
imental conditions, flow is typically induced into the metal
using mechanical devices like pumps or turbines [321–324].
External induction coils are present which can provide ini-
tial magnetic fields to help either “seed” or “drive” the stud-
ies [321–324].

It is important to note that macroscopic structure is being
imposed in these systems. In every case, the flow of liquid
metallic sodium is being confined and directed by structure
(tubes, vats, canisters) [321–324]. Insulating materialsare
always present, whether provided by the presence of pressur-
izing argon at 80 p.s.i. in a vat [321, 322] or by the inabil-
ity of molten sodium to direct its own flow when propelled
through pipes [323, 324]. Experimental geometries are care-
fully selected (see e.g. [323, Fig. 1]), including the location
of induction coils [321,322]. Mechanical devices are provid-
ing energy to drive these systems and external static magnetic
fields supplement the sampling.§

In this respect, Lowe and Wilkinson constructed the first
working model of a geomagnetic dynamo [328]. It was com-
posed of solid iron alloy cylinders, rotating within a casting
of the same material, wherein a small amount of mercury
maintained the required electrical contact [328]. In relaying
this design, Lowe and Wilkinson insisted that,“Self-exciting
dynamos are very common on the surface of the Earth, but
these rely on the insulation between wires to direct the in-
duced currents into an appropriate path; they are multiply
connected”[328].

These conditions are unlike those in gaseous stars which,
by their very nature, are devoid of structure, have no ability to
“direct the induced currents into an appropriate path”[328],
and are incapable of acting as insulators. The situation has
been summarized as follows,“Whereas technical dynamos
consist of a number of well-separated electrically conduct-
ing parts, a cosmic dynamo operates, without any ferromag-
netism, in a nearly homogeneous medium”[324]. With these

‡Conveniently, the density of liquid metallic sodium (ρ∼0.927 g/cm3

[325, p. 4–128]) approaches that hypothesized to exist at the tachocline layer
in the gaseous models of the Sun (ρ∼0.2 g/cm3 [326]).

§Much like in medicine, where MRI can be performed using only the
Earth’s magnetic field (∼0.5 gauss) [327], it is impossible to perform dynamo
experiments within the laboratory in the absence of an initial ambient static
field magnetic field, as has been recognized (e.g. [323]).
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words, astrophysical dynamos fell outside the realm of exper-
imental science, precisely because they are thought to exist in
objects, like gaseous stars, unable to impart a physical archi-
tecture.

Astrophysics cannot hope that magnetic fields impart‘il-
lusionary’details and emissive properties to photospheric ob-
jects (e.g. sunspots and faculae), while at the same time re-
quiring that real structure exists in a gaseous Sun. This struc-
ture must somehow enable the formation of powerful mag-
netic fields and the buildup of a solar dynamo. The fact re-
mains that the generation of strong magnetic fields on Earth
always requires the action of condensed matter. As they have
no structure, gases are unable to generate magnetic fields ona
macroscopic level. They are simply subject to their action.It
is improper to confer upon gases behavior which cannot even
be approached in the laboratory.

It is hard to envision that hydrogen in non-metallic form,
as is currently hypothesized to exist in the gaseous stars, will
be able to match the conductivity observed in a real metal
(see Fig. 2 in [329]). Gases obviously cannot possess conduc-
tion bands and, therefore, lack the central element required
to generate powerful magnetic fields on Earth. At the melt-
ing point, liquid sodium has a conductivity (∼107Ω−1 m−1

[321–324]) which very much approaches that observed in the
solid [321–324]. Near this point and in the solid state, con-
duction bands are responsible for the conductivity measured
in sodium.∗ Hence, it should not be surprising that, just as the
metal melts, some quantum mechanical conditions involved
in forming these conduction bands remains (i.e. there remains
some interatomic order). Otherwise, a substantial change in
conductivity would be evident.

With all these factors in mind, it is reasonable to sug-
gest that the structural lattice present in liquid metallichy-
drogen provides a superior setting to account for dynamo ac-
tion in the Sun. Metallic hydrogen should be able to support
real structure. Protons would occupy the hexagonal planes
(see Fig. 2) and electrons flow in the conduction bands neces-
sary to generate magnetic fields. A LMH Sun should display
a density, throughout its interior, similar to molten sodium.
Conductive paths could be set up in the hexagonal hydrogen
(i.e. proton) planes which can benefit from the insulating ac-
tion of intercalate elements (see Fig. 19). As a direct conse-
quence, changes in the dynamo and in the magnetic field in-
tensity, in association with the solar cycle, can be accounted
for as a byproduct of exfoliative forces (see§5.8). When the
intercalate elements are expelled from the Sun, conductive
shorts are created between hexagonal hydrogen planes which
were once insulated from one another. This provides a mech-
anism to both build and destroy the solar dynamo. Further-
more, by turning to this substance as a solar building block,

∗Thermal vibrations can lower conductivity as temperaturesare in-
creased, but this effect is neglected in this case since both solid and liquid
phases can exist at the melting point. Thus, any effect of thermal vibrations
should be similar at this temperature in both phases.

laboratory dynamo experiments become linked to a substance
which may come to have great importance on Earth [92, 98],
not only in the distant stars.

5.4 Coronal Rain #28

Innocuous findings can lead to the greatest discoveries.† In
this respect, coronal rain [330–333] will not present an excep-
tion. This subtle effect consists of“cool and dense matter”
which is“ubiquitous” within the solar atmosphere and which
is constantly falling towards the solar surface [330–333].It
is said to be composed of a“a myriad of small blobs, with
sizes that are, on average 300 km in width and 700 km in
length” [333]. When these aggregate, they produceshow-
ers [333]. Coronal rain has been associated with coronal
loops and attempts have been made to link its existence to
loop substructure [334].

As coronal rain falls towards the surface, its rate of de-
scent does not match that expected from gravity considera-
tions alone [333]. From the standpoint of the gaseous solar
models, it appears that coronal rains and showers are retarded
by the effects of gas pressure in the solar atmosphere [333].
These models rely on cycles of heating and condensation to
explain coronal rain [332, 333]. But these arguments are not
consistent with the belief that the lower chromosphere has a
density of only∼10−12 g/cm3 [115, p. 32] and that gas pres-
sure cannot exist (§4.1) in these models. How can conden-
sation take place within a hot corona (see§3.7) while main-
taining a gaseous state, which even at photospheric densities,
would only be∼10−7 g/cm3 [148]? How can a vacuum retard
the rate of descent of these particles? With respect to the ex-
istence of coronal rain, the gaseous models of the Sun simply
lack the necessary flexibility to provide a reasonable account
of this phenomenon.

Alternatively, the LMH model [35,39], has advanced that
condensed matter populates the outer solar atmosphere (see
§2.3.6,§2.3.7,§2.3.8,§3.4,§3.5,§3.6,§3.8,§4.6,§4.7,§4.8,
§5.5, §5.6, §5.7, and§6.6). Cool/dense coronal and chro-
mospheric layers consequently stand as pillars of this model
[56–60]. In this regard, the presence of coronal rain can be
more readily explained if one permits true condensation to
occur within the solar atmosphere.

As highlighted in§2.3.7 and§2.3.8, the K-corona should
be viewed as a region containing diffuse metallic hydrogen
[57, 60]. However, given the lack of pressure which exists in
the K-corona, this metallic hydrogen cannot regenerate itself.
Rather, coronal metallic hydrogen has entered the solar atmo-
sphere after being expelled from the solar body during active
periods (see§2.3.8,§5.5,§6.6 and [57,58,60]).

Though coronal LMH would be unable to self-regenerate,
it should be able to provide a surface upon which other ma-
terials could condense. This appears to be what is happening
with coronal rain.

†This proof was first presented as the 23rd line of evidence [53].
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In this regard, it is important to note that coronal rain is
usually visualized in Hα and CaII [334]. These emission lines
are chromospheric in nature (see§3.4 and§3.5). Their use
in detecting coronal rain strongly suggests that this material,
unlike the coronal loops (§5.5) with which it is often associ-
ated [334], is actually condensing chromospheric material.∗

Thus, much like water vapor on Earth condenses in the
morning on the grass, hydrogen, in non-metallic form, ap-
pears to generate a dense condensate onto the coronal metal-
lic hydrogen framework. This could explain why coronal rain
can been seen flowing down coronal loops [334]. As the
two substances are distinct, the hydrogen condensate slowly
drifts back down to rejoin the solar surface. Since coronal
rain remains attracted to the metallic hydrogen surfaces ofthe
corona, it is unable to simply respond to the forces of gravity
and its descent appears to be retarded.

Consequently, the analysis of coronal rain and its behav-
ior appears to provide wonderful examples of the interplay
between structure and function within the solar atmosphere.
It strongly suggests that two distinct forms of condensed hy-
drogen are present in this region: 1) dense molecular hydro-
gen in the chromosphere [92] and 2) metallic hydrogen in
the corona. Coronal rain is assisting in the harvest of hy-
drogen atoms from the corona. In unison, the metallic hydro-
gen framework, upon which it is condensing, acts to scavenge
electrons from non-hydrogen atoms [56–60], which it could
channel either to the solar body, or directly to coronal rain.
In this manner, the corona functions to help preserve both the
mass and charge balance of the Sun.

5.5 Coronal Loops #29

Coronal loops can be readily observed, both in the contin-
uum [178–180] (see§2.3.8) and using distinct atomic emis-
sion lines (see§3.5 and§3.6), as shown in see Fig. 22. They
represent“inhomogeneous structures”, which appear to be
attached to the solar surface and which can extend well into
the outer atmosphere [335, p. 83–84]. They can be relatively
small (1 Mm in length and 200 km thick) or have great phys-
ical extent (several million meters to“a substantial fraction
of the solar radius”with diameters of 1.5 Mm) [336]. While
loops do not seem to possess substructure at the resolutions
currently available [336], they may display such features on
scales of about 15 km [336], a value well beyond current res-
olutions. Based on the analysis of coronal rain, it has been
suggested that coronal loops have substructures smaller than
300 km [334].

As discussed in§5.4, coronal loops are associated with
the presence of coronal rain. In this regard, the former may
well represent a metallic hydrogen framework within the so-
lar atmosphere unto which chromospheric matter, like coro-
nal rain, can condense. This would appear to be confirmed

∗Chromospheric matter is likely to be comprised of condensedmatter
where molecular interactions between hydrogen atoms persist [92].

Fig. 22: Coronal loops visualized in helium, oxygen, neon, calcium,
magnesium, or iron. Temperatures associated with each image have
been inferred from the gaseous solar models. They correspond
to 20,000 K, 250,000 K, 400,000 K, 630,000 K, 1,000,000 K, and
2,000,000 K, respectively. NASA describes this image as follows,
”CDS can produce images of the Sun at many wavelengths. In
addition to hydrogen, the Sun’s atmosphere contains atoms of
common elements like helium, oxygen and magnesium. In the high
temperature conditions of the Sun’s atmosphere, these atoms emit
light at different wavelengths depending on the temperature of the
gas containing them. Therefore by tuning into different wavelengths
we can make images of material which is at different temperatures.
This capability is illustrated in the picture above, where CDS has
taken images of magnetic loops of material which extend highinto
the Sun’s atmosphere. These loops have been rendered more easily
visible by observing them when they occur near the limb of the
Sun, and hence they are highlighted against the dark background
of space. The elements and their characteristic temperatures are
indicated on the individual images. One of the surprises that
the new SOHO/CDS data have produced is to show that loops at
different temperatures can co-exist in the same regions of the Sun’s
atmosphere. The white disk plotted on the oxygen image showsthe
Earth to the same scale.”Courtesy of SOHO/[CDS] consortium.
SOHO is a project of international cooperation between ESA and
NASA. (http://sohowww.nascom.nasa.gov/gallery/SolarCorona/
cds015.html — Accessed on 9/29/2013).

in Fig. 22, as both chromospheric lines (see§3.4,§3.5,§3.6)
and coronal lines (see§3.8) can be detected within coronal
loops.

Coronal loops hold an interesting line of evidence for con-
densed matter. It has been observed that“the hydrostatic
scale height. . .has always the same vertical extent, regardless
of how much the loop is inclined, similar to the water level in
communicating water tubes with different slopes”[335, p. 84]
(see Fig. 23).

The vertical height to which some coronal loops appear
filled with matter does not change depending on inclination.
The loop is containing matter which behaves as a liquid. Con-
versely, if the loop was merely plasma, the effects of vertical
extent on loop appearance would be difficult to justify.

In this regard, it may well be that the manner in which
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Fig. 23: Schematic representation of the vertical extent ofscale
height (dashed line) in coronal loops. Material fills the loop up to
the scale height. If the loop is significantly inclined from the ver-
tical axis, then it can be somewhat evenly filled with matter.The
analogy can be made with water filling a tube which is more or less
inclined [335, p. 84].

coronal loops appear to‘fill’ with height might represent a
build up of condensed hydrogen onto these structures. As the
loops assume an increasingly vertical position, material of a
chromospheric nature should slowly settle towards the base
of these structures, as it makes its descent down to re-enter
the solar interior (see§3.4,§3.5,§3.6). Gaseous solar models
are unable to rival this explanation.

5.6 Chromospheric Condensation #30

As discussed briefly in§3.4, the chromosphere is filled with
spicules [337] which seem to extend as disoriented hair be-
yond the surface of the Sun.∗ As demonstrated in Fig. 24,
spicules can be observed in Hα. They can also be seen in
other chromospheric emission lines, including those from cal-
cium and helium (see§3.5,§3.6 and [150, p. 8]).

The gaseous models of the Sun have no simple means to
account for the formation of these structures.† Proponents of
these models have expressed that two classes of spicules exist.
Type II spicules are short-lived (10-150s), thin (<200 km),
and said to fade [338]. Type I spicules have a 3–7 minute
lifetime and move up and down [338]. It has been stated that
Type II spicules might be responsible for heating the corona
[338], but this claim, along with the very existence of Type
II spicules, has been challenged [339]. Nonetheless, despite
the densities brought forth, spicules are still believed tobe
propelling matter into the corona.

Counter to these ideas, the metallic hydrogen model holds
that spicules are the product of condensation reactions (see
§3.4,§3.5,§3.6 and [59, 61]). They enable hydrogen atoms,
gathered in the solar atmosphere, to rejoin the solar body. The
greatest clues for such a scenario come from the analysis of
spicular velocities which appear to be essentially independent
of gravitational forces [209–215].‡

∗This proof was first presented as the seventh line of evidence[35, 56,
59, 61].

†Spicules extend well into the lower corona where densities,according
to the gaseous models, could be no greater than∼10−15 g/cm3, i.e. the density
of the upper chromosphere [148]. The associated densities are∼10−12 of the
Earth’s atmospheric density at sea level (∼1.2x10−3 g/cm3 [149]).

‡Some authors have attempted, although not very convincingly, to es-

Fig. 24: A series of images displaying spicules in Hα on the so-
lar limb. These images are displayed through the courtesy ofthe
Big Bear Solar Observatory which have described the series as fol-
lows, Limb Spicules: The Figure shows the limb of the Sun at dif-
ferent wavelengths within the H-alpha spectral line (from 0.1 nm
bluewards to 0.1 nm redwards of the line center). Some of the
spicules (jets) extend above height of 7000 km. The images have
been processed with a high pass filter.”http://www.bbso. njit. edu/
images.html — Accessed on 9/30/2013.

Spicules seem to move up with nearly uniform speeds
[206, p. 61]. These speeds can actually increase with eleva-
tion [150, p. 45–60]. Spicules can rise in jerky fashion or stop
quite suddenly [150, p. 45–60]. They can“expand laterally
or split into two or more strands after being ejected”[337].

All of this behavior, and the ability to document it, sug-
gests that spicules are not devoid of density against an even
sparser background. Rather, they seem to be the product of
condensation. It is almost as if much of the material in the
chromosphere exists in a state of critical opalescence, that
strange state wherein matter is not quite liquid and not fully
gaseous [35].§ Just a slight disturbance can cause the entire
substance to rapidly condense. Such a process would be es-
sentially independent of direction (vertical or horizontal), but

tablish a relationship between spicular velocities and gravitational forces
(e.g. [337]).

§The author has previously described the situation as follows, “Criti-
cal opalescence occurs when a material is placed at the critical point, that
combination of temperature, pressure, magnetic field, and gravity wherein
the gas/liquid interface disappears. At the critical point, a transparent liq-
uid becomes cloudy due to light scattering, hence the term critical opales-
cence. The gas is regaining order as it prepares to re-enter the condensed
phase” [35].
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would be guided by local fluctuations in material concentra-
tions. This would explain the erratic behavior and orientation
of spicules.

The formation of spicular material suggests processes that
are being observed near the critical point of a dense form
of hydrogen [92] in the chromosphere. In moving from the
corona to the photosphere, the effect of gravity becomes more
important and, though temperatures might not be changing
much (see§2.3.7), material in the chromosphere could be
falling sufficiently below the critical point to allow for rapid
condensation [35].∗

Whether or not critical phenomena are being expressed
in the chromosphere [35], it remains relatively certain that
spicules themselves represent sites of condensation in theso-
lar atmosphere, as manifested both by their dynamic behav-
ior and by the emission lines with which they are associated
(§3.4,§3.5,§3.6 and [59,61]). It is highly likely that spicules
are not propelling matter into the corona, but rather, that they
are enabling hydrogen, present in the solar atmosphere, to re-
assume a condensed state and return to the solar body. In
this case, they act to harvest hydrogen and return it to the
photospheric intergranular lanes [59], as illustrated above in
Fig. 14.

As with coronal rain, the chromospheric matter which
makes up spicules should be comprised of dense hydrogen
which is non-metallic, as it retains some hydrogen-hydrogen
molecular interactions within its lattice [92]. This denseform
of hydrogen, upon entering the pressurized environment of
the solar interior, could then be transformed back to the metal-
lic state [59].

5.7 Splashdown Events #31

Following violent flares, matter can be seen falling, in large
fragments, back onto the solar surface.† The phenomenon re-
sembles a huge mass of liquid projected into the air and then
crashing back to the ground. A particularly impressive event
was witnessed on June 7, 2011 [340, 341]. Solar material
was ejected, as a great, almost volcanic appearing event, oc-
curred on the photosphere. Solar matter was projected far into
the corona, reaching heights well in excess of 500,000km.
Upon reaching a certain impressive altitude, the ejected pho-
tospheric matter was seen to fall back onto the solar body.
Striking the surface, the descending material produced strong
brightening at the impact points.

These events elegantly support the contention that flares
and CMEs are driven by the buildup of pressure within the so-
lar interior, not by transferring energy from the corona [189].
Most importantly, following the ejection of material from a
flare, the return of mass towards the solar surface can be dis-
tinctly visualized. The associated impact points provide clear

∗There could be substantial opposition to the idea that critical phenom-
ena are being observed in the chromosphere. However, spicule formation
seems to reflect the scale length effects which characterize these processes.

†This proof was first presented as the 24th line of evidence [53].

evidence that the ejected material and the surface upon which
it splashes are comprised of condensed matter.

5.8 Solar Winds and the Solar Cycle #32

Solar winds have presented astronomy with a wealth of in-
formation, especially when addressing variations in helium
abundances [342–351].‡ Two kinds of solar winds can be
monitored. They are known as slow (<400 km/s) and fast
(400–800km/s) winds [349]. They differ only slightly in their
particles fluxes (2.7×108 cm−2 s−1 versus 1.9×108 cm−2 s−1,
respectively), though they can have significant variationsin
their proton densities (8.3 cm−3 versus 2.5 cm−3, respectively)
[349]. Fast solar winds are typically associated with coronal
holes [52,349].

For the gaseous solar models, the origin of solar winds
depends on the presence of a hot corona, which thermally
expands as gravitational forces decrease with distance [352].
The body of the Sun is not involved, as a gaseous Sun must
remain in perfect hydrostatic equilibrium, i.e. the forcesof
gravity must be exactly balanced with electron gas and radia-
tion pressure [13, p. 6–7].

In bringing forth a solution for the origin of solar winds,
Parker [352] would carefully consider earlier findings [353,
354]. Biermann had studied the orientation of comet tails and
concluded that coronal particles were flowing away from the
solar body [353]. At the same time, Unsöld and Chapman
deduced that the Sun was expelling charged particles respon-
sible for geomagnetic storms and computed the associated
densities [354]. Parker would make the logical link between
these events, but required for his solution that the space occu-
pied by coronal matter expanded as it moved away from the
Sun [352]. In order to permit this expansion, he postulated
that the corona must exist at millions of degrees [352]. He
believed that the outer corona could remain very hot, since
Chapman had calculated, a few years before [355], that ion-
ized gases could possess tremendous conductivities. There-
fore, heat could be channeled from the lower corona to the
outer solar atmosphere, to drive the solar winds.

As a result, the gaseous models have required the impos-
sible from the corona. The latter must be heated to temper-
atures well beyond those of the solar core (see§3.8) using
processes based on magnetic fields [148, p. 239–251]. Then,
it must transfer this energy in two directions. First, the corona
must be able to drive all violent activity on the solar sur-
face [12], like flares and coronal mass ejections (see§5.1
and [179]). Second, it must allow energy, through its elevated
conductivity [355], to reach the outermost layers of the solar
atmosphere. In this manner, the corona itself can provide the
thermal energy required to drive the solar winds [352].

But, if energy can dissipate into the outer corona through
elevated conductivity, how can it be available to drive surface
activity? How does the directionally opposite flow of heat ina

‡This proof was first presented in [47, 48, 52].
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conductive material, like the corona, not constitute a violation
of the Second Law of Thermodynamics?∗ Furthermore, why
require that heat be transferred into the corona from the solar
interior prior to its application elsewhere in the Sun? Why
not simply let the solar body do the work?

In any event, to maintain the requirements of hydrostatic
equilibrium [13, p. 6–7], the Sun must let its ultra-low den-
sity vacuum-like corona maintain every unexplained process.
It does so by transferring energy from the solar interior us-
ing magnetic fields, even though gases are unable to generate
such phenomena§5.3.

The requirements that the corona is hot also introduces the
problem of the cool K-coronal spectrum (see§2.3.7), which
must, in turn, be explained with relativistic electrons. How
could relativistic electrons survive in a conductive medium?
Resorting to this proposal hampers the search for the under-
lying causes of the solar cycle.

Conversely, Christophe Robitaille has theorized that the
Sun is expelling non-hydrogen elements synthesized within
its interior (private communication and [48]).† In the LMH
model, the Sun possesses a true graphite-like layered lattice
(see Fig. 2) over much of its volume, except perhaps, in the
core.‡ It is known in graphite, that layered lattices can accom-
modate the intercalation of atoms [18], as has been illustrated
in Fig. 19. In this case, protons occupy the hexagonal planes,
electrons are flowing in conduction bands, and non-hydrogen
atoms are found in the intercalation regions. These atoms
can freely diffuse in the intercalation zones, but would expe-
rience restricted diffusion across hexagonal hydrogen planes
(see Fig. 19). Such simple considerations, within the con-
text of intercalate structures, can readily account for thesolar
winds [47,48,52].

In this model, the tremendous pressures within the solar
interior provide the driving forces for the solar wind. Non-
hydrogen atoms in intercalation regions are being expelled
from the solar body by simple mechanical action, in accor-
dance with known exfoliative processes in graphite [48]. For
instance, an atom traveling at 800 km/s could leave the cen-
ter of the Sun and escape at the surface in only fifteen min-
utes [52].§

During quiet solar periods, the known presence of fast so-
lar winds over coronal holes [52, 349] could be readily ex-
plained. It requires that the intraplanar axis (A in Fig. 2)
of metallic hydrogen, in the polar convection zone, be po-

∗It is already difficult to accept that a low density vacuum could transfer
its energy to the solar surface. This scheme becomes even more strained
when coronal energy is permitted to flow freely, using conductive paths, away
from the Sun. The only solution implies a violation of the First Law of
Thermodynamics, i.e. energy is being created in the middle of the corona.

†Lithium provides one notable exception, as seen in§3.3 and [54].
‡A body center cubic structure, as proposed in computationalstudies of

dense plasmas by Setsuo Ichimaru [97], would be appropriatefor the solar
core (see§6.5).

§This compares to thousands, perhaps millions, of years for aphoton to
leave the core of the gaseous Sun (see§2.3.1 and [42]).

sitioned orthogonally to the solar surface [52]. This would
enable the rapid ejection of intercalate atoms from the solar
interior at the poles when the Sun is quiet.¶ In the convection
zone below the solar equator, the intraplanar axis (A in Fig.2)
would be rotated by 90◦, becoming parallel to the solar sur-
face. This would act to restrict the degassing of intercalate
atoms, resulting in slow solar winds above the equator.

A clearer understanding of solar winds provides new in-
sight into helium abundances [47]. It has been argued that
current estimates of solar helium levels are largely overesti-
mated [47]. Evidence suggests that, during active periods,the
Sun is expelling helium from its equatorial region, not retain-
ing it (see Fig. 15) [47].

Helium levels in the solar wind can vary substantially
with activity. When the Sun is quiet, the average He/H ra-
tio in the slow solar wind is much less than 2%, often ap-
proaching<0.5 % (see Fig. 1 in [348]). However, when the
Sun is active, the ratio approaches 4.5% [348]. Relative he-
lium abundances can rise substantially with solar activity, like
flares [347], and the He/H ratio increases dramatically during
geomagnetic storms [343]. Extremely low He/H ratio values
of 0.01, rising to 0.08, with an average of 0.037 have been
reported, when the Sun was quiet [343]. He/H ratios can vary
greatly, especially in slow solar winds [343, 346]. Therefore,
astronomers have assumed that solar winds cannot be used to
assay this element [347]. However, it is more likely that what
is being observed has not been correctly interpreted.

Extremely low He/H ratios challenge the premise that the
Sun has an elevated helium abundance [47, 241, 242], send-
ing shock waves throughout cosmology (see [47] for more
detail). As helium can be essentially absent from the so-
lar wind, astronomers, rather than infer that the Sun has a
low helium abundance, assume that the elements must not be
properly sampled. Helium must be gravitationally settlingin
the Sun (see [48] for a detailed discussion) or is being de-
stroyed on the way to the detectors by processes occurring in
the corona [347, p. 298].

The fast solar wind is thought to represent a less biased
appraisal of elemental abundances [347, p.295], preciselybe-
cause helium is being ejected from the Sun and subsequently
appears abundant. Aellig et al. report that the fast solar wind
has a helium abundance of 4–5% throughout the course of
their five year observation (see Fig. 2 in [348]).

These results can be readily explained when considering
that the Sun is condensed matter. When the Sun is quiet, it is
degassing its intercalation regions, primarily from the poles.
Large amounts of helium can accordingly populate the fast
solar wind. When solar activity is initiated, the Sun beginsto
degas its equatorial regions. Much of this helium then travels
along with slow solar winds to our detectors, and those con-
centrations are likewise elevated. However, when the Sun is

¶Coronal holes persist above the poles during periods of reduced solar
activity (see§4.6).
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quiet, virtually no helium reaches our detectors in the slow
solar winds, as this element is now trapped in the equatorial
intercalation regions. This scenario provides strong motiva-
tion for concluding that the Sun is actively degassing helium
and that the true internal abundances of this element must be
much lower than currently estimated [47,241,242].∗

Not only can the LMH model account for the production
of solar winds, but it advances an underlying cause of the
solar cycle: degassing of the solar body [48, 52]. When the
Sun is quiet, fast solar winds are able to degas the convection
zones below the poles. This helps to explain why sunspots are
never seen at these latitudes. However, during this period,the
equatorial regions are experiencing restricted degassing. This
is due to the parallel orientation of the hexagonal hydrogen
planes in layered metallic hydrogen lattice, with respect to the
solar surface. Such an orientation prevails in the underlying
convection zone when the Sun is quiet. Solar activity is ini-
tiated when active degassing of the equatorial planes begins.
This occurs in association with a rotation or partial break-
down of the hydrogen planes, as was seen when discussing
sunspots (§2.3.3). This is the reason why coronal holes can
appear anywhere on the solar surface when the Sun is active,
as discussed in§4.6. When accounting for solar winds, coro-
nal holes, and solar activity, the LMH model far surpasses in
insight anything offered by the gaseous models.

6 Helioseismic Lines of Evidence

Seismology remains a science of the condensed state. Even
so, proponents of the gaseous models adhere to the belief
that helioseismology can claim otherwise. In this section,
a group of six helioseismic conclusions will be briefly ex-
amined. Each provides compelling evidence that the Sun is
comprised of condensed matter. It might be argued that other
helioseismic lines of evidence could be extracted. Only six
have been selected for their scientific impact.

6.1 Solar Body Oscillations #33

The Sun acts as a resonant cavity.† It sustains oscillations,
as sound waves travel (see Fig. 25), within its interior [356–
360]. The most prevalent solar oscillation has a period of
5 minutes, but many more modes exist [356–360]. Thus, the
solar surface is reflecting internal audio waves and this causes
the entire solar body to‘ring’ , as it succumbs to seismic ac-
tivity.

Though scientists currently utilize helioseismology to jus-
tify the gaseous models [356–360], the conclusions would be
better suited to a condensed Sun. It is not reasonable that a

∗In this regard, it should be remembered that the chromosphere and the
corona are working to actively recapture hydrogen, protons, and electrons.
This would act to elevate the He/H ratio detected in any solar wind. In ad-
dition, since the Sun is degassing intercalate regions and its average stage
index (see Fig. 19) may be quite large, the solar body might best be viewed
as composed almost entirely of hydrogen.

†This proof was first presented as the fifth line of evidence [35, 36, 42].

Fig. 25: Variations in sound speed within the Sun. Red regions
are hotter than the standard solar models, while blue regions are
cooler. This image has been provided courtesy of SOHO/[Michelson
Doppler Imager] consortium. SOHO is a project of international co-
operation between ESA and NASA. (http://sohowww.nascom.nasa.
gov/gallery/images/mdi025.html — Accessed on 10/1/2013).

photosphere, with a density of only∼10−7 g/cm3 [148], can
act as a resonant cavity. Within the gaseous models, the Sun
has no distinct surface, hence it cannot provide a physical
boundary to sustain solar oscillations.

Fig. 25 displays slight differences in sound speed with the
standard gaseous model. A detailed analysis of such stud-
ies can be profitable. Bahcall et al. [361] have also compared
theoretical results with experimental helioseismic findings for
standard gaseous models. Absolutely amazing fits are ob-
tained throughout the solar interior, but the authors fail to
provide comparisons for the outer 5% of the Sun (see Figs. 12
and 13 in [361]). Yet, all observational data is being acquired
precisely from this region. Therefore, any perceived experi-
mental/theoretical agreement has little validity.

As was concluded in§3.1, the Sun presents the observer
with a distinct surface in the UV and X-Ray bands. This sur-
face is covered by low-frequency 3 mHz oscillations [362].
Evidence for a distinct surface has also been presented by
gamma-ray flares (see§3.2). The Sun behaves as a resonant
cavity in the audio bands, implying a true surface. But the
gaseous models must maintain that the solar surface is but
an ‘illusion’ , to somewhat poorly account for limb darkening
(see§2.3.2). Unfortunately, illusions make for poor resonant
cavities. It is more logical to infer that the Sun has a distinct
surface over the entire span of relevant wavelengths (audioto
X-ray), as provided by condensed matter.

Despite denial that the Sun is either liquid or solid, as-
tronomers refer to solar seismic events as“similar to earth-
quakes”[362]. Such analogies are in keeping with the known
truth that seismology is a science of condensed matter. The
same can be said for the Sun.
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6.2 Mass displacement #34

On July 9, 1996 a powerful X-ray flare disrupted the solar
surface, as illustrated in Fig. 26 [362, 363].∗ This image was
obtained through Doppler methods. Consequently, material
moving towards the observer appeared brighter, while matter
propagating away from the detector seemed darker. There-
fore, the flare itself was bright.

Fig. 26: Doppler image of a solar flare and the associated distur-
bance on the solar surface acquired by the NASA/ESA SOHO satel-
lite [362]. Courtesy of SOHO/[Michelson Doppler Imager] consor-
tium. SOHO is a project of international cooperation between ESA
and NASA.

Kosovichev and Zharkova [362] support the notion, cen-
tral to the gaseous models, that flares are being excited with
coronal energy. They suggest that“a high-energy electron
beam(is) heating the cool chromospheric ‘target’ ”. Surface
activity is driven, not from the interior of the Sun, but from
the coronal vacuum. Nonetheless, the displacement of mate-
rial observed in Fig. 25 strongly supports Zöllner’s ideasre-
garding the nature of solar flares, as previously discussed in
§5.1 and§5.7. It appears that the flare was produced when
pressurized material was ejected from the solar body beyond
the photospheric surface.

But, when the flare emerged, it produced enormous trans-
verse waves on the surface of the Sun. The crest to crest dis-
tances are on the order of 10 Mm. Kosovichev and Zharkova
[362] describe these transverse waves as“resembling ripples
from a pebble, thrown into a pond”and maintain that the
behavior can be explained with computations involving gas
models. Still, they visualize“ripples on a pond”, a direct ref-
erence to behavior which can only be observed in condensed
matter. Gases can sustain longitudinal, not transverse waves.

∗This proof was one of the earliest [4,29] and was presented, at one time,
as the sixth line of evidence [35].

Attempts to generate these waves, not only in a gas, but in an
ultra-low-density vacuum, challenges scientific reason.

6.3 Higher Order Shape #35

Seismological studies have revealed that the Sun is not per-
fectly oblate (§4.4) but rather, is characterized by higher order
quadrupolar and hexadecapolar shape terms which appear de-
pendent on the solar cycle [364].† Higher order shape terms
involve forces beyond those produced with simple rotation of
a homogeneous liquid mass. They implyinternal structure
within the Sun. Hence, they stand as a sublime indication that
the solar body possesses real structure beyond the core.

It would be extremely difficult to justify that fully gaseous
objects could ever sustain observable internal structuralef-
fects. Yet, the higher order quadrupolar and hexadecapolar
shape terms must arise from internal structure. Conversely,
within the context of the LMH model, higher order shape
terms would be expected. It has already been mentioned that
the hexagonal hydrogen plane orientation (see Fig. 19), at the
level of the convection zone, could account for coronal holes,
solar winds, and the solar cycle (see§5.8). Hexagonal hy-
drogen planes could give rise to large layers, moving over
one another, whose orientation relative to the solar surface
could slowly vary from equatorial to polar regions (i.e. par-
allel versus orthogonal).‡ This would give rise to true under-
lying structure in the convection zone, as expressed in higher
order shape terms.

6.4 Tachocline and Convective Zones #36

The Sun possesses a convection zone characterized by differ-
ential rotation [356–360].§ While a gas can easily be thought
to undergo differential rotation, the Sun is characterized by
another region: a tachocline layer separates the convection
zone from the solid solar core (see§6.5).

The tachocline region acts as a shear layer within the Sun.
This layer is known to be prolate in nature [360, 365–367].
The tachocline is generally thicker and shallower at the higher
latitudes [360, 366]. It seems to display some temporal vari-
ability across the solar cycle [366], strongly suggesting,once
again, that structural changes are taking place within the solar
body (see§5.8 and§6.3).

When considering the tachocline layer, it is important to
recall that shear stresses require the presence of a physical
plane. For instance, the equation for shear stress,τ, states
that τ=F/A, where F=force and A=Area. It is not possible

†This proof was first presented in [50], as supportive of§4.4. How-
ever, solar oblateness does not depend on the use of helioseismology for its
determination (§4.4) and has been invoked by Jeans [27, 28] as providing a
mechanism to generate binaries [3]. As for higher order shape, it is indica-
tive of forces which differ from those involved in creating oblateness. Upon
reconsideration, higher order shape now stands on its own asa separate line
of evidence.

‡This resembles tectonic shifts on Earth. Such a parallel wasdrawn by
Luc Robitaille (personal communication).

§This proof was first presented as the nineteenth line of evidence [50].
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to have a shear stress without acting on a surface, or an orga-
nized lattice plane of atoms, as provided by condensed matter.
Imaginary planes cannot experience shear forces.

Consequently, the shear nature of the tachocline, and the
fact that it displays a prolate nature, provides clear evidence
that the solar body is physically structured. Furthermore,it
appears that this is an area of the Sun which can undergo
changes with the solar cycle. These results are most grace-
fully explained by the LMH model.

6.5 Solar Core #37

As was suggested in§6.4, the core of the Sun undergoes solid
body rotation [368].∗ This conclusion, has been reached by a
virtual who’s whoof authority in helioseismology [368]. In
the central portion of the Sun,“ . . . the rotation rate appears
to be very little, if at all. Its value is 430 nHz”[368].

Solid body rotation in the solar interior directly implies
that the body of the Sun cannot be gaseous. This rotation
requires the presence of powerful cohesive forces within the
Sun. None can exist in a gaseous object.

The observation is more in line with Setsuo Ichimaru’s
conjecture (§2.3.1 and§5.8) that the central portion of the
Sun can be considered to exist as a one-component plasma
of metallic hydrogen [97, pp. 103 & 209]. Ichimaru adopted
the body-centered cubic structure in his studies [97–99] and
this lattice configuration would make sense at the center of
the Sun.

In this respect, Ichimaru based the density of metallic hy-
drogen in the core on conclusions derived from gaseous mod-
els. If the photosphere of the Sun is truly condensed, then
the values he adopted (56.2 g/cm3 [98, p. 2660]) would be
much too elevated. In a liquid model, the density cannot vary
much throughout the solar body, remaining near 1.4 g/cm3

(i.e. slightly lower at the photosphere and slightly higherin
the core). At the center of the Sun, we are merely witnessing
a change in lattice structure from a layered Type-I lattice over
most of the photosphere, to a more metallic layered Type II
lattice in the convection zone, and finally to a body-centered
cubic lattice in the core. Intercalate atoms would be present
within Type I and Type II layered lattices. If they change from
the condensed to the gaseous phase, these intercalate atoms
could slightly reduce the average densities of these layers.

The LMH model is more in keeping with physical obser-
vations within the Sun. It is not reasonable to advance that
gases rotate as solid bodies. Condensed matter enables the
formation of a solid core which can account for the observed
rotations.

6.6 Atmospheric Seismology #38

Helioseismology has been extended to the outer solar atmo-
sphere [214, 369–372].† Coronal and chromospheric stud-

∗This proof was first presented as the twentieth line of evidence [50].
†This proof was first presented as the 29th line of evidence [58].

ies [214, 369–372] have successfully detected seismic waves
in this region of the Sun and the presence of both incompress-
ible and compressible waves is now well-established. These
are viewed as magnetohydrodynamic waves (MHD) in na-
ture.‡

The existence of incompressible transverse waves in the
solar atmosphere [214, 369–372] suggests, once again, that
this region of the Sun contains condensed matter. These have
been observed in spicules [214] and within the chromospheric
level [372]. Their detection implies that the densities of these
solar layers are well in excess of those which typify Earthly
vacuums.

As a point of interest, it is known that comets can send
shock waves throughout the solar corona and chromosphere.
On January 29, 2013 (see [373]), a comet begins to disrupt
the solar atmosphere when it is more than 1R⊙ away from
the solar surface. At this location, the corona has no density
(<10−15 g/cm3, the density of the upper chromosphere [148]),
according to the gaseous models. It is unfeasible that an ultra-
low-pressure vacuum could be able to respond to the entry of
a comet in this manner. The ability of comets to trigger shock
wave propagation throughout the solar atmosphere indicates
that this is a region of elevated density. This conclusion isin
keeping with the LMH model of the Sun.

7 Elemental Lines of Evidence

7.1 Nucleosynthesis #39

It has been gloriously stated that the elements were formed in
the stars.§ In this, there appears to be much truth [374–388].
From its inception, stellar nucleosynthesis has always been
closely linked to stellar evolution [129,374–378].

The idea that the Sun could synthesize helium was first
proposed by men such as Gamow [377, 378], Bethe [379–
381], von Weisäcker [382] and Hoyle [383, 384]. The p-p
reaction, wherein two protons combine to make a deuteron,
while relying on positron and neutrino emission, would come
to play a vital role in4He synthesis within low mass stars
[374, p. 118]. For stars with a greater mass than the Sun,
Bethe and von Weisäcker, in 1938 and 1939 [380–382], ad-
vanced that4He was being formed in a simple cycle involving
nitrogen, carbon, and oxygen (CNO).

Early on, Hans Bethe had argued that“no element heavier
than4He can be built up in ordinary stars” [381]. With those
words, the Sun was crippled and stripped of its ability to make
any element beyond helium.

Bethe had reached his conclusion based on the probability
of nuclear reactions in the gas phase and at the temperatures
of ordinary stellar cores [381, p. 435]. If this was true, how
did the Sun come to acquire the other elements? For Bethe,
the answer appeared straightforward,“The heavier elements
found in stars must therefore have existed already when the

‡See [372] for a brief, but well compiled, literature review.
§This proof was first presented in [44, 48].
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star was formed”[381]. Extremely large and hot, first gen-
eration stars, had, soon after the Big Bang, created the heavy
elements [389]. These elements merely represented contam-
ination in the Sun, a product of objects extinguished long
ago.

At the time that the CNO cycle was outlined [380–382],
the discovery of metabolic cycles was creating a fury in biol-
ogy. Just a few years before, in 1932, Hans Krebs (Nobel
Prize, Medicine and Physiology, 1953) had discovered the
urea cycle [390]. He would go on to outline the tricarboxylic
acid (TCA or Krebs) cycle in 1937 [391], the discovery for
which he gained international acclaim. It cannot be doubted
that these great pathways in biology influenced astrophysical
thought. Cycles seemed all powerful.

Biological cycles initially concealed their many lessons.
It would take years to fully understand that they were highly
regulated entities. Biological cycles required a complement
of reactions and cofactors (small activator molecules or ions)
which could either sustain the levels of intermediates or ac-
tivate key enzymatic reactions. Similar regulation would be
difficult to envision in the case of the CNO cycle. As a result,
can this cycle truly occupy central positions in the synthesis
of 4He in the stars? Why confound the process by resorting
to a cycle, when simple reactions between hydrogen atoms
should be sufficient for all stars?

It would seem fortuitous that precisely the proper amounts
of carbon, nitrogen, and oxygen has been distributed within
stellar interiors, to permit these reactions to take place.If
stars are truly gaseous, how do they ensure that these elements
are not destroyed, or used up, by competing nuclear reactions
— something which can be prevented or exploited to advan-
tage in biology? Unlike a biological cell, with its intricate
means of forming, separating, and transferring metabolites,
the gaseous star cannot control the course of a single reac-
tion. Everything must occur by chance. This complication is
directly opposed to the subsistence of cycles.∗

Concerning nucleosynthesis, proponents of the gaseous
models require the improbable. Hobbled by theory, they must
claim that first generation stars created the heavy elements.
Moreover, they advance that, while mankind has successfully
synthesized many elements, the Sun is unable to build any-
thing beyond helium. First generation stars which no longer
exist had done all the work [389]. These conclusions, once
again, call for the suspension of disbelief. It is much more
reasonable to assume that the Sun has the ability to synthesize
all the naturally occurring elements, based on their presence
in the solar atmosphere.

In turning his attention to dense plasmas, Ichimaru recog-
nized that they could provide additional freedom in elemen-
tal synthesis [97–99]. These ideas have merit. In the LMH

∗Note that the author has proposed a cycle in§3.6. In this case however,
the formation of triplet He has not been left to chance. It is the direct product
of a systematic chemical reaction. The other reactant in thecycle, hydrogen,
is present in excess.

model, dense structures enable the synthesis of heavy ele-
ments which is not restricted to the solar core, but expressed
in the convection zone where the intercalation regions can be
found.

A metallic hydrogen framework can restrict protons to lat-
tice points in the hexagonal plane and confine other atoms to
the intercalate layer [48]. Solar pressure and lattice vibrations
could act in concert to enhance the probability of nuclear re-
actions. Two adjacent protons, in the hexagonal hydrogen
plane, could give rise to a deuterium atom, with the asso-
ciated positron and neutrino emission [388]. This deuterium
could then react with another, leading directly to the synthesis
of 4He. Alternatively, it could fuse with a proton, leading to
the formation of3He. Both4He and the light helium isotope,
3He, would be immediately ejected into the intercalation re-
gion [48].† Over time, the intercalation region could sustain
other nuclear reactions and become the birthplace of all nat-
urally occurring heavy isotopes. The Sun and the stars gain
the ability to synthesize all of the elements [44,48].

In this regard, it is well-known that solar flares can give
tremendous3He abundance enhancements [180]. Eruptive
flares have been known to produce3He/4He ratios approach-
ing 1 [186], and thousand-fold enhancements of this ratio
have been observed [392]. These findings can be better un-
derstood in a solar model wherein3He is being preferably
channeled into intercalation regions over4He. 3He could then
display an enhancement over4He when released into the solar
atmosphere during activity.‡ It would be difficult to account
for the finding for the gaseous models, but the result can be
reasonably explained using the LMH model.§

8 Earthly Lines of Evidence

The earthly lines of evidence may be the most powerful. They
are certainly the most far reaching. Climate dictates our fu-
ture and the survival of humanity.

Thus, it is fitting to close this discussion with the climatic
line of evidence. This acts to highlight that there is much
more to studying the Sun than intellectual curiosity. As such,
the‘Young Sun Problem’and the great Maunder minimum of
the middle ages are briefly discussed.¶

†3He could also emit a positron to make tritium,3H. Remaining in the
hexagonal plane, this hydrogen isotope could then react with a single proton
to make4He, which could then be expelled into the intercalate region.

‡This requires simply that the reaction of a deuterium atom with a proton
is preferred over its reaction with another deuterium atom.This would be
expected in a hyrogen based Sun.

§The solar neutrino problem has not been addressed in this work as a
full exposition would involve too much discussion. Suffice it to state that
difficulties involved in obtaining proper neutrino counts highly suggest that
the Sun is sustaining other nuclear reactions beyond the simple synthesis of
4He.

¶These constitute a single line of evidence as they are both related to
climatic changes on Earth.
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8.1 Climatic #40

8.1.1 The Young Sun Problem

The gaseous models infer that, when the Sun was young,
it was much cooler than it is at present [393–395]. Once
thought to be faint and dissipating much less heat onto the sur-
face of the Earth, a gaseous Sun became increasingly warm
over time. Thus, the Sun was once thought to be faint, dissi-
pating little energy onto the Earth. Two billion years ago, the
mean temperature of the Earth’s surface would have been be-
low the freezing point of water [393]. A paradox arises, since
geological studies have revealed that water existed on Earth
in liquid state as early as 3.8 billion years ago [393–395].

In order to resolve this problem, Carl Sagan was one of
the first to advance that the answer could be found in the
Earth’s atmosphere [395]. If the young atmosphere was rich
in CO2, then the greenhouse effect and global warming [396]
provided an explanation [393–395]. Everything appeared to
be resolved [393].

Still, some remained unsatisfied with the greenhouse so-
lution. Several stated that a young Sun was more massive
and accordingly, hotter [393, p. 457]. In this scenario our Sun
lost enormous amounts of material over the years through“a
vigourous, pulsation driven, solar wind”[393, p. 457]. The
young Sun could have been fifteen times more luminous than
now, simply as a consequence of these changes in mass [393,
p. 458].

But, it is difficult to conceive how a gaseous star, violently
expelling mass despite great gravity, will cease to do so as
gravitational forces decrease. Nonetheless, these basic ideas
have survived, although with less dramatic changes in mass
loss [397]. In this approach, the gaseous young Sun was not
faint, but bright [397]. This was more in keeping with warm
temperatures both on the Earth and on Mars [397]. Green-
house effects could not simultaneously explain these findings.

In the end, the LMH model has a distinct advantage rel-
ative to the young Sun problem. Only the gaseous equations
of state demand that a star like the Sun must become increas-
ingly luminous as it evolves.∗ But over time, a Sun based on
condensed matter, should cool from the most luminous (Class
O) to the coolest star type (i.e. Class M).

Some may highlight that, if our Sun was once an O class
star, there should be no water on Earth. The supposition is
not valid. When the Earth was young, scientific consensus
states that it was molten (see e.g. [399]). This can be easily
explained if the Sun was once an O Class star, but not if it
was a faint gaseous object. The Earth, like our Sun, cooled

∗The author has previously addressed Lane’s law and the increased lumi-
nosity gained by the gaseous stars as they evolve [3]. With respect to stellar
evolution, the LMH model will advance that stars cool as theyevolve and do
not increase in luminosity. The brightest stars (Classes O and A) are actually
the youngest, while the faintest are the oldest (Class M). This is completely
contrary to current beliefs in astronomy. Stellar evolution will be addressed
in considerable in detail in an upcoming work [398].

over time. The LMH model is much more in accordance with
observational facts in this regard.†

8.1.2 The Maunder Minimum

A great minimum appeared in the Sunspot cycle during the
middle ages. This minimum was first recognized by Spörer
and Maunder [400–404]. It is known today as theMaunder
minimum[403]. Many believe that the Maunder minimum
was associated with a‘little ice age’ on Earth [403]. The con-
clusion is particularly timely, since the Sun may be entering
another minimum in 2013, as solar activity apparently drops
to a 100 year low [405].

What causes these minimae? In gaseous models, the an-
swers will be difficult to ascertain, as these ideas have dif-
ficulty accounting for any solar activity. As for the LMH
model, it is based on the tenant that solar activity must be fun-
damentally related to degassing of intercalate atoms. Perhaps
the Maunder minimum arises because the Sun has been thor-
oughly degassed, either through an unknown internal mecha-
nism or an external force.

In this regard, it may be important to recall that comets
appear to send shock waves through the solar atmosphere as
they come near the Sun [373]. These shock waves could be
degassing our star beyond normal, hence reducing the need
for future solar activity.Shock degassingmay seem unlikely.
However, comets do have periodic motions around the Sun.
One or more could cyclically return to cause such effects. In
this respect, the comet ISON is arriving in just a few days
[406]. It will be interesting to note the shock wave it com-
mands as it orbits the Sun.‡

8.2 Conclusion

Throughout these pages, a trial has unfolded relative to the
constitution of the Sun. Prudent consideration of the question
requires the objective analysis of solar data. Observations
must be gathered and rigorously considered in light of known
laboratory findings. Such were the lessons imparted long ago
when Gustav Kirchhoff first contemplated the nature of the
Sun [26].

Kirchhoff’s approach has now been repeated. A wealth
of information has been categorized and meticulously eval-
uated. Data spanning every aspect of the solar science has
been included. Not a single fact was deliberately omitted or
ignored. Rather, the full complement of available evidence
has been weighed and described. The Sun itself was permit-
ted to offer full testimony. In completing this exercise, a total

†The mystery of the appearance of water on a planet that was once
molten has not been properly addressed by anyone to the author’s knowl-
edge.

‡Shock related degassing of the Sun should be viewed as something
positive. A star unable to properly degas might well exfoliate, as discussed
in [48], and become a red giant or a supernova. Therefore, shock degassing
may well be necessary, even if Earthly temperatures subsequently fall for
rather long periods of time.
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of forty lines of evidence have been addressed in seven broad
categories. Each has spoken in favor of condensed matter.

Of these, the Planckian lines of evidence, as outlined in
§2, will always merit the preeminent positions, since they di-
rectly reveal true lattice structure at the atomic level. The
solar spectrum, limb darkening, and the directional emissiv-
ity of many structures (sunspots, granules, faculae, magnetic
bright points, spicules, the K-corona, and coronal structures)
highlight that metallic and non-metallic material can be found
within the Sun.

The spectroscopic lines of evidence may well be the most
elegant. It is not only that they provide obvious clues for
a solar surface, but that they finally expose the underlying
cause of line emission within the chromosphere and corona.
In this regard, molecular hydrogen and the metal hydrides
strongly suggest that the chromospheric flash spectrum re-
flects the presence of condensation reactions in the solar at-
mosphere. Yet, it is triplet helium which has rendered the
most definitive declaration. It appears that an activated he-
lium cycle does indeed exist in the chromosphere, harvesting
hydrogen atoms and enabling them to rejoin the solar sur-
face. In concert, the cool-LMH-containing K-corona scav-
enges electrons, thus helping to preserve solar neutrality. The
associated light emission from highly ionized ions speaks to
the power of spectroscopic observation.

The structural lines of evidence remain the simplest to
understand. The many arguments concerning solar collapse,
density, dimension, shape, appearance, and extent, are simul-
taneously straightforward and disarming.

Perhaps the most intriguing lines of evidence are dynamic
manifestations of solar activity. Surface activity, the boiling
action of the Sun, and the orthogonal arrangement of its pho-
tospheric/coronal flows leave no opportunity for a gaseous
Sun. The existence of a solar dynamo, with its requirement
for the interplay between conductors and insulators, offers no
more. Coronal rain and loops, along with spicular velocities
and splashdown events, require the presence of condensed
matter. Slow and fast solar winds point to an object con-
stantly striving to expel material, emphasizing the dynamic
aspects of a condensed Sun.

Few sciences are more tied to condensed matter than seis-
mology. The Sun with its oscillations, mass displacements,
shape, internal layers (convection zone, tachocline, and core),
and atmospheric waves, has highlighted that it belongs in the
company of solids and liquids.

Elemental lines of evidence call for a complete revision
of scientific thought relative to how the Sun derives its en-
ergy. First generation stars must join the company of other
untenable theories, as an unchained Sun is finally permitted
to synthesize all of the elements.

The sole earthly line of evidence was climatic. In ages
past, the Earth was molten. The Sun must have been much
more luminous than it is today, leading to the conclusion that
it was born as an O-class star. Its temporal variations across

the ages, might be best understood as an ever-present need to
eject elements from its interior.

Finally, a conclusion must inevitably be drawn. Can a
gaseous Sun truly survive, based solely on mathematical ar-
guments, when not a single observational line of evidence
lends it support? In the end, such an arsenal of observational
proofs has been supplied that there can be little doubt in the
answer. Formulas can never supersede observational findings.
Hence, only a single verdict can be logically rendered. The
Sun must be comprised of condensed matter.

The consequences are far reaching. They call for a new
beginning in astronomy. Nonetheless, there is hope that a
reformulation of astrophysics can bring with it a wealth of
knowledge and discovery. As scientists turn their thoughtsto
a condensed Sun, may they renew their fervor in the pursuit
and understanding of stellar observations.

Epilogue

No more appropriate closing words can be uttered than those
of Cecilia Payne, she who established that we live in a hy-
drogen based universe [86]:“The future of a subject is the
product of its past, and the hopes of astrophysics should be
implicit in what the science has already achieved. Astro-
physics is a young science, however, and is still, to some
extent, in a position of choosing its route; it is very much
to be desired that present effort should be so directed that
the chosen path may lead in a permanently productive direc-
tion. The direction in which progress lies will depend on the
material available, on the development of theory, and on the
trend of thought . . . The future progress of theory is a harder
subject for prediction, than the future progress of observa-
tion. But one thing is certain: observation must make the
way for theory, and only if it does can the science have its
greatest productivity . . . There is hope that the high promise
of astrophysics may be brought to fruition.”Cecilia Payne-
Gaposchkin [407, p. 199–201].
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Not enough can be said of Dmitri Rabounski and Larissa
Borissova with respect to their lifelong love of science and
their immediate interest in the problem of liquid stars [408].
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van der Voort L.H.M. Dark cores in sunspot penumbral filaments. Na-
ture, 2002, v. 420, 151–153.

101. Very F. The absorptive power of the solar atmosphere.Astrophys. J.,
1902, v. 16, 73–91.
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153. Grotian W.Über die intensitätsverteilung des kontinuierlichen spek-
trums der inneren korona.Zeitschrift fur Astrophysik, 1931, v. 3, 199–
226.

154. Lyot B. La couronne solaire étudiée en dehors des éclipses.Comptes
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223. Stehlé C. and Hutcheon R. Extensive tabulations of Stark broadened
hydrogen line profiles.Astro.& Astrophys. Suppl. Ser., 1999, v. 140,
93–97.
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227. Acon B.W., Stehlé C., Zhang H. and Montaser A. Stark-broadened hy-
drogen line profiles predicted by the model microfield methodfor cal-
culating electron densities.Spectrochimica Acta B: Atomic Spectros.,
2001, v. 56, 527–539.
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260. Unsöld A.Über die Struktur der Fraunhofersehen Linien und die quan-
titative Spektralanalyse der Sonnenatmosphäre. Zeitschrift für Physik,
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pagne A.E., Barnes C.A., Käppeler F., Smith V.V., Hoffman R.D.,
Timmes F.X., Sneden C., Boyd R.N., Meyer B.S. and Lambert D.L.
Synthesis of the elements in stars: Forty years of progress.Rev. Mod.
Phys., 1997, v. 9, no. 4, 995–1084.

387. Bahcall J.N. Neutrinos from the Sun.Sci. Am., 1969, v. 221, no. 1, 28–
37.

388. Bahcall J.N. How the Sun shines.
http://www.nobelprize.org/nobelprizes/themes/physics/fusion/.

389. Beers T.C. The first generation stars.Science, 2005, v. 309, no. 5733,
390–391.

390. Nickelsen K. and Graβhoff G. Concepts from the Bench: Hans Krebs,
Kurt Henseleit and the Urea Cycle. In: “Going Amiss in Experimental
Research” (G. Hon, J. Schickore, F. Steinle, Eds.),Boston Stud. Phil.
Science, 2009, v. 267, 91–117.

391. Krebs H.A., Salvin E. and Johnson A. XX. The formation ofcitric
andα-ketoglutaric acid in the mamalian body.Biochem. J., 1938, v. 32,
no. 1, 113-117.

392. Reames D.V. and Ng C.K. Heavy-element abundances in solar ener-
getic particle events.Astrophys. J., 2004, v. 610, 510–522.

393. Kasting J.F. and Grinspoon D.H. The faint young Sun problem: In
“The Sun in Time” (C.P. Sonett, M.S. Giampapa, and M.S. Matthews,
Eds.), The University of Arizona, Tuscon, 1991, pp. 447–462.

394. Zahnle K., Arndt N., Cockell C., Halliday A., Nisbet E.,Selsis F. and
Sleep N.H. Emergence of a habitable planet.Space Sci. Rev., 2007,
v. 129, 35–78.

395. Solanski S.K. Solar variability and climate change: Isthere a link.As-
tron.& Geophys., 2002, v. 43, no. 5, 5.9–5.13.

396. Lacis A.A., Schmidt G.A., Rind D. and Ruedy R.A. Atmospheric
CO2: Principal control knob governing the Earth’s temperature. Sci-
ence, 2010, v. 330, 356–359.

Pierre-Marie Robitaille. Forty Lines of Evidence for Condensed Matter — The Sun on Trial 141



Volume 4 PROGRESS IN PHYSICS October, 2013

397. Sackmann I.-J. and Boothboyd A. Our Sun V. A bright youngSun con-
sistent with helioseismology and warm temperatures on ancient Earth
and Mars.Astrophys. J., 2003, v. 583, 1024–1039.

398. Robitaille P.M. Class-O Wolf-Rayet stars and the birthof the Sun. A
new look at stellar evolution. (manuscript in preparation)

399. Murthy V.R. Geochemical evidence for an initially molten Earth.Phys.
Earth Planetary Interiors, 1992, v. 71, no. 1-2, 46–51.

400. Maunder E.W. Spoerer’s Researches on Sun-Spots.Mon. Not. Roy. As-
tron. Soc., 1890, v. 50, 251–252.

401. Spörer G.̈Uber die Periodicität Sonnenflecken seit dem Jahre 1618,
vornehmlich in Bezug auf die heliographische Breite derselben, und
Nachweis einer erheblichen Störung dieser Periodicitätwährend eines
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In this paper we present a short history of logics: from particular cases of 2-symbol or
numerical valued logic to the general case of n-symbol or numerical valued logic. We
show generalizations of 2-valued Boolean logic to fuzzy logic, also from the Kleene’s
and Lukasiewicz’ 3-symbol valued logics or Belnap’s4-symbol valued logic to the most
generaln-symbol or numerical valued refined neutrosophic logic. Two classes of neu-
trosophic norm (n-norm) and neutrosophic conorm (n-conorm) are defined. Examples
of applications of neutrosophic logic to physics are listedin the last section. Similar
generalizations can be done forn-Valued Refined Neutrosophic Set, and respectively
n-Valued Refined Neutrosopjhic Probability.

1 Two-Valued Logic

1.1 The Two Symbol-Valued Logic

It is the Chinese philosophy:Yin and Yang(or Femininity and
Masculinity) as contraries:

Fig. 1: Ying and Yang

It is also the Classical orBoolean Logic, which has two
symbol-values: truth T and falsity F.

1.2 The Two Numerical-Valued Logic

It is also the Classical orBoolean Logic, which has two nu-
merical-values: truth1 and falsity0. More general it is the
Fuzzy Logic, where the truth (T) and the falsity (F) can be
any numbers in[0,1] such thatT + F = 1.

Even more general,T andF can be subsets of[0,1].

2 Three-Valued Logic

2.1 The Three Symbol-Valued Logics

1. Lukasiewicz ’s Logic: True, False, and Possible.

2. Kleene’s Logic: True, False, Unknown (or Undefined).

3. Chinese philosophy extended to:Yin, Yang,andNeuter
(or Femininity, Masculinity, and Neutrality) - as in Neu-
trosophy. Neutrosophy philosophy was born from neu-
trality between various philosophies.Connected with
Extenics(Prof. Cai Wen, 1983), and Paradoxism (F.
Smarandache, 1980).Neutrosophyis a new branch of
philosophy that studies the origin, nature, and scope

of neutralities, as well as their interactions with dif-
ferent ideational spectra. This theory considers every
notion or idea<A> together with its opposite or nega-
tion <antiA> and with their spectrum of neutralities<neutA> in between them (i.e. notions or ideas sup-
porting neither<A> nor <antiA>). The<neutA>
and<antiA> ideas together are referred to as<nonA>.
Neutrosophy is a generalization of Hegel’s dialectics
(the last one is based on<A> and<antiA> only). Ac-
cording to this theory every idea<A> tends to be neu-
tralized and balanced by<antiA> and<nonA> ideas
- as a state of equilibrium. In a classical way<A>,<neutA>,<antiA> are disjoint two by two. But, since
in many cases the borders between notions are vague,
imprecise, Sorites, it is possible that<A>, <neutA>,<antiA> (and<nonA> of course) have common parts
two by two, or even all three of them as well.Such
contradictions involves Extenics. Neutrosophy is the
base of all neutrosophics and it is used in engineer-
ing applications (especially for software and informa-
tion fusion), medicine, military, airspace, cybernetics,
physics.

2.2 The Three Numerical-Valued Logic

1. Kleene’s Logic: True (1), False (0), Unknown (or Un-
defined) (1/2), and uses “min” for̂ , “max” for _, and
“1-” for negation.

2. More general is theNeutrosophic Logic[Smarandache,
1995], where the truth (T) and the falsity (F) and the
indeterminacy (I ) can be any numbers in[0, 1], then0 � T + I + F � 3. More general: Truth (T), Falsity
(F), and Indeterminacy (I ) are standard or nonstandard
subsets of the nonstandard interval℄�0; 1+[.

3 Four-Valued Logic

3.1 The Four Symbol-Valued Logic

1. It isBelnap’s Logic: True (T), False (F), Unknown (U),
and Contradiction (C), whereT, F, U, C are symbols,
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not numbers. Below is the Belnap’s conjunction oper-
ator table: \ F U C T

F F F F F
U F U F U
C F F C C
T F U C T

Restricted toT,F,U, and toT,F,C, the Belnap connec-
tives coincide with the connectives in Kleene’s logic.

2. LetG = Ignorance. We can also propose the following
two 4-Symbol Valued Logics:(T, F, U, G), and(T, F, C,
G).

3. Absolute-Relative 2-, 3-, 4-, 5-, or 6-Symbol Valued
Logics [Smarandache, 1995]. LetTA be truth in all
possible worlds (according to Leibniz’s definition);TR
be truth in at last one world but not in all worlds; and
similarly letIA be indeterminacy in all possible worlds;IR be indeterminacy in at last one world but not in all
worlds; also letFA be falsity in all possible worlds;FR
be falsity in at last one world but not in all worlds; Then
we can form several Absolute-Relative 2-, 3-, 4-, 5-, or
6-Symbol Valued Logics just taking combinations of
the symbolsTA, TR, IA, IR, FA, andFR. As particular
cases, very interesting would be to study the Absolute-
Relative 4-Symbol Valued Logic (TA, TR, FA, FR), as
well as the Absolute-Relative 6-Symbol Valued Logic
(TA, TR, IA, IR, FA, FR).

3.2 Four Numerical-Valued Neutrosophic Logic

Indeterminacy I is refined (split) as U= Unknown, and C
= contradiction. T, F, U, C are subsets of [0, 1], instead of
symbols; This logic generalizes Belnap’s logic since one gets
a degree of truth, a degree of falsity, a degree of unknown,
and a degree of contradiction. SinceC = T ^ F , this logic
involves the Extenics.

4 Five-Valued Logic

1. Five Symbol-Valued Neutrosophic Logic [Smarandache,
1995]: Indeterminacy I is refined (split) as U= Un-
known, C= contradiction, and G= ignorance; where
the symbols represent:
T = truth;
F= falsity;
U = neither T nor F (undefined);C = T ^ F , which involves the Extenics;G = T _ F:

2. If T, F, U, C, G are subsets of[0, 1] then we get:aFive
Numerical-Valued Neutrosophic Logic.

5 Seven-Valued Logic

1. Seven Symbol-Valued Neutrosophic Logic
[Smarandache, 1995]:
I is refined (split) asU, C, G,butT also is refined asTA
= absolute truth andTR = relative truth, andF is re-
fined asFA = absolute falsity andFR = relative falsity.
Where: U = neither (TA or TR) nor (FA or FR) (i.e.
undefined);C = (TAorTR) ^ (FAorFR) (i.e. Contra-
diction), which involves the Extenics;G = (TAorTR) _ (FAorFR) (i.e. Ignorance). All are
symbols.

2. But if TA, TR, FA, FR, U, C, Gare subsets of[0, 1],
then we get aSeven Numerical-Valued Neutrosophic
Logic.

6 n-Valued Logic

1. The n-Symbol-Valued Refined Neutrosophic Logic
[Smarandache, 1995]. In general:
T can be split into many types of truths:T1; T2; :::; Tp,
andI into many types of indeterminacies:I1; I2; :::; Ir,
andF into many types of falsities:F1; F2; :::; Fs, where
all p; r; s � 1 are integers, andp+ r + s = n.
All subcomponentsTj , Ik, Fl are symbols forj 2f1; 2:::; pg, k 2 f1; 2:::; rg, andl 2 f1; 2:::; sg.
If at least oneIk = Tj ^ Fl =contradiction, we get
again the Extenics.

2. The n-Numerical-Valued Refined Neutrosophic Logic.
In the same way, but all subcomponentsTj , Ik, Fl are
not symbols, but subsets of[0,1], for all j 2 f1; 2:::; pg,
all k 2 f1; 2:::; rg, and alll 2 f1; 2:::; sg. If all sources
of information that separately provide neutrosophic val-
ues for a specific subcomponent are independent sources,
then in the general case we consider that each of the
subcomponentsTj , Ik, Fl is independent with respect
to the others and it is in the non-standard set℄�0; 1+[.
Therefore per total we have for crisp neutrosophic value
subcomponentsTj , Ik, Fl that:�0 � pXj=1 Tj + rXk=1 Ik + sXl=1 Fl � n+ (1)

where of coursen = p + r + s as above. If there
are some dependent sources (or respectively some de-
pendent subcomponents), we can treat those dependent
subcomponents together. For example, ifT2 andI3 are
dependent, we put them together as�0 � T2+I3 � 1+.
The non-standard unit interval℄�0; 1+[ , used to make
a distinction between absolute and relative truth/ inde-
terminacy/falsehood in philosophical applications, is
replace for simplicity with the standard (classical) unit
interval[0; 1℄ for technical applications.
For at least oneIk = Tj ^ Fl = contradiction, we get
again the Extenics.
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7 n-Valued Neutrosophic Logic Connectors

1. n-Norm and n-Conorm defined on combinations of
t-Norm and t-Conorm
The n-norm is actually the neutrosophic conjunction
operator, NEUTROSOPHIC AND (̂n); while the n-
conorm is the neutrosophic disjunction operator, NEU-
TROSOPHIC OR (_n).
One can use the t-norm and t-conorm operators from
the fuzzy logic in order to define then-norm and re-
spectivelyn-conorm in neutrosophic logic:n� norm((Tj)j=f1;2;:::;pg;(Ik)k=f1;2;:::;rg; (Fl)l=f1;2;:::;sg)= ([t� norm(Tj)℄j=f1;2;:::;pg;[t� onorm(Ik)℄k=f1;2;:::;rg ;[t� onorm(Fl)℄l=f1;2;:::;sg) (2)

andn� onorm((Tj)j=f1;2;:::;pg; (Ik)k=f1;2;:::;rg;(Fl)l=f1;2;:::;sg)= ([t� onorm(Tj)℄j=f1;2;:::;pg ;[t� norm(Ik)℄k=1;2;:::;r ;[t� norm(Fl)℄l=1;2;:::;s) (3)

and then one normalizes if needed.
Since the n-norms/n-conorms,alike t-norms/t-conorms,
can only approximate the inter-connectivity between
two n-Valued Neutrosophic Propositions, there are many
versions of these approximations.
For example, for the n-norm: the indeterminate
(sub)componentsIk alone can be combined with the
t-conorm in a pessimistic way [i.e. lower bound], or
with the t-norm in an optimistic way [upper bound];
while for the n-conorm: the indeterminate (sub)com-
ponentsIk alone can be combined with the t-norm in a
pessimistic way [i.e. lower bound], or with the t-conorm
in an optimistic way [upper bound].
In general, if one uses in defining an n-norm/n-conorm
for example the t-normmin fx; yg then it is indicated
that the corresponding t-conorm used bemax fx; yg;
or if the t-norm used is the productx _y then the corre-
sponding t-conorm should bex+y�x _y; and similarly
if the t-norm used ismax f0; x+ y � 1g then the cor-
responding t-conorm should bemin fx+ y; 1g; and
so on.
Yet, it is still possible to define the n-norm and n-conorm
using different types of t-norms and t-conorms.

2. N-norm and n-conorm based on priorities
For then-normwe can consider the priority: T<I<F,
where the subcomponents are supposed to conform with
similar priorities, i.e.T1 < T2 < ::: < Tp < I1 < I2 < :::< Ir < F1 < F2 < ::: < Fs: (4)

While for then-conormone has the opposite priorities:
T>I>F, or for the refined case:T1 > T2 > ::: > Tp > I1 > I2 > :::> Ir > F1 > F2 > ::: > Fs: (5)

By definition A<B means that all products between A and B
go to B (the bigger).

Let’s say, one has two neutrosophic values in simple (non-
refined case): (Tx; Ix; Fx) (6)

and (Ty; Iy; Fy) (7)

Applying the n-norm to both of them, with priorities T< I <
F, we get:(Tx; Ix; Fx) ^n (Ty; Iy; Fy)= (TxTy; TxIy + TyIx + IxIy;TxFy + TyFx + IxFy + IyFx + FxFy): (8)

Applying the n-conorm to both of them, with priorities
T > I > F, we get:(Tx; Ix; Fx) _n (Ty; Iy; Fy)= (TxTy + TxIy + TyIx + TxFy + TyFx;IxIy + IxFy + IyFx; FxFy): (9)

In a lower bound (pessimistic) n-norm one considers the
priorities T < I < F, while in an upper bound (optimistic)
n-norm one considers the priorities I< T < F.

Whereas, in an upper bound (optimistic) n-conorm one
considers T> I > F, while in a lower bound (pessimistic)
n-conorm one considers the priorities T>F>I.

Various priorities can be employed by other researchers
depending on each particular application.

8 Particular Cases

If in 6 a) andb) one has allIk = 0; k = f1; 2; :::; rg, we get
then-Valued Refined Fuzzy Logic.

If in 6 a) andb) one has only one type of indeterminacy,
i.e. k=1, henceI1 = I > 0, we get then-Valued Refined
Intuitionistic Fuzzy Logic .

9 Distinction between Neutrosophic Physics and Para-
doxist Physics

Firstly, we make a distinction between Neutrosophic Physics
and Paradoxist Physics.

1. Neutrosophic Physics
Let <A> be a physical entity (i.e. concept, notion,
object, space, field, idea, law, property, state, attribute,
theorem, theory, etc.),<antiA> be the opposite of<A>,
and<neutA> be their neutral (i.e. neither<A> nor<antiA>, but in between).
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Neutrosophic Physics is a mixture of two or three of
these entities<A>, <antiA>, and<neutA> that hold
together.
Therefore, we can have neutrosophic fields, and neu-
trosophic objects, neutrosophic states, etc.

2. Paradoxist Physics
Neutrosophic Physics is an extension of Paradoxist
Physics, since Paradoxist Physics is a combination of
physical contradictories<A> and<antiA> only that
hold together, without referring to their neutrality<neutA>. Paradoxist Physics describes collections of
objects or states that are individually characterized by
contradictory properties, or are characterized neither by
a property nor by the opposite of that property, or are
composed of contradictory sub-elements. Such objects
or states are called paradoxist entities.
These domains of research were set up in the1995
within the frame of neutrosophy, neutrosophic logic/
set/probability/statistics.

10 n-Valued Refined Neutrosophic Logic Applied to
Physics

There are many cases in the scientific (and also in humanistic)
fields that two or three of these items<A>, <antiA>, and<neutA> simultaneously coexist.
SeveralExamplesof paradoxist and neutrosophic entities:

• anions in two spatial dimensions are arbitrary spin par-
ticles that are neither bosons (integer spin) nor fermions
(half integer spin);

• among possible Dark Matter candidates there may be
exotic particles that are neither Dirac nor Majorana
fermions;

• mercury (Hg) is a state that is neither liquid nor solid
under normal conditions at room temperature;

• non-magnetic materials are neither ferromagnetic nor
anti-ferromagnetic;

• quark gluon plasma (QGP) is a phase formed by quasi-
free quarks and gluons that behaves neither like a con-
ventional plasma nor as an ordinary liquid;

• unmatter, which is formed by matter and antimatter that
bind together (F. Smarandache, 2004);

• neutral kaon, which is a pion and anti-pion composite
(R. M. Santilli, 1978) and thus a form of unmatter;

• neutrosophic methods in General Relativity (D. Raboun-
ski, F. Smarandache, L. Borissova, 2005);

• neutrosophic cosmological model (D. Rabounski, L.
Borissova, 2011);

• neutrosophic gravitation (D. Rabounski);

• qubit and generally quantum superposition of states;

• semiconductors are neither conductors nor isolators;

• semi-transparent optical components are neither opaque
nor perfectly transparent to light;

• quantum states are metastable (neither perfectly stable,
nor unstable);

• neutrino-photon doublet (E. Goldfain);

• the “multiplet” of elementary particles is a kind of “neu-
trosophic field” with two or more values (E. Goldfain,
2011);

• A “neutrosophic field” can be generalized to that of op-
erators whose action is selective. The effect of the neu-
trosophic field is somehow equivalent with the “tunnel-
ing” from the solid physics, or with the “spontaneous
symmetry breaking” (SSB) where there is an internal
symmetry which is broken by a particular selection of
the vacuum state (E. Goldfain). Etc.

Many types of logics have been presented above. For the
most general logic, the n-valued refined neutrosophic logic,
we presented two classes of neutrosophic operators to be used
in combinations of neutrosophic valued propositions in
physics.

Similar generalizations are done forn-Valued Refined
Neutrosophic Set, and respectively n-Valued Refined
Neutrosophic Probability.
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Path Distribution Energy and Possible Consequences
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Previously (Progress in Physics, 2013, v. 4, 83–84) one investigated the geometric dis-
tribution of the frequencies of the path of the electron in the ground state of Hydrogen
atom. In this paper one shows that the resulting difference detected on the fifth decimal
of the inverse fine structure constant is accompanied by the difference in the quantized
energy up to 0.04 eV. The difference in charge as well as energy of the distributed and
non-distributed electrons could explain the origin of van der Waals intermolecular in-
teractions.

1 Theoretical background

The distribution of the path of the electron changes the in-
verse fine structure constant [1]. Let us see what is accompa-
nied to that change. The inverse fine structure constant can be
expressed as:

α
−1 =

2ε0hc
e2
. (1)

The energy equivalent of the mass of the electronEe can be
expressed as [2]:

Ee = mec2 =
e2

4πε0re
. (2)

The inverse fine structure constantα−1 and the energy equiv-
alent of the mass of the electronEe are in inverse proportion
since combining (1) and (2) the next relation is given:

α
−1 =

hc
2πEere

. (3)

Other parameters staying untouched the inverse fine structure
constantα−1 is changed due to the change of the electron
chargee and consequently the energy equivalent of the mass
Ee. Energetically more favorable is the greater inverse fine
structure constantα−1 since it belongs to the smaller chargee
and energy equivalentEe. Therefore the proposed distributed
path of the electron in the ground state of Hydrogen atom [1]
is more favorable than non-distributed one. Having greater
α
−1 possesses lowerEe. The most favorable is the infinite-

sided distribution with the largestα−1 and the lowestEe. En-
ergies of the discrete distributions are quantized. The differ-
ence in energy between the non-distributed electronE0 and
on the arbitrary number of the even-sidesk distributed elec-
tron Ek is given by:

∆Ek = E0 − Ek. (4)

Because of the inverse proportion ofα−1 andEe holds:

α
−1
k−sided

α
−1
0−sided

=
E0

Ek
. (5)

The difference in energy is then expressed as:

∆Ek =













α
−1
k−sided

α
−1
0−sided

− 1













E0 . (6)

The difference in energy between the energy equivalents of
the mass of the electron at the different number of sides of
distribution∆Ek (4) is also the difference of the distribution
energies∆Ed:

∆Ek = ∆Ed = ∆E0−distribution− Ek−distribution . (7)

The distribution energy of the non-distribution is assumedto
be zero:

E0−distribution = 0. (8)

So the distribution energy of the path of the electron of the
arbitraryk-sideddistribution is given by:

Ek−distribution = −∆Ed = −∆Ek. (9)

The negative distribution energy means that energy is released
in the case when the electron path becomes distributed, and
on the contrary, the energy is spent in the case when the elec-
tron path becomes non-distributed. The distribution of the
path of the electron does not need to be atom-radius depen-
dent (it is distribution-radius dependent) [1] so what applies
for Hydrogen atom could hold true also for other atoms.

2 Calculation of the Distribution Energy

The non-distribution energyE0−distribution is zero by defini-
tion (8).

On the two decimals rounded energy of the two-sided
distribution can be calculated with the help of equations (6)
and (9) knowing the CODATA value of the energy equivalent
of the mass of the electronEe= 510998.91 eV, and the appro-
priate distributed inverse fine structure constantsα−1

0−sided=

137.036006 andα−1
2−sided= 137.036014 [1]:

E2−distribution = −0.03 eV. (10)
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On the two decimals rounded energy of the infinite-sided dis-
tribution can be calculated in the same way knowing the in-
verse fine structure constantα−1

∞−sided= 137.036018 [1]:

E∞−distribution = −0.04 eV. (11)

The infinite number of the quantized distribution energies in
the range of 0.04 eV can be calculated on allk-sides of the
ground state of Hydrogen atom. Of course this paper brings
no statement of how many of them are physically true.

3 Instead of conclusion

The proposed quantized distribution energies of the electron
seem to have physico-chemical consequences. Ranged up to
0.04 eV (10), (11) are of the same order of magnitude as the
typical energies from 0.4 kJ/mol to 4 kJ/mol of the van der
Waals interaction between atoms [3]. Indeed:

4 kJ
mol
≈

0.04 eV
molecule

. (12)

The different energy and charge of the distributed and non-
distributed electrons could explain the origin of the mention-
ed intermolecular interactions.
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1. Špringer J. Geometric Distribution of Path and Fine Structure.Progress

in Physics, 2013, v. 4, 83–84.

2. Haken H., Wolf H.C., Brewer W.D. The Physics of Atoms and Quanta:
Introduction to Experiments and Theory. 2005, Springer. p.70.

3. http://chemwiki.ucdavis.edu/PhysicalChemistry/Quantum
Mechanics/Atomic Theory/IntermolecularForces/Van Der
WaalsInteractions. Retrieved October 2013.
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Original text published in English:Progress in Physics, 2006, v.1, 57–60. Izvirno an-
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1 člen: Preambula

Začetek 21. stoletja bolj kot katero koli drugo obdobje v
zgodovini človeštva odseva globino in pomembnost vloge
znanosti in tehnologije pri stvareh, ki nas kot ljudi zadevajo.

Nadvse prevladujoča narava moderne znanosti in
tehnologije je privedla do splošnega prepričanja, da je
bodoča pomembnejša odkritja mogoče doseči v glavnem
ali zgolj v velikih vladnih ali korporativno financiranih
raziskovalnih skupinah, ki imajo na voljo nezaslišano drag
instrumentarij in nebroj pomožnega osebja.

Običajna predstava pa je vendarle izmišljena in lažno zr-
cali dejansko naravo, kako se do znanstvenih odkritij v resnici
pride. Veliki in dragi tehnološki projekti, kakor koli žeso
zapleteni, niso nič drugega kot izid uporabe poglobljenih
znanstvenih uvidov manjših skupin predanih raziskovalcev
ali samostojnih znanstvenikov, ki pogosto delajo v odmakn-
jenosti. Znanstvenik, ki dela sam, je sedaj in bo v prihodnje,
kakor je bil že v preteklosti, sposoben priti do odkritja, ki
lahko bistveno vpliva na usodo človeštva in spremeni obličje
celotnega planeta, kjer tako nepomembno prebivamo.

Do velikih odkritij se po navadi dokopljejo posamezniki,
ki delajo na podrejenih delovnih mestih znotraj vladnih agen-
cij, raziskovalnih in izobraževalnih ustanov ali komercialnih
podjetij. Posledično direktorji podjetij in institucij razisko-
valca pogosto omejujejo in zatirajo, saj stremijo k drugim cil-
jem in želijo znanstveno raziskavo nadzorovati, odkritjepa
uporabiti organizaciji ali sebi v prid ter sami sebe poveliˇcati.

Zgodovina znanstvenih odkritij je prepolna zatiranja in
posmehovanja, ki ju je izvajala sprevrnjena elita; šele v
poznejših letih so bili primeri razkriti v pravi luči zaradi
nezadržnega pohoda praktične nujnosti in intelektualnega
razsvetljenja. Takisto je znanost omadeževana in oskrunjena
s plagiatorstvom in namernim popačenjem, ki so ju zaradi za-
visti in pohlepa izvajali brezobzirneži. In tako je tudi danes.

Namen te deklaracije je ohraniti in nadaljevati temeljno
doktrino, da mora znanstveno raziskovanje potekati tako
brez prikritega kot odkritega represivnega vpliva birokratskih,

političnih, religioznih in kapitalskih smernic in da znanstveno
ustvarjanje ni nič manjša človekova pravica kot druge takšne
pravice in silni upi, zapisani v mednarodnih sporazumih in
mednarodnem pravu.

Vsi znanstveniki naj spoštujejo to deklaracijo v znak soli-
darnosti z mednarodno znanstveno skupnostjo in z namenom,
da bi se prebivalcem sveta omogočile pravice za neovirano
znanstveno ustvarjanje na podlagi individualnih sposobnosti
in naravnanosti. Za napredek v znanosti gre, za to naj si kot
spodobni državljani prizadevajo po svojih najboljših močeh v
tem nespodobnem svetu, in za blagor človeštva. Znanost in
tehnologija sta bili že predolgo žrtvi zatiranja.

2 člen: Kdo je znanstvenik

Znanstvenik je oseba, ki se ukvarja z znanostjo. Vsakdo, ki
sodeluje z znanstvenikom pri razvijanju in predlaganju idej in
podatkov pri raziskavi ali njeni uporabi, je tudi znanstvenik.
Formalna izobrazba ni predpogoj za to, da kdo postane
znanstvenik.

3 člen: Kje nastaja znanost

Znanstveno raziskavo je mogoče izvajati na sploh kjerkoli,
denimo v službi, med potekom formalnega izobraževanja
in med sponzoriranim akademskim programom, tako v
skupinah ali kot posameznik, ki neodvisno raziskuje doma.

4 člen: Svobodna izbira raziskovalne teme

Mnogim znanstvenikom, ki se potegujejo za višje strokovne
nazive ali so udeleženi pri drugih raziskovalnih programih
v akademskih ustanovah, kot so na primer univerze in šole
za izpopolnjevalni študij, starejši akademiki in/ali adminis-
tratorji preprečujejo delo na raziskovalni temi po lastniizbiri.
Ne sicer zaradi primanjkljaja ustrezne opreme in prostorov,
pač pa iz razloga, da akademska hierarhija in/ali drugi urad-
niki enostavno ne odobravajo takšnih raziskav, saj bi lahko
prevrnile prevladujočo dogmo in favorizirane teorije alicelo
ogrozile financiranje drugih projektov, ki jim predlagana
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raziskava nemara odvzame veljavo. Avtoriteta ortodoksne
večine pogosto onemogoči moteč raziskovalni projekt, tako
da niti avtoriteta niti proračun nista prizadeta. Ta vsakdanja
praksa je namerna ovira za svobodno znanstveno misel. Ker
je povsem neznanstvena in zločinska, ji ne moremo gledati
skozi prste.

Znanstvenik, ki dela za katero koli akademsko ustanovo,
avtoriteto ali agencijo, mora biti pri izbiri raziskovalneteme
popolnoma svoboden, omejen sme biti le z materialno pod-
poro in intelektualnimi sposobnostmi, ki jih zmore nuditi izo-
braževalna ustanova, agencija ali avtoriteta.Če znanstvenik
raziskuje kot član raziskovalne skupine, naj bodo vloge di-
rektorjev raziskav in vodij skupin le svetovalne in posve-
tovalne narave glede na izbiro ustrezne raziskovalne teme
znanstvenikov v skupini.

5 člen: Svobodna izbira raziskovalnih metod

Pri izvedbi raziskovalnega programa znotraj akademskega
okolja administrativno osebje ali starejši akademiki pogosto
silijo k uporabi drugačnih raziskovalnih metod od tistih,ki
jih je znanstvenik sam izbral. Razlogov za to ni mogoče
poiskati drugje kot v osebnih preferencah, pristranskosti, in-
stitucionalni politiki, uredniških zapovedih ali kolektivni av-
toriteti. Takšna precej razširjena praksa je namerno zanikanje
miselne svobode in ni dopustna.

Nekomercialni ali akademski znanstvenik ima pravico
obdelati raziskovalno temo na kateri koli razumen način ins
kakršnimi koli razumnimi sredstvi, za katera sam meni, da so
najučinkovitejša. Končna odločitev o načinu poteka raziskave
je le znanstvenikova.

Če nekomercialni ali akademski znanstvenik deluje kot
član nekomercialne ali akademske skupine znanstvenikov,
naj imajo vodje projektov in direktorji raziskav zgolj sveto-
valne in posvetovalne pravice in naj ne slabijo, omejujejo in
na kakršen koli drug način posegajo v uporabo raziskovalne
metode in obdelavo raziskovalne teme znanstvenika znotraj
skupine.

6 člen: Svobodna udelězba in sodelovanje pri razisko-
vanju

Prakso moderne znanosti bremeni značilno institucionalno ri-
valstvo, ki ga spremljata osebna zavist in ohranjanje ugleda za
vsako ceno brez upoštevanja raziskovalne resničnosti. To de-
jstvo znanstvenikom pogosto preprečuje sodelovanje s kom-
petentnimi kolegi, tako nameščenimi v rivalskih ustanovah
kot drugimi brez sleherne akademske pripadnosti. Tudi
takšna praksa je namerna ovira znanstvenemu napredku.

V primeru, da nekomercialni znanstvenik potrebuje
pomoč drugega znanstvenika in slednji vanjo privoli, se ga
sme brez zadržka prositi za kakršno koli in vsakršno pomoč
pod pogojem, da nudenje pomoči ne presega okvira razisko-
valnega proračuna.̌Ce pomoč ni vezana na proračun, se sme
znanstvenik svobodno odločiti zanjo in pritegniti k sodelo-

vanju pomočnika povsem po lastni presoji brez kakršnega
koli vmešavanja kogar koli.

7 člen: Svobodno nestrinjanje pri znanstveni razpravi

Zaradi skrivnega ljubosumja in pridobitniškega interesa
moderna znanost prezira odprto razpravo in odločno pre-
ganja tiste znanstvenike, ki dvomijo o ortodoksnih stališčih.
Znanstveniki z izrednimi sposobnostmi, ki opozorijo na po-
manjkljivosti v trenutni teoriji ali interpretaciji podatkov, so
zelo pogosto označeni za čudake, saj je tako mogoče njihova
stališča z lahkoto ignorirati. Javno in zasebno so zasme-
hovani, sistematično pa se jim onemogoča tudi udeležba na
znanstvenih kongresih, seminarjih in kolokvijih, tako da nji-
hove ideje ostanejo brez poti do občinstva. Načrtno ponare-
janje podatkov in napačno interpretiranje teorij današnje dni
brezobzirnežem pogosto služita kot orodje za prikrivanje tako
tehničnih kot znanstvenih dejstev. Izoblikovali so se med-
narodni odbori znanstvenih nastopačev, ki prirejajo in usmer-
jajo mednarodne kongrese, kjer smejo svoje referate ne glede
na vsebinsko kakovost predstavljati le njihovi privrženci. Ti
odbori z zatekanjem k prevaram in lažem iz javne blaga-
jne izvlečejo velikanske vsote denarja za financiranje svo-
jih sponzoriranih projektov. Da se denar lahko še naprej
nemoteno steka na račune za njihove projekte in jim tako
zagotavlja dobro plačane službe, se vsakršno znanstveno
utemeljeno nasprotovanje njihovim predlogom utiša z vsemi
njim razpoložljivimi sredstvi. Oporečnim znanstvenikom se
na podlagi njihovih ukazov vročajo odpovedi; drugim se
s pomočjo mreže skorumpiranih pajdašev prepreči dostop
do akademskih imenovanj. V spet drugih okoliščinah se
onemogočijo kandidature pri programih za pridobitev višje
stopnje strokovnosti, na primer doktorskega naziva, in to
zaradi izražanja idej, ki spodkopavajo moderno teorijo, ne
glede na to, za kakšno staro ortodoksno teorijo že gre.
Temeljno dejstvo, ki pravi, da nobena znanstvena teorija ni
dokončna in nedotakljiva, in je zategadelj odprta za razpravo
in ponovno preverbo, popolnoma ignorirajo. Prav tako ig-
norirajo dejstvo, da ima nek pojav več mogočih razlag, in se
škodoželjno obregnejo ob vsako, ki ni v skladu z ortodok-
snim mnenjem; da pa bi opravičili svoja pristranska mnenja,
se brez obotavljanja poslužujejo neznanstvene argumentacije.

Vsi znanstveniki naj imajo pravico do svobodne razprave
o svojih raziskavah in raziskavah drugih. Naj bodo
brez strahu pred javnim ali zasebnim objektivno neutemel-
jenim posmehom oziroma brez bojazni, da bodo na pod-
lagi neupravičenih navedb postali tarče obtoževanja, oma-
lovaževanja, poniževanja in siceršnjega zaničevanja. Nihče
naj ne bo postavljen v položaj, kjer bi bila zaradi izražanja
znanstvenih stališč ogrožena njegovo preživljanje inugled.
Svoboda znanstvenega izražanja naj bo najpomembnejša.
Uporaba avtoritete za ovržbo znanstvenih dokazov ni
znanstvena in naj se je ne uporablja za zavezovanje ust,
zatiranje, ustrahovanje, preganjanje ali kakršno koli drugo
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priganjanje oziroma ustvarjanje pritiska na znanstvenika.
Namerno zamolčanje znanstvenih dejstev ali dokazov z de-
janjem ali opustitvijo dejanja in namerno prirejanje podatkov
v podporo dokazom ali za diskreditiranje nasprotnega stališča
je znanstvena prevara, ki velja za znanstveni zločin. Načelo
dokazov naj vodi vso znanstveno razpravo, najsi bodo ti
dokazi praktični, teoretični ali preplet obojega.

8 člen: Svobodno objavljanje znanstvenih dognanj

Obžalovanja vredna cenzura znanstvenih člankov je postala
današnje dni stalna praksa uredniških odborov pomembnejših
revij in elektronskih arhivov ter navez njihovih domnevnih
strokovnih razsodnikov. Razsodnike zvečine varuje anon-
imnost, tako da avtor ne more preveriti njihove domnevne
strokovnosti. Objava znanstvenega dela se današnje dni ruti-
nsko zavrne v primeru, ko se avtor ne strinja s preferenčno
teorijo in večinsko pravovernostjo ali jima celo nasprotuje.
Brez vsebinskih razlogov se marsikateri članek samodejno
zavrne, zgolj če je njegov avtor na seznamu nečislanih pri
urednikih, razsodnikih ali drugih strokovnih cenzorjih. Ob-
staja črni seznam disidentskih znanstvenikov, s kateregavse-
bino so seznanjeni povezani uredniški odbori. Vse to je
velikanska pristranskost in graje vredno zatiranje svobod-
nega mišljenja ter si zasluži obsodbo mednarodne znanstvene
skupnosti.

Vsi znanstveniki naj imajo pravico predstaviti dognanja
svojih znanstvenih raziskav ali v celoti ali delno na us-
treznih znanstvenih konferencah ter jih objaviti v tiskanih
znanstvenih revijah, elektronskih arhivih in drugih medijih.
Nobenemu znanstveniku naj se ne zavrne objava članka ali
poročila, predloženega za objavo v znanstveni reviji, elek-
tronskem arhivu ali drugem mediju zgolj zato, ker nje-
govo delo zaseje dvom o trenutnem večinskem prepričanju,
je v nasprotju s pogledi uredniškega odbora, spodkopava
temelje trenutnih ali bodočih raziskovalnih projektov drugih
znanstvenikov ali je v nasprotju s kakršno koli politično
dogmo, verskim prepričanjem in osebnim mnenjem drugega.
Prav tako naj ne bo noben znanstvenik uvrščen na črno
listo ali kako drugače cenzuriran, nihče pa mu tudi naj ne
preprečuje objavljanja.

Noben znanstvenik naj zaradi obljube prejemanja daril
ali kakršnih koli podkupnin ne ovira, spreminja ali se kako
drugače vpleta v objavljanje del drugega znanstvenika.

9 člen: Soavtorstvo znanstvenih del

V znanstvenih krogih je komaj še skrito dejstvo, da ima veliko
soavtorjev raziskovalnih člankov malo ali skoraj nič oprav-
iti z objavljeno raziskavo. Veliko nadzornikov podiplom-
skih študentov, denimo, se ne brani pripisa za soavtorstvo
člankov, ki so jih pod njihovim formalnim nadzorom napisali
podrejeni znanstveniki. V veliko takšnih primerih je dejan-
ski pisec inteligentnejši od formalnega nadzornika. V drugih
primerih, spet zaradi slave, slovesa, denarja, ugleda ali ˇcesar

podobnega, si tretje osebe pripisujejo soavtorstvo člankov.
Pravim avtorjem takšnih člankov preostane le ugovor, z njim
pa tvegajo, da bodo na nek način kaznovani, celo v obliki
zavrnitve pri kandidiranju za višji raziskovalni naziv ali sode-
lovanje v raziskovalni skupini, kot se pogosto dogaja. Veliko
jih je bilo v takšnih okoliščinah v resnici zavrnjenih. Te pre-
tresljive prakse ne moremo več dopustiti. Avtorstvo naj se
pripiše le za raziskavo odgovornim osebam.

Noben znanstvenik naj ne predlaga drugemu, ki ni sode-
loval pri raziskavi, da bi postal soavtor članka, in noben
znanstvenik naj ne dovoli soavtorstva sebi, če ni pomemb-
neje prispeval k raziskavi, o kateri govori članek. Noben
znanstvenik ali znanstvenica naj ne privoli v prisilo pred-
stavnikov akademske ustanove, podjetja, vladne agencije ali
katere koli druge osebe, da bi si prisvojili soavtorstvo za
raziskavo, kjer nimajo pomembnih zaslug; prav tako naj
noben znanstvenik ne dovoli uporabe neupravičenega soav-
torstva v zameno za kakršno koli darilo ali drugo podkupnino.
Nihče naj kakor koli ne sili znanstvenika, da bi bil kot soav-
tor pripisan kdor koli, ki ni pomembno prispeval k raziskavi
v članku.

10 člen: Neodvisnost pripadnosti

Danes je veliko znanstvenikov zaposlenih na podlagi
kratkoročnih pogodb. S prekinitvijo pogodbe o zaposlitvi
ugasne tudi akademska pripadnost. Med uredniškimi od-
bori pogosto prevladuje politika, da se člankov tistih brez
akademske ali komercialne pripadnosti ne objavlja. Zaradi
takšne izključenosti znanstvenik nima dostopa do mnogihvi-
rov, zmanjšajo se mu tudi možnosti za predstavitev govorov
in razprav na konferencah. To nečedno prakso je treba us-
taviti. Znanost se ne prepoznava po pripadnosti.

Zaradi umanjkanja pripadnosti akademski ustanovi,
znanstvenemu inštitutu, vladnemu ali komercialnemu labora-
toriju ali kateri koli drugi organizaciji naj noben znanstvenik
ne bo prikrajšan za možnost predstavitve svojih člankov
na konferencah, kolokvijih in seminarjih, za objavljanje v
katerem koli mediju, za dostop do knjižnic ali znanstvenih
publikacij, za udeležbo na znanstvenih simpozijih in za izva-
janje predavanj.

11 člen: Prost dostop do znanstvenih informacij

Večina specializiranih znanstvenih knjig in veliko
znanstvenih revij ustvarja malo ali nič dobička, tako da
jih komercialni založniki niso pripravljeni izdajati brez
denarnih prispevkov, ki jih nudijo akademske ustanove,
vladne agencije, človekoljubni skladi in podobni. V takšnih
okoliščinah bi morali komercialni založniki dovoliti prost
dostop do elektronskih različic publikacij in si prizadevati za
čim nižjo ceno tiskovin.

Vsi znanstveniki naj si prizadevajo, da bi bili nji-
hovi raziskovalni članki brezplačno dostopni za mednarodno
znanstveno skupnost; če ne gre drugače, pa vsaj za minimalno
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ceno. Vsi znanstveniki naj se lotijo oprijemljivih ukrepov
in ponudijo svoje strokovne knjige po najnižji mogoči ceni,
saj bodo znanstvene informacije le na tak način na voljo širši
mednarodni znanstveni skupnosti.

12 člen: Etična odgovornost znanstvenikov

Zgodovina priča, da so znanstvena odkritja lahko v rabi tako
za dobre kot zle namene: za blagor enih in v pogubo drugih.
Ker se napredka znanosti in tehnologije ne da ustaviti, je
treba zagotoviti razmere za omejitev zlonamerne rabe. Le
demokratično izvoljena vlada brez verskih, rasnih in drugih
predsodkov lahko obvaruje civilizacijo. Le demokratično
izvoljena vlada, sodišča in odbori lahko obvarujejo prav-
ico do svobodnega znanstvenega ustvarjanja. Danes ra-
zlične nedemokratične države in totalitarni režimi izvajajo de-
javne raziskave na področju jedrske fizike, kemije, virologije,
genetskega inženiringa in še kje, z namenom, da bi naredili
jedrsko, kemijsko in biološko orožje. Noben znanstveniknaj
prostovoljno ne sodeluje z nedemokratičnimi državami into-
talitarnimi režimi. Vsak znanstvenik, ki je prisiljen sodelovati
pri razvoju orožja za takšne države, mora najti način insred-
stva za upočasnitev napredovanja raziskovalnih programov
in zmanjšati znanstveni učinek, tako da lahko civilizacija in
demokracija na koncu prevladata.

Vsi znanstveniki so moralno odgovorni za svoje
znanstvene stvaritve in odkritja. Noben znanstvenik naj
samovoljno ne sodeluje pri načrtovanju in izdelavi orožja
kakršne koli vrste za kakršno koli nedemokratično državo
ali totalitarni režim ali dovoli uporabe svojih znanstvenih
veščin in znanja za razvoj česar koli takšnega, kar bi lahko
na kakršen koli način ogrožalo človeštvo. Znanstvenik naj
živi, kakor veli naslednje reklo:〉〉Sleherna nedemokratična
vladavina in kršitev človekovih pravic sta zločin!〈〈

Posvetilo (Dedication)

Ta prevod je posvečen Manici, prevajalčevi drugi hčeri in pre-
vajalkini nečakinji, ter ekipi dvigalcev uteži Plamen.

This translation is dedicated to Manica, Translators’ sec-
ond daughter and niece, respectively, and to the weightlifting
team Plamen.

V Gornji Radgoni, 14. julija 2013
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LETTERS TO PROGRESS IN PHYSICS

On Meta-Epistemic Determination of Quality and Reality in Scientific Creation
(An Address to Those Against Real Science, Scientific Creation,

Intellectual Freedom, and Epistemic Culture)

Indranu Suhendro
The Zelmanov Cosmophysical Group

http://www.zelmanov.org

This is an open letter entitled as “On Meta-Epistemic Determination of Quality and Re-
ality in Scientific Creation”. An address to those against real science, scientific creation,
intellectual freedom, and epistemic culture. Inspired by the Declaration of Academic
Freedom.

Suffice it to say once and for all that you — and so many oth-
ers like you — are not epistemically qualified to assess and
categorize in any way my person, my work, nor any of my
highly dignified and most devoted colleagues (as profoundly
silent and understanding as they are), nor our scientific-
philosophical group as a whole, both positively and nega-
tively, whether in whole or in part. Such an attempt — par-
ticularly such a smug, narrow, shallow, pseudo-intellectual
vacuity, which has foamed and mushroomed throughout cer-
tain loose forums, online and offline — is essentially epistem-
ically superficial, hollow, arbitrary, and inauthentic, nomatter
how much pompous sophistication it displays (by this, I sim-
ply mean sophisticated solipsism, verbal and mental, stem-
ming from the widespread, persistent epistemic problem of
solipsistic syllogism and syllogistic solipsism). It has nothing
whatsoever to do with the determination of Quality (quality-
in-itself) and Reality (reality-in-itself) in the realmost sense.

The real tragedy of this world, at large (including
academia), consists in the lack of epistemic character; of in-
sight and creation (especially scientific creation); of indepen-
dence and freedom; of objectivity and universality; of honesty
and integrity; of solitude and originality; of “qualic” ideation,
imagination, intellection, and identity; of a true sense of
epistemicity and existentialism; of the ontic-epistemic unity
of sight and sense — in other words, of Quality and Real-
ity. These profound characteristics, throughout history,have
never been, and will never be, embodied in the collective ma-
jority, let alone the very imitators (in contrast to real creators)
and their stooges. These belong only to the truly solitary, in-
dependent, authentic few among intellectuals capable of not
just filibustering and pan-handling raw fragments of knowl-
edge, but also of critically and figuratively substantiating all
types of knowledge and understanding. Such an individual is
very, very rare.

If you have never heard, nor comprehended, notorious
affairs in science such as the Erasmus affair, the Abel af-
fair, the Galois affair, the Bolyai affair, the Wagener affair,
the Dewey affair, the Alfven affair, the Sidis affair, the Pir-

sig affair, and, most recently, the Arp affair, the Wolfram af-
fair, and the Perelman affair (alongside other such affairs in
the annals of art and philosophy); whether you deem your-
self a scientist or a lay person, you would better not assert
anything potentially misleading in this category, especially
publicly. As Michael Crichton once lamented, science is not
the same, and should never be equal to, “consensus science”
— with consensus (often very falsely, abusively masquarad-
ing as “democracy” and “objectivity”) often being the first
and last hiding place (refuge) for scoundrels, mere biased op-
portunists and affiliates, and pseudo-scientists —; science is
simply about one person (or a few), one thinker, one scientist,
being correct (in the sense of expanding horizons), no mat-
ter how much public opposition and alienation (e.g. Faustian
and Kierkegaardian epistemic alienation) he faces, thus con-
tributing not only to the discovery of new facts, but also to
the discovery of new ways of thinking and new landscapes of
ideation.

That is why in this passage, I shall very militantly em-
phasize upon the sublime adjective “epistemic” repeatedly
(though I generally do not repeat myself): a truly revolution-
ary science not only contains a new methodology and a new
phenomenology, but also a new epistemology and epistemic-
ity, a new ontology and onticity — it introduces new, vaster,
more profound “paint”, “brush”, “canvas”, and “dimension”,
along with a whole new sketch.

Thus, for instance, using the word “fringe” over-
simplifyingly and over-homogenizingly when describing a
very peculiar scientist or a scientific group, without ever both-
ering to base it on correct epistemic qualifications, is slander-
ous, non-scientific, and non-sensical, far removed from real
scientific attitude (whether it is perpetrated by academicsand
politicians first-hand or by lay people). It is a latent traitof
characterless pan-academic memesis and mimicry (e.g. as
contrasted with the “mnemonist sense” of the Soviet scien-
tist A. Luria) and of pseudo-objectivity, pseudo-science,and
pseudo-skepticism (e.g. in the sense of the sociologist of sci-
ence M. Truzzi).

Indranu Suhendro. On Meta-Epistemic Determination of Quality and Reality in Scientific Creation L5



Volume 4 PROGRESS IN PHYSICS October, 2013

Besides, basically there are two kinds of “fringes” (re-
ferring to both “mere outsiders” and “those who are self-
conscious on the boundary”) with respect to the major-
ity (“mob consciousness”) in any given domain of thought:
1) the utterly wrong “crackpot” one, which is just basic,
quickly self-dispersing non-sense without any significance,
and 2) the subtle, mercurial “vortical” one — frontier sci-
ence laden with extreme originality, creativity, synthesis, and
daringness –, which DOES have true, profound, substantial
epistemic qualification, novelty, merit, and life (i.e. space
and direction) in the sublime heart and vein of science, phi-
losophy, and art.

Without this in the very life of the sciences, all good hu-
man endeavors, speculations, and ideas are as good as be-
ing suffocated, dwarfened, and nullified, and thus organically
dead, instead of epistemically, creatively breathing, living,
and winging. It is this cross-roads, frontier-type, revolution-
ary, vortical kind of science that matters the most in the penul-
timate, genuine progress of science, let alone all of humanity,
a merit to be most fairly appreciated in its own universal time,
not simply in a temporary “age” dominated by some contem-
poraneous power-structures and political interests.

To paraphrase Schopenhauer, every genuine — truly
epistemically original and weighty — truth, along with its
markedly lone proponents (included are the geniuses and
mavericks concerned not with merely “adding color and ice
to a pre-existing drink and cup”, but with opening new fron-
tiers, dimensions, and grounds entirely), is effervescently
conscious of three stages pertaining to the reactionary, abu-
sive behavior of the crowd, the majority, whether practically
in power or not: first, it is ignored; second, it is ridiculed,
rejected, slandered, and violently opposed; third, it is ac-
cepted as “self-evident” — and yet this last phase is often
only in conjunction with Oppenheimer’s (and Kuhn’s) warn-
ing, “they (the proponents of fortress status-quo) do not get
convinced ever, they simply die first”.

In this sense, and only in this sense, there is no such a
thing as a “single scientific method”. Serious paradigms co-
exist at the frontiers not as mere parallels and alternatives
with respect to each other, but already as profound alternating
paradigms.

Genius, one with genuine academic freedom, is the
very faculty responsible for novelty in individual scientific
creation and collective scientific production, including,in-
evitably at a very fundamental level, new scientific theo-
ries, syntheses, and results as well as new ways of manag-
ing science altogether. This is because the structure of scien-
tific revolution takes place simultaneously at methodological,
phenomenological, axiological-ethical, epistemological, and
even ontological levels. One cannot separate individual sci-
entific creation and collective scientific production from the
underlying philosophy and sociology of science. This way,
self-aware epistemology serves as the very gradient on the
slope of knowledge all the way to the mountain peak of sci-

entific progress and revolution.
Suppression, abuse, slander, and any other kind of ill-

treatment done by the majority towards anything intellectu-
ally new and blossoming by a minority in this category can
truly be likened to child abuse: for here we are dealing with
the infancy and growth — as well as the very ground, seeds,
roots — of future scientific clarity, superstructures, and foun-
dations.

Science evolves, revolves, snarls, twists, and surmounts
on tensed — indeed epistemically intense and maudlin —
edges and ridges, on suave pavements and narrow lanes, on
lone fulcrums and horizons, as well as in broad day-light
and in long stringent evenings, in the silent wet limits of
the world, in poignant cracks and labyrinths; and the spirit
of scientific revolution, let alone dialectics, is embodiedthis
way, through critical, paradoxical, synthetic, epistemic, uni-
versal free thinking. Any form of dogmatic suppression
and stymie in science in any epoch (i.e. in antiquity, mod-
ernism, post-modernism, and “post-post-modernism”) is in-
tolerable, a cumbersome instance which usually easily shows
itself perfidiously in cases of epistemically hideous over-
funding, over-politicization, over-elitism, over-sycophancy,
over-patronizing, and over-establishment.

If one is not uniquely, naturally well-versed in these
logico-dialectical strands of thinking, one is simply not a
real scientist and creator capable of any profound insight and
zenith. Such an attitude should also underlie a real, truly en-
lightened scientific enterprise and editorship: irrespective of
the individual views of the editors and reviewers of a sci-
entific guild, one must allow diverse new ideas to flourish
and co-exist (as long as they are true new ideas, and not ob-
vious “pieces of crackpottery”, in the minimum epistemic
sense). This should naturally, winnowingly manifest sponta-
neous scientific-epistemic certainty and solidity, far removed
from the prevalent type of superficial insecurity, fear, andsup-
pression.

While a scientist, I am also an acutely epistemic artist,
independent philosophical mind, keen observer-participant,
and free thinker, and this indelible quality wholly underlies
my scientific path. Insight, originality, creativity, and soli-
tude are the things that matter the most to me — not mere
conformity, suitability, respectability, and normalcy. If I dis-
play my work of art (e.g. painting, sculpture, and musical
score), and if it is indeed my very own authentic creation and
self-conscious novel expression of profundity and eccentric-
ity, I need not list any so-called “references”: the object —
the work — is ALREADY there in its entirety, and it is lone,
universal, and transparent as it is, possessing both a verizon
and a horizon. True originality shines through effortlessly, es-
pecially as regards scientific creation (and not mere “review”
or “documentation”). There is no difference in this matter,
whether I create scientifically, artistically, or philosophically:
when I create something, I create it in a most comprehen-
sive scientific, artistic, and philosophical sense. This ensures
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real quality. Reality alone — and the Universe — is the pa-
rameter, not fallible and unqualified observers. It goes with-
out saying that my “predecessors” in this drive naturally in-
clude Einstein, who did not bother to do the “administrative
non-essentials” (listing so-called “references”) in his 1905
and subsequent revolutionary papers, and Wittgenstein, who
hardly referred to some other work in his 1918 masterpiece
Tractatus Logico-Philosophicus.

Pueril, arbitrary comments such as the ones you and
the many often perpetrate in a popular forum, and in cer-
tain other forums, are but mere psychological detours, in-
finitely away from real objectivity, verging on typical char-
acter assassination and individual abuse. Given a Rem-
brandt painting, or at least a Modigliani one, or indeed
the work of any pan-Renaissance artist, one should not
speak of the “person” of the artist in such a cowardly, bi-
ased, envious way or hastily resort to ill-chatter, but, first
and foremost, one should behold and withhold, witness and
withstand, his very art, ALREADY laid bare and trans-
parent for all its mystery and mastery. If one still does
not know what one is trying to comprehend or appreci-
ate here, one should at least possess silent humility be-
fore the horizon and verizon of things: the qualitative dis-
tance between substantial ideas and mere opinions is infi-
nite and asymmetric. It is ethically, universally very lame
to form mere borrowed opinions, to downplay certain con-
tributions, and to resort to ad hominem attack, as is often
the case. Opinions are mere opinions, not real ideas, let
alone absolute truths. I repeat: “Doxa” is never the same
as “Eidos”. One is here speaking of the determination and
qualification of Reality and Quality, i.e. of “unicity” and
“qualicity”.

Again, certain such popular treatments verging on the
immoral and the ethically ill are epistemically very triv-
ial, categorically replete with misleading logical error (non-
sequitur), ad hominem attack, individual abuse, hyper-
semiotics, hypernarration, oxymornonism, pseudo-science,
pseudo-skepticism, pseudo-philosophy, pseudo-objectivity,
solipsism, and epistemic shallowness.

You know nothing about us first-hand, absolutely nothing.
You have only seen shadows and facades, and have only heard
petty rumors, slander, and gossip (while we never seek ene-
mies and pettiness in any case). We protect our individuality
and wish to advance common scientific freedom and objectiv-
ity so universally much, perhaps “too much”, that we rarely
enlist “who we are”, other than simply delivering our objec-
tives. An objective of ours is not mere “inter-subjectivity”,
but truly epistemically qualified.

As regards “who we are”, we are simply peculiar gen-
eral relativists and cosmologists as well as core theoreticians
and experimentalists. Also, we have never enlisted all our
helpers/supporters one by one as well as our real “address”
at length — only a decoy tertiary one for mere administrative
and convenience purposes, not scientific purposes — for it

matters not whether we reveal such things or not. What mat-
ters is the science. We are a core body of just a few acutely
epistemic- progressive science creators throughout the world.
That said, our group has more than one headquarters in the
world. What essentially matters is the real scope, puissance,
renaissance, and dimension of our scientific productivity and
guardianship. We, a unique combination of the “very young”
and “very old”, epistemically and experientally, are serv-
ing science, philosophy, artistry, and humanity with all our
strength, in necessary absolute freedom.

Indeed, some of us have had core scientific experiences
as far back as the two world wars and the cold war along the
contours of history, scientific creation, existential alienation,
political turbulence, and cultural-scientific administration. A
lot of us have synthesized first-hand the landscapes of both
core Soviet and American science, East and West, and be-
yond. We are neither “big” nor “small”; we are infinite and
infinitesimal. We know the world within and without, within-
the-within and without-the-without. We alone know who we
are. We know history and the human tendencies very well.
We truly know where we have come from and where we are
heading. We are quintessentially scientific and humanistic.

We do not populate typical non-scientific forums (espe-
cially countless on the internet), where mere bipolar, biased
opinions are inevitably found in abundance: we are scientists
in the most extreme sense of epistemic integrity and predis-
position. We do not have time for trinkets, no matter how
popular or trendy. We cherish creative solitude, universality,
objectivity, independence, and democracy, so uniquely, soin-
tensely, in a single, most variegated meta-epistemic frame-
work, in order to be able to fully, impartially contribute tothe
betterment of our world in the way we know the most.

Do not bother to respond to this letter: you and so many
others are not qualified to do so properly. Doing so shall
only reveal, again and again, the very epistemic limitations
you have at your core, and hence the very lack of substance
lingering therein. Besides, this address is not a mere intel-
lectual rambling or raving, it is simply meant to be a celes-
tial sonnet akin to an ocean symphony and a contrapuntal
melody, with “all the secret knowledge of harmony and coun-
terpoint”. Now, we shall withdraw into infinite silence, as
usual, ever-pugnaciously dwelling in the realm of pure scien-
tific creation.

Thus I hereby declare, once again, all-time individual and
collective academic freedom in science, from science, to sci-
ence, for science.

* * *
Dedicated in the name of truth, beauty, science, creativity,
freedom, and genius to Grisha Perelman. And to a much bet-
ter world rid of the rigid and frigid excess of characterless
politics, solipsism, suppression, tyranny, and conformity; a
most tranquil, vivid, living world-organism genuinely fond of
self-growth and of ideation, individuation, character, liberty,
and honesty.
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Appendix: Overture on Character and Independence∗

Talent warms-up the given (as they say in cookery) and makes
it apparent; genius brings something new. But our time lets
talent pass for genius. They want to abolish the genius, deify
the genius, and let talent forge ahead.

Kierkegaard

Philosophy becomes poetry and science imagination, in the
enthusiasm of genius.

Disraeli

In every work of genius, we recognize our own rejected
thoughts; they come back to us with a certain alienated
majesty.

R. W. Emerson

Genius is the ability to act rightly without precedent — the
power to do the right thing the first time.

Elbert Hubbard

Society expresses its sympathy for the geniuses of the past
to distract attention from the fact that it has no intention of
being sympathetic to the geniuses of the present.

Celia Green

There is in every [such] madman a misunderstood genius
whose idea, shining in his head, frightened people, and for
whom delirium was the only solution to the strangulation that
life had prepared for him.

Antonin Artaud, of Van Gogh

The case with most men is that they go out into life with one
or another accidental characteristic of personality of which
they say: “Well, this is the way I am. I cannot do otherwise”.
Then the world gets to work on them and thus the major-
ity of men are ground into conformity. In each generation a
small part cling to their “I cannot do otherwise” and lose their
minds. Finally there are a very few in each generation who in
spite of all life’s terrors cling with more and more inwardness
to this “I cannot do otherwise”. They are the geniuses. Their
“I cannot do otherwise” is an infinite thought, for if one were
to cling firmly to a finite thought, he would lose his mind.

Kierkegaard

It is easy to live after the world’s opinion; it is easy in soli-
tude to live after your own; but the great man is he who, in
the midst of the crowd, keeps with perfect sweetness the in-
dependence of solitude.

R. W. Emerson

I call that mind free which protects itself against the usurpa-
tions of society, which does not cower to human opinion,
which feels itself accountable to a higher tribunal than man’s,
which respects itself too much to be the slave of the many or
the few.

Channing

∗Courtesy: Kevin Solway’s extensive philosophical library.

The genius differs from us men in being able to endure isola-
tion, his rank as a genius is proportionate to his strength for
enduring isolation, whereas we men are constantly in need of
“the others”, the herd; we die, or despair, if we are not reas-
sured by being in the herd, of the same opinion as the herd.

Kierkegaard

Talent is hereditary; it may be the common possession of a
whole family (e.g. the Bach family); genius is not transmit-
ted; it is never diffused, but is strictly individual.

Otto Weininger

The age does not create the genius it requires. The genius is
not the product of his age, is not to be explained by it, and
we do him no honour if we attempt to account for him by it
. . . And as the causes of its appearance do not lie in any one
age, so also the consequences are not limited by time. The
achievements of genius live for ever, and time cannot change
them. By his works a man of genius is granted immortality on
the earth, and thus in a threefold manner he has transcended
time. His universal comprehension and memory forbid the
annihilation of his experiences with the passing of the mo-
ment in which each occurred; his birth is independent of his
age, and his work never dies.

Otto Weininger

It is the genius in reality and not the other who is the creator
of history, for it is only the genius who is outside and uncon-
ditioned by history. The great man has a history, the emperor
is only a part of history. The great man transcends time; time
creates and time destroys the emperor.

Otto Weininger

Genius is the ability to escape the human condition; Human-
ity is the need to escape.

Q. Uim

Some superior minds are unrecognized because there is no
standard by which to weigh them.

Joseph Joubert

Thousands of geniuses live and die undiscovered — either by
themselves or by others.

Mark Twain

Geniuses are like thunderstorms. They go against the wind,
terrify people, cleanse the air.

Kierkegaard

A genius is one who can do anything except make a living.

Joey Adams

Could we teach taste or genius by rules, they would be no
longer taste and genius.

Joshua Reynolds
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Genius is the highest morality, and, therefore, it is every one’s
duty. Genius is to be attained by a supreme act of the will, in
which the whole universe is affirmed in the individual. Ge-
nius is something which “men of genius” take upon them-
selves; it is the greatest exertion and the greatest pride, the
greatest misery and the greatest ecstasy to a man. A man may
become a genius if he wishes to. But at once it will certainly
be said: “Very many men would like very much to beorigi-
nal geniuses”, and their wish has no effect. But if these men
who “would like very much” had a livelier sense of what is
signified by their wish, if they were aware that genius is iden-
tical with universal responsibility — and until that is grasped
it will only be a wish and not a determination — it is highly
probable that a very large number of these men would cease
to wish to become geniuses.

Otto Weininger

Universality is the distinguishing mark of genius. There is
no such thing as a special genius, a genius for mathematics,
or for music, or even for chess, but only a universal genius.
The genius is a man who knows everything without having
learned it.

Otto Weininger

Genius is the capacity for productive reaction against one’s
training.

Bernard Berenson

It is frequently the tragedy of the great artist, as it is of the
great scientist, that he frightens the ordinary man. If he is
more than a popular story-teller it may take humanity a gen-
eration to absorb and grow accustomed to the new geography
with which the scientist or artist presents us. Even then, per-
haps only the more imaginative and literate may accept him.
Subconsciously the genius is feared as an image breaker;
frequently he does not accept the opinions of the mass, or
man’s opinion of himself.

Loren Eiseley, in “The Mind as Nature”

I swear to you, sirs, that excessive consciousness is a disease
— a genuine, absolute disease. For everyday human exis-
tence it would more than suffice to have the ordinary share
of human consciousness; that is to say, one half, one quar-
ter that that which falls to the lot of a cultivated man in our
wretched nineteenth century [. . . ] It would, for instance, be
quite enough to have the amount of consciousness by which
all the so-called simple, direct people and men of action live.

Fyodor Dostoevsky

Great geniuses have the shortest biographies. Their cousins
can tell you nothing about them.

R. W. Emerson

The genius is not a critic of language, but its creator, as he
is the creator of all the mental achievements which are the
material of culture and which make up the objective mind,
the spirit of the peoples. The “timeless” men are those who
make history, for history can be made only by those who are

not floating with the stream. It is only those who are uncon-
ditioned by time who have real value, and whose productions
have an enduring force. And the events that become forces of
culture become so only because they have an enduring value.

Otto Weininger

Talent, lying in the understanding, is often inherited; genius,
being the action of reason or imagination, rarely or never.

Samuel T. Coleridge

When a true genius appears in this world, you may know him
by this sign, that the dunces are all in confederacy against
him.

Jonathan Swift

Precisely because the tyranny of opinion is such as to make
eccentricity a reproach, it is desirable, in order to break
through that tyranny, that people should be eccentric. Ec-
centricity has always abounded when and where strength of
character has abounded; and the amount of eccentricity in a
society has generally been proportional to the amount of ge-
nius, mental vigor, and moral courage it contained. That so
few dare to be eccentric marks the chief danger of the time.

John Stuart Mill

Genius is its own reward; for the best that one is, one must
necessarily be for oneself. . . Further, genius consists in the
working of the free intellect., and as a consequence the pro-
ductions of genius serve no useful purpose. The work of ge-
nius may be music, philosophy, painting, or poetry; it is noth-
ing for use or profit. To be useless and unprofitable is one of
the characteristics of genius; it is their patent of nobility.

Schopenhauer

Great passions are for the great of souls. Great events can
only be seen by people who are on a level with them. We
think we can have our visions for nothing. We cannot. Even
the finest and most self-sacrificing visions have to be paid for.
Strangely enough, that is what makes them fine.

Oscar Wilde

Fortunately for us, there have been traitors and there have
been heretics, blasphemers, thinkers, investigators, lovers of
liberty, men of genius who have given their lives to better the
condition of their fellow-men. It may be well enough here to
ask the question: What is greatness? A great man adds to the
sum of knowledge, extends the horizon of thought, releases
souls from the Bastille of fear, crosses unknown and mysteri-
ous seas, gives new islands and new continents to the domain
of thought, new constellations to the firmament of mind. A
great man does not seek applause or place; he seeks for truth;
he seeks the road to happiness, and what he ascertains he
gives to others. A great man throws pearls before swine, and
the swine are sometimes changed to men. If the great had
always kept their pearls, vast multitudes would be barbarians
now. A great man is a torch in the darkness, a beacon: in
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superstition’s night, an inspiration and a prophecy. Greatness
is not the gift of majorities; it cannot be thrust upon any man;
men cannot give it to another; they can give place and power,
but not greatness. The place does not make the man, nor the
scepter the king. Greatness is from within.

Robert Ingersoll

No one suffers so much as he [the genius] with the people,
and, therefore, for the people, with whom he lives. For, in
a certain sense, it is certainly only “by suffering” that a man
knows. If compassion is not itself clear, abstractly conceiv-
able or visibly symbolic knowledge, it is, at any rate, the
strongest impulse for the acquisition of knowledge. It is only
by suffering that the genius understands men. And the genius
suffers most because he suffers with and in each and all; but
he suffers most through his understanding. . .

Otto Weininger

He is a man ofcapacity who possesses considerable intellec-
tual riches: while he is a man ofgenius who finds out a vein
of new ore. Originality is the seeing nature differently from
others, and yet as it is in itself. It is not singularity or affec-
tation, but the discovery of new and valuable truth. All the
world do not see the whole meaning of any object they have
been looking at. Habit blinds them to some things: short-
sightedness to others. Every mind is not a gauge and measure
of truth. Nature has her surface and her dark recesses. She
is deep, obscure, and infinite. It is only minds on whom she
makes her fullest impressions that can penetrate her shrineor
unveil her Holy of Holies. It is only those whom she has filled
with her spirit that have the boldness or the power to reveal
her mysteries to others.

William Hazlitt

Genius is present in every age, but the men carrying it within
them remain benumbed unless extraordinary events occur to
heat up and melt the mass so that it flows forth.

Denis Diderot

The ego of the genius accordingly is simply itself universal
comprehension, the center of infinite space; the great man
contains the whole universe within himself; genius is the liv-
ing microcosm. He is not an intricate mosaic, a chemical
combination of an infinite number of elements; [. . . ] as to
his relation to other men and things must not be taken in that
sense; he is everything. In him and through him all psychical
manifestations cohere and are real experiences, not an elabo-
rate piece-work, a whole put together from parts in the fash-
ion of science. For the genius the ego is the all, lives as the
all; the genius sees nature and all existences as whole; the re-
lations of things flash on him intuitively; he has not to build
bridges of stones between them.

Otto Weininger

I made art a philosophy, and philosophy an art: I altered the
minds of men and the colour of things: there was nothing I
said or did that did not make people wonder. . . I treated Art

as the supreme reality, and life as a mere mode of fiction: I
awoke the imagination of my century so that it created myth
and legend around me: I summed up all systems in a phrase,
and all existence in an epigram.

Oscar Wilde, inDe Profundis
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Simple Explanation for why Parallel-Propagating Photons
do not Gravitationally Attract

Raymond Jensen
Dept. of Mathematics and Science, Northern State University, Aberdeen SD, 57401 USA. E-mail: rwjst4@alumni.nd.edu

In this article it is shown that photons of light, when traveling in parallel, do not attract
one another gravitationally. This has been shown previously using general relativity,
however here it is only assumed a Newtonian approximation tothe gravitational attrac-
tion between photons. The explanation for the lack of gravitational attraction is simple:
as co-moving objects accelerate in parallel, the flow of timeis retarded, as observed by
a stationary observer, according to special relativity. Hence so is the tendency for the
objects to move toward one another. As the velocity of the objects approachc, the time
required for the objects to approach one another approachesinfinity, and so there is no
gravitational attraction between objects which move parallel at the speed of light.

1 Introduction

In 1931 Tolman, Ehrenfest and Podolsky [1] were first to pub-
lish studies on how light interacts with light gravitationally.
Among other things, they found that when photons move in
parallel beams, there is no gravitational attraction between
them. The authors did not give a physical explanation for
this peculiarity. In 1999, Faraoni and Dumse [2] studied the
problem of gravitational attraction between photons and con-
cluded that for photons moving in parallel, the reason for the
lack of gravitational attraction is due to an exact cancella-
tion of the gravitomagnetic and gravitoelectric forces between
them. Both sets of authors used a linear approximation to the
metric to come to their conclusions. Here, we come to the
same conclusion, but it is argued that the lack of gravitation
can be entirely explained in Minkowski spacetime with as-
sumption of the Newtonian approximation for gravity. This
is reasonable, since the gravitational fields between photons
can be expected to be very weak.

2 No attraction between parallel photons

Consider two free particles separated by distancex initially at
rest in empty space with respect to an observer. The observer
will find that after a time intervalt, the objects will come
together due to their mutual gravitational attraction. Since
the objects are regarded to be small, it is sufficient to assume
Newtonian mechanics in the calculation oft, however calcu-
lation of the exact value is not necessary for the purpose of
the argument here.

Next, consider what happens when the two objects are
returned to a distancex apart from one another, accelerated
to some terminal velocityv perpendicular tox, and then re-
leased. Upon release, the objects initially move parallel to
one another, with distancex between, but as before, begin
to attract, and eventually come together. However, in this in-
stance, the time required for the two objects to come together,
in accordance with special relativity, ist′ = t/

√

1− v2/c2 > t.

Thus, according to a stationary observer, it takes longer for
the two objects to approach one another, when their center-of
-mass frame is moving at some non-zero velocity. Since the
factor 1/

√

1− v2/c2
→ ∞ asv→ c, the time required for the

two particles to come together asv → c, approaches infinity.
The time required for the objects to deviate from their paral-
lel trajectories is hence also infinite. The conclusion hereis
that for two particles moving at the speed of light, since time
propagation in their center-of-mass frame is nonexistent,their
gravitational attraction is also nonexistent. Althoughx was
taken to be perpendicular to the direction of propagation, this
condition can be relaxed without changing the conclusion of
no gravitational attraction.

3 Attraction between coplanar non-parallel photons

In both of the references, the authors found that for non-
parallel propagation, the gravitational attraction between pho-
tons is non-zero. This can be reasoned, for some simple cases,
as follows: suppose the two particles, in this case photons,are
returned to their original positions, but upon release, propa-
gate away from one another at a relative angle 2θ > 0, ac-
cording to a stationary observer. Then, the center of mass
frame propagates at a velocityv = c cosθ < c and so grav-
itational attraction between photons is retarded by a factor
of 1/ sinθ, according to a stationary observer. For example,
at 2θ = 180◦, the photons trajectories are antiparallel to one
another, and there is no retardation since the center of mass
frame is stationary. The same applies for photons converging
at these nonzero angles.

Submitted on: September 10, 2013/ Accepted on September 15, 2013
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