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A New Understanding of Particles by
−→
G-Flow Interpretation

of Differential Equation

Linfan Mao

Chinese Academy of Mathematics and System Science, Beijing 100190, P. R. China.

E-mail: maolinfan@163.com

Applying mathematics to the understanding of particles classically with an assumption

that if the variables t and x1, x2, x3 hold with a system of dynamical equations (1.4),

then they are a point (t, x1, x2, x3) in R4. However, if we put off this assumption, how

can we interpret the solution space of equations? And are these resultants important for

understanding the world? Recently, the author extended Banach and Hilbert spaces on a

topological graph to introduce
−→
G-flows and showed that all such flows on a topological

graph
−→
G also form a Banach or Hilbert space, which enables one to find the multiverse

solution of these equations on
−→
G. Applying this result, this paper discusses the

−→
G-flow

solutions on Schrödinger equation, Klein-Gordon equation and Dirac equation, i.e., the

field equations of particles, bosons or fermions, answers previous questions by ”yes“,

and establishes the many world interpretation of quantum mechanics of H. Everett by

purely mathematics in logic, i.e., mathematical combinatorics.

1 Introduction

Matter consists of bosons with integer spin n and fermions

with half-integer spin n/2, n ≡ 1 (mod 2). The elementary

particles consist of leptons and hadrons, i.e. mesons, baryons

and their antiparticles, which are composed of quarks [16].

Thus, a hadron has an internal structure, which implies that all

hadrons are not elementary but leptons are, viewed as point

particles in elementary physics. Furthermore, there is also

unmatter which is neither matter nor antimatter, but some-

thing in between [19-21]. For example, an atom of unmatter

is formed either by electrons, protons, and antineutrons, or by

antielectrons, antiprotons, and neutrons.

Usually, a particle is characterized by solutions of differ-

ential equation established on its wave function ψ(t, x). In

non-relativistic quantum mechanics, the wave function ψ(t, x)

of a particle of mass m obeys the Schrödinger equation

i~
∂ψ

∂t
= −
~

2

2m
∇2ψ + U, (1.1)

where, ~ = 6.582 × 10−22MeVs is the Planck constant, U is

the potential energy of the particle in applied field and

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
and ∇2 =

∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
.

Consequently, a free boson ψ(t, x) hold with the Klein-

Gordon equation

(
1

c2

∂2

∂t2
− ∇2

)
ψ(x, t) +

(
mc

~

)2

ψ(x, t) = 0 (1.2)

and a free fermion ψ(t, x) satisfies the Dirac equation

(
iγµ∂µ −

mc

~

)
ψ(t, x) = 0 (1.3)

in relativistic forms, where,

γµ =
(
γ0, γ1, γ2, γ3

)
,

∂µ =

(
1

c

∂

∂t
,
∂

∂x1

,
∂

∂x2

,
∂

∂x3

)
,

c is the speed of light and

γ0 =

(
I2×2 0

0 −I2×2

)
, γi =

(
0 σi

−σi 0

)

with the usual Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
,

σ3 =

(
1 0

0 −1

)
.

It is well known that the behavior of a particle is on su-

perposition, i.e., in two or more possible states of being. But

how to interpret this phenomenon in accordance with (1.1)–

(1.3) ? The many worlds interpretation on wave function

of (1.1) by H. Everett [2] in 1957 answered the question in

machinery, i.e., viewed different worlds in different quantum

mechanics and the superposition of a particle be liked those

separate arms of a branching universe ([15], also see [1]). In

fact, H. Everett’s interpretation claimed that the state space

of particle is a multiverse, or parallel universe ([23, 24]), an

application of philosophical law that the integral always con-

sists of its parts, or formally, the following.

Definition 1.1([6],[18]) Let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm)

be m mathematical or physical systems, different two by two.

A Smarandache multisystem Σ̃ is a union
m⋃

i=1

Σi with rules R̃ =

m⋃
i=1

Ri on Σ̃, denoted by
(
Σ̃; R̃

)
.

Linfan Mao. A New Understanding of Particles by G-Flow Interpretation 193
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Furthermore, things are inherently related, not isolated in

the world. Thus, every particle in nature is a union of elemen-

tary particles underlying a graph embedded in space, where,

a graph G is said to be embeddable into a topological space

E if there is a 1 − 1 continuous mapping f : G → E with

f (p) , f (q) if p , q for ∀p, q ∈ G, i.e., edges only intersect

at end vertices in E . For example, a planar graph such as

those shown in Fig. 1.

v1 v2

v3v4

u1 u2

u3u4

Fig. 1

Definition 1.2([6]) For any integer m ≥ 1, let
(
Σ̃; R̃

)
be

a Smarandache multisystem consisting of mathematical sys-

tems (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm). An inherited topologi-

cal structures GL
[
Σ̃; R̃

]
on

(
Σ̃; R̃

)
is defined by

V
(
GL

[
Σ̃; R̃

])
= {vΣ1

, vΣ2
, · · · , vΣm

},

E
(
GL

[
Σ̃; R̃

])
= {(vΣi

, vΣ j
)|Σi

⋂
Σ j , ∅, 1 ≤ i , j ≤ m}

with a labeling L : vΣi
→ L(vΣi

) = Σi and L : (vΣi
, vΣ j

) →

L(vΣi
, vΣ j

) = Σi

⋂
Σ j, where Σi

⋂
Σ j denotes the intersection

of spaces, or action between systems Σi with Σ j for integers

1 ≤ i , j ≤ m.

For example, let Σ̃ =
4⋃

i=1

Σi with Σ1 = {a, b, c}, Σ2 = {a, b},

Σ3 = {b, c, d}, Σ4 = {c, d} and Ri = ∅. Calculation shows that

Σ1

⋂
Σ2 = {a, b}, Σ1

⋂
Σ3 = {b, c}, Σ1

⋂
Σ4 = {c}, Σ2

⋂
Σ3

= {b}, Σ2

⋂
Σ4 = ∅, Σ3

⋂
Σ4 = {c, d}. Such a graph GL

[
Σ̃; R̃

]

is shown in Fig. 2.

{a, b}

{b}

{c, d}

{c}

{b, c}

Σ1 Σ2

Σ3Σ4

Fig. 2

Generally, a particle should be characterized by
(
Σ̃; R̃

)
in

theory. However, we can only verify it by some of systems

(Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) for the limitation of human

beings because he is also a system in
(
Σ̃; R̃

)
. Clearly, the

underlying graph in H. Everett’s interpretation on wave func-

tion is in fact a binary tree and there are many such traces in

the developing of physics. For example, a baryon is predomi-

nantly formed from three quarks, and a meson is mainly com-

posed of a quark and an antiquark in the models of Sakata,

or Gell-Mann and Ne’eman on hadrons ([14]), such as those

shown in Fig. 3, where, qi ∈ {u, d, c, s, t, b} denotes a quark

for i = 1, 2, 3 and q2 ∈
{
u, d, c, s, t, b

}
, an antiquark. Thus, the

underlying graphs
−→
G of a meson, a baryon are respectively

−→
K2 and

−→
K3 with actions. In fact, a free quark was not found

in experiments until today. So it is only a machinery model

on hadrons. Even so, it characterizes well the known behavior

of particles.

q1

q2 q3

q1 q2

....................................

...................

.................................

Baryon Meson

Fig. 3

It should be noted that the geometry on Definition 1.1−1.2

can be also used to characterize particles by combinatorial

fields ([7]), and there is a priori assumption for discussion in

physics, namely, the dynamical equation of a subparticle of a

particle is the same of that particle. For example, the dynam-

ical equation of quark is nothing else but the Dirac equation

(1.3), a characterizing on quark from the macroscopic to the

microscopic, the quantum level in physics. However, (1.3)

cannot provide such a solution on the behaviors of 3 quarks.

We can only interpret it similar to that of H. Everett, i.e., there

are 3 parallel equations (1.3) in discussion, a seemly ratio-

nal interpretation in physics, but not perfect for mathematics.

Why this happens is because the interpretation of solution of

equation. Usually, we identify a particle to the solution of

its equation, i.e., if the variables t and x1, x2, x3 hold with a

system of dynamical equations

Fi

(
t, x1, x2, x3, ut, ux1

, · · · , ux1x2
, · · ·

)
= 0,

with 1 ≤ i ≤ m, (1.4)

the particle in R×R3 is a point (t, x1, x2, x3), and if more than

one points (t, x1, x2, x3) hold with (1.4), the particle is nothing

else but consisting of all such points. However, the solutions

of (1.1)–(1.3) are all definite on time t. Can this interpretation

be used for particles in all times? Certainly not because a

particle can be always decomposed into elementary particles,

and it is a little ambiguous which is a point, the particle itself

or its one of elementary particles sometimes.

194 Linfan Mao. A New Understanding of Particles by G-Flow Interpretation
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This speculation naturally leads to a question on mathe-

matics, i.e., what is the right interpretation on the solution of

differential equation accompanying with particles? Recently,

the author extended Banach spaces on topological graphs
−→
G

with operator actions in [13], and shown all of these exten-

sions are also Banach space, particularly, the Hilbert space

with unique correspondence in elements on linear continu-

ous functionals, which enables one to solve linear functional

equations in such extended space, particularly, solve differen-

tial equations on a topological graph, i.e., find multiverse so-

lutions for equations. This scheme also enables us to interpret

the superposition of particles in accordance with mathematics

in logic.

The main purpose of this paper is to present an interpre-

tation on superposition of particles by
−→
G-flow solutions of

(1.1)–(1.3) in accordance with mathematics. Certainly, the

geometry on non-solvable differential equations discussed in

[9]–[12] brings us another general way for holding behaviors

of particles in mathematics. For terminologies and notations

not mentioned here, we follow references [16] for elementary

particles, [6] for geometry and topology, and [17]–[18] for

Smarandache multi-spaces, and all equations are assumed to

be solvable in this paper.

2 Extended Banach ~G-flow space

2.1 Conservation laws

A conservation law, such as those on energy, mass, momen-

tum, angular momentum and electric charge states that a par-

ticular measurable property of an isolated physical system

does not change as the system evolves over time, or simply,

constant of being. Usually, a local conservation law is ex-

pressed mathematically as a continuity equation, which states

that the amount of conserved quantity at a point or within a

volume can only change by the amount of the quantity which

flows in or out of the volume. According to Definitions 1.1

and 1.2, a matter in the nature is nothing else but a Smaran-

dache system
(
Σ̃; R̃

)
, or a topological graph GL

[(
Σ̃; R̃

)]
em-

bedded in R3, hold with conservation laws

∑

k

F(v)−k =
∑

l

F(v)+l

on ∀v ∈ V
(
GL

[(
Σ̃; R̃

)])
, where, F(v)−k , k ≥ 1 and F(v)+l , l ≥ 1

denote respectively the input or output amounts on a particle

or a volume v.

2.2 ~G-flow spaces

Classical operation systems can be easily extended on a graph
−→
G constraint on conditions for characterizing the unanimous

behaviors of groups in the nature, particularly, go along with

the physics. For this objective, let
−→
G be an oriented graph

with vertex set V(G) and arc set X(G) embedded in R3 and let

(A ; ◦) be an operation system in classical mathematics, i.e.,

for ∀a, b ∈ A , a◦b ∈ A . Denoted by
−→
GL

A
all of those labeled

graphs
−→
GL with labeling L : X

(
−→
G

)
→ A . Then, we can

extend operation ◦ on elements in
−→
GA by a ruler following:

R: For ∀
−→
GL1 ,
−→
GL2 ∈

−→
GL

A
, define

−→
GL1 ◦

−→
GL2 =

−→
GL1◦L2 ,

where L1 ◦ L2 : e→ L1(e) ◦ L2(e) for ∀e ∈ X

(
−→
G

)
.

For example, such an extension on graph
−→
C 4 is shown in

Fig. 4, where, a3=a1◦a2, b3 =b1◦b2, c3=c1◦c2, d3 =d1◦d2.

✲

❄

✛✻
❄

✛✻
❄

✛✻

v1 v2

v3v4

v1 v2

v3v4

v1 v2

v3v4

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

✲ ✲

Fig. 4

Clearly,
−→
GL1 ◦

−→
GL2 ∈

−→
GL

A
by definition, i.e.,

−→
GL

A
is also an op-

eration system under ruler R, and it is commutative if (A , ◦)

is commutative,

Furthermore, if (A , ◦) is an algebraic group,
−→
GL

A
is also

an algebraic group because

(1)

(
−→
GL1 ◦

−→
GL2

)
◦
−→
GL3 =

−→
GL1 ◦

(
−→
GL2 ◦

−→
GL3

)
for ∀
−→
GL1 ,
−→
GL2 ,

−→
GL3 ∈

−→
GA because

(L1(e) ◦ L2(e)) ◦ L3(e) = L1(e) ◦ (L2(e) ◦ L3(e))

for e ∈ X

(
−→
G

)
, i.e.,

−→
G (L1◦L2)◦L3 =

−→
GL1◦(L2◦L3).

(2) there is an identify
−→
GL1A in

−→
GL

A
, where L1A

: e →

1A for ∀e ∈ X

(
−→
G

)
;

(3) there is an uniquely element
−→
GL−1

for ∀
−→
GL ∈

−→
GL

A
.

However, for characterizing the unanimous behaviors of

groups in the nature, the most useful one is the extension of

vector space (V ;+, ·) over field F by defining the operations

+ and · on elements in
−→
GV such as those shown in Fig. 5 on

graph
−→
C4, where a, b, c, d, ai, bi, ci, di ∈ V for i = 1, 2, 3,

x3=x1+x2 for x=a, b, c or d and α ∈ F .

✲

❄

✛✻
❄

✛✻
❄

✛✻

v1 v2

v3v4

v1 v2

v3v4

v1 v2

v3v4

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

✲ ✲

✲
❄

✛✻

✲
❄

✛✻
α

v1 v2 v1 v2

v3v4 v3v4

a

b

c

d

α·a

α·b

α·c

α·d

Fig. 5
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A
−→
G-flow on

−→
G is such an extension hold with L (u, v) =

−L (v, u) and conservation laws

∑

u∈NG(v)

L (v, u) = 0

for ∀v ∈ V

(
−→
G

)
, where 0 is the zero-vector in V . Thus, a

−→
G-

flow is a subfamily of
−→
GL

V
limited by conservation laws. For

example, if
−→
G =

−→
C 4, there must be a=b=c=d, ai=bi=ci=di

for i = 1, 2, 3 in Fig. 5.

Clearly, all conservation
−→
G-flows on

−→
G also form a vector

space over F under operations + and · with zero vector O =
−→
GL0 , where L0 : e → 0 for ∀e ∈ X

(
−→
G

)
. Such an extended

vector space on
−→
G is denoted by

−→
GV .

Furthermore, if (V ;+, ·) is a Banach or Hilbert space with

inner product 〈·, ·〉, we can also introduce the norm and inner

product on
−→
GV by

∥∥∥∥
−→
GL

∥∥∥∥ =
∑

(u,v)∈X

(
−→
G

)
‖L(u, v)‖

or 〈
−→
GL1 ,
−→
GL2

〉
=

∑

(u,v)∈X

(
−→
G

)
〈L1(u, v), L2(u, v)〉

for ∀
−→
GL,
−→
GL1 ,
−→
GL2 ∈

−→
GV , where ‖L(u, v)‖ is the norm of

L(u, v) in V . Then it can be verified that

(1)
∥∥∥∥
−→
GL

∥∥∥∥ ≥ 0 and
∥∥∥∥
−→
GL

∥∥∥∥ = 0 if and only if
−→
GL = O;

(2)
∥∥∥∥
−→
GξL

∥∥∥∥ = ξ
∥∥∥∥
−→
GL

∥∥∥∥ for any scalar ξ;

(3)
∥∥∥∥
−→
GL1 +

−→
GL2

∥∥∥∥ ≤
∥∥∥∥
−→
GL1

∥∥∥∥ +
∥∥∥∥
−→
GL2

∥∥∥∥;

(4)

〈
−→
GL,
−→
GL

〉
=

∑

(u,v)∈X

(
−→
G

) 〈L(uv), L(uv)〉 ≥ 0 and

〈
−→
GL,
−→
GL

〉

= 0 if and only if
−→
GL = O;

(5)

〈
−→
GL1 ,
−→
GL2

〉
=

〈
−→
GL2 ,
−→
GL1

〉
for ∀

−→
GL1 ,
−→
GL2 ∈

−→
GV ;

(6) For
−→
GL,
−→
GL1 ,
−→
GL2 ∈

−→
GV and λ, µ ∈ F ,

〈
λ
−→
GL1 + µ

−→
GL2 ,
−→
GL

〉

= λ

〈
−→
GL1 ,
−→
GL

〉
+ µ

〈
−→
GL2 ,
−→
GL

〉
.

The following result is obtained by showing that Cauchy

sequences in
−→
GV is converges hold with conservation laws.

Theorem 2.1([13]) For any topological graph
−→
G,
−→
GV is a

Banach space, and furthermore, if V is a Hilbert space,
−→
GV

is a Hilbert space also.

According to Theorem 2.1, the operators action on Ba-

nach or Hilbert space (V ;+, ·) can be extended on
−→
GV , for

example, the linear operator following.

Definition 2.2 An operator T :
−→
GV →

−→
GV is linear if

T

(
λ
−→
GL1 + µ

−→
GL2

)
= λT

(
−→
GL1

)
+ µT

(
−→
GL2

)

for ∀
−→
GL1 ,
−→
GL2 ∈

−→
GV and λ, µ ∈ F , and is continuous at a

−→
G-flow

−→
GL0 if there always exist a number δ(ε) for ∀ǫ > 0

such that ∥∥∥∥∥T

(
−→
GL

)
− T

(
−→
GL0

)∥∥∥∥∥ < ε

if ∥∥∥∥
−→
GL −

−→
GL0

∥∥∥∥ < δ(ε).

The following interesting result generalizes the result of

Fréchet and Riesz on linear continuous functionals, which

opens us mind for applying
−→
G-flows to hold on the nature.

Theorem 2.3([13]) Let T :
−→
GV → C be a linear continuous

functional. Then there is a unique
−→
G L̂ ∈

−→
GV such that

T

(
−→
GL

)
=

〈
−→
GL,
−→
G L̂

〉

for ∀
−→
GL ∈

−→
GV .

Particularly, if all flows L(u, v) on arcs (u, v) of
−→
G are state

function, we extend the differential operator on
−→
G-flows. In

fact, a differential operator
∂

∂t
or

∂

∂xi

:
−→
GV →

−→
GV is defined

by
∂

∂t
:
−→
GL →

−→
G

∂L
∂t ,

∂

∂xi

:
−→
GL →

−→
G

∂L
∂xi

for integers 1 ≤ i ≤ 3. Then, for ∀µ, λ ∈ F ,

∂

∂t

(
λ
−→
GL1 + µ

−→
GL2

)

=
∂

∂t

(
−→
GλL1+µL2

)
=
−→
G

∂
∂t

(λL1+µL2)

=
−→
G

∂
∂t

(λL1)+ ∂
∂t

(µL2) =
−→
G

∂
∂t

(λL1) +
−→
G

∂
∂t

(µL2)

=
∂

∂t

−→
G (λL1) +

∂

∂t

−→
G (µL2)

= λ
∂

∂t

−→
GL1 + µ

∂

∂t

−→
GL2 ,

i.e.,
∂

∂t

(
λ
−→
GL1 + µ

−→
GL2

)
= λ

∂

∂t

−→
GL1 + µ

∂

∂t

−→
GL2 .

Similarly, we know also that

∂

∂xi

(
λ
−→
GL1 + µ

−→
GL2

)
= λ

∂

∂xi

−→
GL1 + µ

∂

∂xi

−→
GL2
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for integers 1 ≤ i ≤ 3. Thus, operators
∂

∂t
and

∂

∂xi

, 1 ≤ i ≤ 3

are all linear on
−→
GV .

✲

❄

✛

✻ ⑥
❂

✲

❄

✛

✻
❂
⑥

✲

✲

✲

✲

✲t

t

t

t

et

et

et

et

et

et

et

et

1

11

1

∂

∂t

Fig. 6

Similarly, we introduce integral operator

∫
:
−→
GV →

−→
GV by ∫

:
−→
GL →

−→
G

∫
Ldt,

−→
GL →

−→
G

∫
Ldxi

for integers 1 ≤ i ≤ 3 and know that

∫ (
µ
−→
GL1 + λ

−→
GL2

)
= µ

∫ (
−→
GL1

)
+ λ

∫ (
−→
GL2

)

for ∀µ, λ ∈ F ,

∫
◦

(
∂

∂t

)
and

∫
◦

(
∂

∂xi

)
:
−→
GL →

−→
GL +

−→
GLc ,

where Lc is such a labeling that Lc(u, v) is constant for ∀(u, v)

∈ X

(
−→
G

)
.

3 Particle equations in ~G-flow space

We are easily find particle equations with nonrelativistic or

relativistic mechanics in
−→
GV . Notice that

i~
∂ψ

∂t
= Eψ, −i~∇ψ = −→p 2ψ

and

E =
1

2m

−→p 2 + U,

in classical mechanics, where ψ is the state function, E,−→p ,U

are respectively the energy, the momentum, the potential en-

ergy and m the mass of the particle. Whence,

O =
−→
G(E− 1

2m
−→p 2−U)ψ

=
−→
GEψ −

−→
G

1
2m
−→
p 2ψ −

−→
GUψ

=
−→
G i~

∂ψ

∂t −
−→
G−

~

2m
∇2ψ −

−→
GUψ

= i~
∂
−→
GLψ

∂t
+
~

2m
∇2−→GLψ −

−→
GLU
−→
GLψ ,

where Lψ : e→ state function and LU : e→ potential energy

on e ∈ X

(
−→
G

)
. According to the conservation law of energy,

there must be
−→
GU ∈

−→
GV . We get the Schrödinger equation in

−→
GV following.

−i~
∂
−→
GLψ

∂t
=
~

2m
∇2−→GLψ − Û

−→
GLψ , (3.1)

where Û =
−→
GLU ∈

−→
GV . Similarly, by the relativistic energy-

momentum relation

E2 = c2−→p 2 + m2c4

for bosons and

E = cαk
−→p k + α0mc2

for fermions, we get the Klein-Gordon equation and Dirac

equation

(
1

c2

∂2

∂t2
− ∇2

)
−→
GLψ +

(
cm

~

)
−→
GLψ = O (3.2)

and (
iγµ∂µ −

mc

~

)
−→
GLψ = O, (3.3)

of particles in
−→
GV respectively. Particularly, let

−→
G be such

a topological graph with one vertex but only with one arc.

Then, (3.1)–(3.3) are nothing else but (1.1)–(1.3) respective-

ly. However, (3.1)–(3.3) conclude that we can find
−→
G-flow

solutions on (1.1)–(1.3), which enables us to interpret mathe-

matically the superposition of particles by multiverse.

4 ~G-flows on particle equations

Formally, we can establish equations in
−→
GV by equations in

Banach space V such as (3.1)–(3.3). However, the important

thing is not just on such establishing but finding
−→
G-flows on

equations in V and then interpret the superposition of parti-

cles by
−→
G-flows.

4.1 ~G-flow solutions on equation

Theorem 2.3 concludes that there are
−→
G-flow solutions for

a linear equations in
−→
GV for Hilbert space V over field F ,

including algebraic equations, linear differential or integral

equations without considering the topological structure. For

example, let ax = b. We are easily getting its
−→
G-flow solution

x =
−→
Ga−1L if we view an element b ∈ V as b =

−→
GL, where

L(u, v) = b for ∀(u, v) ∈ X

(
−→
G

)
and 0 , a ∈ F , such as those

shown in Fig. 7 for
−→
G =
−→
C 4 and a = 3, b = 5.
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✲

❄

✛

✻

5
3

5
3

5
3

5
3

Fig. 7

Generally, we know the following result:

Theorem 4.1([13]) A linear system of equations



a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · · + amnxn = bm

with ai j, b j ∈ F for integers 1 ≤ i ≤ n, 1 ≤ j ≤ m holding

with

rank
[
ai j

]
m×n
= rank

[
ai j

]+
m×(n+1)

has
−→
G-flow solutions on infinitely many topological graphs

−→
G, where

[
ai j

]+
m×(n+1)

=



a11 a12 · · · a1n L1

a21 a22 · · · a2n L2

. . . . . . . . . . . . .

am1 am2 · · · amn Lm


.

We can also get
−→
G-flow solutions for linear partial differ-

ential equations ([14]). For example, the Cauchy problems on

differential equations

∂X

∂t
= c2

n∑

i=1

∂2X

∂x2
i

with initial value X|t=t0 =
−→
GL′ ∈

−→
GV is also solvable in

−→
GV if

L′ (u, v) is continuous and bou- nded in Rn for ∀(u, v) ∈ X

(
−→
G

)

and ∀
−→
GL′ ∈

−→
GV . In fact, X =

−→
GLF with LF : (u, v)→ F(u, v)

for ∀(u, c) ∈ X

(
−→
G

)
, where

F (u, v) =
1

(4πt)
n
2

(∫ +∞

−∞

e−
(x1−y1)2

+···+(xn−yn )2

4t

× L′ (u, v) (y1, · · · , yn)dy1 · · · dyn

)

is such a solution.

Generally, if
−→
G can be decomposed into circuits

−→
C , the

next result concludes that we can always find
−→
G-flow solu-

tions on equations, no matter what the equation looks like,

linear or non-linear ([13]).

Theorem 4.2 If the topological graph
−→
G is strong-connected

with circuit decomposition

−→
G =

l⋃

i=1

−→
C i

such that L(u, v) = Li (x) for ∀(u, v) ∈ X

(
−→
C i

)
, 1 ≤ i ≤ l and

the Cauchy problem

{
Fi

(
x, u, ux1

, · · · , uxn
, ux1 x2

, · · ·
)
= 0

u|x0
= Li(x)

is solvable in a Hilbert space V on domain ∆ ⊂ Rn for inte-

gers 1 ≤ i ≤ l, then the Cauchy problem

{
Fi

(
x, X, Xx1

, · · · , Xxn
, Xx1 x2

, · · ·
)
= 0

X|x0
=
−→
GL

such that L (u, v) = Li(x) for ∀(u, v) ∈ X

(
−→
C i

)
is solvable for

X ∈
−→
GV .

In fact, such a solution is constructed by X =
−→
GLu(x) with

Lu(x) (u, v) = u(x) for (u, v) ∈ X

(
−→
G

)
by applying the input and

the output at vertex v all being u(x) on
−→
C , which implies that

all flows at vertex v ∈ V

(
−→
G

)
is conserved.

4.2 ~G-flows on particle equation

The existence of
−→
G-flow solutions on particle equations (1.1)–

(1.3) is clearly concluded by Theorem 4.2, also implied by

(3.1)–(3.3) for any
−→
G. However, the superposition of a par-

ticle P shows that there are N ≥ 2 states of being associated

with a particle P. Considering this fact, a convenient
−→
G-flow

model for elementary particle fermions, the lepton or quark P

is by a bouquet
−→
B

Lψ

N
, and an antiparticle P of P presented by

−→
B

L
ψ−1

N
with all inverse states on its loops, such as those shown

in Fig. 8.

P Pψ1ψ2ψN ψ−1
1

ψ−1
2

ψ−1
N

✛ ✲

Particle Antiparticle

Fig. 8

An elementary unparticle is an intermediate form between

an elementary particle and its antiparticle, which can be pre-

sented by
−→
B

LC
ψ

N
, where LC

ψ : e → Lψ−1 (e) if e ∈ C but LC
ψ :

e → Lψ(e) if e ∈ X

(
−→
BN

)
\ C for a subset C ⊂ X

(
−→
BN

)
, such

as those shown in Fig. 9,
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ψ1ψ2ψN1 ψ−1
1

ψ−1
2

ψ−1
N2

✛ ✲

Fig. 9 Unparticle

where N1,N2 ≥ 1 are integers. Thus, an elementary particle

with its antiparticles maybe annihilate or appears in pair at a

time, which consists in an elementary unparticle by combina-

tions of these state functions with their inverses.

P P

ψ
N

2

2

1

1

ψ
N

ψ

ψ

ψ

ψ

Fig. 10
−−→
D⊥

Lψ

0,2N,0

For those of mediate interaction particle quanta, i.e., bo-

son, which reflects interaction between particles. Thus, they

are conveniently presented by dipole
−−→
D⊥

Lψ

0,2N,0
but with dotted

lines, such as those in Fig. 10, in which the vertex P, P′ de-

notes particles, and arcs with state functions ψ1, ψ2, · · · , ψN

are the N states of P. Notice that
−→
B

Lψ

N
and
−−→
D⊥

Lψ

0,2N,0
both are a

union of N circuits.

According to Theorem 4.2, we consequently get the fol-

lowing conclusion.

Theorem 4.3 For an integer N ≥ 1, there are indeed
−−→
D⊥

Lψ

0,2N,0

-flow solution on Klein-Gordon equation (1.2), and
−→
B

Lψ

N
-flow

solution on Dirac equation (1.3).

Generally, this model enables us to know that the
−→
G-flow

constituents of a particle also.

...............ψk · · · ψ2 ψ1

p q
ψ′

1
ψ′

2
· · · ψ′

l

✲
✲✲ ✛✛

✛

Fig. 11 Meson

Thus, if a particle P̃ is consisted of l elementary parti-

cles P1, P1, · · · , Pl underlying a graph
−→
G

[
P̃
]
, its
−→
G-flow is

obtained by replace each vertex v by
−→
B

Lψv
Nv

and each arc e by
−−→
D⊥

Lψe

0,2Ne,0
in
−→
G

[
P̃
]
, denoted by

−→
GLψ

[
−→
B v,
−→
De

]
. For example,

the model of Sakata, or Gell-Mann and Ne’eman on hadrons

claims that the meson and the baryon are respectively the

dipole
−−→
D⊥

Lψe

k,2N,l
-flow shown in Fig. 11 and the triplet

−→
G-flow

−−→
C⊥

Lψ

k,l,s
shown in Fig. 12,

.............................................
..
..
..
..
..
..
..
..
..
..

q1 q2

q3

ψ1
k

ψ1
2
ψ1

1

ψ2
l

ψ2
2

ψ2
1

ψ3
sψ3

2
ψ3

1

✲

✲
✲

✲✲✲
✛✛✛

Fig. 12 Baryon

Theorem 4.4 If P̃ is a particle consisted of elementary parti-

cles P1, P1, · · · , Pl for an integer l ≥ 1, then
−→
GLψ

[
−→
Bv,
−→
De

]
is a

−→
G-flow solution on the Schrödinger equation (1.1) whenever

λG is finite or infinite.

Proof If λG is finite, the conclusion follows Theorem 4.2

immediately. We only consider the case of λG → ∞. In fact,

if λG → ∞, calculation shows that

i~ lim
λG→∞

(
∂

∂t

(
−→
GLψ

[
−→
Bv,
−→
De

]))

= lim
λG→∞

(
i~
∂

∂t

(
−→
GLψ

[
−→
Bv,
−→
De

]))

= lim
λG→∞

(
−
~

2

2m
∇2−→GLψ

[
−→
B v,
−→
De

]
+
−→
GLU

)

= −
~

2

2m
∇2 lim

λG→∞

−→
GLψ

[
−→
B v,
−→
De

]
+
−→
GLU ,

i.e.,

i~ lim
λG→∞

(
∂

∂t

(
−→
GLψ

[
−→
B v,
−→
De

]))

= −
~

2

2m
∇2 lim

λG→∞

−→
GLψ

[
−→
Bv,
−→
De

]
+
−→
GLU .

In particular,

i~ lim
N→∞


∂
−→
B

Lψ

N

∂t

 = −
~

2

2m
∇2 lim

N→∞

−→
B

Lψ
N
+
−→
GLU ,

i~ lim
N→∞

∂

∂t

(−−→
D⊥

Lψ

0,2N,0

)
= −
~

2

2m
∇2 lim

N→∞

−−→
D⊥

Lψ

0,2N,0
+
−→
GLU

for bouquets and dipoles. �
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5 ~G-flow interpretation on particle superposition

The superposition of a particle P is depicted by a Hilbert

space V over complex field C with orthogonal basis |1〉 , |2〉 ,

· · · , |n〉 , · · · in quantum mechanics. In fact, the linearity of

Schrödinger equation concludes that all states of particle P

are in such a space. However, an observer can grasp only

one state, which promoted H. Everett devised a multiverse

consisting of states in splitting process, i.e., the quantum ef-

fects spawn countless branches of the universe with different

events occurring in each, not influence one another, such as

those shown in Fig. 13, and the observer selects by random-

ness, where the multiverse is
⋃
i≥1

Vi with Vkl = V for integers

k ≥ 1, 1 ≤ l ≤ 2k but in different positions.

✻

✸❨

✣♦ ♦ ✼

ψ1 ∈ V1

ψ11 ∈ V11 ψ12 ∈ V12

ψ31 ∈ V31

ψ32 ∈ V32

ψ33 ∈ V33 ψ34 ∈ V34

Fig. 13

Why it needs an interpretation on particle superposition

in physics lies in that we characterize the behavior of particle

by dynamic equation on state function and interpret it to be

the solutions, and different quantum state holds with different

solution of that equation. However, we can only get one so-

lution by solving the equation with given initial datum once,

and hold one state of the particle P, i.e., the solution corre-

spondent only to one position but the particle is in superposi-

tion, which brought the H. Everett interpretation on superpo-

sition. It is only a biological mechanism by infinite parallel

spaces V but loses of conservations on energy or matter in the

nature, whose independently runs also overlook the existence

of universal connection in things, a philosophical law.

Even so, it can not blot out the ideological contribution

of H. Everett to sciences a shred because all of these men-

tions are produced by the interpretation on mathematical so-

lutions with the reality of things, i.e., scanning on local, not

the global. However, if we extend the Hilbert space V to
−→
B

Lψ
N

,
−−→
D⊥

Lψ

0,2N,0
or
−→
GLψ

[
−→
B v,
−→
De

]
in general, i.e.,

−→
G-flow space

−→
GV ,

where
−→
G is the underling topological graph of P, the situa-

tion has been greatly changed because
−→
GV is itself a Hilbert

space, and we can identify the
−→
G-flow on

−→
G to particle P, i.e.,

P =
−→
GLψ

[
−→
B v,
−→
De

]
(5.1)

for a globally understanding the behaviors of particle P what-

ever λG → ∞ or not by Theorem 4.4. For example, let

P =
−→
B

Lψ

N
, i.e., a free particle such as those of electron e−,

muon µ−, tauon τ−, or their neutrinos νe, νµ, ντ. Then the su-

perposition of P is displayed by state functions ψ on N loops

in
−→
BN hold on its each loop with

input ψi = ouput ψi at vertex P

for integers 1 ≤ i ≤ N. Consequently,

input
∑

i∈I

ψi = ouput
∑

i∈I

ψi at vertex P

for ∀I ⊂ {1, 2, · · · ,N}, the conservation law on vertex P. Fur-

thermore, such a
−→
B

Lψ

N
is not only a disguise on P in form but

also a really mathematical element in Hilbert space
−→
BV , and

can be also used to characterize the behavior of particles such

as those of the decays or collisions of particles by graph oper-

ations. For example, the β-decay n→ p+e−+µ−e is transferred

to a decomposition formula

−−→
C⊥

Lψn

k,l,s
=
−−→
C⊥

Lψp

k1,l1,s1

⋃−→
B

Lψe

N1

⋃−→
B

Lψµ

N2
,

on graph, where,
−−→
C⊥

Lψp

k1,l1,s1
,
−→
B

Lψe

N1
,
−→
B

Lψµ

N2
are all subgraphs of

−−→
C⊥

Lψn

k,l,s
. Similarly, the β- collision νe+p→ n+e+ is transferred

to an equality

−→
B

Lψνe
N1

⋃−−→
C⊥

Lψp

k1,l1,s1
=
−−→
C⊥

Lψn

k2,l2,s2

⋃−→
B

Lψe

N2
.

Even through the relation (5.1) is established on the lin-

earity, it is in fact truly for the linear and non-liner cases be-

cause the underlying graph of
−→
GLψ

[
−→
B v,
−→
De

]
-flow can be de-

composed into bouquets and dipoles, hold with conditions of

Theorem 4.2. Thus, even if the dynamical equation of a par-

ticle P is non-linear, we can also adopt the presentation (5.1)

to characterize the superposition and hold on the global be-

havior of P. Whence, it is a presentation on superposition of

particles, both on linear and non-linear.

6 Further discussions

Usually, a dynamic equation on a particle characterizes its

behaviors. But is its solution the same as the particle? Cer-

tainly not! Classically, a dynamic equation is established on

characters of particles, and different characters result in dif-

ferent equations. Thus the superposition of a particle should

be characterized by at least 2 differential equations. How-

ever, for a particle P, all these equations are the same one by
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chance, i.e., one of the Schrödinger equation, Klein-Gordon

equation or Dirac equation, which lead to the many world in-

terpretation of H. Everett, i.e., put a same equation or Hilbert

space on different place for different solutions in Fig. 12. As

it is shown in Theorems 4.1 − 4.4, we can interpret the so-

lution of (1.1)–(1.3) to be a
−→
GLψ

[
−→
Bv,
−→
De

]
-flow, which prop-

erly characterizes the superposition behavior of particles by

purely mathematics.

The
−→
G-flow interpretation on differential equation opens

a new way for understanding the behavior of nature, partic-

ularly on superposition of particles. Generally, the dynamic

equations on different characters maybe different, which will

brings about contradicts equations, i.e., non-solvable equa-

tions. For example, we characterize the behavior of meson or

baryon by Dirac equation (1.3). However, we never know the

dynamic equation on quark. Although we can say it obeying

the Dirac equation but it is not a complete picture on quark.

If we find its equation some day, they must be contradicts be-

cause it appear in different positions in space for a meson or a

baryon at least. As a result, the
−→
G-solutions on non-solvable

differential equations discussed in [9]–[12] are valuable for

understanding the reality of the nature with
−→
G-flow solutions

a special one on particles.

As it is well known for scientific community, any science

possess the falsifiability but which depends on known scien-

tific knowledge and technical means at that times. Accord-

ingly, it is very difficult to claim a subject or topic with logi-

cal consistency is truth or false on the nature sometimes, for

instance the multiverse or parallel universes because of the

limitation of knowing things in the nature for human beings.

In that case, a more appreciated approach is not denied or ig-

nored but tolerant, extends classical sciences and developing

those of well known technical means, and then get a better

understanding on the nature because the pointless argument

would not essentially promote the understanding of nature for

human beings ([3,4,22]).
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It is shown that in the absence of a purely gravitational measurement of Planck’s con-

stant one cannot at present rule out the possibility that the ripples in the curvature of

the fabric of spacetime may be scaled by a more diminutive “action” whose detection

requires sensitivities beyond the standard quantum limit. An experiment that could

unequivocally test this possibility is suggested.

1 Introduction

The search for gravitational waves, one of the centerpieces of

general relativity, has been a work in progress for over five

decades. Two main forms of detectors are currently in use

worldwide. The first, pioneered by Weber [1] in the 1960s,

is based on the expectation that a passing gravitational wave

will induce a mechanical oscillation in a cryogenically cooled

cylindrical bar whose resonance can then be amplified and

recorded. The second method, using lasers, is designed to

measure spacetime geometry variations between mirrors sus-

pended in vacuum using interferometry in a Michelson con-

figuration.

Despite the ever increasing sensitivity of these detectors

these ripples in the curvature of the fabric of spacetime have

yet to be detected. After these many years of experimenta-

tion one may therefore be justified in questioning whether the

failure to detect these perturbations is symptomatic of yet to

be discovered physics beyond the standard quantum limit.

It should be observed that if we examine this question

from a quantum mechanical perspective we are inevitably

struck by the fact that the role of Planck’s constant in gravi-

tational wave phenomena has always been taken for granted

without questions regarding the possible limits of its appli-

cability being asked, which is somewhat perplexing since no

purely gravitational measurement of Planck’s constant exists.

As will be shown in this paper, if pursued, this element of un-

certainty gives rise to the possibility that gravitational quanta

may not be scaled by Planck’s constant.

2 Scaling of gravitational quanta

It should be emphasized from the outset that any discussion

of this possibility has as its foundation the irrefutable fact that

nature has made available two immutable elementary “ac-

tions” in the context of the framework of quantum mechan-

ics. That is, Planck’s familiar constant, h, which has been

shown experimentally to play an indispensable role in the mi-

crophysical realm, and a second, more diminutive “action”

formed from two of the fundamental constants of quantum

mechanics, namely, e2/c – the ratio of the square of the ele-

mentary charge to the velocity of light, which has the value

7.6957 × 10−37 J s.

In what follows I shall put forward an experimentally ver-

ifiable hypothesis in favor of a dynamical interpretation of the

fabric of spacetime. That is, we shall allow for the possibility

that this more diminutive “action” is an intrinsic property of

the fabric of spacetime; the size of the gravitational quanta

being always scaled in terms of e2/c. Implicit in this con-

ceptualization is the widely held expectation that spacetime

should play a dynamic role in its own right, rather than being

a passive observer.

3 Possible experimental test

Clearly, the most direct way of verifying if this hypothesis

corresponds to reality is to measure the vibrational displace-

ment induced in a resonant detector by a passing gravitational

wave. To give an illustration, let us assume, using the “ac-

tion” constant e2/c, that a gravitational quantum of angular

frequency ω has an energy

E =

(

e2

2πc

)

ω . (1)

We can then profit from the fact that the vibrational en-

ergy induced in a resonant detector, by a gravitational wave,

can be converted to the fractional change in vibrational dis-

placement by making use of the relation between amplitude

x0, energy E and the total mass M for a harmonic oscillator,

in the familiar form

E =
1

2
Mω2 x2

0 . (2)

If we now take as an example Weber’s seminal experi-

ment, which used as an antenna a 1400 kg cylindrical alu-

minum bar that had a natural resonance frequency ν0 of 1660

Hz, we can readily compute the vibrational displacement, x,

caused by a single quantum of gravitational radiation of angu-

lar frequency ω = 2πν0, and energy (e2/2πc)ω. Combining

Eqs. (1) and (2) and then substituting these values, we obtain

x =

√

2

Mω

e2

2πc
(3)

≈ 1.3 × 10−22 m.
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Needless to say, such extraordinarily small displacements

could not be measured with the technology available in We-

ber’s day. Indeed, even today such a feat remains out of reach

since there are no resonant-mass antennas in operation that

have the required sensitivity.

Fortunately, since Weber’s pioneering work in the 1960s

numerous projects have been undertaken in an effort to en-

hance detector sensitivity. One of the more innovative of

these efforts has been the development of the Schenberg

spherical resonant-mass telescope in Brazil [2], which has the

advantage of being omnidirectional. When fully operational

it will provide information regarding a wave’s amplitude, po-

larization, and direction of source. The detector program,

which we shall presently exploit, uses an 1150 kg spherical

resonant-mass made of a copper-aluminum alloy, and has a

resonance frequency ν0 of 3200 Hz. The vibrational displace-

ment caused by a single quantum of gravitational radiation of

angular frequencyω = 2πν0 can easily be computed by direct

substitution of these values in Eq. (3). We thus obtain

x ≈ 1.0 × 10−22 m. (4)

Verification of this result is contingent on the Schenberg sur-

passing the standard quantum limit by squeezing the signal,

which should result in a ten-fold increase in sensitivity.

Clearly, in the absence of a physical law that prohibits an

elementary “action” smaller than Planck’s this result must be

taken seriously.

4 Summary

The possibility was raised that gravitational quanta may not

be scaled by Planck’s constant. It was shown that in the

absence of a purely gravitational measurement of Planck’s

constant one cannot at present rule out the possibility that

gravitational quanta may be scaled by the more diminutive of

nature’s two elementary “actions”, namely, e2/c, which was

conjectured to be an intrinsic property of the fabric of space-

time. A possible experiment requiring sensitivities beyond

the standard quantum limit was suggested.
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Appendix

The recognition of the “action” e2/c as an intrinsic property

of the fabric of spacetime inevitably leads to quantum uncer-

tainty at a more fundamental level than Planck’s constant, in

the analogous form

(∆x)(∆p) ≈
e2

c
(1)

where, as usual, x is uncertainty of position, and p the uncer-

tainty in momentum. Its implication for the temporal events

that make up the big bang can be simply illustrated in terms

of the sub-Planckian unit of time, T0, analogous to the Planck

time TP =
√

~G/c5, in the form

T0 =

√

e2

2πc

G

c5
(2)

= 1.837 × 10−45 s

where (e2/2πc) is the reduced sub-Planckian “action” con-

stant, G is the Newtonian gravitational constant, and c is the

velocity of light. Unfortunately, because of the sub-Planckian

uncertainty principle, Eq. (1), we are prevented from specu-

lating on times shorter than 10−44 seconds after the big bang,

which is an order of magnitude prior to the Planck era (10−43

seconds). The disparity in this temporal sequence of events

is, needless to say, cosmologically significant since it im-

plies that a sub-Planckian era preceded the Planck era in the

nascent universe, which should be discernible from its gravi-

tational signature.
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In 2014 Jiapei Dai reported evidence of anisotropic Brownian motion of a toluidine blue
colloid solution in water. In 2015 Felix Scholkmann analysed the Dai data and detected
a sidereal time dependence, indicative of a process driving the preferred Brownian mo-
tion diffusion direction to a star-based preferred direction. Here we further analyse the
Dai data and extract the RA and Dec of that preferred direction, and relate the data
to previous determinations from NASA Spacecraft Earth-flyby Doppler shift data, and
other determinations.

1 Introduction

In 2014 Jiapei Dai [1] reported evidence of anisotropic Brow-
nian motion, and in 2015 Felix Scholkmann [3] detected a
sidereal time dependence, indicative of a process driving the
preferred Brownian motion diffusion direction to a star-based
preferred direction. Here we further analyse the Dai data and
extract the RA and Dec of that preferred direction, and re-
late the data to previous determinations from NASA space-
craft Earth-flyby Doppler shift data, and other determinations
[5]. It is shown that the anisotropic Brownian motion is an
anisotropic “heating” generated by the dynamical 3-space [4].

2 Anisotropic Brownian motion

Dai in Wuhan City detected anisotropic Brownian motion by
loading a small drop of toluidine blue solution into a con-
tainer of water. The diffusion pattern was photographed start-
ing within 30 sec of loading the water cell and then once ev-
ery ten minutes until the end of observations [1]. The images
were analysed using image analysis software. The observa-
tions were performed 24 times per day, and repeated from
December 22, 2011 to March 23, 2013.

The image of the diffusion anisotropy is illustrated in Fig-
ure 1, with directions measured from East in a clockwise di-

Fig. 1: Illustration of anisotropic diffusion of the toluidine blue so-
lution in water, 30 min after inserting drop. The preferred direction
is measured clockwise in degrees from East. Reproduced from [1].

rection. Dai reported the preferred direction of diffusion from
15 days, plotted against Wuhan Solar Time. In Fig. 2 that data
has been replotted against Local Sidereal Time for Wuhan
City. We now analyse that data from the point of view of a
preferred 3-space velocity, where the Right Ascension, RA,
is defined by when the preferred diffusion direction is from S
to N. The Declination is to be determined by the dynamic
range of the diffusion direction over one day, as in Fig. 4.
We report herein that the anisotropic Brownian motion data
confirms various properties of the 3-space flow previously re-
ported [5].

3 Dynamical 3-space

The Schrödinger equation must be extended to include the
dynamical space [6]

i~
∂ψ(r, t)
∂t

= − ~
2

2m
∇2ψ(r, t) + V(r, t)ψ(r, t)−

−i~
(
v(r, t)·∇ +

1
2
∇·v(r, t)

)
ψ(r, t).

(1)

Here v(r, t) is the velocity field describing the dynamical spa-
ce at a classical field level, [4], and the coordinates r give
the relative location of ψ(r, t) and v(r, t), relative to a Eu-
clidean embedding space, and also used by an observer to
locate structures. This is not an aether embedded in a non-
dynamical space, but a dynamical space which induces an
embedding space or coordinate system. This minimal gener-
alisation of the original Schrödinger equation arises from the
replacement ∂/∂t → ∂/∂t + v.∇, the Euler derivative, which
ensures that the quantum system properties are determined
by the dynamical space, and not by the embedding coordi-
nate system. The extra ∇·v term in (1) is required to make the
hamiltonian in (1) hermitian.

4 Analysing Brownian motion data

For a plane wave ψ = eik·r−iωt, for water molecules, this re-
sults in an energy shift E = ~ω→ E + ~k · v. The Dai data in
Fig. 2 reveals a complex behaviour, with not all data reveal-
ing a RA for the preferred flow. However this is explainable
by two key observations. First the fluctuations in the 3-space
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Fig. 2: Dai data [1], showing preferred direction of colloidal diffusion, plotted against Wuhan Local Sidereal Time (LST), for the various
indicated days. The coding M, N, ... refers to the labelling in [1], which reported the data against Wuhan local solar time. The preferred
direction of diffusion is measured as indicated in Fig. 1.
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Fig. 3: Plot of the better data from Fig. 2: M, I, J, L. These days show
trend of preferred direction to be from South to North (270◦) at ∼5
hrs LST. A similar trend might be expected for 17hrs LST, but is not
seen in all days shown. This is because at this approximate LST the
space flow passes more deeply through the Earth, see Fig. 5, which
results in considerable increase in turbulence.

flow manifest as changes in both speed and direction. When
the data for the better days is plotted, as in Fig. 3, we see that
the RA cluster around 5hrs Local Sidereal Time. However we
would also expect to see the data crossing the due N direction
(270◦) some 12 hours later. However the data in Fig. 3 shows
much noisier variations. This second key observation is that
this is also expected as during these times the 3-space flow
has passed deeply into the earth, as shown in Fig. 5, and this
results in increased turbulence in both speed and direction.
One consequence of this is that future studies of anisotropic
Brownian motion should be performed well into the southern
hemisphere. Finally, from the 3-space turbulence, we expect
the best quality data, being least affected by 3-space turbu-
lence, would be for day M. That data is shown in Fig. 4, which
gives an approximate RA=5hrs, Dec=60◦S. This is consistent
with the RA and Dec for December from the NASA Doppler
shift data [5].

5 Conclusion

That the known characteristics of the 3-space flow agree with
results from the anisotropy of the Brownian motion data sug-
gests a simple mechanism, namely that the 3-space flow gen-
erates an energy shift in the water molecules; E → E + ~k · v,
where k is the wavenumber vector for water molecules, and
that this is largest for water molecules moving in the direc-
tion of v. This results in water molecules moving in the di-
rection of v having a greater kinetic energy, and imparting
more momentum to the toluidine colloidal particles than wa-
ter molecules moving in the opposite direction. So the −i~v·∇
term gives rise to an enhanced Brownian diffusion in the di-
rection of v.

A similar effect was observed by Shnoll [7] in which the
α decay rate of 239Pu is directional dependent. This is also ex-
plained by the −i~v · ∇ term, as it causes the α kinetic energy
to be different in different directions related to v, and so af-

Fig. 4: Plot of Dai data vs Wuhan LST for Dec 22, 2011 (plot M
in Fig. 2). Smooth curve (blue) is predicted form for RA=5hrs,
Dec=60◦S. The RA is defined by when dynamical 3-space flow di-
rection is from S to N, here RA 5hrs and 17hrs. The Dec determines
the variation in direction, here 270◦ ± 40◦. Note the increased turbu-
lence, manifesting as fluctuations in direction of the flow, when the
flow is more deeply through the Earth. For Dec 8, 1992, the NASA
Doppler shift data gave RA=5.23hrs, Dec=80◦S, [5].

Fig. 5: Cross section of Earth showing Wuhan horizontal planes and
the local N and S directions at Local Sidereal Times of 5 hr and 17
hr. Also shown is dynamical 3-space flow direction, with a Declina-
tion of -60◦. At LST of ∼17hr the flow passes most deeply into the
Earth, resulting in significant turbulence, as revealed by the Brown-
ian motion data in Figs. 3 and 4.

fects the quantum tunnelling process, with more α emerging
in the direction of v.

Submitted on April 2, 2015 / Revised on April 17, 2015
/ Accepted on April 20, 2015

References
1. Dai J. Macroscopic Anisotropic Brownian Motion is Related to the

Directional Movement of a “Universe Field”. Natural Science, 2014,
v. 6 (2), 54–58.

2. Scholkmann F. Indications for a Diurnal and Annual Variation in the
Anisotropy of Diffusion Patterns – A Reanalysis of Data Presented by
J. Dai (2014, Nat. Sci.). Progress in Physics, 2014, v. 10 (4), 232–235.

3. Scholkmann F. Solar-Time or Sidereal-Time Dependent? The Diurnal
Variation in the Anisotropy of Diffusion Patterns Observed by J. Dai
(2014, Nat. Sci.). Progress in Physics, 2015, v. 11 (2), 137–138.

206 Cahill R. T. Dynamical 3-Space: Anisotropic Brownian Motion



Issue 3 (July) PROGRESS IN PHYSICS Volume 11 (2015)

4. Cahill R. T. Discovery of Dynamical 3-Space: Theory, Experiments and
Observations – A Review. American Journal of Space Science, 2013,
v. 1 (2), 77–93.

5. Cahill R. T. Combining NASA/JPL One-Way Optical-Fiber Light-
Speed Data with Spacecraft Earth-Flyby Doppler-Shift Data to Char-
acterise 3-Space Flow. Progress in Physics, 2009, v. 5 (4), 50–64.

6. Cahill R. T. Dynamical Fractal 3-Space and the Generalised
Schrödinger Equation: Equivalence Principle and Vorticity Effects.
Progress in Physics, 2006, v. 2 (1), 27–34.

7. Shnoll S. E. Cosmophysical Factors in Stochastic Processes. American
Research Press, Rehoboth, New Mexico, USA, 2012. http://www.ptep-
online.com.

Cahill R. T. Dynamical 3-Space: Anisotropic Brownian Motion 207



Volume 11 (2015) PROGRESS IN PHYSICS Issue 3 (July)

Beyond Quantum Fields: A Classical Fields Approach to QED

Clifford Chafin

Department of Physics, North Carolina State University, Raleigh, NC 27695. E-mail: cechafin@ncsu.edu

A classical field theory is introduced that is defined on a tower of dimensionally in-

creasing spaces and is argued to be equivalent to QED. The domain of dependence is

discussed to show how an equal times picture of the many coordinate space gives QED

results as part of a well posed initial value formalism. Identical particle symmetries

are not, a priori, required but when introduced are clearly propagated. This construc-

tion uses only classical fields to provide some explanation for why quantum fields and

canonical commutation results have been successful. Some old and essential questions

regarding causality of propagators are resolved. The problem of resummation, gener-

ally forbidden for conditionally convergent series, is discussed from the standpoint of

particular truncations of the infinite tower of functions and a two step adiabatic turn

on for scattering. As a result of this approach it is shown that the photon inherits its

quantization ~ω from the free lagrangian of the Dirac electrons despite the fact that the

free electromagnetic lagrangian has no ~ in it. This provides a possible explanation for

the canonical commutation relations for quantum operators, [P̂, Q̂] = i~, without ever

needing to invoke such a quantum postulate. The form of the equal times conservation

laws in this many particle field theory suggests a simplification of the radiation reaction

process for fields that allows QED to arise from a sum of path integrals in the various

particle time coordinates. A novel method of unifying this theory with gravity, but that

has no obvious quantum field theoretic computational scheme, is introduced.

1 Introduction

Quantum field theory, in some ways, marks the ultimate state

of our understanding of physics. In its computational ex-

actness, it can be thrilling yet its conceptual grounding is

very unsatisfactory. Field theory has its origins in the 1920’s

and 1930’s when attempts to include particle creation and the

quantization of the photon necessitated a larger mathematical

structure [13, 17]. Fock space seemed to have sufficient fea-

tures to encompass the intrinsic quantum and particle number

variable features. The ladder operators of the harmonic os-

cillator could be formally modified to give an algebra that

allowed these various particle number spaces to interact. Dif-

ferent attempts to generate an equation of motion and find

transition rates led to various formal procedures. Classical la-

grangians were varied in a formal manner with “second quan-

tized” operators in approaches by Schwinger and Tomanaga

and systematic procedures to handle the divergent terms were

introduced [15, 17]. Feynman gave a very intuitive approach

using path integrals that was put into a formal structure by

Dyson. This approach has gained prominence due to its ease

of organizing the terms of the expansion.

Quantum mechanics is the quantum theory of fixed parti-

cle number systems. Certain quasi-classical approaches made

the treatment of radiative decay possible without QED at low

energies. Nevertheless, even in this low energy domain, the

theory had lingering conceptural problems. Measurement and

the “collapse of the wavefunction” led to paradoxes that have

spawned an enormous literature [7]. Decoherence is a pop-

ular “explanation” of these effects but these tend to rely on

assumptions that are just pushed off to other parts of the anal-

ysis [16]. The Born interpretation, due to its simplicity and

historical inertia, still dominates most treatments of classical-

quantum interactions. Some may object that there are now

ways to treat measurements independently of the Born in-

terpretation to handle to new sorts of quantum nondemoli-

tion measurements [11] but these ultimately involve other ad

hoc statistical assumptions. Quantum statistical mechanics

has never found any solid conceptual footing despite the fre-

quent success of its formalism in describing thermodynamic

behavior and providing numerical results. This problem is of-

ten given a short comment in books on the subject and little

progress has been made. Ultimately, an initial data formula-

tion approach must resolve all of these issues in terms of the

dynamical equations and provide evidence for the kinds of

initial data that is physically relevant.

The quantum field theory approach to quantum mechan-

ics is on a solid footing. Even though operators may change

the particle number, it is always changed back at every or-

der in the expansion. One may show [15] that this gives an

exact isomorphism with the Schrödinger, Heisenberg and in-

teraction picture versions of QM. This leads to the Feynman

path integral approach to quantum mechanics which, while

equivalent, generally gives absurdly difficult derivations of

results compared to other means. In contrast, regularization

of the path integral has never had a very solid mathematical

foundation but applying the theory in a “standard” fashion

gives correct results. The main uses of QFT is in relativis-

tic physics, quasiparticle motions in condensed matter and in

the “Wick rotated” form which converts temporal evolution
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to a high temperature expansion of the thermodynamic poten-

tials. The correspondence of QFT in the case of quasiparticle

evolution to that of Schrödinger evolution is itself challeng-

ing [2]. Fundamentally, one must give a description of the

many-body wavefunction’s excited states to give such a cor-

respondence. This has led to the popularity of Green’s func-

tion methods in condensed matter physics since it sidesteps

this difficult work and leads directly to calculations. The va-

lidity of the derivation of the Kubo formula [8] has been ex-

tensively criticized [9] but it has, nevertheless, proved to be

of great use over a broader range of phenomena than should

be expected.

Given that no true classical-quantum correspondence of

objects is known, it is unclear when one should impose clas-

sical structures (like hydrodynamics) on the system and when

to extract certain properties (like viscosity) by quantum me-

ans. This is of particular interest in the study of ultracold

gas dynamics [5] and superfluid Helium. There are popular

and sometimes successful approaches for doing this but it is

never clear that they must follow from the true many body

dynamical theory or that we have simply made enough as-

sumptions to stumble on to the tail of a correct derivation, the

first, and correct part of which is a mystery to us. The general

vagueness and nonspecificity of the subject allows theorists

great freedom to generate calculations that then can be com-

pared with experimental or Monte-Carlo data for affirmation

of which ones to keep. This very freedom should undermine

our reasons for faith in our theory and intuition. Instead it, to-

gether with professional publication demands, seems to cre-

ate a selective pressure in favor of optimism and credulity on

the part of practitioners and an air of mystical prophecy of our

physics fathers and those who derive experimentally match-

ing results.

In relativistic field theory, where particle creation is im-

portant, there are additional problems. Renormalization is

necessary because of the local interactions of particles and

fields. Classical physics certainly has such a problem and the

radiation reaction problem of classical electrodynamics still

has unanswered questions [14]. The series derived from QFT

in the relativistic and quasiparticle cases tend to be asymp-

totic series and conditionally converging. Nonetheless, it se-

ems very important to resum these series over subsets of dia-

grams to get desired approximations and Green’s functions

that are analytically continued to give the propagator pole

structure corresponding to masses and lifetimes of resonan-

ces. The path integral itself has too large a measure to give

a rigorous derivation. Regularization procedures, like putting

the integrals on a Euclidean lattice for computation, length

scale cutoffs, Wilson momentum cutoffs, dimensional regu-

larization and others, are introduced to get finite results [13].

Of the conceptual problems facing quantum theory, renormal-

ization will be shown to be a rather modest one. Justifying the

use of resummation will be much more serious.

The Schrödinger approach to quantum mechanics has a

special place. Questions of causality and geometric intuition

are most naturally discussed in a real space picture. The dif-

fusive nature of this equation is problematic but vanishes in

the relativistic limit of the Dirac equation. Unfortunately, this

is exactly where particle creation effects become important.

In relativistic classical field theory, all causality questions are

resolvable systematically. The structure of the equations en-

sures that it is valid. Other advantages of classical fields are

that they are deterministic, propagate constraints exactly, give

clearly obeyed conservation laws and introduce a specificity

that allows all philosophical questions and thought experi-

ments to be resolved through examination of their own math-

ematically consistent structure. In some cases, like relativ-

ity, our intuition may need to be updated but how this is to

be done is made clear through such examples. QFT clearly

works at the level of computation for many problems. This

makes one believe that maybe our precursory arguments and

descriptions leading to those calculations are fine and merely

need elaboration. Given the success of so many calculations,

it comes as a great disappointment that almost any interacting

field theory is inconsistent [6].

Beyond these problems, the use of one particle lagrangi-

ans and couplings that get promoted to many body interacting

theory through canonical quantization or propagator methods

lead to a kind of conceptual disconnect that makes the solid

implications of classical field theory, e.g. Noether’s theorem

and conservation laws, unclear. These conservation laws can

be formally defined by a correspondence of operators and

checked but are no longer strict implications of the symme-

tries of a lagrangian. The symmetries of one-particle sys-

tems themselves require a more explicit definition in the many

body case where multiple coordinate labels of the wavefunc-

tion Ψ can describe independent motions but the current state

of theory does not present a solid enough foundation to show

how and when to make this manifest as an important symme-

try. The meaning of a “propagator” in classical theory is sim-

ple yet it is often not appreciated that the full reality described

by a Klein-Gordon (KG) field is not necessarily contained in

the support of φ in a given constant time slice due to its sec-

ond order nature. This is often lost in confusing discussions

in terms of positive and negative energy components. This

will be resolved for both KG and Dirac equations in the clas-

sical and quantum cases and clear up any apparently acausal

effects without reference to commutation relations and formal

measurement.

It is an emotionally identical state to feel that something

is wrong but unclear, lacking sufficient specificity, or that we

simply don’t understand. The formal character of quantum

field theory has produced a useful computational tool but left

enough vague and ill-defined that there is plenty to improve.

It is interesting that it has been proved that no interacting

quantum field theory is consistent [6]. People typically shrug

this off as with the other conceptual troubles in quantum the-

ory. At some point people have to generate work or do some-
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thing else but eventually formal approaches are destined to

lose productivity. Beyond that is the lack of satisfaction that

one really understands what one is doing. It is very common

in physics to find clever solutions or long derivations that turn

out to be flawed. Classical systems exist as well posed ini-

tial value problems so that they can be tackled from many

angles: perturbation theory, conservation laws, idealized sys-

tems, . . . . A well posed such problem that describes field

theory would doubtlessly open some new doors.

The foregoing was to show that some new approach to

the reality described by QFT is justified. In doing so, QFT’s

successes are the best guide to start. In the following we will

seek a well-posed classical relativistic theory over a tower of

spaces of increasing dimension that will have some loose cor-

respondence with Fock space. This will not be guided by the

computational convenience it affords but logical and mathe-

matical consistency and specificity. Since we are taking the

point of view that the fields are valid at all time (so implicitly

have an “emergent measurement theory” at work) we don’t

need to think of “particles” as something more than a label

for some axes in our higher dimensional space. It will turn

out that we will need a larger encompassing structure than

field theory on Fock space to describe the phenomenology of

QFT adequately. From this we can derive QFT phenomenol-

ogy in a suitable limit and use its rigid structure to answer

conceptual questions in a more convincing fashion. Since this

will strictly be a deterministic covering to QFT we consider

for it a new name, deterministic wave mechanics (DWM). Its

purpose is to elucidate an explanation of why quantum field

theory works and give a framework for modifications, like the

inclusion of gravity, that may have a well posed structure but

not exist in the framework of QFT itself. In the following we

will use QED as a particular case but the generalizations will

be evident.

2 Overview

The goal here is to introduce set of many particle number

spaces where energy, mass, charge, probability, stress, . . .

can travel between the spaces at two-body diagonals. This

will necessitate we make sense of multiple time labels and

have a well defined set of initial data and regions where inter-

acting fields can consistently evolve in this high dimensional

many-time structure. Because there will be no “field opera-

tors” there will be no need for a translationally invariant vac-

uum to build particles from. If we start with N electrons, the

number of photons may increase and electron-positron pairs

can appear but the net charge is the same in every space where

nonzero amplitude exists. This eliminates the basis of Haag’s

theorem and its contradiction.

Firstly, we will introduce separate equations of motion

and particle labels for electrons and positrons. The ampli-

tude of each of these will be positive locally and interactions

will not change this. Negative norm states exist but are never

utilized by the system. This is due to a symmetry of the dy-

namical equations not a constraint akin to the Gupta-Bueler

formalism. The photon fields will be described by both A and

Ȧ labels so that, each “photon” will now have 4 → 2 × 4 co-

ordinate labels. An important distinction here with QFT is

that there will be nonzero functions in the “tower” of fields

that have zero norm. For example, in a one-electron zero-

photon system, ψ(x) has full norm while the function in the

one-electron and Φem sector is nonzero. The norm of electro-

magnetic fields will not be a simple square of the function am-

plitude but a function of its amplitude and derivatives in such

a way that only if there are imaginary parts will it contribute

to the “norm.” Thus our tower of functions will involve many

nonzero ones that have no norm and the electromagnetic field

can pick up some complex components. This suggests that

our theory may have a larger configuration space than QFT.

A explanation of QFT may arise from this by thinking of

QFT tracking the flow of norm and other conserved quanti-

ties through the system while ignoring these higher nonzero

functions and, in some gauges, treating them as constraints.

Once we have a suitable configuration space, equations of

motion and reasonable sense of “future” we seek a mapping

of QED into the space. The tools used to treat scattering in

QFT involve “adiabatic turn on/off” of the interactions, reg-

ularization and renormalization. Typically we sum over spe-

cial subsets of diagrams and adjust the “bare” parameters to

get the right free behavior for these modifications. The reg-

ularization can be easily dealt with as in classical theory by

assuming finite size effects. This is essential for the radiation

reaction. It is still unclear how QFT can treat the radiation

reaction adequately so this alone may introduce new physics.

The sort of initial data with interactions already “on” requires

we work with a truncated set of the total space on interactions.

Implicit here is that the bare parameters be chosen to give the

right momenta and other observable for the “free” particles

(in the sense that they are ballistic not that interactions are

turned off). The structure of the theory allows us to adjust

couplings and interactions with far more freedom than QFT

for perturbative purposes. Resummation has always been the

most dubious aspect of QFT. Conditionally convergent series

should not be rearranged so having a limiting method to make

sense of this is an important improvement. In this paper we

will not prove an isomorphism with QED, and, given the in-

consistencies in the theory, this may be for the best. A foun-

dation is laid with some arguments for its ability to generate

QED results, but given the scope of the subject, much more

work remains than can be done in this one paper.

Finally we will discuss a method of combining this with

gravity by promoting the γ matrices themselves. This will re-

quire some extension of most fields to allow dual pairs so that

the quadratic lagrangians become bilinear. Such a method is

distinct from vierbein approaches and works on a flat back-

ground. Some important extensions of the notion of gauge

freedom arise here and the “reality” of the particles can be
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shown to move causally yet not be definable in any obvious

fashion in terms of the fields.

3 The configuration space

3.1 Dirac fields

In the early days of the Dirac equation, interpretations have

evolved from a proposed theory of electrons and protons to

that of electrons and positrons with positrons as “holes” in an

infinitely full electron“sea” to that of electrons with positrons

as electrons moving “backwards in time.” The first interpre-

tation failed because the masses of the positive and negative

parts are forced to be equal. The second was introduced out

of fear that the negative energy solutions of the Dirac equa-

tions would allow a particle to fall to endlessly lower ener-

gies. The last was introduced as a computational tool. The

negative mass solutions were to be reinterpreted as positive

mass with negative charge. Necessary fixes to this idea are

subtly introduced through the anticommutation relations and

the algebraic properties of the vacuum ground state used in

the field theory approach.∗ If we are going to seek a clas-

sical field theory approach to this problem we need another

mechanism.

In a universe containing only electrons and positrons we

require the fields Ψe, Ψp, Ψee, Ψep. . . where the number of

spinor and coordinate labels is given by the number of parti-

cle type labels as inΨee = Ψ
ab
ee (xµ, yν). The lagrangian density

must distinguish electrons and positron by their charge only.

Since we have not included any photons yet and we have as-

serted that positive norm will be enforced on the initial data

(and suggested it will be propagated even in the interacting

case) these will have equations of motion that follow from

the related one particle lagrangians

Le = i~ψ̄eγ
µ∇µψe − mψ̄eψe

Lp = i~ψ̄pγ
µ∇µψp + mψ̄pψp.

(1)

The sign of the charge will be discussed when the electromag-

netic field is added but, at this point, could be chosen either

±q. We confine ourselves to the Dirac representation and the

positron lagrangian is chosen so that its rest positive energy

contribution is in the v component of the spinor
(

u

v

)

unlike the

the electron case. We will only be interested in initial data

with positive energy. Later we will see that this is consistent

with the kinds of creation and annihilation operator couplings

in QED that allows positrons to have positive energy. We still

need a lagrangian for our many particle wavefunctions. In

this noninteracting case, we consider this to be built of a sum

of the one particle ones so that the lagrangian of the two elec-

tron field Ψab(xµ, yν) is

Lee = i~Ψ∗a fγ
0
abγ

µ

bc
∇µΨc f − mΨ∗abγ

0
acΨcb+

+ i~Ψ∗f aγ
0
abγ

ν
bc∇νΨ f c − mΨ∗abγ

0
acΨcb

(2)

∗It is interesting to note that it is precisely the properties of this ground

state that lead to the inconsistencies shown by Haag’s theorem.

where we have explicitly written out the indices associated

with spinor labels and coordinates and the summation con-

vention is assumed for all repeated indices. The action is to

be computed by integrating over a region in the 2-fold Lorentz

spaceR4×R4. Variation of the function can be done holding it

constant along y and x respectively leading to the usual equa-

tions of motion along the separate time coordinates tx, ty for

a product function Ψ = ψ1(xµ)ψ2(yν).

From a dynamical point of view, we are mostly interested

in the cases where the fields are all evaluated at equal times.

However we should ask what it even means to evaluate a func-

tion at two different times. When is this even meaningful? If

we specify Ψ(x
µ
1
, xν

2
) at t1 = t2 we desire to know into what

region of this many-time future we should expect a solution.

Further explanation of the equal time evolution is discussed

in Sec. 3.4.

Considering free propagators we can evolve the data from

(x1, x2) in the t1 direction indefinitely and similarly for t2. The

domain of dependence is then the union of the two backwards

light-cones |x′
1
− x1| < c (t1′ − t1) and |x′

2
− x2| < c (t2′ − t2). In-

teractions will allow free evolution for such a function except

on 2-body diagonals xµ = yν. When these cones intersect

these regions sources and sinks with other particle number

functions will arise. When these produce a net change in am-

plitude versus simply a potential force remains to be seen.

Furthermore, it is still unclear that we can derive the static

electromagnetic force effects from such a restricted local in-

teraction. This will be explained later but first we investigate

the case of free photons.

3.2 Photons

The classical electromagnetic field is a real vector field Aµ.

For our many body generalization as Ψ
µ
a ∼ ψa(x) Aµ(y) we

will have, generally nonseparable, combinations of electro-

magnetic and electron fields so making the assignment of

which is “real” is ambiguous. We will find that phase dif-

ferences between these fields on the many body diagonals

give sources and sinks of amplitude from one particle num-

ber space to another. Firstly, let us consider the classical elec-

tromagnetic field which we can, loosely, think of as a single

particle field.† The lagrangian of the electromagnetic field is

LA = −
1

4
FµνFµν (3)

where Fµν = ∂[µAν] = ∂µAν−∂νAµ. For now consider only the

“classical” field theory case where we have one field of each

type on R4. The complex Klein-Gordon field has a norm con-

servation law induced by the global phase change φ → φeiγ.

In this case of a noninteracting electromagnetic field we have

equations of motion �Aµ = 0 and, allowing complex values,

we have four independent global phase changes allowed in

†Generally classical electromagnetic fields are considered as combina-

tions of photon fields of all photon number.
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addition to the usual Aµ → Aµ + ∇ξ gauge freedom. We will

revisit this shortly and reveal how photon quantization arises

naturally from the lagrangian once coupling is introduced.

One important distinction of the electromagnetic fields

versus the Dirac fields is that the equations are second order.

These can be rendered into first order equations by introduc-

ing an auxiliary field Cµ = Ȧµ so that the equations of motion

become
∂tA

µ = Cµ

∂tC
µ = ∂i∂

iAµ.
(4)

The extension to the many particle case leads to a prolifera-

tion of functions akin to the rapid number of increasing spin

states for multiple Dirac fields. In each time direction of a two

photon state Aµν(xα, yβ) we need first and second order time

derivatives. A complete set of first order initial data is then

A, Cx = ∂tx A, Cy = ∂tyA, and Cx,y = ∂tx,tyA with equations of

motion
∂tx Aµν = C

µν
x

∂tyA
µν = C

µν
y

∂txC
µν
x = ∂i∂

iAµν

∂tyC
µν
y = ∂ j∂

jAµν

∂txC
µν
y = ∂tyC

µν
x = C

µν
x,y = C

µν
y,x

∂txC
µν
x,y= ∂i∂

iC
µν
y

∂tyC
µν
x,y = ∂ j∂

jC
µν
x

(5)

where the roman indices are spatial indices related to the cor-

responding spacetime indices as (tx, xi) = xµ, (ty, y j) = yν,

etc. We can see that the number of first order fields for a

source free N-photon system is 4 · 2N analogous to the num-

ber of spin subspaces for an N-electron system. A convenient

notation for this is (P,Q) where P, Q can be 0 or 1 and the

pair indicates how many derivatives of A with respect to x

and y are taken. This notation gives (suppressing spacetime

indices)

A = C00

Cx = C10

Cy = C01

Cx,y = C11

(6)

which will be convenient for later generalization.

3.3 Interactions

The presence of interactions is what makes dynamics inter-

esting. The mixing of gauge freedom means that any notion

of “reality” of an electron now involves a photon field as is

illustrated through the Aharonov-Bohm (A-B) effect. This is

seen in the definition of a gauge invariant electron current in

its explicit use of A. In the many body case we need a set

of interaction terms tailored for our, now distinct, equations

of motion for electrons and positrons. It also radically con-

strains our domain of dependence in this many time coordi-

nate space.

Let us begin with the classical or “one body” case. The

interaction terms tailored for electrons and positrons are re-

spectively:

ΛeA = −qψ̄(e)
a γ

µ

ab
Aµψ

(e)

b

ΛpA = −qψ̄
(p)
a γ

µ

ab
Aµψ

(p)

b
.

(7)

The free Dirac equation does not require such extra terms but

we will include them from now on to make the interaction

terms nicer. The sign stays the same here because of the sign

flip in the charge induced by the γ0 factor in the Dirac rep-

resentation where we assume the amplitude for the resting

positron is chosen in the “v” component of the spinor ψ =
(

u

v

)

.

We previously changed the sign of the mass term in Lp so

that the energy of this field is positive.

Including the interaction term Le, variation of the action

yields the equations of motion

∂Fµν

∂xν
= q jµ = qψ̄γψ

i~γψ + qAµγµψ − mψ = 0.
(8)

These are not all dynamic. Since the first is a second order

equation of motion, the equations of motion must have two

time derivatives. In this case we have the constraint ∇ · E =
qρ = q j0 which is propagated by the equations of motion.

This is induced by the conservation law we derive from the

sources, ∂µ jµ = 0 which shows that only three of these equa-

tions are now dynamical. We can rewrite this as a set of first

order equations by the definition Cµ = ∂tAµ. Choosing the

Lorentz gauge, ∂µAµ = −Ct + ∂iA
i = 0, we obtain �Aµ = q jµ

in a form that automatically generates compatibility with the

conservation of charge and is propagated for all time.

Interactions for the many body case, QED, involves two

ways of coupling electrons and positrons to the electromag-

netic field: a lone electron can couple to a lone electron and a

photon or a photon can couple to an electron and a positron.

We are not interested in any of the common “backwards in

time” mnemonics or procedures here since this is an initial

value approach. Firstly we should give a picture of the “tow-

er” of states that need to be coupled.

α

Ψ
µ

(A),Q
(x),Ψ

µν

(AA),QR
(x, y) . . .

Ψ(e),a(x),Ψ
µ
(eA),aQ

(x, y),Ψ
µν
(eAA),aQR

(x, y, z) . . .

Ψ(p),a(x),Ψ
µ
(pA),aQ

(x, y),Ψ
µν
(pAA),aQR

(x, y, z) . . .

Ψ(ep),ab(x, y),Ψ
µ

(epA),abQ
(x, y, z),

,Ψ
µν

(epAA),abQR
(x, y, z, w) . . .

. . .

(9)
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The first line holds a complex value α that indicates occu-

pancy of the “vacuum” state. The next line gives the pure

photon states. The N photon state has 4 · 2N degrees of free-

dom (dof) in the free case if we have not imposed any gauge

constraints. Below this are the one electron states with the 1,

2, . . . photon states to the right. Below are the one positron

states with the various photon number states then the electron

and positron states with corresponding photon number cases.

The action to describe these as free fields is given by a collec-

tion of independent actions

S (e) =
∫ (

i~Ψ∗aγ
µ

ab
∂µΨb − mΨ∗aΨa

)

dx

S (ee),1 =
! (

i~Ψ∗
ba
γ0

bc
γ
µ

cd
∂µΨda − mΨ∗

ba
γ0

bc
Ψca

)

dxdy

S (ee),2 =
! (

i~Ψ∗
ab
γ0

bc
γν

cd
∂νΨad − mΨ∗

ab
γ0

bc
Ψac

)

dxdy

. . .

(10)

The action for a single particle photon field is

S (A) = −
∫

1
4
FµνFµν dx

= − 1
4

∫ (

∂[µΨ
∗ν]
(A)

) (

∂[µΨ
(A)

ν]

)

dx
(11)

where we have included a complex conjugation. This seems

unnecessary since we generally consider the electromagnetic

field to be real. When we consider the functions that correlate

electron and photon fields we will see that we cannot neglect

it. The two photon actions are∗

S (AA),1 =− 1
4

∫ (

∂
[µ
(x)
Ψ
∗ν]α
(AA)

(x., y.)
)

(

∂(x)

[µ
Ψ

(AA)

ν]α
(x., y.)

)

dxdy

S (AA),2 =− 1
4

∫ (

∂
[µ
(y)
Ψ
∗να]

(AA)
(x., y.)

)

(

∂
(y)

[µ
Ψ

(AA)

να]
(x., y.)

)

dxdy

S (AC),1 =− 1
4

∫ (

∂
[µ

(x)
Ψ
∗ν]α
(AC)

(x., y.)
)

(

∂
(x)

[µ
Ψ

(AC)

ν]α
(x., y.)

)

dxdy

S (CA),2 =− 1
4

∫ (

∂
[µ

(y)
Ψ
∗να]

(CA)
(x., y.)

)

(

∂
(y)

[µ
Ψ

(CA)

να]
(x., y.)

)

dxdy

(12)

where the 1, 2, . . . subscripts on the actions indicate the re-

spective coordinate label x., y. . . . where the derivatives are

being taken. The previous notation we used to distinguish

coordinate order for the Dirac fields is not available here be-

cause of the more complicated index structure and we replace

A and C as field labels withΨ(A) andΨ(C) for the sake of a uni-

form notation when both electrons and photons are present.

Here we explicitly include the coordinates and label the first

∗The “upper” or “lower” state of the particle type labels (AA), (AC), (eA)

etc. have no meaning but are chosen to make the expression as uncluttered

as possible. Summation conventions are in effect for spacetime and spinor

indices.

coordinate, x., in the derivative operator ∂
µ
(x)

and order the

indices in Ψµν to correspond to x. and y. respectively. The

square backets, [ ], indicate antisymmetry over the two in-

dices immediately to their open sides. The first order time

derivative data from the “inactive” coordinates, those not be-

ing dynamically evolved by the particular lagrangian, are in-

cluded with the C labels to get a full set of first order initial

data. Variation of these lagrangians, through a combination

of explicit and implicit expressions, gives the four functions

Ψ
µν

(CPQ )
and eight linear Equations of Motion (EoM) for each

function in each of the two time directions tx, ty.

The (noninteracting) mixed one-electron one-photon ac-

tions on Ψ(x., y.) to generate EoM in each time label are

S (eA),1 =
∫ (

i~Ψ∗,ν
(eA),a

γ
µ

ab
∂(x)
µ Ψ(eA),bν−

−mΨ∗ν
(eA),a
Ψ

(eA)
aν

)

dx

S (eA),2 =− 1
4

∫ (

∂
[µ
(y)
Ψ
∗ν]
(eA),a

) (

∂
(y)

[µ
Ψ

(eA)

aν]

)

dx.

(13)

Generalizations to higher particle numbers from here are ev-

ident but rapidly become onerous. Symmetries among iden-

tical particle types are not required by these actions but it is

not hard to see that imposing them as initial data lets them be

propagated.

To give an interesting theory there must be interactions.

The vacuum u is strictly formal and does not couple to any-

thing. We know that electrons and positrons can annihilate

and electrons/positrons can scatter and produce a photon. The

couplings must be “local” in some sense that we enforce, with

inspiration from QED, as

S (e) =
∫ (

i~Ψ̄∗aγ
µ

ab
∂µΨb − mΨ̄∗aΨa

)

dx

+Λ(e−eA)

S (eA),1 =
∫ (

i~Ψ̄
∗,ν
(eA),a

γ
µ
ab
∂

(x)
µ Ψ(eA),bν−

−mΨ̄∗ν
(eA),a
Ψ

(eA)
aν

)

dx + Λ(eA−eAA)

S (eA),2 = − 1
4

∫ (

∂
[µ

(y)
Ψ
∗ν]
(eA),a

) (

∂
(y)

[µ
Ψ

(eA)

aν]

)

dx+

+Λ(e−eA) + Λ(eep−eA)

. . .

(14)

where the “bar” action over theΨ is hiding a γ0 considered to

be contracted on the active spinor indices. Here we see that

the one-electron field ψ = Ψ(e) feels the electromagnetic field

from Ψ(eA) as we evolve in its time coordinate direction t(e).

The notion of locality for this interaction is chosen so that ψ

feels the field of Ψ(eA) when all three spacetime coordinates

agree. In this case, this gives only a self energy contribu-

tion but will give the usual two body static interaction for two

charges. Conversely, the field Ψ(eA) feels the influence of ψ as

a source where all three coordinates agree when we evolve in

the time direction t
(eA)

2
, the second time label corresponding
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to A. For an electron-positron pair production or annihilation

amplitude we give a similar definition of locality.

Explicitly, the couplings are

Λe−eA = −q
∫

Ψ̄
(e)
a (x.)γ

µ

ab
Ψ

(eA)

µ,b
(y., z.)δ(x. − y.)

δ(x. − z.) dxdydz

Λp−pA =−q
∫

Ψ̄
(p)
a (x.)γ

µ

ab
Ψ

(pA)

µ,b
(y., z.)δ(x. − y.)

δ(x. − z.) dxdydz

Λep−A = ±q
∫

Ψ
(ep)∗
ab

(x., y.)γ0
acγ

µ
cb
Ψ

(A)
µ (z.)δ(x. − y.)

δ(x. − z.) dxdydz.

(15)

The sign of the pair production term is not clearly constrained

here and neither is our choice of where to place the complex

conjugations. Comparison with QED suggests that the sign

be chosen negative and these be the correct choices of con-

jugation and contraction with γ0 factors. The evolution of

the free equations ensures conservation of the stress-energy,

charge and particle number. These coupling terms can in-

troduce relative phase differences at these many-body diago-

nals so can act as source and sink terms for amplitude. The

complexity of the quantum version of the photon is important

in generating these sources and in creating a norm conserva-

tion law that governs the flow of “norm-flux” between these

spaces. Interestingly the conservation of charge and norm

arise from the same global phase symmetry. The electron-

positron field has no net charge yet will have a well defined

norm from the phase symmetry Ψab → eiθΨab in the free la-

grangians

S (ep),1 =
! (

i~Ψ∗
ba
γ0

bc
γ
µ
cd
∂

(x)
µ Ψda−

−mΨ∗
ba
γ0

bc
Ψca

)

dxdy

S (ep),2 =
! (

i~Ψ∗
ab
γ0

bc
γν

cd
∂

(y)
ν Ψad+

+mΨ∗
ab
γ0

bc
Ψac

)

dxdy.

(16)

There is an obvious extension of these interactions to the

tower of fields. We need to discuss why the equal times slice

of the evolution∗ here is most related to what we see and expe-

rience. Before we do this let us consider the electrostatic in-

teraction between two electrons. It has always seemed a little

ad hoc that we impose the two point interaction
q

4π
|x2

1
− x2

2
|−1

for a function Ψ(x, y) in quantum mechanics. Certainly we

can write down a one body wavefunction ψ(x) and vector po-

tential Aµ and impose a classical 4D lagrangian. We find an

electrostatically driven self spreading distribution where the

density of the norm gives the charge density. This is not at

all what we see for the two charge quantum system. No such

self-force is manifested beyond the usual quantum pressure.

∗Specifically, for any many body point of any function of the tower, we

choose all the times corresponding to the spatial coordinates equal: t1 = t2 =

t3 . . . .

Given the fields Ψ
(ee)

ab
(x., y.) and Ψ

(eeA),µ
ab

(x., y., z.), we see

that when we impose the Coulomb gauge that

Ψ
(eeA),t
ab

= Ψ
(ee)

ab
(x, y)

q

4π

(

|~x 2 − ~z 2|−1 + |~y 2 − ~z 2|−1
)

. (17)

The nature of the self-energy for such a theory seems more

opaque than in the classical case where we can consider it

in terms of finitely sized objects [14]. Locality and causal-

ity here are not so forgiving with such a construction and a

constituent based approach would likely require an infinite

number of fields of vanishing mass and charge that bind to a

state of finite extent with the center-of-mass coordinates ap-

pearing as the xµ, yν coordinates in our Ψ
(ee)

ab
. We will not

discuss this point further but should be aware of the compli-

cation in managing self field contributions that affect both the

energy and momenta of particles. Shortly we will see that

even though Ψ
(eeA),t
ab

is nonzero it contains zero norm and that

there is an infinite tower of such nonzero fields above it. This

is not so evident in QFT which we may think of as tracking

the nonzero norm of the fields through the tower. Now would

be a good time to emphasize that these are all classical fields

in a tower of spaces of growing dimensionality. There are no

Grassmann variables, q-numbers or field operators and their

associated commutation relations. These have always been

conceptually dubious or ad hoc constructions on which field

theory is built and the goal of our construction is to show why

(and when) they work.

3.4 Diagonal time evolution

The relationship between the quantum and classical worlds is

an enduring problem. It is not just explaining quantum mea-

surement that is troublesome. Encoding the classical world

in a quantum description is a challenge to do correctly. Naive

approaches have led to such useful results as band theory

and the Kubo relations but ultimately lead to inconsistencies.

One approach is to assume the classical world is a very re-

stricted subset of localized many body wavefunctions that

are sparsely distributed in the total Fock space. The usual

quantum statistics then follow trivially along with an arrow

of time [1,3]. The new problem is justifying such initial data.

In this many time description we have the further challenge of

justifying why we, as observers, seem to observe the universe

of “equal times” and not the vast regions of unequal space and

time locations where the many body quality of the description

is more evident.

Possible explanations for this is that interactions occur at

many body diagonals. Since our observations require interac-

tions this is the part of the universe we see. In general, many

body wavefunctions do not act in a form similar to discrete

state machines which seem to underlie our notions of mem-

ory and consciousness. The special cases do seem to define

our classical world. We will show that the equal times evolu-

tion defines the motion everywhere so all the other regions are
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defined by them and so give no other possible observations of

the world.

As an example, consider the evolution of the two photon

field Aµν(xα, yβ) along the tx = ty axis with respect to t = tx+ty

∂tA
µν = C

µν
x +C

µν
y

∂tC
µν
x = ∂i∂

iAµν +C
µν
x,y

∂tC
µν
y = ∂ j∂

jAµν +C
µν
x,y

∂tC
µν
x,y = ∂i∂

iC
µν
y + ∂ j∂

jC
µν
x .

(18)

It is unclear if this is particularly useful but it does illustrate

how the evolution along the equal times axis is locally deter-

mined in the equal time coordinate t. However, we still need

to evolve spatially in a neighborhood of this diagonal so the

many body and many time propagator approach seems hard

to avoid.

3.5 Quantization of the photon

Here we show that the quantization of the photon inherits

its norm from the purely electron part of the lagrangians.

This is the photon analog to the way that the “reality” of the

Schrödinger electron picks up a contribution from A in the

current jk = ~

m
∇kφ − eAk.∗ This explains how the photon

quantization condition can be a function of ~ despite having

no such factor in its own lagrangian. It is quantized in the

sense that if all the amplitude (normalized to 1) is initially in

the lepton fields then it is all converted to a photon then the

factor ~ω gives the magnitude of the photon norm. Up to this

point we have been using units where c = µ0 = ǫ0 = 1 but

left ~ general. In this section, we revert to full SI units to

emphasize this connection more clearly.

In the free field cases, the usual definitions of momen-

tum, energy. . . follow from the stress tensors for the classical

Dirac and electromagnetic fields regardless of whether they

are real or complex. The one additional conserved quantity

that Dirac fields have is “norm” associated with the complex

global phase freedom. The fields in the tower possess a U(1)

symmetry in the sense that Ψ → Ψeiθ and similar transfor-

mations for every function in the tower leaves the set of la-

grangians invariant. When a fermion and photon field interact

the coupling terms act as complex source terms resulting in,

for example, a complex Ψ(eA) functions as the amplitude of

Ψ(e) decreases. Since this is not generally a separable func-

tion, we cannot say whether the photon or electron part is

complex individually but can predict the phase difference be-

tween the function pair and derive a many body conserved

norm.

Firstly, we can modify the photon lagragian to allow com-

plex fields as

LA =
1

4µ0

(

∂µA∗ν∂
µAν + ∂µAν∂

µAν∗
)

(19)

∗We have neglected the “spin current” fraction here for simplicity.

This is essentially the massless Klein-Gordon field. The con-

served current is

jµ =
i

4µ0

(

∂µAν · A∗ν − Aν · ∂µA∗ν
)

(20)

Consider the case of a complex plane wave solution Ay(x, t) =

Aei(kx−ωt). If this was a real (classical) field there would be no

current and norm would equal zero. For the complex case,

ρ = j0 = A
2ω/2µ0 and jx = −A

2k/2µ0. In computing the

norm for Ψ(eA) we need to use this j0
(A)

and evaluate

N̂(Ψ(eA))=
i

2µ0

! (
∂

(A)
t Ψ

(eA)
aν Ψ

∗ν
(eA),a
−

−Ψ(eA)
aν ∂

(A)
t Ψ

∗ν
(eA),a

)

dx3dy3

= i
2µ0

! (
Ψ

(eC)
aν Ψ

∗ν
(eA),a
−

−Ψ(eA)
aν Ψ

∗ν
(eC),a

)

dx3dy3

(21)

where N̂ is the norm operator defined by j0 for the argu-

ment function. A Dirac field gives a conserved
∫

ψ∗ψ so this

clearly gives the correct electron-photon conserved current in

the noninteracting case so this is the quantity that is conserved

along the equal times diagonal. Let the volume of the space

be V = 1. Now let us investigate the implications of simul-

taneous conservation of energy and norm in a radiative decay

process.

Suppose we start with an excited positronium state Ψ∗
(ep)

that radiates with frequency ω into the state {Ψ(epA),Ψ(epC)}†
and possibly higher photon number ones. The resulting pho-

ton must have the same frequency ω since this is the fre-

quency at which the source term oscillates. The initial norm

for the states is N̂Ψ(ep) = 1 and N̂Ψ(epA) = 0. Our goal is

to find the resulting norms after the transfer is completed, in

these units. This will tell us the ratio of energy to norm trans-

ferred, which we construe as the meaning of photon quanti-

zation.

Assume the resulting function is Ψ(epx) = Ψ
′
(ep)

Aei(kx−ωt)

where N̂(Ψ′
(ep)

) = 1. Since these lagrangians are coupled

the coefficients they define a relative size for them which are

respectively ~ at t = 0 (from the factor in the kinetic term in

the electron and positron lagrangians) and

N̂Ψ(epA) = N̂Ψ(A) = A
2ω/2µ0 (22)

at t = t f . Since these must be equal we obtain the amplitude

of the wave as A = (2µ0~/ω)1/2. The final energy of the

system must be the same with the electron and positron in a

new state with ∆E(ep) = ∆E(epA). The photon contribution is

given by E(A) =
∫

1
2µ0

C2dx = 1
2µ0

A
2ω2 = ~ω. This shows that

to radiate any more energy an additional photon would need

to be generated.

†Note that the notation {, } does not denote anticommutation here. These

are functions and the braces here just indicate a set.
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In quantum mechanics and quantum field theory this is

one of the assumptions that is hidden in the formalism. Since

we are constructing an explicit classical field theory we do

not have such a liberty. It was not, a priori, necessary that a

transfer of energy, ~ω, from a decay between two eigenstates

give a unit norm transfer. We might have had a partial oc-

cupancy of the Ψ(epA) state and not completely emptied the

Ψ(ep) one or had to resort to higher Ψ(epAA...) states to contain

all the norm that was generated by the event. This is the first

actual derivation of the “quantization” of the photon. In this

model, the statement of photon quantization is more precisely

stated that the ratio of energy flux to norm flux between dif-

ferent photon number states is jE/ jn = ~ω, at least for the

case where the frequency of the radiation is monochromatic.

It is interesting that the photon “norm” depends on ~ even

though the only lagrangian with such a factor is that of the

fermions. The coupling has done several things. It introduces

a constraint on one of the components of the electromagnetic

field from the current conservation of the charges. It mixes

the “reality” of the A and ψ fields to give the electron current.

Here we see that it also induces the proportionality constant

in the norm flux of the photon between different particle num-

ber spaces. This relationship between norm and energy flux

may be what underlies the success of the formal commutation

relations for field operators [P̂, Q̂] = i~ [4].

4 Dynamics

We have not firmly established an isomorphism with QED

for a precise subset of initial data. Ideally, imposing the usual

particle symmetries on such data and evolving will match the

usual scattering amplitudes. We have several barriers to do-

ing this. Firstly is renormalization and the singularity of the

coupling terms. The dimensionality of the space is so enor-

mous and the number of nonzero yet norm free subspaces is

infinitely large so finding an economical and compact man-

ner to even start the problem is unclear if possible at all.

Even finding the suitable “dressed” particles to scatter is not

yet accomplished. The largest hurdle to overcome is prob-

ably the fact that no interacting field theory is well defined

by Haag’s theorem. This has been solved here so it might

be unfair to even ask for an isomorphism between the theo-

ries. However, QED has a record of impressive calculations

and the most reasonable notion of “isomorphism” may be

to reproduce these. The foundational aspects of QED were

designed after the fact on the tail of a process of refining

procedures to obtain useful calculations so the inconsistency

of these foundations may not be so important. Let us be-

gin with a process of restricting the subspaces in a fashion

that gives observable particles with enough of the interac-

tions necessary for good approximations. Given the expanse

of QED we cannot do all the work necessary to make a con-

vincing case for this theory in a single paper. Some of this

section is meant to be suggestive of more essential work

ahead, not an exhaustive argument or thorough calculation

to this end.

4.1 Scattering and adiabatic coupling changes

One of the most frustrating aspects of QFT is that the interim

state of the system is clouded in the language of “virtual par-

ticles” and it seems to be not well defined at every time. Our

measurements are confined to in and out states once the in-

teractions are over. This is a formulaic extension to bound

states where the interaction persists but this does not solve

this problem. The current formulation shows that there is a

well defined state at every time. Ironically, the in and out

state picture has more problems at t = ±∞! This is because

the interactions have been “turned off” here so the “virtual

cloud” of many particle states that must always accompany a

particle are no longer there. By adjusting the bare mass pa-

rameter slowly we can make an association with such states

of the same net mass and momentum.

This is already formally discussed in many books. Here

we will make some small changes that don’t affect the re-

sults but make the process a bit more logical. Firstly, notice

that the equations of motion above have been selected to give

the usual propagators in the single time coordinate functions

and the couplings to model those of QED. The role of the

many photon coordinate spaces has been suppressed by the

QED formalism and we see that there are many more spaces

to consider than in the usual treatment. Once we impose

the Coulomb gauge, we see that many of the constraints de-

scribed by the “longitudinal photons” are just nonzero zero-

norm functions in the tower.

If we consider the case of scattering of two particles, say

an electron and a positron, we should properly “dress” them

first. This suggests we partition our tower into a set of higher

photon and electron-positron pair spaces that only couple to

these particles separately. By turning on the interaction pa-

rameters slowly enough we can force the net mass and mo-

mentum of these waves to be the same without inducing any

unwanted reflection. Since we typically work with plane wa-

ves of infinite extent instead of wave packets, we don’t have

a natural way to let spatial separation of packets prevent them

from interacting but we can now use a second adiabatic turn

on that lets these towers now interact and couple to the set of

higher photon and electron-positron pair spaces that include

both of these in more interesting ways. The more flowery

aspects of QED such as “the positron is an electron moving

backwards in time” is removed by our positive mass indepen-

dent equation for the positron and superluminal virtual parti-

cles are now to be understood as a feature of evolving prop-

agators in separate time spaces to arrive at the equal times

result. We will now show that the apparent superluminal con-

tributions to the Feynman propagator is actually a constraint

on consistent initial data not faster than light effects that are

cancelled by a measurement ansatz.
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4.2 Causality considerations

The divergences we see in field theory with interactions are

directly related to the singular nature of the δ-function cou-

pling in the lagrangian. This is usually phrased in the loose

semi-classical language of quantum theory as the “particles

are point-like”. We already expressed that our opinion was

that finer nonsingular structure existed at a level we cannot yet

probe. The oldest method of handling such a situation is with

“cutoffs”. Naively done, these are intrinsically nonrelativis-

tic for reasons of their small nonlocality. We can make them

as mild a problem as possible by choosing them in the local

frame defined by the two body currents at the interaction diag-

onal. Specifically, it is here we need to couple two fields such

as Ψ(e) and Ψ(eA) so that the electron field of Ψ(e) generates

the electromagnetic field in Ψ(eA) as a source at the xe = xA

diagonal. The current jµ(Ψ(e)) defines a velocity v = j/ρ.

This specifies a local frame to construct a spherical region of

radius r0. We can then modify the electromagnetic source in-

teraction term as Ψ̄(e)γ
µΨ(eA);aµδ(x(e),1 − x(e),2)δ(x(e) − x(A))→

Ψ̄(e)γ
µΨ(eA);aµδ(x(e),1−x(e),2) f (v, x(e),Θ(r0−|x(e)−x(A)|)) where

f gives a boost distortion to the r0 sphere in the rest frame de-

fined by the current. As long as the oscillations we consider

are much longer than r0 this has little contribution to nonlocal

and nonrelativistic errors for a long time. It does create a re-

cursive (hence nonlinear) definition. We only expect cutoffs

to be useful when the details of the cutoff are not important in

the result. It is expected that this extension of the usual cut-

off procedure will give new radiation reaction contributions

not present in QED although it is possible that other regular-

ization procedures to cut off integrals may effectively do this

implicitly. The small range of the boost dependent shape of

the cutoff has effects only for field gradients that can probe

it, however, this is exactly the case in the radiation reaction

problem. There is considerable belief that the radiation reac-

tion force and rate of particle creation is not captured by stan-

dard QED and that all such approaches are plagued with the

pre-acceleration problems standard in the classical case [14]

but some useful limits have been derived [10].

The perturbative schemes generally built on the interac-

tion representation yields a time ordered exponential [13, 17]

of terms ordered by the number of discrete interactions in

the terms. The details of this construction allow S F to be

pieced together from forwards and backwards propagators in

a spacelike slice. This results in a propagator that lives out-

side the light cone. Usual arguments [13] tell us that the

vanishing of the commutator of the field operators outside

the light cone is sufficient for causality, an explanation that

sounds excessively hopeful and reaching but all too familiar

to students of QFT. For our initial data formalism there is no

such analog. Firstly let us argue that this unconfined behav-

ior of S (x − y) at tx = ty = 0 is not an expression of acausal

behavior just a statement that the “reality” the initial data has

not been localized to start with. How can this be? We could

start with a classical delta function source and evolve with

this and arrive at a true solution that evolves past the light

cone. The usual answer to this is obscured by the usual cloudy

use of positive and negative energy states in QFT. Here we

have distinct equations of motion or electrons and positrons

so the “negative energy” components are a reality to contend

with and not to be “reinterpreted” through some measurement

ansatz.

To address this consider the case of the classical (massive)

KG equation

∇2φ − ∂2
t φ =

m2

~2
φ (23)

where the propagator has the same problem. Here the initial

data is φ and φ̇. Localizing φ as a delta function gives

φ =
∑

ei(px−ωt)

φ̇ = −i
∑

Epei(px−ωt)
(24)

where Ep = ω(p) =
√

p2 + m2/~2. This shows that whatever

reality is associated with the KG field φ is not localized even

though φ itself is. Interestingly, if we force localization of φ̇

then φ = i(2π)3∑ E−1
p ei(px−ωt) = i(2π)3Gp(x) so it embodies

the delocalized initial data we complain about in the propa-

gator. We can produce a localization of φ and φ̇ by setting

φ(x) = δ(x) and φ̇ = 0 as the particular linear combination

φ(x, t = 0) =
1

2π

∫ ∞

0

dk
(

aeikx+iω(k)t + be−ikx−iω(k)t
)

|t=0 (25)

with a + b = 1 and a − b = 0 so a = b = 1
4

but this will turn

out not to be the interesting solution for coupling of KG to a

positive energy Dirac field.

Our inability to constrain the total reality (charge, energy,

mass, . . . ) of the particle to a point indicates that we have

a constraint on our physical initial data not a measure of the

incompleteness of our basis or a causality problem with our

propagators. It should now not be surprising that a similar

situation arises for the Dirac fields. For a spin up, positive en-

ergy state, localization of all components is inconsistent with

the equations of motion. In coupling the Dirac field to the

KG (or electromagnetic) field we cannot couple a delocalized

Dirac packet to a localized one and the use of the propagator

Gp to build the interaction now is more reasonable that the so-

lution given by (25) since it follows directly from the Fourier

transforms of the couplingsΛe−eA, Λee−eeA, etc.

4.3 Subspace restrictions and resummation

The problems of finding initial data and evolving in an infi-

nite tower of spaces is daunting. The perturbative solutions

embodied in the path integral approach are a way of working

around this without stating it in these terms. The problems of

field theory are often such that a finite perturbative approach

is inadequate. Superconductivity is a canonical example of
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this where this “nonperturbative” behavior delayed an expla-

nation for half a century. Summing over the same diagram-

matic sequence such as with “ladder diagrams” lets us cap-

ture some small slice of the infinite character of the space and

derive new effective propagators where effective mass terms

arise. The number of terms in the total perturbative expansion

grow exponentially so it is unclear if such a sum actually has

any meaning to which we are attempting convergence. We

now know that such series are generally asymptotic so that

there is no meaning to them in this limit. However, these par-

ticularly abbreviated series have been very valuable and are

often capturing essential parts of the physics.

In this article, we are seeking a higher standard of con-

ceptual justification for such sums. Even though we cannot

hope to complete this task in a single article, let us seek a

foundation for such calculations based on the data set and

coupling provided. The self energies have been addressed

through a relativistically valid, if slightly nonlocal, approach

through cutoffs. Consider a single particle of mass parameter

m and momentum p. This should be thought of as including

Ψ(e),Ψ(eA),Ψ(eAA), . . . (and associated CPQ fields) with all am-

plitude in the bottom state but constraints holding in the upper

level functions but no other space couplings. This can be ex-

actly and easily solved with the Coulomb gauge imposed at

each level. Turning up the other interactions through the pair

creation states Ψ(eep),Ψ(eepA), . . . can be done independently

since the couplings between all function pairs, labelled by q,

can be controlled separately. These states acquire little con-

tribution in dressing a lone charge because they add so much

energy to the system although the effects can be larger during

deep scattering events with other charges.

In order to evolve such a system with a gradually chang-

ing interaction term while preserving the net norm, mass,

and charge (observed from a distance) we can control the

m and q parameters and an overall multiplicative constant,

β, of the system. The final observed mass is the net en-

ergy of the system in the rest frame. We assert that the ob-

served charge is determined by the electric flux that we can

observe through large spheres in the A-coordinate subspaces

in Ψ(eA),Ψ(epA),Ψ(eAA), . . . . When a large “classical” body

interacts with such a particle we assume it is broadly and uni-

formly distributed through a large variation in photon num-

ber spaces. This may seem ad hoc but for such a body to

affect a lone dressed charge it must act in all the photon num-

ber spaces available or it leads to spectroscopic filtering of

charge subspace components as they move in its field. Since

this is not observed and we don’t have a clear understand-

ing of how classical bodies are represented with a quantum

description, this seems like a reasonable supposition. These

ideas lead to a prescription to modify the m, q, and β as we

turn up the interaction. We need to be careful here as we

now implicitly have multiple q’s! This has been obscured by

our choice of labeling them the same in our tower of inter-

actions. There is the value qeA that gives the self energy cou-

pling in the towers of strictly photon number increasing states

e.g. Ψ(eA),Ψ(eAA),Ψ(eAAA), . . . and the value qeep that gives the

couplings to the towers of electron positron pair increaseΨ(e),

Ψ(eep), Ψ(eeepp), . . . . Ultimately we want these parameters to

be both the same. This seems to be a nontrivial process and

it is somewhat impressive that the usual QED adiabatic turn

on gets this to work by starting with a completely undressed

charge and a single parameter.

Once we have dressed up lone charges on a subset of the

towers deemed to be sufficiently rich to describe the dynam-

ics of the process of interest, the interactions between them

must be turned up. Given the states Ψe1A and Ψe2A we expect

an antisymmetrized product of the two to give a first approxi-

mation to Ψe1e2A and evolve these new “crossing” interaction

parameters q1,2 gradually and then hold it steady for a much

longer period of time followed by a turn off of the interac-

tions. If these adiabatic processes can be done in a way that

leaves momenta of scattered waves unchanged then we can

infer the actual scattering rates and angles for dressed parti-

cles. To this author, this is the simplest possible way to ar-

rive at the scattering results from a well-posed initial value

formalism. Ultimately, we must try other less restrictive sub-

space restrictions to show that our assumption that they made

a small contribution was valid. There is reason to believe this

actually works and gives the usual QED results and will be a

subject of a followup work.

5 Conclusions

The need for establishing a well-defined space and set of dy-

namical equations for the reality described by QED, and QFT

in general, has been discussed and presented in the form of

a tower of spaces of continuum functions. Subsets of the di-

mensional labels of these spaces give meaning to the notion

of “particle” and symmetries in the couplings and initial data

define “identicality” of them. There have been a number of

subtle issues to confront. Not the least of these is how to give

meaning to the many time labels that arise in such a construc-

tion and why we, as observers built from the fields, should

observe only one time. Such a construction has a number of

advantages. It removes the ad hoc character of the construc-

tion and the need for the notion of “quantum fields.” The

inconsistencies described by Haag’s theorem are resolved by

a partitioning of the tower space into subsets of fixed lepton

number that never couple to the ground state. Most impor-

tantly we have given an explanation for the quantization of

the photon and an indication of the origin of the quantization

conditions for quantum operators and the appearance of ~ in

them.

The biggest downside of this construction is that of com-

putability. QED was built from computations and arose out of

many ad hoc attempts to make sense of observed dynamics on

the part of many stellar physicists. The actual foundations of

the subject are almost a necessary afterthought. Of course, no
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class is taught this way and the foundations must come first

regardless of how flimsy they are. A cynic might worry that

field theory courses are filtering students based on their levels

of credulity or lack of concern with consistency, a possible

advantage in a field driven by extreme publication pressures.

The work here is still hardly complete and it is still to

be shown that such construction can validate the successful

results of QED for scattering. The subject of bound state cor-

rections has been untouched here and an important topic that

needs attention. There is good reason to believe that, ulti-

mately, this theory will have corrections that are not found in

QED and therefore be inequivalent at some level of accuracy.

The subject of the radiation reaction and QED is still dis-

puted. Given that the classical radiation reaction is resolved

by keeping track of the self fields that traverse the extent of

a finite body, one might worry that the renormalization pro-

cedure to handle self energy might be too simplistic and miss

the asymmetric forces that must arise to give the back reac-

tion. A primary motivation for this construction is the incor-

poration of gravity in a consistent fashion with the quantum

world and other fundamental forces. A recent construction by

the author in a classical direction relies on a greatly expanded

gauge group and a flat background construction. Here cou-

plings mock up the “geometric” effects of general relativity

to observers and provides a new avenue for this problem as

discussed briefly in the appendix.

A Gravity

Recently the author has presented a treatment of classical GR,

electromagnetism and the Dirac field on a flat background

that retains the apparently geometric features of GR and yet

puts the fields on a similar footing [3]. The motivation for

this is in promoting the Dirac γµ matrices to dynamic fields

without imposing the vierbein approach. This has a number

of consistency challenges to work out that will not be repro-

duced here. One of the essential features is that the γ0 that

is hidden in the Ψ̄ has to go. We must replace all the Ψ̄’s

with new independent fields Φ’s that implicitly do the work

of them. The quadratic nature of the equations then become

bilinear and, while the fields may not evolve causally, it can

be shown that the gauge invariant reality of them do. Promot-

ing the γ
µ
ab

matrices to dynamical fields necessitates that we

reinterpret them as vectors in the µ index and scalars in the

a, b indices. This seems at odds with the usual SU(2) repre-

sentation theory. This can be resolved by keeping track of the

gauge invariant quantities and allowing new rules to actively

boost fields in the space. The various details surrounding this

are discussed in Chafin [1].

The metric and its inverse can be defined in terms of these

fields as
gµν = −4−1Tracγ

(µ

ab
γν)

bc

gµν = Inv(−4−1Tracγ
(µ

ab
γ
ν)
bc

),
(26)

however the complexity of the inverse definition makes it

more convenient to define an auxiliary field λµ and define the

γ matrix with its index down

gµνδac = −2−1{λµ, λν} = −λ(µ, λν)

gµνδac = −2−1{γµ, γν} = −γ(µ, γν).
(27)

Some dynamic interaction terms will then lead to these forc-

ing of the inverse matrix relation for the trace of these at low

enough energy e.g. through the “Higgs-ish” coupling in the

action

S c = M |gµν(γ)gνρ(λ) − δρµ|2 (28)

for a large “mass” parameter M.

In our many body tower of functions we need to ask how

the couplings with such a gravity field γ
µ

ab
would work. Mod-

eling it on the electromagnetic field by introducing γ and λ

labels to Ψ as in Ψν
(eAγ),µ,abc

(x, y, z) has some appeal in think-

ing of gravitons as correlated with other particles but is prob-

lematic in the details. When we look at the modified Dirac

lagrangian we find that there is always an extra µ index to

accommodate:

L = i(φaγ
µ
ab
∂µψb − ∂µφaγ

µ
ab
ψb) − 2mφaψa (29)

Furthermore the γ function will need to span the full coor-

dinate set of the function it is evolving. For example, when

we wish to evolveΨ(eA)(x, y) in the te direction we must mul-

tiply by a function γ
µ

ab
(x, y) so that the x(A) = y coordinate

must still be present even if it is only in a passive role. For

these reasons it seems important to include not just a dual

field Φ(eA) to go with Ψ(eA) but an independent γ
µ
(eA)

(x, y) field

to contract with the derivative operator ∂(e)
x . Note that we have

labeled the gravity function γ
µ
ab

with the electron and photon

coordinate labels not some new graviton coordinate and it has

only one µ and two a, b indices. This will persist regardless

of how many coordinate functions are embedded in it. Thus

the tower of functions of electron, positron and photon fields

(and their Φ associated fields) has an associated tower

γ
µ

(A),Q
(x), γ

µ

(AA),abQR
(x, y) . . .

γ
µ
(e),ab

(x), γ
µ
(eA),abQ

(x, y), γ
µ
(eAA),abQR

(x, y, z) . . .

γ
µ

(p),ab
(x), γ

µ

(pA),abQ
(x, y), γ

µ

(pAA),abQR
(x, y, z) . . .

γ
µ

(ep),ab
(x, y), γ

µ

(epA),abQ
(x, y, z),

, γ
µ

(epAA),abQR
(x, y, z, w) . . .

. . .

(30)

This allows these functions to be straightforwardly coupled

into the electron, positron and photon lagrangians using the

mapping gµν = −8−1Tr{λµ, λν}.
The problem now is reduced to giving an evolution equa-

tion for these various γ
µ

ab
functions in each of the implicit

time directions. The Einstein-Hilbert action S EH =
∫

R
√
g..
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suggests a start. The measure can be extracted from gµν =

−8−1Tr{γµ, γν}. The geometric meaning of these terms is not

clear but it is not necessarily required. We know that we want

GR to arise in some, probably uncorrelated classical limit of

particles over the energy scales we currently observe but be-

yond that we only require that we have a well defined set of

evolution equations. Define the Riemann operator R̂(e)i
to be

the Riemann function of the connections Γ(λ, γ) in terms of

the two associated gravity fields where all the derivatives are

taken with respect to the x(e)i coordinate label, ith electron la-

bel, in the γ(eee...ppp...AAA...) function. The interactions are pro-

vided by the remaining classical lagrangians that now needs

no delta function to localize the interaction.

The global gauge freedom we associate with norm Ψ →
Ψeiθ and Φ → Φe−iθ does not involve the γ functions so

it seems to not acquire or lose amplitude in the fashion of

particle creation so exists as a new kind of field entity that

makes gravity seem fundamentally different than the other

fields even though the geometric nature of the theory is sub-

verted in favor of a flat background formalism. It seems that

any generalization of this theory needs three fields (with var-

ious particle label sets). It would be interesting to see if there

is some high energy unification which treats them in a more

symmetric fashion.
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An emergent theory of quantum measurement arises directly by considering the partic-

ular subset of many body wavefunctions that can be associated with classical condensed

matter and its interaction with delocalized wavefunctions. This transfers questions of

the “strangeness” of quantum mechanics from the wavefunction to the macroscopic ma-

terial itself. An effectively many-worlds picture of measurement results for long times

and induces a natural arrow of time. The challenging part is then justifying why our

macroscopic world is dominated by such far-from-eigenstate matter. Condensing cold

mesoscopic clusters provide a pathway to a partitioning of a highly correlated many

body wavefunction to long lasting islands composed of classical-like bodies widely

separated in Fock space. Low mass rapidly delocalizing matter that recombines with

the solids “slice” the system into a set of nearby yet very weakly interacting subsystems

weighted according to the Born statistics and yields a kind of many worlds picture but

with the possibility of revived phase interference on iterative particle desorption, delo-

calization and readsorption. A proliferation of low energy photons competes with such

a possibility. Causality problems associated with correlated quantum measurement are

resolved and conserved quantities are preserved for the overall many body function de-

spite their failure in each observer’s bifurcating “slice-path”. The necessity of such a

state for a two state logic and reliable discrete state machine suggests that later stages of

the universe’s evolution will destroy the physical underpinnings required for conscious-

ness and the arrow of time even without heat-death or atomic destruction. Some exotic

possibilities outside the domain of usual quantum measurement are considered such as

measurement with delocalized devices and revival of information from past measure-

ments.

1 Introduction

The interpretation of quantum measurement has been a con-

founding topic since the early days of quantum mechanics.

Approaches have ranged from very formulaic as in the Co-

penhagen interpretation to the many worlds view and deco-

herence [7, 9, 15, 16]. The statistics derived from these are

typically excellent. Their accuracy for some systems that

have some mix of classical and quantum character is still de-

bated. Questions about locality and causality regularly arise

in the case of correlations [1]. The purpose of this article is to

show that a unification of classical and quantum worlds under

the same description is easy given the right set of questions

and that quantum statistics arise naturally from the dynam-

ical equations of motion (and conservation laws). Specifi-

cally, the sorts of states that lead to observed classical mat-

ter arise in a natural way from a primordial delocalized and

nonclassical gas due to contraction and the relative cheapness

of creating low energy photons. The photon induced inter-

actions of the induced clusters and massive proliferation of

photons, hence increasing dimensionality of the space, will

then lead to a kind of “slicing” of the space into many classi-

cal subspaces in the overall Fock space. The independence of

these are long lasting when their particle numbers are mod-

estly large and slow delocalization is “resliced” regularly by

the interactions of delocalizing particles with the condensed

matter portions of the system. The small particles that are ca-

pable of delocalizing on small time scales are mediators for

further partitioning of the space with the probabilities given

the square of the amplitude of its wavefunction∗.

Any emergent discussion of measurement invariably runs

into the need for the many body wavefunction. This is a high

dimensional object and we typically have small particles with

delocalization to measure that then interact and produce “col-

lapse”. This implies some separability in the net wavefunc-

tion. Any such explanation of quantum measurement must

explain the following

1. The kinds of wavefunctions that correspond to classical

matter and their origin;

2. The separability of the classical world from the isolated

evolving quantum one;

3. The statistics of the interaction of the two.

One point often overlooked is that measurements occur at par-

ticular times and this is measurable. A delocalized packet of

∗Here we are referring to the one body wavefunction, ψ(x), that arises

from ejection of a localized particle from classical-like matter which will

produce a near product function ΨN ≈ ΨN−1ψ(x) up to symmetrizations.

The framework here will help us extend measurement theory for the collapse

of correlated delocalized particles in a causal manner.
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an atom incident on a surface will give both a location and a

time. Invariably this leads to some vague discussion involving

the uncertainty relations, ∆x∆p ≥ ~/2 and ∆E∆t ≥ ~/2, how-

ever our concern is how the duration of a position measure-

ment relates to the localization in any one slice. Our goal here

is to produce a theory that has no operators or such relations

as fundamentals to it. Rather we seek initial data and an evo-

lution that deterministically arrives at the statistics and evolu-

tion we see and, ultimately, gives an explanation for the rather

special subsets of wavefunctions that correspond to classical

objects and the classical world.

This article will unfold as follows. First we discuss a delo-

calized cooling gas with proliferating photons and how these

influence condensing clusters to produce islands of classical

behavior for the condensed matter in the many body wave-

function. These are long lived and promote an arrow of time

until the system recontracts and becomes relatively photon

poor. To achieve this we need a description of matter with

photon fields of varying number. Recently it has become pos-

sible to subsume the dynamics of QED in a many coordinate

and many time classical field theory formalism where the ob-

servers perceive a world with equal times only [5]. This for-

malism and its associated many body conservation laws will

be utilized to provide qualitative wavefunction descriptions

of measurement as well as quantitative statistics. Next we

discuss how the usual measurement statistics follow for such

a system through “slicing” over delocalized particle coordi-

nates with such condensed matter states. A nonlinearity, hid-

den while using the usual operator formalism, arises in the

generation of radiation fields that removes some of the para-

doxes in equilibration for purely linear operators on a Hilbert

space. Finally, we use these structures to investigate some

paradoxes in quantum mechanics, place some bounds on vi-

olation of Born statistics and suggest experiments to reveal

such behavior.

2 Classical genesis: a first look

The primordial state of the universe is expected to be a gas

that cools and condenses into stars and dust. If the photon

number is zero and there are N particles, we expect a sin-

gle wavefunction Ψ to describe this state∗. It is clear, that a

general such function is not describable by some mapping

to hydrodynamics as a commutative mapping of Ψ(X) →
(ρ(x), v(x)) where the left hand side is governed by the Schrö-

dinger equation and the right by Navier-Stokes. The states on

the left are just too large. Instead of making an argument that

the system should settle down to such a state we accept that

this may never arise. It is the author’s opinion that classical

behavior arises from condensed matter and the proliferation

of photons and that it is then induced on gases so we continue

our story with nucleation.

∗We ignore the role of virtual particles to this approximation.

Nucleation theory is still in a theoretically very unsatis-

factory state and errors in nucleation rates are measured in

orders of magnitude. However, this is fortunately not a com-

plication to the relevant parts of our discussion. When the

atoms of a gas condense into a cluster, a large number of

photons are released. This means that we have now both in-

creased the mean photon number and occupied a large region

of Fock space. The ground state of a cluster of N-particles

is nearly spherical (through some polygonal approximation)

and rotationally invariant. This seems initially paradoxical.

No discrete crystal has rotational invariance. The resolution

follows from the fact that these are 3N dimensional wave-

functions. The translation is given by three of these and the

rotational freedom by two more. Rotation always requires

radial excitation, as we see from the case of the Hydrogen

atom. In the case of a large cluster, this radial excitation

is a centrifugal distortion. The rotationally invariant ground

state has no well defined atom location, even if the structure

is crystalline in that we cannot find peaks at locations ri so

that Ψ ∼
∏

S (xi − r j). The states where such arises, as in the

physical states we observe, must then be manifested by the

cluster being in a mixture of high rotational eigenstates (even

if having net angular momentum zero).

A surprising complication is that any classical body is in

such a mixture of states so, even at “T = 0” it is far from

its own ground state. The kinds of condensed matter we en-

counter have well defined shape, orientation, etc. They define

a “classicality” that is very specific, three dimensional and

Newtonian, and far-from-eigenstates. A solid can be specif-

ically described and phonons given as excitations of the lo-

calized cores along particular many body diagonals and are

eigenstate-like despite the ultimately transient nature of the

classicality on which their description depends [4]. We now

are compelled to ask how such apparently omnipresent states

can arise.

Consider a pair of irregularly shaped bodies, A and B,

that are spatially separated, but suffering delocalization about

their centers of mass, and are bathed in a sea of photons. Let

these be in their ground states initially. A photon that trav-

els from far away and casts a shadow from body B onto A

gets absorbed and produces a localized excitation on them.

In the case of absorption by A the surface builds up a history

through local heating or chemical changes. After many such

photon events the body A has a record of the shape of body B

in this shadow. Of course, some fraction of the amplitude of

each photon gets absorbed by B or flies past without interac-

tion. If the bodies A and B had localized atomic constituents,

then their boundaries would be well defined and the shadows

sharp. Since this is not the case we have to ask what hap-

pens. We can consider each to be a superposition of states

that are in various angular orientations. This is reasonable

since the centrifugal forces of these many angular states are

small and make little deformation of the bodies. Each such

case produces shadows that are well defined so we have a
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macroscopic superposition of all the configurations with well

defined orientations and atomic locations. The crucial part is

how this then evolves.

Given a superposition of nearly overlapping macroscopic

bodies in a space with no photons the energy change is huge.

Atoms cannot sit on top of each other without inducing large

repulsive forces from their electronic structure. However, for

a system with a huge variation in the photon number states,

such slight changes can easily have different photon numbers

so be, ostensibly, at the same location but in different pho-

ton number spaces. This allows an apparent overlap with no

energy cost. Specific details of this rely on an initial value

(rather than operator based) description of low energy QED

described in [5] and summarized below. Since the delocal-

ization rate of large N objects is very small, such states can

then evolve for long periods of time with essentially no inter-

action between them. Ultimately, we are such objects. Our

very consciousness and memory depends on our being reli-

able discrete state machines. Once the expanding and cool-

ing universe is so partitioned we have a set of “many worlds”

that are sufficiently separated in Fock space to be insulated

from each other. Of course, this is not expected to persist.

In a gravitational contraction or long term stagnation, these

worlds will come back together and the “information” made

up by these separated worlds will be lost. This is an appealing

way for the arrow of time to arise naturally despite the time

reversal symmetry of the equations of motion. To be fair, this

is a very vague and qualitative discussion. Now let us try for

a more specific, but less general case in an attempt to justify

this partitioning of the many body wavefunction.

3 Classical genesis: cluster collisions and photons

Here we give a justification for the “sparse worlds” state that

we claim is a set of many-body wavefunctions that corre-

spond to classical condensed matter objects (plus gas and a

few delocalized particles). By this we mean that the solid

and liquid objects have well defined boundaries, shapes and

orientations as 3D objects but encoded in the N-body space

of atoms where these atoms have well defined locations to

within some localization distance determined by the electro-

nic bonds between them. Of course, such a state is not an

eigenstate. Each body will tend to delocalize both radially

and in location. Such a state is an unfathomably complicated

mix of eigenstates of the true system yet it makes some sense

to think of the excitations of the bodies in terms of collective

phonon modes as eigenstates in such clumps of matter.

Matter begins in the universe as a gas that collapses into

stars and explodes to create the clusters that condense into

dust that eventually coalesces into planets and other rocky

objects. The gas undoubtably begins as delocalized and “cor-

related” in the sense that the particles have no well defined

3D locations so the many body Ψ cannot be represented as

some symmetrized N-fold product. The implications of this

are rarely considered. How does classical hydrodynamics

arise in such a system and lead to stars of well defined lo-

cation much less the larger scale density structures we ob-

serve? Is this classical localization a result of some product

of our consciousness in creating a “measurement”. This is

pretty unpalatable to most scientists. The alternative is that

such condensing occurs but the resulting stars have no well

defined location, particle number, boundary and orientation

relative to one another. Such a universe is a truly many body

object and how it would “look” to an observer injected into it

is not clear. Later we will see that the consciousness required

for observation may be incompatible with such a universe.

The resolution we suggest is that this is the true state of

the early universe and it is the presence of condensed matter

that “slices” the space into a well defined collection of stars

of well defined locations and velocities. The collapse picture

implies that only one such state is selected and exists. In this

picture, the the coordinates of the observer contain copies of

the “observer ⊗ system” that cease to be the same for all val-

ues of the system coordinates. This divides the wavefunction

of the many body space into a collection of independently

evolving states of well defined 3D structure with long last-

ing independence and duration. We can then think of quan-

tum measurement as the “auto-fibration” of the macroscopic

world over the coordinates of the measured particle.

Consider a classical-like block of matter floating in space.

A superposition of a star at two locations shining on such a

block creates a superposition of the block in the star’s coor-

dinates. If we view the block as a measurement device that

is recording observations in the changes in its surface under

the influence of photons from the star, then it “observes” its

own history to have the star at one continuously connected

path of locations. It now has a double life as two blocks with

different histories even though the number of coordinates has

not changed. Its classicality has been compromised (albeit in

a very minimal way) by the influence of the delocalized star

even though the star and the block are widely separated and

the net mass and energy transferred by the photons is typi-

cally miniscule. The “measurement device” has not forced

a change in the larger system. Rather, the larger system has

induced a change in the measurement device so it now follow

separate paths in the many body space. This is possible, in

part, due to the massive size of the many body space and its

capacity to hold many classical world alternatives as distinct

for long times. Note that the size of the block compared to

the superimposed object is irrelevant in producing this effect.

The problem then amounts to the creation of such a set

of classical-like bodies distributed in a set of sparse worlds

embedded in the many body space. As a prototype world

consider a collection of dust of different sizes, shapes, orien-

tations, internal excitation, positions and velocities. These be-

gin as a highly correlated system that has no classical mean-

ing despite having formed solid matter. Let us start with an

idealized simple system to discuss the mechanism. Consider
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two solid balls of radius r but nonspecific location and ve-

locity in many body space described by a cube of length L.

Ignoring internal degrees of freedom, we can consider the

system to be a 6D wavefunction in an L6 cube with excluded

volume given by the 2 body cylindrical projection of the in-

terior of the sphere. At higher energies the wavefunction will

tend to have oscillations much smaller than the radius λ ≪ r.

The state of the system in terms of eigenstates is assumed to

be of a broad energy distribution ∆E & <E> and have ran-

dom phases or have evolved for a long but random length of

time. Such a condition is necessary to have fluctuations in

the many body current J . The energy density and fluctua-

tions then tend to uniformly fill the box and we have a soup

of high frequency and highly varied oscillations bound by the

excluded volume.

So far we have said nothing about photons. Let us as-

sume there are none to start with. Currents induced by the

fluctuations in the wavefunction produce flux on the bound-

aries of the excluded volume. Classically this corresponds to

the collision of two spheres with velocities given by the two

velocities

v1, v2 =
J
P

given by the 6D current J and density P at the coordinate

X = (x1, x2). Depending on the angle and relative speed of

the collision, a certain number of photons are created in the

event. Photons are exceedingly inexpensive at low energies.

This has led to the infrared divergence problem in QED where

an unbounded number of low energy photons get created. Our

finite box regularizes this to some degree but for short enough

collision times no such problem arises since they cannot tra-

verse the box during their creation.

A small change in the location of the collision creates a

different number and set of photons. Thus one location can

generate a large occupancy in the tower of spaces Ψbb, ΨbbA,

ΨbbAA,ΨbbAAA,ΨbbAAAA . . . where b indicates the coordinates

of each ball and A are the photon coordinate labels. In a short

time, the current flux at that location can be very different and

generate a very different occupancy the the ball-photon wave-

function tower (Fock space). Once each small current fluctua-

tion is completed, the higher photons spaces have acquired an

occupancy of localized spatial position in the b-coordinates

(defined by the length of time of the local fluctuation in cur-

rent) and a broad number of photon waves moving away from

it in the A-coordinates. The long time limit we argue is of a

sum of such states distributed among the tower with almost all

the amplitude having left theΨbb state. These can now evolve

with no quantum interference of other states (since all b and

A coordinates would have to match up in one of the towers for

this to happen). By “long time” we mean long enough for the

currents in the Ψbb state to have had time to have all reached

the excluded volume surface and hence pushed amplitude up

the photon tower, τ & L/Min(v1, v2), but not so long as to

cause delocalization of the amplitude in each n-photon space

so these begin to interact and interfere.

The actual process “in vivo” of the universe is of course

more organic and occurs while the dust is forming. It must

create the orientation of the dust as well as select these sub-

slices to have well defined atom number in each. It seems

that the cheap and plentiful photon along with dust formation

is what drives the formation of these “classical worlds” as iso-

lated long lasting packets in the many body space. Quantum

mechanics then arises for each of these universes by the ac-

tion of condensed matter as discrete state machines. Clearly

this process cannot persist forever. The universes will delo-

calize, meet, possibly gravitationally collapse and get driven

to a density where the full correlated structure of the universe

matters.

4 Measurement

Part of the formalism of quantum mechanics has been to use

Hilbert space and eigenfunctions of operators to give mea-

surement results.

These Hamiltonians are often effective Hamiltonians of

subspaces created by the kinds of localized “classical” states

described above. This introduces a kind of metastable fea-

ture to the evolution that is connected with the duration of

the classical nature of the external world. One has to won-

der what the role of the eigenstates are in arriving at mea-

surements, specifically how one collection of matter indicates

one particular operator and spectrum. In the case of position

measurements, we see from above that the system has parti-

tioned itself so that measurement of particle location is inher-

ited by the special independently evolving nature of the clas-

sical states. In this case we say the system has been “sliced”

in a manner that gives it its classical character but not into a

subset of eigenstates of the net or any obvious subset of the

Hamiltonian. We assert that momentum, energy and other

measurements are universally inferred from position data e.g.

a local color change in a material or spatial measurements at

different times. It has already been long debated how gen-

eral a measurement can be made from an arbitrary linear self

adjoint operator (LCAO) and it is this author’s opinion that

position and time measurements are the fundamental sort that

arise and all others are derivative.

Note that our “measurement” process has nothing to do

with consciousness of an observer but of a specific property

of condensed matter in a photon rich environment. In fact,

photon production at low energies is so cheap that it is hard

to conceive of a measurement that didn’t produce copious

numbers of them. Let us now consider temporal effects and

measurements. It is inevitable that temporal effects arise.

Wavepackets can be delocalized and measurement devices

can move. This makes it clear that the measurement oper-

ator x̂ is going to have some insufficiencies. Furthermore,

measurement devices have finite spatial extent. Screens are

essentially 2D so they are typically only picking up a tiny
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fraction of a wavefunction’s motion at any time.

To illustrate these points consider a narrow single particle

packet incident on a screen with a couple of adsorption sites

as in Fig. 1. We can simplify this by breaking it up into a

set of disjoint regions of support as in Fig. 2. The duration

of an adsorption event is not related to the length of a packet

but the radiation time for the electronic decay that produces

binding. For simplicity let the binding action be mediated

by the release of a single photon of energy E so the radiative

process has a time scale τ ∼ ~/∆E. Let the parcels be roughly

monochromatic so they have a well defined velocity v = j/ρ

and the parcel widths w ≈ vτ. A parcel separation of nw lets

the adsorption events be well separated.

When a subparcel reaches the site at x0 it adsorbs and cre-

ates a photon so that some amplitude flows from ψ(x)ΨN , the

photon free wavefunction of the system, to ΨN+1,A, the single

photon and N+1 particle wavefunction with a radiation field

flowing away from it. The operator formalism obscures some

features of this problem so we invoke an equivalent formal-

ization of low energy QED by using a many time approach

where one body equations of motion hold for each time coor-

dinate in the many body tower [5]:

...

ΨN,AAA

ΨN,AA

ΨN,A

ΨN

(1)

We call this theory “deterministic wave mechanics” (DWM)

in contrast with the formal operator and path integral formu-

lation of the theory. A basis of states in each photon number

space is given byΨ
(m)

N
Am whereAm is a stationary state in the

space spanned by Ai1 ⊗ Ai2 ⊗ . . . ⊗ Aim of complex 3-vectors

fields for photons∗. The net norm and energy are conserved

in such approach when they are defined as

N̂(ΨN,n)=
∫

dx
i1
s . . . dx

iN
s Ψ̄NΨN

+ 1
4µ0

∫

dx
i1
s . . .dx

iN
s

∫

dx
i1
A
. . . dx

in
A

∑n
k=1

(

Ψ̄i1...in∂
t
ik
A

Ψi1...in − ∂t
ik
A

Ψ̄i1 ...in Ψi1 ...in

)

=
∫

dx
i1
s . . . dx

iN
s Ψ̄NΨN

+ 1
4µ0

∫

dx
i1
s . . .dx

iN
s

∫

dx
i1
A
. . . dx

in
A

∑n
k=1

(

Ψ̄i1...inN̂A
k
Ψi1...in

)

.

(2)

∗Coulomb gauge is assumed for every coordinate label so that the Ψ
µ=0

N,1
,

Ψ
ν,µ=0

N,2
, etc. components are fixed by constraint.

EN,k =Ψ̄N,k

(

∑N
i=1 Êsi

N̂1...̂i...NN̂A
1...k
+

+
∑k

j=1 ÊA j
N̂1...NN̂A

1... ĵ...k

)

ΨN,k

(3)

and we evaluate on the equal time slices t � tnet = t
i1
s = t

i2
s =

. . . = t
i1
A
= t

i2
A
= . . . . The operators N̂s and N̂A are the one

body norm operators for massive and photon fields respec-

tively. The operators Ês and ÊA are similarly the one body en-

ergy operators. The many body versions are simply concate-

nations of these where the “hatted” indices are excluded. The

definition of Ψ̄ for Dirac fields is to apply γ0’s to all the spinor

indices of Ψ (which have been suppressed here). Here we are

interested in atomic center-of-mass wavefunctions. For these

we simply require the transpose conjugate.

Using this picture we can derive the long time states of the

system. The radiative decay occurs at frequency ω with an

envelope of duration τ as in Fig. 6. The atom binds a location

x0 with a mean width of d so that it may be represented by

a peaked function δd(x − x0) akin to a delta function of finite

width d. Assume the first peak arrives as time t = 0 and that

there are only two equal pulses that contain all the amplitude

of ψ. Initial data at t . 0 is

ΨN+1 = ΨNψ(x, 0)

= 1√
2
ΨN (δw(x − x0) + δw(x − x0 − wn))

ΨN+1,A = 0

...

(4)

The final wavefunction for t > t′ = 2τ + nτ is

ΨN+1 = 0

ΨN+1,A ≈ 1√
2
ΨNδd(x − x0)

(

1
r

ei(kr−ωt)h(r − ct)

+ 1
r

ei(kr−ω(t−t′))h(r − c(t − t′))
)

eiφ(t)ǫ̂κ

ΨN,AA = 0

ΨN,AAA = 0

...

(5)

We have implicity assumed the block is essentially trans-

parent and the radiation flies unobstructed into infinite space.

(The orientation of the radiation field ǫ̂κ is determined by the

direction of the dipole produced by the radiation. This may

be a superposition of such solutions and a function of the lo-

cal geometry of the solid. For now we neglect its details.)

The meaning of this solution is that the wavefuction support

has exactly partitioned into two parts. The “reality” of a clas-

sical field can have some surprising subtleties† [3]. In this

†We can consider this as the “Schrödinger” and “first quantized” analog

to usual QFT formalism in terms of field operators.
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case the support and its values there contain all the mean-

ing there is to the system. We see that we have two bound

states that occurred at times t = 0 and t = t′. The packet

is flying away from the location X ≈ x0 ⊗ X(0) at c in the x

direction when viewed in the equal times coordinate t. The

motion in the material coordinates is essentially static unless

some other dynamics were present to start with. If we con-

sider the block to contain a discrete state machine as in Fig. 3

that has internal dynamics that makes a record of when the

event occurs, then each one exists in a kind of parallel uni-

verse with a record of a different time. Unless these photon

coordinate portions of the packet are reflected or forced to in-

terfere, this situation continues in perpetuity and each evolves

according to their own record of their particular past. Should

they generate their own delocalized particles and repeat this

experiment they will find the Born-like ψ∗ψ probabilities for

when the measurement occurs. This is a direct consequence

of the above norm conservation law. Ultimately the delocal-

ization can only go on so long before the “classicality” of

the system fails. The consequences of this we will soon con-

sider.

Let us now consider a broad packet that intercepts the

screen at the same time as in Fig. 4. Analogously to above,

let us consider this to be broken into two parts with the width

of the measurement centers and less than w = vτ as in Fig. 5.

Here a similar analysis yields a resulting pair of packets ra-

diating outwards from the two centers at the same time. Our

system now seems to be split into two spatially distinct parts

as indicated by the outer product in Fig. 7 where the radiative

field shells have been suppressed. These shells are no longer

disjoint but contain a finite volume fraction of overlap. For

farther apart centers this is of order w/R(t) where R(t) = ct.

To the extent this overlap remains negligible, these solutions

remain disjoint and evolve as separate worlds.

This is a good point to pause and reflect on what overlap

of these systems means for evolution. The emphasis on lin-

ear operators and Hamiltonians leads one to believe that any

superimposed world is equivalent to each world evolving sep-

arately. As such, when one decomposition evolves it is hard

to see how anything interesting can really happen. However,

there is a hidden nonlinearity in our problem. The classical

radiation reaction problem holds a nonlinearly due to current

acceleration which is best thought of in terms of finite sizes of

radiators and crossing times [11]. Our radiation fields can be

thought of in a similar fashion with a small unknown struc-

ture involving many hidden internal coordinates. The “radi-

ation reaction” now must transfer both four momentum and

particle norm at the interacting two-body diagonals that con-

nect the states in the Fock space tower. The implications of

this is that overlapping of states in the Fock space do not sim-

ply superimpose so there are no true eigenstates when photon

interactions are included. This is to be expected. If we super-

impose the eigenstates ψ2p and ψ1s of the Hydrogen atom then

it is the presence of the current that drives amplitude from ψH

Fig. 1: A long narrow packet illustrates the measurement of event

time at a particular location and how these can lead to a persistent

slicing of the space (up to the delocalization time of the device) in

an infinite space.

to ψH,A. In the low energy limit the Hydrogenic states are sta-

tionary but the overlap drives the transition to higher photon

levels. This is an intrinsic nonlinearity that is obscured by

the formal operator description of quantum field theory. It is

unclear if this is adequately accounted for in quantum field

theory through its operator calculus.

Fig. 2: An idealized sequence of packets of a single incident particle.

5 Slice memory and revival of measurement history

One of the unpleasant features of the many worlds interpreta-

tion is that the size of the universe seems to grow. In this and

all “interpretations” of quantum mechanics, the role of the

measurement device and how and when it acts lacks speci-

ficity. The action of the “observable” associated with each

such device is not clearly determined by the microstructure

of the device. The DWM theory here addresses each of these

and lets us ask some new questions that may take us outside

the bounds of traditional quantum theoretical problems. One

of the obvious questions is to what extent is the measure-

ment a complete destructive event (at least from the perspec-

tive of the observers). Can we somehow undo measurement

and recover some of the delocalization and phase informa-

tion from before? Now that we can nanoengineer systems

and create extremely cold ones, highly decoupled from the

external world, other quantum domains can be probed. A

molecular two-slit experiment was recently realized [10]. In

the measurement direction what happens when a measure-

ment device itself has a mass comparable to the delocalized

system it measures? Is there a measurable “back reaction” to
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Fig. 3: A measurement device with a coupled observer or pro-

grammable device to respond to observations.

Fig. 4: A narrow one-particle packet incident on a detector surface.

the measurement event? If a measurement device is partially

delocalized itself how does this affect the measurement once

we then slice the measurement device so it is back in the fully

classical domain of our experience?

5.1 Wavefunction revival: inverse measurement

On the topic of slicing of the space into independently evolv-

ing subspaces we have introduced the restriction on the form

of macroscopic matter that gives a classical limit for dynam-

ics. This was far more restrictive than the rather naive Ehr-

enfest-limit defined by large mass and moving packets [12].

The continuing lack of overlap given by large mass induced

slow spreading and the rapid motion of light speed packets

in the A-coordinate directions into an empty space help pre-

serve this “many-worlds” picture for long times. Constraints

on the space that photons can move about in leads to greater

overlap possibilities and opportunities for such slices to in-

teract through radiation absorption and production however,

since low energy photons are so prolific this kind of interfer-

ence may be difficult to engineer in practice. Nevertheless,

we should investigate the possible bounds on slice indepen-

dence.

Consider the example system given in Fig. 5. Generally,

there are going to be internal motions and radiation fields that

exist in any such large body. Let the incident atom be distinct

from those of the device so that it is unconstrained by sym-

metry and the binding to the surface can be much less than

that of the device particles to each other. We can imagine a

situation where we heat the block and the atom ejects and de-

Fig. 5: An idealization of the narrow one-particle packet into local-

ized subparcels.

Fig. 6: The absorption of a particle at a site is correlated with radia-

tion field moving away from the selected location.

localizes then is pulled back to the surface by an external field

such that this process is iterated. The CM of the device grad-

ually delocalizes (at a much increased rate) from this process.

If this system is closed then the photon number will gradu-

ally increase as the battery driving the process loses energy.

This tells us that the system is undergoing important changes

and so reejecting the particles may not create a system that

interferes with previous slice histories. On the other hand, if

the system is in a finite volume, the radiation fields can all

be contained in this finite space so that past slices eventually

can interfere if the photon number does not grow much faster

than the number of iterations.

It is simpler to consider the case of a photon that is ab-

sorbed at a pair of sites and then ejected as in the process

ΨN,1 → ΨN,0 → ΨN,1. The release times for the two slices

may vary over a large range but, if we restrict ourselves to

looking at the fraction of amplitude that occur at the same

time (e.g. by use of a beam chopper on the input and ejected

flux), then the phases of the resulting two components of the

single photon may be compared. After absorption, the system

is a photon free wavefunction consisting of a superposition

of two different internally excited states that evolves accord-

ing to the net mass-energy in it. The relative phase of each

space is fixed by the phase difference of the original photon

at the time it was absorbed by the two sites ∆φ = φ(x1, t =

0) − φ(x2, t = 0). Restricting our measurements to the case

where the frequency of the emitted photons are the same, this

phase difference should be preserved in the T = 0 limit. Ther-

mal fluctuations in phase between the two points will produce

Clifford Chafin. The Slicing Theory of Quantum Measurement: Derivation of Transient Many Worlds Behavior 227



Volume 11 (2015) PROGRESS IN PHYSICS Issue 3 (July)

Fig. 7: The two possible configurations of a broad packet measure-

ment (with suppressed radiative fields) exist as a kind of direct sum

indexed by the coordinate label of the original incident particle.

a shift in this value. This procedure gives a measure of the re-

gional phase fluctuations and isolation of the system.

5.2 Measurement back reaction

The subject of back reaction has been around for some time

[8]. If one believes in a collapse picture then one can readily

see that center of mass motion is not conserved in a position

measurement. This means either it is truly not conserved or

there is an unspecified back reaction on the system. In DWM

we see that conservation laws only hold for the totality of

slices not for individual “observer-paths”. Therefore no back

reaction is expected. We can utilize a pair of ultracold traps

to give a specific test of this. Given a delocalized large mass

molecule in a pair of widely separated traps we can send an

atom through two paths to make contact with each of these.

If a collapse produces a net conservation of all the usual con-

served quantities then the center of mass shift will be propor-

tional to the separation of the traps so can be made as large

as desired and easily detected by florescent behavior of the

molecule.

5.3 Nested and fuzzy measurement

The meaning of superposition of macroscopic objects has be-

en debated at least as long as the famous Schrödinger’s cat

paradox [2, 13]. By our judicious selection of initial data we

see that this is resolvable. The overlap of such states is ex-

plained by the proper consideration of correlations of photon

fields in partitioning the system under such a slicing event as

above. The nature of macroscopic superposition does how-

ever beg some interesting questions when the measuring de-

vice is also delocalized. For example, if the incident ψ has

positive and negative regions that are shared equally over the

same site due to delocalization then the net norm of ψ at that

site may be zero. Does this mean there is no probability of ad-

sorption at the site and the amplitude there is reflected? Fur-

thermore, we can ask if the order of a meta-observer’s action

on the system in measuring the measurement device before

it acts on the ψ or after makes any difference in the result-

ing statistics. These two scenarios can be classified as “fuzzy

measurements” and “nested measurements”.

Fig. 8: A broad narrow packet incident on a screen. There is a rel-

atively slow phase oscillation component parallel to the surface that

matches the possible adsorption sites.

Firstly, consider a “device” that is a pair of separated, lo-

calized and slowly spreading heavy atoms or molecules in a

trap. This allows for the possibility of the larger bodies cap-

turing a small atom then moving the bound bodies around

before ejecting the light atom from them. If the atoms are

initially well localized and remain so for the duration of the

experiment then the resulting phases on revival will be de-

termined by the amplitude emission time and rate from each

source atom. Note that this situation depends on the parti-

cles and what is moving them. If they are isolated like a gas

then this is certainly true. If, however, the particles are being

localized and moved by macroscopic classical matter or radi-

ation that then is absorbed by it then the interactions with the

external world may produce a slicing of the system. There

may be no “meta-observer” or other unsliced mechanism to

eject the light atoms and produce a spreading in its coordinate

direction that causes the system to be seen as a wavefunction

with some stored phase history and an external world. We can

apply a radiation field to eject the light atom but have no way

to know that our counterparts in the other slices have chosen

to do the same.

Let us now extend the above case of the heavy atoms to

the case of a measurement device i.e. a screen, as in Fig. 4.

Here let us utilized a nearly monochromatic (wavelength λ)

packet moving towards the screen but with a slow additional

phase oscillation (λ|| ≪ λ) parallel to the screen surface. Let

the screen have five adsorption sites and have separation equal

to half this long wavelength oscillation D = λ||/2 as in Fig. 8.

Now let the measurement device be delocalized in the vertical

direction by a vertical shift D. We consider this to be in the

form of two narrow packets of equal amplitude akin to the

case of the incident wave in Fig. 5. The resulting initial state

is described by the sum of configurations in Fig. 9.

Upon interaction the sites on the screen now feel both a

positive and negative amplitude component of the wave. This

is our first case of a correlated two body system. The sys-

tem slices into a set of 4 + 5 = 9 cases where the first four

correspond to a screen that is upwardly displaced by D and

the other five do not. For an “observer” living in the screen

body itself, one of these cases appears to represent his initial

data for the evolving future for all the initial data he has avail-

able to him. If somehow these slices are brought together in

his future and the photon fields radiated from the adsorption
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Fig. 9: A superimposed case of a measurement device with vertical

delocalization and an incident wave packet.

events are confined with the system, the neighboring slices

can interfere and this would seem to be a statistical aberra-

tion that flows from an unknown source. Now let us consider

the situation from the “meta-observer” outside the system.

This person can interact with the screen before or after the

screen interacts with the packet. The bifurcation of ampli-

tude gives the same results in both cases so there is nothing

“fuzzy” about the measurement from the delocalized device

and the measurement operations commute.

6 Conclusions

One alternate title to this article could have been: “The Cheap

Photon and the Classical Limit: The Origin of Discrete State

Machines, the Apparently 3D World, Quantum Measurement,

the Arrow of Time and Why You Have Any Memory at All”.

It is impressive that such disparate topics should all be con-

nected to mapping the classical world properly into quantum

mechanics. A sister document on the dynamic process of

thermalization and time dependent fluctuations has also been

recently completed by this author [4]. The many body wave-

function of a system is a complicated high dimensional ob-

ject. By including the photons a large number of degrees of

freedom appear that allows condensing matter to sparsely oc-

cupy subdomains corresponding to very similar objects that

retain independent existence for long periods of time. This

provides a subset of wavefunctions that correspond to classi-

cal bodies that can withstand many quantum slicing events

without producing significant overlap. The release of low

mass particles from a condensed matter “classical” body leads

to a product function state where the low mass component

spreads rapidly and, when reabsorbed, creates a bifurcated

class of such classical states with probabilities given by the

Copenhagen interpretation defining a set of measurement ev-

ents. These are locations and times specified by the atomic

granularity scale of our condensed matter and a temporal gra-

nularity scale by the photon decay process associated with

binding times. This resolves the paradoxes of quantum mea-

surement and introduces an arrow of time in a rather simple

fashion. We have argued that the genesis of such a state fol-

lows naturally from early universe conditions assuming con-

densation of small clusters of very low internal energy have

time to interact and produce the localized classicality that par-

tition the wavefunction into Newtonian-like parts.

One of the more unclear features yet to be resolved here is

in the behavior of gases. Gases are made of light particles that

have rapid delocalization so the persistent localization prop-

erty we have argued for solids is not applicable. Collisions

with solids surfaces of a container produce some localization

by the slicing process but low diffusion rates suggest that this

does not propagate well into the bulk of the gas. Hydrody-

namic and thermodynamic behavior either requires some reg-

ular interaction with condensed matter by collision or possi-

bly by photons or by some other process. We know that such

gases have the power of producing quantum like measure-

ment paths in cloud chambers (though clouds by definition

involve condensed droplets). These are not pointlike but line-

like events. This introduces an interesting direction to further

investigate this model. Ultracold gas dynamics has become a

very popular probe of quantum limits on viscosity [6, 14]. It

is not clear that at such low temperatures for gases bound by

fields and so not in contact with condensed matter, that hy-

drodynamics and thermodynamics are valid limiting behav-

iors on any timescale. These macroscopic formal models are

often justified by vague scaling arguments. It is hard to argue

against them because we have lacked a proper quantum de-

scription of gases in its “classical” limit. If this can be found,

we may have a framework to see how well such a descrip-

tion can hold in the ultracold case and if such parameters like

temperature and viscosity can have any relevant meaning for

them.
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It was discovered many years ago that histograms constructed from the results of mea-
surements of various natural processes are not random. The histogram shape was
demonstrated to be determined by the diurnal rotation and circumsolar movement of the
Earth and to be independent of the nature of the process considered [1-17]. The results
of those works change our basic views about stochasticity of natural processes. When
the time series of physical measurements, which are traditionally considered stochastic,
are transformed into the series of histograms constructed for an optimally small num-
ber of the results (i.e., optimally short segment of the time series), one can see regular
changes in the histogram shape. The paper illustrates the main manifestations of this
phenomenon by comparing the results of 90Sr β-radioactivity and 239Pu α-decay mea-
surements, with the distance between the laboratories in which the data were collected
being about 3000 km.

1 Introduction

The material for our research were results of long-term mea-
surements of 239Pu α-radioactivity in Pushchino (at the lat-
itude of 54◦ north and longitude of 37◦38’ east) and 90Sr
β-radioactivity in Novosibirsk (at the latitude of 55◦02’13”
north and longitude of 82◦54’05” east). The data were col-
lected with a 1-second interval for many days. With the aid
of Edwin Pozharsky’s computer program GM [3], non-over-
lapping 60-point segments of 1-second time series were trans-
formed into series of 1-minute histograms. The same pro-
gram was used for a visual comparison of the histograms –
after the procedures of smoothing, stretching, squeezing and
mirror transformation, necessary to achieve the maximal sim-
ilarity (for details, see [1]).

2 Experimental details

α-Radioactivity of a 239Pu preparation was measured using
low-voltage semiconductor detectors with collimators [10].
β-Radioactivity was measured using CTC-6 Geiger counters
fixed in a metal case in a horizontal position, with their longi-
tudinal axis directed along the azimuth of NN-SSW
NNW-SSO (∼320◦). The source of β-radiation (90Sr–90Y,
a flat disk of 20 mm diameter) was fixed 10 cm above the
counter, with its radiating surface directed downwards to the
counter.

3 Results

Fig. 1 shows a time series: the results of 90Sr β-activity mea-
surements. According to all fitting criteria, it is a purely
stochastic process obeying the Poisson statistics.

As seen from Fig. 2, the results of measurements shown in
Fig. 1 ideally correspond to the Poisson-Gauss statistics. That
is why radioactive decay is considered an ideal example of the
stochastic process. In Fig. 3, however, the same material of
Fig. 1 is shown without smoothing, in the form of cumulative
layers, where every next layer adds 3000 measurement points
to the previous layer.

This figure demonstrates that contrary to the law of large
numbers (the total number of measurements is 259200), the
fine structure of the layered lines is not smoothed when the
number of measurements is increased – it becomes even
sharper. This paradox has a general character and can be
observed in the measurements of any “stochastic” physical

Fig. 1: A time series – the results of 1-second 90Sr β-activity mea-
surements for a period of 3 days (from 00:00 of June 19, 2013 to
23:59 of June 21, 2013). Novosibirsk local time (UTC + 7). X-axis:
time, seconds. Y-axis: number of β-decays per second.
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Fig. 2: Distribution of the results of measurements shown in Fig. 1.
An ideal Poisson-Gauss distribution. X-axis: radioactivity, counts
per second. Y-axis: number of results with the corresponding ra-
dioactivity value.

Fig. 3: Non-smoothed layered distribution of the results shown in
Fig. 1. Every layer adds 3000 measurement points to the neighbor
layer below. The axes are as in Fig. 2.

process [1].
In the paper, though, we consider histograms constructed

for an optimally small number of measurements. It is trans-
formation of time series into sequences of such inconsistent
histograms, revealing well-reproducible cosmo-physical reg-
ularities, indicating nonrandomness of “stochastic” physical
processes [1]. In the paper, this is demonstrated through syn-
chronous measurements of 90Sr β-radioactivity in Novosi-
birsk and 239Pu α-radioactivity in Pushchino; the distance be-
tween these laboratories is about 3000 km.

The subject of this paper – as that of our previous works
[1-17] – is the demonstration of regularities in the change of
the shape of histograms constructed from an optimally small
(30–60) number of results. Such a transformation of time se-
ries of the results of measurements into the sequences of his-
tograms reveals the nonrandom character of these time series.

Fig. 4 shows some histograms constructed for the seg-
ments of the time series represented in Fig. 1. Each segment
contains 60 90Sr β-radioactivity measurement points; the his-
tograms were smoothed 5 times.

Fig. 4: Measurements of 90Sr β-radioactivity. Transformation of a
time series (Fig. 1) into a sequence of 60-point histograms smoothed
5 times. The figure shows the first 24 histograms from the total set
of 4320 histograms.

Fig. 5: A screenshot demonstrating comparison of two histogram
sequences. Top band: measurements of 90Sr β-radioactivity; bottom
band: measurements of 239Pu α-radioactivity. For each step, both
bands shift forward by one number, and the new histograms, ap-
pearing at the right, are compared: the new top with all the bottom
ones and the new bottom with all the top ones – this being repeated
360 times to build a distribution of the number of similar histogram
pairs over the interval between these histograms (see Fig. 7 and here-
inafter).

The fact that changes of the shape of such histograms in
time are not random follows from a number of regularities
found in our previous studies [1-17]. Even a careful exami-
nation of Fig. 4 would indicate this nonrandomness. It can,
however, be estimated quantitatively. A quantitative measure
of nonrandomness of the shape of inconsistent histograms is
the results of their thorough comparison. The histograms can
be compared either by a human expert, with the aid of Ed-
win Pozharsky’s program, or by application of completely
automated algorithms written by V. Gruzdev [19] and V.V.
Strelkov et al. [18, 20–22].

Fig. 5 illustrates the procedure of pairwise histogram
comparison, showing histograms constructed from the results
of synchronous measurements of 90Sr β-radioactivity in No-
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Fig. 6: A fragment of the computer journal (archive). Pairs of his-
tograms considered similar by an expert.

vosibirsk (top band) and 239Pu α-radioactivity in Pushchino
(bottom band). Each band contained 360 numbers. In total,
about 20,000 histogram pairs were compared, and the results
are given in Figs. 6 and 7.

Fig. 6 shows an example of the histogram pairs that an
expert deemed similar upon visual comparison.

Fig. 7 demonstrates the results of histogram comparison
in the synchronous measurements of 90Sr β-radioactivity in
Novosibirsk and 239Pu α-radioactivity in Pushchino in 3 vari-
ants of experimental setup: with the collimator aimed at the
Polar star (no. 4); with the collimator constantly aimed at the
Sun (no. 3) (on a rotating platform compensating for the di-
urnal rotation of the Earth); with the collimator directed west
(no. 5). These results are represented as a dependence of the
number of similar histogram pairs on the interval between the
histograms.

As seen in Fig. 7, when the collimator in Pushchino is
aimed at the Polar star, there is no synchronism in the change
of histogram shape in Novosibirsk and Pushchino. When the
collimator in Pushchino is directed west, synchronism is not
very apparent but statistically significant (P < 10−3). When
the collimator is aimed at the Sun, synchronism is evident
(P < 10−7).

We shall not discuss now why the extent of synchronism
depends on the direction of collimators in Pushchino (for de-
tails, see [1]). What is important is that with other condi-
tions being equal, these differences in the experimental setup
make the effects observed statistically significant. Therefore,
the shape of histograms constructed from the results of mea-
surements of β- and α-radioactivity at the distance between
the laboratories ∼3000 km does not depend on the nature of
the process measured and the method of measurement. This
agrees with the conclusion that the shape of histograms and
its changes are determined by the orbital movement and di-
urnal rotation of the Earth and other cosmo-physical factors
[1, 10–17].

This conclusion is confirmed by demonstration of the ef-
fects that are traditional for our works. The first effect is the

Fig. 7: Distribution of the number of pairs of similar histograms over
the interval between them. Measurements of 90Sr β-radioactivity in
Novosibirsk and 239Pu α-radioactivity in Pushchino with the colli-
mators directed to the Sun (no. 3), Polar star (no. 4) or west (no. 5).
Pairs no. 1-3; 1-4; 1-5. X-axis: intervals between similar histograms
(min). Y-axis: number of similar histograms per 360 compared
pairs.

Fig. 8: Measurements of 90Sr β-activity. The “effect of near zone”,
a higher probability of neighbor histograms (interval = 1) to be sim-
ilar comparatively to the histograms separated by larger intervals.
X-axis is time interval in minutes, Y-axis is number of similar his-
tograms per 360 compared pairs.

“effect of near zone”. It means that the neighbour histograms
are much more probable to be similar, and Fig. 8 shows how
it looks for the β-activity measurements.

Since histograms are constructed for non-overlapping
segments of time series, the effect of near zone is the first sign
of histogram shape to be determined by an external factor [1].
The second traditional effect, indicating cosmo-physical con-
ditionality of the shape of histograms, is the existence of two
clearly resolvable near-daily periods: sidereal and solar [1].
Fig. 9 shows these near-daily periods revealed in the mea-
surements of 90Sr β-activity in Novosibirsk (no. 1) and 239Pu
α-activity in Pushchino (no. 3–5)
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Fig. 9: Sidereal (1436 min) and solar (1440 min) daily periods in
the appearance of similar histograms in the measurements of 90Sr
β-activity in Novosibirsk (no. 1) and 239Pu α-activity in Pushchino
(no. 3, 4, 5). Collimator is aimed at the Sun – no. 3; collimator is
aimed at the Polar star – no. 4; collimator is directed west – no. 5.
X-axis is time interval in minutes, Y-axis is number of similar his-
tograms per 360 compared pairs.

The existence of well-resolvable sidereal and solar daily
periods means a sharp anisotropy of the effects observed. The
difference between the direction at the immobile stars (side-
real daily period) and the Sun (solar daily period) is about 1
degree. As seen in Fig. 9, these periods are 4 minutes apart,
i.e., they are resolved with the accuracy of 15 angular min-
utes. We also observe spatial anisotropy in the effects of syn-
chronism by the absolute and local time [1, 11].

One can see the effect of spatial anisotropy in Fig. 10,
which demonstrates local-time synchronism in the change of
the shape of histograms constructed for the measurements of
90Sr β-activity in Novosibirsk (no. 1) and 239Pu α-activity in
Pushchino with a west-directed collimator. The calculated
difference in local time is equal to 179–180 min. As seen
in Fig. 10, there is a sharp extremum – evidence of the ef-
fect – at 178th minute (peak height, 134 similar pairs). Other
extrema, corresponding to the moments of absolute-time syn-
chronism (at 0th, 193rd and 209th minutes), are substantially
lower (peak height, 16 similar pairs and less).

Thus, the measurements of 90Sr β-activity performed in
Novosibirsk give us another confirmation of universality of
the effects described earlier.

As the last illustration, we shall consider the “effect of
palindrome”, which indicates a dependence of the histogram
shape on the spatial relation between the directions of the
Earth diurnal rotation and its movement along the circum-
solar orbit [8, 9]. The effect consists in the reverse change
of the histogram sequences at the moments when the relation
between the directions alternates its sign. According to the
previously published works, it occurs at 6:00 and 18:00 by

Fig. 10: Effect of synchronism by local time revealed upon com-
parison of the histograms constructed for the measurements of 90Sr
β-activity in Novosibirsk and 239Pu α-activity in Pushchino with a
collimator directed west. X-axis is time interval in minutes, Y-axis
is number of similar histograms per 360 compared pairs.

Fig. 11: Measurements of 90Sr β-activity. The “palindrome effect”
revealed upon comparison of a daytime histogram sequence (no. 1;
from 6:00 to 18:00 by accurate local time) to the non-inverse (no. 2)
and inverse (no. 3) nighttime sequences (from 18:00 to 6:00 of the
next day) and the next daytime sequence (no. 4). X-axis is time
interval in minutes, Y-axis is number of similar histograms per 360
compared pairs.

accurate (longitudinal) local time. In the course of its diurnal
rotation, the Earth starts moving against its orbital translo-
cation at 6:00. At 18:00, the directions of both movements
become the same. The effect manifests itself in a dramatic
difference in the similarity of consecutive histograms when a
“daytime” histogram sequence (from 6:00 to 18:00) is com-
pared to either inverse or non-inverse “nighttime” sequence
(from 18:00 to 6:00 of the next day). This effect is illustrated
in Fig. 11.

The effect of palindrome is clearly seen in Fig. 11. After
inversion of one half of a day (in the points of palindrome),
the number of similar histogram pairs doubles.
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4 Discussion

The objective of this paper was to check if the results of 90Sr
β-activity measurements conducted by E.Y. Filin can be com-
pared with the results of other measurements obtained within
the research on “cosmo-physical fluctuations”. As follows
from the presented data, all the expected effects were repro-
duced with these experiments. Since β-particles run a dis-
tance of a few meters in the air (in contrast to α-particles,
which run only a few centimeters), these measurements can
be a valuable tool for a study of the spatial anisotropy of the
observed effects.
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In order to account for the slight polarization of the continuum towards the limb, propo-
nents of the Standard Solar Model (SSM) must have recourse to electron or hydrogen-
based scattering of light, as no other mechanism is possible in a gaseous Sun. Con-
versely, acceptance that the solar body is comprised of condensed matter opens up new
avenues in the analysis of this problem, even if the photospheric surface itself is viewed
as incapable of emitting polarized light. Thus, the increased disk polarization, from
the center to the limb, can be explained by invoking the scattering of light by the at-
mosphere above the photosphere. The former is reminiscent of mechanisms which
are known to account for the polarization of sunlight in the atmosphere of the Earth.
Within the context of the Liquid Metallic Hydrogen Solar Model (LMHSM), molecules
and small particles, not electrons or hydrogen atoms as required by the SSM, would
primarily act as scattering agents in regions also partially comprised of condensed hy-
drogen structures (CHS). In addition, the well-known polarization which characterizes
the K-corona would become a sign of emission polarization from an anisotropic source,
without the need for scattering. In the LMHSM, the K, F, and T-coronas can be viewed
as emissive and reflective manifestations of a single coronal entity adopting a radially
anisotropic structure, while slowly cooling with altitude above the photosphere. The
presence of “dust particles”, advanced by proponents of the SSM, would no longer be
required to explain the F and T-corona, as a single cooling structure would account for
the properties of the K, F, and T coronas. At the same time, the polarized “Second
Solar Spectrum”, characterized by the dominance of certain elemental or ionic spectral
lines and an abundance of molecular lines, could be explained in the LMHSM, by first
invoking interface polarization and coordination of these species with condensed matter
in the chromosphere. The prevalence of polarized signals from the Rare Earth metals, a
chemically unique group of the periodic table, provides powerful evidence, based on the
“Second Solar Spectrum”, that chemical reactions and coordination are taking place in
the atmosphere of the Sun. This concept is also supported by the polarized signal from
lithium, an element previously hypothesized to assist in stabilizing metallic hydrogen
structures. The possibility that some atoms are coordinated with CHS implies that the
relative abundance of elements cannot be simply ascertained through the analysis of
emission or absorption lines in the solar atmosphere.

. . . it follows that a body, which absorbs more rays

from one plane of polarization than from another,

sends out in the same ratio more rays from the first

plane of polarization than from the second.

Gustav Kirchhoff, 1860 [1]

1 Introduction

Recently, considerable doubt has been raised [2–4] relative to
Kirchhoff’s formulation of his law of thermal emission [1].
In this regard, the equivalence between emitted and absorbed
radiation under conditions of thermal equilibrium, properly
known as Stewart’s law [5], has not been questioned. How-
ever, the German scientist’s claim that the radiation within
an arbitrary cavity will always be independent of the nature

of the walls, while subject only to the temperature and the
frequency of observation, has never been demonstrated ex-
perimentally and is unsupported by mathematical derivation
[2–4]. Regrettably, even the proof of Kirchhoff’s law of ther-
mal emission, as advanced by Max Planck, has been found
to be physically unsound [2].∗ As such, beyond the restate-
ment of Stewart’s law [5], it would appear that little can be
preserved from Kirchhoff’s classic paper [1].

Yet, there is an experimental aspect of Kirchhoff’s work
which can never be discounted, namely that a tourmaline
plate can absorb radiation more favorably in one plane than
in the other [1, § 16]:

∗Since mathematics is the language of physics, this is a serious problem
for all those who adhere to the validity of Kirchhoff’s claims [2].
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“A tourmaline plate, cut parallel to the optic

axis, absorbs, at ordinary temperatures, more of

the rays which strike it normally, if the plane of

polarization of these is parallel to the axis than

when it is perpendicular to it. Assuming that the

tourmaline plate retains this property when it is

at a glowing heat, it must give out rays in a direc-

tion normal to it, which are partially polarized

in the plane passing through the optic axis and

which is the plane perpendicular to that which

is called the plane of polarization of tourmaline.

I have proved this striking deduction from theory

by experiment and it confirmed the same.”

With this observation, Kirchhoff was emphasizing that cer-
tain objects, especially when highly anisotropic in their crys-
tal structure, could emit polarized light [6, p. 604]. Kirch-
hoff’s finding, that the light emitted by a heated tourmaline
plate was polarized in the same plane as that which preferen-
tially absorbed light, had also been noted by Balfour Stew-
art [7, § 68]. P. P. Feofilov addressed this aspect of nature
in his classic text on The Physical Basis of Polarized Emis-

sion [8, p. 33–34]:

“. . . in order that the polarization should appear

in the radiation due to a macroscopic system, it

is necessary that the mutual orientation of the

elementary radiating systems should not be ran-

dom. A random aggregate of anisotropic elemen-

tary radiators, gives, clearly, a completely unpo-

larized radiation. A regular orientation of the

separate elements of a macroscopic system may

be due to the properties of the system itself, and

this is the case, for example, in anisotropic crys-

tals, or it may be induced from outside by electric

and magnetic fields, by mechanical action, or fi-

nally, by light incident from outside the system,

since a light ray, because of its nature, is always

anisotropic . . . In the case of regular crystals, the

orientation of the emitting centers may be com-

plete, and the emitted light may be practically

totally polarized . . . ”

In the case of tourmaline, the degree of polarization can ap-
proach 40% [9, p. 112].

Beyond crystals, it is not generally known that incandes-
cent metals can often be a source of strongly polarized light
[9, p. 110 & 138]. This effect does not occur when observ-
ing metals perpendicular to the surface, but polarization can
approach 90% when the angle of observation departs substan-
tially from the normal, in studying a clean metal
[9, p. 110 & 138]. Thin metal wires exhibit polarized emis-
sion [10,11] and the heat radiation, from small but long cylin-
drical objects, can also be highly polarized [12]. More re-
cently, polarized light emission has been noted from individ-
ual carbon nanotubes, their fibers, bundles, and arrays (see

Fig. 1: An anisotropic tourmaline crystal (National Mining Hall of
Fame and Museum — Leadville, CO; 3/18/2015; Photo by PMR).

[13, 14] and references therein). Importantly, within these
carbon-based bundles, the light emission maintained a black-
body spectral appearance [13].

Still, Kirchhoff’s observation relative to tourmaline [1],
these others [6–14], and many more, which highlight the im-
portance of anisotropy relative to the emission of polarized
light, have been discounted by astronomy. Clearly, since the
Standard Solar Model (SSM) advocates that the Sun is gase-
ous in nature, there is little room in modern astrophysics for
condensed matter.∗ The stars are thought to be devoid of
solids and liquids. Rather, most astronomers believe that
these objects are composed either of gaseous plasmas or
highly degenerate matter, in accordance with the stellar type
involved and the dictates of mathematical models. Nonethe-
less, ample evidence exists that the Sun itself is comprised
of condensed matter or, more specifically, of metallic hydro-
gen [15]. Thus, it is fitting to reconsider the lessons of the
tourmaline plate [1] in order to obtain a new perspective with
respect to the emission of polarized light by the Sun and the
stars.

2 Polarized light in the corona

Knowledge that the solar corona emitted polarized light was
first gained at the eclipse of 1868 [16, p. 44]. Schuster pro-
vided a mathematical treatment of the problem as early as
1879 [17]. But it was not until R. K. Young analyzed photo-
graphic plates of the eclipses of 1901, 1905, and 1908 with
a Hartmann microphotometer, that the extent of polarization
could be properly quantified [18]. Young discovered that po-
larization increased gradually, with increasing elevation
above the photosphere, to a value of ∼37% before slowly
starting to decrease. He also noted [18] that the corona was

∗With the exception perhaps of some planets, meteors, asteroids, etc.
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“. . . formed from matter which has been project-

ed from the Sun” and that “The distribution of

matter in the corona is dependent on high in-

verse powers of the distance from the Sun’s cen-

ter, probably the sixth or eighth or a combination

of the two.”

Young also believed that the polarization was due to the scat-
tering of photospheric light by small particles. As a conse-
quence of such early studies, it was established that the light
arising from the K-corona was radially polarized [18].

With the advent of the Lyot coronograph in 1930, the
study of the solar corona outside of total eclipses became
possible [19]. That same year, Minnaert published his work
on the nature of the continuous coronal light and its polar-
ization [20]. Minnaert considered the idea that the corona
was self-luminous [20]. Sixty years earlier, William Harkness
had viewed a total eclipse from Iowa and had also concluded
that the corona was “. . . a highly rarefied self-luminous atmo-

sphere surrounding the Sun” [21, p. 199].
However, the concept that the corona could be self-

luminous has been largely abandoned by astronomy. In part,
this dates back to the days of Schuster and his analysis of the
polarization question. The British scientist had treated a lumi-
nous sphere surrounded by small particles which could scat-
ter the light, thereby producing the desired polarization [17].
Schuster noted that [17]:

“In reality the polarisation rapidly diminishes

and very soon a point is reached at which no

polarisation can be observed; the corona must

therefore contain some matter which is either

self-luminous or too large to polarise the light

while scattering it . . . The rapid decrease of

polarisation with increasing distances from the

Sun, as well as the comparatively small amount

of observed polarization, shows that a large part

of the light is not due to scattering particles. This

light may either be produced by incandescence,

or by particles which are too large to polarise

the light in the act of scattering it.”

Like Schuster, Minnaert also left open the possibility that the
corona was capable of both scattering photospheric light and
self-emission [20]. For his presentation, Minnaert considered
that the scattering, leading to polarization, was taking place
through the action of free electrons.

Within the context of the SSM, K-coronal polarization is
thought to be produced by relativistic electrons which scat-
ter photospheric light such that most Fraunhofer lines can no
longer be observed [16, p. 4-5 & 135].

At the same time, streamers are known to constitute the
most polarized portion of the corona, with values ranging
from 30-60% [16, p. 136–138]. Such findings, along with
Young’s discovery that the degree of polarization could first
increase and then decrease with elevation above the photo-

sphere [18], provide strong evidence that the cause of polar-
ization must involve structure and not simply the presence of
relativistic free electrons.

In this respect, given the degree of ionized atoms in the
E-corona [16, p. 4–5 & 135], it is doubtful that the determi-
nations of electron density from polarization measurements
could be accurate [16]. Furthermore, such calculations dis-
count the notion that condensed matter may well be present
in this region of the Sun [22]. It has been proposed that
the metallic hydrogen which makes up the corona is elec-
tron starved and this, in turn, not MK temperatures, leads to
the presence of the highly ionized atoms which characterize
the E-corona [23, 24]. The Liquid Metallic Hydrogen Solar
Model (LMHSM) [15, 22–24] leaves little possibility for the
presence of substantial numbers of free electrons, in the upper
coronal atmosphere of the Sun. In order that a star can remain
stable, it must work to salvage both its hydrogen [25–27] and
its electrons [22–24]. Such an idea has only been advanced
within the context of the LMHSM [15, 22–27].∗

3 Unifying the K-, F-, and T-coronas in the LMHSM

Throughout much of the solar atmosphere, K-coronal polar-
ized light is mixed with F-coronal radiation. The F-corona is
characterized by the presence of Fraunhofer lines and, in the
SSM, is believed to be produced by dust particles which act to
scatter photospheric light without polarization [16, p. 4–5 &
135]. Indeed, polarization has been utilized as a basis of dis-
criminating between the K- and F-coronas, as F-coronal light
was initially thought to be unpolarized [32–34]. However, it
soon became clear that the polarization of the F-corona be-
yond 5R⊙ could not be ignored [35].† Using the degree of
polarization, attempts to excise a K-coronal signal has been

∗One of the authors (PMR) recently became aware that Professor J.E.
Hirsch proposed, in 1989, that sunspots might be composed of metallic hy-
drogen based on the presence of strong magnetic fields in these regions:
“Sunspots are characterized by having a lower temperature than their envi-

ronment, and very strong magnetic fields. It is natural to conclude that metal-

lic hydrogen develops large spin polarization in these regions” [28]. Since no
lattice structure was specified to account for the emission of sunspots, Profes-
sor Hirsch appears to have adopted the accepted view from the SSM that the
lower emissivities from these structures are associated with decreased tem-
peratures [28] and not due to changes in emissivity as a result of increased
metallic character [15]. Unlike Robitaille, who has promoted the idea that
sunspots reflect slightly higher densities relative to the photosphere [15], Pro-
fessor Hirsch speaks of a lower density inside sunspots [28]. At the same
time, Hirsch makes a compelling case for the importance of metallic hydro-
gen throughout astronomy, as a universal cause of magnetism. On a related
question, based on solar densities of ∼150g/cm3 associated with the SSM,
Professor Setsuo Ichimaru has advanced that the solar core might be com-
prised of metallic hydrogen [29–31]. Conversely, while Robitaille recognizes
the presence of a solar core, he has advocated that the Sun possesses a nearly
uniform density of ∼ 1g/cm3 (see [15] and references cited therein). This is
because a density of 150g/cm3 in the core, as proposed by Ichimaru [29–31],
would leave little material to build condensed structures on the photosphere.
Further, Robitaille’s position is in keeping with the idea that liquids are es-
sentially incompressible.

†Coronal polarization has been measured out to an amazing 10 solar
radii [36, p. 187].
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used to compute electron densities in this region [32–35]. The
problem rests in that electron densities calculated in this man-
ner are dictated by the very mechanism proposed for the po-
larization, without any independent confirmation that polar-
ization was in fact produced by electrons. In addition, it is
evident that there should be a strong decrease in free elec-
tron density as a function of distance from the Sun (e.g. [36,
p. 188]). It is difficult to justify distant polarization with rela-
tivistic electrons.

Relative to the nature of the “dust” which is believed to
constitute F-coronal matter in the SSM, Mukai et al. [37] ad-
vocated, in 1974, that graphite grains were the most likely
candidate. They envisioned that the grains would sublime,
as the distance to the solar surface was decreased, hence ac-
counting for the known reduction in the F-coronal contribu-
tion in this direction [37]. A T-corona has also been hypoth-
esized to exist, in order to account for the increased redden-
ing of coronal light with increasing altitude above the pho-
tosphere [16, p. 4–5 & 135]. This reddening had been noted
long ago by Allen [38]:

“microphotograms for solar distances varying

from R= 1.2 s to R= 2.6 s show that the coronal

radiation reddens slightly as the distance from

the Sun is increased.”

Pondering on all of these fragmented pieces of information,
there is a need to arrive at a unifying principle relative to the
corona of the Sun.∗

Rather than speak of the K-, F-, and T- coronas as sepa-
rate entities [16, p. 4–5 & 135], the idea should be entertained
that the corona is composed of condensed matter which is
manifesting spatially variable emissive, reflective, and struc-
tural properties. It is logical to postulate that condensed coro-
nal matter is based on photospheric Type-1 metallic hydro-
gen which has been ejected from the solar surface [22–24].
Since photospheric matter produces unpolarized radiation, it
is reasonable that, in the lower solar atmosphere, coronal ma-
terial will also lack the ability to significantly polarize light.
Nonetheless, it will remain capable of self-emission. With
elevation above the solar surface, the ejected photosheric ma-
terial, which now constitutes the corona, begins to adopt a
radially anisotropic structure, as manifested by streamers, for
instance. Such structural anisotropy thereby enables the emis-
sion of polarized light from incandescent radially aligned
coronal material [8]. This explains the presence of the K-
coronal signals. No Fraunhofer lines are present, because the
coronal matter is self-luminous and positioned above the ele-
vation where intense absorption by free atoms or ions is possi-
ble. With increased elevation above the photosphere, coronal

∗The idea that the F-corona was produced by interplanetary dust parti-
cles was initially adopted in accounting for the behavior of the corona, even
within the context of the LMHSM [22–24]. However, upon further reflec-
tion, it is clear that the SSM explanation for the presence of the F-corona
should not be salvaged.

material begins to cool, loosing incandescence. In response
to decreased temperatures, emissivity decreases and reflectiv-
ity increases, much like the iron rod placed in a forge. With
increased reflectivity, coronal material becomes less able to
emit polarized light in the visible range. Rather, it now in-
creasingly reflects photospheric light. That is why the Fraun-
hofer lines become visible in the F-coronal spectrum. At the
same time, since coronal material is cooling, it begins to emit
its light, not in the visible, but in the infrared. Hence, the
production of the T-coronal spectrum.

With this new proposal, the K-, F-, and T- coronas sim-
ply become manifestations of the same coronal material. A
streamer can be viewed as a real structure whose emissive
and reflective behavior is characterized by both temperature
and structural changes within the same entity. A streamer is
unlikely to be comprised of an assembly of isolated gaseous
ions or atoms, as currently held by the SSM, as the simplest
explanation for such structure rests upon condensed matter.

As for the E-corona [39], it is being produced, not by
the presence of MK temperatures in the corona, but rather
through the removal of atomic and ionic electrons by con-
densed coronal material [15,22–24]. With increased elevation
above the photoshere, the coronal metallic hydrogen, which
acts to channel electrons back onto the solar surface, can be
viewed as becoming increasingly electron starved. As a re-
sult, any ion or atom which comes into contact with such ma-
terial will be likely to be stripped of electrons, since the Sun
is working to maintain neutrality [22–24]. Electron affinities,
not extreme temperatures, govern the production of highly
ionized elements in the corona.

4 Polarization at the solar limb

In 1946, Chandrashekhar, through mathematical considera-
tion of Thomson scattering by electrons [40, p. 249], first ad-
vanced that the body of the stars could emit a continuous
spectrum, characterized by polarization, concluding that [41]

“the degree of polarization must vary from zero

at the center of the disk to 11 per cent at the

limb”

Using similar approaches, Sobolev confirmed Chandrashe-
khar’s finding [42] and the problem has been extensively re-
viewed [43, p. 119–203].

According to Dolginov, Gnedin and Silant’ev [43, p. 120],
stellar polarization can be attributed to three major factors:

“a) nonsphericity of stellar shape, b) the eclipses

of a hot star within a binary system, c) scattering

in a nonspherical circumstellar envelope by gas

flux.”

They argue that even a spherical star can have mechanisms
for changes in luminosity across its surface, the most impor-
tant of which might be temperature variations [43, p. 121].
The scattering of light by electrons has continued to play an
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important role, relative to accounting for the production of
polarized light in the context of gaseous stars and the SSM.

In the final analysis, the need to account for the produc-
tion of polarized light in a gaseous object requires a sus-
pension of objective reality. For instance, Chandrashekhar’s
analysis depends on the generation of polarized light from
a gaseous star [41]. Yet, at the same time, the SSM views
the Sun and the stars as a nearly ideal blackbody emitters
[44–46]. It is well-known that blackbodies are incapable of
emitting polarized light, by definition (see [47, p. 450], and
[48, §5 &107 ]). Hence, it should have been difficult for pro-
ponents of the SSM to accept Chandrashekhar’s claim that
a gaseous star could emit up to 11.7% polarized light at the
limb, a number which was actually very large [41]. In order to
reconcile Chandrashekhar’s findings with the SSM and black-
body behavior, a gaseous Sun must be divided into that opac-
ity region which produces the thermal spectrum and an upper
layer responsible for polarization [49,50]. The reality remains
that, since the Sun sustains convection currents and conduc-
tion, it makes for a very poor example of a blackbody [15],
as highlighted by Max Planck himself [48, § 51]. Moreover,
because Thomson scattering by an electron is frequency in-
dependent [51, p. 69] and the polarization of the continuous
solar spectrum is frequency dependent, Rayleigh scattering
by neutral hydrogen had to be introduced to reconcile the-
ory [40–43] with solar observations [49, 50].

In order to account for the slight degree of frequency-
dependent polarization in the continuous spectrum towards
the solar limb, it is more prudent to postulate that the body
of the Sun emits unpolarized light. A single photon can be
considered which leaves the photosphere at the center of the
solar disk. That photon, if it escapes at an angle far from
the normal, could then travel in the direction of the limb.
Along its path, it will encounter molecules and small parti-
cles which could cause scattering in the direction of the Earth.
In this manner, photons experiencing a 90◦ scatter towards the
Earth could then be polarized.∗ It does not depend on the elec-
tron and does not necessitate that the body of the Sun itself
emit polarized light, as theoreticians have proposed [41–43].
The only requirement rests in acceptance that both polariz-
ing molecules and various forms of condensed matter† ex-
ist above the photosphere of the Sun, a concept supported
by ample evidence, including both spectroscopy and coronal
seismology [15].

5 Polarization and second solar spectrum

Beyond the frequency dependent polarization of the contin-
uous solar spectrum [49, 50], the Sun also emits polarized
light from numerous individual spectral lines. In combina-

∗The phenomenon parallels that which occurs daily with sunlight in the
atmosphere of the Earth [9, 47, 52–54].

†Atomic clusters are known to be polarizable [55, p. 64–85]. Thus, it
might be appropriate to consider that small hydrogen based atomic clusters
might also be present in the solar chromosphere and corona.

tion, these two findings lead to the “Second Solar Spectrum”
[49,50,56–67]. Brief historical accounts of this problem have
been presented [58, 61] and the major features of the Second
Solar Spectrum are as follows:

1. Relative to the Fraunhofer spectrum, these signals are
extremely weak, rarely exceeding a Q/I level of 10−3 in the
visible range [57, 58].

2. The most important atomic lines in the Second So-
lar Spectrum are produced from Ti I and Cr I [58]. These
two elements possess ground state electronic configurations
of [Ar]3d24s2 and [Ar]3d54s1, respectively.‡

3. The phase of the emission lines relative to the con-
tinuum can be highly variable [61]. Therefore, spectroscopic
lines are said to either add to (i.e. polarize [61]) or subtract
from (i.e. depolarize [62]) the continuum polarization. It is
also said that the lines appear, either in emission or absorp-
tion, for the same reason [50], but that the strongest lines tend
to be depolarizing [57].

4. The strongest polarizing lines include the following:
H I , Na I, Mg I, Ca I, Ca II (6.11 eV), Ti I, Ti II (6.83 eV),
V I, V II (6.75 eV), Cr I, Mn I, Fe I, Co I, Ni I, Cu I, Sr I, Sr II
(5.69 eV), Zr I, Zr II (6.63 eV), Nb II (6.76 eV), Ru I, Pb I,
Ba I, and Ba II (5.21 eV) [61].§

5. The spectrum is particularly rich in molecular lines,
including, most notably, lines from MgH, C2, and CN [56,57,
63–65]. The intensity of this polarization increases towards
the solar limb.

6. The spectrum contains an amazing array of lines from
the Rare Earth elements: Sc II (6.56 eV), Y I, Y II (6.22 eV),
La II (5.58 eV), Ce II (5.54 eV), Nd II (5.53 eV), Sm II
(5.64 eV), Eu II (5.67 eV), Gd II (6.15 eV), Dy II (5.94 eV),
and Yb I [61].

7. Lithium, Li, is barely detectable in the regular solar
spectrum of the photosphere [70], but its doublet at 6708 Å
appears at the ∼ 10−4 level in the polarized spectrum [57,67].
This constitutes a tremendous increase in relative detectabil-
ity for this element.

5.1 The second solar spectrum and the standard solar

model

Adherence to the SSM brings many difficulties when study-
ing the Second Solar Spectrum. A means must first be found
to excite these atoms or molecules, such that they can later
emit the required line spectrum. The only reasonable mech-
anism available, in the context of a gaseous Sun, involves

‡The calculated, or experimentally determined, static electric dipole po-
larizabilities, αD , of neutral atoms in their ground state are readily available
(see e.g. [68, p. 11] and [69, § 10; 188–189]). However, these values are of
limited interest for this problem, as the polarizability of the excited atoms or
ions may be more appropriate to consider, but are not easily ascertained.

§The elements followed by a Roman numeral I are neutral and said to be
in spectroscopic state I. Elements in the +1 oxidation state are in the second
spectroscopic state (i.e. state II). The ionization energy for each element
involved in producing its state II ion is provided in brackets [69, § 10;197–
198].
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direct excitation through photon absorption and subsequent
re-emission. Thus, a random process is invoked. Chemical
reactions are never considered, despite the fact that the chem-
ically similar Rare Earth elements produce prominent signals.
Furthermore, all ionic strongly polarizing lines present were
produced by the removal of a single electron from atoms, re-
quiring ∼6 eV of energy, as can be ascertained by examining
the ionization potentials listed in 4 and 6 above.

In the SSM, a polarization mechanism must also be ad-
vanced, namely anisotropic radiation. Thus, in order to po-
larize the emitting species, proponents of the SSM must also
have recourse to anisotropic light as follows [57]:

“The polarization arises because the incident ra-

diation, being anisotropic, induces a net dipole

moment in the scattering particle. If the particle

does not suffer a collision before it re-radiates,

the phase relations between the vector compo-

nents of the dipole moment . . . are preserved and

become imprinted on the scattered radiation.”

Such arguments bring further complications, as a cause for
anisotropic radiation in the atmosphere of a fully gaseous Sun
must now also be advanced. In the end, the center-to-limb
variation (CLV) in solar intensity is adopted, to account for
the anisotropic light [49, 50, 57]. However, at the level where
these lines are being produced, such a mechanism is unlikely
to be valid. Thus, it is also advanced that “. . . local inhomo-

geneities on the Sun will produce scattering polarization all

over the solar disk . . . ” [57]. But, in the SSM, there can be
no local cause of inhomogeneities. The magnetic fields, so
often advanced to explain such inhomogeneities, cannot be
reasonably generated in the context of a gaseous Sun [15].

Finally, since many of the lines appear to depolarize the
continuum polarization, some means of accounting for this
effect must be brought forward. In this regards, three mech-
anisms have been hypothesized [61]: 1) Hanle depolariza-
tion produced by random magnetic fields [57, 71], 2) colli-
sional depolarizations produced by hydrogen atoms (see [72]
and references cited therein) and 3) radiation transfer effects
(see [72] and references cited therein). Consequently, mag-
netic fields must be applied in the SSM, both to produce the
anisotropic light required for polarization and as a means of
depolarization. At the same time, collisional depolarization
using the hydrogen atom contradicts one of the tenets of the
gaseous Sun, namely that collisional processes are not sig-
nificant in the gaseous solar atmosphere associated with the
SSM: “Collisional processes of excitation and de-excitation

occur so seldom that they are of no importance” [73, p. 10].
This is because, within this model, the chromosphere and
corona exist as tremendous vacuums, essentially devoid of
material and with inferred densities of less than 10−12 g/cm3

(see references within [15]). While computations of colli-
sional and radiation transfer effects might be reasonably ap-
plied to a few lines, the problem becomes daunting, when

considering an entire spectrum, especially given that “. . . our

knowledge of the collisional rates is still very limited” and
“. . . there are many physical processes that are involved in

the generation and modification of the polarization” [61].
The dilemmas faced in the context of the SSM relative

to accounting for the Second Solar Spectrum has been out-
lined [61]:

“. . . probably one of the most important ques-

tions concerning the whole Second Solar Spec-

trum, that still waits for an answer, is why only

particular lines, of certain elements, produce

strong polarizing signals. For instance, one can

wonder why some elements are particularly

present with their lines in the Second Solar Spec-

trum, whereas other elements of comparable

abundance are totally absent.”

5.2 The second solar spectrum and the LMHSM

Novel insight can be gained, with respect to the Second Solar
Spectrum, if the findings are interpreted within the context of
a model wherein condensed matter participates in the gener-
ation of spectroscopic lines.

5.2.1 Excitation and relaxation in the LMHSM

Contrary to the SSM which advocates that emitting species
must first be excited through the interaction with light, fol-
lowed by re-emission disconnected from chemical processes,
the LMHSM proposes that all emission lines are inherently
linked to chemical or electrical processes in the Sun [23–27].
In the corona, the interaction between free atoms or ions with
condensed matter results in the production of highly ionized
species, like FeXXV [23,24], since condensed matter has the
ability to maintain a higher electron affinity than a free atom.
It is this affinity, not the presence of extreme temperatures,
which is hypothesized to be responsible for the production
of such highly ionized atoms in the corona [23, 24]. In this
manner, the body of the Sun can recapture lost electrons, by
stripping coronal atoms or ions and channeling the result-
ing harvest back down to the photosphere. Consequently, the
emission lines observed in the corona are associated with the
capture of electrons from free atoms or ions by condensed
matter. Such processes should be exothermic in nature, hence
their association with light emission [23, 24]. Electron cap-
ture is thus associated with the activation of a highly ionized
species which then emits the well known coronal lines. Un-
like the SSM, light need not be invoked to excite these highly
ionized species. Collisional relaxation processes are not im-
portant in this region of the Sun. Any excited ion achieves the
ground state through the emission of light.

As for the chromosphere, it has been viewed as the site
of proton and hydrogen recapture [25–27]. The hypothesized
condensation reactions take advantage of hydrogen’s tremen-
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dous ability to form hydrides. These are then used to de-
posit hydrogen atoms onto condensed hydrogen structures,
CHS [25–27]. Such a model can account for the presence of
both He I and He II emission lines in the chromospheric spec-
trum [27]. In this case, line emission becomes associated with
exothermic hydrogen based condensation reactions [25–27].
Collisional processes of excited atoms or ions back to the
ground state is not necessary either for further excitation or
relaxation back to the ground state.

In combination, the mechanisms advanced in the corona
and chromosphere act to reclaim both protons and electrons
in the outer solar atmosphere and, thereby, help to maintain
mass and charge balance in the LMHSM. Such means of pre-
serving the integrity of the Sun are absent in the SSM.

As mentioned above, in order to account for the behav-
ior of several ions in the Second Solar Spectrum, collisional
depolarization mechanisms have been invoked (see [72] and
references cited therein). Yet, such random processes are
unlikely to be of true significance in governing the behav-
ior of emission lines in this spectrum, as definite lineshapes
must depend on repeatable processes, not chance occurrence.
Moreover, the densities for the chromosphere proposed in the
SSM of 10−12 g/cm3 (see references within [15]), leave little
room for such processes. Lineshapes are inherently linked to
the environment in the vicinity of the emitter itself. It is this
microenvironment which must be considered, not the pres-
ence of macroscopic phenomena, as will be addressed in the
next section.

In the LMHSM, the presence of condensed matter and el-
evated chromospheric densities, well-beyond the densities of
the Earth’s atmosphere, are entirely compatible with a con-
densed solar photosphere. Unlike the setting proposed by the
SSM, collisional processes can be invoked in the LMHSM.
Such processes do not need to play any role in understand-
ing the emission lines of the chromosphere and corona. But
they can provide an important relaxation mechanism for the
Fraunhofer lines, as the atoms involved in photon absorp-
tion, must relax again prior to repeating the process. It is
here that collisional relaxation mechanisms can play an im-
portant function, beyond simple scattering, in the context of
the LMHSM. This is because, the LMHSM does not insist
that the chromosphere of the Sun possesses a density which
is vacuum-like and greatly inferior to that in the Earth’s atmo-
sphere. This is another important advantage of the LMHSM
over the SSM.

5.2.2 Chemical reactions and the second solar spectrum

Rather than speak of polarizing (or emission) and depolariz-
ing (or absorption) signals, it is best to consider all the lines in
the Second Solar Spectrum as inherently polarized, but with
an emission phase which can either add to or subtract from the
polarized continuum. Thus, lineshape becomes a question of
phase, as with any other spectroscopic process.

If a species is to have a net phase, then it must be rel-
ative to a common framework. In nuclear magnetic reso-
nance (NMR), phase is determined relative to receiver chan-
nels placed in quadrature, with respect to one another, as dic-
tated by a master oscillator. In NMR, lineshapes reflect spe-
cific nuclear environments and populations at the local level.
These same principles can guide lineshape analysis in the
Sun, with phase being determined by electronic orbital orien-
tation relative to a polarizing interface. Since emission lines
are being observed, then chemical activation of the emitting
species can once again be invoked, but this time within the
context of coordination of the emitting species.

As noted in introduction to section 5, the Second So-
lar Spectrum is characterized by many powerful lines from
molecules and the Rare Earth elements [74]. Rare Earth met-
als are actually relatively abundant in the Earth’s crust [74]
and they are likely to be similarly abundant in the Sun with
respect to the other metals, as polarization studies suggest.
These elements share a common outer electron configuration
often with a single electron in an outer d-shell and two elec-
trons in the immediately inferior s-shell. In this regard, the
Lanthanide series is slowly filling the 4f-shell, while main-
taining a (6s25d1) outer configuration. The latter is similar
to the Group IIIB elements of scandium (Sc), Yttrium (Y),
and Lanthanum (La), which have outer electronic configura-
tions of 4s23d1, 5s24d1, and 6s25d1, respectively. Generally
speaking, atoms with a single unpaired electron are easiest to
polarize.

The presence of the Rare Earth elements in the Second
Solar Spectrum strongly suggests that a similar chemical re-

action is responsible for all of these lines. It is likely that
these reactions involve the condensation of hydrogen onto
CHS, a process which has been inherently tied to the func-
tion of the chromosphere in the LMHSM [25–27].

Consequently, Rare Earth metal hydrides could interact
with CHS in the chromosphere. Upon release of their hydro-
gen atom, the resulting activated Rare Earth metal would be
interface polarized by the adjacent CHS with which it would
remain at least partially interacting. In this way, atomic or-
bitals always maintain the same orientation, relative to the
surface and relative to all other ions or atoms involved in
similar interactions with CHS, while maintaining coordina-
tion. As a result, the relative phase of all atoms involved in
such processes would be dictated by coordination with the
charged interface. Upon relaxation through emission, these
atoms would then be released in association with the delivery
of hydrogen.

The ability to deliver hydrogen and the exact strength and
nature of the associated coordination would depend on the
atomic species involved. Some atoms, like He for instance,
may well participate in condensation reactions [27], but given
their nobel gas electronic configurations, might be difficult
to polarize and might remain uncoordinated during emission.
Others, like the nobel gases below helium in group VIIIA of
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the periodic table, would not be expected to interact at all
with hydrogen. Hence, given their inability to participate in
condensation reactions, they should be devoid of neutral atom
chromospheric emission lines.

Thus, within the context of the LMHSM, it is reasonable
to conceive that structures comprised of condensed matter
exist in the chromosphere. Such condensed hydrogen struc-
tures, CHS, could possess a surface electric charge polarizing
any atom brought in its proximity through interface polariza-
tion mechanisms. Each atomic species involved in conden-
sation reactions would have a preferred means of being co-
ordinated with the surface, in a manner dependent on their
atomic orbitals. In such a way, it is possible to explain why
a given line would adopt a consistent and at times complex
appearance in the Second Solar Spectrum.

Support for the idea that chemical reactions are involved
can be gained by appreciating not only the prevalence of the
chemically similar Rare Earth metals, but also from the fact
that all of the most polarizing lines from ions arise from el-
ements with a first ionization potential of ∼ 6 eV [61]. This
cannot be coincidental, but strongly supports the contention
that chemistry, and not random processes, are involved.

The same is true for the presence of molecular lines. Note
that the three most important molecular species observed,
namely CN, MgH, and C2, all have the potential of deliv-
ering hydrogen to CHS structures, through species such as
HCN, MgH2, HC2, and HCCH.

Note also that, at first glance, none of the elements from
Group IVA, VA, VIA, and VIIA (with the exception of Pb at
the bottom of group IVA), appear to participate in generating
the Second Solar Spectrum. Since these atoms are increas-
ingly electronegative towards the upper right of the periodic
table, they may share a lack of ability to enter into condensa-
tion reactions that involve the delivery of a hydrogen atom.

Finally, the presence of a doublet signal from Li in the po-
larized spectrum provides another important clue that chemi-
cal processes are involved [57,67]. Signals from this element
are weak or non-existent in other spectra (Fraunhofer, chro-
mospheric, or coronal), leading proponents of the SSM to ad-
vocate depletion of Li in the Sun and the stars, despite its
abundance in meteors [70]. Conversely, within the LMHSM,
the paucity of detectable lithium has been linked to the abil-
ity of this element to stabilize metallic hydrogen, a proposal
first advanced by Zurek et al. [75]. Coordination within the
solar interior, not depletion, appears to be a more reason-
able answer, especially given meteoric abundances [70]. This
idea is also in keeping with the proposal that atoms, which
are involved in condensation reactions, can be interface po-
larized in the excited state prior to emission. This helps to
account for the presence of lithium in the Second Solar Spec-
trum. It also provides powerful evidence that interface po-
larization, not random processes and anisotropic radiation,
is responsible for the production of the Second Solar Spec-
trum.

6 Conclusion

The study of solar and stellar polarimetry is one of the most
fascinating aspects of astronomy, as the associated observa-
tions hold a treasure of clues, relative to the structure and
functioning of the Sun, the stars, and the galaxies [76, 77].
At every turn, polarization studies also add tremendous sup-
port to the concept that the Sun is comprised of condensed
matter [15]. In this regard, the LMHSM provides a strong
platform to account for the polarization of the K-corona, en-
abling polarized self-emission from an anisotropic structure.
At the same time, the model elegantly unifies the K-, F-, and
T-coronas into a single entity, with variable emissivity based
on cooling with elevation and increasingly radial anisotropy.
The idea that the chromosphere and the corona act to recap-
ture hydrogen and electrons which have escaped from the so-
lar body has no equivalent in the SSM [23–27].

Given the evidence, it is more reasonable to postulate that
the Second Solar Spectrum results from interface polariza-
tion and associated condensation reactions, rather than call-
ing for anisotropic radiation, Hanle depolarization, and colli-
sional depolarization.

Ample proof exists that the Second Solar Spectrum is in-
herently tied to chemistry, as the presence of Rare Earth el-
ements, relevant ionization potentials, molecular lines, and
phase sensitive lineshapes suggest. In the end, the Second
Solar Spectrum is perhaps the most significant of all spectro-
scopic signals obtained from the Sun, as in its lines, the scien-
tist can find compelling evidence for the presence of chemical
reactions within the solar atmosphere.
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LETTERS TO PROGRESS IN PHYSICS

Unmatter Plasma Discovered
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University of New Mexico, Gallup, NM 87301, USA

E-mail: smarand@unm.edu

The electron-positron beam plasma was generated in the laboratory in the beginning of

2015. This experimental fact shows that unmatter, a new form of matter that is formed

by matter and antimatter bind together (mathematically predicted a decade ago) really

exists. That is the electron-positron plasma experiment of 2015 is the experimentum

crucis verifying the mathematically predicted unmatter.

Unmmatter Plasma is a novel form of plasma, exclusively

made of matter and its antimatter counterpart. It was first

generated in the 2015 experiment [1, 2] based on the 2004

considerations [3].

There are four fundamental states of matter: solid, liquid,

gas, and plasma. Plasma consists of positive ions and free

electrons (negative particles), typically at low pressures, and

it is overall almost neutral. Plasma is an ionized gas (as in

fluorescent neon, in lightning, in stars, in nuclear reactors).

An ion is a positive or negative charged particle. A positive

ion is called cation, while a negative ion is called anion. If the

ion is an atom, then it may contain less electrons than needed

for being neutrally charged (hence one has a cation), or more

electrons than needed for being neutrally charged (hence one

has an anion). Similarly if the ion is a molecule or a group

(of atoms or molecules). The process of forming ions is called

ionization. The degree of ionization depends on the propor-

tion of atoms that have lost or gained electrons. By applying

a strong electromagnetic field to a gas, or by heating a gas,

one obtains plasma.

Unmatter as theoretically predicted in the framework of

the neutrosophic logic and statistics [4–6] is considered as

a combination of matter and antimatter that bound together,

or a long-range mixture of matter and antimatter forming a

weakly-coupled phase. For example, the electron-positron

pair is a type of unmatter. We coined the word unmatter

that means neither matter nor antimatter, but something in

between. Besides matter and antimatter there may exist un-

matter (as a new form of matter) in accordance with the neu-

trosophy theory that between an entity and its opposite there

exist intermediate entities.

The 2015 experiment [1, 2] on matter-antimatter plasma

(unmatter plasma, in terms of the neutrosophic logic and stat-

istics) was recently successful in the Astra Gemini laser facil-

ity of the Rutherford Appleton Laboratory in Oxford, United

Kingdom. The 2015 experiment has produced electron-

positron plasma. The positron is the antimatter of the elec-

tron, having an opposite charge of the electron, but the other

properties are the same.

Also, the meson is a clear example of unmatter whose

configuration includes a pair quark-antiquark. Unmatter is

mostly expected to emerge in exotic states outside the bound-

aries of the Standard Model for particle physics (for example

in the Dark Matter sector) and in the regime of high-energy

astrophysical objects [7].

“It is definitely a jet of unmatter, because a plasma con-

sisting of the electrons and the positrons is neither matter nor

antimatter in the same time. This experiment is the truly ver-

ification of unmatter as the theoretical achievements of neu-

trosophic logic and statistics. This experiment is a milestone

of both experimental physics and pure mathematics” [8].
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Felix Scholkmann1 and Alexander F. Pugach2

1Bellariarain 10, 8038 Zürich, Switzerland
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For more than four years, fluctuations in the deflection angle θ(t) of novel type of tor-

sion balance have been monitored at the Main Astronomical Observatory of National

Academy of Sciences in Kiev, Ukraine. During this all-year recording, unpredictable

spontaneous high-frequency oscillations were observed occasionally. The aim of the

present paper was to investigate four of these high-frequency oscillatory events by per-

forming a detailed time-frequency analysis. From the overall available θ(t) signal, we

selected four 24-hour long segments containing a clearly visible oscillations observed

on 20 and 21 November 2009 (data segments 1 and 2) and on 24 and 25 December

2012 (data segments 3 and 4). High-resolution time-frequency analysis was performed

for each of the four data segments using the generalized S-transform with a hyperbolic

window. The oscillation of θ(t) present in data segment 1 shows clearly an increase

in frequency, starting at 0.0002205 Hz (period length T = 75.59 min) and ending at

0.0002325 Hz (T = 71.68 min). The oscillation of θ(t) present in data segment 2 has

instead a stable frequency of f = 0.000243 Hz (T = 68.59 min). Both high frequency

oscillations of θ(t) of data segment 3 and 4 show an increase in frequency, starting at

0.006179 Hz (T = 161.84 s) and ending at 0.006859 Hz (T = 145.79 s) for data segment

3, and starting at 0.005379 Hz (T = 185.91 s) and ending at 0.005939 Hz (T = 168.38 s)

for data segment 4, respectively. In addition, the oscillation present in data segment 3 is

periodically amplitude-modulated with a period length of T = 57 ± 4.2 min. Regarding

the origin of the observed high frequency oscillation we discuss possible technical or

natural factors that could be related to these oscillations.

1 Introduction

At the Main Astronomical Observatory of National Academy

of Sciences in Kiev, Ukraine, a high-sensitive torsion balance

with a new design (termed “torsind”, refering to the device’s

function as a torsion indicator) has been quasi-continuously

measuring fluctuations of its angular deflection since 2009.

The specific design of the device (i.e. replacement of the

linear light beam by a light disc of non-magnetic material

and the free suspension of the disk with a specific type of

monofilament) makes it insensitive to changes in the gravi-

tational potential so that gravitational (tidal) influences from

any directions are excluded in the measurements. In addition,

since the device is sealed into a container, variations of tem-

perature, pressure, humidity and environmental electric field

strength do not influence the reading [1]. Also changes in

the excitation of the ionosphere over the place of observation

were shown not to influence the measured values of the de-

vice [1].

Based on the long-term measurement of the tosind’s disc

rotations, different types of non-random fluctuations in the

time-dependent deflection angle θ(t) were observed.

The main oscillatory component in the variability is an

(amplitude-modulated) diurnal oscillation (i.e. an increase in

d/dt(θ(t)) at sunrise, a decrease at sunset and a maximum de-

flection at noon) [1, 2], having a period length of 1440.24 ±

2.60 min [2], indicating that it is related to solar and not

sidereal time (length of sidereal day: 1436 min, solar day:

1440 min). Such a diurnal oscillation was also observed in

other experiments where torsion or vertical pendulums were

used [3–6].

The fluctuations of θ(t) measured by the torsind seem also

to be related to cosmophysical processes and events since sig-

nificant changes in θ(t) were observed during solar and lunar

eclipses [1, 7–9], the transit of Venus across the Sun’s disk

[1], and even specific astronomical configurations [10]. Re-

markably, it was observed that the torsind responds to a solar

eclipse occurring on the opposite side of the globe [7, 10] or

when the measurement is performed underground at a depth

of 40 meters [8].

During the all-long recording as a whole, unpredictable

spontaneous high-frequency (period length: T < 24 h) oscil-

lations were observed occasionally.

The aim of the present paper was to investigate four of

these high-frequency oscillatory events by performing a de-

tailed time-frequency analysis.

The motivation to perform this kind of analysis was based

on the first author’s (FS) previous work on the analysis of

unexplained oscillations in electrochemical reactions [11] and

diffusion processes [12, 13].
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2 Materials and Methods

2.1 Measurement Setup

As described in detail in [1], the torsind device resembles a

classical torsion balance but has a very light aluminium disc

(diameter: 120 mm, weight: approx. 100 mg) instead of a

linear beam. The disc is suspended by a monofilament (diam-

eter: 20 µm) made from natural silk, which has the advantage

of not having a reverse torque when twisted. The disc rota-

tion is monitored by a webcam and the image live-stream is

processed automatically by custom-made software that deter-

mines the angular deflection θ every minute with a standard

error of each measurement of ± 0.157◦ (determined under sta-

ble space weather conditions on 13 February 2013) [2].

The device is housed in a quartz glass cylinder (having

a high of 240 mm and a wall thickness of 2 mm) with two

round glass plates covering the top and bottom. Various ef-

forts were made to isolate the torsind device from environ-

mental changes [1]. To reduce electrostatic influences, the in-

ner wall and the bottom of the glass cylinder are surrounded

by a grounded aluminium foil. To ensure that environmental

changes in humidity and pressure are not influencing the de-

vice, the edges of the quartz-glass housing are sealed with a

silicon joint sealant material. The sealing also improves the

thermal stabilization.

Measurements were made with the torsind in isolated,

shaded room with tightly closed doors and windows at the

Main Astronomical Observatory of National Academy of Sci-

ences in Kiev. The place of measurement was selected to en-

sure that no technical electrical or mechanical processes were

happening within a radius of 50 m that could influence the

measurement (i.e. no electrical devices, no electromagnetic

wireless data-transfer devices, no devices that cause mechan-

ical vibrations).

Concerning the sensitivity of the torsind to detect (ex-

tremely) weak forces, the torque (M) of the minimal accelera-

tion value that could be recorded by the device was estimated

to be M ≈ 6.5 × 10−12 Nm) [1].

2.2 Data

For the analysis presented in this paper, we selected four 24-

hour-long signal segments from the overall available signal

that contain a clearly visible oscillation. Two of the data seg-

ments show a long-lasting fast oscillation with multiple max-

ima during the 24-hour interval (recording dates: 20 Novem-

ber 2009 [data segment 1], 21 November 2009 [data seg-

ment 2]). The other two segments contain a brief, very fast

oscillation (recording dates: 24 December 2012 [data seg-

ment 3], 25 December 2012 [data segment 4]). Thus, the

two distinct oscillatory phenomena investigated in the present

study occurred in November 2009 and December 2012. All

signals were recorded with respect to Universal Time (UT1)

which is the same everywhere on Earth due to its proportion-

ality to the Earth’s rotation angle with respect to the Interna-

tional Celestial Reference Frame.

2.3 Time-Frequency Analysis

High-resolution time-frequency analysis was performed for

each of the four data segments, applying a specific type of

Stockwell (S)-transform, the generalized S-transform (GST)

with a hyperbolic window according to the approach devel-

oped by Pinnegar and Mansinha [14].

3 Results

3.1 Data Segments 1 and 2

Data segments 1 and 2 contain both a clearly visible oscilla-

tion of θ(t) (see subfigures a1–3 of Fig. 1).

The oscillation of θ(t) present in data segment 1 clearly

shows a frequency increase, starting at 0.0002205 Hz (T =

75.59 min) and ending at 0.0002325 Hz (T = 71.68 min) (see

subfigures b1 and c1 of Fig. 1). This is not the case for the

oscillation of θ(t) present in data segment 2 which exhibits a

stable frequency of f = 0.000243 Hz (T = 68.59 min) (see

subfigures b2 and c2 of Fig. 1).

Subfigures b3 and c3 of Fig. 1 show the time-frequency

spectrum of the combined signal (data segment 1 + data seg-

ment 2) with the increasing frequency on day one (20 Novem-

ber 2009) and the stable frequency on day two (21 November

2009).

3.2 Data Segments 3 and 4

A very high frequency oscillation is present in data segments

3 and 4.

The high frequency oscillation in data segment 3 started

at 746 min and ended at 969 min (total duration: 223 min),

whereas the start of the high frequency oscillation of data seg-

ment 4 started at 347 min and ended at 549 min (total dura-

tion: 202 min) (see subfigures a1 and b1, as well as a2 and b2

of Fig. 2). Thus, both periods of high-frequency activity are

of similar duration.

Both high frequency oscillations of θ(t) of data segment 3

and 4 show an increase in frequency, starting at 0.006179 Hz

(T = 161.84 s) and ending at 0.006859 Hz (T = 145.79 s) for

data segment 3, and starting at 0.005379 Hz (T = 185.91 s)

and ending at 0.005939 Hz (T = 168.38 s) for data segment 4.

What distinguishes these two oscillatory events is that the os-

cillation present in data segment 3 is periodically amplitude-

modulated (see subfigure c1 of Fig. 2) whereas such a peri-

odic modulation is not obvious in the oscillation of data seg-

ment 4. Three peaks in the variability of the power can be dis-

tinguished that correspond to an amplitude-modulation with

a period length of T = 57 ± 4.2 min.

Besides the high frequency oscillations, both data seg-

ments contain strong shifts of θ(t). For data segment 3, two

significant shifts can be identified within the time frame 318-

376 min (θ(t)start = 232.5◦, θ(t)end = 774.7◦, resulting in ∆θ(t)

248 F. Scholkmann and A.F. Pugach. Unexplained Oscillations in Deflection Angle Fluctuations of a Novel Type of Torsion Balance



Issue 3 (July) PROGRESS IN PHYSICS Volume 11 (2015)

Fig. 1: (a1-a3) Time series of θ(t) recorded on 20 and 21 November 2009, as well as the stitched time series covering both dates.

(b1-b3) Spectrogram showing the time-frequency changes of the oscillation. The power is color-coded. (c1-c3) Spectrogram with red

line indicating the maximum power depending on frequency and time.

= 542.2◦), and the time frame 1396–1402 min (θ(t)start =

703.4◦, θ(t)end = 566.9◦, resulting in ∆θ(t) = 136.5◦). In data

segment 4, one strong shift is present, occurring in the time

frame 1250–1273 min (θ(t)start = 550.5◦, θ(t)end = 192.3◦,

∆θ(t) = 358.2◦). These kind of shifts (also termed “spikes”

[2]) correspond to moments when a strong rotational momen-

tum is acting on the torsind.

4 Discussion and Conclusion

The analysis performed revealed that the fast variations ob-

served in the four days of data segments exhibit oscillations

with clearly defined frequencies. The fast oscillations start-

ing at 20 and ending at 21 November 2009 are characterized

by an increase in frequency. This characteristic of frequency

increase is also observed in the very fast oscillations present

in the data from 24 and 25 December 2012.

In the following we will briefly discuss the possibility that

these oscillations could be artefacts caused by technical or

natural processes, or effects from well-known factors associ-

ated with geophysical processes.

Artefacts caused by technical or natural processes. Tor-

sion balance measurements can be generally influenced by

changes in the local environmental parameters like tempera-

ture, humidity, pressure or electromagnetic fields. The influ-

ence of these factors was actively minimized during the mea-

surement with the torsind by applying proper shielding and

the effectiveness of the shielding was evaluated experimen-

tally. For this reason, we conclude that it is unlikely that the

observed oscillations are simply artifacts due to technical or
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Fig. 2: (a1, a2) Time series of θ(t) recorded on 24 and 25 December 2012. (b1, b2) Zoom into the intervals with fast oscillations. (c1, c2)

Time series of the maximum power depending on the frequency, showing a periodic (c1) and a unimodal (c2) amplitude modulation.

(d1, d2) Spectrograms of the entire time series. The power is color-coded. (e1, e2) Spectrograms of the zoomed-in parts of the time series.

(f1, f2) Spectrograms with red lines indicating the maximum power depending on frequency and time.
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natural processes happening in the local environment of the

measurement.

Effects from geophysical processes. What geophysical

or astrophysical phenomena exhibit a frequency of approx.

0.002 Hz (as observed in data segments 1 and 2) or approx.

0.006–0.007 Hz (as observed in data segments 3 and 4)? It is

known that the geomagnetic field can exhibit periodic fluctu-

ations, termed “geomagnetic pulsations” [15, 16].

Those geomagnetic pulsations in the frequency range of

0.002–0.006 Hz (T = 166.67 − 500s), termed “Pc5 pulsa-

tions”, overlap with the oscillation in θ(t) found in the present

study. Geomagnetic pulsations are the result of solar wind

disturbances (caused by increased solar activity) perturbing

the magnetosphere and causing disturbances/modulations of

the geomagnetic field. We checked whether there were any

significant disturbances in the geomagnetic field on the dates

of the data segments investigated (20–21 November 2009 and

24–25 December 2012) by analysing the hourly Dcx index

(http://dcx.oulu.fi), i.e. the corrected Dst index [17,18]. Geo-

magnetic disturbances are seen as negative deflections of the

Dcx (and Dst) index, associated with an enhanced westward

directed electric current during the geomagnetic storm. Dur-

ing the two periods (20–21 November 2009 and 24–25 De-

cember 2012) no geomagnetic storms or significant distur-

bances occurred. The observed oscillations in θ(t) can there-

fore to be regarded as most likely not caused by Pc5 geomag-

netic pulsations.

Another principal possibility is low-frequency microseis-

mic oscillations or “long-period seismic noise” [19]. How-

ever, it is known that in the range of 0.002–0.02 Hz microseis-

mic activity is the lowest compared to the frequency ranges

off approx. < 0.002 Hz and > 0.02 Hz [20, 21]. Also, these

kinds of microseismic fluctuations in general do not exhibit

the clear frequency stability and do not occur for such a long

time span as observed in the θ(t) oscillations analysed in the

present paper. Therefore, we believe microseismicity is un-

likely to be responsible for the fast θ(t) oscillations.

Future experimental work involving measurements with

the torsind and data analysis is needed to identify the mech-

anism causing the non-random fluctuations in θ(t) measured

by the torsind device. Further data analysis is ongoing and

will be reported in the near future.
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The Van der Pol differential equation was constructed for an autonomous regime using
link’s law. The Van der Pol equation was studied analytically to determine fixed points,
stability criteria, existence of limit cycles and solved numerically. The graphs of the
equation are drawn for different values of damping coefficient µ.

1 Introduction

Balthazar Van der Pol (1899-1959) was a Dutch electrical en-
gineer who initiated experimental dynamics in the laboratory
during the 1920’s and 1930’s. He first introduced his (now
famous) equation in order to describe triode oscillations in
electric circuits, in 1927.

Van der Pol found stable oscillations, now known as limit
cycles, in electrical circuits employing vacuum tubes. When
these circuits are driven near the limit cycle they become en-
trained, i.e. the driving signal pulls the current along with it.
The mathematical model for the system is a well known sec-
ond order ordinary differential equation with cubic non linear-
ity: the Van der Pol equation. The Van der Pol equation has a
long history of being used in both the physical and biological
sciences. For instance, Fitzhugh [1] and Nagumo [2] used the
equation in a planer field as a model for action potential of
neurons. The equation has also been utilized in seismology
to model the plates in a geological fault [3].

During the first half of the twentieth century, Balthazar
Van der Pol pioneered the field of radio telecommunication
[4–9]. The Van der pol equation with large value of non-
linearity parameter has been studied by Cartwright and Lit-
tlewood in 1945 [10]; they showed that the singular solution
exists. Also analytically, Lavinson [11] in 1949, analyzed the
Van der Pol equation by substituting the cubic non linearity
for piecewise linear version and showed that the equation has
singular solution also. Also, the Van der Pol Equation for
Nonlinear Plasma Oscillations has been studied by Hafeez
and Chifu in 2014 [12]; they showed that the Van der pol
equation depends on the damping co-efficient µ which has
varying behaviour. In this article, the analytical study of the
Van der Pol equation in the autonomous regime is studied.

2 Description of the Van der Pol oscillator

The Van der Pol oscillator is a self-maintained electrical cir-
cuit made up of an Inductor (L), a capacitor initially charged
with a capacitance (C) and a non-linear resistance (R); all of
them connected in series as indicated in Fig. 1 below. This
oscillator was invented by Van der Pol while he was trying
to find out a new way to model the oscillations of a self-
maintained electrical circuit. The characteristic intensity-ten-

sion UR of the nonlinear resistance (R) is given as:

UR = −R0 i0


i
i0
− 1

3

(
i
i0

)3 (1)

where i0 and R0 are the current and the resistance of the nor-
malization respectively. This non linear resistance can be ob-
tained by using the operational amplifier (op-amp). By ap-
plying the link’s law to Fig. 1 below,

Fig. 1: Electric circuit modelizing the Van der Pol oscillator in an
autonomous regime.

we have:
UL + UR + UC = 0 (2)

where UL and UC are the tension to the limits of the inductor
and capacitor respectively and are defined as

UL = L
di
dτ

(3)

UC =
1
C

∫
idτ. (4)

Substituting (1), (3) and (4) in (2), we have:

L
di
dτ
− R0 i0


i
i0
− 1

3

(
i
i0

)3 +
1
C

∫
idτ = 0. (5)
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Differentiating (5) with respect to τ, we have

L
d2i
dτ2 − R0

1 − i2

i20

 di
dτ

+
i
C

= 0. (6)

Setting

x =
i
i0

(7)

and
t = ωeτ (8)

where ωe = 1√
LC is an electric pulsation, we have:

d
dτ

= ωe
d
dt

(9)

d2

dτ2 = ω2
e

d2

dt2 . (10)

Substituting (9) and (10) in (6), yields

d2x
dt2 − R0

√
C
L

(
1 − x2

) dx
dt

+ x = 0. (11)

By setting µ = R0

√
C
L Eq. (11) takes dimensional form as

follows
ẍ − µ (1 − x2) ẋ + x = 0 (12)

where µ is the scalar parameter indicating the strength of the
nonlinear damping, and (12) is called the Van der Pol equa-
tion in the autonomous regime.

3 Analytical study

3.1 Fixed points and stability

Transforming the higher order ODE (12) into a system of si-
multaneous ODE’s i.e. let x1 = x and x2 = ẋ

[
ẋ1
ẋ2

]
=

[
x2

−x1 + µ (1 − x2
1) x2

]
. (13)

Introducing the standard transformation

y = x (14)

z = ẋ − µ
(
x − x3

3

)
(15)

and letting

F(x) = µ

(
x3

3
− x

)
, (16)

now
ẏ = ẋ. (17)

Using (15) we have,

ẏ = z + µ

(
y − y

3

3

)
(18)

and
ż = ẍ − µẋ (1 − x2)

ż = −µ (y2 − 1) ẋ − x − µ (1 − y2) ẋ = −x = −y. (19)

This transformation puts the equation into the form:

[
ẏ
ż

]
=


z − µ

(
y3

3 − y
)

−y

 . (20)

Eq. (20) is the particular case of Lienard’s Equation
[
ẏ
ż

]
=

[
z − f (y)
−y

]
(21)

where f (y) = µ
(
y3

3 − y
)
. Linearizing (20) around the origin

i.e. fixed point (0,0), we have
[
ẏ
ż

]
=

[
µ 1
−1 0

] [
y
z

]
. (22)

The characteristic equation of (22) is given as

λ2 − µ λ + 1 = 0 (23)

with eigenvalues of

λ± =
µ ±

√
µ2 − 4
2

(24)

and eigenvectors of

~e+ =

[ −2
µ−√(µ2−4)

1

]
, ~e− =

[ −2
µ+
√

(µ2−4)
1

]
. (25)

The stability of this fixed point depends on the signs of the
eigenvalues of the Jacobian matrix (22).

3.2 Existence of the limit cycles

Let us now analytically study the amplitude of the limit cycle
by using the average method [13]. Considering the following
transformations

x(t) = A(t) cos (t + ϕ(t)) = A cosψ (26)

ẋ(t) = −A(t) sin (t + ϕ(t)) = −A sinψ (27)

where A(t) is the amplitude, ϕ(t) being the phase and with
ψ(t) = ϕ(t)+t. Supposing the amplitude and phase feebly vary
during a period T = 2π, we have the fundamental equations
of the average method as follows:

Ȧ(t) = − µ
2π

∫ 2π

0
f (A cosψ,−A sinψ) sinψ dψ (28)

ϕ̇(t) = − µ
2π

∫ 2π

0
f (A cosψ,−A sinψ) sinψ dψ (29)
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Eqs. (28) and (29) help to determine the amplitude A(t) and
phase ϕ(t) of the oscillator. Applying this method to (12) for
which

f (x, ẋ, t) = (1 − x2) ẋ

then, we have

f (A, ψ) = −A sinψ + A3 sinψ cos2 ψ. (30)

Substituting (30) into (28) and (29), we get

Ȧ(t) = − µ
2π

∫ 2π

0

(
−A sin2 ψ + A3 sin2 ψ cos2 ψ

)
dψ (31)

ϕ̇(t) = − µ
2π

∫ 2π

0

(
−A sinψ cosψ + A3 sinψ cos3 ψ

)
dψ. (32)

Integration of (31) and (32) gives the evolution equation of
the amplitude A(t) and the phase ϕ(t):

Ȧ(t) = −µA(t)
2

(
1 − A2(t)

4

)
(33)

ϕ̇(t) = 0. (34)

The average method states that the amplitude and the phase
feebly vary during a period. Therefore Ȧ(t) = 0, and the
amplitude is eventually A(t) = 2.

4 Numerical solution

The numerical solution to the Van der Pol equation for various
values of µ are presented in Figs. 2 to 4.

Fig. 2: Plot of y(t) and dy/dt against t(s) for µ = 0.

5 Discussion

The classical Van der Pol equation (12) depends on the damp-
ing coefficient µ and the following varying behaviors were ob-
tained. When µ < 0, the system will be damped and the limit
lim t→∞ → 0. From Fig. 2, where µ = 0, there is no damp-
ing and we have a simple harmonic oscillator. From Figs. 3

Fig. 3: Plot of y(t) and dy/dt against t(s) for µ = 10.

Fig. 4: Plot of y(t) and dy/dt against t(s) for µ = 20.

and 4, where µ ≥ 0, the system will enter a limit cycle, with
continuous energy to be conserved. The wave generated by
this oscillator is periodic with sinusoidal form for µ � 1 and
relaxation for large value of µ [14] with fix amplitude equal
to 2. Also when −∞ < µ ≤ 0 and λ± is Re(λ±) < 0, the point
is stable; if µ = 0 and λ± = ±i, the point is marginally stable
and unstable; if 0 ≤ µ < ∞ and λ± is Re(λ±) > 0, the origin
is unstable. If 0 ≤ µ ≤ 2 and λ± is Im(λ±) , 0, then the
fixed point (0,0) is an unstable center. If 2 < µ < ∞ and λ± is
Im(λ±) = 0, then the fixed point (0,0) is still unstable.

6 Conclusion

In the above analysis, a class of analytical study of the Van
der Pol equation in the autonomous regime is presented. An-
alytically, we conclude that the fixed point (0,0) is unstable
whatever the value of the damping coefficient µ and the sys-
tem enters a limit cycle with amplitude A(t) of the Van der Pol
oscillator limit cycle equal to 2. We showed that there exists
a unique limit cycle.
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3École Normale Supérieure, Vieux Kouba, Algiers, Algeria. E-mail: medjadide@voila.fr

The deformation energy of the even-even nuclei of the Cerium isotopic chain is inves-
tigated by means of the Macroscopic-Microscopic method with a semiclassical shell
correction. We consider axially symmetric shapes. Binding energy and two neutron
separation energy are also evaluated. For the sake of clarity several important details of
the calculations are also given. It turns out that all these nuclei have prolate equilibrium
shape. The regions of maximum deformation are obtained around N = 64 and N = 102.
There is no critical-point of quantum phase transition in this isotopic chain.

1 Introduction

Nowadays it is well established that the majority of nuclei
possess a nonzero intrinsic electric quadrupole moment (IE
QM). This feature means that the charge distribution inside
the nucleus deviates from the spherical symmetry. In other
words, apart from very few nuclei, the surface of the nucleus
is generally not spherical in its ground state. The intrinsic
quadrupole electric moments (or equivalently the nuclear de-
formation) can be deduced from two types of measurements:

• The reduced electric quadrupole transition probability,
B(E2) [1];

• The static electric quadrupole moments of ground and
excited states, Q [2].

It turns out that in a number of cases, the two methods of
measurement do not systematically lead to the same values.
Important discrepancies occur for several nuclei. This is es-
sentially due to the fact that not only different experimental
techniques are used but above all, because different models
can be implemented to deduce the nuclear deformation for
the both cases.

In [3] it is stated that deformations deduced from B(E2)
have a “more general character”. In other words, “B(E2)-
type” data reflect not only static nuclear deformation (perma-
nent deviation of the nuclear shape from sphericity), but also
dynamic deformation. Furthermore, B(E2) measurements are
model independent and thus are generally more reliable. This
is corroborated by the fact that the only systematic compi-
lation in which the deformation of the ground state is given
explicitly is based on B(E2; 0+→2+) and has been published
in [1]. In the present work, experimental values refer to these
ones.

Theoretical approaches to the deformation energy can be
divided into two categories; Dynamic calculations to find the
shape of the ground state (or even of excited states) and static
calculations by determining the absolute minimum (ground
state) or multiple minima (shape isomers) in the potential en-
ergy surface (PES) for a given nucleus.

Thus, on the one hand, we have the so-called collective
models, which themselves are subdivided into two groups:
The “Geometric Collective Model” also called the “Collec-
tive Bohr Hamiltonian” (CBH and its variants) and the “Al-
gebraic Model”, well known under the name of the “Interact-
ing Boson Model” (IBM and its variants) [4]. On the other
hand, “particle models” consider the nucleus as a collection
of interacting nucleons (fermions).

In practice, the classical N-body problem can be approx-
imately solved by the usual approximation of the mean field
with eventually residual interactions. In this respect, the “be-
st” mean field is deduced after applying a variational prin-
ciple in the Hartree-Fock-Bogoliubov method (HFB). In this
model, the determination of the potential energy surface (PE
S) of the nucleus amounts to perform constrained Hartree-
Fock-Bogoliubov (CHFB) calculations [5]. We will not ad-
dress very complicated methods “beyond the mean field” su-
ch as the Quasiparticle Random Phase Approximation (QRP
A) or the Generator-Coordinate-Method (GCM) methods wh-
ich are unsuitable in practice for large scale calculations.

Because of CHFB calculations are time consumers, es-
pecially in large studies, Microscopic-Macroscopic method
(Mic-Mac) constitutes a good alternative which, is up to now,
implemented [6]. In the present work, we use an improved
variant of this method. The word “improved” means that
we use semi-classical method to avoid the well-known draw-
backs (spurious dependence on two mathematical parame-
ters) of the standard Strutinsky shell correction (see text be-
low).

The present study is devoted to the deformation energy,
equilibrium nuclear shapes and binding energy of the ground
state of the even-even cerium isotopes. There are many rea-
sons to this choice. One of them is to re-test our previous
calculations. In effect, similar calculations have been already
performed by us in the xenon, barium, and cerium region
[7]. However because the phenomenological mean potential
varies smoothly with N and Z, we have made, in the past, a
rough approximation by choosing the same set of parameters
for the phenomenological mean potential, for the all treated
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nuclei. Originally, this approximation was done only for sim-
plifying the calculations.

Here, contrarily to that study, each nucleus has its “own”
mean potential with a specific set of parameters. In this way it
is possible to evaluate in a rigorous way the uncertainty intro-
duced in the previous calculations. Apart from this remark,
there are several main other reasons which could justify this
choice: (i) First, it should be interesting to see how the defor-
mation energy and binding energy vary with the neutron num-
ber (N) for this isotopic chain. (ii) Second, the present study
extends the previous calculations to all cerium isotopes up to
the drip lines (34 versus 13 nuclei). (iii) Third, we also will at-
tempt to deduce, from potential energy surface (PES) curves,
the shape transition from spherical to axially deformed nuclei,
looking for the so-called X(5) critical-point between U(5) and
SU(3) symmetry limits of the IBM [8, 9].

It is worth to recall briefly some information deduced fr-
om the literature for the cerium isotopes. In the past, a num-
ber of experimental as well as theoretical studies have been
done for the cerium isotopes. Among the numerous studies,
we only cite some of them.

In 2005 Smith et al [10] have studied excited states of
122Ce up to spin 14~ deducing a probable quadrupole defor-
mation of about β ≈ 0.35. The deformed nucleus 130Ce has
been studied in 1985, using the techniques of in-beam gamma
-ray spectroscopy [11]. The corresponding data have been in-
terpreted in terms of the cranking model by assuming a pro-
late deformation with ε2 ≈ 0.25 (β ≈ 0.27).

High-spin states in 132Ce have been also studied by A.J.
Kirwan et al [12]. They found a superdeformed band with de-
formation β ≈ 0.4 much more larger that the ground state de-
formation (β ≈ 0.2). E. Michelakakis et al [13] by evaluating
γ−ray transitions in 142Ce and 144Ce conclude that in cerium
isotopes (near the beta-stable line) the onset of nuclear defor-
mation occur between N = 86 and N = 88. “Pure” theoretical
calculations have been performed in [14] and [15] with pro-
jected shell model (PSM) and Hartree-Bogoliubov ansatz in
the valence space respectively for 122Ce and 124−132Ce for low
lying yrast spectra. Good values of energy levels and reduced
transition probabilities B(E2, 0+→2+) have been obtained re-
spectively in these two papers.

Other approaches for the rich-neutron cerium isotopes ha-
ve been made in [16]. A study of the shape transition from
spherical to axially deformed nuclei in the even Ce isotopes
has been done in [17] using the nucleon-pair approximation
of the shell model. The result of a such study is that the tran-
sition has been found too rapid. Relativistic Hartree-Fock-
Bogoliubov theory has been used to predict ordinary halo for
186Ce,188 Ce,190 Ce, and giant halo for 192Ce,194 Ce,196 Ce, and
198Ce near the neutron drip line.

Systematic studies about nuclear deformations and mass-
es of the ground state can be found in [18–21] with respec-
tively, the Finite-Range Droplet-Model (FRDM), Hartree-Fo-
ck-Bogoliubov (HFB), HFB+5-dimensional collective qua-

drupole Hamiltonian and Relativistic Mean Field (RMF) mo-
dels.

2 The Macroscopic–Microscopic method

2.1 Liquid drop model and microscopic corrections

This method combines the so-called semi-empirical mass for-
mula (or liquid drop model) with shell and pairing corrections
deduced from microscopic model. Thus the binding energy is
given as a function of nucleon numbers and deformation pa-
rameter (referred to as β) by mean of the usual symbols:

B(A,Z, β) = ELDM(β) − δBmicro(β). (1)

δBmicro contains the shell and pairing correction (see text be-
low). The minus sign before δBmicro is consistent with the
convention that the binding energy is defined as positive here.

For the liquid drop model we take the old version of My-
ers and Swiatecki [28] (because of its simplicity compared
to more recent formulae). Here, there is no need to look for
very high accuracy in binding energy, because this is not the
purpose of the present work.

ELDM(β) = CV A −CS A2/3BS (β) −CCZ2A−1/3BC(β)+

+ εapairA−1/2 + CdZ2A−1.
(2)

In (2), we have the usual contributions of volume, surface and
coulomb energies.

The different constants of Myers and Swiatecki are given
in Appendix A. The shape dependence (β) of the surface and
coulomb energies are contained in BS (β) and BC(β). They
are normalized to the unity for a spherical nuclear surface.
The latter is symbolized by β = 0. The two last terms in (2)
are respectively due to the smooth part of the pairing energy
and the correction of the Coulomb energy to account for the
diffuseness of the nucleus surface. The different constants
will be fixed later.

The potential energy surface (PES without zero point en-
ergy correction) is defined as follows:

EPES (β) = ELDM(0) − B(A,Z, β)

= ∆ELDM(β) + δBmicro(β)
(3)

in which

∆ELDM(β) = ELDM(0) − ELDM(β)

= CS A2/3 [
BS (β) − BS (0)

]
+

+ CCZ2A−1/3 [
BC(β) − BC(0)

]
.

(4)

Constants CV and CS are expressed by means of three other
constants aV , aS , and κ. For spherical shape, as said before,
the normalization is expressed by: BS (0) = BC(0) = 1. As it
can be easily seen, the potential energy surface is related only
to two macroscopic constants CS (which depends actually on
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aS and κ) and CC . To calculate microscopic shell an pairing
corrections contained in δBmicro, we have to proceed in two
steps. The first consists in solving the Schrödinger equation
and the second in deducing the shell and pairing corrections
in an appropriate way, as explained in the following.

2.2 Microscopic model

We briefly present the microscopic model which is based on
the Schrödinger equation of the deformed independent parti-
cle model:

Ĥ(β) | Ψi(β)〉 = εi(β) | Ψi(β)〉 (5)

where |Ψi〉 and εi are respectively the eigenfunctions and the
associated eigenvalues of nucleons. Hamiltonian Ĥ contains
four contributions which are: (i) kinetic energy, (ii) central
deformed mean field, (iii) spin-orbit and (iv) Coulomb inter-
actions.

We perform analogous calculations as in Nilsson model
but our deformed mean potential is of Woods-Saxon type and
therefore is “more realistic”. Although calculations are not
self consistent, they are microscopic. It is to be noted that our
Schrödinger equation has a form which is very close to the
one of the Skyrme-Hartree-Fock method. Eq. (5) is solved
by our FORTRAN program described in details in [22] and
improved in two successive versions [23] and [24].

2.3 Microscopic corrections

Microscopic corrections are defined as the sum of shell and
pairing corrections which themselves are calculated separate-
ly for each kind of nucleons:

δBmicro(β) = δEshell(N, β) + δEshell(Z, β)+

+ δPpairing(N, β) + δPpairing(Z, β).
(6)

In this formula the shell correction is defined by the usual
Strutinsky prescription, i.e. as the difference between the sum
of the single particle energies (which contains the shell ef-
fects) and an averaged (or smoothed) sum (which is free from
shell effects)

δEshell(N or Z) =

NorZ∑

i=1

εi(β) −
∑

i=1

εi (β). (7)

Energies εi(β) are deduced from (5). In our procedure, the
second sum is found by means of a semi-classical way instead
a Strutinsky smoothing procedure, see [27]. This avoids the
well-known weakness of the standard shell correction meth-
od, namely, the dependence on two unphysical parameters
which are the “smoothing” parameter and the order of the
curvature correction.

Moreover, it has been clearly shown that Strutinsky level
density method is only an approximation of that of the semi-
classical theory [26]. The “pure” pairing correlation energy

is defined by:

P(β) =

∞∑

i=1

2εi(β)υ2
i −

N/2orZ/2∑

i=1

2εi(β) − ∆2

G
(8)

where υ2
i , ∆ and λ are the usual occupation probabilities, gap

and Fermi energy of the BCS approximation (the factor “2”
is simply due to the Kramers degeneracy). Since the smooth
part of pairing correlations is already contained in the liquid
drop model, we have to add only the one due to the shell
oscillations of the level density. This contribution is defined
by means of a formula similar to (7)

δPpairing(N or Z, β) = P(β) − P(β) (9)

where the averaged pairing is defined as

P(β) =
1
2
gsemicl.(λ) ∆

2
.

We use a simple BCS method to account for pairing correla-
tions. To calculate (7) and (9) we follow the method detailed
in [27] with its FORTRAN code. The treatment of the pairing
has also been explained in [7] and references quoted therein.

2.4 Numerical constants and prescriptions

2.4.1 Constants of the microscopic model

For each kind of particles the mean central and the mean spin-
orbit field are written as [22]:

V(β) =
V0

1 + exp(RV LV (β)/a0)

VS O(β) = λ

(
~

2Mc

)
V0

1 + exp(RS OLS O(β)/a0)

(10)

where LV (β) and LS O(β) contain the information on the de-
formation. In fact, these functions contain 9 constants: V0neut,
V0prot, RVneut, RV prot, RS O−neut, RS O−prot, a0, λneut, λprot. These
quantities are taken from the “universal” parameters [29] (see
Appendix B) which is an optimized set. The Coulomb mean
field is approximated by a uniform charge distribution inside
a deformed surface. The volume conservation is therefore
Vol = (4/3)πR3

chwith the simple assumption Rch = RV prot.

2.4.2 Constants of the liquid drop model

As already stated, we have chosen the parameters of Myers
and Swiatecki (see Table 1) because this set contains a re-
duced number of parameters with respect to more modern
formulae. All the constants are needed in the binding energy
whereas only aS ,CC , κ play a role in the potential energy sur-
face.
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aV aS CC κ Cd apair

Myers and Swiatecki 15.67 MeV 18.56 MeV 0.72 MeV 1.79 1.21 MeV 11 MeV

Table 1: Parameters of the liquid drop model in the Myers and Swiatecki version [28].

2.4.3 Nuclear mass excesses

Nuclear masses are deduced as mass excesses:

Mexcess(A,Z) = ZMH + (A − Z)Mn − B(A,Z)

where MH = 7.289034 MeV is the hydrogen mass excess and
Mn = 8.071431 MeV the neutron mass excess. This makes
comparisons with experimental values easiest.

3 Results

In our previous paper [7] calculations for isotopes 116−130Ce
showed that the equilibrium deformations (β ≈ 0.25 − 0.30)
have always been obtained for symmetric prolate shapes (γ =

0◦). Results obtained in [32] with a similar approach for the
nuclei 116−130Ce, corroborate this fact. For these reasons, we
think that it is needless to account for the axial asymmetry in a
“pure” static study of the equilibrium deformation. However,
we have to consider prolate (γ = 0◦) as well as oblate (γ =

60◦) nuclear shapes. In this regard, it is worth remembering
that oblate shape given by (β > 0, γ = 60◦) is equivalent to
the set (β < 0, γ = 0◦).

3.1 Comparison between the different contributions en-
tering in the potential energy surface

It could be useful to compare the importance of the different
terms entering in the right hand side of (6). In this respect,
we have drawn in Fig.1 for axially prolate shape, the four
microscopic contributions

δEshell(N, β), δEshell(Z, β), δPpairing(N, β), δPpairing(Z, β)

for the case of 160Ce as functions of β. Following the cited
order, we can say that the difference between the highest and
lowest values in the interval β ∈ [0.0, 0.7] are respectively ab-
out 11.0 MeV, 10.5 MeV, 5.7 MeV, 3.5 MeV for the four cor-
rections.

Thus, these variations show that the shell corrections

δEshell(N, β), δEshell(Z, β)

are more important than

δPpairing(N, β), δPpairing(Z, β)

and have a clear minimum at respectively β = 0.35 and β =

0.30. It is well known that for each kind of nucleon the shell
correction is in opposite phase with respect to the pairing cor-
rection (this means for that when δEshell(N, β) increases with
β, δPpairing(N, β) decreases and vice versa).

Contrarily to these curves, the liquid drop model is strictly
increasing with β, and its minimum occurs always at the be-
ginning β = 0.0 (spherical shape). When all the contributions
are added, the minimum of the potential energy surface of the
nucleus is reached at about β = 0.3 and is mainly due to the
shell corrections. When β becomes more and more, larger
the contribution of the liquid drop energy becomes prepon-
derant so that the equilibrium deformation occurs generally
between β = 0 and β = 0.4. Because of the convention of
the sign stated before, δBmicro defined in (1) must be negative
in order to increase the binding energy of the nucleus. Since
the shell corrections (for protons and neutrons) play a major
role in δBmicro, it is naturally expected that negative (but ab-
solute large) values of shell correction contribute to increase
the binding energy of the nucleus.

In this respect, it is well known that the shell correction
is essentially determined by the distribution of single-particle
levels in the vicinity of the sharp Fermi level (defined here as
midway between the last occupied level and the first empty
level). Following [31], we can state that “the nuclear ground
state, as well as any other relatively stable state, should cor-
respond to the lowest possible degeneracy, or, in other words,
the lowest density of state near the Fermi level”. This is illus-
trated in Fig. 2 where the single-particle levels are drawn as
function of the deformation β (γ being fixed at γ = 0◦). To
this end we have used the FORTRAN code of [22] and [24].
The area where the single-particle level density is low near
the Fermi level (black stars) is indicated by a circle. Thus,
it is not so surprising that, it is in this region where the neu-
tron shell correction becomes the most important, involving a
minimum in the PES of the nucleus.

3.2 Equilibrium deformations

Equilibrium deformations are given in Table (2) for prolate as
well as oblate shapes (see table legend for details). The min-
ima of PES for the corresponding wells are denoted minpro
and minobl. The deformation energy is defined as the differ-
ence Ede f = EPES (0) − Emin

PES (β), i.e. the difference between
the potential energy surface for a spherical shape and the one
corresponding to the absolute minimum of PES. Permanent
deformations will be in principle characterized by large val-
ues of Ede f and are responsible of rotational spectra.

From this table, some remarks may be drawn:
(i) Two regions of prolate deformation are found. They oc-
cur around N = 64 and N = 102 with maximum deformation
about β ≈ 0.30. The deformation energy (between spheri-
cal and deformed shape) is about 6.70 MeV for N = 64 and
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potential energy surface of the nucleus 160Ce.
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Fig. 2: Single-particle energies of the microscopic model as function of deformation for prolate shapes (β > 0) for the nucleus 160Ce.
Spherical spectroscopic notation is given for spherical deformation (β = 0) .The circle in dotted line indicates the area of lowest level
density.
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Fig. 3: Theoretical equilibrium deformations for even-even cerium
isotopes evaluated by different or similar approaches.

9.30 MeV for N = 102 and decreases from either side from
these two nuclei.
(ii) Spherical deformation occur at and near the (magic) num-
bers N = 82 and N = 128 (not shown).
(iii) The deformation energy decreases from N = 64 (maxi-
mum) to N = 82 (minimum) and reincreases again to N =

102 (maximum). We have found graphically that the first
inflexion point occurs between N = 72 and N = 74 and a
second inflexion point is found between N = 90 and N = 92.
One can consider (somewhat arbitrarily) that spherical shapes
occur approximately between these two limits.
(iv) The minima of prolate equilibrium deformations are, by
far, always deeper compared to the ones of the oblate minima
(minpro�minobl). In other words cerium isotopes prefer,
by far, prolate shapes. In other words, the deformation en-
ergy increases in average with the asymmetry γ. This justifies
a posteriori that, in a static study of the equilibrium defor-
mation, it is needless to account for axial asymmetry. It is
worth to remember that most of nuclei of the chart have pro-
late shape (see [25]).
(v) Even though the experimental deformations are known
only in absolute value from B(E2), a good agreement is ob-
tained if one excepts the three “nearly magic” nuclei 138−142Ce

In Fig. (3) are displayed the present equilibrium deforma-
tions, experimental values [1] , our “old” calculations [7] and
other studies performed by different authors which are: Kern
et al. [32], Hilaire and Girod [34], Gotz et al. [33] and Nix et
al. [18]. All calculations are based on Macro-Micro method
(with different mean fields or different parameters). Except
the one of [34] which uses Hartree-Fock-Bogoliubov model
with Gogny force.
(i) Near magic number (N = 82) all calculations give spheri-
cal equilibrium deformation whereas experimental results are
always slightly deformed (even for N = 82). It seems difficult
to overcome this defect with a pure static approach which ne-
glects the role of the mass parameters.

(ii) The overall tendency of these calculations is the same ex-
cept the fact that HFB calculations differ significantly from
the others with higher values in some regions.
(iii) Apart from HFB calculations, theoretical values are gen-
erally quite close from each others.
(iv) Our old and new calculations give very close results (see
Table 3). Thus, even if it is better to choose a proper set of
mean-field parameters for each nucleus, we do not commit
a significant error by taking the same set of parameters for
nuclei that do not differ strongly by the number of neutrons
(N).

3.3 Mass excesses

We list from a FORTRAN file (see Fig. 4) the results of our
theoretical calculations of the binding energies and mass ex-
cesses (m-excess) for the even-even cerium isotopic chain.
For the sake of completeness, experimental mass excesses
and the ones of the FRDM model (see [18]) are also given.
We must keep in mind that only 6 parameters are used in
the liquid drop model whereas 16 parameters are necessary
in the FRDM model. This explains the “better quality” of
the FRDM model. However, we have checked that the vari-
ations of binding energy or mass excesses from one isotope
to the nearest is practically the same in our model and the
one of FRDM (the deviations are about ±0.35 MeV). For this
reason, the calculation of the two neutron separation energies
(see the following subsection 3.4) will almost be probably the
same for the two approaches even though our model is not so
accurate.

3.4 Transitional regions in cerium isotopes

In Fig. 5 is shown the gradual transition in the potential en-
ergy surface from spherical vibrator to the axially deformed
rotor when the number of neutrons (N) increases from 76 to
92. One signature of X(5) symmetry which is a critical-point
of phase/shape transitions (quantum phase transition between
spherical and axial symmetries) should be a long flatness of
the potential energy surface with eventually a weak barrier
from prolate to oblate shapes. In this figure, for N > 82,
the width of the flatness increases as one moves away from
N = 82 but at the same time the difference between oblate
and prolate minima and barrier between oblate and prolate
shapes also increase. For example the differences between
oblate and prolate energy minima and barriers for isotopes
with N = 88, 90, 92 are respectively about 1.5 MeV, 2.5 MeV
and 3.3 MeV with energy barrier about 2 MeV, 4 MeV and
5.5 MeV respectively. The wideness of the bottom of the
well must be relativized with the height of the barrier. Thus
for the case of N = 92 the width is important, i.e. about
∆β ≈ βpro − βobl ≈ 0.26 − (−0.20) ≈ 0.46 but the barrier
is about 5.5 MeV and therefore seems too high. The case
N = 90 gives a width of ∆β ≈ 0.3 with a barrier of about
4 MeV. For N < 82, the case N = 76 seems to be rela-
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N A βpro minpro βobl minobl Ede f
∣∣∣βexp

∣∣∣ N A βpro minpro βobl minobl Ede f
∣∣∣βexp

∣∣∣
(MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

58 116 0.30 0.90 −0.21 3.62 4.80 92 150 0.25 1.23 −0.17 4.45 5.12 0.31
60 118 0.32 0.88 −0.23 4.07 5.87 94 152 0.27 1.21 −0.19 5.05 6.40
62 120 0.32 1.03 −0.23 4.33 6.19 96 154 0.28 0.64 −0.21 4.94 7.47
64 122 0.31 1.16 −0.23 4.23 6.68 98 156 0.29 0.66 −0.22 5.13 8.44
66 124 0.30 1.47 −0.21 4.15 6.17 0.30 100 158 0.29 0.71 −0.22 5.14 9.08
68 126 0.29 1.75 −0.21 3.87 5.43 0.33 102 160 0.30 0.32 −0.22 4.52 9.27
70 128 0.27 1.82 −0.21 3.48 4.67 0.29 104 162 0.29 0.71 −0.22 4.42 9.08
72 130 0.25 2.02 −0.2 3.27 3.34 0.26 106 164 0.29 1.00 −0.23 4.23 8.44
74 132 0.20 1.90 −0.17 2.60 1.97 0.26 108 166 0.28 1.16 −0.23 3.92 7.57
76 134 0.16 1.28 −0.14 1.63 0.93 0.19 110 168 0.27 1.46 −0.21 3.84 6.39
78 136 0.10 0.04 −0.07 0.18 0.19 0.17 112 170 0.25 1.68 −0.20 3.55 5.33
80 138 0.00 −1.93 0.00 −1.93 0.00 0.13 114 172 0.25 1.97 −0.19 3.20 4.19
82 140 0.00 −3.96 0.00 −3.96 0.00 0.10 116 174 0.2 1.93 −0.17 2.79 2.95
84 142 0.00 −2.07 0.00 −2.07 0.00 0.12 118 176 0.17 1.71 −0.16 2.17 1.68
86 144 0.15 0.02 −0.06 0.53 0.50 0.17 120 178 0.14 1.39 −0.14 1.60 0.55
88 146 0.19 0.73 −0.11 2.43 1.99 0.17 122 180 0.0 0.3 0.00 0.30 −0.15
90 148 0.23 1.15 −0.14 3.76 3.15 0.25 124 182 0.0 −1.08 0.00 −1.08 −0.08

Table 2: Equilibrium deformations as well as deformation energies for the cerium isotopic chain. The columns give successively the
number of neutrons (N), the mass number (A), the prolate equilibrium deformation (βpro), the minimum of the prolate well (minpro), the
oblate equilibrium deformation (βobl), the minimum of the oblate well (minobl), the deformation energy (Ede f ,see text), the experimental
equilibrium deformation (βexp). Note: The deformation energy is always given for the prolate equilibrium shape because no absolute
minimum is obtained for oblate shape.

Cerium (Z = 58) N = 58 60 62 64 66 68 70 72 74 76 78 80 82
Present β +0.30 +0.32 +0.32 +0.31 +0.30 +0.29 +0.27 +0.25 +0.20 +0.16 +0.10 +0.00 +0.00

Old β +0.28 +0.30 +0.31 +0.31 +0.31 +0.30 +0.27 +0.24 +0.22 +0.18 +0.06 +0.11 +0.00
Present Ede f (MeV) 4.80 5.87 6.19 6.68 6.17 5.43 4.67 3.34 1.97 0.93 0.19 0.00 0.00

Old Ede f (MeV) 4.82 5.77 6.03 6.31 7.08 5.36 4.41 3.35 2.13 0.77 0.00 0.24 0.00

Table 3: New equilibrium deformations and deformations energies vs old [7].

tively equivalent to N = 90 with a slightly smaller width and
a lower height barrier. Thus it is difficult to determine clearly
the existence of a X(5) critical-point. Thus, everything seems
to indicate a continuous transition.

In Fig. 6 is displayed the two-neutron separation energy
(TSN) as function of the neutron number N. A clear jump
is seen from N = 82 to N = 84, i.e. from one major shell
to the following. Just before N = 82 and just after N = 84
the TSN varies more slowly. Far for the “jump” the curve be-
comes quasi-linear. Once again, no special behavior is noted
around N = 90 which from [35] and [36] should constitute
with Z ≈ 62 the first order shape transition (X(5) critical-
point) in the rare earth region. In [37], it has been pointed out
that “Empirical evidence of transitional symmetry at the X(5)
critical-point has been observed in 150Nd, 152Sm, 154Gd, and
156Dy”. One of the most important signatures of the phase
transition is given by a sudden jump in the value of the en-
ergy ratio R4/2 = 4+

1 /2
+
1 from one nucleus to the next. We

found it useful to compare the experimental values of this ra-
tio (see Fig. 7) in the cases of the isotopic chains of Ce and Sm
(The experimental values of the considered levels have been
deduced from the adopted level of ENS DF site [38]). The
figure shows clearly two facts. First, the important variation

of R4/2 near of the magic number N = 82 for both isotopic
chains and then, the important difference between the behav-
ior the two isotopic chain from N = 88 to N = 90. In effect

64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124
0

5

10

15

20

25
Two-Neutron Separation Energies VS Neutron Number
For Cerium Isotopes (Z=58)

S
2N

(M
eV

)

N

Fig. 6: Two-neutron separation energies (S 2N) along the cerium
isotopic chain. This quantity is defined as S 2N(A, Z,N) =

Bind(A, Z,N) − Bind(A − 2,Z,N − 2) where the binding energy
Bind(A, Z,N) is given by (1). Note that in our approache the neu-
tron drip line (where S 2N ≈ 0) can be extrapolated around N = 128
for Cerium isotopes.
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N  58  A  116.   Z  58   bind   914.85   m-excess   -23.94   exp *********   frdm   -29.21 
N  60  A  118.   Z  58   bind   942.64   m-excess   -35.59   exp *********   frdm   -40.57 
N  62  A  120.   Z  58   bind   968.86   m-excess   -45.66   exp *********   frdm   -50.01 
N  64  A  122.   Z  58   bind   993.74   m-excess   -54.40   exp *********   frdm   -57.99 
N  66  A  124.   Z  58   bind  1017.15   m-excess   -61.67   exp *********   frdm   -64.93 
N  68  A  126.   Z  58   bind  1039.35   m-excess   -67.73   exp *********   frdm   -70.82 
N  70  A  128.   Z  58   bind  1060.58   m-excess   -72.81   exp *********   frdm   -75.54 
N  72  A  130.   Z  58   bind  1080.54   m-excess   -76.63   exp *********   frdm   -79.17 
N  74  A  132.   Z  58   bind  1099.73   m-excess   -79.68   exp *********   frdm   -81.89 
N  76  A  134.   Z  58   bind  1118.37   m-excess   -82.18   exp   -84.750   frdm   -84.02 
N  78  A  136.   Z  58   bind  1136.63   m-excess   -84.30   exp   -86.500   frdm   -85.67 
N  80  A  138.   Z  58   bind  1154.66   m-excess   -86.18   exp   -87.570   frdm   -87.62 
N  82  A  140.   Z  58   bind  1171.81   m-excess   -87.19   exp   -88.090   frdm   -88.68 
N  84  A  142.   Z  58   bind  1184.16   m-excess   -83.39   exp   -84.540   frdm   -84.78 
N  86  A  144.   Z  58   bind  1195.44   m-excess   -78.53   exp   -80.440   frdm   -80.23 
N  88  A  146.   Z  58   bind  1207.28   m-excess   -74.23   exp   -75.720   frdm   -76.00 
N  90  A  148.   Z  58   bind  1218.60   m-excess   -69.41   exp   -70.430   frdm   -70.83 
N  92  A  150.   Z  58   bind  1229.50   m-excess   -64.17   exp   -64.990   frdm   -65.80 
N  94  A  152.   Z  58   bind  1239.76   m-excess   -58.28   exp *********   frdm   -59.78 
N  96  A  154.   Z  58   bind  1249.85   m-excess   -52.23   exp *********   frdm   -52.90 
N  98  A  156.   Z  58   bind  1258.66   m-excess   -44.90   exp *********   frdm   -45.40 
N 100  A  158.   Z  58   bind  1266.78   m-excess   -36.87   exp *********   frdm   -37.29 
N 102  A  160.   Z  58   bind  1274.68   m-excess   -28.63   exp *********   frdm   -28.70 
N 104  A  162.   Z  58   bind  1281.19   m-excess   -19.00   exp *********   frdm   -19.01 
N 106  A  164.   Z  58   bind  1287.19   m-excess    -8.86   exp *********   frdm    -8.62 
N 108  A  166.   Z  58   bind  1292.74   m-excess     1.74   exp *********   frdm     2.23 
N 110  A  168.   Z  58   bind  1297.58   m-excess    13.04   exp *********   frdm    13.43 
N 112  A  170.   Z  58   bind  1301.96   m-excess    24.81   exp *********   frdm    25.00 
N 114  A  172.   Z  58   bind  1305.73   m-excess    37.17   exp *********   frdm    36.82 
N 116  A  174.   Z  58   bind  1309.33   m-excess    49.72   exp *********   frdm    49.07 
N 118  A  176.   Z  58   bind  1312.60   m-excess    62.59   exp *********   frdm    61.53 
N 120  A  178.   Z  58   bind  1315.49   m-excess    75.84   exp *********   frdm    74.94 
N 122  A  180.   Z  58   bind  1318.69   m-excess    88.79   exp *********   frdm    87.48 
N 124  A  182.   Z  58   bind  1321.72   m-excess   101.90   exp *********   frdm    99.94

Fig. 4: Theoretical binding energies and mass excesses of the present approach compared to the experimental mass excesses and the ones
given by the FRDM model of [18]. All energies are expressed in MeV. The experimental data as well as the frdm results have been entered
manually in the code. Asterics mean that no experimental data is available for the corresponding nucleus.

in the case of Samarium, there is a sudden increase of this ra-
tio whereas this is not the case for the Cerium isotopes. This
has been attributed to the X(5) critical-point symmetry of the
nucleus 152Sm. Thus the present study confirms that cerium
isotopic chain is characterized by a continuous shape/phase
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Fig. 7: R4/2 energy ratio as function of neutron number for Cerium
and Samarium isotopes. Sudden variations are associated with
magic closure shells for the both chains ( at N = 82) and with X(5)
critical point which occurs only for S m (at N = 90).

transition.

4 Conclusion

Potential energy surfaces have been drawn for the cerium
isotopic chain. All even-even nuclei between the two drip
lines have been considered. To this end, we have used the
microscopic–macroscopic method in which the quantum cor-
rections have been evaluated by a semi-classical procedure.
The microscopic model is based on a “realistic” Schrödinger
equation including a mean field of a Woods-Saxon type. The
macroscopic part of the energy is evaluated from the liquid
drop model using the version of Myers and Swiatecki. The
following points must be remembered:
(i) All equilibrium deformations have been found prolate with
an important deformation energy compared to oblate shapes.
(ii) The maximum deformations are of order β ≈ 0.3 and are
located around N = 64 and N = 102 with deformation energy
about 6 MeV and 9 MeV respectively. The equilibrium defor-
mations decrease as one moves away from these two nuclei.
(iii) Spherical shapes are found in the neighborhood of N =

82.
(iv) Good agreement is obtained between theoretical and ex-
perimental values if one excepts the area of the shell closure
N = 82 where the latter are slightly larger.

B. Mohammed-Azizi, A. Helmaoui and D.-E. Medjadi. Shape Transition in the Even-Even Cerium Isotopes 263



Volume 11 (2015) PROGRESS IN PHYSICS Issue 3 (July)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-5

0

5

10

15

20

25

30

35

40

45

50

55

60

N=76

A

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-5

0

5

10

15

20

25

30

35

40

45

50

55

60

N=78

A

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-5

0

5

10

15

20

25

30

35

40

45

50

55

60

N=80

A

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-5

0

5

10

15

20

25

30

35

40

45

50

55

60

N=82

A

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-5

0

5

10

15

20

25

30

35

40

45

50

55

60

N=84

A

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-5

0

5

10

15

20

25

30

35

40

45

50

55

60

N=86

A

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-5

0

5

10

15

20

25

30

35

40

45

50

55

60

N=88

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-5

0

5

10

15

20

25

30

35

40

45

50

55

60

N=90

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
-5

0

5

10

15

20

25

30

35

40

45

50

55

60

N=92

β

P
ot

en
tia

l e
ne

rg
y 

S
ur

fa
ce

 (
M

eV
)

Cerium Isotopes (Z=58)

Fig. 5: Shape evolution for cerium isotopes from N = 78 to N = 92.

(v) This isotopic chain possesses a continuous shape/phase
transition from spherical shapes toward the axially symmet-
ric ones.
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A Constants of the binding energy of the liquid drop
model

The constants of (1) are defined as follows:

CV = aV

[
1 − κI2

]
(in the volume term)

CS = aS

[
1 − κI2

]
(in the surface term)

I =
N − Z
N + Z

(relative neutron excess)

ε = +1 (even − even) (in the pairing term),
0 (odd),
− 1 (odd − odd)

CC =
3
5

e2

r0
(in the Coulomb term)

Cd =
π2

2

(
a0

r0

)2 e2

r0
(diffuseness correction)

The last correction to the Coulomb energy takes into account
that the liquid drop has not a sharp but a diffuse surface of the
Woods-Saxon type. The diffuseness parameter is a0 and the
charge radius “contains” r0 (Rch = r0A1/3).

B Constants of the Woods-Saxon mean potential

“Universal parameters” of the Woods-Saxon central and
Spin-orbit potentials entering in (10).

Neutrons
V0neut=49.6(1-0.86I) depth of cmf (MeV)
RVneut=1.347A1/3 radius of cmf (fm)
λ=35.0 (dimensionless) spin-orb. coupling strength
RS O−neut=1.310A1/3 Radius of somf (fm)
a0=0.70 diffuseness of cmf (fm)
a0=0.70 diffuseness of somf (fm)

Protons
V0prot=49.6(1+0.86I) depth of cmf (MeV)
RV prot=1.275A1/3 radius of cmf (fm)
λ=36.0 (dimensionless) spin-orb. coupling strength
RS O−nprot=1.200A1/3 radius of somf (fm)
a0=0.70 diffuseness of cmf (fm)
a0=0.70 diffuseness of somf (fm)

cmf = central mean field
somf = spin-orbit mean field
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Other Earths: Search for Life and the Constant Curvature
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The objective of this paper is to propose a search methodology for finding other exactly
similar earth like planets (or sister earths). The theory is based on space consisting of
Riemann curves or highways. A mathematical model based on constant curvature, a
moving frame bundle, and gravitational dynamics is introduced.

1 Introduction

The objective of this paper is to propose a search methodol-
ogy that could show the way to finding other exactly similar
earth like planets (or sister earths). The main idea in this pa-
per lies behind the theory that space contains of what is called
highways. The term highway refers to a path with no obstruc-
tions. Examples of obstructions are black holes and stars or
any celestial objects with significant masses and gravitational
forces. Paths are non-linear graphs.

Space is composed of these highways, on which there is
at least one sister earth. Topologically highways are made up
of constant Riemann curvatures, [1]. It is posited that sister
earths are located at the points of constant curvature; more
accurately, these are the points where two oppositely directed
highways (or paths) with identical constant curvatures share
a moving tangent frame where the coordinate frame is the
derivative of their gravitational tensors with respect to the (x)
coordinate.

A sister earth comes with its satellite (or a moon) just
as earth has its satellite, the moon. A satellite is found at
the point of intersection of two oppositely directed highways.
The earth’s moon provides a parallel highway to the earth’s
highway. So far the methods of detecting earth like exo-
planets consist of observation through Hubble space telesco-
pe of extrasolar giant planets and their gravitational influence
on parent stars, [2,3,4]. Transit method, [5], orbital bright-
ness modulations, [6], timing variations, [7], gravitational mi-
crolensing, [8], direct imaging, [9], and polarimetry, [10], are
among methods currently used for the detection of earth like
exoplanets. In all these methods the main element of study
is observation of light and gravitational changes as it distorts
light around planets.

The advantage of the current theory proposed in this paper
is that it provides an analytical approach based on Rieman-
nian curvature, and the dynamics of gravitation mathemati-
cally represented by differential gravity calculations around
the points of constant curvature. The important first step is to
find pathways (or space highways) with constant curvatures.
One Riemann path or space highway with constant curvature
is known, and that is the Riemann path of the earth. The Rie-
mann path of the moon is another known pathway or space
highway that is parallel to the earth’s Riemann path. Other

Riemann paths can be traced out parallel to the earth’s and
the moon’s Riemann paths or space highways. A path to a
sister earth can be traced out assuming that it has the same
curvature with different gravitational tensor described in the
following section.

2 Space highways

Space highways are paths that extend to infinity. The word
infinity is used to imply very long distances. These paths can
be considered as Riemannian curves with constant curvatures.
Riemann paths with constant curvatures contain no obstacles.
Here, obstructions are mainly black holes, and massive stars,
or any significant electrostatic system, moving with a certain
velocity (v) corresponding to an electromagnetic momentum,
(H).

In other words, any significant mass with inertia, momen-
tum, and thus velocity that produces gravitational and electro-
magnetic forces. Vector (H) represents the electromagnetic
direction and magnitude. The electromagnetic momentum
can be expressed as the multiplication of the vector (H) by
the velocity (v), as (H · v). The assumption of Riemann paths
in dark regions of space is fundamental to the structure of the
model to be introduced.

The earth’s Riemann path with constant curvature can be
constructed given the coordinates of the sun and the earth.
Let’s assume that the earth is in a stationary system (K), whe-
re [xτ = (x, y, z, t) ∈ K] denotes the coordinates and the sys-
tem (K) holds a homogeneous gravitational field, and gravi-
tational acceleration equal to [γ = (γx, γy, γz)]. In system (K),
Newtonian laws hold in their most basic form, the same basic
laws equally hold with respect to any other coordinate system
moving in uniform translation with respect to (K).

Let system (K) represent the sun system. It is assumed
that the coordinates of the sun are (0, 0, 0, 0), meaning that
the sun is considered to be the first solar system of its kind.
Let’s assume that earth is located in a second coordinate sys-
tem (K′), where [xσ = (x′, y′, z′, t′) ∈ K′] signifies the coor-
dinates in this system. It is also assumed that for any other
coordinate system outside of the two systems (K) and (K′),
the laws of general relativity hold with respect to the two co-
ordinate systems.

By this it is meant that the velocity of light (c) in vacuum
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Fig. 1: A graphical representation of Riemann Paths.

is constant, [11], and in combination with the principles of
relativity, follows the relativity of simultaneity, the Lorentz
transformation rules, and the related laws indicating the be-
haviour of bodies in motion. The laws of geometry are taken
directly as laws relating to relative positions of mass at rest.
The laws of kinematics are to be taken as laws which describe
the relation of a solid body with respect to another in terms of
their distance from each other in definite length independent
of the location and the orientation of the two bodies in time.
An example of space highways is given in Fig. 1.

Let’s consider the earth as an event point in system (K′)
in a uniform constant rotation in a finite space with respect to
system (K). The curvature from the event point to the station-
ary system (K) is given by (1):

ds2 =
∑

στ

Gστdxσdxτ. (1)

(dxσ) corresponds to differentials in system (K′), (σ) repre-
sents the (x′, y′, z′, t′) coordinate system in (K′), and (dxτ)
corresponds to differentials in system (K), where τ represents
the (x, y, z, t) coordinate system. (Gστ) is the gravitation ten-
sor, signifying the gravitational forces exerted mutually be-
tween systems (K) and (K′) multiplied by the differential of
the electromagnetic force (dH).

The gravitation tensor (Gστ) is a matrix obtained by multi-
plying matrix (gστ), the matrix of the differentials of the grav-
itational force, given as:

gστ =



∂x′
∂x

∂x′
∂y

∂x′
∂z

∂x′
∂t

∂y′

∂x
∂y′

∂y
∂y′

∂z
∂y′

∂t

∂z′
∂x

∂z′
∂y

∂z′
∂z

∂z′
∂t

∂t′
∂x

∂t′
∂y

∂t′
∂z

∂t′
∂t



with matrix (dH), the matrix of the differentials of the elec-
tromagnetic force or the matrix of the curl of (H) given by

(2):
Gστ = gστ × dH. (2)

The matrix of the curl of (H), the electromagnetic force is
given as:

dH =



(
∂Hx′
∂z −

∂Hz′
∂x

)
0 0 0

0
(
∂Hy′
∂x − ∂Hx′

∂y

)
0 0

0 0
(
∂Hz′
∂y
− ∂Hy′

∂z

)
0

0 0 0 1



.

In the presence of significant mass, and the electromag-
netic momentum (H · v), the diagonal entries of the curl of
(H) are given in (3)–(5) as:

(
∂Hx′

∂z
− ∂Hz′

∂x

)
=

1
c
× ρ × vx′ (3)

(
∂Hy′

∂x
− ∂Hx′

∂y

)
=

1
c
× ρ × vy′ (4)

(
∂Hz′

∂y
− ∂Hy′

∂z

)
=

1
c
× ρ × vz′ . (5)

In (3)–(5), (c) is the velocity of light, (ρ) is the volume-densi-
ty charge of a mass, and the vector (v) is the velocity of the
electromagnetic momentum where v = (vx′ , vy′ , vz′).

The curvature of the system (K)-(K′) in a finite region
between an event-point in system (K′), and a stationary point
in system (K) such as the earth and the sun is well-known to
be an ellipsoid in the form expressed by (6) as:

S = Gστ ×
(

(xσ − xτ)2

a2

)
. (6)

(xσ) is the vector of coordinates in the (K′) system, where
xσ = (x′, y′, z′, t′), and (xτ) is the vector of coordinates in
the (K) system, where xσ = (x, y, z, t). Equation (6) can be
rewritten with respect to the coordinates given in (7):

S = A1 ×
(

(x − x′)2

a1
2

)
+ A2 ×

(
(y − y′)2

a2
2

)
+

+ A3 ×
(

(z − z′)2

a3
2

)
+ A4 ×

(
(t − t′)2

a4
2

)
.

(7)

The coefficients (A) are the columns of (Gστ), the gravitation
tensor. The denominators in (7), (a1, a2, a3, a4) are constants
less than 1, and the coefficients (A = (A1,A2,A3,A4)) are
given at the top of the next page.

The time (t) in the (K) system is formulated in a relativis-
tic sense as in (8):

t =

(
1 − v

c

)
× t′

√
1 − v2

c2

. (8)
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A =



∂x′
∂x ×

(
∂Hx′
∂z −

∂Hz′
∂x

)
0 0 0

0 ∂y′

∂y
×

(
∂Hy′
∂x − ∂Hx′

∂y

)
0 0

0 0 ∂z′
∂z ×

(
∂Hz′
∂y
− ∂Hy′

∂z

)
0

0 0 0 ∂t′
∂t × 1



The elements of the coefficient matrix (A) are:

A11 =
∂x′

∂x
×

(
∂Hx′

∂z
− ∂Hz′

∂x

)
=

1
c
× ρ × γx′ (9)

A22 =
∂y′

∂y
×

(
∂Hy′

∂x
− ∂Hx′

∂y

)
=

1
c
× ρ × γy′ (10)

A33 =
∂z′

∂z
×

(
∂Hz′

∂y
− ∂Hy′

∂z

)
=

1
c
× ρ × γz′ (11)

and

A44 =
∂t′

∂t
=

(√
1 − vx′ 2

c2

)

(
1 − vx′

c

) × (
t′ − t

)
. (12)

In (9–11), the vector (γ) is the vector of acceleration of the
electromagnetic momentum (H · v), where γ = (γx′ , γy′ , γz′).
The assumption is that the curvatures of Riemann paths or
space highways should be formulated in exactly the same
manner as the curvature formulated for the system (K)-(K′).
This assumption can be justified since any event point (earth
like planet) on a Riemann curve of constant curvature should
exhibit the same characteristics as the event-point earth.

An important element to consider, is how to find the coor-
dinates of an event point (earth like planet) with respect to the
coordinate system (K). These coordinates are arbitrary since
the only point of reference is the system (K). All the same,
let’s assign coordinates to an event point (earth like planet)
as (xν) where [xν = (x′′, y′′, z′′, t′′) ∈ K′′] denotes the coordi-
nate system in (K′′). The coordinates of the event point (earth
like planet) can be determined given that the event point is in
the finite region from the sun. The event point (earth like
planet) in the dark region is chosen assuming that it is on an
ellipsoid parallel to the ellipsoid that contains the coordinate
system (K), with coordinates xτ = (x, y, z, t), in other words
the sun.

The curvature can be formulated in (9) as:

ds′2 =
∑

νσ

gνσ ×Gστ × (dxσdxτ) dxν. (13)

The tensor (gνσ) represents the gravitational force exerted be-
tween the two coordinate systems (K) and (K′′). Given that
the coordinate system (K′′) is in a finite region with respect
to the coordinate system (K), the tensor (gνσ) takes on values

equal to the Lorentz factor as is given in the first matrix at the
top of the next page.

The Lorentz factor gives length contraction and time dila-
tion. As the function of velocity (v), the Lorentz factor starts
at value (1) at (v = 0), and approaches infinity as (v→ c), the
velocity of a particle approaches the speed of light (c). The
solution to differential equation (9) is an ellipsoid similar to
the one given in (6), and its extended form similar to (7) is
given in (10) as:

S ′ = B ×
(

(xν − xτ)2

b2

)
(14)

S = B1 ×
(

(x′′ − x)2

b1
2

)
+ B2 ×

(
(y′′ − y)2

b2
2

)
+

+ B3 ×
(

(z′′ − z)2

b3
2

)
+ B4 ×

(
(t′′ − t)2

b4
2

)
= 1.

(15)

The denominators in (11), (b1, b2, b3, b4) are constants less
than 1, and the coefficients B = (B1,B2,B3, B4) are given in
the second matrix at the top of the next page.

The elements of the coefficient matrix (B) are:

B11 = −


∂x′′

∂x
× 1√

1 − v2
x′′
c2



= −


1√

1 − v2
x′′
c2

 × | x
′′ − x |

(16)

B22 = −


∂x′′

∂x
× 1√

1 − v2
x′′
c2



= −


1√

1 − v2
x′′
c2

 × | y
′′ − y |

(17)

B33 = −


∂x′′

∂x
× 1√

1 − v2
x′′
c2



= −


1√

1 − v2
x′′
c2

 × | z
′′ − z |

(18)
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gνσ =



− 1√
1 − v2

x′′
c2

0 0 0

0 − 1√
1 − v2

y′′
c2

0 0

0 0 − 1√
1 − v2

z′′
c2

0

0 0 0
∂t′′

∂t
× 1√

1 − v2
x′′
c2



B =



− ∂x′′
∂x × 1√

1− v2
x′′
c2

0 0 0

0 − ∂y′′
∂y
× 1√

1−
v2
y′′
c2

0 0

0 0 − ∂z′′
∂z × 1√

1−
v2
z′′
c2

0

0 0 0 − ∂t′′
∂t × 1√

1− v2
x′′
c2



and

B44 =
∂t′′

∂t
×


1√

1 − v2
x′′
c2



=

(
1

1 − vx′′
c

)
× (t′′ − t)

(19)

where (| x′′ − x |) is the absolute distance.
Any event point in the dark regions of space that does not

violate the Lorentz factor impact of the gravitational force be-
tween the two coordinate systems (K) and (K′′) can be con-
sidered to be on the constant curvature. The event point earth
like planet should be found on such a constant curvature. Any
other significant mass such as a black hole or a star would cre-
ate discontinuity and thus disrupts the Riemann path.

Fig. 2 provides a graphical representation of an ellipsoidal
curve with an event point (earth). Fig. 2 depicts the rotation of
the earth around the sun scaled down to (100−3) of the actual
size. Fig. 3 demonstrates a Riemann path with respect to the
sun system. Fig. 4 demonstrates Riemann paths with respect
to the sun system.

3 Other earths

An event point (earth), is located at the point of constant cur-
vature of two opposing Riemann paths or space highways,
where the two curves share common points. Let (S ′) be the
Riemann path of constant curvature of an ellipsoidal form
given in (13). Let (S c2 ) be a Riemann path with a singular
event point earth. The event point on (S c2 ) has a mass (M),
and a density (ρ), and a velocity (v), equal to that of the earth.

1.00.80.60.20.0-0.2-0.4-0.6-0.8-1.0

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

-0.4

-0.5
0.4

Rotation of the Earth around the sun scaled down for graphical presentation 

The Earth system in 2D representation without relativistic effects 

Fig. 2: A graphical representation of the rotation of the earth around
the sun (the earth system).

The values of mass, density, and velocity of the event point
earth of the space highway (S c2 ) is independent of it’s coordi-
nates. Assuming that this condition holds, then the Riemann
path (S c2 ) is in such a region of space where (S c2 ) is of con-
stant curvature, and thus assumes an ellipsoidal form of type
given in (13). The event point earth conserves its momentum
and energy. The curvature (sc2 ) can be written as in (12).

The coordinates of this solar system are the same as the
earth’s solar system with the exception that the new sun’s co-
ordinates are that of our sun added the distance between the
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Fig. 3: A graphical representation of a Riemann path with respect to
the sun system.
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Fig. 4: A graphical representation of Riemann paths with respect to
the sun system.

two stars. The coordinates of the new sun are

xτ′ = [(xτ′ + Ξ), yτ′ , zτ′ , tτ′]

where (Ξ) is the distance between the two stars. The coordi-
nates of the event point earth are

(xc2η) = [(xc2 + Γ), yc2 , zc2 , tc2 ]

where (Γ) is the distance from the sun to the point of constant
curvature where the two Riemann paths meet.

The ellipsoidal form of the Riemann path (S c2 ) is given in
(13) as:

ds2
c2

=
∑

τ′η

Gτ′η
c2 dxτ′dxηc2 (20)

S c2 = −Gτ′η
c2 ×

(
xτ′ − xηc2

)2

b2
c2

. (21)

The denominators in (13),
(
bc2 = bc2

1 ,b
c2
2 ,b

c2
3 ,b

c2
4

)

are constants less than 1, and the coefficients

−Gτ′η
c2 = (−Ac2

1 ,−Ac2
2 ,−Ac2

3 , A
c2
4 )

are given at the top of the next page.
The elements of the coefficient matrix (−Gτ′η

c2 ) are:

−Ac2
11 = −∂xηc2

∂xτ′
×


∂Hxηc2

∂zτ′
−
∂Hzηc2

∂xτ′

 =
1
c
× ρ × −γxηc2

(22)

−Ac2
22 = −∂y

η
c2

∂yτ′
×


∂Hy

η
c2

∂xτ′
−
∂Hxηc2

∂yτ′

 =
1
c
× ρ × −γyηc2

(23)

−Ac2
33 = −∂zηc2

∂zτ′
×


∂Hzηc2

∂yτ′
−
∂Hy

η
c2

∂zτ′

 =
1
c
× ρ × −γzηc2

(24)

and

A44 =
∂t′′

∂t
=

√
1 −

(
vxηc2

)2

c2(
1 −

vxηc2
c

) × (t′′ − t). (25)

(−γxηc2
) states that the acceleration on the Riemann path (S c2 )

should be opposite of the acceleration on the (S ′) curve. In
the above matrix the (xc2 ) coordinate should be taken equal to
(xc2 + Γ).

The event point earth is located where

−∂Gνη
c2

∂xηc2

=
∂Bxν

∂xν

the derivative of the gravitational tensor (−Gτ′η
c2 ) belonging to

the (c2) Riemann path with respect to the coordinates of the
(c2) solar system, is equal to the derivative of the gravitational
tensor of the (S ′) Riemann path with respect to its coordinate
system. In Fig. 5, the event point earth can be found where
the green ellipse Riemann path (S ′) and the Riemann path
(c2) (the red ellipse) meet. Fig. 6 depicts the tangent vector at
the event point earth.

It should be stated that the magnitude of the electromag-
netic force of the event point earth (Hxηc2

) is equal to the mag-
nitude of the electromagnetic force of the solar system’s earth,
(H),

| Hxηc2
|=| H | .

Consequently, the curl of (Hxηc2
), and the curl of (H) should

be equal. Thus the density, the volume-density charge of the
mass, and the velocity of the event point earth are equal to
that of the solar system’s earth.

Let (T ) be the set of all frames at all points of Riemann
path (c2). Let [(Uα, Xα)α∈c2 ], represent all pairs where (Uα)
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Fig. 5: A graphical representation of the event point earth.

−Gτ′η
c2 =



− ∂xηc2
∂xτ′
×

(
∂Hxηc2
∂zτ′
−

∂Hzηc2
∂xτ′

)
0 0 0

0 − ∂y
η
c2

∂yτ′
×

(
∂H

y
η
c2

∂xτ′
−

∂Hxηc2
∂yτ′

)
0 0

0 0 − ∂zηc2
∂zτ′
×

(
∂Hzηc2
∂yτ′
−

∂H
y
η
c2

∂zτ′

)
0

0 0 0 ∂tηc2
∂tτ′
× 1



is an open subset of (T ), and (Xα = (Xα
1 , ..., X

α
n )) is a moving

frame on (Uα), then

(
U,
−∂Gνη

c2

∂Xα
=
∂Bxν

∂Xβ

)
∈ (Uα, Xα)α∈c2 ,

where (Xβ = (Xβ
1 , ..., X

β
n)) is a moving frame on (S ′). This

gives the following set of differential equations for each (α ∈
c2), and (β ∈ S ′):

∂

∂Xα

(
∂Xα

∂xτ′
×

(
∂HXα

∂z′τ
− ∂HXα

∂x′τ

))

= − ∂

∂Xβ


∂Xβ

∂x′′
× 1√

1 − v2
x′′
c2



(26)

and

∂

∂Xα

(
∂tηc2

∂tν
× 1

)
= − ∂

∂Xβ


∂t′

∂t
× 1√

1 − v2
x′′
c2

 . (27)

The equalities in (26) and (27) mean that the moving fra-
me contains an open set of points (Xα = Xβ) where accel-
erations on the two Riemann paths (c2) and (S ′) are equal.
For (26) and (27) to hold a condition is imposed. The con-
dition is that (26) and (27) must respect the linear translation
(Ln×n,<), where (n) is the dimension of a matrix. If (M) was
a (2 × 2) matrix , then the Jacobian of (M) would be equal to
1, ([M] = 1). This implies that the tangent bundle forms an
isomorphic group to (<1). Matrix (M) is given at the top of
the next page. [M] is given by (28) below:

[M] =
∂

∂Xα

(
∂Xα

∂xτ′
×

(
∂HXα

∂z′τ
− ∂HXα

∂x′τ

))
×

×

−
∂

∂Xβ


∂t′

∂t
× 1√

1 − v2
x′′
c2





− ∂

∂Xα

(
∂tηc2

∂tν
× 1

)
×

−
∂

∂Xβ


∂Xβ

∂x′′
× 1√

1 − v2
x′′
c2




= 1.

(28)
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Event point Earth and the Tangent vector 

Fig. 6: Tangent vector at the event point earth.

M =



∂

∂Xα

(
∂Xα

∂xτ′
×

(
∂HXα

∂z′τ
− ∂HXα

∂x′τ

))
∂

∂Xα

(
∂tηc2

∂tν
× 1

)

− ∂

∂Xβ


∂Xβ

∂x′′
× 1√

1 − v2
x′′
c2

 − ∂

∂Xβ


∂t′

∂t
× 1√

1 − v2
x′′
c2





(M) is the representation of (<1) in the (2 × 2) matrix form,
thus is an invertible linear transformation of the tangent bun-
dle. Given that the Riemann path is of constant curvature,
then the implication is that the tangent bundle is invariant with
respect to space-time. This condition would give the point on
the (S c2 ) path that touches the (S ′) Riemann path. Therefore,
it traces out the movement of the event point earth.

4 Conclusion

In this paper a new methodology is introduced that gives a
mathematical approach to finding other exactly similar earth
like planets. The mathematical model is based on finding
what is called “space highways” or “Riemann paths”. The
characteristic of these highways is that they are found in the
dark regions or non-deformed by gravitational forces regions
of space, where there are no stars, or black holes, or planets.
Riemann paths are considered as paths of constant curvature.
Space highways are modelled as ellipsoidal forms with coef-
ficients as columns of a gravitational tensor.

It is assumed that the coordinates of the sun are (0, 0, 0, 0),
meaning that the sun is considered to be the first solar system
of its kind. This assumption is justified, since there is no
evidence to the contrary to this day.

Space highways or Riemann paths are parallel to each
other if they are in the same direction. The location of the
event point earth (or exactly similar earth type planet) is whe-
re a Riemann path or space highway intersects at points of
constant curvature with another space highway coming from
an opposite direction. The movement of the event point earth
is traced out where the two Riemann paths share the same
tangent bundle. It is hoped that the search methodology in-
troduced in this paper opens up a new possibility of finding
planets that harbor life as we know it.
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Based on an analysis of classical views stating that a charged particle creates certain
magnetic field around its trajectory, we draw a conclusion about possible polarization
of target nuclei within the magnetic field of approaching charged particle.

1 Introduction

While studying of scattering of electrons and neutrons by nu-
clei Mott [1] and J. Schwinger [2] suggested the mechanism
of interaction of the scattering particle’s magnetic moment
with Coulomb field of a nucleus. Such scattering has been
known as Mott-Schwinger interaction. Polarization of scat-
tered particles is considered within the framework of this in-
teraction [3].

In the present study, the interaction of the magnetic field
of the scattering charged particles with the magnetic moment
of nuclei is investigated.

It was demonstrated earlier that within the framework of
this interaction the nucleus is also polarized. Spin of the nu-
cleus interacting with the fast-moving (primary) charged par-
ticle orient itself in the plane perpendicular to the direction of
the primary particle’s momentum.

2 Magnetic field of the charged particle

The charged particle moving with the velocity v induces mag-
netic field H wrapped around its path. H depends on the dis-
tance from the charged particle as follows [4]:

H =
e v sin θ

r2 , (1)

where e is the charge of the scattered particle, r is the distance
from the particle, and θ is the angle between the direction of
the particle’s velocity and r. Using this expression, one can
calculate the intensity of the magnetic field H as a function of
r and the speed of the particle with β ∼ 1. It is assumed that
laws of electromagnetism apply for small distances down to
10−13 cm. The calculations are presented in Table 1.

The numbers in the Table 1 indicate that pretty strong
fields still not achieved by any experimental instrument. As
it is known the magnetic field of a single charged particle has
rotational characteristics.

3 Interaction of the magnetic field of the charged parti-
cle with the magnetic field of the nucleus

Magnetic charge of the scattering particle functions as an ex-
ternal magnetic field in respect to the nucleus. However, spe-
cific characteristic of the rotational magnetic field must be
accounted for. Magnetic intensity lines are in the plane that is
perpendicular to the direction of the particle’s velocity. At the
same time the vector of the magnetic field H at any arbitrary

point on that plane at the distance r from the path of the parti-
cle is tangential to the circle of the radius r, and the direction
of H is determined by the right-hand screw rule.

Let’s consider that the nucleus is not exactly in the cen-
ter of such a circle, but instead at some distance r from it.
One can estimate the energy of interaction of the magnetic
moment of the nucleus, µ, and the field H at distance r:

U = µH . (2)

One has to take into consideration that magnetic moment acts
like a top, and, in non-relativistic case, precession of the nu-
cleus is simple Larmor precession. Relativistic case was de-
scribed by Bargman et al [5].

Following Bargman, one can consider the case when the
angle between the spin of the nucleus and magnetic field H is
close to π

2 . The spin will start precessing around the magnetic
field H with the frequency

Ω = ωL
(
g

2
– 1
)
, (3)

where ωL = e
mγ H is the frequency of Larmor precession, g is

gyromagnetic ratio, and γ = (1–β2)–2. It follows that

Ω =
eH
mγ

(
g

2
− 1
)
. (4)

As Ω can be expressed as Ω = 2π
t and for those nuclei whose

spin satisfies the condition of g
2 , 1 the spin of the target nu-

cleus will precess in the magnetic field of the incoming par-
ticle. Forced polarization appears while turning the direction
of the spin by π

2 .
Time necessary for the turn is determined by

t =
mπγ
eH

(g – 2) , (5)

where m is the mass of the nucleus. For γ = 10, m = 50
a.m.u., we have (g – 2) ∼ 1, and µ = 1 (nuclear magneton).
Other examples in Table 2 demonstrate some interesting faces
of the interaction.

Figures in Table 2 demonstrate that during the interaction
of a fast moving charged particle with a nucleus (at r ∼ 10–12

cm) the orientation of the spin of the target nucleus takes as
little time as ∼10–26 seconds. During this time interval the fast
moving charged particle covers only 3×10–16 cm. This allows
drawing a conclusion that right at the beginning of the inter-
action the nucleus target has time to orient its spin and further
interaction takes place with the already polarized nucleus.
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r, cm 10−13 10−12 10−11 10−10 10−9 10−8

H, Ersted 4.8 × 1016 4.8 × 1014 4.8 × 1012 4.8 × 1010 4.8 × 108 4.8 × 106

Table 1: The magnetic field intensity H as a function of r and the speed of the particle with β ∼ 1.

r, cm 10–13 10–12 10–11 10–10 10–9 10–8

T , sec 10–28 10–26 10–24 10–22 10–20 10–18

l = ts, cm 3 × 10–18 3 × 10–16 3 × 10–14 3 × 10–12 3 × 10–10 3 × 10–8

U = µH, eV 1.5 × 105 1.5 × 103 15 0.15 1.5 × 10–3 1.5 × 10–5

Table 2: During the interaction of a fast moving charged particle with a nucleus (at r ∼ 10–12 cm), the orientation of the spin of the target
nucleus takes as little time as ∼ 10–26 seconds.

4 Evaluation of energy required to change orientation of
the nuclear spin within the external magnetic field

In known experiments of Dr. Wu et al [6], Co-60 nuclei were
polarized at T ∼ 0.003 K and the parity conservation was
tested. Low temperatures were achieved by adiabatic demag-
netization of Cerous Magnesium Nitrate. The energy of the
effect can be estimated to be < 2.5 eV. Energy of the inter-
action of Co-60 nucleus magnetic moment with the outside
magnetic field of a few hundred oersteds is negligible.

Therefore, the condition µH � κ T is satisfied entirely
(see Table 2): µH ∼ 103, κ T ∼ 10−2.
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A natural behavior is used to characterize by differential equation established on hu-

man observations, which is assumed to be on one particle or one field complied with

reproducibility. However, the multilateral property of a particle P and the mathematical

consistence determine that such an understanding is only local, not the whole reality

on P, which leads to a central thesis for knowing the nature, i.e. how to establish a

physical equation with a proper interpretation on a thing. As it is well-known, a thing

consists of parts. Reviewing on observations, we classify them into two categories, i.e.

out-observation and in-observation for discussion. The former is such an observation

that the observer is out of the particle or the field P, which is in fact a macroscopic

observation and its dynamic equation characterizes the coherent behavior of all parts in

P, but the later is asked into the particle or the field by arranging observers simultane-

ously on different subparticles or subfields in P and respectively establishing physical

equations, which are contradictory and given up in classical because there are not ap-

plicable conclusions on contradictory systems in mathematics. However, the existence

naturally implies the necessity of the nature. Applying a combinatorial notion, i.e. GL-

solutions on non-solvable equations, a new notion for holding on the reality of nature

is suggested in this paper, which makes it clear that the knowing on the nature by solv-

able equations is macro, only holding on these coherent behaviors of particles, but the

non-coherent naturally induces non-solvable equations, which implies that the knowing

by GL-solution of equations is the effective, includes the classical characterizing as a

special case by solvable equations, i.e. mathematical combinatorics.

1 Introduction

An observation on a physical phenomenon, or characters of

a thing in the nature is the received information via hearing,

sight, smell, taste or touch, i.e. sensory organs of the observer

himself, little by little for human beings fulfilled with the re-

producibility. However, it is difficult to hold the true face of

a thing for human beings because he is analogous to a blind

man in “the blind men with an elephant”, a famous fable for

knowing the nature. For example, let µ1, µ2, · · · , µn be all ob-

served and νi, i ≥ 1 unobserved characters on a particle P at

time t. Then, P should be understood by

P =


n⋃

i=1

{µi}

⋃

⋃

k≥1

{νk}
 (1.1)

in logic with an approximation P◦ =
n⋃

i=1

{µi} for P at time t. All

of them are nothing else but Smarandache multispaces ([17]).

Thus, P ≈ P◦ is only an approximation for its true face of P,

and it will never be ended in this way for knowing P as Lao

Zi claimed “Name named is not the eternal Name” in the first

chapter of his TAO TEH KING ([3]), a famous Chinese book.

A physical phenomenon of particle P is usually charac-

terized by differential equation

F
(
t, x1, x2, x3, ψt, ψx1

, ψx2
, · · · , ψx1 x2

, · · ·) = 0 (1.2)

in physics established on observed characters of µ1, µ2, · · · , µn

for its state functionψ(t, x) inR4. Usually, these physical phe-

nomenons of a thing is complex, and hybrid with other things.

Is the reality of particle P all solutions of (1.2) in general?

Certainly not because (1.2) only characterizes the behavior

of P on some characters of µ1, µ2, · · · , µn at time t abstractly,

not the whole in philosophy. For example, the behavior of a

particle is characterized by the Schrödinger equation

i~
∂ψ

∂t
= − ~

2

2m
∇2ψ + Uψ (1.3)

in quantum mechanics but observation shows it in two or

more possible states of being, i.e. superposition. We can not

even say which solution of the Schrödinger equation (1.3) is

the particle because each solution is only for one determined

state. Even so, the understanding of all things is inexhaustible

by (1.1).

Furthermore, can we conclude (1.2) is absolutely right for

a particle P? Certainly not also because the dynamic equa-

tion (1.2) is always established with an additional assump-

tion, i.e. the geometry on a particle P is a point in classical

mechanics or a field in quantum mechanics and dependent on

the observer is out or in the particle. For example, a water

molecule H2O consists of 2 Hydrogen atoms and 1 Oxygen

atom such as those shown in Fig. 1. If an observer receives in-

formation on the behaviors of Hydrogen or Oxygen atom but

stands out of the water molecule H2O by viewing it a geo-

metrical point, then such an observation is an out-observation

because it only receives such coherent information on atoms

H and O with the water molecule H2O.
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Fig. 1

If an observer is out the water molecule H2O, his all ob-

servations on the Hydrogen atom H and Oxygen atom O are

the same, but if he enters the interior of the molecule, he will

view a different sceneries for atom H and atom O, which are

respectively called out-observation and in-observation, and

establishes 1 or 3 dynamic equations on the water molecule

H2O.

The main purpose of this paper is to clarify the natural

reality of a particle with that of differential equations, and

conclude that a solvable one characterizes only the reality

of elementary particles but non-solvable system of differen-

tial equations essentially describe particles, such as those of

baryons or mesons in the nature.

For terminologies and notations not mentioned here, we

follow references [1] for mechanics, [5] for combinatorial ge-

ometry, [15] for elementary particles, and [17] for Smaran-

dache systems and multispaces, and all phenomenons dis-

cussed in this paper are assumed to be true in the nature.

2 Out-observations

An out-observation observes on the external, i.e. these macro

but not the internal behaviors of a particle P by human senses

or via instrumental, includes the size, magnitudes or eigen-

values of states, ..., etc.

Certainly, the out-observation is the fundamental for qua-

ntitative research on matters of human beings. Usually, a dy-

namic equation (1.2) on a particle P is established by the prin-

ciple of stationary action δS = 0 with

S =

t2∫

t1

dt L (q(t), q̇(t)) (2.1)

in classical mechanics, where q(t), q̇(t) are respectively the

generalized coordinates, the velocities and L (q(t), q̇(t)) the

Lagrange function on the particle, and

S =

∫ τ1

τ2

d4xL(φ, ∂µψ) (2.2)

in field theory, where ψ is the state function and L the La-

grangian density with τ1, τ2 the limiting surfaces of integra-

tion by viewed P an independent system of dynamics or a

field. The principle of stationary action δS = 0 respectively

induced the Euler-Lagrange equations

∂L

∂q
− d

dt

∂L

∂q̇
= 0 and

∂L
∂ψ
− ∂µ

∂L
∂(∂µψ)

= 0 (2.3)

in classical mechanics and field theory, which enables one to

find the dynamic equations of particles by proper choice of L

or L. For examples, let

LS =
i~

2

(
∂ψ

∂t
ψ − ∂ψ

∂t
ψ

)
− 1

2

(
~

2

2m
|∇ψ|2 + V |ψ|2

)
,

LD = ψ

(
iγµ∂µ −

mc

~

)
ψ,

LKG =
1

2

(
∂µψ∂

µψ −
(
mc

~

)2

ψ2

)
.

Then we respectively get the Schrödinger equation (1.3) or

the Dirac equation

(
iγµ∂µ −

mc

~

)
ψ(t, x) = 0 (2.4)

for a free fermion ψ(t, x) and the Klein-Gordon equation

(
1

c2

∂2

∂t2
− ∇2

)
ψ(x, t) +

(
mc

~

)2

ψ(x, t) = 0 (2.5)

for a free boson ψ(t, x) hold in relativistic forms by (2.3),

where ~ = 6.582 × 10−22MeV s is the Planck constant, c is

the speed of light,

∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
, ∇2 =

∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
,

∂µ =

(
1

c

∂

∂t
,
∂

∂x1

,
∂

∂x2

,
∂

∂x3

)
,

∂µ =

(
1

c

∂

∂t
,− ∂

∂x1

,− ∂

∂x2

,− ∂

∂x3

)

and γµ =
(
γ0, γ1, γ2, γ3

)
with

γ0 =

(
I2×2 0

0 −I2×2

)
, γi =

(
0 σi

−σi 0

)

with the usual Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
.

Furthermore, let L = √−gR, where R = gµνRµν, the Ricci

scalar curvature on the gravitational field. The equation (2.3)

then induces the vacuum Einstein gravitational field equation

Rµν −
1

2
gµνR = 0. (2.6)
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Usually, the equation established on the out-observations

only characterizes those of coherent behaviors of all parts in

a particle P. For example, a water molecule H2O obeys the

Schrödinger equation (1.3), we assume its Hydrogen atom H

and oxygen atom O also obey the Schrödinger equation (1.3)

as a matter of course. However, the divisibility of matter ini-

tiates human beings to search elementary constituting cells

of matter, i.e. elementary particles such as those of quarks,

leptons with interaction quanta including photons and other

particles of mediated interactions, also with those of their an-

tiparticles at present ([14]), and unmatters between a matter

and its antimatter which is partially consisted of matter but

others antimatter ([8-19]). For example, a baryon is predomi-

nantly formed from three quarks, and a meson is mainly com-

posed of a quark and an antiquark in the models of Sakata,

or Gell-Mann and Ne’eman on hadron and meson, such as

those shown in Fig. 2, where, qi ∈ {u, d, c, s, t, b} denotes a

quark for i = 1, 2, 3 and q2 ∈
{
u, d, c, s, t, b

}
, an antiquark.

But a free quark was never found in experiments. We can

not even conclude the Schrödinger equation (1.3) is the right

equation (1.2) for quarks because it is established on an inde-

pendent particle, can not be divided again in mathematics.

q1

q2 q3

q1 q2

....................................

...................

.................................

Baryon Meson

Fig. 2

Then, why is it believed without a shadow of doubt that

the dynamical equations of elementary particles such as those

of quarks, leptons with interaction quanta are (1.3) in phys-

ics? It is because that all our observations come from a macro

viewpoint, the human beings, not the particle itself, which

rationally leads to H. Everett’s multiverse interpretation on

the superposition by letting parallel equations for the wave

functions ψ(t, x) on positions of a particle in 1957 ([2]). We

only hold coherent behaviors of elementary particles, such as

those of quarks, leptons with interaction quanta and their an-

tiparticles by (1.3), not the individual, and it is only an equa-

tion on those of particles viewed abstractly to be a geomet-

rical point or an independent field from a macroscopic point,

which leads physicists to assume the internal structures me-

chanically for hold the behaviors of particles such as those

shown in Fig. 2 on hadrons. However, such an assumption

is a little ambiguous in logic, i.e. we can not even conclude

which is the point or the independent field, the hadron or its

subparticle, the quark.

In fact, a point is non-divisible in geometry. Even so, the

assumption on the internal structure of particles by physicists

was mathematically verified by extending Banach spaces to

extended Banach spaces on topological graphs
−→
G in [12]:

Let (V ;+, ·) be a Banach space over a field F and
−→
G a

strong-connected topological graph with vertex set V and arc

set X. A vector labeling
−→
G

L
on
−→
G is a 1−1 mapping L :

−→
G →

V such that L : (u, v)→ L(u, v) ∈ V for ∀(u, v) ∈ X
(−→
G

)
and

it is a
−→
G-flow if it holds with

L (u, v) = −L (v, u) and
∑

u∈NG (v)

L (vu) = 0

for ∀(u, v) ∈ X
(−→
G

)
, ∀v ∈ V(

−→
G), where 0 is the zero-vector in

V .

For
−→
G-flows

−→
G

L
,
−→
G

L1

,
−→
G

L2

on a topological graph
−→
G and

ξ ∈ F a scalar, it is clear that
−→
G

L1

+
−→
G

L2

and ξ · −→G
L

are also
−→
G-flows, which implies that all

−→
G-flows on

−→
G form a linear

space over F with unit O under operations + and ·, denoted

by
−→
G

V

, where O is such a
−→
G-flow with vector 0 on (u, v) for

∀(u, v) ∈ X
(−→
G

)
. Then, it was shown that

−→
G

V

is a Banach

space, and furthermore a Hilbert space if introduce

∥∥∥∥∥
−→
G

L
∥∥∥∥∥ =

∑

(u,v)∈X
(−→
G

)
‖L(u, v)‖ ,

〈−→
G

L1

,
−→
G

L2
〉
=

∑

(u,v)∈X
(−→
G

)
〈L1(u, v), L2(u, v)〉

for ∀−→G
L
,
−→
G

L1

,
−→
G

L2 ∈ −→G
V

, where ‖L(u, v)‖ is the norm of

L(u, v) and 〈·, ·〉 the inner product in V if it is an inner space.

The following result generalizes the representation theorem

of Fréchet and Riesz on linear continuous functionals on
−→
G-

flow space
−→
G

V

, which enables us to find
−→
G-flow solutions on

linear equations (1.2).

Theorem 2.1([12]) Let T :
−→
G

V

→ C be a linear continuous

functional. Then there is a unique
−→
G

L̂
∈ −→G

V

such that

T

(−→
G

L
)
=

〈
−→
G

L
,
−→
G

L̂
〉

for ∀−→G
L
∈ −→G

V

.

For non-linear equations (1.2), we can also get
−→
G-flow

solutions on them if
−→
G can be decomposed into circuits.

Theorem 2.2([12]) If the topological graph
−→
G is strong-

connected with circuit decomposition

−→
G =

l⋃

i=1

−→
C i
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such that L(uv) = Li (x) for ∀(u, v) ∈ X
(−→
C i

)
, 1 ≤ i ≤ l and the

Cauchy problem

{
Fi

(
x, u, ux1

, · · · , uxn
, ux1 x2

, · · ·) = 0

u|x0
= Li(x)

is solvable in a Hilbert space V on domain ∆ ⊂ Rn for inte-

gers 1 ≤ i ≤ l, then the Cauchy problem


Fi

(
x, X, Xx1

, · · · , Xxn
, Xx1 x2

, · · ·) = 0

X|x0
=
−→
G

L

such that L (uv) = Li(x) for ∀(u, v) ∈ X
(−→
C i

)
is solvable for

X ∈ −→G
V

.

Theorems 2.1−2.2 conclude the existence of
−→
G-flow solu-

tion on linear or non-linear differential equations for a topo-

logical graph
−→
G, such as those of the Schrödinger equation

(1.3), Dirac equation (2.4) and the Klein-Gordon equation

(2.5), which all implies the rightness of physicists assuming

the internal structures for hold the behaviors of particles be-

cause there are infinite many such graphs
−→
G satisfying condi-

tions of Theorem 2.1− 2.2, particularly, the bouquet
−→
B

Lψ

N , the

dipoles
−−→
D⊥

Lψ

0,2N,0 for elementary particles in [13].

3 In-observations

An in-observation observes on the internal behaviors of a par-

ticle, particularly, a composed particle P. Let P be composed

by particles P1, P2, · · · , Pm. Different from out-observation

from a macro viewing, in-observation requires the observer

holding the respective behaviors of particles P1, P2, · · · , Pm in

P, for instance an observer enters a water molecule H2O re-

ceiving information on the Hydrogen or Oxygen atoms H,O.

For such an observation, there are 2 observing ways:

(1) there is an apparatus such that an observer can simul-

taneously observe behaviors of particles P1, P2, · · · , Pm, i.e.

P1, P2, · · · , Pm can be observed independently as particles at

the same time for the observer;

(2) there are m observers O1,O2, · · · ,Om simultaneously

observe particles P1, P2, · · · , Pm, i.e. the observer Oi only

observes the behavior of particle Pi for 1 ≤ i ≤ m, called

parallel observing, such as those shown in Fig. 3 for the water

molecule H2O with m = 3.

✶

❄

❨

❄

■❃

O1

P1

O2

P2

O3

P3

Fig. 3

Certainly, each of these observing views a particle in P to

be an independent particle, which enables us to establish the

dynamic equation (1.2) by Euler-Lagrange equation (2.3) for

Pi, 1 ≤ i ≤ m, respectively, and then we can apply the system

of differential equations



∂L1

∂q
− d

dt

∂L1

∂q̇
= 0

∂L2

∂q
− d

dt

∂L2

∂q̇
= 0

· · ·
∂Lm

∂q
− d

dt

∂Lm

∂q̇
= 0

q(t0) = q0, q̇(t0) = q̇0

(3.1)

for characterizing particle P in classical mechanics, or



∂L1

∂ψ
− ∂µ

∂L1

∂(∂µψ)
= 0

∂L2

∂ψ
− ∂µ

∂L2

∂(∂µψ)
= 0

· · ·
∂Lm

∂ψ
− ∂µ

∂Lm

∂(∂µψ)
= 0

ψ(t0) = ψ0

(3.2)

for characterizing particle P in field theory, where the ith equ-

ation is the dynamic equation of particle Pi with initial data

q0, q̇0 or ψ0.

We discuss the solvability of systems (3.1) and (3.2). Let

S qi
=

{
(xi, yi, zi)(qi, t) ∈ R3

∣∣∣∣∣
∂L1

∂qi

− d

dt

∂L1

∂q̇i

= 0,

qi(t0) = q0, q̇i(t0) = q̇0 }

for integers 1 ≤ i ≤ m. Then, the system (3.1) of equations is

solvable if and only if

D(q) =

m⋂

i=1

S qi
, ∅. (3.3)

Otherwise, the system (3.1) is non-solvable. For example, let

particles P1, P2 of masses M,m be hanged on a fixed pulley,

such as those shown in Fig. 4.

Then, the dynamic equations on P1 and P2 are respec-

tively

P1 : ẍ = g, x(t0) = x0 and P2 : ddotx = −g, x(t0) = x0

but the system

{
ẍ = g

ẍ = −g, x(t0) = x0

is contradictory, i.e. non-solvable.
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Similarly, let ψi(x, t) be the state function of particle Pi,

i.e. the solution of



∂Li

∂ψi

− ∂µ
∂Li

∂(∂µψi)
= 0

ψ(t0) = ψ0.

Then, the system (3.2) is solvable if and only if there is a state

function ψ(x, t) on P hold with each equation of system (3.2),

i.e.

ψ(x, t) = ψ1(x, t) = · · · = ψm(x, t), x ∈ R3,

which is impossible because if all state functions ψi(x, t), 1 ≤
i ≤ m are the same, the particles P1, P2, · · · , Pm are nothing

else but just one particle. Whence, the system (3.2) is non-

solvable if m ≥ 2, which implies we can not characterize

the behavior of particle P by classical solutions of differential

equations.

m

M
✻

❄

P1

P2

g

g

Fig. 4

For example, if the state function ψO(x, t) = ψH1
(x, t) =

ψH2
(x, t) in the water molecule H2O for x ∈ R3 hold with



−i~
∂ψO

∂t
=
~

2

2mO

∇2ψO − V(x)ψO

−i~
∂ψH1

∂t
=
~

2

2mH1

∇2ψH1
− V(x)ψH1

−i~
∂ψH2

∂t
=
~

2

2mH2

∇2ψH2
− V(x)ψH2

Then ψO(x, t) = ψH1
(x, t) = ψH2

(x, t) concludes that

AOe−
i
~

(EO t−pO x) = AH1
e−

i
~
(EH1

t−pH1
x) = AH2

e−
i
~
(EH2

t−pH2
x)

for ∀x ∈ R3 and t ∈ R, which implies that

AO = AH1
= AH2

, EO = EH1
= EH2

and pO = pH1
= pH2

,

a contradiction.

Notice that each equation in systems (3.1) and (3.2) is

solvable but the system itself is non-solvable in general, and

they are real in the nature. Even if the system (3.1) holds

with condition (3.3), i.e. it is solvable, we can not apply the

solution of (3.1) to characterize the behavior of particle P be-

cause such a solution only describes the coherent behavior of

particles P1, P2, · · · , Pm. Thus, we can not characterize the

behavior of particle P by the solvability of systems (3.1) or

(3.2). We should search new method to characterize systems

(3.1) or (3.2).

Philosophically, the formula (1.1) is the understanding of

particle P and all of these particles P1, P2, · · · , Pm are inher-

ently related, not isolated, which implies that P naturally in-

herits a topological structure GL[P] in space of the nature,

which is a vertex-edge labeled topological graph determined

by:

V
(
GL [P]

)
= {P1, P2, · · · , Pm},

E
(
GL [P]

)
= {(Pi, P j)|Pi

⋂
P j , ∅, 1 ≤ i , j ≤ m}

with labeling

L : Pi → L(Pi) = Pi and

L : (Pi, P j)→ L(Pi, P j) = Pi

⋂
P j

for integers 1 ≤ i , j ≤ m. For example, the topological

graphs GL[P] of water molecule H2O, meson and baryon in

the quark model of Gell-Mann and Ne’eman are respectively

shown in Fig. 5,

H H

O

H ∩ O H ∩ O

H2O

q1

q2q3

q1 ∩ q3 q1 ∩ q2

q2 ∩ q3

Baryon

q q
′q ∩ q′

Meson

Fig. 5

where O,H, q, q′ and qi, 1 ≤ i ≤ 3 obey the Dirac equation

but O ∩ H, q ∩ q′, qk ∩ ql, 1 ≤ k, l ≤ 3 comply with the Klein-

Gordon equation.

Such a vertex-edge labeled topological graph GL[P] is

called GL-solution of systems (3.1)–(3.2). Clearly, the global

behaviors of particle P are determined by particles P1, P2, · · · ,
Pm. We can hold them on GL-solution of systems (3.1) or

(3.2). For example, let u[v] be the solution of equation at ver-

tex v ∈ V
(
GL[P]

)
with initial value u

[v]

0
and GL0 [P] the ini-

tial GL-solution, i.e. labeled with u
[v]

0
at vertex v. Then, a

GL-solution of systems (3.1) or (3.2) is sum-stable if for any

number ε > 0 there exists δv > 0, v ∈ V(GL0 [P]) such that

each GL′ -solution with

∣∣∣u′[v]
0
− u

[v]

0

∣∣∣ < δv, ∀v ∈ V(GL0 [P])

exists for all t ≥ 0 and with the inequality

∣∣∣∣∣∣∣∣

∑

v∈V(GL′ [P])

u′[v] −
∑

v∈V(GL [P])

u[v]

∣∣∣∣∣∣∣∣
< ε
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holds, denoted by GL[P]
Σ∼ GL0 [P]. Furthermore, if there

exists a number βv > 0 for ∀v ∈ V(GL0 [P]) such that every

GL′ [P]-solution with

∣∣∣u′[v]
0
− u

[v]

0

∣∣∣ < βv, ∀v ∈ V(GL0 [P])

satisfies

lim
t→∞

∣∣∣∣∣∣∣∣

∑

v∈V(GL′ [P])

u′[v] −
∑

v∈V(GL [P])

u[v]

∣∣∣∣∣∣∣∣
= 0,

then the GL[P]-solution is called asymptotically stable, de-

noted by GL[P]
Σ→ GL0 [P]. Similarly, the energy integral of

GL-solution is determined by

E(GL[P]) =
∑

G≤GL0 [P]

(−1)|G|+1

∫

OG

(
∂uG

∂t

)2

dx1dx2 · · ·dxn−1,

where uG is the C2 solution of system

∂u

∂t
= Hv(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u
[v]

0
(x1, x2, · · · , xn−1)


v ∈ V(G)

and OG =
⋂

v∈V(G)

Ov with Ov ⊂ Rn determined by the vth equa-

tion 

∂u

∂t
= Hv(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u
[v]

0
(x1, x2, · · · , xn−1).

All of these global properties were extensively discussed

in [7–11], which provides us to hold behaviors of a composed

particle P by its constitutions P1, P2, · · · , Pm.

4 Reality

Generally, the reality is the state characters (1.1) of existed,

existing or will exist things whether or not they are observable

or comprehensible by human beings, and the observing objec-

tive is on the state of particles, which then enables us to find

the reality of a particle. However, an observation is dependent

on the perception of the observer by his organs or through by

instruments at the observing time, which concludes that to

hold the reality of a particle P can be only little by little, and

determines local reality of P from a macro observation at a

time t, no matter what P is, a macro or micro thing. Why is

this happening because we always observe by one observer

on one particle assumed to be a point in space, and then es-

tablish a solvable equation (1.2) on coherent, not individual

behaviors of P. Otherwise, we get non-solvable equations on

P contradicts to the law of contradiction, the foundation of

classical mathematics which results in discussions following:

4.1 States of particles are multiverse

A particle P understood by formula (1.1) is in fact a multi-

verse consisting of known characters µ1, µ2, · · · , µn and un-

known characters νk, k ≥ 1, i.e. different characters charac-

terize different states of particle P. This fact also implies that

the multiverse exist everywhere if we understand a particle P

with in-observation, not only those levels of I − IV of Max

Tegmark in [24]. In fact, the infinite divisibility of a matter

M in philosophy alludes nothing else but a multiverse ob-

served on M by its individual submatters. Thus, the nature of

a particle P is multiple in front of human beings, with unity

character appeared only in specified situations.

4.2 Reality only characterized by non-compatible sys-

tem

Although the dynamical equations (1.2) established on uni-

lateral characters are individually compatible but they must

be globally contradictory with these individual features un-

less all characters are the same one. It can not be avoided by

the nature of a particle P. Whence, the non-compatible sys-

tem, particularly, non-solvable systems consisting of solvable

differential equations are suitable tools for holding the real-

ity of particles P in the world, which also partially explains a

complaint of Einstein on mathematics, i.e. as far as the laws

of mathematics refer to reality, they are not certain; and as

far as they are certain, they do not refer to reality because the

multiple nature of all things.

4.3 Reality really needs mathematics on graph

As we know, there always exists a universal connection be-

tween things in a family in philosophy. Thus, a family F of

things naturally inherits a topological graph GL[F ] in space

and we therefore conclude that

F = GL[F ] (4.1)

in that space. Particularly, if all things in F are nothing else

but manifolds MT (x1, x2, x3; t) of particles P determined by

equation

fT (x1, x2, x3; t) = 0, T ∈ F (4.2)

in R3 × R, we get a geometrical figure
⋃

T∈F
MT (x1, x2, x3; t),

a combinatorial field ([6]) for F . Clearly, the graph GL[F ]

characterizes the behavior of F no matter whether the system

(4.2) is solvable or not. Calculation shows that the system

(4.2) of equations is non-solvable or not dependent on

⋂

T∈F
MT (x1, x2, x3; t) = ∅ or not.

Particularly, if
⋂

T∈F
MT (x1, x2, x3; t) = ∅, the system (4.2) is

non-solvable and we can not just characterize the behavior

of F by the solvability of system (4.2). We must turn the

contradictory system (4.2) to a compatible one, such as those
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shown in [10] and have to extend mathematical systems on

graph GL[F ] ([12]) for holding the reality of F .

Notice that there is a conjecture for developing mathe-

matics in [4] called CC conjecture which claims that any

mathematical science can be reconstructed from or turned

into combinatorization. Such a conjecture is in fact a com-

binatorial notion for developing mathematics on topological

graphs, i.e. finds the combinatorial structure to reconstruct or

generalize classical mathematics, or combines different math-

ematical sciences and establishes a new enveloping theory on

topological graphs for hold the reality of things F .

5 Conclusion

Reality of a thing is hold on observation with level depen-

dent on the observer standing out or in that thing, particu-

larly, a particle classified to out- or in-observation, or paral-

lel observing from a macro or micro view and characterized

by solvable or non-solvable differential equations, consistent

with the universality principle of contradiction in philosophy.

For holding on the reality of things, the out-observation is

basic but the in-observation is cardinal. Correspondingly, the

solvable equation is individual but the non-solvable equations

are universal. Accompanying with the establishment of com-

patible systems, we are also needed to characterize those of

contradictory systems, particularly, non-solvable differential

equations on particles and establish mathematics on topolog-

ical graphs, i.e. mathematical combinatorics, and only which

is the appropriate way for understanding the nature because

all things are in contradiction.
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LETTERS TO PROGRESS IN PHYSICS

Abraham I. Fet (1924–2007). In Memory of the 90th Anniversary

Abraham I. Fet (1924–2007) belonged to a particular “species

of human” that is becoming extinct today: he could be rather a

man of Renaissance in late Medieval Italy or Enlightenment

in France in the 18th century, or a bright representative of

intelligentsia in Russia of the 19th century.

A. Fet got his basic university education in mathematics

and submitted a brilliant candidate (PhD) thesis at Moscow

University being barely 24 years old. The mathematical re-

sults of his doctoral (DSc) thesis, presented later at the same

University, still remain unsurpassed. He mainly published pa-

pers in mathematics, but he was also enrolled to research in

physics that he started in collaboration with Yuriy B. Rumer,

the famous Russian theoretical physicist. The results of their

joint work were published in two co-authored books Theory

of Unitary Symmetry (1970) and Group Theory and Quan-

tum Fields (1977). Then there followed Symmetry Group of

Chemical Elements, a book written by Fet alone, which pre-

sented a new physical perspective of the System of Chemical

Elements and has become classics.

His research interests, however, were not limited to math-

ematics and physics. He remarkably explored many sciences

and humanities, among which biology, economics, history,

philosophy, sociology, psychology, and even literature, mu-

sic, and arts. Moreover, being an encyclopedic scientist, he

was not just an “erudite”: with his powerful intellect, he built

up a solid worldview from seemingly dispersed lines of

knowledge.

First and utmost, Abraham Fet was a thinker, and his

thinking was a blend of intellect, passion and concern. His

major concern was about the fate of Mankind; he felt himself

an active and responsible protagonist rather than being an ob-

server “heeding to good and evil with equanimity, knowing

neither pity nor ire”.

A. Fet thought a lot on the human society, on the bio-

logical and cultural nature of man, on religious beliefs and

ideals, and on the social mission of the intelligentsia, which

he saw primarily in enlightening. He summarized his ideas

in numerous essays and several books: Pythagoras and the

Ape (1987), Letters from Russia (1989–1991), Delusions of

Capitalism, or the Fatal Conceit of Professor Hayek (1996),

and finally Instinct and Social Behavior (2005). The latter be-

came his main work, where he investigated the history of cul-

ture in terms of ethology, with the aim to “reveal the impact of

the social instinct on the human society, to describe the con-

ditions frustrating its manifestations and to explain the effects

of various attempts to suppress this invincible instinct”. That

Abraham Ilych Fet

was his discovery and first study of a social instinct unique to

humans, which he called “the instinct of intraspecific solidar-

ity”. With comprehensive historic examples, he has convinc-

ingly demonstrated how the morals and love for our neigh-

bors originated from tribal solidarity within a minor kindred

group and how the mark of kinship spread progressively to

ever larger communities, as far as the entire mankind.

Two previously published books, together with a wealth

of unpublished manuscripts, are now coming to the public

with his Collected Works in seven volumes∗.

With his excellent command of seven European langua-

ges, Abraham Fet not only had an extremely broad range of

reading but also chose some important books and translated

them for his friends and broad public. It was especially valu-

able in the conditions of harsh censorship in the Soviet times,

when many books, for instance on psychology, were forbid-

den. Thus he translated Eric Berne, Erich Fromm, Karen Hor-

ney, Gregory Bateson, and many others. Being himself fasci-

nated with the works of Konrad Lorenz, Fet was the first to in-

troduce Lorenz’s main books to the Russian readers. Namely,

∗The publicaiton is just in Russian; an English volunteer translator is

wanted. Ask Ludmila Petrova aifet@academ.org, for detail.
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he translated Das sogennannte Böse (“The So-Called Evil”),

Die acht Todsünden der zivilisierten Menschheit (“Civilized

Man’s Eight Deadly Sins”), Die Rückseite des Spiegels

(“Behind the Mirror”), which were then published twice in

post-Soviet Russia.

Abraham Fet was an ardent opponent to tyranny. Al-

though being more a thinker than an active public person, he

signed the ”Letter of 46” in spring 1968 in defense of impris-

oned dissidents. That lost him his job, both at the research in-

stitute and the university, and left him unemployed for years,

to survive from occasional earns. Another reason of his dis-

missal, though, besides the very fact of signing the letter, was

rather his spirit of independence and straight speaking. He

called things the way he saw them, were they professional or

personal characteristics of his fellows, or intrigues of func-

tionaries or the privileges in science. A moral maximalist,

Abraham Fet despised those who “lived as the others do” and

called this lifestyle “the life of insects”.

Beginning with the mid-1970s, Fet closely followed the

events which took place in Poland. He perceived the revolt of

1980–1981 as the start of collapse of the so-called socialist

camp. His book The Polish Revolution written in the wake

of the events was anonymously published in 1985 in Mu-

nich and London. He not only provided deep review of the

Polish events but also disclosed their historic prerequisites,

demonstrated the outstanding role of the Polish intellectuals

and foretold the further historic paths of the country.

Making retrospective of Fet’s life and works, we can defi-

nitely put his name along with the most outstanding scientists

and thinkers of the 20th century. He was among those who

rarely get recognition during their lifetime. Rather than being

in line with the “spirit of epoch”, his ideas were against the

mainstream. However, these are the ideas that are worth the

most as they blaze truly trails to the science of the future and

appeal to the future Mankind. Let his memory live for ever!

A. V. Gladky, L. P. Petrova, R. G. Khlebopros
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