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Preface

This is a bookwritten in 1999 by theoretical physicists Larissa Borissova
and Dmitri Rabounski.

The book offers a new theoretical research that develops the theory
of physical observables in General Relativity. In their famous book The
Classical Theory of Fields Lev Landau and Evgeny Lifshitz described
in detail the motion of particles in the electromagnetic and gravitational
fields. However, in the 1930s, the methods of general covariant analy-
sis did not yet take into account the concepts of physically observable
quantities (chronometric invariants). Therefore, the authors extended
the mathematical apparatus of chronometric invariants to the existing
physical theory, applying it to the motion of particles in the electromag-
netic and gravitational fields. In addition, Landau and Lifshitz did not
consider the motion of a particle with an internal torque (spin). There-
fore, a chapter in this book is devoted to the motion of particles with
spin. In two other chapters, the authors introduce the theory of the phys-
ical vacuum and the theory of the mirror Universe. In another chapter,
the authors outline the elements of tensor algebra and analysis in terms
of chronometric invariants. All this makes this book a modern addition
to The Classical Theory of Fields.

Paris, June 17, 2010

In the 3rd edition, the authors have added a list of chronometrically in-
variant derivatives, as well as references to their recent publications. We
have also fixed typographical errors found in the previous editions.

Calais, January 10, 2023 Patrick Marquet
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Chapter 1 Introduction

1.1 Geodesic motion of particles

Numerous experiments aimed at confirming the theoretical conclusions
of the General Theory of Relativity have also proved that its basic space-
time (four-dimensional pseudo-Riemannian space) is the basis of the
geometry of our real world. This means that, despite the progress in
experimental physics and astronomy, with the discovery of new effects,
the four-dimensional pseudo-Riemannian space will remain the corner-
stone for a further extension of the basic geometry of the world and will
become one of its particular cases. Therefore, when creating the basic
mathematical theory of the motion of particles, we must consider their
motion in the four-dimensional pseudo-Riemannian space.

The following terminology must be taken into account here. Gener-
ally, the basic space-time of General Relativity is a Riemannian space*
of four dimensions having Minkowski’s sign-alternating label (+−−−)
or (−+++). The latter means a (3+1)-split of the coordinate axes of the
Riemannian space into three spatial coordinate axes and the time axis.
For convenience of calculations, we consider a Riemannian space of the
signature (+−−−), where time is real while the spatial coordinates are
imaginary. Some other researchers use the signature label (−+++), ac-
cording to which time is imaginary and the spatial coordinates are real.
In general, Riemannian spaces can have any number of dimensions and a
non-alternating signature, e.g. (++++). Therefore, a Riemannian space
with an alternating signature label is commonly referred to as a pseudo-
Riemannian space, to emphasize the split of the coordinate axes into two
different types, referred to as time and spatial coordinates. Nonetheless,
in this case, all its geometric properties are still properties of Rieman-

*This is a metric space, the geometry of which is determined by the square metric
ds2 = gαβ dxαdx β known also as the Riemann metric. Bernhard Riemann (1826–1866)
was a German mathematician, the founder of Riemannian geometry (1854).
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nian geometry and the prefix “pseudo” is not absolutely proper from
the mathematical point of view. Nevertheless, we are going to use this
notation as a long-established and traditionally understood one.

We will consider here particles travelling in the four-dimensional
pseudo-Riemannian space. A particle affected by gravitation only falls
freely thus travelling along a shortest (geodesic) line. Such motion is
called free motion or geodesic motion. If the particle is also affected by
additional non-gravitational forces, then the forces deviate the particle
from its geodesic trajectory and its motion becomes non-geodesic.

From a geometric point of view, the motion of a particle in the four-
dimensional pseudo-Riemannian space is the parallel transport of its
own four-dimensional vector Qα tangential to the particle’s trajectory
in any of its points. Consequently, the equations of motion of such a
particle actually determine the parallel transport of the particle’s vec-
tor Qα along its four-dimensional trajectory and these are the equations
of the absolute derivative of this vector with respect to a parameter ρ,
which is non-zero along the trajectory

DQα

dρ
=

dQα

dρ
+ ΓαµνQµ dxν

dρ
, α, µ, ν = 0, 1, 2, 3, (1.1)

where DQα = dQα +ΓαµνQµdxν is the absolute differential (absolute in-
crement in the pseudo-Riemannian space) of the vector Qα.

The absolute differential differs from the ordinary differential dQα

by the presence of the Christoffel symbols of the 2nd kind Γαµν (co-
herence coefficients of the Riemannian space), which are formulated
through the Christoffel symbols (coherence coefficients) of the 1st kind
Γµν,ρ and they are functions of the first derivatives of the fundamental
metric tensor gαβ of the space*

Γαµν = g
αρ Γµν,ρ , Γµν,ρ =

1
2

(
∂gµρ

∂xν
+
∂gνρ

∂xµ
−
∂gµν

∂xρ

)
. (1.2)

When travelling along a geodesic trajectory (free motion), the par-
allel transport occurs in the sense of Levi-Civita. Here the absolute

*Coherence coefficients of a Riemannian space are named after Elwin Bruno
Christoffel (1829–1900), the German mathematician who introduced them in 1869.
In the space-time of Special Relativity (the Minkowski space), one can always set an
inertial reference frame, where the matrix of the fundamental metric tensor becomes a
unit diagonal, so all of the Christoffel symbols become zeroes.
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derivative of any transported vector equals zero, in particular it is true
for the four-dimensional vector of a particle*

dQα

dρ
+ ΓαµνQµ dxν

dρ
= 0 , (1.3)

thus the square of the transported vector remains unchanged along the
trajectory, i.e., QαQα = const. Such equations are called the equations
of free motion.

Kinematic motion of a free particle is characterized by the four-
dimensional vector of the velocity of the particle, called the kinematic
vector

Qα =
dxα

dρ
, (1.4)

so the Levi-Civita parallel transport of the vector gives the equations of
the four-dimensional trajectory of the particle (called the equations of
geodesic lines)

d2xα

dρ2 + Γ
α
µν

dxµ

dρ
dxν

dρ
= 0 . (1.5)

The necessary condition ρ, 0 along the trajectory means that the
derivation parameter ρ is not the same along trajectories of different
kinds. In the pseudo-Riemannian space, the three kinds of trajectories
are principally possible, each kind of which is corresponding to a spe-
cific kind of particles, namely:
1) Non-isotropic real trajectories lay “inside” the light cone. Along

such trajectories, the square of the space-time interval is ds2 > 0,
thus, the interval ds is real. These are the trajectories of ordinary
subluminal particles. Such particles have non-zero rest-masses
and real relativistic masses;

2) Non-isotropic imaginary trajectories lay “outside” the light cone.
Along such trajectories the square of the space-time interval is
ds2 < 0, hence, ds is imaginary. These are the trajectories of su-
perluminal particles. Such particles have imaginary relativistic
masses and are known as tachyons†;

*Tullio Levi-Civita (1873–1941), an Italian mathematician, who was the first to
study such a parallel transport [1].

†Tachyons— faster-than-light particles. The possibility of tachyons and faster-than-
light signals was first considered in the framework of Special Relativity in 1958 by
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3) Isotropic trajectories lay on the surface of the light cone. These
are the trajectories of particles having zero rest-mass (massless
light-like particles), which travel with the velocity of light. Along
isotropic trajectories, the space-time interval is zero, ds2 = 0, but
the three-dimensional interval is not zero.

The space-time interval ds is commonly used as a derivation pa-
rameter along non-isotropic trajectories. On the other hand, it cannot
be used as a derivation parameter for the trajectories of massless parti-
cles, because ds= 0 along isotropic trajectories.

For this reason, Zelmanov [9] had proposed another variable to be
used as the derivation parameter, which does not turn into zero along
isotropic trajectories. This is a three-dimensional (spatial) physically
observable interval

dσ2 =

(
− gik +

g0ig0k

g00

)
dxidxk, (1.6)

which differs from a three-dimensional coordinate interval. Landau and
Lifshitz had arrived at the same conclusion in their TheClassical Theory
of Fields [10, §84].

Substituting the above differentiation parameters into the general
form of the equations of geodesic lines (1.5), we arrive at the equations
of non-isotropic geodesic lines (trajectories of mass-bearing particles)

d2xα

ds2 + Γ
α
µν

dxµ

ds
dxν

ds
= 0 , (1.7)

and the equations of isotropic geodesic lines (light-like particles)

d2xα

dσ2 + Γ
α
µν

dxµ

dσ
dxν

dσ
= 0 . (1.8)

But, in order to give the complete description of the motion of a
particle, we have to build dynamic equations of motion, which contain
the physical properties of the particle, such as its mass, energy, etc.

Tangherlini, in his PhD thesis [2]. As was pointed out by Malykins [3], most studies
on the history of tachyons missed this fact. Meanwhile, the most important surveys on
this topic such as [4, 5] referred to Tangherlini. Tachyons were first illuminated in the
journal publications on the theory of relativity in 1960, the principal paper [6] authored
by Terletskii, and then in 1962, in the more detailed paper [7] published by Bilaniuk,
Deshpande, and Sudarshan. The term “tachyons” was first introduced later, in 1967 by
Feinberg [8]. See Malykins’ survey [3] for detail.
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Motion of a free mass-bearing particle (non-isotropic geodesic line)
is characterized by its own four-dimensional momentum vector

Pα = m0
dxα

ds
, (1.9)

where m0 is the rest-mass of the particle. From a geometric point of
view, the Levi-Civita parallel transport of the vector Pα gives the dy-
namic equations of motion of the mass-bearing particle

dPα

ds
+ ΓαµνPµ dxν

ds
= 0 , PαPα = m2

0 = const. (1.10)

Motion of a massless light-like particle (an isotropic geodesic line)
is characterized by its own four-dimensional wave vector

Kα =
ω

c
dxα

dσ
, (1.11)

where ω is a cyclic frequency characteristic of the massless particle.
Respectively, the Levi-Civita parallel transport of the vector Kα gives
the dynamic equations of motion of the massless particle

dKα

dσ
+ ΓαµνK µ dxν

dσ
= 0 , KαKα = 0 . (1.12)

So, we have got the dynamic equations of motion for free particles.
Here, the equations are presented in the four-dimensional general co-
variant form. This form has its own advantage as well as a substan-
tial drawback. The advantage is their invariance in all transitions from
one reference frame to another. The drawback is that, in the general
covariant form, the terms of the equations do not contain actual three-
dimensional quantities, which can be measured in experiments or obser-
vations (namely — physically observable quantities). This means that,
in the general covariant form, the equations of motion are merely an
intermediate theoretical result, not applicable in practice.

Therefore, in order to get the results of any physical mathematical
theory applicable in practice, we need to formulate the equations of the
theory through physically observable quantities. In particular, — we
need to formulate the general covariant equations of motion of particles
through the physically observable properties characteristic of the actual
physical reference frame of an observer.
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At the same time, to define physically observable quantities is not a
trivial problem. For instance, for a four-dimensional vector Qα (it has
4 components) we can heuristically assume that its three spatial com-
ponents form a three-dimensional observable vector, and its time com-
ponent is the observable potential of the vector field (which generally
does not prove that these quantities can be actually observed). How-
ever, a contravariant tensor of the 2nd rank Qαβ (it has as many as 16
components) makes the problem much more indefinite. For tensors of
higher ranks the problem of the heuristic definition of their observable
components is much more complicated. Besides, there is an obstacle
related to the definition of the observable components of covariant ten-
sors (with lower indices) and mixed type tensors (with both lower and
upper indices).

Therefore, the most reasonable way out of the labyrinth of heuristic
guesses is creating a strict mathematical theory to enable calculating ob-
servable components for any tensor quantity. Such a theory was created
in 1944 by Zelmanov [9]. It should be noted that other researchers were
also working on the theory of observable quantities in the 1930s. For
example, Landau and Lifshitz in their famous The Classical Theory of
Fields [10, §84] introduced the observable time and observable three-
dimensional interval similar to those introduced by Zelmanov. Mean-
while, they limited themselves only to this particular case and they did
not arrive at general mathematical methods to determine physically ob-
servable quantities in a pseudo-Riemannian space.

Over the next decades, Zelmanov improved his mathematical appa-
ratus of physically observable quantities, called the theory of chrono-
metric invariants [11–13]. A similar result had also been obtained by
Cattaneo [14–17], an Italian mathematician, independently from Zel-
manov. However, Cattaneo published his first study on the theme only
in 1958 [14] and his study was far from a complete theory.

In §1.2, we will give an overview of the Zelmanov theory of phys-
ically observable quantities, which is necessary for understanding this
subject and using these mathematical methods in practice.

In §1.3, we present the results of our study of the geodesic motion
of particles using the mathematical methods of chronometric invariants.
In §1.4 we will focus on the formulation of the problem of creating the
equations of motion along non-geodesic trajectories, i.e., under the ac-
tion of non-gravitational external forces.
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1.2 Physical observable quantities

This section introduces the basics of Zelmanov’s mathematical appara-
tus of chronometric invariants*.

To determine which components of any four-dimensional quantity
are physically observable, we consider a real reference frame of a real
observer, which includes a coordinate grid, spanned over his reference
body (which is a real physical body near him), at each point of which a
real clock is installed. The reference body, being a real physical body
has a gravitational field, can be rotating and deforming, thereby making
the reference space inhomogeneous and anisotropic. Actually, the refer-
ence body and its associated reference space can be considered as a set
of real physical references, to which the observer compares all results
of his measurements. Therefore, physically observable quantities reg-
istered by an observer must be obtained as a result of projecting four-
dimensional quantities onto the time lines and the three-dimensional
space of the observer’s reference body.

From a geometric point of view, the observer’s three-dimensional
space is the spatial section x0 = ct= const. At any point of the space-
time, a local spatial section (local space) can be placed orthogonally
to the time line. If there exists a space-time enveloping curve to such
local spaces, then it is a spatial section everywhere orthogonal to the
time lines. Such a space is known as a holonomic space. If no envelop-
ing curve exists to such local spaces, but only spatial sections locally
orthogonal to the time lines exist, then such a space is known as a non-
holonomic space.

We assume that the observer is at rest with respect to his physical
references (his reference body). The reference frame of such an observer
everywhere accompanies his reference body and, hence, his reference
space in any displacements. Therefore, such a reference frame is called
the accompanying reference frame.

Any coordinate grid that is at rest with respect to the same reference
body is related to another one within the same spatial section (three-

*To date, the most complete description (compendium) of the mathematical ap-
paratus of physically observable quantities in General Relativity is given in our recent
article. In this article, we have collected everything (or almost everything) that we know
on this topic fromZelmanov andwhat has been obtained over the past decades: Raboun-
ski D. and Borissova L. Physical observables in General Relativity and the Zelmanov
chronometric invariants. Progress in Physics, 2023, vol. 19, no. 1, 3–29.
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dimensional reference space) through the transformation

x̃0 = x̃0
(
x0, x1, x2, x3

)
x̃i = x̃i

(
x1, x2, x3

)
,

∂x̃i

∂x0 = 0

 , (1.13)

where the latter equation means that the spatial coordinates in the tilde-
marked grid are independent of time in the non-tilded grid, which is
equivalent to setting a coordinate grid of fixed time lines xi = const at
any of its points. The transformation of the spatial coordinates is noth-
ing but only the transition from one coordinate grid to another within
the same spatial section. The transformation of time means changing
the whole set of clocks, so this is the transition to another spatial section
(another three-dimensional reference space). In practice, this means the
replacement of one reference body with all of its physical references
with another reference body that has its own physical references. But,
when using different references, the observer will obtain different results
of measurements (other observable quantities). Therefore, physically
observable quantities must be invariant with respect to the transforma-
tions of time, so they must be chronometrically invariant quantities.

Since the transformations (1.13) determine a set of fixed time lines,
chronometric invariants (physical observables) are all those quantities,
which are invariant with respect to the transformations.

In practice, to obtain physically observable quantities in the accom-
panying reference frame of a real observer, we have to calculate the
chronometrically invariant projections of four-dimensional quantities
onto the time line and the spatial section of his physical reference body,
then formulate the chr.inv.-projections with the chronometrically invari-
ant (physically observable) properties of his reference space.

We project four-dimensional quantities onto the time line and the
spatial section of an observer using the projection operators, charac-
terizing the properties of the observer’s reference space. The operator
bα projecting onto the time line is a unit vector of the four-dimensional
velocity of the observer with respect to his reference body

bα =
dxα

ds
, (1.14)

which is tangential to the observer’s world-trajectory at every point. Be-
cause any reference frame is described by its own tangential unit vec-
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tor bα, Zelmanov referred to the bα as the monad vector. The operator
projecting onto the spatial section associated with the observer is the
four-dimensional symmetric tensor

hαβ = −gαβ + bαbβ , hαβ = −gαβ + bαbβ, (1.15)

the mixed components of which are

hβα = −g
β
α + bαbβ. (1.16)

Zelmanov [9] had showed that the vector bα and the tensor hαβ have
all properties necessary to projection operators, namely — the prop-
erties bαbα = 1 and hβαbα = 0. As a result, the projection of a tensor
quantity onto the time line is a result of its contraction with the monad
vector bα. The projection onto the spatial section is its contraction with
the tensor hαβ.

The observer’s three-dimensional velocity with respect to his ref-
erence body in the accompanying reference frame is zero: bi = 0. The
other components of the monad vector are

b0 =
1
√
g00

, b0 = g0αbα =
√
g00 , bi = giαbα =

gi0
√
g00

. (1.17)

Therefore, in the accompanying reference frame (bi = 0), the com-
ponents of the operator projecting onto the spatial section are

h00 = 0 , h00 = −g00 +
1
g00

, h0
0 = 0

h0i = 0 , h0i = −g0i, hi
0 = δ

i
0 = 0

hi0 = 0 , hi0 = −gi0, h0
i =

gi0

g00

hik = −gik +
g0ig0k

g00
, hik = −gik, hi

k = −g
i
k = δ

i
k


. (1.18)

The tensor hαβ in the three-dimensional space of the reference frame
accompanying the observer has all properties characteristic of the fun-
damental metric tensor

hi
αhαk = δ

i
k − bk bi = δi

k , δi
k =

 1 0 0
0 1 0
0 0 1

 , (1.19)
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where δi
k is the unit three-dimensional tensor*. For this reason, in the ac-

companying reference frame, the three-dimensional chr.inv.-tensor hik

can lift or lower indices in chr.inv.-quantities.
The projections of an arbitrary vector Qα onto the time line and

the spatial section in the accompanying reference frame (bi = 0) of an
observer are

T = bαQα = b0Q0 =
Q0
√
g00

, (1.20)

L0 = h0
βQβ = −

g0k

g00
Qk, Li = hi

βQβ = δi
k Qk = Qk. (1.21)

The projections of an arbitrary tensor of the 2nd rank Qαβ are

T = bαbβQαβ = b0b0Q00 =
Q00

g00
, (1.22)

L00 = h0
αh0

βQαβ = −
g0ig0k

g2
00

Qik, Lik = hi
αhk

βQαβ = Qik. (1.23)

After testing the obtained quantities by the transformations (1.13),
we see that chronometrically invariant (physically observable) quanti-
ties are the projection onto the time line and the spatial components of
the projection onto the spatial section. We will refer to these observable
quantities as the chr.inv.-projections.

Projecting the four-dimensional coordinates xα in the accompany-
ing reference frame, we obtain the chr.inv.-invariant of the physically
observable time

τ =
√
g00 t +

g0i

c
√
g00

xi, (1.24)

and the chr.inv.-vector of the physically observable coordinates, which
coincide the spatial coordinates xi. Thus, projecting an elementary four-
dimensional coordinate interval dxα gives an elementary interval of the
physically observable time, which is the chr.inv.-invariant

dτ =
√
g00 dt +

g0i

c
√
g00

dxi, (1.25)

*This tensor δi
k is the three-dimensional part of the four-dimensional unit tensor δαβ ,

which can be used to replace (lift and lower) indices in four-dimensional quantities.



18 Chapter 1 Introduction

and also the chr.inv.-vector of an elementary interval of the physically
observable coordinates dxi. As a result, the physically observable ve-
locity of a particle is the three-dimensional chr.inv.-vector

vi =
dxi

dτ
, (1.26)

which differs from its coordinate velocity ui = dx i

dt .
Projecting the fundamental metric tensor gαβ, we obtain that hik is

the chr.inv.-metric tensor, or, in other words, the observable metric ten-
sor in the accompanying reference frame

hi
αhk

β g
αβ = gik = −hik, hαi hβk gαβ = gik − bi bk = −hik , (1.27a)

the components of which are

hik = −gik + bi bk , hik = −gik, hi
k = −g

i
k = δ

i
k . (1.27b)

Therefore, the square of any observable spatial interval dσ is

dσ2 = hik dxidxk. (1.28)

The space-time interval ds expressed through physically observable
quantities is obtained by substituting gαβ from (1.15), namely

ds2 = c2dτ2 − dσ2. (1.29)

Apart from their projections onto the time line and the spatial sec-
tion of an observer, four-dimensional quantities of the 2nd rank and
higher ranks also have mixed components that have both upper and
lower indices at the same time. How do we find physically observ-
able quantities among them, if any? The best approach is to develop a
general mathematical method to calculate physically observable quan-
tities, based solely on their property of chronometric invariance. Such
a method had been developed by Zelmanov, who formulated it in the
form of a theorem, which we call Zelmanov’s theorem:
Zelmanov’s theorem

We assume that Qik...p
00...0 are components of a four-dimensional ten-

sor Qµν...ρ
αβ...σ of r-th rank, in which all upper indices are not zero,

while all m lower indices are zeroes. Then tensor quantities

T ik...p = (g00)−
m
2 Qik...p

00...0 (1.30)
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make up three-dimensional contravariant chr.inv.-tensor of (r−m)-
th rank. Hence, the tensor T ik...p is a result of m-fold projection on
time lines by indices α, β . . . σ and also, projection on the spatial
section by r−m indices µ, ν . . . ρ of the initial tensor Qµν...ρ

αβ...σ.
An immediate result of this theorem is that, for any vector Qα the

following two quantities are physically observable

bαQα =
Q0
√
g00

, hi
αQα = Qi, (1.31)

and for any symmetric tensor of the 2nd rank Qαβ, the following three
quantities are physically observable

bαbβQαβ =
Q00

g00
, hiαbβQαβ =

Qi
0

√
g00

, hi
αhk

βQαβ = Qik, (1.32)

while in an antisymmetric tensor of the 2nd rank, the first quantity is
zero, because Q00 =Q00 = 0.

All physically observable chr.inv.-projections must be compared to
the observer’s references — the physically observable properties char-
acteristic of his reference body and local space, and with which the final
equations of theory must be formulated. These physically observable
properties are obtained using the chr.inv.-derivation operators with re-
spect to time and the spatial coordinates. The mentioned operators had
been introduced by Zelmanov as follows [9]

∗∂

∂t
=

1
√
g00

∂

∂t
,

∗∂

∂xi =
∂

∂xi −
g0i

g00

∂

∂x0 , (1.33)

and they are non-commutative, so the difference between the 2nd deriva-
tives is not zero

∗∂2

∂xi∂t
−
∗∂2

∂t ∂xi =
1
c2 Fi

∗∂

∂t
, (1.34)

∗∂2

∂xi∂xk −
∗∂2

∂xk∂xi =
2
c2 Aik

∗∂

∂t
. (1.35)

Here, Aik is the three-dimensional antisymmetric chr.inv.-invariant
tensor of the angular velocity with which the space rotates

Aik =
1
2

(
∂vk

∂xi −
∂vi

∂xk

)
+

1
2c2 (Fi vk − Fk vi) , (1.36)
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where vi is the linear velocity of this rotation

vi = −c
g0i
√
g00

, vi = −cg0i √g00

vi = hik v
k, v2 = vk v

k = hik v
ivk

 . (1.37)

The tensor Aik, equated to zero, is the necessary and sufficient con-
dition of the holonomity of space [9]. In this case, g0i = 0 and vi = 0. In
a non-holonomic space, Aik , 0. For this reason, the tensor Aik is also
the tensor of the space non-holonomity*.

The quantity Fi is the three-dimensional chr.inv.-vector of the grav-
itational inertial force

Fi =
1

1 − w
c2

(
∂w
∂xi −

∂vi

∂t

)
, (1.38)

where w is a gravitational potential

w = c2 (
1 −
√
g00

)
, (1.38a)

the origin of which is the gravitational field of the observer’s reference
body†. In quasi-Newtonian approximation, i.e., in a weak gravitational
field at velocities much lower than the light velocity and in the absence
of rotations of the space, the quantity Fi becomes a non-relativistic grav-
itational force

Fi =
∂w
∂xi . (1.39)

The reference body of any observer is a real physical body, which
can deform. As a result, the coordinate grid spanned over it can deform,
and also the real reference space associated with the reference body can
deform as well. Therefore, real physical references must take the space
deformations into account.

In particular, as a result of the deformations, the observable metric
hik of the reference space is non-stationary. This is taken into account by

*The space-time of Special Relativity (Minkowski space) in a Galilean reference
frame, as well as numerous cases of the space-time of General Relativity are examples
of holonomic spaces (Aik = 0).

†The quantities w and vi do not have the property of chronometric invariance, while
the gravitational inertial force vector and the tensor of the angular velocity of the space
rotation, created using them, are chr.inv.-quantities.
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introducing the three-dimensional symmetric chr.inv.-tensor of the rate
of the space deformations

Dik =
1
2

∗∂hik

∂t
, Dik = −

1
2

∗∂hik

∂t

D = hikDik = Dn
n =

∗∂ ln
√

h
∂t

h = det ∥hik∥


. (1.40)

With the definitions above, we can generally express any property of
a geometric object located in a space through the observable properties
of the space.

For instance, the Christoffel symbols, which appear in the equations
of motion, are non-tensorial geometric objects [18]. Nevertheless, they
can be formulated with physically observable quantities. The formulae
obtained by Zelmanov [9] are

Γ0
00 = −

1
c3

 1

1 − w
c2

∂w
∂t
+

(
1 −

w
c2

)
vk F k

 , (1.41)

Γk
00 = −

1
c2

(
1 −

w
c2

)2
F k, (1.42)

Γ0
0i =

1
c2

− 1

1 − w
c2

∂w
∂xi + vk

(
Dk

i + A·ki· +
1
c2 vi F k

) , (1.43)

Γk
0i =

1
c

(
1 −

w
c2

) (
Dk

i + A·ki· +
1
c2 vi F k

)
, (1.44)

Γ0
ij = −

1

c
(
1 − w

c2

) {
−Dij +

1
c2 vn ×

×

[
vj

(
Dn

i + A·ni·
)
+ vi

(
Dn

j + A·nj·
)
+

1
c2 vi vj Fn

]
+

+
1
2

(
∂vi

∂x j +
∂vj

∂xi

)
−

1
2c2

(
Fi vj + Fj vi

)
− ∆n

ij vn

}
,

(1.45)

Γk
ij = ∆

k
ij −

1
c2

[
vi

(
Dk

j + A·kj·
)
+ vj

(
Dk

i + A·ki·
)
+

1
c2 vi vj F k

]
, (1.46)
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where ∆k
ij are the chr.inv.-Christoffel symbols, which are defined sim-

ilarly to the ordinary Christoffel symbols (1.2) but using the chr.inv.-
metric tensor hik and the chr.inv.-derivation operators

∆i
jk = him∆ jk,m =

1
2

him
( ∗∂hjm

∂xk +
∗∂hkm

∂x j −

∗∂hjk

∂xm

)
. (1.47)

By analogy with the respective absolute derivatives, Zelmanov had
also introduced the chr.inv.-derivatives

∗∇i Qk =
∗∂Qk

dxi − ∆
l
ik Ql , (1.48)

∗∇i Qk =
∗∂Qk

dxi + ∆
k
il Q l, (1.49)

∗∇i Q jk =
∗∂Q jk

dxi − ∆
l
ij Qlk − ∆

l
ik Q jl , (1.50)

∗∇i Qk
j =

∗∂Qk
j

dxi − ∆
l
ij Qk

l + ∆
k
il Q l

j , (1.51)

∗∇i Q jk =
∗∂Q jk

dxi + ∆
j
il Q lk + ∆k

il Q jl, (1.52)

∗∇i Q i =
∗∂Q i

∂xi + ∆
j
ji Q i, (1.53)

∗∇i Q ji =
∗∂Q ji

∂xi + ∆
j
il Q il + ∆l

li Q ji, (1.54)

where, as Zelmanov had proved,

∆l
li =

∗∂ ln
√

h
∂xi . (1.55)

So, we have explained the basics of the mathematical apparatus of
chronometric invariants. Now, having any equations obtained using
general covariant methods we can calculate their chr.inv.-projections
onto the time line and spatial section associated with any particular ref-
erence observer and formulate the obtained chr.inv.-projections with the
real physically observable properties of his reference space. Following
this way, we arrive at the equations containing only the quantities mea-
surable in practice.
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Naturally, the first possible application of this mathematical appara-
tus that comes to our mind is deducting the chr.inv.-equations of motion
of free particles and studying the results. A particular solution to this
problem had been obtained by Zelmanov [9]. The next section, §1.3,
will focus on the general solution to the problem.

1.3 The dynamic equations of motion of a free particle

The absolute derivative of the four-dimensional vector of a particle with
respect to a non-zero scalar parameter along its trajectory is actually a
four-dimensional vector

Nα =
dQα

dρ
+ ΓαµνQµ dxν

dρ
, (1.56)

the chr.inv.-projections of which are determined in the same way as the
projections of any four-dimensional vector (1.31)

N0
√
g00
=
g0αNα

√
g00
=

1
√
g00

(
g00 N0 + g0i N i

)
, (1.57)

N i = hi
βNβ = hi

0 N0 + hi
k N k. (1.58)

From a geometric point of view, these are the projections of the vec-
tor Nα on the time line and the spatial components of its projection on
the spatial section in the accompanying reference frame. Projecting the
general covariant dynamic equations of motion of a free mass-bearing
particle (1.10) and those of a free massless particle (1.12), we obtain
the chr.inv.-equations of motion of the free mass-bearing particle

dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk = 0 , (1.59)

d
(
mvi)
dτ

+ 2m
(
Di

k + A·ik·
)

vk − mF i + m∆i
nkvnvk = 0 , (1.60)

while for the free massless particle we have

dk
dτ
−

k
c2 Fi ci +

k
c2 Dik cick = 0 , (1.61)

d
(
kci)
dτ

+ 2k
(
Di

k + A·ik·
)

ck − k F i + k∆i
nk cnck = 0 , (1.62)
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where m is the relativistic mass of the mass-bearing particle, k= ω
c is the

wave number of the massless particle, and ci is the three-dimensional
chr.inv.-vector of the light velocity.

It is easy to see that, in contrast to the general covariant dynamic
equations of motion (1.10) and (1.12), the chr.inv.-equations have a sin-
gle derivation parameter for both mass-bearing and massless particles.
This universal parameter is the physically observable time τ.

These chr.inv.-equations were first obtained by Zelmanov [9]. As we
have showed in our first book [19], the Zelmanov chr.inv.-equations of
motion above include the strictly positive time function dt

dτ > 0. There-
fore, the above equations manifest a case, where the physically observ-
able time has a strictly direct flow (dτ > 0).

The flow of the coordinate time dt shows the change of the time
coordinate of the particle x0 = ct with respect to the clock associated
with the observer (his reference clock). Hence, the sign of the time
function shows the direction along the time axis at which the particle
travels with respect to the observer.

The time function dt
dτ is derived from the geometric condition, ac-

cording to which the square of the four-dimensional velocity of the par-
ticle, transported parallel to itself, remains unchanged along its world-
trajectory uαuα = gαβ uαuβ = const. We showed [19] that the time func-
tion equation dt

dτ is the same for both subluminal mass-bearing particles,
massless (light-like) particles and superluminal mass-bearing particles.
The equations have two solutions which are given here by the common
formula according to [19](

dt
dτ

)
1,2
=

vi vi ± c2

c2
(
1 − w

c2

) . (1.63)

We showed [19] that time has a direct flow, if vi vi ± c2 > 0, time has
a reverse flow, if vi vi ± c2 < 0, and the flow of time stops, if vi vi ± c2 = 0.
Therefore, there exists a whole range of solutions for various kinds of
particles and the directions they travel in time with respect to the ob-
server. For instance, the relativistic mass of a mass-bearing particle*

P0√
g00
=±m is positive, if the particle travels to the future, and it is neg-

ative, if the particle travels to the past. Respectively, the wave number
*The relativistic mass is the projection of the particle’s four-dimensional vector onto

the observer’s time line.
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of a massless particle K0√
g00
=±k is positive, when the massless particle

travels to the future, and is negative, when it travels to the past.
As a result, for a free mass-bearing particle, which travels to the

past, we obtain the chr.inv.-equations of motion

−
dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk = 0 , (1.64)

d
(
mvi)
dτ

+ mF i + m∆i
nk vnvk = 0 , (1.65)

while for a free massless particle, travelling to the past, we have

−
dk
dτ
−

k
c2 Fi ci +

k
c2 Dik cick = 0 , (1.66)

d
(
kci)
dτ

+ k F i + k∆i
nk cnck = 0 . (1.67)

For a superluminal mass-bearing particle, the chr.inv.-equations of
motion are similar to those of a mass-bearing particle travelling with a
subluminal velocity, except that the relativistic mass m is multiplied by
imaginary unit i [19].

It is easy to see that the chr.inv.-equations of motion to the future and
to the past are not symmetric due to the different physical conditions in
the cases of the direct and reverse flow of time, therefore some terms in
the equations vanish.

Besides, we consideredmass-bearing andmassless particles accord-
ing to the wave-particle concept by assuming their motion as wave prop-
agation in the framework of the approximation of geometric optics [19].
As is well-known from The Classical Theory of Fields [10], in the fra-
mework of the wave-particle concept and the geometric optics approxi-
mation, the dynamic vector of a massless particle has the form

Kα =
∂ψ

∂xα
, (1.68)

whereψ is the wave phase (eikonal). In the sameway, we had introduced
the dynamic wave vector of a mass-bearing particle

Pα =
ℏ

c
∂ψ

∂xα
, (1.69)
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where ℏ is Planck’s constant. Since the wave phase equation (eikonal
equation) is the condition KαKα = 0 [10], we had obtained the chr.inv.-
eikonal equation for a massless particle

1
c2

(
∗∂ψ

∂t

)2

− hik
∗∂ψ

∂xi

∗∂ψ

∂xk = 0 , (1.70)

and for a mass-bearing particle

1
c2

(
∗∂ψ

∂t

)2

− hik
∗∂ψ

∂xi

∗∂ψ

∂xk =
m2

0c2

ℏ2 , (1.71)

then, after substituting the dynamic wave vector into the general covari-
ant equations of motion (1.10, 1.12), then projecting them onto the time
line and the spatial section in the accompanying reference frame, we
had obtained the “wave form” of the chr.inv.-equations of motion of a
mass-bearing particle [19]

±
d
dτ

(
∗∂ψ

∂t

)
+ F i

∗∂ψ

∂xi − Di
k vk

∗∂ψ

∂xi = 0 , (1.72)

d
dτ

(
hik
∗∂ψ

∂xk

)
−

(
Di

k + A·ik·
) (
±

1
c2

∗∂ψ

∂t
vk − hkm

∗∂ψ

∂xm

)
±

±
1
c2

∗∂ψ

∂t
F i + hmn∆i

mkvk
∗∂ψ

∂xn = 0 ,

(1.73)

where “plus” in the alternating terms stands for the particle’s motion
from the past to the future (direct flow of time), while “minus” stands for
its motion to the past (reverse flow of time). Noteworthy, in contrast to
the “corpuscular form” of the chr.inv.-equations of motion (1.59, 1.60)
and (1.64, 1.65), the “wave equations” (1.72, 1.73) are symmetric with
respect to the direction of motion in time. For a massless particle, the
“wave form” of the chr.inv.-equations of motion include the chr.inv.-
vector of the light velocity ci instead of the subluminal chr.inv.-velocity
vi of a mass-bearing particle.

The fact that the corpuscular equations of motion to the past and to
the future are asymmetric had led us to the conclusion that in the four-
dimensional space-time of General Relativity there exists a fundamental
asymmetry of the directions in time. To understand the physical sense
of this fundamental asymmetry, we had introduced the mirror principle
or, in other words — the observable effect of the mirror Universe [19].
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Let us imagine a mirror in the four-dimensional space-time, which
coincides with the spatial section (three-dimensional space) associated
with an observer, so that the mirror separates the past from the future.
Then, particles and waves travelling from the past to the future (positive
relativistic masses and frequencies) hit the mirror and bounce back in
time to the past. As a result, their properties take negative numerical val-
ues. Conversely, particles and waves travelling to the past (negative rela-
tivistic masses and frequencies) bounce from the mirror to give positive
numerical values to their properties and begin travelling to the future.
When bouncing from the mirror, the quantity

∗∂ψ
dt changes sign, and so

the equations of wave propagation to the future become the equations
of wave propagation to the past (and vice versa). Noteworthy, when
reflecting from the mirror, the chr.inv.-equations of wave propagation
transform into each other completelywithout contracting or adding new
terms. In other words, the wave form of matter undergoes complete
reflection from the mirror. On the contrary, the “corpuscular” chr.inv.-
equations of motion do not transform completely upon reflection from
the mirror: the spatial projections of the equations for mass-bearing and
massless particles, travelling from the past to the future, have the addi-
tional term

2m
(
Di

k + A·ik·
)

vk, 2k
(
Di

k + A·ik·
)

ck, (1.74)

not found in the equations of motion from the future to the past. In other
words, the equations of motion to the past gain the additional term upon
the reflection, while the equations of motion to the future lose the term
when the particle hits the mirror. This means that, either in the case
of motion of a ball-particle (the corpuscular equations) as well as in the
case of wave propagation, we come across a situation that is not a simple
“bouncing” from the mirror, but rather passing through the mirror itself
into another world — a world beyond the mirror.

In the mirror world, all particles have negative masses or frequen-
cies, so they travel (from our point of view) from the future to the past.
The wave form of matter in our world does not affect events in the mirror
world, and the mirror world wave matter does not affect events in our
world. On the contrary, the corpuscular form of matter (particles) in
our world can produce a significant effect on events in the mirror world,
while the mirror world particles can affect events in our world. Our
world and the mirror world are completely isolated from each other (no
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mutual effect between particles from the two worlds) under the obvious
condition Di

kvk =−A·ik·v
k, at which the additional term in the corpuscu-

lar chr.inv.-equations of motion becomes zero. This becomes true, in
particular, when Di

k = 0 and A·ik· = 0, i.e., when the space does not rotate
or deform [19].

So, we have considered the motion of particles along non-isotropic
trajectories, where ds2 = c2dτ2 − dσ2 > 0, and the motion along isotrop-
ic (light-like) trajectories, where ds2 = 0 and c2dτ2 = dσ2 , 0. Besides,
we have considered the third kind of trajectories [19], which, apart from
ds2 = 0, meet even more strict conditions c2dτ2 = dσ2 = 0

dτ =
[
1 −

1
c2

(
w + vi ui

)]
dt = 0 , (1.75)

dσ2 = hik dxidxk = 0 . (1.76)

We called such completely degenerate trajectories zero-trajectories,
because from the point of view of an ordinary subluminal observer,
any physically observable time intervals and any physically observable
spatial intervals are zeroes along them. We also showed that along
zero-trajectories the determinant of the fundamental metric tensor gαβ
is zero (g= 0), while as is known, in Riemannian spaces, by their defini-
tion, there is g< 0, so the Riemannian metric is strictly non-degenerate.
Therefore, we called a space, the metric of which is completely degen-
erate, zero-space. For the same reason, we called particles hosted by
such a completely degenerate space (zero-space) and travelling along
trajectories in it zero-particles [19].

Actually, formulae (1.75, 1.76) show the physical conditions, under
which the complete degeneration of the four-dimensional space-time oc-
curs. Re-write the physical conditions of degeneration as follows

w + vi ui = c2, (1.77)

gik uiuk = c2
(
1 −

w
c2

)2
. (1.78)

Thus, we had obtained the formula for the mass of a zero-particle
M, which includes the degeneration conditions

M =
m

1 − 1
c2

(
w + vi ui) , (1.79)
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which differs from the relativisticmassm of an ordinary particle, located
in a non-degenerate space-time region. The M is the ratio between two
scalar quantities, m and 1 − 1

c2

(
w + vi ui), each one equals zero in the

case where the metric is degenerate, but the ratio is not zero*.
The dynamic vector of a zero-particle, represented in the corpuscu-

lar and wave forms, is

Pα =
M
c

dxα

dt
, Pα =

ℏ

c
∂ψ

∂xα
. (1.80)

Then, the dynamic chr.inv.-equations of motion in the zero-space,
taken in their corpuscular form, are

MDik uiuk = 0 , (1.81)

d
dt

(
Mui) + M∆i

nk unuk = 0 , (1.82)

while the wave form of the equations is

Dm
k uk

∗∂ψ

∂xm = 0 , (1.83)

d
dt

(
hik
∗∂ψ

∂xk

)
+ hmn∆i

mk uk
∗∂ψ

∂xn = 0 . (1.84)

The chr.inv.-eikonal equation for a zero-particle takes the form

hik
∗∂ψ

∂xi

∗∂ψ

∂xk = 0 , (1.85)

which is a standing wave equation, i.e., the zero-particle has the form
of a standing light-like wave (information ring). This result means that,
from the viewpoint of an ordinary observer like us, the entire zero-space
is filled with a system of standing light-like waves (zero-particles) — a
standing-light hologram. Besides, in the zero-space, the physically ob-
servable time has the same numerical value for any two events (1.75).
This means that, from the viewpoint of an ordinary observer, the ve-
locity of any zero-particle is infinite, and zero-particles can instantly
transfer information from one point of our ordinary world to another,
thereby performing the long-range action [19].

*This is similar to the case of massless particles, because given v2 = c2 we have that
m0 = 0 and

√
1− v2/c2 = 0, but their ratio is non-zero, i.e., m= m0√

1− v2/c2
, 0.
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1.4 Non-geodesic motion of particles. Problem statement

It is known that, when a particle travels freely in a Riemannian space,
the absolute derivative of its dynamicworld-vector (its four-dimensional
momentum Pα) remains equal to zero, and the square of the vector re-
mains unchanged along the motion trajectory. In other words, the vector
is transported parallel to itself in the sense of Levi-Civita.

If the motion of a particle is non-free (non-geodesic), then the abso-
lute derivative of its four-dimensional momentum is not zero, but the ab-
solute derivative of the sum of its four-dimensional momentum Pα and
an additional momentum vector Lα, gained by the particle from an exter-
nal field that deviates its motion from geodesic line, is zero. Superposi-
tion of any number of vectors can be subjected to parallel transport [18].
Hence, when creating the equations of non-geodesic motion, we first of
all require the definition of perturbing non-gravitational fields.

Naturally, an external field will only interact with a particle and de-
viate it from its geodesic line, if the particle has a physical property of
the same kind as the external field does. As of today, we know of three
fundamental physical properties of particles, not related to each other.
These are mass, electric charge and spin. If the fundamental character
of the former two was under no doubt, the spin of an electron over a few
years after experiments by Stern and Gerlach (1921) and their interpre-
tation by Goudsmit and Uhlenbeck (1925), was considered as a specific
momentum of the electron caused by its rotation around its own axis.
But experiments done over the next decades, in particular, the discov-
ery of the spin in other elementary particles, proved that the views of
spin particles as rotating gyroscopes were wrong. Spin proved to be a
fundamental property of particles just like mass and electric charge, al-
though it has the dimension of angular momentum and in interactions
manifests its as a specific rotation momentum inside the particle.

Gravitational fields by now have received a geometric interpretation
due to Einstein’s equations. In the theory of chronometric invariants, the
gravitational force and potential (1.38) are obtained as functions of only
the geometric properties of the space itself. Therefore, considering the
motion of a particle in a pseudo-Riemannian space, we actually consider
its motion in a gravitational field.

But we still do not know whether the electromagnetic Lorentz force
and the electromagnetic field potential can be expressed through the ge-
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ometric properties of the space. Therefore, electromagnetic fields at the
moment have no geometric interpretation. An electromagnetic field is
introduced into a pseudo-Riemannian space as an external tensor field
(the field of Maxwell’s tensor). By now the main equations of the elec-
tromagnetic field theory have been obtained in the general covariant
form*. In this theory, a charged particle gains a four-dimensional mo-
mentum e

c2 Aα from an acting electromagnetic field, where Aα is the
four-dimensional potential of the field, and e is the electric charge of the
particle [10, 20]. By adding this additional momentum to the particle’s
own momentum vector and applying the Levi-Civita parallel transport
to the summary vector, we can obtain the general covariant equations of
motion of the particle in a space filled with the gravitational and elec-
tromagnetic fields.

The case of spin particles is far more complicated. To deduce a
momentum that a particle gains due to its spin, we need to define the
external field that interacts with the spin. Initially, this problem was ap-
proached using the methods of QuantumMechanics (Dirac’s equations,
1928). The geometric methods of the General Theory of Relativity were
first used by Papapetrou [21] and then together with Corinaldesi [22] in
the attempt to solve the problem of spin particles. Their approach relied
on the general view of particles as mechanical monopoles and dipoles.
From this point of view, an ordinary mass-bearing particle is a mechan-
ical monopole. If a particle is represented as two masses co-rotating
around a common centre of gravity, then the particle is a mechanical
dipole. Proceeding from the representation of a spin particle as a ro-
tating gyroscope, they considered it as a mechanical dipole, where the
centre of gravity is under the particle’s surface. They considered the
motion of such a mechanic dipole in a pseudo-Riemannian space with
the Schwarzschild metric — a particular case, where the space does not
rotate or deform (the latter means that the space metric is stationary, i.e.,
the tensor of the space deformation rate is zero).

There is no doubt that Papapetrou’s method is noteworthy, but it has
a significant drawback. Being developed in the 1940s, it fully relied on

*Despite this positive fact, due to the complicated calculation of the electromag-
netic field energy-momentum tensor in the space-time of General Relativity, specific
problems are usually solved either for particular cases of General Relativity, or, most
often, in a Galilean reference frame in the Minkowski space, i.e., in the space-time of
Special Relativity.
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the view of spin particles as swiftly rotating gyroscopes, which does not
match experimental data of the recent decades*.

There is another way to solve the problem of motion of spin parti-
cles. In Riemannian spaces, the fundamental metric tensor is symmet-
ric, gαβ = gβα. Nevertheless, we can create a space in which the metric
tensor has an arbitrary form gαβ , gβα (the geometry of such a space is
non-Riemannian). Then, a non-zero antisymmetric part can be found
in the metric tensor†. Then corresponding additions will appear in the
Christoffel symbols Γαµν and in the Riemann-Christoffel curvature ten-
sor Rαβµν. These additions will be the result of the fact that, a vector
transported along a closed contour does not return to its initial point, so
the trajectory becomes twisted like a spiral. Such a space is known as
a twisted space. In such a space, the spin rotation of a particle can be
considered as the transport of the rotation vector along the contour over
the particle’s surface, which generates a local field of the space twist.

Nonetheless, this method has got significant drawbacks as well.
Firstly, if we have gαβ , gβα, then functions of the gαβ components with
different order of indices can vary. The functions are somehow fixed
in order to set a specific field of this rotation, which very narrows the
range of possible solutions, allowing you to create equations only for
a number of specific cases. Secondly, this method is completely based
on the assumption that the spin rotation of a particle is a local twist
field created by the transport of the particle’s rotation vector along the
closed contour. This again means the view of spin particles as rotating
tiny mechanical gyroscopes (similarly to Papapetrou’s method), which
is inconsistent with experimental data.

Nevertheless, there is no doubt that an additional momentum gained
by a spin particle can be represented using the methods of the General
Theory of Relativity. Adding the gained momentum to the dynamic
vector of the particle (which is the effect of gravitation) and applying

*Indeed, considering an electron as a tiny ball with a radius of re = 2.8 × 10−13 cm
means that the linear velocity of its rotation on the surface is u= ℏ

2m0 re
= 2×1011 cm/sec,

which is ∼70 times greater than the light velocity. Experiments show that electrons do
not have such rotation speeds.

†Generally, in any tensor of the 2nd rank and of high ranks symmetric and anti-
symmetric parts can be distinguished. For instance, in the fundamental metric tensor
gαβ =

1
2

(gαβ + gβα)+ 1
2

(gαβ − gβα)= Sαβ +Nαβ we have the symmetric part Sαβ and the
antisymmetric part Nαβ. Because the metric tensor of any Riemannian space is sym-
metric gαβ = gβα, its antisymmetric part is zero.
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the Levi-Civita parallel transport of the summary vector, we can obtain
the general covariant equations of motion of the spin particle*.

Having obtained the general covariant equations of motion of a spin
particle and an electrically charged particle, we shall project them onto
the time line and the spatial section of an observer, and then express the
obtained chr.inv.-projections in terms of the physically observable prop-
erties of his reference space. As a result, we will arrive at the chr.inv.-
equations of non-geodesic motion.

Therefore, the problem that we are going to solve in this book falls
into several stages. In Chapter 3, we will create a chr.inv.-theory of
the electromagnetic field in the four-dimensional pseudo-Riemannian
space. We will also obtain the chr.inv.-equations of motion of a charged
particle in the electromagnetic field.

In Chapter 4, we will create a theory of the motion of spin particles.
We will approach this problem in its most general form, assuming that
spin is a fundamental property of matter (like mass or electric charge).
A detailed study will show that the field of the space non-holonomity
(spatial rotation of the space) interacts with the particle’s spin, giving it
an additional momentum.

In Chapter 5 we are going to discuss the chr.inv.-projections of Ein-
stein’s equations. Based on them, we will derive the properties of the
physical vacuum and how they are applied to cosmology.

In Chapter 6, we will consider the theory of the mirror world, as
well as the physical conditions for entering it through the membrane
that separates it from us.

Before starting this research, in Chapter 2 we will give tensor al-
gebra and analysis in terms of physically observable quantities (chrono-
metric invariants). We recommendChapter 2 to those readers, whowant
to use the chronometrically invariant formalism in their research.

*We wrote this in the mid-1990s, in the 1st edition of this book. In 2007, Suhen-
dro [23, 24] developed a new and highly original approach to spin particles, which is
based on the view of the spin as an elementary curl of the space itself. We agree that,
since his approach is purely geometric in nature, it is closer to Einstein’s approach (the
geometrization ofmatter and interactions) than our approach, implemented in Chapter 4
of this book based on the Lagrange method.



Chapter 2 Basics of Tensor Algebra
and Analysis

2.1 Tensors and tensor algebra

We assume a space (not necessarily a metric one) with an arbitrary ref-
erence frame xα located in it. In an area of this space, there exists an
object G defined by n functions fn of the coordinates xα. We know the
transformation rule to calculate these n functions in any other reference
frame x̃α in this space. If the n functions fn and also the transformation
rule have been given, then G is a geometric object, which in the system
xα has axial components fn (xα), while in any other system x̃α it has
components f̃n (x̃α).

We assume that a tensor object (tensor) of zero rank is any geometric
object φ, transformable according to the rule

φ̃ = φ
∂xα

∂x̃α
, (2.1)

where the index sequentially takes the numbers of all coordinate axes
(this notation is also known as component notation or tensor notation).
Any tensor of zero rank has a single component and is also known as a
scalar. From a geometric point of view, any scalar is a point to which
a certain number is attributed. A scalar field* is a set of points, which
have a common property. For instance, a point mass is a scalar, and a
distributed mass (a gas, for instance) makes up a scalar field.

Contravariant tensors of the 1st rank Aα are geometric objects with
components, transformable according to the rule

Ãα = Aµ
∂x̃α

∂xµ
. (2.2)

*Algebraic notations for a tensor and a tensor field are the same. The field of a
tensor is represented as the tensor in a given point of the space, but its presence in other
points of the space is assumed.
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From a geometric point of view, such an object is an n-dimensional
vector. For instance, the vector of an elementary displacement dxα is a
contravariant tensor of the 1st rank.

Contravariant tensors of the 2nd rank Aαβ are geometric objects with
components, transformable according to the rule

Ãαβ = Aµν
∂x̃α

∂xµ
∂x̃β

∂xν
. (2.3)

From a geometric point of view, such an object is an area (parallelo-
gram) constructed by two vectors. For this reason, contravariant tensors
of the 2nd rank are also known as bivectors.

Thus, contravariant tensors of higher ranks are geometric objects,
transformable according to the rule

Ãα...σ = Aµ...τ
∂x̃α

∂xµ
· · ·

∂x̃σ

∂xτ
. (2.4)

A vector field or a higher rank tensor field are space distributions
of the tensor quantities. For instance, because a mechanical strength
characterizes both its own magnitude and the direction, its distribution
in a physical body can be presented by a vector field.

Covariant (i.e., lower-index) tensors of the 1st rank Aα are geometric
objects, transformable according to the rule

Ãα = Aµ
∂xµ

∂x̃α
. (2.5)

The gradient of a scalar field φ, i.e., the quantity Aα =
∂φ

∂xα , is a co-
variant tensor of the 1st rank. That is, since for an ordinary invariant we
have φ̃=φ, then

∂φ̃

∂x̃α
=

∂φ̃

∂xµ
∂xµ

∂x̃α
=

∂φ

∂xµ
∂xµ

∂x̃α
. (2.6)

Covariant tensors of the 2nd rank Aαβ are geometric objects with
the transformation rule

Ãαβ = Aµν
∂xµ

∂x̃α
∂xν

∂x̃β
. (2.7)

Hence, covariant tensors of higher ranks are

Ãα...σ = Aµ...τ
∂xµ

∂x̃α
· · ·

∂xτ

∂x̃σ
. (2.8)
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Mixed tensors are tensors of the 2nd rank or of higher ranks with
both upper and lower indices. For instance, a mixed symmetric tensor
Aαβ is a geometric object, transformable according to the rule

Ãαβ = Aµν
∂x̃α

∂xµ
∂xν

∂x̃β
. (2.9)

Tensor objects exist both in metric and non-metric spaces*. Any
tensor has an components, where a is its dimension and n is the rank.
For instance, a four-dimensional tensor of zero rank has 1 component,
a tensor of the 1st rank has 4 components, a tensor of the 2nd rank has
16 components and so on.

Indices in a geometric object, marking its axial components, are
found not in tensors only, but in other geometric objects as well. For
this reason, if we come across a quantity in component notation, this is
not necessarily a tensor quantity.

In practice, to know whether a given object is a tensor or not, we
need to know a formula for this object in a reference frame and then
transform it to any other reference frame. For instance, consider the
following classic question: are the Christoffel symbols (i.e., the coher-
ence coefficients of space) tensors? To answer this question, we need to
calculate the quantities in a tilde-marked reference frame

Γ̃αµν = g̃
ασ Γ̃µν,σ , Γ̃µν,σ =

1
2

(
∂g̃µσ

∂x̃ν
+
∂g̃νσ
∂x̃µ

−
∂g̃µν

∂x̃σ

)
(2.10)

proceeding from the quantities in a non-marked reference frame.
First, calculate the terms in brackets (2.10). The fundamental metric

tensor like any other covariant tensor of the 2nd rank, is transformable
to the tilde-marked reference frame according to the rule

g̃µσ = gετ
∂xε

∂x̃µ
∂xτ

∂x̃σ
. (2.11)

Because the gετ depends on non-tilde-marked coordinates, its deri-
vative with respect to tilde-marked coordinates (which are functions of

*In non-metric spaces, as is known, the distance between any two points cannot be
measured. This is in contrast tometric spaces. In the theories of space-time-matter, such
as the General Theory of Relativity and its extensions, metric spaces are taken under
consideration. This is due to the fact that the core of these theories is the measurement
of time durations and spatial lengths, which is nonsense in a non-metric space.
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non-tilded ones) is calculated according to the rule

∂gετ
∂x̃ν
=
∂gετ
∂xρ

∂xρ

∂x̃ν
. (2.12)

Then the first term in brackets (2.10), taking the rule of transforma-
tion of the fundamental metric tensor into account, is

∂g̃µσ

∂x̃ν
=
∂gετ
∂xρ

∂xρ

∂x̃ν
∂xε

∂x̃µ
∂xτ

∂x̃σ
+gετ

(
∂xτ

∂x̃σ
∂2xε

∂x̃ν∂x̃µ
+
∂xε

∂x̃µ
∂2xτ

∂x̃ν∂x̃σ

)
. (2.13)

Hence, calculating the remaining terms of the tilde-marked Christ-
offel symbols (2.10), after transitioning the free indices we obtain

Γ̃µν,σ = Γερ,τ
∂xε

∂x̃µ
∂xρ

∂x̃ν
∂xτ

∂x̃σ
+ gετ

∂xτ

∂x̃σ
∂2xε

∂x̃µ∂x̃ν
, (2.14)

Γ̃αµν = Γ
γ
ερ
∂x̃α

∂xγ
∂xε

∂x̃µ
∂xρ

∂x̃ν
+
∂x̃α

∂xγ
∂2xγ

∂x̃µ∂x̃ν
, (2.15)

so, we see that the Christoffel symbols are not transformed in the same
way as tensors, hence they are not tensors.

Tensors can be represented as matrices. But in practice, this form
can be possible for only tensors of the 1st or 2nd rank (single-row and
flat matrices, respectively). For instance, the tensor of an elementary
four-dimensional displacement is

dxα =
(
dx0, dx1, dx2, dx3

)
, (2.16)

while the four-dimensional fundamental metric tensor is

gαβ =


g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33

 . (2.17)

Tensors of the 3rd rank are three-dimensional matrices. Represent-
ing tensors of higher ranks as matrices is more problematic.

Now we turn to tensor algebra— a section of tensor calculus, which
focuses on algebraic operations over tensors.

Only same-type tensors of the same rank with indices in the same
position can be added or subtracted. The adding up two same-type ten-
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sors gives a new tensor of the same type and rank with the components
being the sums of the corresponding components of these tensors

Aα + Bα = Dα, Aαβ + Bα
β = Dα

β . (2.18)

Multiplication is permitted not only for same-type, but for any ten-
sors of any ranks. The external multiplication of tensors of the n-th rank
and the m-th rank gives a tensor of the (n+m)-th rank

AαβBγ = Dαβγ , AαBβγ = D βγ
α . (2.19)

Contraction is the multiplication of the same-rank tensors, when
their indices are the same. The contraction by all indices gives a scalar

AαBα = C , AγαβBαβ
γ = D . (2.20)

Often multiplication of tensors means contraction of some indices.
Such multiplication is known as internal multiplication, which means
contraction of some indices inside themultiplication. This is an example
of internal multiplication

AασBσ = Dα , AγασBβσ
γ = D β

α . (2.21)

Using internal multiplication of geometric objects, we can deter-
mine whether they are tensors or not. This is the so-called theorem of
fractions, which is given here according to [9]:
Theorem of fractions

If Bσβ is a tensor and its internal multiplication with a geomet-
ric object A (α, σ) is a tensor D β

α

A (α, σ) Bσβ = D β
α , (2.22)

then the object A (α, σ) is also a tensor.
According to the theorem, if the internal multiplication of an object

Aασ with a tensor Bσβ gives a tensor Dαβ

AασBσβ = D β
α , (2.23)

then the object Aα··σ is a tensor. Or, if the internal multiplication of an
object Aασ with a tensor Bσβ gives a tensor D β

α

Aα··σBσβ = Dαβ , (2.24)
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then the object Aα··σ is a tensor.
The geometric properties of any metric space are determined by its

fundamental metric tensor gαβ, which can lift and lower indices in geo-
metric objects of this metric space*. For instance,

gαβAβ = Aα , g µνgσρAµνσ = Aρ. (2.25)

In Riemannian spaces, the mixed fundamental metric tensor gβα is
equal to the unit tensor gβα = gασgσβ = δ

β
α. The diagonal components of

the unit tensor are units, and its other components are zeroes. Using
the unit tensor, we can replace indices in four-dimensional quantities,
so that

δ
β
α Aβ = Aα , δνµδ

σ
ρ Aµρ = Aνσ. (2.26)

Contraction of any tensor of the 2nd rank with the fundamental met-
ric tensor gives a scalar, known as the tensor spur or the tensor trace

gαβAαβ = Aσσ . (2.27)

For instance, the trace of the fundamental metric tensor in a four-
dimensional pseudo-Riemannian space is

gαβg
αβ = gσσ = g

0
0 + g

1
1 + g

2
2 + g

3
3 = δ

0
0 + δ

1
1 + δ

2
2 + δ

3
3 = 4. (2.28)

The chr.inv.-metric tensor hik (1.27) has all properties of the fun-
damental metric tensor gαβ in the observer’s three-dimensional space.
Therefore, hik can lower, lift or replace indices in chr.inv.-quantities. Re-
spectively, the trace of a three-dimensional chr.inv.-tensor is obtained by
means of its contraction with the chr.inv.-metric tensor hik.

For instance, the trace of the tensor of the space deformation rate
Dik (1.40) is

hikDik = Dm
m , (2.29)

the physical sense of which is the relative expansion rate of an elemen-
tary volume of the space.

Of course, the above very brief account cannot fully cover such a
vast field like tensor algebra. Moreover, there is even no need in do-
ing that here. Detailed accounts of tensor algebra can be found in many

*In Riemannian spaces, the metric has the square form ds2 = gαβ dxαdx β, known
also as the Riemannian metric form. Therefore, the fundamental metric tensor of a
Riemannian space is the tensor of the 2nd rank, gαβ.
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mathematical books not related to the General Theory of Relativity. Be-
sides, many specific techniques of this science, which occupy a substan-
tial part of mathematical textbooks, are not used in theoretical physics.
Therefore, our contribution has been to provide only the basic intro-
duction to tensors and tensor algebra needed to understand this book.
For the same reasons, we have not covered issues such as the weight of
tensors and many others not used in the calculations in this book.

2.2 Scalar product of two vectors

The scalar product of two vectors Aα and Bα in a four-dimensional
pseudo-Riemannian space is

gαβ AαB β = AαBα = A0 B0 + Ai Bi. (2.30)

Scalar product is a contraction, because multiplication of vectors
contracts all of their indices. Therefore, the scalar product of two vectors
(tensors of the 1st rank) is always a scalar (tensor of zero rank). If both
of the vectors are the same, their scalar product

gαβ AαAβ = AαAα = A0 A0 + Ai Ai (2.31)

is the square of the given vector Aα. Consequently, the length of this
vector Aα is

A =
∣∣∣ Aα ∣∣∣ = √

gαβ AαAβ. (2.32)

Since the four-dimensional pseudo-Riemannian space of General
Relativity by definition has the sign-alternating metric of the signature
(+−−−) or (−+++), the lengths of a four-dimensional vector in the space
can be real, imaginary or zero. Vectors having non-zero (real or imag-
inary) lengths are known as non-isotropic vectors. Vectors having zero
length are known as isotropic vectors. Isotropic vectors are tangential
to the trajectories of light-like particles (isotropic trajectories).

In three-dimensional Euclidean space, the scalar product of two vec-
tors is a scalar quantity with a magnitude equal to the product of their
lengths, multiplied by the cosine of the angle between them

AiBi =
∣∣∣ Ai

∣∣∣ ∣∣∣ Bi
∣∣∣ cos

(
Ai; Bi) . (2.33)

Theoretically, at every point of any Riemannian space a tangential
flat space can be set, the basis vectors of which are tangential to the



2.2 Scalar product of two vectors 41

basis vectors of the Riemannian space at that point. In this case, the
metric of the tangential flat space is the same as the metric of the Rie-
mannian space at that point. This statement is also true in the Rieman-
nian space, if we take the angle between the coordinate lines into ac-
count and replace Roman (three-dimensional) indices with Greek (four-
dimensional) ones.

From here, we can see that the scalar product of two vectors is zero,
if the vectors are orthogonal to each other. In other words, the scalar
product from a geometric point of view is the projection of one vector
onto the other. If the vectors are the same, then the vector is projected
onto itself, so the result of this projection is the square of its length.

Denote the chr.inv.-projections of arbitrary vectors Aα and Bα as
follows

a =
A0
√
g00

, ai = Ai, (2.34)

b =
B0
√
g00

, bi = Bi, (2.35)

then their remaining components are

A0 =
a + 1

c vi ai

1 − w
c2

, Ai = − ai −
a
c
vi , (2.36)

B0 =
b + 1

c vi bi

1 − w
c2

, Bi = − bi −
b
c
vi . (2.37)

Substituting the chr.inv.-projections into the formulae for AαBα and
AαAα, we obtain

AαBα = ab − ai bi = ab − hik aibk, (2.38)

AαAα = a2 − ai ai = a2 − hik aiak. (2.39)

From here, we see that the square of the length of any vector is
the difference between the squares of the lengths of its time and spa-
tial chr.inv.-projections. If both of the projections are equal, then the
vector’s length is zero, so the vector is isotropic. Hence, any isotropic
vector equally belongs to the time line and the spatial section. The equal-
ity of the time and spatial chr.inv.-projections also means that the vector
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is orthogonal to itself. If its time projection is “longer” than the spatial
one, then the vector is real. If the spatial projection is “longer”, then the
vector is imaginary.

The scalar product of any four-dimensional vector with itself can be
illustrated by the square of the length of the space-time interval

ds2 = gαβ dxαdxβ = dxαdxα = dx0 dx0 + dxi dxi. (2.40)

In terms of physically observable quantities, it can be represented
as follows

ds2 = c2dτ2 − dxi dxi = c2dτ2 − hik dxidxk = c2dτ2 − dσ2. (2.41)

Its length ds=
√
gαβ dxαdxβ can be real, imaginary or zero, depend-

ing on whether ds is time-like c2dτ2 > dσ2 (subluminal real trajecto-
ries), space-like c2dτ2 < dσ2 (imaginary superluminal trajectories), or
isotropic c2dτ2 = dσ2 (light-like trajectories).

2.3 Vector product of two vectors. Antisymmetric tensors and
pseudotensors

The vector product of two vectors Aα and Bα is a tensor of the 2nd rank
Vαβ, obtained from their external multiplication according to the rule

Vαβ =
[
Aα; B β ] = 1

2

(
AαB β − AβBα

)
=

1
2

∣∣∣∣∣∣ Aα Aβ

Bα B β

∣∣∣∣∣∣ . (2.42)

As is easy to see, the order in which vectors are multiplied mat-
ters, i.e., the order in which we write down tensor indices is important.
Therefore, tensors obtained as vector products are antisymmetric. In
an antisymmetric tensor Vαβ =−V βα; its indices being moved “reserve”
their places as dots, gασVσβ =V ·βα· , thereby showing from where the in-
dex was moved. In symmetric tensors, there is no need to “reserve”
places for moved indices, because the order in which they appear does
not matter. In particular, the fundamental metric tensor is symmetric
gαβ = gβα, while the tensor of the space curvature Rα···

·βγδ is symmetric in
respect to the transposition by pair of its indices, but is antisymmetric
inside each pair of the indices.

It is obvious that only tensors of the 2nd rank or of higher ranks can
be symmetric or antisymmetric.
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All diagonal components of any antisymmetric tensor by definition
are zeroes. So, in an antisymmetric tensor of the 2nd rank, we have

Vαα =
[
Aα; Bα ] = 1

2
(
AαBα − AαBα) = 0 . (2.43)

In the three-dimensional Euclidean space, the vector product of two
vectors is the area of the parallelogram they make and is equal to the
product of their moduli, multiplied by the sine of the angle between
them

V ik =
∣∣∣ Ai

∣∣∣ ∣∣∣ Bk
∣∣∣ sin

(
Ai; Bk) . (2.44)

This means that the vector product of two vectors (i.e., an antisym-
metric tensor of the 2nd rank) is an area, oriented in the space according
to the directions of its forming vectors.

Contraction of an antisymmetric tensor Vαβ with any symmetric ten-
sor Aαβ = AαAβ is zero, because Vαα = 0 and Vαβ =−Vβα. For example,

Vαβ AαAβ = V00 A0A0 + V0i A0Ai + Vi0 AiA0 + Vik AiAk = 0 . (2.45)

According to the theory of chronometric invariants, the chr.inv.-
projections of an antisymmetric tensor of the 2nd rank Vαβ are

V ·i0·
√
g00
= −

V i·
·0
√
g00
=

1
2

(
abi − bai

)
, (2.46)

V ik =
1
2

(
aibk − akbi

)
, (2.47)

where the third chr.inv.-projection V00
g00

(1.32) is zero, because in any an-
tisymmetric tensor all diagonal components are zeroes.

The physically observable chr.inv.-projection V ik of the tensor Vαβ

onto the observer’s spatial section is analogous to a vector product in a
three-dimensional space, but the quantity V ·i0·√

g00
, which is the space-time

(mixed) chr.inv.-projection of the tensor Vαβ, has no equivalent among
components of an ordinary three-dimensional vector product.

The square of an antisymmetric tensor of the 2nd rank, formulated
with the chr.inv.-projections of its forming vectors, is

VαβVαβ =
1
2

(
ai aibk bk − ai biak bk

)
+

+ abai bi −
1
2

(
a2bi bi − b2ai ai

)
.

(2.48)
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The last two terms in this formula contain the quantities a (2.34) and
b (2.35), which are the chr.inv.-projections of the multiplied vectors Aα

and Bα onto the observer’s time line, so these terms have no equivalent
in the three-dimensional Euclidean space.

Asymmetry of tensor fields is defined by reference to antisymmetric
tensors. In a Galilean reference frame* such antisymmetric references
are the Levi-Civita tensors: for four-dimensional quantities, this is the
four-dimensional completely antisymmetric unit tensor eαβµν, while for
three-dimensional quantities, this is the three-dimensional completely
antisymmetric unit tensor eikm. The components of the Levi-Civita ten-
sors, which have all indices different, are either +1 or −1 depending
on the number of transpositions of their indices. All of the remaining
components, i.e., those having at least two coinciding indices, are ze-
roes. Moreover, for the signature (+−−−) we are using, all the non-zero
components have a sign opposite to their corresponding covariant com-
ponents†. For instance, in the Minkowski space we have

gασgβρgµτgνγ eσρτγ = g00g11g22g33 e0123 = − e0123

giαgkβgmγ eαβγ = g11g22g33 e123 = − e123

 (2.49)

due to the signature conditions g00 = 1 and g11 = g22 = g33 = −1 we have
accepted. Therefore, the components of the tensor eαβµν are

e0123 = +1, e1023 = −1, e1203 = +1, e1230 = −1

e0123 = −1, e1023 = +1, e1203 = −1, e1230 = +1

 (2.50)

and the components of the tensor eikm are

e123 = +1, e213 = −1, e231 = +1

e123 = −1, e213 = +1, e231 = −1

 . (2.51)

Because we have an arbitrary choice for the sign of the first compo-
nent, we can also assume e0123 =−1 and e123 =−1. Consequently, the

*AGalilean reference frame is the one that does not rotate or deform and falls freely
in the flat space-time of Special Relativity (Minkowski space). In a Galilean frame, the
time lines are linear and so are three-dimensional coordinate axes.

†If the space-time signature is (−+++), the said is true for only the four-dimensional
tensor eαβµν. The components of the three-dimensional tensor eikm will have the same
sign as the corresponding components of eikm.
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remaining components will change. In general, the tensor eαβµν is re-
lated to the tensor eikm as follows e0ikm = eikm.

Multiplying the four-dimensional antisymmetric unit tensor eαβµν

by itself we obtain an ordinary tensor of the 8th rank with non-zero
components, which are given in the matrix

eαβµνeστργ = −


δασ δατ δαρ δαγ
δ
β
σ δ

β
τ δ

β
ρ δ

β
γ

δ
µ
σ δ

µ
τ δ

µ
ρ δ

µ
γ

δνσ δντ δνρ δνγ

 . (2.52)

The remaining properties of the tensor eαβµν are derived from the
previous by means of the contraction of its indices

eαβµνeστρν = −


δασ δατ δαρ
δ
β
σ δ

β
τ δ

β
ρ

δ
µ
σ δ

µ
τ δ

µ
ρ

 , (2.53)

eαβµνeστµν = −2
(
δασ δατ
δ
β
σ δ

β
τ

)
= −2

(
δασδ

β
τ − δ

β
σδ

α
τ

)
, (2.54)

eαβµνeσβµν = −6δασ , eαβµνeαβµν = −6δαα = −24. (2.55)

Multiplying the three-dimensional antisymmetric unit tensor eikm by
itself we obtain an ordinary tensor of the 6th rank

eikmerst =


δi

r δi
s δi

t

δk
r δk

s δk
t

δm
r δm

s δm
t

 . (2.56)

The remaining properties of the tensor eikm are

eikmersm = −

(
δi

r δi
s

δk
r δk

s

)
= δi

sδ
k
r − δ

i
r δ

k
s , (2.57)

eikmerkm = 2δi
r , eikmeikm = 2δi

i = 6. (2.58)

The completely antisymmetric unit tensor defines for a tensor ob-
ject its corresponding pseudotensor, marked with asterisk. For instance,
any four-dimensional scalar, vector and tensors of the 2nd, 3rd, and 4th
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ranks have corresponding four-dimensional pseudotensors of the fol-
lowing ranks

V ∗αβµν = eαβµνV , V ∗αβµ = eαβµνVν

V ∗αβ =
1
2

eαβµνVµν , V ∗α =
1
6

eαβµνVβµν

V ∗ =
1
24

eαβµνVαβµν


. (2.59)

Pseudotensors of the 1st rank, such asV ∗α, are called pseudovectors,
and pseudotensors of zero rank, such as V ∗, are called pseudoscalars.
Any tensor and its corresponding pseudotensor are known as dual to
each other to emphasize their common genesis.

Three-dimensional tensors have corresponding three-dimensional
pseudotensors as follows

V ∗ikm = eikmV, V ∗ik = eikmVm

V ∗i =
1
2

eikmVkm , V ∗ =
1
6

eikmVikm

 . (2.60)

Pseudotensors are called such because, in contrast to ordinary ten-
sors, they do not change their sign when reflected with respect to one
of the coordinate axes. For instance, when the coordinates are reflected
with respect to the abscissa axis, we have x1 =− x̃1, x2 = x̃2, x3 = x̃3. In
this case, the reflected component of an antisymmetric tensor Vik, which
is orthogonal to x1, is Ṽ23 =−V23, but its corresponding component of
the dual pseudovector V ∗i is

V ∗1 =
1
2

e1km Vkm =
1
2

(
e123 V23 + e132 V32

)
= V23

Ṽ ∗1 =
1
2

ẽ1km Ṽkm =
1
2

ek1m Ṽkm =

=
1
2

(
e213 Ṽ23 + e312 Ṽ32

)
= V23


. (2.61)

Because a four-dimensional antisymmetric tensor of the 2nd rank
and its dual pseudotensor are of the same rank, their contraction gives
a pseudoscalar, so that we have

VαβV ∗αβ = Vαβ eαβµνVµν = eαβµνBαβµν = B∗. (2.62)
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The square of a pseudotensor V ∗αβ and the square of a pseudovector
V ∗i, expressed through their dual tensors, are

V∗αβV ∗αβ = eαβµνV µνeαβρσVρσ = −24VµνV µν, (2.63)

V∗iV ∗i = eikmV kmeipqVpq = 6VkmV km. (2.64)

In inhomogeneous anisotropic pseudo-Riemannian spaces, we can-
not set a Galilean reference frame, so the asymmetry references of ten-
sor fields will depend on the inhomogeneity and anisotropy of the space,
which are defined by the fundamental metric tensor. In this general case,
a reference antisymmetric tensor is the four-dimensional completely an-
tisymmetric discriminant tensor

Eαβµν =
eαβµν
√
−g

, Eαβµν = eαβµν
√
−g . (2.65)

Here is the proof. The transformation of the completely antisym-
metric unit tensor from a Galilean (non-tilde-marked) reference frame
into an arbitrary (tilde-marked) reference frame is

ẽαβµν =
∂xσ

∂x̃α
∂xγ

∂x̃β
∂xε

∂x̃µ
∂xτ

∂x̃ν
eσγετ = Jeαβµν , (2.66)

where J = det
∥∥∥ ∂xα
∂x̃σ

∥∥∥ is called the Jacobian of the transformation (deter-
minant of the Jacobi matrix)

J = det
∥∥∥∥∥∂xα

∂x̃σ

∥∥∥∥∥ = det

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∂x0

∂x̃0
∂x0

∂x̃1
∂x0

∂x̃2
∂x0

∂x̃3

∂x1

∂x̃0
∂x1

∂x̃1
∂x1

∂x̃2
∂x1

∂x̃3

∂x2

∂x̃0
∂x2

∂x̃1
∂x2

∂x̃2
∂x2

∂x̃3

∂x3

∂x̃0
∂x3

∂x̃1
∂x3

∂x̃2
∂x3

∂x̃3

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
. (2.67)

Because the fundamental metric tensor gαβ is transformable accord-
ing to the rule

g̃αβ =
∂xµ

∂x̃α
∂xν

∂x̃β
gµν , (2.68)

its determinant in the tilde-marked reference frame is

g̃ = det
∥∥∥∥∥ ∂xµ

∂x̃α
∂xν

∂x̃β
gµν

∥∥∥∥∥ = J2g . (2.69)



48 Chapter 2 Basics of Tensor Algebra and Analysis

Because in the Galilean (non-tilde-marked) reference frame

g = det
∥∥∥gαβ∥∥∥ = det

∥∥∥∥∥∥∥∥∥∥∥
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

∥∥∥∥∥∥∥∥∥∥∥ = −1, (2.70)

then J2 =− g̃2. Expressing ẽαβµν in an arbitrary reference frame as Eαβµν

and writing down the metric tensor in an ordinary non-tilde-marked
form, we obtain Eαβµν= eαβµν

√
−g (2.65). In the same way, we obtain

the transformation rules for the Eαβµν components, because for them
g= g̃ J̃2, where J̃ = det

∥∥∥ ∂x̃α
∂xσ

∥∥∥.
The discriminant tensor Eαβµν is not a physically observable quan-

tity. A physically observable reference of the asymmetry of tensor fields
is the three-dimensional discriminant chr.inv.-tensor

εαβγ = hαµ h β
ν hγρ bσEσµνρ = bσEσαβγ, (2.71)

εαβγ = hµα hνβhργ bσEσµνρ = bσEσαβγ , (2.72)

which in the accompanying reference frame (bi = 0), taking into account
that

√
−g =

√
h
√
g00, takes the form

εikm = b0 E0ikm =
√
g00 E0ikm =

eikm

√
h
, (2.73)

εikm = b0E0ikm =
E0ikm
√
g00
= eikm

√
h . (2.74)

Using this tensor, we can transform chr.inv.-tensors into chr.inv.-
pseudotensors. For instance, based on the antisymmetric chr.inv.-tensor
of the angular velocity with which the space rotates, Aik (1.36), we ob-
tain the chr.inv.-pseudovector of this rotation Ω∗i = 1

2 ε
ikmAkm.

2.4 Differential and directional derivative

In geometry, the differential of a function is its variation between two
infinitely close points, the coordinates of which are xα and xα+ dxα. Re-
spectively, the absolute differential in an n-dimensional space is the vari-
ation of an n-dimensional quantity between two infinitely close points
in this space. For continuous functions, which we commonly deal with
in practice, their variations between infinitely close points are infinite-
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simal. But in order to define an infinitesimal variation of a tensor quan-
tity, we cannot use simply the “difference” between its numerical values
in the points xα and xα+ dxα, since tensor algebra does not define the
ratio between the numerical values of a tensor in different points of a
space. This ratio can be defined only using the rules transforming ten-
sors from one reference frame to another. Therefore, differential opera-
tors and the results of their application to tensors must be tensors.

Thus, the absolute differential of a tensor quantity is a tensor of the
same rank as the original tensor itself. For a scalar φ it is the scalar

Dφ =
∂φ

∂xα
dxα, (2.75)

which in the accompanying reference frame (bi = 0) is

Dφ =
∗∂φ

∂t
dτ +

∗∂φ

∂xi dxi. (2.76)

It is easy to see that, apart from the three-dimensional observable
differential, there is an additional term that takes into account the de-
pendence of the absolute displacement Dφ on the flow of the physically
observable time dτ.

The absolute differential of a contravariant vector Aα, formulated
with the absolute derivation operator ∇ (nabla), is

DAα = ∇σ Aαdxσ =
∂Aα

∂xσ
dxσ + ΓαµσAµdxσ =

= dAα + ΓαµσAµdxσ,
(2.77)

where ∇σ Aα is the absolute derivative of Aα with respect to xσ, and d
stands for the ordinary differential

∇σ Aα =
∂Aα

∂xσ
+ ΓαµσAµ, (2.78)

d =
∂

∂xα
dxα. (2.79)

Formulating the absolute differential with physical observables is
equivalent to projecting its general covariant form onto the time line
and the spatial section in the accompanying reference frame

T = bαDAα =
g0αDAα
√
g00

, Bi = hi
αDAα. (2.80)



50 Chapter 2 Basics of Tensor Algebra and Analysis

Denoting the chr.inv.-projections of the vector Aα as

φ =
A0
√
g00

, qi = Ai, (2.81)

we obtain its remaining components

A0 = φ
(
1 −

w
c2

)
, A0 =

φ + 1
c vi qi

1 − w
c2

, Ai = −qi −
φ

c
vi . (2.82)

Because the ordinary differential in the chr.inv.-form is

d =
∗∂

∂t
dτ +

∗∂

∂xi dxi, (2.83)

after substituting it and the Christoffel symbols, taken in the accompa-
nying reference frame (1.41–1.46), into the formulae for the chr.inv.-
projections T and Bi (2.80) of an arbitrary vector Aα, we obtain

T = bαDAα = dφ +
1
c

(
−Fi qidτ + Dik qidxk

)
, (2.84)

Bi = hi
σDAσ = dqi +

(
φ

c
dxk + qkdτ

) (
Di

k + A·ik·
)
−

−
φ

c
F idτ + ∆i

mk qmdxk.
(2.85)

To create the chr.inv.-equations of motion, we need the chr.inv.-
projections of the absolute derivative of a vector to the direction, tan-
gential to the trajectory. From a geometric point of view, the directional
derivative of a function is its change with respect to an elementary dis-
placement along the given direction. The absolute directional derivative
in an n-dimensional space is the change of an n-dimensional quantity
with respect to an elementary n-dimensional interval along the given
direction. For instance, the absolute derivative of a scalar function φ
along a curve xα = xα (ρ), where ρ is a non-zero monotone parameter
along the curve, shows the “rate” of the change of this function

Dφ
dρ
=

dφ
dρ

. (2.86)

In the accompanying reference frame it is

Dφ
dρ
=
∗∂φ

∂t
dτ
dρ
+
∗∂φ

∂xi

dxi

dρ
. (2.87)
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The absolute directional derivative of an arbitrary vector Aα along
a curve xα = xα (ρ) is

DAα

dρ
= ∇σ Aα

dxσ

dρ
=

dAα

dρ
+ ΓαµσAµ

dxσ

dρ
, (2.88)

and its chr.inv.-projections are

bα
DAα

dρ
=

dφ
dρ
+

1
c

(
−Fi qi dτ

dρ
+ Dik qi dxk

dρ

)
, (2.89)

hi
σ

DAσ

dρ
=

dqi

dρ
+

(
φ

c
dxk

dρ
+ qk dτ

dρ

) (
Di

k + A·ik·
)
−

−
φ

c
F i dτ

dρ
+ ∆i

mk qm dxk

dρ
.

(2.90)

Actually, the above chr.inv.-projections are the “generic” chr.inv.-
equations of motion of a particle in the space. Once we define a par-
ticular vector characterizing the motion of a particle, we calculate its
chr.inv.-projections and substitute them into the above equations (2.90,
2.91), we immediately obtain the chr.inv.-equations of the motion of the
particle.

2.5 Divergence and curl

The divergence of a tensor field is its “change” along a coordinate axis.
Respectively, the absolute divergence of an n-dimensional tensor field
is its divergence in an n-dimensional space. The divergence of a tensor
field is the result of the contraction of the field tensor with the absolute
derivation operator ∇. The divergence of a vector field is a scalar

∇σ Aσ =
∂Aσ

∂xσ
+ ΓσσµAµ, (2.91)

and the divergence of a 2nd rank tensor field is a vector

∇σ Fσα =
∂Fσα

∂xσ
+ ΓσσµFαµ + ΓασµFσµ, (2.92)

where, as it can be proved, Γσσµ is

Γσσµ =
∂ ln
√
−g

∂xµ
. (2.93)
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To prove (2.93), wewill use the definition of the Christoffel symbols.
Write the definition of Γσσµ in detail

Γσσµ = g
σρΓµσ,ρ =

1
2
gσρ

(
∂gµρ

∂xσ
+
∂gσρ

∂xµ
−
∂gµσ

∂xρ

)
. (2.94)

Because σ and ρ are free indices here, they can change their sites.
As a result, after the contraction with the tensor g ρσ, the first and last
terms cancel each other, so Γσσµ takes the form

Γσσµ =
1
2
g ρσ

∂gρσ

∂xµ
. (2.95)

The quantities g ρσ are the components of a tensor reciprocal to the
tensor gρσ. Therefore, each component of the matrix g ρσ is

g ρσ =
aρσ

g
, g = det

∥∥∥gρσ ∥∥∥ , (2.96)

where aρσ is the algebraic co-factor of the matrix element with indices
ρσ, equal to (−1)ρ+σ, multiplied by the determinant of the matrix ob-
tained by crossing the row and the column with the numbersσ and ρ out
of the matrix gρσ. As a result, we have aρσ = gg ρσ. Since the determin-
ant of the fundamental metric tensor g= det

∥∥∥gρσ ∥∥∥ by definition is
g =

∑
α0...α3

(−1)N(α0...α3) g0(α0) g1(α1) g2(α2) g3(α3) , (2.97)

then the quantity dg will be dg= aρσdgρσ = gg ρσdgρσ, or

dg
g
= g ρσdgρσ . (2.98)

Integrating the left hand side, we get ln (−g), because the g is nega-
tive while logarithms are defined for only positive functions. Then, we
have d ln (−g) = dg

g . Since (−g)1/2 = 1
2 ln (−g), we obtain

d ln
√
−g =

1
2
g ρσdgρσ , (2.99)

so Γσσµ (2.95) takes the form

Γσσµ =
1
2
g ρσ

∂gρσ

∂xµ
=
∂ ln
√
−g

∂xµ
, (2.100)
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which has been proved (2.93).
Now, we are going to deduce the chr.inv.-projections of the diver-

gence of a vector field (2.91) and of a tensor field of the 2nd rank (2.92).
The divergence of a vector field Aα is a scalar, consequently the diver-
gence ∇σ Aσ cannot be projected onto the time line and the spatial sec-
tion, but, this is enough to express it through the chr.inv.-projections
of the Aα and through the observable properties of the reference space.
Besides, the ordinary derivation operators must be replaced with the
chr.inv.-derivation operators.

Assuming the notations φ and qi for chr.inv.-projections of the vec-
tor Aα (2.81), we express the remaining components of the vector Aα

through them (2.82). Then, substituting the ordinary derivation opera-
tors in the form, expressed through the chr.inv.-derivation operators

1
√
g00

∂

∂t
=
∗∂

∂t
,

√
g00 = 1 −

w
c2 , (2.101)

∗∂

∂xi =
∂

∂xi +
1
c2 vi

∗∂

∂t
(2.102)

into (2.91), and taking into account that
√
−g =

√
h
√
g00 , we obtain

∇σ Aσ =
1
c

(
∗∂φ

∂t
+ φD

)
+
∗∂qi

∂xi + qi
∗∂ ln
√

h
∂xi −

1
c2 Fi qi. (2.103)

In the third term, the quantity
∗∂ ln
√

h
∂xi = ∆

j
ji (2.104)

stands for the chr.inv.-Christoffel symbols ∆k
ji (1.47), contracted by two

indices. Hence, similar to the definition of the absolute divergence of a
vector field (2.91), the quantity

∗∂qi

∂xi + qi
∗∂ ln
√

h
∂xi =

∗∂qi

∂xi + qi∆
j
ji =

∗∇i qi (2.105)

is the chr.inv.-divergence of a three-dimensional vector field qi.
Consequently, we call the physical chr.inv.-divergence of the vector

field qi the following chr.inv.-quantity

∗∇̃i qi = ∗∇i qi −
1
c2 Fi qi, (2.106)
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in which the 2nd term takes into account the fact that the flow of time is
different at the opposite walls of an elementary volume of the space [9].
As a matter of fact that, when calculating the divergence we consider an
elementary volume of the space, so we calculate the difference between
the amounts of a “substance” that flows in and out of the volume over an
elementary time interval. But the presence of the gravitational inertial
force F i (1.38) results in a different flow of time at different points in
the space. Therefore, when we measure time intervals on the clocks
installed at the opposite walls of the volume, the beginnings of the time
intervals will not coincide, thereby making the measured time intervals
invalid for comparison. The clock synchronization at the opposite walls
of the volume will give the true picture — the measured time durations
will be different.

The final equation for the divergence ∇σ Aσ is

∇σ Aσ =
1
c

(
∗∂φ

∂t
+ φD

)
+ ∗∇̃i qi. (2.107)

The second term in this formula is a physically observable analogy
to the ordinary divergence in the observer’s three-dimensional space.

The first term (in brackets) has no equivalent. It is the sum of the
two functions:

∗∂φ
∂t is the variation in time of the time projection φ of

the vector Aα, while φD is the variation in time of the volume of the
three-dimensional vector field qi. The latter is because the trace of the
chr.inv.-tensor of the space deformation rate D= hikDik =Dn

n is the rate
of the relative expansion of an elementary volume of the space.

Applying ∇σ Aσ= 0 to the four-dimensional vector potential Aα of
an electromagnetic field gives the Lorenz condition for the field. As a
result, the Lorenz condition in the chr.inv.-form is

∗∇̃i qi = −
1
c

(
∗∂φ

∂t
+ φD

)
. (2.108)

Nowwe are going to deduce chr.inv.-projections of the divergence of
an arbitrary antisymmetric tensor Fαβ =−Fβα (later we will need them
to obtain Maxwell’s equations in the chr.inv.-form)

∇σ Fσα =
∂Fσα

∂xσ
+ ΓσσµFαµ + ΓασµFσµ =

=
∂Fσα

∂xσ
+
∂ ln
√
−g

∂xµ
Fαµ,

(2.109)
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where the third term ΓασµFσµ is zero, because the contraction of the
Christoffel symbols Γασµ (which are symmetric by their lower indices)
with the antisymmetric tensor Fσµ is zero as in the case of any symmet-
ric and antisymmetric tensors.

The divergence ∇σ Fσα is a four-dimensional vector, so its chr.inv.-
projections are calculated as for a vector, i.e.

T = bα∇σ Fσα, Bi = hi
α∇σ Fσα = ∇σ Fσi. (2.110)

We denote chr.inv.-projections of the tensor Fαβ as follows

E i =
F ·i0·
√
g00

, H ik = F ik, (2.111)

then the remaining non-zero components of the tensor are

F ·00· =
1
c
vk Ek, (2.112)

F ·0k· =
1
√
g00

(
Ek −

1
c
vn H ·nk· −

1
c2 vk vn En

)
, (2.113)

F0i =
E i − 1

c vk H ik

√
g00

, F0i = −
√
g00 Ei , (2.114)

F ·ki· = −H ·ki· −
1
c
vi Ek, Fik = Hik +

1
c

(vi Ek − vk Ei) , (2.115)

and the square of this tensor Fαβ is

FαβFαβ = Hik H ik − 2Ei E i. (2.116)

Substituting the components into (2.110) and replacing the ordinary
derivation operators with the chr.inv.-derivation operators, after some
algebra we obtain

T =
∇σ F ·σ0·
√
g00
=
∗∂E i

∂xi + E i
∗∂ ln
√

h
∂xi −

1
c

H ikAik , (2.117)

Bi = ∇σ Fσi =
∗∂H ik

∂xk + H ik
∗∂ ln

√
h

∂xk −

−
1
c2 Fk H ik −

1
c

(
∗∂E i

∂t
+ DE i

)
,

(2.118)
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where Aik is the antisymmetric tensor of non-holonomity of the space.
Taking into account that

∗∂E i

∂xi + E i
∗∂ ln
√

h
∂xi = ∗∇i E i (2.119)

is the chr.inv.-divergence of the vector Ei, and also that

∗∇k H ik −
1
c2 Fk H ik = ∗∇̃k H ik (2.120)

is the physical chr.inv.-divergence of the tensor H ik, we arrive at the final
equations for the chr.inv.-projections of the divergence of an arbitrary
antisymmetric tensor Fαβ

T = ∗∇i E i −
1
c

H ikAik , (2.121)

Bi = ∗∇̃k H ik −
1
c

(
∗∂E i

∂t
+ DE i

)
. (2.122)

So forth, we calculate the chr.inv.-projections of the divergence of
the pseudotensor F∗αβ

F∗αβ =
1
2

EαβµνFµν , F∗αβ =
1
2

EαβµνF µν, (2.123)

which is dual to the given antisymmetric tensor Fαβ.
We denote its chr.inv.-projections as follows

H∗i =
F∗·i0·
√
g00

, E∗ik = F∗ik, (2.124)

so there are the obvious relations H∗i ∼H ik and E∗ik ∼ E i between the
above chr.inv.-quantities and chr.inv.-projections of the antisymmetric
tensor Fαβ (2.111), because of the duality of Fαβ and F∗αβ.

Therefore, given that

F∗·i0·
√
g00
=

1
2
εipqHpq , F∗ik = − εikpEp , (2.125)

the remaining components of the pseudotensor F∗αβ, formulated with
the chr.inv.-projections of its dual tensor Fαβ (2.111) are

F∗·00· =
1

2c
vk ε

kpq
[
Hpq +

1
c

(
vp Eq − vq Ep

)]
, (2.126)



2.5 Divergence and curl 57

F∗·0i· =
1

2
√
g00

[
ε
·pq
i· Hpq +

1
c
ε
·pq
i·

(
vp Eq − vq Ep

)
−

−
1
c2 ε

kpq vi vk Hpq −
1
c3 ε

kpq vi vk
(
vp Eq − vq Ep

)]
,

(2.127)

F∗0i =
1

2
√
g00

εipq
[
Hpq +

1
c

(
vp Eq − vq Ep

)]
, (2.128)

F∗0i =
1
2
√
g00 εipq H pq, (2.129)

F∗·ki· = ε
·kp
i· Ep −

1
2c

vi ε
kpqHpq −

1
c2 vi vm ε

mkpEp , (2.130)

F∗ik = εikp

(
E p −

1
c
vq H pq

)
, (2.131)

while its square is

F∗αβF∗αβ = εipq
(
Ep Hiq − Ei Hpq

)
, (2.132)

where εipq is the three-dimensional discriminant chr.inv.-tensor (2.73,
2.74). Then the chr.inv.-projections of the divergence of the pseudoten-
sor F∗αβ are written as

∇σ F∗·σ0·
√
g00

=
∗∂H∗i

∂xi + H∗i
∗∂ ln
√

h
∂xi −

1
c

E∗ikAik , (2.133)

∇σ F∗σi =
∗∂E∗ik

∂xi + E∗ik
∗∂ ln
√

h
∂xk −

−
1
c2 Fk E∗ik −

1
c

(
∗∂H∗i

∂t
+ DH∗i

)
,

(2.134)

or, using the respective formulae for the chr.inv.-divergence ∗∇i H∗i and
also the physical chr.inv.-divergence ∗∇̃k E∗ik, as well as (2.119, 2.120),
we obtain

∇σ F∗·σ0·
√
g00

= ∗∇i H∗i −
1
c

E∗ikAik , (2.135)

∇σ F∗σi = ∗∇̃k E∗ik −
1
c

(
∗∂H∗i

∂t
+ DH∗i

)
. (2.136)
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Apart from the divergence of a vector, antisymmetric tensor and
pseudotensor of the 2nd rank, we need to deduce the chr.inv.-projections
of the divergence of a symmetric tensor of the 2nd rank (we will need
them to obtain the conservation law in the chr.inv.-form). Wewill import
them from Zelmanov [9]. Like Zelmanov did in his theory, we denote
chr.inv.-projections of a symmetric tensor T αβ as follows

T00

g00
= ρ ,

T i
0
√
g00
= Ki, T ik = N ik, (2.137)

then, according to [9], we have

∇σ T σ
0

√
g00
=
∗∂ρ

∂t
+ ρD + Dik N ik + c ∗∇i Ki −

2
c

Fi Ki, (2.138)

∇σ T σi = c
∗∂Ki

∂t
+ cDKi + 2c

(
Di

k + A·ik·
)

Kk +

+ c2 ∗∇k N ik − Fk N ik − ρF i.

(2.139)

So forth, consider the curl of a tensor field— the difference between
the covariant derivatives of the tensor. From a geometric point of view,
it is the vortex (rotation) of the field. The absolute curl is the curl of
an n-dimensional tensor field in an n-dimensional space. The curl of an
arbitrary four-dimensional vector field Aα is a covariant antisymmetric
tensor of the 2nd rank, which is defined as follows*

Fµν = ∇µ Aν − ∇ν Aµ =
∂Aν
∂xµ
−
∂Aµ
∂xν

, (2.140)

where ∇µ Aν is the absolute derivative of Aα with respect to the coordi-
nate xµ

∇µ Aν =
∂Aν
∂xµ
− ΓσνµAσ . (2.141)

The curl, contracted with the four-dimensional absolutely antisym-
metric discriminant tensor Eαβµν (2.65), is the pseudotensor

F∗αβ = Eαβµν
(
∇µ Aν − ∇ν Aµ

)
= Eαβµν

(
∂Aν
∂xµ
−
∂Aµ
∂xν

)
. (2.142)

*See §98 in the well-known book authored by Peter Raschewski [18]. Actually, the
curl of a tensor field is not the tensor (2.140), but its dual pseudotensor (2.142), because
the invariance with respect to reflection is necessary for any rotations.
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In electrodynamics, Fµν (2.140) is the electromagnetic field tensor
(known also as theMaxwell tensor). It is the curl of the four-dimensional
electromagnetic field potential Aα. Therefore, when considering elec-
trodynamics in terms of chronometric invariants, we will need formu-
lae for the chr.inv.-projections of the four-dimensional curl Fµν and its
dual pseudotensor F∗αβ, expressed through the chr.inv.-projections of
the four-dimensional vector potential Aα (2.81) that formed them.

Let us calculate the components of the curl Fµν, taking into account
that F00 = F00 = 0 just like for any other antisymmetric tensor. As a
result, after some algebra, we obtain

F0i =

(
1 −

w
c2

) (
φ

c2 Fi −
∗∂φ

∂xi −
1
c

∗∂qi

∂t

)
, (2.143)

Fik =
∗∂qi

∂xk −
∗∂qk

∂xi +
φ

c

(
∂vi

∂xk −
∂vk

∂xi

)
+

+
1
c

(
vi

∗∂φ

∂xk − vk

∗∂φ

∂xi

)
+

1
c2

(
vi

∗∂qk

∂t
− vk

∗∂qi

∂t

)
,

(2.144)

F ·00· = −
φ

c3 vk F k +
1
c
vk

(
∗∂φ

∂xk +
1
c

∗∂qk

∂t

)
, (2.145)

F ·0k· = −
1
√
g00

[
φ

c2 Fk −
∗∂φ

∂xk −
1
c

∗∂qk

∂t
+

+
2φ
c2 vmAmk +

1
c2 vkv

m
(
∗∂φ

∂xm +
1
c

∗∂qm

∂t

)
−

−
1
c
vm

(
∗∂qm

∂xk −
∗∂qk

∂xm

)
−
φ

c4 vk vm Fm
]
,

(2.146)

F ·ik· = him
(
∗∂qm

∂xk −
∗∂qk

∂xm

)
−

1
c

him vk

∗∂φ

∂xm −

−
1
c2 him vk

∗∂qm

∂t
+
φ

c3 vk F i +
2φ
c

A·ik· ,

(2.147)

F0k =
1
√
g00

[
hkm

(
∗∂φ

∂xm +
1
c

∗∂qm

∂t

)
−
φ

c2 F k+

+
1
c
vn hmk

(
∗∂qn

∂xm −
∗∂qm

∂xn

)
−

2φ
c2 vm Amk

]
,

(2.148)
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F ·i0·
√
g00
=
giαF0α
√
g00
= hik

(
∗∂φ

∂xk +
1
c

∗∂qk

∂t

)
−
φ

c2 F i, (2.149)

F ik = giαgkβFαβ = himhkn
(
∗∂qm

∂xn −
∗∂qn

∂xm

)
−

2φ
c

Aik, (2.150)

where (2.149, 2.150) are the chr.inv.-projections of the curl Fµν. Re-
spectively, the chr.inv.-projections of its dual pseudotensor F∗αβ are

F∗·i0·
√
g00
=
g0αF∗αi

√
g00

= εikm
[

1
2

(
∗∂qk

∂xm −
∗∂qm

∂xk

)
−
φ

c
Akm

]
, (2.151)

F∗ik = εikm
(
φ

c2 Fm −
∗∂φ

∂xm −
1
c

∗∂qm

∂t

)
, (2.152)

where F∗·i0· = g0αF∗αi = g0αEαiµνFµν can be calculated using the men-
tioned components of the curl Fµν (2.143–2.148).

2.6 Laplace’s operator and d’Alembert’s operator

Laplace’s operator, known as the Laplacian, is the three-dimensional
derivation operator having the following form

∆ = ∇∇ = ∇2 = −gik ∇i∇k . (2.153)

Its four-dimensional generalization in a pseudo-Riemannian space
is d’Alembert’s general covariant operator

□ = gαβ ∇α∇β . (2.154)

In the Minkowski space, the operators take the form

∆ =
∂2

∂x1∂x1 +
∂2

∂x2∂x2 +
∂2

∂x3∂x3 , (2.155)

□ =
1
c2

∂2

∂t2 −
∂2

∂x1∂x1 −
∂2

∂x2∂x2 −
∂2

∂x3∂x3 =
1
c2

∂2

∂t2 − ∆ . (2.156)

Our task is to apply d’Alembert’s operator to scalar and vector fields
in a pseudo-Riemannian space, and also to present the results in the chr.
inv.-form. At first, we apply d’Alembert’s operator to a four-dimensional
scalar field φ, because in this case the calculations are much simpler (the
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absolute derivative of a scalar field ∇αφ does not contain the Christoffel
symbols, so it becomes the ordinary derivative)

□φ = gαβ ∇α∇β φ = gαβ
∂φ

∂xα

(
∂φ

∂xβ

)
= gαβ

∂2φ

∂xα∂xβ
. (2.157)

At first, we formulate the components of the fundamental metric
tensor in terms of chronometric invariants. For the gik component, ac-
cording to (1.18), we have gik =−hik. The g0i components are obtained
from the linear velocity of the space rotation vi =−cg0i√g00

g0i = −
1

c
√
g00

vi. (2.158)

The g00 component can be obtained, based on the main property of
the fundamental metric tensor, which is gασgβσ = gβα. Setting α= β= 0
in the mentioned property, we obtain

g0σg
0σ = g00g

00 + g0ig
0i = δ0

0 = 1, (2.159)

then, taking into account that

g00 =

(
1 −

w
c2

)2
, g0i = −

1
c
vi

(
1 −

w
c2

)
, (2.160)

we obtain the formula

g00 =
1(

1 − w
c2

)2

(
1 −

1
c2 vi v

i
)
. (2.161)

Substituting the obtained formulae into □φ (2.157) and replacing
the ordinary derivation operators with the chr.inv.-derivation operators,
we obtain the d’Alembertian of the scalar field in the form, expressed
through only chronometrically invariant quantities

□φ =
1
c2

∗∂2φ

∂t2 − hik
∗∂2φ

∂xi∂xk =
∗□φ , (2.162)

where, in contrast to the ordinary operators, ∗□ is the chr.inv.-d’Alem-
bert operator, and ∗∆ is the chr.inv.-Laplace operator

∗□ =
1
c2

∗∂2

∂t2 − hik
∗∂2

∂xi∂xk , (2.163)



62 Chapter 2 Basics of Tensor Algebra and Analysis

∗∆ = −gik ∗∇i
∗∇k = hik

∗∂2

∂xi∂xk . (2.164)

So forth, we are going to apply d’Alembert’s operator to an arbitrary
four-dimensional vector field Aα

□Aα = gµν ∇µ∇ν Aα. (2.165)

Since □Aα is a four-dimensional vector, the chr.inv.-projections of
this quantity are calculated as for any vector

T = bσ□Aσ = bσ gµν ∇µ∇ν Aσ, (2.166)

Bi = hi
σ□Aσ = hi

σ g
µν ∇µ∇ν Aσ. (2.167)

In general, to obtain the d’Alembertian in the chr.inv.-form for a vec-
tor field in a pseudo-Riemannian space is not a trivial task, because the
Christoffel symbols are not zeroes in a pseudo-Riemannian space, so the
auxiliary formulae for the chr.inv.-projections of the second derivatives
take dozens of pages*.

After some difficult algebra, we obtain the required formulae for
the chr.inv.-projections of the d’Alembertian of the vector field Aα in
the four-dimensional pseudo-Riemannian space (space-time of General
Relativity). The formulae that we have obtained have the form

T = ∗□φ −
1
c3

∗∂

∂t
(
Fk qk) − 1

c3 Fi

∗∂qi

∂t
+

1
c2 F i

∗∂φ

∂xi +

+ hik∆m
ik

∗∂φ

∂xm − hik 1
c

∗∂

∂xi

[
(Dkn + Akn) qn] + D

c2

∗∂φ

∂t
−

−
1
c

Dk
m

∗∂qm

∂xk +
2
c3 Aik F iqk +

φ

c4 Fi F i −
φ

c2 Dmk Dmk −

−
D
c3 Fm qm −

1
c
∆m

kn Dk
m qn +

1
c

hik∆m
ik (Dmn + Amn) qn,

(2.168)

*This is one of the reasons why practical applications and theoretical problems of
the electromagnetic field theory are in most cases calculated in a Galilean reference
frame in the Minkowski space (space-time of Special Relativity), where the Christoffel
symbols are zeroes. As a matter of fact, the general covariant notation hardly permits
unambiguous interpretation of calculation results, unless they are formulated with phys-
ically observable quantities (chronometric invariants) or demoted to a simple specific
case, like that in the Minkowski space, for instance.
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Bi = ∗□Ai +
1
c2

∗∂

∂t

[(
Di

k + A·ik·
)

qk
]
+

D
c2

∗∂qi

∂t
+

+
1
c2

(
Di

k + A·ik·
) ∗∂qk

∂t
−

1
c3

∗∂

∂t
(
φF i) − 1

c3 F i
∗∂φ

∂t
+

+
1
c2 F k

∗∂qi

∂xk −
1
c

(
Dmi + Ami

) ∗∂φ
∂xm +

1
c4 qkFk F i+

+
1
c2 ∆

i
km qmF k −

φ

c3 DF i +
D
c2

(
Di

n + A·in·
)

qn−

− hkm
{
∗∂

∂xk

(
∆i

mn qn
)
+

1
c

∗∂

∂xk

[
φ
(
Di

m + A·im·
)]
+

+
(
∆i

kn∆
n
mp − ∆

n
km∆

i
np

)
q p +

φ

c

[
∆i

kn
(
Dn

m + A·nm·
)
−

− ∆n
km

(
Di

n + A·in·
)]
+ ∆i

kn

∗∂qn

∂xm − ∆
n
km

∗∂qi

∂xn

}
,

(2.169)

where ∗□φ and ∗□qi are the results of applying the chr.inv.-d’Alembert
operator (2.163) to the quantities φ= A0√

g00
and qi = Ai, which, in turn,

are the chr.inv.-projections of the vector Aα,

∗□φ =
1
c2

∗∂2φ

∂t2 − hik
∗∂2φ

∂xi∂xk , (2.170)

∗□qi =
1
c2

∗∂2qi

∂t2 − hkm
∗∂2qi

∂xk∂xm . (2.171)

The main criterion for correct calculations in such a complicated
case as here (the chr.inv.-projections of the d’Alembertian of a vector
field, which resulted in the formulae 2.168 and 2.169) is Zelmanov’s
rule of chronometric invariance: “Correct calculations make all the
terms in the final equations chronometrically invariant quantities. That
is, they consist only of chr.inv.-quantities, their chr.inv.-derivatives, and
also of the chr.inv.-properties of the reference space. If at least one error
was made in the calculations, the terms of the final equations will not
be chronometric invariants.”

The d’Alembertian of a tensor field, equated to zero or not zero,
gives the d’Alembert equations for this field. From a physical point of
view, these are the equations of propagation of the field waves. If the
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d’Alembertian of a field is not zero, these are the equations of wave prop-
agation enforced by the field-inducing sources (the so-called d’Alembert
equations with sources). For instance, the sources of an electromagnetic
field are electric charges and currents. If the d’Alembert operator of a
field is zero, then these are the equations of free wave propagation not re-
lated to any sources (the d’Alembert equations without sources). If the
space-time region under consideration, besides the tensor field in the
question, is also filled with another medium, then the d’Alembert equa-
tions will have an additional term or terms characterizing the medium,
which can be obtained from the equations that determine it.

2.7 Conclusions

We are now ready to outline the results of this Chapter. Apart from
general knowledge of tensors and tensor algebra, we have obtained some
tools to facilitate our calculations in the next Chapters. The equality to
zero of the absolute directional derivative of the dynamic vector of a
particle along its trajectory sets the equations of motion of the particle.
The equality to zero of the divergence of a vector field sets the Lorenz
condition and the continuity equation for the field. The equality to zero
of the divergence of a 2nd rank symmetric tensor sets the conservation
law, and the equality to zero of a 2nd rank antisymmetric tensor (and
also of its dual pseudotensor) set the Maxwell equations. The curl of a
vector field, applied to an electromagnetic field, is the electromagnetic
field tensor (Maxwell tensor). The d’Alembert equations for a field are
the equations of propagation of the field waves.

This is a short list of possible applications of the mathematical ap-
paratus at our disposal. Therefore, if we now come across an antisym-
metric tensor or a differential operator, we can simply use the templates
we have already obtained in this Chapter.



Chapter 3 Charged Particles in
the Pseudo-Riemannian Space

3.1 Problem statement

In this Chapter, we will create a theory of the electromagnetic field and
charged particles in the four-dimensional pseudo-Riemannian space,
which is the basic space-time of General Relativity. The peculiarity that
makes our theory different from the ordinary relativistic electrodynam-
ics, is that all equations of the theory will be given in the chr.inv.-form,
i.e., expressed through physically observable quantities.

An electromagnetic field is usually considered as a vector field of the
electromagnetic four-dimensional potential Aα in the four-dimensional
pseudo-Riemannian space. Its time component is known as the scalar
electromagnetic potential φ, and its spatial components make up the so-
called vector electromagnetic potential Ai. The four-dimensional elec-
tromagnetic potential Aα in CGSE and Gaussian systems of units has
the dimension

Aα [gram1/2 cm1/2 sec−1]. (3.1)

It is obvious that the components φ and Ai have the same dimension.
Therefore, when studying an electromagnetic field, we have a substan-
tial difference from studying a gravitational field: according to the the-
ory of chronometric invariants, the gravitational inertial force F i and
the gravitational potential w (1.38) are only functions of the geomet-
ric properties of the space, while electromagnetic fields (fields of the
electromagnetic potential Aα) have not yet received a “geometric inter-
pretation”, so we have to study an electromagnetic field as an external
vector field introduced into the space.

The equations of Classical Electrodynamics—Maxwell’s equations
that determine the relationship between the electric and magnetic com-
ponents of the electromagnetic field — were obtained long before theo-
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retical physics adopted the terms of Riemannian geometry and even the
Minkowski space of Special Relativity. Later, when electrodynamics
was set forth in Minkowski space under the name relativistic electro-
dynamics, Maxwell’s equations were obtained in a four-dimensional
form. Then Maxwell’s equations were obtained in the general covari-
ant form, acceptable for any pseudo-Riemannian space. But, having the
general covariant form, Maxwell’s equations became less visual, which
was the advantage of Classical Electrodynamics. On the other hand,
four-dimensional equations in the Minkowski space can simply be rep-
resented in terms of their scalar (time) and vector (spatial) components,
since in aGalilean reference frame they are observable quantities by def-
inition. But when we consider an inhomogeneous, anisotropic, curved,
rotating and deforming pseudo-Riemannian space, the problem of com-
paring the vector and scalar components of the general covariant equa-
tions with the equations of Classical Electrodynamics becomes non-
trivial. Then the following question arises: what quantities are physi-
cally observable in relativistic electrodynamics?

Therefore, the equations of relativistic electrodynamics must be for-
mulated in the pseudo-Riemannian space, in terms of the physically ob-
servable components of the electromagnetic field potential as well as
the physically observable properties of the space. We will solve this
problem using the mathematical apparatus of chronometric invariants,
i.e., projecting general covariant quantities onto the time line and the
spatial section associated with a real observer. The result that we are
going to get with this method will be an observable generalization of
the fundamental quantities and laws of relativistic electrodynamics. In
addition, Classical Electrodynamics will be obtained as a special case
taking into account the effects of the physical and geometric properties
of the reference space of the observer.

3.2 The observable components of the electromagnetic field ten-
sor. The field invariants

In accordance with the basics of electrodynamics, the tensor of an elec-
tromagnetic field is the curl of the four-dimensional potential Aα of the
field. The electromagnetic field tensor is also referred to as Maxwell’s
tensor

Fµν = ∇µ Aν − ∇ν Aµ =
∂Aν
∂xµ
−
∂Aµ
∂xν

. (3.2)
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It is easy to see that this formula is a general covariant generalization
of the three-dimensional quantities of Classical Electrodynamics

E⃗ = −
−→
∇φ −

1
c
∂A⃗
∂t

, H⃗ = rot A⃗ , (3.3)

where E⃗ and H⃗ are, respectively, the strength vectors of the electric and
magnetic field components, the scalar φ is the scalar potential of the
electromagnetic field, the vector A⃗ is the spatial vector-potential of the
electromagnetic field, and

−→
∇ = ı⃗

∂

∂x
+ ȷ⃗

∂

∂y
+ k⃗

∂

∂z
(3.4)

is the gradient operator in the three-dimensional Euclidean space.
At first, we are going to determine those components of the electro-

magnetic field tensor Fαβ, which are physically observable quantities in
the four-dimensional pseudo-Riemannian space. Then, wewill find a re-
lationship between the observable quantities and the electric strength E⃗
and the magnetic strength H⃗ of the electromagnetic field in the frame-
work of Classical Electrodynamics. Then the strength vectors will be
obtained in the pseudo-Riemannian space, which in general is inhomo-
geneous, anisotropic, curved, rotating and deforming.

It is important to pay attention to the following. Since in the Min-
kowski space, i.e., in the space-time of Special Relativity, in an inertial
reference frame (the one that moves linearly with a constant velocity)
the metric is

ds2 = c2dt2 − dx2 − dy2 − dz2, (3.5)

and, hence, the components of the fundamental metric tensor are

g00 = 1 , g0i = 0 , g11 = g22 = g33 = −1 . (3.6)

there is no difference between the covariant and contravariant compo-
nents of Aα (in particular, this is why all calculations in the Minkowski
space are much simpler)

φ = A0 = A0, Ai = −Ai. (3.7)

In the pseudo-Riemannian space (and in Riemannian spaces in gen-
eral) there is a difference, because the metric has a general form. There-
fore, the scalar potential and vector-potential of an electromagnetic field
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must be defined as the chr.inv.-projections (physically observable com-
ponents) of the four-dimensional electromagnetic field potential Aα

φ = bαAα =
A0
√
g00

, qi = hi
σAσ = Ai. (3.8)

The other components of Aα, are not chr.inv.-quantities. They are
formulated with the φ and qi as follows

A0 =
1

1 − w
c2

(
φ +

1
c
vi qi

)
, Ai = −qi −

φ

c
vi . (3.9)

Note that, according to the theory of chronometric invariants, the
covariant chr.inv.-vector qi is obtained from the contravariant chr.inv.-
vector qi by lowering the index using the chr.inv.-metric tensor hik, i.e.,
qi = hik qk. On the contrary, the ordinary covariant vector Ai, which is
not a chr.inv.-quantity, is obtained as a result of lowering the index using
the fundamental metric tensor: Ai = giαAα.

According to the formula for the square of an arbitrary vector (2.39),
the square of the potential Aα in the accompanying reference frame is

AαAα = gαβ AαAβ = φ2 − hik qiqk = φ2 − q2, (3.10)

and is real if φ2 > q2, imaginary if φ2 < q2, and zero if φ2 = q2.
Now, using the components of the potential Aα (3.8, 3.9) in the def-

inition of the electromagnetic field tensor Fαβ (3.2), then formulating
the ordinary derivatives with the chr.inv.-derivatives (1.33) and using
the components of the curl of an arbitrary vector field (2.143–2.150),
we obtain the chr.inv.-projections of the field tensor Fαβ

F ·i0·
√
g00
=
giαF0α
√
g00
= hik

(
∗∂φ

∂xk +
1
c

∗∂qk

∂t

)
−
φ

c2 F i, (3.11)

F ik = giαgkβFαβ = himhkn
(
∗∂qm

∂xn −
∗∂qn

∂xm

)
−

2φ
c

Aik. (3.12)

Let us denote the chr.inv.-projections of the electromagnetic field
tensor, as in Classical Electrodynamics

E i =
F ·i0·
√
g00

, H ik = F ik, (3.13)
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so their covariant (lower-index) chr.inv.-counterparts are

Ei = hik Ek =
∗∂φ

∂xi +
1
c

∗∂qi

∂t
−
φ

c2 Fi , (3.14)

Hik = him hkn Hmn =
∗∂qi

∂xk −
∗∂qk

∂xi −
2φ
c

Aik , (3.15)

while the mixed components H ·mk· =−Hm·
·k are obtained from H ik using

the chr.inv.-metric tensor hik, so that H ·mk· = hki H im. The space deforma-
tion tensor Dik =

1
2

∗∂hik
∂t (1.40) is also present in the formulae, but in a

hidden form: it appears in the formulae, when we substitute the compo-
nents qk = hkm qm into the time derivatives.

We can also formulate other components of the electromagnetic
field tensor Fαβ with its chr.inv.-projections E i and H ik (3.11), using
the formulae for the components of an arbitrary antisymmetric tensor
(2.112–2.115). We can do it, since the general formulae (2.112–2.115)
contain E i and H ik in “implicit form”, regardless of whether they are
components of a curl or any other kind of antisymmetric tensor.

In the Minkowski space, since there is no acceleration F i, rotation
Aik and deformations Dik, the formula for Ei becomes

Ei =
∂φ

∂xi +
1
c
∂Ai

∂t
, (3.16)

or, in the three-dimensional vector form,

E⃗ =
−→
∇φ +

1
c
∂A⃗
∂t

, (3.17)

which, apart from the sign, matches the formula for E⃗ in Classical Elec-
trodynamics.

Now, we formulate the electric and magnetic strengths through the
components of the field pseudotensor F∗αβ, which is dual to theMaxwell
tensor F∗αβ = 1

2 EαβµνFµν (2.123). So forth, in accordance with (2.124),
the chr.inv.-projections of the pseudotensor F∗αβ are

H∗i =
F∗·i0·
√
g00

, E∗ik = F∗ik. (3.18)

Using the formulae for the components of an arbitrary pseudotensor
F∗αβ, which we have obtained in Chapter 2 (2.125–2.131), and also the
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above formulae for Ei and Hik (3.14, 3.15), we obtain expanded formu-
lae for H∗i and E∗ik, which have the form

H∗i =
1
2
εimn

(
∗∂qm

∂xn −
∗∂qn

∂xm −
2φ
c

Amn

)
=

1
2
εimnHmn , (3.19)

E∗ik = εikn
(
φ

c2 Fn −
∗∂φ

∂xn −
1
c

∗∂qn

∂t

)
= − εiknEn . (3.20)

It is easy to see that the following pairs of tensors are dual conju-
gates: H∗i and Hmn, E∗ik and Em. The chr.inv.-pseudovector H∗i (3.19)
includes the term

1
2
εimn

(
∗∂qm

∂xn −
∗∂qn

∂xm

)
=

1
2
εimn (∗∇n qm −

∗∇m qn
)
, (3.21)

which is the chr.inv.-curl of the three-dimensional vector field qm. There
is also the term

1
2
εimn 2φ

c
Amn =

2φ
c
Ω∗i, (3.22)

where Ω∗i = 1
2 ε

imnAmn is the chr.inv.-pseudovector of the angular ve-
locity with which the space rotates. In a Galilean reference frame in
the Minkowski space (since there is no acceleration, rotation and de-
formations), the obtained formula for the magnetic strength chr.inv.-
pseudovector H∗i (3.19) takes the form

H∗i =
1
2
εimn

(
∂qm

∂xn −
∂qn

∂xm

)
, (3.23)

which in the three-dimensional vector form is

H⃗ = rot A⃗. (3.24)

We see that the structure of a pseudo-Riemannian space affects an
electromagnetic field, located in it. As a result, the physically observ-
able chr.inv.-vectors of the electric strength Ei (3.14) and the magnetic
strength H∗i (3.19) of the electromagnetic field depend on the gravita-
tional potential and rotation of the space.

The same effect will as well appear in theMinkowski space, if a non-
inertial reference frame (which rotates and moves with acceleration) is
assumed to be the reference frame of the observer. But in the Minkow-
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ski space, we can always find a Galilean reference frame (which is not
true in a pseudo-Riemannian space), because theMinkowski space itself
does not accelerate reference frames and neither rotates nor deforms it.
Therefore, such effects in the Minkowski space are strictly relative and,
therefore, can be removed by coordinate transformations.

In relativistic electrodynamics, there are two invariants characteriz-
ing the electromagnetic field. They are called the electromagnetic field
invariants and formulated as follows

J1 = FµνF µν = 2F0i F0i + Fik F ik, (3.25)

J2 = FµνF∗µν = 2F0i F∗0i + Fik F∗ik. (3.26)

The first invariant is a scalar, while the second is a pseudoscalar.
Formulating themwith the components of the electromagnetic field ten-
sor, we obtain

J1 = Hik H ik − 2Ei E i, J2 = ε
imn (Em Hin − Ei Hnm) , (3.27)

and, using the formulae for the components of the field pseudotensor
F∗µν, which we have obtained in Chapter 2, we can re-write the field
invariants in the following form

J1 = −2
(
Ei E i − H∗i H∗i

)
, J2 = −4Ei H∗i. (3.28)

Since the above quantities J1 and J2 are invariants, we arrive at the
following conclusions:

a) If the squares of the electric and magnetic strengths are equal
E2 =H∗2 in one reference frame, then this equality remains valid
in any other reference frame;

b) If the electric and magnetic strengths are orthogonal EiH∗i = 0 in
one reference frame, then this orthogonality remains valid in any
other reference frame.

An electromagnetic field, where the condition E2 =H∗2 and/or the
condition EiH∗i = 0 are true, i.e., one or both of the field invariants
(3.28) are zeroes, is known as an isotropic electromagnetic field. In
this case, the term “isotropic” does not mean the location of this field in
the light-like region of the pseudo-Riemannian space (as is assumed in
geometry), but rather the property of the field to radiate equally in any
direction in the three-dimensional space (spatial section).
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The electromagnetic field invariants can be also formulated with the
chr.inv.-derivatives of the scalar chr.inv.-potential φ and the vector chr.
inv.-potential qi (3.8) as well as the chr.inv.-properties of the reference
space of the observer. After some algebra based on the formulae (3.27),
we obtain the desired formulae

J1 = 2
[
himhkn

(
∗∂qi

∂xk −
∗∂qk

∂xi

)
∗∂qm

∂xn − hik
∗∂φ

∂xi

∗∂φ

∂xk −

−
2
c

hik
∗∂φ

∂xi

∗∂qk

∂t
−

1
c2 hik

∗∂qi

∂t

∗∂qk

∂t
+

8φ
c2 Ω∗iΩ

∗i −

−
2φ
c
εimnΩ∗m

∗∂qi

∂xn +
2φ
c2

∗∂φ

∂xi F i +
2φ
c3

∗∂qi

∂t
F i −

φ

c4 Fi F i
]
,

(3.29)

J2 =
1
2

[
εimn

(
∗∂qm

∂xn −
∗∂qn

∂xm

)
−

4φ
c
Ω∗i

]
×

×

(
∗∂φ

∂xi +
1
c

∗∂qi

∂t
−
φ

c2 Fi

)
.

(3.30)

We can find physical conditions specific of isotropic electromag-
netic fields, by setting the formulae (3.29, 3.30) equal to zero. Doing
this, we see that the conditions for the equality of the electric and mag-
netic strengths E2 =H∗2 and their orthogonality EiH∗i = 0 in a pseudo-
Riemannian space depend not only on the properties of the electromag-
netic field itself (the scalar potential φ and the vector potential qi), but
also on the acceleration F i, rotation Aik and deformation Dik of the space
itself. In particular, the vectors Ei and H∗i are orthogonal, if the space is
holonomic Ω∗i = 0, and the field of the electromagnetic vector potential
qi does not rotate εimn

( ∗∂qm
∂xm −

∗∂qn
∂xn

)
= 0.

3.3 Maxwell’s equations and their observable components. Con-
servation of electric charge. Lorenz’ condition

In Classical Electrodynamics, the correlations of the electric strength
E⃗ [gram1/2 cm−1/2 sec−1] of an electromagnetic field to its magnetic
strength H⃗ [gram1/2 cm−1/2 sec−1] are determined by Maxwell’s equa-
tions, which had originally been derived from a generalization of ex-
perimental data. In the middle of the 19th century, Maxwell showed
that if an electromagnetic field is induced in emptiness by given charges
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and currents, then the resulting field is determined by the two groups of
equations [20]

rot H⃗ −
1
c
∂E⃗
∂t
=

4π
c
ȷ⃗

divE⃗ = 4πρ

 I , (3.31a)

rot E⃗ +
1
c
∂H⃗
∂t
= 0

divH⃗ = 0

 II , (3.31b)

where ρ [gram1/2 cm−3/2 sec−1] is the electric charge density (namely
— the amount of the charge e [gram1/2 cm3/2 sec−1] within 1 cm3) and ȷ⃗
[gram1/2 cm−1/2 sec−2] is the current density vector. The equations con-
taining the field-inducing sources ρ and ȷ⃗ are known as the 1st group of
the Maxwell equations, and the equations that do not contain the field
sources are known as the 2nd group of the Maxwell equations.

The first equation in the 1st group is Biot-Savart’s law, the second is
Gauss’ theorem, both in differential notation. The first equation in the
2nd group is the differential notations of Faraday’s law of electromag-
netic induction, and the second is the condition according to which no
magnetic charges exist. In total, there are 8 equations (four vector and
four scalar ones) in 10 unknowns: three components of E⃗, three com-
ponents of H⃗, three components of ȷ⃗, and one component of ρ.

A correlation between the field sources ρ and ȷ⃗ is set by the law of
conservation of electric charge

∂ρ

∂t
+ div ȷ⃗ = 0 , (3.32)

which is a mathematical notation of the experimental fact that an elec-
tric charge cannot be destroyed, but is merely re-distributed between
charged bodies in contact.

Now we have a system of 9 equations in 10 unknowns, so the system
defining the field and its sources is still indefinite. The 10th equation that
makes the system definite (the number of equations and unknowns must
be the same) is Lorenz’ condition that connects the scalar and vector
potentials of the field as follows

1
c
∂φ

∂t
+ divA⃗ = 0 . (3.33)
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The Lorenz condition is derived from the fact that the scalar poten-
tial φ and the vector potential A⃗ of any electromagnetic field, related to
the strength vectors E⃗ and H⃗ with (3.3), are defined ambiguously: E⃗ and
H⃗ in (3.3) remain unchanged, if we replace

A⃗ = A⃗′ +
−→
∇Ψ , φ = φ′ −

1
c
∂Ψ

∂t
, (3.34)

where Ψ is an arbitrary scalar. Obviously, the ambiguous definition of
the φ and A⃗ permits other correlations between the quantities except for
the Lorenz condition. Nevertheless, it is the Lorenz condition, which
enables the transformation of the Maxwell equations into wave equa-
tions. This is how the Lorenz condition does the transformation.

The equation divH⃗ = 0 (3.31) is satisfied, if we assume H⃗ = curlA⃗.
In this case, the first equation in the 1st group (3.31) takes the form

rot
E⃗ +

1
c
∂A⃗
∂t

 = 0 , (3.35)

which has the solution

E⃗ = −
−→
∇φ −

1
c
∂A⃗
∂t

. (3.36)

Substituting H⃗ = curl A⃗ and E⃗ (3.36) into the 1st group of the Max-
well equations, we obtain

∆ A⃗ −
1
c2

∂2A⃗
∂t2 −

−→
∇

(
divA⃗ +

1
c
∂φ

∂t

)
= −

4π
c
ȷ⃗ , (3.37)

∆φ +
1
c
∂

∂t

(
divA⃗

)
= −4πρ , (3.38)

where ∆= ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 is the ordinary Laplace operator.
Imposing the Lorentz condition (3.33) on the potentials φ and A⃗, we

transform the equations of the 1st group to the form

□φ = −4πρ , (3.39)

□ A⃗ = −
4π
c
ȷ⃗ , (3.40)

where □= 1
c2

∂2

∂t2 −∆ is the ordinary d’Alembert operator.
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Applying the d’Alembert operator to a field gives the equations of
propagation of the field waves (see §2.6). For this reason, the obtained
result means that if the Lorenz condition is true, then the 1st group of
the Maxwell equations (3.31) is a system of the equations of propaga-
tion of waves of the scalar and vector electromagnetic field potentials
(in the presence of the field-inducing sources — electric charges and
currents). The equations will be obtained in the next section, §3.4.

Next, we are going to consider the Maxwell equations in the four-
dimensional pseudo-Riemannian space to obtain them in the chr.inv.-
form, i.e., formulated with physically observable quantities.

In the four-dimensional pseudo-Riemannian space, the Lorenz con-
dition has the general covariant form

∇σ Aσ =
∂Aσ

∂xσ
+ ΓσσµAµ = 0 , (3.41)

which is the condition of conservation of the four-dimensional elec-
tromagnetic field potential. The law of conservation of electric charge
(continuity equation) is

∇σ jσ = 0 , (3.42)

where jα is the four-dimensional current vector known as the shift cur-
rent. The chr.inv.-projections of the current vector jα are the electric
charge density

ρ =
1
c

j0
√
g00

, (3.43)

and the spatial current density j i. Using the chr.inv.-formula for the di-
vergence of a vector field (2.107), we obtain the Lorenz condition (3.41)
and the continuity equation (3.42) in the chr.inv.-form

1
c

∗∂φ

∂t
+
φ

c
D + ∗∇i qi −

1
c2 Fi qi = 0 , (3.44)

∗∂ρ

∂t
+ ρD + ∗∇i j i −

1
c2 Fi j i = 0 . (3.45)

Here, D= hikDik =Dn
n =

∗∂ ln
√

h
∂t is the trace of the space deforma-

tions rate tensor (1.40), the physical sense of which is the relative ex-
pansion rate of an elementary volume. The sign ∗∇ stands for a chr.inv.-
derivative, determined by analogy with the sign∇ of a general covariant
(absolute) derivative, see formulae (1.48–1.54).
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Because Fi (1.38) contains the first derivative of gravitational poten-
tial w= c2(1−

√
g00), the term 1

c2 Fi qi takes into account the fact that the
flow of time is different at the opposite walls of an elementary volume.
The formula for the gravitational inertial force Fi (1.38) also takes into
account the non-stationarity of the space rotation (if any).

Besides, since the chr.inv.-derivation operators (1.33) have the form
∗∂

∂t
=

1

1 − w
c2

∂

∂t
,

∗∂

∂xi =
∂

∂xi −
1
c2 vi

∗∂

∂t
, (3.46)

the condition of conservation of the vector field Aα, namely— the equa-
tions (3.44, 3.45), directly depend on the gravitational potential and the
velocity with which the space rotates.

The chr.inv.-derivatives
∗∂φ
∂t and

∗∂ρ
∂t are the observed time variations

of the chr.inv.-quantities φ and ρ. The chr.inv.-quantities φD and ρD are
the observed time variations of the spatial volume of the φ and ρ.

If there are no gravitational inertial forces, and the space does not
rotate or deform, then the obtained chr.inv.-formulae for the Lorenz con-
dition (3.44) and the charge conservation law (3.45) take the form

1
c
∂φ

∂t
+
∂qi

∂xi −
∂ ln
√

h
∂xi qi = 0 , (3.47)

∂ρ

∂t
+
∂ j i

∂xi −
∂ ln
√

h
∂xi j i = 0 , (3.48)

which in a Galilean reference frame in the Minkowski space become

1
c
∂φ

∂t
+
∂qi

∂xi = 0 ,
∂ρ

∂t
+
∂ j i

∂xi = 0 , (3.49)

or, in the ordinary vector notation

1
c
∂φ

∂t
+ divA⃗ = 0 ,

∂ρ

∂t
+ div ȷ⃗ = 0 , (3.50)

which completely matches the Lorenz condition (3.33) and the charge
conservation law (3.32) in Classical Electrodynamics.

Let us turn to theMaxwell equations. In a pseudo-Riemannian space
each pair of the equations merge into a single general covariant equation

∇σ F µσ =
4π
c

jµ, ∇σ F∗µσ = 0 , (3.51)
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where F µσ is the contravariant (upper-index) form of the electromag-
netic field tensor, and F∗µσ is its dual pseudotensor. Using the chr.inv.-
formulae for the divergence of an antisymmetric tensor of the 2nd rank
(2.121, 2.122) and for its dual pseudotensor (2.135, 2.136), we arrive at
the Maxwell equations in the chr.inv.-form

∗∇i E i −
1
c

H ikAik = 4πρ

∗∇k H ik −
1
c2 Fk H ik −

1
c

(
∗∂E i

∂t
+ DE i

)
=

4π
c

j i

 I , (3.52)

∗∇i H∗i −
1
c

E∗ikAik = 0

∗∇k E∗ik −
1
c2 Fk E∗ik −

1
c

(
∗∂H∗i

∂t
+ DH∗i

)
= 0

 II . (3.53)

The above chr.inv.-Maxwell equations were first obtained, indepen-
dently, by José del Prado andNikolai Pavlov [25] (Zelmanov asked these
students to do it, and explained how to do it).

Now, we transform the chr.inv.-Maxwell equations to express them
through Ei and H∗i as unknowns. Getting the Ei and H∗i from their
definitions (2.111, 2.124)

H∗i =
1
2
εimnHmn, (3.54)

E∗ik = εikm
(
φ

c2 Fm −
∗∂φ

∂xm −
1
c

∗∂qm

∂t

)
= − εikmEm , (3.55)

and multiplying the first equation by εipq, we obtain

εipqH∗i =
1
2
εipqεimn Hmn =

1
2

(
δ

p
mδ

q
n − δ

q
mδ

p
n

)
Hmn = H pq. (3.56)

Substituting the result as H ik = εmikH∗m into the first equation of the
1st group (3.52), we bring it to the form

∗∇i E i −
2
c
Ω∗m H∗m = 4πρ , (3.57)

where Ω∗i = 1
2 ε

imnAmn is the chr.inv.-pseudovector of the angular ve-
locity with which the space rotates. Substituting E∗ik =−εikmEm (3.55)
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into the first equation of the 2nd group (3.53), we obtain

∗∇i H∗i +
2
c
Ω∗m Em = 0 . (3.58)

Then, substituting H ik = εmikH∗m into the second equation of the 2nd
group (3.52) we obtain

∗∇k
(
εmikH∗m

)
−

1
c2 Fk ε

mikH∗m −

−
1
c

 ∗∂E i

∂t
+
∗∂ ln
√

h
∂t

E i
 = 4π

c
j i

(3.59)

and, multiplying both sides of the equation by
√

h and taking ∗∇k ε
mik = 0

into account, we bring this formula (3.59) to the form

εikm ∗∇k
(
H∗m
√

h
)
−

1
c2 ε

ikmFk H∗m
√

h −

−
1
c

∗∂

∂t

(
E i
√

h
)
=

4π
c

j i
√

h
(3.60)

or, in the other notation

εikm ∗∇̃k
(
H∗m
√

h
)
−

1
c

∗∂

∂t

(
E i
√

h
)
=

4π
c

j i
√

h , (3.61)

where j i
√

h is the volume density of the current j i, and ∗∇̃k =
∗∇k −

1
c2 Fk

is the physical chr.inv.-divergence (2.106), which takes into account the
fact that the flow of time is different at the opposite walls of an elemen-
tary volume.

The obtained equation (3.60) is the chr.inv.-notation for the Biot-
Savart law in the pseudo-Riemannian space.

Substituting E∗ik =−εikmEm (3.55) into the second equation of the
2nd group (3.53), after similar transformations we obtain

εikm ∗∇̃k
(
Em
√

h
)
+

1
c

∗∂

∂t

(
H∗i
√

h
)
= 0 , (3.62)

which is the chr.inv.-notation for the Faraday law of electromagnetic
induction in the pseudo-Riemannian space.

So, the final system of 10 chr.inv.-equations in 10 unknowns (two
groups of the Maxwell equations, the Lorenz condition, and the conti-
nuity equation), which completely determine an electromagnetic field
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and its sources in the pseudo-Riemannian space, is

∗∇i E i −
2
c
Ω∗m H∗m = 4πρ

εikm ∗∇̃k
(
H∗m
√

h
)
−

1
c

∗∂

∂t

(
E i
√

h
)
=

4π
c

j i
√

h

 I , (3.63)

∗∇i H∗i +
2
c
Ω∗m Em = 0

εikm ∗∇̃k
(
Em
√

h
)
+

1
c

∗∂

∂t

(
H∗i
√

h
)
= 0

 II , (3.64)

1
c

∗∂φ

∂t
+
φ

c
D + ∗∇̃i qi = 0 the Lorenz condition, (3.65)

∗∂ρ

∂t
+ ρD + ∗∇̃i j i = 0 the continuity equation. (3.66)

In a Galilean reference frame in the Minkowski space, the determi-
nant of the chr.inv.-metric tensor is

√
h= 1, so the space does not rotate

(Ω∗m = 0) or deform (Dik = 0), and it does not contain gravitational fields
(Fi = 0). In this case, the chr.inv.-Maxwell equations (3.63, 3.64) that
we have obtained in the pseudo-Riemannian space of General Relativ-
ity transform into the Maxwell equations in Classical Electrodynamics
written in the tensor form

∂E i

∂xi = 4πρ

eikm
(
∂H∗m
∂xk −

∂H∗k
∂xm

)
−

1
c
∂E i

∂t
=

4π
c

j i

 I , (3.67)

∂H∗i

∂xi = 0

eikm
(
∂Em

∂xk −
∂Ek

∂xm

)
−

1
c
∂H∗i

∂t
= 0

 II . (3.68)

The same equations, but written in the ordinary vector notation, are
similar to the classic Maxwell equations in the three-dimensional Eu-
clidean space (3.31). Besides, the chr.inv.-Maxwell equations obtained
in the four-dimensional pseudo-Riemannian space (3.64) show that if
the space does not rotate, then the chr.inv.-divergence of the magnetic
field strength is zero ∗∇i H∗i = 0. In other words, the magnetic compo-
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nent of an electromagnetic field remains unchanged, if the space is holo-
nomic. At the same time, the divergence of the electric field strength in
this case is not zero ∗∇i E i = 4πρ (3.63), so the electric component is
linked directly to the charge density ρ. Hence, a conclusion on “mag-
netic charge”, if it actually exists, should be linked directly to the field
of rotation of the space itself.

3.4 D’Alembert’s equations for the electromagnetic potential, and
their observable components

As we have already mentioned in Chapter 2, d’Alembert’s operator ap-
plied to a field gives the equations of propagation of the field waves.
For this reason, the d’Alembert equations for the scalar electromagnetic
potential φ are the wave propagation equations for the scalar field φ,
while for the spatial vector-potential A⃗ these are the wave propagation
equations for the vector field A⃗.

The general covariant d’Alembert equations for the electromagnetic
field potential Aα in the four-dimensional pseudo-Riemannian space
were obtained in the end-1950s by Stanyukovich [26] using the 1st group
of the general covariant Maxwell equations ∇σ F µσ = 4π

c jµ (3.51) and
the Lorenz condition ∇σ Aσ = 0 (3.41). Stanyukovich’s equations are

□Aα − Rα
β Aβ = −

4π
c

jα, (3.69)

where Rα
β = g

αµRσ
·µβσ is Ricci’s tensor (the contraction of the Riemann-

Christoffel curvature tensor Rα
·µβσ). The term Rα

β Aβ vanishes from the
left hand side of the equations, if the Ricci tensor is zero, so the space
metric satisfies Einstein’s field equations away from gravitating masses.
This term can be neglected in the case, where the space curvature is not
significant. But, even in the Minkowski space, the problems of physics
can be considered in the presence of acceleration and rotation. There-
fore, even in the framework of this approximation, it is possible to re-
veal, for example, the influence of the rotation of the observer’s refer-
ence body and the acting gravitational inertial force on the observed
propagation velocity of electromagnetic waves.

The reason for simplifications is that the chr.inv.-projections of the
d’Alembert equations in their complete form are a very difficult task to
deduce. The resulting equations will be so bulky tomake any unambigu-
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ous conclusions. Therefore, we will limit the scope of our work to trans-
forming the d’Alembert equations into the chr.inv.-tensor form for an
electromagnetic field in a non-inertial reference frame in theMinkowski
space. But this does not affect the other sections in this Chapter, where
we go back to the pseudo-Riemannian space of General Relativity.

Calculating the chr.inv.-projections of the d’Alembert equations

□Aα = −
4π
c

jα (3.70)

based on their general formulae (2.168, 2.169), we obtain

∗□φ −
1
c3

∗∂

∂t
(
Fk qk) − 1

c3 Fi

∗∂qi

∂t
+

1
c2 F i

∗∂φ

∂xi + hik∆m
ik

∗∂φ

∂xm −

− hik 1
c

∗∂

∂xi

(
Akn qn) + 1

c
hik∆m

ik Amn qn = 4πρ ,

(3.71)

∗□Ai +
1
c2

∗∂

∂t

(
A·ik·q

k
)
+

1
c2 A·ik·

∗∂qk

∂t
−

1
c3

∗∂
(
φF i)
∂t

−

−
1
c3 F i

∗∂φ

∂t
+

1
c2 F k

∗∂qi

∂xk −
1
c

Ami
∗∂φ

∂xm +
1
c2 ∆

i
km qmF k−

− hkm
{
∗∂

∂xk

(
∆i

mn qn
)
+

1
c

∗∂

∂xk

(
φA·im·

)
+

+
(
∆i

kn∆
n
mp − ∆

n
km∆

i
np

)
q p +

φ

c

(
∆i

kn A·nm· − ∆
n
km A·in·

)
+

+ ∆i
kn

∗∂qn

∂xm − ∆
n
km

∗∂qi

∂xn

}
=

4π
c

j i,

(3.72)

where we take into account the observable charge density ρ= g0α jα

c
√
g00

in
the space that does not deform, and in the linear approximation (with
higher-order terms withheld, because we assume that the field of grav-
itation and the field of the space rotation are weak).

We see that the physically observable chr.inv.-properties of the ref-
erence space (i.e., the quantities F i, Aik, Dik, ∆i

km) constitute some ad-
ditional “sources” that together with the electromagnetic field sources
φ and j i induce waves travelling along the electromagnetic field.

Let us now analyse the results. At first, consider the obtained equa-
tions (3.71, 3.72) in a Galilean reference frame in the Minkowski space.
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Here the metric takes the form as in the formula (3.5) and, therefore, the
chr.inv.-d’Alembert operator ∗□ (2.163) transforms into the ordinary
d’Alembert operator ∗□= 1

c2
∂2

∂t2 −∆=□. Then the obtained equations
(3.71, 3.72) take the simplest form

□φ = 4πρ , □qi = −
4π
c

j i, (3.73)

which completely matches the corresponding equations in Classical
Electrodynamics (3.39, 3.40).

Now we return to the obtained chr.inv.-d’Alembert equations (3.71,
3.72). To make their analysis easier we denote all terms on the left hand
side of the scalar equation (3.71) as T and those of the vector equation
(3.72) as Bi. Transpositioning the variables into their rightful positions
and expanding the formulae for ∗□ (2.163), we obtain

1
c2

∗∂2φ

∂t2 − hik ∗∇i
∗∇k φ = T + 4πρ , (3.74)

1
c2

∗∂2qi

∂t2 − hmk ∗∇m
∗∇k qi = Bi +

4π
c

j i, (3.75)

where hik ∗∇i
∗∇k =

∗∆ is the chr.inv.-Laplace operator. If the field poten-
tials φ and qi are stationary, then the d’Alembert equations become the
Laplace equations

∗∆φ = T + 4πρ , (3.76)

∗∆qi = Bi +
4π
c

j i, (3.77)

i.e., they characterize static states of the field.
A field is homogeneous along a direction, if its ordinary derivative

with respect to this direction is zero. A field in a Riemannian space is
homogeneous, if its general covariant derivative is zero. If a field is con-
sidered in the accompanying reference frame, then the observable inho-
mogeneity of the field is characterized by a non-zero chr.inv.-derivative
∗∇i of the field potential [9, 11–13]. On the contrary, if the chr.inv.-
derivative ∗∇i is non-zero, then the field is observed as homogeneous.

So, the chr.inv.-d’Alembert operator ∗□ is the difference between
the term characterizing the observable field non-stationarity and the
term characterizing the observable field inhomogeneity. If the electro-
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magnetic field is stationary and homogeneous, then the left hand side of
the d’Alembert equations (3.74, 3.75) is zero: the field does not generate
electromagnetic waves (it is not a wave field).

In an inhomogeneous stationary field (where ∗∇i , 0 and 1
c
∗∂
∂t = 0),

the d’Alembert equations (3.74, 3.75) characterize a standing wave

− hik ∗∇i
∗∇k φ = T + 4πρ , (3.78)

− hmk ∗∇m
∗∇k qi = Bi +

4π
c

j i. (3.79)

In a homogeneous non-stationary field (where ∗∇i = 0 and 1
c
∗∂
∂t , 0),

the d’Alembert equations describe the field change with time depending
on the field-inducing sources (charges and currents)

1
c2

∗∂2φ

∂t2 = T + 4πρ , (3.80)

1
c2

∗∂2qi

∂t2 = Bi +
4π
c

j i. (3.81)

In an inertial reference frame (where the Christoffel symbols are
zero), the general covariant derivative is equal to the ordinary derivative
∗∇iφ=

∗∂φ

∂x i , so the d’Alembert chr.inv.-scalar equation (3.74) is

1
c2

∗∂2φ

∂t2 − hik
∗∂2φ

∂xi∂xk = T + 4πρ . (3.82)

As is known from the oscillation theory in mathematical physics,
the term a in the ordinary d’Alembert equations

□φ =
1
a2

∂2φ

∂t2 + g
ik ∂2φ

∂xi∂xk (3.83)

is the absolute value of the three-dimensional velocity of elastic oscil-
lations propagating along the field φ.

Expanding the chr.inv.-derivatives (3.46), we bring the d’Alembert
scalar equation (3.82) to the form

1
c2

(
1 −

v2

c2

)
∗∂2φ

∂t2 − hik ∂2φ

∂xi∂xk +
2vk

c2 − w
∂2φ

∂xk∂t
+

+
1

c2 − w
hik ∂vk

∂xi

∂φ

∂t
+

1
c2 v

kFk
∂φ

∂t
= T + 4πρ ,

(3.84)
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where v2 = hik v
ivk, and the second chr.inv.-derivative with respect to

time formulates with the ordinary derivatives as follows
∗∂2φ

∂t2 =
1(

1 − w
c2

)2

∂2φ

∂t2 +
1

c2
(
1 − w

c2

)3

∂w
∂t

∂φ

∂t
. (3.85)

We can now see that the square of the linear velocity v2 with which
the space rotates has a greater effect on the propagation of the field
waves, than the observable non-stationarity of the field, i.e., the term
∗∂φ
∂t . In the limiting case, where v→ c, the d’Alembert operator becomes
the Laplace operator, therefore, the d’Alembert wave equations become
the Laplace stationary equations. At low velocities of the space rotation
(v≪ c), observable electromagnetic waves propagate with the velocity
of light.

In general, the modulus of the observable wave velocity of the scalar
electromagnetic potential v(φ) takes the form

v(φ) =
c√

1 − v2

c2

. (3.86)

It is obvious that the chr.inv.-quantity (3.85), which is the observable
acceleration of the scalar potential φ, is quite different from the analo-
gous “coordinate” quantity; the stronger the gravitational potential, the
greater the charge rate of the gravitational potential with time

∂2φ

∂t2 =

(
1 −

w
c2

)2 ∗∂2φ

∂t2 +
1

c2 − w
∂w
∂t

∂φ

∂t
. (3.87)

In the limiting case, where w→ c2 (approaching the state of grav-
itational collapse as the state on the surface of a gravitational collap-
sar), the observable acceleration of the scalar electromagnetic potential
(3.85) becomes infinitesimal, while the coordinate rate of the scalar po-
tential growth (3.87), to the contrary, becomes infinitely large. But un-
der ordinary conditions, the gravitational potentialw needs only smaller
corrections to the acceleration and the rate of the electromagnetic scalar
potential growth.

All that has been concluded above about the chr.inv.-scalar quan-
tity

∗∂2φ

∂t2 is also true for the chr.inv.-vector
∗∂2qi

∂t2 , because the chr.inv.-
d’Alembert operator ∗□= 1

c2

∗∂2

∂t2 − hik ∗∂2

∂x i∂xk is different from the men-
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tioned scalar and vector functions in only the second term— the Laplace
operator, in which the chr.inv.-derivatives of the scalar and vector quan-
tities are different from each other, i.e.

∗∇iφ =
∗∂φ

∂xi ,
∗∇i qk =

∗∂qk

∂xi + ∆
k
im qm. (3.88)

If the gravitational potential and the velocity with which the space
rotates are infinitesimal, then the chr.inv.-d’Alembert operator for the
scalar electromagnetic potential becomes the ordinary d’Alembert op-
erator

∗□φ =
1
c2

∂2φ

∂t2 − hik ∂2φ

∂xi∂xk , (3.89)

so in this case electromagnetic waves, produced by the scalar potential
φ, propagate with the velocity of light.

3.5 The Lorentz force. The energy-momentum tensor of an elec-
tromagnetic field

Now we are going to deduce the chr.inv.-projections (physically observ-
able components) of the four-dimensional force, which is the result of
the action of an electromagnetic field on an electric charge in a pseudo-
Riemannian space.

This problem will be solved for the two cases: a) for a point charge;
b) for a charge distributed in the space. In addition, we will deduce the
chr.inv.-projections of the energy-momentum tensor for an electromag-
netic field.

In the three-dimensional Euclidean space of Classical Electrody-
namics, the motion of a charged particle in an electromagnetic field is
described by the vector equation

dp⃗
dt
= eE⃗ +

e
c
[
u⃗; H⃗

]
, (3.90)

where p⃗=mu⃗ is the three-dimensional momentum vector of the parti-
cle, and m is the particle’s relativistic mass. The right hand side of this
equation is referred to as the Lorentz force.

The equation, characterizing the change of the kinetic (relativistic)
energy of the particle

E = mc2 =
m0c2√
1 − u2

c2

(3.91)
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due to the work accomplished by the electric field strength to displace it,
takes the three-dimensional vector form (in the framework of Classical
Electrodynamics)

dE
dt
= eE⃗ u⃗ , (3.92)

and is also known as the live forces theorem.
In the four-dimensional form, thanks to the unification of energy

and momentum, in a Galilean reference frame in the Minkowski space,
the equations (3.90) and (3.92) take the joint form

m0c
dUα

ds
=

e
c

Fα·
·σUσ, Uα =

dxα

ds
, (3.93)

and are known as the Minkowski equations (Fα·
·σ is the electromagnetic

field tensor). Because the metric here is diagonal (3.5),

ds = cdt

√
1 −

u2

c2 , u2 =

(
dx
dt

)2

+

(
dy
dt

)2

+

(
dz
dt

)2

, (3.94)

and the components of the particle’s four-dimensional velocity Uα are

U 0 =
1√

1 − u2

c2

, U i =
ui

c
√

1 − u2

c2

, (3.95)

where ui = dx i

dt is its three-dimensional coordinate velocity. Because the
components of e

c Fα·
·σ Uσ in the Galilean reference frame are

e
c

F0·
·σUσ = −

e
c2

Ei ui√
1 − u2

c2

, (3.96)

e
c

F i·
·σUσ = −

1

c
√

1 − u2

c2

(
eE i +

e
c

eikm uk H∗m
)
, (3.97)

then, in the Galilean reference frame, the time and spatial components
of the Minkowski equations (3.93) take the form

dE
dt
= −eEi ui, (3.98)

dpi

dt
= −

(
eE i +

e
c

eikm uk H∗m
)
, pi = mui. (3.99)
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The above relativistic equations, except for the sign on the right hand
side, match the live forces theorem and the equations of motion of a
charged particle in Classical Electrodynamics (3.90, 3.91). Note that
the difference in the sign of the right hand side of the equations is deter-
mined only by the choice of the space signature. We use the signature
(+−−−). But, if we assume the signature (−+++), then the sign of the
right hand side of the equations will be the opposite.

Let us now consider this problem not in the Minkowski space, but
in the pseudo-Riemannian space of General Relativity.

The chr.inv.-projections of the four-dimensional momentum vector
Φα = e

c Fα·
·σUσ gained by a charged particle in the pseudo-Riemannian

space from the interaction of the charge e of the particle with the elec-
tromagnetic field that fills the space, are

T =
e
c

F0σUσ

√
g00

, (3.100)

Bi =
e
c

F i·
·σUσ =

e
c

(
F i·
·0 U 0 + F i·

·k U k
)
. (3.101)

Given that the components of the Uα are

U 0 =

1
c2 vi vi ± 1√

1 − v2

c2

(
1 − w

c2

) , U i =
vi

c
√

1 − v2

c2

, (3.102)

and taking into account the formulae for the chr.inv.-components of an
arbitrary curl (2.143–2.150), we obtain

T = −
e

c2
√

1 − v2

c2

(
∗∂φ

∂xi +
1
c

∗∂qi

∂t
−
φ

c2 Fi

)
vi, (3.103)

B i = −
e

c2
√

1 − v2

c2

{
±

(
∗∂φ

∂xk +
1
c

∗∂qk

∂t
−
φ

c2 Fk

)
hik +

+

[
himhkn

(
∗∂qm

∂xn −
∗∂qn

∂xm

)
−

2φ
c

Aik
]

vk

}
.

(3.104)

The chr.inv.-scalar T , to within the multiplier − 1
c2 , is the work done

by the electromagnetic field to displace the charge e. The chr.inv.-vector
Bi, to within the multiplier 1

c , represents the chr.inv.-force below acting
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on the charged particle due to the electromagnetic field and called the
physically observable chr.inv.-Lorentz force

Φi = c Bi = −e
(
E i +

1
c
εikmH∗mvk

)
. (3.105)

The alternating sign appears here because the square equation with
respect to dt

dτ has two roots (1.63) in the pseudo-Riemannian space.
“Plus” in the Lorentz force stands for the particle’s motion to the future
(with respect to the observer), and “minus” denotes the particle’s mo-
tion to the past. In a Galilean reference frame in the Minkowski space,
there is no difference between the physically observable time τ and the
coordinate time t. Therefore, the Lorentz force (3.99) obtained from the
Minkowski equations has no alternating signs.

If the electric charge is not a point, but a distributed matter, then
the Lorentz force Φα = e

c Fα·
·σUσ in the Minkowski equations (3.93) is

replaced by the four-dimensional vector of the Lorentz force density

f α =
1
c

Fα·
·σ jσ, (3.106)

where the four-dimensional current density jσ =
{
cρ; j i } is determined

by the 1st group of the Maxwell equations (3.51)

jσ =
c

4π
∇µ Fσµ. (3.107)

The chr.inv.-projections of the Lorentz force density f α are

f0
√
g00
= −

1
c

Ei j i, (3.108)

f i = −

(
ρE i +

1
c

H i·
·k jk

)
= −

(
ρE i +

1
c
εikmH∗m jk

)
, (3.109)

and in the three-dimensional Euclidean space they take the form

f0
√
g00
=

q
c
=

1
c

E⃗ ȷ⃗ , (3.110)

f⃗ = ρ E⃗ +
1
c
[
ȷ⃗; H⃗

]
, (3.111)

where q is the heat power density released in the current conductor.
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Transform the Lorentz force density (3.106), using the Maxwell
equations. Substituting jσ (3.107) we arrive at

fν =
1
c

Fνσ jσ =
1

4π
Fνσ∇µ Fσµ =

=
1

4π

[
∇µ

(
FνσFσµ) − Fσµ∇µ Fνσ

]
.

(3.112)

Transpositioning the mute indices and using the antisymmetry of
the Maxwell tensor Fαβ, we transform the second term to the form

Fσµ ∇µ Fνσ =
1
2

Fσµ
(
∇µ Fνσ + ∇σ Fµν

)
=

= −
1
2

Fσµ ∇ν Fµσ =
1
2

Fσµ ∇ν Fσµ .
(3.113)

As a result, for fν (3.112) and its contravariant form we obtain

fν =
1

4π
∇µ

(
−F µσFνσ +

1
4
δ
µ
ν FαβFαβ

)
, (3.114)

f ν =
1

4π
∇µ

(
−F µσFν·

·σ +
1
4
gµνFαβFαβ

)
. (3.115)

Introducing the notation

1
4π

(
− F µσFν·

·σ +
1
4
gµνFαβFαβ

)
= T µν, (3.116)

we obtain the formula
f ν = ∇µ T µν, (3.117)

according towhich the four-dimensional vector of the Lorentz force den-
sity f ν is equal to the absolute divergence of a quantity T µν called the
energy-momentum tensor of the electromagnetic field. The tensor T µν

is symmetric T µν = T νµ, and its trace (given that the trace of the funda-
mental metric tensor is gµνgµν= δνν = 4) is zero

T ν
ν = gµνT µν =

1
4π

(
− F µσFµσ +

1
4
gµν g

µνFαβFαβ

)
=

=
1

4π

(
− F µσFµσ + FαβFαβ

)
= 0 .

(3.118)
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The chr.inv.-projections of the energy-momentum tensor are

q =
T00

g00
, J i =

c T i
0

√
g00

, U ik = c2T ik, (3.119)

where the chr.inv.-scalar q is the observable field density, the chr.inv.-
vector J i is the observable density of the field momentum, and the chr.
inv.-tensor U ik is the observable density of the field momentum flux.

For the electromagnetic field energy-momentum tensor (3.116) we
obtain

q =
E2 + H∗2

8π
, (3.120)

J i =
c

4π
εikmEk H∗m , (3.121)

U ik = qc2hik −
c2

4π

(
E iEk + H∗iH∗k

)
, (3.122)

where E2 = hik E iEk and H∗2 = hik H∗iH∗k.
Comparing the obtained formula for q (3.120) with that for the en-

ergy density in Classical Electrodynamics, we obtain

W =
E2 + H2

8π
, (3.123)

where E2 = (E⃗; E⃗) and H2 = (H⃗; H⃗). We see that the chr.inv.-quantity
q is the observable energy density of the electromagnetic field in the
pseudo-Riemannian space.

Comparing the obtained formula for the chr.inv.-vector J i (3.121)
with that for Poynting’s vector in Classical Electrodynamics we have

S⃗ =
c

4π
(
E⃗ ; H⃗

)
, (3.124)

from which we can see that the J i is the Poynting observable vector in
the pseudo-Riemannian space.

The correspondence of the third observable component U ik (3.122)
to the quantities of Classical Electrodynamics can be established us-
ing analogies with continuum mechanics, where a similar tensor is the
three-dimensional stress tensor of an elementary volume of a medium.
Therefore, the above U ik is the observable stress tensor of the electro-
magnetic field in the pseudo-Riemannian space.
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Expressing the left hand side of the identities for the Lorentz force
density (3.108, 3.109) through the chr.inv.-components of the electro-
magnetic field energy-momentum tensor (3.120–3.122), we take into
account the equation f ν =∇µ T µν (3.117) and the formulae for chr.inv.-
components of the absolute divergence of an arbitrary symmetric tensor
of the 2nd rank (2.138, 2.139). Thus, we obtain

∗∂q
∂t
+ qD +

1
c2 Dij U ij + ∗∇̃i J i −

1
c2 Fi J i = −

1
c

Ei j i, (3.125)

∗∂J k

∂t
+ DJ k + 2

(
Dk

i + Ak·
·i

)
J i + ∗∇̃i U ik − qF k =

= −

(
ρEk +

1
c
εkimH∗i jm

)
.

(3.126)

The first chr.inv.-identity (3.125) shows that the observable change
in time of the electromagnetic field density q with time depends on:

a) The rate of change of the observable volume of the space, filled
with the electromagnetic field (the term qD);

b) The force caused by the space deformation (the term Dij U ij);
c) The effect of the gravitational inertial force on the electromagnetic

field momentum density (the term Fi J i);
d) The observable spatial variation (physical divergence) of the elec-

tromagnetic field momentum density (the term ∗∇̃i J i);
e) The magnitudes and mutual orientation of the current density vec-

tor j i and the electric strength vector E i (on the right hand side of
the identity).

The second chr.inv.-identity (3.126) shows the observable change in
time of the electromagnetic field momentum density J k depending on:

a) The rate of change of the observable volume of the space, filled
with the electromagnetic field (the term DJk);

b) The force caused by the space deformation and the Coriolis force,
which are expressed by the term 2

(
Dk

i + Ak·
·i
)
J i;

c) The effect of the gravitational inertial force on the observable den-
sity of the electromagnetic field (the term qF k);

d) The observable spatial variation of the field stress ∗∇̃i U ik;
e) The effect of the observable Lorentz force density — the quantity

f k =−
(
ρEk + 1

c ε
kimH∗i jm

)
on the right hand side.
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In conclusion, we consider a particular case, where the electromag-
netic field is isotropic. A formal definition of isotropic fields made using
the Maxwell tensor [20] is a set of the two conditions

FµνF µν = 0 , FµνF∗µν = 0 , (3.127)

whichmean that the field invariants J1 = FµνF µν and J2 = FµνF∗µν (3.25,
3.26) are zeroes. In the chr.inv.-notation, taking (3.28) into account, the
conditions take the form

E2 = H∗2, Ei H∗i = 0 . (3.128)

So, an electromagnetic field in a pseudo-Riemannian space is ob-
served as isotropic, if the observable lengths of its electric and magnetic
strength vectors are equal, and the Poynting vector J i (3.121) is zero

J i =
c

4π
εikmEk H∗m = 0 . (3.129)

In terms of the chr.inv.-components of the energy-momentum tensor
(3.120, 3.121), the obtained conditions (3.128) also mean that

J = cq , (3.130)

where J =
√

J2 and J2 = hik J iJ k. In other words, the observable mo-
mentum density J of any isotropic electromagnetic field depends only
on the field density q.

3.6 The equations of motion of a charged particle, obtained by the
parallel transport method

In this section, we will obtain the chr.inv.-equations of motion of a
charged mass-bearing test-particle in an electromagnetic field, located
in a four-dimensional pseudo-Riemannian space*.

*Generally speaking, using the method described herein we can also obtain equa-
tions of motion for a particle, which is not a test one. A test particle is one with charge
and mass so small that they do not affect an electromagnetic or gravitational field, in
which it moves.

There is also another approach to particle motion in the pseudo-Riemannian space.
It is based on the elastodynamics of the space-time continuum— an extension of Gen-
eral Relativity, which was introduced a decade ago by Pierre A. Millette based on the
analysis of the deformation of the space-time in terms of continuum mechanics. In



3.6 The equations of motion (the parallel transport) 93

The desired equations are the chr.inv.-projections of the Levi-Civita
parallel transport equations of the four-dimensional summary vector of
a charged mass-bearing particle

Qα = Pα +
e
c2 Aα, (3.131)

where Pα =m0
dxα
ds is the four-dimensional momentum vector of the par-

ticle, and e
c2 Aα is an additional four-dimensional momentum that the

particle gains from the interaction of its charge e with the electromag-
netic field potential Aα deviating its trajectory from a geodesic line.
Given this problem statement, the parallel transport of the superposi-
tion on the particle’s non-geodesic momentum vector and the deviating
vector is also geodesic, so that we have

d
ds

(
Pα +

e
c2 Aα

)
+ Γαµν

(
Pµ +

e
c2 Aµ

) dxν

ds
= 0 . (3.132)

By definition, a geodesic line is a constant direction line. Thismeans
that any vector tangential to such a line at a given point will remain
tangential to this line along its entire length, when transported parallel
to itself [9].

The equations of motion can also be obtained in another way — by
considering the motion along a line of the least (shortest) length using
the least action principle. Least length lines are also constant direction
lines. But, for instance, in spaces with non-metric geometry, length is
not defined as category. In this case, least length lines are neither de-
fined and, therefore, we cannot use the least action method to obtain
the equations of motion. Nevertheless, even in non-metric spaces we
can define constant direction lines and a non-zero derivation parameter
along them. Hence, we can assume that in metric spaces, to which Rie-
mannian spaces belong, least length lines are merely a particular case
of constant direction lines.

In accordance with the general formulae that we have obtained in
Chapter 2, the chr.inv.-projections of the parallel transport equations

particular, he showed that the massive body itself is part of the spacetime fabric that
is rotating. See his extensive paper and subsequent monograph on this subject: Mil-
lette P. A. Elastodynamics of the spacetime continuum. The Abraham Zelmanov Jour-
nal, 2012, vol. 5, 221–277. Millette P. A. Elastodynamics of the Spacetime Continuum.
The 2nd expanded edition, American Research Press, Rehoboth (New Mexico), 2019,
415 pages.
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(3.132) are defined as follows

dφ̃
ds
+

1
c

(
−Fi q̃i dτ

ds
+ Dik q̃i dxk

ds

)
= 0 , (3.133)

dq̃i

ds
+

(
φ̃

c
dxk

ds
+ q̃k dτ

ds

) (
Di

k + A·ik·
)
−

−
φ̃

c
F i dτ

ds
+ ∆i

mk q̃m dxk

ds
= 0 ,

(3.134)

where the space-time interval ds is assumed to be the derivation param-
eter along the trajectory, while φ̃ and q̃i are the chr.inv.-projections of
the dynamic vector Qα (3.131) of the particle

φ̃ = bαQα =
Q0
√
g00
=

1
√
g00

(
P0 +

e
c2 A0

)
, (3.135)

q̃i = hi
αQα = Qi = Pi +

e
c2 Ai. (3.136)

The chr.inv.-projections of the momentum vector are

P0
√
g00
= ±m , Pi =

1
c

mvi =
1
c

pi, (3.137)

where “plus” stands for the motion to the future (with respect to the ob-
server), “minus” appears if the particle travels to the past, and pi =m dx i

dτ
is the three-dimensional chr.inv.-momentum vector of the particle. The
chr.inv.-projections of the additional momentum vector e

c2 Aα have the
form e

c2

A0
√
g00
=

e
c2 φ ,

e
c2 Ai =

e
c2 qi, (3.138)

where φ is the scalar potential and qi is the vector-potential of the acting
electromagnetic field, which are the chr.inv.-components of the four-
dimensional field potential Aα (3.8). Then φ̃ (3.135) and q̃i (3.136),
which are the chr.inv.-projections of the summary vector Qα, are

φ̃ = ±m +
e
c2 φ , (3.139)

q̃i =
1
c

(
pi +

e
c2 qi

)
. (3.140)
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Substitute the quantities φ̃ and q̃i into the general formulae for the
chr.inv.-equations of motion (3.133, 3.134). Moving the terms charac-
teristic of electromagnetic interaction to the right hand side, we arrive
at the chr.inv.-equations of motion for a charged particle in our world (it
travels to the future with respect to an ordinary observer)

dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk = −

e
c2

dφ
dτ
+

e
c3

(
Fi qi − Dik qivk

)
, (3.141)

d
(
mvi)
dτ

− mF i + 2m
(
Di

k + A·ik·
)

vk + m∆i
nk vnvk =

= −
e
c

dqi

dτ
−

e
c

(
φ

c
vk + qk

) (
Di

k + A·ik·
)
+

eφ
c2 F i −

e
c
∆i

nk qnvk.

(3.142)

while for an analogous particle located in the mirror world (it travels to
the past with respect to the observer) the equations have the form

−
dm
dτ
−

m
c2 Fi vi+

m
c2 Dik vivk = −

e
c2

dφ
dτ
+

e
c3

(
Fi qi − Dik qivk

)
, (3.143)

d
(
mvi)
dτ

+ mF i + m∆i
nk vnvk =

= −
e
c

dqi

dτ
−

e
c

(
φ

c
vk + qk

) (
Di

k + A·ik·
)
+

eφ
c2 F i −

e
c
∆i

nk qnvk.

(3.144)

It is easy to see that the left hand side of the equations completely
matches that of the chr.inv.-equations of motion of a free particle. The
only difference is that the above equations include the right hand terms
that characterize non-geodesic motion. Therefore, the right hand side is
non-zero here; they take into account the influence of the electromag-
netic field on the particle, as well as the influence of the physical and
geometric properties of the space itself (F i, Aik, Dik, ∆i

nk). It is obvi-
ous that, if the particle is charge-free (e= 0), the right hand side terms
turn to zero and the resulting equations completely match the chr.inv.-
equations of motion of a free mass-bearing particle (see formulae 1.59,
1.60 and also 1.64, 1.65).

Let us consider the right hand side terms in detail. The obtained
equations are absolutely symmetric for the motion either to the future
or to the past and they change their sign once the charge sign changes.
We denote the right hand side of the chr.inv.-scalar equations of motion
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(3.141, 3.143) as T . Given that

dφ
dτ
=
∗∂φ

∂t
+ vi

∗∂φ

∂xi , (3.145)

then using the formula for the covariant form of the electric strength Ei

(3.14), we can represent T as follows

T = −
e
c2 Ei vi −

e
c2

∗∂φ

∂t
+

+
e
c3

(
∗∂qi

∂t
− Dik qk

)
vi +

e
c3

(
qi −

φ

c
vi

)
Fi .

(3.146)

Substituting this formula into (3.141, 3.143) and multiplying the re-
sults by c2, we obtain the equation for the relativistic energy E =±mc2

of a charged particle travelling to the future and to the past

dE
dτ
− mFi vi + mDik vivk = −eEi vi − e

∗∂φ

∂t
+

+
e
c

(
∗∂qi

∂t
− Dik qk

)
vi +

e
c

(
qi −

φ

c
vi

)
Fi ,

(3.147)

−
dE
dτ
− mFi vi + mDik vivk = −eEi vi − e

∗∂φ

∂t
+

+
e
c

(
∗∂qi

∂t
− Dik qk

)
vi +

e
c

(
qi −

φ

c
vi

)
Fi ,

(3.148)

where eEi vi is the work done by the electric component of the electro-
magnetic field to displace the particle per unit time.

The obtained chr.inv.-scalar equations of motion of a charged parti-
cle (3.147, 3.148) is the live forces theorem in the pseudo-Riemannian
space, represented in the chr.inv.-form. It is easy to see that, in aGalilean
reference frame in the Minkowski space, the scalar equation of motion
for the particle travelling to the future (3.147) matches the time com-
ponent of the Minkowski equations (3.98). In the three-dimensional
Euclidean space, the equation (3.147) transforms into the live forces
theorem in Classical Electrodynamics which is dE

dt = e E⃗ u⃗ (3.92).
Let us turn to the right hand side of the chr.inv.-vector equations of

motion (3.142, 3.144). Denote them by Mi. Since

dqi

dτ
=
∗∂qi

∂t
+ vk

∗∂qi

∂xk , (3.149)
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and taking into account that ∗∂hik

∂t =−2Dik (1.40),

∗∂qi

∂t
=
∗∂

∂t

(
hikqk

)
= −2Di

k qk + hik
∗∂qk

∂t
, (3.150)

we obtain the Mi in the form

Mi = −
e
c

hik
∗∂qk

∂t
+

eφ
c2

(
F i + Aikvk

)
+

e
c

Aikqk +

+
e
c

(
qk −

φ

c
vk

)
Di

k −
e
c

vk
∗∂qi

∂xk −
e
c
∆i

nk qnvk.

(3.151)

Using the formulae for the chr.inv.-components E i (3.11) and H ik

(3.12) of the Maxwell tensor Fαβ, we write down the first two terms and
the third term from Mi (3.151) as follows

−
e
c

hik
∗∂qk

∂t
+

eφ
c2 F i = −eE i + ehik

∗∂φ

∂xk , (3.152)

eφ
c2 Aikvk =

e
2c

himvn
(
∗∂qm

∂xn −
∗∂qn

∂xm

)
−

e
2c

H ikvk . (3.153)

We write down the quantity H ik as H ik = εmikH∗m (3.56). Then we
have the following

eφ
c2 Aikvk =

e
2c

himvn
(
∗∂qm

∂xn −
∗∂qn

∂xm

)
−

e
2c

εikmH∗m vk , (3.154)

Mi = − e
(
E i +

1
2c

εikmvk H∗m

)
+

e
c

(
qk −

φ

c
vk

)
Di

k +

+ ehik
∗∂φ

∂xk +
e
c

Aikqk +
e

2c
himvk

(
∗∂qm

∂xk −
∗∂qk

∂xm

)
−

−
e
c

vk
∗∂qi

∂xk −
e
c
∆i

nk qnvk,

(3.155)

and the sum of the latter three terms in Mi is equal to

e
2c

himvk
(
∗∂qm

∂xk −
∗∂qk

∂xm

)
−

e
c

vk
∗∂qi

∂xk −
e
c
∆i

nk qnvk =

= −
e

2c
himvk

∗∂qk

∂xm −
e

2c
vk
∗∂qi

∂xk −
e

2c
himqnvk

∗∂hkm

∂xn .

(3.156)
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Finally, the chr.inv.-vector equations of motion of a charged particle
(3.142, 3.144) that travels to the future and to the past take the following
form, respectively

d
(
mvi)
dτ

− mF i + 2m
(
Di

k + A·ik·
)

vk + m∆i
nk vnvk =

= −e
(
E i +

1
2c

εikmvk H∗m

)
+

+
e
c

(
qk −

φ

c
vk

)
Di

k + ehik
∗∂φ

∂xk +
e
c

Aikqk −

−
e

2c
himvk

∗∂qk

∂xm −
e

2c
vk
∗∂qi

∂xk −
e

2c
himqnvk

∗∂hkm

∂xn ,

(3.157a)

d
(
mvi)
dτ

+ mF i + m∆i
nk vnvk =

= −e
(
E i +

1
2c

εikmvk H∗m

)
+

+
e
c

(
qk −

φ

c
vk

)
Di

k + ehik
∗∂φ

∂xk +
e
c

Aikqk −

−
e

2c
himvk

∗∂qk

∂xm −
e

2c
vk
∗∂qi

∂xk −
e

2c
himqnvk

∗∂hkm

∂xn .

(3.157b)

Here the first term −e
(
E i + 1

2c ε
ikmvk H∗m

)
on the right hand side is

different from the chr.inv.-Lorentz force Φi =−e
(
E i + 1

c ε
ikmvkH∗m

)
by

the coefficient 1
2 in the term that stands for the magnetic component of

the force. This fact is very surprising, because the ordinary equations of
motion of a charged particle, which are the three-dimensional compo-
nents of the general covariant equations of motion, contain the Lorentz
force without any change. In §3.9 we will look for such a structure of
the electromagnetic field potential Aα, with which the other terms in the
Mi completely compensate the coefficient 1

2 in the Lorentz force.

3.7 The equations of motion, obtained using the least action prin-
ciple as a particular case of the previous equations

In this section, we are going to deduce chr.inv.-equations of motion of
a mass-bearing charged particle, using the least action principle. The
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principle says that an action S to displace a particle along a shortest
trajectory is the least, so the variation of the action is zero

δ

∫ b

a
dS = 0 . (3.158)

Therefore, the equations of motion, obtained from the least action
principle are the equations of shortest length lines.

The action of a gravitational field and an electromagnetic field to
displace a charged particle at an elementary interval ds is [10]

dS = −m0c ds −
e
c

Aαdxα. (3.159)

We see that this quantity is only applicable to particles that travel
along non-isotropic trajectories (ds, 0). On the other hand, obtaining
the equations of motion using the parallel transport method (constant di-
rection lines) is applicable to both non-isotropic (ds, 0) and isotropic
trajectories (ds= 0). Moreover, the parallel transport method is appli-
cable to non-metric geometries, in particular, to particles that travel in
a completely degenerate space-time (zero-space). Therefore, the equa-
tions of shortest length lines, since they are obtained using the least
action method, are a narrow particular case of the equations of constant
direction lines, which result from the parallel transport method.

Return to the least action principle (3.158). For a charged mass-
bearing particle, this condition takes the form

δ

∫ b

a
dS = − δ

∫ b

a
m0c ds − δ

∫ b

a

e
c

Aαdxα = 0 , (3.160)

where the first term can be expressed as follows

− δ

∫ b

a
m0c ds = −

∫ b

a
m0c DUαδxα =

=

∫ b

a
m0c

(
dUαds − Γα,µνU µdxν

)
δxα.

(3.161)

We represent the variation of the second integral from the initial
formula (3.160) as the sum

−
e
c
δ

∫ b

a
Aαdxα = −

e
c

( ∫ b

a
δAαdxα +

∫ b

a
Aαdδxα

)
. (3.162)
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Integrating the second term, we obtain∫ b

a
Aαdδxα = Aαδxα

∣∣∣∣b
a
−

∫ b

a
dAαδxα. (3.163)

Here the first term is equal to zero, since the integral varies for given
numerical values of the coordinates (integration limits). Taking into
account the fact that the variation of any covariant vector is

δAα =
∂Aα
∂xβ

δxβ, dAα =
∂Aα
∂xβ

dxβ, (3.164)

we obtain the variation of the electromagnetic part of the action

−
e
c
δ

∫ b

a
Aαdxα = −

e
c

∫ b

a

(
∂Aα
∂xβ

dxαδxβ −
∂Aα
∂xβ

δxαdxβ
)
. (3.165)

Transpositioning the free indices α and β in the first term of (3.165)
and taking the variation of the gravitational part of the action (3.161)
into account, we obtain the variation of the total action (3.160)

δ

∫ b

a
dS =

∫ b

a

[
m0c

(
dUα − Γα,µνU µdxν

)
−

e
c

Fαβdxβ
]
δxα, (3.166)

where Fαβ =
Aβ
∂xα −

∂Aα
∂x β is the Maxwell tensor, and U µ = dx µ

ds is the four-
dimensional velocity of the particle. Since the quantity δxα is arbitrary,
the formula under the integral is always zero. Finally, we arrive at the
general covariant equations of motion of the charged particle in their
covariant (lower-index) form

m0c
(
dUα

ds
− Γα,µνU µUν

)
=

e
c

FαβU β, (3.167)

or, lifting the index α, at the contravariant form of the equations

m0c
(
dUα

ds
+ ΓαµνU µUν

)
=

e
c

Fα·
·β U β. (3.168)

These are actually the Minkowski equations (3.93) in the pseudo-
Riemannian space. Therefore, their chr.inv.-projections can be called
the chr.inv.-Minkowski equations in the pseudo-Riemannian space. For
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an our-world charged particle (it travels to the future with respect to an
ordinary observer), the chr.inv.-Minkowski equations have the form

dE
dτ
− mFi vi + mDik vivk = −eEi vi, (3.169)

d
(
mvi)
dτ

− mF i + 2m
(
Di

k + A·ik·
)

vk + m∆i
nk vnvk =

= − e
(
E i +

1
c
εikmvk H∗m

)
,

(3.170)

and for an analogous particle in the mirror world (it travels to the past)
the equations have the form

−
dE
dτ
− mFi vi + mDikvivk = − eEi vi, (3.171)

d
(
mvi)
dτ

+ mF i + m∆i
nk vnvk = − e

(
E i +

1
c
εikmvk H∗m

)
. (3.172)

The chr.inv.-scalar equations of motion, both in our world and in the
mirror world, represent the live forces theorem. The right hand side of
the chr.inv.-vector equations represents the chr.inv.-Lorentz force in the
pseudo-Riemannian space.

It is easy to see that, in a Galilean reference frame in the Minkowski
space, the obtained chr.inv.-equations of motion become the ordinary
live forces theorem (3.92) and the ordinary three-dimensional equations
of motion (3.90) accepted in Classical Electrodynamics.

As is seen from the obtained chr.inv.-equations of motion, the right
hand side of the equations (3.169–3.172), obtained using the least action
method, is different from the right hand side of the equations (3.146,
3.157), obtained using the parallel transport method. The difference
here is the absence in (3.169–3.172) of numerous terms, which char-
acterize the structure of the acting electromagnetic field and the space
itself. But as we have already mentioned above, shortest length lines are
only a particular case of constant direction lines, determined by parallel
transport.

Therefore, there is no surprise in that the parallel transport equa-
tions, as more general ones, have additional terms, which take into ac-
count the structure of the acting electromagnetic field and the structure
of the space.
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3.8 The geometric structure of the four-dimensional electromag-
netic potential

In this section, we are going to find such a structure of the acting elec-
tromagnetic field potential Aα, under which the length of the summary
vector Qα = Pα +

e
c2 Aα characteristic of a chargedmass-bearing particle

remains unchanged in the Levi-Civita parallel transport along the parti-
cle’s trajectory. So, the four-dimensional pseudo-Riemannian space of
General Relativity is assumed.

As is known, the Levi-Civita parallel transport preserves the length
of any transported vector Qα, therefore, the condition QαQα = const is
true along the entire trajectory of parallel transport. Since the square of
the length of any n-dimensional vector is invariant in the n-dimensional
pseudo-Riemannian space, in which the vector is located, the above
condition is true in any reference frame, including any observer who
accompanies his reference body. Hence, we can analyse the condition
QαQα = const, formulating it with physically observable quantities in
the accompanying reference frame, i.e., in the chr.inv.-form.

The components of the summary vector Qα of a charged particle in
the accompanying reference frame have the form

Q0 =

(
1 −

w
c2

) (
±m +

eφ
c2

)
, (3.173)

Q0 =
1

1 − w
c2

[(
±m +

eφ
c2

)
+

1
c2 vi

(
mvi +

e
c

qi
)]
, (3.174)

Qi = −
1
c

(
mvi +

e
c

qi

)
−

1
c

(
±m +

eφ
c2

)
vi , (3.175)

Qi =
1
c

(
mvi +

e
c

qi
)
, (3.176)

and its square is

QαQα = m2
0 +

e2

c4

(
φ2 − qi qi

)
+

2me
c2

(
±φ −

1
c

vi qi
)
. (3.177)

From here, we can see that the square of the summary momentum
of a charged particle consists of the three quantities:

a) The square of the four-dimensional momentum of the particle,
which is the term PαPα =m2

0;
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b) The square of the four-dimensional additional momentum e
c2 Aα

that the particle gains from the acting electromagnetic field (it is
the second term);

c) The term 2me
c2

(
±φ− 1

c vi qi
)
that describes the interaction between

the mass of this particle m and its electric charge e.
In the above formula for QαQα (3.177), the first term m2

0 remains
unchanged. In other words, this term is an invariant and, therefore, it
does not depend on the reference frame. Our task is to deduce such
conditions, under which the entire formula (3.177) remains unchanged.

Propose that the field vector-potential qi has the following structure

qi =
φ

c
vi. (3.178)

In this case* the second term of (3.177) is

e2

c4 AαAα =
e2φ2

c4

(
1 −

v2

c2

)
. (3.179)

Transforming the third term in the same way, we obtain the square
of the vector Qα (3.177) in the form

QαQα = m2
0 +

e2φ2

c4

(
1 −

v2

c2

)
+

2m0 e
c2 φ

√
1 −

v2

c2 . (3.180)

Then, introducing the following notation for the scalar potential

φ =
φ0√

1 − v2

c2

, (3.181)

we can represent the obtained formula (3.180) as follows

QαQα = m2
0 +

e2φ2
0

c4 +
2m0 eφ0

c2 = const. (3.182)

So, the length of the summary vector Qα remains unchanged in its
parallel transport, if the observable potentials φ and qi of the field are

*A similar problem could be solved, assuming that q i =±
φ

c v i. But in comparative
analysis of two groups of the equations only positive numerical values of q i =

φ

c vi will
be important, because the observer’s physical time τ, by definition, flows from the past
to the future only, so the physically observable time intervals dτ are always positive.
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related to its four-dimensional potential Aα as follows

A0
√
g00
= φ =

φ0√
1 − v2

c2

, Ai = qi =
φ

c
vi. (3.183)

In this case, the vector e
c2 Aα that characterizes the interaction of the

particle’s charge with the electromagnetic field has the form

e
c2

A0
√
g00
=

eφ0

c2
√

1 − v2

c2

,
e
c2 Ai =

eφ0

c3

vi√
1 − v2

c2

. (3.184)

The dimensions of the vectors e
c2 Aα and Pα =m0

dxα
ds in CGSE and

Gaussian systems of units are the same as that of mass m [gram].
Comparing the chr.inv.-projections of the above vectors, we can see

the same quantity in the interaction of the particle’s charge with the
acting electromagnetic field

eφ
c2 =

eφ0

c2
√

1 − v2

c2

, (3.185)

where eφ is the potential energy of the particle travelling with the ob-
servable velocity vi = dx i

dτ in the acting electromagnetic field (this par-
ticle is at rest with respect to the observer and his reference body). In
general, the scalar potential φ is the potential energy of the field, divided
by unit charge. Then, eφ is the potential relativistic-energy of the par-
ticle having a charge e and travelling in the electromagnetic field, and
eφ0 is its rest-energy in the field. When the particle rests in the field, its
potential rest-energy is equal to the potential relativistic-energy.

Comparing E =mc2 and W = eφ, we arrive at the same conclusion.
Respectively, W0

c2 =
eφ0
c2 is an electromagnetic quantity analogous to the

rest-mass m0. Then, the chr.inv.-quantity e
c2 Ai =

eφ
c2 vi is similar to the

observable chr.inv.-momentum vector pi =mvi. Therefore, when the
particle rests in the electromagnetic field, its “electromagnetic projec-
tion” onto the observer’s spatial section (it is a chr.inv.-vector) is zero,
while only the time projection (potential rest-energy eφ0 = const) is ob-
servable. But if the particle travels in the field, having a non-zero veloc-
ity vi, its observable “electromagnetic projections” become the potential
relativistic-energy eφ and the three-dimensional momentum eφ

c2 vi.
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Having the chr.inv.-projections of the vector e
c2 Aα calculated for the

given field structure (3.183), we can restore the vector Aα in the general
covariant form. Taking into account that

Ai = qi =
φ

c
vi =

φ

c
√

1 − v2

c2

dxi

dτ
= φ0

dxi

ds
, (3.186)

we obtain the desired general covariant notation for Aα

Aα = φ0
dxα

ds
,

e
c2 Aα =

eφ0

c2

dxα

ds
, (3.187)

the chr.inv.-projections of which are

A0
√
g00
= ±φ = ±

φ0√
1 − v2

c2

, Ai = qi =
φ

c
vi, (3.188)

where the alternating sign appears in the time chr.inv.-projection, which
is not the case in the initial formula (3.183).

Naturally, a question arises: how did the scalar observable compo-
nent of the vector Aα, initially defined as φ, acquire the alternating sign
under the given structure of the Aα (3.187)? The answer is that, in the
first case, the quantities φ and qi were defined based on the general rule
of building chr.inv.-quantities. But without knowing the structure of the
projected vector Aα, we cannot calculate them. Therefore, in the for-
mulae for the time and spatial projections (3.183), the symbols φ and
qi merely denote the quantities without revealing their structure. On the
contrary, in the formulae (3.188) the quantities φ and qi were calculated
using the formulae φ=√g00 A0 +

g0i√
g00

Ai and qi = Ai, where the compo-
nents A0 and Ai were given. Hence, in the second case, the quantity ±φ
results from the calculation that sets forth the specific formula

φ = ±
φ0√

1 − v2

c2

. (3.189)

As a result, the calculated chr.inv.-projections of the vector e
c2 Aα

have the following formulation
e
c2

A0
√
g00
= ±

eφ
c2 = ±

eφ0

c2
√

1 − v2

c2

,
e
c2 Ai =

eφ
c3 vi, (3.190)
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where “plus” stands for a particle located in our world, so travelling
from the past to the future, while “minus” stands for a particle located
in the mirror world, which travels to the past with respect to us. The
square of the vector’s length is

e2

c4 AαAα =
e2φ2

c4

(
1 −

v2

c2

)
=

e2φ2
0

c4 = const . (3.191)

The vector e
c2 Aα has a real length at v2 < c2, zero length at v2 = c2

and an imaginary length at v2 > c2. However, we limit our study to the
real form of the vector (subluminal velocities), because light-like and
superluminal charged particles are unknown.

Comparing the formulae for Pα =m0
dxα
ds and e

c2 Aα = eφ0
c2

dxα
ds , we can

see that these vectors are collinear, so they are tangential to the same
non-isotropic trajectory, to which the derivation parameter ds is assum-
ed. Hence, in this case, the momentum vector of the particle Pα is co-
directed with the acting electromagnetic field, so the particle is travel-
ling “along” the field.

Consider a general case, where the vectors are not collinear. The
third term in the square of the summary vector QαQα (3.177) is the
doubled scalar product of the vectors Pα and e

c2 Aα. The Levi-Civita
parallel transport leaves their scalar product unchanged

D
(
Pα Aα

)
= Aα DPα + Pα DAα = 0 , (3.192)

therefore, we obtain

2e
c2 PαAα =

2me
c2

(
±φ −

1
c

vi qi
)
= const, (3.193)

i.e., the scalar product of Pα and e
c2 Aα remains unchanged. Conse-

quently, the lengths of the vectors remain unchanged. In particular,

AαAα = φ2 − qi qi = const. (3.194)

The scalar product of two vectors is the product of their lengths
multiplied by the cosine of the angle between them. Therefore, the Levi-
Civita parallel transport leaves the angle between the transported vec-
tors unchanged

cos
(
Pα; Aα

)
=

PαAα

m0
√
φ2 − qi qi

= const. (3.195)
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Taking into account the formula for the relativistic mass m, we can
re-write the condition (3.193) as follows

2e
c2 PαAα = ±

2m0 e
c2

φ√
1 − v2

c2

−
2m0 e

c2

vi qi

c
√

1 − v2

c2

= const, (3.196)

or as the relationship between the scalar and vector potentials

±
φ√

1 − v2

c2

−
vi qi

c
√

1 − v2

c2

= const. (3.197)

For instance, we can find the relationship between the potentials φ
and qi for the case, where the momentum vector of the particle Pα is
orthogonal to the additional momentum e

c2 Aα gained from the electro-
magnetic field. Since the parallel transport leaves the angle between
transported vectors unchanged (3.195), the cosine of the angle between
the above two transported orthogonal vectors is zero. So, we have

PαAα = ±φ −
1
c

vi qi = 0 , (3.198)

i.e., if the particle travels in the electromagnetic field so that the vectors
Pα and Aα are orthogonal, then the field scalar potential is

φ = ±
1
c

vi qi, (3.199)

so it is the scalar product of the particle’s observable velocity vi and the
spatial observable vector-potential of the field qi.

Now, we are going to obtain a formula for the square of the summary
vector Qα, assuming that the structure of the electromagnetic field po-
tential is Aα =φ0

dxα
ds (3.187). So, the field potential Aα is co-directed

with the particle’s momentum vector Pα. Then

QαQα = m2 −
m2

c2 vi vi +
e2

c4

(
φ2 − qi qi

)
= m2

0 +
e2

c4 φ
2
0 . (3.200)

Multiplying both sides of the equation by c4 and denoting the rela-
tivistic energy of the particle as E =mc2, we obtain

E2 − c2 p2 + e2φ2 − e2qi qi = E2
0 + e2φ2

0 . (3.201)
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3.9 Minkowski’s equations as a particular case

In §3.6 we considered a charged mass-bearing particle in a pseudo-
Riemannian space. There, the general covariant equations of its mo-
tion were obtained using the parallel transport method. We have also
obtained the chr.inv.-projections of the general covariant equations.

We have showed that their time chr.inv.-projection (3.147) in a Gali-
lean reference frame takes the form of the time component of the Min-
kowski equations (3.98), becoming the live forces theorem in the three-
dimensional Euclidean space of Classical Electrodynamics (3.92). On
the other hand, the right hand side of the spatial chr.inv.-projection has
the term −e

(
E i + 1

2c ε
ikmvk H∗m

)
instead of the chr.inv.-Lorentz force,

which is Φi =−e
(
E i + 1

c ε
ikmvk H∗m

)
, and also several other additional

terms that depend on the observable characteristics of the acting elec-
tromagnetic field and of the space itself.

Therefore, for the spatial chr.inv.-projections of the equations of mo-
tion of a charged particle in a pseudo-Riemannian space, the correspon-
dence principle with the three-dimensional components of the Minkow-
ski equations is set non-trivially.

On the other hand, the equations of constant direction lines, obtain-
ed using the parallel transport method in a pseudo-Riemannian space,
are a more general case of the equations of shortest length lines, ob-
tained using the least action principle. The equations of motion, ob-
tained using the least action principle in §3.7, have the structure match-
ing that of theMinkowski equations. Consequently, we can suppose that
the chr.inv.-projections of the equations of motion obtained in §3.6 are
more general ones; in a particular case, i.e., under specific conditions,
they can be transformed into the chr.inv.-projections of the equations of
motion, obtained using the least action principle in §3.7.

To find exactly under what conditions this can be true, we are going
to consider the spatial chr.inv.-projections of the equations of motion
(3.157), which contain the mismatch with the Lorentz force.

For the convenience of analysis, we considered the right hand side of
(3.157) as a separate formula denoted as Mi. Substituting the magnetic
strength H ik (3.12) into the term eφ

c2 Aikvk of the formula for the Mi, we
write down the term as follows

eφ
c2 Aikvk =

e
2c

himvn
(
∗∂qm

∂xn −
∗∂qn

∂xm

)
−

e
2c

εikmH∗m vk , (3.202)



3.9 Minkowski’s equations 109

where εikmH∗m =H ik according to the chronometrically invariant for-
malism (see Chapter 2).

So forth, we substitute the chr.inv.-components of the electromag-
netic field potential Aα (3.188) into (3.157). With the field potential
Aα (3.188), the additional momentum vector e

c2 Aα that the electrically
charged particle gains from the electromagnetic field is tangential to the
particle’s trajectory.

Using the first formula, qm =
φ
c vm, we arrive at the dependence of

the right hand side under consideration on only the scalar potential of
the electromagnetic field

Mi = − e
(
E i +

1
c
εikmvk H∗m

)
+

+ ehik
(
1 −

v2

c2

)
∗∂φ

∂xk +
eφ
2

hik
∗∂

∂xk

(
1 −

v2

c2

)
.

(3.203)

Substituting the obtained relativistic formula of the scalar electro-
magnetic potential φ (3.181) into this formula, we see that the sum of
the last two terms becomes zero

−
eφ
2

hik
∗∂

∂xk

(
1 −

v2

c2

)
+

eφ
2

hik
∗∂

∂xk

(
1 −

v2

c2

)
= 0 . (3.204)

Then Mi takes the form of the chr.inv.-Lorentz force

Mi = − e
(
E i +

1
c
εikmvk H∗m

)
, (3.205)

which is exactly what we had to prove.
Now, consider the right hand side c2T of the chr.inv.-scalar equation

of motion (3.147) under the condition, according to which the vector Aα

has the structure that is mentioned above and is tangential to the parti-
cle’s trajectory. Substituting the formulae for the chr.inv.-projections
φ and qi of the vector Aα having the given structure into (3.146), we
transform the quantity c2T to the form

c2T = − eEi vi − e
∗∂φ

∂t
+

e
c2

[
∗∂

∂t

(
φhik vk

)
− φDik qk

]
vi =

= − eEi vi − e
∗∂φ

∂t

(
1 −

v2

c2

)
+

eφ
c2 Dik vivk +

eφ
c2 vk

∗∂vk

∂t
.

(3.206)
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Using the relativistic formula for φ (3.181) in the first derivative,
then returning to φ again after derivation, we obtain

c2 T = − eEi vi −
eφ
2c2

∗∂

∂t

(
hik vivk

)
+

eφ
c2 Dik vivk +

eφ
c2 vk

∗∂vk

∂t
=

= − eEi vi −
eφ
2c2

(
∗∂hik

∂t
vivk + 2vk

∗∂vk

∂t

)
+

+
eφ
c2 Dik vivk +

eφ
c2 vk

∗∂vk

∂t
= − eEi vi,

(3.207)

because we took into account that
∗∂hik
∂t = 2Dik by definition of the space

deformation tensor Dik (1.40).
So, the chr.inv.-equations of motion of a charged mass-bearing par-

ticle, obtained in the four-dimensional pseudo-Riemannian space using
the parallel transport method, match the equations, obtained using the
least action principle in the particular case, where:

a) The electromagnetic field potential Aα has the following structure
Aα =φ0

dxα
ds (3.187);

b) The field potential Aα is tangential to the four-dimensional trajec-
tory of the travelling particle.

In particular, for the above structure of the electromagnetic field
potential in a Galilean reference frame in the Minkowski space, the ob-
tained chr.inv.-equations of motion completely match the live forces the-
orem (chr.inv.-scalar equation of motion) and the Minkowski equations
(chr.inv.-vector equations) in the three-dimensional Euclidean space,
thus taking the form known in Classical Electrodynamics.

Noteworthy, this is another illustration of the geometric fact that
the shortest length lines (determined by the least action principle) are
merely a narrow particular case of constant direction lines (resulting
from the Levi-Civita parallel transport).

3.10 Structure of a space filled with a stationary electromagnetic
field

It is obvious that, when assuming a particular structure of the electro-
magnetic field, we impose a certain limit on the motion of electrically
charged particles, which, in its turn, imposes a limitation on the struc-
ture of the pseudo-Riemannian space, in which the charged particles
travel. We are going to find out what kind of structure the pseudo-
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Riemannian space should have so that a charged particle can travel in a
stationary electromagnetic field.

As we have obtained earlier in this Chapter, the chr.inv.-equations
of motion of a charged particle in our world have the form

dE
dτ
− mFi vi + mDik vivk = − e

dφ
dτ
+

e
c

(
Fi qi − Dik qivk

)
, (3.208)

d
(
mvi)
dτ

− mF i + 2m
(
Di

k + A·ik·
)

vk + m∆i
nk vnvk =

= −
e
c

dqi

dτ
−

e
c

(
φ

c
vk + qk

) (
Di

k + A·ik·
)
+

eφ
c2 F i −

e
c
∆i

nk qnvk.

(3.209)

Since we assume the electromagnetic field to be stationary, the field
potentials φ and qi do not depend on time. In this case, the chr.inv.-
components of the electromagnetic field tensor are

Ei =
∗∂φ

∂xi −
φ

c2 Fi =
∂φ

∂xi − φ
∂

∂xi ln
(
1 −

w
c2

)
, (3.210)

H∗i =
1
2
εimnHmn =

1
2
εimn

(
∂qm

∂xn −
∂qn

∂xm −
2φ
c

Amn

)
. (3.211)

From the above, we can find the limitations imposed on the space
metric due to the stationary state of the acting electromagnetic field.

The formulae for Ei and H∗i, together with the chr.inv.-derivatives of
the scalar and vector electromagnetic potentials, include the observable
properties of the space such as the chr.inv.-vector of the gravitational
inertial force Fi and the chr.inv.-tensor of the space non-holonomity Aik.
It is obvious that, in a stationary electromagnetic field, the mentioned
properties of the space must be stationary as well

∗∂Fi

∂t
= 0 ,

∗∂F i

∂t
= 0 ,

∗∂Aik

∂t
= 0 ,

∗∂Aik

∂t
= 0 . (3.212)

From the above definitions, we see that the quantities Fi and Aik are
stationary (they do not depend on time), if the linear velocity with which
the space rotates is stationary, ∂vi

∂t = 0. Therefore, the condition ∂vi
∂t = 0,

i.e., the stationary rotation of the space, turns the chr.inv.-derivativewith
respect to spatial coordinates into the ordinary derivative

∗∂

∂xi =
∂

∂xi −
1
c2

∗∂

∂t
=

∂

∂xi . (3.213)
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Since the chr.inv.-derivative with respect to time is different from the
ordinary derivative only by the multiplier ∂

∂t =
(
1− w

c2

)
∗∂
∂t , the ordinary

derivative of a stationary quantity is zero as well.
For the space deformations rate tensor Dik, under a stationary rota-

tion of the space we have
∗∂Dik

∂t
=

1
2

∗∂hik

∂t
=

1
2

∗∂

∂t

(
− gik +

1
c2 vi vk

)
= −

1
2

∗∂gik

∂t
. (3.214)

Because in the stationary case under consideration the right hand
side of the equations of motion is stationary, the left hand side must
be stationary too. This means that the space does not deform. Then,
according to (3.124), the three-dimensional coordinate metric gik does
not depend on time, so the chr.inv.-Christoffel symbols ∆i

jk (1.47) are
stationary too.

Using the chr.inv.-components of theMaxwell tensor (3.210, 3.211),
we transform the Maxwell equations (3.63, 3.64) to the case of the sta-
tionary electromagnetic field. As a result, we have

∂E i

∂xi +
∂ ln
√

h
∂xi E i −

2
c
Ω∗m H∗m = 4πρ

εikm ∗∇̃k
(
H∗m
√

h
)
=

4π
c

j i
√

h

 I , (3.215)

∂H∗i

∂xi +
∂ ln
√

h
∂xi H∗i +

2
c
Ω∗m Em = 0

εikm ∗∇̃k
(
Em
√

h
)
= 0

 II . (3.216)

Then the Lorenz condition (3.65) and the continuity equation (3.66),
respectively, take the form

∗∇̃i qi = 0 , ∗∇̃i j i = 0 . (3.217)

So, we have found the way in which any stationary state of an elec-
tromagnetic field that fills a pseudo-Riemannian space affects the physi-
cally observable properties of the space itself and, hence, the main equa-
tions of electrodynamics.

In the next sections, §3.11–§3.13, we will use the above results for
solving the equations of motion of a charged particle (3.208, 3.209) in
stationary electromagnetic fields of the three kinds:
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1) A stationary electric field (the magnetic strength is zero);
2) A stationary magnetic field (the electric strength is zero);
3) A stationary electromagnetic field (both the magnetic and electric

components of the field are non-zero).

3.11 Motion in a stationary electric field

We are going to consider the motion of a charged mass-bearing particle
in a pseudo-Riemannian space, filled with a stationary electromagnetic
field of the strictly electric kind (the magnetic component of the field is
zero in this case).

What conditions should the space satisfy to allow the existence of a
stationary electromagnetic field of the strictly electric kind? From the
formula for a stationary state of the magnetic strength

Hik =
∂qi

∂xk −
∂qk

∂xi −
2φ
c

Aik (3.218)

we see that Hik = 0 is satisfied under the two conditions:
a) The vector-potential qi is irrotational ∂qi

∂xk =
∂qk
∂x i ;

b) The space is holonomic Aik = 0.
The stationary electric strength Ei (3.210) is the sum of the spatial

derivative of the scalar electromagnetic potential φ and the term φ

c2 Fi.
But in a real Earth-bound laboratory, the ratio between the gravitational
potential and the square of the light velocity is nothing, but only

w
c2 =

GM⊕

c2R⊕
≈ 10−10, (3.219)

therefore the second term in (3.210) can be neglected, so the Ei depend
only on the spatial distribution of the scalar potential

Ei =
∂φ

∂xi . (3.220)

Because the right hand side of the equations of motion (it stands for
the Lorentz force) is stationary, the left hand side must be stationary too.
This is true under the conditions that we are considering, if the space
deformation tensor is zero (the space does not deform). So, if a sta-
tionary electromagnetic field has the non-zero electric component and
zero magnetic component, then the pseudo-Riemannian space, which is
filled with the field, must satisfy the following conditions:
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a) The potentialw of the acting gravitational field is negligiblew≈ 0;
b) The space does not rotate Aik = 0;
c) The space does not deform Dik = 0.
To simplify further calculations, assume that the observer’s three-

dimensional space is similar to the Euclidean one, so we assume∆i
nk ≈ 0.

Then the chr.inv.-equations of motion of a particle having an electric
charge e (3.208, 3.209) take the form

dm
dτ
= −

e
c2

dφ
dτ

, (3.221)

d
dτ

(
mvi) = − e

c
dqi

dτ
. (3.222)

From the chr.inv.-scalar equation of motion (live forces theorem),
we see that the change of the particle’s relativistic energy E =mc2 is due
to the work done by the electric component Ei of the electromagnetic
field to displace the particle.

From the chr.inv.-vector equations of motion, we see that the parti-
cle’s observable momentum changes due to the change of the electro-
magnetic field vector-potential qi. Assuming that the four-dimensional
electromagnetic field potential is tangential to the four-dimensional tra-
jectory of the particle, we obtain the three-dimensional Lorentz force

Φi = − eE i (3.223)

on the right hand side. That is, in this case, the particle’s observable
momentum changes under the action of the electric strength of the elec-
tromagnetic field.

Both of the groups of the chr.inv.-Maxwell equations for a stationary
electromagnetic field (3.215, 3.216) in this case become simple

∂E i

∂xi = 4πρ

j i = 0

 I , εikm ∂Em

∂xk = 0
}
II . (3.224)

Integrating the chr.inv.-scalar equation of motion (live forces theo-
rem), we arrive at the so-called live forces integral

m +
eφ
c2 = B = const, (3.225)
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where B is an integration constant.
Another consequence from the chr.inv.-Maxwell equations is that,

in the present case, the scalar potential of the field satisfies:

1) Poisson’s equation ∂2φ

∂x2 +
∂2 φ

∂y2 +
∂2φ

∂z2 = 4πρ, if ρ, 0;

2) Laplace’s equation ∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 = 0, if ρ= 0.
So, we have found such properties of the pseudo-Riemannian space,

which allow charged particles to travel in a stationary electric field. It
would be natural now to obtain exact solutions to the chr.inv.-equations
of motion for such a particle (3.221, 3.222). But, unless a particular
structure of the electromagnetic field itself is determined by theMaxwell
equations, this cannot be done. For this reason, to simplify further cal-
culations, we assume that the given field is homogeneous.

Assume that the covariant chr.inv.-vector of the electric strength Ei

is directed along the x axis. Following Landau and Lifshitz (see §20 of
The Classical Theory of Fields [10]), we are going to consider a charged
particle that is repulsed by the field — the case of a negative numeri-
cal value of the electric strength and the increasing coordinate x of the
particle*. Then the components of the vector Ei are

E1 = Ex = −E = const, E2 = E3 = 0 . (3.226)

Because the field homogeneity means Ei =
∂φ

∂x i = const, the scalar
potential φ is a function of x, which satisfies the Laplace equation

∂2φ

∂x2 =
∂E
∂x
= 0 . (3.227)

This means that the homogeneous stationary electric field satisfies
the condition of the absence of the field-inducing charges ρ= 0.

Let a charged particle travel along the electric strength vector Ei,
i.e., along x. Then the chr.inv.-equations of its motion have the form

dm
dτ
= −

e
c2

dφ
dτ
= −

e
c2

dφ
dxi vi =

e
c2 E

dx
dτ

, (3.228)

d
dτ

(
m

dx
dτ

)
= eE ,

d
dτ

(
m

dy
dτ

)
= 0 ,

d
dτ

(
m

dz
dτ

)
= 0 . (3.229)

*Naturally, if a charged particle is attracted by the field, then the electric strength
is positive, while the particle’s coordinate decreases.
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Integrating the chr.inv.-scalar equation of motion (live forces theo-
rem), we arrive at the live forces integral

m =
eE
c2 x + B , B = const. (3.230)

The integration constant B can be obtained from the initial condi-
tions m |τ=0 =m(0) and x |τ=0 = x(0). So, we obtain

B = m(0) −
eE
c2 x(0) , (3.231)

therefore the solution (3.230) takes the form

m =
eE
c2

(
x − x(0)

)
+ m(0) . (3.232)

Substituting the obtained solution into the chr.inv.-vector equations
of motion (3.229), we bring them to the form*

eE
c2 ẋ2 +

(
B +

eE
c2 x

)
ẍ = eE

eE
c2 ẋ ẏ +

(
B +

eE
c2 x

)
ÿ = 0

eE
c2 ẋ ż +

(
B +

eE
c2 x

)
z̈ = 0


. (3.233)

From here, we realize that the last two equations in (3.233) are or-
dinary equations with separable variables, which have the form

ÿ

y
=
− eE

c2 ẋ

B + eE
c2 x

,
z̈
z
=
− eE

c2 ẋ

B + eE
c2 x

, (3.234)

and are easy to integrate. Their solutions are

ẏ =
C1

B + eE
c2 x

, ż =
C2

B + eE
c2 x

, (3.235)

whereC1 andC2 are integration constants. They can be found by setting
the initial conditions ẏ |τ=0 = ẏ(0) and ẋ |τ=0 = ẋ(0) and using the formula
for B (3.121). As a result, we obtain

C1 = m(0) ẏ(0) , C2 = m(0) ż(0) . (3.236)

*The dot stands for the derivation with respect to the physically observable time τ.
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Let us solve the equation of motion along x, which is the first of the
equations (3.233). Denote ẋ= dx

dτ = p. Then

ẍ =
d2x
dt2 =

dp
dt
=

dp
dx

dx
dt
= pp′, (3.237)

and, therefore, the above equation of motion along x can be transformed
into an equation with separable variables, which has the form

p dp

1 − p2

c2

=
eE dx

B + eE
c2 x

, (3.238)

and is solved as a standard integral. After integrating the above equation,
we arrive at the following solution√

1 −
p2

c2 =
C3

B + eE
c2 x

, C3 = const. (3.239)

Assuming p= ẋ |τ=0 = ẋ(0) and substituting B from (3.231), we ob-
tain the following formula for the integration constant C3

C3 = m(0)

√
1 −

ẋ2
(0)

c2 . (3.240)

In the case under consideration, we can replace the interval of the
physically observable time dτ with the coordinate time interval dt. We
will explain why in the next section.

In The Classical Theory of Fields [10], Landau and Lifshitz solved
the equations of motion of a charged particle in a Galilean reference
frame in the Minkowski space (space-time of Special Relativity). Natu-
rally, in order to compare our solutions in the pseudo-Riemannian space
with theirs, consider the same particular case of the motion in a homo-
geneous stationary electric field as they did (see §20 in The Classical
Theory of Fields). To do this, we should place Fi = 0 and Aik = 0 in our
equations. As a result, we obtain that in this case

dτ =
(
1 −

w
c2

)
dt −

1
c2 vi dxi = dt . (3.241)

In other words, in the four-dimensional region, where the particle
travels, the three-dimensional metric is Galilean.
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Substituting the variable p= dx
dt into the formula (3.239) we arrive

at the equation with separable variables

dx
dt
= c

√(
B + eE

c2 x
)2
−C2

3

B + eE
c2 x

, (3.242)

the solution of which is the function

ct =
c2

eE

√(
B +

eE

c2 x
)2

−C2
3 +C4 , C4 = const, (3.243)

where the integration constant C4, taking into account the initial condi-
tions at the moment of time t= 0, is

C4 = −
m(0)c
eE

ẋ(0) . (3.244)

Now, formulating the coordinate x explicitly from (3.243) with t, we
obtain the final solution to the spatial chr.inv.-equations of motion of the
charged particle along x

x =
c2

eE


√

e2E2

c4 (ct −C4)2 +C2
3 − B

 , (3.245)

or, after substituting the found integration constants,

x =

√√(
ct +

m(0)c ẋ(0)

eE

)2

+

(
m(0)c2

eE

)2 1 − ẋ2
(0)

c2

 −
−

m(0)c2

eE
+ x(0) .

(3.246)

If the field attracts the particle (i.e., the electric strength is positive
E1 = Ex = E = const), we will obtain the same solution for x but having
the opposite sign

x =
c2

eE

B −

√
e2E2

c4 (ct −C4)2 +C2
3

 . (3.247)

In The Classical Theory of Fields [10], the same problem is consid-
ered. But, in contrast to our solution in the pseudo-Riemannian space,
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Landau and Lifshitz solved this problem through integrating the three-
dimensional components of the general covariant equations of motion
(the Minkowski three-dimensional equations) without accounting for
the live forces theorem. Their formula for x is

x =
1

eE

√(
m0c2)2

+ (ceEt)2 . (3.248)

This formulamatches our solution (3.245), if x(0) −
m(0)c2

eE = 0 and the
initial velocity of the particle is zero ẋ(0) = 0. The latter manifests the
significant simplifications assumed in The Classical Theory of Fields,
according to which some integration constants are zero.

It is easy to see that, even when solving the equations of motion
in a Galilean reference frame in the Minkowski space, the mathemati-
cal methods of chronometric invariants give a certain advantage reveal-
ing the hidden factors that are left unnoticed when solving the three-
dimensional components of the general covariant equations of motion.
This means that, even when physically observable quantities coincide
with coordinate quantities, it is geometrically correct to solve a system of
the chr.inv.-equations of motion, because the live forces theorem, being
their scalar part, inevitably affects the solution to the vector equations.

Of course, in the case of an inhomogeneous non-stationary electric
field, some additional terms will appear in our solution to reveal the
more complicated and time varying field structure.

Let us now calculate the three-dimensional trajectory of the particle
in the homogeneous stationary electric field that we are considering.
To do this, we integrate the equations of motion along the axes y and z
(3.235), then express time from there and substitute it into the solution
for x, which we have obtained.

First, substituting the obtained solution for x (3.245) into the equa-
tion for ẏ, we obtain the equation with separable variables

dy
dt
=

C1√
e2E2

c4 (ct −C4)2 +C2
3

, (3.249)

integrating which we have

y =
m(0) ẏ(0) c

eE
arc sinh

eE t + m(0) ẋ(0)

m(0)c

√
1 −

ẋ2
(0)

c2

+C5 , (3.250)
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where C5 is an integration constant. From y= y(0) at t= 0, we find

C5 = y(0) −
m(0) ẏ(0) c

eE
arc sinh

ẋ(0)

c

√
1 −

ẋ2
(0)

c2

. (3.251)

Substituting the constant into y (3.250) we finally have

y = y(0) +
m(0) ẏ(0) c

eE
×

×

arc sinh
eE t + m(0) ẋ(0)

m(0)c

√
1 −

ẋ2
(0)

c2

− arc sinh
ẋ(0)

c

√
1 −

ẋ2
(0)

c2

 .
(3.252)

Formulating from here t with y and y(0) and taking into account that
a= arc sinh b if b= sinh a, after substituting arc sinh b= ln

(
b+
√

b2+1
)

into the second term we have

t =
1

eE

m(0)c

√
1 −

ẋ2
(0)

c2 ×

× sinh


y − y(0)

m(0) ẏ(0) c
eE + ln

ẋ(0) + c

c

√
1 −

ẋ2
(0)

c2

 − m(0) ẋ(0)

 .
(3.253)

Substitute it into our solution for x (3.246). As a result we obtain
the desired equation for the three-dimensional trajectory of the particle

x = x(0) +
m(0)c2

eE

√
1 −

ẋ2
(0)

c2 ×

× cosh


y − y(0)

m(0) ẏ(0) c
eE + ln

ẋ(0) + c

c

√
1 −

ẋ2
(0)

c2

 −
m(0)c2

eE
.

(3.254)

The obtained formula means that a charged particle in a homoge-
neous stationary electric field, located in our world, travels along a curve
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based on a chain line, while the factors that deviate the particle from the
“purely” chain line are functions of the initial conditions.

Our formula (3.254) completely matches the result from The Clas-
sical Theory of Fields, which is formula 20.5 in [10]

x =
m(0)c2

eE
cosh

eEy
m(0) ẏ(0) c

, (3.255)

once we assume that x(0) −
m(0) c2

eE = 0, and the initial velocity of the parti-
cle is ẋ(0) = 0. The latter condition assumes that the integration constant
in the chr.inv.-scalar equation of motion (live forces theorem) is zero,
which is obviously not always true, but can be assumed only in a very
narrow particular case.

At low velocities, after equating the relativistic terms to zero and ex-
panding the hyperbolic cosine into series cosh b= 1+ b2

2! +
b4

4! +
b6

6! + . . . ,
our formula for the three-dimensional trajectory of the particle (3.254),
with higher-order terms withheld, takes the form

x = x(0) +
eE

(
y − y(0)

)2

2m(0) ẏ
2
(0)

, (3.256)

so the particle travels along a parabola. Thus, once the initial coordi-
nates of the particle are assumed zeroes, our solution (3.256) completely
matches the result from The Classical Theory of Fields, which is

x =
eEy2

2m(0) ẏ
2
(0)

. (3.257)

Integrating the equation of motion along the z axis gives the same
results. This is because the only difference between the equations with
respect to ẏ and ż (3.235) is a fixed coefficient— the integration constant
(3.236), which is equal to the initial momentum of the particle along y
(in the equation for ẏ) and along z (in the equation for ż).

Let us find the properties of the particle (such as its energy and mo-
mentum) affected by the acting homogeneous stationary electric field.
Calculating the relativistic square root (with the above assumptions)

√
1−

v2

c2 =

√
1 −

ẋ2 + ẏ2 + ż2

c2 =

m(0)

√
1 −

ẋ2
(0)+ ẏ

2
(0)+ ż2

(0)

c2

m(0) +
eE
c2

(
x − x(0)

) , (3.258)
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we obtain the energy of the particle

E =
m(0)c2√

1 − v2

c2

=
m(0)c2 + eE

(
x − x(0)

)√
1−

ẋ2
(0)+ ẏ

2
(0)+ ż2

(0)

c2

, (3.259)

which at the velocity much lower than the light velocity is

E = m(0)c2 + eE
(
x − x(0)

)
. (3.260)

The relativistic momentum of the particle is obtained in the same
way, but since the formula is bulky we would not include it here.

So, we have studied the motion of a charged particle in a homoge-
neous stationary electric field, located in our world. So forth, we will
consider the motion of an analogous particle of the mirror world under
the same conditions.

The chr.inv.-equations of motion of a charged particle in a stationary
electric field that fills the mirror world, taking into account the above
constraints imposed on the geometric structure of the space, have the
form

dm
dτ
=

e
c2

dφ
dτ

, (3.261)

d
dτ

(
mvi) = − e

c
dqi

dτ
. (3.262)

The difference from the equations of motion in our world (3.221,
3.222) is only the sign in the live forces theorem.

Assume that the electric strength is negative (i.e., the field repulses
the charged particle) and that the particle travels along the field strength,
so its motion is co-directed with the x axis.

Then, integrating the live forces theorem for the mirror-world par-
ticle (3.261), we obtain the live forces integral

m = −
eE
c2 x + B , (3.263)

where the integration constant B= const, calculated from the initial con-
ditions, is

B = m(0) +
eE
c2 x(0) . (3.264)
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Substituting the results into the chr.inv.-vector equations of motion
(3.262), we have (compare these equations with 3.233)

−
eE
c2 ẋ2 +

(
B −

eE
c2 x

)
ẍ = eE

−
eE
c2 ẋ ẏ +

(
B −

eE
c2 x

)
ÿ = 0

−
eE
c2 ẋ ż +

(
B −

eE
c2 x

)
z̈ = 0


. (3.265)

After some algebra similar to that done to obtain the trajectory of
an analogous charged particle in our world, we arrive at

x =
c2

eE

B −

√
C2

3 −
e2E2

c4 (ct −C4)2

 , (3.266)

where C3 = m(0)

√
1 +

ẋ2
(0)

c2 and C4 = −
cm(0) ẋ(0)

eE . Or,

x = −

√√(
m(0)c2

eE

)2 1 + ẋ2
(0)

c2

 − (
ct +

m(0)cẋ(0)

eE

)2

+

+
m(0)c2

eE
+ x(0) .

(3.267)

The obtained coordinate x of the mirror-world charged particle, re-
pulsed by the stationary electric field, is similar to that for an analogous
particle of our world, which is attracted by the field (3.247), i.e., when
the electric strength is positive E1 = Ex = E = const. Consequently, we
arrive at the interesting conclusion: the transition of a charged particle
from our world into the mirror world (where time flows in the opposite
direction) is the same as changing the sign of its charge.

Noteworthy, we had arrived at the same conclusion about masses of
particles [19]: the purported transition of a particle from our world into
the mirror world is the same as changing the sign of its mass. Hence,
our-world particles andmirror-world particles aremass and charge com-
plementary.

Let us find the three-dimensional trajectory of the charged particle
in the homogeneous stationary electric field that fills the mirror world.
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Calculating y in the same way as for the our-world particle, we have

y = y(0) +
m(0) ẏ(0) c

eE
×

×

arcsin
eE t + m(0) ẋ(0)

m(0)c

√
1 +

ẋ2
(0)

c2

− arcsin
ẋ(0)

c

√
1 +

ẋ2
(0)

c2

 .
(3.268)

In contrast to the formula for the our-world particle (3.252), this
formula has an ordinary arcsine and “plus” under the square root.

Formulating time t from here with the coordinates y and y(0)

t =
1

eE

m(0)c

√
1 +

ẋ2
(0)

c2 ×

× sin


y − y(0)

m(0) ẏ(0) c
eE + ln

ẋ(0) + c

c

√
1 +

ẋ2
(0)

c2

 − m(0) ẋ(0)

 ,
(3.269)

and substituting it into our formula for x (3.267), we obtain the final
formula for the trajectory

x = x(0) −
m(0)c2

eE

√
1 +

ẋ2
(0)

c2 ×

× cos


y − y(0)

m(0) ẏ(0) c
eE + arcsin

ẋ(0)

c

√
1 +

ẋ2
(0)

c2

 −
m(0)c2

eE
.

(3.270)

In other words, the motion of the particle is harmonic oscillation.
Once we assume the initial coordinates of the particle equal to zero, as
well as its initial velocity ẋ(0) = 0 and the integration constant B= 0, the
obtained equation for the trajectory takes the much simpler form

x = −
m(0)c2

eE
cos

eEy
m(0) ẏ(0) c

. (3.271)
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At low velocities, after equating the relativistic terms to zero and
expanding the cosine into series cos b= 1− b2

2! +
b4

4! − . . . ≈ 1− b2

2! (this
is always possible within a smaller part of the trajectory), our formula
(3.270) becomes

x = x(0) +
eE

(
y − y(0)

)2

2m(0) ẏ
2
(0)

, (3.272)

which is the equation of a parabola. So, the charged particle in the
mirror world at low velocity travels along a parabola, as the our-world
particle does under the same conditions in the field.

Therefore, a charged particle of our world travels in a homogeneous
stationary electric field along a chain line, which at low velocities be-
comes a parabola. An analogous mirror-world particle travels along
a harmonic trajectory, each small part of which at low velocities is a
parabola (as in the case of the our-world particle).

3.12 Motion in a stationary magnetic field

Let us consider the motion of a charged particle in the case, where the
electric component of the electromagnetic field is zero, while the mag-
netic component is non-zero and stationary. In this case, the chr.inv.-
electric and magnetic strengths are

Ei =
∗∂φ

∂xi −
φ

c2 Fi =
∂φ

∂xi −
φ

c2

1

1 − w
c2

∂w
∂xi = 0 , (3.273)

H∗i =
1
2
εimnHmn =

1
2
εimn

(
∂qm

∂xn −
∂qn

∂xm −
2φ
c

Amn

)
, 0 , (3.274)

because, if the field is strictly magnetic (φ= const and Ei = 0), then the
effect of gravitation can be neglected. From (3.274) we can see that
the magnetic strength H∗i is not zero, if at least one of the following
conditions is true:

a) The vector potential qi of the field is rotational;
b) The space is non-holonomic Aik , 0.
We will consider the motion of the particle in a general case, where

both of the above conditions are true (we will also use a non-holonomic
space later as the basic space for spin particles). As in the previous
section §3.11, we assume deformations of the space to be zero and the
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three-dimensional metric to be Euclidean gik = δik. However, the ob-
servable metric hik =−gik +

1
c2 vi vk in this case is not Galilean, because

in a non-holonomic space we always have hik ,−gik.
Assume that the space rotates around the z axis with a constant an-

gular velocity Ω12 =−Ω21 =Ω. Then the linear velocity of this rota-
tion vi =Ωik xk has the two non-zero components v1 =Ωy and v2 =−Ω x,
and the non-holonomity tensor has the only non-zero component A12 =

−A21 =−Ω. In this case, the space metric takes the form

ds2 = c2dt2 − 2Ωydtdx + 2Ω xdtdy − dx2 − dy2 − dz2, (3.275)

where Fi = 0 and Dik = 0. In §3.11, which focused on a charged parti-
cle in a stationary electric field, we could assume that the Christoffel
symbols are zeroes, i.e., consider the particle’s motion in a Galilean
reference frame in the Minkowski space. In contrast, in this section,
the three-dimensional observable metric hik is not Euclidean due to the
space rotation, and the Christoffel symbols ∆i

jk (1.47) are not zeroes.
If the linear velocity with which the space rotates is not infinitesimal

compared to the velocity of light, then the components of the chr.inv.-
metric tensor hik are

h11 = 1+
Ω2y2

c2 , h22 = 1+
Ω2x2

c2 , h12 = −
Ω2xy

c2 , h33 = 1, (3.276)

and its determinant and the corresponding hik components are

h = det ∥hik∥ = h11h22 − h2
12 = 1 +

Ω2
(
x2 + y2

)
c2 , (3.277)

h11 =
1
h

(
1 +
Ω2x2

c2

)
, h22 =

1
h

(
1 +
Ω2y2

c2

)

h12 =
Ω2xy
hc2 , h33 = 1


. (3.278)

Based on the hik components, we obtain the non-zero components
of the chr.inv.-Christoffel symbols ∆i

jk (1.47)

∆1
11 = −

2Ω4xy2

c4
[
1 + Ω

2(x2+y2)
c2

] , (3.279)
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∆1
12 =

Ω2y
(
1 + 2Ω2 x2

c2

)
c2

[
1 + Ω

2(x2+y2)
c2

] , (3.280)

∆1
22 = −

2Ω2x
c2

1 + Ω
2 x2

c2

1 + Ω
2(x2+y2)

c2

, (3.281)

∆2
11 = −

2Ω2y

c2

1 + Ω
2y2

c2

1 + Ω
2(x2+y2)

c2

, (3.282)

∆2
12 =

Ω2x
(
1 + Ω

2y2

c2

)
c2

[
1 + Ω

2(x2+y2)
c2

] , (3.283)

∆2
22 = −

2Ω4x2y

c4
[
1 + Ω

2(x2+y2)
c2

] . (3.284)

We will solve the chr.inv.-equations of motion of a charged particle
in the stationary magnetic field that fills the pseudo-Riemannian space.
To make the calculations easier, assume that the four-dimensional field
potential Aα is tangential to the four-dimensional trajectory of the parti-
cle. Since the electric field component is zero Ei = 0, it does not perform
any work, so the right hand side of the chr.inv.-scalar equation of motion
turns into zero.

Then, the chr.inv.-equations of motion of a charged particle (3.208,
3.209) belonging to our world take the following form

dm
dτ
= 0 , (3.285)

d
dτ

(
mvi) + 2mA·ik·v

k + m∆i
nk vnvk = −

e
c
εikmvk H∗m , (3.286)

while for an analogous charged particle travelling in the same stationary
magnetic field, located in the mirror world, we have

−
dm
dτ
= 0 , (3.287)

d
dτ

(
mvi) + m∆i

nk vnvk = −
e
c
εikmvk H∗m . (3.288)
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Integrating the live forces theorem for the our-world particle and the
mirror-world particle we obtain, respectively

m=
m0√
1 − v2

c2

= const= B , −m=
m0√
1 − v2

c2

= const= B̃ , (3.289)

where B and B̃ are integration constants. The constants actually mean
that v2 = const, i.e., the modulus of the particle’s observable velocity
remains unchanged in the absence of the electric component of the elec-
tromagnetic field.

Then the chr.inv.-vector equations of motion for an our-world parti-
cle (3.286) take the form

dvi

dτ
+ 2A·ik·v

k + ∆i
nk vnvk = −

e
mc

εikmvk H∗m , (3.290)

while for a mirror-world particle (3.288) we have the same equations,
but without the term 2A·ik·v

k, namely

dvi

dτ
+ ∆i

nk vnvk = −
e

mc
εikmvk H∗m . (3.291)

The magnetic strength is determined by the Maxwell equations for
a stationary field (3.215, 3.216), which, with zero electric strength and
under the constraints assumed in this section, take the form

Ω∗mH∗m = −2πcρ

εikm ∗∇k
(
H∗m
√

h
)
=

4π
c

j i
√

h

 I , (3.292)

∗∇i H∗i =
∂H∗i

∂xi +
∂ ln
√

h
∂xi H∗i = 0

 II . (3.293)

From the first equation of the 1st group, we see that the scalar prod-
uct of the space non-holonomity pseudovector and themagnetic strength
pseudovector is a function of the charge density. As a result, if the charge
density of the stationary magnetic field is ρ= 0, then the pseudovectors
Ω∗i and H∗i are orthogonal.

Henceforth, we will consider two possible orientations of the mag-
netic field strength with respect to the pseudovector of the space non-
holonomity (rotation).
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3.12.1 The magnetic field is co-directed with the non-holonomity
field

Assume that the magnetic strength pseudovector H∗i is directed along
the z axis, i.e., in the same direction as the pseudovector of the angular
velocity Ω∗i = 1

2 ε
ikmAkm with which the space rotates. In this case, the

space rotation pseudovector has just one non-zero component Ω∗3 =Ω,
while themagnetic strength pseudovector has as well one non-zero com-
ponent that has the form

H∗3 =
1
2
ε3mnHmn =

1
2

(
ε312H12 + ε

321H21
)
= H12 =

=
φ

c

(
∂v1

∂x
−
∂v2

∂y

)
+

2φ
c
Ω .

(3.294)

The condition φ= const is derived based on the condition of the
absence of the electric component of the field. Hence, the 1st group of
the Maxwell equations (3.292) in this case have the form

Ω∗3 H∗3 =
Ωφ

c

(
∂v1

∂x
−
∂v2

∂y

)
+

2φΩ2

c
= −2πcρ

∂

∂y

(
H∗3
√

h
)
=

4π
c

j1
√

h

−
∂

∂x
(
H∗3
√

h
)
=

4π
c

j2
√

h

j3 = 0


. (3.295)

The 2nd group of the equations (3.293) turn to the trivial relation-
ship ∂H∗3

∂z = 0, so we have H∗3 = const. This means that the stationary
magnetic field that we are considering is homogeneous along z. Next,
we assume that the stationary magnetic field is strictly homogeneous
H∗i = const. Then, from the first equation of the 1st group (3.295), we
see that the field is homogeneous under the following two conditions(

∂v1

∂x
−
∂v2

∂y

)
= const, ρ = −

φΩ2

πc2 = const. (3.296)

Hence, the charge density of the stationary magnetic field under
consideration is ρ> 0, if the field scalar potential is φ< 0. In this case,
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the other equations of the 1st group (3.295) take the form

j1 =
c

4π
∂ ln
√

h
∂y

, j2 =
c

4π
∂ ln
√

h
∂x

, j3 = 0 . (3.297)

Since h = 1+ Ω
2(x2+y2)

c2 (3.277), this means: the current vector in the
homogeneous stationary magnetic field is non-zero only if the space
rotation velocity is comparable to the light velocity. In a weak field of
the space non-holonomity, we have h= 1, hence j1 = j2 = 0.

Now, expressing the magnetic strength from the Maxwell equations
(3.295) we write down the chr.inv.-vector equations of motion for an
our-world particle (3.290, 3.291) in the form

ẍ +
2Ω
h

[
Ω2xy ẋ

c2 +

(
1 +
Ω2x2

c2

)
ẏ

]
+ ∆1

11 ẋ2 + 2∆1
12 ẋ ẏ +

+ ∆1
22 ẏ

2 = −
eH
mc

[
−
Ω2xy ẋ

c2 +

(
1 +
Ω2x2

c2

)
ẏ

]

ÿ −
2Ω
h

[
Ω2xyẏ

c2 +

(
1 +
Ω2y2

c2

)
ẋ
]
+ ∆2

11 ẋ2 + 2∆2
12 ẋ ẏ +

+ ∆2
22 ẏ

2 =
eH
mc

[
−
Ω2xyẏ

c2 +

(
1 +
Ω2y2

c2

)
ẋ
]

z̈ = 0



, (3.298)

while those for an analogous mirror-world particle are

ẍ + ∆1
11 ẋ2 + 2∆1

12 ẋ ẏ + ∆1
22 ẏ

2 =

= −
eH
mc

[
−
Ω2xy ẋ

c2 +

(
1 +
Ω2x2

c2

)
ẏ

]
ÿ + ∆2

11 ẋ2 + 2∆2
12 ẋ ẏ + ∆2

22 ẏ
2 =

=
eH
mc

[
−
Ω2xyẏ

c2 +

(
1 +
Ω2y2

c2

)
ẋ
]

z̈ = 0



. (3.299)

The terms on the right hand side, which contain Ω2

c2 , appear, because
in a rotating space the observable chr.inv.-metric hik is not Euclidean.
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Hence, in the case under consideration there is a difference between the
contravariant form of the observable velocity and its covariant form.
The right hand side includes the covariant components

v2 = h21v1 + h22v2 = −
Ω2xy

c2 ẋ +
(
1 +
Ω2x2

c2

)
ẏ , (3.300)

v1 = h11v1 + h12v2 = −
Ω2xy

c2 ẏ +

(
1 +
Ω2y2

c2

)
ẋ . (3.301)

If the space does not rotate (Ω= 0), then the chr.inv.-equations of
motion of the our-world particle (3.298) to within their sign match the
equations of motion in a homogeneous stationary magnetic field given
by Landau and Lifshitz (see their formula 21.2 in The Classical Theory
of Fields), which have the form

ẍ =
eH
mc

ẏ , ÿ = −
eH
mc

ẋ , z̈ = 0 , (3.302)

while our equations (3.298) under the same simplification mean

ẍ = −
eH
mc

ẏ , ÿ =
eH
mc

ẋ , z̈ = 0 . (3.303)

The difference is derived from the fact that Landau and Lifshitz as-
sumed the magnetic strength in the Lorentz force to have a “plus” sign,
while in our equations it has a “minus” sign, which is not that important,
because it only depends on the choice of the space signature.

If the space rotates (non-holonomic), then the equations of motion
will include the terms containing Ω, Ω2

c2 and Ω4

c4 .
In a strong field of the space non-holonomity, solving the equations

that we have obtained is a non-trivial task, which is likely to be tackled
in the future with computer-aided numerical methods. Hopefully, the
results will be quite interesting.

Let us now find exact solutions to the obtained equations of motion
in a weak field of the space non-holonomity, i.e., neglecting second or-
der terms. In this case, the equations of motion that we have obtained
(3.298, 3.299) for an our-world particle are simplified

ẍ + 2Ω ẏ = −
eH
mc

ẏ , ÿ − 2Ω ẋ =
eH
mc

ẋ , z̈ = 0 , (3.304)
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and for a mirror-world particle they are even simpler

ẍ = −
eH
mc

ẏ , ÿ =
eH
mc

ẋ , z̈ = 0 . (3.305)

First, consider the equations for the our-world particle. The equation
along z can be integrated straightaway. The solution is

z = ż(0)τ + z(0) . (3.306)

From here we see that, if at the initial moment of time the particle’s
velocity along z is zero, then it travels within the xy plane only. Re-write
the remaining two equations of (3.304) as follows

dẋ
dτ
= − (2Ω + ω) ẏ ,

dẏ
dτ
= (2Ω + ω) ẋ , (3.307)

where we denote ω= eH
mc as in §21 of The Classical Theory of Fields.

Formulating ẋ from the second equation, we derive it then substitute the
result into the first equation. Thus, we obtain

d2ẏ

dτ2 + (2Ω + ω)2 ẏ = 0 , (3.308)

which is an oscillation equation. Its solution is

ẏ = C1 cos (2Ω + ω) τ +C2 sin (2Ω + ω) τ , (3.309)

where C1 = ẏ(0) and C2 =
ÿ(0)

2Ω+ω are integration constants. Substituting
ẏ (3.309) into the first equation of (3.307), we obtain

dẋ
dτ
= − (2Ω + ω) ẏ(0) cos (2Ω + ω) τ − ÿ(0) sin (2Ω + ω) τ , (3.310)

or, after integration,

ẋ = ẏ(0) sin (2Ω + ω) τ −
ÿ(0)

2Ω + ω
cos (2Ω + ω) τ +C3 , (3.311)

where the integration constant is C3 = ẋ(0) +
ÿ(0)

2Ω+ω .
Having all of the constants substituted, the obtained formulae for ẋ

(3.311) and ẏ (3.309) finally transform into

ẋ = ẏ(0) sin (2Ω + ω) τ −
ÿ(0)

2Ω + ω
cos (2Ω + ω) τ+

+ ẋ(0) +
ÿ(0)

2Ω + ω
,

(3.312)
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ẏ = ẏ(0) cos (2Ω + ω) τ +
ÿ(0)

2Ω + ω
sin (2Ω + ω) τ . (3.313)

Hence, the formulae for components of the particle’s velocity ẋ and
ẏ in a homogeneous stationary magnetic field are harmonic oscillation
equations. The oscillation frequency in a weak field of the space non-
holonomity is 2Ω+ω= 2Ω+ eH

mc .
From the live forces integral in the stationary magnetic field (3.289)

we see that the square of the particle’s velocity is a constant quantity.
Calculating v2 = ẋ2 + ẏ2 + ż2 for the our-world particle, we obtain that
this quantity

v2 = ẋ2
(0) + ẏ

2
(0) + ż2

(0) + 2
(
ẋ(0) +

ÿ(0)

2Ω + ω

)
×

×

[
ÿ(0)

2Ω + ω
+ ẏ(0) sin (2Ω + ω) τ −

ÿ(0)

2Ω + ω
cos (2Ω + ω) τ

] (3.314)

is constant v2 = const, provided that C3 = ẋ(0) +
ÿ(0)

2Ω+ω = 0.
Integrating ẋ (3.312) and ẏ (3.313) by the observable time τ, we

obtain the coordinates x and y of the our-world particle travelling in the
homogeneous stationary magnetic field

x =
[

ÿ(0)

2Ω + ω
sin (2Ω + ω) τ − ẏ(0) cos (2Ω + ω) τ

]
×

×
1

2Ω + ω
+

(
ẋ(0) +

ÿ(0)

2Ω + ω

)
τ +C4 ,

(3.315)

y =

[
ẏ(0) sin (2Ω + ω) τ +

ÿ(0)

2Ω + ω
cos (2Ω + ω) τ

]
×

×
1

2Ω + ω
+C5 ,

(3.316)

where the integration constants are

C4 = x(0) +
ẏ(0)

2Ω + ω
, C5 = y(0) +

ÿ(0)

(2Ω + ω)2
. (3.317)

From (3.315) we see that the particle performs harmonic oscilla-
tions along x provided that the equation ẋ(0) +

ÿ(0)

2Ω+ω = 0 is true. This
is also the condition for the constant square of the particle’s velocity
(3.314), which satisfies the live forces integral.
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Based on the above solutions, we arrive at the equation of the parti-
cle’s trajectory within the xy plane

x2 + y2 =
1

(2Ω + ω)2

 ẏ2
(0) +

ÿ2
(0)

(2Ω + ω)2

 − 2C4

2Ω + ω
×

×

[
ẏ(0) cos (2Ω + ω) τ +

ÿ(0)

2Ω + ω
sin (2Ω + ω) τ

]
+

+

[
ẏ(0) sin (2Ω + ω) τ +

ÿ(0)

2Ω + ω
cos (2Ω + ω) τ

]
×

×
2C5

2Ω + ω
+C2

4 +C2
5 .

(3.318)

Assuming that, at the initial moment of time, ÿ(0) = 0 and the inte-
gration constants C4 and C5 are zeroes, we can simplify the obtained
formulae (3.315, 3.316), namely

x = −
1

2Ω + ω
ẏ(0) cos (2Ω + ω) τ , (3.319)

y =
1

2Ω + ω
ẏ(0) sin (2Ω + ω) τ . (3.320)

With these formulae, our equation of the particle’s trajectory (3.318)
transforms into the simple equation of a circle

x2 + y2 =
ẏ2

(0)

(2Ω + ω)2
. (3.321)

So, if the initial velocity of an our-world charged particle with re-
spect to the direction of the homogeneous magnetic field (z axis) is zero,
then the particle travels within the xy plane along a circle of radius

r =
ẏ(0)

2Ω + ω
=

ẏ(0)

2Ω + eH
mc

, (3.322)

which depends on the magnetic field strength and the angular velocity
with which the space rotates.

If the initial velocity of the particle along the magnetic field direc-
tion is not zero, then it travels along a spiral line of radius r. In gen-
eral, the particle travels along an ellipse within the xy plane (3.318),
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the shape of which is different from a circle depending on the initial
conditions of the motion.

It is easy to see that our results match those obtained in §21 of The
Classical Theory of Fields

x = −
1
ω
ẏ(0) cosωτ , y =

1
ω
ẏ(0) sinωτ , (3.323)

once we assume Ω= 0, i.e., the space does not rotate. In this particu-
lar case, the radius r= ẏ(0)

ω
= mc

eH ẏ(0) of the particle’s trajectory does not
depend on the space rotation. If Ω, 0, then the non-holonomity field
disturbs the particle travelling in the magnetic field by adding up an ad-
ditional quantity 2Ω to the termω= eH

mc in the equations. In a strong field
of the space non-holonomity, whereΩ cannot be neglected compared to
the light velocity, this disturbance is even stronger.

On the other hand, in a non-holonomic space the argument of the
trigonometric functions in our equations contains the sum of two terms,
one of which is derived from the interaction of the particle’s charge
with the magnetic field strength, and the other is the result of the space
rotation (it does not depend on the electric charge of the particle, or even
on the presence of the magnetic field at all). This allows us to consider
two special cases of the motion of a charged particle in a homogeneous
stationary magnetic field that fills a non-holonomic space.

In the first case, where the particle is electrically neutral or the mag-
netic field is absent, the particle’s motion is the same as that under the
action of the magnetic component of the Lorentz force, except for the
fact that this motion is caused by the space rotation with a velocity 2Ω,
comparable to ω= eH

mc .
How real is this case? To answer this question, we need an approx-

imate estimate of the ratio between the angular velocity Ω with which
the space rotates and the magnetic field strength H in at least a particu-
lar case. The best example would be the atom, because on the scale of
the electron orbits, the electromagnetic interactions are several orders
of magnitude stronger than others, and the orbital velocities of electrons
are relatively large.

Such an estimate can be made on the basis of the second particular
case of the motion, where we assume that the condition

eH
mc
= −2Ω (3.324)
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is true and, hence, the argument of the trigonometric functions in the
equations of motion becomes zero.

Consider the reference frame of an observer, whose reference space
is associated with the nucleus of an atom. Then the ratio in the question
(in CGSE and Gaussian systems of units) for an orbiting electron is

Ω

H
= −

e
2mec

= −
4.8 ×10−10

18.2 ×10−28 3.0 ×1010 =

= −8.8 ×106 cm1/2 gram−1/2,

(3.325)

where the “minus” sign is due to the fact that Ω and H in (3.324) are
oppositely directed.

Let us now solve the equations of motion of a mirror-world charged
particle in the homogeneous stationary magnetic field (3.305), which in
a non-holonomic space match the equations

ẍ = −ωẏ , ÿ = ω ẋ , z̈ = 0 . (3.326)

The solution to the third equation of motion (along z) is simplest and
has the form z= ż(0)τ+ z(0).

The equations of motion along x and y are similar to those for an
analogous our-world particle, except that the argument of the trigono-
metric functions has ω instead of ω+ 2Ω, i.e.

ẋ = ẏ(0) sinωτ −
ÿ(0)

ω
cosωτ + ẋ(0) +

ÿ(0)

ω
, (3.327)

ẏ = ẏ(0) cosωτ +
ÿ(0)

ω
sinωτ . (3.328)

Hence, the formulae for the components of the mirror-world parti-
cle’s velocity ẋ and ẏ are the equations of harmonic oscillations at the
frequency ω= eH

mc .
Their solutions, i.e., the coordinates of the mirror-world particle

travelling in the homogeneous stationary magnetic field have the form

x =
1
ω

(
ÿ(0)

ω
sinωτ − ẏ(0) cosωτ

)
+

(
ẋ(0) +

ÿ(0)

ω

)
τ +C4 , (3.329)

y =
1
ω

(
ẏ(0) sinωτ +

ÿ(0)

ω
cosωτ

)
+C5 , (3.330)
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where the integration constants are

C4 = x(0) +
ẏ(0)

ω
, C5 = y(0) +

ÿ(0)

ω2 . (3.331)

As we have already mentioned, the live forces integral in a station-
ary magnetic field (3.289) means the constant relativistic mass of the
travelling particle and, hence, the constant square of its observable ve-
locity. Then, using the solutions for the velocities of the mirror-world
particle, i.e., the squared quantities ẋ, ẏ, ż, we obtain that

v2 = ẋ2
(0) + ẏ

2
(0) + ż2

(0) +

+ 2
(
ẋ(0) +

ÿ(0)

ω

) (
ÿ(0)

ω
+ ẏ(0) sinωτ −

ÿ(0)

ω
cosωτ

) (3.332)

is constant v2 = const provided that

ẋ(0) +
ÿ(0)

ω
= 0 . (3.333)

From the formula for x (3.329), we see that the particle performs
strictly harmonic oscillations along x under the same condition (3.333).
Taking this fact into account, squaring and adding up x (3.329) and
y (3.330) for the mirror-world particle in the homogeneous stationary
magnetic field, we obtain its trajectory within the xy plane

x2 + y2 =

=
1
ω2

ẏ2
(0) +

ÿ2
(0)

ω2

 − 2C4

ω

(
ẏ(0) cosωτ +

ÿ(0)

ω
sinωτ

)
+

+

(
ẏ(0) sinωτ +

ÿ(0)

ω
cosωτ

)
2C5

ω
+C2

4 +C2
5 ,

(3.334)

which differs from the our-world particle trajectory (3.318) by ω+ 2Ω
replaced withω and by the numerical values of the integration constants
(3.331). Therefore, a mirror-world charged particle having zero initial
velocity along the z axis (direction of the magnetic field strength) travels
along an ellipse within the xy plane.

Once we assume ÿ(0) as well as the constantsC4 andC5 to be zeroes,
the obtained solutions become much simpler

x = −
1
ω
ẏ(0) cosωτ , y =

1
ω
ẏ(0) sinωτ . (3.335)
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In such a simplified case, the mirror-world particle which is at rest
with respect to the field direction makes a circle

x2 + y2 =
ẏ2

(0)

ω2 (3.336)

within the xy plane with the radius r= ẏ(0)

ω
= mc

eH ẏ(0).
Consequently, if the initial velocity of the particle along the mag-

netic field direction (z axis) is not zero, then the particle travels along
a spiral line around the magnetic field direction. Hence, the motion of
mirror-world charged particles in a homogeneous stationary magnetic
field is the same as that of our-world charged particles in the absence of
the space non-holonomity.

3.12.2 The magnetic field is orthogonal to the non-holonomity
field

We are going to consider the case, where the magnetic strength pseu-
dovector H∗i is orthogonal to the pseudovector Ω∗i = 1

2 ε
ikmAkm of the

space non-holonomity field. In this case, the first equation of the 1st
group of the chr.inv.-Maxwell equations that we have obtained for a sta-
tionary magnetic field (3.292) means that the charge density of the field
is zero ρ= 0.

Assume that themagnetic strength is directed along y (only the com-
ponent H∗2 =H is non-zero), while the non-holonomity field is directed
along z (only the component Ω∗3 =Ω is non-zero). We also assume that
the magnetic field is stationary and homogeneous. Under the above as-
sumptions, the non-zero component of the magnetic strength is

H∗2 = H31 =
φ

c

(
∂v3

∂x
−
∂v1

∂z

)
= const . (3.337)

If the non-holonomity field is weak, then the equations of motion of
an our-world particle take the form

ẍ + 2Ω ẏ =
eH
mc

ż , ÿ − 2Ω ẋ = 0 , z̈ = −
eH
mc

ẋ , (3.338)

which, denoting ω = eH
mc , become even simpler

ẍ + 2Ω ẏ = ω ż , ÿ − 2Ω ẋ = 0 , z̈ = −ω ẋ . (3.339)
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Differentiating the first equation with respect to τ and substituting ÿ
and z̈ into it from the second and the third equations, we have

...
x +

(
4Ω2 + ω2

)
ẋ = 0 . (3.340)

Setting ẋ= p, we arrive at the oscillation equation

p̈ + ω̃2 p = 0 , ω̃ =
√

4Ω2 + ω2 =

√
4Ω2 +

(eH
mc

)2
, (3.341)

which solves as follows

p = C1 cos ω̃τ +C2 sin ω̃τ , (3.342)

whereC1 = ẋ(0) andC2 =
ẍ(0)

ω̃2 are integration constants. Integrating ẋ= p
with respect to τ, we obtain the formula for x

x =
ẋ(0)

ω̃
sin ω̃τ −

ẍ(0)

ω̃2 cos ω̃τ + x(0) +
ẍ(0)

ω̃2 , (3.343)

where x(0) +
ẍ(0)

ω̃2 =C3 is an integration constant.
Substituting ẋ= p (3.342) into the equations of motion in terms of

y and z (3.339) and integrating them, we obtain

ẏ =
2Ω
ω̃

ẋ(0) sin ω̃τ −
2Ω
ω̃2 ẍ(0) cos ω̃τ + ẏ(0) +

2Ω
ω̃2 ẍ(0) , (3.344)

ż =
ω

ω̃2 ẍ(0) cos ω̃τ −
ω

ω̃
ẋ(0) sin ω̃τ + ż(0) −

ω

ω̃2 ẍ(0) , (3.345)

where ẏ(0) +
2Ωẍ(0)

ω̃2 =C4 and ż(0) −
ωẍ(0)

ω̃2 =C5 are new integration con-
stants. Then integrating the obtained equations (3.344, 3.345) with re-
spect to τ, we obtain the final formulae for y and z

y = −
2Ω
ω̃2

(
ẋ(0) cos ω̃τ +

ẍ(0)

ω̃
sin ω̃τ

)
+ ẏ(0)τ+

+
2Ω
ω̃2 ẍ(0)τ + y(0) +

2Ω
ω̃2 ẋ(0) ,

(3.346)

z =
ω

ω̃2

(
ẋ(0) cos ω̃τ +

ẍ(0)

ω̃
sin ω̃τ

)
+ ż(0)τ −

−
ω

ω̃2 ẍ(0)τ + z(0) −
ω

ω̃2 ẋ(0) ,

(3.347)
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where y(0) +
2Ω ẋ(0)

ω̃2 =C6 and z(0) −
ω ẋ(0)

ω̃2 =C7.
If Ω= 0 (the space does not rotate) and some integration constants

are zeroes, then the above equations completely match the well-known
formulae of relativistic electrodynamics in the case, where the station-
ary magnetic field is directed along the z axis

x =
ẋ(0)

ω
sin ω̃τ , y = y(0) + ẏ(0)τ , z =

ẋ(0)

ω
cos ω̃τ . (3.348)

So forth, since the live forces integral means that the square of the
observable velocity of a charged particle in a stationary magnetic field
is constant, we can calculate v2 = ẋ2 + ẏ2 + ż2. Substituting the obtained
formulae for the velocity components, we obtain

v2 = ẋ2
(0) + ẏ

2
(0) + ż2

(0) +
2
ω̃

(
ẍ(0) + 2Ω ẏ(0) − ω ż(0)

)
×

×

(
ẍ(0)

ω̃
+ ẋ(0) sin ω̃τ −

ẍ(0)

ω̃
cos ω̃τ

)
,

(3.349)

therefore v2 = const, provided that

ẍ(0) + 2Ω ẏ(0) − ω ż(0) = 0 . (3.350)

The three-dimensional trajectory of the particle can be found by cal-
culating x2 + y2 + z2. Thus, we obtain the equation

x2 + y2 + z2 =
1
ω̃2

ẋ2
(0) +

ẍ2
(0)

ω̃2

 +C2
3 +C2

6 +C2
7 +

+
(
C2

4 +C2
5

)
τ2 + 2 (C4 C6 +C5 C7) τ +

[
(ωC7 − 2ΩC6)+

+ 2 (ωC5 − 2ΩC6) τ
] (

ẋ(0) cos ω̃τ +
ẍ(0)

ω̃
sin ω̃τ

)
1
ω̃2 +

+
2C3

ω̃2

(
ẋ(0) cos ω̃τ −

ẍ(0)

ω̃
sin ω̃τ

)
,

(3.351)

which includes a linear term and a square term with respect to time, as
well as a parametric term and two harmonic terms. In a particular case,
where the integration constants are zeroes, the obtained formula (3.351)
takes the form of the equation of a sphere

x2 + y2 + z2 =
1
ω̃2

ẋ2
(0) +

ẍ2
(0)

ω̃2

 , (3.352)
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the radius of which is

r =
1
ω̃

√
ẋ2

(0) +
ẍ2

(0)

ω̃2 , (3.353)

where ω̃=
√

4Ω2 +ω2 =

√
4Ω2 +

(
eH
mc

)2
.

So, an our-world charged particle in a homogeneous stationarymag-
netic field, orthogonal to the space non-holonomity field, travels over a
surface of a sphere, the radius of which depends on the magnetic field
strength and the angular velocity with which the space rotates.

In a particular case, where the non-holonomity field is absent and
the initial acceleration of the particle is zero, the obtained trajectory
equation simplifies significantly to the equation of a sphere

x2 + y2 + z2 =
1
ω2 ẋ2

(0) , r =
1
ω

ẋ(0) =
mc
eH

ẋ(0) (3.354)

with the radius depending only on the interaction of the particle’s charge
with the magnetic field — this is the result, well-known in electrody-
namics (see §21 in The Classical Theory of Fields).

For a mirror-world charged particle that travels in a homogeneous
stationary magnetic field, orthogonal to the non-holonomity field, the
equations of motion take the form

ẍ =
eH
mc

ż, ÿ = 0, z̈ = −
eH
mc

ẋ . (3.355)

They are only different from the equations for the our-world particle
(3.338) by the absence of the terms that include the angular velocity Ω
of the space rotation.

3.13 Motion in a stationary electromagnetic field

In this section, we are going to focus on the motion of a charged parti-
cle under the action of both the magnetic and electric components of a
stationary electromagnetic field. As a “background” we will consider a
non-holonomic space that rotates around the z axis with a constant an-
gular velocity Ω12 =−Ω21 =Ω, so the space has the metric (3.275). In
such a space, Fi = 0 and Dik = 0.

We will solve this problem, assuming that the non-holonomity field
is weak and, hence, the three-dimensional space has the Euclidean met-
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ric. In this case, the Maxwell equations for a stationary electromagnetic
field (3.215, 3.216) take the form

Ω∗m H∗m = −2πcρ

εikm ∇k
(
H∗m
√

h
)
=

4π
c

j i
√

h = 0

 I , (3.356)

Ω∗m Em = 0

εikm ∇k
(
Em
√

h
)
= 0

 II , (3.357)

since the observable homogeneity of a fieldmeans the equality to zero of
its chr.inv.-derivative [9,11–13], while in the particular case under con-
sideration the chr.inv.-Christoffel symbols are equal to zero (the metric
is Galilean) so the chr.inv.-derivative is the ordinary derivative. Hence,
the Maxwell equations mean that, in this case, the following conditions
are satisfied:

a) The space non-holonomity pseudovector and the electric field
strength are orthogonal, Ω∗m Em = 0;

b) The space non-holonomity pseudovector and the magnetic field
strength are orthogonal, Ω∗m H∗m = 0. Consequently, the charge
density is zero ρ= 0 ;

c) The electromagnetic field current is absent, j i = 0.
The latter condition means that the presence of the electromagnetic

field currents j i , 0 is due to the inhomogeneity of themagnetic strength
of the acting electromagnetic field.

Given that the non-holonomity pseudovector is orthogonal to the
electric field strength, we can consider the motion of the particle in the
two cases of the mutual orientation of the fields:
1) H⃗⊥ E⃗ and H⃗ ∥ Ω⃗;
2) H⃗ ∥ E⃗ and H⃗⊥ Ω⃗.
In either case, we assume that the electric strength is co-directed

with the x axis. According to the background metric (3.275), the space
rotation pseudovector is co-directed with z. Hence, in the first case, the
magnetic strength is co-directed with z, and in the second case it is co-
directed with x.

The chr.inv.-equations of motion of a charged particle in the station-
ary electromagnetic field, where the electric strength is co-directed with
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x have the following form in our world

dm
dτ
= −

eE1

c2

dx
dτ

, (3.358)

d
dτ

(
mvi) + 2mA·ik·v

k = − e
(
E i +

1
c
εikmvk H∗m

)
, (3.359)

and in the mirror world the equations take the form

dm
dτ
=

eE1

c2

dx
dτ

, (3.360)

d
dτ

(
mvi) = − e

(
E i +

1
c
εikmvk H∗m

)
. (3.361)

As before, consider a charged particle repulsed by the electromag-
netic field. In this case, the components of the electric strength Ei, co-
directed with x, in a Galilean reference frame (where the covariant and
contravariant components of a tensor quantity are the same) are

E1 = Ex =
∂φ

∂x
= const = −E , E2 = E3 = 0 . (3.362)

Integrating the live forces theorem we obtain the live forces integral
for our world and the mirror world, respectively,

m =
eE
c2 x + B , m = −

eE
c2 x + B̃ , (3.363)

where B is an integration constant for our world, and B̃ is an integra-
tion constant for the mirror world. Calculating these constants from the
initial conditions at the moment of time τ= 0, we obtain

B = m(0) −
eE
c2 x(0) , B̃ = m(0) +

eE
c2 x(0) , (3.364)

where m(0) is the relativistic mass of the particle, and x(0) is its displace-
ment at the initial moment of time.

From the obtained live forces integrals (3.363), we see that the dif-
ference between the two cases under this study is due to the different
orientation of the magnetic strength H⃗ to the electric strength E⃗ and to
the angular velocity Ω⃗ with which the space rotates (orientation of the
space non-holonomity field). This difference reveals itself only in the
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chr.inv.-vector equations of motion, while the chr.inv.-scalar equations
of motion (3.358, 3.360) and their solutions (3.363) remain the same.

Note that the vector E⃗ can also be directed along y, but cannot be
directed along z. This is because in the space with such a metric the non-
holonomity pseudovector Ω⃗ is co-directed with z, while the 2nd group
of the Maxwell equations require E⃗ to be orthogonal to Ω⃗.

Now, taking into account the integration results from the live forces
theorem (3.363), we will write down the chr.inv.-vector equations for
the two cases that are conceivable.
Case 1. Assume that H⃗⊥ E⃗ and H⃗ ∥ Ω⃗, so the magnetic strength H⃗ is

directed along z (parallel to the non-holonomity field).
Then, out of all components of the magnetic strength, only the fol-

lowing component is non-zero

H∗3 = H12 =
φ

c

(
∂v1

∂y
−
∂v2

∂x

)
+

2φ
c

A12 = const = H . (3.365)

Consequently, the chr.inv.-vector equations of motion for an our-
world particle have the form

eE
c2 ẋ2 +

(
B +

eE
c2 x

)
(ẍ + 2Ω ẏ) = eE −

eH
c
ẏ

eE
c2 ẋ ẏ +

(
B +

eE
c2 x

)
(ÿ − 2Ω ẋ) =

eH
c

ẋ

eE
c2 ẋ ż +

(
B +

eE
c2 x

)
z̈ = 0


, (3.366)

while for a mirror-world particle we have

eE
c2 ẋ2 +

(
B̃ −

eE
c2 x

)
ẍ = eE −

eH
c
ẏ

eE
c2 ẋ ẏ +

(
B̃ −

eE
c2 x

)
ÿ =

eH
c

ẋ

eE
c2 ẋ ż +

(
B̃ −

eE
c2 x

)
z̈ = 0


. (3.367)

Besides, the 1st group of the Maxwell equations require that in the
case under study the following condition must be true

Ω∗3 H∗3 = −2πcρ , (3.368)
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where Ω∗3 =Ω= const and H∗3 =H = const.
Based on the obtained formula (3.368) we arrive at the obvious

conclusion: the above mutual orientation of the space non-holonomity
pseudovector and the magnetic field strength is only possible in the case,
where electric charges are present in the space, so the charge density is
non-zero ρ, 0.
Case 2. Assume that H⃗ ∥ E⃗, H⃗⊥ Ω⃗ and E⃗ ⊥ Ω⃗, so the magnetic and el-

ectric strengths are co-directed with x, while the non-holonomity
field is still directed along z.

In this case, out of all components of the magnetic strength only the
first component is non-zero

H∗1 = H23 =
φ

c

(
∂v2

∂z
−
∂v3

∂y

)
= const = H. (3.369)

With this formula, we obtain the chr.inv.-vector equations of motion
for an our-world particle and those for a mirror-world particle. For the
our-world particle the equations have the form

eE
c2 ẋ2 +

(
B +

eE
c2 x

)
(ẍ + 2Ω ẏ) = eE

eE
c2 ẋ ẏ +

(
B +

eE
c2 x

)
(ÿ − 2Ω ẋ) = −

eH
c

ż

eE
c2 ẋ ż +

(
B +

eE
c2 x

)
z̈ =

eH
c
ẏ


, (3.370)

while the equations for the mirror-world particle have the form

eE
c2 ẋ2 +

(
B̃ −

eE
c2 x

)
ẍ = eE

eE
c2 ẋ ẏ +

(
B̃ −

eE
c2 x

)
ÿ = −

eH
c

ż

eE
c2 ẋ ż +

(
B̃ −

eE
c2 x

)
z̈ =

eH
c
ẏ


. (3.371)

Now, having the equations of motion of a charged particle in a sta-
tionary electromagnetic field of the above two mutual orientations with
respect to the pseudovector of the space non-holonomity field (pseu-
dovector of the space rotation), we can start solving them.



146 Chapter 3 Charged Particles in the Pseudo-Riemannian Space

3.13.1 The magnetic field is orthogonal to the electric field and is
parallel to the non-holonomity field

Let us solve the chr.inv.-vector equations of motion of the charged par-
ticle (3.366, 3.367) in the non-relativistic approximation, i.e., assuming
the absolute value of the particle’s observable velocity negligible com-
pared to the velocity of light. Hence, we assume that the particle’s mass
at the initial moment of time is equal to its rest-mass

m(0) =
m0√
1 − v2

c2

� m0 . (3.372)

Assume that the electric strength E is negligible, so the term eEx
c2

can be withheld. Under these conditions, the chr.inv.-vector equations
of motion for an our-world particle take the form

m0 (ẍ + 2Ω ẏ) = eE −
eH
c
ẏ

m0 (ÿ − 2Ω ẋ) =
eH
c

ẋ

m0 z̈ = 0


, (3.373)

while for a mirror-world particle we have

m0 ẍ = eE −
eH
c
ẏ , m0 ÿ =

eH
c

ẋ , m0 z̈ = 0 . (3.374)

These equations match those obtained in §22 in The Classical The-
ory of Fields [10] in the case, where the space non-holonomity is absent
(Ω= 0) and the electric strength is directed along the x axis.

The obtained equations for the mirror-world particle are a partic-
ular case of the our-world equations at Ω= 0. Therefore, we can only
integrate the our-world equations, while the mirror-world solutions are
obtained automatically by assuming Ω= 0. Integrating the equation of
motion along z we obtain

z = ż(0)τ + z(0) . (3.375)

Integrating the equation along y we arrive at

ẏ =

(
2Ω +

eH
m0c

)
x +C1 , (3.376)
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where the integration constant is C1 = ẏ(0) −
(
2Ω+ eH

m0c

)
x(0).

Substituting the obtained solution for ẏ into the first equation of
(3.373), we obtain a second-order differential equation with respect to
x, which has the form

ẍ + ω2x =
eE
m0
+ ω2x(0) − ωẏ(0) , (3.377)

where ω= 2Ω+ eH
m0 c . Introducing a new variable

u = x −
A
ω2 , A =

eE
m0
+ ω2x(0) − ωẏ(0) , (3.378)

we obtain the harmonic oscillation equation

ü + ω2u = 0 , (3.379)

which has the following solution

u = C2 cosωτ +C3 sinωτ , (3.380)

where the integration constants are C2 = u(0) and C3 =
u̇(0)
ω . Returning

back to the initial variable x by the reverse substitution of the variables,
we finally obtain a solution for x, which is

x =
1
ω

(
ẏ(0) −

eE
m0ω

)
cosωτ +

ẋ(0)

ω
sinωτ+

+
eE

m0ω2 + x(0) −
ẏ(0)

ω
.

(3.381)

Substituting this formula into the obtained equation for ẏ (3.376),
then integrating it, we obtain a solution for y, which is

y =
1
ω

(
ẏ(0) −

eE
m0ω

)
sinωτ −

ẋ(0)

ω
cosωτ+

+
eE

m0ω2 + y(0) +
ẋ(0)

ω
.

(3.382)

The chr.inv.-vector equations in the mirror world have the same so-
lutions, but because Ω= 0 for them, the frequency is ω= eH

m0 c .
The energy of the our-world and mirror-world particles are E =mc2

and E =−mc2, respectively.
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Finally, we obtain solutions for the three-dimensional momentum
of the our-world particle

p1 = m0 ẋ =
(eE
ω
− m0 ẏ(0)

)
sinωτ + m0 ẋ(0) cosωτ

p2 = m0 ẏ =

(
2Ωm0

ω
+

eH
ωc

) (
eE

m0ω
− ẏ(0)

)
+ m0 ẏ(0) +

+

(
2Ωm0

ω
+

eH
ωc

) [(
ẏ(0) −

eE
m0ω

)
cosωτ + ẋ(0) sinωτ

]
p3 = m0 ż = m0 ż(0)


, (3.383)

and for the mirror world particle

p1 =

(eE
ω
− m0 ẏ(0)

)
sinωτ + m0 ẋ(0) cosωτ

p2 =
eE
ω
+ m0

[(
ẏ(0) −

eE
m0ω

)
cosωτ + ẋ(0) sinωτ

]
p3 = m0 ż(0)


, (3.384)

where, in contrast to our world, the frequency is ω= eH
m0 c .

From here we see that the momentum of an our-world charged par-
ticle in the given configuration of the acting fields performs harmonic
oscillations along x and y, while along z it is a linear function of the
observable time τ (if the particle’s initial velocity is ż, 0). Within the
xy plane the oscillation frequency is ω= 2Ω + eH

m0 c .
It should be noted that obtaining exact solutions to the equations of

motion in the presence of both the electric and magnetic components of
the electromagnetic field is very problematic, because we need to solve
elliptic integrals. It can be possible to solve them in the future, when the
solutions will be obtained on computers, but this problem is obviously
out of the scope of this book. Presumably, Landau and Lifshitz faced
a similar problem, because in §22 of The Classical Theory of Fields,
where they considering a similar problem,* they obtained the equations
of motion and then solved them assuming the particle’s velocity to be
non-relativistic and the electric strength to be weak eE x

c2 ≈ 0.

*But in contrast to our book, Landau and Lifshitz used the general covariant method
and, therefore, they did not take the space non-holonomity into account.
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3.13.2 The magnetic field is parallel to the electric field and is
orthogonal to the non-holonomity field

Let us solve the chr.inv.-vector equations of motion of a charged particle
(3.370, 3.371) in the same approximation as in the previous case. In this
case, for an our-world particle and for a mirror world particle the vector
equation of motion have the form, respectively

ẍ + 2Ω ẏ =
eE
m0

, ÿ − 2Ω ẋ = −
eH
m0c

ż , z̈ =
eH
m0c

ẏ , (3.385)

ẍ =
eE
m0

, ÿ = −
eH
m0c

ż , z̈ =
eH
m0c

ẏ . (3.386)

Integrating the first equation of motion in our world (3.385), which
means the motion along x, we obtain

ẋ =
eE
m0

τ − 2Ωy +C1 , (3.387)

where C1 = const = ẋ(0) + 2Ωy(0).
Integrating the third equation of motion (along z) we have

ż =
eH
m0c

y +C2 , (3.388)

where C2 = const = ż(0) −
eH
m0 c y(0).

Substituting the obtained formulae for ẋ and ż into the second equa-
tion of motion (3.385), we obtain a linear differential equation of the
2nd order with respect to y, which is

ÿ +

4Ω2 +
e2H2

m2
0c2

 y = 2ΩeE
m0

τ + 2ΩC1 −
eH
m0c

C2 . (3.389)

We will solve it, using the variable change method. Thus, introduc-
ing a new variable u in the form

u = y +
1
ω2

(
eH
m0c

C2 − 2ΩC1

)
, ω2 = 4Ω2 +

e2H2

m2
0c2

, (3.390)

we obtain the inhomogeneous equation of forced oscillations

ü + ω2u =
2ΩeE

m0
τ , (3.391)
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the solution of which is the sum of a general solution to the free oscil-
lation equation

ü + ω2u = 0 , (3.392)

and a particular solution to the inhomogeneous equation

ũ = Mτ + N , (3.393)

where M = const and N = const are constants.
Differentiating ũ twice with respect to τ and substituting the results

into the initial inhomogeneous equation with respect to ü (3.391), then
equating the obtained coefficients for τ to each other, we obtain that the
above linear coefficients M and N are

M =
2ΩeE
m0ω2 , N = 0 . (3.394)

As a result, the general solution to the initial inhomogeneous equa-
tion (3.391) takes the following form

u = C3 cosωτ +C4 sinωτ +
2ΩeE
m0ω2 τ , (3.395)

where the integration constants can be obtained by substituting the ini-
tial conditions at τ= 0 into the obtained solution (3.395). As a result,
we obtain C3 = u(0) and C4 =

u̇(0)
ω .

Returning back to the initial variable y (3.390), we obtain the final
solution for this coordinate

y =

[
y(0) +

1
ω2

(
eH
m0c

C2 + 2ΩC1

)]
cosωτ+

+
ẏ(0)

ω
sinωτ −

1
ω2

(
eH
m0c

C2 + 2ΩC1

)
+

2ΩeE
m0ω2 τ .

(3.396)

Then, substituting this formula into the equations for ẋ and ż, after
integrating we arrive at the solutions for x and z

x =
eE

2m0

(
1 −

4Ω2

ω2

)
τ2 −

2Ω
ω

(
y(0) + A

)
sinωτ+

+
2Ω ẏ(0)

ω
cosωτ + (C1 + 2ΩA) τ +C5 ,

(3.397)
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z =
eH

m0cω

[(
y(0) + A

)
sinωτ −

ẏ(0)

ω
cosωτ

]
−

−

(
eH
m0c

A −C2

)
τ +C6 ,

(3.398)

where (for convenient notation)

A =
1
ω2

(
eH
m0c

C2 − 2ΩC1

)
, (3.399)

while the new integration constants are

C5 = x0 −
2Ω ẏ(0)

ω
, C6 = z(0) +

eH ẏ(0)

m0cω2 . (3.400)

If we assume Ω= 0, then, based on the solutions for an our-world
charged particle (3.396–3.398), we immediately obtain the solutions for
an analogous charged particle in the mirror world

x =
eE

2m0
τ2 + ẋ(0)τ + x(0) , (3.401)

y =
ż(0)

ω
cosωτ +

ẏ(0)

ω
sinωτ −

ż(0)

ω
+ y(0) , (3.402)

z =
ż(0)

ω
sinωτ −

ẏ(0)

ω
cosωτ +

ẏ(0)

ω
+ z(0) . (3.403)

Consequently, the components of the three-dimensional momentum
of the our-world particle under the considered configuration of the act-
ing fields take the form

p1 = m0 ẋ(0) + eE
(
1 −

4Ω2

ω2

)
τ−

− 2m0Ω

[
ẏ(0)

ω
sinωτ +

(
y(0) + A

)
cosωτ −

ẏ(0)

ω
− A

]
p2 = m0

[
ẏ(0) cosωτ − ω

(
y(0) + A

)
sinωτ

]
+

2ΩeE
ω2

p3 = m0 ż(0) +
eH
c
×

×

[(
y(0) + A

)
cosωτ +

ẏ(0)

ω
sinωτ − A +

2ΩeE
m0ω2 τ − y(0)

]



, (3.404)
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where the frequency ω is

ω =

√
4Ω2 +

e2H2

m2
0 c

. (3.405)

In the mirror world, given the above configuration of the acting
fields, the components of the three-dimensional momentum of an anal-
ogous charged particle are

p1 = m0 ẋ(0) + 2eEτ

p2 = m0
(
ẏ(0) cosωτ − ż(0) sinωτ

)
p3 = m0

(
ż(0) cosωτ − ẏ(0) sinωτ

)
 , (3.406)

where, in contrast to our world, the frequency is ω= eH
m(0) c .

3.14 Conclusions

In fact, the theory that we have created in this Chapter can be more
precisely called the chronometrically invariant representation of elec-
trodynamics in a pseudo-Riemannian space. In other words, because
the mathematical apparatus of physically observable quantities initially
assumes the four-dimensional space-time of General Relativity, we can
simply refer to it as the chronometrically invariant electrodynamics (or
CED). Here, we have obtained only the basics of this theory:
— The chr.inv.-components of the electromagnetic field tensor (Max-

well tensor);
— The Maxwell equations in the chr.inv.-form;
— The law of conservation of electric charge in the chr.inv.-form;
— Lorenz’ condition in the chr.inv.-form;
— The d’Alembert equations in the chr.inv.-form (wave propagation

equations) for the scalar potential and vector-potential of the elec-
tromagnetic field;

— The Lorentz force in the chr.inv.-form;
— The electromagnetic field energy-momentum tensor and its chr.

inv.-components;
— The chr.inv.-equations of motion of a charged particle;
— The geometric structure of the four-dimensional electromagnetic

field potential.
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It is obvious that, the whole scope of the chr.inv.-electrodynamics
is much wider than the above obtained results. In addition to what has
been obtained, we could obtain the chr.inv.-equations of motion of a dis-
tributed charge or study the motion of a particle that has its own electro-
magnetic emission interacting with the electromagnetic field or, at last,
deduce the equations of motion for a charged particle travelling at an
arbitrary angle to the field strengths (either for an individual particle or
a distributed charge), or solve many other interesting problems.

In addition, of course, here we are talking about non-quantum elec-
trodynamics. As is known, the mathematical apparatus of chronomet-
ric invariants was created for the four-dimensional pseudo-Riemannian
space. In a space with a different geometry, the operators formally defin-
ing physical observables, of course, will also be different. However, the
creation of the mathematical methods determining physical observable
quantities in the space of quantum mechanics and quantum electrody-
namics is in principle also possible: we have carried out the necessary
preliminary work in this direction, and only the lack of time, as well as
the shift in the focus of our scientific interests to other, incommensu-
rably more interesting problems, stopped the creation of a chronomet-
rically invariant quantum mechanics and a chronometrically invariant
electrodynamics.



Chapter 4 Spin Particles in
the Pseudo-Riemannian Space

4.1 Problem statement

In this Chapter we are going to obtain the equations of motion of a par-
ticle with an internal rotation momentum (spin). As we noted in Chap-
ter 1, these are the parallel transport equations of the four-dimensional
dynamic vector of the particle Qα, which is the sum

Qα = Pα + Sα, (4.1)

where Pα=m0
dxα
ds is the four-dimensional momentum vector of the par-

ticle. The four-dimensional vector Sα is an additional momentumwhich
this particle gains from its internal momentum (spin), so this momen-
tum makes the motion of the particle non-geodesic. Therefore, we will
refer to Sα as the spin momentum. Since we know the components of
the momentum vector Pα, to define summary dynamic vector Qα we
only need to obtain the components of the spin momentum vector Sα.

Our first step, in §4.1, will be defining a particle’s spin as a ge-
ometric quantity in the four-dimensional pseudo-Riemannian space of
General Relativity. Then, in §4.2, we will deduce the spin momentum
vector Sα itself. In §4.3, our contribution will be to obtain the equations
of motion of a spin particle in the pseudo-Riemannian space, as well as
the chr.inv.-projections of the equations. Other sections of this Chapter
will focus on the motion of elementary particles.

The numerical value of the spin is ±nℏ, measured in the fractions
of Planck’s constant, where n is the so-called spin quantum number.
As of today, it is known that for various kinds of elementary particles
this number is n = 0, 1

2 , 1, 3
2 , 2. The alternating sign ± stands for the

possible right-wise or left-wise internal rotation of the spin particle un-
der consideration. Besides, the Planck constant ℏ has the dimension of
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angular momentum [gram cm2 sec−1]. This alone hints that the spin ten-
sor, according to its geometric structure, should be similar to the tensor
of an angular momentum, i.e., be an antisymmetric tensor of the 2nd
rank. We are going to check if another source can prove this.

Bohr’s second postulate states that the length of an electron orbit in
an atom must be an integer number of de Broglie wavelengths λ= h

p ,
which stands for the electron in accordance with the wave-particle con-
cept. In other words, the electron orbit length 2πr consists of k de
Broglie wavelengths

2πr = kλ = k
h
p
, (4.2)

where p is the orbital momentum of the electron. Taking into account
that Planck’s constant is ℏ= h

2π , the equation (4.2) takes the form

r p = kℏ . (4.3)

Because the radius-vector of an electron orbit r i is always orthogo-
nal to the electron’s orbital momentum pk, this formula in tensor nota-
tion is a vector product, namely[

r i; pk
]
= kℏik . (4.4)

From here we conclude that Planck’s constant deduced from Bohr’s
second postulate in tensor notation is present with an antisymmetric ten-
sor of the 2nd rank.

This representation of the Planck constant in a tensor form is linked
to the orbital model of atoms — the systems more complicated than
the electron or any other elementary particle. Nevertheless, the spin is
also defined using this constant as an internal property of elementary
particles themselves. Therefore, according to Bohr’s second postulate,
we can consider the geometric structure of Planck’s constant proceeding
from another experimental relationship which is related to the internal
structure of the electron.

We have such an opportunity thanks to the classical experiment per-
formed by Stern and Gerlach in 1921. One of their results is that any
electron has an internal magnetic momentum Lm proportional to the
electron’s internal rotation momentum (spin)

me

e
Lm = nℏ , (4.5)
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where e is the charge of the electron, me is its mass, and n is the spin
quantum number (for the electron, it is n= 1

2 ). The magnetic momentum
of a contour covering an area S = πr2, which conducts a current I, is
Lm = IS . The current equals to the charge e divided by its circulation
period T = 2πr

u along the contour

I =
eu

2πr
, (4.6)

where u is the linear velocity of the charge circulation. Hence, the in-
ternal magnetic momentum of the electron is

Lm =
1
2

eur , (4.7)

or, in tensor notation,*

Lik
m =

1
2

e
[

r i; uk
]
=

1
2

[
r i; pk

m

]
, (4.8)

where r i is the radius-vector of the internal current circulation provided
by the electron, and uk is the vector of the circulation velocity.

From here we see that Planck’s constant calculated from the internal
magnetic momentum of an electron (4.5) is also the vector product of
two vectors. Therefore, it is an antisymmetric tensor of the 2nd rank

me

2e

[
r i; pk

m

]
= nℏik, (4.9)

which proves a similar conclusion based on the Bohr second postulate.
Thus, considering the electron quantum relationships in the four-

dimensional pseudo-Riemannian space of General Relativity, we intro-
duce the four-dimensional antisymmetric Plank tensor ℏαβ, the spatial
components of which are the three-dimensional quantities ℏik, i.e.

ℏαβ =


ℏ00 ℏ01 ℏ02 ℏ03

ℏ10 ℏ11 ℏ12 ℏ13

ℏ20 ℏ21 ℏ22 ℏ23

ℏ30 ℏ31 ℏ32 ℏ33

 . (4.10)

*The equations (4.8) and (4.9) are given for the Minkowski space acceptable for
the above experiment. In a Riemannian space, the result of integration depends on
the integration path. Therefore, the radius-vector of a finite length is not defined in a
Riemannian space, because its length depends on the constantly varying direction.
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The antisymmetric Planck tensor ℏαβ is dual to the Planck pseudo-
tensor, which is ℏ∗αβ = 1

2 Eαβµνℏµν. Therefore, the spin of a particle in
the four-dimensional pseudo-Riemannian space is characterized by the
antisymmetric Planck tensor nℏαβ, or by its dual Planck pseudotensor
nℏ∗αβ. Note that the physical nature of the spin does not matter here; it
is only sufficient that this fundamental property of particles is charac-
terized by a tensor (or a pseudotensor) of a certain kind. Thanks to this
approach, we can solve the problem of the motion of spin particles with-
out any preliminary assumption on their internal structure, i.e., using a
strictly formal mathematical method.

Hence, from a geometric point of view, the Planck constant is an
antisymmetric tensor of the 2nd rank, the dimension of which is that
of angular momentum irrespective of the quantities from which it was
obtained (mechanical or electromagnetic).

The latter also means that the Planck tensor does not characterize
the rotation of masses inside an atom or any masses inside elementary
particles; it is derived based on a fundamental quantum rotation of the
space itself and sets all “elementary” rotations in the space irrespective
of their nature.

The rotation of a space is characterized by the chr.inv.-tensor Aik

(1.36), which results from lowering indices Aik = him hkn Amn in the com-
ponents Amn of the contravariant four-dimensional tensor

Aαβ = chαµhβνaµν , aµν =
1
2

(
∂bν
∂xµ
−
∂bµ
∂xν

)
. (4.11)

In the accompanying reference frame (bi = 0), the auxiliary quantity
aµν has the components

a00 = 0 , a0i =
1

2c2

(
∂w
∂xi−

∂vi

∂t

)
, aik =

1
2c

(
∂vi

∂xk −
∂vk

∂xi

)
, (4.12)

so we have

A00 = 0 , A0i = −Ai0 = 0 ,

Aik =
1
2

(
∂vk

∂xi −
∂vi

∂xk

)
+

1
2c2 (Fi vk − Fk vi)

 . (4.13)

In the absence of gravitational fields, the tensor of the angular veloc-
ity Aik with which the space rotates depends only on the linear velocity
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of this rotation vi. Therefore we denote it as Aαβ =Ωαβ

Ω00 = 0 , Ω0i = −Ωi0 = 0 , Ωik =
1
2

(
∂vk

∂xi −
∂vi

∂xk

)
. (4.14)

On the other hand, according to the wave-particle concept, any par-
ticle corresponds to a wave having the energy E =mc2 = ℏω, where m is
the relativistic mass of the particle and ω is its characteristic frequency.
In other words, from a purely geometric point of view, any particle can
be considered as a wave spread and infinitely close to the position of the
particle, the characteristic frequency of which is dependent on a cer-
tain distribution of the angular velocities ωαβ also defined within this
vicinity. As a result, the above quantum relationship in tensor notation
becomes mc2 = ℏαβωαβ.

Because the Planck tensor is antisymmetric, all of its diagonal com-
ponents are zeroes. Its space-time (mixed) components in the accompa-
nying reference frame are also zero similar to the corresponding com-
ponents of the four-dimensional tensor of the space rotation (4.14). The
numerical values of the spatial (three-dimensional) components of the
Planck tensor, physically observable in experiments, are ±ℏ depending
on the rotation direction and make up the three-dimensional chr.inv.-
Planck tensor ℏik.

In the case of a left-wise internal rotation, the components ℏ12, ℏ23,
ℏ31 are positive, while the components ℏ13, ℏ32, ℏ21 are negative (and
vice versa for a right-wise rotation). Then the geometric structure of the
four-dimensional Planck tensor, represented as a matrix, is

ℏαβ =


0 0 0 0
0 0 ℏ −ℏ

0 − ℏ 0 ℏ

0 ℏ −ℏ 0

 . (4.15)

In the case of a right-wise internal rotation, the non-zero compo-
nents ℏ12, ℏ23, ℏ31 change their sign to become negative, while the com-
ponents ℏ13, ℏ32, ℏ21 become positive

ℏαβ =


0 0 0 0
0 0 −ℏ ℏ

0 ℏ 0 −ℏ

0 −ℏ ℏ 0

 . (4.16)



4.2 A spin particle’s momentum in the equations of motion 159

The square of the four-dimensional Planck tensor is calculated based
on the following obvious formula

ℏαβℏ
αβ = 2ℏ2

[(
g11g22 − g

2
12

)
+

(
g11g33 − g

2
13

)
+

+
(
g22g33 − g

2
23

)
+ 2

(
g12g23 − g22g13 −

− g12g33 + g13g23 − g11g23 + g12g13
)]
,

(4.17)

and, in a Galilean reference frame in the Minkowski space, where the
metric is diagonal unit (2.70), is ℏαβℏαβ = 6ℏ2. However, in the pseudo-
Riemannian space of General Relativity, the value of ℏαβℏαβ is calcu-
lated using the spatial components of the fundamental metric tensor ex-
pressed from the chr.inv.-metric tensor hik =−gik +

1
c2 vi vk dependent on

the space rotation velocity. Hence, although the physically observable
components ℏik of the Planck tensor are constants (having opposite signs
for left-wise and right-wise rotations), its square in a general case de-
pends on the angular velocity with which the space rotates.

Now, having the Planck tensor components defined, we can deduce
the momentum that a particle gains from its spin, as well as the equa-
tions of motion of the spin particle travelling in the pseudo-Riemannian
space. This will be the focus of the next section, §4.2.

4.2 A spin particle’s momentum in the equations of motion

The additional momentum Sα that a particle gains from its spin can be
obtained from considering the action for spin particles.

The action S for a particle that has an internal scalar field k, with
which an external scalar field A interacts thereby displacing the particle
at an elementary interval ds, is

S = α(kA)

∫ b

a
k A ds , (4.18)

where α(kA) is a scalar constant that characterizes the particle’s prop-
erties manifested in the interaction, and also equates dimensions in the
equation. If the internal scalar field k of the particle corresponds to an
external tensor field of the 1st rank Aα, then the action required to dis-
place the particle by the field is

S = α(kAα)

∫ b

a
k Aαdxα. (4.19)



160 Chapter 4 Spin Particles in the Pseudo-Riemannian Space

In the interaction of the particle’s internal scalar field k with an ex-
ternal tensor field of the 2nd rank Aαβ, the action to displace the particle
by that field is

S = α(kAαβ)

∫ b

a
k Aαβ dxαdxβ, (4.20)

and so forth. For instance, if an internal vector potential kα specific of
a particle corresponds to an external vector field Aα, then the action to
displace the particle by the field is

S = α(kαAα)

∫ b

a
kαAαds . (4.21)

Besides, the action can be represented, irrespective of the nature of
internal properties of particles and external fields, as follows

S =
∫ t2

t1
L dt , (4.22)

where L is the so-called Lagrange function. Because the dimension of
action is [erg sec= gram cm2 sec−1], then the Lagrange function has the
dimension of energy [erg= gram cm2 sec−2]. In addition, the derivative
of the Lagrange function with respect to the three-dimensional coordi-
nate velocity ui = dx i

dt of the particle

∂L
∂ui = pi (4.23)

is the covariant notation of its three-dimensional momentum pi = cPi

that can be used to restore the complete formula for the four-dimensional
momentum vector Pα of the particle.

Therefore, having a formula for the action to displace a spin parti-
cle, as well as the Lagrange function differentiated with respect to the
coordinate velocity of the particle, it is possible to restore the formula
for the additional momentum gained by the particle due to its spin.

As is known, the action to displace a free particle in the pseudo-
Riemannian space is*

S =
∫ b

a
m0 c ds . (4.24)

*In The Classical Theory of Fields [10], Landau and Lifshitz use “minus” before
the action, and we always have “plus” before the integral of the action and also before
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In a Galilean reference frame in theMinkowski space, since the non-
diagonal terms of the fundamental metric tensor are zeroes, the space-
time interval is

ds =
√
gαβ dxαdxβ = cdt

√
1 −

u2

c2 , (4.25)

hence, the action (4.24) becomes

S =
∫ b

a
m0c ds =

∫ t2

t1
m0c2

√
1 −

u2

c2 dt . (4.26)

Therefore, the Lagrange function of a free particle in a Galilean
reference frame in the Minkowski space is

L = m0c2

√
1 −

u2

c2 . (4.27)

Differentiating it with respect to the particle’s coordinate velocity,
we arrive at the covariant form of its three-dimensional momentum

pi =
∂L
∂ui = m0c2

∂

√
1 − u2

c2

∂ui = −
m0 ui√
1 − u2

c2

, (4.28)

from which, after lifting the index, we arrive at the four-dimensional
momentum vector of the free particle as follows

Pα =
m0

c
√

1 − v2

c2

dxα

dt
= m0

dxα

ds
. (4.29)

In the final formula, both of the multipliers m0 and dxα
ds are general

covariant quantities, so they do not depend on the choice of a particular
reference frame. For this reason, this formula obtained in a Galilean ref-
erence frame in the Minkowski space is also true in any other arbitrary
reference frame in any pseudo-Riemannian space.

the Lagrange function. This is because the sign of an action depends on the signature of
the pseudo-Riemannian space. Landau and Lifshitz use the signature (−+++), where
time is imaginary, the spatial coordinates are real and the three-dimensional coordinate
momentum is positive. On the contrary, we use the signature (+−−−) as Zelmanov
[9,11–13], because, in this case, time is real and the spatial coordinates are imaginary,
so the three-dimensional observable momentum is positive.
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Let us now consider themotion of a particle having an internal struc-
ture that in experiments reveals itself as the spin. The inner rotation
(spin) nℏαβ of a particle in the four-dimensional pseudo-Riemannian
space corresponds to the external field Aαβ of the space rotation. There-
fore, the summary action to displace a spin particle is

S =
∫ b

a

(
m0c ds + α(s)ℏ

αβAαβ ds
)
, (4.30)

where α(s) [sec cm−1] is a scalar constant characteristic of the particle
in the spin interaction. Since the action constants can include only the
particle’s properties and fundamental physical constants, the constant
α(s) is, obviously, the spin quantum number n (function of the internal
properties of the particle), divided by the light velocity α(s) =

n
c . Then,

the action to displace a spin particle, produced by the interaction of the
particle’s spin with the space non-holonomity field Aαβ is

S = α(s)

∫ b

a
ℏαβAαβ ds =

n
c

∫ b

a
ℏαβAαβ ds . (4.31)

A remark should be made here. Deducing the four-dimensional
momentum vector for a spin particle using the same method as for a
free particle is impossible. As was shown above, we first obtained the
four-dimensional momentum vector of a free particle in a Galilean ref-
erence frame in the Minkowski space, where the formula for ds ex-
pressed through dt and substituted into the action has the very sim-
ple form (4.25). As was noted, the obtained formula for the momen-
tum vector (4.29), due to its property of general covariance, is true in
any reference frame in the pseudo-Riemannian space. But as we can
see from the above formula for the action for a spin particle, the spin
affects the motion of the particle only if the space is non-holonomic
Aαβ , 0, i.e., where the non-diagonal terms g0i of the fundamental met-
ric tensor are non-zeroes. In a Galilean reference frame, by definition,
the non-diagonal terms in the metric tensor are zeroes, hence, zeroes
are the components of the linear velocity with which the space rotates
vi =−c g0i

√
g00

and, hence, all components of the non-holonomity tensor
Aαβ. Therefore, this is worthless and cannot be used to first deduce the
formula for the momentum of a spin particle in a Galilean reference
frame in the Minkowski space (where it is zero by definition). Instead
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wemust deduce the momentum of a spin particle directly in the pseudo-
Riemannian space.

The space-time interval ds travelled by a particle in the pseudo-
Riemannian space, written in terms of the reference frame accompa-
nying an arbitrary observer, is

ds = cdτ

√
1 −

v2

c2 =

= cdt
(
1 −

w + vi ui

c2

)√√√
1 −

u2

c2
(
1− w+ vi ui

c2

)2 ,
(4.32)

where the coordinate velocity of the particle ui = dx i

dt can be expressed
through its observable velocity vi = dx i

dτ as follows

vi =
ui

1 − w+ vi ui

c2

, v2 =
hik uiuk(

1 − w+ vi ui

c2

)2 . (4.33)

Then, the additional action (4.31), produced by the interaction of
the particle’s spin with the space non-holonomity field, becomes

S = n
∫ t2

t1
ℏαβAαβ

√(
1 −

w + vi ui

c2

)2

−
u2

c2 dt . (4.34)

Therefore, the Lagrange function for this action is

L = nℏαβAαβ

√(
1 −

w + vi ui

c2

)2

−
u2

c2 . (4.35)

Now to deduce the spin momentum we only need to differentiate
the Lagrange function (4.35) with respect to the coordinate velocity of
the particle. Taking into account that the internal rotation field tensor
ℏαβ of the particle and the space rotation field tensor Aαβ (4.13) are not
functions of the particle’s velocity, after differentiating we obtain

pi =
∂L
∂ui = nℏmnAmn

∂

∂ui

√(
1 −

w + vi ui

c2

)2

−
u2

c2 =

= −
nℏmnAmn

c2
√

1 − v2

c2

(vi + vi) ,
(4.36)
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where vi = hik vk according to the chronometrically invariant formalism.
Compare (4.36) with the covariant spatial component pi = cPi of

the four-dimensional momentum vector Pα =m0
dxα
ds of a particle in the

pseudo-Riemannian space*. If the particle is located in our world, so
it travels from the past to the future with respect to us, then its three-
dimensional covariant momentum is

pi = cPi = cgiαPα = −m (vi + vi) = −
m0√
1 − v2

c2

(vi + vi) . (4.37)

From here we see that the four-dimensional momentum Sα that the
particle gains due to its spin (its internal spin momentum) is

Sα =
1
c2 nℏµνAµν

dxα

ds
, (4.38)

or, denoting η0 = nℏµνAµν = nℏmnAmn, to make the formula simpler, we
obtain

Sα =
1
c2 η0

dxα

ds
. (4.39)

Then the summary vector Qα (4.1) that characterizes the motion of
the spin particle is formulated as follows

Qα = Pα + Sα = m0
dxα

ds
+

1
c2 nℏµνAµν

dxα

ds
. (4.40)

So, any spin particle travelling in a non-holonomic space (Aµν , 0)
actually gains an additional momentum that deviates the particle from a
geodesic line and therebymakes its motion non-geodesic. In the absence
of the space rotation, i.e., in a holonomic space, we have Aµν = 0, so the
spin of a particle does not affect its motion. However, it is difficult to
find (if at all possible) such a sub-atomic region, where the background
space does not rotate. Therefore, the spin affects the motion of particles
on the scale of atomic physics everywhere in the Universe.

4.3 The equations of motion of a spin particle

The equations ofmotion of a spin particle are the parallel transport equa-
tions of the summary vector Qα = Pα + Sα (4.40) along the trajectory of

*In this comparison we mean a mass-bearing particle.
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the particle, namely

d
ds

(
Pα + Sα

)
+ Γαµν

(
Pµ + Sµ

) dxν

ds
= 0 , (4.41)

where the square of the vector remains unchanged QαQα = const in the
Levi-Civita parallel transport along the particle’s trajectory.

Let us deduce the chr.inv.-projections of the general covariant equa-
tions of motion (4.41). The projections in their general notation, ob-
tained in Chapter 2, have the form

dφ
ds
−

1
c

Fi qi dτ
ds
+

1
c

Dik qi dxk

ds
= 0 , (4.42)

dqi

ds
+

(
φ

c
dxk

ds
+ qk dτ

ds

) (
Di

k + A·ik·
)
−

−
φ

c
F i dτ

ds
+ ∆i

mk qm dxk

ds
= 0 ,

(4.43)

where φ is the projection of the summary vector Qα onto the observer’s
time line and qi is its projection onto his spatial section

φ = bαQα =
Q0
√
g00
=

P0
√
g00
+

S0
√
g00

, (4.44)

qi = hi
αQα = Qi = Pi + S i. (4.45)

Therefore, to solve the problem, it is necessary to derive specific
formulae for the φ and qi, then substitute them into (4.42, 4.43). The
chr.inv.-projections of the momentum vector Pα =m0

dxα
ds are

P0
√
g00
= ±m , Pi =

1
c

mvi, (4.46)

and now we have to deduce the chr.inv.-projections of the spin momen-
tum vector Sα. Taking into account in the formula for Sα (4.39) that the
space-time interval, formulated with physically observable quantities,
is ds= cdτ

√
1 − v2/c2, we obtain the Sα components

S 0 =
1
c2

nℏmnAmn√
1 − v2

c2

(
vi vi ± c2

)
c2

(
1 − w

c2

) , (4.47)
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S i =
1
c3

nℏmnAmn√
1 − v2

c2

vi, (4.48)

S0 = ±
1
c2

(
1 −

w
c2

) nℏmnAmn√
1 − v2

c2

, (4.49)

Si = −
1
c3

nℏmnAmn√
1 − v2

c2

(vi ± vi) , (4.50)

which are formulated with physically observable quantities. Thus, we
obtain the chr.inv.-projections of the particle’s spin momentum vector

S0
√
g00
= ±

1
c2 η , S i =

1
c3 ηvi, (4.51)

where the quantity η is
η =

nℏmnAmn√
1 − v2

c2

, (4.52)

while the alternating sign resulting from the time function dt
dτ (1.63)

indicates the particle’s motion to the future (upper sign) or to the past
(lower sign). Then, the square of the spin momentum vector is

SαSα = gαβ SαSβ =
1
c4 η

2
0 gαβ

dxαdxβ

ds2 =
1
c4 η

2
0 , (4.53)

and the square of the summary vector Qα is

QαQα = gαβ QαQβ = m2
0 +

2
c2 m0η0 +

1
c4 η

2
0 . (4.54)

Therefore, the square of the summary vector of any spin particle
separates into the following three parts:

a) The square of the momentum vector of the particle PαPα =m2
0;

b) The square of its spin momentum vector SαSα = 1
c4 η

2
0;

c) The term 2
c2 m0η0 describing the spin-gravitational interaction.

To implement parallel transport, it is necessary that the square of the
transported summary vector remains unchanged throughout the entire
path. But the obtained formula (4.54) means that (because m0 = const)
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the square of the summary vector Qα of a spin particle remains un-
changed if only η0 = const, i.e., the increment of η0 is zero

dη0 =
∂η0

∂xα
dxα = 0 (4.55)

along the trajectory of the spin particle.
Dividing both sides of the equation by dτ, which is always possible

because any time interval registered by an observer is greater than zero*,
we obtain the chr.inv.-conservation condition for the square of the spin
particle’s summary vector

dη0

dτ
=
∗∂η0

∂t
+ vk

∗∂η0

∂xk = 0 . (4.56)

Substituting η0 = nℏmnAmn, we have

nℏmn
(
∗∂Amn

∂t
+ vk

∗∂Amn

∂xk

)
= 0 . (4.57)

To illustrate the result, we replace the space non-holonomity tensor
Aik, which is actually the tensor of the angular velocity with which the
space rotates, with the angular velocity pseudovector

Ω∗i =
1
2
εimn Amn , (4.58)

which is also a chr.inv.-quantity. Multiplying Ω∗i by εipq

Ω∗i εipq =
1
2
εimnεipq Amn =

1
2

(
δm

p δ
n
q − δ

n
pδ

m
q

)
Amn = Apq , (4.59)

we transform the formula (4.57) to the following form

nℏmn
[
∗∂

∂t

(
εimnΩ

∗i
)
+ vk

∗∂

∂xk

(
εimnΩ

∗i
)]
=

= nℏmnεimn

[
1
√

h

∗∂

∂t

(√
hΩ∗i

)
+ vk 1

√
h

∗∂

∂xk

(√
hΩ∗i

)]
= 0 .

(4.60)

*The condition dτ= 0 makes sense only in a generalized space-time, where the fun-
damental metric tensor gαβ can be completely degenerate. In this case, the above con-
dition determined a completely degenerate region (called zero-space), in which there
are zero-particles capable of instant displacement, and, hence, they are the carriers of
long-range action.
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The gravitational inertial force vector and the space non-holonomity
tensor are related by the Zelmanov identities, one of which (see formula
13.20 in [9]) has the following form

2
√

h

∗∂

∂t

(√
hΩ∗i

)
+ εijk ∗∇j Fk = 0 , (4.61)

or, in the other notation
∗∂Aik

∂t
+

1
2

(∗∇k Fi −
∗∇i Fk

)
=
∗∂Aik

∂t
+

1
2

(
∗∂Fk

∂xi −
∗∂Fi

∂xk

)
= 0 , (4.62)

where εijk ∗∇j Fk is the chr.inv.-curl of the gravitational inertial force
field Fk. From here we see that the non-stationarity of the space rota-
tion field Aik is due to the presence of a curl of the acting field of the
gravitational inertial force Fi.

As a result, taking the Zelmanov identity (4.61) into account, our
formula (4.60) transform into

− nℏmn ∗∇m Fn + nℏmnεimn vk 1
√

h

∗∂

∂xk

(√
hΩ∗i

)
= 0 , (4.63)

which can be re-written in the two-side form

nℏmn ∗∇m Fn = nℏmnεimn vk
Ω∗i ∗∂ ln

√
h

∂xk +
∗∂Ω∗i

∂xk

 . (4.64)

Let us now recall that the above formula is nothing but only the ex-
panded chr.inv.-notation of the conservation condition for the summary
vector (4.57). The left hand side of (4.64) is

± 2nℏ
(∗∇1 F2 −

∗∇2 F1 +
∗∇1 F3 −

∗∇3 F1 +
∗∇2 F3 −

∗∇3 F2
)
, (4.65)

where “plus” and “minus” stand for the right-wise and left-wise rotating
reference space of the observer, respectively. Therefore, the left hand
side of the equation (4.64) is the chr.inv.-curl of the gravitational inertial
force. The right hand side of (4.64) depends on the spatial orientation
of the space rotation pseudovector Ω∗i.

Therefore, to preserve the square of the momentum vector of a spin
particle, transported parallel to itself along the trajectory of the parti-
cle, it is necessary that the right hand side and the left hand side of the
equation (4.64) be equal to each other along the trajectory.
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In a general case, without additional assumptions about the geo-
metric structure of the background space, the above condition requires
a balance between the vortical field of the acting gravitational inertial
force and the spatial distribution of the space rotation pseudovector.

If the field of the gravitational inertial force is vortexless, then the
left hand side of the conservation condition (4.64) is zero and, therefore,
this condition becomes

nℏmnεimn vk 1
√

h

∗∂

∂xk

(√
hΩ∗i

)
= 0 . (4.66)

Using the chr.inv.-derivative ∗∂
∂xk =

∂
∂xk +

1
c2 vk

∗∂
∂t , we have

nℏmnεimn vk 1
√

h

[
∂

∂xk

(√
hΩ∗i

)
−

1
c2 vk

∗∂

∂t

(√
hΩ∗i

)]
= 0 . (4.67)

Since the force field Fi is vortexless, then, because of (4.66), the sec-
ond term in this formula is zero. Therefore, the square of the summary
vector of a spin particle remains unchanged in the vortexless force field
Fi, provided that the chr.inv.-formula (4.66) and the formula containing
the ordinary derivative are zeroes

nℏmnεimn vk 1
√

h

∂

∂xk

(√
hΩ∗i

)
= 0 . (4.68)

For example, for mass-bearing particles, this can be in the case
where vk = 0, so this is when they are at rest with respect to the observer
and his reference body. In this case, the vanishing of the derivatives in
(4.68) is not essential. In contrast, massless particles travel with the
velocity of light. Hence, for them, in the vortexless force field Fi, the
derivatives ∂

∂xk

(√
hΩ∗i

)
and ∗∂

∂xk

(√
hΩ∗i

)
must be zeroes in any case.

Let us now deduce the chr.inv.-equations of motion of a spin particle
in the pseudo-Riemannian space. Substituting (4.46) and (4.51) into
(4.44) and (4.45), we obtain that the chr.inv.-projections of the summary
vector of the spin particle are

φ = ±

(
m +

1
c2 η

)
, qi =

1
c

mvi +
1
c3 ηvi. (4.69)

Having these quantities with φ> 0 substituted into (4.42, 4.43), we
obtain the chr.inv.-equations of motion for a mass-bearing spin particle
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travelling in our world (it travels from the past to the future)

dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk = −

1
c2

dη
dτ
+
η

c4 Fi vi −
η

c4 Dik vivk, (4.70)

d
dτ

(
mvi) + 2m

(
Di

k + A·ik·
)

vk − mF i + m∆i
nk vnvk =

= −
1
c2

d
dτ

(
ηvi) − 2η

c2

(
Di

k + A·ik·
)

vk +
η

c2 F i −
η

c2 ∆
i
nk vnvk,

(4.71)

while for a mass-bearing spin particle travelling in the mirror world (it
travels to the past), having the quantities (4.69) for φ< 0 substituted into
(4.42, 4.43), we obtain

−
dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk =

1
c2

dη
dτ
+
η

c4 Fi vi −
η

c4 Dik vivk, (4.72)

d
dτ

(
mvi) + mF i + m∆i

nk vnvk =

= −
1
c2

d
dτ

(
ηvi) − η

c2 F i −
η

c2 ∆
i
nk vnvk.

(4.73)

The obtained equations are written so that their left hand side has
a geodesic part characteristic of free (geodesic) motion of the particle,
and the right hand side has the terms produced due to the spin of the par-
ticle, which makes its motion non-geodesic (non-geodesic part). Hence,
the right hand side is zero for a spinless particle, and the obtained equa-
tions transform into the chr.inv.-equations of free motion. The above
form of the equations will facilitate their analysis.

In the framework of the wave-particle concept, a massless parti-
cle is described by the four-dimensional wave vector Kα = ω

c
dxα
dσ , where

dσ2 = hik dxidxk is the square of the physically observable spatial inter-
val (it is not equal to zero along isotropic trajectories). Because massless
particles travel along isotropic trajectories (light propagation trajecto-
ries), the vector Kα is also isotropic, i.e., its square is zero. But, because
the dimension of Kα is [cm−1], the equations have the dimension dif-
ferent from the dimension of the equations of motion of mass-bearing
particles. Besides, this fact does not allow us to create a joint formula
for the action for both massless and mass-bearing particles [9].

On the other hand, the spin is a physical property, possessed by
both mass-bearing and massless particles. Therefore, when deducing
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the equations of motion of spin particles, we need to use a uniform vec-
tor applicable to both kinds of particles. Such a vector can be obtained
by applying the physical conditions along isotropic trajectories

ds2 = c2dτ2 − dσ2 = 0 , cdτ = dσ , 0 (4.74)

to the four-dimensional momentum vector of a mass-bearing particle

Pα = m0
dxα

ds
=

m
c

dxα

dτ
= m

dxα

dσ
. (4.75)

As a result the observable spatial interval, not equal to zero along
isotropic trajectories, becomes a derivation parameter for mass-bearing
particles, while the dimension of the above vector, in contrast to the
wave vector Kα [cm−1], matches the dimension of the momentum vec-
tor Pα [gram]. The relativistic mass m, not equal to zero for massless
particles, can be obtained from the energy equivalent using the E =mc2

formula. For instance, the energy E = 1 MeV= 1.6× 10−6 erg of a pho-
ton corresponds to a relativistic mass of m= 1.8 × 10−28 gram.

Therefore, the four-dimensional momentum vector (4.75) can de-
scribe the motion of either mass-bearing particles (non-isotropic trajec-
tories) or massless particles (isotropic trajectories). Note that m0 = 0
and ds= 0 for massless particles, therefore their ratio in (4.75) is a 0

0 in-
determinacy. However the transition from m0

ds to m
dσ in (4.75) solves this

indeterminacy, because the relativistic mass of any massless particle is
m, 0 and also dσ, 0 along its trajectory.

It is obvious that along isotropic trajectories (massless particles) the
square of the momentum vector Pα (4.75) is zero

PαPα = gαβ PαPβ = m2gαβ
dxα

dσ
dxβ

dσ
= m2 ds2

dσ2 = 0 , (4.76)

and the chr.inv.-projections of the vector have the form

P0
√
g00
= ±m , Pi =

1
c

mci, (4.77)

where ci is the chr.inv.-vector of the light velocity. In this case, the spin
momentum vector of the particle (4.39) is as well isotropic

Sα =
1
c2 η0

dxα

ds
=

1
c2 η

dxα

cdτ
=

1
c2 η

dxα

dσ
, (4.78)



172 Chapter 4 Spin Particles in the Pseudo-Riemannian Space

since its square is equal to zero

SαSα = gαβ SαSβ =
1
c4 η

2gαβ
dxαdxβ

dσ2 =
1
c4 η

2 ds2

dσ2 = 0 , (4.79)

hence, the square of the summary vector Qα = Pα + Sα of a massless
spin particle is also zero. The chr.inv.-projections of the isotropic spin
momentum (4.78) have the form

S0
√
g00
= ±

1
c2 η , S i =

1
c3 ηci, (4.80)

so its spatial observable projection matches that for a mass-bearing par-
ticle (4.51), where the particle’s observable velocity vi (4.51) is used
instead of the chr.inv.-vector ci of the light velocity. Thus, the chr.inv.-
projections of the summary vector of a massless spin particle are

φ = ±

(
m +

1
c2 η

)
, qi =

1
c

mci +
1
c3 ηci. (4.81)

Substituting them with φ> 0 into the formulae (4.42, 4.43), we ob-
tain the chr.inv.-equations of motion of a massless spin particle that trav-
els in our world (it travels from the past to the future)

dm
dτ
−

m
c2 Fi ci +

m
c2 Dik cick = −

1
c2

dη
dτ
+
η

c4 Fi ci −
η

c4 Dik cick, (4.82)

d
dτ

(
mci) + 2m

(
Di

k + A·ik·
)

ck − mF i + m∆i
nk cnck =

= −
1
c2

d
dτ

(
ηci) − 2η

c2

(
Di

k + A·ik·
)

ck +
η

c2 F i −
η

c2 ∆
i
nk cnck,

(4.83)

while for a massless spin particle in the mirror world (it travels from the
future to the past), having the quantities (4.81) with φ< 0 substituted
into (4.42, 4.43), the chr.inv.-equations of motion have the form

−
dm
dτ
−

m
c2 Fi ci +

m
c2 Dik cick =

1
c2

dη
dτ
+
η

c4 Fi ci −
η

c4 Dik cick, (4.84)

d
dτ

(
mci) + mF i + m∆i

nk cnck =

= −
1
c2

d
dτ

(
ηci) − η

c2 F i −
η

c2 ∆
i
nk cnck.

(4.85)
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4.4 The physical conditions of spin interaction

We have shown that the spin of a particle (its internal rotation momen-
tum) interacts with an external field of the space rotation, determined
by the space non-holonomity tensor Aαβ = 1

2 chαµhβν
(
∂bν
∂x µ −

∂bµ
∂xν

)
, which

is the curl of the four-dimensional velocity vector bα of the observer
with respect to his reference body. In electromagnetic phenomena, the
charge of a particle interacts with an external electromagnetic field —
the field of Maxwell’s tensor Fαβ =

∂Aβ
∂xα −

∂Aα
∂x β . Therefore, it seems natu-

ral to compare the chr.inv.-projections of Maxwell’s tensor Fαβ with the
chr.inv.-projections of the space non-holonomity tensor Aαβ.

In Chapter 3, we showed that the electromagnetic field tensor Fαβ
(Maxwell’s tensor) has two groups of the chr.inv.-projections, produced
by the tensor itself and by its dual pseudotensor* F∗αβ = 1

2 EαβµνFµν

F ·i0·
√
g00
= E i, F ik = H ik

F∗·i0·
√
g00
= H∗i, F∗ik = E∗ik


. (4.86)

The chr.inv.-projections of the space non-holonomity tensor Aαβ
(4.11) and of its dual pseudotensor A∗αβ = 1

2 EαβµνAµν are

A·i0·
√
g00
= 0 , Aik = himhknAmn

A∗·i0·
√
g00
= 0 , A∗ik = 0


. (4.87)

Comparing the above formulae, we see that the spin interaction has
an analogy in only the “magnetic” componentH ik = Aik = himhknAmn of
the space non-holonomity field, and the “electric” component of the
non-holonomity field is equal to zero, Ei =

A·i0·√
g00
= 0. This is no surprise,

because the internal rotation field of a particle (its spin) interacts with
the space non-holonomity field as with an external field, and both of the
fields are produced by motion, like a magnetic field.

*Here Eαβµν is the four-dimensional completely antisymmetric discriminant tensor,
using which we can make pseudotensors in the four-dimensional pseudo-Riemannian
space. See §2.3 in Chapter 2 for details.
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Besides the said, the “magnetic” component of the non-holonomity
field, which is non-zeroH ik = Aik , 0, cannot be dual to the zero quan-
tity H∗i = A∗·i0·√

g00
= 0. Therefore, the similarity with an electromagnetic

field is incomplete. A complete coincidence could not even be expected,
because the space non-holonomity tensor and the electromagnetic field
tensor have a different structure: theMaxwell tensor Fαβ =

∂Aβ
∂xα −

∂Aα
∂x β is a

“pure curl”, and the non-holonomity tensor Aαβ = 1
2 chαµhβν

(
∂bν
∂x µ −

∂bµ
∂xν

)
is not. On the other hand, we have no doubt that in the future a compar-
ative analysis of these fields will lead to a theory of the spin interaction
similar to electrodynamics.

The incomplete similarity of the space non-holonomity field to an
electromagnetic field leads also to another result. If we define the spin
interaction force like the Lorentz forceΦα = e

c Fα·
·σUσ, then the obtained

formulaΦα = η0
c2 Aα··σUσ on the right hand side of the equations of motion

of a spin particle will not include all the same terms. Meanwhile, an
external force acting on the particle, by definition, must include all the
factors that deviate its motion from a geodesic line, i.e., all terms on
the right hand side of the equations of motion. This is why the four-
dimensional force of the spin interaction, Φα [gram/sec], is

Φα =
DSα

ds
=

dSα

ds
+ ΓαµνSµ

dxν

ds
, (4.88)

the chr.inv.-projection of which onto the spatial section, after dividing
by c, gives the three-dimensional observable force of the spin interac-
tion, Φi [gram cm sec−2]. For instance, for a mass-bearing particle trav-
elling in our world, using (4.71), we obtain

Φi = −
1
c2

d
dτ

(
ηvi) − 2η

c2

(
Di

k + A·ik·
)

vk +
η

c2 F i −
η

c2 ∆
i
nk vnvk. (4.89)

So forth, by analogy with the electromagnetic field invariants (3.25,
3.26), we obtain the space non-holonomity field invariants

J1 = AαβAαβ = Aik Aik = εikm ε
iknΩ∗mΩ∗n = 2Ω∗iΩ∗i, (4.90)

J2 = AαβA∗αβ = 0 , (4.91)

where the invariant J1 = 2Ω∗iΩ∗i is always different from zero, other-
wise the space would be holonomic (not rotating).
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Now we are approaching the physical conditions specific of the mo-
tion of elementary spin particles. Re-writing the definition of the chr.
inv.-vector of the gravitational inertial force (1.38) as

Fi =
1

1 − w
c2

(
∂w
∂xi −

∂vi

∂t

)
= − c2

∂ ln
(
1 − w

c2

)
∂xi −

∗∂vi

∂t
, (4.92)

we formulate the non-holonomity tensor Aik as

Aik =
1
2

(
∗∂vk

∂xi −
∗∂vi

∂xk

)
+ vi

∂ ln
√

1 − w
c2

∂xk − vk

∂ ln
√

1 − w
c2

∂xi . (4.93)

From here we see that the non-holonomity tensor Aik is the three-
dimensional observable curl of the linear velocity with which the space
rotates plus two additional terms formed jointly by the gravitational po-
tential w and the space rotation.

Because of the tiny numerical value of the Planck constant, the spin
interaction only affects elementary particles. On the scale of such small
masses and distances, the gravitational interaction is negligibly weak.
Therefore, we can assumew→ 0. As a result, on the scale of elementary
particles the tensor Aik is a “pure” physically observable curl

Aik =
1
2

(
∗∂vk

∂xi −
∗∂vi

∂xk

)
, (4.94)

the gravitational inertial force (4.92) has only its inertial part

Fi = −
∗∂vi

∂t
= −

1

1 − w
c2

∂vi

∂t
= −

∂vi

∂t
, (4.95)

and the Zelmanov identities

2
√

h

∗∂

∂t

(√
hΩ∗i

)
+ εijk ∗∇j Fk = 0 , ∗∇kΩ

∗k +
1
c2 FkΩ

∗k = 0 , (4.96)

take the form

1
√

h

∂

∂t

(√
hΩ∗i

)
+

1
2
εijk

 ∗∂2vk

∂x j∂t
−

∗∂2vj

∂xk∂t

 = 0

∗∇kΩ
∗k −

1
c2

∗∂vk

∂t
Ω∗k = 0

 . (4.97)
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If we substitute
∗∂vk
∂t = 0, thereby assuming that the observable rota-

tion of the space is stationary, we obtain ∗∇kΩ
∗k = 0, i.e., the space rota-

tion pseudovector remains unchanged. Then the Zelmanov 1st identity
becomes

Ω∗iD +
∗∂Ω∗i

∂t
= 0 , (4.98)

from which we see that D= det ∥Dn
n ∥=

∗∂ ln
√

h
∂t = 0, i.e., the relative de-

formation rate of an elementary volume of the space is zero.
So, we have obtained that on the scale of elementary particles, the

field of the angular velocities with which the space rotates remains un-
changed (∗∇kΩ

∗k = 0), and the space does not deform (D= 0).
Therefore, it is possible that the stationary state of the space non-

holonomity field (it is the external field in the spin interaction) is the
necessary condition of the stability of elementary particles. Hence, we
can conclude that long-living spin particles have stable internal rota-
tions, while short-living particles are unstable spatial vortexes.

The study of the motion of short-living particles is rather problem-
atic, because we do not have experimental data on the structure of the
unstable vortexes that generate them. On the contrary, by studying long-
living particles, i.e., their motion in the stationary field of the space ro-
tation, we can obtain exact solutions to the equations of motion. We will
focus on this task in the next section §4.5.

4.5 Motion of elementary spin particles

As we have mentioned, the Planck constant, being a tiny absolute value,
only “works” for elementary particles, where gravitational interactions
is a few orders of magnitude weaker than electromagnetic, weak and
strong ones. Hence, assuming w→ 0 in the chr.inv.-equations of mo-
tion of spin particles (4.70–4.73) and (4.82–4.85), we will arrive at the
chr.inv.-equations of motion of elementary particles.

Besides, as we have obtained in the previous section, §4.4, under
a stationary rotation of the space, on the scale of elementary particles
the trace of the space deformations tensor is zero D= 0. Of course,
zero trace of a tensor does not necessarily mean that the tensor itself is
zero. On the other hand, a deforming space is a very rare phenomenon.
Therefore, when studying the motion of elementary particles, we will
assume Dik = 0.
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In §4.3, we have showed that under a stationary rotation of the space,
the conservation condition for the spin momentum vector Sα of a spin
particle takes the form (4.68), so that

nℏmnεimn vk 1
√

h

∂

∂xk

(√
hΩ∗i

)
= 0 . (4.99)

On the other hand, under
∗∂vk
∂t = 0 the Zelmanov 2nd identity applied

to elementary particles (4.97) means that

∗∇kΩ
∗k =

∂Ω∗k

∂xk +
∂
√

h
∂xk Ω

∗k =
1
√

h

∂

∂xk

(√
hΩ∗k

)
= 0 , (4.100)

hence, the first condition of (4.97) is true provided that ∂
∂xk

(√
hΩ∗k

)
= 0,

and the space rotation pseudovector is

Ω∗i =
Ω∗i(0)
√

h
, Ω∗i(0) = const . (4.101)

Taking all that has been said above into account, and based on the
general chr.inv.-equations of motion of a mass-bearing spin particle
(4.70, 4.71), we obtain the chr.inv.-equations of motion of an elementary
particle. For an our-world particle (it travels to the future with respect
to an ordinary observer), the equations have the form

dm
dτ
= −

1
c2

dη
dτ

, (4.102)

d
dτ

(
mvi) + 2mA·ik·v

k + m∆i
nk vnvk =

= −
1
c2

d
dτ

(
ηvi) − 2η

c2 A·ik·v
k −

η

c2 ∆
i
nk vnvk,

(4.103)

while for an elementary spin particle that is located in the mirror world
(so it travels to the past), we obtain

−
dm
dτ
=

1
c2

dη
dτ

, (4.104)

d
dτ

(
mvi) + m∆i

nk vnvk = −
1
c2

d
dτ

(
ηvi) − η

c2 ∆
i
nk vnvk. (4.105)

The chr.inv.-scalar equation ofmotion is the same for both our-world
particles and mirror-world spin particles. Integrating it for an our-world
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particle, namely — taking the integral∫ τ2

τ1=0

d
dτ

(
m +

η

c2

)
dτ = 0 , (4.106)

we obtain
m +

η

c2 = const = B , (4.107)

where B is an integration constant that can be calculated from the initial
conditions.

To illustrate the physical sense of the obtained live forces integral,
consider an analogy between then chr.inv.-projections

P0
√
g00
= ±m , Pi =

1
c

mvi =
1
c

pi

S0
√
g00
= ±

1
c2 η , S i =

1
c3 ηvi

 (4.108)

of the particle’s four-dimensional momentum vector and those of its spin
momentum vector, which are Pα =m0

dxα
ds and Sα = η0

c2
dxα
ds . Based on the

analogy with the relativistic mass±m, we will refer to the quantity± 1
c2 η

as the relativistic spin mass, so the quantity 1
c2 η0 is the rest spin mass.

Hence, the live forces theorem for an elementary spin particle (4.107)
means that the sum of the particle’s relativistic mass and its spin mass
remains unchanged along its trajectory.

Now, using the live forces integral*, we consider the chr.inv.-vector
equations of motion of a mass-bearing elementary particle, located in
our world, i.e., the equations (4.103). Substituting the live force integral
(4.107) into (4.103), then having the constant cancelled, we obtain the
kinematic equations of motion

dvi

dτ
+ 2A·ik·v

k + ∆i
nk vnvk = 0 , (4.109)

which, in this case, are non-geodesic. The term ∆i
nk vnvk, which is the

contraction of the chr.inv.-Christoffel symbols with the particle’s ob-
servable velocity, is relativistic in the sense that it is the square func-
tion of the velocity. This term can be neglected, because the observable

*The solution to the chr.inv.-scalar equation of motion.
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metric hik =−gik +
1
c2 vi vk along the trajectory approaches the Euclidean

metric. Such a case is possible, if the linear velocity of the space ro-
tation is much lower than the light velocity, and, therefore, the three-
dimensional coordinate metric gik is Euclidean as well. Then, the diag-
onal components of the chr.inv.-metric tensor are

h11 = h22 = h33 = +1 , (4.110)

while the other components are hik = 0, if i, k.
Noteworthy that the four-dimensional metric cannot be Galilean in

this case, since the spatial section rotates with respect to the time lines
that pierce it. In other words, although the observable three-dimensional
space (the spatial section) in this case is a flat Euclidean space, the
four-dimensional space-time is not the Minkowski space, but a pseudo-
Riemannian space with the metric

ds2 = g00 dx0dx0 + 2g0i dx0dxi + gik dxidxk =

= c2dt2 + 2g0i cdtdxi −
(
dx1)2

−
(
dx2)2

−
(
dx3)2

.
(4.111)

Assume, for instance, that the space rotates with a constant angular
velocityΩ= const around the x3 axis. Then the linear velocity vi =Ωikxk

with which the space rotates is

v1 = Ω12 x2 = Ω y , v2 = Ω21 x1 = −Ω x , (4.112)

where Aik =Ωik. Then, the space non-holonomity tensor Aik has only
the two non-zero components

A12 = −A21 = −Ω , (4.113)

and the chr.inv.-vector equations of motion (4.109) become

dv1

dτ
+ 2Ωv2 = 0 ,

dv2

dτ
− 2Ωv1 = 0 ,

dv3

dτ
= 0 , (4.114)

where the third equation can be solved immediately as

v3 = v3
(0) = const. (4.115)

Taking into account that v3 = dx3

dτ , we represent x3 as follows

x3 = v3
(0)τ + x3

(0) , (4.116)
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where x3
(0) is the numerical value of the x3 coordinate at the initial mo-

ment of the observable time τ= 0.
So forth, we formulate v2 from the first equation of (4.114)

v2 = −
1

2Ω
dv1

dτ
, (4.117)

then, differentiating (4.117) with respect to dτ, we obtain

dv2

dτ
= −

1
2Ω

d2v1

dτ2 , (4.118)

and substituting the result (4.118) into the second equation of (4.114)
we obtain

d2v1

dτ2 + 4Ω2v1 = 0 , (4.119)

which is a free oscillation equation. Its solution is

v1 = C1 cos (2Ωτ) +C2 sin (2Ωτ) , (4.120)

whereC1 andC2 are integration constants, which can be calculated from
the conditions at the initial moment of the observable time τ= 0

v1
(0) = C1

dv1

dτ

∣∣∣∣∣∣
τ=0
= − 2ΩC1 sin (2Ωτ)

∣∣∣
τ=0 + 2ΩC2 cos (2Ωτ)

∣∣∣
τ=0

 . (4.121)

Thus, we obtain C1 = v1
(0), C2 =

v̇1
(0)

2Ω , v̇1
(0) =

dv1

dτ

∣∣∣
τ=0. Then, we finally

obtain the equation for v1

v1 = v1
(0) cos (2Ωτ) +

v̇1
(0)

2Ω
sin (2Ωτ) , (4.122)

so the velocity of the mass-bearing elementary spin particle along x1

performs sinusoidal oscillations at the frequency equal to the double
angular velocity of the space rotation.

Taking into account that v1 = dx1

dτ , we integrate the obtained formula
(4.122) with respect to dτ. We obtain

x1 =
v1

(0)

2Ω
sin (2Ωτ) −

v̇1
(0)

4Ω2 cos (2Ωτ) +C3 . (4.123)
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Assuming that x1 = x1
(0) at the initial moment of time τ= 0, we obtain

the integration constant C3 = x1
(0) +

v̇1
(0)

4Ω2 . Then, we have

x1 =
v1

(0)

2Ω
sin (2Ωτ) −

v̇1
(0)

4Ω2 cos (2Ωτ) + x1
0 +

v̇1
(0)

4Ω2 , (4.124)

so the x1 coordinate of the elementary particle also performs free oscil-
lations at the frequency 2Ω.

Now, having the obtained v1 (4.122) substituted into the second
equation (4.114), we arrive at the equation

dv2

dτ
= 2Ωv1

(0) cos (2Ωτ) + v̇1
(0) sin (2Ωτ) , (4.125)

which, after integration, gives v2

v2 = v1
(0) sin (2Ωτ) −

v̇1
(0)

2Ω
cos (2Ωτ) +C4 . (4.126)

Assuming that v2 = v2
(0) at the moment of time τ= 0, we obtain the

constant C4 = v2
(0) +

v̇1
(0)

2Ω . Then

v2 = v1
(0) sin (2Ωτ) −

v̇1
(0)

2Ω
cos (2Ωτ) + v2

(0) +
v̇1

(0)

2Ω
. (4.127)

Taking into account that v2 = dx2

dτ , we integrate the above formula
with respect to dτ. As a result, we obtain the formula for the coordinate
x2 of the particle

x2 = −
v̇1

(0)

4Ω2 sin (2Ωτ) −
v1

(0)

2Ω
cos (2Ωτ) + v2

(0)τ +
v̇1

(0)τ

2Ω
+C5 . (4.128)

The integration constant C5 can be calculated from the condition
x2 = x2

(0) at τ= 0. It is C5 = x2
(0) +

v1
(0)

2Ω . Then, finally, the x2 coordinate of
the particle is expressed as

x2 = v2
(0)τ +

v̇1
(0)τ

2Ω
−

v̇1
(0)

4Ω2 sin (2Ωτ) −

−
v1

(0)

2Ω
cos (2Ωτ) + x2

(0) +
v1

(0)

2Ω
.

(4.129)
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From this formula we see that, if at the initial moment of the ob-
servable time τ= 0 an elementary spin particle had a velocity v2

(0) along
the axis x2 and an acceleration v̇1

(0) along x1, then the particle, in addi-
tion to free oscillations along the x2 axis at the frequency, equal to the
double angular velocity of the space rotation Ω, is subjected to a linear
displacement at ∆x2 = v2

(0)τ+
v̇1

(0)τ

2Ω .
Considering the live forces integral (solution to the chr.inv.-scalar

equation of motion) for an elementary spin particle, m+ η

c2 = B= const
(4.107), we can find the integration constant B. Re-writing (4.107) as

m0 +
η0

c2 = B

√
1 −

v2

c2 , (4.130)

we conclude that the square of the observable velocity of the particle is
v2 = const. Because the velocity components have already been found
and since the three-dimensional metric in question is Euclidean, we can
represent v2 as follows(

v1)2
+

(
v2)2
+

(
v3)2
=

=
(
v1

(0)
)2
+

(
v2

(0)
)2
+

(
v3

(0)
)2
+

(
v̇1

(0)
)2

2Ω2 +
v̇1

(0)v̇
2
(0)

Ω
+

+ 2

v2
(0) +

v̇1
(0)

2Ω

 v1
(0) sin (2Ωτ) −

v̇1
(0)

2Ω
cos (2Ωτ)

 .
(4.131)

The square of the velocity is conserved, if v̇2
(0) = 0 and v̇1

(0) = 0. Then
the integration constant B of the live forces integral is

B =
m0 +

η0
c2√

1 −
v2

(0)

c2

,
(
v2

(0)
)2
=

(
v1

(0)
)2
+

(
v3

(0)
)2
= const , (4.132)

while the live forces integral itself (4.107) becomes

m +
η

c2 =
m0 +

η0
c2√

1 −
v2

(0)

c2

, (4.133)

so it is the conservation condition for the sum of the particle’s relativistic
mass m and its spin mass η

c2 .
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Herewe shouldmake a remark about what has been said above about
elementary particles. Taking into account Amn = εmnkΩ

∗k in the defini-
tion η0 = nℏmnAmn, we obtain

η0 = nℏmnAmn = 2nℏ∗kΩ∗k, (4.134)

where ℏ∗k = 1
2 εnmkℏ

mn. Here, ℏ∗k is the three-dimensional pseudovec-
tor of the internal momentum of an elementary particle. Hence, η0 is
the scalar product of the three-dimensional pseudovectors: the internal
momentum ℏ∗k of the particle and the angular velocity Ω∗k with which
the space rotates. Therefore, we conclude that the spin interaction is
absent if the particle’s internal rotation pseudovector and the external
space rotation pseudovector are observed orthogonal.

Let us return back to the equations of motion of elementary spin
particles. Taking into account the integration constants that we have
obtained, the chr.inv.-vector equations of motion of an elementary spin
particle, located in our world, have the following solutions

v1 = v1
(0) cos (2Ωτ) , x1 =

v1
(0)

2Ω
sin (2Ωτ) + x1

(0)

v2 = v2
(0) sin (2Ωτ) , x2 = −

v1
(0)

2Ω
cos (2Ωτ) +

v1
(0)

2Ω
+ x2

(0)

v3 = v3
(0), x3 = v3

(0)τ + x3
(0)


. (4.135)

Let us now find the shape of the three-dimensional spatial trajectory
along which the elementary particle travels. Let the reference frame
of the observer be such that the observed initial displacement of the
particle is zero x1

(0) = x2
(0) = x3

(0) = 0. Then, its spatial coordinates at an
arbitrary moment of time are

x1 = x = a sin (2Ωτ)

x2 = y = a [1 − cos (2Ωτ)]

x3 = z = bτ

 , (4.136)

where a=
v1

(0)

2Ω and b= v3
(0). The obtained coordinate solutions are para-

metric equations of a surface, along which the particle travels. To illus-
trate what kind of surface it is, we switch from the parametric notation
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to the coordinate notation by removing the parameter τ from the equa-
tions. Then, calculating x2 + y2, we obtain

x2 + y2 = 2a2 [1 − cos (2Ωτ)] =

= 4a2 sin2 (Ωτ) = 4a2 sin2 zΩ
b
.

(4.137)

At first glance, the obtained result looks like a spiral line equation
x2 + y2 = a2, z= bτ. However, the similarity is not complete. Accord-
ing to the trajectory equation that we have obtained, an elementary spin
particle travels along a spiral wound on the surface of a cylinder so that
the particle has a constant velocity b= v3

(0) along the axis of the cylin-
der (z axis), and the radius of the particle’s trajectory (the radius of the
cylinder) oscillates with a frequencyΩ in the range* from zero up to the
maximum 2a=

v1
(0)

Ω
at z= πkb

2Ω .
So, the trajectory of an elementary spin particle in our world looks

like a spiral line “wound” on an oscillating cylinder. The lifetime of the
particle is equal to the length of the cylinder divided by the velocity of
the particle along the axis of the cylinder (z axis). Pulsations of this
cylinder are energy “breath ins” and “breath outs” of the particle.

This means that the cylinder that we have mathematically deduced
above is the event cylinder of an elementary particle from its birth in
our world (its materialization) to its death (dematerialization). But even
after death the particle’s event cylinder does not disappear, but splits
into the event cylinders of other particles born by this decay either in
our world or in the mirror world.

Therefore, the analysis of the births and decays of elementary par-
ticles in terms of the General Theory of Relativity means the analysis
of the branching points of the event cylinders of these particles, taking
into account possible branches leading to the mirror world.

If we consider the motion of two bound spin particles that rotate
around a common centre of mass, for example, a positronium atom (a
dumbbell-shaped system consisting of an electron and a positron), then
we get a DNA-like double spiral — a twisted “rope ladder” with a num-
ber of steps (links connecting particles) wound on the pulsating cylinder
of their events.

*Where k= 0, 1, 2, 3, . . . If v3
(0) = 0, then the particle simply oscillates within the xy

plane (the plane of the cylinder’s section).
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Let us now solve the chr.inv.-equations of motion of an elementary
spin particle travelling in the mirror world (a world with the reverse flow
of time). The mentioned equations (4.104, 4.105) under the physical
conditions specific of elementary particles* take the form

−
dm
dτ
=

1
c2

dη
dτ

, (4.138)

d
dτ

(
mvi) = − 1

c2

d
dτ

(
ηvi) . (4.139)

The solution to the chr.inv.-scalar equation is the live forces integral
m+ η

c2 = B= const, as in the case of an analogous our-world particle
(4.107). Substituting it into the chr.inv.-vector equations of (4.139), we
obtain their solution

dvi

dτ
= 0 , (4.140)

whichmeans vi = vi
(0) = const. According to the solution, from the view-

point of an ordinary observer, an elementary spin particle travels in the
mirror world linearly at a constant velocity. This is in contrast to the ob-
servable motion of an analogous our-world particle, because it travels
along an oscillating “spiral” line.

On the other hand, from the viewpoint of an observer, whose home
is the mirror world, the motion of elementary spin particles in our world
will be linear and uniform, and in his world elementary spin particles
will travel along oscillating “spiral” lines.

We could also get an analysis of the motion of massless (light-like)
spin particles in a similar way. But we do not know how adequate our
assumption that the linear velocity with which the space rotates is much
smaller compared to the light velocity would be. Although, in general,
the methods for solving the equations of motion are the same for mass
and massless particles.

4.6 A spin particle in an electromagnetic field

In this section, we are going to deduce the chr.inv.-equations of motion
for a particle that has both spin and electric charge, and travels in an

*We assumed that the space rotates stationarily at a low speed and does not deform,
and the three-dimensional metric is Euclidean.
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external electromagnetic field that fills the four-dimensional pseudo-
Riemannian space.

So, the summary vector characteristic of such a particle is

Qα = Pα +
e
c2 Aα + Sα, (4.141)

where Pα is the four-dimensional momentum vector of the particle. The
other two four-dimensional vectors are, respectively, an additional mo-
mentum gained by the particle from the interaction of its charge with the
electromagnetic field, and also an additionalmomentumgained from the
interaction of the particle’s spin with the space non-holonomity field.

Since the vectors Pα and Sα are tangential to the four-dimensional
trajectory of the particle, we assume that the electromagnetic field po-
tential Aα is also tangential to the trajectory. In this case, it has the form
Aα =φ0

dxα
ds , and the formula qi =

φ
c vi (see §3.8) sets the relationship

between the scalar potential φ and the vector potential qi of the electro-
magnetic field.

Then chr.inv.-projections φ̃ and q̃i of the particle’s summary vector
Qα (4.141) under consideration are

φ̃ = ±
(
m +

eφ
c2 +

η

c2

)
, q̃i =

1
c2 mvi +

1
c3 (η + eφ) vi, (4.142)

where m is the relativistic mass of the particle, φ is the scalar potential
of the acting electromagnetic field, while η describes the interaction of
the particle’s spin with the space non-holonomity field

m =
m0√
1 − v2

c2

, φ =
φ0√

1 − v2

c2

, η =
η0√

1 − v2

c2

. (4.143)

The desired equations are deduced in the same way as those for a
charge-free spin particle, except for the fact that we have to project the
absolute derivative of the sum of the above three vectors (4.141). Using
the formulae for φ̃ and q̃i (4.142), we obtain the chr.inv.-equations of
motion of a charged mass-bearing spin particle located in our world (it
travels from the past to the future)

dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk =

= −
1
c2

d
dτ

(η + eφ) +
η + eφ

c4 Fi vi −
η + eφ

c4 Dik vivk,

(4.144)
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d
dτ

(
mvi) + 2m

(
Di

k + A·ik·
)

vk − mF i + m∆i
nk vnvk =

= −
1
c2

d
dτ

[
(η + eφ) vi

]
−

2 (η + eφ)
c2

(
Di

k + A·ik·
)

vk +

+
η + eφ

c2 F i −
η + eφ

c2 ∆i
nk vnvk,

(4.145)

while for an analogous particle located in the mirror world (it travels
from the future to the past) the equations are

−
dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk =

=
1
c2

d
dτ

(η + eφ) +
η + eφ

c4 Fi vi −
η + eφ

c4 Dik vivk,

(4.146)

d
dτ

(
mvi) + mF i + m∆i

nk vn vk =

= −
1
c2

d
dτ

[
(η + eφ) vi

]
−
η + eφ

c2 F i −
η + eφ

c2 ∆i
nk vnvk.

(4.147)

The Levi-Civita parallel transport in a Riemannian space leaves the
length of any transported vector unchanged. Hence, its square is invari-
ant in any reference frame. In particular, the square of the transported
vector Qα (4.141) characteristic of a spin particle in an electromagnetic
field remains unchanged in the accompanying reference frame

QαQα = gαβ

(
Pα +

e
c2 Aα + Sα

) (
Pβ +

e
c2 Aβ + Sβ

)
=

= gαβ

(
m0 +

eφ0

c2 +
η0

c2

)2 dxα

ds
dxβ

ds
=

(
m0 +

eφ0

c2 +
η0

c2

)2
.

(4.148)

In §3.9, we have already shown that when the four-dimensional elec-
tromagnetic potential Aα is oriented along the world-line of a charged
particle, the right hand side of the chr.inv.-equations of motion of the
particle are significantly simplified: the right hand side of the chr.inv.-
vector equations of motion takes the form of the chr.inv.-Lorentz force
Φi=−e

(
E i+ 1

c ε
ikmvk H∗m

)
, and the right hand side of the chr.inv.-scalar

equation is the scalar product of the electric strength vector Ei and the
observable velocity of the particle.

Keeping the said in mind, we can represent the obtained chr.inv.-
equations of motion of a charged spin particle (4.144–4.147) in a more



188 Chapter 4 Spin Particles in the Pseudo-Riemannian Space

specific form. Thus, moving the spin interaction terms of the equations
to the left hand side and introducing the chr.inv.-Lorentz force, for a
charged spin particle that travels in our world we obtain

d
dτ

(
m +

η

c2

)
−

1
c2

(
m +

η

c2

)
Fi vi +

+
1
c2

(
m +

η

c2

)
Dik vivk = −

e
c2 Ei vi,

(4.149)

d
dτ

[(
m +

η

c2

)
vi

]
+ 2

(
m +

η

c2

) (
Di

k + A·ik·
)

vk −

(
m +

η

c2

)
F i +

+

(
m +

η

c2

)
∆i

nk vnvk = −e
(
E i +

1
c
εikmvk H∗m

)
,

(4.150)

and for an analogous particle in the mirror world we have

−
d
dτ

(
m +

η

c2

)
−

1
c2

(
m +

η

c2

)
Fi vi +

+
1
c2

(
m +

η

c2

)
Dik vivk = −

e
c2 Ei vi,

(4.151)

d
dτ

[(
m +

η

c2

)
vi

]
+

(
m +

η

c2

)
F i +

(
m +

η

c2

)
∆i

nk vnvk =

= − e
(
E i +

1
c
εikm vk H∗m

)
.

(4.152)

To make conclusions on the motion of charged spin particles in the
pseudo-Riemannian space, we have to set a specific geometric structure
of the space. As in the previous section, §4.5, where we analysed the
motion of charge-free spin particles, we now assume that:

a) Since the gravitational interaction on the scales of elementary par-
ticles is negligible, we can assume that w→ 0;

b) The space rotation is stationary, i.e.,
∗∂vk
∂t = 0;

c) The space does not deform, i.e., Dik = 0;
d) The three-dimensional coordinate metric gik dxidxk is Euclidean,

i.e., gik =
∣∣∣−1, i= k

0, i, k ;

e) The space rotates with a constant angular velocity Ω around the
axis x3 = z, hence the components of the linear velocity with which
the space rotates are v1 =Ω12 x2 =Ωy and v2 =Ω21x1 =−Ω x.
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Taking the above constraints into account, we obtain the formula for
the space-time interval ds2 on the scale of elementary particles

ds2 = c2dt2 − 2Ωy dtdx + 2Ω x dt dy − dx2 − dy2 − dz2, (4.153)

while the physically observable characteristics of the space are

Fi = 0 , Dik = 0 , A12 = −A21 = −Ω , A23 = A31 = 0 . (4.154)

As in the previous section, §4.5, we assume that the space rotates
with a velocity much slower than the velocity of light. In such a case,
the metric chr.inv.-tensor hik is Euclidean, and the chr.inv.-Christoffel
symbols ∆i

jk are zeroes, which simplifies the algebra. Then the chr.inv.-
equations of motion of a charged spin particle in our world give

d
dτ

(
m +

η

c2

)
= −

e
c2 Ei

dxi

dτ
, (4.155)

d
(
m + η

c2

)
v1

dτ
+ 2

(
m +

η

c2

)
Ωv2 =

= − e
(
E1 +

1
c
ε1km vk H∗m

)
d
(
m + η

c2

)
v2

dτ
− 2

(
m +

η

c2

)
Ωv1 =

= −e
(
E2 +

1
c
ε2km vk H∗m

)
d
(
m + η

c2

)
v3

dτ
= −e

(
E3 +

1
c
ε3km vk H∗m

)



, (4.156)

while the equations for such a particle in the mirror world give

d
dτ

(
m +

η

c2

)
=

e
c2 Ei

dxi

dτ
, (4.157)

d
(
m + η

c2

)
v1

dτ
= −e

(
E1 +

1
c
ε1km vk H∗m

)
d
(
m + η

c2

)
v2

dτ
= −e

(
E2 +

1
c
ε2km vk H∗m

)
d
(
m + η

c2

)
v3

dτ
= −e

(
E3 +

1
c
ε3km vk H∗m

)


. (4.158)
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Let us look at the chr.inv.-scalar equation of motion in our world
(4.155) and those in the mirror world (4.157). We see that the sum of the
relativistic mass of the charged spin particle and its spin mass equalizes
the work done by the electric component of the acting electromagnetic
field in displacing the particle by the elementary interval dxn. It can
be seen from the chr.inv.-vector equations of motion that both in our
world (4.156) and in the mirror world (4.158) the sum of the spatial
momentum vector of the particle and its spin momentum vector along
x3 = z is determined only by the component of the Lorentz force along
the same axis.

Now our task is to calculate the trajectory of a charged spin particle
in an electromagnetic field with given properties. As in Chapter 3, we
assume that the field is constant, so its electric and magnetic strengths
Ei and H∗i are

Ei =
∂φ

dxi , (4.159)

H∗i =
1
2
εimn Hmn =

1
2c

εimn
[
∂ (φvm)

dxn −
∂ (φvn)

dxm − 2φAmn

]
. (4.160)

In Chapter 3, we already considered a similar problem. Namely, —
we solved the chr.inv.-equations of motion for a charged mass-bearing
particle, but without taking its spin into account. Obviously, in the par-
ticular case of a charged spinless particle (where the spin of the particle
is zero), the solutions for a charged spin particle must coincide with the
solutions that we have obtained in Chapter 3 in the framework of “pure”
electrodynamics.

To compare our results with those obtained in the framework of elec-
trodynamics, it would be reasonable to analyse the motion of a charged
spin particle in the three typical kinds of electromagnetic fields, which
were under study in Chapter 3 as well as in The Classical Theory of
Fields by Landau and Lifshitz [10]:

a) A homogeneous stationary electric field (the magnetic strength of
the field is zero, H∗i = 0);

b) A homogeneous stationary magnetic field (the electric strength of
the field is zero, Ei = 0);

c) A homogeneous stationary electromagnetic field (both of the field
components H∗i and Ei are non-zeroes).
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On the other hand, in electrodynamics we consider the motion of or-
dinarymacro-particles. It is not obvious that all the three above cases are
applicable to the micro-world of elementary particles, given the metric
constraints. Here is why.

First, the spin of an elementary particle affects its motion only in the
field of the space non-holonomity. Hence, the non-holonomity tensor is
Aik , 0. But from the formulae for the electric strength Ei (4.159) and
the magnetic strength H∗i (4.160) we see that the space non-holonomity
only affects the magnetic field component. Hence, we will focus on the
motion of elementary spin particles in an electromagnetic field of the
strictly magnetic kind.

Second, the chr.inv.-scalar equation of motion of a charged spin par-
ticle (4.155) (

m0 +
η0

c2

) d
dτ

1√
1 − v2

c2

= −
e
c2 Ei vi (4.161)

in a non-relativistic case, where the particle is much slower than the
velocity of light, takes the form

Ei vi = 0 , (4.162)

so the electric field component does not perform work to displace the
particle under the constraints specific of the world of elementary parti-
cles. Since we are considering a stationary field, the obtained condition
(4.162) can be represented as follows

Ei vi =
∂φ

∂xi vi =
∂φ

∂xi

dxi

dτ
=

dφ
dτ
= 0 , (4.163)

which obviously means that the scalar electromagnetic potential is con-
stant (φ= const), therefore,

H∗i =
φ

2c
εimn

[
∂vm

∂xn −
∂vn

∂xm − 2
(
∂vm

∂xn −
∂vn

∂xm

)]
. (4.164)

In a relativistic case, the electric component reveals itself (it per-
forms work to displace the particle), provided that the absolute value of
the particle’s velocity is non-stationary

1

2c2
(
1 − v2

c2

)3/2

(
m0 +

η0

c2

) dv2

dτ
= −

e
c2 Ei vi , 0 . (4.165)
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Hence, the electric component of the acting electromagnetic field,
given the constraints specific of elementary particles, reveals itself only
on those relativistic charged particles, the velocity of which is not con-
stant. All “slow-moving” particles fall out of our consideration in an
electromagnetic field of the strictly electric kind.

Therefore, the general case* should be studied only in a stationary
electromagnetic field of the strictly magnetic kind, where the electric
field component is absent. This is what will be done in §4.7.

4.7 Motion in a stationary magnetic field

In this section, we are going to consider the motion of a charged spin
particle in a homogeneous stationary magnetic field.

As in the previous section, §4.6, we assume that the space-time has
the metric (4.153), where Fi = 0 and Dik = 0. The space rotates around
the z axis (within the xy plane) with a constant angular velocity Ω.
Hence, the space non-holonomity tensor has the only non-zero com-
ponents A12 =−A21 =−Ω= const, and the quantity η0 = nℏmnAmn that
describes the interaction of the particle’s spin (its internal rotation) with
the external field of the space non-holonomity is

η0 = n
(
ℏ12A12 + ℏ

21A21
)
= 2nℏ12A12 = ±2nℏΩ , (4.166)

where “plus” stands for the co-directed ℏ and Ω (with A12 =−Ω, the
numerical value of ℏ12 is also negative, ℏ12 =−ℏ), and “minus” means
that they are oppositely directed (with A12 =−Ω, we have ℏ12 =+ℏ).

In this case,† the chr.inv.-equations of motion of a charged elemen-
tary spin particle located in our world take the form

d
dτ

(
m +

η

c2

)
= 0 , (4.167)

d
dτ

[(
m +

η

c2

)
vi

]
+ 2

(
m +

η

c2

)
A·ik·v

k +

(
m +

η

c2

)
∆i

nk vnvk =

= −
e
c
εikm vk H∗m ,

(4.168)

*A charged elementary spin particle travelling with an arbitrary velocity, either low
or relativistic.

†Provided that the electromagnetic field potential Aα is directed along the four-
dimensional trajectory of the particle.
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and for an analogous particle located in the mirror world we have

−
d
dτ

(
m +

η

c2

)
= 0 , (4.169)

d
dτ

[(
m +

η

c2

)
vi

]
+

(
m +

η

c2

)
∆i

nk vnvk = −
e
c
εikm vk H∗m . (4.170)

Having the live forces theorem (chr.inv.-scalar equation of motion)
integrated, we obtain the live forces integral. In our world and in the
mirror world it is, respectively

m +
η

c2 = B = const , m +
η

c2 = −B̃ = const , (4.171)

where B and B̃ are integration constants in our world and in the mirror
world, respectively. We can obtain these constants by substituting the
initial conditions at τ= 0 into (4.171). As a result, we have

B = m0 +
η0

c2 = m0 +
nℏmnAmn

c2 , (4.172)

B̃ = −m0 −
η0

c2 = −m0 −
nℏmnAmn

c2 . (4.173)

The formulae for the live forces integrals (4.171) mean that, in the
absence of the electric field component, the square of the velocity of a
charged elementary spin particle is constant, v2 = hik vivk = const.

Having the formulae for the live forces integrals substituted into
(4.168, 4.170), we arrive at the chr.inv.-vector equations of motion in
our world and in the mirror world, respectively

dvi

dτ
+ 2A·ik·v

k + ∆i
nk vnvk = −

e
cB

εikm vk H∗m , (4.174)

dvi

dτ
+ ∆i

nk vnvk = −
e

cB̃
εikm vk H∗m , (4.175)

which are similar to the chr.inv.-equations ofmotion of a chargedmacro-
particle (charged spinless particle) in a homogeneous stationary mag-
netic field (3.290, 3.291), except that here the integration constant from
the living forces integral is not equal to the relativistic mass m of the
particle, as it was in electrodynamics (3.290, 3.291), but to the formula
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(4.171) that takes into account the interaction of the particle’s spin with
the space non-holonomity field.

For the readers, who have a special interest in the chronometrically
invariant formalism, we make a remark concerning the notations in the
chr.inv.-equations of motion.

When obtaining the components of the term A·ik·v
k, found only in the

our-world equations, we have, for instance, for the index i= 1

A·1k·v
k = A·11·v

1 + A·12·v
2 = h12A12v1 + h11A21v2, (4.176)

where A12 =−A21 =−Ω. Then obtaining A·11· et A·12·, we have

A·11· = h1mA1m = h11A11 + h12A12 = h12A12 , (4.177)

A·12· = h1mA2m = h11A21 + h12A22 = h11A21 , (4.178)

where hik are the elements of a matrix reciprocal to the matrix hik, so
the required components of hik are calculated as

h11 =
h22

h
, h12 = −

h12

h
. (4.179)

Then, since the determinant of the chr.inv.-metric tensor in the case
under consideration (see §3.12 for detail) is

h = det ∥hik∥ = 1 +
Ω2

(
x2 + y2

)
c2 , (4.180)

the unknown quantity A·1k·v
k (4.176) is

A·1k·v
k =
Ω

h

[
Ω2

c2 xy ẋ +
(
1 +
Ω2x2

c2

)
ẏ

]
. (4.181)

The component A·2k·v
k, found in the equation of motion along y, can

be calculated in the same way.
Let us get back to the chr.inv.-vector equations of motion of the

charged spin particle in the homogeneous stationary magnetic field. We
approach them in two possible cases of mutual orientation of the mag-
netic strength and the space non-holonomity pseudovector, when they
are co-directed and are orthogonal to each other.
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4.7.1 The magnetic field is co-directed with the non-holonomity
field

Assume that the space non-holonomity field pseudovector is directed
along the z axis, and the space non-holonomity field is weak. Then the
chr.inv.-vector equations ofmotion of a charged elementary spin particle
located in our world take the form

ẍ + 2Ω ẏ = −
eH
c B

ẏ , ÿ − 2Ω ẋ = −
eH
c B

ẋ , z̈ = 0 , (4.182)

while for an analogous particle located in the mirror world we have

ẍ = −
eH

c B̃
ẏ , ÿ = −

eH

c B̃
ẋ , z̈ = 0 . (4.183)

These equations are different from those for a charged spinless par-
ticle (3.104, 3.305), deduced under the same assumptions, only by the
integration constant B from the live forces integral, which, instead of the
relativistic mass of the particle, takes into account here the interaction
of the particle’s spin with the space non-holonomity field.

Using the solutions obtained in §3.12, we can immediately obtain
the formulae for the coordinates of the our-world charged spin particle

x = −
[
ẏ(0) cos (2Ω + ω) τ + ẋ(0) sin (2Ω + ω) τ

]
×

×
1

2Ω + ω
+ x(0) +

ẏ(0)

2Ω + ω
,

(4.184)

y =
[
ẏ(0) sin (2Ω + ω) τ − ẋ(0) cos (2Ω + ω) τ

]
×

×
1

2Ω + ω
+ y(0) −

ẋ(0)

2Ω + ω
,

(4.185)

and also those for the mirror-world particle

x = −
1
ω

[
ẏ(0) cosωτ + ẋ(0) sinωτ

]
+ x(0) +

ẏ(0)

ω
, (4.186)

y =
1
ω

[
ẏ(0) sinωτ − ẋ(0) cosωτ

]
+ y(0) −

ẋ(0)

ω
, (4.187)

which are different from the solutions obtained in the framework of elec-
trodynamics only by the frequencyω taking into account the interaction
of the particle’s spin with the space non-holonomity field.
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In our world, particles have positive masses, therefore ω is

ω =
eH

mc + η
c

=

eH

√
1 −

v2
(0)

c2

m0c + η0
c

=

eH

√
1 −

v2
(0)

c2

m0c ± 2nℏΩ
c

, (4.188)

where the alternate sign in the denominator depends on the mutual ori-
entation of ℏ andΩ: “plus” stands for the co-directed ℏ andΩ, and “mi-
nus” means that they are oppositely directed, regardless of a right-hand
or left-hand reference frame. See the comment to (4.166) for details.

Particles of the mirror world have negative masses (4.143)

m = −
m0√

1 −
v2

(0)

c2

< 0 , η = −
η0√

1 −
v2

(0)

c2

< 0 , (4.189)

therefore, ω in the mirror world is

ω =
eH

mc + η
c

=

eH

√
1 −

v2
(0)

c2

−m0c − η0
c

=

eH

√
1 −

v2
(0)

c2

−m0c ∓ 2nℏΩ
c

. (4.190)

Note that the obtained formulae for the coordinates x and y (4.184–
4.187) take into account the fact that the square of the particle’s velocity
remains unchanged both in our world and in the mirror world, which is
presented with the conditions (respectively)

ẋ(0) +
ÿ0

2Ω + ω
= 0 , ẋ(0) +

ÿ0

ω
= 0 , (4.191)

resulting from the live forces integral (see §3.12 for details).
The third equation of motion (along z) is solved as

z = ż(0)τ + z(0) . (4.192)

The obtained formulas for the coordinates x and y (4.184–4.187)
indicate that a charged elementary spin particle travelling in a homo-
geneous stationary magnetic field parallel to a weak field of the space
non-holonomity performs harmonic oscillations along x and y. In our
world the oscillation frequency is

ω̃ = 2Ω + ω = 2Ω +
eH

m0c ± 2nℏΩ
c

√
1 −

v2
(0)

c2 , (4.193)
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and in the mirror world an analogous particle performs similar oscilla-
tions at the frequency ω (4.190).

In a weak field of the space non-holonomity, the value of nℏΩ is
much less than the energy m0c2. Because we have 1

1±α � 1∓α for any
small value α, at low velocities of motion we have

ω̃ � 2Ω +
eH
m0c

(
1 ∓

2nℏΩ
m0c2

)
. (4.194)

If at the initial moment of time the displacement and the velocity of
an our-world charged elementary spin particle satisfy the conditions

x(0) +
ẏ0

2Ω + ω
= 0 , y(0) −

ẋ0

2Ω + ω
= 0 , (4.195)

it will travel like a charged spinless particle along a circle within the xy
plane*

x2 + y2 =
ẏ2

0

(2Ω + ω)2 , (4.196)

but the radius of its circulation in this case is equal to

r =
ẏ0

2Ω + ω
=

ẏ0

2Ω + eH

m0 c± 2nℏΩ
c

√
1 −

v2
(0)

c2

, (4.197)

and is dependent on the value and orientation of its spin. If the initial
velocity of a charged spin particle, directed along the magnetic field
strength (along z), is not zero, then the particle travels along the mag-
netic strength along a spiral line with the same radius r.

An analogous mirror-world particle, provided that its displacement
and velocity at the initial moment of time satisfy the conditions

x(0) +
ẏ0

ω
= 0 , y(0) −

ẋ0

ω
= 0 , (4.198)

will also travel along a circle

x2 + y2 =
ẏ2

0

ω2 , (4.199)

*We set the y axis along the initial momentum of the particle, which is always
possible. Then all formulae for the coordinates will have zero initial velocity of the
particle along x.
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with the radius

r =
ẏ0

ω
=

ẏ0

eH
−m0 c∓ 2nℏΩ

c

√
1 −

v2
(0)

c2

. (4.200)

In a general case, where there is no additional conditions (4.195,
4.198), the trajectory of a charged elementary spin particle within the
xy plane will not be circular.

Let us obtain a formula for the energy and momentum of the parti-
cle. Using the formulae for the live forces integral, we obtain the quan-
tity η0, which is η0 = nℏmnAmn = n

(
ℏ12A12 + ℏ

21A21
)
=±2nℏΩ. For de-

tails, see (4.166). Then for the particle located in our world we have

Etot = Bc2 =
m0c2 ± 2nℏΩ√

1 −
v2

(0)

c2

= const , (4.201)

while in the mirror world we have

Etot = B̃c2 =
−m0c2 ∓ 2nℏΩ√

1 −
v2

(0)

c2

= const . (4.202)

Since in this section, §4.7, we have assumed that the electric com-
ponent of the acting electromagnetic field is absent, the field does not
contribute to the total energy of the particle (as it is known, the mag-
netic component of an electromagnetic field does not perform work to
displace electric charges).

From the obtained formulae (4.201, 4.202) we see that the total en-
ergy of the particle remains unchanged along the trajectory, while its
value depends on the mutual orientation of the particle’s internal mo-
mentum ℏ and the angular velocity Ω with which the space rotates.

The latter statement requires some comments to be made. By defini-
tion the scalar quantity n (value of the spin in ℏ units) is always positive,
while ℏ and Ω are the numerical values of the components of the anti-
symmetric tensors hik and Ωik, which take opposite signs in right-hand
and left-hand reference frames. But since we are dealing with the prod-
uct of the quantities, only their mutual orientation matters, which does
not depend on a right-hand or left-hand reference frame.
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If ℏ and Ω are co-directed (their scalar product is positive), then the
total energy of an our-world spin particle Etot (4.201) is the sum of its
relativistic energy E =mc2 and its “spin energy”

Es =
2nℏΩ√
1 −

v2
(0)

c2

, (4.203)

so the total energy of the particle is greater than E =mc2.
If ℏ andΩ are oppositely directed, then Etot is the difference between

the relativistic energy and the spin energy of the particle. This mutual
orientation permits a specific case, where m0c2 = 2nℏΩ and, therefore,
the total energy of the particle becomes zero (this case will be discussed
in §4.8, concerning elementary particles).

For charged spin particles having negativemasses, which inhabit the
mirror world, the total energy Etot (4.202) is negative, but its absolute
value is as well greater than the relativistic energy E =−mc2, provided
that ℏ and Ω are co-directed.

So forth, for the observable total spatial momentum of the our-world
particle we have

pi
tot =

m0c2 ± 2nℏΩ

c2

√
1 −

v2
(0)

c2

vi = mvi ±
2nℏΩ

c2

√
1 −

v2
(0)

c2

vi, (4.204)

so it is an algebraic sum of the particle’s relativistic observable momen-
tum pi =mvi and the spin momentum that the particle gains from the
space non-holonomity field. The particle’s total momentum is greater
than its relativistic momentum, if ℏ and Ω are co-directed, and it is less
otherwise. In the case of the opposite mutual orientation of ℏ andΩ, the
total momentum becomes zero (so does the total energy), provided that
the condition m0c2 = 2nℏΩ is true.

For the mirror-world particle the quantity pi
tot is

pi
tot =

−m0c2 ∓ 2nℏΩ

c2

√
1 −

v2
(0)

c2

vi = −mvi ∓
2nℏΩ

c2

√
1 −

v2
(0)

c2

vi, (4.205)

so the particle moves faster (in the mirror world), if ℏ and Ω are co-
directed, and it is slower otherwise.
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The velocity components of a charged spin particle in the magnetic
field co-directed with the space non-holonomity field, taking into ac-
count the conditions (4.191), in our world are

ẋ = ẏ(0) sin (2Ω + ω) τ − ẋ(0) cos (2Ω + ω) τ , (4.206)

ẏ = ẏ(0) cos (2Ω + ω) τ + ẋ(0) sin (2Ω + ω) τ , (4.207)

while for an analogous particle located in the mirror world we have

ẋ = ẏ(0) sinωτ − ẋ(0) cosωτ , (4.208)

ẏ = ẏ(0) cosωτ + ẋ(0) sinωτ . (4.209)

Then the total momentum of the particle* in our world is

p1
tot =

m0c2 ± 2nℏΩ

c2

√
1 −

v2
(0)

c2

ẏ(0) sin (2Ω + ω) τ , (4.210)

p2
tot =

m0c2 ± 2nℏΩ

c2

√
1 −

v2
(0)

c2

ẏ(0) cos (2Ω + ω) τ , (4.211)

p3
tot =

m0c2 ± 2nℏΩ

c2

√
1 −

v2
(0)

c2

ż(0) , (4.212)

where ω is as in (4.188). In the mirror world we have

p1
tot =

−m0c2 ∓ 2nℏΩ

c2

√
1 −

v2
(0)

c2

ẏ(0) sinωτ , (4.213)

p2
tot =

−m0c2 ∓ 2nℏΩ

c2

√
1 −

v2
(0)

c2

ẏ(0) cosωτ , (4.214)

p3
tot =

−m0c2 ∓ 2nℏΩ

c2

√
1 −

v2
(0)

c2

ż(0) , (4.215)

*The initial momentum of the particle within the xy plane is directed along y.



4.7 Motion in a stationary magnetic field 201

where ω is as in (4.190). Noteworthy, although the magnetic strength
does not appear in the total energy Etot, it appears in the total momentum
as a term of the formula for ω (4.190).

4.7.2 The magnetic field is orthogonal to the non-holonomity field

Let us now consider the motion of a mass-bearing charged spin particle
in a homogeneous stationary magnetic field, which is orthogonal to the
space non-holonomity field. Let the non-holonomity field be weak and
directed along z (so, the magnetic field is directed along y). Then the
chr.inv.-vector equations of its motion

ẍ + 2Ω ẏ =
eH
c B

ż , ÿ − 2Ω ẋ = 0 , z̈ = −
eH
c B

ẋ (4.216)

are similar to those for a charged spinless particle (3.338). The differ-
ence from (3.338) is that here the denominator of the right hand side
contains, instead of the relativistic mass of the charged particle, the in-
tegration constant from the live forces integral, which takes into account
the interaction between the particle’s spin and the non-holonomity field.
After integration, the equations give

x =
ẋ(0)

ω̃
sin ω̃τ −

ẍ(0)

ω̃2 cos ω̃τ + x(0) +
ẍ(0)

ω̃2 , (4.217)

y = −
2Ω
ω̃2

(
ẋ(0) cos ω̃τ +

ẍ(0)

ω̃
sin ω̃τ

)
+ ẏ(0)τ+

+
2Ω
ω̃2 ẍ(0)τ + y(0) +

2Ω
ω̃2 ẋ(0) ,

(4.218)

z =
ω

ω̃2

(
ẋ(0) cos ω̃τ +

ẍ(0)

ω̃
sin ω̃τ

)
+ ż(0)τ−

−
ω

ω̃2 ẍ(0)τ + z(0) −
ω

ω̃2 ẋ(0) ,

(4.219)

which are different from the corresponding solutions for a charged spin-
less particle by the frequency ω̃ that is dependent on the spin and its
mutual orientation with the non-holonomity field

ω̃ =
√

4Ω2 + ω2 =

√√√√√√√√√√
4Ω2 +

e2H2

(
1 −

v2
(0)

c2

)2

(
m0c2 ± 2nℏΩ

c

)2 . (4.220)
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Subsequently, an equation of the trajectory of the charged spin parti-
cle is similar to that of the spinless particle. In a particular case, namely
— under certain initial conditions, the trajectory equation is the equa-
tion of a sphere

x2 + y2 + z2 =
1
ω̃2 ẋ2

(0) , (4.221)

whose radius, in contrast to the radius of the trajectory of the spinless
particle, depends on the particle’s orientation with respect to the non-
holonomity field

r =
1√√√√√√√√√√

4Ω2 +

e2H2

(
1 −

v2
(0)

c2

)2

(
m0c2 ± 2nℏΩ

c

)2

ẋ(0) . (4.222)

Let us look at an analogous particle, located in the mirror world,
moving in a weak field of the space non-holonomity, directed along y
and orthogonal to the magnetic field. For the particle, the chr.inv.-vector
equations of motion are

ẍ =
eH

c B̃
ż , ÿ = 0 , z̈ = −

eH

c B̃
ẋ , (4.223)

so they are different from the equations for the our-world particle (4.216)
by the absence of the terms which contain the angular velocity of the
space rotationΩ. As a result their solutions can be obtained from the so-
lutions for our world (4.217–4.219), if we assume ω̃=ω. Subsequently,
an equation of the trajectory of the charged spin particle located in the
mirror world is

x2 + y2 + z2 =
1
ω2 ẋ2

(0) , r =
−m0c2 ∓ 2nℏΩ

c

eH

√
1 −

v2
(0)

c2

ẋ(0) . (4.224)

The total energy of the particle Etot in this case, where the magnetic
field is orthogonal to the space non-holonomity field, is the same as it
was for the case of parallel orientation of the fields. But the formulae for
components of the total momentum (4.201, 4.205) are different, because
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they include the particle’s velocity which depends on mutual orientation
of the magnetic field and the non-holonomity field. In the particular
case, where the fields are orthogonal to each other, components of the
particle’s velocity (obtained by derivation of the formulae for 4.217–
4.219) in our world are

ẋ = ẋ(0) cos ω̃τ +
ẍ(0)

ω̃
sin ω̃τ , (4.225)

ẏ =
2Ω
ω̃

ẋ(0) sin ω̃τ −
2Ω
ω̃2 ẍ(0) cos ω̃τ + ẏ(0) +

2Ω
ω̃2 ẍ(0) , (4.226)

ż =
ω

ω̃2 ẍ(0) cos ω̃τ −
ω

ω̃
ẋ(0) sin ω̃τ + ż(0) −

ω

ω̃2 ẍ(0) , (4.227)

while in the mirror world we obtain

ẋ = ẋ(0) cosωτ +
ẍ(0)

ω
sinωτ , (4.228)

ẏ = ẏ(0) , (4.229)

ż =
1
ω

ẍ(0) cos ω̃τ − ẋ(0) sinωτ + ż(0) −
1
ω

ẍ(0) . (4.230)

Now we assume that the initial acceleration of the particle and the
integration constants are zeroes, which simplifies the algebra. We also
set the x axis along the initial momentum of the particle. In the frame-
work of this consideration we obtain the components of the total mo-
mentum for the particle located in our world

p1
tot =

m0c2 ± 2nℏΩ

c2

√
1 −

v2
(0)

c2

ẋ(0) cos ω̃τ , (4.231)

p2
tot =

m0c2 ± 2nℏΩ

c2

√
1 −

v2
(0)

c2

2Ω
ω̃

ẋ(0) sin ω̃τ , (4.232)

p3
tot =

m0c2 ± 2nℏΩ

c2

√
1 −

v2
(0)

c2

ω

ω̃
ẋ(0) sin ω̃τ , (4.233)
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and for the analogous particle located in the mirror world

p1
tot =

−m0c2 ∓ 2nℏΩ

c2

√
1 −

v2
(0)

c2

ẋ(0) cos ω̃τ , (4.234)

p2
tot =

−m0c2 ∓ 2nℏΩ

c2

√
1 −

v2
(0)

c2

ẏ(0) = 0 , (4.235)

p3
tot =

−m0c2 ∓ 2nℏΩ

c2

√
1 −

v2
(0)

c2

ẋ(0) sin ω̃τ . (4.236)

As it easy to see, the obtained solutions can be transformed into
corresponding ones from electrodynamics (§3.12) by assuming ℏ→ 0.

4.8 Quantization of the masses of elementary particles

As obtained before, the chr.inv.-scalar equations of motion of a charged
spin particle in an electromagnetic field, located in our world and in the
mirror world, respectively, have the form

d
dτ

(
m +

η

c2

)
= −

e
c2 Ei vi, −

d
dτ

(
m +

η

c2

)
= −

e
c2 Ei vi. (4.237)

Integrating the equations, we obtain the live forces integrals

m +
η

c2 = B , −

(
m +

η

c2

)
= B̃ , (4.238)

where B is an integration constant in our world and B̃ is that in themirror
world. Integration constants depend on the initial conditions, therefore,
it is possible to choose the above constants so as to make them zeroes.

Under what initial conditions are the integration constants equal to
zero? For charged spin particles, located in our world and in the mirror
world (4.238), we obtain, respectively

m +
η

c2 = 0 , −

(
m +

η

c2

)
= 0 , (4.239)

while the right hand side of the chr.inv.-vector equations of motion
(4.150, 4.152), which contain the chr.inv.-Lorentz force, also become
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zeroes. In other words, with zero integration constants in the scalar
chr.inv.-equations, the acting electromagnetic field does not produce a
work to displace charged particles.

Having the relativistic square root cancelled in (4.239), which is al-
ways possible for any particle having non-zero rest-masses, we represent
these formulae in a form that does not depend on the particle’s velocity.
Then, for mass-bearing particles located in our world we have

m0c2 = −nℏmnAmn , (4.240)

and for mirror-world particles of non-zero masses we have

m0c2 = −nℏmnAmn . (4.241)

We will refer to the formulae (4.240, 4.241) as the law of quantiza-
tion of the masses of elementary particles:

The rest-mass of any mass-bearing spin particle is proportional to
the energy of its spin interaction with the space non-holonomity
field, taken with the opposite sign.

Or, in other words:
The rest-energy of any mass-bearing spin particle is equal to the
energy of its spin interaction with the space non-holonomity field,
taken with the opposite sign.

Because in the mirror world the relativistic energy and spin-energy
of any particle are negative in (4.239), the “minus” sign stands on the
right hand side of (4.241) in the mirror world. So, this law is the same
as (4.240), which we have obtained for a spin particle in our world.

Obviously, the above quantum formulae are not applicable to spin-
less particles.

Let us make some quantitative estimates, based on the obtained
quantization law. Considering an elementary particle, we will calcu-
late the numerical value of the quantity* η0 = nℏmnAmn as follows. First,
we formulate the tensor of the space angular velocity Amn with the pseu-
dovector Ω∗i = 1

2 ε
imnAmn

Ω∗iεimn =
1
2
εipqεimn Apq =

1
2

(
δ

p
mδ

q
n − δ

p
nδ

q
m

)
Apq = Amn , (4.242)

*This quantity characterizes the interaction energy of the particle’s spin with the
space non-holonomity field — the “spin energy”, in other words.
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so we have Amn = εimnΩ
∗i. Then, because

1
2
εimnℏ

mn = ℏ∗i (4.243)

is the Planck pseudovector, the quantity η0 = nℏmnεimnΩ
∗i is

η0 = 2nℏ∗iΩ∗i, (4.244)

so it is the double scalar product of the Planck three-dimensional pseu-
dovector and the three-dimensional pseudovector of the angular velocity
with which the space rotates, multiplied by the particle’s spin number.
If ℏ∗i and Ω∗i are co-directed, then the cosine is positive, hence

η0 = 2nℏ∗iΩ∗i = 2nℏΩ cos
(
ℏ⃗ ; Ω⃗

)
> 0 , (4.245)

while if they are oppositely directed, then

η0 = 2nℏ∗iΩ∗i = 2nℏΩ cos
(
ℏ⃗ ; Ω⃗

)
< 0 . (4.246)

Therefore, for any mass-bearing elementary spin particle, the inte-
gration constant from the live forces integral becomes zero, provided
that the pseudovectors ℏ∗i and Ω∗i are oppositely directed.

This means that, if the interaction energy of a mass-bearing elemen-
tary spin particle with the space non-holonomity field becomes equal
to its rest-energy E =m0c2, then the momentum of the particle neither
manifests itself in our world nor in the mirror world.

Assume that the z axis is co-directed with the angular velocity pseu-
dovector of the space rotation Ω∗i. Then out of all three components of
the Ω∗i the only non-zero component is

Ω∗3 =
1
2
ε3mnAmn =

1
2

(
ε312A12 + ε

321A21
)
=

= ε312A12 =
e312
√

h
A12 .

(4.247)

To simplify the algebra we assume that the three-dimensional coor-
dinate metric gik is Euclidean and the space rotates at a constant angular
velocityΩ. Then components of the linear velocity of the space rotation
are v1 =Ωx, v2 =−Ωy, and A12 =−Ω. Hence

Ω∗3 =
e312
√

h
A12 =

A12
√

h
= −

Ω
√

h
. (4.248)
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The square root of the determinant of the chr.inv.-metric tensor, as
defined in (4.180), is

√
h =

√
det ∥hik∥ =

√
1 +
Ω2 (

x2 + y2)
c2 . (4.249)

Because we are dealing with very small coordinate values on the
scales of elementary particles, we can assume

√
h≈ 1 and, according

to (4.248), also Ω∗3 =−Ω= const. Then the law of quantization of the
masses of elementary particles (4.240), considered in our world and in
the mirror world, becomes

m0 =
2nℏΩ

c2 . (4.250)

Hence, for any elementary mass-bearing particle, located in our
world, the following relationship between its rest-mass m0 and the an-
gular velocity Ω with which the space rotates is obvious

Ω =
m0c2

2nℏ
. (4.251)

This means that the rest-mass (true mass) of an observable object,
under ordinary conditions does not depend on the properties of the ob-
server’s reference space. On the contrary, for elementary particles it
becomes strictly dependent on these properties, in particular — it de-
pends on the angular velocity of the space rotation.

Hence, proceeding from the quantization law, we can calculate the
rotation frequencies of the observer’s reference space, which correspond
to the rest-masses of elementary particles.

The results, proceeding from the calculations for elementary parti-
cles of known kinds, are given in Table 4.1.

These results show that on the scale of elementary particles, the ob-
server’s space is always non-holonomic. So forth for instance, in obser-
vation of an electron re = 2.8×10−13 cm the linear velocity of rotation of
the observer’s space is v=Ωr= 2200 km/sec*. Because other elemen-

*This value of v equals the velocity of an electron in the Bohr 1st orbit, although
when calculating the velocity of the space rotation (see Table 4.1) we considered a free
electron, i.e., the one not related to an atomic nucleus and quantization of orbits in an
atom of hydrogen. The reason is that the “genetic” quantum non-holonomity of the
space seems not only to define rest-masses of elementary particles, but to be the reason
of rotation of electrons in atoms.
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Elementary particles Rest-mass Spin Ω, sec−1

Leptons
electron e−, positron e+ 1 1/2 7.782×1020

electron neutrino νe and
electron anti-neutrino ν̃e < 4×10−4 1/2 < 3×1017

µ-meson neutrino νµ and
µ-meson anti-neutrino ν̃µ < 8 1/2 < 6×1021

µ−-meson, µ+-meson 206.766 1/2 1.609×1023

Baryons
nucleons
proton p, anti-proton p̃ 1836.09 1/2 1.429×1024

neutron n, anti-neutron ñ 1838.63 1/2 1.431×1024

hyperons
Λ0-hyperon, anti-Λ0-hyperon 2182.75 1/2 1.699×1024

Σ+-hyperon, anti-Σ+-hyperon 2327.6 1/2 1.811×1024

Σ−-hyperon, anti-Σ−-hyperon 2342.6 1/2 1.823×1024

Σ0-hyperon, anti-Σ0-hyperon 2333.4 1/2 1.816×1024

Ξ−-hyperon, anti-Ξ−-hyperon 2584.7 1/2 2.011×1024

Ξ0-hyperon, anti-Ξ0-hyperon 2572 1/2 2.00×1024

Ω−-hyperon, anti-Ω−-hyperon 3278 3/2 8.50×1023

Table 4.1: Frequencies of rotation of the observer’s reference space, which
correspond to elementary mass-bearing particles.

tary particles are even smaller, this linear velocity seems to be the upper
limit*.

So, what did we get? Generally, the observer compares the results
of his measurements with the standards located in his reference body.
But the body and himself are not related to the observed object and do
not affect it during observations. Hence, in the macro-world there is
no dependence of the true properties of the observed bodies (rest-mass,
rest-energy, etc.) on the properties of the reference body and reference
space — their properties are not related to each other.

In other words, although observed images are distorted by the in-
fluence from the physical properties of the observer’s reference frame,

*It is interesting that the angular velocities of the space rotation in baryons (see
Table 4.1) up within the order of the magnitude match the frequency ∼1023 sec−1 which
characterizes elementary particles as oscillators [27].
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the observer himself and his reference body in the macro-world do not
affect the measured objects anyhow.

But the world of elementary particles presents a big difference. In
this section, we have seen that once we reach the scale of elementary
particles, where the spin, a quantum property of the particles, signifi-
cantly affects their motion, while the physical properties of the reference
body (reference space) and those of the particles become tightly linked
to each other, so the reference body affects the observed particles. In
other words, the observer does not just compare the properties of the ob-
served particles to those of his references any longer, but instead directly
affects the observed particles. The observer shapes their properties in a
tight quantum relationship with the properties of his references.

We can explain the above in other words as follows. When look-
ing at the world of elementary particles, there is no border between the
observer (his reference body and reference space) and the observed par-
ticles. Hence, we have an opportunity to define a relationship between
the space non-holonomity field, linked to the observer, and the rest-
masses of the observed particles (objects of his observations), which in
the macro-world are not related to the reference body. So, the obtained
law of quantization of the masses is only true for elementary particles.

Please note that we have obtained the above result using only the ge-
ometric methods of the General Theory of Relativity, and not the prob-
abilistic methods used in Quantum Mechanics. In the future, this result
can possibly become a “bridge” between these two theories.

4.9 The Compton wavelength

So, we have obtained that, in observations of an mass-bearing elemen-
tary particle, the rotation frequency of the observer’s space is Ω= m0 c2

2nℏ
(4.251). Let us find the wavelength corresponding to that frequency.
Assuming that this wave, i.e., the wave of the space non-holonomity,
propagates with the light velocity λΩ= c, we have

λ =
c
Ω
= 2n

ℏ

m0c
. (4.252)

In other words, when we observe a mass-bearing particle with the
spin n= 1

2 , the length of the space non-holonomity wave is equal to
Compton’s wavelength of this particle λ–c =

ℏ
m0 c .
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What does this mean? The Compton effect, named after Compton
who discovered it in 1922, is the “diffraction” of a photon on a free
electron, which results in the decrease of its own frequency

∆λ = λ2 − λ1 =
h

mec
(1 − cosϑ) = λe

c (1 − cosϑ) , (4.253)

where λ1 and λ2 are the photon’s wavelengths before and after the en-
counter, and ϑ is the “diffraction” angle. The multiplier λe

c, specific to
the electron, at first was called the Compton wavelength of the electron.
Later it was discovered that other elementary particles during the “dif-
fraction” of photons reveal as well the specific wavelengths λc =

h
m0 c , or

λ–c =
ℏ

m0 c . That is, elementary particles of every kind (electrons, pro-
tons, neutrons etc.) have their own Compton wavelengths. The physical
sense behind the quantity will be explained later. As obtained, within an
area smaller than λ–c, any elementary particle is no longer a point object
and its interaction with other particles (and with the observer) is de-
scribed by Quantum Mechanics. Hence, the λ–c-sized area is sometimes
interpreted as the “size” of the elementary particle.

As for the results that we have obtained in the previous section,
§4.8, they can be interpreted as follows. In the observation of a mass-
bearing elementary particle, the observer’s space rotates so fast that the
angular velocity of its rotation makes a specific wavelength equal to
the Compton wavelength specific of the observed particle (the “size”,
inside which the particle is no longer a point object). In other words,
it is the angular velocity of the space rotation (the wavelength in the
space non-holonomity field), which determines the Compton observ-
able wavelength (specific “size”) of the elementary particle.

4.10 Massless spin particles

Because massless particles do not have an electric charge, the chr.inv.-
scalar equation of their motion in our world and in the mirror world are
as follows, respectively,

d
dτ

(
m +

η

c2

)
= 0 , −

d
dτ

(
m +

η

c2

)
= 0 . (4.254)

Their integration always gives a constant equal to zero, hence we
always obtain the formulae (4.239). Therefore, for massless particles in
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our world and in the mirror world, we have

mc2 = − η . (4.255)

On the other hand, it is obvious that the term “rest-mass” is not ap-
plicable to massless particles — they are always on the move. Their rel-
ativistic masses are defined from the energy equivalent E =mc2, mea-
sured in electron-volts. Consequently, massless particles have no rest
spin energy η0 = nℏmnAmn.

Nevertheless, the Planck tensor found in the spin energy η enables
the quantization of the relativistic masses of massless particles and of
the angular velocities of the space rotation. Hence, to obtain the angu-
lar velocities of the space rotation for massless particles, we need an
expanded formula of their relativistic spin energy η, which would not
contain the relativistic square root.

Quantum Mechanics speaks of the “helicity” of massless particles
— the projection of the spin of a massless particle onto the direction
of its momentum. The reason for introducing this term is the fact that
massless particles cannot be at rest with respect to any ordinary ob-
server, since they always travel with the velocity of light with respect
to him. Therefore, we can always assume that the spin of any mass-
less particle is tangential to its light-like trajectory (either co-directed
or oppositely directed to it).

Keeping in mind that the spin quantum number n of any massless
particle is 1, we assume that for a massless particle

η = ℏmnÃmn , (4.256)

where Ãmn is the angular velocity chr.inv.-tensor of rotation of its light-
like space.

Hence, to obtain the relativistic spin energy of a massless particle
(4.256) we need to find the components of the angular velocity chr.inv.-
tensor of the light-like space rotation. We are going to create the tensor
similar to the space rotation four-dimensional tensor Aαβ (4.11), which
describes the rotation of the reference space, travelling with respect to
the observer with an arbitrary velocity (this means a non-accompanying
reference frame). As a result we obtain

Ãαβ =
1
2

ch̃αµ h̃βµ ãµν , ãµν =
∂b̃ν
∂xµ
−
∂b̃µ
∂xν

, (4.257)
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where b̃α is the four-dimensional velocity of the light-like reference
frame with respect to the observer, and

h̃αµ = − gαµ + b̃αb̃µ (4.258)

is the four-dimensional generalization of the chr.inv.-metric tensor for
the light-like reference space.

The home space of massless particles is a space-time region cor-
responding to the four-dimensional light-like (isotropic) cone given by
the equation gαβ dxαdxβ = 0. This cone exists at any point of the four-
dimensional pseudo-Riemannian space with the signature (+−−−).

The four-dimensional velocity vector of the light-like reference
frame of massless particles is

b̃α =
dxα

dσ
=

dxα

cdτ
, b̃α b̃α = 0 , (4.259)

so its chr.inv.-projections in the reference frame of an ordinary “sublu-
minal” observer are

b̃0
√
g00
= ±1, b̃i =

1
c

dxi

dτ
=

1
c

ci, (4.260)

while the other components of the isotropic vector (4.259) are

b̃0 =
1
√
g00

(
1
c2 vi ci ± 1

)
, b̃i = −

1
c

(ci ± vi) . (4.261)

The isotropic condition of amassless particle’s four-dimensional ve-
locity, bαbα = 0, in the chr.inv.-form has the form

hik cick = c2 = const, (4.262)

where hik is the chr.inv.-metric tensor of an ordinary “subluminal” ob-
server’s reference space. The components of the four-dimensional light-
like metric tensor h̃αβ (4.258), the three-dimensional components of
which make up the light-like space chr.inv.-metric tensor h̃ik, are

h̃00 =
vk v

k ± 2vk ck + 1
c2 vk vn ckcn

c2
(
1 − w

c2

)2

h̃0i =
vi ± ci + 1

c2 vk ckci

c
(
1 − w

c2

) , h̃ik = hik +
1
c2 cick


, (4.263)
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where ci is the chr.inv.-vector of the light velocity, “plus” stands for the
light-like space with the direct flow of time (our world), and “minus”
stands for the reverse-time (mirror) world.

Deduce the components of the curl of the four-dimensional velocity
vector of a massless particle, which is found in the formula (4.257).
After some algebra we obtain

ã00 = 0 , ã0i =
1

2c2

(
1 −

w
c2

) (
±Fi −

∗∂ci

∂t

)

ãik =
1

2c

(
∂ci

∂xk −
∂ck

∂xi

)
±

1
2c

(
∂vi

∂xk −
∂vk

∂xi

)

. (4.264)

Generally, to define the spin energy of a massless particle (4.256),
we need the covariant spatial components of the space rotation tensor,
namely — the lower-index components Ãik. To deduce them, we take
the formula for the contravariant components Ãik and lower their indices
similar to any chr.inv.-quantity, using the chr.inv.-metric tensor of the
observer’s reference space.

Substituting the obtained components h̃αβ and ãαβ into

Ãik = c
(
h̃i0h̃k0 ã00 + h̃i0h̃km ã0m + h̃imh̃k0 ãm0 + h̃imh̃kn ãmn

)
(4.265)

we arrive at the general formula

Ãik = himhkn
[

1
2

(
∂cm

∂xn −
∂cn

∂xm

)
+

1
2c2 (Fn cm − Fm cn)

]
±

± himhkn
[

1
2

(
∂vm

∂xn −
∂vn

∂xm

)
+

1
2c2 (Fn vm − Fm vn)

]
+

+

(
1
c2 vn cn ± 1

) (
ckhim − cihkm

) ∗∂cm

∂t
−

−
(
vkhim − vihkm

) ∗∂cm

∂t
+

1
2c2 cm

(
cihkn − ckhin

)
×

×

[(
∂cm

∂xn −
∂cn

∂xm

)
±

(
∂vm

∂xn −
∂vn

∂xm

)]
.

(4.266)

In this formula, the quantity 1
2

(
∂vm
∂xn −

∂vn
∂xm

)
+ 1

2c2 (Fn vm − Fm vn), by
definition, is the chr.inv.-tensor of the angular velocity of the observer’s
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space rotation Amn, which is the non-holonomity tensor of the non-
isotropic space * at the same time.

The quantity 1
2

(
∂cm
∂xn −

∂cn
∂xm

)
+ 1

2c2 (Fn cm − Fm cn) by its structure is
similar to the tensor Amn, but instead of the linear velocity vi with which
the non-isotropic space rotates, it has the components of the covariant
chr.inv.-vector of the light velocity cm = hmncn. The vector cm is a phys-
ically observable quantity, because it is obtained by lowering indices in
the chr.inv.-vector cn using the chr.inv.-metric tensor hmn. We denote
that tensor as Ămn, where the inward curved cap (croissant) means that
the quantity belongs to the isotropic space† with the direct flow of time
— the “upper” part of the light cone, which in a curved space-time gets
a “round” shape. Then we obtain

Ămn =
1
2

(
∂cm

∂xn −
∂cn

∂xm

)
+

1
2c2 (Fn cm − Fm cn) . (4.267)

In the particular case, where the gravitational potential is negligible
(i.e., where w≈ 0) the tensor becomes

Ămn =
1
2

(
∂cm

∂xn −
∂cn

∂xm

)
, (4.268)

so it is the chr.inv.-curl of the light velocity. Therefore, we will refer to
Ămn as the isotropic space curl.

The following example gives a geometric illustration of the isotropic
space curl. As is known, the necessary and sufficient condition of the
equality Amn = 0 (the space holonomity condition) is the equality to zero
of all components vi =−c g0i√

g00
, i.e., the absence of the space rotation.

The tensor Ămn is defined only in the isotropic space, inhabited by mass-
less particles. Outside the isotropic space it is nonsense, because the

*We refer to a region of the four-dimensional space-time, where particles having
non-zero rest-masses exist, as the non-isotropic space. This is the region of the world-
trajectories, along which ds, 0. Subsequently, if the interval ds is real, then the par-
ticles travel with subluminal velocities (ordinary particles); if it is imaginary, then the
particles travel with superluminal velocities (tachyons). So, the space of both sublumi-
nal particles and superluminal tachyons is non-isotropic by definition.

†We refer to a region of the four-dimensional space-time, inhabited by massless
(light-like) particles, as the isotropic space. This region can also be called the light
membrane. From a geometric point of view, the light membrane is the four-dimensional
surface of the isotropic cone, i.e., the set of its four-dimensional elements that are the
world-lines of the propagation of light.
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“interior” of the light cone is inhabited by subluminal particles, while
tachyons inhabit its “exterior”.

Our subject here is massless particles (photons). From (4.268) it is
seen that the non-holonomity of the isotropic space is linked to the curl
nature of the linear velocity of massless particles cm. Hence, any photon
is a spatial curl of the isotropic space, and the photon’s spin results from
the interaction between its internal curl field with the external tensor
field Ămn.

To make the explanations even more illustrative, we depict the home
regions of different kinds of particles. The light cone exists in every
point of space (space-time). The light cone equation gαβ dxαdxβ = 0 in
the chr.inv.-notation takes the form

c2τ2 − hik xixk = 0 , hik xixk = σ2. (4.269)

On Minkowski’s diagram, the light cone “interior” is filled with the
non-isotropic space, where subluminal particles exist. Outside it, there
is also a region of the non-isotropic space, inhabited by superluminal
tachyons. The specific space of massless particles is a space-time mem-
brane between these two non-isotropic regions. The picture is mirror-
symmetric: in the upper part of the cone, there is the subluminal space
with the direct flow of time (our world), separated in the observer’s spa-
tial section from the lower part — the subluminal space with the reverse
flow of time (the mirror world). In other words, the upper part of the
cone is inhabited by real particles (they have positive masses and ener-
gies), while the lower part is inhabited by their mirror “counterparts”
(masses and energies of which are negative from our point of view).

Therefore, the rotation of the subluminal non-isotropic space that is
“inside” the light cone involves the surrounding light membrane (iso-
tropic space). As a result, the light cone begins a rotation described
by the tensor Ămn (isotropic space curl). Of course, we can assume a
reverse order of events, where the light cone rotation involves the “con-
tent” of its internal part. But, since particles “inside” the cone have
non-zero rest-masses, they are “heavier” than massless particles on the
light membrane. Hence, the internal “content” of the light cone is also
an inertial media.

Nowwe come back to the formula for the relativistic spin energy of a
massless particle η= ℏmnÃmn (4.256). Lowering indices in the isotropic
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space non-holonomity tensor Ãik (4.266), we obtain

Ãik = ±Aik + Ăik +
1

2c2 cm
{

ci

[
∂ (cm ± vm)

∂xk −
∂ (ck ± vk)
∂xm

]
−

− ck

[
∂ (cm ± vm)

∂xi −
∂ (ci ± vi)
∂xm

]}
+

(
vi

∗∂ck

∂t
− vk

∗∂ci

∂t

)
+

+

(
1
c2 vn v

n ± 1
) (

ck

∗∂ci

∂t
− ci

∗∂ck

∂t

)
.

(4.270)

Having Ãik contracted with the Planck tensor ℏik, we obtain

η = η0 + nℏikĂik +

[(
1
c2 vn v

n ± 1
) (

ck

∗∂ci

∂t
− ci

∗∂ck

∂t

)
+

+

(
vi

∗∂ck

∂t
− vk

∗∂ci

∂t

)]
nℏik +

1
2c2 nℏikcm

{
ci

[
∂ (cm ± vm)

∂xk −

−
∂ (ck ± vk)
∂xm

]
− ck

[
∂ (cm ± vm)

∂xi −
∂ (ci ± vi)
∂xm

]}
,

(4.271)

where “plus” stands for our world and “minus” — for the mirror world.
The quantity η0 = η

√
1− v2/c2 = 0 for massless particles is zero, be-

cause they travel with the light velocity. Hence, keeping in mind that
η0 = nℏmnAmn, we obtain an additional condition imposed on the non-
holonomity tensor of the isotropic space Ãik: at any point of the trajec-
tory of any massless particle, the condition

ℏmnAmn = 2ℏ (A12 + A23 + A31) = 0 (4.272)

must be true. Or, in the other notation, Ω1+Ω2+Ω3= 0.
Therefore, in a region, where the observer “sees” a massless parti-

cle, the angular velocity with which the observer’s non-isotropic space
rotates is equal to zero.

The other terms that make up the relativistic spin energy of the
massless particle (4.271) are due to possible non-stationary state of the
light velocity

∗∂ci
∂t as well as other dependencies that include the squared

velocity of light.
So forth, we will analyse the obtained formula (4.271) under the

following two simplification assumptions:
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a) The gravitational potential is negligible (w≈ 0);
b) The three-dimensional chr.inv.-velocity of light is stationary.
In this case, the quantities Aik and Ăik, which are the observer’s space

non-holonomity tensor and the isotropic space curl, become

Aik =
1
2

(
∂vk

∂xi −
∂vi

∂xk

)
, Ăik =

1
2

(
∂ck

∂xi −
∂ci

∂xk

)
, (4.273)

and, therefore, the formula (4.271) for the relativistic spin energy of a
massless particle takes the following form

η = n
(
ℏikĂik +

1
c2 ci cmℏikĂkm

)
. (4.274)

Therefore, the quantity η that describes the action of the spin of a
massless particle, is determined (in addition to the particle’s spin) only
by the isotropic spatial curl and does not depend in any way on the non-
holonomity (rotation) of the observer’s space.

To make further deductions simpler, we transform η (4.274) as fol-
lows. Similar to the pseudovector Ω∗i = 1

2 ε
ikmAkm of the rotation angu-

lar velocity of the observer’s space, we introduce a pseudovector

Ω̆∗i =
1
2
εikmĂkm , (4.275)

which can be interpreted as the pseudovector of the rotation angular
velocity of the isotropic space.

Subsequently, Ăkm = εkmn Ω̆
∗n. Then the formula for η (4.274) can

be represented as follows

η = n
(
ℏ∗i Ω̆

∗i +
1
c2 ci cmℏik εkmn Ω̆

∗n
)
. (4.276)

This means that the internal mechanical curl (spin) of a massless
particle only reveals itself in the interaction with the isotropic space
curl. The result of the interaction is the scalar product ℏ∗i Ω̆∗i, to which
the massless particle’s spin is attributed. Hence, massless particles are
elementary light-like curls of the isotropic space itself.

Let us estimate the rotations of the isotropic space for massless par-
ticles having different energies. At present, we know for sure that among
massless particles are photons— the quanta of an electromagnetic field.
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Kind of photons Frequency Ω̆, sec−1

Radiowaves 103 – 1011

Infra-red rays 1011 – 1.2×1015

Visible light 1.2×1015 – 2.4×1015

Ultraviolet rays 2.4×1015 – 1017

X-rays 1017 – 1019

Gamma rays 1019 – 1023 and above

Table 4.2: The rotation frequencies of the isotropic space,
which correspond to photons.

The spin quantum number of any photon is 1, and the energy E = ℏω
of a photon is positive in our world. Hence, taking into account the live
forces integral for massless particles (4.255), for photons we have

ℏω = ℏ∗i Ω̆
∗i +

1
c2 ci cmℏik εkmn Ω̆

∗n. (4.277)

Assume that the rotation pseudovector Ω∗i of the isotropic space
is directed along the z axis, while the light velocity is directed along y.
Then, the relationship (4.277) obtained for photons becomes ℏω= 2ℏΩ̆,
or, after having the Planck constant cancelled,

Ω̆ =
ω

2
=

2πν
2
= πν , (4.278)

so the isotropic space rotation frequency Ω̆ for a massless particle is
constant and coincides the particle’s own frequency ν. Thanks to this
formula, resulting from the quantization law of the relativistic masses of
massless particles, we can estimate the isotropic space angular velocities
that correspond to photons of different energy levels. Table 4.2 gives the
results of our calculation.

From Table 4.2, we see that the angular velocity of rotation of the
isotropic space in photons of the gamma rays range is of the order of the
ordinary space rotation frequencies in electrons and other elementary
particles (see Table 4.1).

4.11 Conclusions

Here is what we have obtained in this Chapter. Firstly, we have obtained
that the spin of any particle is characterized by the four-dimensional an-
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tisymmetric tensor of the 2nd rank called the Planck tensor. Its diagonal
and space-time components are zeroes, while the non-diagonal spatial
components are ±ℏ depending on the spatial direction of the spin and
our choice of a right or left-handed reference frame.

The spin (internal vortical field) of a particle interacts with an ex-
ternal field of the space non-holonomity. As a result, the particle gains
an additional momentum, which deviates the particle’s motion from a
geodesic line. This interaction energy is found from the chr.inv.-scalar
equation of motion of the particle (live forces theorem), so the equation
must be taken into account when solving the chr.inv.-vector equations
of motion.

A particular solution to the chr.inv.-scalar equation of motion is the
law of quantization of the masses of elementary spin particles, which
unambiguously links:
— The rest-masses of mass-bearing elementary particles with the an-

gular velocity of the observer’s space rotation;
— The relativistic masses of photons with the angular velocity of ro-

tation of their internal light-like space.
Because the region, where light-like particles exist, is home to four-

dimensional isotropic trajectories, such terms as the “isotropic space”
and the “light-like space” can be used as synonyms.

Please note that we have obtained the results using only the geomet-
ric methods of the General Theory of Relativity, not the probabilistic
methods of Quantum Mechanics. In the future, this result can possibly
become a “bridge” between these two theories.



Chapter 5 The Physical Vacuum

5.1 Introduction

According to the recent data, the average density of matter in the Uni-
verse is about 5–10×10−30 gram/cm3. The average density of substance
in galaxies is greater, ∼ 10−24 gram/cm3 in our Galaxy. Astronomical
observations show that most part of the cosmic mass is accumulated in
compact objects, such as stars, the total volume of which is incompa-
rable to the entire Universe (this is called the “island” distribution of
substance). Therefore, our Universe is predominantly empty.

For a long time, the words “emptiness” and “vacuum” were consid-
ered synonymous. But since the 1920s, the geometric methods of the
General Theory of Relativity have showed that these are two different
states of matter.

The distribution of matter in the Universe is characterized by the
energy-momentum tensor, which is linked to the geometric structure of
the space-time (expressed with the fundamental metric tensor) by the
field equations. In Einstein’s theory of gravitation, which is an applica-
tion of Riemannian geometry, these are Einstein’s equations*

Rαβ −
1
2
gαβR = −κTαβ + λgαβ . (5.1)

These equations, in addition to the energy-momentum tensor and
the fundamental metric tensor, include:
1) Rασ =R ···βαβσ· is Ricci’s tensor

†, which is the contraction result of
the Riemann-Christoffel curvature tensor Rαβγδ by two indices;

2) R= gαβRαβ is the scalar curvature;
*The left hand side of the field equations (5.1) is often referred to as the Einstein

tensor Gαβ =Rαβ −
1
2 gαβ R, in the notation Gαβ =−κTαβ + λgαβ.

†Gregorio Ricci-Curbastro (1853–1925), an Italian mathematician who was the
teacher of Tullio Levi-Civita in Padua in the 1890s.
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3) κ= 8πG
c2 = 1.862 × 10−27 cm/gram is Einstein’s gravitational con-

stant, while G = 6.672 × 10−8 cm3/gram sec2 is Gauss’ gravita-
tional constant. Note that Landau and Lifshitz [10] use κ= 8πG

c4

instead of κ= 8πG
c2 as used by Zelmanov. To understand the reason,

why κ= 8πG
c4 is not in our study, consider the chr.inv.-projections

of the energy-momentum tensor Tαβ: the chr.inv.-scalar of the ob-
servable mass density T00

g00
= ρ, the chr.inv.-vector of the observable

momentum density cT i
0√
g00
= J i and the chr.inv.-tensor of the observ-

able momentum flux density c2T ik =U ik [9]. Therefore, the scalar
chr.inv.-projection of the Einstein equations is G00

g00
=−

κT00
g00
+ λ. As

is known, the dimension of the Ricci tensor is [cm−2], hence the
Einstein tensor Gαβ and the quantity κT00

g00
=

8πGρ
c2 have the same

dimension. Consequently, it is obvious that the dimension of the
energy-momentum tensor Tαβ is that of mass density [gram/cm3].
This means that, when we use 8πG

c4 on the right hand side of the
Einstein equations, we actually use not the energy-momentum ten-
sor itself, but the quantity c2Tαβ, the chr.inv.-scalar projection and
chr.inv.-vector projection of which are the observable energy den-
sity c2T00

g00
= ρc2 and the observable energy flux c3T i

0√
g00
= c2J i, respec-

tively;
4) λ [cm−2] is the so-called cosmological term, which describes non-

Newtonian forces of attraction or repulsion, depending on the sign
before λ (λ> 0 stands for repulsion, λ< 0 stands for attraction).
The term is referred to as “cosmological”, because it is assumed
that the forces described by λ grow up proportionallywith distance
and, therefore, reveal themselves in full scale at “cosmological”
distances comparable to the size of the entire Universe. Because
the non-Newtonian gravitational field (λ-field) has never been ob-
served, the cosmological term in our Universe is |λ |< 10−56 cm−2

(as of today’s measurement accuracy).
Looking at the Einstein equations (5.1), we see that the energy-

momentum tensor describing the distribution of matter is linked to both
the fundamental metric tensor and the Ricci tensor, and, therefore, to
the Riemann-Christoffel curvature tensor. The equality of the Riemann-
Christoffel tensor to zero in a space is the necessary and sufficient condi-
tion for the space to be flat. The Riemann-Christoffel tensor is non-zero
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in a curved space only. It reveals itself as an increment of an arbitrary
vector Vα in its parallel transport along a closed contour

∆V µ = −
1
2

R ...µ
αβγ ·V

α∆σβγ, (5.2)

where ∆σβγ is the area within this contour. As a result, the initial vector
Vα and the vector Vα +∆Vα have different directions. From a quantita-
tive point of view, the difference is described by a quantity K called the
four-dimensional curvature of the pseudo-Riemannian space along the
given parallel transport (see [9] for details)

K = lim
∆σ→0

tanφ
∆σ

, (5.3)

where tanφ is the tangent of the angle between the vector Vα and the
projection of the vectorVα +∆Vα onto the area constructed by the trans-
port contour. For instance, we consider a surface and a “geodesic” tri-
angle on it, produced by crossing three geodesic lines. We transport a
vector, defined in any arbitrary point of that triangle, parallel to itself
along the sides of the triangle. The summary rotation angle φ after the
vector returns to the initial point is φ=Σ− π (where Σ is the sum of the
internal angles of the triangle). Assume the surface curvature K is equal
at all of its points. Then

K = lim
∆σ→0

tanφ
∆σ

=
φ

σ
= const, (5.4)

whereσ is the triangle’s area, and φ=Kσ is called the spherical excess.
If φ= 0, then the curvature is K = 0, so the surface is flat. In this case the
sum of all internal angles of the geodesic triangle is π (a flat space). If
Σ>π (the transported vector is rotated towards the circuit), then there is
a positive spherical excess, so the curvature K > 0. An example of such
a space is the surface of a sphere: a triangle on the surface is convex.
If Σ<π (the transported vector is rotated counter the circuit), then the
spherical excess is negative and the curvature is K < 0.

Einstein had postulated that gravitation is caused by the space-time
curvature. He understood the space (space-time) curvature as the in-
equality to zero of the Riemann-Christoffel tensorRαβγδ , 0 (as assumed
in Riemannian geometry). This concept completely includes Newto-
nian gravitational concept, so Einstein’s four-dimensional gravitation-
curvature for an ordinary physical observer can reveal itself as follows:
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a) Newtonian gravitation;
b) Rotation of the three-dimensional space (three-dimensional spa-

tial section);
c) Deformation of the three-dimensional space;
d) The three-dimensional curvature, so that there are non-zero first

derivatives of the Christoffel symbols.
According to Mach’s Principle, on the basis of which Einstein’s the-

ory of gravitation rests, “. . . the property of inertia is completely deter-
mined by the interaction of matter” [28], so the space-time curvature is
produced by the matter that fills the space-time. Proceeding from the
above and from the Einstein equations (5.1), we can give the mathemat-
ical definitions to the emptiness and the physical vacuum:
The emptiness is the state of a space-time, for which the Ricci tensor is

Rαβ = 0, which means the absence of any substance (Tαβ = 0) and
the non-Newtonian gravitational fields (λ= 0). The field equations
(5.1) in the emptiness* are as simple as Rαβ = 0;

The physical vacuum (or, simply, the vacuum) is the state of a space-
time, where there is no substance Tαβ = 0, but λ, 0 and, hence,
Rαβ , 0. The emptiness is a particular case of the vacuum in the
absence of the λ-field. The field equations in the physical vacuum
have the form

Rαβ −
1
2
gαβR = λgαβ . (5.5)

The Einstein equations are applicable to the most varied cases of
distributed matter, except for the cases, where the density is close to
that of the substance inside atomic nuclei. It is hard to give an accurate
mathematical description to all of the cases of distributed matter, be-
cause such a problem is so general and it cannot be approached per se.
On the other hand, the average density of substance in our Universe is so
small, 5–10× 10−30 gram/cm3, that we can assume it near the vacuum.
The Einstein equations say that the energy-momentum tensor is func-
tionally dependent on the metric tensor and the Ricci tensor (curvature
tensor, contracted by two indices). At such small numerical values of

*If we put down the Einstein equations for an empty space Rαβ −
1
2 gαβ R= 0 in

the mixed form R β
α −

1
2 g

β
α R= 0, then after contraction (Rα

α −
1
2 g

α
αR= 0) we obtain

R− 1
2 4R= 0. So the scalar curvature in the emptiness is R= 0. Hence, the field equa-

tions (Einstein equations) in an empty space are Rαβ = 0.
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density, we can assume the energy-momentum tensor to be proportional
to the metric tensor Tαβ ∼ gαβ and, hence, proportional to the Ricci ten-
sor. Therefore, besides the field equations in the vacuum (5.5), we can
consider the field equations

Rαβ = kgαβ , k = const, (5.6)

where the energy-momentum tensor is different from the metric tensor
only by a constant. This case, including the absence of masses (i.e.,
in the vacuum) as well as some other conditions close to it, related to
our Universe, were studied in detail by Petrov [29, 30]. He called the
spaces, for which the energy-momentum tensor is proportional to the
metric tensor (and, hence, to the Ricci tensor) Einstein spaces.

A space with Rαβ = kgαβ (Einstein space) is homogeneous at every
of its points, has no mass fluxes, while the density of the matter that
fills the space (including any substances) is everywhere constant. In
this case,

R = gαβRαβ = kgαβgαβ = 4k , (5.7)

while the Einstein tensor takes the form

Gαβ = Rαβ −
1
2
gαβR = −kgαβ , (5.8)

where kgαβ is the analogue of the energy-momentum tensor of the mat-
ter that fills the Einstein space.

To find out what kinds of matter fill Einstein spaces, Petrov studied
the algebraic structure of the energy-momentum tensor. This is what
he did: the tensor Tαβ is compared to the metric tensor in an arbitrary
point; for this point the difference Tαβ − ξgαβ is calculated, where ξ are
the so-called eigenvalues of the matrix Tαβ; the difference is equated
to zero to find the values of ξ, which make the equality true. This
problem is also called the matrix eigenvalues problem*. The matrix
eigenvalues set allows us to define the algebraic kind of this matrix.
For a sign-constant metric, this problem had been solved already, but
Petrov proposed a method to bring any matrix to a canonical form in the
space of a sign-alternating metric, which allowed using it in the pseudo-
Riemannian space, in particular, to study the algebraic structure of the

*Generally, the problem should be solved at a given point, but the obtained result
is applicable to any point of the space.



5.1 Introduction 225

energy-momentum tensor. This can be illustrated as follows. The eigen-
values of the matrix elements Tαβ are similar to the basis vectors of the
metric tensor matrix, so the eigenvalues define a kind of “skeleton” of
the tensor Tαβ (the skeleton of matter); but even if we know what the
skeleton is, we cannot know exactly what the muscles are. Nevertheless,
the structure of such a skeleton (the length and mutual direction of the
basis vectors) can be depicted based on the properties of matter, such as
homogeneity or isotropy, and their relation to the space curvature.

As a result, Petrov had shown that all Einstein spaces have three ba-
sic algebraic kinds of the energy-momentum tensor and a few subtypes.
According to his algebraic classification of the energy-momentum ten-
sor and the curvature tensor, all Einstein spaces are sub-divided into
three basic kinds, which is called Petrov’s classification*.

The Einstein spaces of the kind I are best understood, because the
field of gravitation in such a space is produced by a massive island (“is-
land” distribution of substance), while the space itself can be empty or
filled with the vacuum. The curvature of such a space is created by the
island mass and by the vacuum. At the infinite distance from the island
mass, in the absence of the vacuum, this space remains flat. Devoid of
any island masses but filled with the vacuum, the space of the kind I has
a curvature (e.g. de Sitter spaces). An empty space of the kind I, i.e.,
the one devoid of any island masses or the vacuum, is flat.

The Einstein spaces of the kind II and of the kind III are more ex-
otic, because they are curved by themselves. Their curvature is neither
related to the island distribution of masses, nor the presence of the vac-
uum. The kind II and the kind III are generally attributed to radiation
fields, for instance, to gravitational waves.

A few years later, Gliner [32–34] in his study of the algebraic struc-
ture of the energy-momentum tensor of the vacuum-like states of mat-
ter (Tαβ ∼ gαβ, Rαβ = kgαβ) outlined its special kind, for which all four
eigenvalues are the same, so the three spatial vectors and the time vec-
tor of the “ortho-reference” of the tensor Tαβ are equal to each other†.

*A chr.inv.-interpretation of the algebraic classification of Einstein spaces (or, in
other words, of Petrov’s gravitational fields) was introduced in 1970 by a co-author of
this book, Borissova, née Grigoreva [31].

†If we introduce a local flat space, tangential to the given Riemannian space at a
given point, then the eigenvalues ξ of the tensor Tαβ are the quantities in an ortho-
reference, corresponding to this tensor, in contrast to the eigenvalues of the metric ten-
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The matter that corresponds to the energy-momentum tensor of such a
structure has a constant density µ= const, equal to the coinciding eigen-
values of the energy-momentum tensor µ= ξ (the dimension of µ is the
same as that of Tαβ [gram/cm3]). The energy-momentum tensor in this
case is*

Tαβ = µgαβ , (5.9)

and the field equations with λ= 0 have the form

Rαβ −
1
2
gαβR = −κµgαβ , (5.10)

while with the cosmological term λ, 0, they are

Rαβ −
1
2
gαβR = −κµgαβ + λgαβ . (5.11)

Gliner called this state of matter the µ-vacuum [32–34], because it
is related to a vacuum-like state of substance (Tαβ ∼ gαβ, Rαβ = kgαβ),
which is not exactly the vacuum (in the vacuum, Tαβ = 0). At the same
time, Gliner showed that spaces filled with the µ-vacuum are Einstein
spaces, so three basic kinds of the µ-vacuum exist, which correspond
to the three basic algebraic kinds of the energy-momentum tensor (and
of the curvature tensor). In other words, an Einstein space of each kind
(I, II, and III), provided that matter is present in it, is filled with the
µ-vacuum of the corresponding kind (I, II, or III).

Actually, becausewhen taken in the “ortho-reference” of the energy-
momentum tensor of the µ-vacuum, all the three spatial vectors and the
time vector are the same (all the four directions have the same signifi-
cance), the µ-vacuum is the highest degree of isotropic matter. Besides,
since Einstein spaces are homogeneous, i.e., the matter density is there
everywhere equal [29,30], the µ-vacuum that fills such a space does not
only have a constant density, but is homogeneous as well.

As we have seen, Einstein spaces can be filled with the µ-vacuum,
with the physical vacuum (Tαβ = 0) or with the emptiness. Besides, there

sor gαβ in an ortho-reference, defined in this tangential space.
*Gliner used the signature (−+++). Therefore, he had Tαβ =−µgαβ. So, since the

observable density of matter is positive, ρ= T00
g00
=−µ> 0, he had negative numerical

values of the µ. In our book, we use the signature (+−−−), because in this case the three-
dimensional observable interval is positive. Therefore, we have µ> 0 and Tαβ = µgαβ.
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can exist isolated “islands” of mass, which also produce the space curva-
ture. Therefore, the Einstein spaces of the kind I are the best illustration
of our knowledge of the Universe as a whole. And, thus, to study the
geometry of the Universe and the physical states of the matter that fills
it, it is the same as studying the Einstein spaces of the kind I.

Petrov had proposed and proved a theorem (see §13 in [29]), which
we call Petrov’s theorem:
Petrov’s theorem

Any space of a constant curvature is an Einstein space. . . < so
that> . . . the Einstein spaces of the kind II and of the kind III can-
not be constant curvature spaces.

Hence, a constant curvature space is an Einstein space of the kind I,
according to the Petrov classification. If K = 0, then an Einstein space of
the kind I is flat. This makes our study of the vacuum and vacuum-like
states of matter in the Universe even simpler, because by today we have
well studied constant curvature spaces. For example, these are de Sitter
spaces, or, in other words, the spaces with the de Sitter metric.

Any de Sitter space has Tαβ = 0 and λ, 0, so it is filled with the
ordinary vacuum and does not contain “islands” of substance. On the
other hand, we know that the average density of matter in the Universe
is rather low. Looking at it in general, we can neglect the presence of
occasional “islands” and inhomogeneities of substance, which locally
distort it. Hence, our space can be generally assumed as a de Sitter
space with the constant curvature radius equal to the observable radius
of the Universe.

Theoretically a de Sitter space can have either a positive curvature
K > 0 or a negative curvature K < 0. Analysis (see Synge’s book) shows
that in de Sitter worlds with K < 0 time-like geodesic lines are closed: a
test-particle repeats its motion again and again along the same trajectory.
This brings to mind some ideas, which seem to be too “revolutionary”
from the point of view of today’s physics [35]. For this reason, most
physicists (Synge, Gliner, Petrov, and others) have left negative curva-
ture de Sitter spaces beyond the scope of their consideration.

As is known, positive curvature Riemannian spaces are the gen-
eralization of an ordinary sphere, while the negative curvature ones
are the generalization of the Lobachewski-Bolyai space (an imaginary-
radius sphere). According to Poincaré’s interpretation, negative curva-
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ture spaces lie on the internal surface of a sphere. Using the methods of
chronometric invariants, Zelmanov showed that in the four-dimensional
pseudo-Riemannian space the three-dimensional observable curvature
is negative to the Riemannian four-dimensional curvature. Since we per-
ceive our planet as a sphere, the observable curvature is positive in our
world. If any hypothetical beings inhabited the “internal” surface of the
Earth, they would perceive it as concave, and their world would be of a
negative curvature.

This illustration inspired some researchers for the idea of the possi-
ble existence of our mirror twin, the mirror Universe inhabited by an-
tipodes. Initially it was assumed that, once our world has a positive
curvature, the mirror Universe must be a negative curvature space. But
Synge showed (see [35, Chapter VII]) that space-like geodesic trajecto-
ries are open in a positive curvature de Sitter space, and in a negative
curvature de Sitter space they are closed. In other words, a negative cur-
vature de Sitter space is not a mirror reflection of its positive curvature
counterpart.

On the other hand, in our study [19] (see also §1.3 herein) we found
another approach to the concept of the mirror Universe. We considered
the motion of free particles with the reverse time flow. As a result, it was
obtained that the observable scalar component of the four-dimensional
momentum vector of a particle is its negative relativistic mass. Note-
worthy, particles having “mirror” masses were obtained as a formal re-
sult of projecting the four-dimensional momentum of a particle onto the
time line associated with an ordinary observer, and the projection result
was not related to changing the space curvature sign, i.e., particles with
either the direct or reverse flow of time can either exist in positive or
negative curvature spaces.

These results obtained by the geometric methods of the General
Theory of Relativity inevitably affect our views of matter and cosmol-
ogy of our Universe.

In §5.2, we are going to obtain the energy-momentum tensor of the
vacuum and, at the same time, a formula for its observable density. We
will also introduce a classification of matter according to the obtained
formula of the energy-momentum tensor (T-classification of matter). In
§5.3, we are going to consider the physical properties of the vacuum
in the Einstein spaces of the kind I; in particular, we will discuss the
physical properties of the vacuum in a de Sitter space and make conclu-
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sions on the global structure of the Universe. Following this approach,
in §5.4, we will set forth the concept of the origin and evolution of the
Universe as a result of the Inversion Explosion from a pre-particle that
possessed some specific properties. In §5.5, we will obtain a formula
for the non-Newtonian gravitational inertial force, which is proportional
to distance, and §5.6 and §5.7 will focus on the gravitational collapse
in a Schwarzschild space (a gravitational collapsar) and in a de Sitter
space (an inflationary collapse and an inflanton). In Chapter 6, we will
show that our Universe and the mirror Universe are the mirror time flow
worlds, which co-exist in a de Sitter space with a four-dimensional neg-
ative curvature. Also we will find the physical conditions, which allow a
transition through themembrane that separates our world and the mirror
Universe.

5.2 The observable density of the vacuum. Non-Newtonian grav-
ity. The T-classification of matter

The Einstein equations (i.e., the field equations in Einstein’s theory of
gravitation) are the functions that link the space curvature to the distri-
bution of matter. Their general form is Rαβ − 1

2 gαβR=−κTαβ + λgαβ.
The left hand side, as is known, describes the geometric structure of the
space, while the right hand side describes the matter that fills the space.
The sign of the second term on the right hand side depends on the sign
of λ. As we will see below, the sign of λ and so the type of Newtonian
gravitation (attraction or repulsion) is directly linked to the sign of the
vacuum density.

Einstein spaces are defined by the condition Tαβ ∼ gαβ, and the field
equations for them have the form Rαβ = kgαβ. Such field equations can
exist in the two cases: a) in a space, where Tαβ , 0, i.e., in a substance;
b) in a space, where Tαβ = 0, i.e., in the vacuum. But, since in Einstein
spaces, filled with the vacuum, the energy-momentum tensor is equal to
zero, it cannot be proportional to the metric tensor; this fact contradicts
the definition of Einstein spaces (Tαβ ∼ gαβ).

So what is the problem here? In the absence of any substance, but
in the vacuum, the field equations are Rαβ − 1

2 gαβR= λgαβ and, hence,
the space curvature is produced by the λ-field (non-Newtonian fields of
gravitation), and not by a substance. In the absence of both a substance
and the λ-field, we have Rαβ = 0, so the space is empty but generally it
is not flat.
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We see that the λ-field and the vacuum are actually the same thing,
therefore, the vacuum is a non-Newtonian field of gravitation. We will
call this point of the theory the physical definition of the physical vac-
uum. Hence, the λ-field is the action of the vacuum potential.

This means that the term λgαβ of the field equations cannot be omit-
ted in the vacuum, no matter how small it is, since it describes the vac-
uum, which is one of the causes that make the space curved. Then the
field equations Rαβ − 1

2 gαβR=− κTαβ + λgαβ take the form

Rαβ −
1
2
gαβR = −κ T̃αβ , (5.12)

on the right hand side of which the tensor

T̃αβ = Tαβ + T̆αβ = Tαβ −
λ

κ
gαβ (5.13)

is the energy-momentum tensor that describes matter in general (both
substance and the vacuum). The first term here is the energy-momentum
tensor of a distributed substance. The second term

T̆αβ = −
λ

κ
gαβ (5.14)

is the energy-momentum tensor of the vacuum.
Therefore, because Einstein spaces can be filled with the vacuum,

their mathematical definition is better to be set forth in a more gen-
eral form T̃αβ ∼ gαβ, which takes the presence of both substance and the
vacuum (λ-field) into account. In particular, doing this helps to avoid
contradictions when considering Einstein empty spaces.

Note that the energy-momentum tensor of the vacuum (5.14) is the
direct consequence of the field equations in a general form.

If λ> 0 (the non-Newtonian forces of gravitation repulsion), then
the observable density of the vacuum is negative

ρ̆ =
T̆00

g00
= −

λ

κ
= −
|λ |

κ
< 0 , (5.15)

and if λ< 0 (the non-Newtonian forces of gravitation attraction), then
the observable density of the vacuum is, on the contrary, positive

ρ̆ =
T̆00

g00
= −

λ

κ
=
|λ |

κ
> 0 . (5.16)
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The latter fact, as we will see in §5.3, is of great importance, be-
cause a de Sitter space with λ< 0, being a constant-negative curvature
space* filled with the vacuum only (no substance present), best fits our
observation data on our Universe in general.

Therefore, based on the studies by Petrov and Gliner and taking into
account our note on the existence of the energy-momentum tensor of the
vacuum (λ-field) and, hence, the physical properties of the vacuum, we
can introduce a new “geometric” classification of the states of matter ac-
cording to the energy-momentum tensor. We will call this classification
the T-classification of matter:

I) The emptiness: Tαβ = 0 and λ= 0 (a space-time without matter).
In this case, the field equations are Rαβ = 0;

II) The physical vacuum (or, simply, the vacuum): Tαβ = 0 and λ, 0.
In this case, the field equations are Gαβ = λgαβ;

III) The µ-vacuum: Tαβ = µgαβ, µ= const (a vacuum-like state of
substance). In this case, the field equations are Gαβ =−κµgαβ;

IV) Substance: Tαβ , 0, Tαβ / gαβ (this state comprises both an ordi-
nary substance and electromagnetic fields).

Generally, the energy-momentum tensor of substance (the kind IV
according to the T-classification) is not proportional to the metric ten-
sor. On the other hand, there are such states of substance, in which the
energy-momentum tensor contains a term proportional to themetric ten-
sor, but since it also contains other terms, these states of substance are
not the µ-vacuum. Such, for instance, is an ideal fluid

Tαβ =
(
ρ −

p
c2

)
UαUβ −

p
c2 gαβ , (5.17)

where p is the fluid pressure, and also electromagnetic fields

Tαβ = FρσF ρσgαβ − FασF ·σβ· , (5.18)

where FρσFρσ is the first invariant of the electromagnetic field under
consideration (3.27), and Fαβ is the Maxwell tensor. If p= ρc2 (a sub-
stance inside atomic nuclei) and p = const, the energy-momentum ten-
sor of an ideal fluid seems to be proportional to the metric tensor.

But in the next section, §5.3, we will show that the equation of state
of the µ-vacuum has a different form p=−ρc2, which is the state of inf-

*We mean here the Riemannian four-dimensional curvature.
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lation (the expansion of a medium having a positive density). Hence, the
pressure and density in atomic nuclei should not be constant as to pre-
vent the transition of their internal substance into a vacuum-like state.

Note that the introduced T-classification of matter, just like the field
equations, is only about a distributed matter that affects the space cur-
vature, but not about test-particles (material points, the masses of which
are so small that their effect on the space curvature can be neglected).
Therefore, the energy-momentum tensor is not defined for particles;
they must be considered beyond the T-classification of matter.

5.3 The physical properties of the vacuum. Cosmology

Einstein spaces are defined by the field equations like Rαβ = kgαβ, where
k= const. With λ, 0 and Tαβ = µgαβ the space is filled with a matter,
the energy-momentum tensor which is proportional to the fundamen-
tal metric tensor, so this kind of matter is the µ-vacuum. As we saw in
the previous section, §5.2, the energy-momentum tensor of the vacuum
is also proportional to the metric tensor. This means that the physi-
cal properties of the vacuum and those of the µ-vacuum are mostly the
same, except for a scalar coefficient that determines the composition of
the matter (a substance or the λ-field) as well as the absolute value of
the acting forces. Therefore, we will consider an Einstein space filled
with the vacuum or the µ-vacuum. In this case, the field equations take
the form

Rαβ −
1
2
gαβR = − (κµ − λ) gαβ . (5.19)

Writing them in the mixed form and then contracting indices, we
obtain the scalar curvature

R = 4 (κµ − λ) , (5.20)

then substituting it into the initial equations (5.19), we obtain the field
equations in their final form

Rαβ = (κµ − λ) gαβ , (5.21)

where κµ− λ= const= k.
Let us consider the physical properties of the vacuum and the µ-

vacuum. The physically observable properties of a medium are express-
ed with the chr.inv.-projections of its energy-momentum tensor: the ob-
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servable density ρ= T00
g00

, the observable momentum density J i =
cT i

0√
g00

and the observable stress tensor U ik = c2T ik.
For the energy-momentum tensor of the µ-vacuum, Tαβ = µgαβ, the

chr.inv.-projections have the following form

ρ =
T00

g00
= µ , (5.22)

J i =
c T i

0
√
g00
= 0 , (5.23)

U ik = c2T ik = −µc2hik = −ρc2hik. (5.24)

For the energy-momentum tensor T̆αβ =− λ
κ gαβ (5.14), which de-

scribes the vacuum, the chr.inv.-projections are

ρ̆ =
T̆00

g00
= −

λ

κ
, (5.25)

J̆ i =
c T̆ i

0
√
g00
= 0 , (5.26)

Ŭ ik = c2 T̆ ik =
λ

κ
c2hik = − ρ̆c2hik. (5.27)

We see that the µ-vacuum and the vacuum (λ-field) have a constant
density, so these are the kinds of uniformly distributed matter. They are
also non-emitting media, since the energy flux c2J i in them is zero

c2 J̆ i =
c3 T̆ i

0
√
g00
= 0 , c2J i =

c3 T i
0

√
g00
= 0 . (5.28)

In the reference frame that accompanies the medium, the stress ten-
sor is equal to (see Zelmanov’s book [9])

Uik = p0 hik − αik = phik − βik , (5.29)

where p0 is the equilibrium pressure, defined from the state equation,
p is the true pressure, αik is the viscosity of the 2nd kind (the viscous
stress tensor), α=αi

i is the trace of the tensor αik, and βik =αik −
1
3 αhik

is the anisotropic part of the tensor αik, which is called the viscosity of
the 1st kind (it reveals itself in anisotropic deformations).
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Expressing the µ-vacuum stress tensor (5.24) in the reference frame
accompanying the µ-vacuum itself, we obtain

Uik = phik = −ρc2hik , (5.30)

and, similarly, for the stress tensor of the vacuum (5.27), we have

Ŭik = p̆hik = − ρ̆c2hik . (5.31)

This means that the µ-vacuum and the vacuum are non-viscous me-
dia (αik = 0, βik = 0), the equation of state of which* is the same

p̆ = − ρ̆c2, p = −ρc2. (5.32)

Such a state is known as inflation, because at the positive density of
a medium the pressure inside it is negative, so the medium expands.

So, these are the physical properties of the µ-vacuum and the vac-
uum: these are homogeneous ρ= const, non-viscous αik = βik = 0 and
non-emitting J i = 0 media that are in the state of inflation.

Let us now consider the vacuum that fills constant curvature spaces,
in particular, a de Sitter space — the approximation of our Universe.

In constant curvature spaces, the Riemann-Christoffel tensor is (see
Chapter VII in Synge’s book [35])

Rαβγδ = K
(
gαγgβδ − gαδgβγ

)
, K = const. (5.33)

Having the tensor contracted by two indices, we obtain a formula for
the Ricci tensor, which on subsequent contraction allows us to deduce
the scalar curvature. As a result we have

Rαβ = −3Kgαβ , R = −12K . (5.34)

Assuming our Universe to be a constant curvature space, we obtain
the field equations formulated with the curvature

3Kgαβ = −κTαβ + λgαβ . (5.35)

*The equation of state of a distributedmatter is the relationship between the pressure
and density in the medium. For instance, p= 0 is the equation of state of a dust medium,
p= ρc2 is the equation of state of a matter inside atomic nuclei, p= 1

3 ρc2 is the equation
of state of an ultra-relativistic gas.
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Re-write this formula as (λ− 3K) gαβ = κTαβ. Then, the energy-
momentum tensor of a substance filling a constant curvature space is

Tαβ =
λ − 3K
κ

gαβ . (5.36)

We see that, in a constant curvature space, the problem of geometri-
zation of matter solves by itself: the energy-momentum tensor (5.36)
contains only the metric tensor and fundamental constants.

A de Sitter space is a constant curvature space, where Tαβ = 0 and
λ, 0, hence, it is filled with the vacuum (any substance is absent). Then,
equating the energy-momentum tensor of substance (5.36) to zero, we
obtain the same result as that of Synge: λ= 3K in any de Sitter space.

Taking into account this relationship, the formula for the observable
density of the vacuum in a de Sitter world becomes

ρ̆ = −
λ

κ
= −

3K
κ
= −

3Kc2

8πG
. (5.37)

Now we are arriving at the key question about the sign of the four-
dimensional curvature in our Universe. The reason to ask this question
is not only curiosity. Depending on the answer, the de Sitter world cos-
mology can fit the available observational data or can lead to a result
totally alien to the commonly accepted astronomical facts.

Given that the four-dimensional curvature is positive K > 0, the vac-
uum density is negative and, hence, the inflationary pressure is greater
than zero: the vacuum contracts. Then, since λ> 0, the non-Newtonian
gravitational forces are the forces of repulsion. At the positive inflation-
ary pressure of the vacuum, which tends to compress the entire space,
we should observe the repulsing forces of non-Newtonian gravitation.
First, since the λ-forces are proportional to distance, their expanding ef-
fect would grow along with the growth of the Universe’s radius, there-
fore the expansion would accelerate. Second, if the Universe were ever
less than the distance at which the compressive pressure of the vacuum
is equal to the expanding action of the λ-forces, the expansion would
become impossible.

If, on the contrary, the four-dimensional curvature is negative K < 0,
the inflationary pressure is less than zero — the vacuum expands. Be-
sides, since λ< 0 in this case, the non-Newtonian forces of gravitation
are the forces of attraction. Then, the Universe can still be expanding
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from nearly a point until the moment of time, when the vacuum density
becomes so low that its expanding force becomes equal to the compress-
ing force of the non-Newtonian λ-forces.

As seen, the question of the curvature sign is the most crucial ques-
tion for cosmology of our Universe.

But human perception is three-dimensional and, therefore, an ordi-
nary observer cannot judge anything on the sign of the four-dimensional
curvature by means of his direct observations. What can be done then?
The way out of the situation is in the theory of chronometric invariants,
which determine physical observable quantities.

Among the goals that Zelmanov set for himself was to build the cur-
vature tensor of the three-dimensional spatial section associated with an
observer — his observable three-dimensional space, which is inhomo-
geneous, non-holonomic (rotating), deforming, and curved, in a general
case. The Zelmanov curvature tensor (see formula 5.40 for the tensor it-
self, and 5.41 for its contractions) has all the properties of the Riemann-
Christoffel tensor in the three-dimensional space of the observer and, at
the same time, has the property of chronometric invariance.

Zelmanov had deduced this tensor based on the similarity with the
Riemann-Christoffel curvature tensor, which is the result of the non-
commutativity of the second derivatives from an arbitrary vector in
a Riemannian space. Deducing the difference of the second chr.inv.-
derivatives from an arbitrary vector, he obtained the equation

∗∇i
∗∇k Ql −

∗∇k
∗∇i Ql =

2Aik

c2

∗∂Ql

∂t
+ H ··· jlki·Qj , (5.38)

where the chr.inv.-tensor

H ··· jlki· =

∗∂∆
j
il

∂xk −

∗∂∆
j
kl

∂xi + ∆
m
il ∆

j
km − ∆

m
kl∆

j
im (5.39)

is similar to Schouten’s tensor from the theory of non-holonomic man-
ifolds*. But in a general case, where the space rotates (Aik , 0), the ten-
sor H ··· jlki· is algebraically different from the Riemann-Christoffel tensor.

*Schouten had created the theory of non-holonomic manifolds for an arbitrary di-
mension space by considering an m-dimensional sub-space of an n-dimensional space,
where m< n [36]. In the theory of chronometric invariants, we actually consider an
observer associated with an (m= 3)-dimensional sub-space of the (n= 4)-dimensional
pseudo-Riemannian space. At the same time, the theory of chronometric invariants is
applicable to any metric space in general. See [9].



5.3 The physical properties of the vacuum. Cosmology 237

Therefore, Zelmanov had introduced a new tensor

Clkij =
1
4

(
Hlkij − Hjkil + Hklji − Hiljk

)
, (5.40)

which was not only a chr.inv.-quantity, but it also has all algebraic prop-
erties of the Riemann-Christoffel tensor. Therefore, Clkij is the physi-
cally observable curvature tensor of the three-dimensional observable
space of an observer, who accompanies his reference body. Having it
contracted, we obtain the chr.inv.-quantities

Ckj = C ···ikij· = himCkimj , C = C j
j = hljClj , (5.41)

which also characterize the observable three-dimensional space curva-
ture. Because Clkij, Ckj and C are chr.inv.-quantities, they are phys-
ically observables for the observer. In particular, the C is the three-
dimensional observable scalar curvature [9].

Concerning the physical properties of the vacuum applied to cos-
mology, we need to know how the observable three-dimensional curva-
ture C is linked to the four-dimensional curvature K in a general case
and in a de Sitter space in particular. We are going to consider this
problem step-by-step.

The Riemann-Christoffel four-dimensional curvature tensor is a ten-
sor of the 4th-rank, hence it has n4 = 256 components, out of which only
20 are significant. The remaining components are either zeroes or iden-
tical to each other, because the Riemann-Christoffel tensor is:

a) Symmetric by each pair of its indices Rαβγδ =Rγδαβ;
b) Antisymmetric with respect to the transposition of indices inside

each of the pairs Rαβγδ =−Rβαγδ, Rαβγδ =−Rαβδγ;
c) It satisfies the property Rα(βγδ) = 0, where round brackets stand for

the (β, γ, δ)-transpositions.
The significant components of the Riemann-Christoffel tensor pro-

duce the three chr.inv.-tensors

X ik = −c2 R·i·k0·0·

g00
, Y ijk = −c

R·ijk0···
√
g00

, Z ijkl = c2Rijkl. (5.42)

The tensor X ik has 6 components, Y ijk has 9 components, while Z ijkl

has only 9 due to its symmetry. The Y ijk components are constructed
based on the property Y(ijk) =Yijk +Yjki +Ykij = 0. Substituting the com-
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ponents of the Riemann-Christoffel tensor, and having indices lowered,
Zelmanov had obtained [9]

Xij =
∗∂Dij

∂t
−

(
D l

i + A·li·
) (

Djl + Ajl
)
+

+
(
∗∇i Fj +

∗∇j Fi
)
−

1
c2 Fi Fj ,

(5.43)

Yijk =
∗∇i

(
Djk + Ajk

)
−∗∇j (Dik + Aik) +

2
c2 Aij Fk , (5.44)

Ziklj = Dik Dlj − Dil Dkj + Aik Alj −

− Ail Akj + 2Aij Akl − c2Ciklj .
(5.45)

From the above formulae we see that the spatial chr.inv.-components
of the Riemann-Christoffel tensor Ziklj (5.45) are linked to the chr.inv.-
tensor of the three-dimensional observable curvature Ciklj.

Let us now deduce a formula for the three-dimensional observable
curvature in a constant curvature space. In such a space the Riemann-
Christoffel tensor has the form (5.33). Then

R0i0k = −Khikg00 , (5.46)

R0ijk =
K
c
√
g00

(
vj hik − vk hij

)
, (5.47)

Rijkl = K
[
hik hjl − hil hk j +

1
c2 vi

(
vl hk j − vk hjl

)
+

+
1
c2 vj (vk hil − vl hik)

]
.

(5.48)

Deducing its chr.inv.-projections (5.42), we obtain

X ik = c2Khik, Y ijk = 0 , Z ijkl = c2K
(
hikh jl − hilh jk

)
, (5.49)

hence,
Zijkl = c2K

(
hik hjl − hil hjk

)
, (5.50)

Zjl = Z i···
· jil = 2c2Khjl , Z = Z j

j = 6c2K. (5.51)

On the other hand, we know the formula for Zijkl in an arbitrary cur-
vature space (5.45), which is linked to the three-dimensional observable



5.3 The physical properties of the vacuum. Cosmology 239

curvature. Obviously, it is as well true for K = const. Then, having the
general formula (5.45) contracted, we obtain

Zil = Dik Dk
l − Dil D + Aik A·kl· + 2Aik Ak·

·l − c2Cil , (5.52)

Z = hilZil = Dik Dik − D2 − Aik Aik − c2C . (5.53)

In a constant curvature space, we have Z = 6c2K (5.51). Hence, in
such a space the relationship between the four-dimensional scalar cur-
vature K and the three-dimensional observable scalar curvature C is

6c2K = Dik Dik − D2 − Aik Aik − c2C . (5.54)

We see that in a constant curvature space that does not rotate or de-
form, the four-dimensional curvature has the opposite sign to the three-
dimensional observable curvature. In a de Sitter space (since there is no
rotation or deformation), we have

K = −
1
6

C , (5.55)

so there the three-dimensional observable curvature is C =−6K.
Taking the results that we have obtained above, we are now going

to create a cosmological model of our Universe based on only the two
experimental facts: a) the sign of the observable density of matter in the
Universe, and b) the sign of the observable three-dimensional curvature
of the background space of the Universe.

At first, our everyday experience shows that the density of matter
in our Universe is positive, no matter how rarefied it may be. Then to
ensure that the vacuum density (5.37) is positive, the cosmological term
is negative λ< 0 (in this case, the non-Newtonian gravitational forces
are the forces of attraction) and, hence, the four-dimensional curvature
is negative K < 0.

Secondly, as Ivanenko referred toMcVittie’s presentation [37] in his
Preface to the 1962 edition of Weber’s book [28]:

“Though the data of cosmological observations are obviously not
exact, but, for instance, McVittie maintains that the best results of
the observation of the Hubble redshift to H ≈ 75 km/secMpc and
of the average density of matter ρ≈ 10−31 gram/cm3 support the
idea of the non-vanishing cosmological term λ< 0.”
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Therefore, we assume that the vacuum density in our Universe is
positive and the three-dimensional observable curvature is C > 0. As a
result, the four-dimensional curvature is K < 0 and, hence, the cosmo-
logical term is λ< 0. Then, from (5.37) we obtain the observable density
of the vacuum in our Universe

ρ̆ = −
λ

κ
= −

3K
κ
=

C
2κ

> 0 , (5.56)

so the inflationary pressure in the vacuum is negative p̆=− ρ̆c2 (the vac-
uum expands). Since the homogeneous distribution is among the phys-
ical properties of the vacuum, the negative inflationary pressure in the
vacuum also means the expansion of the Universe as a whole.

Therefore, the observable three-dimensional space of our Universe
(its curvature is C > 0) is a three-dimensional expanding sphere, which
is a sub-space of the four-dimensional space-time with the curvature
K < 0 (a space of the Lobachewski-Bolyai geometry).

Of course a de Sitter space is merely an approximation of our Uni-
verse. Astronomical data say that although “islands” of masses are oc-
casional and do not affect the global curvature, their effect on the space
curvature near them is significant (a deviation of light rays and similar
effects). But in our study of the Universe as a whole we can neglect the
occasional “islands” of substance and the local non-uniformities in the
curvature. In this case, the background space of our Universe can be
considered as a de Sitter space with a negative four-dimensional curva-
ture (hence, the observed three-dimensional curvature is positive).

5.4 The concept of the Inversion Explosion of the Universe

From the previous section, §5.3, we know that λ= 3K in a de Sitter
space. According to its physical sense, the λ-term is approximately the
same as the curvature. For a three-dimensional spherical sub-space of
the de Sitter space, the observable curvature C =−6K is

C =
1

R2 , (5.57)

where R is the observable curvature radius (radius of the sphere). Then,
the four-dimensional curvature of the de Sitter space is

K = −
1

6R2 , (5.58)
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i.e., the larger the sphere’s radius, the smaller the space curvature K.
According to astronomical estimates, our Universe originated 10–20
billion years ago. Hence, the distance covered by a photon since it was
born at the dawn of the Universe is RH ≈ 1027–1028 cm. This distance is
referred to as the radius of the event horizon. Assuming that our Uni-
verse as a whole is a de Sitter space with K < 0, for the four-dimensional
curvature and, hence, for the λ-term λ= 3K, we have the estimate

K = −
1

6R2
H

≈ −10−56 cm−2. (5.59)

On the other hand, similar figures for the event horizon, space curva-
ture radius and λ-term are available from di Bartini [38,39], who studied
the relationships between fundamental physical constants based on the
methods of combinatorial topology. In his works, the Universe’s radius
is interpreted as the largest distance, determined from the topological
context. According to the di Bartini inversion relationship

Rρ
r2 = 1 , (5.60)

the space radius R (which is the largest distance in the Universe) is the
result of the spherical inversion of the gravitational radius of the electron
ρ= 1.347× 10−55 cm into the space outside the electron with respect
to its classical radius r= 2.818× 10−13 cm (which is the radius of the
spherical inversion, according to di Bartini). The space radius (event
horizon radius) is equal to

R = 5.895 × 1029 cm . (5.61)

Following this way, di Bartini had defined the space mass (which is
the mass within the space radius) and the space density as

M = 3.986 × 1057 gram , ρ = 9.87 × 10−34 gram/cm3. (5.62)

As amatter of fact, the theoretical results that di Bartini had obtained
say that the space of the Universe (ranged from the classical radius of
the electron to the event horizon) is the external inversion image of the
internal space of a certain particle with the size of the electron (ranged
from the gravitational radius of the electron to its classical radius). From
other points of view, the particle is different from the electron: its mass
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is equal to the space mass M = 3.986×1057 gram, while the mass of the
electron is only m= 9.11 × 10−28 gram.

The space inside such a particle cannot be represented as a de Sit-
ter space: the vacuum density in a de Sitter space with K < 0 and the
curvature observable radius r= 2.818 × 10−13 cm is

ρ̆ = −
3K
κ
= −

1
2κ

r2 = 3.39 × 1051 gram/cm3, (5.63)

while that inside the di Bartini particle is

ρ =
M

2π2r3 = 9.03 × 1093 gram/cm3. (5.64)

On the other hand, the external space of such a particle, which is
the inversion image of its internal space, can be assumed as a de Sitter
space in accordance with its properties. Let us assume that a space with
the curvature radius, equal to the di Bartini radius R= 5.895× 1029 cm,
is a de Sitter space with K < 0. Then the four-dimensional curvature K
and the λ-term of the space are

K = −
1

6R2 = −4.8 × 10
−61 cm−2, (5.65)

λ = 3K = −
1

2R2 = −14.4 × 10
−61 cm−2, (5.66)

so they are five orders of magnitude less than the observed estimate,
which is |λ |< 10−56. This can be explained by the fact that the Universe
continues to expand and, in the distant future, the numerical values of
the space curvature and the cosmological term will decrease, approach-
ing the numbers in (5.65, 5.66), calculated for the largest distance (space
radius, according to di Bartini).

The estimated value of the vacuum density in a de Sitter space of
the di Bartini space radius is

ρ̆ = −
3K
κ
= −

3Kc2

8πG
≈ 7.7 × 10−34 gram/cm3, (5.67)

which is also less than the observed average density of matter in the Uni-
verse (5–10 × 10−30 gram/cm3), but is very close to the matter density
in the space of the di Bartini radius 9.87 × 10−34 gram/cm3.
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To calculate how long our Universe will continue to expand, we
must calculate the difference between the observed event horizon ra-
dius RH and the curvature radius R. Assume that the maximum event
horizon radius of the Universe RH(max) is equal to the di Bartini space
radius R=RH(max) = 5.895 × 1029 cm (5.61), which is the outer inversion
distance. Then, comparing this value with the observed event horizon
radius RH ≈ 1027–1028 cm, we obtain ∆R=RH(max) −RH ≈ 5.8 × 1029 cm.
Hence, the time left for the expansion of our Universe is

t =
∆R
c
≈ 600 billion years. (5.68)

These calculations of the vacuum density and other properties of
the de Sitter space pave the way for conclusions on the origin and evo-
lution of our Universe and allow the only interpretation of the di Bartini
inversion relationship. We will call this interpretation the cosmological
concept of the Inversion Explosion of the Universe. This cosmological
concept is based on our analysis of the properties of the de Sitter space
using the geometric methods of the General Theory of Relativity and
taking into account the di Bartini inversion relation, which is the re-
sult of modern knowledge of fundamental physical constants. We can
formulate this concept as follows:

At the very beginning, there was a single pre-particle with a radius
equal to the classical radius of the electron, and with a mass equal
to the mass of the entire Universe.

Then the inversion explosion occurred: a topological transi-
tion inverted the matter from within the pre-particle with respect
to its surface into the outer world, which gave birth to our expand-
ing Universe. At present, 10–20 billion years since the explosion,
the Universe is at the early stage of its evolution. The expansion
will continue for almost 600 billion years.

At the end of this period, the expanding Universe will reach
its curvature radius, at which the non-Newtonian forces of grav-
itation, proportional to distance, will be equal to the inflationary
expanding pressure of the vacuum. The expansion will discon-
tinue and stability will be reached, which will last until the next
inversion topological transition occurs.

The calculated parameters of matter at different stages of the evolu-
tion of the Universe are presented in Table 5.1. The evolution stages are
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Evolution Age, Space Density, λ-term,
stage years radius, cm gram/cm3 cm−2

Pre-particle 0 2.82×10−13 9.03×1093 ?
Present time 10–20×109 1027 – 1028 5–10×10−30 < 10−56

After expansion 623×109 5.89×1029 9.87×10−34 1.44×10−60

Table 5.1: Parameters of matter and space at different stages of the evolution
of the Universe.

the pre-particle before the inversion explosion, the stage of the inversion
expansion at the present time, and the stage after the expansion.

The reasons for this topological transition, which led to the spher-
ical inversion of the matter from within the pre-particle (after its In-
version Explosion), remain unknown. . . but so do the reasons for the
“emergence” of the Universe in some other contemporary cosmologi-
cal concepts, for instance, in the Big Bang concept (the explosion of the
Universe from a singular point).

5.5 Non-Newtonian gravitational forces

The Einstein spaces of the kind I, including constant curvature spaces,
besides those that have occasional “islands of matter” can be either
empty or filled with a homogeneously distributed matter. But an empty
Einstein space of the kind I (its curvature is K = 0) is dramatically dif-
ferent from non-empty spaces (K = const, 0).

To make our discourse more concrete, let us consider the field of
gravitation in the most typical empty and non-empty Einstein spaces of
the kind I.

If an island of mass is a ball (the spherically symmetric distribution
of mass in the island) located in emptiness, then the curvature of such
a space is derived from the Newtonian field of gravitation, produced
by the island, and such a space is not a constant curvature space. At
an infinite large distance from the island, the space becomes flat, i.e.,
a constant curvature space with K = 0. A typical example of the field
of gravitation, produced by a spherically symmetric island of mass in
emptiness is the field determined by the Schwarzschild metric

ds2 =

(
1 −

rg
r

)
c2dt2 −

dr2

1 − rg
r

− r2
(
dθ2 + sin2θ dφ2

)
, (5.69)
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where r is the distance from the island, and rg is the gravitational radius
of the island.

A Schwarzschild space neither rotates nor deforms. The compo-
nents of the chr.inv.-vector of the gravitational inertial force (1.38) in
such a space can be deduced as follows. According to the metric (5.69),
the component g00 is

g00 = 1 −
rg
r
, (5.70)

then, differentiating the gravitational potential w= c2 (1−
√
g00) with

respect to xi, we obtain

∂w
∂xi = −

c2

2
√
g00

∂g00

∂xi . (5.71)

Substituting it into the formula for the gravitational inertial force
(1.38), and taking into account the fact that such a space does not rotate
(this follows from the metric, where all g0i = 0), we obtain

F1 = −
c2rg
2r2

1

1 − rg
r

, F1 = −
c2rg
2r2 . (5.72)

Therefore, the vector F i in a Schwarzschild space describes a New-
tonian gravitational force, which is reciprocal to the square of the dis-
tance r from the gravitating mass.

If a space is filled with the spherically symmetric distribution of the
physical vacuum (λ-field) and does not include any island of mass, its
curvature is everywhere the same. An example of such a field is that
described by the de Sitter metric*

ds2 =

(
1 −

λr2

3

)
c2dt2 −

dr2

1 − λ r2

3

− r2
(
dθ2 + sin2θ dφ2

)
. (5.73)

Note that although any de Sitter space has no islands of mass, which
create ordinary Newtonian fields of gravitation, we can always consider

*According to the latest theoretical studies [40], the de Sitter space metric (5.73)
satisfies to the condition of the spherical symmetry in only a limiting case, where λ= 0.
In a general case of λ, 0, a de Sitter space can be spherically symmetric only if it has
zero volume (i.e., only if the de Sitter space degenerates into a point). This means that
an actual de Sitter space (wherein λ, 0, i.e., a space filled by the vacuum) should not
have the property of the spherical symmetry.
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the motion of small test-particles, since their own Newtonian fields are
so weak that they can be neglected.

Any de Sitter space is a constant curvature space that becomes flat
only in the absence of the λ-fields. A de Sitter space neither rotates
nor deforms, and the non-zero components of the chr.inv.-vector of the
gravitational inertial force in such a space take the form

F1 =
λc2

3
r

1 − λ r2

3

, F1 =
λc2

3
r . (5.74)

As is seen, the vector F i in a de Sitter space describes a kind of non-
Newtonian gravitational forces, which are proportional to r: if λ< 0,
then these are the forces of attraction, if λ> 0, then these are the forces of
repulsion. The forces of non-Newtonian gravitation (we will call them
the λ-forces) increase with the distance at which they act.

Therefore, we can see the principal difference between empty and
non-empty Einstein spaces of the kind I: in empty spaces with an island
of mass only Newtonian forces exist, while in the spaces filled with the
vacuum andwithout islands of mass there are only non-Newtonian grav-
itation forces. An example of a “mixed” space of the kind I is that of the
Kottler metric [41]

ds2 =

(
1 +

ar2

3
+

b
r

)
c2dt2 −

dr2

1 + ar2

3 +
b
r

−

− r2
(
dθ2 + sin2θ dφ2

)
F1 = − c2

ar
3 −

b
2 r2

1 + ar2

3 +
b
r

, F1 = − c2
(
ar
3
−

b
2r2

)


, (5.75)

where both Newtonian forces and the λ-forces exist: a Kottler space is
filled with the vacuum and also includes islands ofmass, the latter which
produce Newtonian gravitational forces.

On the other hand, Kottler had proposed this metric with two un-
known constants a and b to define which additional constraints are re-
quired. Hence, despite some attractive features of the Kottler metric,
only two of its “limiting” cases are of practical interest. These are the
Schwarzschild metric (Newtonian gravitational forces) and the de Sitter
metric (non-Newtonian gravitational forces, i.e., the λ-forces).
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5.6 Gravitational collapse

Obviously, it is a certain approximating assumption to represent our
Universe as a de Sitter space (filled with the vacuum without islands of
mass) or a Schwarzschild space (an island of mass in emptiness). The
real metric of our world is “something in between”. However, in prob-
lems related to non-Newtonian gravity (caused by the physical vacuum),
where the influence of concentrated masses can be neglected, the de Sit-
ter metric is optimal. And, in problems with the gravitation caused by
massive islands, the Schwarzschild metric is reasonable. An illustrative
example of such a “split” of the models is collapse— the state of a space
(space-time) region, where g00 = 0.

The formula for the gravitational potential w deduced for an arbi-
trary space metric is (1.38). Then

g00 =

(
1 −

w
c2

)2
= 1 −

2w
c2 +

w2

c4 , (5.76)

hence, the state of collapse (g00 = 0) occurs at w= c2.
Scientists usually consider gravitational collapse—the compressed

state of an island of mass as a result of the action of Newtonian gravity,
which compressed the island to a very small size, equal to the gravita-
tional radius of the mass. Hence, “strict” gravitational collapse occurs
in a space of the Schwarzschild metric (5.69), because only the New-
tonian field of a spherically symmetric island of mass in emptiness is
present in such a space.

At a large distance from a massive island, the gravitational field be-
comes weak and the gravitational field potential becomes

w =
GM

r
, (5.77)

where G is the Gauss gravitational constant, M is the island’s mass that
produced the gravitational field. Since the third term in (5.76) is so small
in a weak field that it can be neglected, the formula for g00 becomes

g00 = 1 −
2GM
c2r

, (5.78)

so gravitational collapse in a Schwarzschild space occurs if

2GM
c2r

= 1 , (5.79)
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where the quantity
rg =

2GM
c2 , (5.80)

which has the dimension of length, is called the gravitational radius of
the island of mass. Then g00 can be presented as follows

g00 = 1 −
rg
r
. (5.81)

From here we see that gravitational collapse occurs in a Schwarz-
schild space at the distance r= rg from the centre of mass.

If the entire mass of the spherically symmetric island (which is the
source of the Newtonian field) is concentrated under the gravitational
radius of the mass, the surface of such an island of mass is referred to
as the Schwarzschild sphere. Such objects are also called gravitational
collapsars, because under the gravitational radius an escape velocity is
higher than the velocity of light, so light cannot leave such objects from
within.

It is easy to see from formula (5.69) that, in a Schwarzschild field
of gravitation, the three-dimensional space does not rotate (g0i = 0) and,
hence, the interval of the physically observable time (1.25) is

dτ =
√
g00 dt =

√
1 −

rg
r

dt . (5.82)

So, at the distance r= rg the observable time interval is equal to
zero dτ= 0: from the point of view of an external observer, the observ-
able time on the surface of a Schwarzschild sphere stops*. Inside the
Schwarzschild sphere the observable time interval becomes imaginary.

*At g00 = 0 (the state of gravitational collapse) the observable time interval (1.25)
is dτ=− 1

c2 vi dx i, where vi =−c g0i
√
g00

is the linear velocity with which the space rotates
(1.37). Only assuming g0i = 0 and vi = 0, the collapse condition can be defined correctly:
for an external observer the observable time flow on the surface of a collapsar stops
dτ= 0, while the four-dimensional interval is ds2 =−dσ2 = gik dx idxk. From here a
conclusion can be made: the space is holonomic on the surface of a collapsar, so the
collapsar does not rotate.
As we had showed in our first book [19], a completely degenerate space-time region

(called the zero-space), where ds= 0, dτ= 0 and dσ= 0, collapses if it does not rotate.
Here we proved a more general theorem: if g00 = 0, then the space is holonomic irre-
spective of whether it is degenerate (g= 0) or not (g< 0, the ordinary space-time of
General Relativity).



5.6 Gravitational collapse 249

We can also be sure that an ordinary observer who is located on the
Earth surface, apparently stays outside the Schwarzschild sphere of the
Earth, the radius of which is 0.443 cm, and he can only look at the pro-
cess of gravitational collapse from “outside”.

If r= rg, then the quantity

g11 = −
1

1 − rg
r

(5.83)

grows up to infinity. But the determinant of the metric tensor gαβ is

g = −r4 sin2θ < 0 , (5.84)

so a space-time region inside a gravitational collapsar is generally not
degenerate, although collapse is also possible in the zero-space.

At this point a note concerning photometric distance and metric ob-
servable distance should bemade. The quantity r is not ametric distance
along the axis x1 = r, because the metric (5.69) has dr2 with the coeffi-
cient

(
1− rg

r

)
−1. The quantity r is a photometric distance defined as the

function of an illumination, produced by a stable source of light and re-
ciprocal to the square of the distance from the source. In other words, r
is the radius of a non-Euclidean sphere of the surface area 4πr2 [9].

According to the theory of chronometric invariants, the elementary
observable metric distance between any two infinitely close points in a
Schwarzschild space is

dσ =

√
dr2

1 − rg
r

+ r2
(
dθ2 + sin2θ dφ2

)
. (5.85)

At θ= const and φ= const, it is

σ =

∫ r2

r1

√
h11 dr =

∫ r2

r1

dr√
1 − rg

r

, (5.86)

and it is not the same as the photometric distance r.
To define the space-time metric inside a Schwarzschild sphere, we

formulate the external metric (5.69) for a radius r< rg. We obtain

ds2 = −

(rg
r
− 1

)
c2dt2 +

dr2

rg
r − 1

− r2
(
dθ2 + sin2θ dφ2

)
. (5.87)
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Introducing the notations r= c t̃ and ct= r̃, we obtain

ds2 =
c2dt̃ 2

rg
c t̃
− 1
−

( rg
c t̃
− 1

)
dr̃2 − c2dt̃ 2

(
dθ2 + sin2θ dφ2

)
, (5.88)

so the space-time metric inside the Schwarzschild sphere is similar to
the external metric, provided that the time coordinate and the spatial
coordinate r swap their rôles: the photometric distance r outside the
collapsar is the coordinate time c t̃ inside it, while outside the collapsar
the coordinate time ct is the photometric distance r̃ inside it.

From the first term of the Schwarzschild internal metric (5.88) we
see that it is not stationary, but exists within a limited period of time

t̃ =
rg
c
. (5.89)

For the Sun, the gravitational radius of which is about 3 km, the life
span of such a space is approximately < 10−5 sec. For the Earth, the
gravitational radius of which is as small as 0.443 cm, the life span of
the internal Schwarzschild space is even lesser, 1.5 × 10−11 sec.

Comparing the metrics inside a gravitational collapsar (5.88) and
outside it (5.69), we conclude the following:

a) The space of both metrics is holonomic, i.e., it does not rotate
(Aik = 0);

b) The external metric is stationary, and the vector of the observable
gravitational inertial force is F1 =− GM

r2 ;
c) The internal metric is non-stationary, and the observable gravita-

tional inertial force is zero.
Let us give more detailed analysis of the external and internal met-

rics. To make the analysis simpler, we assume θ= const and φ= const,
so that out of the possible three spatial directions we limit our study to
the radial direction only. Then the external metric is

ds2 = −

(rg
r
− 1

)
c2dt2 +

dr2

rg
r − 1

, (5.90)

while for the internal metric we have

ds2 =
c2dt̃ 2

rg
c t̃
− 1
−

( rg
c t̃
− 1

)
dr̃2. (5.91)
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Calculating the physically observable distance (5.86) to the attract-
ing centre of the collapsar along the radial direction r, we obtain

σ =

∫
dr√
1 − rg

r

=

√
r (r − rg) + rg ln

(√
r +

√
r − rg

)
+ const. (5.92)

We see that at r= rg the observable distance is a constant value

σg = rg ln
√

rg + const. (5.93)

This means that a Schwarzschild sphere, defined by a photomet-
ric radius rg, for an external observer is a sphere with the observable
radius σg = rg ln√rg + const (5.93). Therefore, for an external observer
any gravitational collapsar is a sphere with a constant observable radius,
on the surface of which the observable time stops.

Let us look within a collapsar. For an external observer, the observ-
able time interval (5.82) inside a Schwarzschild sphere is imaginary

dτ = i

√
rg
r
− 1 dt , (5.94)

or, in the “internal” coordinates r= c t̃ and ct= r̃ (from the point of view
of an “internal” observer),

dτ̃ =
1√

rg
c t̃
− 1

dt̃ . (5.95)

Hence, for an external observer, the “imaginary” time inside a col-
lapsar (5.94) stops on its surface, while the “internal” observer sees the
flow of his observable time on the surface growing infinitely.

So, when looking at a collapsar from outside, the physically observ-
able distance inside it, according to the metric (5.87), is

σ =

∫
dr√
rg
r − 1

= −

√
r (r − rg) + rg arctan

√
rg
r
− 1 + const, (5.96)

and, from the point of view of an “internal” observer, it is

σ̃ =

∫ √
rg
ct̃
− 1 dr . (5.97)
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From here we see that at r= c t̃= rg for an external observer the ob-
served distance between any two points tends to a constant, and for an
“internal” observer the observed distance decreases to zero.

In conclusion, let us touch upon the question of what happens to
particles falling “from the outside” onto the Schwarzschild sphere along
its radial direction. For the outer metric of a collapsar, we have

ds2 = c2dτ2 − dσ2, dτ =
(
1 −

rg
r

)
dt , dσ =

dr

1 − rg
r

. (5.98)

For real-mass particles ds2 > 0, for light-like particles ds2 = 0, for
superluminal tachyons ds2 < 0 (their masses are imaginary). In radial
motion towards a gravitational collapsar, these conditions are:

1) Real-mass particles:
(

dτ
dt

)2
< c2

(
1− rg

r

)2
;

2) Light-like particles:
(

dτ
dt

)2
= c2

(
1− rg

r

)2
;

3) Imaginary particles-tachyons:
(

dτ
dt

)2
> c2

(
1− rg

r

)2
.

Since r= rg on the surface of a Schwarzschild sphere, then dτ
dt = 0.

Hence, any particle, including a light-like one, will stop there. A four-
dimensional interval on the surface of the sphere is

ds2 = −dσ2 < 0 , (5.99)

which means that the surface of a Schwarzschild spheres (gravitational
collapsar) is home to particles having imaginary rest-masses.

5.7 Inflationary collapse

A de Sitter space has no islands of mass, hence, Newtonian gravitational
fields are absent there. Therefore, gravitational collapse is impossible
in a de Sitter space. Nevertheless, the condition g00 = 0 is a strictly geo-
metric definition of collapse, not necessarily related to Newtonian fields.
Therefore, we can consider collapse in any arbitrary space.

Consider the de Sitter metric (5.73). It describes a non-Newtonian
gravitational field in a constant curvature space without islands of mass.
In a de Sitter space, collapse can occur due to non-Newtonian gravita-
tional forces. From the de Sitter metric (5.73), we see that

g00 = 1 −
λr2

3
, (5.100)
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so the gravitational potential w= c2(1−
√
g00) is

w = c2

1 −
√

1 −
λr2

3

 . (5.101)

Because it is the potential of a non-Newtonian gravitational field,
produced by the vacuum (λ-field), we will call it the λ-potential.

Since λ= 3K in any de Sitter space, hence
1) g00 = 1−Kr2 > 0 at distances r< 1√

K
;

2) g00 = 1−Kr2 < 0 at distances r> 1√
K
;

3) g00 = 1−Kr2 = 0 (collapse) at the distance r= 1√
K
.

If the four-dimensional curvature is K < 0, then the numerical value
of g00 = 1−Kr2 is always greater than zero. Hence, collapse is only
possible in a de Sitter space with K > 0.

In §5.3, we showed that the basic space of our Universe as a whole
has K < 0. But we can assume the presence of local inhomogeneities
with K > 0, which do not affect the space curvature in general. In par-
ticular, collapse can occur in such inhomogeneities. Therefore, it is rea-
sonable to consider a de Sitter space with K > 0 as a local space in the
vicinities of some compact objects.

In de Sitter spaces the three-dimensional observable curvature C is
linked to the four-dimensional curvature with the relationship C =−6K
(5.55). Then, assuming the observable three-dimensional space to be a
sphere, we obtain C = 1

R2 (5.57) and, hence K =− 1
6R2 (5.58), where R

is the observable curvature radius. In the case of K < 0, the numerical
value of R is real, but at K > 0 it becomes imaginary.

So, collapse in a de Sitter space is only possible at K > 0. In this case,
the observable curvature radius is imaginary. Denote R= iR∗, where R∗

is its absolute value. Then, in a de Sitter space with K > 0 we have

K =
1

6R∗2
, (5.102)

and the collapse condition g00 = 1−K r2 can be written as follows

r = R∗
√

6 , (5.103)

so, at the distance r=R∗
√

6 in a de Sitter space with K > 0 the condition
g00 = 0 is true: the observable time flow stops and collapse occurs.
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That is, the region of a de Sitter space under the radius r=R∗
√

6
stays in collapse. Since the vacuum (it fills any de Sitter space) stays in
inflation, we will call such a collapse inflationary collapse to differen-
tiate it from gravitational collapse (it occurs in a Schwarzschild space),
while r=R∗

√
6 (5.77) will be referred to as the inflationary radius, rinf .

Then the collapsed region of a de Sitter space, which is under the in-
flationary radius, will be referred to as an inflationary collapsar, or,
simply, an inflanton.

Inside an inflanton we have K > 0, so the three-dimensional observ-
able curvature is C < 0. In this case, the vacuum density is negative
(the inflationary pressure is positive, hence, the vacuum compresses)
and λ> 0, so there are non-Newtonian forces of repulsion. This means
that an inflationary collapsar (inflanton) is filled with the vacuum hav-
ing a negative density, which is in the state of fragile balance between
the compressing pressure of the vacuum and the expanding forces of
non-Newtonian gravitation.

In a de Sitter space with K > 0, we have

dτ =
√
g00 dt =

√
1 − Kr2 dt =

√
1 −

r2

r2
inf

dt , (5.104)

so on the surface of an inflationary sphere the observable time flow stops
dτ= 0. Besides, the assumed space-time signature (+−−−), i.e., the con-
dition g00 > 0, is true at r< rinf .

Using the term “inflationary radius” we represent the de Sitter met-
ric with K > 0 as follows

ds2 =

1 − r2

r2
inf

 c2dt2 −
dr2

1 − r2

r2
inf

− r2
(
dθ2 + sin2θ dφ2

)
, (5.105)

then the chr.inv.-vector of the gravitational inertial force (5.74) has the
non-zero components

F1 =
c2

1 − r2

r2
inf

r
r2

inf

, F1 = c2 r
r2

inf

. (5.106)

Let us deduce formulae for the observable distances and the ob-
servable inflationary radius in an inflanton. To make our calculations
simpler, we assume θ= const and φ= const, i.e., out of all three spatial
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directions only the radial direction will be considered. Then the observ-
able three-dimensional interval is

σ =

∫ √
h11 dr =

∫
dr

√
1 − Kr2

= rinf arcsin
r

rinf
+ const, (5.107)

so the observable inflationary radius is constant

σinf =

∫ rinf

0

dr
√

1 − Kr2
=
π

2
rinf . (5.108)

In a space with the Schwarzschild metric, which we considered in
the previous section, §5.6, a collapsar is a collapsed compact mass,
which produces the curvature of the space as a whole. An ordinary
observer, whose home is a Schwarzschild space, stays always outside
gravitational collapsars.

In a de Sitter space, a collapsar is the vacuum that fills the entire
space, and the surface of the collapsar has a radius equal to the space cur-
vature radius. Therefore, an ordinary observer, whose home is a de Sit-
ter space, stays always under the surface of an inflationary collapsar and,
therefore, he “watches” the inflationary collapsar from within.

To look beyond an inflationary collapsar, we consider the de Sitter
metric with K > 0 (5.105) for distances r> rinf . Considering the radial
direction, in the coordinates associated with an ordinary observer (the
“internal” coordinates of the collapsar), we obtain

ds2 = −

 r2

r2
inf

− 1

 c2dt2 +
dr2

r2

r2
inf
− 1

, (5.109)

or, from the point of view of an observer, who is located outside the
collapsar (in the “external” coordinates r= c t̃ and ct= r̃), we have

ds2 =
c2dt̃ 2

c2 t̃ 2

r2
inf
− 1
−

c2 t̃ 2

r2
inf

− 1

 dr̃2. (5.110)

5.8 Conclusions

At a low density of matter (as observed, 5–10 × 10−30 gram/cm3 in the
Metagalaxy, i.e., the space is nearly empty), we can assume that the
energy-momentum tensor is Tαβ ∼ gαβ. In this case the Einstein equa-
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tions take the form Rαβ = kgαβ, where k= const. This case was stud-
ied in detail by Petrov [29, 30]. He called this kind of spaces Einstein
spaces. According to Gliner [32, 33], who studied the algebraic struc-
ture of the energy-momentum tensor, a special type of the tensor can be
outlined: Tαβ = µgαβ, where µ= const is the density of matter. It charac-
terizes a vacuum-like state of matter. He called this state of matter the
µ-vacuum. Gliner had also showed that a space filled with the µ-vacuum
is an Einstein space.

We have disclosed the physical sense of the energy-momentum ten-
sor of the vacuum T̆αβ = λgαβ and that of the µ-vacuum Tαβ = µgαβ. We
have also deduced the formulae for the physically observable properties
of the vacuum and the µ-vacuum, such as their density, momentum den-
sity and stress-tensor. We have also showed that the vacuum is a homo-
geneous, non-viscous, non-emitting and inflating (expanding at a pos-
itive density) medium. Proceeding from Petrov’s studies and Gliner’s
studies and taking into account the deduced energy-momentum tensor
of the vacuum (and, hence, the physical properties of the vacuum) we
have suggested a “geometrical” classification of matter according to the
energy-momentum tensor. We called it the T-classification of matter:
— The emptiness— the state, in which the energy-momentum tensor

of matter is zero (Tαβ = 0), and non-Newtonian gravitation fields
are absent (λ= 0);

— The physical vacuum (or, simply, the vacuum) — the state, in
which substance is absent (Tαβ = 0), but there are non-Newtonian
gravitational fields (λ, 0);

— The µ-vacuum Tαβ = µgαβ, µ= const — a vacuum-like state of
matter;

— Substance Tαβ , 0, Tαβ / gαβ — the state that includes ordinary
matter and electromagnetic field.

Routine experience shows that: the density of matter in our Universe
is positive. With a positive density of the vacuum, the cosmological
term is λ < 0, i.e., non-Newtonian gravitational forces are the forces of
attraction, and its inflation pressure is negative (the vacuum expands).

Considering spaces filled exclusively with the vacuum (and no sub-
stance inside), such as a de Sitter space, we have found that the collapse
condition (g00 = 0) is realized therein in the form of a collapsed re-
gion that we called an inflationary collapsar, or an inflanton. Inside an
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inflanton, there is λ> 0, i.e., the vacuum density is negative, the pres-
sure is positive, and non-Newtonian gravitational forces are the forces
of repulsion that cause the inflanton to exist in an equilibrium of the
compressing pressure of the vacuum and the expanding forces of non-
Newtonian gravitation.



Chapter 6 The Mirror Universe

6.1 Introducing the concept of the mirror world

As we mentioned in §5.1, the attempts to represent our Universe and
the mirror Universe as two spaces with positive and negative curvature
failed: even when considering a space of the de Sitter metric, which is
one of the simplest space-time metrics, trajectories in a positive curva-
ture de Sitter space are substantially different from those in its negative
curvature twin (see Chapter VII in Synge’s book [35]).

On the other hand, many researchers, beginning with Dirac, intu-
itively predicted that the mirror Universe (as the antipode of our Uni-
verse) should be sought not in a space with the opposite sign of the space
curvature, but in a space where particles have masses and energies with
the opposite sign. That is, since the masses of particles in our Universe
are positive, then particles in the mirror Universe must be obviously
negative.

Joseph Weber [28] wrote that neither Newton’s law of gravitation
nor the relativistic theory of gravitation ruled out the existence of neg-
ative masses; rather, our empirical experience says that they have never
been observed. Both Newton’s theory of gravitation and Einstein’s Gen-
eral Theory of Relativity predicted negative mass behaviour quite differ-
ent from what electrodynamics prescribes for negative charges. For two
bodies, one with a positive mass and the other with a negative mass,
but equal in magnitude, one would expect the positive mass to attract
the negative mass and the negative mass to repulse the positive mass, so
that one would chase the other! If the motion occurs along a line con-
necting the centres of two bodies, then such a system will move with a
constant acceleration. This problem was studied by Bondi [42]. Assum-
ing that the gravitational mass of the positron is negative (observations
show that its inertial mass is positive) and using the methods of Quan-
tum Electrodynamics, Schiff found that there is a difference between the
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inertial mass of the positron and its gravitational mass. The difference
turned out to be much larger than the error of the Eötvös experiment,
which showed the equality of gravitational and inertial mass [43]. As a
result, Schiff arrived at the conclusion that a negative gravitational mass
in the positron cannot exist (see Chapter 1, §2 in Weber’s book [28]).

Besides, the “co-habitation” of positive and negative masses in the
same space-time region would cause ongoing annihilation. The possible
consequences of the “mixed” existence of particles, having both positive
and negative masses, were also studied by Terletskii [44, 45].

Therefore, the idea of the mirror Universe as a world of negative
masses and energies faced two obstacles:

a) The experimentum crucis that would point directly at the exchange
interactions between our Universe and the mirror Universe;

b) The absence of a theory that would clearly explain the separation
of the worlds with positive and negative masses as different space-
time regions.

In this section, §6.1, we are going to tackle the second (theoretical)
part of the problem.

Let us apply the term “mirror properties” to the space-time metric.
To do this, write the square of the space-time interval in the chr.inv.-
form

ds2 = c2dτ2 − dσ2, (6.1)

where
dσ2 = hik dxidxk, (6.2)

dτ =
(
1 −

w
c2

)
dt −

1
c2 vi dxi =

(
1 −

w + vi ui

c2

)
dt . (6.3)

From here we see that the physically observable elementary spatial
interval (6.2) is the square function of the elementary spatial increments
dxi. The spatial coordinates xi are all equal, so there is no principal
difference between the translational motion to the right or to the left, up
or down. Therefore, we will no longer consider mirror reflections with
respect to spatial coordinates.

Time is a different thing. The physically observable time τ for an or-
dinary observer always flows from the past to the future, so that dτ > 0.
But there are two cases, in which the observable time stops. At first, this
is possible in the ordinary space-time under the condition of collapse.
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Secondly, this happens in the zero-space — the completely degenerate
four-dimensional space-time. Therefore, the state of an observer, whose
own observable time stops, can be regarded to be transitional, i.e., un-
available under ordinary conditions.

We will consider the problem of the mirror Universe for both dτ > 0
and dτ= 0. In the latter case, the analysis will be done separately for
collapsed regions of the ordinary space-time and for those in the zero-
space. We start the analysis from the ordinary case, where dτ > 0. From
the formula for the physically observable time (6.3), it is obvious that
the condition dτ > 0 is true if

w + vi ui < c2. (6.4)

If the space does not rotate (vi = 0), then the above formula trans-
forms intow< c2, which corresponds to the space-time structure outside
the state of collapse.

Then ds2 (6.1) can be expanded as follows

ds2=

(
1 −

w
c2

)2
c2dt2 − 2

(
1 −

w
c2

)
vi dxidt−

− hik dxidxk +
1
c2 vi vk dxidxk,

(6.5)

on the other hand

ds2 = c2dτ2 − dσ2 = c2dτ2
(
1 −

v2

c2

)
, v2 = hik vivk. (6.6)

Let us divide both sides of the formula for ds2 (6.5) by the next
quantities, according to the kind of particle trajectory:
1) c2dτ2

(
1− v2

c2

)
, if the space-time interval is real ds2 > 0;

2) c2dτ2, if the space-time interval is equal to zero ds2 = 0;
3) −c2dτ2

(
v2

c2 − 1
)
, if the interval is imaginary ds2 < 0.

As a result, in all three cases we obtain the same square equation
with respect to the function of the “true coordinate time” t dependent on
the physically observable time τ registered by the observer. The square
equation has the form(

dt
dτ

)2

−
2 vi vi

c2
(
1 − w

c2

) dt
dτ
+

1(
1 − w

c2

)2

(
1
c4 vi vk vivk − 1

)
= 0 , (6.7)
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which has two solutions(
dt
dτ

)
1
=

1

1 − w
c2

(
1
c2 vi vi + 1

)
, (6.8)

(
dt
dτ

)
2
=

1

1 − w
c2

(
1
c2 vi vi − 1

)
. (6.9)

Integrating t with respect to τ, we obtain

t =
1
c2

∫
vi dxi

1 − w
c2

±

∫
dτ

1 − w
c2

+ const, (6.10)

which can be easily integrated, if the space does not rotate and the gravi-
tational potential is w= 0. Then the integral is t=±τ+ const. The right
choice of the initial conditions can make the integration constant equal
to zero. In this case, we obtain the solution

t = ±τ , τ > 0 , (6.11)

which graphically represents two beams, which are the mirror reflec-
tions of each other with respect to τ > 0. We can say that here, the ob-
server’s own time serves as a mirror membrane, the mirror surface of
which separates two worlds: one with the direct flow of the coordinate
time* from the past to the future t= τ, and the other, mirror world, with
the reverse flow of the coordinate from the future to the past t=−τ.

Noteworthy, the world with the reverse flow of time is not like a
videotape being rewound. Both worlds are quite equal, but for an ordi-
nary observer the mentioned time coordinate in the mirror Universe is
negative. The mirror surface of the membrane in this case only reflects
the time flow, but does not affect it.

Now we assume that the space does not rotate vi = 0, but the gravi-
tational potential is not zero w, 0. Then we have

t = ±
∫

dτ

1 − w
c2

+ const. (6.12)

*The physically observable time τ registered by any observer everywhere flows
from the past to the future, so the condition dτ > 0 is true in the reference frame as-
sociated with any observer.
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If the gravitational potential is weak (w≪ c2), then the obtained
integral (6.12) becomes

t = ±
(
τ +

1
c2

∫
w dτ

)
= ± (τ + ∆t) , (6.13)

where ∆t is a correction that takes into account the potential field w.
The quantity w can denote any scalar potential field — either a field of
Newtonian potential or a field of non-Newtonian gravitation.

If the gravitational field is strong, then the integral has the form
(6.12). The stronger the field potential w, the faster the coordinate time
flow (6.12). In the limiting case, where w= c2, we have t→∞. On the
other hand, at w= c2 collapse occurs dτ= 0. We will consider this case
below, but for now we are still assuming that w< c2.

Let us consider the coordinate time in a Schwarzschild space and a
de Sitter space. If the potential w describes a Newtonian gravitational
field (a Schwarzschild space), then

t = ±
∫

dτ

1 − GM
c2r

= ±

∫
dτ

1 − rg
r

, (6.14)

i.e., the closer we approach the gravitational radius associated with the
mass M, the greater the difference between the coordinate time and the
physically observable time registered by the observer. If the potential w
describes a non-Newtonian gravitational field (a de Sitter space), then

t = ±
∫

dτ√
1 − λ r2

3

= ±

∫
dτ√

1 − r2

r2
inf

, (6.15)

which means that the closer the measured photometric distance r to the
inflationary radius in the space, the faster the coordinate time flow. In
the limiting case, where r→ rinf , we have t→∞.

Therefore, in a space that does not rotate, but is filled with a gravi-
tational field, the coordinate time flow is faster when the field potential
is stronger. This is true both in a Newtonian gravitational field and in a
non-Newtonian gravitational field.

Let us now consider a general case, where the space rotates and is
filled with a gravitational field. Then the coordinate time t has the form
(6.10), which includes:
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a) The “rotational” time determined by the term vi dxi, which has the
dimension of rotation momentum divided by unit mass;

b) The ordinary coordinate time, linked to the physically observable
time registered by the observer.

From the integral for t (6.10), we see that the “rotational” time, pro-
duced by the space rotation, exists independently from the observer be-
cause it does not depend on τ. For an observer, who rests on the surface
of the Earth (anywhere apart from the poles), the “rotational” time can
be interpreted as the time determined by the rotation of the planet around
its axis. The “rotational” time always exists irrespective of whether the
observer records it at this particular location or not. The regular coordi-
nate time is linked to our presence (it depends on the registered time τ)
and to the gravitational field at the point of observation (in particular,
to the field of the Newtonian potential).

Noteworthy, with vi , 0, the time coordinate t at the initial moment
of observation (when the physically observable time registered by the
observer is τ0 = 0) is not zero.

Representing the integral for t (6.10) as

t =
∫ 1

c2 vi dxi ± dτ

1 − w
c2

, (6.16)

we obtain that the quantity under the integral sign is:
1) Positive, if 1

c2 vi dxi >∓dτ ;
2) Zero, if 1

c2 vi dxi =±dτ ;
3) Negative, if 1

c2 vi dxi <∓dτ.
Hence, the coordinate time t of an object that we observe stops, if

the scalar product of the linear velocity with which the space rotates and
the observable velocity of the object is vi vi =±c2. This happens, if the
numerical values of both velocities equal to the velocity of light, and
they are either co-directed or oppositely directed.

A region of the space-time, where the condition vi vi =±c2 is true
and, hence, the coordinate time stops for a real observer, is the mirror
membrane separating two regions of the space-time — the region with
the direct flow of the coordinate time and the region with the reverse co-
ordinate time flow. Obviously, no one observer under ordinary physical
conditions in an Earth-bound laboratory can accompany such a space.
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We will refer to the space-time region, where coordinate time takes
negative numerical values as the mirror space.

Let us analyse the properties of particles that inhabit the mirror
space, in comparison with the properties of particles located in the or-
dinary space, where the time coordinate is always positive.

The four-dimensional momentum vector of a mass-bearing particle
having a non-zero rest-mass m0 is

Pα = m0
dxα

ds
, (6.17)

the chr.inv.-projections of which are

P0
√
g00
= m

dt
dτ
= ±m , Pi =

m
c

vi, (6.18)

where “plus” stands for the direct coordinate time flow, and “minus”
stands for the reverse coordinate time flow with respect to the physically
observable time registered by the observer. The square of Pα is

PαPα = gαβ PαPβ = m2
0 , (6.19)

while its length is ∣∣∣ √PαPα
∣∣∣ = m0 . (6.20)

We see that any particle having a non-zero rest-mass, being a four-
dimensional object, is projected onto the observer’s time line as a dipole
consisting of a positive mass +m and a negative mass −m. But when
the vector Pα is projected onto the spatial section, we obtain a single
projection — the particle’s three-dimensional observable momentum
pi =mvi. In other words, each observable particle with a positive rela-
tivistic mass has its own mirror twin with the same negative mass: the
particle and its mirror twin are only different by the sign of the mass,
while the three-dimensional momenta of both particles are positive.

Similarly, for the four-dimensional wave vector

Kα =
ω

c
dxα

dσ
= k

dxα

dσ
, (6.21)

which describes a massless particle, the chr.inv.-projections are

K0
√
g00
= ±k , Ki =

k
c

ci. (6.22)
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This means that any massless particle, as a four-dimensional object,
exists also in the two states: in our world (the direct flow of time) it is
a massless particle with a positive frequency, while in the mirror world
(the reverse flow of time) it is a massless particle with the same negative
frequency.

Let us define the material Universe as the four-dimensional space
(space-time) filled with a substance and fields. Then, since any particle
is a four-dimensional dipole object, we can consider the material Uni-
verse as a four-dimensional dipole object that exists in the two states:
our Universe, inhabited by particles with positive masses and frequen-
cies, and as its mirror twin — the mirror Universe, where masses and
frequencies of particles are negative, while the three-dimensional ob-
servable momentum remains positive.

On the other hand, our Universe and the mirror Universe are merely
two different regions of the same four-dimensional space-time.

For instance, when analysing the properties of the Universe as a
whole, we neglect Newtonian fields, produced by occasional islands of
substance, so we assume the basic four-dimensional space of our Uni-
verse to be a de Sitter space with a negative four-dimensional curvature,
while its three-dimensional observable curvature is positive (see §5.5).
Hence, we can assume that our Universe as a whole is a region of the
de Sitter space with the negative four-dimensional curvature, where the
time coordinate is positive as well as the masses and frequencies of par-
ticles located in the region. Besides, vice versa, the mirror Universe is a
region of the same de Sitter space, where the time coordinate is negative
as well as the masses and frequencies of particles located in it.

The space-timemembrane that separates our Universe from the mir-
ror Universe in the space-time, does not allow them to “mix”, thereby
preventing their total annihilation. This membrane will be discussed
below, in the end.

Let us consider the dipole structure of the Universe under the con-
dition dτ= 0, i.e., the collapsed regions of the ordinary space-time as
well as the completely degenerate space-time region (zero-space).

First, as we have shown, the condition dτ= 0 is true in collapsed
regions of the ordinary (non-degenerate) space-time, provided that the
space is holonomic (it does not rotate). In this case,

dτ =
(
1 −

w
c2

)
dt = 0 . (6.23)
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This condition is true for collapse of any kind, i.e., for the gravita-
tional fields of any kind, including the fields of a non-Newtonian grav-
itational potential. At dτ= 0 (6.23), the four-dimensional metric is

ds2 = −dσ2 = −hik dxidxk = gik dxidxk = gik uiukdt2, (6.24)

hence, in this case the absolute value of the interval ds is

|ds | = idσ = i
√

hik uiuk dt = iudt , u2 = hik uiuk, (6.25)

therefore, the four-dimensional momentum vector of a particle that is
located on the surface of a collapsar is

Pα = m0
dxα

dσ
, dσ = udt , (6.26)

and its square is
PαPα = gαβ PαPβ = −m2

0 , (6.27)

hence, the length of the vector Pα (6.26) is imaginary∣∣∣ √PαPα
∣∣∣ = im0 . (6.28)

The latter, in particular, means that the surface of a collapsar is
inhabited by particles with imaginary rest-masses. But, at the same
time, this does not mean that superluminal particles (tachyons) should
be found there. This is because the rest-masses of tachyons are real
(in that time they are ordinary particles), but their relativistic masses
become imaginary only after the particles accelerate to superluminal
velocities thus become tachyons.

On the surface of any collapsar the term “observable velocity” is
void, because the physically observable time registered by an ordinary
observer stops on the surface (dτ= 0).

The components of the four-dimensional momentum vector of a par-
ticle on the surface of a collapsar (6.26), can be formally written as

P0 =
m0c

u
, Pi =

m0

u
ui. (6.29)

We cannot observe such a particle, because the observable time
stops on the surface of a collapsar. On the other hand, the velocity
ui = dx i

dt , found in this formula, is a coordinate velocity; it does not de-
pend on the observer’s measured time that stops there. Hence, we can
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interpret the spatial vector Pi =
m0
u ui as the coordinate momentum of

the particle, and the quantity m0
u c3 can be interpreted as the particle’s

energy. The energy has only one sign here, hence, the surface of any
collapsar as a four-dimensional region is not a dipole four-dimensional
object, presented in the form of two mirror twins. This means that the
surface of any collapsar, irrespective of its Newtonian or non-Newtonian
nature, exists in a single state.

On the other hand, the surface of a collapsar (g00 = 0) can be re-
garded as amembrane, which separates the four-dimensional space-time
regions outside the state of collapse and under the collapse state. Out-
side the state of collapse, we have g00 > 0, so the observer’s measured
time τ is real. Under the collapse state, we have g00 < 0, hence τ is imag-
inary. When an ordinary observer, when entering a collapsar, crosses
its surface, his measured time is subjected to a 90◦ “turn”, changing its
rôle to that of the measured spatial coordinates.

The term “light-like particle” is nonsense on the surface of a col-
lapsar. This is because dσ= cdτ for light-like particles by definition,
hence, on the surface of a collapsar (dτ= 0) for such particles we have

u =
√

hik uiuk =

√
hik dxidxk

dt2 =
dσ
dt
=

cdτ
dt
= 0 . (6.30)

Secondly, the physically observable time registered by the observer
stops (dτ= 0) in the completely degenerate space-time (zero-space),
since there, by definition, dτ= 0 and dσ= 0. As we have shown in the
previous book [19], the above degeneration conditions can be written in
the following expanded form as follows

w + vi ui = c2, gik uiuk = c2
(
1 −

w
c2

)2
. (6.31)

Particles inherent in the completely degenerate space-time (called
zero-particles) have zero relativistic mass m= 0, but non-zero masses
M (1.79) and non-zero corresponding momenta pi

M =
m

1 − 1
c2

(
w + vi ui) , pi = Mui, (6.32)

which are not sign-alternate quantities.
Therefore, mirror twins are only found in the ordinary matter —

these are massless and mass-bearing particles, which are not in the state
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of collapse. Collapsed objects in the ordinary space-time (gravitational
collapsars and inflationary collapsars) do not have the property ofmirror
dipoles, they therefore are common objects for our Universe and the
mirror Universe. Zero space objects, since they also do not have the
property of mirror dipoles, lie outside the basic space-time due to the
complete degeneration of the metric. It is possible to enter such “neutral
zones”, which are on the surface of collapsed objects in the ordinary
space-time and in the zero-space, from either our Universe (where the
coordinate time is positive) or themirror Universe (where the coordinate
time is negative).

6.2 The conditions to move through the membrane, to the mirror
world

Now we are going to discuss the question of the membrane that sepa-
rates our Universe from the mirror Universe in the space-time, thereby
preventing the total annihilation of all particles with negative and posi-
tive masses.

In our Universe, we have dt> 0, and dt< 0 is true in the mirror Uni-
verse. Hence, the membrane is a region of the space-time, where dt= 0
(the coordinate time stops). Mathematically, this means

dt
dτ
=

1

1 − w
c2

(
1
c2 vi vi ± 1

)
= 0 , (6.33)

which can also be presented as the physical condition

dt =
1

1 − w
c2

(
1
c2 vi dxi ± dτ

)
= 0 . (6.34)

The latter notation is more versatile, because it is applicable not
only to the space-time of General Relativity, but also to a generalized
space-time, where the total degeneration of the metric is possible.

Inside the membrane, the conditions t= const and dt= 0, in accor-
dance with (6.34), are determined by the formula

vi dxi ± c2dτ = 0 , (6.35)

which can be also written in the form

vi vi = ± c2. (6.36)
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The above condition can be represented as follows

vi vi = |vi | |vi | cos
(
vi; vi) = ± c2. (6.37)

This condition is satisfied, if the numerical values of the velocities
vi and vi are equal to the velocity of light and are either co-directed
(“plus”) or oppositely directed (“minus”).

Therefore, from a physical point of view, the membrane that we are
talking about is a space that is in motion with the velocity of light and,
at the same time, rotates with the velocity of light. So, the membrane is
a world of light-like spiral trajectories. It is possible that such a space is
inhabited by particles having the helicity property (e.g., massless light-
like particles — photons).

Having dt= 0 substituted into the formula for ds2, we obtain the
space metric inside the membrane

ds2 = gik dxidxk, (6.38)

which is the same as the metric on the surface of a collapsar. The above
metric is a particular case of a space-time metric with the signature
(+−−−). Therefore, ds2 inside the membrane is always negative.

This means that, in a region of the four-dimensional space-time,
which serves the membrane between our Universe and the mirror Uni-
verse, the four-dimensional interval is space-like.

The difference from the space-like metric on the surface of a collap-
sar (6.24) is that the space on the surface of a collapsar does not rotate,
so there is gik =−hik, while in the internal space of the membrane we
have gik =−hik +

1
c2 vi vk (1.18). Or, in other words, inside the membrane

we have the metric

ds2 = gik dxidxk = − hik dxidxk +
1
c2 vi vk dxidxk, (6.39)

which is space-like due to the space rotation (there is vi dxi =±c2dτ).
As a result, an ordinary mass-bearing particle (irrespective of the

sign of its mass) in its “natural” form cannot pass through the mem-
brane: this region of the space-time is inhabited by light-like particles
travelling along light-like spirals.

On the other hand, the limiting case of particles with m> 0 or m< 0
are particles with zero relativistic mass m= 0. From a geometric point
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of view, the region, in which such particles exist, is tangential to the
regions inhabited by particles with either m> 0 or m< 0. This means
that zero-mass particles can have exchange interactions with either our-
world particles m> 0 or mirror-world particles m< 0.

Particles with zero relativistic mass, by definition, exist in a region
of the space-time, where ds2 = 0 and c2dτ2 = dσ2 = 0. Equating ds2 in-
side the membrane (6.38) to zero, we obtain

ds2 = gik dxidxk = 0 , (6.40)

so this condition satisfies in the two cases:
1) All numerical values dxi are zeroes, so dxi = 0;
2) The three-dimensional metric is degenerate g̃= det ∥gik∥= 0.
The first case takes place in the ordinary space-time under the limit-

ing condition on the surface of a collapsar, where all its surface shrinks
into a point (dxi = 0). In this case, the metric on the collapsar’s surface,
according to ds2 =−hik dxidxk = gik dxidxk (6.24), becomes zero.

The second case takes place on the surface of a collapsar located in
the zero-space: since the condition gik dxidxk =

(
1− w

c2

)2
c2dt2 is true

there, then at w= c2 we have always gik dxidxk = 0.
The first case is asymptotic, so it never takes place in reality. There-

fore, we can expect that “middlemen” in the exchange between our Uni-
verse and the mirror Universe are those particles with zero relativistic
mass, which inhabit the surface of the collapsars located in the com-
pletely degenerate space-time. In other words, the mentioned “middle-
men” are those zero-particles that are inherent in the surface of zero-
space collapsars.

6.3 Conclusions

So we have shown that our Universe is the observable region of the
space-time, where time coordinate is positive, thus all particles have
positive masses and energies. The mirror Universe is the region of the
space-time, in which, from the viewpoint of an ordinary observer, time
coordinate is negative and all particles have negative masses and ener-
gies. From the viewpoint of an our-world observer, the mirror Universe
is the world with the reverse flow of time, where particles travel from
the future to the past with respect to us.
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These two worlds, our Universe and the mirror Universe, are sep-
arated by the membrane — the region of the space-time, inhabited by
light-like particles that travel along light-like spirals. On the scale of el-
ementary particles, such a space can be home to light-like particles that
have helicity (e.g., photons). The mentioned membrane prevents mix-
ing positive-mass and negative-mass particles, so it prevents their to-
tal annihilation. The “middlemen” in the exchange interaction between
our world and the mirror world can be particles with zero relativistic
masses (zero-particles) under the physical conditions on the surface of
the collapsars located in the completely degenerate space-time (zero-
space collapsars).
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