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SPECIAL REPORT

Re-Identification of the Many-World Background of Special Relativity as
Four-World Background. Part I.

Akindele O. Joseph Adekugbe

Center for The Fundamental Theory, P. O. Box 2575, Akure, Ondo State 340001, Nigeria.
E-mail: adekugbe@alum.mit.edu

The pair of co-existing symmetrical universes, referred to as our (or positive) universe
and negative universe, isolated and shown to constitute a two-world background for
the special theory of relativity (SR) in previous papers, encompasses another pair of
symmetrical universes, referred to as positive time-universe and negative time-universe.
The Euclidean 3-spaces (in the context of SR) of the positive time-universe and the
negative time-universe constitute the time dimensions of our (or positive) universe and
the negative universe respectively, relative to observers in the Euclidean 3-spaces of
our universe and the negative universe and the Euclidean 3-spaces of our universe and
the negative universe constitute the time dimensions of the positive time-universe and
the negative time-universe respectively, relative to observers in the Euclidean 3-spaces
of the positive time-universe and the negative time-universe. Thus time is a secondary
concept derived from the concept of space according to this paper. The one-dimensional
particle or object in time dimension to every three-dimensional particle or object in 3-
space in our universe is a three-dimensional particle or object in 3-space in the positive
time-universe. Perfect symmetry of natural laws is established among the resulting
four universes and two outstanding issues about the new spacetime/intrinsic spacetime
geometrical representation of Lorentz transformation/intrinsic Lorentz transformation
in the two-world picture, developed in the previous papers, are resolved within the larger
four-world picture in this first part of this paper.

1 Origin of time and intrinsic time dimensions

1.1 Orthogonal Euclidean 3-spaces

Let us start with an operational definition of orthogonal Eucl-
idean 3-spaces. Given a three-dimensional Euclidean space
(or a Euclidean 3-space) IE3 with mutually orthogonal straight
line dimensions x1, x2 and x3 and another Euclidean 3-space
IE03 with mutually orthogonal straight line dimensions x01, x02

and x03, the Euclidean 3-space IE03 shall be said to be orthog-
onal to the Euclidean 3-space IE3 if, and only if, each dimen-
sion x0 j of IE03; j = 1, 2, 3, is orthogonal to every dimension
xi; i = 1, 2, 3 of IE3. In other words, IE03 shall be said to be or-
thogonal to IE3 if, and only if, x0 j ⊥ xi; i, j = 1, 2, 3, at every
point of the Euclidean 6-space generated by the orthogonal
Euclidean 3-spaces.

We shall take the Euclidean 3-spaces IE3 and IE03 to be the
proper (or classical) Euclidean 3-spaces of classical mechan-
ics (including classical gravity), to be re-denoted by Σ′ and
Σ0′ respectively for convenience in this paper. The reason for
restricting to the proper (or classical) Euclidean 3-spaces is
that we shall assume the absence of relativistic gravity while
considering the special theory of relativity (SR) on flat space-
time, as shall be discussed further at the end of this paper.

Graphically, let us consider the Euclidean 3-space Σ′ with
mutually orthogonal straight line dimensions x1′, x2′ and x3′

as a hyper-surface to be represented by a horizontal plane

surface and the Euclidean 3-space Σ0′ with mutually orthog-
onal straight line dimensions x01′, x02′ and x03′ as a hyper-
surface to be represented by a vertical plane surface. The
union of the two orthogonal proper (or classical) Euclidean
3-spaces yields a compound six-dimensional proper (or clas-
sical) Euclidean space with mutually orthogonal dimensions
x1′, x2′, x3′, x01′, x02′ and x03′ illustrated in Fig. 1.

As introduced (as ansatz) in [1] and as shall be derived
formally in the two parts of this paper, the hyper-surface (or
proper Euclidean 3-space) Σ′ along the horizontal is underlied
by an isotropic one-dimensional proper intrinsic space de-
noted by φρ′ (that has no unique orientation in the Euclidean
3-space Σ′). The vertical proper Euclidean 3-space Σ0′ is like-
wise underlied by an isotropic one-dimensional proper intrin-
sic space φρ0′ (that has no unique orientation in the Euclidean
3-space Σ0′). The underlying intrinsic spaces φρ′ and φρ0′ are
also shown in Fig. 1.

Inclusion of the proper time dimension ct′ along the verti-
cal, normal to the horizontal hyper-surface (or horizontal Eu-
clidean 3-space) Σ′ in Fig. 1, yields the flat four-dimensional
proper spacetime (Σ′, ct′) of classical mechanics (CM), (in-
cluding classical gravitation), of the positive (or our) universe
and inclusion of the proper intrinsic time dimension φcφt′

along the vertical, normal to the proper intrinsic space φρ′

along the horizontal, yields the flat 2-dimensional proper in-
trinsic spacetime (φρ′, φcφt′) of intrinsic classical mechanics
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Fig. 1: Co-existing two orthogonal proper Euclidean 3-spaces
(considered as hyper-surfaces) and their underlying isotropic one-
dimensional proper intrinsic spaces.

(φCM), (including intrinsic classical gravitation), of our uni-
verse. The proper Euclidean 3-space Σ′ and its underlying
one-dimensional proper intrinsic space φρ′ shall sometimes
be referred to as our proper (or classical) Euclidean 3-space
and our proper (or classical) intrinsic space for brevity.

The vertical proper Euclidean 3-space Σ0′ and its underly-
ing one-dimensional proper intrinsic space φρ0′ in Fig. 1 are
new. They are different from the proper Euclidean 3-space
−Σ′∗ and its underlying proper intrinsic space −φρ′∗ of the
negative universe isolated in [1] and [2]. The Euclidean 3-
space −Σ′∗ and its underlying proper intrinsic space −φρ′∗ of
the negative universe are “anti-parallel” to the Euclidean 3-
space Σ′ and its underlying intrinsic space φρ′ of the positive
universe, which means that the dimensions −x1′∗, −x2′∗ and
−x3′∗ of −Σ′∗ are inversions in the origin of the dimensions
x1′, x2′ and x3′ of Σ′.

There are likewise the proper Euclidean 3-space −Σ0′∗

and its underlying proper intrinsic space −φρ0′∗, which are
“anti-parallel” to the new proper Euclidean 3-space Σ0′ and
its underlying proper intrinsic space φρ0′ in Fig. 1. Fig. 1
shall be made more complete by adding the negative proper
Euclidean 3-spaces −Σ′∗ and −Σ0′∗ and their underlying one-
dimensional intrinsic spaces −φρ′∗ and −φρ0′∗ to it, yielding
Fig. 2.

The proper Euclidean 3-space Σ′ with dimensions x1′, x2′

and x3′ and the proper Euclidean 3-space Σ0′ with dimen-
sions x01′, x02′ and x03′ in Fig. 2 are orthogonal Euclidean
3-spaces, which means that x0 j′ ⊥ xi′; i, j = 1, 2, 3, as de-
fined earlier. The proper Euclidean 3-space −Σ′∗ with dimen-
sions −x1′∗, −x2′∗ and−x3′∗ and the proper Euclidean 3-space
−Σ0′∗ with dimensions −x01′∗, −x02′∗ and −x03′∗ are likewise
orthogonal Euclidean 3-spaces.

Should the vertical Euclidean 3-spaces Σ0′ and −Σ0′∗ and

Fig. 2: Co-existing four mutually orthogonal proper Euclidean 3-
spaces and their underlying isotropic one-dimensional proper intrin-
sic spaces, where the rest masses in the proper Euclidean 3-spaces
and the one-dimensional intrinsic rest masses in the intrinsic spaces
of a quartet of symmetry-partner particles or object are shown.

their underlying isotropic intrinsic spaces φρ0′ and −φρ0′∗ ex-
ist naturally, then they should belong to a new pair of worlds
(or universes), just as the horizontal proper Euclidean 3-space
Σ′ and −Σ′∗ and their underlying one-dimensional isotropic
proper intrinsic spaces φρ ′ and −φρ ′∗ exist naturally and be-
long to the positive (or our) universe and the negative universe
respectively, as found in [1] and [2]. The appropriate names
for the new pair of universes with flat four-dimensional proper
spacetimes (Σ0′, ct0′) and (−Σ0′∗,−ct0′∗) of classical mechan-
ics (CM) and their underlying flat two-dimensional proper
intrinsic spacetimes (φρ0′, φcφt0′) and (−φρ0′∗, −φcφt0′∗) of
intrinsic classical mechanics (φCM), where the time dimen-
sions and intrinsic time dimensions have not yet appeared in
Fig. 2, shall be derived later in this paper.

As the next step, an assumption shall be made, which
shall be justified with further development of this paper, that
the four universes encompassed by Fig. 2, with flat four- di-
mensional proper spacetimes (Σ′, ct′), (−Σ′∗,−ct ′∗), (Σ0′, ct0′)
and (−Σ0′∗,−ct0′∗) and their underlying flat proper intrinsic
spacetimes (φρ ′, φcφt′), (−φρ′∗,−φcφt′∗), (φρ0′, φcφt0′) and
(−φρ0′∗,−φcφt0′∗) respectively, where the proper time and
proper intrinsic time dimensions have not yet appeared in
Fig. 2, exist naturally and exhibit perfect symmetry of state
and perfect symmetry of natural laws. Implied by this as-
sumption are the following facts:

1. Corresponding to every given point P in our proper Eu-
clidean 3-space Σ′, there are unique symmetry- partner
point P0, P∗ and P0∗ in the proper Euclidean 3-spaces
Σ0′, −Σ′∗ and −Σ0′∗ respectively;

2. Corresponding to every particle or object of rest mass
m0 located at a point in our proper Euclidean 3-space
Σ′, there are identical symmetry-partner particles or ob-
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jects of rest masses to be denoted by m0
0,−m∗0 and −m0

0
∗

located at the symmetry-partner points in Σ0′, −Σ′∗ and
−Σ0′∗ respectively, as illustrated in Fig. 2 already and

3. Corresponding to motion at a speed v of the rest mass
m0 of a particle or object through a point along a di-
rection in our proper Euclidean space Σ′, relative to an
observer in Σ′, there are identical symmetry- partner
particles or objects of rest masses m0

0,−m∗0 and −m0
0
∗ in

simultaneous motions at equal speed v along identical
directions through the symmetry-partner points in the
proper Euclidean 3-spaces Σ0′, −Σ′∗ and −Σ0′∗ respec-
tively, relative to identical symmetry-partner observers
in the respective Euclidean 3-spaces.

4. A further requirement of the symmetry of state among
the four universes encompassed by Fig. 2 is that the
motion at a speed v of a particle along the X− axis,
say, of its frame in any one of the four proper Eu-
clidean 3-spaces, (in Σ0′, say), relative to an observer
(or frame of reference) in that proper Euclidean 3-space
(or universe), is equally valid relative to the symmetry-
partner observers in the three other proper Euclidean
3-spaces (or universes). Consequently the simultane-
ous rotations by equal intrinsic angle φψ of the intrinsic
affine space coordinates of the symmetry-partner par-
ticles’ frames φx̃′, φx̃0′, −φx̃′∗ and −φx̃0′∗ relative to
the intrinsic affine space coordinates of the symmetry-
partner observers’ frames φx̃, φx̃0, −φx̃∗ and −φx̃0∗ re-
spectively in the context of the intrinsic special theory
of relativity (φSR), as developed in [1], implied by item
3, are valid relative to every one of the four symmetry-
partner observers in the four proper Euclidean 3-spaces
(or universes). Thus every one of the four symmetry-
partner observers can validly draw the identical relative
rotations of affine intrinsic spacetime coordinates of
symmetry-partner frames of reference in the four uni-
verses encompassed by Fig. 2 with respect to himself
and construct φSR and consequently SR in his universe
with the diagram encompassing the four universes he
obtains.

Inherent in item 4 above is the fact that the four universes
with flat four-dimensional proper physical (or metric) space-
times (Σ′, ct′), (Σ0′, ct0′), (−Σ′∗, −ct′∗) and (−Σ0′∗,−ct0′∗) of
classical mechanics (CM) in the universes encompassed by
Fig. 2, (where the proper time dimensions have not yet ap-
peared), are stationary dynamically relative to one another at
all times. Otherwise the speed v of a particle in a universe
(or in a Euclidean 3-space in Fig. 2) relative to an observer
in that universe (or in that Euclidean 3-space), will be dif-
ferent relative to the symmetry-partner observer in another
universe (or in another Euclidean 3-space), who must obtain
the speed of the particle relative to himself as the resultant
of the particle’s speed v relative to the observer in the parti-
cle’s universe and the speed V0 of the particle’s universe (or

particle’s Euclidean 3-space) relative to his universe (or his
Euclidean 3-space). The simultaneous identical relative rota-
tions by equal intrinsic angle of intrinsic affine spacetime co-
ordinates of symmetry-partner frames of reference in the four
universes, which symmetry of state requires to be valid with
respect to every one of the four symmetry-partner observers
in the four universes, will therefore be impossible in the sit-
uation where some or all the four universes (or Euclidean 3-
spaces in Fig. 2) are naturally in motion relative to one an-
other.

Now the proper intrinsic metric space φρ0′ along the ver-
tical in the first quadrant is naturally rotated at an intrinsic
angle φψ0 = π

2 relative to the proper intrinsic metric space
φρ′ of the positive (or our) universe along the horizontal in
the first quadrant in Fig. 2. The proper intrinsic metric space
−φρ′∗ of the negative universe is naturally rotated at intrinsic
angle φψ0 = π relative to our proper intrinsic metric space
φρ′ and the proper intrinsic metric space −φρ0′∗ along the
vertical in the third quadrant is naturally rotated at intrinsic
angle φψ0 = 3π

2 relative to our proper intrinsic metric space
φρ′ in Fig. 2. The intrinsic angle of natural rotations of the
intrinsic metric spaces φρ0′,−φρ′∗ and −φρ0′∗ relative to φρ′

has been denoted by φψ0 in order differentiate it from the in-
trinsic angle of relative rotation of intrinsic affine spacetime
coordinates in the context of φSR denoted by φψ in [1].

The natural rotations of the one-dimensional proper in-
trinsic metric spaces φρ0′,−φρ′∗ and −φρ0′∗ relative to our
proper intrinsic metric space φρ′ at different intrinsic angles
φψ0 discussed in the foregoing paragraph, implies that the in-
trinsic metric spaces φρ0′, −φρ′∗ and −φρ0′∗ possess different
intrinsic speeds, to be denoted by φV0, relative to our intrin-
sic metric space φρ′. This is deduced in analogy to the fact
that the intrinsic speed φv of the intrinsic rest mass φm0 of
a particle relative to an observer causes the rotations of the
intrinsic affine spacetime coordinates φx̃′ and φcφt̃ ′ of the
particle’s intrinsic frame at equal intrinsic angle φψ relative
to the intrinsic affine spacetime coordinates φx̃ and φcφt̃ re-
spectively of the observe’s intrinsic frame in the context of
intrinsic special relativity (φSR), as developed in [1] and pre-
sented graphically in Fig. 8a of that paper.

Indeed the derived relation, sin φψ = φv/φc, between the
intrinsic angle φψ of inclination of the intrinsic affine space
coordinate φx̃′ of the particle’s intrinsic frame relative to the
intrinsic affine space coordinate φx̃ of the observer’s intrinsic
frame in the context of φSR, presented as Eq. (18) of [1], is
equally valid between the intrinsic angle φψ0 of natural ro-
tation of a proper intrinsic metric space φρ0′, say, relative to
our proper intrinsic metric space φρ′ in Fig. 2 and the implied
natural intrinsic speed φV0 of φρ0′ relative to φρ′. In other
words, the following relation obtains between φψ0 and φV0:

sin φψ0 = φV0/φc (1)

It follows from (1) that the intrinsic metric space φρ0′ nat-
urally possesses intrinsic speed φV0 = φc relative to our in-
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trinsic metric space φρ′, which is so since φρ0′ is naturally
inclined at intrinsic angle φψ0 = π

2 relative to φρ′; the proper
intrinsic metric space −φρ′∗ of the negative universe naturally
possesses zero intrinsic speed (φV0 = 0) relative to our proper
intrinsic metric space φρ′, since −φρ′∗ is naturally inclined at
intrinsic angle φψ0 = π relative to φρ′ and the intrinsic metric
space −φρ0′∗ naturally possesses intrinsic speed φV0 = −φc
relative to our intrinsic metric space φρ′, since −φρ0′∗ is nat-
urally inclined at φψ0 = 3π

2 relative to φρ′ in Fig. 2.
On the other hand, −φρ0′∗ possesses positive intrinsic

speed φV0 = φc relative to −φρ′∗, since −φρ0′∗ is naturally
inclined at intrinsic angle φψ0 = π

2 relative to −φρ′∗ and φρ0′

naturally possesses negative intrinsic speed φV0 = −φc rel-
ative to −φρ′∗, since φρ0′ is naturally inclined at φψ0 = 3π

2
relative to −φρ′∗ in Fig 2. These facts have been illustrated
in Figs. 10a and 10b of [1] for the concurrent open intervals
(− π2 , π2 ) and ( π2 ,

3π
2 ) within which the intrinsic angle φψ could

take on values with respect to 3-observers in the Euclidean
3-spaces Σ′ of the positive universe and −Σ′∗ of the negative
universe.

The natural intrinsic speed φV0 = φc of φρ0′ relative to
φρ′ will be made manifest in speed V0 = c of the Euclidean
3-space Σ0′ relative to our Euclidean 3-space Σ′; the natural
zero intrinsic speed (φV0 = 0) of the intrinsic space −φρ′∗ of
the negative universe relative to φρ′ will be made manifest in
natural zero speed (V0 = 0) of the Euclidean 3-space −Σ′∗

of the negative universe relative to our Euclidean 3-space Σ′

and the natural intrinsic speed φV0 = −φc of −φρ0′∗ relative
to φρ′ will be made manifest in natural speed V0 = −c of
the Euclidean 3-space −Σ0′∗ relative to our Euclidean 3-space
Σ′ in Fig. 2. By incorporating the additional information in
this and the foregoing two paragraphs into Fig. 2 we have
Fig. 3, which is valid with respect to 3-observers in our proper
Euclidean 3-spaces Σ′, as indicated.

There are important differences between the speeds V0 of
the Euclidean 3-spaces that appear in Fig. 3 and speed v of
relative motion of particles and objects that appear in the spe-
cial theory of relativity (SR). First of all, the speed v of rel-
ative motion is a property of the particle or object in relative
motion, which exists nowhere in the vast space outside the
particle at any given instant. This is so because there is noth-
ing (no action-at-a-distance) in relative motion to transmit the
velocity of a particle to positions outside the particle. On the
other hand, the natural speed V0 of a Euclidean 3-space is a
property of that Euclidean 3-space, which has the same mag-
nitude at every point of the Euclidean 3-space with or without
the presence of a particle or object of any rest mass.

The natural speed V0 of a Euclidean 3-space is isotropic.
This means that it has the same magnitude along every direc-
tion of the Euclidean 3-space. This is so because each dimen-
sion x0 j′; j = 1, 2, 3, of Σ0′ is rotated at equal angle ψ0 = π

2
relative to every dimension xi′; i = 1, 2, 3, of Σ′, (which im-
plies that each dimension x0 j′ of Σ0′ possesses speed V0 = c
naturally relative to every dimension xi′ of Σ′), thereby mak-

Fig. 3: Co-existing four mutually orthogonal proper Euclidean 3-
spaces and their underlying isotropic one-dimensional proper intrin-
sic spaces, where the speeds V0 of the Euclidean 3-spaces and the
intrinsic speeds φV0 of the intrinsic spaces, relative to 3-observers in
our proper Euclidean 3-space (considered as a hyper-surface along
the horizontal) in the first quadrant are shown.

ing Σ0′ an orthogonal Euclidean 3-space to Σ′. What should
be the natural velocity ~V0 of a Euclidean 3-space has com-
ponents of equal magnitude V0 along every direction and at
every point in that Euclidean 3-space. On the other hand,
the speed v of relative motion of a particle or object is not
isotropic because the velocity ~v of relative motion along a
direction in a Euclidean 3-space has components of differ-
ent magnitudes along different directions of that Euclidean 3-
space. Only the speed v = c of translation of light (or photon)
in space is known to be isotropic.

Now a material particle or object of any magnitude of rest
mass that is located at any point in a Euclidean 3-space ac-
quires the natural speed V0 of that Euclidean 3-space. Thus
the rest mass m0 of the particle or object located in our proper
Euclidean 3-space Σ′ possesses the spatially uniform natural
zero speed (V0 = 0) of Σ′ relative to every particle, object
or observer in Σ′ in Fig. 3. Likewise the rest mass m0

0 of a
particle or object located at any point in the proper Euclidean
3-space Σ0′ acquires the isotropic and spatially uniform nat-
ural speed V0 = c of Σ0′ relative to every particle, object or
observer in our Euclidean 3-space Σ′.

The rest mass −m∗0 located at any point in the proper Euc-
lidean 3-space −Σ′∗ of the negative universe acquires the spa-
tially uniform natural zero speed (V0 = 0) of −Σ′∗ relative to
all particles, objects and observers in our Euclidean 3-space
Σ′ and the rest mass −m0

0
∗ of a particle or object located at

any point in the proper Euclidean 3-space −Σ0′∗ acquires the
isotropic and spatially uniform natural speed V0 = −c of
−Σ0′∗ relative to all particles, objects and observers in our
Euclidean 3-space Σ′ in Fig. 3.

However, as deduced earlier, symmetry of state among
the four universes whose proper (or classical) Euclidean 3-
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spaces appear in Fig. 2 or 3 requires that the four universes
must be stationary relative to one another always. Then in
order to resolve the paradox ensuing from this and the fore-
going two paragraphs namely, all the four universes (or their
proper Euclidean 3-spaces in Fig. 2 or 3) are stationary rela-
tive to one another always (as required by symmetry of state
among the four universes), yet the two universes with flat
proper spacetimes (Σ0′, ct0′) and (−Σ0′∗,−ct0′∗) naturally pos-
sess constant speeds V0 = c and V0 = −c respectively relative
to the flat spacetime (Σ′, ct′) of our universe, we must con-
sider the constant speeds V0 = c and V0 = −c of the uni-
verses with the flat spacetimes (Σ0′, ct0′) and (−Σ0′∗,−ct0′∗)
respectively relative to our universe (or speeds V0 = c and
V0 = −c of the Euclidean 3-spaces Σ0′ and −Σ0′∗ respec-
tively relative to our Euclidean 3-space Σ′ in Fig. 3) as ab-
solute speeds of non-detectable absolute motion. This way,
although the two proper Euclidean 3-spaces Σ0′ and −Σ0′∗

naturally possess speeds V0 = c and V0 = −c respectively
relative to our proper Euclidean 3-space Σ′, the four proper
Euclidean 3-spaces encompassed by Fig. 2 or 3 are stationary
dynamically (or translation-wise) relative to one another, as
required by symmetry of state among the four universes with
the four proper Euclidean 3-spaces in Fig. 2 or Fig. 3.

The fact that the natural speed V0 = c of the proper Euc-
lidean 3-space Σ0′ relative to our proper Euclidean 3-space Σ′

or of the rest mass m0
0 in Σ0′ relative to the symmetry-partner

rest mass m0 in Σ′ is an absolute speed of non-detectable ab-
solute motion is certain. This is so since there is no relative
motion involving large speed V0 = c between the rest mass of
a particle in the particle’s frame and the rest mass of the par-
ticle in the observer’s frame, (where m0

0 is the rest mass of the
particle and Σ0′ in which m0

0 is in motion at speed V0 = c is
the particle’s frame, while m0 is the rest mass of the particle
located in the observer’s frame Σ′ in this analogy, knowing
that m0 and m0

0 are equal in magnitude).
The observer’s frame always contains special-relativistic

(or Lorentz transformed) coordinates and parameters in spe-
cial relativity. On the other hand, non-detectable absolute mo-
tion does not alter the proper (or classical) coordinates and
parameters, as in the case of the non-detectable natural abso-
lute motion at absolute speed V0 = c of m0

0 in Σ0′ relative to
m0 that possesses zero absolute speed (V0 = 0) in Σ′ in Fig. 3.

We have derived another important difference between the
natural speeds V0 of the Euclidean 3-spaces that appear in
Fig. 3 and the speeds v of relative motions of material par-
ticles and objects that appear in SR. This is the fact that the
isotropic and spatially uniform speed V0 of a Euclidean 3-
space is an absolute speed of non-detectable absolute motion,
while speed v of particles and objects is a speed of detectable
relative motion.

Thus the isotropic speed V0 = c acquired by the rest mass
m0

0 located in the proper Euclidean 3-space Σ0′ relative to its
symmetry-partner m0 and all other particles, objects and ob-
servers in our proper Euclidean 3-space Σ′ in Fig. 3 is a non-

detectable absolute speed. Consequently m0
0 in Σ0′ does not

propagate away at speed V0 = c in Σ0′ from m0 in Σ′ but
remains tied to m0 in Σ′ always, despite its isotropic abso-
lute speed c in Σ0′ relative to m0 in Σ′. The speed V0 = −c
acquired by the rest mass −m0

0
∗ in the proper Euclidean 3-

space −Σ0′∗ relative to its symmetry-partner rest mass m0 and
all other particles, objects and observers in our Euclidean
3-space Σ′ in Fig. 3 is likewise an absolute speed of non-
detectable absolute motion. Consequently −m0

0
∗ in −Σ0′∗ does

not propagate away at speed V0 = −c in −Σ0′∗ from m0 in Σ′

but remains tied to m0 in Σ′ always, despite the absolute speed
V0 = −c of −m0

0
∗ in −Σ0′∗ relative to m0 in Σ′.

On the other hand, the rest mass −m0
0
∗ in −Σ0′∗ possesses

positive absolute speed V0 = c and rest mass m0
0 in Σ0′ pos-

sesses negative absolute speed V0 = −c with respect to the
symmetry-partner rest mass −m∗0 and all other particles, ob-
jects and observers in −Σ′∗. This is so since the proper in-
trinsic space −φρ0′∗ underlying −Σ0′∗ is naturally rotated by
intrinsic angle φψ0 = π

2 relative to the proper intrinsic space
−φρ′∗ underlying −Σ′∗ and φρ0′ underlying Σ0′ is naturally
rotated by intrinsic angle φψ0 = 3π

2 relative to −φρ′∗, as men-
tioned earlier. Consequently −φρ0′∗ naturally possesses ab-
solute intrinsic speed φV0 = φc relative to −φρ′∗ and φρ0′

naturally possesses absolute intrinsic speed φV0 = −φc rel-
ative to −φρ′∗. These are then made manifest outwardly as
the absolute speed V0 = c of the Euclidean 3-space −Σ0′∗ and
absolute speed V0 = −c of the Euclidean 3-space Σ0′ respec-
tively relative to the Euclidean 3-space −Σ′∗ of the negative
universe.

Let the quartet of symmetry-partner particles or objects of
rest masses m0 in Σ′, m0

0 in Σ0′, −m∗0 in −Σ′∗ and −m0
0
∗ in −Σ0′∗

be located at initial symmetry-partner positions Pi, P0
i , P∗i

and P0
i
∗ respectively in their respective Euclidean 3-spaces.

Then let the particle or object of rest mass m0 in Σ′ be in mo-
tion at constant speed v along the x̃′−axis of its frame in our
proper Euclidean 3-space Σ′ relative to a 3-observer in Σ′.
The symmetry-partner particle or object of rest mass m0

0 in
Σ0′ will be in simultaneous motion at equal speed v along the
x̃0′−axis of its frame in Σ0′ relative to the symmetry-partner
observer in Σ0′; the symmetry-partner particle or object of
rest mass −m∗0 in −Σ′∗ will be in simultaneous motion at equal
speed v along the −x̃ ′∗−axis of its frame in −Σ′∗ relative to
the symmetry-partner 3-observer in −Σ′∗ and the symmetry-
partner particle or object of rest mass −m0

0
∗ in −Σ0′∗ will be in

simultaneous motion at equal speed v along the −x̃0′∗−axis of
its frame in −Σ0′∗ relative to the symmetry-partner 3-observer
in −Σ0′∗.

Thus after a period of time of commencement of mo-
tion, the quartet of symmetry-partner particles or objects have
covered equal distances along the identical directions of mo-
tion in their respective proper Euclidean 3-spaces to arrive at
new symmetry-partner positions P, P0, P∗ and P0∗ in their re-
spective proper Euclidean 3-spaces. This is possible because
the four Euclidean 3-spaces are stationary relative to one an-
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other always. The quartet of symmetry-partner particles or
objects are consequently located at symmetry-partner posi-
tions in their respective proper Euclidean 3-spaces always,
even when they are in motion relative to symmetry-partner
frames of reference in their respective proper Euclidean 3-
spaces.

The speed V0 = c of the proper Euclidean 3-space Σ0′

relative to our proper Euclidean 3-space Σ′ is the outward
manifestation of the intrinsic speed φV0 = φc of the intrin-
sic metric space φρ0′ underlying Σ0′ relative to our intrinsic
metric space φρ′ and relative to our Euclidean 3-space Σ′ in
Fig. 3. Then since V0 = c is absolute and is the same at
every point of the Euclidean 3-space Σ0′, the intrinsic speed
φV0 = φc of φρ0′ relative to φρ′ and Σ′ is absolute and is the
same at every point along the length of φρ0′. The intrinsic
speed φV0 = −φc of the intrinsic metric space −φρ0′∗ relative
to our intrinsic metric space φρ′ and relative to our Euclidean
3-space Σ′ is likewise an absolute intrinsic speed and is the
same at every point along the length of −φρ0′∗. The zero in-
trinsic speed (φV0 = 0) of the intrinsic metric space −φρ′∗ of
the negative universe relative to our intrinsic metric space φρ′

and relative to our Euclidean 3-space Σ′ is the same along the
length of −φρ′∗.

It follows from the foregoing paragraph that although the
proper intrinsic metric spaces φρ0′ and −φρ0′∗ along the verti-
cal possess intrinsic speeds φV0 = φc and φV0 = −φc respec-
tively, relative to our proper intrinsic metric space φρ′ and
relative to our Euclidean 3-space Σ′, the four intrinsic metric
spaces φρ′, φρ0′, −φρ′∗ and −φρ0′∗ in Fig. 3 are stationery
relative to one another always, since the intrinsic speeds φV0
= φc of φρ0′ and φV0 = −φc of −φρ′∗ relative to our intrinsic
metric space φρ′ and our Euclidean 3-space Σ′ are absolute
intrinsic speeds, which are not made manifest in actual intrin-
sic motion.

Likewise, although the intrinsic rest mass φm0
0 in φρ0′ ac-

quires the intrinsic speed φV0 = φc of φρ0′, it is not in in-
trinsic motion at the intrinsic speed φc along φρ0′, since the
intrinsic speed φc it acquires is an absolute intrinsic speed.
The absolute intrinsic speed φV0 = −φc acquired by the in-
trinsic rest mass −φm0

0
∗ in −φρ0′∗ is likewise not made mani-

fest in actual intrinsic motion of −φm0
0
∗ along −φρ0′∗. Conse-

quently the quartet of intrinsic rest masses φm0, φm0
0,−φm∗0

and −φm0
0
∗ of symmetry-partner particles or objects in the

quartet of intrinsic metric spaces φρ′, φρ0′, −φρ′∗ and −φρ0′∗,
are located at symmetry-partner points in their respective in-
trinsic spaces always, even when they are in intrinsic motions
relative to symmetry-partner frames of reference in their re-
spective Euclidean 3-spaces.

There is a complementary diagram to Fig. 3, which is
valid with respect to 3-observers in the proper Euclidean 3-
space Σ0′ along the vertical, which must also be drawn along
with Fig. 3. Now given the quartet of the proper physical (or
metric) Euclidean 3-spaces and their underlying one-dimen-
sional intrinsic metric spaces in Fig. 2, then Fig. 3 with the ab-

Fig. 4: Co-existing four mutually orthogonal proper Euclidean 3-
spaces and their underlying isotropic one-dimensional proper intrin-
sic metric spaces, where the speeds V0 of the Euclidean 3-spaces
and the intrinsic speeds φV0 of the intrinsic spaces, relative to 3-
observers in the proper Euclidean 3-space Σ0′ (considered as a
hyper-surface) along the vertical in the first quadrant are shown.

solute speeds V0 of the proper Euclidean 3-spaces and abso-
lute intrinsic speed φV0 of the proper intrinsic spaces assigned
with respect to 3-observers in the proper Euclidean 3-space Σ′

of the positive (or our) universe, ensues automatically.
On the other hand, the proper physical Euclidean 3-space

Σ0′ along the vertical in Fig. 2 possesses zero absolute speed
(V0 = 0) at every point of it and its underlying one- dimen-
sional intrinsic space φρ0′ possesses zero absolute intrinsic
speed (φV0 = 0) at every point along its length with respect
to 3-observers in Σ0′. This is so since φρ0′ must be considered
as rotated by zero intrinsic angle (φψ0 = 0) relative to itself
(or relative to the vertical) when the observers of interest are
the 3-observers in Σ0′. Then letting φψ0 = 0 in (1) gives zero
absolute intrinsic speed (φV0 = 0) at every point along φρ0′

with respect to 3-observers in Σ0′. The physical Euclidean
3-space Σ0′ then possesses zero absolute speed (V0 = 0) at
every point of it as the outward manifestation of φV0 = 0
at every point along φρ0′, with respect to 3-observers in Σ0′.
It then follows that Fig. 3 with respect to 3-observers in our
Euclidean 3-space Σ′ corresponds to Fig. 4 with respect to
3-observers in the Euclidean 3-space Σ0′.

It is mandatory to consider the intrinsic metric space φρ′

of the positive (or our) universe along the horizontal in the
first quadrant as naturally rotated clockwise by a positive in-
trinsic angle φψ0 = π

2 ; the intrinsic metric space −φρ0′∗ along
the vertical in the fourth quadrant as naturally rotated clock-
wise by a positive intrinsic angle φψ0 = π and the intrinsic
metric space −φρ′∗ of the negative universe along the hori-
zontal in the third quadrant as naturally rotated clockwise by
a positive intrinsic angle φψ0 = 3π

2 relative to φρ0′ along the
vertical in the first quadrant or with respect to 3-observers in
the Euclidean 3-space Σ0′, as indicated in Fig. 4. This way,
the positive signs of our proper intrinsic space φρ′ and of the
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dimensions x1′, x2′ and x3′ of our proper Euclidean 3-space
Σ′, as well as the positive signs of parameters in Σ′ in our
(or positive) universe in Fig. 3 are preserved in Fig. 4. The
negative signs of −φρ′∗,−Σ′∗ and of parameters in −Σ′∗ in the
negative universe in Fig. 3 are also preserved in Fig. 4, by
virtue of the clockwise sense of rotation by positive intrinsic
angle φψ0 of −φρ0′∗ and −φρ′∗ relative to φρ0′ or with respect
to 3-observers in Σ0′ in Fig. 4.

If the clockwise rotations of φρ′, −φρ0′∗ and −φρ′∗ rel-
ative to φρ0′ or with respect to 3-observers in Σ0′ in Fig. 4,
have been considered as rotation by negative intrinsic angles
φψ0 = − π2 , φψ0 = −π and φψ0 = − 3π

2 respectively, then the
positive sign of φρ′,Σ′ and of parameters in Σ′ of the posi-
tive (or our) universe in Fig. 3 would have become negative
sign in Fig. 4 and the negative sign of −φρ′∗ and −Σ′∗ and of
parameters in −Σ′∗ of the negative universe in Fig. 3 would
have become positive sign in Fig. 4. That is, the positions of
the positive and negative universes in Fig. 3 would have been
interchanged in Fig. 4, which must not be.

We have thus been led to an important conclusion that nat-
ural rotations of intrinsic metric spaces by positive absolute
intrinsic angle φψ0 (and consequently the relative rotations
of intrinsic affine space coordinates in the context of intrinsic
special relativity (φSR) by positive relative intrinsic angles,
φψ), are clockwise rotations with respect to 3-observers in
the proper Euclidean 3-spaces Σ0′ and −Σ0′∗ along the ver-
tical (in Fig. 4). Whereas rotation of intrinsic metric spaces
(and intrinsic affine space coordinates in the context of φSR)
by positive intrinsic angles are anti-clockwise rotations with
respect to 3-observers in the proper Euclidean 3-spaces Σ′ and
−Σ′∗ of the positive and negative universes along the horizon-
tal in Fig. 3.

The origin of the natural isotropic absolute speeds V0 of
every point of the proper Euclidean 3-spaces and of the nat-
ural absolute intrinsic speeds φV0 of every point along the
lengths of the one-dimensional proper intrinsic spaces with
respect to the indicated observers in Fig. 3 and Fig. 4, can-
not be exposed in this paper. It must be regarded as an out-
standing issue to be resolved elsewhere with further develop-
ment. Nevertheless, a preemptive statement about their origin
is appropriate at this point: They are the outward manifesta-
tions in the proper physical Euclidean 3-spaces and proper
intrinsic spaces of the absolute speeds with respect to the
indicated observers, of homogeneous and isotropic absolute
spaces (distinguished co-moving coordinate systems) that un-
derlie the proper physical Euclidean 3-spaces and their un-
derlying proper intrinsic spaces in nature, which have not yet
appeared in Figs. 3 and Fig. 4.

Leibnitz pointed out that Newtonian mechanics prescribes
a distinguished coordinate system (the Newtonian absolute
space) in which it is valid [3, see p. 2]. Albert Einstein said,
“Newton might no less well have called his absolute space
ether...” [4] and argued that the proper (or classical) physical
Euclidean 3-space (of Newtonian mechanics) will be impos-

sible without such ether. He also pointed out the existence of
ether of general relativity as a necessary requirement for the
possibility of that theory, just as the existence of luminiferous
ether was postulated to support the propagation of electro-
magnetic waves. Every dynamical or gravitational law (in-
cluding Newtonian mechanics) requires (or has) an ether. It
is the non-detectable absolute speeds of the ethers of classi-
cal mechanics (known to Newton as absolute spaces), which
underlie the proper physical Euclidean 3-spaces with respect
to the indicated observers in Fig. 3 and 4, that are made man-
ifest in the non-detectable absolute speeds V0 of the proper
Euclidean 3-spaces with respect to the indicated observers in
those figures. However this a matter to be formally derived
elsewhere, as mentioned above.

1.2 Geometrical contraction of the vertical Euclidean 3-
spaces to one-dimensional spaces relative to 3-obser-
vers in the horizontal Euclidean 3-spaces and con-
versely

Let us consider the x′y′−plane of our proper Euclidean 3-
space Σ′ in Fig. 3: Corresponding to the x′y′−plane of Σ′ is
the x0′y0′−plane of the Euclidean 3-space Σ0′. However since
Σ′ and Σ0′ are orthogonal Euclidean 3-spaces, following the
operational definition of orthogonal Euclidean 3-spaces at the
beginning of the preceding sub-section, the dimensions x0′

and y0′ of the x0′y0′−plane of Σ0′ are both perpendicular to
each of the dimensions x′ and y′ of Σ′. Hence x0′ and y0′ are
effectively parallel dimensions normal to the x′y′− plane of
Σ′ with respect to 3-observers in Σ′. Symbolically:

x0′⊥ x′ and y0′⊥ x′; x0′⊥y′ and y0′⊥y′ ⇒ x0′||y0′ (∗)

Likewise, corresponding to the x′z′−plane of Σ′ is the
x0′z0′−plane of Σ0′. Again the dimensions x0′ and z0′ of the
x0′z0′−plane of Σ0′ are both perpendicular to each of the di-
mensions x′ and z′ of the x′z′− plane of Σ′. Hence x0′ and y0′

are effectively parallel dimensions normal to the x′z′−plane
of Σ′ with respect to 3-observers in Σ′. Symbolically:

x0′⊥ x′ and z0′⊥ x′; x0′⊥z′ and z0′⊥z′ ⇒ x0′||z0′ (∗∗)

Finally, corresponding to the y′z′−plane of Σ′ is the y0′z0′-
plane of Σ0′. Again the dimensions y0′ and z0′ of the y0′z0′−
plane of Σ0′ are both perpendicular to each of the dimensions
y′ and z′ of the y′z′− plane of Σ′. Hence y0′ and z0′ are effec-
tively parallel dimensions normal to the y′z′−plane of Σ′ with
respect to 3-observers in Σ′. Symbolically:

y0′⊥y′ and z0′⊥y′; y0′⊥z′ and z0′⊥z′ ⇒ y0′||z0′ (∗ ∗ ∗)

Indeed x0′||y0′ and x0′||z0′ in (∗) and (∗∗) already implies
y0′||z0′ in (∗ ∗ ∗).

The combination of (∗), (∗∗) and (∗ ∗ ∗) give x0′||y0′||z0′

with respect to 3-observers in Σ′, which says that the mu-
tually perpendicular dimensions x0′, y0′ and z0′ of Σ0′ with

Adekugbe A.O.J. Re-Identification of the Many-World Background of Special Relativity as Four-World Background. Part I 9



Volume 1 PROGRESS IN PHYSICS January, 2011

Fig. 5: Given the two orthogonal proper Euclidean 3-spaces Σ0′ and
Σ′ of Fig. 1 then, (a) the mutually perpendicular dimensions of the
proper Euclidean 3-space Σ0′ with respect to 3-observers in it, are
naturally “bundle” into parallel dimensions relative to 3-observers
in our proper Euclidean 3-space Σ′ and (b) the mutually perpendic-
ular dimensions of our proper Euclidean 3-space Σ′ with respect to
3-observer in it are naturally “bundled” into parallel dimensions rel-
ative to 3-observers in the proper Euclidean 3-space Σ0′.

respect to 3-observers in Σ0′ are effectively parallel dimen-
sions with respect to 3-observers in our Euclidean 3-space Σ′.
In other words, the dimensions x0′, y0′ and z0′ of Σ0′ effec-
tively form a “bundle”, which is perpendicular to each of the
dimensions x′, y′ and z′ of Σ′ with respect to 3-observers in
Σ′ in Fig. 3. The “bundle” must lie along a fourth dimension
with respect to 3-observers in Σ′ consequently, as illustrated
in Fig. 5a, where the proper Euclidean 3-space Σ′ is consid-
ered as a hyper-surface represented by a horizontal plane sur-
face.

Conversely, the mutually perpendicular dimensions x′, y′

and z′ of our Euclidean 3-space Σ′ with respect to 3-observers
in Σ′ are effectively parallel dimensions with respect to 3-
observers in the Euclidean 3-space Σ0′ in Fig. 4. In other
words, the dimensions x′, y′ and z′ of Σ′ effectively form a
“bundle”, which is perpendicular to each of the dimensions
x0′, y0′ and z0′ of Σ0′ with respect to 3-observers in Σ0′ in
Fig. 4. The “bundle” of x′, y′ and z′ must lie along a fourth
dimension with respect to 3-observers in Σ0′ consequently,
as illustrated in Fig. 5b, where the proper Euclidean 3-space
Σ0′ is considered as a hyper-surface represented by a vertical
plane surface.

The three dimensions x0′, y0′ and z0′ that are shown as
separated parallel dimensions, thereby constituting a “bun-
dle” along the vertical with respect to 3-observers in Σ′ in
Fig. 5a, are not actually separated. Rather they lie along the
singular fourth dimension, thereby constituting a one-dimen-
sional space to be denoted by ρ0′ with respect to 3-observers
in Σ′ in Fig. 5a. Likewise the “bundle” of parallel dimensions
x′, y′ and z′ effectively constitutes a one-dimensional space to
be denoted by ρ′ with respect to 3-observers in Σ0′ in Fig. 5b.
Thus Fig. 5a shall be replaced with the fuller diagram of
Fig. 6a, which is valid with respect to 3-observers in the Euc-
lidean 3-space Σ′, while Fig. 5b shall be replaced with the

Fig. 6: (a) The proper Euclidean 3-spaces Σ0′ and −Σ0′∗ along the
vertical in Fig. 3, are naturally contracted to one-dimensional proper
spaces ρ0′ and −ρ0′∗ respectively relative to 3-observers in the proper
Euclidean 3-spaces Σ′ and −Σ′∗ along the horizontal.

fuller diagram of Fig. 6b, which is valid with respect to 3-
observers in the proper Euclidean 3-space Σ0′.

Representation of the Euclidean spaces Σ′, −Σ′∗, Σ0′ and
−Σ0′∗ by plane surfaces in the previous diagrams in this pa-
per has temporarily been changed to lines in Figs. 6a and 6b
for convenience. The three-dimensional rest masses m0 and
−m∗0 in the Euclidean 3-spaces Σ′ and −Σ′∗ and m0

0 and −m0
0
∗

in Σ0′and −Σ0′∗ have been represented by circles to remind
us of their three-dimensionality, while the one-dimensional
intrinsic rest masses in the one-dimensional intrinsic spaces
φρ0′, −φρ0′∗, φρ′ and −φρ′∗ and the one-dimensional rest
masses in the one-dimensional spaces ρ0′, −ρ0′∗, ρ′ and −ρ′∗
have been represented by short line segments in Figs. 6a
and 6b.

Fig. 6: (b) The proper Euclidean 3-spaces Σ′ and −Σ′∗ along the hor-
izontal in Fig. 4, are naturally contracted to one-dimensional proper
spaces ρ′ and −ρ′∗ respectively relative to 3-observers in the proper
Euclidean 3-spaces Σ0′ and −Σ0′∗ along the vertical.
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Fig. 3 naturally simplifies as Fig. 6a with respect to 3-
observers in the proper Euclidean 3-space Σ′ of the positive
(or our) universe, while Fig. 4 naturally simplifies as Fig. 6b
with respect to 3-observers in the proper Euclidean 3-space
Σ0′ along the vertical. The vertical Euclidean 3-spaces Σ0′

and −Σ0′∗ in Fig. 3 have been geometrically contracted to
one-dimensional proper spaces ρ0′ and −ρ0′∗ respectively
with respect to 3-observers in the proper Euclidean 3-spaces
Σ′ and −Σ′∗ of the positive and negative universes and the
proper Euclidean 3-spaces Σ′ and −Σ′∗ of the positive and
negative universes along the horizontal in Fig. 4, have been
geometrically contracted to one-dimensional proper spaces ρ′

and −ρ′∗ respectively with respect to 3-observers in the ver-
tical proper Euclidean 3-spaces Σ0′ and −Σ0′∗ in Fig. 6b, as
actualization of the topic of this sub-section.

The isotropic absolute speed V0 = c of every point of the
Euclidean 3-space Σ0′ with respect to 3-observers in the Eu-
clidean 3-space Σ′ in Fig. 3 is now absolute speed V0 = c
of every point along the one-dimensional space ρ0′ with re-
spect to 3-observers in Σ′ in Fig. 6a. The isotropic absolute
speed V0 = −c of every point of the Euclidean 3-space −Σ0′∗

with respect to 3-observers in Σ′ in Fig. 3 is likewise abso-
lute speed V0 = −c of every point along the one-dimensional
space −ρ0′∗ with respect to 3-observers in Σ′ in Fig. 6a.

Just as the absolute speed V0 = c of every point along ρ0′

and the absolute intrinsic speed φV0 = φc of every point along
the intrinsic space φρ0′ with respect to 3-observers in Σ′ in
Fig. 6a are isotropic, that is, without unique orientation in the
Euclidean 3-space Σ0′ that contracts to ρ0′, with respect to 3-
observers in Σ′ and −Σ′∗, so are the one-dimensional space ρ0′

and the one-dimensional intrinsic space φρ0′ isotropic dimen-
sion and isotropic intrinsic dimension respectively with no
unique orientation in the Euclidean 3-space Σ0′, with respect
to 3-observers in the Euclidean 3-spaces Σ′ and −Σ′∗. The
one-dimensional space −ρ0′∗ and one-dimensional intrinsic
space −φρ0′∗ are likewise isotropic dimension and isotropic
intrinsic dimension respectively with no unique orientation in
the Euclidean 3-space −Σ0′∗ with respect to 3-observers in the
Euclidean 3-spaces Σ′ and −Σ′∗ in Fig. 6a.

The isotropic absolute speed V0 = c of every point of
the Euclidean 3-space Σ′ and the isotropic absolute speed
V0 = −c of every point of the Euclidean 3-space −Σ′∗ with
respect to 3-observers in Σ0′ in Fig. 4 are now absolute speed
V0 = c of every point along the one-dimensional space ρ′

and absolute speed V0 = −c of every point along the one-
dimensional space −ρ′∗ with respect to 3-observers in Σ0′

Fig. 6b. Again the one-dimensional metric spaces ρ′ and
−ρ′∗ and the one-dimensional intrinsic metric spaces φρ′ and
−φρ′∗ are isotropic dimensions and isotropic intrinsic dimen-
sions respectively with no unique orientations in the Euclidean
3-spaces Σ′ and −Σ′∗ that contract to ρ′ and −ρ′∗ respectively,
with respect to 3-observers in the vertical Euclidean 3-spaces
Σ0′ and −Σ0′∗ in Fig. 6b.

1.3 The vertical proper Euclidean 3-spaces as proper
time dimensions relative to 3-observers in the hori-
zontal proper Euclidean 3-spaces and conversely

Figs. 6a and 6b are intermediate diagrams. It shall be shown
finally in this section that the one-dimensional proper spaces
ρ0′ and −ρ0′∗ in Fig. 6a naturally transform into the proper
time dimensions ct′ and −ct′∗ respectively and their underly-
ing one-dimensional proper intrinsic spaces φρ0′ and −φρ0′∗

naturally transform into the proper intrinsic time dimensions
φcφt′ and −φcφt′∗ respectively with respect to 3-observers in
the proper Euclidean 3-spaces Σ′ and −Σ′∗ in that figure. It
shall also be shown that the one-dimensional proper spaces ρ′

and −ρ′∗ in Fig. 6b naturally transform into the proper time
dimensions ct0′ and −ct0′∗ respectively and their underlying
proper intrinsic spaces φρ′ and −φρ′∗ naturally transform into
proper intrinsic time dimensions φcφt0′ and −φcφt0′∗ respec-
tively with respect to 3-observers in the proper Euclidean 3-
spaces Σ0′ and −Σ0′∗ in that figure.

Now let us re-present the generalized forms of the intrin-
sic Lorentz transformations and its inverse derived and pre-
sented as systems (44) and (45) of [1] respectively as follows

φcφt̃ ′ = sec φψ(φcφt̃ − φx̃ sin φψ);
(w.r.t. 1 − observer in ct̃ );

φx̃′ = sec φψ(φx̃ − φcφt̃ sin φψ);
(w.r.t. 3 − observer in Σ̃)


(2)

and

φcφt̃ = sec φψ(φcφt̃ ′ + φx̃′ sin φψ);
(w.r.t. 3 − observer in Σ̃′);

φx̃ = sec φψ(φx̃′ + φcφt̃ ′ sin φψ);
(w.r.t. 1 − observer in ct̃ ′)


. (3)

As explained in [1], systems (2) and (3) can be applied for all
values of the intrinsic angle φψ in the first cycle, 0 ≤ φψ ≤ 2π,
except that φψ = π

2 and φψ = 3π
2 must be avoided.

One observes from system (2) that the pure intrinsic affine
time coordinate φcφt̃ ′ of the primed (or particle’s) intrinsic
frame with respect to an observer at rest relative to the par-
ticle’s frame, transforms into an admixture of intrinsic affine
time and intrinsic affine space coordinates of the unprimed
(or observer’s) intrinsic frame. The pure intrinsic affine space
coordinate φx̃′ of the primed (or particle’s) frame likewise
transforms into an admixture of intrinsic affine space and in-
trinsic affine time coordinates of the unprimed (or particle’s)
intrinsic frame, when the particle’s frame is in motion relative
to the observer’s frame. The inverses of these observations
obtain from system (3), which is the inverse to system (2).

The observations made from system (2) and system (3)
described in the foregoing paragraph make the concept of in-
trinsic affine spacetime induction relevant in relative intrinsic
motion of two intrinsic spacetime frames of reference. In or-
der to make this more explicit, let us re-write systems (2) and
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(3) respectively as follows

φcφt̃ ′ = sec φψ(φcφt̃ + φcφt̃i);
(w.r.t. 1 − observer in ct̃ );

φx̃′ = sec φψ(φx̃ + φx̃i);
(w.r.t. 3 − observer in Σ̃)


(4)

and
φcφt̃ = sec φψ(φcφt̃ ′ + φcφt̃ ′i);

(w.r.t. 3 − observer in Σ̃′);

φx̃ = sec φψ(φx̃′ + φx̃′i);
(w.r.t. 1 − observer in ct̃ ′)


. (5)

A comparison of systems (4) and (2) gives the relations
for the induced unprimed intrinsic affine spacetime coordi-
nates φcφt̃i and φx̃i as follows

φcφt̃i = φx̃ sin(−φψ) = −φx̃ sin φψ = −φv
φc
φx̃; (6)

w.r.t. 1 − observer in ct̃ and

φx̃i = φcφt̃ sin(−φψ) = −φcφt̃ sin φψ =

−φv
φc
φcφt̃ = −φvφt̃; (7)

w.r.t 3 − observer in Σ̃.
Diagrammatically, the induced unprimed intrinsic affine

time coordinate, φcφt̃i = φx̃ sin(−φψ) in (6), appears in the
fourth quadrant in Fig. 9a of [1] as φx̃∗ sin(−φψ) and the in-
duced unprimed intrinsic affine space coordinate, φx̃i = φcφt̃
sin(−φψ) in (7), appears in the second quadrant in Fig. 9b
of [1] as φcφt̃ ∗ sin(−φψ).

And a comparison of systems (5) and (3) gives the rela-
tions for the induced primed intrinsic affine spacetime coor-
dinates φcφt̃ ′i and φx̃′i as follows

φcφt̃ ′i = φx̃′ sin φψ =
φv

φc
φx̃′; (8)

w.r.t. 3 − observer in Σ̃′ and

φx̃′i = φcφt̃ ′ sin φψ =
φv

φc
φcφt̃ ′ = φvφt̃ ′; (9)

w.r.t. 1 − observer in ct̃′.
Diagrammatically, the induced primed intrinsic affine ti-

me coordinate, φcφt̃ ′i = φx̃′ sin φψ in Eq. (8), appears in
the fourth quadrant in Fig. 8b of [1], where it is written as
φx̃ ′∗ sin φψ and the induced primed intrinsic affine space co-
ordinate, φx̃′i = φcφt̃ ′ sin φψ in (9), appears in the second
quadrant in Fig. 8a of [1], where it is written as φcφt̃ ′∗ sin φψ.

The intrinsic affine time induction relation (6) states that
an intrinsic affine space coordinate φx̃ of the unprimed in-
trinsic frame, which is inclined at negative intrinsic angle
−φψ relative to the intrinsic affine space coordinate φx̃′ of the

primed intrinsic frame, due to the negative intrinsic speed −φv
of the unprimed intrinsic frame relative to the primed intrin-
sic frame, projects (or induces) a negative unprimed intrinsic
affine time coordinate, φcφt̃i = φx̃ sin(−φψ) = −φx̃ sin φψ,
along the vertical relative to the 1-observer in ct̃.

The intrinsic affine space induction relation (7) states that
an intrinsic affine time coordinate φcφt̃ of the observer’s (or
unprimed) intrinsic frame, which is inclined at negative in-
trinsic angle −φψ relative to the intrinsic affine time coordi-
nate φcφt̃ ′ of the particle’s (or primed) intrinsic frame along
the vertical, due to the negative intrinsic speed −φv of the
intrinsic observer’s frame relative to the intrinsic particle’s
frame, induces a negative unprimed intrinsic affine space co-
ordinate, φx̃i = φcφt̃ sin(−φψ) = −φcφt̃ sin φψ, along the hor-
izontal relative to 3-observer in Σ̃.

The intrinsic affine time induction relation (8) states that
an intrinsic affine space coordinate φx̃′ of the particle’s (or
primed) intrinsic frame, which is inclined relative to the in-
trinsic affine space coordinate φx̃ of the observer’s (or un-
primed) intrinsic frame at a positive intrinsic angle φψ, due
to the intrinsic motion of the particle’s (or primed) intrinsic
frame at positive intrinsic speed φv relative to the observer’s
(or unprimed) intrinsic frame, induces positive primed intrin-
sic affine time coordinate, φcφt̃ ′i = φx̃′ sin φψ, along the ver-
tical relative to the 3-observer in Σ̃′.

Finally the intrinsic affine space induction relation (9) sta-
tes that an intrinsic affine time coordinate φcφt̃ ′ of the primed
intrinsic frame, which is inclined at positive intrinsic angle φψ
relative to the intrinsic affine time coordinate φcφt̃ along the
vertical of the primed intrinsic frame, due to the intrinsic mo-
tion of the primed intrinsic frame at positive intrinsic speed
φv relative to the unprimed intrinsic frame, induces positive
primed intrinsic affine space coordinate, φx̃′i = φcφt̃ ′ sin φψ,
along the horizontal relative to the 1-observer in ct̃ ′.

The outward manifestations on flat four-dimensional
affine spacetime of the intrinsic affine spacetime induction
relations (6)–(9) are given by simply removing the symbol
φ from those relations respectively as follows

ct̃i = x̃ sin(−ψ) = −x̃ sinψ = − v
c

x̃; (10)

w.r.t. 1 − observer in ct̃;

x̃i = ct̃ sin(−ψ) = −ct̃ sinψ = − v
c

ct̃ = −vt̃; (11)

w.r.t. 3 − observer in Σ̃;

ct̃ ′i = x̃′ sinψ =
v

c
x̃′; (12)

w.r.t. 3 − observer in Σ̃′ and

x̃′i = ct̃ ′ sinψ =
v

c
ct̃ ′ = vt̃ ′; (13)

w.r.t. 1 − observer in ct̃ ′.
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Fig. 7: Proper intrinsic metric time dimension and proper metric
time dimension are induced along the vertical with respect to 3-
observers in the proper Euclidean 3-space Σ′ (as a hyper-surface rep-
resented by a line) along the horizontal, by a proper intrinsic metric
space that is inclined to the horizontal.

However the derivation of the intrinsic affine spacetime
induction relations (6)–(9) in the context of φSR and their
outward manifestations namely, the affine spacetime induc-
tion relations (10)–(13) in the context of SR, are merely to
demonstrate explicitly the concept of intrinsic affine space-
time induction that is implicit in intrinsic Lorentz transfor-
mation (φLT) and its inverse in the context of φSR and affine
spacetime induction that is implicit in Lorentz transformation
(LT) and its inverse in the context of SR.

On the other hand, our interest in this sub-section is in
intrinsic metric time induction that arises by virtue of posses-
sion of absolute intrinsic speed φV0 naturally at every point
along the length of a proper intrinsic metric space, φρ0′, say,
relative to another proper intrinsic metric space, φρ′, say, in
Fig. 3. Let us assume, for the purpose of illustration, that
a proper intrinsic metric space φρ0′ possesses an absolute
intrinsic speed φV0 < φc naturally at every point along its
length relative to our proper intrinsic metric space φρ′ along
the horizontal, instead of the absolute intrinsic speed φV0 =

φc of every point along the length of φρ0′ relative to φρ′ in
Fig. 3. Then φρ0′ will be inclined at an absolute intrinsic an-
gle φψ0 <

π
2 relative to φρ′ along the horizontal, as illustrated

in Fig. 7, instead of inclination of φρ0′ to the horizontal by
absolute intrinsic angle φψ0 = π

2 in Fig. 3.
As shown in Fig. 7, the inclined proper intrinsic metric

space φρ0′ induces proper intrinsic metric time dimension
φcφt′i along the vertical with respect to 3-observers in our
proper Euclidean 3-space Σ′ along the horizontal. The intrin-
sic metric time induction relation with respect to 3-observers
in Σ′ in Fig. 7, takes the form of the primed intrinsic affine
time induction relation (8) with respect to 3-observer in Σ̃′ in
the context of φSR. We must simply replace the primed in-
trinsic affine spacetime coordinates φcφt̃′i and φx̃′ by proper
intrinsic metric spacetime dimensions φcφt′i and φρ0′ respec-
tively and the relative intrinsic angle φψ and relative intrinsic
speed φv by absolute intrinsic angle φψ0 and absolute intrinsic
speed φV0 in (8) to have as follows

φcφt′i = φρ0′ sin φψ0 =
φV0

φc
φρ0′; (14)

w.r.t. all 3 − observers in Σ′. And the outward manifestation
of (14) is

ct′i = ρ0′ sinψ0 =
V0

c
ρ0′; (15)

w.r.t. all 3 − observers in Σ′.
The induced proper intrinsic metric time dimension φcφt′i

along the vertical in (14) is made manifest in induced proper
metric time dimension ct′i in (15) along the vertical, as shown
in Fig. 7. As indicated, relations (14) and (15) are valid with
respect to all 3-observers in our proper Euclidean 3-space Σ′

overlying our proper intrinsic metric space φρ′ along the hor-
izontal in Fig. 7.

As abundantly stated in [1] and under systems (2) and (3)
earlier in this paper, the relative intrinsic angle φψ = π

2 cor-
responding to relative intrinsic speed φv = φc, is prohibited
by the intrinsic Lorentz transformation (2) and its inverse (3)
in φSR and consequently φψ = π

2 or φv = φc is prohibited
in the intrinsic affine time and intrinsic affine space induction
relations (6) and (7) and their inverses (8) and (9) in φSR.
Correspondingly, the angle ψ = π

2 or speed v = c is prohibited
in the affine time and affine space induction relations (10) and
(11) and their inverses (12) and (13) in SR.

On the other hand, the absolute intrinsic speed φV0 can
be set equal to φc and hence the absolute intrinsic angle φψ0
can be set equal to π

2 in (14). This is so since, as prescribed
earlier in this paper, the proper intrinsic metric space φρ0′ ex-
ists naturally along the vertical as in Fig. 3, corresponding
to φV0 = φc and φψ0 = π

2 naturally in (14) with respect to
3-observers in Σ′. More over, as mentioned at the end of sub-
section 1.1 and as shall be developed fully elsewhere, the ab-
solute intrinsic speed φV0 of every point of the inclined φρ0′

with respect to all 3-observers in Σ′ in Fig. 7, being the out-
ward manifestation in φρ0′ of the absolute speed of the New-
tonian absolute space (the ether of classical mechanics), it can
take on values in the range 0 ≤ φV0 ≤ ∞, since the maximum
speed of objects in classical mechanics is infinite speed. Thus
by letting φV0 = φc and φψ0 = π

2 in (14) we have

φcφt′i ≡ φcφt′ = φρ0′;

for φV0 = φc or φψ0 =
π

2
in Fig. 7; (16)

w.r.t. all 3 − observers in Σ′.
While relation (14) states that a proper intrinsic metric

space φρ0′, which is inclined to φρ′ along the horizontal at
absolute intrinsic angle φψ0 < π

2 , induces proper intrinsic
metric time dimension φcφt′i along the vertical, whose length
is a fraction φV0/φc or sin φψ0 times the length of φρ0′, with
respect to all 3-observers in our proper Euclidean 3-space Σ′

along the horizontal, relation (16) states that a proper intrin-
sic metric space φρ0′, which is naturally inclined at intrinsic
angle φψ0 = π

2 relative to φρ′ along the horizontal, thereby ly-
ing along the vertical, induces proper intrinsic metric time di-
mension φcφt′i ≡ φcφt′ along the vertical, whose length is the
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length of φρ0′, with respect to all 3-observers in our proper
Euclidean 3-space Σ′ along the horizontal.

The preceding paragraph implies that a proper intrinsic
metric space φρ0′ that is naturally rotated along the vertical is
wholly converted (or wholly transformed) into proper intrin-
sic metric time dimension φcφt′ relative to all observers in
our Euclidean 3-space Σ′ (along the horizontal). Eq. (16) can
therefore be re-written as the transformation of proper intrin-
sic metric space into proper intrinsic metric time dimension:

φρ0′ → φcφt′;
for φV0 = φc or φψ0 = π/2 in Fig. 7; (17)

w.r.t. all 3 − observers in Σ′ and the outward manifestation of
Eq. (17) is the transformation of the one-dimensional proper
metric space ρ0′ into proper metric time dimension ct′:

ρ0′ → ct′;
for V0 = c or ψ0 = π/2 in Eq.(15); (18)

w.r.t. all 3 − observers in Σ′.
The condition required for the transformations (17) and

(18) to obtain are naturally met by φρ0′ and ρ0′ in Fig. 6a.
This is the fact that they are naturally inclined at absolute in-
trinsic angle φψ0 = π

2 and absolute angle ψ0 = π
2 respectively

relative to our proper intrinsic space φρ′ along the horizon-
tal and consequently they naturally possess absolute intrinsic
speed φV0 = φc and absolute speed V0 = c respectively at
every point along their lengths with respect to all 3-observers
in our proper Euclidean 3-space Σ′ in that diagram.

The transformations (17) and (18) with respect to 3-obser-
vers in our proper Euclidean 3-space Σ′ correspond to the fol-
lowing with respect to 3-observers in the proper Euclidean
3-space −Σ′∗ of the negative universe in Fig. 6a:

−φρ0′∗ → −φcφt′∗;
for φV0 = φc or φψ0 = π/2; (19)

w.r.t. all 3 − observers in − Σ′∗ and

−ρ0′∗ → −ct′∗;
for V0 = c or ψ0 = π/2; (20)

w.r.t. all 3 − observers in − Σ′∗.
The counterparts of transformations (17) and (18), which

are valid with respect to 3-observers in the proper Euclidean
3-space Σ0′ in Fig. 6b are the following

φρ′ → φcφt0′;
for φV0 = φc or φψ0 = π/2; (21)

w.r.t. all 3 − observers in Σ0′ and

ρ′ → ct0′;
for V0 = c or ψ0 = π/2; (22)

Fig. 8: a) The one-dimensional proper spaces ρ0′ and −ρ0′∗ in Fig. 6a
transform into proper time dimensions ct′ and −ct′∗ respectively and
the proper intrinsic spaces φρ0′ and −φρ0′∗ in Fig. 6a transform into
proper intrinsic time dimensions φcφt′ and −φcφt′∗ respectively, rel-
ative to 3-observers in the proper Euclidean 3-spaces Σ′ and −Σ′∗

(represented by lines) along the horizontal.

w.r.t. all 3 − observers in Σ0′ and the counterparts of trans-
formations (19) and (20), which are valid with respect to 3-
observers in the proper Euclidean 3-space −Σ0′∗ in Fig. 6b are
the following

−φρ′∗ → −φcφt0′∗;
for V0 = c or ψ0 = π/2; (23)

w.r.t. all 3 − observers in − Σ0′∗ and

−ρ′∗ → −ct0′∗;
for V0 = c or ψ0 = π/2; (24)

w.r.t. all 3 − observers in − Σ0′∗.
Application of transformations (17)–(20) on Fig. 6a gives

Fig. 8a and application of transformation (21)–(24) on Fig.
6b gives Fig. 8b. Again representation of Euclidean 3-spaces
by plane surfaces in the previous diagrams in this paper has
temporarily been changed to lines in Figs. 8a and 8b, as done
in Figs. 6a and 6b, for convenience.

The three-dimensional rest masses of the symmetry-part-
ner particles or objects in the proper Euclidean 3-spaces and
the one-dimensional rest masses in the proper time dimen-
sions, as well as their underlying one-dimensional intrinsic
rest masses in the proper intrinsic spaces and proper intrinsic
time dimensions have been deliberately left out in Figs. 8a
and 8b, unlike in Figs. 6a and 6b where they are shown. This
is necessary because of further discussion required in locat-
ing the one-dimensional particles or objects in the time di-
mensions, which shall be done later in this paper. As in-
dicated in Figs. 8a and 8b, the proper time dimensions ct′

and ct0′ possess absolute speed V0 = c at every point along
their lengths, relative to 3-observers in the proper Euclidean
3-spaces Σ′ and Σ0′ respectively, like the one-dimensional
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Fig. 8: b) The one-dimensional proper spaces ρ′ and −ρ′∗ in Fig. 6b
transform into proper time dimensions ct0′ and −ct0′∗ respectively
and the proper intrinsic spaces φρ′ and −φρ′∗ in Fig. 6b transform
into proper intrinsic time dimensions φcφt0′ and −φcφt0′∗ respec-
tively relative to 3-observers in the proper Euclidean 3-spaces Σ0′

and −Σ0′∗ (represented by lines) along the vertical.

spaces ρ0′ and ρ′ in Figs. 6a and 6b that transform into ct′

and ct0′ respectively in Figs. 8a and 8b. As also indicated in
Figs. 8a and 8b, the proper intrinsic time dimensions φcφt′

and φcφt0′ possess absolute intrinsic speed φV0 = φc at every
point along their lengths relative to 3-observers in the proper
Euclidean 3-spaces Σ′ and Σ0′ respectively, like the intrinsic
spaces φρ0′ and φρ′ in Figs. 6a and 6b that transform into
φcφt′ and φcφt0′ respectively in Figs. 8a and 8b. The time di-
mensions ct′ and ct0′ and the intrinsic time dimensions φcφt′

and φcφt0′ are isotropic dimensions (with no unique orienta-
tions in the proper Euclidean 3-spaces Σ0′ and Σ′ that trans-
form into ct′ and ct0′ respectively). These follow from the
isotropy of the one-dimensional spaces ρ0′ and ρ′ in the Eu-
clidean 3-spaces Σ0′ and Σ′ respectively in Figs. 6a and 6b
that transform into ct′ and ct0′ respectively in Figs. 8a and 8b
and from the isotropy of the one-dimensional intrinsic spaces
φρ0′ and φρ′ in the Euclidean 3-spaces Σ0′ and Σ′ respec-
tively in Figs. 6a and 6b that transform into φcφt′ and φcφt0′

respectively in Figs. 8a and 8b.
Fig. 8a is the final form to which the quartet of mutually

orthogonal proper Euclidean 3-spaces and underlying one-
dimensional proper intrinsic spaces in Fig. 2 naturally sim-
plify with respect to 3-observers in the proper Euclidean 3-
spaces Σ′ and −Σ′∗ of the positive (or our) universe and the
negative universe and Fig. 8b is the final form to which the
quartet of proper Euclidean 3-spaces and underlying one-di-
mensional proper intrinsic spaces in Fig. 2 naturally simplify
with respect to 3-observers in the proper Euclidean 3-spaces
Σ0′ and −Σ0′∗ of the positive and negative time-universes.

It follows from the natural simplification of Fig. 2 to Figs.
8a and 8b that the concept of time is secondary to the concept
of space. Indeed the concept of time had evolved from the
concept of space and the concept of intrinsic time had evolved

from the concept of intrinsic space. This is so since given
the quartet of mutually orthogonal proper metric Euclidean
3-spaces/underlying one-dimensional proper intrinsic metric
spaces in Fig. 2, then the straight line one-dimensional proper
metric time manifolds (or proper metric time dimensions)
evolve automatically relative to 3-observers in the proper
Euclidean 3-spaces, as illustrated in Figs. 8a and 8b. Thus
one could ask for the origin of space without at the same time
asking for the origin of time in the present picture. The origin
of time and intrinsic time dimensions, which we seek in this
section, has been achieved.

2 Perfect symmetry of natural laws among the isolated
four universes

The four universes encompassed by Figs. 8a and 8b are the
positive (or our) universe with flat proper spacetime (Σ′, ct′)
of SR and its underlying flat two-dimensional proper intrin-
sic spacetime (φρ′, φcφt′) of φSR in Fig. 8a and the negative
universe with flat proper spacetime (−Σ′∗,−ct′∗) of SR and
its underlying two-dimensional flat proper intrinsic spacetime
(−φρ′∗,−φcφt′∗) of φSR in Fig. 8a.

The third universe is the one with flat proper spacetime
(Σ0′, ct0′) of SR and its underlying flat proper intrinsic space-
time (φρ0′, φcφt0′) of φSR in Fig. 8b. This third universe shall
be referred to as the positive time-universe, since its proper
Euclidean 3-space Σ0′ and its proper intrinsic space φρ0′ are
the proper time dimension ct′ and proper intrinsic time di-
mension φcφt′ respectively of the positive (or our) universe.

The fourth universe is the one with flat proper spacetime
(−Σ0′∗,−ct0′∗) of SR and its underlying flat proper intrinsic
spacetime (−φρ0′∗,−φcφt0′∗) of φSR in Fig. 8b. This fourth
universe shall be referred to as the negative time-universe,
since its proper Euclidean 3-space −Σ0′∗ and its proper in-
trinsic space −φρ0′∗ are the proper time dimension −ct′∗ and
proper intrinsic time dimension −φcφt′∗ respectively of the
negative universe.

As prescribed earlier in this paper, the four worlds (or
universes) encompassed by Figs. 8a and 8b, listed above, co-
exist in nature and exhibit perfect symmetry of natural laws
and perfect symmetry of state among themselves. Perfect
symmetry of laws among the four universes shall be demon-
strated hereunder, while perfect symmetry of state among the
universes shall be be demonstrated in the second part of this
paper.

Demonstration of perfect symmetry of natural laws be-
tween the positive (or our) universe and the negative universe
in [1] and [2] involves three steps. In the first step, the affine
spacetime/intrinsic affine spacetime diagrams of Figs. 8a and
8b and Figs. 9a and 9b of [1] are derived upon the metric
spacetimes/intrinsic metric spacetimes of the positive (or our)
universe and the negative universe of Fig. 8a above, (which
was prescribed to exist in nature and constitute a two-world
background of SR in [1]).
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Physical quantity Symbol Intrinsic Sign
or constant quantity positive negative

or constant time- time-

universe universe

Distance (or dimension)
of space dx0 or x0 dφx0 or φx0 + −
Interval (or dimension)
of time dt0 or t0 dφt0 or φt0 + −
Mass m0 φm0 + −
Electric charge q q + or − − or +

Absolute entropy S 0 φS 0 + −
Absolute temperature T T + +

Energy (total, kinetic) E0 φE0 + −
Potential energy U0 φU0 + or − − or +

Radiation energy hν0 hφν0 + −
Electrostatic potential Φ0

E φΦ0
E + or − + or −

Gravitational potential Φ0 φΦ0 − −
Electric field ~E0 φE0 + or − − or +

Magnetic field ~B0 φB0 + or − − or +

Planck constant h h + +

Boltzmann constant k φk + −
Thermal conductivity k φk + −
Specific heat capacity cp φcp + +

velocity ~v φv + or − + or −
speeds of particles v φv + +

Speed of light c φc + +

Electric permittivity εo
o φεo

o + +

Magnetic permeability µo
o φµo

o + +

Angular measure θ, ϕ φθ, φϕ + or − + or −
Parity Π φΠ + or − − or +

...
...

...
...

...

Table 1. Signs of spacetime/intrinsic spacetime dimensions, some physical parameters/intrinsic parameters
and some physical constants/intrinsic constants in the positive time-universe and negative time-universe.

The intrinsic Lorentz transformation/Lorentz transformation
(φLT/LT) was then derived from those diagrams in the posi-
tive and negative universes, thereby establishing intrinsic Lo-
rentz invariance (φLI) on flat two-dimensional intrinsic space-
times and Lorentz invariance (LI) on flat four-dimensional
spacetimes in the two universes in [1].

The first step in demonstrating perfect symmetry of laws
between the positive (or our) universe and the negative uni-
verse in Fig. 8a of this paper described above, applies di-
rectly between the positive time-universe and the negative
time-universe. The counterparts of Figs. 8a, 8b, 9a and 9b of
[1], drawn upon the metric spacetimes/intrinsic metric space-
times of the positive and negative universes of Fig. 8a of this
paper in that paper, can be drawn upon the metric space-
times/intrinsic spacetimes of the positive time-universe and
negative time-universe in Figs. 8b of this paper and intrin-
sic Lorentz transformations/Lorentz transformation (φLT/LT)
derived from them in the positive time-universe and the neg-
ative time-universe, as shall not be done here in order to con-

serve space. Intrinsic Lorentz invariance (φLI) on flat two-
dimensional intrinsic spacetimes and Lorentz invariance (LI)
on flat four-dimensional spacetimes in the positive and neg-
ative time-universes then follow with respect to observers in
those universes.

The second step in demonstrating the symmetry of laws
between the positive (or our) universe and the negative uni-
verse in [1] and [2], involves the derivation of the relative
signs of physical parameters and physical constants and of in-
trinsic parameters and intrinsic constants between the positive
and negative universes in [2], summarized in Table 1 of that
paper. Again this second step applies directly between the
positive time-universe and the negative time-universe. The
relative signs of physical parameters and physical constants
and of intrinsic parameters and intrinsic constants derivable
between the positive time-universe and the negative time-uni-
verse, summarized in Table 1 here, follow directly from the
derived signs of physical parameters and physical constants
and of intrinsic parameters and intrinsic constants in the pos-
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itive and negative universes, summarized in Table 1 of [2].
Table 1 here is the same as Table 1 in [2]. The super-

script “0” that appears on dimensions/intrinsic dimensions
and some parameters/intrinsic parameters and constants/in-
trinsic constants in Table 1 here is used to differentiate the di-
mensions/intrinsic dimensions, parameters/intrinsic parame-
ters and constants/intrinsic constants of the positive time-uni-
verse and negative time-universe from those of the positive
(or our) universe and the negative universe in Table 1 of [2].

The third and final step in demonstrating the symmetry
of natural laws between the positive (or our) universe and the
negative universe in [1] and [2], consists in replacing the pos-
itive spacetime dimensions and the physical parameters and
physical constants that appear in (the instantaneous differ-
ential) natural laws in the positive universe by the negative
spacetime dimensions and physical parameters and physical
constants of the negative universe (with the appropriate signs
in Table 1 of [2]), and showing that these operations leave all
natural laws unchanged in the negative universe, as done in
section 5 of [2].

The third step in the demonstration of the perfect sym-
metry of natural laws between the positive and negative uni-
verses described in the foregoing paragraph, applies directly
between the positive time-universe and the negative time-uni-
verse as well. Having established Lorentz invariance between
the positive time-universe and negative time-universe at the
first step, it is straight forward to use Table 1 above and fol-
low the procedure in section 5 of [2] to demonstrate the in-
variance of natural laws between the positive time-universe
and negative time-universe.

Symmetry of natural laws must be considered to have
been established between the positive time-universe and the
negative time-universe. A more detailed presentation than
done above will amount to a repetition of the demonstration
of symmetry of natural laws between the positive and nega-
tive universes in [1] and [2].

Finally the established validity of Lorentz invariance in
the four universes encompassed by Figs. 8a and 8b, coupled
with the identical signs of spacetime dimensions, physical pa-
rameters and physical constants in the positive (or our) uni-
verse and the positive time-universe and the identical signs
of spacetime dimensions, physical parameters, physical con-
stants in the negative universe and negative time-universe in
Table 1 of [2] and Table 1 above, guarantee the invariance
of natural laws between the positive (or our) universe and
the positive time-universe and between the negative universe
and the negative time-universe. This along with the estab-
lished invariance of natural laws between the positive (or our)
universe and the negative universe and between the positive
time-universe and the negative time-universe, guarantees in-
variance of natural laws among the four universes.

Symmetry of natural laws among the four universes en-
compassed by Figs. 8a and 8b of this paper namely, the pos-
itive (or our) universe and the negative universe (in Fig. 8a),

the positive time-universe and the negative time-universe (in
Fig. 8b), has thus been shown. Perfect symmetry of state
among the universes shall be demonstrated in the second part
of this paper, as mentioned earlier.

3 Origin of one-dimensional particles, objects and ob-
servers in the time dimension and (3+1)-dimension-
ality of particles, objects and observers in special rel-
ativity

An implication of the geometrical contraction of the three di-
mensions x01′, x02′ and x03′ of the proper Euclidean 3-space
Σ0′ of the positive time-universe in Fig. 2 or Fig. 3 into a one-
dimensional space ρ0′ relative to 3-observers in our proper
Euclidean 3-space Σ′ in Fig. 6a, which ultimately transforms
into the proper time dimension ct′ relative to 3-observers in
Σ′ in Fig. 8a, is that the dimensions of a particle or object,
such as a box of rest mass m0

0 and proper (or classical) dimen-
sions ∆x0′, ∆y0′ and ∆z0′ in Σ0′ with respect to 3-observers
in Σ0′, are geometrically “bundled” parallel to one another,
thereby effectively becoming a one-dimensional box of equal
rest mass m0

0 and proper (or classical) length ∆ρ0′ along ρ0′

in Fig. 6a, which transforms into an interval c∆t′ containing
rest mass m0

0 along the proper time dimension ct′ in Fig. 8a,
relative to 3-observers in our Euclidean 3-space Σ′, where
c∆t′ = ∆ρ0′ =

√
(∆x0′)2 + (∆y0′)2 + (∆z0′)2.

Likewise all radial directions of a spherical particle or ob-
ject of rest mass m0

0 and proper (or classical) radius r0′ in the
proper Euclidean 3-space Σ0′ of the positive time-universe,
with respect to 3-observers in Σ0′, are “bundled” parallel to
one another, thereby becoming a one-dimensional particle or
object of proper (or classical) length, ∆ρ0′ = r0′, along ρ0′ in
Fig. 6a, which ultimately transforms into interval c∆t′ (= r0′)
containing rest mass m0

0 along the proper time dimension ct′

in Fig. 8a, with respect to 3-observers in our proper Euclidean
3-space Σ′.

A particle or object of rest mass m0
0 with arbitrary shape

located in the proper Euclidean 3-space Σ0′ of the positive
time-universe with respect to 3-observers in Σ0′, will have
the lengths (or dimensions) from its centroid to its boundary
along all directions geometrically “bundled” parallel to one
another, thereby effectively becoming a one-dimensional par-
ticle or object of equal rest mass m0

0 along the proper time
dimension ct′ with respect to 3-observers in Σ′ in Fig. 8a.

The one-dimensional rest mass m0
0 of proper length c∆t′

of a particle, object or observer in our proper time dimen-
sion ct′ with respect to 3-observers in our Euclidean 3-space
Σ′ in Fig. 8a, will acquire the absolute speed V0 = c, which
the proper time dimension possesses at every point along its
length with respect to 3-observers in Σ′. Consequently it will
possess energy m0

0V2
0 = m0

0c2 = E′ in ct′ with respect to 3-
observers in Σ′. Indeed the one-dimensional rest mass m0

0 in
ct′ will be made manifest in the state of energy E′ = m0

0c2

by virtue of its absolute speed c in ct′ and not in the state
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of rest mass m0
0. In other words, instead of locating one-

dimensional rest mass m0
0 along the proper time dimension

ct′ in Fig. 8a, as done along the one-dimensional space ρ0′ in
Fig. 6a, we must locate one-dimensional equivalent rest mass
E′/c2 (= m0) along ct′ with respect to 3-observers in Σ′, as the
symmetry-partner in ct′ to the three-dimensional rest mass m0
in Σ′.

It follows from the foregoing that as the proper Euclidean
3-space Σ0′ of the positive time-universe in Fig. 2 or 3 is ge-
ometrically contracted to one-dimensional space ρ0′ with re-
spect to 3-observers in our proper Euclidean 3-space Σ′ in
Fig. 6a, the three-dimensional rest mass m0

0 in Σ0′ with re-
spect to 3-observers in Σ0′ in Fig. 2 or Fig. 3, contracts to
one-dimensional rest mass m0

0 located in the one-dimensional
space ρ0′ with respect to 3-observers in our proper Euclidean
3-space Σ′ in Fig. 6a. And as the one-dimensional proper
space ρ0′ in Fig. 6a ultimately transforms into the proper time
dimension ct′ with respect to 3-observers in our Euclidean
3-space Σ′, the one-dimensional rest mass m0

0 in ρ0′ trans-
forms into one-dimensional equivalent rest mass E′/c2, (i.e.
m0

0 → E′/c2), located in the proper time dimension ct′ in
Fig. 8a with respect to 3-observers in our Euclidean 3-space
Σ′, (although E′/c2 has not been shown in ct′ in Fig. 8a).

It must be noted however that since the speed V0 = c ac-
quired by the rest mass m0

0 in the proper time dimension ct′

is an absolute speed, which is not made manifest in actual
motion (or translation) of m0

0 along ct′, the energy m0
0c2 = E′

possessed by m0
0 in ct′ is a non-detectable energy in the proper

time dimension. Important to note also is the fact that the
equivalent rest mass E′/c2 of a particle or object in the proper
time dimension ct′ is not an immaterial equivalent rest mass.
Rather it is a quantity of matter that possesses inertia (like
the rest mass m0

0) along the proper time dimension. This
is so because the speed c in m0

0c2 = E′, being an absolute
speed, is not made manifest in motion of m0

0 along ct′, as
mentioned above. On the other hand, the equivalent mass,
m0γ = E′γ/c

2 = hν0/c2, of a photon is purely immaterial,
since the speed c in m0γc2 = hν0 is the speed of actual trans-
lation through space of photons and only a purely immaterial
particle can attain speed c of actual translation in space or
along the time dimension. While the material equivalent rest
mass E′/c2(≡ m0

0) in ct′ can appear as rest mass in SR, the
immaterial equivalent mass E′0γ/c

2 (≡ m0γ) of photon cannot
appear in SR.

Illustrated in Fig. 9a are the three-dimensional rest mass
m0 of a particle or object at a point of distance d′ from a point
of reference or origin in our proper Euclidean 3-space Σ′ and
the symmetry-partner one-dimensional equivalent rest mass
E′/c2 at the symmetry-partner point of distance d0′ along
the proper time dimension ct′ from the point of reference or
origin, where the distances d′ and d0′ are equal. The three-
dimensional rest mass m0 in Σ′ is underlied by its one-dimen-
sional intrinsic rest mass φm0 in the one-dimensional proper

intrinsic space φρ′ and the one-dimensional equivalent rest
mass E′/c2 in ct′ is underlied by its one-dimensional equiv-
alent intrinsic rest mass φE′/φc2 in the proper intrinsic time
dimension φcφt′ in Fig. 9a.

Fig. 9a pertains to a situation where the three-dimensional
rest mass m0 of the particle or object is at rest relative to the 3-
observer in the proper Euclidean 3-space Σ′ and consequently
its one-dimensional equivalent rest mass E′/c2 is at rest in the
proper time dimension ct′ relative to the 3-observer in Σ′. On
the other hand, Fig. 9b pertains to a situation where the three-
dimensional rest mass m0 of the particle or object is in motion
at a velocity~v relative to the 3-observer in Σ′, thereby becom-
ing the special-relativistic mass, m = γm0 in Σ′, relative to
the 3-observer in Σ′ and consequently the one-dimensional
equivalent rest mass E′/c2 of the particle or object is in mo-
tion at speed v = |~v | in the proper time dimension ct′ rel-
ative to the 3-observer in Σ′, thereby becoming the special-
relativistic equivalent mass E/c2 = γE′/c2 in ct′ relative to
the 3-observer in Σ′.

The one-dimensional equivalent rest mass E′/c2 of proper
(or classical) length c∆t′ = d0′ located at a point in the proper
time dimension ct′ with respect to 3-observers in the proper
Euclidean 3-space Σ′ in Fig. 9a, acquires the absolute speed
V0 = c of ct′. However, since the absolute speed V0 = c of
ct′ is not made manifest in the flow of ct′ with respect to 3-
observers in Σ′, it is not made manifest in translation of E′/c2

along ct′ with respect to the 3-observers in Σ′. Moreover the
equivalent rest mass E′/c2 possesses zero speed (v = 0) of
motion in ct′ relative to the 3-observer in Σ′, just as the rest
mass m0 possesses zero speed of motion in the Euclidean 3-
space Σ′ relative to the 3-observer in Σ′. Consequently m0 and
E′/c2 remain stationary at their symmetry-partner locations
in Σ′ and ct′ respectively relative to the 3-observer in Σ′ in
Fig. 9a.

Likewise the equivalent intrinsic rest mass φE′/φc2 of
proper intrinsic length φc∆φt′ = φd0′ located at a point in
the proper intrinsic time dimension φcφt′ with respect to 3-
observers in the proper Euclidean 3-space Σ′ in Fig. 9a, ac-
quires the absolute intrinsic speed φV0 = φc of φcφt′. How-
ever, since the absolute intrinsic speed φc of φcφt′ is not
made manifest in the intrinsic flow of φcφt′ with respect to
3-observers in Σ′, it is not made manifest in intrinsic transla-
tion of φE′/φc2 along φcφt′ with respect to the 3-observers in
Σ′. Moreover the equivalent intrinsic rest mass φE′/φc2 pos-
sesses zero intrinsic speed (φv = 0) of intrinsic translation in
φcφt′ relative to the 3-observer in Σ′, just as the intrinsic rest
mass φm0 possesses zero intrinsic speed of intrinsic transla-
tion in the proper intrinsic space φρ′ underlying Σ′ relative
to the 3-observer in Σ′. Consequently φm0 and φE′/φc2 re-
main stationary at their symmetry-partner locations in φρ′ and
φcφt′ respectively relative to the 3-observer in Σ′ in Fig. 9a.

In a situation where the rest mass m0 of the particle or
object is in motion at a velocity ~v in the proper Euclidean 3-
space Σ′ and the one-dimensional equivalent rest mass E′/c2

18 Adekugbe A.O.J. Re-Identification of the Many-World Background of Special Relativity as Four-World Background. Part I



January, 2011 PROGRESS IN PHYSICS Volume 1

Fig. 9: The three-dimensional mass of an object at a position in the Euclidean 3-space and its one-dimensional equivalent mass at the
symmetry-partner position in the time dimension, along with the underlying one-dimensional intrinsic mass of the object in intrinsic space
and its equivalent intrinsic mass in the intrinsic time dimension, in the situations where (a) the object is stationary relative to the observer
and (b) the object is in motion relative to the observer.

is in motion at speed v = |~v | in the proper time dimension ct′

relative to the 3-observer in Σ′ in Fig. 9b, on the other hand,
the special-relativistic equivalent mass E/c2 = γE′/c2, ac-
quires the absolute speed V0 = c of the proper time dimension
ct′, which is not made manifest in motion of γE′/c2 along ct′

and as well possesses speed v of translation along ct′ relative
to the 3-observer in Σ′.

During a given period of time, the relativistic equivalent
mass γE′/c2 has translated at constant speed v from an ini-
tial position P0

1 to another position P0
2 along the proper time

dimension ct′, while covering an interval P0
1P0

2 of ct′. Dur-
ing the same period of time, the special-relativistic mass m =

γm0, has translated at equal constant speed v = |~v | from an ini-
tial position P1 to another position P2 in the proper Euclidean
3-space Σ′, while covering a distance P1P2 in Σ′, where the
interval P0

1P0
2 covered along ct′ by γE′/c2 is equal to the dis-

tance P1P2 covered in Σ′ by γm0 and positions P1 and P2 in
Σ′ are symmetry-partner positions to positions P0

1 and P0
2 re-

spectively in ct′. Consequently γm0 and γE′/c2 are always
located at symmetry-partner positions in Σ′ and ct′ respec-
tively in the situation where they are in motion at any speed v
in their respective domains relative to the 3-observer in Σ′ in
Fig. 9b.

It shall be reiterated for emphasis that the equivalent mass
E′/c2 or γE′/c2 in our proper metric time dimension ct′ with
respect to 3-observers in our proper Euclidean 3-space Σ′, of a
particle, object or observer in Figs. 9a and 9b, is actually the
three-dimensional mass m0

0 or γm0
0 of the symmetry-partner

particle, object or observer in the proper Euclidean 3-space
Σ0′ of the positive time-universe with respect to 3-observers
in Σ0′. This is the origin of the the one-dimensional particle,
object or observer (or 1-particle, 1-object or 1-observer) in
the time dimension to every 3-dimensional particle, object or
observers (or 3-particle, 3-object or 3-observer) in 3-space in
our universe.

Just as the proper time dimension ct′(≡ x0′) is added to
the three dimensions x1′, x2′ and x3′ of the proper Euclidean

3-space Σ′ to have the four dimensions x0′, x1′, x2′ and x3′

of the flat four-dimensional proper metric spacetime, the one-
dimensional equivalent rest mass E′/c2 of a particle, object
or observer in the proper time dimension ct′ must be added to
the three-dimensional rest mass m0 of its symmetry-partner
particle, object or observer in the proper Euclidean 3-space
Σ′ to have a 4-dimensional particle, object or observer of rest
mass (m0, E′/c2) on the flat four-dimensional proper space-
time (Σ′, ct′) in our notation.

However it is more appropriate to refer to 4-dimensional
particles, objects and observers on flat 4-dimensional space-
time as (3+1)-dimensional particles, objects and observers,
because the one-dimensional particles, objects and observers
(or 1-particles, 1-objects and 1-observers) in the time dimen-
sion ct′ are themselves distinct particles, objects and obser-
vers, (which are geometrically contracted from three-dimen-
sional particles, objects and observers in the Euclidean 3-
space Σ0′ of the positive time-universe), which are separated
in the time dimension ct′ from their symmetry-partner three-
dimensional continuum particles, objects and observers (or
3-particles, 3-objects and 3-observers) in the continuum Eu-
clidean 3-space Σ′.

The 1-particle, 1-object or 1-observer in the time dimen-
sion can be thought of as weakly bonded to the 3-particle, 3-
object or 3-observer in the Euclidean 3-space to form a (3+1)-
dimensional particle, object or observer in spacetime and a
(3+1)-dimensional particle, object or observer can be decom-
posed into its component 1-particle, 1-object or 1-observer
in the time dimension and 3-particle, 3-object or 3-observer
in the Euclidean 3-space. On the other hand, what should
be referred to as a continuum 4-dimensional particle, object
or observer (or 4-particle, 4-object or 4-observer) on four-
dimensional spacetime continuum should be non-decompo-
sable into its component dimensions, just as a continuum 3-
dimensional particle, object or observer in the Euclidean 3-
space continuum cannot be decomposed into its component
dimensions.
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There are no continuum non-decomposable four-dimen-
sional particles, objects and observers on four-dimensional
spacetime in the context of the present theory. Rather there
are (3+1)-dimensional particles, objects and observers that
can be decomposed into one-dimensional particles, objects
and observers in the time dimension and three-dimensional
particles, objects and observers in the Euclidean 3-space. Rel-
ativistic physics must be formulated partially with respect to
1-observers in the time dimension as distinct from relativis-
tic physics formulated partially with respect to 3-observers in
the Euclidean 3-space. The partial physics formulated with
respect to 1-observer in the time dimension and 3-observer
in the Euclidean 3-space must then be composed into the full
relativistic physics on four-dimensional spacetime.

It is also important to note that it is the partial physics
formulated with respect to 1-observers in the time dimen-
sion, which, of course, contains component of physics pro-
jected from the Euclidean 3-space in relativistic physics, is
what the 1-observers in the time dimension could observe.
It is likewise the partial physics formulated with respect to 3-
observers in the Euclidean 3-space, which, of course, contains
component of physics projected from the time dimension in
relativistic physics, that the 3-observers in the Euclidean 3-
space could observe.

The foregoing paragraph has been well illustrated with
the derivation of the intrinsic Lorentz transformation of sys-
tem (13) of [1] as combination of partial intrinsic Lorentz
transformation (11) derived from Fig. 8a with respect to the
3-observer (Peter) in the Euclidean 3-space Σ̃ and partial in-
trinsic Lorentz transformation (12) derived from Fig. 8b with
respect to the 1-observer (P̃eter) in the time dimension ct̃ in
that paper. The Lorentz transformation of system (28) of [1],
as the outward manifestation on flat four-dimensional space-
time of the intrinsic Lorentz transformation (11) in that paper,
has likewise been composed from partial Lorentz transforma-
tion with respect to the 3-observer in Σ̃ and partial Lorentz
transformation with respect to the 1-observer in the time di-
mension ct̃.

Let us collect the partial Lorentz transformations derived
with respect to the 1-observer in ct̃ in the LT and its inverse
of systems (28) and (29) of [1] to have as follows

ct̃ ′ = ct̃ secψ − x̃ tanψ;
x̃ = x̃′ secψ + ct̃ tanψ; ỹ = ỹ′; z̃ = z̃ ′;

(w.r.t. 1 − observer in ct̃ )

 . (25)

These coordinate transformations simplify as follows from
the point of view of what can be measured with laboratory
rod and clock discussed in detail in sub-section 4.5 of [1]:

t̃ = t̃ ′ cosψ; x̃ = x̃′ secψ; ỹ = ỹ′; z̃ = z̃ ′ (26)

w.r.t. 1 − observer in ct̃.
System (26) derived with respect to the 1-observer in ct̃,

corresponds to system (42) of [1], derived with respect to 3-
observer in Σ̃ in that paper, which shall be re-presented here

as follows

t̃ = t̃ ′ secψ; x̃ = x̃′ cosψ; ỹ = ỹ′; z̃ = z̃ ′ (27)

w.r.t. 3 − observer in Σ̃.
We find from systems (26) and (27) that while 3-observers

in the Euclidean 3-space observe length contraction and time
dilation of relativistic events, their symmetry-partner 1-obser-
vers in the time dimension observe length dilation and time
contraction of relativistic events.

It is clear from all the foregoing that a 3-observer in the
Euclidean 3-space and his symmetry-partner 1-observer in
the time dimension are distinct observers who can be com-
posed (or “weakly bonded”) into a (3+1)-dimensional ob-
server that can be decomposed back into its component 3-
observer and 1-observer for the purpose of formulating rel-
ativistic physics, which is composed from partial relativistic
physics formulated separately with respect to 3-observers in
the Euclidean 3-space and 1-observers in the time dimension.

Every parameter in the Euclidean 3-space has its counter-
part (or symmetry-partner) in the time dimension. We have
seen the case of rest mass m0 in the proper Euclidean 3-space
Σ′ and its symmetry-partner one-dimensional equivalent rest
mass E′/c2 in the proper time dimension ct′, as illustrated in
Figs. 9a and 9b. A classical three-vector quantity ~q ′ in the
proper Euclidean 3-space Σ′ has its symmetry-partner clas-
sical scalar quantity q0′ in the proper time dimension ct′.
The composition of the two yields what is usually referred
to as four-vector quantity denoted by q′λ = (q0′, ~q ′) or q′λ =

(q0′, q1′, q2′, q3′). We now know that the scalar components
q0′ in the time dimension ct′ of four-vector quantities in the
positive (or our) universe are themselves three-vector quan-
tities ~q 0′ in the Euclidean 3-space Σ0′ of the positive time-
universe with respect to 3-observers in Σ0′. The three-vector
quantities ~q 0′ in Σ0′, (which are identical symmetry-partners
to the three-vector quantities ~q ′ in our Euclidean 3-space Σ′),
become contracted to one-dimensional scalar quantities q0′ =

|~q 0′| in the time dimension ct′ relative to 3-observers in Σ′,
even as the proper Euclidean 3-space Σ0′ containing ~q 0′ be-
comes contracted to the proper time dimension ct′ relative to
3-observers in Σ′.

4 Final justification for the new spacetime/intrinsic spa-
cetime diagrams for Lorentz transformation/intrinsic
Lorentz transformation in the four-world picture

New geometrical representations of Lorentz transformation
and intrinsic Lorentz transformation (LT/φLT) and their in-
verses were derived and presented as Figs. 8a and 8b and
Figs. 9a and 9b within the two-world picture isolated in [1].
However at least two outstanding issues about those diagrams
remain to be resolved in order to finally justify them. The first
issue is the unexplained origin of Fig. 8b that must necessarily
be drawn to complement Fig. 8a of [1] in deriving φLT/LT.
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The second issue is the unspecified reason why anticlock-
wise relative rotations of intrinsic affine spacetime coordi-
nates are positive rotations (involving positive intrinsic angles
φψ) with respect to 3-observers in the Euclidean 3-spaces Σ′

and −Σ′∗ in Fig. 8a of [1], while, at the same time, clockwise
relative rotations of intrinsic affine spacetime coordinates are
positive rotations (involving positive intrinsic angles φψ) with
respect to 1-observers in the time dimensions ct′ and −ct′∗ in
Fig. 8b of [1]. These two issues shall be resolved within the
four-world picture encompassed by Figs. 8a and 8b of this
paper in this section.

Let us as done in deriving Figs. 8a and 8b and their in-
verses Figs. 9a and 9b of [1] towards the derivation of intrin-
sic Lorentz transformation/Lorentz transformation (φLT/LT)
and their inverses in the positive and negative universes in [1],
prescribe particle’s (or primed) frame and observer’s (or un-
primed) frame in terms of extended affine spacetime coordi-
nates in the positive (or our) universe as (x̃′, ỹ′, z̃ ′, ct̃ ′) and
(x̃, ỹ, z̃, ct̃ ) respectively. They are underlied by intrinsic par-
ticle’s frame and intrinsic observer’s frame in terms of ex-
tended intrinsic affine coordinates (φx̃′, φcφt̃ ′) and (φx̃, φcφt̃ )
respectively.

The prescribed perfect symmetry of state between the
positive and negative universes in [1] implies that there are
identical symmetry-partner particle’s frame and observer’s
frame (−x̃ ′∗, −ỹ′∗, −z̃ ′∗, −ct̃ ′∗) and (−x̃∗, −ỹ∗, −z̃∗, −ct̃ ∗)
respectively, as well as their underlying identical symmetry-
partner intrinsic particle’s frame and symmetry-partner intrin-
sic observer’s frame (−φx̃ ′∗,−φcφt̃ ′∗) and (−φx̃∗,−φcφt̃ ∗) re-
spectively in the negative universe.

Let us consider the motion at a constant speed v of the rest
mass m0 of the particle along the x̃′−axis of its frame and the
underlying intrinsic motion at constant intrinsic speed φv of
the intrinsic rest mass φm0 of the particle along the intrinsic
space coordinate φx̃′ of its frame relative to a 3-observer in
the positive universe. Again the prescribed perfect symmetry
of state between the positive and negative universes implies
that the rest mass −m∗0 of the symmetry-partner particle is
in simultaneous motion at equal constant speed v along the
−x̃ ′∗−axis of its frame of reference and its intrinsic rest mass
−φm∗0 is in simultaneous intrinsic motion at equal intrinsic
speed φv along the intrinsic space coordinate −φx̃′∗−axis of
its frame relative to the symmetry-partner 3-observer in the
negative universe.

As developed in sub-section 4.4 of [1], the simultaneous
identical motions of the symmetry-partner particles’ frames
relative to the symmetry-partner observers’ frames in the pos-
itive and negative universes, described in the foregoing para-
graph, give rise to Fig. 8a of [1] with respect to 3-observers
in the Euclidean 3-spaces Σ′ and −Σ′∗, which shall be repro-
duced here as Fig. 10a.

The diagram of Fig. 10a involving relative rotations of ex-
tended intrinsic affine spacetime coordinates, has been drawn
upon the flat four-dimensional proper metric spacetime of

classical mechanics (CM) and its underlying flat two-dimen-
sional proper intrinsic metric spacetime of intrinsic classical
mechanics (φCM) of the positive (or our) universe and the
negative universe contained in Fig. 8a of this paper. The pre-
scribed symmetry of state among the four universes encom-
passed by Figs. 8a and 8b of this paper, implies that identical
symmetry-partner particles undergo identical motions simul-
taneously relative to identical symmetry-partner observers (or
frames of reference) in the four universes. It follows from
this that Fig. 10b drawn upon the flat four-dimensional proper
metric spacetime of CM and its underlying flat two-dimen-
sional proper intrinsic metric spacetime of φCM of the pos-
itive time-universe and the negative time-universe contained
in Fig. 8b of this paper, co-exists with Fig. 10a in nature.

Fig. 10b is valid with respect to 3-observers in the Eu-
clidean 3-spaces Σ0′ of the positive time-universe and −Σ0′∗

of the negative time-universe as indicated. It must be noted
that the anti-clockwise rotations of primed intrinsic coordi-
nates φx̃′ and φcφt̃ ′ relative to the unprimed intrinsic coor-
dinates φx̃ and φcφt̃ respectively by positive intrinsic angle
φψ with respect to 3-observers in the Euclidean 3-space Σ′

and −Σ′∗ in Fig. 10a, correspond to clockwise rotations of the
primed intrinsic coordinates φx̃0′ and φcφt̃ 0′ relative to the
unprimed intrinsic coordinates φx̃ 0 and φcφt̃ 0 respectively by
positive intrinsic angle φψ with respect to 3-observers in Σ0′

and −Σ0′∗ in Fig. 10b.
Fig. 10b co-exists with Fig. 10a in nature and must com-

plement Fig. 10a towards deriving intrinsic Lorentz transfor-
mation/Lorentz transformation (φLT/LT) graphically in the
positive (or our) universe and the negative universe by physi-
cists in our universe and the negative universe. However Fig.
10b in its present form cannot serve a complementary role
to Fig. 10a, because it contains the spacetime and intrinsic
spacetime coordinates of the positive time-universe and the
negative time-universe, which are elusive to observers in our
(or positive) universe and the negative universe, or which can-
not appear in physics in the positive and negative universes.

In order for Fig. 10b to be able to serve a complementary
role to Fig. 10a towards deriving the φLT/LT in the positive
and negative universes, it must be appropriately modified. As
found earlier in this paper, the proper Euclidean 3-spaces Σ0′

and −Σ0′∗ of the positive and negative time-universes with
respect to 3-observers in them, are proper time dimensions
ct′ and −ct′∗ respectively with respect to 3-observers in the
proper Euclidean 3-spaces Σ′ and −Σ′∗ of our universe and
the negative universe and the proper time dimensions ct0′ and
−ct0′∗ of the positive and negative time-universes with respect
to 3-observers in the proper Euclidean 3-spaces Σ0′ and −Σ0′∗

of the positive and negative time-universes, are the proper Eu-
clidean 3-spaces Σ′ and −Σ′∗ of our universe and the negative
universes respectively with respect to 3-observers in Σ′ and
−Σ′∗.

As follows from the foregoing paragraph, Fig. 10b will
contain the spacetime and intrinsic spacetime coordinates of
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Fig. 10: a) Relative rotations of intrinsic affine spacetime coordinates of a pair of frames in the positive (or our) universe and of the
symmetry-partner pair of frames in the negative universe, which are valid relative to symmetry-partner 3-observers in the Euclidean 3-
spaces in the positive and negative universes. b) Relative rotations of intrinsic affine spacetime coordinates of a pair of frames in the
positive time-universe and of the symmetry-partner pair of frames in the negative time-universe, which are valid relative to symmetry-
partner 3-observers in the Euclidean 3-spaces in the positive and negative time-universes.

our (or positive) universe and the negative universe solely by
performing the following transformations of spacetime and
intrinsic spacetime coordinates on it with respect to 3-obser-
vers in the Euclidean 3-spaces Σ′ and −Σ′∗ of our universe
and the negative universe:

Σ̃0 → ct̃; ct̃ 0 → Σ̃; −Σ̃0∗ → −ct̃ ∗;
−ct̃ 0∗ → −Σ̃∗.

φx̃0 → φcφt̃; φcφt̃ 0 → φx̃;
−φx̃0∗ → −φcφt̃ ∗;
−φcφt̃ 0∗ → −φx̃∗.

φx̃0′ → φcφt̃ ′; φcφt̃ 0′ → φx̃′;
−φx̃0′∗ → −φcφt̃ ′∗;
−φcφt̃ 0′∗ → −φx̃ ′∗.



(28)

By implementing the coordinate/intrinsic coordinate transfor-
mations of systems (28) on Fig. 10b we have Fig. 11a.

Fig. 11a is valid with respect to 1-observers in the proper
time dimensions ct′ and −ct′∗ of the positive and negative
universes as indicated, where these 1-observers are the 3-
observers in the Euclidean 3-spaces Σ0′ and −Σ0′∗ in Fig. 10b.
Since Fig. 11a contains the spacetime/intrinsic spacetime co-
ordinates of the positive (or our) universe and the negative
universe solely, it can serve as a complementary diagram to
Fig. 10a towards the deriving φLT/LT in the positive (or our)
universe and the negative universe. Indeed Fig. 10a and Fig.
11a are the same as Figs. 8a and 8b of [1], with which the
φLT/LT were derived in the positive (or our) universe and the
negative universe in that paper, except for intrinsic spacetime
projections in Figs. 8a and 8b of [1], which are not shown in
Figs. 10a and Fig. 11a here.

On the other hand, Fig. 10a will contain the spacetime/in-
trinsic spacetime coordinates of the positive time-universe

and the negative time-universe solely, as shown in Fig. 11b,
by performing the inverses of the transformations of space-
time and intrinsic spacetime coordinates of system (28), (that
is, by reversing the directions of the arrows in system (28)) on
Fig. 10a. Just as Fig. 11a must complement Fig. 10a for the
purpose of deriving the φLT/LT in the positive (or our) uni-
verse and the negative universe, as presented in sub-section
4.4 of [1], Fig. 11b must complement Fig. 10b for the pur-
pose of deriving the φLT/LT in the positive time-universe and
the negative time-universe.

The clockwise sense of relative rotations of intrinsic affine
spacetime coordinates by positive intrinsic angles φψ with
respect to 1-observers in the time dimension ct̃ and −ct̃ ∗ in
Fig. 11a follows from the validity of the clockwise sense of
relative rotations of intrinsic affine spacetime coordinates by
positive intrinsic angle φψ with respect to 3-observers in the
Euclidean 3-spaces Σ0′ and −Σ0′∗ in Fig. 10b. The 1-obser-
vers in ct̃ and −ct̃ ∗ in Fig. 11a are what the 3-observers in Σ̃0

and −Σ̃0∗ in Fig. 10b transform into, as noted above.
Thus the second outstanding issue about the diagrams of

Figs. 8a and 8b of [1], mentioned at the beginning of this sec-
tion namely, the unexplained reason why anti-clockwise rel-
ative rotations of intrinsic affine spacetime coordinates with
respect to 3-observers in the Euclidean 3-spaces Σ′ and −Σ′∗

are positive rotations involving positive intrinsic angles φψ in
Fig. 8a of [1], while, at the same time, clockwise relative ro-
tations of intrinsic affine spacetime coordinates with respect
to 1-observers in the time dimensions ct′ and −ct′∗ are posi-
tive rotations involving positive intrinsic angles φψ in Fig. 8b
of [1], has now been resolved.

Since Fig. 8b of [1] or Fig. 11a of this paper has been
shown to originate from Fig. 10b of this paper, which is valid
with respect to 3-observers in the Euclidean 3-spaces Σ0′ and
−Σ0′∗ of the positive and negative time-universes, the origin
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Fig. 11: a) Complementary diagram to Fig. 10a obtained by transforming the spacetime/intrinsic spacetime coordinates of the positive
time-universe and the negative time-universe in Fig. 10b into the spacetime/intrinsic spacetime coordinates of the positive (or our) universe
and the negative universe; is valid with respect to 1-observers in the time dimensions of our universe and the negative universe. b)
Complementary diagram to Fig. 10b obtained by transforming the spacetime/intrinsic spacetime coordinates of the positive (or our) universe
and the negative universe in Fig. 10a into the spacetime/intrinsic spacetime coordinates of the positive time-universe and the negative time-
universe; is valid with respect to 1-observers in the time dimensions of the positive time-universe and the negative time-universe.

from the positive time-universe and negative time-universe of
Fig. 8b of [1] (or Fig. 11a of this paper), which must neces-
sarily be drawn to complement Fig. 8a of [1] (or Fig. 10a of
this paper) in deriving the φLT/LT in our (or positive) uni-
verse and the negative universe, has been shown. Thus the
first outstanding issue about Figs. 8a and 8b of [1], which
was unresolved in [1], mentioned at the beginning of this sec-
tion, namely the unexplained origin of Fig. 8b that must al-
ways be drawn to complement Fig. 8a in [1] in deriving the
φLT/LT, has now been resolved. The four-world background
of Figs. 8a and its complementary diagram of Fig. 8b in [1]
(or Fig. 10a and Fig. 11a of this paper), has thus been demon-
strated.

The new geometrical representation of the intrinsic
Lorentz transformation/Lorentz transformation (φLT/LT) of
Figs. 8a and 8b in [1] (or Fig. 10a and Fig. 11a of this paper),
which was said to rest on a two-world background in [1] and
[2], because those diagrams contain the spacetime/intrinsic
spacetime coordinates of the positive (or our) universe and
the negative universe solely and the origin of Fig. 8b in [1]
(or Fig. 11a of this paper) from the diagram of Fig. 10b of
this paper in the positive time-universe and the negative time-
universe was unknown in [1]. The φLT/LT and consequently
the intrinsic special theory of relativity/special theory of rel-
ativity (φSR/SR) shall be said to rest on a four-world back-
ground henceforth.

5 Invariance of the flat four-dimensional proper (or cla-
ssical) metric spacetime in the context of special rela-
tivity

The flat four-dimensional proper physical (or metric) space-
time, which is composed of the proper Euclidean 3-space

Σ′ and the proper time dimension ct′ in the first quadrant
in Fig. 8a of this paper, is the flat four-dimensional proper
metric spacetime of classical mechanics (including classical
gravitation), of the positive (or our) universe, usually denoted
by (x0′, x1′, x2′, x3′), where the dimension x0′ is along the
one-dimensional proper space ρ0′ in Fig. 6a, which trans-
forms into the proper time dimension ct′ in Fig. 8a; hence
x0′ = ct′ and x1′, x2′ and x3′ are the dimensions of the proper
Euclidean 3-space Σ′. The notation (Σ′, ct′) for the flat four-
dimensional proper physical (or metric) spacetime adopted
in [1] and [2], (although the prime label on Σ′ and ct′ did not
appear in those papers), is being adhered to in this paper for
convenience.

When the special theory of relativity operates on the flat
four-dimensional proper metric spacetime (x0′, x1′, x2′, x3′);
x0′ = ct′ (or (Σ′, ct′) in our notation), it is the extended intrin-
sic affine spacetime coordinates φx̃′ and φcφt̃ ′ of the primed
(or particle’s) frame that are rotated relative to their projective
extended affine intrinsic spacetime coordinates φx̃ and φcφt̃
of the unprimed (or observer’s) frame. It is consequently the
primed intrinsic affine coordinates φx̃′ and φcφt̃ ′ that trans-
form into the unprimed intrinsic affine coordinates φx̃ and
φcφt̃ in intrinsic Lorentz transformation (φLT) in the context
of intrinsic special theory of relativity (φSR).

It is the extended affine spacetime coordinates ct̃ ′, x̃′, ỹ′

and z̃ ′ of the primed frame on the flat four-dimensional proper
physical (or metric) spacetime (x0′, x1′, x2′, x3′) (or (Σ′, ct′)
in our notation) that transform into the extended affine space-
time coordinates ct̃, x̃, ỹ and z̃ of the unprimed frame, also on
the flat four-dimensional proper physical (or metric) space-
time (x0′, x1′, x2′, x3′) (or (Σ′, ct′) in our notation) in Lorentz
transformation (LT) in the context of the special theory of
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relativity (SR).
The special theory of relativity, as an isolated phenomen-

on, cannot transform the extended flat proper metric space-
time (x0′, x1′, x2′, x3′) (or (Σ′, ct′) in our notation) on which
it operates, to an extended flat relativistic metric spacetime
(x0, x1, x2, x3) (or (Σ, ct) in our notation), because SR in-
volves the transformation of extended affine spacetime coor-
dinates with no physical (or metric) quality. Or because the
spacetime geometry associated with SR is affine spacetime
geometry. A re-visit to the discussion of affine and metric
spacetimes in sub-section 4.4 of [1] may be useful here. The
primed coordinates x̃′, ỹ′, z̃ ′ and ct̃ ′ of the particle’s frame
and the unprimed coordinates x̃, ỹ, z̃ and ct̃ of the observer’s
frame in the context of SR are affine coordinates with no met-
ric quality, both of which exist on the flat proper (or clas-
sical) metric spacetime (x0′, x1′, x2′, x3′) (or (Σ′, ct′) in our
notation).

It is gravity (a metric phenomenon) that can transform
extended flat four-dimensional proper (or classical) metric
spacetime (with prime label) (x0′, x1′, x2′, x3′) (or (Σ′, ct′)
in our notation) into extended four-dimensional “relativistic”
spacetime (x0, x1, x2, x3) (or (Σ, ct)), (without prime label),
where (x0, x1, x2, x3) (or (Σ, ct)) is known to be curved in all
finite neighborhood of a gravitation field source in the con-
text of the general theory of relativity (GR). The rest mass
m0 of a test particle on the flat proper (or classical) metric
spacetime (x0′, x1′, x2′, x3′) (or (Σ′, ct′)) is also known to
transform into the inertial mass m on the curved “relativis-
tic” physical (or metric) spacetime (x0, x1, x2, x3) (or (Σ, ct))
in the context of GR, where m is known to be trivially related
to m0 as m = m0, by virtue of the principle of equivalence of
Albert Einstein [5].

However our interest in [1] and [2] and in the two parts of
this paper is not in the metric phenomenon of gravity, but in
the special theory of relativity (with affine spacetime geome-
try), as an isolated subject from gravity. We have inherently
assumed the absence of gravity by restricting to the extended
flat four-dimensional proper (or classical) metric spacetime
(x0′, x1′, x2′, x3′) (or (Σ′, ct′) in our notation), as the met-
ric spacetime that supports SR in the absence of relativistic
gravity in [1] and [2] and up to this point in this paper. The
transformation of the flat proper (or classical) metric space-
time (x0′, x1′, x2′, x3′) (or (Σ′, ct′)) into “relativistic” met-
ric spacetime (x0, x1, x2, x3) (or (Σ, ct)) in the context of a
theory of gravity, shall be investigated with further develop-
ment within the present four-world picture, in which four-
dimensional spacetime is underlined by two-dimensional in-
trinsic spacetime in each of the four symmetrical worlds (or
universes).

This first part of this paper shall be ended at this point,
while justifications for the co-existence in nature of the four
symmetrical worlds (or universes) in Figs. 8a and 8b of this
paper, as the actual background of the special theory of rela-
tivity in each universe, shall be concluded in the second part.
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The re-identification of the many-world background of the special theory of relativ-
ity (SR) as four-world background in the first part of this paper (instead of two-wold
background isolated in the initial papers), is concluded in this second part. The flat two-
dimensional intrinsic spacetime, which underlies the flat four-dimensional spacetime in
each universe, introduced as ansatz in the initial paper, is derived formally within the
four-world picture. The identical magnitudes of masses, identical sizes and identical
shapes of the four members of every quartet of symmetry-partner particles or objects in
the four universes are shown. The immutability of Lorentz invariance on flat spacetime
of SR in each of the four universes is shown to arise as a consequence of the perfect
symmetry of relative motion at all times among the four members of every quartet of
symmetry-partner particles and objects in the four universes. The perfect symmetry of
relative motions at all times, coupled with the identical magnitudes of masses, identical
sizes and identical shapes, of the members of every quartet of symmetry-partner parti-
cles and objects in the four universes, guarantee perfect symmetry of state among the
universes.

1 Isolating the two-dimensional intrinsic spacetime that
underlies four-dimensional spacetime

1.1 Indispensability of the flat 2-dimensional intrinsic
spacetime underlying flat 4-dimensional spacetime

The flat two-dimensional proper intrinsic metric spacetimes
denoted by (φρ′, φcφt′) and (−φρ′∗,−φcφt′∗), which underlies
the flat four-dimensional proper metric spacetimes (Σ′, ct′)
and (−Σ′∗,−ct′∗) of the positive and negative universes re-
spectively, were introduced as ansatz in sub-section 4.4 of
[1]. They have proved very useful and indispensable since
their introduction. For instance, the new spacetime/intrinsic
spacetime diagrams for the derivation of Lorentz transforma-
tion/intrinsic Lorentz transformation and their inverses in the
four-world picture, (referred to as two-world picture in [1]),
derived and presented as Figs. 8a and 8b of [1] (or Figs. 10a
and 11a of part one of this paper [3]) and their inverses namely,
Figs. 9a and 9b of [1], involve relative rotations of intrinsic
affine spacetime coordinates, without any need for relative
rotations of affine spacetime coordinates.

Once the intrinsic Lorentz transformation (φLT) and its
inverse have been derived graphically as transformation of the
primed intrinsic affine spacetime coordinates φx̃′ and φcφt̃′ of
the intrinsic particle’s frame into the unprimed intrinsic affine
spacetime coordinates φx̃ and φcφt̃ of the intrinsic observer’s
frame and its inverse, then Lorentz transformation (LT) and
its inverse in terms of primed affine spacetime coordinates
x̃′, ỹ′, z̃′ and ct̃′ of the particle’s frame and the unprimed affine
spacetime coordinates x̃, ỹ, z̃ and ct̃ of the observer’s frame
can be written straight away, as the outward manifestations

on flat four-dimensional spacetime of the intrinsic Lorentz
transformation (φLT) and its inverse on flat two-dimensional
intrinsic spacetime, as demonstrated in sub-section 4.4 of [1].

The indispensability of the flat two-dimensional proper
intrinsic metric spacetime (φρ′, φcφt′) underlying flat four-
dimensional proper metric spacetime (Σ′, ct′), arises from the
fact that it is possible for the intrinsic affine spacetime coordi-
nates φx̃′ and φcφt̃′ of the intrinsic particle’s frame (φx̃′, φcφt̃′)
that contains the one-dimensional intrinsic rest mass φm0 of
the particle in the intrinsic affine space coordinate φx̃′, to ro-
tate anti-clockwise by an intrinsic angle φψ relative to the
horizontal and vertical respectively and thereby project the in-
trinsic affine spacetime coordinates φx̃ and φcφt̃ of the intrin-
sic observer’s frame (φx̃, φcφt̃) along the horizontal and ver-
tical respectively, where the projective intrinsic affine space
coordinate φx̃ of the observer’s frame along the horizontal
contains the one-dimensional intrinsic relativistic mass, φm =

γφm0, of the particle, as happens in the first and second quad-
rants in Fig. 8a of [1], although the intrinsic rest mass φm0 in
the inclined φx̃′ and intrinsic relativistic mass φm in the pro-
jective φx̃ along the horizontal are not shown in that diagram.

The projective unprimed intrinsic affine coordinates φx̃
and φcφt̃ that constitute the observer’s intrinsic frame, con-
taining one-dimensional intrinsic relativistic mass φm of the
particle in φx̃, are then made manifest outwardly in the un-
primed affine spacetime coordinates x̃, ỹ, z̃ and ct̃ of the ob-
server’s fame on flat four-dimensional spacetime, containing
the three-dimensional relativistic mass, m = γm0, of the par-
ticle in affine 3-space Σ̃(x̃, ỹ, z̃) of the observer’s frame.

On the other hand, diagrams obtained by replacing the
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inclined primed intrinsic affine coordinates φx̃′, φcφt̃′,−φx̃′∗

and −φcφt̃′∗ of the symmetry-partner intrinsic particles’ fra-
mes (φx̃′, φcφt̃′) and (−φx̃′∗,−φcφt̃′∗) by inclined primed affine
spacetime coordinates x̃′, ct̃′,−x̃′∗ and −ct̃′∗ respectively of
the symmetry-partner particles’ frames (x̃′, ỹ′, z̃′, ct̃′) and
(−x̃′∗,−ỹ′∗,−z̃′∗, −ct̃′∗) in the positive and negative universes
in Figs. 8a and 8b of [1], that is, by letting φx̃′ → x̃′; φcφt̃′ →
ct̃′; −φx̃′∗ → −x̃′∗; −φcφt̃′∗ → −ct̃′∗; φx̃ → x̃; φcφt̃ → ct̃;
−φx̃∗ → −x̃∗ and −φcφt̃∗ → −ct̃∗ in those diagrams, as would
be done in the four-world picture in the absence of the intrin-
sic spacetime coordinates, are invalid or will not work.

The end of the foregoing paragraph is so since the affine
space coordinates ỹ′ and z̃′ of the particle’s frame are not ro-
tated along with the affine space coordinate x̃′ from affine 3-
space Σ̃′(x̃′, ỹ′, z̃′) of the particle’s frame (as a hyper-surface)
along the horizontal towards the time dimension ct̃ along the
vertical. And the only rotated coordinate x̃′, which is in-
clined at angle ψ to the horizontal, cannot contain the three-
dimensional rest mass m0 of the particle, which can then be
“projected” as three-dimensional relativistic mass, m = γm0,
into the projective affine 3-space Σ̃(x̃, ỹ, z̃) of the observer’s
frame (as a hyper-surface) along the horizontal. It then fol-
lows that the observational fact of the evolution of the rest
mass m0 of the particle into relativistic mass, m = γm0, in SR,
is impossible in the context of diagrams involving rotations
of the affine spacetime coordinates x̃′ and ct̃′ of the particle’s
frame relative to the affine spacetime coordinates x̃ and ct̃ of
the observer’s frame, which are in relative motion along their
collinear x̃′− and x̃−axes in the four-world picture. This rules
out the possibility (or validity) of such diagrams in the four-
world picture. As noted in [1], if such diagrams are drawn, it
must be understood that they are hypothetical or intrinsic (i.e.
non-observable).

Further more, it is possible for the intrinsic affine space-
time coordinates φx̃′ and φcφt̃′ of the particle’s intrinsic fra-
me (φx̃′, φcφt̃′), containing the one-dimensional intrinsic rest
mass φm0 of the particle in the intrinsic affine space coor-
dinate φx̃′, to rotate relative to their projective affine intrin-
sic spacetime coordinates φx̃ and φcφt̃ of the observer’s in-
trinsic frame (φx̃, φcφt̃), that contains the ‘projective’ one-
dimensional intrinsic relativistic mass, φm = γφm0, of the
particle in the projective intrinsic affine space coordinate φx̃,
by intrinsic angles φψ larger that π

2 , that is, in the range π
2 <

φψ ≤ π, (assuming rotation by φψ = π
2 can be avoided), in

Fig. 8a of [1]. This will make the particle’s intrinsic frame
(φx̃′, φcφt̃′) containing the positive intrinsic rest mass φm0 of
the particle in the inclined affine intrinsic coordinate φx̃′ in
the positive universe to make transition into the negative uni-
verse through the second quadrant to become particle’s intrin-
sic frame (−φx̃′∗,−φcφt̃′∗) containing negative intrinsic rest
mass −φm∗0 of the particle in the negative intrinsic affine space
coordinate −φx̃′∗, as explained in section 2 of [2].

The negative intrinsic affine spacetime coordinates −φx̃′∗

and −φcφt̃′∗ of the intrinsic particle’s frame, into which the

positive intrinsic affine coordinates φx̃′ and φcφt̃′ of the par-
ticle’s intrinsic frame in the positive universe transform upon
making transition into the negative universe through the sec-
ond quadrant, will be inclined intrinsic affine coordinates in
the second quadrant and the third quadrant respectively. They
will project intrinsic affine coordinates −φx̃∗ and −φcφt̃∗ of
the observer’s intrinsic frame along the horizontal and vertical
respectively in the third quadrant. Thus the observer’s intrin-
sic frame (−φx̃∗,−φcφt̃∗) containing negative intrinsic rela-
tivistic mass, −φm∗ = −γφm∗0, in the intrinsic affine space co-
ordinate −φx̃∗, will automatically appear in the negative uni-
verse, upon the particle’s intrinsic frame (φx̃′, φcφt̃′) contain-
ing positive intrinsic rest mass φm0 of the particle in the first
quadrant making transition into the second quadrant. The ob-
server’s intrinsic frame (−φx̃∗,−φcφt̃∗) containing relativistic
intrinsic mass −φm∗ = −γφm∗0 in −φx∗ will then be made
manifest in observer’s frame (−x̃∗, −ỹ∗, −z̃∗, −ct̃∗) on flat
spacetime of the negative universe, containing negative three-
dimensional relativistic mass, −m∗ = −γm∗0, of the particle.

It is therefore possible for a particle in relative motion
in the positive universe to make transition into the negative
universe in the context of the geometrical representation of
φLT/LT in the two-world picture (now re-identified as four-
world picture) in Figs. 8a and 8b of [1], assuming rotation
of intrinsic affine spacetime coordinates φx̃′ and φcφt̃′ of the
particle’s intrinsic frame relative to the intrinsic affine space-
time coordinates φx̃ and φcφt̃ of the observer’s intrinsic frame
by intrinsic angle φψ = π

2 , corresponding to intrinsic speed
φv = φc of relative intrinsic motion, can be avoided in the
process of rotation by φψ > π

2 .
On the other hand, letting the affine spacetime coordinates

x̃′ and ct̃′ of the particle’s frame (x̃′, ỹ′, z̃′, ct̃′) to rotate rela-
tive to the affine spacetime coordinates x̃ and ct̃ respectively
of the observer’s frame (x̃, ỹ, z̃, ct̃) in the positive universe
by angle ψ larger than π

2 , that is in the range π
2 < ψ ≤ π, (as-

suming ψ = π
2 can be avoided), will cause the affine spacetime

coordinates x̃′ and ct̃′ to make transition into the negative uni-
verse through the second quadrant to become inclined affine
coordinates −x̃′∗ and −ct̃′∗ in the second and third quadrants
respectively. However the non-rotated affine space coordi-
nates ỹ′ and z̃′ of the particle’s frame will remain along the
horizontal in the first quadrant in the positive universe. This
situation in which only two of four coordinates of a frame
make transition from the positive universe into the negative
universe is impossible.

Moreover since the three-dimensional rest mass m0 of the
particle cannot be contained in the only rotated affine space
coordinate x̃′, the rest mass of the particle will be unable to
make transition into the negative universe with the rotated co-
ordinates x̃′ and ct̃′. It is therefore impossible for a particle
in relative motion in the positive universe to make transition
into the negative universe in the context of diagrams involv-
ing rotation of affine spacetime coordinates x̃′ and ct̃′ of the
particle’s frame relative to affine spacetime coordinates x̃ and
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ct̃ of the observer’s frame, where the two frames are in mo-
tion along their collinear x̃′− and x̃−axes, in the two-world
picture (now re-identified as four-world picture). This further
renders such diagrams ineffective and impossible.

Relative rotations of intrinsic affine spacetime coordinates
in the spacetime/intrinsic spacetime diagrams for deriving in-
trinsic Lorentz transformation/Lorentz transformation are un-
avoidable in the present many-world picture. This makes
the flat two-dimensional intrinsic metric spacetime underly-
ing flat four-dimensional metric spacetime indispensable in
the context of the present theory.

1.2 Origin of the intrinsic space and intrinsic time di-
mensions

It has been shown that the quartet of Euclidean 3-spaces and
underlying one-dimensional intrinsic spaces in Fig. 2 of part
one of this paper [3], simplifies naturally as Figs. 6a and
6b of that paper, where Fig. 6a is valid with respect to 3-
observers in our proper Euclidean 3-space Σ′ and 3-observer*
in the proper Euclidean 3-space −Σ′∗ of the negative universe
and Fig. 6b is valid with respect to 3-observers in the proper
Euclidean 3-space Σ0′ of the positive time-universe and 3-
observer* in the proper Euclidean 3-space −Σ0′∗ of the neg-
ative time-universe, as indicated in those diagrams. Figs. 6a
and 6b of [3] ultimately transform into Figs. 8a and 8b re-
spectively of that paper naturally with respect to the same 3-
observers in the proper Euclidean 3-spaces with respect to
whom Figs. 6a and 6b are valid.

The one-dimensional proper intrinsic spaces underlying
the proper Euclidean 3-spaces have been introduced without
deriving them in the first part of this paper [3]. Now let us
assume that the underlying one-dimensional proper intrinsic
spaces have not been known in Figs. 6a and 6b of [3]. Then
let us reproduce the first quadrant of those figures without the
intrinsic spaces as Figs. 1a and 1b respectively here.

The one-dimensional proper (or classical) space ρ0′ along
the vertical in Fig. 1a (to which the proper Euclidean 3-space
Σ0′ of the positive time-universe naturally contracts with re-
spect to 3-observers in our proper Euclidean 3-space Σ′), pro-
jects a component to be denoted by ρ′ into our proper Eu-
clidean 3-space Σ′ (considered as a hyper-surface along the
horizontal), which is given as follows:

ρ′ = ρ0′ cosψ0 = ρ0′ cos
π

2
= 0 (1)

where the fact that ρ0′ is naturally inclined at absolute angle
ψ0 = π

2 to the horizontal, corresponding to absolute speed
V0 = c of every point along ρ0′ relative to 3-observers in Σ′

(discussed extensively in sub-section 1.1 of [3]) has been used
in (1).

Equation (1) states that the one-dimensional space ρ0′

along the vertical projects zero component (or nothing) into
the Euclidean 3-space Σ′ (as a hyper-surface) along the hor-
izontal. However we shall not ascribe absolute nothingness

Fig. 1: (a) The proper Euclidean 3-space of our universe Σ′ (as
a hyper-surface along the horizontal), containing the rest mass m0

of an object and the one-dimensional proper space ρ0′ containing
the one-dimensional rest mass m0

0 of the symmetry-partner object
in the positive time-universe relative to 3-observers in Σ′; ρ0′ con-
taining one-dimensional m0

0 being the proper Euclidean 3-space Σ0′

of the positive time-universe containing three-dimensional rest mass
m0

0 with respect to 3-observers in Σ0′. (b) The proper Euclidean
3-space of the positive time-universe Σ0′ (as a hyper-surface along
the vertical), containing the rest mass m0

0 of an object and the one-
dimensional proper space ρ′ containing the one-dimensional rest
mass m0 of the symmetry-partner object in our universe relative
to 3-observers in Σ0′; ρ′ containing one-dimensional m0 being the
proper Euclidean 3-space Σ′ of the positive (or our) universe con-
taining three-dimensional rest mass m0 with respect to 3-observers
in Σ′.

to the projection of the physical one-dimensional space ρ0′

along the vertical into the Euclidean 3-space Σ′ along the hor-
izontal in Fig. 1a. The one-dimensional space ρ0′ certainly
“casts a shadow” into Σ′.

Actually, it is the factor cos π
2 that vanishes in (1) and not

ρ0′ multiplying it. Thus let us re-write (1) as follows:

ρ′ = ρ0′ cos
π

2
= 0 × ρ0′ ≡ φρ′ (2)

where φρ′ is without the superscript “0” label because it lies
in (or underneath) our Euclidean 3-space Σ′ (without super-
script “0” label) along the horizontal.

Thus instead of associating absolute nothingness to the
projection of ρ0′ along the vertical into the Euclidean 3-space
Σ′ along the horizontal, as done in (1), a dimension φρ′ of
intrinsic (that is, non-observable and non-detectable) quality,
has been attributed to it in (2). Hence φρ′ shall be referred to
as intrinsic space. It is proper (or classical) intrinsic space by
virtue of its prime label.

Any interval of the one-dimensional intrinsic space (or
intrinsic space dimension) φρ′ is equivalent to zero interval
of the one-dimensional physical space ρ0′, (as follows from
φρ′ ≡ 0 × ρ0′ in (2)). It then follows that any interval of the
proper intrinsic space φρ′ is equivalent to zero distance of the
physical proper Euclidean 3-space Σ′. Or any interval of φρ′

is no interval of space. The name nospace shall be coined
for φρ′ from the last statement, as an alternative to intrinsic
space, where φρ′ is proper (or classical) nospace by virtue of
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the prime label on it.
As derived in sub-section 1.2 of the first part of this paper

[3], the Euclidean 3-space Σ0′ of the positive time-universe
is geometrically contracted to the one-dimensional space ρ0′

with respect to 3-observers in our Euclidean 3-space Σ′ be-
tween Fig. 3 and Fig. 6a of [3], where ρ0′ can be considered
to be along any direction of the Euclidean 3-space Σ0′ that
contracts to it, with respect to 3-observers in Σ′. Thus ρ0′

is an isotropic one-dimensional space with no unique orien-
tation in the Euclidean 3-space Σ0′ that contracts to it with
respect to 3-observers in Σ′. The one-dimensional intrinsic
space (or one-dimensional nospace) φρ′, which ρ0′ projects
into the Euclidean 3-space Σ′, is consequently an isotropic in-
trinsic space dimension with no unique orientation in Σ′ with
respect to 3-observers in Σ′.

The one-dimensional proper (or classical) space ρ′ along
the horizontal in Fig. 1b, to which our proper Euclidean 3-
space Σ′ geometrically contracts with respect to 3-observers
in the proper Euclidean 3-space Σ0′ of the positive time-uni-
verse, as explained between Fig. 4 and Fig. 6b in sub-section
1.2 of [3], likewise projects one-dimensional proper intrinsic
space (or proper nospace) φρ0′ into the proper Euclidean 3-
space Σ0′ of the positive time-universe along the vertical in
Fig. 1b (not yet shown in Fig. 1b), where φρ0′ is an isotropic
one-dimensional intrinsic space dimension (with no unique
orientation) in Σ0′ with respect to 3-observers in Σ0′.

As follows from all the foregoing, Fig. 1a must be re-
placed with Fig. 2a, where the one-dimensional proper intrin-
sic space φρ′ projected into the proper Euclidean 3-space Σ′

by the one-dimensional proper space ρ0′ with respect to 3-
observers in Σ′ has been shown. Fig. 1b must likewise be re-
placed with Fig 2b, where the one-dimensional proper intrin-
sic space (or proper nospace) φρ0′ projected into the proper
Euclidean 3-space Σ0′ by the one-dimensional proper space
ρ′ with respect to 3-observers in Σ0′ has been shown.

The one-dimensional isotropic proper (or classical) intrin-
sic space φρ′ underlying the proper (or classical) Euclidean
3-space Σ′ of the positive (or our) universe with respect to 3-
observers in Σ′ and the one-dimensional isotropic proper (or
classical) intrinsic space φρ0′ underlying the proper (or classi-
cal) Euclidean 3-space Σ0′ of the positive time-universe with
respect to 3-observers in Σ0′, have thus been derived. The
derivations of the proper intrinsic space −φρ′∗ underlying the
proper Euclidean 3-space −Σ′∗ of the negative universe with
respect to 3-observers in −Σ′∗ and of −φρ0′∗ underlying the
proper Euclidean 3-space −Σ0′∗ of the negative time-universe
with respect to 3-observers* in −Σ′0∗, follow directly from
the derivations of φρ′ underlying Σ′ and φρ0′ underlying Σ0′

above.
Following the introduction of the flat 2-dimensional pro-

per intrinsic spacetimes (φρ′, φcφt′) and (−φρ′∗, −φcφt′∗) that
underlie the flat four-dimensional proper spacetimes (Σ′, ct′)
and (−Σ′∗,−ct′∗) of the positive (or our) universe and the neg-
ative universe respectively as ansatz in sub-section 4.4 of [1],

Fig. 2: (a) The one-dimensional proper space ρ0′ containing
one-dimensional rest mass m0

0 along the vertical, projects one-
dimensional proper intrinsic space φρ′ containing one-dimensional
intrinsic rest mass φm0 into the proper Euclidean 3-space Σ′ (as
a hyper-surface) containing the rest mass m0 along the horizontal,
with respect to 3-observers in Σ′. (b) The one-dimensional proper
space ρ′ containing one-dimensional rest mass m0 along the horizon-
tal, projects one-dimensional proper intrinsic space φρ0′ containing
one-dimensional intrinsic rest mass φm0

0 into the proper Euclidean
3-space Σ0′ (as a hyper-surface) containing rest mass m0

0 along the
vertical, with respect to 3-observers in Σ0′

the one-dimensional proper intrinsic spaces φρ′ and −φρ′∗
underlying the proper Euclidean 3-spaces Σ′ and −Σ′∗ of the
positive and negative universes and the proper intrinsic spaces
φρ0′ and −φρ0′∗ underlying the proper Euclidean 3-spaces Σ0′

and −Σ0′∗ of the positive and negative time-universes were
introduced without deriving them in Figs. 2, 3 and 4 and
Figs. 6a and 6b of the first part of this paper [3]. The ex-
istence in nature of the one-dimensional isotropic intrinsic
spaces underlying the physical Euclidean 3-spaces has now
been validated.

1.3 Origin of one-dimensional intrinsic rest mass in one-
dimensional proper intrinsic space underlying rest
mass in proper Euclidean 3-space

The one-dimensional proper space ρ0′, being orthogonal to
the proper Euclidean 3-space Σ′ (as a hyper-surface) along
the horizontal, possesses absolute speed V0 = c at every point
along its length with respect to 3-observers in Σ′, as has been
well discussed in sub-section 1.1 of [3]. Consequently, the
one-dimensional rest mass m0

0 of a particle or object in ρ0′

acquires the absolute speed V0 = c of ρ0′ with respect to 3-
observers in Σ′ in Figs. 1a and 2a.

On the other hand, the Euclidean 3-space Σ′ being along
the horizontal (as a hyper-surface), possesses zero absolute
speed (V0 = 0) at every point of it with respect to 3-observers
in Σ′. The projective intrinsic space (or nospace) φρ′, being
along the horizontal, likewise possesses zero absolute intrin-
sic speed (φV0 = 0) at every point along its length with re-
spect to 3-observers in Σ′ in Fig. 2a.

The one-dimensional rest mass m0
0 in the one-dimension-

al proper space ρ0′ along the vertical in Figs. 1a or 2a, can
be said to be in non-detectable absolute motion at constant
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absolute speed V0 = c along ρ0′ with respect to 3-observers
in the proper Euclidean 3-space Σ′ in that figure. There is a
mass relation in the context of absolute motion that can be ap-
plied for the non-detectable absolute motion at absolute speed
V0 = c of m0

0 along ρ0′, which shall be derived elsewhere in
the systematic development of the present theory. It shall be
temporarily written hereunder because of the need to use it at
this point.

Let us revisit Fig. 7 of part one of this paper [3], drawn to
illustrate the concept of time and intrinsic time induction only.
It is assumed that the proper intrinsic metric space φρ0′ pos-
sesses absolute intrinsic speed φV0 < φc at every point along
its length, thereby causing φρ0′ to be inclined at a constant
absolute intrinsic angle, φψ0 < π

2 , relative to its projection
φρ′ along the horizontal in that figure. This is so since the
uniform absolute intrinsic speed φV0 along the length of φρ0′

is related to the constant absolute intrinsic angle φψ0 of incli-
nation to the horizontal of φρ0′ as, sin φψ0 = φV0/φc, (see Eq.
(1) of [3]). It follows from this relation that when the inclined
φρ0′ lies along the horizontal, thereby being the same as its
projection φρ′ along the horizontal, it possesses constant zero
absolute intrinsic speed (φV0 = 0) at every point along its
length along the horizontal with respect to the 3-observer in
Σ′ in that figure, just as it has been said that the projective φρ′

along the horizontal possesses absolute intrinsic speed V0 = 0
at every point along its length with respect to 3-observers Σ′

in Fig. 2a earlier. And for φρ0′ to lie along the vertical in
Fig. 7 of [3], it possesses constant absolute intrinsic speed
φV0 = φc at every point along its length with respect to the
3-observer in Σ′.

Now let a one-dimensional intrinsic rest mass φm0
0 be lo-

cated at any point along the inclined proper intrinsic metric
space φρ0′ in Fig. 7 of [3]. Then φm0

0 will acquire absolute in-
trinsic speed φV0 < φc along the inclined φρ0′. It will project
another intrinsic rest mass φm0 (since it is not in relative mo-
tion) into the proper intrinsic space φρ′, which the inclined
φρ0′ projects along the horizontal. The relation between the
‘projective’ intrinsic rest mass φm0 in the projective proper
intrinsic space φρ′ along the horizontal and the intrinsic rest
mass φm0

0 along the inclined proper intrinsic space φρ0′ (not
shown in Fig. 7 of [3]), is the intrinsic mass relation in the
context of absolute intrinsic motion to be derived formally
elsewhere. It is given as follows:

φm0 = φm0
0 cos2 φψ0 = φm0

0

1 −
φV2

0

φc2

 (3)

The outward manifestation in the proper 3-dimensional
Euclidean space Σ′ (in Fig. 7 of [3]) of Eq. (3), obtained by
simply removing the symbol φ, is the following

m0 = m0
0 cos2 ψ0 = m0

0

1 −
V2

0

c2

 (4)

Corresponding to relations (3) and (4) in the contexts of
absolute intrinsic motion and absolute motion, there are the

intrinsic mass relation in the context of relative intrinsic mo-
tion (or in the context of intrinsic special theory of relativity
(φSR)) and mass relation in the context of relative motion (or
in the context of SR). The generalized forms involving in-
trinsic angle φψ and angle ψ of intrinsic mass relation in the
context of φSR and mass relation in the context of SR, de-
rived and presented as Eqs. (15) and (16) in section 3 of [2]
are the following

φm = φm0 sec φψ = φm0

(
1 − φv

2

φc2

)−1/2

(5)

and

m = m0 secψ = m0

(
1 − v

2

c2

)−1/2

(6)

One finds that relations (3) and (4) in the context of absolute
intrinsic motion and absolute motion differ grossly from the
corresponding relations (5) and (6) in relative intrinsic motion
(or in the context of φSR) and in relative motion (or in the
context of SR).

Since the one-dimensional rest mass m0
0 possesses abso-

lute speed V0 = c of non-detectable absolute motion along
ρ0′ with respect to 3-observers in Σ′ in Fig. 2a, relation (4)
can be applied for the “projection” of m0

0 into the Euclidean
3-space Σ′ with respect to 3-observers in Σ′ in that figure. We
must simply let ψ0 = π

2 and V0 = c in Eq. (4) to have

m0 = m0
0 cos2 π

2
= m0

0

(
1 − c2

c2

)
= 0 (7)

Equation (7) states that the one-dimensional rest mass m0
0

in the one-dimensional space ρ0′ along the vertical in Fig. 2a,
(to which the three-dimensional rest mass m0

0 in the proper
Euclidean 3-space Σ0′ of the positive time-universe with re-
spect to 3-observers in Σ0′ contracts relative to 3-observers in
our Euclidean 3-space Σ′), projects zero rest mass (or noth-
ing) into our Euclidean 3-space Σ′ along the horizontal. How-
ever the one-dimensional rest mass m0

0 in ρ0′ along the verti-
cal certainly ‘casts a shadow’ into the Euclidean 3-space Σ′

considered as a hyper-surface along the horizontal in Fig. 2a.
It is the factor cos2 π

2 or (1 − c2/c2) that vanishes and not
the rest mass m0

0 multiplying it in Eq. (7). Thus let us re-write
Eq. (7) as follows:

m0 = m0
0 cos2 π

2
= 0 × m0

0 ≡ φm0 (8)

Instead of ascribing absolute nothingness to the “projection”
of the one-dimensional rest mass m0

0 in the one-dimensional
space ρ0′ along the vertical into our proper Euclidean 3-space
as a hyper-surface Σ′ along the horizontal in Fig. 2a in Eq. (7),
a one-dimensional quantity φm0 of intrinsic (that is, nonob-
servable and non-detectable) quality has been ascribed to it in
Eq. (8). Hence φm0 shall be referred to as intrinsic rest mass.

Any quantity of the one-dimensional intrinsic rest mass
φm0 is equivalent to zero quantity of the one-dimensional rest
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Fig. 3: (a) The proper intrinsic space φρ0′ containing intrinsic rest
mass φm0

0, projected into the proper Euclidean 3-space Σ0′ along
the vertical by one-dimensional proper space ρ′ containing one-
dimensional rest mass m0 along the horizontal in Fig. 2b, is added to
Fig. 2a, where it lies parallel to ρ0′ along the vertical, giving rise
to a flat four-dimensional proper space (Σ′, ρ0′) underlied by flat
two-dimensional proper intrinsic space (φρ′, φρ0′) with respect to
3-observers in Σ′. (b) The proper intrinsic space φρ′ containing in-
trinsic rest mass φm0, projected into the proper Euclidean 3-space
Σ′ along the horizontal by one-dimensional proper space ρ0′ con-
taining one-dimensional rest mass m0

0 along the vertical in Fig. 2a, is
added to Fig. 2b, where it lies parallel to ρ′ along the horizontal, giv-
ing rise to a flat four-dimensional proper space (Σ0′, ρ′) underlied by
flat two-dimensional proper intrinsic space (φρ0′, φρ′) with respect
to 3-observers in Σ0′.

mass m0
0 in the one-dimensional space ρ0′, as follows from

φm0 ≡ 0 × m0
0 in Eq. (8). It then follows that any quantity

of the intrinsic rest mass φm0 is equivalent to zero quantity
of three-dimensional rest mass m0 in Σ′. Or any quantity of
intrinsic rest mass is no rest mass. An alternative name coined
from the preceding statement namely, nomass, shall be given
to the intrinsic rest mass φm0. The intrinsic rest mass φm0
in the proper (or classical) intrinsic space is the proper (or
classical) nomass.

The ‘projective’ intrinsic rest mass (or proper nomass)
φm0 in the projective proper intrinsic space φρ′, lies directly
underneath the rest mass m0 in the proper Euclidean 3-space
Σ′, as already shown in Fig. 2a. The one-dimensional rest
mass m0 in the one-dimensional proper (or classical) space ρ′

along the horizontal in Fig. 2b, likewise “projects” intrinsic
rest mass (or proper nomass) φm0

0 into the projective proper
(or classical) intrinsic space φρ0′, which lies directly under-
neath the rest mass m0

0 in the proper Euclidean 3-space Σ0′ of
the positive time-universe with respect to 3-observers in Σ0′,
as already shown in Fig. 2b.

Now the proper Euclidean 3-space Σ0′ of the positive time-
universe with respect to 3-observers in it in Fig. 2b, is what
appears as one-dimensional proper space ρ0′ along the ver-
tical with respect to 3-observers in our proper Euclidean 3-
space Σ′ in Fig. 2a. The one-dimensional proper intrinsic
space φρ0′ projected into (or underneath) Σ0′ by ρ′ along
the horizontal in Fig. 2b, must be added to Fig. 2a, where
it must lie parallel to ρ0′ along the vertical, thereby convert-
ing Fig. 2a to Fig. 3a with respect to 3-observers in Σ′. The

Fig. 4: (a) The one-dimensional proper space ρ0′ and the proper
intrinsic space φρ0′ along the vertical with respect to 3-observers
in Σ′ in Fig. 3a, transform into the proper time dimension ct′ and
proper intrinsic time dimension φcφt′ respectively, giving rise to
a flat four-dimensional proper spacetime (Σ′, ct′) underlied by flat
two-dimensional proper intrinsic spacetime (φρ′, φcφt′) with respect
to 3-observers in Σ′. (b) The one-dimensional proper space ρ′ and
the proper intrinsic space φρ′ along the horizontal with respect to 3-
observers in Σ0′ in Fig. 3b, transform into the proper time dimension
ct0′ and proper intrinsic time dimension φcφt0′ respectively, giving
rise to a flat four-dimensional proper spacetime (Σ0′, ct0′) under-
lied by flat two-dimensional proper intrinsic spacetime (φρ0′, φcφt0′)
with respect to 3-observers in Σ0′.

one-dimensional proper intrinsic space φρ′ projected into (or
underneath) our proper Euclidean 3-space Σ′ by ρ0′ along the
vertical in Fig. 2a, must likewise be added to Fig. 2b, where it
must lie parallel to ρ′ along the horizontal, thereby converting
Fig. 2b to Fig. 3b with respect to 3-observers in Σ0′.

Finally, as explained for the transformations of Figs. 6a
and 6b into Figs. 8a and 8b respectively in sub-section 1.3 of
part one of this paper [3], the one-dimensional proper (or clas-
sical) space ρ0′ and the one-dimensional proper (or classical)
intrinsic space φρ0′ lying parallel to it along the vertical in
Fig. 3a, transform into the proper time dimension ct′ and the
proper intrinsic time dimension φcφt′ of the positive (or our)
universe with respect to 3-observers in our proper Euclidean
3-space Σ′, thereby converting Fig. 3a to the final Fig. 4a.

The one-dimensional proper (or classical) space ρ′ and
the one-dimensional proper (or classical) intrinsic space φρ′

lying parallel to it along the horizontal in Fig. 3b, likewise
transform into the proper time dimension ct0′ and the proper
intrinsic time dimension φcφt0′ of the positive time-universe
with respect to 3-observers in the proper Euclidean 3-space
Σ0′ of the positive time-universe, thereby converting Fig. 3b
to the final Fig. 4b.

As also explained in drawing Figs. 9a and 9b of [3], the
one-dimensional rest mass m0

0 in the one-dimensional proper
(or classical) space ρ0′ and the one-dimensional intrinsic rest
mass φm0

0 in the proper (or classical) intrinsic space φρ0′ in
Fig. 3a must be replaced by one-dimensional equivalent rest
mass E′/c2, where E′ = m0

0c2, in the proper time-dimension
ct′ and one-dimensional equivalent intrinsic rest mass
φE′/φc2, where φE′ = φm0

0φc2, in the proper intrinsic time
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dimension φcφt′ respectively, as done in Fig. 4a. The one-
dimensional rest mass m0 in ρ′ and the intrinsic rest mass
φm0 in φρ′ along the horizontal in Fig. 3b must likewise be re-
placed by E0′/c2; E0′ = m0c2, in ct0′ and φE0′/φc2; φE0′ =

φm0φc2, in φcφt0′ respectively, as done in Fig. 4b.
Fig. 4a now has flat two-dimensional proper intrinsic spa-

cetime (or proper nospace-notime) (φρ′, φcφt′), containing in-
trinsic rest mass (or proper nomass) φm0 (in φρ′) and equi-
valent intrinsic rest mass φE′/φc2 (in φcφt′), underlying flat
four-dimensional proper spacetime (Σ′, ct′), containing rest
mass m0 (in Σ′) and equivalent rest mass E′/c2 (in ct′), of the
positive (or our) universe. Fig. 4b likewise now has flat two-
dimensional proper intrinsic spacetime (φρ0′, φcφt0′), con-
taining intrinsic rest mass φm0

0 (in φρ0′) and equivalent in-
trinsic rest mass φE0′/φc2 (in φcφt0′), underlying flat proper
spacetime (Σ0′, ct0′), containing rest mass m0

0 (in Σ0′) and
equivalent rest mass E0′/c2 (in ct0′), of the positive time-
universe.

In tracing the origin of the proper intrinsic space φρ′ and
the intrinsic rest mass φm0 contained in it in Fig. 4a, we find
that the one-dimensional proper space ρ0′ containing one-
dimensional rest mass m0

0 along the vertical with respect to
3-observers in the proper Euclidean 3-space Σ′ of the positive
(or our) universe in Fig. 2a or 3a, projects proper intrinsic
space φρ′ containing intrinsic rest mass φm0 into the proper
Euclidean 3-space Σ′. Then as ρ0′ containing m0

0 along the
vertical in Fig. 2a or 3a (being along the vertical) naturally
transforms into proper time dimension ct′ containing equiv-
alent rest mass E′/c2 with respect to 3-observers in Σ′ in
Fig. 4a, its projection φρ′ containing φm0 into Σ′ along the
horizontal (being along the horizontal) remains unchanged
with respect to 3-observers in Σ′.

The conclusion then is that the proper Euclidean 3-space
Σ0′ of the positive time-universe with respect to 3-observers
in Σ0′, (which is one-dimensional space ρ0′ with respect to
3-observers in our proper Euclidean 3-space Σ′), is ultimately
the origin of the one-dimensional proper intrinsic space φρ′

underlying the proper Euclidean 3-space Σ′ of our universe
and the three-dimensional rest mass m0

0 of a particle of ob-
ject in the proper Euclidean 3-space Σ0′ of the positive time-
universe with respect to 3-observers in Σ0′ is the origin of
the one-dimensional intrinsic rest mass φm0 in the proper in-
trinsic space φρ′ lying directly underneath the rest mass m0
of the symmetry-partner particle or object in the proper Eu-
clidean 3-space Σ′ of our universe. In other words, the proper
Euclidean 3-space Σ0′ containing the three-dimensional rest
mass m0

0 of a particle or object in the positive time-universe,
“casts a shadow” of one-dimensional isotropic proper intrin-
sic space φρ′ containing one-dimensional intrinsic rest mass
φm0 into the proper Euclidean 3-space Σ′ containing the rest
mass m0 of the symmetry-partner particle or object in our uni-
verse, where φm0 in φρ′ lies directly underneath m0 in Σ′.

And in tracing the origin of the proper intrinsic time di-
mension φcφt′ that contains the equivalent intrinsic rest mass

φE′/φc2, lying parallel to the proper time dimension ct′ con-
taining the equivalent rest mass E′/c2 in Fig. 4a, we find that
the one-dimensional proper space ρ′ containing one-dimen-
sional rest mass m0 along the horizontal with respect to 3-
observers in the proper Euclidean 3-space Σ0′ of the positive
time-universe in Fig. 2b or 3b, where ρ′ is the Euclidean 3-
space Σ′ of our universe with respect to 3-observers in Σ′,
as derived between Fig. 4 and Fig. 6b in sub-section 1.2 of
[3], projects one-dimensional proper intrinsic space φρ0′ con-
taining intrinsic rest mass φm0

0 underneath the proper Eu-
clidean 3-space Σ0′ containing rest mass m0

0 of the positive
time-universe with respect to 3-observers in Σ0′ in Fig. 2b
or 3b. The proper Euclidean 3-space Σ0′ containing the rest
mass m0

0 and its underlying proper intrinsic space φρ0′ con-
taining intrinsic rest mass φm0

0 with respect to 3-observers in
the proper Euclidean 3-space Σ0′ of the positive time-universe
in Fig. 3b, are the proper time dimension ct′ of our universe
containing equivalent rest mass E′/c2 and its underlying
proper intrinsic time dimension φcφt′ of our universe con-
taining equivalent intrinsic rest mass φE′/φc2 with respect to
3-observers in Σ′ in Fig. 4a.

The conclusion then is that the proper Euclidean 3-space
Σ′ of the positive (or our) universe is the origin of the proper
intrinsic time dimension φcφt′ that lies parallel to the proper
time dimension ct′ of the positive (or our) universe in Fig. 4a.
The three-dimensional rest mass m0 of a particle or object in
the proper Euclidean 3-space Σ′ of our universe is the origin
of the one-dimensional equivalent intrinsic rest mass φE′/φc2

in the proper intrinsic time dimension φcφt′ that lies besides
the one-dimensional equivalent rest mass E′/c2 in the proper
time dimension ct′ of our universe in Fig. 4a.

The two-dimensional proper intrinsic metric spacetime
(or proper metric nospace-notime) (φρ′, φcφt′), containing in-
trinsic rest mass φm0 in φρ′ and equivalent intrinsic rest mass
φE/φc2 in φcφt′, which underlies the flat proper metric space-
time (Σ′, ct′), containing rest mass m0 in Σ′ and equivalent rest
mass E′/c2 in ct′, has thus been derived within the four-world
picture. The intrinsic special theory of relativity (φSR) oper-
ates on the flat proper intrinsic metric spacetime (φρ′, φcφt′)
and the special theory of relativity (SR) operates on the flat
proper metric spacetime (Σ′, ct′) in the absence of relativistic
gravitational field. The flat two-dimensional proper intrinsic
spacetime was introduced as ansatz in section 4.4 of [1] and
it has proved indispensable in the present theory since then,
as discussed fully earlier in sub-section 1.1 of this paper.

The derivations of the flat two-dimensional proper intrin-
sic spacetime (φρ′, φcφt′) containing intrinsic rest masses
(φm0, φE′/φc2) of particles and bodies, which underlies the
flat four-dimensional proper spacetime (Σ′, ct′) containing the
rest masses (m0, E′/c2) of particles and bodies in our uni-
verse and in the other three universes, as presented in this
sub-section, is the best that can be done at the present level
of the present evolving theory. The derivations certainly de-
mystify the concepts of intrinsic spacetime and intrinsic mass
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introduced as ansatz in section 4 of [1]. There are, however,
more formal and more complete derivations of these concepts
along with the concepts of absolute intrinsic spacetime con-
taining absolute intrinsic rest mass, which underlies absolute
spacetime containing absolute rest mass and relativistic in-
trinsic spacetime containing relativistic intrinsic mass, which
underlies relativistic spacetime containing relativistic mass,
to be presented elsewhere with further development.

2 Validating perfect symmetry of state among the four
universes isolated

Perfect symmetry of natural laws among the four universes
namely, the positive universe, the negative universe, the posi-
tive time-universe and the negative time-universe, whose met-
ric spacetimes and underlying intrinsic metric spacetimes are
depicted in Figs. 8a and 8b of the first part of this paper [3],
has been demonstrated in section 2 of that paper. Perfect sym-
metry of state among the universes shall now be demonstrated
in this section. Perfect symmetry of state exists among the
four universes if the masses of the four members of every
quartet of symmetry-partner particles or objects in the four
universes have identical magnitudes, shapes and sizes and if
they perform identical relative motions in their universes at
all times. These conditions shall be shown to be met in this
section.

2.1 Identical magnitudes of masses and of shapes and
sizes of the members of every quartet of symmetry-
partner particles or objects in the four universes

As illustrated in Fig. 2a or 3a, the one-dimensional intrinsic
rest mass (or proper nomass) φm0 “projected” into the pro-
jective isotropic one-dimensional proper (or classical) intrin-
sic space (or proper nospace) φρ′, lies directly underneath
the three-dimensional rest mass m0 in the proper (or clas-
sical) Euclidean 3-space Σ′ of the positive (or our) universe
with respect to 3-observers in Σ′. Likewise the “projective”
one-dimensional intrinsic rest mass φm0

0 in the projective one-
dimensional isotropic proper intrinsic space φρ0′ lies directly
underneath the three-dimensional rest mass m0

0 in the proper
(or classical) Euclidean 3-space Σ0′ of the positive time-uni-
verse with respect to 3-observers in Σ0′ in Fig. 2b or 3b.

Now the rest mass m0 is the outward (or physical) man-
ifestation in the proper (or classical) physical Euclidean 3-
space Σ′ of the one-dimensional intrinsic rest mass φm0 in
the one-dimensional proper (or classical) intrinsic space φρ′

lying underneath m0 in Σ′ in Fig. 2a or 3a. It then follows that
m0 and φm0 are equal in magnitude, that is, m0 = |φm0 |.

But the one-dimensional intrinsic rest mass φm0 in φρ′

along the horizontal is equal in magnitude to the one-dimen-
sional rest mass m0

0 in the one-dimensional space ρ0′ along
the vertical that ‘projects’ φm0 contained in φρ′ along the
horizontal in Fig. 2a or 3a. That is, m0

0 = |φm0 |. By combin-
ing this with m0 = |φm0 | derived in the preceding paragraph,

we have the equality in magnitude of the three-dimensional
rest mass m0 of a particle or object in our proper Euclidean
3-space Σ′ and the one-dimensional rest mass m0

0 of the sym-
metry-partner particle or object in the one-dimensional proper
(or classical) space ρ0′ (with respect to 3-observers in Σ′) in
Fig. 2a or 3a. That is, m0 = m0

0.
Finally the one-dimensional rest mass m0

0 of a particle or
object in the one-dimensional proper space ρ0′ along the ver-
tical with respect to 3-observers in our proper Euclidean 3-
space Σ′ in Fig. 2a or 3a, is what 3-observers in the proper
Euclidean 3-space Σ0′ of the positive time-universe observe
as three-dimensional rest mass m0

0 of the particle or object
in Σ0′. Consequently the one-dimensional rest mass m0

0 of
the particle or object in ρ0′ in Fig. 2a or 3a is equal in mag-
nitude to the three-dimensional rest mass m0

0 of the particle
or object in the proper Euclidean 3-space Σ0′. This is cer-
tainly so since the geometrical contraction of the Euclidean
3-space Σ0′ to one-dimensional space ρ0′ and the consequent
geometrical contraction of the three-dimensional rest mass m0

0
in Σ0′ to one-dimensional rest mass m0

0 in ρ0′ with respect to
3-observers in our Euclidean 3-space Σ′, does not alter the
magnitude of the rest mass m0

0.
In summary, we have derived the simultaneous relations

m0 = |φm0 | and m0
0 = |φm0 |, from which we have, m0 = m0

0
in the above. Also since m0

0 in Σ0′ is the outward manifes-
tation of φm0

0 in φρ0′ in Fig. 2b or 3b, we have the equality
in magnitude of m0

0 and φm0
0, that is, m0

0 = |φm0
0 |, which,

along with m0
0 = |φm0 | derived above, gives φm0

0 = φm0. The
conclusion then is that the rest mass m0 of a particle or ob-
ject in the proper Euclidean 3-space Σ′ of our (or positive)
universe with respect to 3-observers in Σ′, is equal in mag-
nitude to the rest mass m0

0 of the symmetry-partner particle
or object in the proper Euclidean 3-space Σ0′ of the positive
time-universe with respect to 3-observers in Σ0′. The one-
dimensional intrinsic rest mass φm0 of the particle or object in
our proper intrinsic space φρ′ underlying m0 in Σ′ in Fig. 2a,
3a or 4a is equal in magnitude to the intrinsic rest mass φm0

0 of
the symmetry-partner particle or object in the proper intrinsic
space φρ0′ underlying m0

0 in Σ0′ in Fig. 2b, 3b or 4b.
By repeating the derivations done between the positive (or

our) universe and the positive time-universe, which lead to
the conclusion reached in the foregoing paragraph, between
the negative universe and the negative time-universe, (which
shall not be done here in order to conserve space), we are also
led to the conclusion that the rest mass −m∗0 of a particle or
object in the proper Euclidean 3-space −Σ′∗ of the negative
universe with respect to 3-observers in −Σ′∗, is equal in mag-
nitude to the rest mass −m0

0
∗ of the symmetry-partner particle

or object in the proper Euclidean 3-space −Σ0′∗ of the nega-
tive time-universe with respect to 3-observers in −Σ0′∗. The
one-dimensional intrinsic rest mass −φm∗0 of the particle or
object in the proper intrinsic space −φρ′∗ of the negative uni-
verse underlying −m∗0 in −Σ′∗, is equal in magnitude to the
intrinsic rest mass −φm0

0
∗ of the symmetry-partner particle or
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object in the proper intrinsic space −φρ0′∗ underlying −m0
0
∗

in −Σ0′∗ in the negative time-universe.
The perfect symmetry of state between the positive (or

our) universe and the negative universe prescribed in [1], re-
mains a prescription so far. It implies that the rest mass m0
of a particle or object in the proper Euclidean 3-space Σ′ of
the positive (or our) universe, is identical in magnitude to the
rest mass −m∗0 of the symmetry-partner particle or object in
the proper Euclidean 3-space −Σ′∗ of the negative universe,
that is, m0 = | − m∗0 |. The corresponding (prescribed) per-
fect symmetry of state between positive time-universe and
the negative time-universe likewise implies that the rest mass
m0

0 of a particle or object in the proper Euclidean 3-space
Σ0′ of the positive time-universe is identical in magnitude to
the rest mass−m0

0
∗ of its symmetry-partner in the proper Eu-

clidean 3-space −Σ0′∗ of the negative time-universe, that is,
m0

0 = | − m0
0
∗ |.

The equality of magnitudes of symmetry-partner rest
masses, m0 = | − m∗0 |, that follows from the prescribed per-
fect symmetry of state between the positive (or our) universe
and the negative universe and m0

0 = | − m0
0
∗ | that follows

from the prescribed symmetry of state between the positive
time-universe and the negative time-universe, discussed in the
foregoing paragraph, are possible of formal proof, as shall
be presented elsewhere. By combining these with m0 = m0

0
and −m∗0 = −m0

0
∗ derived from Figs. 2a and 2b above, we

obtain the equality of magnitudes of the rest masses of the
four symmetry-partner particles or objects in the four uni-
verses, that is, m0 = | − m∗0 | = m0

0 = | − m0
0
∗ |. Conse-

quently there is equality of magnitudes of the intrinsic rest
masses in the one-dimensional intrinsic spaces of the quartet
of symmetry-partner particles or objects in the four universes,
that is, |φm0 | = | − φm∗0 | = |φm0

0 | = | − φm0
0
∗ |.

Having demonstrated the equality of magnitudes of the
rest masses of the members of every quartet of symmetry-
partner particles or objects in the four universes, (to the extent
that m0 = | − m∗0 | between the positive (or our) universe and
the negative universe and m0

0 = | − m0
0
∗ | between the positive

and negative time-universes are valid), let us also show their
identical shapes and sizes.

Now the rest mass m0 being the outward manifestation
in our proper Euclidean 3-space Σ′ of the intrinsic rest mass
φm0 of intrinsic length ∆φρ′ in the one-dimensional proper
intrinsic space φρ′ and the three-dimensional rest mass m0

0 in
the proper Euclidean 3-space Σ0′ with respect to 3-observers
in Σ0′, being what geometrically contracts to the one-dimen-
sional rest mass m0

0 of length ∆ρ0′ in ρ0′ with respect to 3-
observers in our Euclidean 3-space Σ′ and since ∆ρ0′ along
the vertical projects ∆φρ′ into Σ′ along the horizontal, then
the length ∆ρ0′ of the one-dimensional rest mass m0

0 in ρ0′ has
the same magnitude as the intrinsic length ∆φρ′ of the intrin-
sic rest mass φm0 in φρ′, that is, ∆ρ0′ = |∆φρ′ |. Consequently
the volume ∆Σ0′ of the Euclidean 3-space Σ0′ occupied by the
three-dimensional rest mass m0

0 with respect to 3-observers in

Σ0′ has the same magnitude as the volume ∆Σ′ of the Eu-
clidean 3-space Σ′ occupied by the rest mass m0 with respect
to 3-observers in Σ′; ∆Σ′ occupied by m0 being the outward
manifestation of ∆φρ′ occupied by φm0. In other words, the
rest mass m0 in Σ′ has the same size as its symmetry-partner
m0

0 in Σ0′.
Further more, the shape of the outward manifestation of

φm0 in the proper Euclidean 3-space Σ′, that is, the shape
of m0 in Σ′, with respect to 3-observers in Σ′, is the same
as the shape of the three-dimensional rest mass m0

0 in the
proper Euclidean 3-space Σ0′ with respect to 3-observers in
Σ0′. In providing justification for this, let us recall the dis-
cussion leading to Fig. 6a and 6b of [1], that the intrinsic rest
masses φm0 of particles and objects, which appear as lines
of intrinsic rest masses along the one-dimensional isotropic
proper intrinsic space φρ′ relative to 3-observers in the proper
Euclidean 3-space Σ′, as illustrated for a few objects in Fig. 6a
of [1], are actually three-dimensional intrinsic rest masses
φm0 in three-dimensional proper intrinsic space φΣ′ with re-
spect to three-dimensional intrinsic-rest-mass-observers (or
3-intrinsic-observers) in φΣ′, as also illustrated for a few ob-
jects in Fig. 6b of [1]. The shape of the three-dimensional
intrinsic rest mass φm0 of an object or particle in the three-
dimensional intrinsic space φΣ′ with respect to 3-intrinsic-
observers in φΣ′, is the same as the shape of its outward
manifestation in the proper Euclidean 3-space Σ′, that is, the
same as the shape of the rest mass m0 in Σ′, with respect to
3-observers in Σ′.

Since the line of intrinsic rest mass φm0 in one-dimen-
sional proper intrinsic space φρ′ relative to 3-observers in
Σ′, (which is a three-dimensional intrinsic rest mass φm0 in
three-dimensional proper intrinsic space φΣ′ with respect to
3-intrinsic-observers in φΣ′), is the projection along the hor-
izontal of the line of rest mass m0

0 in the one-dimensional
proper space ρ0′ along the vertical relative to 3-observers in
our proper Euclidean 3-space Σ′, (which is a 3-dimensional
rest mass m0

0 in the proper Euclidean 3-space Σ0′ of the pos-
itive time-universe with respect to 3-observers in Σ0′), the
shape of the three-dimensional intrinsic rest mass φm0 in φΣ′

with respect to 3-intrinsic-observers in φΣ′ is the same as the
shape of the three-dimensional rest mass m0

0 in Σ0′ with re-
spect to 3-observers in Σ0′. It then follows from this and the
conclusion (that the shape of φm0 in φΣ′ is the same as the
shape of m0 in Σ′) reached in the preceding two paragraphs,
that the shapes of the rest masses m0 in our proper Euclidean
3-space Σ′ and m0

0 in the proper Euclidean 3-space Σ0′ of the
positive time-universe are the same, as stated earlier.

The identical sizes and shapes of the the rest mass m0
of a particle or object in the proper Euclidean 3-space Σ′

of our universe and of the rest mass m0
0 of its symmetry-

partner in the proper Euclidean 3-space Σ0′ of the positive
time-universe, concluded from the foregoing, is equally true
between the rest mass −m∗0 in the Euclidean 3-space −Σ′∗ of
the negative universe and its symmetry-partner −m0

0
∗ in the
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Euclidean 3-space −Σ0′∗ of the negative time-universe.
When the preceding paragraph is combined with the iden-

tical shapes and sizes of the rest mass m0 of a particle or ob-
ject in the proper Euclidean 3-space Σ′ of the positive (or our)
universe and of the rest mass −m∗0 of its symmetry-partner in
the proper Euclidean 3-space −Σ′∗ of the negative universe,
which the so far prescribed perfect symmetry of state between
our universe and the negative universe implies, as well as the
identical shapes and sizes of the rest mass m0

0 of a particle
or object in the proper Euclidean 3-space Σ0′ of the posi-
tive time-universe and of the rest mass −m0

0
∗ of its symmetry-

partner in the proper Euclidean 3-space −Σ0′∗ of the negative
time-universe, which the so far prescribed perfect symmetry
of state between positive time-universe and the negative time-
universe implies, we have the identical shapes and sizes of the
four members of the quartet of symmetry-partner particles or
objects in the four universes, and this is true for every such
quartet of symmetry-partner particles or objects.

2.2 Perfect symmetry of relative motions always among
the members of every quartet of symmetry-partner
particles or objects in the four universes

As mentioned at the beginning of this section, the second
condition that must be met for symmetry of state to obtain
among the four universes isolated in part one of this paper
[3] and illustrated in Figs. 8a and 8b of that paper namely,
the positive (or our) universe, the negative universe, the pos-
itive time-universe and the negative time-universe, is that the
members of every quartet of symmetry-partner particles or
objects in the universes, now shown to have identical mag-
nitudes of masses, identical sizes and identical shapes, are
involved in identical motions relative to identical symmetry-
partner observers or frames of reference in the universes at
all times. The reductio ad absurdum method of proof shall
be applied to show that this second condition is also met. We
shall assume that the quartet of symmetry-partner particles or
objects in the four universes are not involved in identical rela-
tive motions and show that this leads to a violation of Lorentz
invariance.

Let us start with the assumption that the members of a
quartet of symmetry-partner particles or objects in the four
universes are in arbitrary motions at different speeds relative
to the symmetry-partner observers of frames of reference in
their respective universes at every given moment. This as-
sumption implies that given an object on earth in our universe
in motion at a speed vx+ along the north pole of the earth,
say, relative to our earth at a given instant, then its symmetry-
partner on earth in the negative universe is in motion at a
speed vx− along the north pole relative to the earth of the nega-
tive universe at the same instant; the symmetry-partner object
on earth in the positive time-universe is motion at a speed vx0+

along the north pole relative to the earth of the positive time-
universe at the same instant and the symmetry-partner object

on earth in the negative time-universe is in motion at a speed
vx0− along the north pole relative to the earth of the negative
time-universe at the same instant, where it is being assumed
that the speeds vx+ , vx− , vx0+ and vx0− have different magni-
tudes and each could take on arbitrary values lower than c,
including zero. They may as well be assumed to be moving
along arbitrary directions on earths in their respective uni-
verses.

The geometrical implication of the assumption made in
the foregoing paragraph is that the equal intrinsic angle φψ of
relative rotations of intrinsic affine space and intrinsic affine
time coordinates in the four quadrants, drawn upon the proper
(or classical) metric spacetimes/intrinsic spacetimes of the
positive (or our) universe and the negative universe in Fig. 8a
of [3], as Fig. 10a of that paper, and upon the proper (or clas-
sical) metric spacetimes/intrinsic spacetimes of the positive
time-universe and negative time-universe in Fig. 8b of [3], as
Fig. 10b of that paper, will take on different values φψ+

x , φψ−x ,
φψ+

t , φψ−t , φψ+
x0 , φψ−x0 , φψ+

t0 and φψ−t0 as depicted in Figs. 5a
and 5b.

The rotations of φx̃′ by intrinsic angle φψ+
x relative to

φx̃ along the horizontal in the first quadrant and the rota-
tion of φcφt̃′ by intrinsic angle φψ+

t relative to φcφt̃ along
the vertical in the second quadrant are valid with respect to
the 3-observer in Σ̃ in Fig. 5a, where sin φψ+

x = φvx+/φc and
sin φψ+

t = φvt+/φc. On the other hand, the rotation of −φx̃′∗

at intrinsic angle φψ−x relative to −φx̃∗ along the horizontal
in the third quadrant and the rotation of −φcφt̃′∗ by intrinsic
angle φψ−t relative to −φcφt̃∗ along the vertical in the fourth
quadrant in Fig. 5a are valid with respect to the 3-observer*
in −Σ̃∗, where sin φψ−x = φvx−/φc and sin φψ−t = φvt−/φc.

The rotations of φx̃0′ by intrinsic angle φψx0+ relative to
φx̃0 along the vertical in the first quadrant and the rotation
of φcφt̃0′ by intrinsic angle φψt0+ relative to φcφt̃0 along the
horizontal in the fourth quadrant are valid with respect to the
3-observer in Σ̃0 in Fig. 5b, where sin φψ+

x0 = φvx0+/φc and
sin φψ+

t0 = φvt0+/φc. On the other hand, the rotation of −φx̃0′∗

at intrinsic angle φψ−x0 relative to −φx̃0∗ along the vertical in
the third quadrant and the rotation of −φcφt̃0′∗ by intrinsic
angle φψ−t0 relative to −φcφt̃0∗ along the vertical in the second
quadrant in Fig. 5b are valid with respect to the 3-observer*
in −Σ̃0∗, where sin φψ−x0 = φvx0−/φc and sin φψ−t0 = φvt0−/φc.

Although the intrinsic angles φψ+
x , φψ

−
x , φψ

+
t and φψ−t ,

which are related to the intrinsic speeds φvx+ , φvx− , φvt+ and
φvt− , as sin φψ+

x = φvx+/φc; sin φψ−x = φvx−/φc; sin φψ+
t =

φvt+/φc; and sin φψ−t = φvt−/φc respectively in Fig. 5a, are
different in magnitude as being assumed and although the in-
trinsic angles φψ+

x0 , φψ
−
x0 , φψ

+
t0 , φψ−t0 , which are related to in-

trinsic speeds φvx0+ , φvx0− , φvt0+ and φvt0− as sin φψ+
x0 =

φvx0+/φc; sin φψ−x0 = φvx0−/φc; sin φψ+
t0 = φvt0+/φc; and sin φψ−t0

= φvt0−/φc respectively in Fig. 5b, are different in magnitude
as being assumed, it must be remembered that the intrinsic
angles φψ+

x , φψ
−
x , φψt+ , φψ−t in Fig. 5a are equal to the intrin-
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Fig. 5: (a) Rotations of intrinsic affine spacetime coordinates of intrinsic particle’s frame relative to intrinsic observer’s frame due to
assumed non-symmetrical motions of symmetry-partner particles relative to symmetry-partner observers in the four universes, with respect
to 3-observers in the Euclidean 3-spaces in the positive (or our) universe and the negative universe.

Fig. 5: (b) Rotations of intrinsic affine spacetime coordinates of intrinsic particle’s frame relative to intrinsic observer’s frame due to
assumed non-symmetrical motions of symmetry-partner particles relative to symmetry-partner observers in the four universes, with respect
to 3-observers in the Euclidean 3-spaces in the positive time-universe and the negative time-universe.
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sic angles φψ+
t0 , φψ

−
t0 , φψ

+
x0 , φψ−x0 respectively in Fig. 5b.

That is, φψ+
x = φψ+

t0 ; φψ−x = φψ−t0 ; φψ+
t = φψ+

x0 and φψ−t =

φψ−x0 in Figs. 5a and 5b. Consequently the intrinsic speeds
φvx+ , φvx− , φvt+ and φvt− in Fig. 5a are equal to φvt0+ , φvt0− ,
φvx0+ and φvx0− respectively in Fig. 5b. That is, φvx+ = φvt0+ ;
φvx− = φvt0− ; φvt+ = φvx0+ and φvt− = φvx0+ in Figs. 5a and 5b.

By following the procedure used to derive partial intrinsic
Lorentz transformation with respect to the 3-observer in Σ̃

from Fig. 8a of [1], the unprimed intrinsic affine coordinate
φx̃ along the horizontal is the projection of the inclined φx̃′ in
the first quadrant in Fig. 5a. That is, φx̃ = φx̃′ cos φψ+

x . Hence
we can write

φx̃′ = φx̃ sec φψ+
x

This is all the intrinsic coordinate transformation that could
have been possible with respect to the 3-observer in Σ̃ along
the horizontal in the first quadrant in Fig. 5a, but for the fact
that the inclined negative intrinsic coordinate −φcφt̃′∗ of the
negative universe in the fourth quadrant also projects a com-
ponent −φcφt̃′ sin φψ−t along the horizontal, which must be
added to the right-hand side of the last displayed equation to
have

φx̃′ = φx̃ sec φψ+
x − φcφt̃′ sin φψ−t ; (∗)

w.r.t 3 − observer in Σ̃.
As mentioned in the derivation of (∗), but for φψ+

x =

φψ−x = φψ with Fig. 8a in [1], the dummy star label on the
component−φcφt̃′∗ sin φψ−t projected along the horizontal has
been removed, since the projected component is now an in-
trinsic coordinate in the positive universe.

But φcφt̃ = φcφt̃′ cos φψ+
t or φcφt̃′ = φcφt̃ sec φψ+

t along
the vertical in the second quadrant in the same Fig. 5a. By
replacing φcφt̃′ by φcφt̃ sec φψ+

t at the right-hand side of (∗)
we have

φx̃′ = φx̃ sec φψ+
x − φcφt̃ sec φψ+

t sin φψ−t ; (9)

w.r.t 3 − observer in Σ̃. Eq. (9) is the final form of the par-
tial intrinsic Lorentz transformation that the 3-observer in Σ̃

in our universe could derive along the horizontal in the first
quadrant from Fig. 5a.

By applying the same procedure used to derive Eq. (9)
from the first and fourth quadrants of Fig. 5a to the first and
second quadrants of Fig. 5b, the counterpart of Eq. (9) that is
valid with respect to the 3-observer in Σ̃0 in that figure is the
following:

φx̃0′ = φx̃0 sec φψ+
x0 − φcφt̃0 sec φψ+

t0 sin φψ−t0 ; (10)

w.r.t 3 − observer in Σ̃0.Again Eq. (10) is the final form of the
partial intrinsic Lorentz transformation that the 3-observer in
Σ̃0 in the positive time-universe could derive along the vertical
in the first quadrant from Fig. 5b. By collecting Eqs. (9) and

(10) we have

φx̃′ = φx̃ sec φψ+
x − φcφt̃ sec φψ+

t sin φψ−t ;
(w.r.t 3 − observer in Σ̃);

φx̃0′ = φx̃0 sec φψ+
x0 − φcφt̃0 sec φψ+

t0 sin φψ−t0 ;
(w.r.t 3 − observer in Σ̃0)


. (11)

However system (11) is useless because it is neither the
full intrinsic Lorentz transformation in our (or positive) uni-
verse nor in the the positive time-universe. This is so because
the second equation of system (11) contains intrinsic coordi-
nates of the positive time-universe, which are elusive to ob-
servers in our universe or which cannot appear in physics in
our universe. On the other hand, the first equation contains
the intrinsic spacetime coordinates of our universe, which
cannot appear in physics in the positive time-universe.

In order to make system (11) a valid full intrinsic space-
time coordinate transformation (i.e. to make it full intrin-
sic Lorentz transformation) in our universe, we must trans-
form the intrinsic spacetime coordinates of the positive time-
universe in the second equation into the intrinsic spacetime
coordinates of our universe. As derived in part one of this pa-
per [3], we must let φx̃0′ → φcφt̃′, φx̃0 → φcφt̃ and φcφt̃0 →
φx̃ in the second equation of system (11), thereby converting
system (11) to the following

φx̃′ = φx̃ sec φψ+
x − φcφt̃ sec φψ+

t sin φψ−t ;
(w.r.t 3 − observer in Σ̃);

φcφt̃′ = φcφt̃ sec φψ+
t − sec φψ+

x sin φψ−x ;
(w.r.t 1 − observer in ct̃)


. (12)

Fig. 5b cannot serve the role of a complementary diagram
to Fig. 5a because it contains spacetime and intrinsic space-
time coordinates of the positive time-universe and negative
time-universe that are elusive to observers in our universe and
negative universe. This has been discussed for Figs. 10a and
10b of [3]. In order to make Fig. 5b a valid complementary
diagram to Fig. 5a, the spacetime/intrinsic spacetime coordi-
nates of the positive and negative time-universes in it must be
transformed into those of our universe and the negative uni-
verse, as done between Fig. 10b and Fig. 11a of [3], to have
Fig. 5c.

Fig. 5c containing spacetime/intrinsic spacetime coordi-
nates of the positive (or our) universe and negative universe
(obtained from Fig. 5b) is now a valid complementary dia-
gram to Fig. 5a for the purpose of deriving the φLT/LT in our
universe and negative universe. Observe that the 3-observers
in the Euclidean 3-spaces Σ̃0 and −Σ̃0∗ of the positive and
negative time-universes in Fig. 5b have transformed into 1-
observers in the time dimensions ct̃ and −ct̃∗ of our universe
and the negative universe in Fig. 5c.

The second equation of system (12) has been derived from
Fig. 5c with respect to the 1-observer in the time dimension ct̃
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Fig. 5: (c) Complementary diagram to Fig. 5a obtained by transforming the spacetime/intrinsic spacetime coordinates of the positive
time-universe and the negative time-universe in Fig. 5b into the spacetime/intrinsic spacetime coordinates of our universe and the negative
universe.

in that diagram. It is a valid complementary partial intrinsic
spacetime transformation to the first equation of system (12)
or to Eq. (10) derived with respect to 3-observer in the Eu-
clidean 3-space Σ̃ from Fig. 5a. Thus system (12) is the com-
plete intrinsic Lorentz transformation derivable from Figs. 5a
and 5c with respect to 3-observer in Σ̃ and 1-observer in ct̃.

By using the definitions given earlier namely,

sin φψ+
x = sin φψ+

t0 = φvx+/φc;
sin φψ−x = sin φψ−t0 = φvx−/φc;
sin φψ+

x0 = sin φψ+
t = φvt+/φc and

sin φψ−x0 = sin φψ−t = φvt−/φc;

system (12) is given explicitly in terms of intrinsic speeds as
follows:

φx̃′ =

1 −
φv2

x+

φc2


− 1

2

φx̃−

−
1 −

φv2
t+

φc2


− 1

2

(φvt−)φt̃;

(w.r.t. 3 − observer in Σ̃)

φt̃′ =

1 −
φv2

t+

φc2


− 1

2

φt̃−

−
1 −

φv2
x+

φc2


− 1

2 φvx−

φc2 φx̃;

(w.r.t. 1 − observer in ct̃)



(13)

The outward manifestation on the flat four-dimensional
spacetime of systems (12) and (13) are given respectively as

follows:

x̃′ = x̃ secψ+
x − ct̃ secψ+

t sinψ−t ;
ỹ′ = ỹ; z̃′ = z̃;
(w.r.t 3 − observer in Σ̃);

ct̃′ = ct̃ secψ+
t − x̃ secψ+

x sinψ−x ;
(w.r.t 1 − observer in ct̃)



(14)

and

x̃′ =

1 −
v2

x+

c2


− 1

2

x̃ −
1 −

v2
t+

c2


− 1

2

(vt− )t̃;

ỹ′ = ỹ; z̃′ = z̃;
(w.r.t. 3 − observer in Σ̃)

t̃′ =

1 −
v2

t+

c2


− 1

2

t̃ −
1 −

v2
x+

c2


− 1

2 vx−

c2 x̃;

(w.r.t. 1 − observer in ct̃)



. (15)

As can be easily shown, system (12) or (13) contradicts
(or does not lead to) intrinsic Lorentz invariance (φLI) for
φψ+

x , φψ−x , φψ+
t , φψ−t (or for φvx+ , φvx− , φvt+ , φvt−).

System (14) or (15) likewise does not lead to Lorentz invari-
ance (LI) for ψ+

x , ψ−x , ψ+
t , ψ−t (or vx+ , vx− , vt+ , vt−).

Even if only one of the four intrinsic angles φψ+
x , φψ

−
x , φψ

+
t

and φψ−t is different from the rest (or if only one of the four
intrinsic speeds φvx+ , φvx− , φvt+ and φvt− is different from the
rest), system (12) or (13) still contradicts φLI. And even if
only one of the four angles ψ+

x , ψ
−
x , ψ

+
t and ψ−t is different

from the rest (or if only one of the four speeds vx+ , vx− , vt+

and vt− is different from the rest), system (14) or (15) still
contradicts the LI.

The assumption made initially that members of a quartet
of symmetry-partner particles or objects in the four universes
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are in non-symmetrical relative motions in their universes,
which gives rise to Fig. 5a-c, has led to the non-validity of in-
trinsic Lorentz invariance in intrinsic special relativity (φSR)
and of Lorentz invariance in special relativity (SR) in our uni-
verse and indeed in the four universes. This invalidates the
initial assumption, since Lorentz invariance is immutable on
the flat four-dimensional spacetime of the special theory of
relativity. The conclusion then is that all the four members
of every quartet of symmetry-partner particles or objects in
the four universes are in identical (or symmetrical) relative
motions at all times.

Having shown that the members of every quartet of sym-
metry-partner particles or objects in the four universes have
identical magnitudes of masses, identical shapes and iden-
tical sizes, (in so far as the prescribed identical magnitudes
of masses, identical shapes and identical sizes of symmetry-
partner particles or objets in the positive (or our) universe and
the negative universe is valid), in the preceding sub-section
and that they are involved in identical relative motions at all
times in this sub-section, the perfect symmetry of state among
the four universes has been demonstrated. Although gravity
is being assumed to be absent in this and the previous papers
[1-3], it is interesting to note that gravitational field sources of
identical magnitudes of masses, identical sizes and identical
shapes, which hence give rise to identical gravitational fields,
are located at symmetry-partner positions in spacetimes in the
four universes.

3 Summary and conclusion

This section is for the two parts of the initial paper [1] and
[2], this paper and its first part [3]. The co-existence in na-
ture of four symmetrical universes identified as positive (or
our) universe, negative universe, positive time-universe and
negative time-universe in different spacetime/intrinsic space-
time domains, have been exposed in these papers. The four
universes exhibit perfect symmetry of natural laws and per-
fect symmetry of state. This implies that natural laws take
on identical forms in the four universes and that all mem-
bers of every quartet of symmetry-partner particles or objects
in the four universes have identical magnitudes of masses,
identical shapes and identical sizes and that they are involved
in identical relative motions in their universes at all times,
as demonstrated. The four universes constitute a four-world
background to the special theory of relativity in each universe.

The flat two-dimensional intrinsic spacetime of the intrin-
sic special theory of relativity (φSR), containing one-dimen-
sional intrinsic masses of particles and objects in one-dimen-
sional intrinsic space, which underlies the flat four-dimen-
sional spacetime of the special theory of relativity (SR) con-
taining three-dimensional masses of particles and objects in
Euclidean 3-space in each universe, introduced (as ansatz in
the first paper [1], is isolated in this fourth paper. The two-
dimensional intrinsic spacetime is indispensable in special

relativity/intrinsic special relativity (SR/φSR) in the four-
world picture, because the new set of spacetime/intrinsic
spacetime diagrams for deriving Lorentz transformation/in-
trinsic Lorentz transformation (LT/φLT) and their inverses in
the four-world picture, involve relative rotations of intrinsic
spacetime coordinates of two frames in relative motion.

The LT/φLT and their inverses are derived from a new set
of spacetime/intrinsic spacetime diagrams on the combined
spacetimes/intrinsic spacetimes of the positive (or our) uni-
verse and the negative universe as one pair of universes and
on combined spacetimes/intrinsic spacetimes of the positive
time-universe and the negative time-universe as another pair
of universes. The two pairs of spacetimes/intrinsic space-
times co-exist in nature, consequently the spacetime/intrinsic
spacetime diagram drawn on one pair co-exists with and must
complement the spacetime/intrinsic spacetime diagram
drawn on the other pair in deriving the LT/φLT and their in-
verses (with a set of four diagrams in all) in each universe, as
done in the first paper [1] and validated formally in the third
paper [3].

The proper (or classical) Euclidean 3-space Σ0′ of the
positive time-universe with respect to 3-observers in it, is
what appears as the proper time dimension ct′ of the posi-
tive (or our) universe relative to 3-observers in the proper Eu-
clidean 3-space Σ′ of our universe and the proper Euclidean
3-space Σ′ of the positive (or our) universe with respect to 3-
observers in it, is what appears as the proper time dimension
ct0′ of the positive time-universe relative to 3-observers in the
proper Euclidean 3-space Σ0′ of the positive time-universe.
The proper Euclidean 3-space −Σ0′∗ of the negative time-
universe is likewise the proper time dimension −ct′∗ of the
negative universe and the proper Euclidean 3-space −Σ′∗ of
the negative universe is the proper time dimension −ct0′∗ of
the negative time-universe. The important revelation in this
is that time is not a fundamental (or “created”) concept, but
a secondary concept that evolved from the concept of space.
Time dimension does not exist in an absolute sense, as does
3-space, but in a relative sense.

The positive time-universe cannot be perceived better
than the time dimension ct′ of the positive (or our) universe by
3-observers in the Euclidean 3-space Σ′ of our universe and
the negative time-universe cannot be perceived better
than the time dimension −ct′∗ of the negative universe by 3-
observers in the Euclidean 3-space −Σ′∗ of the negative uni-
verse. Conversely, the positive (or our) universe cannot be
perceived better than the time dimension ct0′ of the positive
time-universe by 3-observers in the Euclidean 3-space Σ0′ of
the positive time-universe and the negative universe cannot
be perceived better than the time dimension −ct0′∗ of the neg-
ative time-universe by 3-observers in the Euclidean 3-space
−Σ0′∗ of the negative time-universe. It can thus be said that
the positive time-universe and the negative time-universe are
imperceptibly hidden in the time dimensions of the positive
(or our) universe and the negative universe respectively rela-
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tive to 3-observers in the Euclidean 3-spaces in our universe
and the negative universe and conversely.

Physicists in our (or positive) universe and negative uni-
verse can formulate special relativity and special-relativistic
physics in general in terms of the spacetime/intrinsic space-
time dimensions (or coordinates) and physical parameters/in-
trinsic parameters of our universe and the negative universe
only. Physicists in the positive time-universe and the negative
time-universe can likewise formulate special relativity and
special-relativistic physics in general in terms of the space-
time/intrinsic spacetime dimensions (or coordinates) and pa-
rameters/intrinsic parameters of the positive and the negative
time-universes only. It is to this extent that it can still be
said that special relativity and special-relativistic physics in
general, pertain to a two-world background, knowing that the
two-world picture actually encompasses four universes; two
of them being imperceptibly hidden in the time dimensions.

Experimental validation ultimately of the co-existence in
nature of four symmetrical universes will give a second testi-
mony to their isolation theoretically in these papers. The next
natural step is to investigate the possibility of subsuming the
theory of relativistic gravity into the four-world picture.
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Missing Measurements of Weak-Field Gravity

Richard J. Benish
Eugene, Oregon, USA. E-mail: rjbenish@teleport.com

For practical and historical reasons, most of what we know about gravity is based on
observations made or experiments conducted beyond the surfaces of dominant massive
bodies. Although the force of gravity inside a massive body can sometimes be mea-
sured, it remains to demonstrate the motion that would be caused by that force through
the body’s center. Since the idea of doing so has often been discussed as a thought
experiment, we here look into the possibility of turning this into a real experiment. Fea-
sibility is established by considering examples of similar experiments whose techniques
could be utilized for the present one.

1 Introduction

A recent paper in this journal (M. Michelini [1]) concerned
the absence of measurements of Newton’s constant, G, within
a particular range of vacuum pressures. Important as it may
be to investigate the physical reasons for this, a gap of equal,
if not greater importance concerns the absence of gravity ex-
periments that probe the motion of test objects through the
centers of larger massive bodies. As is the case for most mea-
surements of G, the apparatus for the present experimental
idea is also a variation of a torsion balance. Before describ-
ing the modifications needed so that a torsion balance can
measure through-the-center motion, let’s consider the context
in which we find this gap in experimentation.

Often found in undergraduate physics texts [2–5] is the
following problem, discussed in terms of Newtonian grav-
ity: A test object is dropped into an evacuated hole spanning
a diameter of an otherwise uniformly dense spherical mass.
One of the reasons this problem is so common is that the
answer, the predicted equation of motion of the test object,
is yet another instance of simple harmonic motion. What is
rarely pointed out, however, is that we presently lack direct
empirical evidence to verify the theoretical prediction. Con-
fidence in the prediction is primarily based on the success of
Newton’s theory for phenomena that test the exterior solu-
tion. Extrapolating Newton’s law to the interior is a worth-
while mathematical excercise. But a theoretical extrapolation
is of lesser value than an empirical fact.

Essentially the same prediction follows from general rel-
ativity [6–9]. In this context too, the impression is sometimes
given that the predicted effect is a physical fact. A notewor-
thy example is found in John A. Wheeler’s book, “A Jour-
ney into Gravity and Spacetime”, in which he refers to the
phenomenon as “boomeranging”. Wheeler devotes a whole
(10-page) chapter to the subject because, as he writes, “Few
examples of gravity at work are easier to understand in New-
tonian terms than boomeranging. Nor do I know any easier
doorway to Einstein’s concept of gravity as manifestation of
spacetime curvature” [10]. But nowhere in Wheeler’s book is
there any discussion of empirical evidence for “boomerang-

ing”. No doubt, Newton, Einstein and Wheeler would all have
been delighted to see the simple harmonic motion demon-
strated as a laboratory experiment.

2 Feasibility

Since the predicted effect has never been observed at all, our
initial goal should simply be to ascertain that the oscillation
prediction is a correct approximation. After laying out a basic
strategy for doing the experiment, this paper concludes with
a few additional remarks concerning motivation.

Apparatus that would have sufficed for our purpose were
considered in the 1960s–1970s to measure G. Y. T. Chen
discusses these through-the-center oscillation devices in his
1988 review paper on G measurements [11]. Each exam-
ple in this group of proposals was intended for space-borne
satellite laboratories. The original motivation for these ideas
was to devise ways to improve the accuracy of our knowledge
of G by timing the oscillation period of the simple harmonic
motion. Though having some advantages over Earth-based
G measurements, they also had drawbacks which ultimately
prohibited them from ever being carried out.

What distinguishes these proposals from experiments that
have actually been carried out in Earth-based laboratories is
that the test objects were to be allowed to fall freely back
and forth between extremities inside a source mass the whole
time. Whereas G measurements conducted on Earth typically
involve restricting the test mass’s movement and measuring
the force needed to do so. The most common, and historically
original, method for doing this is to use a torsion balance in
which a fiber provides a predetermined resistance to rotation.
Torsion balances have also been used to test Einstein’s Equiv-
alence Principle (e.g. Gundlach et al. [12]). Another distin-
guishing characteristic of Earth-based G measurements and
Equivalence Principle tests is that the test masses typically
remain outside the larger source masses. Since movement
of the test masses is restricted to a small range of motion,
these tests can be characterized as static measurements. Tor-
sion balance experiments in which the test mass is inside the
source mass have also been performed (for example, Spero
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Fig. 1: Schematic of modified Cavendish balance. Since the idea is
to demonstrate the simple harmonic motion only as a first approx-
imation, deviation due to the slight arc in the trajectory is inconse-
quential.

et al. [13] and Hoskins et al. [14]). These latter experiments
were tests of the inverse square law.

All three of these types of experiments — G measure-
ments, Equivalence Principle and inverse-square law tests —
however, are static measurements in the sense that the test
masses were not free to move beyond a small distance com-
pared to the size of the source mass. The key innovation in
the present proposal is that we want to see an object fall ra-
dially as long as it will; we want to eliminate (ideally) or
minimize (practically) any obstacle to the radial free-fall tra-
jectory. Space-based experiments would clearly be the opti-
mal way to achieve this. But a reasonably close approxima-
tion can be achieved with a modified Cavendish balance in an
Earth-based laboratory.

As implied above, the key is to design a suspension sys-
tem which, instead of providing a restoring force that prevents
the test masses from moving very far, allows unrestricted or
nearly unrestricted movement. Two available possibilities are
fluid suspensions and magnetic suspensions (or a combina-
tion of these). In 1976 Faller and Koldewyn succeeded in
using a magnetic suspension system to get a G measurement
[15, 16]. The experiment’s accuracy was not an improvement
over that gotten by other methods, but was within 1.5% of the
standard value.

As Michelini pointed out in his missing vacuum range
discussion, in most G measurements the source masses are lo-
cated outside an enclosure. Even in the apparatus Cavendish
used for his original G measurement at atmospheric pressure,
the torsion arm and test masses were isolated from the source
masses by a wooden box. In Faller and Koldewyn’s experi-
ment the arm was isolated from the source masses by a vac-
uum chamber. The modified design requires that there be no
such isolation, as the arm needs to swing freely through the
center of the source masses (see Fig. 1). Given the modest
goal of the present proposal, it is reasonable to expect that the

technology used by Faller and Koldewyn could be adapted to
test the oscillation prediction. Moreover, it seems reasonable
to expect that advances in technology since 1976 (e.g. better
magnets, better electronics, etc.), would make the experiment
quite doable for an institution grade physics laboratory.

3 Motivation: Completeness and Aesthetics

One hardly needs to mention the many successes of Newto-
nian gravity. By success we mean, of course, that empirical
observations match the theoretical predictions. Einsteinian
gravity is even more successful. The purpose of many con-
temporary gravity experiments is to detect physical manifes-
tations of the differences between Newton’s and Einstein’s
theories. In every case Einstein’s theory has proven to be
more accurate. This is impressive. Given the level of thor-
oughness and sophistication in gravity experimentation these
days, one may be taken aback to realize that Newton’s and
Einstein’s theories both remain untested with regard to the
problem discussed above. The simple harmonic motion pre-
diction is so common and so obvious that we have come to
take it for granted. When discussing the prediction for this ba-
sic experiment in weak field gravity, it would surely be more
satisfactory if we could at the same time cite the physical ev-
idence.

The Newtonian explanation for the predicted harmonic
motion is that a massive sphere produces a force (or potential)
of gravitational attraction. The corresponding general rela-
tivistic explanation is that the curvature of spacetime causes
the motion. Specifically, the predicted effect is due to the
slowing of clock rates toward the center of the sphere. A
physical demonstration of the effect would thus indirectly,
though convincingly, support general relativity’s prediction
that the rate of a clock at the body’s center is a local minimum
— a prediction that has otherwise not yet been confirmed.

In summary, if R represents the surface of a spherical
mass, our empirical knowledge of how things move because
of the mass within R is essentially confined to the region,
r & R. The region 0 ≤ r . R is a rather fundamental and
a rather large gap. It is clearly the most ponderable part of the
domain. Why not fill this gap?

One of the distinctive features of the kind of experiment
proposed above is that its result is, in principle, independent
of size. The satellite versions mentioned by Chen were thus
referred to as “clock mode” experiments. The determining
factor in the oscillation period is the density of the source
mass. If the source mass is made of lead (density, ρ ≈ 11, 000
kg / m3) the oscillation period is about one hour. Would it not
be fascinating to observe for an hour, to watch the oscillation
take place, knowing that the mass of the larger body is the
essential thing making it happen? In my opinion this would
be a beautiful sight. Beautiful for completing the domain,
0 ≤ r . R, and beautiful simply to see what no human being
has seen before.
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An experiment that confirms the Fresnel drag formalism in RF coaxial cables is re-
ported. The Fresnel ‘drag’ in bulk dielectrics and in optical fibers has previously been
well established. An explanation for this formalism is given, and it is shown that there
is no actual drag phenomenon, rather that the Fresnel drag effect is merely the conse-
quence of a simplified description of EM scattering within a dielectric in motion wrt the
dynamical 3-space. The Fresnel drag effect plays a critical role in the design of various
light-speed anisotropy detectors.

1 Introduction

In 2002 it was discovered that the Michelson-Morley 1887
light-speed anisotropy experiment [1], using the interferom-
eter in gas mode, had indeed detected anisotropy, by taking
account of both a physical Lorentz length contraction effect
for the interferometer arms, and the refractive index effect of
the air in the light paths [2, 3]. The observed fringe shifts
corresponded to an anisotropy speed in excess of 300 km/s.
While confirmed by numerous later experiments, particularly
that of Miller [4], see [6] for an overview, the most accurate
analysis used the Doppler shifts from spacecraft earth-flybys
[5, 6], which gave the solar-system a galactic average speed
through 3-space of 486 km/s in the direction RA = 4.29h,
Dec = −75.0◦, a direction within 5◦ of that found by Miller
in his 1925/26 gas-mode Michelson interferometer experi-
ment∗. In vacuum mode a Michelson interferometer cannot
detect the anisotropy, nor its turbulence effects, as shown by
the experiments in [7–12], actually using resonant orthogonal
cavities. These experiments show, overall, the difference be-
tween Lorentzian Relativity (LR) and Special Relativity (SR).
In LR the length contraction effect is caused by motion of a
rod, say, through the dynamical 3-space, whereas in SR the
length contraction is only a perspective effect, occurring only
when the rod is moving relative to an observer. This was fur-
ther clarified when an exact mapping between Galilean space
and time coordinates and the Minkowski-Einstein spacetime
coordinates was recently discovered [13]. This demonstrates
that the SR time dilation and space contraction effects are
merely the result of using an unphysical choice of space and
time coordinates that, by construction, makes the speed of
light in vacuum an invariant, but only wrt to that choice of
coordinates. Such a contrived invariance has no connection
with whether light speed anisotropy is detectable or not —
that is to be determined by experiments.

∗This speed and direction is very different to the CMB speed and direc-
tion — which is an unrelated phenomenon.

The detection of light speed anisotropy — revealing a
flow of space past the detector, is now entering an era of pre-
cision measurements. These are particularly important be-
cause experiments have shown large turbulence effects in the
flow, and are beginning to characterise this turbulence. Such
turbulence can be shown to correspond to what are, conven-
tionally, known as gravitational waves, although not those
implied by General Relativity, as they are much larger than
these [14–16].

The detection and characterisation of these wave/ turbu-
lence effects requires the development of small and cheap de-
tectors, such as optical fiber Michelson interferometers [18].
However in all detectors the EM signals travel through a di-
electric, either in bulk or optical fiber or through RF coaxial
cables. For this reason it is important to understand the so-
called Fresnel drag effect. In optical fibers the Fresnel drag
effect has been established [17]. This is important in the op-
eration of Sagnac optical fiber gyroscopes, for then the cali-
bration is independent of the fiber refractive index. The Fres-
nel drag speed is a phenomenological formalism that char-
acterises the effect of the absolute motion of the propaga-
tion medium upon the speed of the EM radiation within that
medium.

The Fresnel drag expression is that a dielectric in absolute
motion through space at speed v causes the EM radiation to
travel at speed

V(v) =
c
n

+ v

(
1 − 1

n2

)
(1)

wrt the dielectric, when V and v have the same direction. Here
n is the dielectric refractive index. The 2nd term is known as
the Fresnel drag, appearing to show that the moving dielec-
tric “drags” the EM radiation, although below we show that
this is a misleading interpretation. That something unusual
was happening followed from the discovery of stellar aberra-
tion by Bradley in 1725. Here the direction of the telescope
must be varied over a year when observing a given star. This
is caused by the earth’s orbital speed of 30 km/s. Then Airy
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Fig. 1: Schematic layout for measuring the one-way speed of light
in either free-space, optical fibers or RF coaxial cables, without re-
quiring the synchronisation of the clocks C1 and C2. Here τ is the
unknown offset time between the clocks, and tA, tB + τ, tC + τ, tD are
the observed clock times, while tB, tC are, a priori, unknown true
times. V is the light speed in (1), and v is the speed of the apparatus
through space, in direction θ.

in 1871 demonstrated that the same aberration angle occurs
even when the telescope is filled with water. This effect is
explained by the Fresnel expression in (1), which was also
confirmed by the Fizeau experiment in 1851, who used two
beams of light travelling through two tubes filled with flow-
ing water, with one beam flowing in the direction of the water,
and the other counterflowing. Interferometric means permit-
ted the measurement of the travel time difference between the
two beams, confirming (1), with v the speed of the water flow
relative to the apparatus. This arrangement cannot detect the
absolute motion of the solar system, as this contribution to
the travel time difference cancels because of the geometry of
the apparatus.

There have been various spurious “derivations” of (1),
some attempting to construct a physical “drag” mechanism,
while another uses the SR addition formula for speeds. How-
ever that well-known addition formula is merely a mathe-
matical manifestation of using the unphysical Minkowski-
Einstein coordinates noted above, and so is nothing but a co-
ordinate effect, unrelated to experiment. Below we give a
simple heuristic derivation which shows that there is no ac-
tual “drag” phenomenon. But first we show the unusual con-
sequences of (1) in one-way speed of EM radiation experi-
ments. It also plays a role in 2nd order v/c experiments, such
as the optical-fiber Michelson interferometer [18].

2 One-way Speed of Light Anisotropy Measurements

Fig.1 shows the arrangement for measuring the one-way speed
of light, either in vacuum, a dielectric, or RF coaxial cable. It
is usually argued that one-way speed of light measurements
are not possible because the clocks cannot be synchronised.
Here we show that this is false, and at the same time show an
important consequence of (1). In the upper part of Fig.1 the
actual travel time tAB from A to B is determined by

V(v cos(θ))tAB = |L′| (2)

where |L′| = |L + vtAB| ≈ L + v cos(θ)tAB + .. is the actual dis-
tance travelled, at speed V(v cos(θ)), using vtAB � L, giving

V(v cos(θ))tAB = L + v cos(θ)tAB + ... (3)

where the 2nd term comes from, approximately, the end B
moving an additional distance v cos(θ)tAB during the true time
interval tAB. This gives

tAB ≈ L
V(v cos(θ)) − v cos(θ)

=
nL
c

+
v cos(θ)L

c2 + .. (4)

on using (1) and expanding to 1st oder in v/c. If we ignore
the Fresnel drag term in (1) we obtain, instead,

tAB ≈ L
c/n − v cos(θ)

=
nL
c

+
n2v cos(θ)L

c2 + .. (5)

The 1st important observation is that the v/c component in
(4) is independent of the dielectric refractive index n. This
is explained in the next section. If the clocks were synchro-
nised tAB would be known, and by changing direction of the
light path, that is varying θ, the magnitude of the 2nd term
may be separated from the magnitude of the 1st term. If the
clocks are not synchronised, then the measured travel time
tAB = (tB + τ) − tA = tAB + τ, where τ is the unknown, but
fixed, offset between the two clocks. But this does not change
the above argument. The magnitude of v and the direction of
v can be determined by varying θ. For a small detector the
change in θ can be achieved by a direct rotation. But for a
large detector, such as De Witte’s [19] 1.5 km RF coaxial ca-
ble experiment, the rotation was achieved by that of the earth.
The reason for using opposing propagation directions, as in
Fig.1, and then measuring travel time differences, is that local
temperature effects cancel. This is because a common tem-
perature change in the two adjacent cables changes the speed
to the same extent, whereas absolute motion effects cause op-
posite signed speed changes. Then the temperature effects
cancel on measuring differences in the travel times, whereas
absolute motion effects are additive. Finally, after the abso-
lute motion velocity has been determined, the two spatially
separated clocks may be synchronised.

That the v/c term in tAB in (4) is independent of n means
that various techniques to do a 1st order in v/c experiment that
involves using two dielectrics with different values of n fail.
One such experiment was by Trimmer et al [20], who used
a triangular interferometer, with the light path split into one
beam passing through vacuum, and the other passing through
glass. No 1st order effect was seen. This is because the v-
dependent travel times through the glass, and corresponding
vacuum distance, have the same value to 1st order in v/c. On
realising this Trimmer et al. subsequently withdrew their pa-
per, see reference [21]. Cahill [22] performed a dual optical-
fiber/RF coaxial cable experiment that was supposedly 1st or-
der in v/c. If the Fresnel drag formalism applies to both op-
tical fibers and RF coaxial cables, then again there could not
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have been any v/c signal in that experiment, and the observed
effects must have been induced by temperature effects. All
this implies that because of the Fresnel drag effect it appears
not possible to perform a v/c experiment using one clock —
rather two must be used, as in Fig.1. This, as noted above,
does not require clock synchronisation, but it does require
clocks that very stable. To use one “clock” appears then to
require 2nd order in v/c detectors, but then the effect is some
1000 times smaller, and requires interferometric methods to
measure the very small travel time differences, as in gas-mode
and optical-fiber Michelson interferometers. It is indeed for-
tuitous that the early experiments by Michelson and Morley,
and by Miller, were in gas mode, but not by design.

The Krisher optical fiber 1st order v/c experiment [23]
measured the phase differences φ1 and φ2 between the two
signals travelling in different directions through very long op-
tical fibers, rather than the travel time variations, as the earth
rotated. This involves two phase comparators, with one at
each end of the fibers. However the phases always have a
multiple of 2π phase ambiguity, and in the Krisher experi-
ment this was overlooked. However the timing of the max-
ima/minima permitted the Right Ascension (RA) of the di-
rection of v to be determined, as the direction of propagation
is changed by rotation, and the result agreed with that found
by Miller; see [6] for plots of the Krisher data plotted against
local sidereal times.

3 Deriving the Fresnel Drag Formalism

Here we give a heuristic derivation of the Fresnel drag speed
formalism in a moving dielectric, with the dielectric modeled
by random geometrical-optics paths, see Fig.2. These may be
thought of as modelling EM wave scatterings, and their as-
sociated time delays. The slab of dielectric has length L and
travels through space with velocity v, and with EM radiation
traveling, overall, from A to B. The top of Fig.2 shows the
microscopic heuristic model of propagation through the di-
electric with EM radiation traveling at speed c wrt space be-
tween scattering events, being scattered from random sites —
atoms, moving through space with velocity v. The bottom of
Fig.2 shows the macroscopic description with EM radiation
effectively traveling in a straight line directly from A to B,
with effective linear speed V(v cos(θ)), and with the dielectric
now described by a refractive index n.

The key insight is that when a dielectric has absolute ve-
locity v through space, the EM radiation travels at speed c
wrt space, between two scattering events within the dielec-
tric. Consider a straight line propagation between scattering
events e and f , with angle φ to v, see Fig.2. Consider the paths
from the rest frame of the space. The EM wave must travel
to a point in space f ′, and then the distance travelled dl′, at
speed c, is determined by the vector sum dl′ = dl + vdt, with
dl the distance between scattering points e and f , defined in
the rest frame of the matter, and vdt is the displacement of f

φ
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v

V(v cos(θ))
n

A B
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¾ L -
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Fig. 2: Slab of dielectric, length L, traveling through space with
velocity v, and with EM radiation traveling, overall, from A to B,
drawn in rest frame of slab. Top: Microscopic model showing scat-
tering events, with free propagation at speed c relative to the space,
between scattering events. Bottom: The derived macroscopic phe-
nomenological description showing the signal travelling at speed
V(v cos(θ)), as given by the Fresnel drag expression in (1). The di-
electric refractive index is n.

to f ′, because of the absolute motion of the scattering atoms.
Then the travel time to 1st order in v/c is

dt =
dl′

c
≈ dl

c
+
v cos(φ)dt

c
+ ..., giving (6)

dt ≈ dl
c

+
vdl cos(φ)

c2 + ... =
dl
c

+
v · dl

c2 + ... (7)

We ignore Lorentz length contraction of the slab as this only
contributes at 2nd order in v/c. Summing over paths to get
total travel time from A to B

tAB =

∫ B

A

dl
c

+

∫ B

A

v · dl
c2 + ...

=
l
c

+
Lv cos(θ)

c2 + ...

=
nL
c

+
Lv cos(θ)

c2 + ..., (8)

where L is the straight line distance from A to B in the matter
rest frame, and n = l/L defines the refractive index of the di-
electric in this treatment, as when the dielectric is at rest the
effective speed of EM radiation through matter in a straight
line from A to B is defined to be c/n. Note that tAB does not
involve n in the v dependent 2nd term. This effect is actu-
ally the reason for the Fresnel drag formalism. The macro-
scopic treatment, which leads to the Fresnel drag formalism,
involves the sum |L′| = |L + vtAB|, for the macrosocopic dis-
tance traveled, which gives for the travel time

tAB =
L′

V
≈ L

V(v cos(θ))
+
v cos(θ)tAB

V(v cos(θ))
, giving

tAB =
L

V(v cos(θ))
+

Lv cos(θ)
V(v cos(θ))2 + ... (9)

where V(v cos(θ)) is the effective linear speed of EM radi-
ation in direction AB at angle θ to v, and v cos(θ)tAB is the
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Fig. 3: Photograph of the RF coaxial cables arrangement, based upon 16×1.85 m lengths of phase stabilised Andrew HJ4-50 coaxial cable.
These are joined to 16 lengths of FSJ1-50A cable, in the manner shown schematically in Fig.4. The 16 HJ4-50 coaxial cables have been
tightly bound into a 4×4 array, so that the cables, locally, have the same temperature, with cables in one of the circuits embedded between
cables in the 2nd circuit. This arrangement of the cables permits the cancellation of temperature effects in the cables. A similar array of
the smaller diameter FSJ1-50A cables is located inside the grey-coloured conduit boxes. This arrangement has permitted the study of the
Fresnel drag effect in RF coaxial cables, and revealed that the usual Fresnel drag speed expression applies.

extra distance travelled, caused by the end B moving. This
form assumes that the total distance L′ is travelled at speed
V(v cos(θ)). This reproduces the microscopic result (8) only
if V(v) = c/n + v(1 − 1/n2), which is the Fresnel drag ex-
pression. The key point is that the Fresnel drag formalism
is needed to ensure, despite appearances, that the extra dis-
tance traveled due to the absolute motion of the dielectric, is
travelled at speed c, and not at speed c/n, even though the
propagation is within the dielectric. Hence there is no actual
drag phenomenon involved, and so the nomenclature “Fresnel
drag” is misleading.

However it was not clear that the same analysis applied
to RF coaxial cables, because of the possible effects of the
conduction electrons in the inner and outer conductors. The
dual coaxial cable experiment reported herein shows that the
Fresnel drag expression also applies in this case. The Fresnel
drag effect is a direct consequence of the absolute motion of
the slab of matter through space, with the speed of EM ra-
diation being c wrt space itself. A more complete derivation
based on the Maxwell-Hertz equations is given in Drezet [24].

4 Fresnel Drag Experiment in RF Coaxial Cables

We now come to the 1st experiment that has studied the Fres-
nel drag effect in RF coaxial cables. This is important for
any proposed EM anisotropy experiment using RF coaxial
cables. The query here is whether the presence of the con-
ductors forming the coaxial cables affects the usual Fresnel
drag expression in (1), for a coaxial cable has an inner and
outer conductor, with a dielectric in between.

Fig.4 shows the schematic arrangement using two differ-
ent RF coaxial cables, with two separate circuits, and Fig.3 a
photograph. One measures the travel time difference of two
RF signals from a Rubidium frequency standard (Rb) with a
Digital Storage Oscilloscope (DSO). In each circuit the RF
signal travels one-way in one type of coaxial cable, and re-
turns via a different kind of coaxial cable. Two circuits are
used so that temperature effects cancel — if a temperature
change alters the speed in one type of cable, and so the travel
time, that travel time change is the same in both circuits, and
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Fig. 4: Top: Data, from May17-19, 2010, from the dual RF coax-
ial cable experiment enabling Fresnel drag in coaxial cables to be
studied: Red plot is relative 10 MHz RF travel times between the
two circuits, and blue plot is temperature of the air (varying from
19 to 23◦C) passing into the LeCroy DSO, scaled to fit the travel
time data. The black plot is travel time differences after correcting
for DSO temperature effects. The dashed plot is time variation ex-
pected using spacecraft earth-flyby Doppler shift determined veloc-
ity, if the Fresnel drag effect is absent in RF coaxial cables. Bottom:
Schematic layout of the coaxial cables. This ensures two opposing
circuits that enable cancellation of local temperature effects in the
cables. In practice the cables are divided further, as shown in Fig.3.

cancels in the difference. Even though phase-stabilised coax-
ial cables are used, the temperature effects need to be can-
celled in order to be able to reliably measure time differences
at ps levels. To ensure cancellation of temperature effects, and
also for practical convenience, the Andrew HJ4-50 cables are
cut into 8×1.85 m shorter lengths in each circuit, correspond-
ing to a net length of L = 8×1.85 = 14.8 m. The curved parts
of the Andrew FSJ1-50A cables contribute only at 2nd order
in v/c.

To analyse the experimental data we modify the Fresnel
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drag speed expression in (1) to

V(v) =
c
ni

+ v

1 − 1
m2

i

 (10)

for each cable, i = 1, 2, where mi = ni gives the normal Fres-
nel drag, while mi = 1 corresponds to no Fresnel drag. Re-
peating the derivation leading to (4) we obtain to 1st order in
v/c the travel time difference between the two circuits,

∆t =
2Lv cos(θ)

c2


n2

1

m2
1

− n2
2

m2
2

 (11)

The apparatus was orientated NS and used the rotation of the
earth to change the angle θ. Then θ varies between λ + δ −
90◦ = 20◦ and λ − δ + 90◦ = 50◦, where λ = 35◦ is the
latitude of Adelaide, and δ = 75◦ is the declination of the
3-space flow from the flyby Doppler shift analysis, and with
a speed of 486 km/s.. Then if mi , ni a signal with period
24 h should be revealed. We need to compute the magnitude
of the time difference signal if there is no Fresnel drag effect.
The FSJ1-50A has an effective refractive index n1 = 1.19,
while the HJ4-50 has n2 = 1.11, and then ∆t would change
by 8.7 ps over 24 hours, and have the phase shown in Fig.4.
However while cable temperature effects have been removed
by the cable layout, another source of temperature effects is
from the LeCroy WaveRunner WR6051A DSO. To achieve
ps timing accuracy and stability the DSO was operated in
Random Interleaved Sampling (RIS) mode. This uses many
signal samples to achieve higher precision. However in this
mode the DSO temperature compensation re-calibration fa-
cility is disabled. To correct for this it was discovered that the
timing errors between the two DSO channels very accurately
tracked the temperature of the cooling air being drawn into
the DSO. Hence during the experiment that air temperature
was recorded. The Rb frequency standard was a Stanford Re-
search Systems FS725. The results for 48 hours in mid May,
2010, are shown in Fig. 4: The red plot, with glitch, shows
the DSO measured time difference values, while the blue plot
shows the temperature variation of the DSO air-intake tem-
perature, scaled to the time data. We see that the time data
very closely tracks the air-intake temperature. Subtracting
this temperature effect we obtain the smaller plot, which has a
range of 5 ps, but showing no 24 h period. The corrected tim-
ing data may still have some small temperature effects. The
glitch in the timing data near local time of 34 h was proba-
bly caused by a mechanical stress-release event in the cables.
Hence the data implies that there is no 1st order effect in v/c,
and so, from (11), that n1/m1 = n2/m2, with the simplest in-
terpretation being that, in each cable m = n. This means that
the Fresnel drag effect expression in (1) applies to RF coaxial
cables.

5 Conclusions

The first experiment to study the Fresnel drag effect in RF
coaxial cables has revealed that these cables exhibit the same

effect as seen in bulk dielectrics and in optical fibers, and so
this effect is very general, and in the case of the RF coax-
ial cables, is not affected by the conductors integral to RF
coaxial cables. Because this experiment is a null experiment,
after correcting for temperature effects in the DSO, its impli-
cations follow only when the results are compared with non-
null experiments. Here we have compared the results with
those from the spacecraft earth-flyby Doppler shift data re-
sults. Then we can deduce that the null result is caused by
the Fresnel drag effect in the cables, and not by the absence
of light speed anisotropy. This is to be understood from the
heuristic derivation given herein, where it was shown that the
Fresnel drag expression actually involves no drag effect at all,
rather its form is such as to ensure that between scatterings the
EM waves travel at speed c wrt to the 3-space, that is, that the
“speed of light” is not an invariant. This experiment, as have
many others, shows that the speed of light, as measured by an
observer, actually depends on the speed of that observer wrt
to 3-space. We have also shown how the speed of light may
be measured in a one-way 1st order in v/c experiment, using
spatially separated clocks that are not a priori synchronised,
by rotating the apparatus. Subsequently, once the velocity of
space past the detector is known, the clocks may be synchro-
nised by light speed signalling.
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Lévy J. (Editors), Apeiron, 2009, pp. 135-200.

16. Cahill R. T. Quantum Foam, Gravity and Gravitational Waves, in: Rel-
ativity, Gravitation, Cosmology: New Developments, Dvoeglazov V.
(Editor), Nova Science Pub., New York, 2010, pp. 1-55.

17. Wang R., Zhengb Yi., Yaob A., Langley D. Modified Sagnac Ex-
periment for Measuring Travel-time Difference Between Counter-
propagating Light Beams in a Uniformly Moving Fiber. Physics Letters
A, 2003, no. 1-2, 7–10.

18. Cahill R. T., Stokes F. Correlated Detection of sub-mHz Gravitational
Waves by Two Optical-Fiber Interferometers. Progress in Physics,
2008, v. 2, 103–110.

19. Cahill R. T. The Roland De Witte 1991 Experiment. Progress in
Physics, 2006, v. 3, 60–65.

20. Trimmer W. S. N. Baierlein R. F., Faller J. E., Hill H. A. Experimental
Search for Anisotropy in the Speed of Light. Physical Review D, 1973,
v. 8, 3321–3326.

21. Trimmer W. S. N. Baierlein R. F., Faller J. E., Hill H. A. Erratum: Ex-
perimental Search for Anisotropy in the Speed of Light. Physical Re-
view D, 1974, v. 9, 2489.

22. Cahill R. T. A New Light-Speed Anisotropy Experiment: Absolute Mo-
tion and Gravitational Waves Detected. Progress in Physics, 2006, v. 4,
73–92.

23. Krisher T. P., Maleki L., Lutes G. F., Primas L. E., Logan R. T., An-
derson J. D., Will C. M. Test of the Isotropy of the One-Way Speed of
Light using Hydrogen-Maser Frequency Standards. Physical Review D,
1990, v. 42, 731–734.

24. Drezet A. The Physical Origin of the Fresnel Drag of Light by a Mov-
ing Dielectric Medium. European Physics Journal B, 2005, v. 45, no. 1,
103–110.

48 Cahill R.T. and Brotherton D. Experimental Investigation of the Fresnel Drag Effect in RF Coaxial Cables



January, 2011 PROGRESS IN PHYSICS Volume 1

Dynamical 3-Space Gravity Theory: Effects on Polytropic Solar Models

Richard D. May and Reginald T. Cahill

School of Chemical and Physical Sciences, Flinders University, Adelaide 5001, Australia
E-mail: Richard.May@flinders.edu.au, Reg.Cahill@flinders.edu.au

Numerous experiments and observations have confirmed the existence of a dynamical
3-space, detectable directly by light-speed anisotropy experiments, and indirectly by
means of novel gravitational effects, such as bore hole g anomalies, predictable black
hole masses, flat spiral-galaxy rotation curves, and the expansion of the universe, all
without dark matter and dark energy. The dynamics for this 3-space follows from a
unique generalisation of Newtonian gravity, once that is cast into a velocity formalism.
This new theory of gravity is applied to the solar model of the sun to compute new
density, pressure and temperature profiles, using polytrope modelling of the equation of
state for the matter. These results should be applied to a re-analysis of solar neutrino
production, and to stellar evolution in general.

1 Introduction

It has been discovered that Newton’s theory of gravity [1]
missed a significant dynamical process, and a uniquely de-
termined generalisation to include this process has resulted
in the explanation of numerous gravitational anomalies, such
as bore hole g anomalies, predictable black hole masses, flat
spiral-galaxy rotation curves, and the expansion of the uni-
verse, all without dark matter and dark energy [2–4]. This
theory of gravity arises from the dynamical 3-space, described
by a dynamical velocity field, when the Schrödinger equation
is generalised to take account of the propagation of quantum
matter in the dynamical 3-space. So gravity is now an emer-
gent phenomenon, together with the equivalence principle.

The dynamical 3-space has been directly observed using
various light-speed anisotropy experiments, dating from the
1st detection by Michelson and Morley in 1887 [5,6], giving a
speed in excess of 300 km/s, after re-calibrating the gas-mode
interferometer for actual length contraction effects, to the lat-
est using spacecraft earth-flyby Doppler shift data [7]. Over-
all these experiments reveal that relativistic effects are caused
by the absolute motion of rods and clocks wrt the dynamical
3-space, essentially Lorentzian Relativity (LR), rather than
the Special Relativity (SR) formalism, which has recently
been shown by means of an exact change of space and time
variables, to be equivalent to Galilean Relativity [8].

Here we apply the new gravity theory to the internal dy-
namics of the sun, and compute new density, pressure and
temperature profiles, using the polytrope model for the equa-
tion of state of the matter. These results should then be ap-
plied to a re-analysis of neutrino production [9]. In general
the Newtonian-gravity based standard model of stellar evolu-
tion also needs re-examination.

2 Dynamical 3-Space

Newton’s inverse square law of gravity has the differential
form

∇ · g = −4πGρ, ∇ × g = 0, (1)

for the acceleration field g(r, t), assumed to be fundamental
and existing within Newton’s model of space, which is Eu-
clidean, static, and unobservable. Application of this to spiral
galaxies and the expanding universe has lead to many prob-
lems, including, in part, the need to invent dark energy and
dark matter∗. However (1) has a unique generalisation that
resolves these and other problems. In terms of a velocity field
v(r, t) (1) has an equivalent form [2, 3]

∇ ·
(
∂v
∂t

+ (v · ∇)v
)

= −4πGρ, ∇ × v = 0, (2)

where now

g =
∂v
∂t

+ (v · ∇)v, (3)

is the well-known Galilean covariant Euler acceleration of the
substratum that has velocity v(r, t). Because of the covariance
of g under a change of the spatial coordinates only relative in-
ternal velocities have an ontological existence — the coordi-
nates r then merely define a mathematical embedding space.

We give a brief review of the concept and mathemati-
cal formalism of a dynamical flowing 3-space, as this is of-
ten confused with the older dualistic space and aether ideas,
wherein some particulate aether is located and moving through
an unchanging Euclidean space — here both the space and

∗The Friedmann equation for the expanding universe follow trivially
from (1), as shown in [4], but then needs “dark matter” and “dark energy” to
fit the cosmological data.
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the aether were viewed as being ontologically real. The dy-
namical 3-space is different: here we have only a dynamical
3-space, which at a small scale is a quantum foam system
without dimensions and described by fractal or nested homo-
topic mappings [2]. This quantum foam is not embedded in
any space — the quantum foam is all there is, and any met-
ric properties are intrinsic properties solely of that quantum
foam. At a macroscopic level the quantum foam is described
by a velocity field v(r, t), where r is merely a [3]-coordinate
within an embedding space. This embedding space has no
ontological existence — it is merely used to (i) record that
the quantum foam has, macroscopically, an effective dimen-
sion of 3, and (ii) to relate other phenomena also described by
fields, at the same point in the quantum foam. The dynamics
for this 3-space is easily determined by the requirement that
observables be independent of the embedding choice, giving,
for zero-vorticity dynamics and for a flat embedding space,
and preserving the inverse square law outside of spherical
masses, at least in the usual cases, such as planets,

∇ ·
(
∂v
∂t

+ (v · ∇)v
)

+
α

8

(
(trD)2 − tr(D2)

)
= −4πGρ,

∇ × v = 0, Di j =
1
2

(
∂vi

∂x j
+
∂v j

∂xi

)
, (4)

where ρ(r, t) is the matter and EM energy densities, expressed
as an effective matter density. Borehole g measurements and
astrophysical black hole data has shown that α ≈ 1/137 is the
fine structure constant to within observational errors [2,3,10].
For a quantum system with mass m the Schrödinger equation
is uniquely generalised [10] with the new terms required to
maintain that the motion is intrinsically wrt the 3-space, and
not wrt the embedding space, and that the time evolution is
unitary:

i~
∂ψ(r, t)
∂t

= − ~
2

2m
∇2ψ(r, t) − i~

(
v · ∇ +

1
2
∇ · v

)
ψ(r, t). (5)

The space and time coordinates {t, x, y, z} in (4) and (5) ensure
that the separation of a deeper and unified process into differ-
ent classes of phenomena — here a dynamical 3-space (quan-
tum foam) and a quantum matter system, is properly tracked
and connected. As well the same coordinates may be used by
an observer to also track the different phenomena. However
it is important to realise that these coordinates have no onto-
logical significance — they are not real. The velocities v have
no ontological or absolute meaning relative to this coordinate
system — that is in fact how one arrives at the form in (5),
and so the “flow” is always relative to the internal dynamics
of the 3-space. A quantum wave packet propagation analy-
sis of (5) gives the acceleration induced by wave refraction to
be [10]

g =
∂v
∂t

+ (v · ∇)v + (∇ × v) × vR,

vR(ro(t), t) = vo(t) − v(ro(t), t), (6)

where vR is the velocity of the wave packet relative to the lo-
cal 3-space, and where vo and ro are the velocity and position
relative to the observer, and the last term in (6) generates the
Lense-Thirring effect as a vorticity driven effect. Together
(4) and (6) amount to the derivation of gravity as a quantum
effect, explaining both the equivalence principle (g in (6) is
independent of m) and the Lense-Thirring effect. Overall we
see, on ignoring vorticity effects, that

∇ · g = −4πGρ − 4πGρDM , (7)

where
ρDM =

α

32πG

(
(trD)2 − tr(D2)

)
. (8)

This is Newtonian gravity but with the extra dynamical term
which has been used to define an effective “dark matter” den-
sity. This is not real matter, of any form, but is the matter den-
sity needed within Newtonian gravity to explain the flat rota-
tion curves of spiral galaxies, large light bending and lensing
effects from galaxies, and other effects. Here, however, it is
purely a space self-interaction effect. This new dynamical ef-
fect also explains the bore hole g anomalies, and the black
hole “mass spectrum”. Eqn.(4), even when ρ = 0, has an
expanding universe Hubble solution that fits the recent su-
pernovae data in a parameter-free manner without requiring
“dark matter” nor “dark energy”, and without the accelerat-
ing expansion artifact [4]. However (7) cannot be entirely
expressed in terms of g because the fundamental dynamical
variable is v. The role of (7) is to reveal that if we analyse
gravitational phenomena we will usually find that the matter
density ρ is insufficient to account for the observed g. Until
recently this failure of Newtonian gravity has been explained
away as being caused by some unknown and undetected “dark
matter” density. Eqn.(7) shows that to the contrary it is a
dynamical property of 3-space itself. Significantly the quan-
tum matter 3-space-induced ‘gravitational’ acceleration in (6)
also follows from maximising the elapsed proper time wrt the
wave-packet trajectory ro(t), see [2],

τ =

∫
dt

√
1 − v2

R(ro(t), t)
c2 , (9)

and then taking the limit vR/c → 0. This shows that (i) the
matter ‘gravitational’ geodesic is a quantum wave refraction
effect, with the trajectory determined by a Fermat maximised
proper-time principle, and (ii) that quantum systems undergo
a local time dilation effect. Significantly the time dilation ef-
fect in (9) involves matter motion wrt the dynamical 3-space,
and not wrt the observer, and so distinguishing LR from SR.
A full derivation of (9) requires the generalised Dirac equa-
tion, with the replacement ∂/∂t → ∂/∂t + v · ∇, as in (5). In
differential form (9) becomes

dτ2 = gµνdxµdxν = dt2 − 1
c2 (dr − v(r(t), t)dt)2, (10)
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which introduces a curved spacetime metric gµν that emerges
from (4). However this spacetime has no ontological signif-
icance — it is merely a mathematical artifact, and as such
hides the underlying dynamical 3-space. This induced met-
ric is not determined by the Einstein-Hilbert equations, which
originated as a generalisation of Newtonian gravity, but with-
out the knowledge that a dynamical 3-space had indeed been
detected by Michelson and Morley in 1887 by detecting light
speed anisotropy. In special circumstances, and with α = 0,
they do yield the same effective spacetime metric. However
the dynamics in (4) is more general, as noted above, and has
passed more tests.

3 New Gravity Equation for a Spherically Symmetric
System

For the case of zero vorticity the matter acceleration in (6)
gives

g(r, t) =
∂v
∂t

+
∇v2

2
(11)

For a time independent flow we introduce a generalised grav-
itational potential, which gives a microscopic explanation for
that potential,

Φ(r) = − v
2

2
. (12)

For the case of a spherically symmetric and time independent
inflow we set v(r, t) = −r̂v(r), then (4) becomes, with v′ =

dv/dr,

α

2r

(
v2

2r
+ vv′

)
+

2
r
vv′ + (v′)2 + vv′′ = −4πGρ (13)

which can be written as

1
r2

d
dr

(
r2− α

2
d
dr

(
r
α
2 Φ

))
= 4πGρ (14)

This form suggests that the new dynamics can be incorpo-
rated into the space metric, in that the 3-space α-term appears
to lead to a fractal dimension of 3 − α/2 = 2.996, see [10].
The velocity flow description of space is completely equiva-
lent to Newtonian gravity when the α dependent term in (4) is
removed. In this case setting α = 0 reduces (14) to the Pois-
son equation of Newtonian gravity for the case of spherical
symmetry.

4 Solutions to New Gravity Equation for Non-Uniform
Density

The solutions to (14) for a uniform density distribution are
published in [2]. For variable density ρ(r) the exact solution

to (14) is∗

Φ(r) = − β

r
α
2
− G

(1 − α
2 )r

∫ r

0
4πs2ρ(s)ds

− G
(1 − α

2 )r
α
2

∫ ∞

r
4πs1+ α

2 ρ(s)ds, (15)

When ρ(r) = 0 for r > R, this becomes

Φ(r) =



− β
r
α
2
− G

(1 − α
2 )r

∫ r

0
4πs2ρ(s)ds

− G
(1 − α

2 )r
α
2

∫ R

r
4πs1+ α

2 ρ(s)ds, 0 < r ≤ R

− β
r
α
2
− γ

r
, r > R

(16)

where

γ =
G

(1 − α
2 )

∫ R

0
4πs2ρ(s)ds =

GM
(1 − α

2 )
(17)

Here M is the total matter mass, and β is a free parameter. The
term β/rα/2 describes an inflow singularity or “black hole”
with arbitrary strength. This is unrelated to the putative black
holes of General Relativity. This corresponds to a primor-
dial black hole. As well the middle term in (16) also has a
1/rα/2 inflow-singularity, but whose strength is mandated by
the matter density, and is absent when ρ(r) = 0 everywhere.
This is a minimal “black hole”, and is present in all matter
systems. The β/rα/2 term will produce a long range gravita-
tional acceleration g = β/r1+α/2, as observed in spiral galax-
ies. For the region outside the sun (r > R) Keplerian orbits are
known to well describe the motion of the planets within the
solar system, apart from some small corrections, such as the
Precession of the Perihelion of Mercury, which follow from
relativistic effects from (9). Thus is the case β = 0, and the
sun has only an induced ‘Minimal Attractor’. These minimal
black holes contribute to the external g = K/r2 gravitational
acceleration, through an effective mass

MBH =
M

1 − α
2
− M =

α

2
M

1 − α
2
≈ α

2
M (18)

as previously reported [2]. These induced black hole “ effec-
tive” masses have been detected in numerous globular clus-
ters and spherical galaxies and their predicted effective masses
have been confirmed in some 19 such cases [11]. These gave
the value α =≈ 1/137 [12]. The induced black hole dynam-
ics at the center of the sun is responsible for the new density,
pressure and temperature profiles computed herein.

∗Eqn (14) also permits a −γ/r term in (16). However this is not valid, as
the full [3] version of (14) would then involve a point mass at r = 0, because
∇2(1/|r|) = −4πδ(r), and in (16) all the mass is accounted for by ρ(r). See [2]
for a detailed discussion.
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5 Polytropic Models using Dynamical 3-Space Theory

For a star to be in hydrostatic equilibrium the inward force of
gravity must match the net outward effect of the pressure,

dP
dr

= −dΦ

dr
ρ (19)

Here we use the polytrope modelling of the pressure-density
equation of state.

P = Kρ1+ 1
n (20)

where n is the polytropic index, and K is a constant. This
was introduced by Eddington, and was extensively used by
Chandrasekhar [13–16], but these analyses only apply in the
case of Newtonian gravity. The new theory of gravity requires
a new treatment.

The polytropic relation between pressure and density (20)
gives

dP
dr

=
K(n + 1)

n
ρ

1
n

dρ
dr

(21)

and (19) gives

dΦ

dr
= −K(n + 1)

n
ρ

1
n−1 dρ

dr
(22)

Integration gives

Φ = −K(n + 1)ρ
1
n + C (23)

Here it will be useful to define the gravitational potential
at the sun’s surface ΦR = Φ(R) = C as the value of the inte-
gration constant, and so we obtain for the density

ρ =

(
ΦR − Φ

K(n + 1)

)n

(24)

One of the characteristics of the new gravity is that all
spherical objects contain induced black holes. In the context
of polytrope models this presents the problem that the central
value of the potential cannot be used, as in the Lane-Emden
equation. We can however impose the polytropic condition
from (24) onto numerical solutions to iteratively solve the
problem. Multiplying (24) by 4πr2 and integrating yields

M =

∫ R

0
4πr2ρdr =

∫ R

0
4πr2

(
ΦR − Φ)
K(n + 1)

)n

dr (25)

and then

K =
1

(n + 1)M1/n

(∫ R

0
4πr2(ΦR − Φ)ndr

)1/n

(26)

A new density distribution and K value can now be calcu-
lated from an initial density distribution by cycling through

Fig. 1: Gravity and density plots for a polytropic model for the sun
with n = 3. The effective dark matter distribution is shown in the
density plot.

the following relations iteratively

Φ(r) =
−G

(1 − α
2 )

(
1
r

∫ r

0
4πs2ρ(s)ds+

+
1
r
α
2

∫ R

r
4πs1+ α

2 ρ(s)ds
)

K =
1

(n + 1)M1/n

(∫ R

0
4πr2(ΦR − Φ)ndr

)1/n

ρ(r) =

(
ΦR − Φ(r)
K(n + 1)

)n

(27)

6 Polytropic Solar Models

For the sun a polytrope model with n = 3 is known to give
a good approximation to conditions in the solar core as com-
pared with the Standard Solar Model [16]. This is known as
the Eddington Standard Model. The polytrope model does
well in comparison with the Standard Solar Model [17]. To
test the calculation method, setting α = 0 should reproduce

52 R. D. May and R. T. Cahill. Dynamical 3-Space Gravity Theory: Effects on Polytropic Solar Models



January, 2011 PROGRESS IN PHYSICS Volume 1

Fig. 2: Top graph shows difference in density ρ(r) between new
gravity and Newtonian modeling. Bottom graph show the difference
in weighted density 4πr2ρ(r).

the results from the Lane-Emden equation, which is based
on Newtonian gravity. The results of starting with a uniform
density and then iteratively finding the solution agree with the
values published by Chandrasekhar [13]. The density distri-
bution also matched numerical solutions produced in Mathe-
matica to the Lane-Emden equation.

Results from solving the equations in (27) iteratively, until
convergence was achieved, are shown in Figs.1-3 for various
quantities, and compared with the results for Newtonian grav-
ity. For the new gravity (α = 1/137) we see a marked increase
in the gravity strength g(r) near the center, Fig.1, caused by
the induced black hole at the center, which is characteristic
of the new gravity theory, and which draws in the matter to
enhance the matter density near the center.

The new model of gravity has been used to explain away
the need for dark matter in astrophysics [4]. Here we find
the effective “dark matter” distribution that would need to be
added to the matter distribution to create these gravitational
effects in Newtonian Gravity. From (8) and (12) we obtain

ρDM(r) = − α

8πGr

(
Φ

r
+

dΦ

dr

)
. (28)

Fig. 3: The pressure and temperature in the center of the sun is pre-
dicted to be much larger in the new model.

Using (16) we then obtain

ρDM(r) =
α

2
r−2−α/2

∫ R

r
s1+α/2ρ(s)ds. (29)

This effective “dark matter” distribution is shown in Fig.1 for
the polytropic sun model. This then gives the total “dark mat-
ter”

MDM =

∫ R

0
4πr2ρDM(r)dr =

α

2
M

1 − α
2

(30)

in agreement with (18). The “dark matter” effect is the same
as the induced “black hole” effect, in the new gravity theory.

The matter density has increased towards the center, as
seen in Fig.2, and so necessarily there is a slightly lower mat-
ter density in the inner middle region. This effect is more
clearly seen in the plot of 4πr2ρ(r). The “dark matter”/”black
hole” effect contributes to the external gravitational acceler-
ation, and so the total mass of the sun, defined as its matter
content, is lower than computed using Newtonian gravity, see
(17). The total mass is now 0.37% (≡ α/(2 − α)) smaller.

The pressure and temperature generated by the new grav-
ity is shown in Fig.3. The pressure comes from the poly-
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trope relation, (20), and closely follows the density distribu-
tion. The temperature can be calculated from the ideal gas
equation, with µ = 0.62 corresponding to a ratio of 7:3 of
Hydrogen to Helium, to obtain

T (r) =
Pmpµ

kρ
(31)

where mp is the mass of a proton, k is Boltzmann’s constant
and µ is the mass ratio. Unlike the pressure and density, the
temperature is increased in the middle region as well as the
inner region.

7 Conclusions

The discovery of the dynamical 3-space changes most of
physics. This space has been repeatedly detected in light-
speed anisotropy experiments. The dynamics of this space
follow from a unique generalisation of Newtonian gravity,
once that is expressed in a velocity framework. Then the
gravitational acceleration field g(r, t) is explained as the lo-
cal acceleration of the structured space, with evidence that
the structure is fractal. This space is the local absolute frame
of reference. Uniquely incorporating this space into a gen-
eralised Schrödinger equation shows that, up to vorticity ef-
fects and relativistic effects, the quantum matter waves are
refracted by the space, and yield that quantum matter has the
same acceleration as that of space itself. So this new physics
provides a quantum theory derivation of the phenomenon of
gravity. The 3-space dynamics involves G and the fine struc-
ture constant α, with this identification emerging from the
bore hole gravity anomalies, and from the masses of the mini-
mal “black holes” reported for globular clusters and spherical
galaxies. There are numerous other phenomena that are now
accounted for, including a parameter-free account of the su-
pernova red-shift — magnitude data. The occurrence of α
implies that we are seeing evidence of a new unified physics,
where space and matter emerge from a deeper theory. One
suggestion for this theory is Process Physics.

Herein we have reported the consequences of the new,
emergent, theory of gravity, when applied to the sun. This
theory predicts that the solar core, which extends to approxi-
mately 0.24 of the radius, is hotter, more dense and of higher
pressure than current Newtonian-gravity based models. Thus
a new study is now needed on how these changes will affect
the solar neutrino output. It is also necessary to revisit the
stellar evolution results.
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Particles and Antiparticles in the Planck Vacuum Theory
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This short note sheds some light on the negative energy vacuum state by expanding the
Planck vacuum (PV) model and taking a closer look at the particle-antiparticle nature
of the Dirac equation. Results of the development are briefly discussed with regard to
the complexity of the PV interaction with the massless free charge, the Dirac electron,
and the proton; an exercise that may lead to a better proton model.

The negative energy PV model [1] can be expanded to in-
clude negative energy particle states in the following manner:
the structure of the PV is related to the string of Compton
relations

remec2 = · · · = rpmpc2 = · · · = r∗m∗c2 = e2
∗ = c~ (1)

where the subscripts represent respectively the electron, pro-
ton, Planck particle, and their antiparticles; and where the
dots represent any number of intermediate particle-antipar-
ticle states. The re and me, etc., are the Compton radii and
masses of the various particles, c is the speed of light, and
~ is Planck’s constant. The bare charge e∗ is assumed to be
massless and is related to the elementary charge e observed in
the laboratory via e2 = αe2

∗, where α is he fine structure con-
stant. The particle-antiparticle masses are the result of their
bare charges being driven by ultra-high-frequency zero-point
fields that exist in free space [2, 3]. The charge on the Planck
particles within the PV is negative. It is assumed that positive
charges are holes that exist within the negative energy PV,
an assumption that is supported by the Dirac equation and its
negative energy solution [4].

The relation of positive and negative particles and antipar-
ticles to the Compton relations in (1) is easily explained. In
the above scheme, negatively charged particles or antiparti-
cles exist in free space and exert a perturbing force [1]

(−e∗)(−e∗)
r2 − mc2

r
(2)

on the PV, where m is the particle-antiparticle mass. The first
charge on the left is due to the free particle or antiparticle and
the second to the Planck particles within the PV. The hole
exerts a corresponding force within the PV equal to

(+e∗)(−e∗)
r2 − (−mc2)

r
(3)

where the effective positive charge on the left is due to the
missing negative charge (the hole) in the PV sea and the neg-
ative mass energy (−mc2) is due to the hole belonging to a
negative energy state. The radius r at which (2) and (3) vanish
is the particle or antiparticle Compton radius rc (= e2

∗/mc2).
The more complete form for (1) can then be expressed as

re(±mec2)=· · ·=rp(±mpc2)=· · ·=r∗(±m∗c2)= ± e2
∗ (4)

which renders its application to both particles and antipar-
ticles more explicit and transparent. The positive mass en-
ergies belong to the negatively charged free-space particles
or antiparticles, while the negative mass energies belong to
the PV holes which are responsible for the ficticious posi-
tively charged particles or antiparticles imagined to exist in
free space. Both equations in (4) lead back to the single equa-
tion (1) which defines ~.

The preceding ideas are illustrated using the Dirac equa-
tion and provide a clearer view of that equation as it is related
to the concept of Dirac holes. The Dirac equation for the
electron can be expressed as [4, 5]

(
c ~α · p̂e + βmec2

)
ψe = Eeψe (5)

where the momentum operator and energy are given by

p̂e =
~∇
i

=
(−e∗)(−e∗)∇

ic
and Ee = +

√
m2

ec4 + c2 p2
e (6)

and where ~α and β are defined in [5]. The relativistic momen-
tum is pe (= mev/

√
1 − v2/c2 ). The shift from the positive-

energy electron solution to the negative-energy hole (po-
sitron) solution proceeds as follows:

Ee −→ Eh = −Ee (7)

mec2 −→ mhc2 = −mec2 (8)

pe =
mev√

1 − v2/c2
→ ph =

−mhv√
1 − v2/c2

= −pe, (9)

p̂e =
(−e∗)(−e∗)∇

ic
→ p̂h =

(+e∗)(−e∗)∇
ic

= −p̂e. (10)

Substituting equations (7) through (10) into (5) yields
(
c ~α · p̂h + βmhc2

)
ψh = Ehψh (11)

for the hole solution, where Eh = −(m2
hc4 + c2 p2

h)1/2. From
(5) and (11) and mh = me it follows that the electron and hole
satisfy the same Dirac equation of motion with Eh = −Ee. Al-
though the hole exists in the PV, it appears experimentally in
free space as a positron due to the hole’s field permeating that
space. In turn, the positron’s deflection in a free-space mag-
netic field is due to that field permeating the PV and affecting
the hole.
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From the development of the PV theory so far, the Dirac
equation appears to be part of a succession of equations in-
volving an increasingly more complicated interaction be-
tween the free-space particle and the PV. For example, the
interaction of a massless point charge traveling at a constant
velocity results in the relativistic electric and magnetic fields
(and by inference the Lorentz transformation) that can be eas-
ily calculated directly from the charge’s Coulomb field (the
first term in (2)) and its interaction with the PV [1, Section 4].
The Dirac electron (a massive point charge) is next in com-
plexity to the point charge and perturbs the PV with the total
force in (2), leading to the Dirac equation (and the quantum
fields associated with it) which represents the PV reaction to
the moving Dirac electron [4].

The proton is the next more complex and stable parti-
cle whose properties are shaped by its interaction with the
PV. Being in essence a more complicated PV hole than the
positron, the proton exhibits some structure as witnessed by
its three-quark nature associated (it seems correct to assume)
with the hole. The calculational difficulties besetting quantum
chromodynamics [6, p.70] attest to the idea expressed above
that things are getting more complex in the progression from
leptons to hadrons and their PV interactions. Perhaps these
difficulties can be resolved by a better model for the heavy
particles based on the PV theory.
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Wave Particle Duality and the Afshar Experiment
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We analyze the experiment realized in 2003-2004 by S. Afshar et al. [1] in order to refute
the principle of complementarity. We discuss the general meaning of this principle and
show that contrarily to the claim of the authors Bohr’s complementarity is not in danger
in this experiment.

1 Introduction

In an interesting series of articles published few years ago
Afshar and coworkers [1,2] reported an optical experiment in
which they claimed to refute the well known N. Bohr prin-
ciple of complementarity [3, 4]. Obviously this result, if jus-
tified, would constitute a serious attack against the orthodox
interpretation of quantum mechanics (known as the Copen-
hagen interpretation). This work stirred much debate in dif-
ferent journals (see for examples references [5–12]).
We think however that there are still some important misun-
derstandings concerning the interpretation of this experiment.
In a preprint written originally in 2004 [5] (and following
some early discussions with Afshar) we claimed already that
the interpretation by Afshar et al. can be easily stated if we
stay as close as possible from the texts written by Bohr. The
aim of the present article (which was initially written in 2005
to precise a bit the thought developed in [5]) is to comment
the interpretation discussed in [1]. We will in the following
analyze the meaning of Bohr principle and show that far from
disproving its content the experiment [1] is actually a com-
plete confirmation of its general validity.
The difficulties associated with the understanding of this prin-
ciple are not new and actually complementarity created trou-
bles even in Einstein mind [3] so that we are here in good
company. To summarize a bit emphatically Bohr’s comple-
mentarity we here remind that this principle states that if one
of a pair of non commuting observables of a quantum object
is known for sure, then information about the second (com-
plementary) is lost [3, 4, 15, 16]. This can be equivalently
expressed as a kind of duality between different descriptions
of the quantum system associated with different experimen-
tal arrangements which mutually exclude each other (read in
particular [3,4]). Later in the discussion we will try to precise
this definition but for the moment it is enough to illustrate the
concepts by examples
Consider for instance the well known Young double-pinholes
interference experiment made with photons. The discrete na-
ture of light precludes the simultaneous observation of a same
photon in the aperture plane and in the interference pattern:
the photon cannot be absorbed twice. This is already a trivial
manifestation of the principle of Bohr. Here it implies that the
two statistical patterns associated with the wave in the aper-
ture plane and its Fourier (i. e., momentum) transform require

necessarily different photons for their recording. It is in that
sense that each experiment excludes and completes recipro-
cally the other. In the case considered before the photon is
absorbed during the first detection (this clearly precludes any
other detection). However even a non-destructive solution for
detection implying entanglement with other quantum systems
has a radical effect of the same nature: the complementarity
principle is still valid. For example, during their debate Bohr
and Einstein [3] discussed an ideal which-way experiment in
which the recoil of the slits is correlated to the motion of the
photon. Momentum conservation added to arguments based
on the uncertainty relations are sufficient to explain how such
entanglement photon-slits can erase fringes [15–19]. It is
also important for the present discussion to remind that the
principle of complementarity has a perfidious consequence
on the experimental meaning of trajectory and path followed
by a particle. Indeed the unavoidable interactions existing
between photons and detectors imply that a trajectory exist-
ing independently of any measurement process cannot be un-
ambiguously defined. This sounds even like a tragedy when
we consider once again the two-holes experiment. Indeed
for Bohr this kind of experiments shows definitely the es-
sential element of ambiguity which is involved in ascribing
conventional physical attributes to quantum systems. Intu-
itively (i. e., from the point of view of classical particle dy-
namic) one would expect that a photon detected in the focal
plane of the lens must have crossed only one of the hole 1
or 2 before to reach its final destination. However, if this is
true, one can not intuitively understand how the presence of
the second hole (through which the photon evidently did not
go) forces the photon to participate to an interference pat-
tern (which obviously needs an influence coming from both
holes). Explanations to solve this paradox have been pro-
posed by de Broglie, Bohm, and others using concepts such
as empty waves or quantum potentials [20, 21]. However
all these explanations are in agreement with Bohr principle
(since they fully reproduce quantum predictions) and can not
be experimentally distinguished. Bohr and Heisenberg pro-
posed for all needed purposes a much more pragmatic and
simpler answer: don’t bother, the complementarity principle
precludes the simultaneous observation of a photon trajectory
and of an interference pattern. For Bohr [3]: This point is of
great logical consequence, since it is only the circumstance
that we are presented with a choice of either tracing the path
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Fig. 1: The experiment described in [1]. Photons coming from pin-
holes 1 and 2 interfere in the back-focal plane of a lens (Fourier
plane) whereas they lead to two isolated narrow spots in the image
plane (the image plane is such that its distance p′ to the lens is re-
lated to the distance p between the lens and the apertures screen by
1/p + 1/p′ = 1/ f , where f is the focal length). The wire grid in the
back focal plane, distant of f from the lens, is passing through the
minima of the interference pattern. The subsequent propagation of
the wave is consequently not disturbed by the grid.

of a particle or observing interference effects, which allows
us to escape from the paradoxical necessity of concluding
that the behaviour of an electron or a photon should depend
on the presence of a slit in the diaphragm through which it
could be proved not to pass. From such an analysis it seems
definitively that Nature resists to deeper experimental inves-
tigation of its ontological level. As summarized elegantly by
Brian Greene [22]: Like a Spalding Gray soliloquy, an exper-
imenter’s bare-bones measurement are the whole show. There
isn’t anything else. According to Bohr, there is no backstage.
In spite of its interest it is however not the aim of the present
article to debate on the full implications of such strong philo-
sophical position.

2 Complementarity versus the experiments

2.1 A short description of the Afshar et al. experiment

The experiment reported in [1] (see Fig. 1) is actually based
on a modification of a gedanken experiment proposed origi-
nally by Wheeler [23]. In the first part of their work, Afshar et
al. used an optical lens to image the two pinholes considered
in the Young interference experiment above mentioned. De-
pending of the observation plane in this microscope we can
then obtain different complementary information.

If we detect the photons in the focal plane of the lens (or
equivalently just in front of the lens [24]) we will observe, i.e,
after a statistical accumulation of photon detection events, the
interference fringes. However, if we record the particles in the
image plane of the lens we will observe (with a sufficiently
high numerical aperture) two sharp spots 1’ and 2’ images of

the pinholes 1 and 2. Like the initial Young two-holes exper-
iment this example illustrates again very well the principle of
Bohr. One has indeed complete freedom for measuring the
photon distribution in the image plane instead of detecting
the fringes in the back focal plane. However, the two kinds
of measurements are mutually exclusive: a single photon can
participate only to one of these statistical patterns.

In the second and final part of the experiment, Afshar et
al. included a grid of thin absorbing wires located in the in-
terference fringes plane. Importantly, in the experiment the
wires must be located at the minimum of the interference pat-
tern in order to reduce the interaction with light. In the fol-
lowing we will consider a perfect interference profile (with
ideal unit visibility V = (Imax − Imin)/(Imax + Imin) = 1) to
simplify the discussion. If additionally the geometrical cross
section of each wire tends ideally to zero then the interfer-
ence behavior will, at the limit, not be disturbed and the sub-
sequent wave propagation will be kept unchanged. This im-
plies that the photon distributions 1’ and 2’, located in the
image plane optically conjugated with the aperture plane, are
not modified by the presence, or the absence, of the infinitely
thin wire grid. Naturally, from practical considerations an in-
finitely thin dielectric wire is not interacting with light and
consequently produces the same (null) effect whatever its lo-
cation in the light path (minimum or maximum of the inter-
ference for example). In order to provide a sensible probe for
the interference pattern, necessary for the aim of the experi-
ment considered, we will suppose in the following idealized
wires which conserve a finite absorbtion efficiency and this
despite the absence of any geometrical transversal extension.
We will briefly discuss later what happens with spatially ex-
tended scattering wires with finite cross section, but this point
is not essential to understand the essential of the argumenta-
tion. With such wires, and if we close one aperture (which
implies that there is no interference fringes and thus that a fi-
nite field impinges on the wires) the scattering and absorbtion
strongly affect the detection behavior in the image plane. As
it is seen experimentally [1, 2] the scattering by the wire grid
in general produces a complicated diffraction pattern and not
only an isolated narrow peak in 1’ or 2’ as it would be without
the grid.

In such conditions, the absence of absorbtion by the wires
when the two apertures are open is a clear indication of the
existence of the interference fringes zeros, i.e., of a wave-like
character, and this even if the photon is absorbed in the im-
age plane in 1’ or 2’. Following Afshar et al., this should be
considered as a violation of complementarity since the same
photons have been used for recording both the ‘path’ and the
wave-like information. The essential questions are however
what we mean precisely here by path and wave-like informa-
tion and what are the connections of this with the definition
of complementarity. As we will see hereafter it is by finding a
clear answer to these questions that the paradox and the con-
tradictions with Bohr’s complementarity are going to vanish.
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2.2 The wave-particle duality mathematical relation

At that stage, it is important to point out that the principle of
complementarity is actually a direct consequence of the math-
ematical formalism of quantum mechanics and of its statisti-
cal interpretation [4]. It is in particular the reason why the
different attempts done by Einstein to refute complementar-
ity and the Heisenberg uncertainty relations always failed: the
misinterpretations resulted indeed from a non-cautious intro-
duction of classical physics in the fully consistent quantum
mechanic formalism [3]. For similar reasons here we show
that a problem since Afshar et al. actually mixed together,
i.e imprudently, argumentations coming from classical and
quantum physics. We will show that this mixing results into
an apparent refutation of the complementarity principle.

After this remark we now remind that a simple mathemat-
ical formulation of complementarity exists in the context of
two path interferometry [25–28]. For example in the Young
double-apertures experiment considered previously the field
amplitudes C1 and C2 associated with the two narrow aper-
tures, separated by the distance d, allow us to define the wave
function in the two-apertures plane by:

ψ(x) ∼ C1δ(x − d/2) + C2δ(x + d/2). (1)

From this formula one can easily introduce the “distinguisha-
bility”

K =
||C1|2 − |C2|2|
|C1|2 + |C2|2 . (2)

This quantity can be physically defined by recording the pho-
tons distribution in the aperture plane and constitutes an ob-
servable measure of the “path” distinguishability (see how-
ever section 3.3 ). The interpretation of K is actually clear,
and in particular if K = 0 each apertures play a symmetrical
role, whereas if K = 1 one of the two apertures is necessarily
closed. Naturally, like in the Afshar experiment, K can also
be measured by recording photons in the image plane of the
lens in 1’ and 2’. Equations (1) and (2) are still valid, with
the only differences that: i) we have now a diffraction spot
(like an Airy disk) instead of a Dirac distribution in equation
(1), and ii) that the spatial variables are now magnified by the
lens.

Instead of the spatial representation one can also consider
the Fourier transform corresponding to the far field interfer-
ence pattern recorded at large distance of the two-slits screen:

ψ(k) ∼ C1 · eikd/2 + C2 · e−ikd/2. (3)

Such a wave is associated with an oscillating intensity in the
k-space given by

I(k) ∼ 1 + V cos (kd + χ) (4)

where χ = arg (C1) − arg (C2) and V is the fringe visibility

V =
2|C1| · |C2|
|C1|2 + |C2|2 . (5)

This quantity is also a physical observable which can defined
by recording the photons in the far-field, or, like in the Afshar
et al. first experiment, by recording the photons fringes in
the back focal plane of the lens (the back focal plane is the
plane where the momentum distribution ~k is experimentally
and rigorously defined [16]). Like it is for K, the meaning
of V is also very clear: if V = 1 both apertures must play a
symmetrical role, whereas if V = 0 only one aperture is open.

A direct mathematical consequence of equations (2) and
(5) is the relation

V2 + K2 = 1, (6)

which expresses the duality [25, 26] between the two math-
ematical measures K and V associated with the two mutu-
ally exclusive (i.e., complementary) experiments in the di-
rect and Fourier space respectively. A particularly impor-
tant application of equation (6) concerns which-path exper-
iments. In such experiments, we wish to observe the inter-
ference pattern, and to find through each hole each photon
is going through. As we explained before, a photon can not
be observed twice, and this represents in general a fatal end
for such expectations. There is however an important excep-
tion in the particular case with only one aperture open (i.e.,
K = 1). Indeed, in such case it is not necessary to record
the photon in the aperture plane to know its path since if it is
detected (in the back focal plane) it necessarily means that it
went through the opened aperture. Of course, from equation
(6) we have in counterpart V = 0, which means that fringes
are not possible.
This dilemma, can not be solved by considering less invasive
methods, like those using entanglement between the photon
and an other quantum system or an internal degree of free-
dom (such as polarization or spins). To see that we consider
a wave function |Ψ〉 describing the entanglement between the
photon and these others quantum variables defining a which-
path detector. We write

|Ψ〉 =

∫
[C1δ(x − d/2)|x〉|γ1〉 + C2δ(x + d/2)|x〉|γ2〉]dx

=

∫
[C1 · eikd/2|k〉|γ1〉 + C2 · e−ikd/2|k〉|γ2〉]dp (7)

where |γ1〉 and |γ2〉 are the quantum state of the which-path
detector if the photon is going through the aperture 1 or 2.
Consider now the kind of information one can extract from
|Ψ〉. First, by averaging (tracing) over the detector degrees of
freedom we can define the total probability P(x) = Tr[ρ̂|x〉〈x|]
of detecting a photon in the aperture plane in x by

P(x) ∝ |C1|2〈γ1|γ1〉(δ(x − d/2))2

+|C2|2〈γ2|γ2〉(δ(x + d/2))2. (8)

with ρ̂ = |Ψ〉〈Ψ| is the total density matrix. By analogy with
equation (2) the total distinguishability is then defined by

K =
||C1|2〈γ1|γ1〉 − |C2|2〈γ2|γ2〉|
|C1|2〈γ1|γ1〉 + |C2|2〈γ2|γ2〉 . (9)
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Same as for equations (3-5) we can define the total probability
to detect a photon of (transverse) wave vector k by

P(k) = Tr[ρ̂|k〉〈k|] ∝ 1 + V cos (kx + φ), (10)

where the visibility V is written

V =
2|C1| · |C2| · |〈γ1|γ2〉|

|C1|2〈γ1|γ1〉 + |C2|2〈γ2|γ2〉 . (11)

By combining V and K we deduce immediately K2 + V2 =

η2 ≤ 1 with

η2 = 1 − 4|C1|2 · |C2|2 · (〈γ1|γ1〉〈γ2|γ2〉 − |〈γ1|γ2〉|2)
(|C1|2〈γ1|γ1〉 + |C2|2〈γ2|γ2〉)2 (12)

and where the inequality results from the Cauchy-Schwartz
relation 〈γ1|γ1〉〈γ2|γ2〉 − |〈γ1|γ2〉|2 ≥ 0.
However, we can remark that by tracing over the degrees of
freedom associated with the detector we did not consider a
which-path experiment but simply decoherence due to entan-
glement. In order to actually realize such a which-path ex-
periment we need to calculate the joint probability associated
with a recording of the photon in the state |x〉 (or |k〉) in co-
incidence with a measurement of the detector in the eigen-
state |λ〉 corresponding to one of its observable. These joint
probabilities read P(x, λ) = Tr[ρ̂|x〉〈x||λ〉〈λ|] and P(k, λ) =

Tr[ρ̂|k〉〈k||λ〉〈λ| with

P(x, λ) ∝ |C1|2|〈λ|γ1〉|2(δ(x − d/2))2

+|C2|2|〈λ|γ2〉|2(δ(x + d/2))2

P(k, λ) =∝ 1 + Vλ cos (kx + φλ). (13)

Indeed, the aim of such entanglement with a degree of free-
dom |λ〉 (produced for example by inserting polarization con-
verters like quarter or half wave-plates just after the aper-
tures [32]) is to generate a wave function

ψλ(x) ∼ C1,λδ(x − d/2) + C2,λδ(x + d/2) (14)

with either C1,λ or C2,λ (but not both) equal to zero. A subse-
quent projection on |λ〉will reveal the path information. How-
ever, from the duality relation given by equation (5) applied
to ψλ(x) it is now obvious that we did not escape from the pre-
vious conclusion. Indeed, while the photon was not destroyed
by the entanglement with the which-path detector, we unfor-
tunately only obtained path distinguishability (Kλ = 1) at the
expense of losing the interference behavior (Vλ = 0).
From all these experiments, it is clear that the discreteness of
photon, and more generally of every quantum object, is the
key element to understand complementarity. This was evi-
dent without entanglement, since the only way to observe a
particle is to destroy it. However, even the introduction of a
‘which-path’ quantum state |λ〉 does not change the rule of
the game, since at the end of journey we necessarily need to

project, that is to kill macroscopically, the quantum system.
This fundamental fact, was already pointed out many times
by Bohr in his writings when he considered the importance
of separating the macroscopic world of the observer from the
microscopic quantum system observed, and also when he in-
sisted on the irreversible act induced by the observer on the
quantum system during any measurement process [4].

Let now return to the interpretation of Afshar et al. ex-
periments. In the configuration with the lens and without the
grid, we have apparently a new aspect of the problem since
the fringes occur in a plane located before the imaging plane.
Contrarily to the which-path experiments above mentioned,
where the destructive measurements occurred in the interfer-
ence plane, we have a priori here the freedom to realize a
‘fringes-interaction free-experiment’ which aim is to observe
the fringes without detecting the particle in the back focal
plane whereas the destructive measurement will occur in the
image plane (i.e., in 1’ or 2’). The role of the grid is expected
to provide such information necessary for the interference re-
construction. Due to the absence of disturbance by the grid,
Afshar et al. logically deduce that the field equals zero at the
wires locations. If we infer the existence of an interference
pattern with visibility V we must have

V =
(Imax − Imin)
(Imax + Imin)

=
(Imax − 0)
(Imax + 0)

= 1, (15)

since Imin = 0. This means that we can obtain the value of the
visibility only from the two assumptions that (i) the form of
the profile should be a ‘cos’ function given by equation (4),
and that (ii) no photon have been absorbed by the wires. Fi-
nally in this experiment, we record the photons in the area 1’
(or 2’) and consequently we have at the same time the path in-
formation. Importantly, following Afshar et al. we here only
consider one image spot 1’ or 2’ (since each photon impinges
one only one of these two regions) and we deduce therefore
K = 1. Together with the interference visibility V = 1 this
implies

K2 + V2 = 2, (16)

in complete contradiction with the bound given by equation
(6).

In the previous analysis we only considered the infinitely
thin wires to simplify the discussion. Actually, this is how-
ever the only experimental configuration in which the Afshar
experiment is easily analyzable since it is only in such case
that the duality relation can be defined. Indeed, scattering
by the wire always results into complicated diffraction pat-
tern in the image plane and the simple mathematical deriva-
tion [25–28] leading to equations 2, 5, and 6 is not possible.
We will then continue to consider the idealized case of the in-
finitely thin wires in the rest of the paper since it is this ideal
limit that the authors of [1]wanted obviously to reach.
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3 The rebuttal: Inference and Complementarity

3.1 Duality again

There are several reasons why the analysis by Afshar et al.
actually fails. First, from a mathematical point of view it
is not consistent to write K2 + V2 = 2. Indeed, in all the
experiments previously discussed (excluding the Afshar ex-
periments) it was necessary to consider statistics on all the
recorded photons in order to observe either the interference or
the path information (in the case were entanglement was in-
volved only the photons tagged by |λ〉 have to be considered).
Same here, if one consider all the detected photons one will
deduce K = 0 and equation (6) will be respected. Actually,
this results directly from the experimental method considered
by the authors of [1]. Indeed, if somebody is accepting the ex-
istence of an interference pattern he or she needs to know the
complete distribution 1’ and 2’ recorded in the image plane.
This is necessary in order to deduce that the wire grid didn’t
caused any disturbances on the propagation. Indeed, the dis-
turbance could have no consequence in 1’ but yet have some
effects in 2’. Consequently, ignoring 2’ does not allow us to
deduce that the experiment with the grid is interaction-free.
For this reason, it is unjustified to write K = 1, that is to con-
sider only one half of the detected photon population, while
we actually need both pinhole images to deduce the value of
V (this is also in agreement with the obvious fact that an in-
terference pattern requires the two apertures 1 and 2 opened
for its existence).

There is an other equivalent way to see why the choice
K = 0 is the only one possible. Indeed, having measured in
the image plane the two distributions 1’ and 2’ with intensity
|C1|2 and |C2|2 we can, by applying the laws of optics, prop-
agate backward in time the two converging beams until the
interference plane (this was done by Afshar et al.). In this
plane equation (4) and (5), which are a direct consequence
of these above mentioned optical laws, are of course valid.
Since we have |C1|2 = |C2|2, we deduce (from equations (2)
and (5)) that K = 0 and V = 1 in full agreement with the
duality relation (6). It is important to remark that since the
phase of C1 and C2 are not know from the destructive mea-
surements in the image plane, we cannot extrapolate the value
of χ = arg (C1) − arg (C2). However, the presence of the grid
give us access to this missing information since it provides
the points where I(k) = 0 (for example if I(π/d) = 0 then
χ = 2π · N with N =0, 1, ...). We can thus define com-
pletely the variable V and χ without recording any photon in
the Fourier plane. It is clear, that this would be impossible
if the duality condition K2 + V2 = 1 was not true since this
relation is actually a direct consequence of the law of optics
used in our derivations as well as in the one by Afshar et al..

To summarize the present discussion, we showed that Af-
shar et al. reasoning is obscured by a misleading interpreta-
tion of the duality relation given by equation (6). We however
think that this problem is not so fundamental for the discus-

sion of the experiment. Actually, we can restate the complete
reasoning without making any reference to this illusory vio-
lation of equation (6). After doing this we think that the error
in the deductions by Afshar et al. should become very clear.
Let then restate the story:
A) First, we record individuals photons in the regions 1’ and
2’. We can then keep a track or a list of each detection event,
so that, for each photon, we can define its ‘path’ information.
However, this individual property of each photon is not en-
tering in conflict with the statistical behavior, which in the
limit of large number, give us the two narrow distribution in
1’ and 2’. That is, the value K = 0 is not in conflict with the
existence of a which-path information associated with each
photon. This situation differs strongly from usual which-path
experiments in which the path detection, or tagging, is done
before the interference plane. As we explained before in these
experiments the value K = 1 was a necessary consequence
of the preselection procedure done on the photon population.
This point also means that we have to be very prudent when
we use the duality relation in experimental situations differ-
ent from the ones for which a consensus has already been
obtained.
B) Second, we apply the laws of optics backward in time to
deduce the value of the visibility V . Inferring the validity of
such optical laws we can even reconstruct completely the in-
terference profile thanks to the presence of wire grid.
C) Finally, we can check that indeed K2+V2 = 1 in agreement
with the duality relation.

Having elucidated the role of the duality relation, the
question that we have still to answer is what are the impli-
cations of this experiment for complementarity. What has in-
deed been shown by Afshar et al. is that each photon detected
in the image plane is associated with a wave behavior since
none of them crossed the wires. Using the laws of optics
backward in time allow us to deduce the precise shape of in-
tensity profile in the back focal plane but this is a theoretical
inference and actually not a measurement. We will now show
that this is the weak point.

3.2 Classical versus quantum inferences

In classical physics, such an inference (i.e., concerning inter-
ference) is of no consequence since we can always, at least
in principle, imagine a test particle or detector to check the
validity of our assumptions concerning the system. However,
in quantum mechanics we are dealing with highly sensitive
systems and this modify the rules of the game.

In quantum mechanics it is common to say that the wave
function represents the catalog of all the potentiality accessi-
ble to the system. Due to the very nature of this theory there
are however some (complementary) pages which can not be
read at the same time without contradictions. In the Afshar
experiment, we do not have indeed the slightest experimental
proof that the observed photons did participate to the “cos”
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Fig. 2: Different possible intensity profiles in the Fourier plane.
Each profile f (k) obeys to the condition f (k) = 0 on the wires. (a) A
continuous periodic function. (b) The diffractive interference profile
predicted by quantum mechanics. (c) A discontinuous profile inten-
sity. Each profile is ‘apriori’ equiprobable for an observer which has
no knowledge in optics and quantum mechanics.

interference pattern given by equations (3) and (4). Further-
more, by detecting the photons in the image plane, we only
know from the experiment that the photons never crossed the
wires but this is not sufficient to rebuild objectively the com-
plete interference pattern.

We can go further in this direction by using information
theory. Indeed, from the point of view of the information
theory of Gibbs [33], Shannon [34], and Jaynes [35], every
interference patterns, such that I(k) = 0 on the wires, are
equiprobable (see Fig. 2). However, there are an infinity of
such profiles, so that our information is rather poor. More
precisely, let write ρ[ f (k)] the functional giving the density
of probability associated with the apriori likelihood of hav-
ing the interference profile f (k) located in an infinitely small
(functional) volume D[ f (k)]. We write Σ[ f (x)] the space of
all this interference profiles obeying to the condition f (k) = 0
on the wires. We have thus ρ[ f (k)] = 1/Σ (equiprobabil-
ity) for the function f contained in Σ, and ρ[ f (k)] = 0 for
the function outside Σ (that are functions which do not sat-
isfy the requirements f (k) = 0 on the wires). The Shannon
entropy [33–35] S [ f (x)] associated with this distribution is
given by

S [ f (x)] = −
∫

(Σ)
D[ f (k)]ρ[ f (k)] ln (ρ[ f (k)])

= ln (Σ[ f (k)])→ +∞, (17)

which expresses our absence of objective knowledge con-
cerning f (k). In this reasoning, we used the concept of prob-
ability taken in the Bayesian sense, that is in the sense of
decision-maker theory used for example by poker players.
For an observer which do not have any idea concerning quan-
tum mechanics and the laws of optics, this equiprobability is
the most reasonable guess if he wants only to consider the

photons he actually detected. Of course, by considering a dif-
ferent experiment, in which the photons are recorded in the
Fourier plane, the observer might realize what is actually the
interference pattern. However (and this is essential for under-
standing the apparent paradox discussed in reference 1) it will
be only possible by considering different recorded photons in
full agreement with the principle of complementarity.
Let now summarize a bit our analysis. We deduced that in
the experiment discussed in [1] the photons used to measure
objectively the interference pattern i.e. to calculate the vis-
ibility V = 1 are not the same than those used to measure
the distribution in the image plane and calculate the distin-
guishability K = 0. This is strictly the same situation than
in the original two-holes experiment already mentioned. It
is in that sense that the relationship (6) represents indeed a
particular formulation of complementarity [25–28]. Actually
(as we already commented before) the value V = 1 obtained
in [1] does not result from a measurement but from an extrap-
olation. Indeed, from their negative measurement Afshar et
al. recorded objectively Imin = 0. If we suppose that there
is a hidden sinusoidal interference pattern in the plane of the
wires we can indeed write

V = (Imax − Imin) / (Imax + Imin) = Imax/Imax = 1. (18)

However to prove experimentally that such sinusoidal inter-
ference pattern actually exists we must definitively record
photons in the rest of the wires plane. This is why the ex-
periment described in [1] does not constitutes a violation of
complementarity.
It is finally interesting to remark that similar analysis could be
easily done already in the Young two-holes experiment. In-
deed, suppose that we record the photon interference fringes
after the holes. We can thus measure V = 1. However,
if we suppose that the sinusoidal oscillation of the intensity
results from the linear superposition of waves coming from
holes 1 and 2 then from equation 5 we deduce |C1|2 + |C2|2 −
2|C1||C2| = 0 i. e., |C1| = |C2|. From equation 2 this implies
K = 0. Reasoning like Afshar et al. we could be tempted
to see once again a violation of complementarity since we
deduced the distinguishability without disturbing the fringes!
However, we think that our previous analysis sufficiently clar-
ified the problem so that paradoxes of that kind are now nat-
urally solved without supplementary comments.

3.3 The objectivity of trajectory in quantum mechanics

At the end of section 2.1 we shortly pointed that the concept
of trajectory is a key issue in the analysis of the experiment
reported in reference 1. This was also at the core of most
commentaries (e.g. references [6–14]) concerning the work
by Afshar et al.. As a corollary to the previous analysis we
will now make a brief comment concerning the concept of
path and trajectory in quantum mechanics since we think that
a lot of confusion surrounds this problem. This is also im-
portant because Afshar et al. claimed not only that they can
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Fig. 3: Illustration of the counterintuitive paths followed by photons
if we accept the ontological interpretation given by de Broglie and
Bohm. The photons coming from aperture 1 or 2 reach the ‘wrong’
detector 2’ or 1’.

circumvent complementarity but that additionally they deter-
mine the path chosen by the particle. Following here an in-
tuitive assumption they accepted that with the two pinholes
open a photon trajectory (if trajectory there is) connects nec-
essarily a pinhole to its optical image like it is in geometrical
optics. They called that intuition (probably in analogy with
what occurs in classical physics) a ‘consequence of momen-
tum conservation’. However, the meaning of momentum and
trajectory is not the same in quantum and classical mechanics.
Actually, as it was realized by several physicists the connec-
tion 1 to 1’ and 2 to 2’ is a strong hypothesis which depends
of our model of (hidden) reality and which can not in general
be experimentally tested (read for example [29, 36]).

Actually nothing in this experiment with two holes for-
bids a photon coming from one pinhole to go in the wrong de-
tector associated with the second pinhole. This is the case for
example in the hidden variable theory of de Broglie-Bohm
in which every photons coming from the aperture 1 (respec-
tively 2) is reaching the wrong image spot 2’(respectively
1’) [29, 36] as shown in figure 3. This is counter intuitive
but not in contradiction with experiments since we can not
objectively test such hidden variable model [36]. In partic-
ular closing one pinhole will define unambiguously the path
followed by the particle. However this is a different experi-
ment and the model shows that the trajectories are modified
(in general non locally) by the experimental context. The very
existence of a model like the one of de Broglie and Bohm
demonstrates clearly that in the (hidden) quantum reality a
trajectory could depend of the complete context of the exper-
iment. For this reason we must be very prudent and conser-
vative when we interpret an experiment: Looking the image
of a pinhole recorded in a statistical way by a cascade of pho-
ton will not tell us from which pinhole an individual photon
come from but only how many photons crossed this pinhole.
In counterpart of course we can not see the fringes and the
complementarity principle of Bohr will be, as in every quan-
tum experiment, naturally respected. It is thus in general dan-
gerous to speak unambiguously of a which-path experiment

and this should preferably be avoided from every discussions
limited to empirical facts. As claimed by Bohr the best em-
pirical choice is in such conditions to accept that it is wrong
to think that the task of physics is to find out how Nature is.
Physics concerns what we can say about Nature [4].

4 Conclusion

To conclude, in spite of some claims we still need at least two
complementary experiments in order to exploit the totality of
the phenomenon in Young-like interferometers. Actually, as
pointed out originally by Bohr, we can not use information
associated with a same photon event to reconstruct in a sta-
tistical way (i.e. by a accumulation of such events) the two
complementary distributions of photons in the image plane
of the lens and in the interference plane. The presence of
the wires inserted in reference 1 does not change anything to
this fact since the information obtained by adding the wires
is too weak and not sufficient to rebuild objectively (i. e. , un-
ambiguously from experimental data) the whole interference
pattern. The reasoning of Afshar et al. is therefore circular
and the experiment is finally in complete agreement with the
principle of complementarity.
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The spin dependent current and Fano factor of Aharonov-Casher semiconducting ring is
investigated under the effect of microwave, infrared, ultraviolet radiation and magnetic
field. Both the average current and the transport noise (Fano factor) characteristics are
expressed in terms of the tunneling probability for the respective scattering channels.
For spin transport induced by microwave and infrared radiation, a random oscillatory
behavior of the Fano factor is observed. These oscillations are due to constructive and
destructive spin interference effects. While for the case of ultraviolet radiation, the Fano
factor becomes constant. This is due to that the oscillations has been washed out by
phase averaging (i.e. ensemble dephasing) over the spin transport channels. The present
investigation is very important for quantum computing and information processing.

1 Introduction

The field of spintronics is devoted to create, store, manipu-
late at a given location, and transport coherent electron spin
states through dilute magnetic semiconductors and conven-
tional semiconductor heterostructure [1]. The two principle
challenges for new generation of spintronics devices are ef-
ficient injection of spins into various semiconductor nano-
structures and coherent control of spin. In particular, preserv-
ing spin coherence, which enables coherent superpositions of
states a |↑〉 + b |↓〉 and corresponding quantum-interference
effects, is essential for both quantum computing with spin-
based qubits [2, 3]. The electrical control of spin via Rashba
spin-orbit coupling [4], which arises due to inversion asym-
metry of the confining electric potential for tow-dimensional
electron gas (2DEG), is very important physical parameter
when dealing with semiconductor spintronics. The pursuit of
fundamental spin interference effects, as well as spin transis-
tors with unpolarized charge currents [3, 5–10] has generated
considerable interest to demonstrate the Aharonov-Casher
effect via transport experiments in spin-orbit coupled semi-
conductor nanostructures [7, 11].

The ballistic spin-resolved shot noise and consequently
Fano factor in Aharonov-Casher semiconducting ring is in-
vestigated in the present paper. The effects of both electro-
magnetic field of wide range of frequencies and magnetic
field are taken into consideration.

2 Theoretical Formulation

It is well known that shot noise and consequently Fano factor
is a powerful quantity to give information about controlling
decoherence of spin dependent phenomena [12, 13]. So we
shall deduce an expression for both shot noise and Fano fac-
tor for spintronic device considered in the paper [10]. This
device is modeled as follows: Aharonov-Casher interferome-
ter ring in which a semiconductor quantum dot is embedded

Fig. 1: The variation of Fano factor with gate voltage at different
photon energies.

in one arm of the ring. The form of the confining potential
is modulated by an external gate electrode allowing for direct
control of the electron spin-orbit coupling. The effect of elec-
tromagnetic field of wide range of frequencies (microwave,
infrared, ultraviolet) is taken into consideration.

The spin dependent shot noise S σσ′
αβ (t − t′) is expressed

in terms of the spin resolved currents I (↑), and I (↓) due to
the flow of spin-up ↑ and spin-down ↓ electrons through the
terminals of the present device [14] as

S σσ′
αβ

(
t − t′

)
=

1
2

〈
δÎσα (t) δÎσ

′
β

(
t′
)

+ δÎσ
′

β

(
t′
)
δÎσα (t)

〉
(1)

where Îσα (t) is the quantum mechanical operator of the spin
resolved (σ ⇒↑, ↓) current in left lead α, Îσ

′
β (t′) is the same
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Fig. 2: The variation of Fano factor with magnetic field at different
photon energies.

definition of Îσα (t), but for the right lead β. In Eq. (1), the
parameter δÎσα (t) represents the current fluctuation operator
at time t in the left lead α with spin state σ (up or down) and
is given by

δÎσα (t) = Îσα (t) −
〈
Îσα (t)

〉
(2)

where 〈−−〉 denotes an ensemble average. The Fourier trans-
form of Eq.(1), which represents the spin resolved noise po-
wer between the left and right terminals of the device, is given
by

S σσ′
αβ (ω) = 2

∫
d
(
t − t′

)
e−iω(t−t′)S σσ′

αβ

(
t − t′

)
. (3)

Since the total spin dependent current is given by

Iα = I↑α + I↓α, (4)

the corresponding noise power is expressed as

S αβ (ω) = S ↑↑αβ (ω) + S ↓↓αβ (ω) + S ↑↓αβ (ω) + S ↓↑αβ (ω) . (5)

Now, expressing the spin-resolved current Îσα (t) in terms of
the creation and annihilation operators of the incoming elec-
trons âσ+

α (E), âσα (E′) and for the outgoing electrons
b̂σ+
α (E + n~ω), b̂σα (E′ + n~ω) [15], as follows:

Îσα (t) =
e
h

∑

n

∫ ∫
dEdE′ei(E−E′)t/~ ×

[
âσ+
α (E) âσα

(
E′

) − b̂σ+
α (E + n~ω) b̂σα

(
E′ + n~ω

)]
. (6)

Now, in order to evaluate the shot noise spectrum S αβ (ω)
this can be achieved by substituting Eq.(6) into Eq.(1), and us-
ing the transmission eigenfunctions [10] through the present
spintronic device, we can determine the expectation value

Fig. 3: The variation of Fano factor with frequency ωS oc at different
photon energies.

[15, 16]. We get an expression for the shot noise spectrum
S αβ (ω) as follows:

S αβ (ω) =
2eP0

h

∑

σ

∞∫

0

dE
∣∣∣Γµ with photon (E)

∣∣∣2 ×

fαFD (E) ×
[
1 − fβFD (E + n~ω)

]
(7)

where
∣∣∣Γµ with photon (E)

∣∣∣2 is the tunneling probability induced
by the external photons, and fαFD (E), fβFD (E + n~ω) are the
Fermi distribution functions, and P0 is the Poissonian shot
noise spectrum [15].

The tunneling probability
∣∣∣Γµ with photon (E)

∣∣∣2 has been de-
termined previously by the authors [10]

The Fano factor, F, of such mesoscopic device is given
by [17]:

F =
S αβ (ω)

2eI
. (8)

The explicit expression for the Fano factor, F, can be
written as, after some algebraic computation of Eqs.(7, 8),
[18, 19]:

F =

[∑
n

∑
µ

∣∣∣Γµ with photon (E)
∣∣∣2

(
1 −

∣∣∣Γµ with photon (E)
∣∣∣2
)]

∑
n

∑
µ

∣∣∣Γµ with photon (E)
∣∣∣2

. (9)

3 Results and Discussion

The Fano factor F Eq.(9) has been computed numerically as
a function of the gate voltage Vg magnetic field B and func-
tion of the frequency ωS oc due to spin-orbit coupling. These
calculations are performed over a wide range of frequencies
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of the induced electromagnetic field (microwave, MW, in-
frared, IR, and ultraviolet, UV). We use the semiconductor
heterostructures as InGaAs/InAlAs as in the paper [10]. The
main features of the present obtained results are:

(1) Fig.1, shows the dependence of Fano factor on the
gate voltage Vg at photon energies for microwave, infrared,
and ultraviolet. As shown from the figure that, the Fano fac-
tor fluctuates between maximum and minimum values for the
two cases microwave and infrared irradiation. While for the
case of ultraviolet irradiation, the Fano factor is constant and
approximately equals ∼1.

(2) Fig.2, shows the dependence of Fano factor on the
magnetic field B at photon energies for microwave, infrared,
and ultraviolet. The trend of this dependence is similar in a
quite fair to the trend and behavior of Fig.1.

(3) Fig.3, shows the dependence of Fano factor on the fre-
quency ωS oc associated with the spin-orbit coupling at pho-
ton energies for microwave, infrared, and ultraviolet. An os-
cillatory behavior for this dependence for the two cases mi-
crowave and infrared are shown. While for the case of ultra-
violet, the Fano factor is constant and approximately equals
∼1 as in Figs. 1, 2.

These results might be explained as follows: Computa-
tions show that the average current suppression is accompa-
nied by a noise maxima and remarkably low minima (Fano
factor). These cases are achieved when the electron spin
transport is influenced by both microwave and infrared pho-
tons. Such results have been observed previously by the au-
thors [20–22]. The random oscillatory behavior of the Fano
factor can be understood as the strength of the spin-orbit cou-
pling is modified by the gate electrode covering the Aha-
ronov-Casher ring to tune constructive and destructive spin
interference effect [10]. For the case of the induced ultravi-
olet radiation, the results show that the Fano factor becomes
approximately constant. These results have been observed
previously by the authors [23,24]. The constancy of Fano fac-
tor might be due to washing out of the oscillations by phase
averaging (i.e. ensemble dephasing) over the spin transport
channels [23, 24].

We conclude that these phenomena can be used to devise
novel spintronic devices with a priori controllable noise lev-
els. The present investigation is very important for quantum
computing and quantum information processing.
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Smarandache’s Minimum Theorem in the Einstein Relativistic Velocity Model
of Hyperbolic Geometry

Cătălin Barbu
“Vasile Alecsandri” College — Bacău, str. Vasile Alecsandri, nr.37, 600011, Bacău, Romania. E-mail: kafka mate@yahoo.com.

In this note, we present a proof to the Smarandache’s Minimum Theorem in the Einstein
Relativistic Velocity Model of Hyperbolic Geometry.

1 Introduction

Hyperbolic Geometry appeared in the first half of the 19th

century as an attempt to understand Euclid’s axiomatic basis
of Geometry. It is also known as a type of non-Euclidean Ge-
ometry, being in many respects similar to Euclidean Geom-
etry. Hyperbolic Geometry includes similar concepts as dis-
tance and angle. Both these geometries have many results in
common but many are different. There are known many mod-
els for Hyperbolic Geometry, such as: Poincaré disc model,
Poincaré half-plane, Klein model, Einstein relativistic veloc-
ity model, etc. Here, in this study, we give hyperbolic version
of Smarandache minimum theorem in the Einstein relativis-
tic velocity model of hyperbolic geometry. The well-known
Smarandache minimum theorem states that if ABC is a tri-
angle and AA′, BB′, CC ′ are concurrent cevians at P , then

PA
PA′ · PB

PB′ · PC
PC′ ≥ 8

and

PA
PA′ + PB

PB′ + PC
PC′ ≥ 6

(see [1]).
Let D denote the complex unit disc in complex z-plane,

i.e.
D = {z ∈ C : |z| < 1}.

The most general Möbius transformation of D is

z → eiθ z0 + z

1 + z0z
= eiθ(z0 ⊕ z),

which induces the Möbius addition ⊕ in D, allowing the
Möbius transformation of the disc to be viewed as a Möbius
left gyrotranslation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈
D, and z0 is the complex conjugate of z0. Let Aut(D,⊕) be
the automorphism group of the grupoid (D,⊕). If we define

gyr : D ×D → Aut(D,⊕), gyr[a, b] =
a⊕ b

b⊕ a
=

1 + ab

1 + ab
,

then is true gyrocommutative law

a⊕ b = gyr[a, b](b⊕ a).

A gyrovector space (G,⊕,⊗) is a gyrocommutative gy-
rogroup (G,⊕) that obeys the following axioms:
(1) gyr[u,v]a·gyr[u,v]b = a · b for all points
a,b,u,v ∈G.
(2) G admits a scalar multiplication, ⊗, possessing the fol-
lowing properties. For all real numbers r, r1, r2 ∈ R and all
points a ∈G:

(G1) 1⊗ a = a
(G2) (r1 + r2)⊗ a = r1 ⊗ a⊕ r2 ⊗ a
(G3) (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a)
(G4) |r|⊗a

‖r⊗a‖ = a
‖a‖

(G5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a
(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1

(3) Real vector space structure (‖G‖ ,⊕,⊗) for the set ‖G‖
of onedimensional “vectors”

‖G‖ = {±‖a‖ : a ∈ G} ⊂ R
with vector addition ⊕ and scalar multiplication ⊗, such that
for all r ∈ R and a,b ∈ G,

(G7) ‖r ⊗ a‖ = |r| ⊗ ‖a‖
(G8) ‖a⊕ b‖ 6 ‖a‖ ⊕ ‖b‖

Theorem 1. (Ceva’s theorem for hyperbolic triangles). If
M is a point not on any side of an gyrotriangle ABC in a
gyrovector space (Vs,⊕,⊗), such that AM and BC meet in
A′, BM and CA meet in B′, and CM and AB meet in C ′,
then

γ|AC′| |AC ′|
γ|BC′| |BC ′| ·

γ|BA′| |BA′|
γ|CA′| |CA′| ·

γ|CB′| |CB′|
γ|AB′| |AB′| = 1,

where γv = 1q
1− ‖v‖2

s2

.

(See [2, p. 564].) For further details we refer to the recent
book of A.Ungar [3].

Theorem 2. (Van Aubel’s theorem in hyperbolic geometry).
If the point P does lie on any side of the hyperbolic triangle
ABC, and BC meets AP in D, CA meets BP in E, and
AB meets CP in F , then

γ|AP | |AP |
γ|PD| |PD| =

γ|BC| |BC|
2

(
γ|AE| |AE|
γ|EC| |EC| ·

1
γ|BD| |BD|

)
+

γ|BC| |BC|
2

(
γ|FA| |FA|
γ|FB| |FB| ·

1
γ|CD| |CD|

)
.

(See [4].)
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2 Main result

In this section, we prove Smarandache’s minimum theorem
in the Einstein relativistic velocity model of hyperbolic ge-
ometry.

Theorem 3. If ABC is a gyrotriangle and AA′, BB′, CC ′

are concurrent cevians at P , then

γ|AP | |AP |
γ|PA′| |PA′| ·

γ|BP | |BP |
γ|PB′| |PB′| ·

γ|CP | |CP |
γ|PC′| |PC ′| > 1,

and

γ|AP | |AP |
γ|PA′| |PA′| +

γ|BP | |BP |
γ|PB′| |PB′| +

γ|CP | |CP |
γ|PC′| |PC ′| > 3.

Proof. We set

|A′C| = a1, |BA′| = a2, |B′A| = b1,

|B′C| = b2, |C ′B| = c1, |C ′A| = c2,

γ|AP | |AP |
γ|PA′| |PA′| ·

γ|BP | |BP |
γ|PB′| |PB′| ·

γ|CP | |CP |
γ|PC′| |PC ′| = P,

γ|AP | |AP |
γ|PA′| |PA′| +

γ|BP | |BP |
γ|PB′| |PB′| +

γ|CP | |CP |
γ|PC′| |PC ′| = S.

If we use the Van Aubel’s theorem in the gyrotriangle ABC
(See Theorem 2), then

γ|AP ||AP |
γ|P A′||PA′| = γ|BC||BC|

2

(
γ|AB′||AB′|
γ|CB′||CB′| · 1

γ|BA′||BA′|

)

+γ|BC||BC|
2

(
γ|AC′||AC′|
γ|BC′||BC′| · 1

γ|CA′||CA′|

)

=
γaa

2

[
γb1b1

γb2b2
· 1
γa2a2

+
γc2c2

γc1c1
· 1
γa1a1

]
, (1)

and
γ|BP ||BP |

γ|P B′||PB′| = γ|CA||CA|
2

(
γ|BC′||BC′|
γ|AC′||AC′| · 1

γ|CB′||CB′|

)
+

γ|CA||CA|
2

(
γ|BA′||BA′|
γ|CA′||CA′| · 1

γ|AB′||AB′|

)

=
γbb

2

[
γc1c1

γc2c2
· 1
γb2b2

+
γa2a2

γa1a1
· 1
γb1b1

]
, (2)

and
γ|CP ||CP |

γ|P C′||PC′| = γ|AB||AB|
2

(
γ|CA′||CA′|
γ|BA′||BA′| · 1

γ|AC′||AC′|

)
+

γ|AB||AB|
2

(
γ|CB′||CB′|
γ|AB′||AB′| · 1

γ|BC′||BC′|

)

=
γcc

2

(
γa1a1

γa2a2
· 1
γc2c2

+
γb2b2

γb1b1
· 1
γc1c1

)
. (3)

If we use the Ceva’s theorem in the gyrotriangle ABC (See
Theorem 1), we have

γ|CA′| |CA′|
γ|BA′| |BA′| ·

γ|AB′| |AB′|
γ|CB′| |CB′| ·

γ|BC′| |BC ′|
γ|AC′| |AC ′| =

γa1a1

γa2a2
· γb1b1

γb2b2
· γc1c1

γc2c2
= 1. (4)

From (1) and (4), we have

γ|AP | |AP |
γ|PA′| |PA′| =

γaa

2

(
γb1b1γc2c2

γa2a2γb2b2γc2c2

)
+

γaa

2

(
γb1b1γc2c2

γa1a1γb1b1γc1c1

)
=

γaa

2
· 2γb1b1γc2c2

γa2a2γb2b2γc2c2

=
γaaγb1b1γc2c2

γa2a2γb2b2γc2c2
. (5)

Similary we obtain that

γ|BP | |BP |
γ|PB′| |PB′| =

γbbγc1c1γa2a2

γa2a2γb2b2γc2c2
, (6)

and
γ|CP | |CP |
γ|PC′| |PC ′| =

γccγa1a1γb2b2

γa2a2γb2b2γc2c2
. (7)

From the relations (5), (6) and (7) we get

P =
γaaγb1b1γc2c2 · γbbγc1c1γa2a2 · γccγa1a1γb2b2

(γa2a2γb2b2γc2c2)
3 =

=
γaaγbbγcc

γa2a2γb2b2γc2c2
(8)

and

S =
γaaγb1b1γc2c2 + γbbγc1c1γa2a2 + γccγa1a1γb2b2

γa2a2γb2b2γc2c2
.

(9)
Because γa > γa2 , γb > γb2 , and γc > γc2 result

γaγbγc > γa2γb2γc2 . (10)

Therefore
γaaγbbγcc

γa2a2γb2b2γc2c2
> 1. (11)
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From the relations (8) and (11), we obtain that P > 1. If
we use the inequality of arithmetic and geometric means, we
obtain

S > 3 3

√
γaaγb1b1γc2c2 · γbbγc1c1γa2a2 · γccγa1a1γb2b2

(γa2a2γb2b2γc2c2)
3 =

= 3 3

√
γaaγbbγcc

γa2a2γb2b2γc2c2
. (12)

From the relations (11) and (12), we obtain that S > 3.

3 Conclusion

The special theory of relativity as was originally formulated
by Einstein in 1905, [8], to explain the massive experimental
evidence against ether as the medium for propagating elec-
tromagnetic waves, and Varičak in 1908 discovered the con-
nection between special theory of relativity and hyperbolic
geometry, [9]. The Einstein relativistic velocity model is an-
other model of hyperbolic geometry. Many of the theorems
of Euclidean geometry are relatively similar form in the Ein-
stein relativistic velocity model, Smarandache minimum the-
orem is an example in this respect. In the Euclidean limit of
large s, s → ∞, gamma factor γv reduces to 1, so that the
gyroinequalities (11) and (12) reduces to the

PA

PA′
· PB

PB′ ·
PC

PC ′
> 1,

and
PA

PA′
+

PB

PB′ +
PC

PC ′
> 3,

in Euclidean geometry. We observe that the previous inequal-
ities are “weaker” than the inequalities of Smarandache’s the-
orem of minimum.

References
1. Smarandache F. Nine Solved and Nine Open Problems in Elementary

Geometry. arxiv.org/abs/1003.2153.
2. Ungar A. A. Analytic Hyperbolic Geometry and Albert Einstein’s Spe-

cial Theory of Relativity. Hackensack, NJ: World Scientific, 2008.
3. Ungar A. A. A Gyrovector Space Approach to Hyperbolic Geometry.

Morgan & Claypool Publishers, 2009.
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S-Denying a Theory

Florentin Smarandache
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In this paper we introduce the operators of validation and invalidation of a proposition,
and we extend the operator of S-denying a proposition, or an axiomatic system, from
the geometric space to respectively any theory in any domain of knowledge, and show
six examples in geometry, in mathematical analysis, and in topology.

1 Definitions

Let T be a theory in any domain of knowledge, endowed with
an ensemble of sentences E, on a given space M.

E can be for example an axiomatic system of this theory, or
a set of primary propositions of this theory, or all valid logi-
cal formulas of this theory, etc. E should be closed under the
logical implications, i.e. given any subset of propositions P1,
P2, ... in this theory, if E is a logical consequence of them
then Q must also belong to this theory.

A sentence is a logic formula whose each variable is quanti-
fied {i.e. inside the scope of a quantifier such as: ∃ (exist),
∀ ( f orall), modal logic quantifiers, and other various modern
logics’ quantifiers}.
With respect to this theory, let P be a proposition, or a sen-
tence, or an axiom, or a theorem, or a lemma, or a logical
formula, or a statement, etc. of E.

It is said that P is S-denied∗ on the space M if P is valid for
some elements of M and invalid for other elements of M, or
P is only invalid on M but in at least two different ways.

An ensemble of sentences E is considered S-denied if at least
one of its propositions is S-denied.

And a theory T is S-denied if its ensemble of sentences is S-
denied, which is equivalent to at least one of its propositions
being S-denied.

The proposition P is partially or totally denied/negated on M.
The proposition P can be simultaneously validated in one way
and invalidated in (finitely or infinitely) many different ways
on the same space M, or only invalidated in (finitely or in-
finitely) many different ways.

The invalidation can be done in many different ways.

For example the statement A = “x , 5” can be invalidated as
“x = 5” (total negation), but “x ∈ {5, 6}” (partial negation).

(Use a notation for S-denying, for invalidating in a way, for
invalidating in another way a different notation; consider it as

∗The multispace operator S-denied (Smarandachely-denied) has been
inherited from the previously published scientific literature (see for example
Ref. [1] and [2]).

an operator: neutrosophic operator? A notation for invalida-
tion as well.)

But the statement B = “x > 3” can be invalidated in many
ways, such as “x ≤ 3”, or “x = 3”, or “x < 3”, or “x = -7”, or
“x = 2”, etc. A negation is an invalidation, but not reciprocally
– since an invalidation signifies a (partial or total) degree of
negation, so invalidation may not necessarily be a complete
negation. The negation of B is ¬B = “x ≤ 3”, while “x = -7”
is a partial negation (therefore an invalidation) of B.

Also, the statement C = “John’s car is blue and Steve’s car is
red” can be invalidated in many ways, as: “John’s car is yel-
low and Steve’s car is red”, or “John’s car is blue and Steve’s
car is black”, or “John’s car is white and Steve’s car is or-
ange”, or “John’s car is not blue and Steve’s car is not red”,
or “John’s car is not blue and Steve’s car is red”, etc.

Therefore, we can S-deny a theory in finitely or infinitely
many ways, giving birth to many partially or totally denied
versions/deviations/alternatives theories: T1, T2, . . . . These
new theories represent degrees of negations of the original
theory T.

Some of them could be useful in future development of sci-
ences.

Why do we study such S-denying operator? Because our
reality is heterogeneous, composed of a multitude of spaces,
each space with different structures. Therefore, in one space
a statement may be valid, in another space it may be invalid,
and invalidation can be done in various ways. Or a proposi-
tion may be false in one space and true in another space or
we may have a degree of truth and a degree of falsehood and
a degree of indeterminacy. Yet, we live in this mosaic of dis-
tinct (even opposite structured) spaces put together.

S-denying involved the creation of the multi-space in geome-
try and of the S-geometries (1969).

It was spelt multi-space, or multispace, of S-multispace, or
mu-space, and similarly for its: multi-structure, or multistruc-
ture, or S-multistructure, or mu-structure.
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2 Notations

Let <A> be a statement (or proposition, axiom, theorem,
etc.).

a) For the classical Boolean logic negation we use the
same notation. The negation of <A> is noted by ¬A and
¬A = <nonA>.

An invalidation of <A> is noted by i(A), while a valida-
tion of <A> is noted by v(A):

i(A) ⊆ 2<nonA>\ {∅} and v(A) ⊆ 2<A>\ {∅}
where 2X means the power-set of X, or all subsets of X.

All possible invalidations of <A> form a set of invalidations,
notated by I(A). Similarly for all possible validations of <A>
that form a set of validations, and noted by V(A).

b) S-denying of <A> is noted by S¬(A). S-denying of
<A> means some validations of <A> together with some in-
validations of <A> in the same space, or only invalidations
of <A> in the same space but in many ways.

Therefore, S¬(A) ⊆ V(A) ∪I(A) or S¬(A) ⊆ I(A)k, for k ≥ 2.

3 Examples

Let’s see some models of S-denying, three in a geometrical
space, and other three in mathematical analysis (calculus) and
topology.

3.1 The first S-denying model was constructed in 1969.
This section is a compilation of ideas from paper [1].

An axiom is said Smarandachely denied if the axiom behaves
in at least two different ways within the same space (i.e., val-
idated and invalided, or only invalidated but in multiple dis-
tinct ways).
A Smarandache Geometry [SG] is a geometry which has at
least one Smarandachely denied axiom.
Let’s note any point, line, plane, space, triangle, etc. in such
geometry by s-point, s-line, s-plane, s-space, s-triangle re-
spectively in order to distinguish them from other geometries.
Why these hybrid geometries? Because in reality there do not
exist isolated homogeneous spaces, but a mixture of them, in-
terconnected, and each having a different structure.
These geometries are becoming very important now since
they combine many spaces into one, because our world is not
formed by perfect homogeneous spaces as in pure mathemat-
ics, but by non-homogeneous spaces. Also, SG introduce the
degree of negation in geometry for the first time [for example
an axiom is denied 40% and accepted 60% of the space] that’s
why they can become revolutionary in science and it thanks to
the idea of partial denying/accepting of axioms/propositions
in a space (making multi-spaces, i.e. a space formed by com-
bination of many different other spaces), as in fuzzy logic the
degree of truth (40% false and 60% true).

They are starting to have applications in physics and engi-
neering because of dealing with non-homogeneous spaces.
The first model of S-denying and of SG was the following:
The axiom that through a point exterior to a given line there is
only one parallel passing through it [Euclid’s Fifth Postulate],
was S-denied by having in the same space: no parallel, one
parallel only, and many parallels.
In the Euclidean geometry, also called parabolic geometry,
the fifth Euclidean postulate that there is only one parallel to
a given line passing through an exterior point, is kept or vali-
dated.
In the Lobachevsky-Bolyai-Gauss geometry, called hyper-
bolic geometry, this fifth Euclidean postulate is invalidated in
the following way: there are infinitely many lines parallels to
a given line passing through an exterior point.
While in the Riemannian geometry, called elliptic geometry,
the fifth Euclidean postulate is also invalidated as follows:
there is no parallel to a given line passing through an exterior
point.
Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-
Gauss, and Riemannian geometries may be united altogether,
in the same space, by some SG’s. These last geometries can
be partially Euclidean and partially Non-Euclidean simulta-
neously.

3.2 Geometric Model (particular case of SG)

Suppose we have a rectangle ABCD.

Fig. 1.

In this model we define as:
Point = any point inside or on the sides of this rectangle;
Line = a segment of line that connects two points of opposite
sides of the rectangle;
Parallel lines = lines that do not have any common point (do
not intersect);
Concurrent lines = lines that have a common point.

Let’s take the line MN, where M lies on side AD and N on
side BC as in the above Fig. 1. Let P be a point on side BC,
and R a point on side AB.

Through P there are passing infinitely many parallels (PP1,
. . . , PPn, . . . ) to the line MN, but through R there is no par-
allel to the line MN (the lines RR1, . . . , RRn cut line MN).
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Therefore, the Fifth Postulate of Euclid (that though a point
exterior to a line, in a given plane, there is only one parallel
to that line) in S-denied on the space of the rectangle ABCD
since it is invalidated in two distinct ways.

3.3 Another Geometric Model (another particular case
of SG)

We change a little the Geometric Model 1 such that:

The rectangle ABCD is such that side AB is smaller than side
BC. And we define as line the arc of circle inside (and on the
borders) of ABCD, centered in the rectangle’s vertices A, B,
C, or D.

Fig. 2.

The axiom that: through two distinct points there exists
only one line that passes through is S-denied (in three differ-
ent ways):

a) Through the points A and B there is no passing line in
this model, since there is no arc of circle centered in A, B, C,
or D that passes through both points. See Fig. 2.

b) We construct the perpendicular EF ⊥ AC that passes
through the point of intersection of the diagonals AC and BD.
Through the points E and F there are two distinct lines the
dark green (left side) arc of circle centered in C since CE ≡
FC, and the light green (right side) arc of circle centered in
A since AE ≡ AF, and because the right triangles t COE,
t COF, t AOE, and t AOF are all four congruent, we get
CE ≡ FC ≡ AE ≡ AF.

c) Through the points G and H such that CG ≡ CH (their
lengths are equal) there is only one passing line (the dark
green arc of circle GH, centered in C) since AG , AH (their
lengths are different), and similarly BG , BH and DG , DH.

3.4 Example for the Axiom of Separation

The Axiom of Separation of Hausdorff is the following:

∀ x,y ∈ M ∃ N(x), N(y): N(x) ∩N(y) = ∅,
where N(x) is a neighborhood of x, and respectively N(y) is a
neighborhood of y.

We can S-deny this axiom on a space M in the following way:

a) ∃ x1, y1 ∈ M: ∃ N1 (x1), N1 (y1): N1 (x1) ∩ N1 (y1) = ∅
where N1 (x1) is a neighborhood of x1, and respectively N1
(y1) is a neighborhood of y1; [validated].

b) ∃ x2, y2 ∈ M: ∀ N2 (x2), N2 (y2): N2 (x2) ∩ N2 (y2) ,
∅; where N2 (x2) is a neighborhood of x2, and respectively N2
(y2) is a neighborhood of y2; [invalidated].

Therefore we have two categories of points in M: some points
that verify The Axiom of Separation of Hausdorff and other
points that do not verify it. So M becomes a partially separa-
ble and partially inseparable space, or we can see that M has
some degrees of separation.

3.5 Example for the Norm

If we remove one or more axioms (or properties) from the def-
inition of a notion <A> we get a pseudo-notion <pseudoA>.

For example, if we remove the third axiom (inequality of the
triangle) from the definition of the <norm> we get a
<pseudonorm>.

The axioms of a norm on a real or complex vectorial space V
over a field F, x 7→ ||.||, are the following:

a) ||x|| = 0⇔ x = 0.
b) ∀ x ∈ V, ∀ α ∈ F, ||α·x|| = |α| · ||x||.
c) ∀ x, y ∈ V, ||x + y|| ≤ ||x|| · ||y|| (inequality of the

triangle).

For example, a pseudo-norm on a real or complex vectorial
space V over a field F, x 7→p ||.||, may verify only the first two
above axioms of the norm.

A pseudo-norm is a particular case of an S-denied norm since
we may have vectorial spaces over some given scalar fields
where there are some vectors and scalars that satisfy the third
axiom [validation], but others that do not satisfy [invalida-
tion]; or for all vectors and scalars we may have either
||x + y|| = 5·||x||·||y|| or ||x + y|| = 6·||x||·||y||, so invalidation
(since we get ||x + y|| > ||x||·||y||) in two different ways.

Let’s consider the complex vectorial space

C = { a+b·i, where a, b ∈ R, i =
√−1 }

over the field of real numbers R.

If z = a+b·i ∈ C then its pseudo-norm is || z || =
√

a2 + b2.
This verifies the first two axioms of the norm, but does not
satisfy the third axiom of the norm since:

For x = 0 + b·i and y = a + 0·i we get:

||x + y|| = ||a + b · i|| =
√

a2 + b2 ≤ ||x||·||y||
= ||0 + b · i|| · ||a + 0 · i|| = |a · b|, or a2 + b2 ≤ a2 · b2.

But this is true for example when a = b ≥ √2 (validation), and

F. Smarandache. S-Denying a Theory 73



Volume 1 PROGRESS IN PHYSICS January, 2011

false if one of a or b is zero and the other is strictly positive
(invalidation).
Pseudo-norms are already in use in today’s scientific research,
because for some applications the norms are considered too
restrictive.

Similarly one can define a pseudo-manifold (relaxing some
properties of the manifold), etc.

3.6 Example in Topology

A topology O on a given set E is the ensemble of all parts of
E verifying the following properties:

a) E and the empty set ∅ belong to O .
b) Intersection of any two elements of O belongs to O too.
c) Union of any family of elements of O belongs to O too.

Let’s go backwards. Suppose we have a topology O1 on
a given set E1, and the second or third (or both) previous
axioms have been S-denied, resulting an S-denied topology
S ¬(O1) on the given set E1.

In general, we can go back and ”recover” (reconstruct) the
original topology O1 from S ¬(O1) by recurrence: if two ele-
ments belong to S ¬(O1) then we set these elements and their
intersection to belong to O1, and if a family of elements be-
long to S ¬(O1) then we set these family elements and their
union to belong to O1; and so on: we continue this recurrent
process until it does not bring any new element to O1.

Conclusion

Decidability changes in an S-denied theory, i.e. a defined
sentence in an S-denied theory can be partially deducible and
partially undeducible (we talk about degrees of deducibility
of a sentence in an S-denied theory).

Since in classical deducible research, a theory T of language
L is said complete if any sentence of L is decidable in T, we
can say that an S-denied theory is partially complete (or has
some degrees of completeness and degrees of incomplete-
ness).
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On the Quantum Mechanical State of the ∆++ Baryon
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The ∆++ and the Ω− baryons have been used as the original reason for the construction
of the Quantum Chromodynamics theory of Strong Interactions. The present analy-
sis relies on the multiconfiguration structure of states which are made of several Dirac
particles. It is shown that this property, together with the very strong spin-dependent
interactions of quarks provide an acceptable explanation for the states of these baryons
and remove the classical reason for the invention of color within Quantum Chromody-
namics. This explanation is supported by several examples that show a Quantum Chro-
modynamics’ inconsistency with experimental results. The same arguments provide an
explanation for the problem called the proton spin crisis.

1 Introduction

It is well known that writing an atomic state as a sum of
terms, each of which belongs to a specific configuration is
a useful tool for calculating electronic properties of the sys-
tem. This issue has already been recognized in the early days
of quantum mechanics [1]. For this purpose, mathematical
tools (called angular momentum algebra) have been devel-
oped mainly by Wigner and Racah [2]. Actual calculations
have been carried out since the early days of electronic com-
puters [3]. Many specific properties of atomic states have
been proven by these calculations. In particular, these cal-
culations have replaced guesses and conjectures concerning
the mathematical form of atomic states by evidence based on
a solid mathematical basis. In this work, a special emphasis
is given to the following issue: Contrary to a naive expec-
tation, even the ground state of a simple atom is written as
a sum of more than one configuration. Thus, the apparently
quite simple closed shell ground state of the two electron He
atom, having Jπ = 0+, disagrees with the naive expectation
where the two electrons are just in the 1s2 state. Indeed, other
configurations where individual electrons take higher angular
momentum states (like 1p2, 1d 2, etc.) have a non-negligible
part of the state’s description [3]. The multiconfiguration de-
scription of the ground state of the He atom proves that shell
model notation of state is far from being complete. Nota-
tion of this model can be regarded as an anchor configuration
defining the Jπ of the state. Therefore, all relevant config-
urations must have the same parity and their single-particle
angular momentum must be coupled to the same J.

This paper discusses some significant elements of this sci-
entific knowledge and explains its crucial role in a quantum
mechanical description of the states of the ∆++, the ∆− and the
Ω− baryons. In particular, it is proved that these baryons do
not require the introduction of new structures (like the S U(3)
color) into quantum mechanics. A by-product of this analysis
is the settlement of the “proton spin crisis” problem.

The paper is organized as follows. The second section
describes briefly some properties of angular momentum al-

gebra. It is proved in the third section that ordinary laws of
quantum mechanics explain why the states of the ∆++, ∆−

and Ω− baryons are consistent with the Pauli exclusion prin-
ciple. This outcome is used in the fourth section for show-
ing that QCD does not provide the right solution for hadronic
states. The problem called “proton spin crisis” is explained
in the fifth section. The last section contains concluding re-
marks.

2 Some Features of Angular Momentum Algebra

Consider the problem of a bound state of N Dirac particles.
(Baryonic states are extremely relativistic. Therefore, a rel-
ativistic formulation is adopted from the beginning.) This
system is described as an eigenfunction of the Hamiltonian.
Thus, the time variable is removed and one obtains a problem
of 3N spatial variables for each of the four components of a
Dirac wave function. It is shown here how angular momen-
tum algebra can be used for obtaining a dramatic simplifica-
tion of the problem.

The required solution is constructed as a sum of terms,
each of which depends on all the independent variables men-
tioned above. Now angular momentum is a good quantum
number of a closed system and parity is a good quantum num-
ber for systems whose state is determined by strong or elec-
tromagnetic interactions. Thus, one takes advantage of this
fact and uses only terms that have the required angular mo-
mentum and parity, denoted by Jπ. (Later, the lower case jπ

denotes properties of a bound spin-1/2 single particle.)
The next step is to write each term as a product of N sin-

gle particle Dirac functions, each of which has a well de-
fined angular momentum and parity. The upper and lower
parts of a Dirac function have opposite parity [4, see p. 53].
The angular coordinates of the two upper components of the
Dirac function have angular momentum l and they are cou-
pled with the spin to an overall angular momentum j = l ±
1/2 ( j > 0). The two lower components have angular mo-
mentum (l±1)≥ 0 and together with the spin, they are coupled
to the same j. The spatial angular momentum eigenfunctions
having an eignevalue l, make a set of (2l + 1) members de-
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noted by Ylm(θ, φ), where θ, φ denote the angular coordinates
and −l ≤ m ≤ l [2].

It is shown below how configurations can be used for de-
scribing a required state whose parity and overall spin are
known.

3 The ∆++ State

The purpose of this section is to describe how the state of
each of the four ∆ baryons can be constructed in a way that
abides by ordinary quantum mechanics of a system of three
fermions. Since the ∆++(1232) baryon has 3 valence quarks
of the u flavor, the isospin I = 3/2 of all four ∆ baryons is
fully symmetric. Therefore, the space-spin components of
the 3-particle terms must be antisymmetric. (An example of
relevant nuclear states is presented at the end of this section.)
Obviously, each of the 3-particle terms must have a total spin
J = 3/2 and an even parity. For writing down wave functions
of this kind, single particle wave functions having a definite
jπ and appropriate radial functions are used. A product of
n specific jπ functions is called a configuration and the total
wave function takes the form of a sum of terms, each of which
is associated with a configuration. Here n=3 and only even
parity configurations are used. Angular momentum algebra
is applied to the single particle wave functions and yields an
overall J = 3/2 state. In each configuration, every pair of the
∆++ u quarks must be coupled to an antisymmetric state. r j

denotes the radial coordinate of the jth quark.
Each of the A-D cases described below contains one con-

figuration and one or several antisymmetric 3-particle terms.
The radial functions of these examples are adapted to each
case.

Notation: fi(r j), gi(r j), hi(r j) and vi(r j) denote radial
functions of Dirac single particle 1/2+, 1/2−, 3/2− and 3/2+

states, respectively. The index i denotes the excitation level
of these functions. Each of these radial functions is a two-
component function, one for the upper 2-component spin and
the other for the lower 2-component spin that belong to a 4-
component Dirac spinor.

A. In the first example all three particles have the same jπ,

f0(r0) f1(r1) f2(r2) 1/2+ 1/2+ 1/2+. (1)

Here the spin part is fully symmetric and yields a total
spin of 3/2. The spatial state is fully antisymmetric. It
is obtained from the 6 permutations of the three orthog-
onal fi(r j) functions divided by

√
6. This configuration

is regarded as the anchor configuration of the state.
B. A different combination of ji = 1/2 can be used,

f0(r0)g0(r1)g1(r2) 1/2+ 1/2− 1/2−. (2)

Here, the two single particle 1/2− spin states are cou-
pled symmetrically to j=1 and they have two orthogo-
nal radial functions gi. The full expression can be anti-
symmetrized.

C. In this example, just one single particle is in an angular
excitation state,

f0(r0) f0(r1)v0(r2) 1/2+ 1/2+ 3/2+. (3)

Here we have two 1/2+ single particle functions hav-
ing the same non-excited radial function. These spins
are coupled antisymmetrically to a spin zero two parti-
cle state. These spins have the same non-excited radial
function. The third particle yields the total J = 3/2
state. The full expression can be antisymmetrized.

D. Here all the three single particle jπ states take different
values. Therefore, the radial functions are free to take
the lowest level,

f0(r0)g0(r1)h0(r2) 1/2+ 1/2− 3/2−. (4)

Due to the different single particle spins, the antisym-
metrization task of the spin coordinates can easily be
done. (The spins can be coupled to a total J = 3/2
state in two different ways. Hence, two different terms
belong to this configuration.)

The examples A-D show how a Hilbert space basis for
the Jπ = 3/2+ state can be constructed for three identical
fermions. Obviously, more configurations can be added and
the problem can be solved by ordinary spectroscopic meth-
ods. It should be noted that unlike atomic states, the very
strong spin dependent interactions of hadrons are expected to
yield a higher configuration mixture.

It is interesting to note that a similar situation is found in
nuclear physics. Like the u,d quarks, the proton and the neu-
tron are spin-1/2 fermions belonging to an isospin doublet.
This is the basis for the common symmetry of isospin states
described below. Table 1 shows energy levels of each of the
four A=31 nuclei examined [5, see p. 357]. Each of these
nuclei has 14 protons and 14 neutrons that occupy a set of in-
ner closed shells and three nucleons outside these shells. (The
closed shells are 1/2+, 3/2−, 1/2−, and 5/2+. The next shells
are the 1/2+ that can take 2 nucleons of each type and the

Table 1: Nuclear A=31 Isospin State Energy levels (MeV)

Jπ I (T)a 31Si 31P 31S 31Clb

1/2+ 1/2 — 0 0 —

3/2+ 3/2 0 6.38 6.27 0

1/2+ 3/2 0.75 7.14 7.00 —

a I,T denote isospin in particle physics
and nuclear physics, respectively.

b The 31Cl data is taken from [6].
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3/2+ shell that is higher than the 1/2+ shell. [7, See p. 245].
The state is characterized by these three nucleons that define
the values of total spin, parity and isospin. The first line of
table 1 contains data of the ground states of the I = 1/2 31P
and 31S nuclei. The second line contains data of the lowest
level of the I = 3/2 state of the four nuclei. The quite small
energy difference between the 31P and 31S excited states illus-
trates the quite good accuracy of the isospin approximation.
The third line of the table shows the first excited I = 3/2
state of each of the four nuclei. The gap between states of
the third and the second lines is nearly, but not precisely, the
same. It provides another example of the relative goodness of
the isospin approximation.

The nuclear states described in the first and the second
lines of table 1 are relevant to the nucleons and the ∆ baryons
of particle physics. Indeed, the states of both systems are
characterized by three fermions that may belong to two differ-
ent kinds and where isospin is a useful quantum number. Here
the neutron and the proton correspond to the ground state of
31P and 31S, respectively, whereas energy states of the sec-
ond line of the table correspond to the four ∆ baryons. Every
nuclear energy state of table 1 has a corresponding baryon
that has the same spin, parity, isospin and the Iz isospin com-
ponent. Obviously, the dynamics of the nuclear energy lev-
els is completely different from hadronic dynamics. Indeed,
the nucleons are composite spin-1/2 particles whose state is
determined by the strong nuclear force. This is a residual
force characterized by a rapidly decaying attractive force at
the vicinity of the nucleon size and a strong repulsive force
at a smaller distance [7, see p. 97]. On the other hand, the
baryonic quarks are elementary pointlike spin-1/2 particles
whose dynamics differs completely from that of the strong
nuclear force. However, both systems are made of fermions
and the spin, parity and isospin analogy demonstrates that the
two systems have the same internal symmetry.

The following property of the second line of table 1 is in-
teresting and important. Thus, all nuclear states of this line
have the same symmetric I = 3/2 state. Hence, due to the
Pauli exclusion principle, all of them have the same antisym-
metric space-spin state. Now, for the 31P and 31S nuclei, this
state is an excited state because they have lower states having
I = 1/2. However, the 31Si and 31Cl nuclei have no I = 1/2
state, because their Iz = 3/2. Hence, the second line of table
1 shows the ground state of the Iz = 3/2 nuclei. It will be
shown later that this conclusion is crucial for having a good
understanding of an analogous quark system. Therefore it is
called Conclusion A.

Now, the 31Si has three neutrons outside the 28 nucleon
closed shells and the 31Cl has three protons outside these
shells. Hence, the outer shell of these two nuclear states
consists of three identical fermions which make the required
ground state. Relying on this nuclear physics example, one
deduces that the Pauli exclusion principle is completely con-
sistent with three identical fermions in a Jπ = 3/2+ and I =

3/2 ground state. The data of table 1 are well known in nu-
clear physics.

A last remark should be made before the end of this sec-
tion. As explained in the next section, everything said above
on the isospin quartet Jπ = 3/2+ states of the three ud quark
flavor that make the four ∆ baryons, holds for the full decu-
plet of the three uds quarks, where, for example, the Ω− state
is determined by the three sss quarks. In particular, like the
∆++ and the ∆−, theΩ− baryon is the ground state of the three
sss quarks and each of the baryons of the decuplet has an an-
tisymmetric space-spin wave function.

4 Discussion

It is mentioned above that spin-dependent interactions are
much stronger in hadronic states than in electronic states.
This point is illustrated by a comparison of the singlet and
triplet states of the positronium [8] with the π0 and ρ0 mesons
[9]. The data are given in table 2. The fourth column of the
table shows energy difference between each of the Jπ = 1−

states and the corresponding Jπ = 0− state. The last column
shows the ratio between this difference and the energy of the
Jπ = 0− state.

Both electrons and quarks are spin-1/2 pointlike particles.
The values of the last column demonstrate a clear difference
between electrically charged electrons and quarks that partic-
ipate in strong interactions. Indeed, the split between the two
electronic states is very small. This is the reason for the no-
tation of fine structure for the spin dependent split between
electronic states of the same excitation level [10, see p. 225].
Table 2 shows that the corresponding situation in quark sys-
tems is larger by more than 9 orders of magnitude. Hence,
spin dependent interactions in hadrons are very strong and
make an important contribution to the state’s energy.

Now, electronic systems in atoms satisfy the Hund’s rules
[10, see p. 226]. This rule says that in a configuration, the
state having the highest spin is bound stronger. Using this
rule and the very strong spin-dependent hadronic interaction
which is demonstrated in the last column of table 2, one con-

Table 2: Positronium and meson energy (MeV)

Particle Jπ Mass M(1−) −M(0−) ∆M/M(0−)

e+e− 0− ∼ 1.022 — —

e+e− 1− ∼ 1.022 8.4×10−10 8.2×10−10

π0 0− 135 — —

ρ0 1− 775 640 4.7
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cludes that the anchor configuration A of the previous section
really describes a very strongly bound state of the∆++ baryon.
In particular, the isospin doublet Jπ = 1/2+ state of the neu-
tron and the proton correspond to the same Jπ = 1/2+ of the
ground state of the A = 31 nuclei displayed in the first line of
table 1. The isospin quartet of the ∆ baryons correspond to
the isospin quartet of the four nuclear states displayed in the
second line of table 1.

Here the significance of Conclusion A of the previous sec-
tion becomes clear. Indeed, an analogy is found between the
two nuclear states of the I = 3/2 and Iz = ±1/2, namely the
31P and the 31S are excited states of these nuclei whereas the
I = 3/2 and Iz = ±3/2, namely the 31Si and the 31Cl states are
the ground states of these nuclei. The same pattern is found in
the particle physics analogue. The ∆+ and the ∆0 are excited
states of the proton and the neutron, respectively. This state-
ment relies on the fact that both the proton and the ∆+ states
are determined by the uud quarks. Similarly, the neutron and
the ∆0 states are determined by the udd quarks. On the other
hand, in the case of the 31Si and the 31Cl nuclei, the I = 3/2
and Jπ = 3/2+ states are the ground states of these nuclei.
The same property holds for the ∆++ and the ∆−, which are
the ground states of the uuu and ddd quark systems, respec-
tively.

The relationship between members of the lowest energy
Jπ = 1/2+ baryonic octet and members of the Jπ = 3/2+

baryonic decuplet can be described as follows. There are
7 members of the decuplet that are excited states of corre-
sponding members of the octet. Members of each pair are
made of the same specific combination of the uds quarks. The
∆++, ∆− and Ω− baryons have no counterpart in the octet.
Thus, in spite of being a part of the decuplet whose members
have space-spin antisymmetric states, these three baryons are
the ground state of the uuu, ddd and sss quarks, respectively.

This discussion can be concluded by the following state-
ments: The well known laws of quantum mechanics of identi-
cal fermions provide an interpretation of the ∆++, ∆− andΩ−

baryons, whose state is characterized by three uuu, ddd and
sss quarks, respectively. There is no need for any fundamen-
tal change in physics in general and for the invention of color
in particular. Like all members of the decuplet, the states of
these baryons abide by the Pauli exclusion principle. Hence,
one wonders why particle physics textbooks regard precisely
the same situation of the four ∆ baryons as a fiasco of the
Fermi-Dirac statistics [11, see p. 5].

The historic reasons for the QCD creation are the states
of the ∆++ and theΩ− baryons. These baryons, each of which
has three quarks of the same flavor, are regarded as the classi-
cal reason for the QCD invention [12, see p. 338]. The anal-
ysis presented above shows that this argument does not hold
water. For this reason, one wonders whether QCD is really a
correct theory. This point is supported by the following exam-
ples which show that QCD is inconsistent with experimental
results.

1. The interaction of hard real photons with a proton is
practically the same as its interaction with a neutron
[13]. This effect cannot be explained by the photon
interaction with the nucleons’ charge constituents, be-
cause these constituents take different values for the
proton and the neutron. The attempt to recruit Vector
Meson Dominance (VMD) for providing an explana-
tion is unacceptable. Indeed, Wigner’s analysis of the
irreducible representations of the Poincare group [14]
and [15, pp. 44–53] proves that VMD, which mixes a
massive meson with a massless photon, is incompatible
with Special relativity. Other reasons of this kind also
have been published [16].

2. QCD experts have predicted the existence of strongly
bound pentaquarks [17, 18]. In spite of a long search,
the existence of pentaquarks has not been confirmed
[19]. By contrast, correct physical ideas used for pre-
dicting genuine particles, like the positron and the Ω−,
have been validated by experiment after very few years
(and with a technology which is very very poor with
respect to that used in contemporary facilities).

3. QCD experts have predicted the existence of chunks of
Strange Quark Matter (SQM) [20]. In spite of a long
search, the existence of SQM has not been confirmed
[21].

4. QCD experts have predicted the existence of glueballs
[22]. In spite of a long search, the existence of glueballs
has not been confirmed [9].

5. For a very high energy, the proton-proton (pp) total and
elastic cross section increase with collision energy [9]
and the ratio of the elastic cross section to the total
cross section is nearly a constant which equals about
1/6. This relationship between the pp cross sections
is completely different from the high energy electron-
proton (ep) scattering data where the total cross section
decreases for an increasing collision energy and the
elastic cross section’s portion becomes negligible [23].
This effect proves that the proton contains a quite solid
component that can take the heavy blow of the high en-
ergy collision and keep the entire proton intact. This
object cannot be a quark, because in energetic ep scat-
tering, the electron strikes a single quark and the rel-
ative part of elastic events is negligible. QCD has no
explanation for the pp cross section data [24].

5 The Proton Spin Crisis

Another problem which is settled by the physical evidence
described above is called the proton spin crisis [25,26]. Here
polarized muons have been scattered by polarized protons.
The results prove that the instantaneous quark spin sums up
to a very small portion of the entire proton’s spin. This out-
come, which has been regarded as a surprise [26], was later
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supported by other experiments. The following lines contain
a straightforward explanation of this phenomenon.

The four configurations A-D that are a part of the Hilbert
space of the ∆++ baryon are used as an illustration of the prob-
lem. Thus, in configuration A, all single particle spins are
parallel to the overall spin. The situation in configuration B is
different. Here the single particle function jπ = 1/2− is a cou-
pling of l = 1 and s = 1/2. This single particle coupling has
two terms whose numerical values are called Clebsh-Gordan
coefficients [2]. In one of the coupling terms, the spin is par-
allel to the overall single particle angular momentum and in
the other term it is antiparallel to it. This is an example of an
internal partial cancellation of the contribution of the single
particle spin to the overall angular momentum. (As a matter
of fact, this argument also holds for the lower pair of com-
ponents of each of Dirac spinor of configuration A. Here the
lower pair of the high relativistic system is quite large and it is
made of l = 1 s = 1/2 coupled to J = 1/2.) In configuration
C one finds the same effect. Spins of the first and the second
particles are coupled to j01 = 0 and cancel each other. In
the third particle the l = 2 spatial angular momentum is cou-
pled with the spin to j = 3/2. Here one also finds two terms
and the contribution of their single-particle spin-1/2 partially
cancels. The same conclusion is obtained from an analogous
analysis of the spins of configuration D.

It should be pointed out that the very large hadronic spin-
dependent interaction which is demonstrated by the data of
table 2, proves that in hadronic states, one needs many con-
figurations in order to construct a useful basis for the Hilbert
space of a baryon. It follows that in hadrons the internal sin-
gle particle cancellation seen in configurations of the previous
section, is expected to be quite large.

Obviously, the configuration structure of the proton relies
on the same principles. Here too, many configurations, each
of which has the quantum numbers Jπ = 1/2+, are needed for
the Hilbert space. Thus, a large single particle spin cancella-
tion is obtained. Therefore, the result of [25] is obvious. It
should make neither a crisis nor a surprise.

On top of what is said above, the following argument in-
dicates that the situation is more complicated and the number
of meaningful configurations is even larger. Indeed, it has
been shown that beside the three valence quarks, the proton
contains additional quark-antiquark pair(s) whose probabil-
ity is about 1/2 pair [23, see p. 282]. It is very reasonable to
assume that all baryons share this property. The additional
quark-antiquark pair(s) increase the number of useful config-
urations and of their effect on the ∆++ ground state and on the
proton spin as well.

6 Concluding Remarks

Relying on the analysis of the apparently quite simple ground
state of the He atomic structure [3], it is argued here that
many configurations are needed for describing a quantum me-

chanical state of more than one Dirac particle. This effect is
much stronger in baryons. where, as shown in table 2, spin-
dependent strong interactions are very strong indeed. This
effect and the multiconfiguration basis of hadronic states do
explain the isospin quartet of the J = 3/2+ ∆ baryons. Here
the ∆0 and the ∆+ are excited states of the neutron and the pro-
ton, respectively whereas their isospin counterparts, the ∆++

and the ∆− are ground states of the uuu and the ddd quark sys-
tems, respectively. Analogous conclusions hold for all mem-
bers of the J = 3/2+ baryonic decuplet that includes the Ω−

baryon. It is also shown that states of four A = 31 nuclei
are analogous to the nucleons and the ∆s isospin quartet (see
table 1).

The discussion presented above shows that there is no
need for introducing a new degree of freedom (like color) in
order to settle the states of ∆++, ∆− and Ω− baryons with the
Pauli exclusion principle. Hence, there is no reason for the
QCD invention. Several inconsistencies of QCD with experi-
mental data support this conclusion.

Another aspect of recognizing implications of the multi-
configuration structure of hadrons is that the proton spin crisis
experiment, which shows that instantaneous spins of quarks
make a little contribution to the proton’s spin [25], creates
neither a surprise nor a crisis.
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We present a new model for solids which is based on the stimulated vibration of inde-
pendent neutral Fermi-atoms, representing independent harmonic oscillators with natu-
ral frequencies, which are excited by actions of the longitudinal and transverse elastic
waves. Due to application of the principle of elastic wave-particle duality, we predict
that the lattice of a solid consists of two type Sound Boson-Particles with spin 1 with fi-
nite masses. Namely, these lattice Boson-Particles excite the longitudinal and transverse
phonons with spin 1. In this letter, we estimate the masses of Sound Boson-Particles
which are around 500 times smaller than the atom mass.

1 Introduction

The original theory proposed by Einstein in 1907 was of great
historical relevance [1]. In the Einstein model, each atom os-
cillates relatively to its neighbors in the lattice which execute
harmonic motions around fixed positions, the knots of the lat-
tice. He treated the thermal property of the vibration of a lat-
tice of N atoms as a 3N harmonic independent oscillator by
identical own frequency Ω0 which was quantized by appli-
cation of the prescription developed by Plank in connection
with the theory of Black Body radiation. The Einstein model
could obtain the Dulong and Petit prediction at high temper-
ature but could not reproduce an adequate representation of
the the lattice at low temperatures. In 1912, Debye proposed
to consider the model of the solid [2], by suggestion that the
frequencies of the 3N harmonic independent oscillators are
not equal as it was suggested by the Einstein model. In ad-
dition to his suggestion, the acoustic spectrum of solid may
be treated as if the solid represented a homogeneous medium,
except that the total number of independent elastic waves is
cut off at 3N, to agree with the number of degrees of freedom
of N atoms. In this respect, Debye stated that one longitudinal
and two transverse waves are excited in solid. These veloc-
ities of sound cannot be observed in a solid at frequencies
above the cut-off frequency. Also, he suggested that phonon
is a spinless. Thus, the Debye model correctly showed that
the heat capacity is proportional to the T 3 law at low temper-
atures. At high temperatures, he obtained the Dulong-Petit
prediction compatible to experimental results.

In this letter, we propose a new model for solids which
consists of neutral Fermi-atoms, fixed in the knots of lattice.
In turn, within the formalism of Debye, we may predict that
lattice represents as the Bose-gas of Sound-Particles with fi-
nite masses ml and mt, corresponding to a longitudinal and a
transverse elastic field. In this sense, the lattice is considered
as a new substance of matter consisting of Sound-Particles,
which excite the one longitudinal and one transverse elastic
waves (this approach is differ from Debye one). These waves
act on the Fermi-atoms which are vibrating with the natural

frequencies Ωl and Ωt. Thus, there are stimulated vibrations
of the Fermi-atoms by under action of longitudinal and trans-
verse phonons with spin 1. In this context, we introduce a
new principle of elastic wave-particle duality, which allows
us to build the lattice model. The given model leads to the
same results as presented by Debye’s theory.

2 Analysis

As we suggest, the transfer of heat from one part of the body
to another occurs through the lattice. This process is very
slow. Therefore, we can regard any part of the body as ther-
mally insulated, and there occur adiabatic deformations. In
this respect, the equation of motion for an elastic continuum
medium [3] represents as

%~̈u(~r, t) = c2
t ∇2~u(~r, t) + (c2

l − c2
t ) grad · div ~u(~r, t) (1)

where ~u = ~u(~r, t) is the vector displacement of any particle
in solid; cl and ct are the velocities of a longitudinal and a
transverse ultrasonic wave, respectively.

We shall begin by discussing a plane longitudinal elas-
tic wave with condition curl~u(~r, t) = 0 and a plane trans-
verse elastic wave with condition div~u(~r, t) = 0 in an infinite
isotropic medium. In this respect, in direction of vector ~r
can be propagated two transverse and one longitudinal elastic
waves. The vector displacement ~u(~r, t) is the sum of the vec-
tor displacements of a longitudinal ul(~r, t) and of a transverse
ultrasonic wave ut(~r, t):

~u(~r, t) = ~ul(~r, t) + ~ut(~r, t) (2)

where ~ul(~r, t) and ~ut(~r, t) are perpendicular with each other or
~ul(~r, t) · ~ut(~r, t) = 0.

In turn, the equations of motion for a longitudinal and a
transverse elastic wave take the form of the wave-equations:

∇2~ul(~r, t) −
1
c2

l

∂2~ul(~r, t)
∂t2 = 0 (3)

∇2~ut(~r, t) −
1
c2

t

∂2~ul(~r, t)
∂t2 = 0. (4)
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It is well known, in quantum mechanics, a matter wave is
determined by electromagnetic wave-particle duality or de
Broglie wave of matter [4]. We argue that in an analogous
manner, we may apply the elastic wave-particle duality. This
reasoning allows us to present a model of elastic field as the
Bose-gas consisting of the Sound Bose-particles with spin 1
and non-zero rest masses, which are interacting with each
other. In this respect, we may express the vector displace-
ment of a longitudinal ultrasonic wave ul(~r, t) via the second
quantization vector wave functions of one Sound Boson of
the longitudinal wave. In analogy manner, vector displace-
ment of a transverse ultrasonic waves ut(~r, t) is expressed via
the second quantization vector wave functions of one Sound
Boson of the transverse wave:

~ul(~r, t) = ul

(
φ(~r, t) + φ+(~r, t)

)
(5)

and

~ut(~r, t) = ut

(
ψ(~r, t) + ψ+(~r, t)

)
(6)

where ul and ut are, respectively, the norm coefficients for
longitudinal and transverse waves; ~φ(~r, t) and ~φ+(~r, t) are, re-
spectively, the second quantization wave vector functions for
“creation” and “annihilation” of one Sound-Particle of the
longitudinal wave, in point of coordinate ~r and time t whose
direction ~l is directed toward to wave vector ~k; ~ψ(~r, t) and
~ψ+(~r, t) are, respectively, the second quantization wave vec-
tor functions for “creation” and “annihilation” of one Sound-
Particle of the transverse wave, in point of coordinate ~r and
time t, whose direction ~t is perpendicular to the wave vector
~k:

~φ(~r, t) =
1
√

V

∑
~k,σ

~a~k,σei(~k~r−kclt) (7)

~φ+(~r, t) =
1
√

V

∑
~k,σ

~a+~k,σe−i(~k~r−kclt) (8)

and
~ψ(~r, t) =

1
√

V

∑
~k,σ

~b~k,σei(~k~r+−kct t) (9)

~ψ+(~r, t) =
1
√

V

∑
~k,σ

~b+~k,σe−i(~k~r−kct t) (10)

with condition∫
φ+(~r, σ)φ(~r, σ)dV +

∫
ψ+(~r, σ)ψ(~r, σ)dV =

= no +
∑
~k,0,σ

â+~k,σâ~k,σ +
∑
~k,0,σ

b̂+~k,σb̂~k,σ = n̂
(11)

where ~a+
~k,σ

and ~a~k,σ are, respectively, the Bose vector-oper-
ators of creation and annihilation for one free longitudinal

Sound Particle with spin 1, described by a vector ~k whose di-
rection coincides with the direction~l of the longitudinal wave;
~b+
~k,σ

and ~b~k,σ are, respectively, the Bose vector-operators of
creation and annihilation for one free transverse Sound Parti-
cles with spin 1, described by a vector ~k which is perpendic-
ular to the direction ~t of the transverse wave; n̂ is the operator
of total number of the Sound Particles; n̂0 = n0,l + n0,t is the
total number of Sound Particles in the condensate level with
wave vector ~k = 0 which consists of a number of Sound Par-
ticles n0,l of the longitudinal wave and a number of Sound
Particles n0,t of the transverse wave.

The energies of longitudinal ~
2k2

2ml
and transverse ~

2k2

2mt
free

Sound Particles have the masses of Sound Particles ml and
mt and the value of its spin z-component σ = 0;±1. In this
respect, the vector-operators ~a+

~k,σ
, ~a~k,σ and ~b+

~k,σ
, ~b~k,σ satisfy

the Bose commutation relations as:[
â~k,σ, â

+
~k′ ,σ′

]
= δ~k, ~k′ · δσ,σ′

[â~k,σ, â~k′ ,σ′ ] = 0

[â+~k,σ, â
+
~k′ ,σ′

] = 0

and [
b̂~k,σ, b̂

+
~k′ ,σ′

]
= δ~k, ~k′ · δσ,σ′

[b̂~k,σ, b̂~k′ ,σ′ ] = 0

[b̂+~k,σ, b̂
+
~k′ ,σ′

] = 0

Thus, as we see, the vector displacements of a longitudi-
nal ~ul and of a transverse ~ut ultrasonic wave satisfy the wave-
equations of (3) and (4) and have the forms:

~ul(~r, t) = ~u0,l +
ul√
V

∑
~k,0,σ

(
~a~k,σei(~k~r−kclt) + ~a+~k,σe−i(~k~r−kclt)

)
(12)

and

~ut(~r, t) = ~u0,t +
ut√
V

∑
~k,0,σ

(
~b~k,σei(~k~r−kct t) +~b+~k,σe−i(~k~r−kct t)

)
. (13)

While investigating superfluid liquid, Bogoliubov [5] sepa-
rated the atoms of helium in the condensate from those atoms,
filling states above the condensate. In an analogous manner,
we may consider the vector operators â0 = ~l

√
n0,l, b̂0 = ~t

√
n0,t

and â+0 = ~l
√

n0,l, b̂+0 = ~t
√

n0,t as c-numbers (where ~l and ~t are
the unit vectors in the direction of the longitudinal and trans-
verse elastic fields, respectively, and also ~l · ~t = 0) within the
approximation of a macroscopic number of Sound Particles in
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the condensate n0,l � 1 and n0,t � 1. This assumptions lead
to a broken Bose-symmetry law for Sound Particles of longi-
tudinal and transverse waves in the condensate. In fact, we
may state that if a number of Sound Particles of longitudinal
and transverse waves fills a condensate level with the wave
vector ~k = 0, then they reproduce the constant displacements
~u0,l =

2ul~e
√

n0,l√
V

and ~u0,t =
2ut~e
√

n0,t√
V

.
In this context, we may emphasize that the Bose vec-

tor operators ~a+
~k,σ

, ~a~k,σ and ~b+
~k,σ

and ~b~k,σ communicate with
each other because the vector displacements of a longitudinal
~ul(~r, t) and a transverse ultrasonic wave ~ut(~r, t) are indepen-
dent, and in turn, satisfy to the Bose commutation relation
[~ul(~r, t), ~ut(~r, t)] = 0.

Now, we note that quantization of elastic field means that
this field operator does not commute with its momentum den-
sity. Taking the commutators gives[

~ul(~r, t), ~pl(~r
′
, t)

]
= i~δ3

~r−~r′ (14)

and [
~ut(~r, t), ~pt(~r

′
, t)

]
= i~δ3

~r−~r′ (15)

where the momentums of the longitudinal and transverse
waves are defined as

~pl(~r, t) = ρl(~r)
∂~ul(~r, t)
∂t

(16)

and

~pt(~r, t) = ρt(~r)
∂~ut(~r, t)
∂t

(17)

where ρl(~r) and ρt(~r) are, respectively, the mass densities of
longitudinal and transverse Sound Particles in the coordinate
space, which are presented by the equations

ρl(~r) = ρ0,l +
∑
~k,0

ρl(~k)ei~k~r (18)

and
ρt(~r) = ρ0,t +

∑
~k,0

ρt(~k)ei~k~r. (19)

The total mass density ρ(~r) is

ρ(~r) = ρ0 +
∑
~k,0

ρl(~k)ei~k~r +
∑
~k,0

ρt(~k)ei~k~r (20)

where ρl(~k) and ρt(~k) are, respectively, the fluctuations of the
mass densities of the longitudinal and transverse Sound Par-
ticles which represent as the symmetrical function from wave
vector ~k or ρl(~k) = ρl(−~k); ρt(~k) = ρt(−~k); ρ0 = ρ0,l + ρ0,t is
the equilibrium density of Sound Particles.

Applying (12) and (13) to (16) and (17), and taking (18)
and (19), we get

~pl(~r, t) = − iclul√
V

∑
~k′

∑
~k,σ kρl(~k

′
)
(
~a~k,σe−ikclt−

− ~a+−~k,σeikclt
)
ei(~k+~k

′
)~r

(21)

~pt(~r, t) = − iclut√
V

∑
~k′

∑
~k,σ ρt(~k

′
)k

(
~b~k,σe−ikclt−

− ~b+−~k,σeikclt
)
ei(~k+~k

′
)~r

(22)

Application of (12), (21) and (13), (22) to (14) and (15), and
taking the Bose commutation relations presented above, we
obtain [

~ul(~r, t), ~pl(~r
′
, t)

]
=

2iu2
l cl

V

∑
~k

kρl(~k)ei~k(~r−~r′ ) (23)

and [
~ut(~r, t), ~pt(~r

′
, t)

]
=

2iu2
t ct

V

∑
~k

kρt(~k)ei~k(~r−~r′ ) (24)

The right sides of Eqs. (14) and (23) as well as Eqs. (15) and
(24) coincide when

ρl(~k) =
~

2ku2
l cl

(25)

and
ρt(~k) =

~

2ku2
t ct

(26)

by using
1
V

∑
~k

ei~k(~r−~r′ ) = δ3
~r−~r′

3 Sound-Particles and Phonons

The Hamiltonian operator Ĥ of the system, consisting of the
vibrated Fermi-atoms with mass M, is represented by the fol-
lowing form

Ĥ = Ĥl + Ĥt (27)

where

Ĥl =
MN
2V

∫ (
∂~ul

∂t

)2

dV +
NMΩ2

l

2V

∫
(~ul)2dV (28)

and

Ĥt =
MN
2V

∫ (
∂~ut

∂t

)2

dV +
NMΩ2

t

2V

∫
(~ut)2dV (29)

with Ωl and Ωt which are, respectively, the natural frequen-
cies of the atom by action of longitudinal and transverse elas-
tic waves.
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To find the Hamiltonian operator Ĥ of the system, we use
the framework of Dirac [6] for the quantization of electro-
magnetic field:

∂~ul(~r, t)
∂t

= − iclul√
V

∑
~k,σ

k
(
~a~k,σe−ikclt − ~a+−~k,σeikclt

)
ei~k~r (30)

and

∂~ut(~r, t)
∂t

= − ictut√
V

∑
~k,σ

k
(
~b~k,σe−ikct t − ~b+−~k,σeikct t

)
ei~k~r (31)

which by substituting into (28) and (29) using (12) and (13),
we obtain the reduced form for the Hamiltonian operators Ĥl

and Ĥt:

Ĥl =
∑
~k,σ

[(
MNu2

l c2
l k2

V +
MNu2

l Ω
2
l

V

)
~a+
~k,σ

a~k,σ−(
MNu2

l c2
l k2

V
−

MNu2
lΩ

2
l

V

)(
~a−~k,σ~a~k,σ + ~a

+
~k,σ
~a+−~k,σ

)] (32)

and

Ĥt =
∑
~k,σ

[(
MNu2

t c2
t k2

V +
MNu2

t Ω
2
t

V

)
~a+
~k,σ

a~k,σ−(
MNu2

t c2
t k2

V
−

MNu2
lΩ

2
t

V

)(
~a−~k,σ~a~k,σ + ~a

+
~k,σ
~a+−~k,σ

)] (33)

where ul and ut are defined by the first term in right side of
(32) and (33) which represent as the kinetic energies of lon-
gitudinal Sound Particle ~

2k2

2ml
and transverse Sound Particles

~2k2

2mt
. Therefore, ul and ul are found, if we suggest:

MNu2
l c2

l k2

V
=
~2k2

2ml
(34)

and
MNu2

t c2
t k2

V
=
~2k2

2mt
(35)

which in turn determine

ul =
~

cl
√

2mlρ

and
ut =

~

ct
√

2mtρ

where ρ = MN
V is the density of solid.

Ĥl =
∑
~k,σ

[(
~2k2

2ml
+
~2Ω2

l

2mlc2
l

)
~a+
~k,σ

a~k,σ+

U~k,l

2

(
~a−~k,σ~a~k,σ + ~a

+
~k,σ
~a+−~k,σ

)] (36)

and

Ĥt =
∑
~k

[(
~2k2

2m +
~2Ω2

t

2mtc2
t

)
~b+
~k,σ

b~k,σ+

U~k,t

2

(
~b−~k,σ~b~k,σ + ~b

+
~k,σ
~b+−~k,σ

)] (37)

U~k,l and U~k,t are the interaction potentials between identical
Sound Particles.

In analogous manner, as it was done in letter [7] regarding
the quantization of the electromagnetic field, the boundary
wave numbers kl =

Ωl
cl

for the longitudinal elastic field and
kt =

Ωt
ct

for the transverse one are determined by suggestion
that identical Sound Particles interact with each other by the
repulsive potentials U~k,l and U~k,t in wave vector space

U~k,l = −
~2k2

2ml
+
~2Ω2

l

2mlc2
l

> 0

and

U~k,t = −
~2k2

2mt
+
~2Ω2

t

2mtc2
t
> 0

As results, there are two conditions for wave numbers of lon-
gitudinal k < kl and transverse k < kt Sound Particles which
are provided by property of the model of hard spheres [8].
Indeed, there is a request of presence of repulsive potential
interaction between identical kind of particles (recall S-wave
repulsive pseudopotential interaction between atoms in the
superfluid liquid 4He in the model of hard spheres [8]).

On the other hand, it is well known that at absolute zero
T = 0, the Fermi atoms fill the Fermi sphere in momentum
space. As it is known, the total numbers of the Fermi atoms
with opposite spins are the same, therefore, the Fermi wave
number k f is determined by a condition:

V
2π2

∫ k f

0
k2dk =

N
2

(38)

where N is the total number of Fermi-atoms in the solid. This
reasoning together with the model of hard spheres claims the
important condition as introduction the boundary wave num-

ber k f =

(
3π2N

V

) 1
3

coinciding with kl and kt. Thus we claim

that all Fermi atoms had one natural wavelength

λ0 =
2π
k f
=

2π
kl
=

2π
kt

(39)

This approach is a similar to the Einstein model of solid
where he suggested that all atoms have the same natural fre-
quencies.

Now, to evaluate of the energy levels of the operator Ĥl

(36) and Ĥt (37) in diagonal form, we use a new transforma-
tion of the vector-Bose-operators presented in [6]:

~a~k,σ =
~c~k,σ + L~k~c

+

−~k,σ√
1 − L2

~k

(40)
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and

~b~k,σ =
~d~k,σ + M~k

~d+
−~k,σ√

1 − M2
~k

(41)

where L~k and M~k are, respectively, the real symmetrical func-
tions of a wave vector ~k. Consequently:

Ĥl =
∑

k<k f ,σ

ε~k,l~c
+
~k,σ
~c~k,σ (42)

and
Ĥt =

∑
k<k f ,σ

ε~k,t
~d+~k,σ

~d~k,σ. (43)

Hence, we infer that the Bose-operators ~c+
~k,σ

, ~c~k,σ and ~d+
~k,σ

,
~d~k,σ are, respectively, the vector of ”creation” and the vec-
tor of ”annihilation” operators of longitudinal and transverse
phonons with spin 1 and having the energies:

ε~k,l =

√(
~2k2

2ml
+
~2Ω2

l

2mlc2
l

)2

−
(
~2k2

2ml
−
~2Ω2

l

2mlc2
l

)2

= ~kcl (44)

and

ε~k,t =

√(
~2k2

2mt
+
~2Ω2

t

2mtc2
t

)2

−
(
~2k2

2mt
−
~2Ω2

l

2mtc2
t

)2

= ~kct (45)

where the mass of longitudinal Sound Particle equals to

ml =
~Ωl

c2
l

(46)

but the mass of transverse Sound Particle is

mt =
~Ωt

c2
t
. (47)

Thus, we may state that there are two different Sound Parti-
cles with masses ml and mt which correspond to the longitu-
dinal and transverse waves.

4 Thermodynamic property of solid

Now, we demonstrate that the herein presented theory leads
to same results which were obtained by Debye in his the-
ory investigating the thermodynamic properties of solids. So
that, at the statistical equilibrium, the average energy of solid
equals to

H =
∑

k<k f ,σ

ε~k,l~c
+
~k,σ
~c~k,σ +

∑
k<k f ,σ

ε~k,t
~d+
~k,σ
~d~k,σ (48)

where ĉ+
~k,σ

ĉ~k,σ and d̂+
~k,σ

d̂~k,σ are, respectively, the average num-

ber of phonons with the wave vector ~k corresponding to the
longitudinal and transverse fields at temperature T :

ĉ+
~k,σ

ĉ~k,σ =
1

e
ε~k,l
kT − 1

and
d̂+
~k,σ

d̂~k,σ =
1

e
ε~k,t
kT − 1

.

Thus, at thermodynamic limit, the average energy of solid
may rewritten down as

H =
3Vk4T 4

2π2~3c3
l

∫ Θl
T

0

x3dx
ex − 1

+
3Vk4T 4

2π2~3c3
t

∫ Θt
T

0

x3dx
ex − 1

(49)

where Θl =
~k f cl

k and Θt =
~k f ct

k are, respectively, the charac-
teristic temperatures for solid corresponding to longitudinal
and transverse waves; k is the Boltzmann constant. In our
theory we denote

1
c3

l

+
1
c3

t
=

2
c3

where c is the average velocity of phonons with spin 1 in the
given theory; ΘB =

~k f c
k is the new characteristic temperature.

Hence, we may note that the coefficient with number 3
must be appear before both integrals on the right side of equa-
tion (49) because it reflects that phonons of longitudinal and
transverse waves have number 3 quantities of the value of
spin z-component σ = 0;±1. At T � Θl and T � Θt, the
equation (49) takes the form:

H =
3π4

5
NkT 4

2

(
1
Θ3

l

+
1
Θ3

t

)
(50)

where
∫ ∞

0
x3dk
ex−1 =

π4

15 .

Thus, Eq.(50) may be rewritten as

H ≈ 3π4

5
RT 4

Θ3
B

(51)

where R = Nk is the gas constant. Hence, we may note that
at T � Θl and T � Θt, the equation (49) takes the form:

H = 3RT. (52)

In this context, the heat capacity is determined as

CV =

(
dH
dT

)
V

(53)

which obviously, at T � Θl and T � Θt, the equation (53)
with (51) reflects the Debye law T 3 at low temperatures:

CV ≈
12π4

5
RT 3

Θ3
B

. (54)

But at high temperatures T � Θl and T � Θt, the equation
(53) with (52) recovers the Dulong-Petit law:

CV ≈ 3R. (55)
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Obviously, the average velocity of phonon c and new
characteristic temperature ΘB are differ from their definition
in Debye theory because the average energy of solid in Debye
theory is presented as

HD =
3Vk4T 4

2π2~3c3
l

∫ Θl
T

0

x3dx
ex − 1

+
3Vk4T 4

π2~3c3
t

∫ Θt
T

0

x3dx
ex − 1

(56)

where Θl =
~kDcl

k and Θt =
~kDct

k are, respectively, the
characteristic temperatures for solid corresponding to one
longitudinal and two transverse waves:

1
c3

l

+
2
c3

t
=

3
v3

0

(57)

where v0 is the average velocity of spinless phonons in

Debye theory; kD =

(
6π2N

V

) 1
3

is the Debye wave number;

ΘD =
~kDv0

k is the Debye characteristic temperature which is

1
Θ3

l

+
2
Θ3

t
=

3
Θ3

D

(58)

As we see the average energy of solid HD in (56) is differ
from one in (49) by coefficient 2 in ahead of second term
in right side of Eq.(56) (which is connected with assumption
of presence two transverse waves), as well as introduction
of Debye wave number kD. So that due to definition of the
average velocity v0 of spinless phonons by (57), Debye may
accept a phonon as spinless quasiiparticle.

5 Concussion

Thus, in this letter, we propose new model for solids which is
different from the well-known models of Einstein and Debye
because: 1), we suggest that the atoms are the Fermi parti-
cles which are absent in the Einstein and Debye models; 2),
we consider the stimulated oscillation of atoms by action of
longitudinal and transverse waves in the solid. The elastic
waves stimulate the vibration of the fermion-atoms with one
natural wavelength, we suggested that atoms have two inde-
pendent natural frequencies corresponding to a longitudinal
and a transverse wave, due to application of the principle of
the elastic wave-particle duality, the model of hard spheres
and considering the atoms as the Fermi particles. In accor-
dance to this reasoning, there is an appearance of a cut off in
the energy spectrum of phonons; 3), In our model, we argue
that the photons have spin 1 which is different from models
presented by Einstein and Debye. On the other hand, we sug-
gest that only one longitudinal and one transverse wave may
be excited in the lattice of the solid which is different from
Debye who suggested a presence of two sorts of transverse
waves.

The quantization of the elastic wave by our theory leads
to a view of the lattice as the diffraction picture. Within our

theory, the mass density ρ(~r) in coordinate space, due to sub-
stituting ρl(~r, t) and ρl(~r, t) from (25) and (26) into (20), rep-
resents as

ρ(~r) = ρ0 +
8π~k2

f

u2
l cl

(
sin k f r

k f r

)2

+
8π~k2

f

u2
t ct

(
sin k f r

k f r

)2

(59)

which implies that the lattice has the diffraction picture.
Now, we try to estimate the masses of the Sound Parti-

cles in substance as Aluminium Al. In this respect, we use
of (46) and (47) with introducing of the Fermi momentum
p f = ~k f =

~Ωl
cl
= ~Ωt

ct
, for instance, for such material as

Al with cl = 6.26 · 103 m
sec and ct = 3.08 · 103 m

sec at room
temperature [9], and p f = 1.27 · 10−24 kg·m

sec we may estimate
ml =

p f

cl
= 2 · 10−28kg and mt =

p f

ct
= 4 · 10−28kg.

It is well known that the mass of atom Al is M = 10−25kg
which is around 500 time more in regard to the masses of
Sound Particles.

In this context, we remark that the new characteristic tem-
perature ΘB almost coincide with the Debye temperature ΘD.
Indeed, by our theory for Al:

ΘB =
2

1
3 p f cl

k
(
1 + c3

l

c3
t

) 1
3

≈ 400K

but Debye temperature equals to ΘD = 418K.
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Applying Adjacent Hyperbolas to Calculation of the Upper Limit of the Periodic
Table of Elements, with Use of Rhodium
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In the earlier study (Khazan A. Upper Limit in Mendeleev’s Periodic Table — Ele-
ment No. 155. 2nd ed., Svenska fysikarkivet, Stockholm, 2010) the author showed how
Rhodium can be applied to the hyperbolic law of the Periodic Table of Elements in or-
der to calculate, with high precision, all other elements conceivable in the Table. Here
we obtain the same result, with use of fraction linear functions (adjacent hyperbolas).

1 Introduction

In the theoretical deduction of the hyperbolic law of the Pe-
riodic Table of Elements [1], the main attention was focused
onto the following subjects: the equilateral hyperbola with
the central point at the coordinates (0; 0), its top, the real
axis, and the line tangential to the normal of the hyperbola.
All these were created for each element having the known or
arbitrary characteristics. We chose the top of the hyperbolas,
in order to describe a chemical process with use of Lagrange’s
theorem; reducing them to the equation Y = K/X was made
through the scaling coefficient 20.2895, as we have deduced.

The upper limit of the Table of Elements, which is the
heaviest (last) element of the Table, is determined within the
precision we determine the top of its hyperbola [1]. Therefore
hyperbolas which are related to fraction linear functions were
deduced. These hyperbolas are equilateral as well, but differ
in the coordinates of their centre: x = 0, y = 1. To avoid
possible mistakes in the future, the following terminology has
been assumed: hyperbolas of the kind y = k/x are referred
to as straight; equilateral hyperbolas of the kind y = (ax +

b)/(cx + d) are referred to as adjacent. The latter ones bear
the following properties: such a hyperbola intersects with the
respective straight hyperbola at the ordinate y = 0.5 and the
abscissa equal to the double mass of the element; the line y =

0.5 is the axis of symmetry for the arcs; the real and tangential
lines of such hyperbolas meet each other; the normal of such
a hyperbola is the real axis and the tangential line of another
hyperbola of this kind.

The found common properties of the hyperbolas provided
a possibility to use them for determination of the heaviest
(last) element in another way than earlier.

2 Method of calculation

Once drawing straight hyperbolas for a wide range of the el-
ements, according to their number from 1 to 99 in the Table
of Elements, where the atomic masses occupy the scale from
Hydrogen (1.00794) to Einsteinium (252), one can see that
the real axis of each straight hyperbola is orthogonal to the
real axis of the respective adjacent hyperbola, and they cross
each other at the point y = 0.5.

Then we draw the intersecting lines from the origin of the
adjacent hyperbolas (0; 1). The lines intersect the straight
hyperbolas at two points, and also intersect the real axis and
the abscissa axis where they intercept different lengths.

Connection to molecular mass of an element (expressed
in the Atomic Units of Mass) differs between the abscissas of
the lengths selected by the intersecting lines and the abscissas
of transection of the straight and adjacent hyperbolas. There-
fore, the line which is tangent to the straight in the sole point
(102.9055; 205.811) is quite complicated. These coordinates
mean the atomic mass of Rhodium and the half of the atomic
mass of the heaviest (last) element of the Periodic Table.

The right side of the line can easily be described by the
4th grade polynomial equation. However the left side has a
complicate form, where the maximum is observed at the light
elements (Nitrogen, Oxygen) when lowered to (102.9055; 0)
with the increase in atomic mass.

According to our calculation, the straight and adjacent hy-
perbolas were determined for Rhodium. The real axes go
through the transecting points of the hyperbolas to the axis
X and the line Y = 1, where they intercept the same lengths
411.622. This number differs for 0.009% from 411.66.

Thus, this calculation verified the atomic mass 411.66 of
the heaviest element (upper limit) of the Periodic Table of El-
ements, which was determined in another way in our previous
study [1].

3 Algorithm of calculation

The algorithm and results of the calculation without use of
Rhodium were given in detail in Table 3.1 of the book [1].
The calculation is produced in six steps.

Step 1. The data, according to the Table of Elements, are
written in columns 1, 2, 3.

Step 2. Square root is taken from the atomic mass of each
element. Then the result transforms, through the scaling co-
efficient 20.2895, into the coordinates of the tops of straight
hyperbolas along the real axis. To do it, the square root of the
data of column 3 is multiplied by 20.2895 (column 4), then is
divided by it (column 3).

Step 3. We draw transecting lines from the centre (0; 1) to
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Fig. 1: Calculation with the centre at the point (0;0).

the transections with the line y = 0.5, with the real axis at the
point (X0; Y0), and so forth up to the axis X. To determine the
abscissa of the intersection points, we calculate the equation
of a straight line of each element. This line goes through
two points: the centre (0; 1) and a point located in the line
y = 0.5 or in the axis X: (X − 0)/(X0 − 0) = (Y − 1)/(Y0 − 1).
For instance, consider Magnesium. After its characteristics
substituted, we obtain the equation (X − 0)/(100.0274 − 0) =

(Y − 1)/(0.242983 − 1), wherefrom the straight line equation
is obtained: Y = 1 − 0.007568 X. Thus, the abscissa of the
transecting line, in the line y = 0.5, is 66.0669 (column 6).

Step 4. We write, in column 7, the abscissas of the points
of transection of the straight and adjacent hyperbolas. The
abscissas are equal to the double atomic mass of the element
under study.

Step 5. We look for the region, where the segment created
by a hyperbola and its transecting line is as small as a point
(of the hyperbola and its transecting line). To find the coor-
dinates, we subtract the data of column 7 from the respective
data of column 6. Then we watch where the transecting line
meets the real axis. The result is given by column 8. Here
we see that the numerical value of the segments increases,
then falls down to zero, then increases again but according to
another law.

Step 6. Column 9 gives tangent of the inclination angle
of the straights determined by the equations, constructed for
two coordinate points of each element: Y = −KX + 1, where
K is the tangent of the inclination angle.

4 Using adjanced hyperbolas in the calculation

Because straight and adjacent hyperbolas are equilateral, we
use this fact for analogous calculations with another centre,
located in the point (0; 0). The result has been shown in
Fig. 1. In this case X0 remains the same, while the ordi-
nate is obtained as difference between 1 and Y0. The straight
line equation is obtained between two points with use of the
data of column 9, where tangent should be taken with the
opposite sign. As a result, we obtain an adjacent hyperbola
of Rhodium. For example, consider Calcium. We obtain
X0 = 128.4471, Y0 = 0.31202 (the ordinate for the straight
hyperbola of Calcium), and Y0 = 1 − 0.31202 = 0.68798
(for the adjacent hyperbola). The straight line equation be-
tween these two points is Y = 0.005356 X. Thus, we obtain
x = 186.7065 under y = 1, and x = 93.3508 under y = 0.5.

The new calculations presented here manifest that deter-
mining the heaviest (last) element of the Periodic Table of El-
ements is correct for both ways of calculation: the way with
use of Lagrange’s theorem and the scaling coefficient [1], and
also the current method of the hyperbolas adjacent to that of
Rhodium (method of adjacent hyperbolas). As one can see,
the calculation results obtained via these two methods differ
only in thousand doles of percent.
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How Black Holes Violate the Conservation of Energy

Douglas L. Weller
Email: physics@dougweller.com

Black holes produce more energy than they consume thereby violating the conservation
of energy and acting as perpetual motion machines.

1 Introduction

According to Stephen Hawking and Leonard Mlodinow [1]:
“Because there is a law such as gravity, the Universe can
and will create itself from nothing.” Such views of gravity
are usually attributed as being rooted in Einstein’s general-
relativistic space-time.

However, the field equations Einstein [2] used to describe
the general-relativistic space-time are founded on the con-
servation of momentum and energy. How can a space-time
derived based on the conservation of momentum and energy
provide an ex nihilo source of energy sufficient to create a
universe?

The answer is found in Karl Schwarzschild’s solution [3]
to the field equations, usually called the Schwarzschild met-
ric. The Schwarzschild metric describes a gravitational field
outside a spherical non-rotating mass. When the mass is com-
pacted within its Schwarzschild radius it is commonly re-
ferred to as a black hole.

Herein the terms of the Schwarzschild metric are rear-
ranged to display limits in the Schwarzschild metric that nec-
essarily result from the conservation of momentum and en-
ergy. Then is shown how black holes violate the limits, acting
as perpetual motion machines that produce more energy than
they consume.

2 Expressing the Schwarzschild metric using velocities

In this section, the Schwarzschild metric is rearranged so as
to be expressed using velocities measured with reference co-
ordinates. This rearrangement, which appears as equation (8)
at the end of this section, will make very clear the limits im-
posed within the Schwarzschild metric by the conservation of
momentum and energy.

Einstein [4] originally expressed the principles of special
relativity using velocities measured with reference coordi-
nates. However, Einstein [2, Equations 47] expressed the field
equations in more abstract terms, using tensors. Einstein was
careful to show that the field equations, nevertheless, corre-
spond to the conservation of momentum and energy [2, Equa-
tions 47a] and thus have a nexus to physical reality.

The Schwarzschild metric, as a solution to the field equa-
tions, also corresponds to the conservation of momentum and
energy. Arrangement of the Schwarzschild metric as in (8) al-
lows for an intuitive comprehension of exactly how momen-
tum and energy is conserved.

For a compact mass M with a Schwarzschild radius R,

the Schwarzschild metric is often expressed using reference
space coordinates (r, θ, φ), coordinate time t and local time τ
(often referred to as proper time τ), as

c2dτ2 = c2
(
1 − R

r

)
dt2− dr2

(1 − R/r)
−r2dθ2−(rsinθ)2dφ2. (1)

The Schwarzschild metric as shown in (1) can be rearranged
to form (8), as shown below. To obtain (8) from (1), begin by

multiplying both sides of (1) by
(

1
dt

)2

yielding

c2
(

dτ
dt

)2

= c2
(
1 − R

r

) (dt
dt

)2

− 1
1 − R/r

(
dr
dt

)2

− r2
(

dθ
dt

)2

− (rsinθ)2
(

dφ
dt

)2

,

(2)

which allows motion in all dimensions to be measured with
respect to the reference coordinates (r, θ, φ, t). The terms of
(2) can be rearranged as

c2 = c2
(

dτ
dt

)2

+ c2 R
r

+
1

1 − R/r

(
dr
dt

)2

+ r2
(

dθ
dt

)2

+ (rsinθ)2
(

dφ
dt

)2

.

(3)

The terms in (3) can be grouped by defining three different
velocities. A velocity through the three dimensions of curved
space can be defined as

vS =

√
1

1 − R/r

(
dr
dt

)2

+ r2

(
dθ
dt

)2

+ (rsinθ)2

(
dφ
dt

)2

. (4)

A velocity of local time through a time dimension can be de-
fined as

vτ = c
dτ
dt
. (5)

A gravitational velocity can be defined as

vG = c

√
R
r
. (6)

Using the definitions in (4), (5) and (6), (3) reduces to

c2 = v2
τ + v2

G + v2
S . (7)

Equation (7) can be expressed using orthogonal vectors~vτ,~vG

and ~vS where vτ = |~vτ|, vG = |~vG | and vS = |~vS |, and where

c =
∣∣∣~vτ +~vG +~vS

∣∣∣ . (8)
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Equation (8) is mathematically equivalent to (1) and expres-
ses the Schwarzschild metric as a relationship of vector ve-
locities. The conservation of momentum and energy, as ex-
pressed in the Schwarzschild metric, requires that the magni-
tude of the sum of the velocities is always equal to the con-
stant c. Before exploring the full implication of this relation-
ship, the next section confirms that (8) conforms with what is
predicted by special relativity.

3 Equation (8) and special relativity

In the previous section, the Schwarzschild metric in (1) has
been rearranged as (8) to provide a more concrete picture
of the relationships necessary for conservation of momentum
and energy.

Here is confirmed (8) is in accord with the case of special
relativity for unaccelerated motion.

When there is no acceleration and therefore no gravity
field, R = 0 and thus according to (6), vG = 0 so that (8)
reduces to

c =
∣∣∣~vτ +~vS

∣∣∣ . (9)

When R = 0,

vS ,R=0 =

√(
dr
dt

)2

+ r2

(
dθ
dt

)2

+ (rsinθ)2

(
dφ
dt

)2

, (10)

which expressed in Cartesian coordinates is the familiar form
of velocity used in special relativity,

vS ,R=0 =

√(
dx
dt

)2

+

(
dy
dt

)2

+

(
dz
dt

)2

. (11)

Equation (9) accurately reproduces the relationship of veloc-
ity and time known from special relativity. As velocity vS

in the space dimensions increases, there is a corresponding
decline in the velocity vτ in the orthogonal time dimension.
When velocity in the time dimension reaches its minimum
value (i.e., vτ = 0) this indicates a maximum value (i.e.,
vS = c) in the space dimensions has been reached.

Equation (9) can be rearranged to confirm it portrays ex-
actly the relationship between coordinate time and local time
that is known to occur in the case of special relativity. Specif-
ically, from the relationship of the orthogonal vectors ~vτ, and
~vS in (9), it must be true that

c2 = v2
τ + v2

S . (12)

and thus from (5)

c2 = c2
(

dτ
dt

)2

+ v2
S , (13)

and therefore

dτ
dt

=

√
1 − v

2
S

c2 , (14)

which is a form of the well known Laplace factor indicating
the relationship between local time and coordinate time for
special relativity.

4 Equation (8) and limits imposed by the conservation
of momentum and energy

The arrangement of the Schwarzschild metric in (8) allows
for a more concrete explanation of the limitations inherent
in the Schwarzschild metric that necessarily result from the
conservation of momentum and energy.

The vector sum of ~vτ, ~vG and ~vS establishes a maximum
value of c for each individual vector velocity.

When ~vτ = 0 and ~vS = 0, ~vG reaches its maximum value
of c. Gravitational velocity ~vG cannot exceed its maximum
value of c without violating (8).

According to the definition of vG in (6), when vG = c, then
r = R. When r < R, then vG > c; therefore, according to (8),
r < R never occurs. As shown by Weller [5], matter from
space can never actually reach r = R, but if it could, it would
go no farther. At r = R and vG = c, all motion through space
stops (~vS = 0) and local time stops (~vτ = 0, so dτ/dt = 0).
Without motion in time or space, matter cannot pass through
radial location r = R.

This section has shown that because of the conservation of
momentum and energy — as expressed by the Schwarzschild
metric arranged as in (8) — matter from space cannot cross
the Schwarzschild radius R to get to a location where r < R.

The following sections consider conservation of energy
equivalence in the Schwarzschild metric and the result when
energy conservation is not followed.

5 Apportionment of energy equivalence

Einstein [6] pioneered apportioning energy differently based
on reference frames, using such an apportionment in his ini-
tial calculations deriving the value for the energy equivalence
of a mass (i.e., E = mc2).

This notion of apportionment of energy equivalence is a
helpful tool in understanding the implications of violating the
conservation of energy and momentum in the Schwarzschild
metric. When considering apportionment of energy equiv-
alence in the Schwarzschild metric, it is helpful to keep in
mind how Einstein makes a distinction between “matter” and
a “matterless” gravitational field defined by the field equa-
tions or by the Schwarzschild metric. According to the Ein-
stein [2, p. 143], everything but the gravitation field is de-
noted as “matter”. Therefore, matter when added to the mat-
terless field includes not only matter in the ordinary sense, but
the electromagnetic field as well.

How the Schwarzschild metric apportions energy equiva-
lence can be understood from

c2 = v2
τ + c2 R

r
+ v2

S . (15)
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which is (7) modified so as to replace vG with its equivalent
given in (6). Equation (15) is mathematically equivalent to
(1), just rearranged to aid in the explanation of the apportion-
ment of energy equivalence.

Equation (15) can be put into perhaps more familiar terms
by introducing a particle of mass m into the gravitation field.
The energy equivalence mc2 of the mass m is apportioned ac-
cording to (15) as

mc2 = mv2
τ + mc2 R

r
+ mv2

S . (16)

In order to provide insight into the nature of the gravitational
energy component c2R/r in (15) —which appears as mc2R/r
in (16) — the next section discusses briefly how this term
came to reside in the Schwarzschild metric.

6 Schwarzschild’s description of gravity

One of the issues Schwarzschild [3, see §4] faced when deriv-
ing the Schwarzschild metric was how to describe the effects
of gravity. He chose to do so using a positive integration con-
stant that depends on the value of the mass at the origin. As a
result the Newtonian gravitational constant G appears in the
Schwarzschild metric. In (1) the gravitational constant G ap-
pears as part of the definition of the Schwarzschild radius R.
In both Newtonian physics and the Schwarzschild metric, the
Schwarzschild radius (R) — the location where Newtonian
escape velocity (i.e., vG) is equal to c — is defined as

R =
2GM

c2 . (17)

When the Schwarzschild metric is arranged as in (15), grav-
itational energy component c2R/r increases toward infinity
as radial location r decreases toward zero. This suggests the
location of an unlimited energy source within the Schwarz-
schild metric; however, total gravitational energy is limited
by the requirement that energy be conserved, as illustrated by
the hypothetical described in the next section.

7 A hypothetical illustrating the conservation of energy
equivalence in the Schwarzschild metric

The total energy-equivalence of a system comprised of a mass
M can be defined as

EM = Mc2, (18)

where the energy of magnetic fields is included in M, or ne-
glected. If a mass m is added to the system, the additional
energy E added to the system as a result of the presence of
mass m is also well known to be

E = mc2. (19)

Thus if the system consisting of mass M and mass m were
dissolved into radiation, the total resulting energy would be
equal to

EM + E = Mc2 + mc2. (20)

In order for the conservation of energy to be maintained in the
system as a whole, any gravitational energy EG or any energy
from motion EK that is added to the system as a result of the
presence of mass m must be included as part of the additional
energy E described in (19). Therefore, the additional energy
E present in the system as a result of adding mass m can be
expressed as

E = mc2 = EK + EG + Eτ, (21)

where Eτ is the portion of energy E that is not represented by
gravitational energy component EG or motion energy compo-
nent EK .

Equation (21) is the apportionment of energy equivalence
shown in (16). To confirm this, in (21) set EG = mc2R/r,
EK = mv2

S and Eτ = mv2
τ to obtain (16).

The apportionment of energy equivalence in (16) and (21)
indicates why crossing the Schwarzschild radius R violates
the conservation of energy. When the particle reaches the
Schwarzschild radius R — i.e., r = R — the entire energy
equivalence of mass m, is consumed by the gravitation com-
ponent, i.e., EG = mc2R/R = mc2 . There is no energy left
for mass m to travel in time (i.e., Eτ = 0) or in space (i.e.,
EK = 0). Therefore at locations r = R, all motion in time and
space must stop, preventing mass m from ever crossing the
critical radius.

If mass m were from space to cross the Schwarzschild
radius R, the gravitational energy component EG = mc2R/r
would exceed the total energy equivalence E = mc2 violating
the conservation of energy.

If the particle were allowed to reach r = 0, gravitational
energy component EG = mc2R/r would approach infinity be-
fore becoming undefined.

8 How black holes act as perpetual motion machines

A perpetual motion machine is a hypothetical machine that
violates the conservation of energy by producing more energy
than it consumes.

According to the conservation of momentum and energy
described by the Schwarzschild metric, see (8) and (15), a
particle can never from space cross the Schwarzschild radius
R of a compact mass M.

When a black hole is formed from a compacting mass
M, the last particle on the surface of the mass that reaches
and crosses the Schwarzschild radius R violates (8). Every
particle thereafter that from space crosses R violates (8).

Further, from (16), each particle of mass m that reaches
a radial location r < R, produces an amount of gravitational
energy (EG = mc2R/r) that is greater than its total energy
equivalence mc2, as can only happen in a perpetual motion
machine. When a particle is allowed to approach and reach
r = 0, the ultimate perpetual motion machine is created which
from the finite energy equivalence mc2 of the particle pro-
duces an unlimited amount of gravitational energy as the par-
ticle approaches r = 0.

Douglas L. Weller. How Black Holes Violate the Conservation of Energy 91



Volume 1 PROGRESS IN PHYSICS January, 2011

9 Concluding Remarks

Describing the effects of gravity using a gravitational constant
and violating the conservation of momentum and energy de-
scribed by the Schwarzschild metric can hypothetically result
in black holes that act as perpetual motion machines able to
produce an unlimited amount of energy. However, the exis-
tence of such perpetual motion machines is not in accordance
with the conservation of momentum and energy as expressed
in Einstein’s general-relativistic space-time.

Special mathematical calculations, including use of spe-
cially selected coordinates, have been used to explain how
a particle can cross the Schwarzschild radius allowing black
holes to form. Critiquing these mathematical calculations
is beyond the scope of this short paper. The author has di-
rectly addressed some of this subject matter in a companion
paper [5].
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Five Fallacies Used to Link Black Holes to Einstein’s Relativistic Space-Time
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For a particle falling radially toward a compact mass, the Schwarzschild metric maps
local time to coordinate time based on radial locations reached by the particle. The
mapping shows the particle will not cross a critical radius regardless of the coordinate
used to measure time. Herein are discussed five fallacies that have been used to make it
appear the particle can cross the critical radius.

1 Introduction

Einstein [1] sets out field equations that describe a matter-
free field. A German military officer, Karl Schwarzschild [2],
shortly before he died, derived a solution of the field equa-
tions for a static gravitational field of spherical symmetry.
Schwarzschild’s solution is referred to as the Schwarzschild
metric.

Einstein [3] showed that matter cannot be compacted be-
low a critical radius defined by the Schwarzschild metric.
Weller [4] shows that compacting matter below the critical
radius to form a black hole results in a violation of the con-
servation of momentum and energy.

Why, then, do many believe that black holes exist in Ein-
stein’s relativistic space time? The belief appears to have
arisen based, at least partly, on an incorrect description of the
journey of a particle falling radially towards a hypothetical
mass compacted below the critical radius. The description is
incorrect in that the particle reaches and crosses the critical
radius.

Herein are discussed five fallacies used in the description
of the particle’s journey. Preliminary to addressing the falla-
cies, it is shown why the particle will never reach the critical
radius.

2 Mapping coordinate time t to local time τ

For a particle falling radially toward a hypothetical mass com-
pacted below a critical radius, a mapping of the coordinate
time t of a distant observer to a local time τ of the particle
based on a radial distance r is shown in Fig. 1. The data

Fig. 1: For a particle falling radially, the Schwarschild Metric maps
every value of the coordinate time t of a distant observer — where
0 ≤ t ≤ ∞— into a corresponding value of the local time τ of the
particle — where 0 ≤ τ ≤ τC .

shown in Fig. 1 can be obtained using the Schwarzschild
metric.

Particularly, for a compact mass M with a Schwarzschild
radius R, the Schwarzschild metric can be expressed using
reference space coordinates (r, θ, φ), a coordinate time t and a
local time τ (often referred to as proper time τ), i.e.,

c2dτ2 =c2
(
1− R

r

)
dt2− dr2

(1−R/r)
−r2dθ2− (r2sin2θ)dφ2. (1)

Reference coordinates (r, θ, φ, t) are the space and time coor-
dinates used by the distant observer to make measurements
while the particle detects passage of time using local time co-
ordinate τ. For a particle falling radially

dθ = dφ = 0, (2)

so the Schwarzschild metric in (1) reduces to

c2dτ2 = c2
(
1 − R

r

)
dt2 − dr2

(1 − R/r)
, (3)

which expresses a relationship between radial location r, local
time τ and coordinate time t.

According to the relationship expressed by (3), for every
radial location ri reached from a starting location rS , the co-
ordinate time ti to reach radial location ri can be calculated
using an integral

ti =

ri∫

rS

dt =

ri∫

rS

f1(r)dr, (4)

where f1(r)is a function of r derived from (3) [5, p. 667].
The local time τi required to reach the radial location ri

can be calculated using an integral

τi =

ri∫

rS

dτ =

ri∫

rS

f2(r)dr, (5)

where f2(r)is a function of r derived from (3) [5, p. 663].
When the radial location ri is set equal to a critical radius

rC , the integrand f1(r) for the integral in (4) and the integrand
f2(r) for the integral in (5) are undefined; however, the inte-
gral in (5) converges while the integral in (4) does not. This
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indicates that the critical radius rC is reached in a finite local
time τC but cannot be reached in finite Schwarzschild coordi-
nate time.

The results of calculations using the integral of (4) and the
integral of (5) are summarized in Fig. 1. As shown by Fig. 1,
based on the integrals in (4) and (5), any value of coordinate
time t, 0 ≤ t ≤ ∞, can be mapped into a corresponding value
for local time τ, 0 ≤ τ ≤ τC based on radial location r.

3 A pause to check correctness of Fig. 1

At this point the reader is encouraged to stop, look at Fig. 1,
and perform an obviousness check to confirm why the data in
Fig. 1 must be correct. The salient points are as follows:

• It takes infinite coordinate time (i.e., t = ∞) to reach
the critical radius rC;

• It takes finite local time τC to reach the critical radius
rC ;

• Both local time τ and coordinate time t monotonically
progress with decreasing r;

• To reach each radial location ri will take a coordinate
time ti to complete and a local time τi to complete;

• Based on radial location ri, a value of coordinate time
ti is mapped to a local time τi.

A reader who understands why Fig. 1 must be an accurate
description of data derived from the Schwarzschild metric has
already made a paradigm shift which if held to provides an
intuitive foundation from which to understand the remainder
of the paper. There is only one slight modification to Fig. 1
that is necessary to reveal why the critical radius can never be
crossed. That is the subject of the next section.

4 Fig. 1 modified to take into account the finite duration
of the compact mass

Fig. 1 depicts data from the Schwarzschild metric for a hy-
pothetical compact mass that is presumed to exist forever in
coordinate time. But what happens when the compact mass
is replaced by an entity that more closely approximates real-
ity in that it has a finite lifetime? For example, replace the
compact mass with a theoretical black hole that has a finite
lifetime. The result is shown in Fig. 2.

Because of Hawking radiation [6], it is estimated that a
black hole will evaporate well within 10100 years. Therefore,
added to Fig. 2 is finite coordinate time tE which is the co-
ordinate time required for a hypothetical black hole to com-
pletely evaporate [7]. Using the mapping shown in Fig. 1, it
is possible to identify a radial location rE — where rE > rC

— the particle will have reached simultaneous with the black
hole evaporating at coordinate time tE .

Fig. 2 shows a local time τE that represents the local time
required for the particle to reach rE . Local time τE corre-
sponds with coordinate time tE — the coordinate time re-
quired for a black hole to completely evaporate. Local time

Fig. 2: According to the mapping of coordinate time to local time
performed using the Schwarschild metric, the local time required to
reach the critical radius of a black hole (τC) is longer than the life of
the black hole (τE).

τC , as calculated by (5), represents the local time required for
the particle to reach critical radius rC . Because τE < τC , the
particle will experience in local time τ that the black hole will
evaporate before the critical radius can be reached.

5 The significance of Fig. 2

Fig. 2, based on the data from the Schwarzschild metric,
shows a radially falling particle will never cross the critical
radius of the compact mass regardless of what coordinate is
used to measure the passage of time. For every radial location
reached by the particle (i.e., rS ≥ r ≥ rE , there is a corre-
sponding coordinate time t to reach the radial location and a
corresponding local time τ to reach the radial location. The
final destination of the particle is not dependent upon which
measure of time is used to time the journey.

Fig. 2 presents a paradigm that is in conformance with the
fundamental requirement of general relativity — and indeed a
coherent universe — that there is a single reality with a logical
sequence of events. The logical sequence of events does not
vary based upon the reference frame from which observations
are made.

Fig. 2 is meant to be an anchor from which can be shown
how each of the five fallacies discussed below entices a de-
parture from a coherent reality, where the logical sequence of
events is consistent for every reference frame, into an inco-
herent reality where physical events differ based on reference
frames from which observations are made.

In the following discussion of fallacies, evaporation of
black holes is used as a convenient way to account for the
finite lifetime of a hypothetical mass compacted below the
critical radius. However, as should be clear from Fig. 2, a par-
ticle cannot cross the critical radius and therefore, as pointed
out by [3], a mass will never compact below its critical ra-
dius. For the implication of this for collapsing stars, see the
discussion of fallacy 4 below.
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Fig. 3: Fig. 3 arranges the data shown in Fig. 2 in a different format.
The trace extending to r = 0 incorrectly suggests that it is physically
possible to cross the critical radius.

6 Fallacy 1: Showing a particle crosses the critical ra-
dius after evaporation of a black hole

For the journey of a particle to a black hole, elapsed time
calculated using (4) and (5) is typically not represented as set
out in Fig. 2, but rather as set out in Fig. 3 [5, p. 667].

Fig. 3, like Fig. 1 and Fig. 2, is a graphic representation
of data obtained from (4) and (5). However, Fig. 3 qualifies
as a fallacy because Fig. 3 includes extra data, not shown in
Fig. 1 or Fig. 2., that incorrectly portrays the journey of the
particle. Particularly, in Fig. 3, the trace representing local
time τ extends beyond τC , the local time required to reach
critical radius rC .

Ordinary rules of mathematics cannot be used to generate
the extra data for local time τ that occur after critical radius rC

is reached. This is because the integrand in (5) is undefined
at rC . Nevertheless, a novel “cycloid principle” [5, See pp.
663–664] has been used to generate this extra data.

But merely showing how the extra data can be mathemat-
ically generated does not overcome the logical sequencing
problem introduced by adding the extra data to Fig. 3. The
extra data suggests rC can be reached and crossed in local
time τC . However, this is impossible because as shown in
Fig. 2, a black hole will evaporate in local time τE , so that
critical radius rC will cease to exist before it can be reached
by the particle.

A horizontal line has been included in Fig. 3 to indicate
where in Fig. 3 the evaporation of a black hole occurs. As
shown by Fig. 3, evaporation of a black hole at radial loca-
tion rE , local time τE and coordinate time tE logically occurs
before reaching radial location rC , local time τC and coordi-
nate time t = ∞.

Fig. 3 should be corrected to show that a physical journey
of a particle towards a black hole must end at radial location
rE — short of the critical radius rC — when the black hole
evaporates at local time τE and coordinate time tE . The end
of the journey occurs at rE whether time is measured using
coordinate time t or local time τ.

7 Fallacy 2: Declaring coordinates to be “pathological”

Fig. 3 suggests an impossible picture of physical reality. The
particle cannot finally arrive at different destinations (r = 0
and r = rC) merely based on the coordinate used to measure
time.

As discussed in the last section, the logical sequence of
events that occurs in all time frames, as out in Fig. 2, makes
clear what is wrong with Fig. 3 and how it can be corrected.
However, another competing explanation has been put forth.

The infinite coordinate time t required to reach the critical
radius has been explained as the result of a “pathology” in the
coordinates used to express the Schwarzschild metric. [5, See
pp. 820-823].

Declaring coordinates to be pathological is a fallacy be-
cause it is a violation of general relativity at its most fun-
damental level. According to general relativity, all coordi-
nates (reference frames) will observe the same reality. As
Einstein [1, p. 117] made clear when setting out the basis for
the theory of general relativity: “. . . all imaginable systems
of coordinates, on principle, [are] equally suitable for the de-
scription of nature”.

If general relativity is true, the events that occur during
the journey of the particle occur in the same logical sequence
irrespective of the coordinates used to observe the journey.
Fig. 2 shows that the logical sequence of events that happens
when time is measured using coordinate time t also happens
in the same logical order when time is measured using lo-
cal time τ. The next section shows that even when making
observation from specially selected coordinates, the logical
sequence of events does not differ from that shown in Fig. 2.

8 Fallacy 3: Use of specially selected coordinates

Fallacy 3 is an attempt to find coordinates that will show the
particle can reach and cross the critical radius. The specially
selected coordinates achieve this purpose based on a logical
fallacy called begging the question in which the thing to be
proved is assumed in a premise.

The thing to be proved is that a free falling particle can
reach and cross the critical radius. The premise is that the
specially selected coordinates can reach and cross the critical
radius. When the specially selected coordinates are used as
the reference coordinates in the Schwarzschild metric, and it
is assumed the specially selected coordinates can cross the
critical radius, it is possible to “show” the particle also can
cross the critical radius.

But the premise is false. In the Schwarzschild metric, no
reference frame can cross its critical radius because to do so
would be a violation of the conservation of momentum and
energy [4]. Below are considered two classes of specially
selected coordinates:

• Coordinates that use the same reference frame as the
free falling particle (e.g., the Novikov coordinates);
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• Coordinates that use the reference frame of a radially
traveling photon, (e.g., ingoing Eddington-Finkelstein
coordinates and the Kruskal-Szekeres coordinates).

For each class of specially selected coordinates it is shown
that their reference frame cannot cross a critical radius within
the time it takes a black hole to evaporate.

Coordinates that use the reference frame of the free
falling particle: Coordinates, such as the Novikov coordi-
nates, that share a reference frame with the particle, also share
the same time coordinate. Thus the local time coordinate τ
measures the passage of time for both the local coordinates
and the reference frame of the Novikov coordinates [5, p.
826].

The time required for a black hole to evaporate as mea-
sured by the time coordinate τ— which is the time coordinate
for the reference frame shared by the Novikov coordinates
shared and the local coordinates — has already been shown
to be τE . See Fig. 2. As discussed above, τE < τC , indicating
a black hole will evaporate at local time τE before the refer-
ence frame for the Novikov coordinates and the particle will
be able to reach the critical radius at local time τC .

Coordinates that use the reference frame of a photon:
The reference frame for ingoing Eddington-Finkelstein co-
ordinates and the Kruskal-Szekeres coordinates is a radially
traveling photon. [5, See pp. 826–832].

The coordinate time t for the photon to reach its critical
radius can be very simply calculated from the Schwarzschild
metric in (1). Because the photon is traveling radially, dθ =

dφ = 0. Because local time for a photon does not progress,
dτ = 0. Therefore, the form of the Schwarzschild metric used
to calculate values for coordinate time t is obtained by setting
dθ = dφ = dτ = 0 in (1) yielding

0 = c2
(
1 − R

r

)
dt2 − dr2

(1 − R/r)
. (6)

The integral in (4) can be used to calculate elapsed coordinate
time t for the photon based on radial distance. Integrand f1(r)
is obtained by rearranging the terms in (6), i.e.,

f1(r) =
dt
dr

=
1

c(1 − R/r)
. (7)

When the photon reaches r = R, the integrand in (7) is unde-
fined and the integral in (4) does not converge. Therefore the
radially traveling photon will not reach R in finite coordinate
time.

A black hole that evaporates in finite coordinate time tE ,
will evaporate when the photon reaches a radial location rL

that is outside R. When the photon reaches radial location
rL at coordinate time tE , the ingoing particle will be at radial
location rE , outside the critical radius rC , as shown by Fig. 2.

In the reference frame of a photon, the black hole will
evaporate when the photon reaches radial location rL, before
the photon reaches its critical radius R. As in all reference

frames of the Schwarzschild metric, the reference frame of
the photon is not able to reach the critical radius before the
black hole evaporates.

9 Fallacy 4: Claiming the existence of surfaces trapped
below a surface of last influence

Misner et al. [5, pp. 873–874] makes the argument that once
the surface of a collapsing star crosses a critical radius, light
reflecting from the surface remains trapped below the criti-
cal radius. This is a fallacy because the surface of a collaps-
ing star will never cross the critical radius [3]. The very last
particle on the surface to cross the critical radius can be ap-
proximately modeled by the radially falling particle of Fig. 2.
From the perspective of the distant observer (coordinate time
in Fig. 2), the collapsing star evaporates in finite time, before
the infinite coordinate time required for the last particle on
the surface to cross the critical radius.

From the perspective of a particle on the surface (local
time in Fig. 2), the collapsing star evaporates very suddenly
as the particle nears the critical radius. It is intriguing to
imagine the experience of the particle as the surface of the
collapsing star immediately disintegrates into radiation near
the critical radius. Such an inferno of unimaginable propor-
tions would tend to be masked from a distant observer by the
extreme gravity near the critical radius. But as the surface
burns away reducing the mass of the collapsing star — caus-
ing the critical radius to retreat farther below the surface of
the collapsing star — a less time dilated view of the inferno
might be released, perhaps providing an explanation for the
sudden appearance of quasars.

Since the surface of a collapsing star cannot cross its criti-
cal radius in finite coordinate time t, Misner et al. [5, pp. 873–
874] measures time from the reference frame for the ingoing
Eddington-Finkelstein coordinates. As discussed in the prior
section, use of ingoing Eddington-Finkelstein coordinates to
prove the critical radius can be crossed just begs the ques-
tion. The ingoing Eddington-Finkelstein coordinates will not
cross the Schwarzschild metric of the collapsing star before
the collapsing star evaporates. This should be especially clear
for the example of a collapsing star since the surface, located
outside its critical radius, will be an impenetrable barrier that
will prevent any photon, serving as a reference frame for the
ingoing Eddington-Finkelstein coordinates, from reaching its
critical radius at R.

10 Fallacy 5: Claiming the infinite coordinate time to
reach the critical radius is an optical illusion

It has been asserted that as measured by proper time, a free-
falling traveler quickly reaches the critical radius. To the dis-
tant observer it appears to take an infinite amount of coordi-
nate time to reach the critical radius as a result of an optical
illusion caused by light propagation introducing a delay in
communicating that the critical radius has been reached [5,
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pp. 874–875]. Fallacy 5 is a departure from general relativity
because in general relativity the difference between local time
and coordinate time is not merely the result of delay intro-
duced by light propagation. In the theory of general relativity,
time progresses at different rates depending on the strength of
the gravity field in which measurements are made.

Einstein [8, p. 106] explains: “we must use clocks of un-
like constitution, for measuring time at places with differing
gravitational potential.” This principle of relativity is embod-
ied in the Schwarzschild metric where gravity changes the
rate at which time progresses [2]. For a precise description
of how in the Schwarzschild metric gravity affects time based
on the conservation of momentum and energy, see [4, Eq. 8].

Because fallacy 5 does not properly account for the ef-
fect gravity has on time, and is therefore not in accord with
general relativity or the Schwarzschild metric, the results pre-
dicted by fallacy 5 do not agree with results calculated using
the Schwarzschild metric. This is illustrated by a hypothetical
in the following section.

11 A hypothetical illustrating the logical contradictions
introduced by fallacy 5

According to fallacy 5, as measured by proper time, a radially
falling traveler quickly reaches and crosses the critical radius
of a black hole. The reality that the traveler quickly reaches
the critical radius appears to the distant observer to take an
infinite amount of time because of the propagation of light.

Fallacy 5’s portrayal of reality is not consistent with cal-
culations made using the Schwarzschild metric.

For example, put a reflector on the back of the traveler and
have the distant observer periodically shine a light beam at the
traveler. Use the Schwarzschild metric to calculate the radial
location at which the faster moving light beam will overtake
the slower moving traveler and reflect back to indicate the
location of the traveler to the distant observer.

No matter how much of a head start the traveler has before
the light is turned on (even trillions of years or longer, as mea-
sured using coordinate time), according to the Schwarzschild
metric the light will always overtake the traveler before the
critical radius is reached. The radial location at which the
traveler is overtaken is the same whether local time or coordi-
nate time is used to make the calculations, provided start time
and overtake time for each light beam are measured with the
same time coordinate. This result is inevitable based on the
pattern of the data obtained from the Schwarzschild metric,
as shown in Fig. 1.

As shown by Fig. 2, the distant observer can continue
to shine light beams at the traveler until the distant observer
observes the black hole evaporates. The feedback from the re-
flected light beams will tell the distant observer that the trav-
eler remains outside the black hole as the black hole evap-
orates slowly in coordinate time, and quickly in local time.
This contradicts the assertion of fallacy 5 that the traveler eas-

ily reaches and crosses the critical radius.
The distant observer does not even need to shine a light

beam for this experiment as background radiation reflecting
from the traveler provides exactly the same information.

Hawking radiation also provides the same information.
While the distant observer sees the traveler outside the critical
radius, the distant observer will also observe Hawking radia-
tion from the evaporating black hole, which will first have to
pass through the radial location of the traveler before reach-
ing the distant observer. This indicates to the distant observer
that the traveler will have experienced, before the distant ob-
server, radiation emitted during the disintegration of the black
hole. Further, the radiation passing by the traveler will con-
tinuously bring information to the distant observer about the
location of the traveler confirming the information from the
light beams. Each photon of radiation from the evaporating
black hole that passes by the traveler is a progress report on
the traveler’s location that will confirm to the distant observer
that the traveler had not yet passed through the critical ra-
dius when that photon of radiation passed the traveler. Such
progress reports will continue until the black hole completely
evaporates.

Light beams from the distant observer, background ra-
diation and Hawking radiation will all intercept the traveler
outside the critical radius — according to the Schwarzschild
metric — regardless of the coordinates used to make mea-
surements. This result contradicts the assertion of fallacy 5
that the critical radius is quickly crossed and only appears
to the distant observer to take infinite time because of light
propagation.
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Lee Smolin Five Great Problems and Their Solution
without Ontological Hypotheses

Gunn Quznetsov
Chelyabinsk State University, Chelyabinsk, Ural, Russia. E-mail: gunn@mail.ru, quznets@yahoo.com

Solutions of Lee Smolin Five Great Problems from his book The Trouble with Physics:
the Rise of String Theory, the Fall of a Science, and What Comes Next are described.
These solutions are obtained only from the properties of probability without any onto-
logical hypotheses.

Introduction

In his book [1] Lee Smolin, professor of Perimeter Institute,
Canada, has formulated the following five problems which he
named Great Problems:

Problem 1: Combine general relativity and qua-
ntum theory into a single theory that claim to be
the complete theory of nature.

Problem 2: Resolve the problems in the founda-
tions of quantum mechanics, either by making
sense of the theory as it stands or by inventing
a new theory that does make sense. . . .

Problem 3: Determine whether or not the vari-
ous particles and forces can be unified in a the-
ory that explain them all as manifestations of a
single, fundamental entity. . . .

Problem 4: Explain how the values of of the free
constants in the standard model of particle phy-
sics are chosen in nature. . . .

Problem 5: Explain dark matter and dark en-
ergy. Or if they don’t exist, determine how and
why gravity is modified on large scales. . . .

Solution

Let us consider the free Dirac Lagrangian:

L := ψ†
(
β[k]∂k + mγ[0]

)
ψ. (1)

Here∗

β[ν] :=
[
σν 02
02 −σν

]
, γ[0] :=

[
02 12
12 02

]

where σ1, σ2, σ3 are the Pauli matrices.
Such Lagrangian is not invariant [2] under the SU(2)

transformation with the parameter α:

ψ†U†(α)
(
β[k]∂k + m1γ

[0]
)

U(α)ψ

= ψ†
(
β[k]∂k + (m cosα) γ[0]

)
ψ,

∗02 :=
[

0 0
0 0

]
, 12 :=

[
1 0
0 1

]
, β[0] := −14 := −

[
12 02
02 12

]
,

k ∈ {0, 1, 2, 3} , ν ∈ {1, 2, 3}.

the mass member is changed under this transformation.
Matrices β[ν] and γ[0] are anticommutative. But it turns

out that there exists a fifth matrix β[4] anticommuting with all
these four matrices:

β[4] := i
[

02 12
−12 02

]
.

And the term with this matrix should be added to this La-
grangian mass term:

L := ψ†
(
β[k]∂k + m1γ

[0] + m2β
[4]

)
ψ

where
√

m2
1 + m2

2 = m.
Let U(α) be any SU(2)-matrix with parameter α and let U

be the space in which U(α) acts. In such case U(α) divides the
space U into two orthogonal subspaces Uo and Ux such that
for every element ψ of U there exists an element ψo of Uo and
an element ψx of Ux which fulfills the following conditions
[3, 4]:

1.
ψo + ψx = ψ,

2.

ψ†oU†(α)
(
β[k]∂k + m1γ

[0] + m2β
[4]

)
U(α)ψo =

= ψ†o(β[k]∂k + (m1 cosα − m2 sinα) γ[0] + (2)
+ (m2 cosα + m1 sinα) β[4])ψo,

3.

ψ†xU†(α)
(
β[k]∂k + m1γ

[0] + m2β
[4]

)
U(α)ψx =

= ψ†x(β[k]∂k + (m1 cosα + m2 sinα) γ[0] + (3)
+ (m2 cosα − m1 sinα) β[4])ψx.

In either case, m does not change.
I call these five (β :=

{
β[ν], β[4], γ[0]

}
) anticommuting ma-

trices Clifford pentad. Any sixth matrix does not anticom-
mute with all these five.

There exist only six Clifford pentads (for instance, [5,6]):
I call one of them (the pentad β) the light pentad, three (ζ, η,
θ) — the chromatic pentads, and two ( ∆, Γ) — the gustatory
pentads.
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The light pentad contains three diagonal matrices (β[ν])
corresponding to the coordinates of 3-dimensional space, and
two antidiagonal matrices (β[4], γ[0]) relevant to mass terms
(2,3) — one for the lepton state and the other for the neutrino
state of this lepton.

Each chromatic pentad also contains three diagonal matri-
ces corresponding to three coordinates and two antidiagonal
mass matrices - one for top quark state and the other — for
bottom quark state.

Each gustatory pentad contains a single diagonal coordi-
nate matrix and two pairs of antidiagonal mass matrices [6]
— these pentads are not needed yet.

Let∗
〈
ρAc, jA,ν

〉
be a 1+3-vector of probability density of

a pointlike event A.
For any A the set of four equations with an unknown com-

plex 4 × 1 matrix function ϕ(xk)


ρA = ϕ†ϕ,
jA,ν

c
= −ϕ†β[ν]ϕ

∣∣∣∣∣∣∣∣

has solution [3].
If† ρA (xk) = 0 for all xk such that |xk | > (πc/h) then ϕ

obeys the following equation [10]:
(
−
(
∂0+iΘ0+iΥ0γ

[5]
)
+β[ν]

(
∂ν+iΘν+iΥνγ

[5]
)

+

+2
(
iM0γ

[0]+iM4β
[4]

) )
ϕ+

+

(
−
(
∂0+iΘ0+iΥ0γ

[5]
)
−ζ[ν]

(
∂ν+iΘν+iΥνγ

[5]
)

+

+2
(
−iMζ,0γ

[0]
ζ +iMζ,4ζ

[4]
) )
ϕ+

+

((
∂0+iΘ0+iΥ0γ

[5]
)
−η[ν]

(
∂ν+iΘν+iΥνγ

[5]
)

+

+2
(
−iMη,0γ

[0]
η −iMη,4η

[4]
) )
ϕ+

+

(
−
(
∂0+iΘ0+iΥ0γ

[5]
)
−θ[ν]

(
∂ν+iΘν+iΥνγ

[5]
)

+

+2
(
iMθ,0γ

[0]
θ +iMθ,4θ

[4]
) )
ϕ =

= 0

with real
Θk (xk), Υk (xk), M0 (xk), M4 (xk), Mζ,0 (xk),
Mζ,4 (xk), Mη,0 (xk), Mη,4 (xk), Mθ,0 (xk), Mθ,4 (xk)
and with

γ[5] :=
[

12 02
02 −12

]
.

∗c = 299792458.
†h := 6.6260755 · 10−34

The first summand of this equation contains elements of
the light pentad only. And the rest summands contain ele-
ments of the chromatic pentads only.

This equation can be rewritten in the following way:

β[k]
(
−i∂k + Θk + Υkγ

[5]
)
ϕ + (4)

+(M0γ
[0] + M4β

[4] −
−Mζ,0γ

[0]
ζ + Mζ,4ζ

[4] −
−Mη,0γ

[0]
η − Mη,4η

[4] +

+Mθ,0γ
[0]
θ + Mθ,4θ

[4])ϕ =

= 0

because
ζ[ν]+η[ν]+θ[ν] = −β[ν].

This equation is a generalization of the Dirac’s equation with
gauge fields Θk (xk) and Υk (xk) and with eight mass mem-
bers. The mass members with elements of the light pentad (
M0 and M4) conform to neutrino and its lepton states. And six
mass members with elements of the chromatic pentads con-
form to three pairs (up and down) of chromatic states (red,
green, blue).

Let this equation not contains the chromatic mass nem-
bers:
(
β[k]

(
−i∂k + Θk + Υkγ

[5]
)

+ M0γ
[0] + M4β

[4]
)
ϕ = 0. (5)

If function ϕ is a solution of this equation then ϕ represents
the sum of functions ϕn,s which satisfy the following condi-
tions [3, 62–71]:

n and s are integers;
each of these functions obeys its equation of the following

form:
(
β[k]

(
i∂k − Θ0 − Υ0γ

[5]
)
− h

c

(
γ[0]n + β[4]s

))
ϕn,s = 0; (6)

for each point xk of space-time: or this point is empty (for
all n and s: ϕn,s (xk) = 0), or in this point is placed a sin-
gle function (for xk there exist integers n0 and s0 such that
ϕn0,s0 (xk) , 0 and if n , n0 and/or s , s0 then ϕn,s (xk) = 0).

In this case if m :=
√

n2 + s2 then m is a natural number.
But under the SU(2)-transformation with parameter α (2, 3):

m→
(
(n cosα − s sinα)2 + (s cosα + n sinα)2

)0.5
,

(n cosα − s sinα) and (s cosα + n sinα) must be integers
too. But it is impossible.

But for arbitrarily high accuracy in distant areas of the
natural scale there exist such numbers m that for any α some
natural numbers n′ and s′ exist which obey the following con-
ditions: n′ ≈ (n cosα − s sinα) and s′ ≈ (s cosα + n sinα).
These numbers m are separated by long intervals and deter-
mine the mass spectrum of the generations of elementary par-
ticles. Apparently, this is the way to solve Problem 4 because
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the masses are one of the most important constants of particle
physics.

The Dirac’s equation for leptons with gauge members
which are similar to electroweak fields is obtained [4, p. 333–
336] from equations (5, 6). Such equation is invariant under
electroweak transformations. And here the fields W and Z
obey the Klein-Gordon type equation with nonzero mass.

If the equation (4) does not contain lepton’s and neutrino’s
mass terms then the Dirac’s equation with gauge members
which are similar to eight gluon’s fields is obtained. And os-
cillations of the chromatic states of this equation bend space-
time. This bend gives rise to the effects of redshift, confine-
ment and asymptotic freedom, and Newtonian gravity turns
out to be a continuation of subnucleonic forces [10]. And
it turns out that these oscillations bend space-time so that at
large distances the space expands with acceleration according
to Hubble’s law [7]. And these oscillations bend space-time
so that here appears the discrepancy between the quantity of
the luminous matter in the space structures and the traditional
picture of gravitational interaction of stars in these structures.
Such curvature explains this discrepancy without the Dark
Matter hypothesis [8] (Problem 5).

Consequently, the theory of gravitation is a continuation
of quantum theory (Problem 1 and Problem 3).

Thus, concepts and statements of Quantum Theory are
concepts and statements of the probability of pointlike events
and their ensembles.

Elementary physical particle in vacuum behaves like the-
se probabilities. For example, according to doubleslit exper-
iment [9], if a partition with two slits is placed between a
source of elementary particles and a detecting screen in vac-
uum then interference occurs. But if this system will be put in
a cloud chamber, then trajectory of a particle will be clearly
marked with drops of condensate and any interference will
disappear. It seems that a physical particle exists only in the
instants of time when some events happen to it. And in the
other instants of time the particle does not exist, but the prob-
ability of some event to happen to this particle remains.

Thus, if no event occurs between an event of creation of a
particle and an event of detection of it, then the particle does
not exist in this period of time. There exists only the prob-
ability of detection of this particle at some point. But this
probability, as we have seen, obeys the equations of quantum
theory and we get the interference. But in a cloud chamber
events of condensation form a chain meaning the trajectory
of this particle. In this case the interference disappears. But
this trajectory is not continuous — each point of this line has
an adjacent point. And the effect of movement of this parti-
cle arises from the fact that a wave of probability propagates
between these points.

Consequently, the elementary physical particle represents
an ensemble of pointlike events associated with probabilities.
And charge, mass, energy, momentum, spins, etc. represent
parameters of distribution of these probabilities. It explains

all paradoxes of quantum physics. Schrödinger’s cat lives
easily without any superposition of states until the microevent
awaited by everyone occurs. And the wave function disap-
pears without any collapse in the moment when event proba-
bility disappears after the event occurs.

Hence, entanglement concerns not particles but probabil-
ities. That is when the event of the measuring of spin of
Alice’s electron occurs then probability for these entangled
electrons is changed instantly in the whole space. Therefore,
nonlocality acts for probabilities, not for particles. But prob-
abilities can not transmit any information (Problem 2).

Conclusion

Therefore, Lee Smolin’s Five Great Problems do have solu-
tion only using the properties of probabilities. These solu-
tions do not require any dubious ontological hypotheses such
as superstrings, spin networks, etc.

Submitted on December 15, 2010 / Accepted on December 16, 2010
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It is argued that the failure of particle dark matter experiments to verify its existence
may be attributable to a non-Planckian “action”, which renders dark matter’s behav-
ior contradictory to the consequences of quantum mechanics as it applies to luminous
matter. It is pointed out that such a possibility cannot be convincingly dismissed in the
absence of a physical law that prohibits an elementary “action” smaller than Planck’s.
It is further noted that no purely dark matter measurement of Planck’s constant exists.
Finally, the possibility of a non-Planckian cold dark matter particle is explored, and
found to be consistent with recent astronomical observations.

The search for dark matter (DM) remains one of the most
vexing of the unresolved problems of contemporary physics.
While the existence of DM is no longer in dispute, its com-
position is a matter of lively debate. A variety of subatomic
particles with exotic properties have been proposed as possi-
ble candidates. However, as is well known by now, after more
than three decades of experimentation, and considerable ex-
penditure, none have yet been detected. If the past is any
guide, such negative results often force us to radically reex-
amine some of the basic tenets underlying physical concepts.
It is the purpose of this paper to propose a plausible, exper-
imentally verifiable, explanation for the persistent failure of
particle DM experiments to yield positive results.

Since DM’s existence is inferred solely from its gravita-
tional effects, and its nature is otherwise unknown, one can-
not rule-out the possibility that DM’s behavior may be con-
tradictory to the consequences of quantum mechanics as it
applies to luminous matter (LM), which is particularly trou-
bling since it necessarily brings into question the applica-
bility of Planck’s constant as a viable “action” in this non-
luminous domain. It is important to point out that no purely
DM measurement of Planck’s constant exists. Indeed, all that
we know about Planck’s constant is based on electromagnetic
and strong interaction experiments, whose particles and fields
account for only 4.6% of the mass-energy density of the ob-
servable universe, which pales when compared to the 23.3%
attributable to DM.

While it is true that very little is known about DM, some
progress has been made on the astronomical front. Recent
observations have revealed important new clues regarding its
behavior. Particularly important, an analysis of cosmic mi-
crowave background observables has provided conclusive ev-
idence that DM is made up of slow-moving particles [1], a de-
velopment that has firmly established the cold DM paradigm
as the centerpiece of the standard cosmology. Equally re-
vealing, large aggregates of DM have been observed pass-
ing right through each other without colliding [2–3], which is
clearly significant since it essentially rules out the idea that
particles of DM can somehow interact and collide with each

other. Taken together these astronomical findings are sugges-
tive of a non-relativistic, non-interacting, particle whose co-
herent mode of behavior is a characteristic of classical light.
Clearly, for such a particle, the condition of quantization can
only become a physical possibility if its “action” is consider-
ably smaller than Planck’s.

Upon reflection one comes to the realization that such a
possibility can be accommodated in the context of the frame-
work of quantum mechanics, whose formalism allows for two
immutable “actions”. Namely, Planck’s familiar constant,
h, which has been shown experimentally to play a crucial
role in the microphysical realm, and the more diminutive,
less familiar “action” e2/c where e is the elementary charge,
and c is the velocity of light in a vacuum (denoted by the
symbol j for simplicity of presentation). While this non-
Planckian constant appears to have no discernible role in our
luminous world, it is, nevertheless, clearly of interest since it
may be sufficiently smaller than Planck’s constant to account
for DM’s astronomical behavior; a possibility that cannot be
convincingly dismissed in the absence of a physical law that
prohibits an elementary “action” smaller than Planck’s.

Whether or not we know DM’s nature, the undisputed fact
remains that all elementary particles exhibit wavelike proper-
ties. Hence, if DM’s behavior is orchestrated by this non-
Planckian “action” it should be possible to describe such par-
ticle waves quantum mechanically. In order to facilitate mat-
ters we shall assume that DM’s non-Planckian particle/wave
properties are consistent with both the Einstein relation for
the total energy of a particle, in the form

E = j f = mc2 =
m0c2√

1 − v2/c2
(1)

and the de Broglie relation for the momentum

p =
j
λ
= mv =

m0v√
1 − v2/c2

, (2)

where j = 7.6956 ×10−30 erg s is the conjectured DM “action”
quantum, which may be compared with the Planck constant,
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h, found in our luminous world (i.e., 6.6260 ×10−27 erg s).
Now, since the relation between energy and momentum in
classical mechanics is simply

E =
1

2m
p2 (3)

we can replace E and p with the differential operators

E = i
j

2π
∂

∂t
(4)

and
p = − i

j
2π

∂

∂x
(5)

and operate with the result on the wave function ψ(x, t) that
represents the de Broglie wave. We then obtain

i
j

2π
∂ψ

∂t
= − ( j/2π)2

2m
∂2ψ

∂x2 , (6)

which is Schrödinger’s general wave equation for a non-
relativistic free particle. Its solution describes a non-Planck-
ian particle that is the quantum mechanical analog of a non-
interacting classical particle that is moving in the x direc-
tion with constant velocity; a result that closely mirrors DM’s
elusive behavior, and can be simply explained in the context
of this generalization. That is, the classical concept of two
particles exerting a force on each other corresponds to the
quantum mechanical concept that the de Broglie wave of one
particle influences the de Broglie wave of another particle.
However, this is only possible if the de Broglie wave propa-
gates non-linearly, in sharp contrast with Schrödinger’s gen-
eral wave equation for which the propagation of waves is de-
scribed by a linear differential equation. Hence the presence
of one wave does not affect the behavior of another wave, al-
lowing them to pass right through each other without collid-
ing, which is consistent with the results of the aforementioned
astronomical observations [2–3].

If it exists, this non-Planckian particle would easily have
eluded detection because of the diminutive magnitude of the
non-Planckian “action”. Moresuccinctly, thecloseronecomes
to the classical limit the less pronounced are the quantum ef-
fects. As a result, its behavior is expected to be more wave-
like than particlelike, which is consistent with the observed
coherent mode of behavior of large aggregates of DM [2–3].
Clearly, the detection of this non-Planckian particle in a ter-
restrial laboratory setting will, almost certainly, require the
use of a wholly different set of experimental tools than those
presently employed in conventional DM experiments, which
are, after all, specifically designed to detect particle interac-
tions.

While, as has been shown, DM’s behavior in the astro-
nomical arena can be satisfactorily accounted for quantum
mechanically, in terms of this non-Planckian “action”, the de-
tailed implications remain to be worked out. Nevertheless,

the introduction of this non-Planckian cold DM particle in
the context of quantum mechanics, provides a fundamentally
plausible means of explaining the failure of conventional ex-
periments to provide conclusive evidence for the particle na-
ture of DM. After these many decades of null experimental
results, the time has come to acknowledge the possibility that
DM’s behavior may be orchestrated by a richer variety of fun-
damentally different mechanisms than previously recognized.

Appendix

I have taken note of the fact that if the reader is to grapple with
some of the concepts generated by this paper, it would be ad-
visable to ascribe an appropriate name to this non-Planckian
particle. Clearly, the basic aspect that one should be mindful
of is this particle’s indispensable role in enabling the warp-
ing of spacetime sufficiently enough to cradle whole galaxies.
Hence, I believe “warpton” would be the name of choice.

It is hoped that the experimental community can be suffi-
ciently motivated to make a determined search for this provo-
cative particle.

Submitted on December 14, 2010 / Accepted on December 15, 2010.
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A numerical analysis revealed that masses, radii, distances from the sun, orbital peri-
ods and rotation periods of celestial bodies can be expressed on the logarithmic scale
though a systematic set of numbers: 4e, 2e, e, e

2 , e
4 , e

8 and e
16 . We analyzed these data

with a fractal scaling model originally published by Müller in this journal, interpreting
physical quantities as proton resonances. The data were expressed in continued frac-
tion form, where all numerators are Euler’s number. From these continued fractions,
we explain the volcanic activity on Venus, the absence of infrared emission of Uranus
and why Jupiter and Saturn emit more infrared radiation than they receive as total ra-
diation energy from the Sun. We also claim that the Kuiper cliff was not caused by a
still unknown planet. It can be understood why some planets have an atmosphere and
others not, as well as why the ice on dwarf planet Ceres does not evaporate into space
through solar radiation. The results also suggest that Jupiter and Saturn have the princi-
pal function to capture asteroids and comets, thus protecting the Earth, a fact which is
well-reflected in the high number of their irregular satellites.

1 Introduction

Recently in three papers of this journal, Müller [1–3] sug-
gested a chain of similar harmonic oscillators as a general
model to describe physical quantities as proton resonance os-
cillation modes. In this model, the spectrum of eigenfrequen-
cies of a chain system of many proton harmonic oscillators is
given by a continuous fraction equation [2]:

f = fp exp S (1)

where f is any natural oscillation frequency of the chain sys-
tem, fp the oscillation frequency of one proton and S the con-
tinued fraction corresponding to f . S was suggested to be in
the canonical form with all partial numerators equal 1 and the
partial denominators are positive or negative integer values.

S = n0 +
1

n1 +
1

n2 +
1

n3 + ...

(2)

Particularly interesting properties arise when the nominator
equals 2 and all denominators are divisible by 3. Such frac-
tions divide the logarithmic scale in allowed values and empty
gaps, i.e. ranges of numbers which cannot be expressed with
this type of continued fractions. He showed that these contin-
ued fractions generate a self-similar and discrete spectrum of
eigenvalues [1], that is also logarithmically invariant. Max-
imum spectral density areas arise when the free link n0 and
the partial denominators ni are divisible by 3.

In a previous article [5] we slightly modified this model,
substituting all nominators by Euler’s number. In that way
we confirmed again that elementary particles are proton res-
onance states, since most masses were found to be located
close to spectral nodes and definitively not random.

In this article we investigated various solar system data,
such as masses, sizes and distances from the Sun, rotation and
orbital periods of celestial bodies on the logarithmic scale.
We showed that continued fractions with Euler’s number as
nominator are adequate to describe the solar system. From
these continued fractions we derived claims regarding spe-
cific properties of planets. It became evident, that the solar
system possesses a hidden fractal structure.

2 Data sources and computational details

All solar system data, such as distances, masses, radii, orbital
and rotation periods of celestial bodies, were taken from the
NASA web-site. The km was converted into the astronomical
unit via 1 AU = 149, 597, 870.7 km. The mean distance of an
object from the central body is understood as 1

2 (Aphelion −
Periphelion). Numerical values of continued fractions were
always calculated using the the Lenz algorithm as indicated
in reference [4].

3 Results and discussion

3.1 Standard numerical analysis

Before doing any numerical analysis, one always has to be
aware of the fact that the numerical value of a quantity de-
pends on the physical unit. In this particular analysis we
decided to choose practical units which were made exclu-
sively by nature. Such units are the astronomical unit (AU)
for lengths, the earth mass for planetary masses, as well as
the year and the day for orbit and rotation periods. As can be
seen, this particular choice leads to quite interesting regulari-
ties.

In a previous article [5], we had already done a simi-
lar analysis of elementary particle masses on the logarithmic
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scale and detected a set of systematic mass gaps: 2e, e, e
2 , e

4 ,
e
8 and e

16 . Therefore, our numerical analysis was focused on
these numbers and in a similar way, we detected this set of
expressions again.

When looking from the Earth in direction away from the
Sun, it can be noted that there are two principal zones, where
mass accumulation into heavy planets seems to be forbidden.
The existing mass is scattered in the form of asteroids and
large bodies cannot become more than dwarf planets. The
first such zone is the so-called Asteroid belt, located between
Mars and Jupiter. Its population has already been well in-
vestigated, especially to confirm the orbital resonance effects
manifesting in the Kirkwood gaps. Most asteroids have semi-

Table 1: Mean distances of celestial bodies (d) from the Sun ex-
pressed through e on the logarithmic scale and absolute values of
corresponding numerical errors.

Object
d [AU] Expression Numerical
ln(d) error
Mercury
0.3871044 −

(
e
4 + e

8

)
0.0703

-0.9491
Venus
0.723339 − e

8 0.0159
-0.3239
Earth
0.9999808 0e 0.0000
0.0000
Mars
1.523585 e

8 0.0812
0.4211
Ceres
2.7663 e

4 + e
8 0.0019

1.0175
Jupiter
5.204419 e

2 + e
8 0.0494

1.6495
Saturn
9.582516 e

2 + e
4 + e

16 0.0513
2.2599
Uranus
19.201209 e + e

16 0.0668
2.9550
Neptune
30.04762 e + e

4 0.0049
3.4028
Pluto
39.486178 e + e

4 + e
8 0.0618

3.6758

major axes between 2.1 and 3.5 AU.
The second scattered-mass zone is the Kuiper belt, lo-

cated from the orbit of Neptune (30 AU) to 55 AU distance
from the Sun.

The Oort cloud is also such a scattered-mass zone. Due
to its giant distance from the center of the solar system, there
is no well-confirmed lower and upper limit, so we did not
include it into the numerical analysis.

Table 2: Equatorial radii (r) of celestial bodies expressed through e
on the logarithmic scale and absolute values of corresponding nu-
merical errors.

Object
r [AU] Expression Numerical
ln(r) error
Mercury
1.6308 × 10−5 −

(
4e + e

16

)
0.0192

-11.0238
Venus
4.0454 × 10−5 −

(
2e + e + e

2 + e
4

)
0.0782

-10.1154
Earth
4.2635 × 10−5 −

(
2e + e + e

2 + e
8 + e

16

)
0.0391

-10.0628
Mars
2.2708 × 10−5 −

(
2e+e+ e

2 + e
4 + e

8 + e
16

)
0.0104

-10.6928
Ceres
3.2574 × 10−6 −

(
4e + e + e

2 + e
8

)
0.0625

-12.6346
Jupiter
4.7789 × 10−4 −

(
2e + e

2 + e
4 + e

16

)
0.0010

-7.6461
Saturn
4.0287 × 10−4 −

(
2e + e

2 + e
4 + e

8

)
0.0018

-7.8169
Uranus
1.709 × 10−4 −

(
2e + e + e

8 + e
16

)
0.0102

-8.6747
Neptune
1.6554 × 10−4 −

(
2e + e + e

8 + e
16

)
0.0418

-8.7063
Pluto
7.6940 × 10−6 −

(
4e + e

4 + e
16

)
0.0525

-11.7751
Sun
4.649 × 10−3 −2e 0.0549
-5.3817
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Table 3: Sidereal orbital periods (T) of celestial bodies expressed
through e on the logarithmic scale and absolute values of corre-
sponding numerical errors.

Object
T [y] Expression Numerical
ln(T) error
Mercury
0.2408467 − e

2 0.0645
-1.4236
Venus
0.61519726 −

(
e
8 + e

16

)
0.0239

-0.4858
Earth
1.0000174 0e 0.0000
0.0000
Mars
1.8808476 e

4 0.0479
0.6317
Ceres
4.60 e

2 + e
16 0.0029

1.5261
Jupiter
11.862615 e

2 + e
4 + e

8 + e
16 0.0750

2.4734
Saturn
29.447498 e + e

4 0.0153
3.3826
Uranus
84.016846 e + e

2 + e
8 0.0138

4.4310
Neptune
164.79132 e + e

2 + e
4 + e

8 0.0079
5.1047
Pluto
247.92065 2e 0.0765
5.5131

It can be seen that the distance between Ceres (the largest
Asteroid belt object) and Pluto (the largest Kuiper belt ob-
ject) matches Euler’s number quite accurately. Table 1 sum-
marizes the mean distances of the most important celestial
bodies from the Sun together with the corresponding natural
logarithms. It was found that all logarithms can be expressed
as a sum of 2e, e, e

2 , e
4 , e

8 and e
16 . Most distances could even

expressed as multiples of e
8 since they do not contain the sum-

mand e
16 . The numerical errors on the logarithmic scale are

significantly lower than e
16 .

Analogously, we expressed the equatorial radii, sidereal
orbital periods, sidereal rotation periods and masses of celes-
tial bodies on the logarithmic number line (see Tables 2–5).

Table 4: Sidereal rotation periods (T) of celestial bodies (retrograde
rotation ignored) expressed through e on the logarithmic scale and
absolute values of corresponding numerical errors.

Object
T [d] Expression Numerical
ln(T) error
Mercury
58.6462 e + e

2 0.0059
4.0715
Venus
243.018 2e 0.0565
5.4931
Earth
0.99726968 0e 0.0027
-0.0027
Mars
1.02595676 0e 0.0256
0.0256
Ceres
0.3781 −

(
e
4 + e

8

)
0.0468

-0.9726
Jupiter
0.41354 −

(
e
4 + e

16

)
0.0335

-0.8830
Saturn
0.44401 −

(
e
4 + e

16

)
0.0376

-0.8119
Uranus
0.71833 − e

8 0.0090
-0.3308
Neptune
0.67125 − e

4 0.0588
-0.3986
Pluto
6.3872 e

2 + e
8 + e

16 0.0145
1.8543
Sun
25.05 e + e

8 + e
16 0.0071

3.2209

In very few cases it was necessary to introduce 4e into the set
of summands.

From these results we conclude that all these numerical
values of planetary data are definitively not a set of random
numbers. The repeatedly occurring summands strongly sup-
port the idea of a self-similar, fractal structure as Müller al-
ready claimed in reference [2].

In the present form, these results are obtained only when
considering nature-made units, which underlines their impor-
tance.
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Table 5: Masses (m) of celestial bodies, rescaled by earth mass and
expressed through e on the logarithmic scale and absolute values of
corresponding numerical errors.

Object
m [×1024 kg] Expression Numerical
ln( m

mEarth
) error

Mercury
0.330104 −

(
e + e

16

)
0.0068

-2.8950
Venus
4.86732 − e

16 0.0347
-0.2046
Earth
5.97219 0e 0.0000
0.0000
Mars
0.641693 −

(
e
2 + e

4 + e
16

)
0.0226

-2.2312
Ceres
0.000943 −

(
2e + e + e

8 + e
16

)
0.0758

-8.7403
Jupiter
1898.13 2e + e

8 0.0148
5.7615
Saturn
568.319 e + e

2 + e
8 + e

16 0.0315
4.5556
Uranus
86.8103 e 0.0416
2.6766
Neptune
102.410 e + e

16 0.0463
2.8419
Pluto
0.01309 −

(
2e + e

4

)
0.0032

-6.1193
Sun
1989100 4e + e

2 + e
8 + e

16 0.0258
12.7161

3.2 Continued fraction analysis

Due to the fact that all the solar system data can be expressed
by multiples of e

16 , it is consistent to set all partial numera-
tors in Müller’s continued fractions (given in equation(2)) to
Euler’s number. We further follow the formalism of previous
publications [5, 6] and introduce a phase shift p in equation
(2). According to [6] the phase shift can only have the val-
ues 0 or ±1.5. So we write for instance for the masses of the

celestial bodies:

ln
mass

proton mass
= p + S (3)

where S is the continued fraction

S = n0 +
e

n1 +
e

n2 +
e

n3 + ...

. (4)

We abbreviate p + S as [p; n0 | n1, n2, n3, . . .]. The free link
n0 and the partial denominators ni are integers divisible by 3.
For convergence reason, we have to include |e+1| as allowed
partial denominator. This means the free link n0 is allowed
to be 0,±3,±6,±9 . . . and all partial denominators ni can take
the values e+1,−e−1,±6,±9,±12 . . ..

Analogously we write for the planetary mean distances
from the Sun:

ln
mean distance

λC
= p + S (5)

where λC = h
2πmc is the reduced Compton wavelength of

the proton with the numerical value 2.103089086 × 10−16 m.
Since the exact diameter or radius of the proton is unknown,
some other proton related parameter is used, which can be
determined accurately. The same applies for the equatorial
radii. For orbital and rotational periods we write:

ln
time period

τ
= p + S (6)

where τ =
λC
c is the oscillation period of a hypothetical pho-

ton with the reduced Compton wavelength of the proton and
traveling with light speed (numerical value 7.015150081 ×
10−25 s).

For the calculation of the continued fractions we did not
consider any standard deviation of the published data. Prac-
tically, we developed the continued fraction and determined
only 18 partial denominators. Next we calculated repeatedly
the data value from the continued fraction, every time consid-
ering one more partial denominator. As soon as considering
further denominators did not improve the experimental data
value significantly (on the linear scale), we stopped consid-
ering further denominators and gave the resulting fraction in
Tables 6-10. This means we demonstrate how accurately the
published solar system data can be expressed through contin-
ued fractions. Additionally we gave also the numerical error,
which is defined as absolute value of the difference between
NASA’s published data value and the value calculated from
the continued fraction representation.

The continued fraction representations of the masses of
celestial bodies are given in Table 6. As can be seen, the
absolute value of the first partial denominator is frequently
high, which locates the mass very close to the principal node.
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Table 6: Continued fraction representation of masses (m) of celestial
bodies according to equation (3) and absolute values of correspond-
ing numerical errors.

Object Continued fraction representation
m [kg] Numerical error [kg]
Mercury [1.5; 114 | 9, -12, -e-1, e+1]
0.330104 × 1024 5.5e + 19
Venus [1.5; 117 | -305223]
4.86732 × 1024 1.6 × 1014

Earth [1.5; 117 | 12, e+1, -e-1, e+1]
5.97219 × 1024 3.0 × 1022

Mars [0; 117 | -6, e+1, -6, 33, -60,
0.641693 × 1024 -e-1, e+1, -e-1]

1.1 × 1015

Ceres [1.5; 108 | 6, 99, e+1, -e-1,
9.43 × 1020 e+1, -6, e+1, e-1]

3.4 × 1012

Jupiter [1.5; 123 | -81, e+1, -e-1, -e-1,
1.89813 × 1027 -e-1, e+1, -9, -e-1]

3.6 × 1018

Saturn [0; 123 | 9, e+1, -e-1]
5.68319 × 1026 8.1 × 1024

Uranus [1.5; 120 | -24, e+1, -e-1, e+1]
8.68103 × 1025 7.0 × 1022

Neptune [1.5; 120 | 60, -e-1, e+1, -e-1]
1.0241 × 1026 3.9 × 1022

Pluto [1.5; 111 | 33, 9, -e-1, e+1,
1.309 × 1022 -18, e+1, e+1, -15]

3.2 × 1012

Sun [0; 132 | -e-1, -e-1, e+1, -e-1,
1.9891 × 1030 12, -e-1]

5.0 × 1025

[1.5; 129 | e+1, -e-1, 15, e+1]
6.2 × 1026

In case of the Venus, the mass is almost exactly located in a
node. Notably two low-weight bodies, Ceres and Mars, are
most distant from the principal nodes. A preferred accumu-
lation of planetary masses in nodes in agreement with results
previously published by Müller [2]. This author published al-
ready a continued fraction analysis of planetary masses, how-
ever, the continued fractions were in the canonical form with
all nominators equal 1. Interestingly, his result is principally
not changed substituting the nominators for e. The only ex-
ception is the Sun, here even two continued fractions can be
given and the mass is located in a non-turbulent zone between
the principal nodes 129+1.5 and 132. This indicates that the
probability of mass changes of the Sun is extremely low, so
one can expect that all astrophysical parameters of the Sun
will not show any evolution for a long time. We conclude

Table 7: Continued fraction representation of mean distances of ce-
lestial bodies from the Sun according to equation (5) and absolute
values of corresponding numerical errors.

Object Continued fraction representation
mean distance [km] Numerical error
Mercury [0; 60 | e+1, -e-1, -e-1, -e-1,
57.91 × 106 6, 6, -9, -e-1]

1 km
Venus [1.5; 60 | 513, 6, -9, e+1]
108.21 × 106 260 m
Earth [1.5; 60 | 9, -e-1, 51, e+1, 6, 6]
149.595 × 106 873 m
Mars [0; 63 | -e-1, 30, -e-1, -15, 6, 9, -9]
227.925 × 106 0.4 m
Ceres [0; 63 | -18, 9, e+1, -e-1,
413.833 × 106 e+1, -e-1, e+1, -e-1]

5854 km
Jupiter [0; 63 | 6, -9, 6, -e-1, e+1,
778.57 × 106 -e-1, -6, 54]

372 m
Saturn [1.5; 63 | -6, -e-1, -e-1, -15,
1433.525 × 106 -48, e+1, -e-1]

8.7 km
Uranus no continued fraction
2872.46 × 106 found
Neptune [0; 66 | -e-1, 15, 15, 54, 9,
4495.06 × 106 -e-1, e+1, -e-1]

46 m
[1.5; 63 | e+1, -597, -9, e+1]
181 km

Pluto [0; 66 | -6, 6, -e-1, -6, -15,
5906.375 × 106 -e-1, -12, -e-1]

7.2 km

that it seems to be a general property of mass to accumulate
close to the nodes. Apparently no specific properties of the
celestial bodies can be correlated to these data.

Table 7 displays the continued fraction representations of
the mean distances from the Sun of the considered celestial
bodies. When analyzing the denominators, it is directly clear
that there is no general behavior of the planetary distances.
For instance Venus is located almost in a node (n1 very high),
while Mercury, Mars and Neptune are far away from a node
(n1 = e+1 or −e−1). Uranus is even in a gap. Earth, Jupiter,
Saturn and Pluto are moderately close to a node. This opens
a door to associate a specific property of these bodies to the
continued fraction representation. In this particular case we
relate the mean distance to seismic activity of a solid object
or heat release of a gas planet. The oscillation process inside
Venus is turbulent, and it is known that Venus has an extreme
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Table 8: Continued fraction representation of equatorial radii of ce-
lestial bodies according to equation (5) and absolute values of cor-
responding numerical errors.

Object Continued fraction representation
Equatorial Numerical error
radius [km]
Mercury [0; 51 | -15, e+1, -e-1, e+1, -e-1]
2439.7 1.6 km
Venus [0; 51 | e+1, 30, 9]
6051.8 98 m
Earth [0; 51 | e+1, -15, -e-1, e+1, e+1]
6378.14 57 m

[1.5; 51 | -e-1, 207]
58 m

Mars [0; 51 | 21, -e-1, e+1, -e-1, e+1]
3397 1.8 km
Ceres [1.5; 48 | -9, 27, 9, 18]
487.3 0.01 m
Jupiter [0; 54 | 15, -18, -24, -6]
71492 2 m
Saturn [0; 54 | 222, -6, -e-1]
60268 46 m
Uranus [0; 54 | -e-1, 6, -e-1, -e-1, 9]
25559 898 m

[1.5; 51 | e+1, 6, 12, -e-1, e+1, -6]
44 m

Neptune [0; 54 | -e-1, e+1, e+1, 9,
24764 -e-1, 9]

22 m
[1.5; 51 | e+1, e+1, 6, -6, -213]
0.05 m

Pluto [0; 51 | -e-1, e+1, -6, e+1, e+1]
1151 475 m
Sun [0; 57 | -6, e+1, -e-1, e+1,
6.955 × 105 -e-1, -e-1, 12, -6]

49 m
[1.5; 54 | e+1, -e-1, e+1, e+1, e+1
-e-1, e+1, -e-1, e+1]
21 km

volcanic activity [7,8]. Scientists also believe that the volcan-
ism on Venus has been changing over time [7], so changes in
trend may occur. The data also suggest that seismic activity
on Earth is higher than on Mars, Mercury or Pluto.

For the gas planets Jupiter, Saturn and Neptune, it has
been known that they produce more heat internally than they
receive from the Sun [9, 10]. Contrary to this, Uranus is a
relatively cold planet, radiating very little more energy than
received. The principal source of this heating is believed to
be a liberation of thermal energy from precipitation of He-
lium or other compounds in the interior of the planet while

simultaneously gravitational potential energy is released.
Physically, such processes should exist in all gas planets,

this means only the process kinetics can be associated to the
continued fraction representation. We assume that the rate of
this process is influenced by oscillations in the planet. For
Uranus, which is located in a gap, the oscillation capability is
low, which means the heat-releasing process occurred faster
and is already almost completed. Jupiter and Saturn, located
in proximity to the nodes 63 and 1.5+63, are in a fluctuation
zone. So here the heat releasing process is disturbed and they
are yet in a more early phase of process development, whereas
Neptune (away from nodes) is in an already more advanced
phase. From this we can predict that one day in future, first
Neptune stops releasing excess heat, while Jupiter and Saturn
will do this much later.

A very special situation is the continued fraction repre-
sentation of dwarf planet Ceres. As can be seen, it has an
exceptional high numerical error, actually this must be inter-
preted as “no continued fraction found”. We report the frac-
tion here only in order to demonstrate that the whole Aster-
oid belt is in a fluctuation zone around the node 63, which
translates to λCexp(63) = 3.22 AU. This value is not accept-
able as an average for the distances of the Asteroid belt ob-
jects from the Sun. Actually most Asteroids can be found
between 2.1 and 3.5 AU. From this it can be concluded that
most Asteroids accumulate in the compression zone before
the principal node 63. Similarly is the situation for the Kuiper
belt. All Kuiper belt objects are located before the node 66,
λCexp(66) = 64.77 AU. The Astrophysics textbooks always
teach the belt is located from the orbit of Neptune (30 AU)
to 50 or 55 AU distance from the Sun. So again, the celestial
bodies accumulate before a principal node.

Since Ceres is the largest Asteroid belt object, it is rea-
sonable to claim Ceres is located in a gap, even inside a fluc-
tuation zone. We interpret these fluctuations as the cause of
the observed mass scattering in the whole Asteroid belt.

More research must still be done regarding the distribu-
tion of Kuiper belt objects. Brunini and Melita [11] sug-
gested a Mars like object around 60 AU distance from the
Sun in order to explain the Kuiper cliff, a sudden drop off of
space rocks beyond 50 AU. Later, numerical simulations of
Lykawka and Mukai showed that such a body would not re-
produce the observed orbital distribution in the Kuiper belt
[12], however these authors did not completely exclude the
possibility of an unknown planet. Now, from our continued
fraction analysis we suggest that there is indeed no unknown
planet, it is just so that the compression zone before the prin-
cipal node acts as accumulation site of these relatively light
Kuiper belt objects. If there was such a solid planet in the
fluctuation zone, it should possess volcanic activity similarly
to Venus, and consequently should be very easy to detect,
because of emission of infrared radiation. So this argument
again confirms the absence of such a planet. Anyway, a de-
tailed continued fraction analysis of Trans-Neptunian objects
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combined with Kuiper belt objects would be very useful.
Table 8 displays analogously the continued fraction rep-

resentations of planetary equatorial radii. From these data,
some statements regarding the atmosphere of solid planets
can be derived. We interprete an atmosphere as an exten-
sion of a planet with the effect to increase its radius. On the
other hand, an atmosphere is also governed by the chemical
composition of a planet and its temperature and these param-
eters are more decisive. Such an analysis cannot be applied
to gaseous planets, since they always have a very dense atmo-
sphere, regardless of their radii.

The most dense atmospheres can be found on Earth and
on Venus. The first partial denominator in the continued frac-
tion representation of Venus is e+1. this means the radius of
Venus is in an expansion zone and far away from the node.
An increase in radius is favored and any probabilities of trend
changes are low. This is in agreement with the observed high
density of the atmosphere on Venus, with a pressure of 95 bar
at the surface [8]. In the case of our planet Earth, two con-
tinued fractions can be given, so the radius is influenced by
the two nodes 51 and 51+1.5. Both first partial denominators
put the radius far away from the corresponding nodes into a
non-fluctuation zone. Here does not exist any specific trend
and the formation of the atmosphere is solely governed by
chemical composition and temperature.

Pluto is with a negative first partial denominator in a com-
pression zone, so the expansion of its radius by an atmo-
sphere is not favored. Indeed Pluto has only a very thin at-
mosphere in the micro-bar range [13]. According to refer-
ence [14], Pluto’s atmosphere at perihelion extends to depths
greater than Earth’s atmosphere and may even enclose the
moon Charon. The atmosphere is thought to be actively es-
caping, so Pluto is the only planet in the solar system actively
losing its atmosphere now.

The same is true for Mercury. In agreement with the ob-
servations, Mercury does not have an atmosphere [8], which
can also be alternatively explained by its high surface temper-
ature.

Mars is with the positive number 21 of the first partial
denominator in an expansion zone, so the formation of an at-
mosphere is favored. At the same time the radius is also close
to the node 51 in a fluctuation zone. This means changes
in process trends may occur. Considering the formation of
an atmosphere as the relevant process, this process can be
interrupted or inverted over long time periods. As a conse-
quence, one would expect an atmosphere, but significantly
thinner than that on Venus. Actually the surface pressure on
Mars is close to 1% to that of the Earth and there are spec-
ulations that the atmosphere on Mars has experienced major
changes in the past [8].

Ceres is a low density object consisting of rock and ice
with mean density of only 2 g/cm3, which supports the pres-
ence of a lot of ice. The “frost line” in our solar system — the
distance where ice will not evaporate — is roughly at 5 AU

Table 9: Continued fraction representation of sidereal orbital periods
of celestial bodies according to equation (6) and absolute values of
corresponding numerical errors.

Planet Continued fraction representation
T [s] Numerical error
Mercury [0; 72 | -6, e+1, -e-1, e+1, -30, -e-1, -33,
7595370 -6]

0.002 s
[1.5; 69 | e+1, -e-1, e+1, 6, -12, 6, -e-1,
e+1, -15]
0.01 s

Venus [0; 72 | 6, e+1, -6, 6, e+1, -e-1, e+1, -e-1,
19400861 e+1]

128 s
Earth [0; 72 | e+1, -e-1, -6, e+1, -6, -6, -e-1,
31536549 9, -6]

0.1 s
[1.5; 72 | -e-1, -e-1, -12, 45, e+1, -6,
-e-1, -24]
0.0003 s

Mars [1.5; 72 | 183, -e-1, 12, -e-1, e+1,
-e-1]

59314410 13 s
Ceres [0; 75 | -e-1, -e-1, e+1, 6, -e-1, 6, -6, -18,
145065600 e+1]

0.3 s
[1.5; 72 | e+1, -e-1, -225, -e-1, e+1, -e-1,
-9, -e-1]
0.06 s

Jupiter no continued fraction found
374099427
Saturn [1.5; 75 | -12, 6, e+1, -e-1, 33, e+1, -e-1,
928656297 e+1, -e-1]

74 s
Uranus [0; 78 | -e-1, -12, e+1, -e-1, 12, -e-1,
2649555255 -69, -9]

0.9 s
Neptune [0; 78 | -225, e+1, -9, e+1, -6, e+1, 48]
5196859068 0.04 s
Pluto no continued fraction found
7818425618

from the Sun [15]. So one must ask why Ceres does not
have already lost all his ice through sublimation. From the
continued fraction representation, the radius of Ceres is in a
compression zone and the formation of an atmosphere is not
favored. Through evaporation of the ice, at least temporarily
an atmosphere will form. For this reason we believe Ceres is
able to continue for a long time as an icy dwarf planet.

When looking at the data it turns out that the gaseous
planets seem to prefer radii that can be described by two con-
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tinued fractions. For the Sun, Uranus and Neptune it can be
said that they are influenced by two neighbored nodes. This
indicates their sizes will remain constant over a longe time.
The only exceptions are Jupiter and Saturn, which are in an
expansion zone. One would expect their sizes increasing.
How could this be achieved in practice? There is only one
possibility, Jupiter and Saturn must capture some asteroids or
comets preferentially from the Kuiper belt. When looking at
the number of their moons, it can be assumed that such a pro-
cess has already been progressing for a long time. A moon
can be interpreted as an incomplete capture, this means the
object was captured without crashing into the planet and in-
creasing its size. Indeed Jupiter and Saturn have 63 and 62
confirmed moons, while Uranus has 27, and Neptune only 13
moons. Normally one would expect that Uranus and Neptune
should have the most moons, since they are much closer lo-
cated to the Kuiper belt. Notably 55 of Jupiter’s moons are
irregular satellites with high eccentricities and inclinations,
while Saturn has just 38 of such satellites. It is assumed that
these irregular satellites were captured from other orbits.

In Table 9, the continued fraction representations of the
orbital periods are given. When analyzing these fractions,
their interpretation is problematic: One has to bear in mind
that Kepler’s 3rd law relates the orbital period to the semi-
major axis (for most planets close to the mean distance), so
these parameters are not independent from each other.

Regarding oscillation properties, it is clearly visible that
the continued fraction representations of the orbital periods
do not provide a similar image of planetary features than the
representations of the corresponding mean distances. For in-
stance, the orbital periods of Mars and Neptune are located in
a highly turbulent zone. This is contrary to to the continued
fraction representation of its mean distances given in Table 7,
where both planets are far away from a node. Since for the
mean distances a meaningful continued fraction representa-
tion exists, the orbital periods do not fit anymore in this model
and their mathematical representation in continued fractions,
as presented here, is physically meaningless.

Luckily, the situation is easier for the rotation periods of
the celestial bodies (see Table 10). As can be seen, the ro-
tation periods prefer values far away from the nodes in non-
fluctuating zones. There are only three exceptions: Jupiter
Saturn and Ceres have periods located in a principal node.
This means the rotation periods are in an early stage of devel-
opment, which can be justified with a specific process inside
the celestial bodies.

For the gas planets Jupiter and Saturn it has been known
that heat is generated from precipitation of Helium or other
compounds in the interior of the planet while simultaneously
gravitational potential energy is released. Through such a
process, the moment of inertia of the planet changes gradu-
ally and the rotation period evolves. From the analysis of the
mean distances of Jupiter and Saturn, we have already stated
that their heat release processes are still in an early phase of

Table 10: Continued fraction representation of sidereal rotation pe-
riods (T) of celestial bodies according to equation (6) and absolute
values of corresponding numerical errors.

Planet Continued fraction representation
T [s] Numerical error
Mercury [0; 72 | -e-1, e+1, -6, 6, -15, -e-1,
5067032 e+1, -e-1, e+1]

3 s
Venus [0; 72 | 6, -9, -12, 18, -9, e+1]
20996755 0.1 s
Earth [0;66 | e+1, -e-1, e+1, -6, e+1, e+1,
86164 -e-1, 21]

0.02 s
[1.5; 66 | -6, e+1, -15, -e-1, -6]
0.07 s

Mars [1.5; 66 | -6, 6, -18, -12]
88643 0.04 s
Ceres [0; 66 | 255, -e-1, e+1, -e-1, e+1]
32668 0.17 s
Jupiter [0; 66 | 27, 27, -21]
35730 0.005 s
Saturn [0; 66 | 15, e+1, -e-1, -e-1, e+1, -e-1]
38362 2 s
Uranus [0; 66 | e+1, 6, 39, -12]
62064 0.02 s

[1.5; 66 | -e-1, 6, -e-1, -9, -e-1, 48]
0.001 s

Neptune [0; 66 | e+1, e+1, -e-1, 9, -9, -18]
57996 0.003 s

[1.5; 66 | -e-1, e+1, -30, -e-1, e+1, -e-1]
4 s

Pluto no continued fraction found
551854
Sun [1.5; 69 | -9, -15, e+1, e+1, -6, 9]
2164320 0.003 s

development. Exactly the same can be derived from the anal-
ysis of rotation periods. The rotation of the Sun is also not yet
completely evolved, however here this effect is minor. Any
internal structuring of plasma fluxes could be responsible for
this.

Ceres has an unusual location inside the Asteroid belt,
which is a turbulent zone as can be derived from the con-
tinued fraction analysis of its mean distance from the Sun.
Knowing this, we speculate that the evolution of its rotation
period could have been influenced by the fluctuating popu-
lation of the belt through collisions of an early Ceres with
many smaller asteroids over a long time. According to refer-
ence [15], there are possibly volatile compounds in the inte-
rior of Ceres. Ceres could have accreted from rocky and icy
planetesimals. This has taken some time, we speculate that
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possibly Ceres had less time for the evolution of its rotation
than other planets.

An other reference [16] speculates regarding a subsurface
ocean and mentions a modeling predicting that ice in the outer
10 km of Ceres would always remain frozen, although the
frozen crust would be gravitationally unstable and likely over-
turn, melt, and re-freeze. Such repeatedly occurring move-
ments of heavy masses on Ceres could have interfered with
the evolution of its rotation period.

4 Conclusions

Numerical investigation of solar system data revealed that
masses, radii, distances of celestial bodies from the Sun, or-
bital periods and rotation periods can be expressed as multi-
ples of e

16 on the logarithmic number line, which proves that
they are not a set of random numbers. Through application of
a fractal scaling model, we set these numerical values in rela-
tion to proton resonances and correlated numerous features of
celestial bodies with their oscillation properties. From this it
can be concluded that the continued fraction representations
with all nominators equal e are adequate and Müller’s fractal
model turned out to be a powerful tool to explain the fractal
nature of the solar system. If some day in future, a further
planet will be discovered in our solar system, it should be
possible to derive analogously some of its features from its
orbital parameters.

Acknowledgments

The authors greatly acknowledge the financial support from
the Brazilian governmental funding agencies FAPESQ and
CNPq.

Submitted on December 26, 2010 / Accepted on December 27, 2010

References
1. Müller H. Fractal scaling Models of resonant oscillations in chain sys-

tems of harmonic oscillators. Progress in Physics, 2009, v. 2 72–76.

2. Müller H. Fractal scaling models of natural oscillations in chain sys-
tems and the mass distribution of the celestial bodies in the solar sys-
tem. Progress in Physics, 2010, v. 1 62–66.

3. Müller H. Fractal scaling models of natural oscillations in chain sys-
tems and the mass distribution of particles. Progress in Physics, 2010,
v. 3 61–66.

4. Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. Numerical
recipes in C. Cambridge University Press, Cambridge, 1992.

5. Ries A., Fook M. V. L. Fractal structure of nature’s preferred masses:
Application of the model of oscillations in a chain system. Progress in
Physics, 2010, v. 4, 82–89.

6. Otte R., Müller H.. German patent No. DE102004003753A1, date:
11.08.2005

7. Basilevsky A. T., Head J. W. Venus: Timing and rates of geologic ac-
tivity. Geology, 2002, v. 30, no. 11, 1015-–1018.

8. Gregersen E. (Editor). The inner solar system: the Sun, Mercury,
Venus, Earth, and Mars. Britannica Educational Publishing, New York,
2010.

9. Elkins-Tanton L. T. Jupiter and Saturn. Chelsea House, New York,
2006.

10. Gregersen E. (Editor). The outer solar system: Jupiter, Saturn, Uranus,
Neptune, and the dwarf planets. Britannica Educational Publishing,
New York, 2010.

11. Brunini A., Melita M. D. The Existence of a Planet beyond 50 AU and
the Orbital Distribution of the Classical Edgeworth-Kuiper-Belt Ob-
jects. Icarus, 2002, v. 160, no. 1, 32–43.

12. Patryk S. Lykawka P. S., Mukai T. An Outer Planet beyond Pluto and
the Origin of the Trans-Neptunian belt Architecture. The Astronomical
Journal, 2008, v. 135, 1161-–1200.

13. Lellouch E., Sicardy B., de Bergh C., Käufl H.-U., Kassi S., Cam-
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The electronic transport property of a bilayer graphene is investigated under the effect
of an electromagnetic field. We deduce an expression for the conductance by solving
the Dirac equation. This conductance depends on the barrier height for graphene and
the energy of the induced photons. A resonance oscillatory behavior of the conductance
is observed. These oscillations are strongly depends on the barrier height for chiral
tunneling through graphene. This oscillatory behavior might be due to the interference
of different central band and sidebands of graphene states. The present investigation
is very important for the application of bilayer graphene in photodetector devices, for
example, far-infrared photodevices and ultrafast lasers.

1 Introduction

Two-dimensional graphene monolayer and bilayer exhibit
fascinating electronic [1–4] and optical properties [5, 6] due
to zero energy gap and relativistic-like nature of quasiparti-
cle dispersion close to the Fermi-level. With recent improve-
ments in nanofabrication techniques [7] the zero-energy gap
of graphene can be opened via engineering size, shape, char-
acter of the edge state and carrier density, and this in turn
offers possibilities to simultaneously control electronic [8, 9]
magnetic [10, 11] and optical [6, 12] properties of a single
material nanostructure. Recent studies have also addressed
electronic properties of confined graphene structure like dots,
rings or nanoribbons. In particular, nanoribbons have been
suggested as potential candidates for replacing electronic
components in future nanoelectronic and spintronic devices
[3, 13]. Recent research shows that graphene [14] is a suit-
able candidate to examine the photon-assisted tunneling and
quantum pumps in the Dirac system.

The purpose of the present paper is to investigate the an-
gular dependence of the chiral tunneling through double layer
graphene under the effect of the electromagnetic field of wide
range of frequencies.

2 Theoretical Formulation

In this section, we shall derive an expression for the conduc-
tance of a bilayer graphene by solving the eigenvalue problem
Dirac equation. The chiral fermion Hamiltonian operates in
space of the two-component eigenfunction, ψ, where Dirac
eigenvalue differential equation is given by [14, 15]:

− ivF ~σ · ~∇ψ(r) = Eψ(r) , (1)

where ~σ are the Pauli-matrices, VF is the Fermi-velocity, and
E is the scattered energy of electrons. It is well known that
graphene junction have finite dimensions [14, 15], the motion

of chiral fermions is quantized. This quantization imposes ad-
ditional constrains on the directional tunneling diagram. So,
accordingly, the value of the angle of incidence of electrons
on the barrier could be obtained from boundary conditions
along the y-direction as we will see below.

In order to solve Eq.(1), we propose a potential barrier of
width, L, and height, V0,. The eigenfunction, ψL(r) in the left
of the potential barrier is given by:

ψL(r) =
∞∑

n=−∞
Jn

(eVac

~ω

) {
e[i(kx x+kyy)]+

+
Rn(E)
√

2

(
1

s ei(π−φ)

)
e[i(−ikx x+kyy)]

}
, (2)

where the angle φ = tan−1 ( ky
kx

)
, in which kx = k f cos(φ) and

kv = kF sin(φ),and kF is the Fermi-wave number, and Jn is the
nth order Bessel function, Vac is the amplitude of the induced
photons of the electromagnetic field with frequency, ω, and
Rn(E) is the energy-dependent reflection coefficient.

The eigenfunction, ψb(r), inside the potential barrier is
given by:

ψb(r) =
∞∑

n=−∞
Jn

(eVac

~ω

){ a
√

2

(
1

s′ eiθ

)
e[i(qx x+kyy)]+

+
b
√

2

(
1

s′ ei(π−θ)

)
e[i(−qx x+kyy)]

}
, (3)

where the angle θ = tan−1 ( ky
qx

)
, and the wave number qx is

expressed as:

qx =

√
(V0 − ε)2

v2
F

− k2
y (4)

and ε = E− eVg−~ω, V0 is the barrier height, E is the energy
of the scattered electrons, Vg is the gate voltage and ~ω is the
photon energy.
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Fig. 1: The variation of the conductance, G, with gate voltage Vg, at
different photon energies, Eph.

Fig. 2: The variation of the conductance, G, with the photon energy,
Eph, at different values of barrier height, V0.

The eigenfunction, ψR(r), in the right region to the poten-
tial barrier which represents the transmitted electrons is given
by:

ψR(r)=
∞∑

n=−∞
Jn

(eVac

~ω

){
Γn(E)
√

2

(
1

s eiθ

)
e[i(kx x+kyy)]

}
, (5)

where Γn(E) are the transmitted electron waves through the
barrier. The parameters s and s′ are expressed as:

s = sgn (E) and s′ = sgn (E − V0) . (6)

Now, the coefficients Rn(E), a, b,Γn(E) could be deter-
mined by applying the continuity conditions of the eigen-
functions, Eqs.(2,3,5), at the boundaries as follows:

ψL (x = 0, y) = ψb (x = 0, y)

and

ψb (x = L, y) = ψR (x = L, y)

 . (7)

So, the transmission probability, |Γn(E)|2, could be deter-
mined from the boundary conditions Eq.(7) and is given by:

|Γn(E)|2 =
∞∑

n=−∞
J2

n

(eVac

~ω

)
×

×
{

cos2(θ) cos2(φ)
[[cos(Lqx) cos φ cos θ]2+ sin2(Lqx)(1−ss′ sin φ sin θ)2]

}
. (8)

The conductance, G, is given by [16, 17]:

G(E) =
4e2

h

∫
dE |Γn(E)|2

(
−∂ fFD

∂E

)
, (9)

where fFD is the Fermi-Dirac distribution function. Now, sub-
stituting Eq.(8) into Eq.(9), we get a complete expression for
conductance which depends on the angles φ, θ, and on the
barrier height, V0, and its width, the gate voltage, Vg, and the
photon energy, ~ω.

3 Results and Discussions

The conductance, G, has been computed numerically as a
function of the gate voltage, Vg, and photon energy, Eph = ~ω
of the induced electromagnetic field. For the bilayer graphe-
ne, the effective mass of the fermion quasiparticle m∗ equals
approximately 0.054 me [14, 15]. The parameter me is the
free mass of the electron. The main features of the present
results are:

(1) Fig.(1) shows the variation of the conductance, with the
gate voltage, Vg, at different values of the photon ener-
gies of the induced electromagnetic field. We notice
an oscillatory behavior of the conductance. The elec-
tromagnetic field induces resonant peaks in the photon-
assisted chiral tunneling conductance.

(2) Fig.(2) shows the dependence of the conductance on
the energy of the induced photons at different values
of the barrier height, V0. An oscillation of the conduc-
tance is observed.

The observed oscillations in conductance for Figs.(1,2)
can be explained as Follows: For grapheme under the effect of
the electromagnetic field, the chiral tunneling of electrons can
undergo transitions between the central band to several side-
bands by means of photon emission or absorption. Such pro-
cess is referred to as photo-assisted tunneling [18–20]. Also,
the phase correlations during chiral tunneling can be directly
tuned by applying of an external electromagnetic field leads
to a resonance trend in the conductance of a bilayer graphene.

The present results show a good concordant with those in
the literature [21–23].

4 Conclusion

The present investigation shows that the chiral tunneling of
Dirac electrons through graphene enables ultra-wide band
tunability. The rise of graphene in photonics and optoelectro-
nics is shown by several results ranging from photo-detectors,
light emitted devices, solar cells and ultra-fast lasers [23, 24].
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