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LETTERS TO PROGRESS IN PHYSICS

Book Review: “Inside Stars. A Theory of the Internal Constitution of Stars,
and the Sources of Stellar Energy According to General Relativity”

Pierre A. Millette
Astrophysics research on stellar atmospheres at Department of Physics, University of Ottawa (alumnus),

Ottawa, Canada. E-mail: PierreAMillette@alumni.uottawa.ca

This book provides a general relativistic theory of the internal constitution of liquid
stars. It is a solid contribution to our understanding of stellar structure from a general
relativistic perspective. It raises new ideas on the constitution of stars and planetary
systems, and proposes a new approach to stellar structure and stellar energy generation
which is bound to help us better understand stellar astrophysics.

The book “Inside Stars. A Theory of the Internal Constitu-
tion of Stars, and the Sources of Stellar Energy According to
General Relativity” by Larissa Borissova and Dmitri Raboun-
ski [1] provides a general relativistic theory of the internal
constitution of liquid stars.

The generally accepted model of stellar constitution con-
siders stars to be high-temperature gaseous plasmas obeying
the ideal gas equation of state. However, in the late nine-
teenth and early twentieth centuries, the question of whether
stars are gaseous or liquid was the subject of much debate.
P.-M. Robitaille provides a detailed discussion of this debate
in his work [2, 3]. Recent evidence for liquid stars, in partic-
ular the extensive research performed by P.-M. Robitaille on
the liquid metallic hydrogen model of the Sun, and his pro-
posed liquid plasma model of the Sun [4], have re-opened the
question.

In this book, the authors provide a novel general rela-
tivistic theory of the internal constitution of liquid stars, us-
ing a mathematical formalism first introduced by Abraham
Zelmanov for calculating physically observable quantities in
a four-dimensional pseudo-Riemannian space, known as the
theory of chronometric invariants. This mathematical formal-
ism allows to calculate physically observable chronometric-
invariant tensors of any rank, based on operators of projection
onto the time line and the spatial section of the observer. The
basic idea is that physically observable quantities obtained
by an observer should be the result of a projection of four-
dimensional quantities onto the time line and onto the spatial
section of the observer.

In the book, a star is modelled as a sphere of incompress-
ible liquid described by Schwarzschild’s metric. However,
unlike Schwarzschild’s solution which requires that the met-
ric be free of singularities, space-time singularities arecon-
sidered in this model. The conditions for a spatial singularity,
known as a space break, are derived.

For our Sun, a space break is found to be within the Aster-
oid belt. The theory thus also provides a model of the internal
constitution of our solar system. It provides an explanation

for the presence of the Asteroid belt, the general structureof
the planets inside and outside that orbit, and the net emission
of energy by the planet Jupiter.

There is another space break located within a star’s field.
As a result of their analysis, the authors propose a new clas-
sification of stars based on the location of the space breaking
of a star’s field with respect to its surface. This classifica-
tion of stars results in three main types: regular stars (cov-
ering white dwarfs to super-giants) covered in Chapter 2, of
which Wolf-Rayet stars are a subtype, neutron stars and pul-
sars, covered in Chapter 4 and collapsars (i.e. black holes),
covered in Chapter 5. Chapter 3 examines the properties of
the stellar wind within their liquid star model.

The stellar mass-luminosity relation, which is the main
empirical relation of observational astrophysics, is compared
by the authors to that derived in the framework of the liq-
uid model. From this they obtain the physical characteristics
of the mechanism that produces energy inside the stars. Us-
ing the liquid model, the pressure inside stars can be calcu-
lated as a function of radius, including the central pressure.
As pointed out by the authors, the temperature of the incom-
pressible liquid star does not depend on pressure, only on the
source of stellar energy. The authors match the calculated
energy production of the suggested mechanism of thermonu-
clear fusion of the light atomic nuclei in the Hilbert core (the
“inner sun”) of the stars to the empirical mass-luminosity re-
lation of observational astrophysics, to determine the density
of the liquid stellar substance in the Hilbert core.

In the general relativistic model of liquid stars, the inside
of the star is homogeneous, with a small core (about a few
kilometres in radius) in its centre. The core is separated from
the main mass of the star by the model’s collapse surface with
the radius depending on the star’s mass. Despite almost all the
mass of the star being located outside the core (the core is not
a black hole), the force of gravity approaches to infinity on
the surface of the core due to the inner space breaking of the
star’s field within it. The super-strong force of gravity is suf-
ficient for the transfer of the necessary kinetic energy to the
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lightweight atomic nuclei of the stellar substance, to sustain
the process of thermonuclear fusion. Thus, thermonuclear fu-
sion of the light atomic nuclei is possible in the Hilbert core of
each star. The energy produced by the thermonuclear fusion
is the energy emitted by the stars: the small core of each staris
its luminous “inner sun”, while the generated stellar energy is
transferred to the physical surface of the star by thermal con-
ductivity. Due to the fact that the star’s substance is liquid,
more and more “nuclear fuel” is delivered from other regions
of the star to its luminous Hilbert core, thus supporting the
combustion inside the “nuclear boiler”, until the time when
all the nuclear fuel of the star is spent.

Pulsars and neutron stars are found to be stars whose phy-
sical radius is close to the radius of their Hilbert core. They
are modelled by introducing an electromagnetic field in the
theory to account for their rotation and gravitation. Electro-
magnetic radiation is found to be emitted only from the poles
of those stars, along the axis of rotation of the stars.

Finally, the properties of black holes as derived from the
model are considered. The authors find that regular stars can-
not collapse. They derive the conditions for pulsars and neu-
tron stars to become collapsars. Interestingly, the authors ap-
ply their model to the Universe and, based on their results,
suggest that the Universe can be considered as a sphere of
perfect liquid which is in a state of gravitational collapse(the
liquid model of the Universe). Hence they deduce that the
observable Universe is a collapsar, a huge black hole.

This book represents a solid contribution to our under-
standing of stellar structure from a general relativistic per-
spective. It provides a general relativistic underpinningto the
theory of liquid stars. It raises new ideas on the constitution of
stars and planetary systems, and proposes a new approach to
stellar structure and stellar energy generation which is bound
to generate much new research, and help us better understand
stellar astrophysics.

Submitted on October 24, 2013/ Accepted on October 25, 2013
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Mass-Radius Relations of Z and Higgs-Like Bosons

Bo Lehnert
Alfvén Laboratory, Royal Institute of Technology, SE-10044 Stockholm, Sweden. E-mail: Bo.Lehnert@ee.kth.se

Relations between the rest mass and the effective radius are deduced for the Z boson
and the experimentally discovered Higgs-like boson, in terms of a revised quantum
electrodynamic (RQED) theory. The latter forms an alternative to the Standard Model
of elementary particles. This results in an effective radius of the order of 10−18 m for the
Z boson, in agreement with accepted data. A composite model for the Higgs-like boson
is further deduced from the superposition of solutions represented by two Z bosons.
This model satisfies the basic properties of the observed Higgs-like particle, such as
a vanishing charge and spin, a purely electrostatic and strongly unstable state, and an
effective radius of about 10−18 m for a rest mass of 125 GeV.

1 Introduction

Recently an elementary particle has been discovered at the
projects ATLAS [1] and CMS [2] of CERN, being unstable,
having vanishing net electric charge and spin, and a rest mass
of 125 GeV. This discovery was made in connection with a
search for the Higgs boson and its theoretical base given by
the Standard Model of an empty vacuum state.

Being distinguished from the latter model, a revised quan-
tum electrodynamic (RQED) theory has been elaborated [3],
as founded on the principle of a non-empty vacuum state. It is
supported by the quantum mechanical Zero Point Energy [4]
and the experimentally verified Casimir force [5]. This rel-
ativistic and gauge invariant theory of broken symmetry is
based on a nonzero electric field divergence in the vacuum, in
combination with a vanishing magnetic field divergence due
to the non-existence of observed magnetic monopoles.

Among the subjects being treated by RQED theory, this
report is devoted to the mass-radius relation obtained for the
Z boson, and to that associated with a model of the Higgs-like
boson. This provides an extension of an earlier analysis on a
Higgs-like particle [6].

2 Particle with vanishing net electric charge

Due to the RQED theory of axisymmetric particle-shaped
steady states with rest mass, a separable generating function

F (r, θ) = CA − φ = G0G (ρ, θ) , G = R (ρ) · T (θ) (1)

can be introduced in a spherical frame (r, θ, ϕ) of reference
[3]. There is an electrostatic potential φ and an electric charge
density ρ̄= ε0 div E, a current density j = (0, 0,Cρ̄) with C2

= c2 and C = ± c representing the two spin directions along
ϕ, and a magnetic vector potential A = (0, 0, A). A dimen-
sionless radial coordinate ρ= r/r0 is introduced with a char-
acteristic radius r0, and a dimensionless generating function
G with the characteristic amplitude G0.

As based on the function (1), the general forms of the
potentials and the charge density become

CA = − (sin θ)2 DF , (2)

φ = −
[
1 + (sin θ)2 D

]
F , (3)

ρ̄ = − ε0

r2
0 ρ

2
D

[
1 + (sin θ)2 D

]
F , (4)

where the operators are

D = Dρ + Dθ

Dρ = − ∂
∂ρ

(
ρ2 ∂

∂ρ

)
Dθ = − ∂

2

∂θ2 −
cos θ
sin θ

∂

∂θ
.

(5)

Since the analysis will be applied to the special class of
particles with vanishing net electric charge, such as the Z and
Higgs-like bosons, the radial part R of the function (1) has to
be convergent at the origin ρ= 0, and a polar part T is chosen
having top-bottom symmetry with respect to the equatorial
plane θ= π/2. This is due to earlier performed basic deduc-
tions [3].

Due to the non-zero electric field divergence, there are
local intrinsic charges even when the net integrated charge
vanishes. For a convergent generating function the total inte-
grated energy W can either be expressed in terms of the field
energy density

w f =
1
2
ε0

(
E2 + c2B2

)
(6)

or of the source energy density

ws =
1
2
ρ̄ (φ + CA) (7)

from which
W =

∫
w f dV =

∫
ws dV. (8)

We shall use the option (7) for which the local contribution to
the particle mass becomes

dm0 =
ws

c2 dV (9)

and that related to the angular momentum (spin) becomes

ds0 = Cr (sin θ) dm0 (10)
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for a volume element dV = 2πr2(sin θ) dθdr in a spherical fra-
me.

A generating function being convergent both at ρ= 0 and
at large ρ, and having top-bottom symmetry, is finally chosen
through the form

R = ργ · e−ρ, T = (sin θ)α , (11)

where γ> 1 and α> 1. The part R then increases to a maxi-
mum at the effective radius r̂ = γr0 after which it drops steeply
towards zero at large ρ.

3 Model of a Z boson

A Z boson is first considered, having zero net electric charge,
spin h/2π, a rest mass of 91 GeV, and an effective radius of
about 10−18 m according to given data [7].

From (1)–(5), (8), (9) and (11) the product of the mass
m0Z and the effective radius r̂Z = γr0Z becomes

r̂Zm0Z = π
(
ε0/c2

)
r2

0ZG2
0γJmZ , (12)

where

JmZ =

∞∫

0

π∫

0

f gZ dρ dθ (13)

and
f = − (sin θ) D

[
1 + (sin θ)2 D

]
G , (14)

gZ = −
[
1 + 2 (sin θ)2 D

]
G . (15)

The spin is further given by

s0Z = πε0

(
C/c2

)
r2

0ZG2
0JsZ = ±h/2π (16)

where

JsZ =

∞∫

0

π∫

0

ρ (sin θ) f gZ dρ dθ . (17)

Combination of (12)–(17) yields

r̂Zm0Z =
h

2πc
γJmZ

JsZ
. (18)

This relates the mass to the effective radius, in a way being
dependent on the profile shape of the generating function:

• A numerical analysis of the 16 γ6 10 and 16α6 10
cases, results in the large ranges 17.76 JmZ 6 9.01 ×
1015 and 39.86 JsZ 6 1.83× 1016 of the amplitudes JmZ

and JsZ . The last factor of the right-hand member in
(18) stays however within the limited range of 0.445 6
(γJmZ/JsZ) 6 0.904.

• In the asymptotic cases γ�α� 1 and α� γ� 1 the
values of (γJmZ/JsZ) become 15/38 and 1, respectively.
This is verified in an earlier analysis [8].

• In spite of the large variations of JmZ and JsZ with the
profile shape, the factor γJmZ/JsZ thus has a limited
variation within a range of about 0.4 to 1.

For the present deduced model, the rest mass of 91 GeV
then results in an effective radius in the range of 0.87× 10−18

to 2.2× 10−18 m. This is consistent with the given value of r̂Z .
For the expressions (2) and (3) combined with the form

(11) can finally be seen that there is a moderately large de-
viation from a state E2 = c2B2 of equipartition between the
electrostatic and magnetostatic particle energies.

4 Model of a Higgs-like boson

One of the important reactions being considered in the exper-
iments at CERN is the decay of the observed Higgs-like bo-
son into two Z bosons, and further into four leptons. Since the
Higgs-like boson was found to have a mass of 125 GeV, and
the Z bosons have masses of 91 GeV each, an extra contribu-
tion of 57 GeV is required for the decay into the Z bosons.
It can then be conceived that this extra energy is “borrowed”
from the Heisenberg uncertainty relation when the entire de-
cay process takes place in a very short time. At least one of
the involved Z bosons then behaves as a virtual particle. In
this connection is also observed that the magnitude of the
Higgs-like boson mass has not been predicted through the
theory by Higgs [9].

With the decay process in mind, a relation will now be
elaborated between the mass and the effective radius of the
Higgs-like boson. Then it has first to be observed that a rela-
tion similar to equation (18) cannot be straightforwardly de-
duced. This is because the Higgs-like boson has no spin, and
its related effective radius can on account of the required extra
energy not become identical with that of a single Z boson.

Solutions for models of massive individual bosons and
leptons are available from RQED theory. The field equations
are linear, and these solutions can be superimposed to form
a model of a Higgs-like particle having vanishing charge and
spin. It can be done in terms of four leptons or two Z bosons.
Choosing the latter option [6], superposition of the potentials
(2) and (3) for two modes with opposite spin directions results
in a composite Higgs-like mode with zero charge and spin but
nonzero rest mass. This mode has no magnetic field, is purely
electrostatic, and is thus expected to be highly unstable. In
analogy with the deductions (1)–(11), the corresponding in-
tegrated mass m0H becomes

r̂Hm0H = π
(
ε0/c2

)
r2

0HG2
0γJmH (19)

with the effective radius r̂H , r̂Z and

JmH =

∞∫

0

π∫

0

f gH dρ dθ . (20)

Here f is still obtained from (14) and

gH = −2
[
1 + (sin θ)2 D

]
G = gZ −G (21)

6 Bo Lehnert. Mass-Radius Relations of Z and Higgs-Like Bosons
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with gZ given by (15). Combination of (19) and (12) yields

r̂H

r̂Z
=

r0H

r0Z
=

m0H

m0Z

JmZ

JmH
. (22)

The dependence on the profile shape of the generating func-
tion is as follows:

• Numerical analysis in the ranges 16 γ6 10 and 16α6
10 results in the amplitude variations 1386 JmZ 6 9.8×
1015 and 2876 JmH 6 1.8× 1016, but their ratio is stron-
gly limited to 2.036 JmH/JmZ 6 2.20.

• From expression (21) at large γ and α can further be
seen that JmH/JmZ approaches the asymptotic value 2.

With these evaluations, and the experimentally determin-
ed masses m0Z = 91 GeV and m0H = 125 GeV, the effective
radius r̂H of the Higgs-like boson comes from (22) out to be
in the range 0.54× 10−18 to 1.5× 10−18 m.

5 Summary

The present model of the Z boson leads to an effective radius
of the order of 10−18 m, in agreement with given data. This
can be taken as support of the present theory.

Concerning the present model of a Higgs-like boson, the
following results should be observed:

• An imagined “reversal” of the decay of a Higgs-like
boson into two Z bosons initiates the idea of superim-
posing two Z boson modes to form a model of such a
particle. The resulting composite particle solution is
consistent with the point made by Quigg [7] that the
Higgs is perhaps not a truly fundamental particle but is
built out of as yet unobserved constituents.

• The present model of a Higgs-like boson satisfies the
basic properties of the particle observed at CERN. It
has a vanishing electric charge and spin, a nonzero rest
mass, and is unstable due to its purely electrostatic na-
ture.

• The present theory finally results in an effective radius
of the order of 10−18 m for the experimentally detected
Higgs-like particle having a rest mass of 125 GeV, and
vice versa.
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Reexamination of Nuclear Shape Transitions in Gadolinium and Dysprosium
Isotopes Chains by Using the Geometric Collective Model

Khalaf A.M.1, Aly H.F.2, Zaki A.A.2 and Ismail A.M.2

1Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt. E-mail: ali khalaf43@hotmail.com
2Hot Laboratories Center, Atomic Energy Authority, P.No. 13759, Cairo, Egypt. E-mail: dr ahmedph@yahoo.com

The geometric collective model proposed in a previous paper in examined to de-
scribe the nuclear shape transitions for Gd and Dy isotopes chains. The optimized
model parameters for each nucleus have been adjusted by fitting procedure using
a computer simulated search program in order to reproduce the excitation energies
(2+1 , 4

+
1 , 6

+
1 , 8

+
1 , 0

+
2 , 2

+
3 , 4

+
3 , 2

+
2 , 3

+
1 and 4+2 ) and the two neutron separation energies in all

nuclei in each isotopic chain. Calculated potential energy surface (PES’S) describing
all deformation effects of each nucleus have been extracted. Our systematic studies
on Gd / Dy chains have revealed a shape transition from spherical vibrator to axially
deformed rotor when moving from the lighter to heavier isotopes.

1 Introduction

Recent developments in nuclear structure have brought con-
siderable focusing on the problems of shape phase transition
and shape coexistence phenomena [1]. For instance, sev-
eral isotopes have been found to undergo shape phase evo-
lution of first order from spherical vibrator to deformed ax-
ially symmetric rotor [2–6] and phase transition of second
order from spherical vibrator to deformed γ - soft [7–9]. The
study of shape phase transitions in nuclei was best done by
using the interacting boson model (IBM) [10]. The original
version of IBM (IBM-1) includes s and d bosons, it defines
six-dimensional space and this leads to a description in terms
of a unitary group U(6). Three dynamical symmetries in the
IBM-1 were shown [11]: the U(5) symmetry corresponding
to spherical oscillator, the SU(3) symmetry corresponding to
deformed axially rotor and the O(6) symmetry corresponding
to the γ - soft asymmetric rotor shapes. These three sym-
metry limits from a triangle known as a Casten triangle that
represents the nuclear phase diagram [12]. The X(5) critical
point symmetry [13] has been found to correspond to the first
order transition between U(5) and SU(3), while the E(5) crit-
ical point symmetry [14] has been found to correspond to the
second order transition between U(5) and O(6).

In the previous paper [3], we used the flexible and power-
ful geometric collective model (GCM) [3, 15–18] to describe
the quantum phase transition between spherical and deformed
shapes for doubly even nuclei in lanthanide and actinide iso-
topes chains. The potential energy surfaces (PES’S) describ-
ing all deformed effects of each nucleus were extracted in
terms of the intrinsic shape parameters β and γ. The pa-
rameter β is related to the axial deformation of the nucleus,
while γ measure the deviation from axial symmetry. In the
present work, it is of interest to examine the GCM in investi-
gating the shape transition from spherical vibrator to axially
deformed rotor for Gd and Dy isotopic chains by analyzing
the PES’S. In section 2, we construct the GCM Hamiltonian

and its eigenfunction. In section 3, we generated the PES’S to
classify shape phase transitions and to decide if a nucleus is
close to criticality. In section 4, we applied our model to the
rare earth Gd / Dy isotopic chains which evolve a rapid struc-
tural charges from spherical to well-deformed nuclei when
moving from lighter to the heavier isotopes.

2 The GCM Hamiltonian and eigenstates

In GCM, the Hamiltonian of the nucleus, in appropriate units,
can be expressed as a series expansion in terms of the sur-
face deformation coordinates α and the conjugate momenta π
as [3]:

H = 1
2B2

[π × π](0) +C2[α × α](2)

+C3[[α × α](2) × α](0)

+C4[α × α](0)[α × α](0)

(1)

The eigenstates of the the Hamiltonian 1 associated with
the number ν of quanta and definite seniority λ, angular mo-
mentum L and projection M can be denoted by the Ket

|νλµLM⟩ = Fλℓ (β)
∑

k

φ
λµL
k (γ)DL∗

Mk(ωi) (2)

where
ℓ =

1
2

(ν − λ) (3)

and µ indicates the remaining quantum numbers required to
fully characterize the states of the Hamiltonian 1. ωi are the
Euler angles, β and γ are the intrinsic coordinates. DL∗

Mk(ωi)
are the Wigner functions that are the irreducible representa-
tion of the O(3) group.

In equation 2 Fλ
ℓ
(β) are functions of β associated with the

radial part of a five-dimensional oscillator

Fλ
ℓ
(β) =

[
2(ni)

Γ(n+λ+ 5
2 )

]1/2 (
C2
ℏω

) 5
4+
λ
2 βλ

·Lλ+
3
2

n ·
((

C2
ℏω

)
β2

)
e−

1
2

C2
ℏω β

2

(4)
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where Lλ+
3
2

n are the well-known Laguerre polynomials and the
function is normalized for the volume element β4dβ. The γ-
dependent functions φλµLk satisfy the differential equation

Λ2φ
λµL
k = λ(λ + 3)φλµLk (5)

where Λ2 is the seniority operator (Casimir operator of O(5))
which has the form

Λ2 = − 1
sin 3γ

∂

∂γ
+

3∑
k=1

I−1
k L̀2

k(ωi) (6)

with

Ik = 4B2 sin2
(
γ − 2π

3
k
)

(7)

Ik are the moments of inertia with respect to the principle
axes. For arbitrary angular momentum L and λ , φ(γ) reads

φ
λ+2,µ,L+2
k̀

(γ) =
∑

k

φλLL+2
k,k̄

(
γ,
∂

∂γ

)
φ
λµL
k (γ) (8)

φ
λ+2,µ,L+2
k̄

(γ) =

=
∑
L̄k̄k

(√
35(2L̄ + 1)W(L, L + 2, 2, 2, 2L̄) × (9)

Qλ+1,L̄,L+2
k̄,k̀

(
γ,
∂

∂γ

)
Qλ,L,L̄

k,k̄

(
γ,
∂

∂γ

)
φ
λµL
k (γ)

)
where W is a Racah coefficient and Qλ,L,L̄

k,k̄
(γ, d

dγ ) is an operator

function of γ and d
dγ .

3 Potential energy surfaces (PES’S) and critical point
symmetries

The PES depends only upon the shape of the nucleus not
it orientation in space, and can thus be expressed purely in
terms of the shape coordinates β and γ as [3]:

V(β, γ) = C2
1
√

5
β2 −C3

√
2
35
β3 cos 3γ +C4

1
5
β4 (10)

where β ∈ [0,∞] and γ ∈ [0, 2π/3]
The equilibrium shape associated to the GCM Hamilto-

nian can be obtained by determining the minimum of energy
surface with respect to the geometric variables β and γ, i.e
the first derivative vanish. Since the parameter C2 controls
the steepness of the potential, and therefore, the dynamical
fluctuations in γ, it strongly affects the energies of excited in-
trinsic states. The parameter C3 = 0 gives a γ-flat potential
and an increase of C3 introduces a γ-dependence the potential
with a minimum at γ = 0. Changing C3 will indeed induce a
γ-unstable to symmetric rotor transition, it is best to simulta-
neously vary C2 and C4 as well. The shape transition from vi-
brator to rotor is achieved by starting from the vibrator limit,

lowering C2 from positive to negative value, increasing C4 to
large positive value, which gradually increasing C3 (lowering
C2 from positive to negative value, introducing a large posi-
tive C4 and a positive C3).

4 Numerical results applied to Gd and Dy isotopes
chains

The N = 90 isotones 154Gd [15, 16] and 156Dy [17, 18] were
seen to provide good example to transition from spherical to
axially deformed. In our calculation we will examine and sys-
tematically study the lanthanide 148−162Gd and 150−164Dy iso-
topes because of the richness of available experimental data
indicating a transition of nuclear shapes from spherical to de-
formed form. The ground band levels are shown in Figure (1).
We can see that the energy values for each spin states in lan-
thanide change almost linearly for N ≤ 88 and become quite
flat for N ≥ 90. This is consistent with the onset of the Z = 64
sub-shell effect. For actinide the energy levels become flat for
N ≥ 144. The optimized model parameters for each nucleus
was adjusted by fitting procedure using a computer simulated
search program in order to describe the gradual change in the
structure as neutron number varied and to reproduce the prop-
erties of the selected reliable state of positive parity excitation
(2+1 , 4

+
1 , 6

+
1 , 8

+
1 , 0

+
2 , 2

+
3 , 4

+
3 , 2

+
2 , 3

+
1 and 4+2 ) and the two neutron

separation energies of all isotopes in each isotopic chain. The
resulting parameters are listed explicitly in Tables (1).

For the isotopic chains investigated here, the collective
properties are illustrated by represented the calculated poten-
tial energy surface (PES) describing all deformation effects of
the nucleus. We investigated the change of nuclear structure

Table 1: The GCM parameters as derived in fitting procedure used
in the calculation of the Gd and Dy isotopes.

Nucleus C2 C3 C4
148Gd 16.53067 1.48970 -34.76151
150Gd 9.79566 11.28331 -5.21603
152Gd -26.55250 53.24420 138.12500
154Gd -71.41529 104.21630 313.83380
156Gd -91.19133 127.81150 392.95380
158Gd -101.97220 141.63350 437.50440
160Gd -111.19320 153.76500 476.06680
162Gd -120.17800 165.64110 513.72330

150Dy 18.56558 1.70251 -38.99710
152Dy 10.69898 12.69373 -5.14990
154Dy -29.90650 59.16022 154.37500
156Dy -79.02660 114.63790 346.26770
158Dy -99.93424 139.43080 429.68950
160Dy -110.88850 153.43620 474.89930
162Dy -120.13350 165.59310 513.55260
164Dy -129.12150 177.47260 551.221306
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Fig. 1: Systematics of low-lying yrast level energies in even-even
lanthanides Gd/Dy isotopes. The 2+, 4+, ...10+ level energies are
plotted. The states are labeled by Iπ.

within these chains as illustrated in Figures (2, 3). The PES’s
versus the deformation parameter β for lanthanide isotopic
chains of nuclei evolving from spherical to axially symmetric
well deformed nuclei. We remark that for all mentioned nu-
clei, the PES is not flat, exhibiting a deeper minimum in the
prolate (β > 0) region and a shallower minimum in the oblate
(β < 0) region. Relatively flat PES occur for the N = 86 nu-
clei 150Gd and 152Dy. A first order shape phase transition with
change in number of neutrons when moving from the lighter
to heavier isotopes, i.e U(5) - SU(3) transitional region are
observed.

The present result for 154Gd is in good agreement with
Nilsson-Strutinsky BCS calculations [18]. However, the ex-
istence of a bump in the PES is related to the success of the
confined γ-soft (BCS) rotor model [19], employing an infinite
square well potential displaced from zero, as well as to the
relevance of Davidson potentials [20–22]. It also be related

Fig. 2: Potential energy surface (PES) calculated with GCM as
a function of the shape parameter β for shape phase transition
from spherical to prolate deformed for Gadolinium isotope chain
148−162

64Gd.

to the significant five-dimensional centrifugal effect [22–25].

5 Conclusion

In the present paper exact numerical results of GCM Hamil-
tonian along the shape phase transition line from harmonic
spherical vibrator shape to axially deformed rotor shape are
obtained. A systematic study of even-even 148−162Gd and
150−164Dy isotopes chains in the lanthanide region is
presented. For each nucleus the GCM parameters C2, C3, C4
were optimized to fit the energy ratios between selected low-
lying states. The geometric character of the nuclei has been
visualized by plotting the PES’S obtained from the GCM
Hamiltonian. In these chains, nuclei evolve from spherical to
prolate axially deformed rotor when moving from the lighter
to the heavier isotopes. Also we have analyzed the critical
points of the shape phase transition in the space of the GCM
parameters C2, C3 and C4.

Submitted on: July 25, 2013 / Accepted on: August 02, 2013
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Fig. 3: Potential energy surface (PES) calculated with GCM as
a function of the shape parameter β for shape phase transition
from spherical to prolate deformed for Dysprosium isotope chain
150−164

66Dy.
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The critical points of potential energy surface (PES’s) of the limits of nuclear struc-
ture harmonic oscillator, axially symmetric rotor and deformed γ-soft and discussed
in framework of the general geometric collective model (GCM). Also the shape phase
transitions linking the three dynamical symmetries are studied taking into account only
three parameters in the PES’s. The model is tested for the case of 238

92 U , which shows
a more prolate behavior. The optimized model parameters have been adjusted by fit-
ting procedure using a simulated search program in order to reproduce the experimental
excitation energies in the ground state band up to 6+ and the two neutron separation
energies.

1 Introduction

Shape phase transitions from one nuclear shape to another
were first discussed in framework of the interacting boson
model (IBM) [1]. The algebraic structure of this model is
based upon U(6) and three dynamical symmetries arise in-
volving the sub algebras U(5), SU(3) and O(6). There have
been numerous recent studies of shape phase transitions be-
tween the three dynamical symmetries in IBM [2–9]. The
three different phases are separated by lines of first-order
phase transition, with a singular point in the transition from
spherical to deformed γ-unstable shapes, which is second or-
der. In the usual IBM-1 no triaxial shape appears.

Over the years, studies of collective properties in the
framework of geometric collective model (GCM) [3, 10–12]
have focused on lanthanide and actinide nuclei. In GCM the
collective variables β (the ellipsoidal deformation) and γ (a
measure of axial asymmetry) are used. The characteristic nu-
clear shapes occuring in the GCM are shown in three shapes
which are spherical, axially symmetric prolate deformed (ro-
tational) and axial asymmetry (γ -unstable). The shape phase
transitions between the three shapes have been considered by
the introduction of the critical point symmetries E(5) [13] and
X(5) [14]. The dynamical symmetry E(5) describe the phase
transition between a spherical vibrator (U(5)) and γ-soft rotor
(O(6)) and the X(5) for the critical point of the spherical to
axially deformed (SU(3)) transition. Also the critical point in
the phase transition from axially deformed to triaxial nuclei,
called Y(5) has been analyzed [15].

The main objective of this study is to analyze the impor-
tance of the critical points in nuclear shapes changes. The
paper is organized as follows. In sec. 2 we survey the frame-
work of the GCM and the method to analyze the PES’s in
terms of the deformation variables β and γ. In section 3
we study the behavior of the critical point. In section 4 we
present the numerical result for realistic case to even-even

238U nucleus and give some discussions. Finally in section 5,
the conclusions of this work are made.

2 Potential Energy Surfaces in Geometric Collective
Model

We start by writing the GCM Hamiltonian in terms of ir-
reducible tensor operators of collective coordinates α’s and
conjugate momenta π as:

H =
1

2B2
[π × π](0) +C2[α × α](2)

+C3[[α × α](2) × α](0)

+C4[α × α](0)[α × α](0)

(1)

where B2 is the common mass parameter of the kinetic energy
term and C2,C3 and C4 are the three stiffness parameters of
collective potential energy. They are treated as adjustable pa-
rameters which have to be determined from the best fit to the
experimental data, level energies, B(E2) transition strengths
and two-neutron separation energy. The corresponding col-
lective potential energy surface (PES) is obtained by trans-
forming the collective coordinate a2ν into the intrinsic coor-
dinate a2ν. To separate the three rotational degree of freedom
one only has to set

α2µ =
∑
ν

D∗2µν(ω)a2ν. (2)

Since the body axes are principle axes, the products of
inertia are zero, which implies that a21 = a2−1 = 0 and
a22 = a2−2. The two remaining variables a20 and a22, to
gather with Eulerian angles ω, would completely describe the
system replacing the five α2µ. However, there is rather more
direct physical significance in the variables β and γ defined
by

a20 = β cos γ (3)
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a22 =
1
√

2
β sin γ (4)

where β is a measure of the total deformation of the nucleus
and γ indicate the deviations from axial symmetry. In terms
of such intrinsic parameters, we have

[α × α](0) =
β2

√
5

(5)

[[α × α](2) × α](0) = −
√

2
35
β3 cos 3γ. (6)

The PES belonging to the Hamiltonian (1) then reads

E(β, γ) = C2
1
√

5
β2 −C3

√
2
35
β3 cos 3γ +C4

1
5
β4. (7)

The values of β and γ are restricted to the intervals
0 ≤ β ≤ ∞, 0 ≤ γ ≤ π/3. In other words the π/3 sector of
the βγ plane is sufficient for the study of the collective PES’s.

3 Critical Point Symmetries

Minimization of the PES with respect to β gives the equi-
librium value βm defining the phase of the system. βm = 0
corresponding to the symmetric phase and βm , 0 to the bro-
ken symmetry phase. Since γ enters the potential (7) only
through the cos 3γ dependence in the cubic term, the mini-
mization in this variable can be performed separately. The
global minimum is either at γm = 0(2π/3, 4π/3) for C3 > 0
or at γm = π/3(π, 5π/3) for C3 < 0. The second possibility
can be expected via changing the sign of the corresponding
βm and simultaneously setting γm = 0. The phase can be de-
scribed as follows:

1. For C2
3 <

14C2 |C4 |√
5

, phase with βm = 0 interpreted as
spherical shape.

2. For C2
3 <

14C2 |C4 |√
5
,C3 > 0, phase with βm > 0, γm = 0

interpreted as prolate deformed shape.

3. For C2
3 <

14C2 |C4 |√
5
,C3 < 0, phase with βm > 0, γm = π/3

interpreted as oblate deformed shape.

For β non-zero the first derivative of equation (7) must be
zero and the second derivative positive. This gives

4
5

C4β
2 − 3

√
2
35

C3β
3 cos 3γ +

2
√

5
C2 = 0

12
5

C4β
2 − 6

√
2
35

C3β
3 cos 3γ +

2
√

5
C2 > 0 (8)

The solution of equation (8), yields β± = 3
4

√
5
14 (1 ± r)e

with r =
√

1 − d, d = 112
9
√

5
C2C4

C2
3

and e = C3
C4

.

The minimum values of the potential are

E(β) = − 135
50176

(r ± 1)3(3r ∓ 1) f (9)

with f = C4
3

C3
4
.

For d > 1 there is only one minimum located at β = 0.
For 0 < d < 1, minima are present both at non-zero β and at
β = 0, with the deformed minimum lower 0 < d < 8/9 and
the undeformed minimum lower for 8/9 < d < 1. For d < 0,
the potential has both a global minimum and a saddle point at
non-zero β. For harmonic vibrator shape C3 = C4 = 0, this
yields

E(β) =
C2√

5
β2, C2 > 0. (10)

For γ-unstable shape, the solution forβ , 0 are obtained
if we set C3 = 0 in equation (8). Then equation (8) gives

4
5

C4 β
2 +

2
√

5
C2 = 0

or

β = ±

√
−
√

5
2

C2

C4
≃ ±1.057

√
−C2

C4
;

this requires C4 and C2 to have opposite sign. Since C4 must
be positive for bound solutions C2 must be negative in de-
formed γ-unstable shape. That is the spherical — deformed
phase transition is generated by a change in sign of C2, while
the prolate-oblate phase is corresponding to changing the sign
of C3. For symmetric rotor one needs with both a deformed
minimum in β and a minimum in γ, at γ = 0 for prolate or
γ = π/3 for oblate. For prolate shape this requires C3 >
0, such a potential has a minimum in β at β± equation (7).
For γ = 0 ( to study the β-dependence), and providing that
C2 > 0 and C3 > 0, then the critical point is located at
C2

3 < 14C2|C4|/
√

5.
In Fig. (1a) a typical vibrator is given, the minimum of the

PES is at β = 0 and therefore the ground state is spherical. In

Table 1: The GCM parameters for shape-phase transition (a) from
vibrator to rotor (b) from rotor to γ-soft.

C2 C3 C4

set (a) 1 0 0
-0.25 0.7 10

-1 1 20
-2.5 1.7 29

set (b) -3 2 40
-4.2 1.5 80
-4.5 1 120
-5 0 170
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Fig. (1b) a typical axially deformed prolate is given, where
the minimum it as β , 0 and the ground state is deformed.
In Fig. (1c) a case of γ-unstable shape is illustrated. Fig. (2a)
gives the PES’s calculated with GCM as a function of the
shape poor rotor β for shape phase transition from spherical
to prolate deformed and in Fig. (2b) from rotor to γ-soft. The
model parameters are listed in Table (1).

For simplicity we write equation (7) when γ = 0 in form

E(β) = A2β
2 + A3β

3 + A4β
4. (11)

The extremism structure of the PES depends only upon the
value A2 as summarized in Table (2) and Fig. (3). For A2 < 0
the potential has both a global minimum and a saddle point at
non-zero β. For A2 > 0, minima are present at both β , 0 and
β = 0 with the deformed minimum lower for A2 = 109.066
and the undeformed minimum lower for A2 = 161.265. For
A2 = 22.6 there is only one minimum located at β = 0.

4 Application to 238
92 U

We applied the GCM to the doubly even actinide nucleus
238U. The optimized model parameter was adjusted by fit-

Fig. 1: Potential energy surface (PES’s) in framework of GCM for
three different shapes (a) harmonic vibrator shape (C2 = 1, C3 = 0,
C4 = 0) (b) strongly axially deformed prolate shape (C2 = −2.5,
C3 = 1.7, C4 = 29) (c) γ-unstable shape (C2 = −5, C3 = 0, C4 = 17).

Fig. 2: Potential energy surface (PES’s) in framework of GCM for
two different shape transitions (a) from vibrator to rotor (b) from
rotor to γ-soft rotor the set of parameters are listed in Table (1).

Table 2: Set of control parameters of the GCM to describe the nature
of the critical points.

A2 A3 A4

22.600 -1.120 0.234
66.412 -294.869 368.217
161.265 -935.148 1148.890
85.714 -573.709 960.000

109.066 -881.661 1603.589
0.000 -152.991 387.884

-15.581 -48.791 214.854
-22.098 -3.286 137.500

ting procedure using a computer simulated search program
in order to reproduce some selected experimental excitation
energies (2+1 , 4

+
1 , 6

+
1 ) and the two neutron separation energies.

The PES versus the deformation parameter β for 238U is il-
lustrated in Fig. (4). The figure show that 238U exhibit a
deformed prolate shape.

5 Conclusion

In this study we used the GCM to produce the PES’s to inves-
tigate the occurrence of shape phase transitions. The critical
point symmetries are obtained. The validity of the model is
examined for 238U. A fitting procedure was proposed to de-
forming the parameters of the geometric collective Hamilto-
nian for the axially symmetric deformed rotor.
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Dynamical 3-Space: Observing Gravitational Wave Fluctuations
and the Shnoll Effect using a Zener Diode Quantum Detector
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Shnoll has investigated the non-Poisson scatter of measurements in various phenomena
such as biological and chemical reactions, radioactive decay, photodiode current leak-
age and germanium semiconductor noise, and attributed the scatter to cosmophysical
factors. A more recent model of reality leads to a description of space which is dy-
namic and fractal and exhibits reverberation effects, and which offers an explanation for
the scatter anomaly. This paper is a correction to the work presented earlier which used
data from a RF coaxial cable experiment, but had insufficient timing resolution to show
the full effects of what Shnoll observed. Here we report a different way to produce the
effects through studying current fluctuations in reverse biased zener diode gravitational
wave detector with better timing resolution. The current fluctuations have been shown
to be caused by dynamical 3-space fluctuations/turbulence, namely gravitational waves.

1 Introduction — Shnoll effect

For over half a century Simon Shnoll has studied the non-
Poisson scatter anomalies in various phenomena such as bio-
logical and chemical reactions, radioactive decay, photodiode
current leakage and germanium semiconductor noise. An ex-
ample of this is Fig. 1, which shows a layered histogram of
some 352,980 successive measurements of the α decay rate
of a 239Pu source [1] undertaken by Shnoll between May 28
— June 01, 2004. The layer lines taken every 6000 suc-
cessive measurements show a fine structure which builds up
over time instead of cancelling out as in the case of a typical
random or Poisson distribution. This suggests that the ra-
dioactivity of 239Pu takes on discrete (preferred) values, and
is not completely random. It should be clarified here that
the effects Shnoll studied in depth were those concerning the
shapes of histograms taken using fewer measurements (usu-
ally between 60 and 100) instead of that of the non-Poisson
scatter of measurements taken over a much larger data set as
discussed in our previous paper [2]. Shnoll found that the
shapes of histograms from either the same or different ex-
periments correlated via both absolute (same time) and lo-
cal (time delay due to Earth’s rotation) time synchronism and
that the phenomenon causing this had a fractal nature. Shnoll
attributed the cause of this to cosmophysical factors, i.e. in-
homogeneities in the “space-time continuum” [1, 4]. These
inhomogeneities are “caused by the movement of an object
in the inhomogeneous gravitational field”, e.g. as the Earth
rotates/orbits the Sun, as the moon orbits the Earth etc. While
these inhomogeneities were not characterised by Shnoll there
is a remarkable amount of evidence supporting this conclu-
sion [1]. An experiment which studied the phase difference
of two RF signals traveling through two coaxial cables [5]
was reported to show similar non-Poisson characteristics to
that of 239Pu decay shown in Fig. 1.

An alternative model of reality leads to a description of
space which is dynamic and fractal. The RF coaxial cable
propagation experiment can be used to characterise gravita-
tional waves. However the resolution of the data in the coax-
ial cable experiment proved to be insufficient to study changes
in histogram shapes. It is reported here that a newer technique
which studies the non-Poisson characteristics of the current
fluctuations in zener diodes and may be used to study gravi-
tational waves. This technique allows for faster recording of
data (every second instead of every 5 seconds) and used much
higher digital resolution.

2 Dynamical 3-space

An alternative explanation of the Shnoll effect has been pro-
posed using the dynamical 3-space theory; see Process Phy-
sics [6]. This arose from modeling time as a non-geometric
process, i.e. keeping space and time as separate phenomena,
and leads to a description of space which is dynamic and frac-
tal. It uses a uniquely determined generalisation of Newto-
nian Gravity expressed in terms of a velocity field v(r, t), de-
fined relative to an observer at space label coordinate r, rather
than the original gravitational acceleration field. The dynam-
ics of space in the absence of vorticity, ∇ × v = 0, becomes∗

∇·
(
∂v
∂t

+ (v·∇)v
)

+
5α
4

(
(trD)2 − tr(D2)

)
+ ... = −4πGρ, (1)

where Di j = ∂vi/∂x j, and ρ = ρ(r, t) is the usual matter den-
sity. The 1st term involves the Euler constituent acceleration,
while the α−term describes the self interaction of space. Lab-
oratory, geophysical and astronomical data suggest that α is

∗The α term in (1) has recently been changed due to a numerical error
found in the analysis of borehole data. All solutions are also altered by these
factors. (1) also contains higher order derivative terms — see [7] .
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Fig. 1: Non-Poisson distribution of 352,980 measurements of 239Pu
α decay by Shnoll performed in 2004 (Fig. 2-2 of [1]). The layered
histograms are taken every 6000 measurements. The x-axis denotes
the number of decay events per second and the y-axis is the fre-
quency of measurements.

the fine structure constant ≈ 1/137. This velocity field corre-
sponds to a space flow which has been detected in numerous
experiments. In the spherically symmetric case and in the ab-
sence of matter ρ = 0, (1) contains solutions for black holes
(spatial inflows) and an expanding universe (Hubble expan-
sion) along with that for black holes embedded in an expand-
ing universe [7]. Eqn.(1) also contains solutions for the inflow
of space into a matter density. Perturbing the spatial inflow
into matter (i.e. simulating gravitational waves) has shown to
produce reverberations in which the wave generates trailing
copies of itself [8]. This reverberation effect is caused by the
non-linear nature of the flow dynamics evident in (1).

3 Zener diode quantum gravitational wave detector

A gravitational wave detector experiment performed in March
2012 measured the travel time difference of two 10MHz radio
frequency (RF) signals propagating through dual coaxial ca-
bles [5]. This technique exploited the absence of the Fresnel
drag effect in RF coaxial cables, at sufficiently low frequen-
cies. This permitted the detection of gravitational waves at
1st order in v/c using one clock. The timing resolution of the
results were however insufficient to study the effects Shnoll
investigated, namely the changes in the histogram shapes over
time.

A more recent experiment uses the current fluctuations in
a reverse biased zener diode circuit. The circuit diagram is
shown in Fig. 3. This detector exploits the discovery that the
electron tunnelling current is not random, but caused by grav-

Fig. 2: Non-Poisson distribution of 376,101 measurements of zener
diode current fluctuation (µA) observed from 20 — 27 Aug. 2013
in Adelaide. The layered histograms are taken every 6100 measure-
ments to show a comparison with that of Fig.1.

itational waves; namely fluctuations/turbulence in the pass-
ing dynamical 3-space [3]. A Fast Fourier Transform of the
zener diode data was taken to remove low frequency artefacts,
and then a histogram taken of the resultant 376,101 measure-
ments (after inverse FFT) to generate the layered histogram
plot shown in Fig. 2. Layer lines are inserted every 6100
measurements to show a comparison with the Shnoll plot in
Fig. 1. Fig. 2 is remarkably comparable to Fig. 1, showng that
the Shnoll effect is also present in zener diode experiments.
The structure observed appears to build up over time instead
of cancelling out and is also found to persist regardless of
the time scale used for the phase difference, suggesting that
the phenomenon causing this has a fractal nature as depicted
in Fig.4. If this is indeed caused by a dynamical and frac-
tal 3-space then the persisting structure observed in Figs. 1
and 2 correspond to regions of space passing the Earth that
have preferred/discrete velocities, and not random ones, as
randomly distributed velocities would result in a Poisson dis-
tribution, i.e. no features. A likely explanation for this is that
the gravitational waves propagating in the 3-space inflow of
the Earth or Sun could become phase locked due to the rel-
ative locations of massive objects [8]. This would cause re-
verberation effects, i.e. regions of space which have the same
speed and direction, which then repeat over time. The re-
verberations would be detectable in many other experiments
such as EM anisotropy, radiation decay, semiconductor noise
generation etc. and could in the future be used to further char-
acterise the dynamics of space.
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Fig. 3: Circuit of Zener Diode Quantum Gravitational Wave De-
tector, showing 1.5 AA battery, 1N4728A zener diode operating in
reverse bias mode, and having a Zener voltage of 3.3 V, and resis-
tor 10KΩ. Voltage V across resistor is measured and used to de-
termine the space driven fluctuating tunneling current through the
zener diode, [3]. Data is shown in Fig.2.

4 Conclusion

The data from a zener diode quantum gravitational wave ex-
periment displays the non-Poisson characteristics Shnoll ob-
served previously in radioactivity experiments. It is suggested
that these two experiments (along with other work by Shnoll)
are caused by the fractal nature of space, together with the
reverberation effect from gravitational waves, as predicted by
the Dynamical 3-Space theory.
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wrt the earth with a speed of 500 km/s.
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Kepler-47 Circumbinary Planets obey Quantization of Angular Momentum
per Unit Mass predicted by Quantum Celestial Mechanics (QCM)

Franklin Potter
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The Kepler-47 circumbinary system has three known planets orbiting its binary star
barycenter and therefore can provide a precision test of the Quantum Celestial Mechan-
ics (QCM) prediction of the quantization of angular momentum per unit mass in all
gravitationally bound systems. Two of the planets are in the Habitable Zone (HZ), so
system stability can be a primary concern. QCM may be a major contributor to the
stability of this system.

1 Introduction

We report another precision test of quantum celestial mechan-
ics (QCM) in the Kepler-47 circumbinary system that has
three planets orbiting its two central stars. QCM, proposed
in 2003 by H.G. Preston and F. Potter [1] as an extension of
Einstein’s general theory of relativity, predicts angular mo-
mentum per unit mass quantization states for bodies orbiting
a central mass in all gravitationally bound systems with the
defining equation in the Schwarzschild metric being

L
µ

= m
LT

MT
. (1)

Here µ is the mass of the orbiting body with orbital angu-
lar momentum L and MT is the total mass of the bound sys-
tem with total angular momentum LT . We determine that the
quantization integers m are 4, 6, and 7, for the three circumbi-
nary planets 47-b, -d, -c, respectively, with a linear regression
fit R2 = 0.9993. Note that in all systems we have considered,
we assume that the orbiting bodies have been in stable orbits
for at least a 100 million years.

In other two-star systems with one or two circumbinary
planets, the two stars contributed more than 95% of the total
angular momentum of the system. In Kepler-47, the three
known planets are contributing at least 25% of the angular
momentum, a significant fraction, so Kepler-47 provides an
additional test of QCM.

As we determined in the paper cited above, in the Solar
System the Oort Cloud dominates the total angular momen-
tum, its contribution being nearly 60 times the angular mo-
mentum of the planets, but the value has large uncertainty. In
the numerous multi-planetary systems around a single star for
which we have checked the QCM angular momentum quan-
tization restriction [2], not only do the planetary orbits con-
tribute much more angular momentum than the star rotation,
but also each was determined to require additional angular
momentum contributions from more planets and/or the equiv-
alent of an Oort Cloud.

We find also that Kepler-47 could have more angular mo-
mentum contributions beyond the angular momentum sum of
the binary stars and the three planets.

Fig. 1: Kepler-47 System m values predicted by QCM.

2 Results

W.F. Welsh, J.A. Orosz, et al. [3,4] have recently reported the
properties of the Kepler-47 system:

• Stars A and B have masses 1.04 ± 0.06 M� and 0.36
M� with orbital period 7.45 days.

• Planet 47-b has mass < 2MJup, orbital period 49.53
days and orbital eccentricity e < 0.035.

• Planet 47-c has mass < 28MJup, orbital period 303.1
days and orbital eccentricity e < 0.2.

• Planet 47-d has orbital period 187.3 days, unknown ec-
centricity, and unknown mass value.

Planet-c is definitely within the Habitable Zone (HZ) and
so is planet 47-d. As the authors state, Kepler-47 establishes
that planetary systems can form and persist in the chaotic en-
vironment close to binary stars as well as have planets in the
HZ around their host stars.

In order to use the angular momentum condition, one as-
sumes that the orbiting body is at or near its QCM equi-
librium orbital radius r and that the orbital eccentricity ε is
low so that our nearly circular orbit approximation leading
to the quantization equation holds true. Therefore, the L of
the orbiting body will agree with its Newtonian value L =

µ
√

GMT r(1 − ε2).
In Fig. 1 is shown a plot of L′ = L/µ versus m for the three

known planets in the Kepler-47 system. The circles about the
data points contain the uncertainty bars for L′. The slope b of
the line in this plot is used to predict the system’s total angular
momentum LT = bMT multiplied by 1015 kg-m2/s.
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The QCM predicted value of 17.7×1044 kg-m2/s is much
larger than the estimated upper value of 12×1044 kg-m2/s
from the five bodies in orbit about the barycenter. Therefore,
QCM predicts additional sources of angular momentum for
this Kepler-47 system.

What are possible additional sources for the QCM pre-
dicted total angular momentum? There could be massive
bodies at m = 3, 5, 8, 9, . . . However, massive bodies with
sufficient orbital angular momentum at either m = 3 or m = 5
would have been detected already by their perturbation effects
on the known planets, so the additional planetary angular mo-
mentum must be exterior to planet 47-c, i.e., will have m > 7.
Perhaps new sources will be detected in the near future to
provide another check on the QCM quantization condition.

3 Conclusions

The Kepler-47 system provides further evidence that angular
momentum has a primary role in gravitationally bound sys-
tems at all scale sizes, particularly in determining the spac-
ings of planetary orbits in solar systems, of satellites of plan-
ets [5], of planets in circumbinary systems, as well as deter-
mining physical properties of galaxies, clusters of galaxies,
and the Universe.

Although the three known planets in Kepler-47 have an
excellent fit to the QCM quantization condition, further orbit-
ing bodies are predicted that could provide an additional test
when they are detected. If they are located at orbital radii that
do not agree with acceptable values, QCM will be challenged
to explain the discrepancies.
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Observed Gravitational Wave Effects: Amaldi 1980 Frascati-Rome
Classical Bar Detectors, 2013 Perth-London Zener-Diode
Quantum Detectors, Earth Oscillation Mode Frequencies
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Amaldi et al in 1981 reported two key discoveries from the Frascati and Rome gravita-
tional wave cryogenic bar detectors: (a) Rome events delayed by within a few seconds to
tens of seconds from the Frascati events, and (b) the Frascati Fourier-analysed data fre-
quency peaks being the same as the earth oscillation frequencies from seismology. The
time delay effects have been dismissed as being inconsistent with gravitational waves
having speed c. However using data from zener diode quantum detectors, from Perth
and London, for January 1-3, 2013, we report the same effects, and in excellent agree-
ment with the Amaldi results. The time delay effects appear to be gravitational wave
reverberations, recently observed, and for gravitational wave speeds of some 500 km/s,
as detected in numerous experiments. We conclude that the Amaldi et al. discoveries
were very significant.

1 Introduction

On the basis of data from the new nanotechnology zener-dio-
de quantum gravitational wave detectors [1] it is argued that
the wave effects detected in 1980 by Amaldi et al [2,3], using
two cryogenic bar detectors, located in Frascati and Rome,
were genuine gravitational wave effects, together with earth
oscillation effects, although not gravitational waves of the ex-
pected form.

The speed and direction of gravitational waves have been
repeatedly detected using a variety of techniques over the last
125 years, and have a speed of some 500 km/s coming from
a direction with RA ∼ 5 hrs, Dec ∼ 800. These waves ap-
pear to be of galactic origin, and associated with the dynam-
ics of the galaxy and perhaps the local cluster. This speed is
that of the dynamical 3-space, which appears to have a frac-
tal structure, and the significant magnitude waves are turbu-
lence/fractal structure in that flowing space. The detection
techniques include gas-mode Michelson interferometers, RF
coaxial cable EM speed measurements, RF coaxial-cable -
optical fiber RF/EM speed measurements, EM speed mea-
surements from spacecraft Earth-flyby Doppler shifts, zener-
diode quantum detectors, within Digital Storage Oscillosco-
pes, and in so-called Random Event Generators (REG) [1,
4, 5]. These zener diode devices have detected correlations
between Adelaide and London, and between Perth and Lon-
don, with travel time delays from 10 to 20 seconds, and with
significant reverberation effects [1, 6]. The speed of some
500 km/s has also been observed as a time delay of some
500 ns in table-top zener-diode quantum detectors, separated
by 25 cm in a S to N direction. The zener-diode gravitational
wave quantum detectors operate by the process of the 3-space
wave turbulence causing the quantum to classical transition,
i.e. spatial localisation of the electron wave functions tunnel-

Fig. 1: Perth zener-diode quantum detector (REG) data, for January
1, 2013. The data points are at 1 s intervals. The data shows strong
peaks at 5 - 30 s intervals, related to the reverberation effect [6]. This
appears to be the time-delay effect detected between the Frascati and
Rome cryogenic gravitational wave bar detectors [2, 3].

ing through a 10 nm quantum barrier, when the diode is oper-
ated in reverse bias. The earlier techniques rely on detecting
EM radiation anisotropy.

2 The Amaldi Frascati Rome gravitational wave detec-
tors

Data was collected with two cryogenic resonant gravitational
wave antennas operated simultaneously in Rome and Fras-
cati. Coincidences were detected with pulses lasting about 1
second, and travel times differing from one second to twenty
seconds (±0.5 s), with the NW Rome signal delayed relative
to the Frascati events. These events were dismissed as gravi-
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Fig. 2: Top: Power spectrum from Zener Diode detector in Perth, Jan 1-3, 2013. Middle: Power spectrum from Zener Diode detector in
London, Jan 1-3, 2013. Bottom: Power spectrum from Frascati bar detector data, May 6-7, 1980, adapted from Amaldi et al [3]. Vertical
lines (red) show various earth vibration periods, determined by seismology [9]. M(T ) = |F(T )|2 is the power spectrum, expressed as a
function of period T , where F(T ) is the Fourier transform of the data time series. A 200 sec interval of the Perth data is shown in Fig.1.
The spectra from all detectors show the same low frequency peaks, but with differing intensities. The peaks at 53.1 and 54.1 min equal the
0S +1

2 and 0S −1
2 Earth vibration modes.
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tational wave events as the travel times, for the 20 km separa-
tion, far exceeded that expected if one assumes that gravita-
tional waves travel at speed c, predicting travel times ∼0.1 ms.
As well frequency analysis of the data revealed strong peaks
at frequencies coinciding with known vibration frequencies
of the earth, see bottom plot of Fig. 2. Amaldi et al. consid-
ered several mechanisms for the detection of such frequen-
cies: (i) various instrumental couplings to the earth vibra-
tions, (ii) gravitational field variations caused by a terrestrial
source. However the very same results are obtained with the
zener-diode quantum gravitational wave detectors.

3 Zener diode detectors

In [1] the discovery of the nanotechnology zener diode detec-
tion effect for gravitational waves was reported. This was
established by detecting times delays between wave forms
of 10-20 seconds for travel times Adelaide to London, and
Perth to London, with that travel time variation following the
earth’s rotation with respect to the RA and Dec that had been
reported in earlier experiments [4,5], and which displayed the
sidereal effect, viz the earth time of the earth rotation phase
was essentially fixed relative to sidereal time, i.e. the flow
direction was fixed relative to the stars.

The zener diode detectors first used are known as Ran-
dom Number Generators (RNG) or Random Event Genera-
tors (REG). There are various designs available from man-
ufacturers, and all claim that these devices manifest hard-
ware random quantum processes, as they involve the quan-
tum to classical transition when a measurement, say, of the
quantum tunneling of electrons through a nanotechnology po-
tential barrier, ∼10 nm thickness, is measured by a classi-
cal/macroscopic system. According to the standard interpre-
tation of quantum theory, the collapse of the electron wave
function to one side or the other of the barrier, after the tun-
neling produces a component on each side, is purely a random
event, internal to the quantum system. However that interpre-
tation had never been tested experimentally, until [1]. Data
from two REGs, located in Perth and London, was examined.
The above mentioned travel times were then observed. The
key features being a speed of ∼500 km/s, and strong reverber-
ation effects, see Fig. 1.

This discovery revealed that current fluctuations through
a zener diode in reverse bias mode are not random, and data
from collocated zener diodes showed almost identical fluctu-
ations [1]. Consequently the zener diode detectors can eas-
ily be increased in sensitivity by using zener diodes in paral-
lel, with the sensitivity being proportional to the number of
diodes used, see circuit diagram in [1]. That the quantum to
classical transition, i.e. “collapse of the wave function”, is in-
duced by 3-space fluctuations, has deep implications for our
understanding of quantum phenomena.

Using data from REG’s located in Perth and London, for
Jan. 1-3, 2013, and then doing a Fourier transform frequency

analysis, we obtain the spectrum in the top two plots in Fig. 2.
The unfiltered power spectra from the two REGs show re-
markable similarity to each other, and to the spectrum from
the Frascati data. Again the dominant frequencies correspond
to known earth vibration frequencies [9], although there are
long-period oscillations, common to all detectors, that are not
known earth frequencies.

This new data shows that the time delays observed be-
tween Frascati and Rome are to be expected, because of the
strong reverberation effects seen in the zener diode detector
data. However the occurrence of the earth vibration frequen-
cies is intriguing, and reveals new physics. Unlike the bar
detectors it is impossible for any physical earth movement
to mechanically affect the zener diodes, and so all detectors
are responding to dynamical space fluctuations caused by the
oscillations of the matter forming the earth. The key ques-
tions are: What causes this ongoing activation of the earth
modes? Are they caused by earthquakes or by the fractal 3-
space waves exciting the earth modes?

4 Conclusions

The discovery of the quantum detection of gravitational wa-
ves, showing correlations between well separated locations,
that permitted the absolute determination of the 3-space ve-
locity of some 500 km/s, in agreement with the speed and di-
rection from a number of previous analyses, including in par-
ticular the NASA spacecraft Earth-flyby Doppler shift effect.
This discovery enables a very simple and cheap nanotechnol-
ogy zener-diode quantum gravitational wave detection tech-
nology, which will permit the study of various associated phe-
nomena, such as solar flares, coronal mass ejections, earth-
quakes, eclipse effects, moon phase effects, non-Poisson fluc-
tuations in radioactivity [7, 8], and other rate processes, and
variations in radioactive decay rates related to distance of the
earth from the Sun, as the 3-space fluctuations are enhanced
by proximity to the sun. As an example of these possibil-
ities we have confirmed that the Amaldi et al bar detectors
did indeed detect gravitational wave events in 1980, but not
of the form commonly expected, in particular gravitational
waves do not travel at speed c, and there is no experimental
or observational evidence supporting that claim.

5 Acknowledgements

This report is from the Flinders University Gravitational Wa-
ve Detector Project, Australian Research Council Discovery
Grant: Development and Study of a New Theory of Gravity.
Thanks to GCP and its director Dr Roger Nelson for the avail-
ability of extensive and valuable data from the REG interna-
tional network: http://teilhard.global-mind.org/. Giovanni B.
Bongiovanni, Turin, raised the earth vibration frequency ef-
fect observed using a zener diode detector, and also confirmed
the strong correlations between collocated detectors.

Submitted on November 18, 2013 / Accepted on November 20, 2013

Cahill R.T. Observed Gravitational Wave Correlations: Amaldi 1980 Rome-Frascati Classical Bar Detectors 23



Volume 10 (2014) PROGRESS IN PHYSICS Issue 1 (January)

References
1. Cahill R. T. Nanotechnology quantum detectors for gravitational waves:

Adelaide to London correlations observed. Progress in Physics, 2013,
v. 4, 57–62.

2. Amaldi E., Coccia E., Frasca S., Modena I., Rapagnani P., Ricci F.,
Pallottino G. V., Pizzella G., Bonifazi P., Cosmelli C., Giovanardi U.,
Iafolla V., Ugazio S., and Vannaroni G. Background of gravitational-
wave antennas of possible terrestrial origin — I. Il Nuovo Cimento,
1981, v. 4C (3), 295–308.

3. Amaldi E., Frasca S., Pallottino G. V., Pizzella G., Bonifazi P. Back-
ground of gravitational-wave antennas of possible terrestrial origin —
II. Il Nuovo Cimento, 1981, v. 4C (3), 309–323.

4. Cahill R. T. Combining NASA/JPL one-way optical-fiber light-speed
data with spacecraft Earth-flyby Doppler-shift data to characterise 3-
space flow. Progress in Physics, 2009, v. 4, 50–64.

5. Cahill R. T. Characterisation of low frequency gravitational waves from
dual RF coaxial-cable detector: fractal textured dynamical 3-space.
Progress in Physics, 2012, v. 3, 3–10.

6. Cahill R. T. and Deane S.T. Dynamical 3-space gravitational waves:
reverberation effects, Progress in Physics, 2013, v. 2, 9–11.

7. Shnoll S. E. Cosmophysical Factors in Stochastic Processes. American
Research Press, Rehoboth, New Mexico, USA, 2012.

8. Rothall D. P. and Cahill R. T. Dynamical 3-Space: Observing Gravi-
tational Wave Fluctuations and the Shnoll Effect using a Zener Diode
Quantum Detector. Progress in Physics, 2014, v. 10 (1), 16–18.

9. Masters T. G. and Widmer R. Free oscillations: frequencies and atten-
uations. In: Ahrens I. J., Ed. Global Earth Physics, A Handbook of
Physical Constants, AGU, 1995, 104–125.

24 Cahill R.T. Observed Gravitational Wave Correlations: Amaldi 1980 Rome-Frascati Classical Bar Detectors



Issue 1 (January) PROGRESS IN PHYSICS Volume 10 (2014)

LETTERS TO PROGRESS IN PHYSICS

Florentin Smarandache: A Celebration

Dmitri Rabounski
E-mail: rabounski@ptep-online.com

We celebrate Prof. Florentin Smarandache, the Associate Editor and co-founder of
Progress in Physics who is a prominent mathematician of the 20th/21th centuries. Prof.
Smarandache is most known as the founder of neutrosophic logic, which is a modern
extension of fuzzy logics by introducing the neutralities and denials (such as “neutral
A” and “non-A” between “A” and “anti-A”). He is also known dueto his many discov-
eries in the filed of pure mathematics such as number theory, set theory, functions, etc.
(see many items connected with his name inCRC Encyclopedia of Mathematics). As
a multi-talented person, Prof. Smarandache is also known due to his achievements in
the other fields of science, and also as a poet and writer. He still work in science, and
continues his creative research activity.

Florentin Smarandache (born on December 10, 1954) —
polymath, professor of mathematics, scientist, poet and writer
(originally writting in Romanian, French, and English). Heis
a US citizen. He lives in the United States.

Florentin Smarandache was born in Bălceşti, a small vil-
lage in province Vâlcea, Romania. His ancestors from fa-
ther’s side came to Romania from Greece, several generations
before, but saved their Greek family name (which was roman-
ized) over the centuries. He was the only child in the family.

In 1979, Florentin Smarandache was graduated from the
Department of Mathematics at the University of Craiova (Ro-
mania). In 1997, the State University of Moldova at Kishinev
bestowed upon him the PhD degree in mathematics. Then he
continued his post-doctoral studies at various American Uni-
versities (such as University of Texas at Austin, University of
Phoenix, etc.).

In the USA he worked as a software engineer for Honey-
well (1990-1995), then as Adjunct Professor for Pima Com-
munity College (1995-1997). In 1997 he joined to the Univer-
sity of New Mexico, Gallup Campus, as Adjunct Professor.
Then he was promoted to Associate Professor of Mathemat-
ics (2003), and to Full Professor (2008). During 2007-2009
he was the Chair of Department of Mathematics and Sciences.

During Ceausescu’s dictatorship in Romania, Florentin
Smarandache was enrolled into a conflict with the Romanian
authorities. In 1986 he claimed a hungry strike for being re-
fused to attend the International Congress of Mathematicians
at the University of Berkeley. Then he published an open let-
ter in the Notices of the American Mathematical Society, for
the freedom of circulating of scientists. He thus became a po-
litical dissident in Romania. As a consequence, he was faired
from the academic job, and survived during two years from
private tutorship. Dr. Olof G. Tandberg, Foreign Secretary
of Swedish Royal Academy, supported him by phone talking
from Bucharest.

Not being allowed to publish, he tried to get his manu-

Prof. Florentin Smarandache

scripts out of the country through the French School of Buch-
arest and tourists, but for many of them he lost track. Final-
ly, in September 1988, Florentin Smarandache escaped from
Romania, then stayed for almost two years in Turkey, in a
refugee camp. Here he kept in touch with the French Cultural
Institutes that facilitated him the access to books and rencon-
tres with personalities. Before leaving the country he buried
some of his manuscripts in a metal box in his parents vine-
yard, near a peach tree, that he retrieved four years later, after
the 1989 Revolution, when he returned for the first time to
his native country. Other manuscripts, that he tried to mail
to a translator in France, were confiscated by the secret po-
lice and never returned. He wrote hundreds of pages of the
diaries about his life under the Romanian dictatorship, about
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his being as a cooperative teacher in Morocco (“Professor in
Africa”, 1999), in the Turkish refugee camp (“Escaped. . . Di-
ary From the Refugee Camp”, vol.1, vol.2, 1994, 1998). In
March 1990, Florentin Smarandache emigrated to the United
States.

Florentin Smarandache is also known as the founder of
“paradoxism” (established in 1980). This is the literary move-
ment which has many followers in the world. Paradoxism is
based on an excessive use of antitheses, antinomies, contra-
dictions, paradoxes in creation paradoxes — both at the small
level and the entire level of the work — making an interest-
ing connection between mathematics, philosophy, and litera-
ture. He introduced paradoxist distiches, tautologic distiches,
and dualistic distiches, which were inspired by the mathemat-
ical logic. The literary experiments were realized by him in
the dramas: “Country of the Animals”, “An Upside-Down
World”, “MetaHistory”, “Formation of the New Man”, and
the others. Florentin Smarandache did many poetical exper-
iments in the framework of his avant-garde. He published
paradoxist manifestos: “Le Sens du Non-Sens” (1983), “Anti-
chambres, Antipoésies, Bizarreries” (1984, 1989), “NonPo-
ems” (1990), where he changed the French and respectively
English linguistics clichés. While “Paradoxist Distiches”
(1998) introduces new species of poetry with fixed form.
Eventually he edited three International Anthologies on Para-
doxism (2000-2004) with texts from about 350 writers from
around the world in many languages. Twelve books were
published that analyze his literary creation, including “Para-
doxism’s Aesthetics” by Titu Popescu (1995), and “Paradox-
ism and Postmodernism” by Ion Soare (2000).

Florentin Smarandache is also known as an artist working
in the style of modernism. His experimental art albums com-
prises over-paintings, non-paintings, anti-drawings, super-
photos, foreseen with a manifesto: “Ultra-Modernism?” and
“Anti-manifesto”.

In mathematics Prof. Smarandache introduced the degree
of negation of an axiom or of a theorem in geometry: Smaran-
dache geometries (1969), which can be partially Euclidean
and partially non-Euclidean. He also introduced multi-
structures (Smarandache n-structures, where a weak struc-
ture contains an island of a stronger structure), and multi-
spaces (a combination of heterogeneous spaces). He intro-
duced and developed many sequences and functions in num-
ber theory. Florentin Smarandache also generalized fuzzy
logics to “nueutrosophic logic” and, similarly, he generalized
fuzzy set to “neutrosophic set”. Also, he suggested an ex-
tension of the classical probability and imprecise probability
to “neutrosophic probability”. Together with Dr. Jean Dez-
ert (ONERA, France), he generalized Dempster-Shafer the-
ory to a new theory of plausible and paradoxist fusion, which
is now known as Dezert-Smarandache theory (2002). In 2004
he designed an algorithm for the unification of fusion theories
(UFT) used in bioinformatics, robotics, and military.

In physics, Prof. Smarandache introduced a series of

paradoxes (quantum Smarandache paradoxes). On the basis
of neutrosophic logics, he also considered a theoretical pos-
sibility of a third form of matter, called as unmatter, which
is a combination of matter and antimatter (2010). Based on
his early 1972 publication (when he was a student in Roma-
nia), Prof. Smarandache suggested the hypothesis that “there
is no speed barrier in the universe and one can construct any
speed”. This hypothesis was partially validated on September
22, 2011, when researchers at CERN experimentally proved
that the muon neutrino particles travel with a speed greater
than the speed of light. Upon his hypothesis he suggested a
modification of Einstein’s theory of relativity, where the rela-
tivistic paradoxes are only the observable effects registered by
a particular observer, not the true reality. The speed of light
in vacuum is thus considered to be a variable value, which
is dependent on the type of synchronization of the particu-
lar observer. It is a constant for only the observer who uses
light beams as the medium of synchronization. Therefore, the
cosmological redshift and the other relativistic effects are true
only for the social community of the observers whose picture
of the world is “painted” on the basis of information obtained
from the light signals.

In philosophy, Florentin Smarandache introduced neutro-
sophy (1995), which is a new generalization of Hegel’s di-
alectic. Neutrosophy has a basis in his researches in math-
ematics and economics, such as “neutrosophic logic”, “neu-
trosophic set”, “neutrosophic probability”, and “neutrosophic
statistics”. Neutrosophy is a new branch of philosophy that
studies the origin, nature, and scope of neutralities, as well
as their interactions with different ideational spectra. This
theory considers every notion or an idea<A> together with
its opposite or negation<Anti-A> and the spectrum of “neu-
tralities” <Neut-A>. The<Neut-A> and<Anti-A> ideas to-
gether are referred to as<Non-A>. According to this the-
ory every idea<A> tends to be neutralized and balanced by
<Anti-A> and<Non-A> ideas as the state of equilibrium.

International Conference on Neutrosophy and Neutro-
sophic Logics was held in December 2001 at the University
of New Mexico, USA. International Conference on Smaran-
dache Type Notions in Number Theory was held in August
1997 at University of Craiova, Romania. International Con-
ference on Smarandache Geometries was held in May 2003
at Griffith University in Queensland, Australia.International
Conference on Smarandache Algebraic Structures was held
in December 2004 at Loyola College in Madras, India.

Prof. Smarandache authored numeous monographs, and
about 200 research papers published in about 50 scientific
journals. He also was the editor of more than a hundred of
scientific books authored by the other scientists. In addition
to his scientific research, Prof. Smarandache gives lectures
throughout the world for over many years. He was an invited
lecturer at Bloomsburg University (USA, 1995), University
of Berkeley (USA, 2003), NASA Langley Research Center
(USA, 2004), Jadavpur University (India, 2004), NATO Ad-
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vanced Studies Institute (Bulgaria, 2005), Institute of Bio-
physics (Russia, 2005), University Sekolah Tinggi Inform-
atika and University Kristen Satya Wacana Salatiga (Indo-
nesia, 2006), Minufiya University (Egypt, 2007), Universi-
tatea din Craiova (Romania, (2009), Air Force Research Lab
and Griffiss Institute (USA, 2009), Air Force Institute of
Technology at Wright-Patterson AFB (USA, 2009), Air Force
Research Lab of State University of NY Institute of Technol-
ogy in Rome (NY, USA, 2009), COGIS (France, 2009), EN-
SIETA — National Superior School of Engineers and Study
of Armament in Brest (France, 2010), Institute of Solid Me-
chanics and Commission of Acoustics (Romania, 2011),
Guangdong University of Technology in Guangzhou (China,
2012), Okayama University (Japan, 2013), etc.

In 2011, Academia DacoRomana in Bucharest bestowed
upon Prof. Smarandache the Doctor Honoris Causa degree.
In the same year, Beijing Jiaotong University in China be-
stowed the Doctor Honoris Causa degree upon him as well.

We all, who know Prof Florentin Smarandache closely
over decades, point out his benignity, enthusiasm, and scien-
tific creativity. He never rests in mind, but always works on
different fields of science, literature, and art. We wish him to
be always full of energy, pink health, and to have happy life
for many years.

Submitted on December 10, 2013/ Accepted on December 10, 2013
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On Some General Regularities of Formation of the Planetary Systems

Anatoly V. Belyakov

E-mail: belyakov.lih@gmail.com

J. Wheeler’s geometrodynamic concept has been used, in which space continuum is
considered as a topologically non-unitary coherent surface admitting the existence of
transitions of the input-output kind between distant regions of the space in an additional
dimension. This model assumes the existence of closed structures (micro- and macro-
contours) formed due to the balance between main interactions: gravitational, electric,
magnetic, and inertial forces. It is such macrocontours that have been demonstrated
to form — independently of their material basis — the essential structure of objects
at various levels of organization of matter. On the basis of this concept in this paper
basic regularities acting during formation planetary systems have been obtained. The
existence of two sharply different types of planetary systems has been determined. The
dependencies linking the masses of the planets, the diameters of the planets, the orbital
radii of the planet, and the mass of the central body have been deduced. The possibility
of formation of Earth-like planets near brown dwarfs has been grounded. The minimum
mass of the planet, which may arise in the planetary system, has been defined.

1 Introduction

Wheeler’s geometrodynamic concept, in which microparti-
cles are considered as vortical oscillating deformations on a
non-unitary coherent surface and the idea about transitions
between distant regions of space in the form of Wheeler’s
“wormholes”, made it possible to substantiate the existence
of closed structures (micro- and macrocontours) acting at var-
ious levels of organization of matter [1–3].

These contours are material, based on the balance be-
tween main interactions: electrical, magnetic, gravitational,
and inertial forces. They are not associated to the specific
properties of the medium; they determine the important prop-
erties of objects and allow using analogies between objects of
various scales.

Such approach allows using a model that best are inde-
pendent of the properties of an object or medium. In this
paper the concept is used to establish some of the basic laws
of the formation of planetary systems. Here, as in paper [2],
there is no need to consider the nature of the cosmological
medium, i.e. protoplanetary nebula, from which the planets
formed, and other specific features of the process. Idea of
the planetary system consisting of some amount of macro-
contours, from which planets formed, and the contours of a
higher order integrating the planets and a central body was
enough to get the general regularities.

2 Initial assumptions

As was shown earlier [1], from the purely mechanistic point
of view the so-called charge only manifests the degree of the
nonequilibrium state of physical vacuum; it is proportional to
the momentum of physical vacuum in its motion along the
contour of the vortical current tube. Respectively, the spin
is proportional to the angular momentum of the physical vac-
uum with respect to the longitudinal axis of the contour, while

the magnetic interaction of the conductors is analogous to the
forces acting among the current tubes. It is given that the ele-
mentary unit of such tubes is a unit with the radius and mass
equal to those of a classical electron (re and me).

It should be noted that in [1, 2] the expressions for the
electrical and magnetic forces are written in a “Coulombless”
form with charge replaced by electron limiting momentum.

In this case, the electrical and magnetic constants (ε0 and
µ0) are expressed as follows:

ε0 = me/re = 3.33 × 10−16 kg/m, (1)

µ0 = 1/ε0c2 = 0.0344 N−1, (2)

where c is the velocity of light.
Thus, the electric constant ε0 makes sense the linear den-

sity of the vortex tube current, and the magnetic constant µ0
makes sense the reciprocal value of the interaction force be-
tween two elementary charges.

In [2] the relative comparison of various interactions have
been carried out and the basic relationships were obtained,
some of which are necessary for the understanding of this
article.

1. The balance of electric and magnetic forces gives a ge-
ometric mean — a characteristic linear parameter that
is independent of the direction of the vortex tubes and
the number of charges:

Rs = (r0L)1/2 = (2π)1/2 c × [sec] = 7.52 × 108 m (3)

– a magnitude close to the Sun radius and the sizes of
typical stars, where r0, and L are the rotary radius or
the distance between the vortex tubes (thread) and their
length.
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2. The balance of gravitational and inertial (centrifugal)
forces gives the maximum gravitational mass of the ob-
ject satisfying the condition (3):

Mm =
Rsc2

γ
= f Rsε0 = 1.01 × 1036 kg. (4)

3. The balance of magnetic and gravitational forces also
results in a geometrical mean:

(r0L)1/2 =

(
ε

f

)1/2

Rs, (5)

where the ratio of the products ε= (zg1zg2)/(ze1ze2) is an
evolutionary parameter, which characterizes the state
of the medium and its changes, as the mass carriers
become predominant over the electrical ones and, as a
matter of fact, shows how the material medium differs
from vacuum. Here ze and zg are the relative values of
charge and mass in the parameters of electron charge
and mass, f — is the ratio of electrical-to-gravitational
forces, which under the given conditions is expressed
as follows:

f =
c2

ε0γ
= 4.16 × 1042, (6)

where γ is the gravitational constant. In the general
case, expression (5) gives a family of lengthy contours
consisting of contra-directional closed vortex tubes
(mg-contours).

4. The vortex tubes can consist, in their turn, of a number
of parallel unidirectional vortex threads, whose stabil-
ity is ensured by the balance of magnetic and inertial
forces forming mi-zones.

5. Structurizations of the primary medium, where there is
more than one pair of balanced forces, results in com-
plication an originally unstructured mass by forming in
it local mi-zones. In particular, the number of mi-zones
in the object of arbitrary mass Mi will be:

zi =

(
Mm

Mi

)1/4

. (7)

3 Planetary systems

Let us assume there is a cloud of the originally protoplanetary
material having an evolutionary parameter ε, in which a plan-
etary system with a central mass M0 and planets with a mass
mp on a radius rp, with a rotary velocity v0 is being formed.
Let us assume that the central body is a point-like mass, and
the mass of the planet is formed of contours of total number
zp and axis sizes dp × lp. Then the mass of the planet can be
expressed as the total mass of contours:

mp = zpεε0lp. (8)

The characteristic size of the mg-contour by analogy to (5):

(
lpdp

)1/2
=

(
ε

f

)1/2

Rs. (9)

Suppose the number of mg-contours constituting the mass of
the planet is proportional to the distance to the central body,
i.e. a planet contour is a structural unit for the contour of
higher order that integrates planet with the central body:

zp =
rp

dp
. (10)

This is true for a flat homogeneous disk of the initial neb-
ula, where the mg-contour is one-dimensional, but in general,
density of medium may be different and, of course, decrease
toward the periphery. The protoplanetary disk may have a
local rarefaction or condensation, i.e. have sleeves or be flat-
spiral. Therefore, in general, we have:

zp =

(
rp

dp

)n

, (11)

where the coefficient n reflects the “packaging” of contours
in the model object (planet).

The orbital velocity of the planet can be expressed from
the balance of centrifugal and gravitational forces:

v0 =

(
γM0

rp

)1/2

. (12)

On the other hand, we can use the analogy of the Bohr atom,
where in the proton-electron system the orbital velocity of the
electron at the radius of ri is equal to

v0 = c
(

re

ri

)1/2

. (13)

Then for the contour integrating the planet with the central
body, taking the parameter lp as the unit of length, an analo-
gous relation can be written:

v0 = c
(

lp

rp

)1/2

. (14)

The number of mg-contour z0 for the stable state of the object,
as given in [2], should be taken equal to the number of mi-
zones:

zp = zi =

(
Mm

mp

)1/4

. (15)

Share further the dimensionless parameter: M =M0/Mm,
m=mp/Mm, v= v0/c, r= rp/Rs, l= lp/Rs, d = dp/Rs, and
z=m−1/4. Taking into account (8-15), after transformations
we obtain expressions describing the dependence of the pla-
net mass on its orbit radius and mass of the central body:

m =
(
rM2

)4n/(5n−1)
, (16)
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Fig. 1: Dependence of the mass of Type I planets on their orbital ra-
dius at M ≈ 1 s.m. 1 — HD10180, 2 — HD125612, 3 — HD134606,
4 — HD160691, 5 — HD204313, 6 — HD75732, 7 — HD95128,
8 — HD31527, 9, 10 — KOI.

Fig. 2: Dependence of the mass of Type I planets on their orbital
radius at M ≈ 0.7 s.m. 1 — HD20794, 2 — HD40307, 3 — GJ676A,
4 — HD10700, 5 — HD181433, 6 — KOI 701, 7 — HIP57274.

proportions of mg-contour

d =
m5/4

M2 , (17)

l = M, (18)

and the value of the evolutionary parameter

ε =
f m5/4

M
. (19)

However, this model also admits a second case of orien-
tation of mg-contour according to another to its axis. In this
case an expression for zp analogous to (11) can be written:

zp =

(
rp

lp

)k

; (20)

Fig. 3: Dependence of the mass of Type I planets on their orbital
radius at M ≈ 0.3 . . . 0.4 s.m. 1 — GJ, 2 — Gliese, 3 — OGLE.

then relation m(r) taking into account (15), (18), (20) will
look as follows:

m=
( M

r

)4k

. (21)

In this variant the emerging masses of planets quickly de-
crease to the periphery of the protoplanetary disk, and it can
be assumed that such initial nebulae are lenticular in nature.
We call planets corresponding relations of (16) and (20) as
Type I planets and Type II planets, accordingly.

The actual data relating to the planets in extrasolar plane-
tary systems having three or more planets plotted on diagrams
in the coordinates of r — m, where r — the size of the major
semiaxis, (Fig. 1-3).

The results of the site http://www.allplanets.ru/index.htm
have been used. The numbers in the figures correspond to the
position of the experimental points and point to the sections
of the catalog of extrasolar planets.

The calculated dependencies m(r) according with formula
(16) converted to coordinates expressed in the masses of
Jupiter and astronomical units by multiplying m by
Mm/1.87× 1027 and r by Rs/1.5× 1011. These dependencies
correspond to the period of planet formation, but several iso-
lines n are shown, because the conditions of formation of the
planets and their further evolution is unknown. A large scat-
ter in the values is present on this and others diagrams; in this
case it is inevitable. However, the dependence of the masses
of extrasolar planets on their orbital radii and on the masses
of central stars is revealed quite clearly in agreement with the
expression (16). These regularities, i.e. increase in the mass
of planets with increasing distance to the central star and with
increasing the mass of central stars, also confirmed in [4–7]
and others.

Types II planets do not fit into this pattern. In (Fig. 1-3)
they would be located near the dashed line. They have masses
of the order of the mass of Jupiter and greater than one and
are in orbits close to the central star (hot Jupiters).
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Fig. 4: Dependence of the mass of Type II planets on their orbital ra-
dius at M ≈ 1 s.m. 1 — CoRoT, 2 — HAT-P, 3 — WASP, 4 — TrES,
5 — XO, 6 — OGLE, 7 — HD.

Fig. 5: The calculated dependence m(r) on the background of dis-
tribution of all known extrasolar planets in the semimajor axis-mass
parameter spaces. Triangles represent the planets of the system GJ
221. Masses are expressed in the masses of the Earth.

Figure 4 shows the actual data on extrasolar Type II plan-
ets, which are in agreement with the expression (21) at a co-
efficient k, whose value differs very little from 1/3. When
comparing (11) and (20), given that k≈ 1/3, one comes to the
conclusion that in this case mg-contour is a three-dimensional
element. With decreasing the density of medium towards the
periphery of the disc the dimension of mg-contour can be re-
duced.

These planets are mainly found in single-planet systems.
The existence of systems of this type was unexpected for as-
trophysicists. It is supposed that their formation or dynam-
ical history occurred in another way when the planets were
formed on the periphery of the initial disc and then migrated
to closer orbits [8]. In the framework of the proposed model
the existence of such planetary systems is natural. More-

Fig. 6: Dependence of the mass of the solar system planets on their
orbital radius.

over, this situation by Type II occurs in systems of plane-
tary satellites, such as the Earth-Moon, Neptune-Triton, and
Pluto-Charon.

Figure 5, taken from the article [9], shows a large array
of data on extrasolar planets in the coordinates r — m (star
masses are different). In order to confirm these regularities
isolines m(r) by (16) and (21) at M = 1 s.m. superimposed on
the diagram; they just pass through areas, where the planets
are at the most grouped. Moreover, the model allows us to
explain the presence of the large number of massive planets
and indicate the area, where they are concentrated.

In paper [2] it is shown that for the central star there is a
period of evolution when the number of mg-contours is equal
to the number of mi-zones, which should correspond to the
most stable or balanced state. It is this period is most favor-
able for the formation of the most massive planets. In this
case, the evolutionary parameter ε receives the expression:

ε = f M11/12. (22)

Then, as it follows from (19) and (22),

m = M23/15. (23)

For the mass of the Sun M = 2 × 10−6. Then mp =

(2× 10−6)23/15Mm or 1.85× 1027 kg, which is almost exactly
the mass of Jupiter. Depending on the type of planetary sys-
tem this mass can arise in orbit size of 0.038 au (hot Jupiters),
or 2.3 au (cold Jupiter), (Fig. 5). More massive stars give rise
greater mass of the planet.

Figure 6 shows the dependencies of m(r) by (16) at dif-
ferent n and by (21) at k= 1/3 as well as the position of the
planets in the solar system. Decrease in the value of index n
with increasing radius and decreasing density of protoplane-
tary disk is interpreted by expression n – (n− 0.4)r/50, as-
suming that the disk was limited of radius 50 au wherein n
was reduced to a value 0.4 at the periphery.
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Fig. 7: Dependence of the diameter of the planets on their mass for
Type I planets. The squares marked planets of the system Kepler-
11. Rectangle roughly bounded region of massive Type II planets at
M ≈ 1. Dash-dot line shows the boundary of the minimum planetary
masses, determined from the condition rp =Rs at n= 1.

In general, the initial protoplanetary cloud of the solar
system would fit the flat model at n≈ 1 if it is assumed that the
small planets were formed close to the Sun, but later moved
to a more distant orbit under the influence of massive plan-
ets that were formed later. Detection of Earth-like planets
that are very close to the central star [10, 16] confirms this
assumption. It is also possible that the initial cloud had a low
density on the orbits where small planets have been formed.

4 On the parameters of planets

For Type I planets calculations show that d≫ l, i.e. a mg-
contour is actually a one-dimensional structure and when
“packaging” it in a volume ratio of its linear dimensions, i.e.
ratio of the diameters of planets averaged over density, taking
into account (17), must meet the relationship:

D = d1/3 = m5/12M−2/3. (24)

These parameters are here dimensionless and can be express-
ed as, for example, the parameters of Jupiter and the Sun.

Figure 7 shows the dimensionless dependence D(m) by
(24) for Type I planets reduced to the parameters of Jupiter
and mass of the Sun. The planets of the solar system are
located along a solid line. It also shows the position of the
six planets of the sistem Kepler-11 having an intermediate
density [11], which generally corresponds to the calculated
dependence.

It is interesting to note that the expression (24) obtained
solely on the basis of general provisions and being adequate
to a wide range for Type I planets, in fact, coincides with the
analogous dimensionless dependence derived by the authors
in the paper [7]. However, this dependence was obtained by

the authors by solving the equation of state, which describes
the relationship between density, pressure, and temperature
for the substance under conditions of thermodynamic equi-
librium. The position of the terrestrial planets corresponds
exactly to the general trend and confirms the assumption that
these planets were formed by Type I near the Sun.

During evolution first planets were formed when the or-
bital angular momentum of the planet is compared to the
rotational angular momentum of the central body. Let us
compare the corresponding expression: to the central body
derived in [2] and, referring to (10), (12), (17), (19), at n= 1,
analogous one to the planet:

M
ε

f
MmcRs =M7/10

(
ε

f

)6/5

MmcRs. (25)

As follows from (25):

ε = f M3/2, (26)

and then one can obtain:

m = M2, (27)

r = 1, (28)

Radius rp =Rs is the natural limit for the minimum masses of
Type I planets. The outer planets, whose mass is greater, have
the orbital angular momentum greater than the rotational an-
gular momentum of the central star. With M = 1 s.m.
mp min = 4× 10−12 Mm = 4× 1024 kg, which just corresponds
to the average mass of the terrestrial planets. Thus, in this
model the existence of Earth-like planets near the central star
is natural.

The size of the planets of type II can be estimated by
the value of the orbital radius, having on a mg-contour, r/z.
Keeping in mind the formula (20) at k= 1/3, and expressing
r from (21), we obtain:

D ∼ M
m1/2 , (29)

There is a need additionally to take account the fact that the
unit mg-contour is in this case not one-dimensional, and the
mass of the model object is proportional to the parameter ε,
formula (8). Thus, the relation (29) should be supplemented.
Using (19) and moving from the mass ratio to the ratio of
linear sizes the final expression gets the following forms:

– in the case of a three-dimensional mg-contour

D =
M

m1/2

(
m5/4M−1

)1/3
=

M2/3

m1/12 ; (30)

– for the less dense medium, in the case of two-dimensional
mg-contour, formula (30) takes the form:

D =
M

m1/2

(
m5/4M−1

)1/2
=

M1/2

m1/8 ; (30a)
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The obtained dimensionless relationships are generally in ag-
reement with the actual laws. Figure 8 shows the dependence
of D(M), and Figure 9 shows the dependence of D(m) cal-
culated from formulas (30) and (30a) at different M, which
are for illustrative purposes superimposed on the chart taken
from the article [12].

In particular, it becomes clear both the existence of plan-
ets with similar sizes but sharply differing masses and hav-
ing the same mass at various sizes. Planets with a relatively
small mass, for example, GJ 1214b [13], Kepler-87c (they
are shown in Figure 8 and 9), and others, formed probably by
type II; their diameters varied greatly and correspond to the
values, which are calculated by the option (30a).

The densities of Type I and Type II planets through their
mass and the mass of a star in dimensionless units (in units
of the Jupiter’s mass and the Sun’s mass), having in mind
that ρ∼mD−3, have radically different character and can be
expressed as follows:

ρ1 = m−1/4M2, (31)

ρ2 = m5/4M−2, (32)

ρ2a = m5/8M−3/2. (32a)

Of course, obtained dependences are not precise or defini-
tive. They only reflect the general trends uniting the diameter
of the planet to its mass and the mass of stars in the period of
the formation of planetary systems. By equating the orbital
angular momentum of the planet and the rotational angular
momentum of the central body one can obtain the relations
similar to (25-28) for Type II planets at k= 1/3:

M
(
ε

f

)
MmcRs = M3/2

(
ε

f

)1/2

MmcRs, (33)

ε = f M, (34)

m = M8/5, (35)

r = M−1/5, (36)

which determine their specific mass and orbital radius. At
M = 1 s.m. mp = 7.6× 10−10Mm = 7.6× 1026 kg or 0.4 Jupi-
ter’s masses, rp = 13.8 Rs = 1.03× 1010 m or 0.07 au. The
inner planets with a greater mass have angular momentum
that is less than that of the central star.

As follows from (21) and (32) Type II planet masses de-
crease with increasing distance from the central star as well
as their density decreases. This is illustrated by the planet Ke-
pler 87c having a very low density with its orbital radius of
136 Rs or 0.68 au. Formation of the planets in more remote
orbits it is unlikely, where the less often they exist, the more
massive major planet [8].

Low-mass rocky planets of type II can not be formed
near Sun’s mass stars and having greater masses, but, as fol-
lows from (32), their formation is possible in the system of

Fig. 8: Dependence of the diameter of the planets on the mass of
the central star (masses of the planets are different). 1 — CoRoT,
2 — HAT-P, 3 — WASP, 4 — KOI, 5 — XO, 6 — TrES, 7 — OGLE,
8 — GJ.

Fig. 9: The calculated dependences D(m) of Type II planet on the
background of distribution of known transit extrasolar planets in the
planet mass-radius spaces. Squares shows the planets in the solar
system. Dotted lines are lines of equal density — 0.1, 0.3, 0.9,
3.0, 9.0, 25.0, and 100 g/cm3. Dash-dotted line limits the maximum
masses of the planets, k= 1/3.

dwarf stars when M < 1 s.m. Indeed, another test of the cor-
rectness of the presented model may serve determination the
masses of stars, at which planets with masses and sizes like
the Earth can be formed. Let their mass is in the range from
0.001 . . . 0.01 Jupiter’s mass and the density is 3 . . . 5 Jupiter’s
density.

Then for the Type I planets formula (31) gives:
M = 0.73 . . . 1.26 s.m. and for Type II planets formulas (32)
and (32a) give: M = 0.006 . . . 0.032 and M = 0.019 . . . 0.07
s.m. The first solution is obvious and corresponds to the stars
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Fig. 10: Dependence of the mass of the planets on their orbital radius
at l= d.

with a mass close to the mass of the Sun and the second so-
lutions just correspond to the very low-mass stars — brown
dwarfs.

This prediction proved to be correct. Indeed, recent ob-
servations have shown that is quite possible the formation of
Earth-like planets around of brown dwarfs and there may be
created suitable conditions for emergence of life [14]. These
types of planetary systems even more preferable since no need
planets to migrate to more distant (as in the case of the Earth)
and the suitable masses of the brown dwarfs vary within a
more wide range. The question arises whether there are con-
ditions under which the formation of planets in the evolution
of both types is equally probable?

It is logical to assume that in the initial period there had
been rarefied initial spherical cloud around the central body,
which is then transformed into or flatspiral disk, or lenticu-
lar in shape, from which Type I planets or Type II planets,
respectively, have been formed. Hypothetically, this would
correspond to the initial state of complete equality of condi-
tions of planets formation in both types, i.e. l= d =M, n= k,
masses of planets by (16) and (21) are equal.

Having in mind (16), (17), (21), we find:

n = k = 0.2

 lg
(
rM2

)
lg (M/r)

+ 1

 , (37)

m = M12/5. (38)

Thus, this mass depending on the coefficient n may occur at
any orbit (Fig. 10). The size of the planet in this case is uncer-
tain since dependences (24) and (30) are here incorrect. One
can specify the maximum size of an object if mg-counters are
packaged in a linear structure, Dmax = zl. Since z=m−1/4 and
l=M, using (38), we obtain:

Dmax = M2/5. (39)

Convergence coefficient values of n and k indicate a decrease
formally in the density of medium in any variant evolution
that, obviously, corresponds to the moust low mass. The av-
erage value of the coefficient equal to 0.5 at M = 1 s.m. corre-
sponds to the orbital radius of 0.07 au, which coincides with
the specific radius for Type II planets.

For the mass of the Sun, mp lim = 2.1× 10−14Mm =

= 2.1× 1022 kg, Dp max = 0.0053 Rs = 3.9× 106 m. It is un-
known whether such planets form in reality. In any case, in
the solar system there are no regular planet’s masses less than
mp lim, except Pluto having a similar mass of 1.3× 1022 kg,
the status of which is uncertain. The same can be said of the
satellite systems of the major planets. Masses less settlement
not observed to date also among extrasolar planets.

The existence of lowest masses for the planets formed
and, accordingly, their lowest diameters explains fact of rapid
decrease of the planets having a small radius as well as exis-
tence of a maximum of the planetary radii specified in [15].

5 Conclusion

Planetary systems can be quite diverse as their structure de-
pends on the initial composition of the protoplanetary cloud,
mass and type of stars, formation history of the planetary sys-
tem, and the random factors. Nevertheless, there are some
general patterns.

There are two types of planetary systems. In the system of
the first type planets are formed from flatspiral protoplanetary
cloud. Masses of Type I planets increase to the periphery
passing through their maximum (cold Jupiters) that occur in
the distance from the center in the local condensations of the
medium (the sleeves, spirals), supposedly, in later periods of
the evolution. Earth-like planets are formed near the central
star and maybe can migrate to the more remote orbits.

In the second type of planetary systems planets are formed
from a protoplanetary cloud lenticular or elliptical type. The
masses and densities of Type II planets decrease to the pe-
riphery of the disc. Massive planets (hot Jupiters) are formed
in condensations near the central star; the formation of other
planets in more distant orbits is unlikely. Low-mass rocky
planets in these systems can be formed only at low-mass stars
(brown dwarfs).

The possibility of the formation of Earth-like planets in
the planetary systems of brown dwarfs has been predicted.

The regularities among the masses, sizes, orbital radii of
the planets and masses of the central stars have been obtained.

Submitted on: July 03, 2013 / Accepted on: July 21, 2013

References
1. Belyakov A. V. Charge of the electron, and the constants of radia-

tion according to J.A.Wheeler’s geometrodynamic model. Progress in
Physics, 2010, v. 4, 90–94.

2. Belyakov A. V. Evolution of Stellar Objects According to J. Wheeler’s
Geometrodynamic Concept. Progress in Physics, 2013, v. 1, 25–40.

34 Anatoly V. Belyakov. On Some General Regularities of Formation of the Planetary Systems



Issue 1 (January) PROGRESS IN PHYSICS Volume 10 (2014)

3. Belyakov A. V. On the independent determination of the ultimate den-
sity of physical vacuum. Progress in Physics, 2011, v. 2, 27–29.

4. Stephane Udry. Geneva University, Debra Fischer. San Francisco State
University, Didier Queloz. Geneva University. A Decade of Radial-
Velocity Discoveries in the Exoplanet Domain.

5. Montet B. T., Crepp J. R. et al. The trends high-contrast imaging survey.
iv. the occurrence rate of giant planets around m-dwarfs. 24 July 2013,
arXiv: astro-ph/1307.5849 v1.

6. Jones M. I., Jenkins J. S. et al. Study of the impact of the post-MS evo-
lution of the host star on the orbits of close-in planets. A giant planet
in a close-in orbit around the RGB star HIP63242. June 2013, arXiv:
astro-ph/1306.3939 v1.

7. Seager S., Kuchner M., Hier-Majumder C., Militzer B. Mass-Radius
Relationships for Solid Exoplanets. 19 Jul 2007, arXiv: 0707.2895.

8. Steffen J. H., Ragozzine D. et al. Kepler constraints on planets near hot
Jupiters. 10 May 2012, arXiv: astro-ph.EP/1205.2309 v1.

9. Arriagada P., Anglada-Escud G. et al. Two planetary companions
around the K7 dwarf GJ 221: a hot super-Earth and a candidate in the
sub-Saturn desert range. 9 May 2013, arXiv: astro-ph/1305.2203 v1.

10. Sanchis-Ojeda R., Rappaport S. et al. Transits and occultations of an
earth-sized planet in an 8.5-hour orbit. 17 May 2013, arXiv: astro-
ph/1305.4180 v1.

11. Lissauer J. J., Jontof-Hutter D. et al. All Six Planets Known to
Orbit Kepler-11 Have Low Densities. 14 Jun 2013, arXiv: astro-
ph/1303.0227 v2.

12. Sato B., Hartman J. D. et al. HAT-P-38b: A Saturn-Mass Planet Tran-
siting a Late G Star. 24 Jan 2012, arXiv: astro-ph/1201.5075 v1.

13. Charbonneau D., Berta Z. K. et al. A super-Earth transiting a nearby
low-mass star. http://fr.arxiv.org/ftp/arxiv/papers/0912/0912.3229.pdf.
Nature 2009.

14. Ricci L., Testi L., Natta A., Scholz A., Gregorio-Monsalvo L. Alma
observations of ρ-oph 102: grain growth and molecular gas in the
disk around a young brown dwarf. 28 Nov 2012, arXiv: astro-ph.SR/
1211.6743 v1.

15. Morton T. D., Swift J. The radius distribution of small planets around
cool stars. 14 Mar 2013, arXiv: astro-ph/1303.3013 v1.

16. Charpinet S., Fontaine G. et al. A compact system of small planets
around a former red-giant star. 22 Dec 2011, Nature, 480, 496–499.

Anatoly V. Belyakov. On Some General Regularities of Formation of the Planetary Systems 35



Volume 10 (2014) PROGRESS IN PHYSICS Issue 1 (January)

LETTERS TO PROGRESS IN PHYSICS

The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere VIII.
‘Futile’ Processes in the Chromosphere
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In the liquid metallic hydrogen solar model (LMHSM), the chromosphere is the site of
hydrogen condensation (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the
Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Progr. Phys.,
2013, v. 3, L15–L21). Line emission is associated with the dissipation of energy from
condensed hydrogen structures, CHS. Previously considered reactions resulted in hy-
drogen atom or cluster addition to the site of condensation.In this work, an additional
mechanism is presented, wherein atomic or molecular species interact with CHS, but
do not deposit hydrogen. These reactions channel heat away from CHS, enabling them
to cool even more rapidly. As a result, this new class of processes could complement
true hydrogen condensation reactions by providing an auxiliary mechanism for the re-
moval of heat. Such ‘futile’ reactions lead to the formationof activated atoms, ions, or
molecules and might contribute to line emission from such species. Evidence that com-
plimentary ‘futile’ reactions might be important in the chromosphere can be extracted
from lineshape analysis.

In order to explain the occurrence of the dark lines
in the solar spectrum, we must assume that the solar
atmosphere incloses a luminous nucleus, producing
a continuous spectrum, the brightness of which ex-
ceeds a certain limit. The most probable supposi-
tion which can be made respecting the Sun’s consti-
tution is, that it consists of a solid or liquid nucleus,
heated to a temperature of the brightest whiteness,
surrounded by an atmosphere of somewhat lower
temperature.

Gustav Robert Kirchhoff, 1862 [1]

1 Introduction

During a solar eclipse, the flash spectrum associated with
the chromosphere of the Sun becomes readily visible [2–5].
This spectrum is dominated by emission lines from hydro-
gen, most notably H-α, which gives rise to its characteristic
color. However, the flash spectrum also contains a wide ar-
ray of emission lines generated from neutral atoms, ions, or
molecules [2–5]. Within the context of the Standard Solar
Models (SSM) [6], these emission lines are produced by ran-
dom temperature related excitation processes in this region of
the Sun. Because the SSM adopt a gaseous solar body, the
chromosphere is devoid of function and line emission does
not help to account for structure.

In sharp contrast, within the Liquid Metallic Hydrogen
Solar Model (LMHSM) [7, 8], the chromosphere is a site of
hydrogen and proton capture, while the corona is responsi-
ble for harvesting electrons [8–12]. Condensation reactions
have therefore been advanced to account for the production

of emission lines in the chromosphere. These reactions facil-
itate the deposit of atomic hydrogen onto condensed hydro-
gen structures, CHS [9, 11, 12]. Line emission in the chro-
mosphere is fundamentally linked to the dissipation of heat
associated with exothermic condensation reactions. The role
of condensation reactions in the chromosphere of the Sun has
previously been presented in substantial detail [9,11,12]. For
the sake of clarity, it is briefly readdressed herein.

One can consider an atom, A, reacting with hydrogen, H,
to give rise to a molecular species, AH [8, 9, 11]. It should
be possible for AH and CHS in the chromosphere to form an
activated complex, CHS+AH→CHS-HA∗. This would then
be followed by an exothermic step involving the expulsion of
an activated atom, CHS-HA∗ → CHS–H+ A∗, followed by
the line emission from A∗, A∗ → A + hν. In such a manner, a
viable scheme is presented to account for line emission from
neutral atoms, including those from hydrogen itself.

An analogous process could also be applied to a cation,
A+n, reacting with hydrogen, H, to give rise to a molecu-
lar species, AH+n, where n=1, 2, etc [8, 9, 11]. Reaction
of AH+n with a condensed hydrogen structure (CHS) in the
chromosphere leads to an activated complex, CHS+ AH+n

→

CHS-HA+n∗. This would then be followed by an exothermic
step involving the expulsion of an activated ion, CHS-HA+n∗

→ CHS–H+ A+n∗, followed by the line emission from the
cation, A+n∗, A+n∗

→ A+ + hν. Such reactions have been
postulated to play an important role in the chromosphere and
can explain the HeII lines, if HeH+ triggers the condensa-
tion [8,11]. When Ca+ acts as the initial cation, such a mech-
anism can account for the strong CaII lines in the Sun [9].
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2 ‘Futile’ reactions

There is another class of reactions which may play a role in
the Sun, but has previously been overlooked. It is possible
for interactions to take place with condensed hydrogen struc-
tures, but without the net transfer of a hydrogen atom. This
new set of ‘futile’ reactions is important for three reasons: 1)
it offers new insight relative to line emission arising from neu-
tral atoms and molecules, 2) it adds an important new mecha-
nism, which can complement previous reactions [9,11,12], in
describing spectroscopic linewidths in the chromosphere,and
3) it provides a mechanism which can facilitate condensation
reactions in the chromosphere by offering yet another means
to dissipate heat.

In biochemistry, futile reactions tend to be cyclic in na-
ture. They involve chemical processes which do not lead to
any useful work, but which are exothermic.

A classic example of a futile cycle would involve the reac-
tions of fructose-6-phosphate in glycolysis and gluconeogen-
esis. During glycolysis, we have a reaction catalyzed by phos-
phofructokinase: fructose-6-phosphate+ ATP → fructose-
1,6-bisphosphate+ ADP. The reaction is reversed in gluco-
neogenesis using fructose-1,6-bisphosphatase: fructose-1,6-
bisphosphate+ H2O→ fructose-6-phosphate+ Pi. The over-
all reaction involves the simple wastage of ATP and energy
dissipation without net work: ATP+ H2O→ ADP + Pi +

heat. The cell, of course, had to work to make the ATP and as
a result, such a cycle is truly futile.

Let us consider the simplest futile reaction in the chromo-
sphere. A hydrogen atom, H, interacts directly with a con-
densed hydrogen structure to form a weak activated complex,
CHS+ H→ CHS–H∗. But this time, the reaction is reversed
and no hydrogen is deposited: CHS–H∗ → CHS+ H∗. This
would then be followed by line emission from activated hy-
drogen H∗, H∗ → H + hν, as hydrogen is allowed to relax
back to the ground state. The reaction appears futile, as no
net change has taken place. But on closer examination, it is
noted that heat has been removed from the condensed hydro-
gen structure. As a result, though no additional condensation
has occurred, such a futile process can cool the condensing
structure, thereby facilitating its growth when other truecon-
densation reactions [8–12] are occurring in parallel.

It is now readily apparent that a wide array of ‘futile’ pro-
cesses may exist in the chromosphere. For instance, an atom,
A, could react with hydrogen, H, to give rise to a molecular
species, AH [8, 9, 11]. AH could interact with CHS in the
chromosphere to form an activated complex, CHS+ AH →
CHS–HA∗. The reaction is reversed and no hydrogen is de-
posited: CHS–HA∗ → CHS+ AH∗. This would then be fol-
lowed by line emission from the molecular species AH∗, AH∗

→AH + hν. In such a manner, a viable scheme is presented to
account for line emission from small neutral molecules, such
as H2, CaH, LiH, etc. Similar reactions could also be invoked
which involve small molecules such as H2O or NH3. The

result would be line emission from these molecular species.
The analysis of spectroscopic lineshapes in the Sun is

an area of considerable complexity for current models. The
wings and cores of many lines appear to change with alti-
tude above the solar surface (see [3, 4, 8, 13] and references
therein). Such findings suggest that the mechanism involved
in line production might well involve both true condensation
reactions and futile processes. As previously stated [8], it is
unlikely that Stark mechanisms are truly responsible for the
lineshapes we observe in the Sun.
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A Thought Experiment Refuting Kirchhoff’s Law

Pierre-Marie Robitaille
Department of Radiology, The Ohio State University, 395 W. 12th Ave, Columbus, Ohio 43210, USA.

robitaille.1@osu.edu

Kirchhoff’s law of thermal emission demands that all cavities containblackbody, or
normal, radiation which is dependent solely on the temperature and the frequency of
observation, while remaining independent of the nature of the enclosure. For over 150
years, this law has stood as a great pillar for those who believe that gaseous stars could
emit a blackbody spectrum. However, it is well-known that, under laboratory condi-
tions, gases emit in bands and cannot produce a thermal spectrum. Furthermore, all
laboratory blackbodies are constructed from nearly ideal absorbers. This fact strongly
opposes the validity of Kirchhoff’s formulation. Clearly, if Kirchhoff had been correct,
then laboratory blackbodies could be constructed of any arbitrary material. Through the
use of two cavities in temperature equilibrium with one another, a thought experiment
is presented herein which soundly refutes Kirchhoff’s law of thermal emission.

If a space be entirely surrounded by bodies of the
same temperature, so that no rays can penetrate
through them, every pencil in the interior of the
space must be so constituted, in regard to its qual-
ity and intensity, as if it had proceeded from a per-
fectly black body of the same temperature, and must
therefore be independent of the form and nature of
the bodies, being determined by temperature alone.
. . In the interior therefore of an opake red-hot body
of any temperature, the illumination is always the
same, whatever be the constitution of the body in
other respects.

Gustav Robert Kirchhoff, 1860 [1]

1 Introduction

Kirchhoff’s law [1, 2] is generally considered to be the first
amongst the laws governing thermal emission [3–6]. With
its formulation, blackbody radiation achieved a magical pres-
ence within every cavity. Based on Kirchhoff’s law, Planck
believed that blackbody radiation had universal significance
[6]. It is because of Kirchhoff that Boltzmann’s and Planck’s
constants are viewed as sharing the same quality [5–10]. As
such, the collapse of Kirchhoff’s law [7–10] has great im-
plication throughout physics. It touches not only condensed
matter, but also the very makeup of the stars and our under-
standing of the microwave background (see [11–13] and ref-
erences therein). Consequently, many refuse to accept that
there can be problems with Kirchhoff’s formulation. In so do-
ing, they deny Balfour Stewart proper credit for correctly not-
ing that the emissivity of a material is equal to its absorptivity
at thermal equilibrium [14]. Furthermore,cavity radiation is
actually dependent on the nature of the enclosure[7–10]. As
such, a simple thought experiment is now presented which
elegantly exposes the error in Kirchhoff’s claims.

Cavity radiation revisited

Let us begin with a large perfectly absorbing enclosure - an
ideal blackbody (Emissivity (ǫ)= 1, Reflectivity (ρ)= 0; at all
temperatures and frequencies), as depicted in Fig. 1. The con-
tents of this cavity are kept under vacuum. Within this outer
cavity, let us place a somewhat smaller perfectly reflectingen-
closure with 5 sides closed and 1 open (ǫ = 0,ρ= 1; at all tem-
peratures and frequencies). Guided by Max Planck [6], both
cavities will be large compared to those dimensions which
would require the consideration of diffraction. Since the inner
cavity is perfectly reflecting, it will also be highly conducting,
as good reflectors tend to be good conductors.∗

Throughout his classic text on heat radiation [6], Planck
makes use of perfectly reflecting enclosures. Therefore, itis
appropriate to consider both the perfect emitter (ǫ =1) and the
perfect reflector (ǫ = 0) in this exercise.

At the onset, the experiment requires a mechanical means
of closing the inner enclosure. This can be achieved with a
mechanism which crosses the walls of the outer cavity while
preserving the vacuum. The mechanism is allowed, because
laboratory blackbodies are known to possess a small hole in
their outer walls through which radiation is typically sampled.

Once this has been accomplished, place the perfectly ab-
sorbing enclosure (ǫ = 1,ρ=0), which contains the inner per-
fectly reflecting cavity (ǫ = 0, ρ= 1), in a large helium bath
at 4 K. The inner open cavity, is permitted to rest directly on
the floor of the outer perfectly absorbing cavity (see Fig. 1).
Under these conditions, the inner cavity will achieve temper-
ature equilibrium with the outer cavity using conduction. Ra-
diation inside the perfectly absorbing cavity will correspond

∗For example, silver is amongst the best conductors with a resistivity of
only ∼1.6 x 10−8 Ω m at 300 K and of∼0.001 x 10−8 Ω m at 4 K [15]. It is
also an excellent reflector in the infrared, our frequency range of interest.
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Fig. 1: Schematic representation of our thought experiment. A large
outer cavity acts as an ideal blackbody (ǫ = 1, ρ= 0) and is initially
immersed in a helium bath at 4 K. Within this cavity, a perfectly
reflecting enclosure (ǫ = 0, ρ= 1) rests of the floor with one of its
sides initially remaining open.

to black radiation at 4 K. It will fill both the large cavity and
the smaller open cavity.

When temperature equilibrium has been reached, permit
the inner cavity to be sealed mechanically. At that moment,
4 K blackbody radiation has been trapped inside the smaller
perfectly reflecting enclosure.

One can then permit the outer perfectly absorbing enclo-
sure to rise in temperature to 300 K. It will now contain black
radiation at that temperature. As for the perfectly reflecting
enclosure, it will also move to 300 K, because it can reach
temperature equilibrium through conduction (we can use any
of 3 mechanisms to reach equilibrium - radiation, conduction,
and convection). The inner cavity walls are thus also brought
to 300 K. However, unlike the outer cavity which is filled with
blackbody radiation at 300 K, the inner cavity remains filled
with blackbody radiation at 4 K. Thereby, Kirchhoff’s law is
proven to be false.

Under these conditions, the only way to enable the inner
cavity to hold 300 K blackbody radiation would be to per-
mit a violation of the first and zeroth laws of thermodynam-
ics. Namely, once temperature equilibrium has been reached
through conduction, the inner cavity will not be allowed to
spontaneously emit photons in search of a new radiative con-
dition, while denying the zeroth law. Photons will not be cre-
ated where no mechanism exists for their generation.∗

∗The emissivity of a material is defined relative to the emissivity of a
blackbody at the temperature in question. Selecting an emissivity value for
the surface of a cavity therefore implies thermal equilibrium by definition.
Yet, in modeling the blackbody problem, computer simulations often perpet-
ually pump photons into cavities, invoke reflection, and build up radiation
until they achieve the blackbody spectrum. But real materials cannot act as
perpetual sources of photons without dropping in temperature. Obviously,
the temperature of a cavity which is already at equilibrium,by definition,

In addition, the zeroth law of thermodynamics defines
the conditions under which temperature equilibrium exists.
These conditions refer to real objects. As long as the outer
cavity is in temperature equilibrium with the bath/room and
is in temperature equilibrium with the inner cavity; then by
definition, the inner cavity is in temperature equilibrium with
the bath/room. The nature of the field contained within the
inner cavity is not covered by the zeroth law of thermody-
namics. As is appropriate, the zeroth and first laws of ther-
modynamics must guide our judgment relative to Kirchhoff’s
formulation. Thermal equilibrium is defined as that condition
which prevails in the absence of all net changes in conduc-
tion, convection, and radiation. Thus, thermal equilibrium
has been met when the inner cavity reaches 300 K, despite
the fact that it contains 4 K radiation, as there can no longerbe
any change in net conduction, convection, or radiation, across
cavity walls. To argue otherwise implies that the temperature
of an object depends on the radiation field it contains. This
constitutes a direct violation of the zeroth law of thermody-
namics which is independent of radiation fields.

Summary

In this thought experiment, two cavities have been consid-
ered and temperature equilibrium between them ensured us-
ing conduction. The perfectly absorbing cavity ends up hold-
ing perfectly black radiation at all temperatures because its
emissivity is 1. But the situation is not the same for the inner
cavity, as its emissivity is 0 at all temperatures.

Max Planck previously noted in his classic text on heat
radiation that:“. . . in a vacuum bounded by totally reflecting
walls any state of radiation may persist”[6, §51]. In order
to ensure that a perfectly reflecting cavity could contain black
radiation, he inserted a small particle of carbon (see [9] for
a detailed discussion). However, when Planck does so, it is
as if he had lined the entire cavity with an excellent absorber,
because the carbon particle was identical to graphite, anearly
perfect absorber, almost by definition [9]. Planck remains
incapable of demonstrating that cavity radiation will always
be black, independent of the nature of the walls [7–10].

When the temperature was brought to 300 K, the two cav-
ities responded in different ways as a result of their inherent
emissivities. The outer cavity has a perfect emissivity (ǫ =1)
and is able to pump out additional photons, as required by
Stefan’s law [4]. Since Stefan’s law has a fourth power de-
pendence on temperature (T4), the outer cavity now contains
3.2 x 107 times more photons than it did when its tempera-
ture was a 4 K. However, the radiation within the inner cavity
persists, just as Max Planck stated. That is because this cav-
ity lacks the physical mechanism to emit a photon. Until it is
opened, it will forever contain black radiation which had cor-

cannot be allowed to drop. The pumping of ever more photons into an arbi-
trary cavity while invoking reflection as a means to justify the buildup of the
blackbody spectrum is forbidden by the first law of thermodynamics [10].

Pierre-Marie Robitaille. A Thought Experiment Refuting Kirchhoff’s Law 39



Volume 10 (2014) PROGRESS IN PHYSICS Issue 1 (January)

responded to that initially produced by the outer cavity when
it was at 4 K.

The perfectly absorbing cavity ends up holding perfect
black radiation at all temperatures because its emissivityis
1. The perfectly reflecting cavity maintains 4 K radiation, be-
cause its emissivity is zero. There is no violation of the first
law and the zeroth law guarantees the equilibrium arguments.
It is permitted to utilize a perfectly reflecting (ǫ = 0) cavity
in this work using the same logic which allows the physics
community to hypothesize that perfectly absorbing cavities
(ǫ =1) exist. In reality, both objects cannot be found either in
nature, or in the laboratory, over the range of frequencies and
temperatures which might be of interest.

The discussion can be extended further to hypothesize,
of course, that initial conditions (before the inner cavitywas
sealed) were at absolute zero. In that case, the inner cavity
will always be devoid of radiation once it is closed. Should
another initial condition be selected, then, when it is sealed,
the inner cavity will contain black radiation at that tempera-
ture.

What becomes clear is that the radiation contained in the
inner cavity can be made to be absolutely dependent on ini-
tial conditions (unrelated to final temperature) and dependent
on the nature of the cavity walls. Stewart’s law [8, 14] and
not Kirchhoff’s [1, 2] properly describes the relationship be-
tween emission and absorption under conditions of thermal
equilibrium.

At the same time, it should be recognized that tempera-
ture equilibrium can be achieved without a detailed balance
between emission and absorption. This can occur if there is
net conduction, convection, or radiation into, or out of, anob-
ject whose temperature does not change. For instance, heat
could enter through radiation and leave through conduction,
while the temperature remains constant. Under these con-
ditions, the object is under temperature equilibrium, but not
under thermal equilibrium. Namely, its emission can be much
less than its absorption, even if the temperature is not chang-
ing. When considering thermal equilibrium and the laws of
emissionthere must be no net conduction, convection, or ra-
diation.

This should sufficiently address, in the simplest form, the
truth of Kirchhoff’s formulation. Based on this presentation,
Kirchhoff’s law is not valid and the constants of Planck and
Boltzmann are not universal.
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A four parameters model including collective rotational energies to fourth order is ap-
plied to reproduce the∆I=2 staggering in transition energies in four selected super
deformed rotational bands, namely,148Gd (SD6),194Hg (SD1, SD2, SD3). The model
parameters and the spin of the bandhead have been extracted assuming various val-
ues to the lowest spin of the bandhead at nearest integer, in order to obtain a minimum
root mean square deviation between calculated and the experimental transition energies.
This allows us to suggest the spin values for the energy levels which are experimentally
unknown. For each band a staggering parameter represent thedeviation of the transition
energies from a smooth reference has been determined by calculating the fourth order
derivative of the transition energies at a given spin. The staggering parameter contains
five consecutive transition energies which is denoted here as the five-point formula.
In order to get information about the dynamical moment of inertia, the two point for-
mula which contains only two consecutive transition energies has been also considered.
The dynamical moment of inertia decreasing with increasingrotational frequency for
A ∼ 150, while increasing forA ∼ 190 mass regions.

1 Introduction

The observation [1] of a very regular pattern of closely spaced
γ-transitions in the spectrum of152Dy, which assigned to a
rotational cascade between levels of spin ranging from 60~

to 24~ and excitation energy varying from∼ 30 to 12 MeV
may adopt a superdeformed (SD) at high angular momen-
tum. The moment of inertia of the associated band was found
to be close to that of a rigid rotor with a 2:1 axis rotation.
Now more than 350 settled superdeformed rotational bands
(SDRB’s), in more than 100 nuclei have been studied in nu-
clei of mass A∼ 30, 60, 80, 130, 150, 160, 190 [2, 3]. Such
nuclei are associated with extremely large quadrupole
β2 = 0.6 in the mass A∼ 150 region andβ2 = 0.47 in the
mass A∼ 190 region. Hence, they are expected to have a
different structures to normal deformed nuclei.

Unfortunately, despite the rather large amount of exper-
imental information on SDRB’s, there are still a number of
very interesting properties, which have not yet been mea-
sured. For example, the spin, parity and excitation energy
relative to the ground state of the SD bands. The difficulty lies
with observing the very weak discrete transitions which link
SD levels with levels of normal deformation (ND).
Several related approaches to assign the spins of SDRB’s in
terms of their observedγ-ray transition energies were pro-
posed [4–10]. For all approaches an extrapolation fitting pro-
cedure was used.

It was found that some SDRB’s show an unexpected∆I=2
staggering in theirγ-ray transition energies [11–20]. The SD
energy levels are consequently separated into two sequences
with spin values I, I+4, I+8, . . . and I+2, I+6, I+10, . . .
respectively. The magnitude of splitting is found to be of
some hundred eV to a few keV. Several theoretical explana-
tion have been made. One of the earliest ones being based on

the assumption of a C4 symmetry [21]. Also it was suggested
that [22] the staggering is associated with the alignment of
the total angular momentum along the axis perpendicular to
the long deformation axis of a prolate nucleus. The stagger-
ing phenomenon was interpreted also as due to the mixing of
a series of rotational bands differ by∆I=4 [23] or arise from
the mixing of two bands near yrast line [24] or by proposing
phenomenological model [25, 26]. The main purpose of the
present paper is to predict the spins of the bandhead of four
SDRB’s in A∼ 150 and A∼ 190 mass regions, and to exam-
ine the∆I=2 staggering and the properties of the dynamical
moments of inertia in framework of proposed four parameters
collective rotational model.

2 Nuclear SDRB’s in Framework of Four Parameters
Collective Rotational Model

On the basis of collective rotational model [27] in adiabatic
approximation, the rotational energy E for an axial symmetric
nucleus can be expanded in powers of I(I+1), where I is the
spin of state:

E(I) = A[I(I+1)]+B[I(I+1)]2+C[I(I+1)]3+D[I(I+1)]4 (1)

where A is the well-known rotational parameter for suffi-
ciently small values of I and B, C, D are the corresponding
higher order parameters. In the view of the above mentioned,
it seems that the ground state energy bands of deformed even-
even nucleus have quantum number K=0 (K is the projec-
tion of I along the symmetry axis), together with even parity
and angular momentum. In SD nuclei, the experimentally
determined quantities are the gamma ray transition energies
between levels differing by two units of angular momentum,
then we could obtain the reference transition energy

Ere f
γ = E(I)−E(I − 2) (2)
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Table 1: The calculated adopted best parameters and the bandhead spins for the selected SD nuclei to investigate the∆I = 2 staggering.

SD-Band A (keV) B (keV) C (keV) D (keV) I (~) Eγ (MeV)
×104 ×108 ×1012

148Gd (SD-6) 4.33360 1.17108 0.001135 -0.04435 41 802.200
194Hg (SD-1) 5.40524 -1.86747 0.000338 -0.00213 8 211.700
194Hg (SD-2) 5.24253 -1.577380 0.003991 -0.00269 8 200.790
194Hg (SD-3) 5.21638 -1.48121 0.0006129 -0.006501 9 222.000

Ere f
γ = 2(2I−1)[A+2(I2−I+1)B

+ (3I4−6I3+13I2−10I + 4)C (3)

+ 4(I6−3I5+10I4−15I3+15I2−8I+2)D].

The rotational frequency is not directly measurable but it is
related to the observed excitation energy E.

Let us define the angular velocity of nuclear rotation as
the derivative of the energy E with respect to the angular mo-
mentum I in analogy with classical mechanics. Instead of
I it is convenient to use the quantum mechanical analogies√

(I(I + 1))

~ω =
dE

d
(√

(I(I + 1))
) (4)

= 2A[I(I + 1)]1/2 + B[I(I + 1)]3/2

+ 6C[I(I + 1)]5/2 + 8D[I(I + 1)]7/2. (5)

The rotational energy spectra can be discussed in terms of the
dynamical moment of inertia calculated from the reciprocal
second order derivative:
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=
(

[2A + 12B[I(I + 1)]

+ 30C[I(I + 1)]2 + 56D[I(I + 1)]3]
)−1
. (7)

The experimental~ω andJ(2) for the SDRB’s are usually ex-
tracted from the observed energies of gamma transition be-
tween two consecutive transitions within the band from the
following formulae:

~ω = [Eγ(I) + Eγ(I + 2)]/4, (8)

J(2) =
4

Eγ(I + 2)− Eγ(I)
. (9)

We notice that~ω andJ(2) does not depend on the knowledge
of the spin I, but only on the measured gamma ray energies.

In order to see the variation in the experimental transition
energiesEγ(I) in a band, we subtract from them a calculated
reference. The corresponding five-point formula is the fourth

order derivative of the transition energies at a given spin

∆4Eγ(I) =
1
16

[Eγ(I + 4)− 4Eγ(I + 2)

+ 6Eγ(I) − 4Eγ(I − 2)+ Eγ(I − 4)].
(10)

One can easily see that∆4Eγ(I) vanishes if our model
contains two parameters A and B, due to the fact that the five-
point formula is a normalized discrete approximation of the
fourth derivatives of the functionEγ(I). We define the stag-
gering parameterS (4)(I) as the difference between the exper-
imental transition energies and the auxiliary reference.

S (4)(I) = 24[∆4Eexp
γ (I) − ∆4Ere f

γ (I)] (11)

3 Numerical Calculations and Discussions

The transition energiesEγ(I) of equation (2) is used to fit the
observed transition energies for our selected SDRB’s with A,
B, C, D and spin value of the bandheadI0 as free parameters.
I0 is taken to the nearest integer of the fitting, the another fit is
made to determine A, B, C and D by using a simulated search
program [9] in order to obtain a minimum root mean square
deviation
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of the calculated transition energiesECal
γ from the measured

energiesEexp
γ , where N is the number of data points consid-

ered, and∆Eexp
γ is the uncertainty of theγ-transition energies.

The experimental data for transition energies are taken from
ref. [2]. Table (1) summarize the model parameters A, B,
C, D and the correct bandhead lowest level spinI0 and also
the lowestγ- transition energiesEγ(I0 + 2 → I0) for our 4
SDRB’s.

To investigate the appearance of staggering effects in the
γ-transition energies of our selected SDRB’s, for each band,
the deviation of theγ-transition energiesEγ(I) from a smooth
reference (rigid rotor) was determined by calculating fourth-
derivatives ofEγ(I) (d4Eγ/dI4) at a given spin I by using the
finite difference approximation. The resulting staggering pa-
rameters values against spin are presented in Figure (1). A
significant∆I=2 staggering was observed. At high spins the
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Fig. 1: The calculated∆I = 2 staggering parametersS (4)(I) obtained
by five-point formula versus nuclear spin I for the SDRB’s in148Gd
and194Hg.

Fig. 2: The dynamical moment of inertiaJ(2) plotted as a function
of the rotational frequency~ω for the SDRB’s in148Gd and194Hg
nuclei. The solid curve represents the calculated results extracted
from the proposed four parameters model. The experimental solid
circles with error bars are presented for comparison.

Madiha D. Okasha.∆I = 2 Nuclear Staggering in Superdeformed Rotational Bands 43



Volume 10 (2014) PROGRESS IN PHYSICS Issue 1 (January)

∆I=2 rotational band is perturbed and two∆I=4 rotational se-
quences emerge with an energy splitting of some hundred eV.
That is the E2 cascades obtained from our model exhibit for
spins I, I+4, I+8, . . . and I+2, I+6, I+10, . . . staggering behav-
ior.

The systematic behavior of the dynamic moment of iner-
tia J(2) is very useful to understand the properties and struc-
ture of SDRB’s. Our best fitted parameters were used to cal-
culate the theoreticalJ(2). The evolution of the dynamical
moment of inertiaJ(2) against rotational frequency~ω are il-
lustrated in Figure (2). It is seen that the agreement between
the calculated (solid lines) and the values extracted from the
observed data (closed circles) are excellent. For A∼190, the
SDRB’s have nearly the sameJ(2) which typically increase
smoothly as rotational frequency increases due to gradual an-
gular momentum alignment of a pair of nucleons occupy-
ing specific high-N intruder orbitals and the disappearance
of pairing correlations. For A∼150 a smooth decrease ofJ(2)

with increasing~ω is reproduced well.
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Lorentzian Type Force on a Charge at Rest
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A remarkable achievement of theoretical physics is the explanation of magnetic effects,
described by the Lorentz force, to be corollaries of charge invariance, Coulombs Law
and the Lorentz transformation. The relativistic explanation of magnetism is based
essentially on the calculation of Coulomb forces between moving charges in the labo-
ratory reference system. We will show presently that the ideas used for the relativistic
explanation of magnetism also lead to a force on a charge at rest by moving charges,
which we dub “Lorentzian type force on a charge at rest”.

1 Introduction

1.1 Miscellaneous

We will follow very closely the chain of thought taken by Ed-
ward Mills Purcell in [1]. We will use the Gaussian CGS units
in order to underline the close relationship between electric
field E(x, y, z, t) and magnetic fieldB(x, y, z, t). We will use
as our reference frameF[x, y, z, t], the idealized laboratory
inertial frame, abbreviated to lab, to describe the location of
particles and fields at timet. We will use other reference sys-
tems likeF′[x′, y′, z′, t′] with axes parallel with respect toF,
with the origins of these systems coinciding att = t′ = 0 and
with F′ being in uniform relative motion with respect toF in
either the positive or negativex direction.

Table 1: Definition of symbols

symbol description

F inertial frame/system
F also for force
p momentum
q charge
B magnetic field
E electric field
a surface
S surface
(x, y, z) space coordinates
t time
c speed of light in vacuum
v velocity
I current
l length
β v

c
γ 1√

1−β2

m rest mass
x̂, ŷ, ẑ, r̂ unit vector in the indicated direction

1.2 The charge and the mass of moving charged part-
icles

The conclusion of the experimental findings is that charge is
quantized and invariant in all stages of relative motion, and
can be calculated by Gauss’s Law [1]

q′ = q . (1)

Mass changes with velocity, charge does not. The fact
that mass changes with velocity finds its mathematical formu-
lation through the introduction of relativistic momentum [2]

p = mvγ (2)

and relativistic energyE = mc2γ. Eq. 2 is the starting point
for the derivation of forces in inertial systems connected by
the Lorentz transformation.

1.3 The electric fields E in F arising from a point
chargeq at rest in F′ and moving with v in F

The electric fieldE in F of a charge moving uniformly inF, at
a given instant of time, is generally directed radially outward
from its instantaneous position and given by [1]

E(R, ϑ) =
q
(

1− β2
)

R2
(

1− β2 sin2 ϑ
)

3
2

R̂ . (3)

R is the length ofR, the radius vector from the instantaneous
position of the charge to the point of observation;ϑ is the
angle between the direction of motion of the chargeq v∆t
andR. Eq. 3, multiplied byQ, tells us the force on a charge
Q at rest inF caused by a chargeq moving in F (q is at rest
in F′).

1.4 The relativistic explanation of magnetism

In Fig. 1 we have sketched the model given in [1] to explain
magnetic effects by relativistic arguments. The calculation of
the force on q gives

F′y =
dp′y
dt′
= qE′ =

2q
γ0r′

(

γ′+λ+ + γ
′
−λ−

)

=
γ4qλvv0

r′c2
. (4)
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Fig. 1: We show a positive line charge distributionλ+, stationary in
reference frameF′0+, moving inF in the positive x-direction withv0,
and a negative line charge distributionλ− at rest inF′0−, moving in
F in the negative x-direction withv0. A positive chargeq, at rest in
F′, moves withv in F in the positive x-direction InF the electric
fields sum up to0 because by definitionλ+ + λ− = 0. In F′, the
rest frame of chargeq, there is an electric fieldE’ , 0 due to fields
transformed from the rest frame ofλ+ andλ− to F′. The resulting
force in F′ on q, dp′/dt′, is then transformed toF, the lab frame,
where we observe the chargeq.

The resulting forcedp′/dt′ on chargeq in F′ is transferred
to F, the lab system, where we do the experiments, giving

Fy =
dpy
dt =

dp′y
γdt′ , and has the value [1]

F =
4qλvv0

rc2
ŷ =

2qvI
rc2

ŷ =
qv
c

2I
rc

ŷ (5)

with λ = |λ+| = |λ−|.
As was discovered well before the advent of relativity, the

overall effect of currents on a moving charge can also be de-
scribed completely by introducing the magnetic fieldB in the
lab frame F and equating the Lorentz force todp/dt. The
magnetic fieldB is calculated with Biot-Savart’s Law. The
main purpose of the derivation, which results in Eq. 5, is to
explain how nature works, and to demonstrate how the phys-
ical entity “magnetic field” can be revealed using more fun-
damental physical laws, specifically Coulomb’s law and the
laws of special relativity [1].

2 Lorentzian type force on a test chargeQ at rest

We consider now two very narrow wires isolated along their
length, but connected at the ends, each having length 2a and
lying in lab coaxial to the x-axis ofF from x = −a to x = a.
In addition the system has a source of electromotive force
applied so that a currentI is flowing through the wires: in one
of the wiresI flows in the positivex direction and in the other
wire I flows in the negativex direction. We also have in mind
two wires forming a thermocouple or two superconducting
wires. On the z-axis ofF fixed (at rest) at (0, 0, h) a test
chargeQ is located.

The system is sketched in Fig. 2. We will now calculate
the forceFLt on the stationary test chargeQ fixed at (0, 0, h)

Fig. 2: (a) (b) (c): We show in Fig. 2(a) the two wires carryingthe
current I extended along thex axis ofF from x=− a to x= a and the
chargeQ at rest inF at (0, 0, h). Additionally on the right-hand side
a magnification of a small element∆x containing the two wires and
labeled Fig. 2(b) can be seen. Fig. 2(b) shows some moving elec-
trons and for each of these the nearest neighboring proton situated
in the tiny element. We calculate the force onQ by precisely these
pairs of charges. The effects of the other immobile electrons and
protons of element∆x sum up to0. On the left-hand side another
magnification of element∆x labeled Fig. 2(c) can be seen, showing
some geometrical relations useful for integration.

due to the electrons of currentI and their nearest stationary
protons.

The two wires are electrically neutral before the current
is switched on. Therefore after the current is switched on we
have an equal number ofN electrons andN protons in the
system — the same numberN, as with the current switched
off. We look at the system at one instant of lab timet0, after
the currentI is switched on and is stationary. We divide the
wires into sections having lengths∆xi. In each such element
we consider theki electrons that make up the currentI. For
each of theseki electronsei j with j = 1, 2, . . . ki, having veloc-
ity ±vx, which are defining the currentI in ∆xi, we select the
nearest neighboring stationary protonpi j with j = 1, 2, . . . ki,
with the restriction that the proton must lie in∆xi. “Station-
ary” means that the charges retain their mean position over
time. The effects onQ by the residualKi stationary protons
and Ki stationary electrons present in this element∆xi sum
up to0. The number of electrons and protons in the system
is given byN =

∑

i (Ki + ki). For each charge of the mo-
bile electron-stationary proton pairs present in∆xi, we use
the samer i as the vector from each of the charges toQ. We
useϑi = arcsinh

ri
, the angle between the x-axis andr i, for

each charge of the pairs of charges present in∆xi. In Fig.3
we have sketched the situation for one pair of charges.

Referring to Fig. 2 we conclude that the line charge den-
sity λ andki, the number of current electrons moving with
|vx| in ∆xi, and the line charge densityλ and theki immobile
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FQ =
d
(

mvQγQ
)

dt
=

− qQ

r2

























(

1− β2
)

(

1− β2 sin2 ϑ
)

3
2

− 1

























r̂ + Fspring = 0

q v = 0 at rest in laboratory

−q v , 0 moving in laboratory

Q vQ = 0 at rest in laboratory

β = v
2

c2 γQ =

(

1−
vQ

2

c2

)− 1
2

Fig. 3: We show a positive immobile charge q at rest inlab and a
negative moving charge−q moving inlab and the resulting electrical
force on a positive chargeQ at rest inlab. q and−q are one of the
pairs of charges that we select at timet0 in ∆x to calculate the effects
of the currentI on chargeQ at rest inlab.

protons of∆xi are both related by

ki =
|λ|∆xi

e
(6)

with e = 4.803−10[esu]. By doing so we replace the use of
the relativistic length contraction by counting charges. We
use the same distanceri(t0) from Q to theki moving electrons
and fromQ to the ki immobile protons. We now calculate
the force onQ from exactly these charges, i.e.ki electrons
moving with |vx| andki immobile protons. In Figure 2(c) we
sketched the model and some geometrical relations which are
used below.

With

∆x = − r∆ϑ
sinϑ

(7)

and with

r =
h

sinϑ
(8)

we get

∆Ez =
λ
(

1− β2
)

sinϑ∆ϑ

h
(

1− β2 sin2 ϑ
)

3
2

−
λ sinϑ∆ϑ

h
. (9)

Now we have to sum up over all elements∆xi (or ∆ϑi).
We do this by multiplying Eq. 9 by 4 and by integrating from
ϑ = π

2 to ϑmin = arctanh
a . For the first term we substitute

u = β cosϑ and use
∫

du

(a2+u2)
3
2
= u

a2(a2+u2)
1
2

and finally obtain

Ez =
4λ cosϑmin

h























1− 1
(

1− β2 sin2 ϑmin

)
1
2























≈

−2Ivx cosϑmin sin2 ϑmin

hc2
.

The force onQ, — the “Lorentzian type force on a charge
at rest” — is then

FLt = −
Q 2Ivx cosϑmin sin2 ϑmin

hc2
ẑ; (10)

q.e.d.
The force described by Eq. 10 is of the same order (e.g.

for ϑmin =
π
3) of magnitude as magnetic forces, as can be seen

by comparing it to Eq. 5 (repeated below), but it acts on a
chargeQ which has zero velocity. Find Eq. 5 written again
below

F =
4qλvv0

rc2
ŷ =

2qvI
rc2

ŷ =
qv
c

2I
rc

ŷ (5 repeated) (11)

for easier comparison with Eq. 10.

Discussion

Whenever new concepts and ideas are introduced in physics,
it is to be expected that they not only adequately explain the
existing findings, but also enable new predictions that are fal-
sifiable by experimental means. The Lorentz force leaves no
room for a force on a charge at rest caused by moving charges,
because the velocity of the charge at rest is, of course, zero.
But the ideas and methods of special relativity, when used
to explain magnetism, show that such a force — a force of
moving charges which are part of a neutral piece of matter
containing the same number of electrons and protons — ex-
erted on a charge at rest, a certain distance away of the above
mentioned piece of matter, is possible. We have shown this by
reproducing the derivation of magnetism by relativistic argu-
ments given in [1] step-by-step and applying it to our system
of wires and charges. We could have calculated the fields and
forces onQ in a reference systemF′ whereQ is at rest and
transformed the result toF or lab to formally and completely
reproduce the derivation of magnetism using relativity, result-
ing in Eq. 5 as shown in [1] and section 1.4. But asQ is at
rest in lab, and therefore at rest in reference frameF, we have
calculated the effects onQ due to moving charges directly in
F using Eq. 3. Of course we then no longer need to transfer
the rate of change of momentum toF because it is directly
given in the frameF in which Q is at rest. In addition we
have replaced the line charge variations in different reference
frames due to the Lorentz-Fitzgerald length contraction used
in [1] by defining pairs of moving current electrons and their
nearest neighbor immobile protons to calculate the effects on
the chargeQ. In other words we have replaced the use of
the Lorentz-Fitzgerald contraction by counting charges, and
counting is relativistically invariant. The basic idea forthe
calculation ofFLt manifestations is the use of pairs of mov-
ing and immobile charges. If the Lorentzian type force on a
charge at rest cannot be found by experiment, and we have
no hint that it exists, at least the derivation leading to Eq.3,
written down in [1], should be subject to a revision.
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This paper deals with the problem of steady laminar flow of viscous incompressible
fluid between two parallel porous plates with bottom injection and top suction. The
flow is driven by a pressure gradient ∂p

∂x and uniform vertical flow is generated i.e. the
vertical velocity is constant everywhere in the field flow i.e. v = vw = constant. Also a
solution for the small and large Reynold number is discussed and the graph of velocity
profile for flow between parallel plates with the bottom injection and top suction for
different values of Reynold numbers is drawn.

1 Introduction

The two dimensional steady laminar flow in channels with
porous walls has numerous application in field of Science
and Engineering through boundary layer control, transpira-
tion cooling and biomedical enginering.

Berman (1953) was the first reasercher who studied the
problem of steady flow in an incompressible viscous fluid
through a porous channel with rectangular cross section,
when the Reynold number is low and the pertubation solution
assuming normal wall velocity to be equal was obtained [1].

Sellars (1955), extended problem studied by Berman by
using very high Reynold numbers [2].

Yuan (1956) [3] and Terill (1964) [4] analysed the same
problem assuming different normal velocity at the wall.

Terrill and Shrestha (1965) analysed the problem for a
flow in a channel with walls of different permeabilities [5].

Green (1979) studied the flow in a channel with one
porous wall [7].

In this paper, we considered the flow of an incompressible
viscous fluid between two parallel porous plates with bottom
injection and top suction and assume that the wall velocity is
uniform.

2 Formulation of the problem

The study laminar flow of an incompressible viscous fluid be-
tween two parallel porous plates with bottom injection and
top suction at walls and uniform cross flow velocity is con-
sidered. The well known governing equations of the flow are:

Continuity equation:

∂u
∂x
+
∂v

∂y
= 0. (1)

Momentum equations (without body force):

u
∂u
∂x
+ v
∂u
∂y
= −1
ρ

∂p
∂x
+ ν

(
∂2u
∂x2 +

∂2u
∂y2

)
, (2)

u
∂v

∂x
+ v
∂v

∂y
= −1
ρ

∂p
∂y
+ ν

(
∂2v

∂x2 +
∂2v

∂y2

)
. (3)

The flow between two porous plates at y=+h and y=-h,
respectively is considered.THe flow is deriven by a pressure
gradient ∂p

∂x . It is assumeed that a uniform vertical flow is
generated i.e the vertical velocity component is constant ev-
erywhere in the flow field i.e v = vw = constant. Again the
continuity equation shows that u = u(y) only, the momentum
equation (2) becomes:

vw
du
dy
= −1
ρ

dp
dx
+ ν

d2u
dy2 . (4)

Re-arranging eqn. (4), we have

d2u
dy2 −

vw
ν

du
dy
=

1
µ

dp
dx
. (5)

Homogeneous part of eqn. (5) becomes

d2u
dy2 −

vw
ν

du
dy
= 0. (6)

Eqn. (6) is differential equation, with auxiliary equation of

p2 − vw
ν

p = 0

with roots
p1 = 0, p2 =

vw
ν
.

The solution of eqn. (6) is of the form

u(y) = Aep1y + Bep2y,

where A and B are constant.

u(y) = A + Be
vw
ν y (7)

For particular integral of eqn. (5), we set

u(y) = ay2 + by + c, (8)

where a, b, and c are constants.
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du
dy
= 2ay + b,⇒ d2u

dy2 = 2a (9)

Substituting eqn. (9) in eqn. (5) we get(
2a − vw

ν
b
)
− 2a
vw
ν
y =

1
µ

dp
dx
.

Comparing the co-efficients, we get

a = 0⇒ b = − ν
vw

1
µ

dp
dx
. (10)

Now, eqn. (8) becomes

u(y) = − ν
vw

1
µ

dp
dx
y + c. (11)

The final solution formes by adding eqn. (7) and eqn. (11)

u(y) = D + Be
vw
ν y − ν

vw

1
µ

dp
dx
y. (12)

Since vw is constant, the equation is linear. We retain the
no-slip condition for the main flow.

u(+h) = u(−h) = 0

u(h) = D + Be
vw
ν

h
− ν
vw

1
µ

dp
dx

h (13)

u(−h) = D + Be
−
vw
ν

h
+
ν

vw

1
µ

dp
dx

h. (14)

Subtracting eqn. (14) from eqn. (13), we get

B =
2 ν
vw

h
µ

dp
dx

e
vw
ν h − e−

vw
ν h
=

2 ν
vw

h
µ

dp
dx

2 sinh
(
vw
ν

h
) = ν

vw
h
µ

dp
dx

sinh
(
vw
ν

h
) . (15)

Substituting eqn. (15) into eqn. (13), we get

D = −
ν
vw

h
µ

dp
dx e

vw
ν h

sinh
(
vw
ν

h
) + ν
vw

h
µ

dp
dx
. (16)

Eqn. (12) reduces to

u(y) = −
ν
vw

h
µ

dp
dx e

vw
ν h

sinh
(
vw
ν

h
) + ν
vw

h
µ

dp
dx
+

ν
vw

h
µ

dp
dx e

vw
ν y

sinh
(
vw
ν

h
) − ν
vw

y

µ

dp
dx
. (17)

But wall Reynold number is Re = vw
ν

h, Re
h =

vw
ν
⇒ h

Re =
ν
vw

.
Re-arranging eqn. (17), we get

u(y) = − h2

Re
1
µ

dp
dx

yh − 1 +
eRe − eRe yh

sinh(Re)

 . (18)

The final solution of eqn. (5),

u(y)
umax

=
2

Re

yh − 1 +
eRe − eRe yh

sinh Re

 . (19)

Where umax =
h2

2µ (− dp
dy ) is the centerline velocity for imporous

or poiseuille.
For very small Re (or small vertical velocity), then the last

terms in the parentheses of of eqn. (19) can be expanded in a
power series and sinh Re ≈ Re i.e.

u(y)
umax
=

2
Re

yh−1+
1+Re+ (Re)2

2 + ..−
(
1+Re yh+

(Re)2

2
y2

h2+..
)

Re

 ,
u(y)
umax

=
2

Re

yh − 1 +
Re

(
1 + Re

2 −
y
h −

Re
2
y2

h2

)
Re

 ,
u(y)
umax

= 1 − y
2

h2 . (20)

Eqn. (20) shows that, the poiseuille solution recovered.
For very large Re (or large vertical velocity), eqn. (19)

can be written as

u(y)
umax

=
2

Re

yh − 1 + 2
eRe − eRe yh

eRe − e−Re

 ,
u(y)
umax

=
2

Re

yh − 1 + 2
1 − e−Re(1− yh )

1 − e−2Re

 .
For Re→ ∞ and yh > 1, except for y = +h, we get

u(y)
umax

=
2

Re

[
y

h
− 1 + 2

]
,

u(y)
umax

=
2

Re

[
1 +
y

h

]
, (21)

so that a straight line variation which suddenly drops to zero
at the upper wall.

3 Discussion

The velocity profiles have been drawn for different values of
Reynold numbers (i.e. Re= 0, 3, 5, 10). From Fig. (1), its ob-
served that for Re ≥ 0 in the region −1 ≤ y∗ ≤ 1, the shapes
change smoothly with Reynold numbers and the average ve-
locity is decreasing and Reynold number increases; i.e. the
friction factor increases as we apply more cross flow through
the wall.

4 Conclussion

In the above analysis a class of solution of flow of viscous
fluid between two parallel porous plates with bottom injection
and top suction is presented when a cross flow velocity along
the boundary is uniform, the convective acceleration is linear
and the flow is deriven from pressure gradient.
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Fig. 1: Velocity profiles for flow between parallel plates with bottom
injection and top suction for different values of Re.

Nomenclature

A,B,C,D: Constants
h: Height of the channel
P: Pressure
x: Axial distance
y:Lateral distance
vw: Lateral wall velocity
u(x,y): Axial velocity component
v(x,y): Lateral velocity component
y∗ = yh : Dimensionless lateral distance
Re = vwh

ν
: Wall Reynold number

Greek Symbols

µ: Shear viscosity
ν: Kinematic viscosity
ρ: Fluid density
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Orbits in Homogeneous Time Varying Spherical Spacetime
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The solution to Einstein’s gravitational field equations exterior to time varying distribu-
tions of mass within regions of spherical geometry is used to study the behaviour of test
particles and photons in the vicinity of the mass distribution. Equations of motion are
derived and an expression for deflection of light in this gravitational field is obtained.
The expresion obtained differs from that in Schwarzschild’s field by a multiplicative
time dependent factor. The concept of gravitational lens in this gravitational field is
also studied.

1 Introduction

In [1], the covariant metric tensor exterior to a homogeneous
time varying distribution of mass within regions of spherical
geometry is defined as:

g00 = −
[
1 +

2
c2 f (t, r)

]
(1)

g11 =

[
1 +

2
c2 f (t, r)

]−1

(2)

g22 = r2 (3)

g33 = r2 sin2 θ (4)

where f (t, r) is a function dependent on the mass distribution
within the sphere that experiences radial displacement. Ein-
stein’s gravitational field equations were constructed in [1]
and an approximate expression for the analytical solution of
the lone field equation was obtained as

f (t, r) ≈ −k
r

exp iω
(
t − r

c

)
(5)

where k = GM0 with G being the universal gravitational con-
stant and M0 the total mass of the spherical body. ω is the
angular frequency of the radial displacement of mass within
the sphere.

In this article, we use this solution of Einstein’s field equa-
tions to study the behaviour of light in the vicinity of a time
varying spherical mass distribution.

2 Orbits in Time Varying Spherical Spacetime

In order to study the motion of planets and light rays in a
homogeneous time varying spherical spacetime, there is need
to derive the geodesic equations [2]. The Lagrangian (L) for
this gravitational field can be defined using the metric tensor
as:

L=
1
c

−g00

(
dt
dτ

)2

−g11

(
dr
dτ

)2

−g22

(
dθ
dτ

)2

−g33

(
dϕ
dτ

)2
1
2

(6)

Assuming that the orbits remain permanently in the equato-
rial plane (as in Newtonian Theory), then θ = π

2 and the La-
grangian reduces to

L =
1
c

−g00

(
dt
dτ

)2

− g11

(
dr
dτ

)2

− g33

(
dϕ
dτ

)2
1
2

(7)

or more explicitly as

L =
1
c

(1 + 2
c2 f (t, r)

)
ṫ2 −

(
1 +

2
c2 f (t, r)

)−1

ṙ2 − r2ϕ̇2


1
2

(8)

where the dot denotes differentiation with respect to proper
time (τ).

Now, using the Euler-Lagrange equations and considering
the fact that in a gravitational field is a conservative field, it
can be shown that the law of conservation of energy in this
field is given as(

1 +
2
c2 f (t, r)

)
ṫ = d (constant) (9)

or more explicitly as[
1 − 2GM

rc2 exp iω
(
t − r

c

)]
ṫ = d (10)

which differs from that in Schwarzschild’s field by the expo-
nential factor that describes the radial displacement of mass
with time.

It can also be shown that the law of conservation of angu-
lar momemtum in this gravitational field is given as

r2ϕ̇ = h (constant) (11)

which is the same as that in Schwarzschild’s field.
Let L = ε, and equation (8) becomes

ε2=

(
1+

2
c2 f (t, r)

)
ṫ2− 1

c2

(1+ 2
c2 f (t, r)

)−1

ṙ2−r2ϕ̇2

 . (12)

Substituting equation (10) in (12) yields

1
2

[
ṙ2+r2ϕ̇2

(
1+

2
c2 f (t, r)

)]
+ε2 f (t, r)=

1
2

c2
(
d2−ε2

)
. (13)
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This is the Newtonian energy equation with a modification to
the ϕ̇2 term. It is similar to that obtained in Schwarzschild’s
field except for the time dependent radial diplacement. Also,
using equation (11), it can be shown that

ṙ =
dr
dϕ

dϕ
dτ
= ϕ̇

dr
dϕ
=

h
r2

dr
dϕ
. (14)

Now, let u(ϕ) = 1
r(ϕ) then

ṙ = −h
du
dϕ
. (15)

Substituting equation (5) and (15) into equation (13) yields

(
du
dϕ

)2

+ u2
[
1 − 2k

c2 u exp iω
(
t − 1

uc

)]
+

2ε2k
h2 u exp iω

(
t − 1

uc

)
=

c2

h2

(
d2 − ε2

)
(16)

It is worthnoting that integrating equation (16) directly leads
to elliptical integrals which are ackward to handle; thus differ-
entiating yields the following second order differential equa-
tion

d2u
dϕ2 + u

[
1 − 2k

c2 u exp iω
(
t − 1

uc

)]
−

2k
c2 u2

(
1 − 1

u

)
exp iω

(
t − 1

uc

)
+

2kε2

h2

(
1 +

1
u2

)
exp iω

(
t − 1

uc

)
= 0. (17)

This equation has additional terms not found in Schwarz-
schild’s field.

3 Timelike Orbits and Precession

For timelike orbits ε = 1 and equation (17) becomes

d2u
dϕ2 + u

[
1 − 2k

c2 u exp iω
(
t − 1

uc

)]
−

2k
c2 u2

(
1 − 1

u

)
exp iω

(
t − 1

uc

)
+

2k
h2

(
1 +

1
u2

)
exp iω

(
t − 1

uc

)
= 0. (18)

Now as a first approximation, suppose uc ≫ 1 and k ≪
h2u2 then equation (8) reduces to

d2u
dϕ2 + u = k

[
3
c2 u2 +

1
c2 u − 1

h2

]
exp iωt. (19)

The Newtonian equation for a spherical mass is

d2u
dϕ2 + u =

k
h2 (20)

and that obtained in Schwarzschild’s field is

d2u
dϕ2 + u =

k
h2 +

3k
c2 u2. (21)

Apart from the first and second terms of equation (19) that
are similar to Newton’s equation and that in Schwarzschild’s
field, the other terms have terms dependent on the time rate
of rotation of the mass content within the sphere [3].

Solution of the Newtonian equation (20) yields the well
known conics

u0 =
1
l

(1 + e cos θ) (22)

where l = h2

GM and e is the eccentricity of the orbit. Attempt-
ing an approximate solution for equation (19) by substituting
the Newtonian solution into the quadratic term in u on the
right hand side and neglecting the term in u, a particular inte-
gral u1 satisfies equation (19) such that

d2u1

dϕ2 + u1 = k
[

3
l2c2 (1 + e cos θ)2 − 1

h2

]
exp iωt. (23)

Now suppose u1 takes the form:

u1 = A + Bϕ sin ϕ + C cos 2ϕ (24)

where A, B and C are constants, then it can be shown that

u1 =
k
c2

(
3
l2
− 1

l
− 1

h2

)
exp iωt

+
keϕ
2c2

(
3
l2
− 1

2l

)
sin 2ϕ exp iωt +

ke2

l2c2 cos 2ϕ. (25)

Then the approximate solution for u can be given as

u = u0 + u1 (26)

or

u =
1
l

(1 + e cos θ) +
k
c2

(
3
l2
− 1

l
− 1

h2

)
exp iωt

+
keϕ
2c2

(
3
l2
− 1

2l

)
sin 2ϕ exp iωt +

ke2

l2c2 cos 2ϕ. (27)

Hence, this approximate solution introduces corrections to u0
and hence depicts that the orbits of massive objects is only
approximately elliptical and also accounts for the perihelion
precession of planetary orbits in this gravitational field.

4 The Bending of Light

For null geodesics, ε = 0 and equation (17) yields

d2u
dϕ2 + u =

[
3k
c2 exp iω

(
t − 1

uc

)]
u2

+

[
k
c2 exp iω

(
t − 1

uc

)]
u. (28)
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In the limit of Special Relativity, equation (28) reduces to

d2u
dϕ2 + u = 0. (29)

The general solution of equation (29) is given as

u =
1
b

sin (ϕ − ϕ0) (30)

where b is the closest approach to the origin (or impact pa-
rameter). This is the equation of a straight line as ϕ goes from
ϕ0 to ϕ0 + π. The straight line motion of light is the same as
that predicted by Newtonian theory.

Now, solving the General Relativity problem (equation
28) by taking the general solution (u) to be a pertubation of
the Newtonian solution, and setting ϕ0 = 0, then

u = u0 + u1 (31)

where u0 =
1
b sin ϕ. Thus, u1 satisfies the equation

d2u1

dϕ2 + u1 =
3k

b2c2 sin2 ϕ exp iω
(
t − b

c sin ϕ

)
+

k
bc2 sin ϕ exp iω

(
t − b

c sin ϕ

)
. (32)

Now, by considering a particular integral of the form

u1 = A + B sin2 ϕ (33)

and substituting in equation (32), it can be shown that

u1 =
2k

b2c2

(
1 − 1

2
sin2 ϕ

)
exp iω

(
t − b

c sin ϕ

)
(34)

and thus

u =
1
b

sin ϕ+
2k

b2c2

(
1 − 1

2
sin2 ϕ

)
exp iω

(
t − b

c sin ϕ

)
. (35)

Now, consider the deflection of a light ray from a star
which just grazes the time varying homogeneous spherical
mass (such as the Sun approximately); as in Fig. 1, then as
r → ±∞, u→ 0, so

0 =
1
b

sin ϕ+
2k

b2c2

(
1 − 1

2
sin2 ϕ

)
exp iω

(
t − b

c sin ϕ

)
. (36)

At the asymptotes, ϕ = −ψ1 and ϕ = ψ2 + π and taking ϕ ≪ 1
then equation (36) reduces to

0 =
1
b
ψ1 +

2k
b2c2 exp iω

(
t +

b
cψ1

)
(37)

and

0 =
1
b
ψ2 +

2k
b2c2 exp iω

(
t +

b
cψ2

)
. (38)

Fig. 1: Diagram showing the total deflection of light.

Fig. 2: Einstein’s Ring.

The total deflection of light (σ) is given as

σ = ψ1 + ψ2

or

σ =
2k
bc2

[
exp iω

(
t +

b
cψ1

)
+ exp iω

(
t +

b
cψ2

)]
. (39)

Thus, the introduction of varying mass distribution with time
introduces an exponential term in the deflection of light equa-
tion not found in static homogeneous spherical gravitational
fields.

Now, as an example of the bending of light, let us consider
a gravitational lens.

Consider a quasar directly behind a galaxy in our line of
sight as shown in Fig. 2.

The distance of closest approach to the time varying
spherical mass distribution corresponds to an angle (σ) given
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as equation (39). From Fig. 2, considering that both α and β
are small, it can be deduced that

σ =
α

2
+ β =

b
d
+

b
D

(40)

and substituting equation (39) yields the impact parameter as

b =
{

2k
c2

(
Dd

D + d

) [
exp iω

(
t +

b
cψ1

)
+ exp iω

(
t +

b
cψ2

)]} 1
2

.

Hence, the image of the quasar appears as a ring which
subtends an angle

α =
2b
d

or

α =
2
c

{
Dd

d(D + d)

[
exp iω

(
t +

b
cψ1

)
+ exp iω

(
t +

b
cψ2

)]} 1
2

.

5 Conclusion

The results obtained in this study has paved the way for the
theoretical study of homogeneous spherical mass distribu-
tions in which the mass content is varying with time. This will
introduce correction terms found in Schwarzschild’s static
field. It is hoped that using this approach experimentally and
astrophysically more satisfactory expressions and values will
be obtained for gravitational phenomena in the universe.
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Exogenous Mechanism of the Time Sensor of Biological Clock
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The problem of time sensor of a biological clock attracts interest of many scientists, and
a great number of experiments are being conducted to study the influence of various
physical and chemical factors on functioning of a biological clock. Analyzing publi-
cations and considering our own original results a physicalexogenous mechanism of
biological clock is formulated that adequately explains the obtained experimental data.

The problem of biological rhythms i.e. biorhythms (BR) with
periodicity close to the periodicity of geophysical phenomena
has been attracting interest of scientists for centuries. And a
great number of experiments carried out on different organ-
isms beginning from single-cell creatures and plants to an-
imals and human beings confirm that biological organisms
have the ability to measure time [1–6] and biological clocks
(BC) really exist.

The central problem in this matter is explanation of how
time sensor (TS) of a BC functions and of the very basic
mechanism of TS. Attempts had been made to study the in-
fluence of different chemical and physical factors on the pa-
rameters of BC.

The most thoroughly studied rhythms are those with a pe-
riod close to 24 hours. These are so called circadian rhythms
(CR). Fewer works are devoted to lunar rhythms (LR) which
are of periods around 29.53 and 14.77 days. A few works in-
volve yearly rhythms, and there is information about a period
of about 180 million years of the Earth‘s biosphere produc-
tivity [4].

In an attempt to determine the mechanism of TS influ-
ences of the following factors have been studied on the pa-
rameters of CR: illumination [7], light/darkness cycles [8],
electrical and magnetic fields of the Earth [9, 10], and ab-
sence of such [11], temperature variations [12, 13], chemi-
cals [14,15]. There were experiments in constant pressure and
temperature environments [17].

The main properties of BC obtained from experiments are
presented in [16]. The noteworthy fact is that the study of BC
had been carried out on biological objects using parameters,
which are the last stages of long chains of complex biochemi-
cal reactions and processes. In fact, in biological experiments
researchers observe the motion of the “hands” of BC. Nat-
urally, such observations do not allow revealing the mecha-
nism of BCTS that controls the “hands” of the clock. Thus,
the study of biological objects makes it impossible to draw
conclusions about the specific stages where one or another
factor begins to affect the biochemical chain of reaction. This
means, it is difficult to come to a single conclusion, that the
observed effects were the result of the action of a single factor
on the mechanism of time BCTS. And, as J. Gustings noticed
it is impossible to give an example of an isolated and stud-
ied biochemical system, which possesses the properties that

would reveal the factor and the location of such factor’s influ-
ence on CR [14].

The summarized conclusion coming from broad experi-
mental data is that physical and chemical factors, whose in-
fluence on BC have been studied, do not have any relationship
with the mechanism of BCTS, but only play a synchronizing
role. Namely, the factor whose influence is studied only af-
fects the “hand” of the clock by force shifting it one way or
another without affecting the actual mechanism behind the
“face” of the clock, i.e. without changing the period of CR.

As a result the conclusion is drawn that the period of BC,
particularly of CR, is independent from external factors. And
thus this period of the rhythms must be defined by organisms
independently from external factors, periodic or non-periodic,
of physical or chemical nature. This hypothesis is based on
three well known facts:

i. The difference of the period from 24 hours in experiments
in constant conditions;

ii. Easiness of shifting the phase of the rhythms;

iii. Stability of the rhythm period during latitudinal shifts,
that followed by the change of all geophysical factors
determined by place and time.

But none of these facts can be accepted as a definite proof as
it is established in scientific world [17].

Overall experimental data from studies of BCTS mech-
anism do not permit to arrive to a single conclusion regard-
ing the physical foundation of BCTS. Therefore, presently the
hypothesis of endogenous mechanism of BCTS is generally
accepted. Though there are facts that may support a com-
bined exogenous-endogenous mechanism [7]. Such attempts
encourage search for processes (of physical or simple chemi-
cal nature) that would allow identifying possibly a single sim-
ple mechanism of BCTS.

Circadian periodicity of evaporation of water from a ther-
mostated essel∗

Initial experiments were carried out in 1974. During one of
experiments (see the footnote) it became necessary to obtain
a stable flow of water vapor of low intensity (1.4×10−5 kg/s).

∗These experimental data had been obtained in 1974 by a group of physi-
cists headed by Prof. M. A. Asimov. The author of the present article was a
responsible leader for the experiments.
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Fig. 1: (1) Container filled with distilled water; (2) Thermostated
chamber with inside temperature of 103± 0.1◦C; (3) Cooling sys-
tem; (4) Container where the water condensate was collected

For this, the experimental setup, schematics plotted on Fig. 1,
had been assembled.

Container (1) with distilled water was placed into the
thermostated chamber (2), where stable temperature at
103±0.1◦C was maintained. Water was boiling inside the
container (1). The water vapor went through the cooling sys-
tem (3) and precipitated into the container (4). The mass of
the evaporated/precipitated water was measured every 15 min
and a set of 4 measurements had been plotted on the Fig. 2a
and 2b. The experiments were carried out uninterruptedly by
a number of series of 1 to 7 days of duration.

In order to thoroughly investigate the rate of water va-
porization power supply of the thermostat was carefully sta-
bilized, all containers and tubes and connections were ther-
mally insulated, mass was carefully measured and stability
of the temperature was closely monitored. The data coming
from the measurements strongly suggested the existence of
CR in the physical process of distilled water evaporation from
a thermostated container.

Measurements were repeated 2001. Due to the limited
resources and financial restrictions, the measurements were
conducted for only 24 hours. The data collected in 2001 is
plotted on Fig. 2b.

Simultaneously, external parameters were monitored. In
the Fig. 3, these parameters were plotted vs. time of the day.
Namely, temperature of the thermostated chamber Thot, tem-
perature of the liquid in cooling system Tcold, ambient tem-
perature Tamb, atmospheric pressure p in mm Hg, relative hu-
midity η, and voltage of the power supply were plotted vs.
time. As it is clear from Fig. 3, no significant correlation was
observed between external parameters and the mass of the
evaporated/precipitated water∗.

Lunar rhythm in the reaction of vapor conversion of
methanol

The stable vapor flow of low intensity was necessary for
studying of chemical reaction of vapor conversion of metha-

∗Experiment conducted in 2001 was made possible by generous techni-
cal assistance of Abdulaev Khikmat at the Biology Department of Tashkent
State University.

(a)

(b)

Fig. 2: Variation of the mass of collected water condensate vs. time
of the day

nol. The reaction used in chemical industry to produce hydro-
gen is described by a formula:

CH4 + 2H2O
450◦C
−→ CO2 + 4H2 (1)

To investigate time dependence of the reaction speed there
were provided stable flows of gaseous CH4 and water vapor
(deviations were± 0.3% and± 3%, respectively).

The experiment had been carried out for 540 hours in Oc-
tober and November of 1974. In Fig. 4 the experimental mea-
surements were plotted, y axis shows the fraction of residual
methane in the converted dry gas at the output of the reactor.

Composition of the gas at the output was analyzed by
the method of gas chromatography. Every 15 min three chro-
matographs were collected; results of 2-4 hour measurements
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Fig. 3: Monitoring of external parameters of temperature ofthe ther-
mostated chamber Thot, temperature of the liquid in cooling system
Tcold, ambient temperature Tamb, atmospheric pressurep in mm
Hg, relative humidityη, and voltage of the power supply were plot-
ted vs. time. Experiments were conducted in summer of 2001.

were averaged and then plotted on the Fig. 4.
Results of these studies indicated on the existence of a

lunar rhythm in the chemical reaction of vapor conversion of
methanol at T= 450◦C. This temperature is noticeably higher
than temperature of any known living organism.

Discussion

A sum total of published experimental data and mentioned
above original results of revealing of CR in water evaporation
from a thermostated vessel (at T= 103◦C), and LR in chem-
ical reaction of vapor conversion of methanol (at T=450◦C)
allowed to conclude that the mechanism of BCTS has exoge-
nous nature.

Let’s analyze changing of kinetic and potential energy of
atoms/molecule on the surface of the Earth. An atom/mole-
cule on the surface of the Earth takes part in following mo-
tions:

1. Spinning of the Earth around its own axis with the surface
speed V1= 465× cosα m/s, whereα – is latitude;

2. Revolving with the Earth around the Sun with a linear
speed of V2= 3×104 m/s;

3. Moving with the Solar system around the center of the
Galaxy with a linear speed of aboutV3=2.5×105 m/s;

4. Moving with the Galaxy from the center of the Universe
with a linear speed of about V4= 6×105 m/s [18];

It’s known that total mechanical energy is the sum of kinetic
energy KE and potential energy U:

Etotal = KE + U (2)

Fig. 4: Concentration of residual CH4 in % in vapor conver-
sion reaction output. (Experimental data presented in thisfigure
were obtained in Tashkent State University, Uzbekistan by Do-
cent M. A. Azimov’s group, headed by Mr. Takhir R. Akhmedov in
1972–75)

And, if any of these components or both of them change ac-
cording to a law, then the total energy will change according
to the same law. And the change can be potentially affecting
any physical, chemical or biological process.

The factors 1-3 cause changing of kinetic energy of
atoms/molecules on the surface of the Earth with periods,
respectively, 24 hours (CR), a year (year rhythm), 180 mil-
lion years (the Galaxy “year” rhythm). The existence of the
rhythms has been mentioned above. Analysis of the kinetic
energy changing leads us to the following formula:

Emax− Emin = 2m× VT × VE × cosα (3)

where m – mass of an atom/molecule, VT – thermodynamic
speed of an atom/molecule, VE – the orbital speed of the
Earth’s surface on the equator,α – latitude.

Formula (3) evaluates the change of kinetic energy of
H2O molecule caused by orbital spinning of the Earth. Cal-
culations show that the change of the kinetic energy is equiv-
alent to the temperature change in the order of 1◦C, which in
turn explains the existence of a minimum/maximum of wa-
ter evaporation from a thermostated vessel at 6 a.m./6 p.m. of
the local time. Similar changes of energy in biological objects
naturally lead to emerging of CR in them.

It should be underlined, that the argument I (differ of CR
period from 24 hours), interpreted in the favor of endogenous
mechanism of BCTS, actually proves exogenous character of
the BCTS mechanism [15]. The argument II – easiness of
shifting of CR phase in biological objects is not related to the
mechanism of functioning of BC, but is the result of response
of bio-objects to the external environmental factors, and the
response is of biochemical nature.
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The argument III – conservation of the rhythm during lat-
itudinal shift – naturally follows from the above offered in-
terpretation of the mechanism of BCTS. As the speed of an
atom/molecule on the surface of the Earth is described by a
formula:

V = VT + VE cosα (4)

And for a given time zone during latitudinal shifting the BC
of a studied object conserves circadian periodicity. But the
shifting can be followed by a change of the amplitude. CR of
bio-objects should disappear on the Poles of the Earth and in
space (space stations).

As it’s known, an atom/molecule besides kinetic energy
possesses potential energy. Epoten in (2) for atoms/molecules
on the surface of the Earth changes with a period equal to lu-
nar rhythm, that is caused by displacement of celestial bodies
in the system Sun-Earth-Moon. And temperature equivalent
of the effect is of order of 10-20◦C for the researched chem-
ical reaction. The same mechanism of the energy changing
may cause changing of daily global temperature [19].

Conclusions

1. The rhythms with periods close to geophysical rhythms
(circadian rhythm, lunar rhythm, a year rhythm, and
a rhythm of Earth’s biosphere productivity-the Galaxy
rhythm) have fundamental nature and take place not
only in bio-objects, but also in physical and chemi-
cal processes at temperatures significantly higher then
temperature of bio-objects.

2. The mechanism of time sensor of biological clock has ex-
ogenous nature.

3. The time sensor of biological clock is the changing of to-
tal energy Etotal = KE + U of atoms/molecules on the
surface of the Earth, caused by moving of the Earth in
Space.

4. For global prove of the results and theoretical interpreta-
tion, experiments may be held to study the process of
water evaporation from a thermostated vessel simulta-
neously in different places of the same latitude and/or
longitude.
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On the Effect of Lengthening Circadian Rhythm by Heavy Water

Takhir R. Akhmedov
333 S. Webster Ave, Suite 4, Norman, OK 73069. E-mail: TakhirAkhmedov@yandex.com

The problem of time sensor of biological clock (BC) attractsinterest of many scientists,
and a great number of experiments are being conducted to study the influence of vari-
ous physical and chemical factors on functioning of BC. Special attention is drawn to
studying the influence of heavy water (D2O) on functioning of BC that always leads to
lengthening of circadian rhythms (CR). This work presents theoretical consideration of
lengthening of CR, when hydrogen (H2) in water is replaced by deuterium (D2), that is
based on spacial difference of energy levels with similar principle quantum numbers.

The problem of the mechanism of time sensor (TS) of bio-
logical clock (BC), or biorhythms of periods close to peri-
ods of geophysical factors, attracts attention of scientists for
a long time. The most thoroughly experimentally studied are
circadian rhythms (CR) i.e. rhythms with a period close to 24
hours. And in a range of data about physical and chemical
factors unfluence on CR there is a special case for the effects
of D2O on the rhythms. In [3, 4] it is noticed “that at present
D2O is the only matter, which always leads to lengthening
of endogenous rhythms”, and it is underlined, that theoreti-
cal interpretation of “the effect of heavy water” is based on
the theory of reactions’ absolute speeds, neglecting mass ef-
fects. However, the principle difference of H2O and D2O is
the difference of masses of hydrogen and deuterium nuclei.

Consideration of the mass difference permits qualitave
explanation of the lengthening of CR in biological objects,
where H2O is partially or completely replaced by D2O.

Let’s consider spacial distribution of energy levels of the
same principle quantum number in atoms of hydrogen and
deuterium. Taking into account the masses of the nuclei en-
ergy levels are separated by the distance.

rnH =
α

4π
×

1
RH
× n2 in a hydrogen atom, and

rnH =
α

4π
×

1
RD
× n2 in a deuterium atom

whereα is fine structure constant,RH andRD are Rydberg
constants for hydrogen and deuterium, respectively,n – the
main quantum number [4].

In comparison with the similar levels of hydrogen atom
in an atom of deuterium energy levels of the same principle
quantum number are spatially shifted towards the nucleus by
the value of

∆r = n2
×

α

4π
×















1
RH
−

1
RD















Accepting thatα= 7.397535×10−3, RH = 109677.576 cm−1

andRD = 109707.419 cm−1, for n=1, we haver1= 1.3937×
10−12 cm. For example forn=10,r10= 1.3937× 10−10 cm.

It is natural to assume, that the lower the energy thresh-
old through which biochemical processes run in bio-objects

the higher the sensitivity of the objects to the spatial shift of
energy levels caused by the replacement of H2 by D2.

Thus, from above mentioned it follows that lengthening
of CR by adding D2O is caused by decreasing the possibility
of biochemical processes running through the appropriate en-
ergy levels in deuterium atoms, which, being caused by mass
difference, are spatially shifted towards the nucleus in com-
parison with analogous levels in hydrogen.
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General Relativity Theory Explains the Shnoll Effect and Makes Possible

Forecasting Earthquakes and Weather Cataclysms

Dmitri Rabounski and Larissa Borissova

E-mails: rabounski@ptep-online.com; borissova@ptep-online.com

The Shnoll effect manifests itself in the fine structure of the noise registered in very sta-

ble processes, where the magnitude of signal and the average noise remain unchanged.

It is found in the periodic fluctuation of the fine structure of the noise according to the

cosmic cycles connected with stars, the Sun, and the Moon. The Shnoll effect is ex-

plained herein, employing the framework of General Relativity, as the twin/entangled

synchronization states of the observer’s reference frame. The states are repeated while

the observer travels, in common with the Earth, through the cosmic grid of the geodesic

synchronization paths that connect his local reference frame with the reference frames

of other cosmic bodies. These synchronization periods match the periods that are man-

ifested due to the Shnoll effect, regardless of which process produces the noise. These

synchronization periods are expected to exist in the noise of natural processes of any

type (physics, biology, social, etc.) as well as in such artificial processes as computer-

software random-number generation. This conclusion accords with what was registered

according the Shnoll effect. The theory not only explains the Shnoll effect but also al-

lows for forecasting fluctuations in the stock exchange market, fluctuations of weather,

earthquakes, and other cataclysms.

1 The whole truth about the Shnoll effect

Fundamental misunderstandings of the Shnoll effect can be

found in published articles as reported by journalists and sci-

entists. Therefore, now is a good time to tell the whole truth

about the Shnoll effect, to dot all the i’s and to cross all the t’s.

We express our deep appreciation to Prof. Simon Shnoll, with

whom we have enjoyed many years of friendly acquaintance

and scientific collaboration.

The principal error in understanding the Shnoll effect is

that some people think it is a periodical fluctuation of the

magnitude of the signal that is measured. This is incorrect,

since the magnitude of the signal and the average noise re-

main the same during the long-term measurements done by

Shnoll and his workgroup. Further, such processes are specif-

ically chosen for the study that are very stable in time. Simply

put, nothing allegedly changes in the experiments which con-

tinue during days, months, and even years. The subject of

the measurement is the fine structure of the noise registered

in stable processes.

Every process contains noise. The noise originates due

to the influence of random factors and satisfies the Gaussian

distribution (i.e., the Gauss continuous distribution function

of the probability of the measured value between any two

moments of time). Gaussian distribution is attributed to any

random process, such as noise, and is based on the averag-

ing and smoothing of the noise fluctuation measured during

a long enough interval of time. Nevertheless, if considering

very small intervals of time, the real noise has a bizarre struc-

ture of the probability distribution function, which differs for

each interval of time. Each of these real functions being con-

sidered “per se” cannot be averaged to a Gaussian curve. This

is what Shnoll called the fine structure of noise and is the ob-

ject of research studies originally conducted by Simon Shnoll,

commencing in 1951–1954 to this day.

So, the magnitude of noise is measured in a very stable

process during a long enough duration of time (days, months,

and even years). Then the full row of the measured data is

taken under study. The full duration of time is split into small

intervals. A histogram of the probability distribution function

is then created for each of the small intervals. Each inter-

val of time has its own bizarre distribution function (form of

the histogram) that differs from Gaussian function. Never-

theless, Shnoll found that “paired histograms,” which have a

very similar (almost identical) form, exist along the row of the

measured data. That is, the histogram created for each inter-

val of time has its own “twin” which has a similar form. The

similar form was found in the histograms which were regis-

tered with the following periods of repetition connected with

stars, the Sun, and the Moon:

• 24 hours = 1440 min (solar day);

• 365 days = 525 600 min (calendar year);

• 23 hours, 56 min = 1436 min (stellar day);

• 365 days, 6 hours, 9 min = 525 969 min (stellar year);

• 24 hours, 50 min = 1490 min (lunar day);

• 27 days, 7 hours, 43 min = 39 343 min (lunar month);

• 31 days, 19 hours, 29 min = 45 809 min (period of the

lunar evection).
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Also, aside as the similar forms of histograms, appearance

the mirrored forms of histograms was registered by Shnoll

with periods of:

• 720 min (half of the calendar/solar day);

• 182 days, 12 hours = 262 800 min (half of the calen-

dar/solar year).

Shnoll called this phenomenon the “palindrome effect”. It is

one of Shnoll’s newest findings: despite his having started

the research studies in 1951, the possibility of the appearance

of the mirrored forms of histograms only came to his atten-

tion in 2004. The “palindrome effect” was first registered in

December 2007. Aside from these two periods of the “palin-

dromes”, a number of other palindrome cycles were found.

However, certain circumstances have not allowed a continua-

tion of these studies in full force yet.

As was shown by Shnoll after many experiments done

synchronously at different locations from South Pole to North

Pole, an appearance of the similar form (or the mirrored form)

of the histograms does not depend on the geographical lati-

tude, but depends only on the geographical longitude, i.e., the

same local time at the point of observation. In other words,

the Shnoll effect is manifested equally at any location on the

Earth’s surface, according to the local time, meaning the same

locations of the celestial objects in the sky with respect to the

visible horizon.

It is significant that the process producing the noise that

we measure can be absolutely anything. Initially, in 1951,

Shnoll started his research studies from measurements of the

speed of chemical reactions in the aqueous solutions of pro-

teins. Then many other biochemical processes attracted his

attention. After decades of successful findings, he focused on

such purely physical processes as α-decay and β-decay of the

atomic nuclei. It was shown that not only all the random natu-

ral processes of different origins, but even artificial processes

as random-number generation by computer software manifest

the Shnoll effect. In other words, this is a fundamental effect.

That in a nutshell is the whole truth about the Shnoll ef-

fect. A detailed history of these research studies can be found

in Shnoll’s book [1], which also contains hundreds of refer-

ences to the primary publications on this theme commencing

in the 1950s to this day. A brief description of the Shnoll

effect can also be found in his short presentation of 2006 [2].

A theoretical explanation of the Shnoll effect on the basis

of General Relativity follows. But first, we need to explain

two important misunderstandings which are popular among

the general public.

2 The two most popular mistakes in the understandings

of General Relativity

There are two main mistakes in the understanding of General

Relativity. These mistakes originate due to the popular ex-

planations of the theory provided by the reporters and other

writers unfamiliar with the details of Riemannian geometry.

The first is the prejudice that an absolute reference frame

allegedly is impossible according to Einstein’s theory. The

second is the prejudice that Einstein’s theory allegedly “pro-

hibits” speeds of information transfer faster than the speed of

light, including the instantaneous transfer of information.

These two prejudices originate due to the superficial ex-

planation of Einstein’s theory, which can be encountered in

the majority of books on the subject. The superficial explana-

tion limits the reader by the historical path in which Special

Relativity and General Relativity were created, and by the

simplest analysis of the basics of the theory of space-time-

matter. As a result, the aforementioned two prejudices be-

came widely popular among laymen as well as among the

scientists who did not study the special aspects of Einstein’s

theory connected with these two problems.

Nevertheless there are a number of fundamental research

studies that cover the aforementioned two problems in detail.

While these research results may be unknown to reporters or

the majority of the scientific community, relativists who work

in the field of reference frames and observable quantities have

long been aware of them.

So, in 1944 Abraham Zelmanov published his massive

theoretical study [3], where he first determined physical ob-

servable quantities as the projections of four-dimensional

quantities onto the line of time and the three-dimensional

spatial section of the observer’s reference frame. His mathe-

matical apparatus for calculating physically observable quan-

tities in the space-time of General Relativity then became

known as the theory of chronometric invariants [4, 5]. Roger

Penrose, Kip Thorne, and Stephen Hawking as young re-

searchers visited Zelmanov in Sternberg Astronomical Insti-

tute (Moscow), and listened to his presentations about physi-

cal reference frames and observable quantities at his seminar.

In particular, Zelmanov showed [3] that an absolute reference

frame is allowed in a finite closed universe, if such a reference

frame is linked to the global rotation or the global deforma-

tion of the universe.

Later, Zelmanov’s followers also voiced, in their scientific

presentations, the possibility of an absolute reference frame in

a finite closed universe.

It should be noted that an absolute reference frame is im-

possible in the space-time of Special Relativity. This is be-

cause Special Relativity considers the simplified version of

the four-dimensional pseudo-Riemannian space (space-time),

which is always infinite, and also is free of curvature, rota-

tion, and deformation. Therefore, an absolute reference frame

is allowed only in the space-time of General Relativity, and

only in those cosmological models where the universe exists

as a finite closed volume of space, which rotates or deforms

as a whole.

The second of the aforementioned prejudices claim that

Einstein’s theory allegedly “prohibits” the particles which

travel faster than light. This claim is not true. The theoretical

possibility of faster-than-light particles — tachyons — was
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first considered in 1958 by Frank Tangherlini, in the space-

time of Special Relativity. He presented this theoretical re-

search in his PhD thesis [6] prepared under the supervision

of Sidney Drell and Leonard Schiff, in the Department of

Physics at Stanford University. A similar theory of tachyons

in the framework of Special Relativity was suggested, inde-

pendently of Tanglerlini, in 1979 by Torgny Sjödin [7] (he

was a Swedish scientist working in Theoretical Physics De-

partment at Vrije Universiteit in Brussels). The most impor-

tant surveys on tachyons such as [8,9] referred to Tangherlini.

Tachyons were first illuminated in the journal publications on

the theory of relativity in a principal paper of 1960 [10], au-

thored by Jakov Terletski. Then a more detailed paper [11]

was published in 1962 by Bilaniuk, Deshpande, and Sudar-

shan. The term “tachyons” first appeared later, in 1967 by

Gerald Feinberg [12]. See the newest historical survey and

analysis of this problem in [13]. Detailed consideration of

tachyons in the space-time of General Relativity was included

in our books [14, 15].

The main problem with tachyons is that they cannot be

registered by means of direct experimentation by a regular

observer [16]. Really, regular observers synchronize their

reference frames by light signals. In this case, as was already

pointed out by Einstein, the speed of light is the ultimate max-

imum speed that can be registered by an observer: in this case

superluminal displacements cannot be registered. More pre-

cisely, in reference frames synchronized by light signals, any

superluminal displacement will still be registered as a light

signal. See [16] or §1.15 of our book [14] for details. This

problem arises not from the ideology of Einstein’s theory (as

many people erroneously think), but only from the general

theory of physical experiments.

So, as was explained by international experts on reference

frames, an absolute reference frame is allowed in the space-

time of General Relativity, in a finite closed universe, if such

a reference frame is linked to the global rotation or the global

deformation of the universe. But an absolute reference frame

is impossible in the space (space-time) of Special Relativity,

because the space is infinite, and is free of rotation and defor-

mation.

Faster-than-light particles (tachyons) are allowed in the

space (space-time) of both Special Relativity and General

Relativity. But superluminal speeds of such particles can-

not be registered by a regular observer because his reference

frame is synchronized to others by light signals. Such an ob-

server will register any superluminal motion as motion with

the speed of light.

Aside from the tachyon problem, there is also the problem

of the instant transfer of information. We mean the instant

transfer of information without applying quantum mechanics

methods (we call it non-quantum teleportation). This prob-

lem was first investigated by us, in 1991–1995. These theo-

retical results were first published in 2001, in the first edition

of our book [14]. A short explanation of the theory can also

be found in our presentation [17].

The know-how of our theoretical research was that we

considered the four-dimensional pseudo-Riemannian space

(the space-time of General Relativity) without any limitations

pre-imposed on the space geometry according to physical

sense or philosophical concepts. In other words, we stud-

ied the space-time of General Relativity “per se”. We found

that, in addition to the regular state of space-time, a fully de-

generate state is possible. From the point of view of a regular

observer, whose home is our regular space-time, the fully de-

generate space-time appears as a point: all four-dimensional

(space-time) intervals, all three-dimensional intervals, and all

intervals of time are zero therein. We therefore called the

fully degenerate space-time zero-space. But this fact does

not mean that zero-space is nonsense. Once the observer en-

ters zero-space, he sees that the space and time intervals are

nonzero therein.

We showed that zero-space is inhabited by light-like par-

ticles which are similar to regular photons. We called these

particles zero-particles. Zero-particles travel in zero-space

with the speed of light. But their motion is perceived by

a regular observer as instantaneous displacement. This is

one of the effects of relativity theory, which is due to the

space-time geometry. We only see that particles travel in-

stantaneously while they travel at the speed of light in their

home space (zero-space), which appears to us, the external

observers, as the space wherein all intervals of time and all

three-dimensional intervals are zero.

We also showed that the regular relation between energy

and momentum is not true for zero-particles. Zero-particles

bear the properties of virtual photons, which are known from

Quantum Electrodynamics (i.e., they transfer interactions be-

tween regular particles). This means that zero-particles play

the rôle of virtual photons, which are material carriers of in-

teraction between regular particles of our world.

Zero-space as a whole is connected to our regular space-

time in every point: at every point of our regular space-time,

we have full access to any location inside zero-space. Once

a regular photon has entered into such a zero-space “gate”

at one location of our regular space, it can be instantly con-

nected to another regular photon which has entered into a sim-

ilar “gate” at another location. This is a way for non-quantum

teleportation of photons.

We also showed that zero-particles manifest themselves

as standing light waves (stopped light) while zero-space as a

whole is filled with the global system of the standing light

waves (the world-hologram). This matches with what Lene

Hau registered in the frozen light experiment [18, 19]: there,

a light beam being stopped is “stored” in atomic vapor, re-

maining invisible to the observer until that moment of time

when it is set free again in its regularly “travelling state”. The

complete theory of stopped light according to General Rel-

ativity was first given in 2011, in our presentations [20, 21],

then again in 2012, in the third edition of our book [14]. The
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obtained theoretical results mean that the frozen light exper-

iment pioneered at Harvard by Lene Hau is an experimental

“foreword” to the discovery of zero-particles and, hence, a

way for non-quantum teleportation.

Until recently, teleportation has had an explanation given

only by Quantum Mechanics [22]. It was previously achieved

only in the strict quantum way: e.g., quantum teleportation of

photons, in 1998 [23], and of atoms, in 2004 [24, 25]. Now

the situation changes: with our theory we can find physical

conditions for non-quantum teleportation of photons, which

is not due to the probabilistic laws of Quantum Mechanics

but according to the laws of General Relativity following the

space-time geometry.

Thus, the instant transfer of information is allowed in the

space-time of General Relativity (though the real speeds of

the particles do not exceed the velocity of light). But this is

impossible in the space-time of Special Relativity, because it

is free of rotation and a gravitational field (whereas by con-

trast, the main physical condition of zero-space is a strong

gravitational potential or a near-light-speed rotation).

Of course, the general reader cannot find all these im-

portant details in general-purpose books explaining Einstein’s

theory. Special skills in Riemannian geometry are needed to

understand what has been written in the special publications

that we surveyed herein. It is not surprising, therefore, that

the majority of people are still puzzled by the aforementioned

prejudices and misunderstandings about Einstein’s theory.

3 General Relativity Theory explains the Shnoll effect:

the scanning of the world-hologram along the Earth’s

path in the cosmos

As we shall set forth, the instantaneous synchronization of re-

mote reference frames in our Universe via non-quantum tele-

portation has a direct connection with the Shnoll effect.

First, let us understand what is the Shnoll effect in terms

of the theory of relativity.

The form of a histogram obtained as a result from a series

of measurements of noise (note that the average magnitude

of the noise remains the same) shows the fine structure of

the countdown of the measured value, according to the struc-

ture of the physical coordinates and of the physical time of

the observer. It does not matter which type of processes pro-

duces the registered noise; only the physical reference frame

of the observer is substantial. In other words, the form of the

histogram’s resulting measurement of noise shows the fine

structure of the physical coordinates and of the physical time

of the observer. If two histograms’ resulting measurements

of noise taken at two different time intervals have the same

form, then two of these different states of the same system

that generates the noise are synchronized to each other. If

these two synchronized states appear periodically in the mo-

ments of time associated with the same coordinates of a cos-

mic body on the celestial sphere, the two synchronized states

are also synchronized with the cosmic body.

Therefore, we arrive at the following conclusion. In terms

of relativity theory, the Shnoll effect means that the reference

frame of a terrestrial observer is somehow synchronized with

remote cosmic bodies. This synchronization is done at each

moment of time with respect to coordinates connected with

stars (cycles of the stellar day and the sidereal year), and with

respect to the coordinates connected with the Sun (cycles of

the solar day and the calendar year). Also, the synchroniza-

tion condition (the form of the histogram) is repeated in the

reversed mode in time at each of two opposite points in the

Earth’s orbit around the Sun, and at each of two opposite

points of the observer’s location with respect to stars (due

to the daily rotation of the Earth): this is the “palindrome ef-

fect”, including the half-year and half-day palindromes.

Now the second question arises. How is this synchroniza-

tion accomplished? Regularly, and according to the initial

suggestion of Einstein (which was introduced in the frame-

work of Special Relativity), reference frames are synchro-

nized by light signals. But in the case of experiments where

the Schnoll effect was registered, the noise source and the

measurement equipment were located in a laboratory build-

ing under a massive roof. So the laboratory is surely isolated

from light signals and other (low-magnitude) electromagnetic

radiations which come from stars. . . The answer comes from

General Relativity.

First, as is known from General Relativity, two remote

reference frames can be synchronized through the shortest

path (known as geodesic line) connecting them in the space

(space-time). A geodesic path can be paved between any two

points at every fixed moment of time. If these points oscil-

late with respect to each other, the synchronized states are re-

peated with the period of the oscillation. In terms of a regular

terrestrial observer, who is located on the surface of the Earth,

this means that his reference frame can be synchronized with

the reference frame of a celestial object, which is located in

the depths of the cosmos, at any moment of time. Each single

state (moment of time) of the synchronization has twin states

of synchronization. The twin states are repeated due to the

daily rotation and to the yearly rotation of the observer (at

his location on the Earth’s surface) with respect to stars∗, with

respect to the Sun, and also due to his cyclic motion with re-

spect to the Moon. Thus the respective cycles of repetition of

the synchronized twin states of the observer’s reference frame

(the cycles of appearance of the similar forms of histograms)

must exist. The cycles of repetition of the twin states are, with

precision, to the nearest minute:

∗This refers to the International Celestial Reference System, which is

the standard celestial coordinate system centered at the barycentre of the So-

lar System, with axes that are fixed with respect to objects in far-reaches

of the cosmos. These coordinates are approximately the same as the equato-

rial coordinates on the celestial sphere. The International Celestial Reference

System is defined by the measured positions of more than two hundred extra-

galactic objects (mainly quasars). It is the standard stellar reference system

accepted by the International Astronomical Union.
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• Solar day (24 hours= 1440 min), the period of daily ro-

tation of the terrestrial observer together with the Earth

with respect to the Sun;

• Calendar year (365 days = 525 600 min), the period

of orbital revolution of the terrestrial observer together

with the Earth around the Sun;

• Sidereal (stellar) day: 23 hours, 56 min = 1436 min. It

is the period of daily rotation of the terrestrial observer,

together with the Earth with respect to stars;

• Sidereal (stellar) year: 365 days, 6 hours, 9 min =

525 969 min. It is the period of orbital revolution of

the terrestrial observer, together with the Earth around

the Sun with respect to stars;

• Lunar day (24 hours, 50 min = 1490 min), the period

between two observed moonrises. It is longer than a

24-hour solar day, because the Moon revolves around

the Earth in the same direction that the Earth rotates

around her own axis;

• Sidereal month: 27 days, 7 hours, 43 min = 39 343

min. It is the period of the Moon’s revolution around

the Earth with respect to stars;

• Period of the lunar evection (31 days, 19 hours, 29 min

= 45 809 min), which is the period of the oscillatory

deviation of the Moon’s orbit from its average position

with respect to the Earth.

Also, the cycles of reverse synchronization (appearance of the

mirrored forms of histograms, that means the “palindrome

effect”) shall exist according to the half-periods:

• Half of the solar day (12 hours = 720 min);

• Half of the calendar year (182 days, 12 hours= 262 800

min);

• Half of the stellar day (11 hours, 58 min = 718 min);

• Half of the sidereal year (182 days, 15 hours, 5 min =

262 985 min);

• Half of the lunar day (12 hours, 25 min = 745 min);

• Half of the sidereal month (13 days, 15 hours, 52 min

= 19 672 min);

• Half-period of the lunar evection (15 days, 21 hours, 45

min = 22 905 min).

Also there exist a number of other periods of appearance of

the synchronized states of the observer’s reference frame (ap-

pearance of the similar form of histograms), which manifest

cyclic synchronization with some other celestial objects. We

do not discuss them herein because of brevity of this presen-

tation.

Second. Synchronization is possible not only of light sig-

nals or other electromagnetic signals moving at the speed of

light. Instant synchronization of remote reference frames is

possible in the space-time of General Relativity [14,17]. This

can be done through zero-space — the fully degenerate space-

time. It will appear to a regular observer as a point; that is the

necessary condition of non-quantum teleportation at any dis-

tance in our world. Therefore the “non-quantum teleportation

channel” is constantly allowed between any two points of our

space. Zero-particles — the particles that are hosted by zero-

space — are material carriers in non-quantum teleportation.

Zero-particles are standing light waves (i.e. stopped light),

thus zero-space is filled with a global system of standing light

waves — the world-hologram of non-quantum teleportation

channels. According to space topology, there is univalent

mapping of zero-space (the world-hologram) onto our reg-

ular space (our universe). This means that the local physical

reference frame of a terrestrial observer, travelling together

with the Earth in the cosmos, “scans” the world-hologram of

teleportation channels.

Each point of the Earth’s surface, including the observer’s

location, makes a daily revolution around the Earth’s centre.

The Earth revolves around the Sun at a speed of 30 km/sec.

The Sun revolves, at a speed of 250 km/sec, around the centre

of our Galaxy called the Milky Way. As a result, the observer

located on the surface of the Earth travels in the Galaxy along

the highly elongated double helix (which is like the DNA he-

lix), through the cosmic grid of the “stargates” into the non-

quantum teleportation channels which instantly synchronize

his local reference frame with stars, the Sun, and other cosmic

objects. Because of the cycles of the turbinal motion of the

observer, each single stargate has its own twin respectively

to the periods of the motion. The states of the observer’s

reference frame at these twin locations, due to entering into

the same teleportation channel, are not only synchronized but

also entangled with each other.∗

The moments of a terrestrial observer’s entering into the

gate of the same teleportation channel are the same as the mo-

ments of repetition of the twin synchronized states of his local

reference frame. Therefore, it is obvious that the appearance

of the similar forms of histograms (and the appearance of the

mirrored forms of histograms) manifests not only the syn-

chronized (and, respectively, — reverse synchronized) twin

states of the observer’s reference frame, but also that these

states are entangled with each other.

Such a synchronization occurs regardless of whether the

observer sees the sky or is isolated in a laboratory building. It

is done by zero-particles through zero-space, independently

of the obstacles that can be met by electromagnetic signals in

our regular space.

Recall, the Shnoll effect is periodic repetition of a similar

form (or mirrored forms) of the histograms’ resulting mea-

surement of noise. Most of the periods that are expected

according to the theory and listed above coincide with the

periods registered by Shnoll and his workgroup [1]. These

are the solar day (1440 min), the stellar day (1436 min), the

calendar year (525 600 min), the stellar year (525 969 min),

∗In a sense similar to the quantum entangled states, according to Quan-

tum Mechanics.
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the lunar day (1490 min), the lunar month (registered as the

“near-27-day period”), and the period of the lunar evection

(45 809 min). The mirrored forms of histograms were regis-

tered with periods of half of a solar day (720 min), and half of

the calendar year (262 800 min), while analysis of the mea-

surements is still under development. Nevertheless, there are

enough coincidences of the theory with Shnoll’s experimen-

tal data.

We therefore conclude that the Shnoll effect manifests the

scanning of the world-hologram of the non-quantum telepor-

tation channels along the Earth’s path in the cosmos. So, the

Shnoll effect has been explained according to General Rela-

tivity Theory.

It is important to understand the following: to find entan-

gled moments of time (the “gates” into the same teleportation

channel in the cosmos), it does not matter which stable pro-

cess (which type of processes) produces the random noise that

we register. Not only natural processes, but also the processes

such as random-number generation by a computer’s software

will show the Shnoll effect, as well as such social phenomena

as fluctuations in the stock exchange market. This means that

the theoretical explanation that is given here on the basis of

General Relativity provides a theoretical ground for a wide

range of fundamental effects in physics, biology, geophysics,

social behaviour and other fields of science. This fact leads

us to a number of important sequels and applications, which

can be achieved from further research studies of the Shnoll

effect.

4 Forecasting earthquakes and other cataclysms on the

basis of the scanning of the Earth’s path in the cosmos

So, we have arrived at a conclusion that the Shnoll effect is

a fundamental effect, which is explained according to Gen-

eral Relativity. Therefore, we expect the Shnoll effect to be

found not just in noise that the terrestrial observer registers

in such processes as biochemical reactions or nuclear decay.

The noise of other terrestrial processes which have natural

and artificial origin should also show the Shnoll effect. Be-

cause practical applications are important, the following im-

portant types of noise should be taken into account:

• Random mass migrations of people;

• Fluctuations in the stock exchange market;

• Fluctuations of the sickness rate among the masses of

people, animals, and plants;

• Fluctuations of social unrest (local conflicts, etc.)

• Fluctuations of the Earth’s crust — earthquakes;

• Fluctuations of weather (weather events and weather

cataclysms);

• and many others.

Here within we’ve touched so far only on the last two items

on this list. These are earthquakes and weather.

Our planet Earth is so large that earthquakes can be con-

sidered as the noise fluctuations of the Earth’s crust, while

weather events and weather cataclysms are the noise fluctu-

ations in the atmosphere. Therefore, this is a proper back-

ground where the Shnoll effect should be manifested.

Indeed, there is a huge scientific study that shows the

statistical behaviour of background earthquakes and weather

events [26–32]. The study was done in the 1930–1940’s.

It was conducted by Nikolai Morozov, Hon. Member of the

USSR Academy of Sciences.∗

Morozov and his assistants analysed the observational

data about the background earthquakes and weather events

that were collected at all the world-known weather observato-

ries and seismic stations of the world (located from the equa-

tor to the extreme north and south). The observational data

were recorded throughout all periods of the systematic scien-

tific observations, during the second half of the 19th century

and the first half of the 20th century, which has then been

accessed from yearbooks of the observatories and stations.

In addition to the statistical behaviour of the background

earthquakes and weather events, Morozov found that air tem-

perature, barometric pressure, humidity and other geophys-

ical parameters depend on the height of the centre of our

Galaxy (and other compact star clusters in our Galaxy) above

the horizon. In other words, the weather factors depend on

the stellar (sidereal) time at the point of observations. As a

result, Morozov arrived at the following fundamental conclu-

sion. All previous forecasts of earthquakes and weather cata-

clysms did not give satisfying results because the forecasters

took into account only the influence of the Sun and Moon on

the Earth’s crust and the atmosphere (which influences were

dated according to solar time), while the influence of objects

in the farther-reaches of the cosmos, such as the centre of

our Galaxy and other (as visible and invisible) compact stel-

lar clusters, which are dated according to the stellar (sidereal)

time, were not taken into account.

We can therefore say that Morozov’s geophysical studies

show that we can surely consider micro-earthquakes as ran-

dom noise, which always exist in the Earth’s crust. The same

is true about weather where random noise is nothing but small

fluctuations of air temperature, barometric pressure, humid-

ity, etc.

A confirmation of the conclusion follows from Shnoll’s

experiments. Already by the 1980s, synchronous fluctuations

of forms of the histograms (the Shnoll effect) were registered

on the basis of seismic observations [33]. This means, ac-

cording to our theoretical explanation herein, that the twin en-

tangled synchronization states of the local physical reference

frame of the terrestrial observer (the Shnoll effect, according

to General Relativity) coincide with the seismic noise regis-

tered in the Earth’s crust.

∗This study was not continued after the death of its author, Prof. Moro-

zov, in 1946.
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Therefore, proceeding from our theoretical explanation of

the Shnoll effect, we can forecast how, where, and when pow-

erful earthquakes will appear in the Earth’s crust; how, where,

and when weather cataclysms will occur in the atmosphere.

Essentially, here’s how to go about doing it.

Two things are needed to understand this method. First,

we need to understand that every real observer has his own

local physical reference frame. The physical reference frame

consists of real coordinate grids spanning over the real phys-

ical bodies around him (his real reference bodies), and also

of the real clocks that are fixed on the real coordinate grids.∗

In the case of a terrestrial observer (us, for instance), the real

coordinate grids and clocks are connected with the physical

environment around us. Therefore, noise fluctuations of the

environment mean noise fluctuations of the real physical mea-

surement units of the observer.

Second, as follows from the theory of physical observable

quantities in General Relativity, if the fine structure of noises

in two physical reference frames match with each other, these

two reference frames are synchronized with each other.

Therefore, as we’ve shown above, the Shnoll effect mani-

fests the twin/entangled states of the local physical reference

frame of the observer. These twin/entangled states are in-

stantly synchronized with each other, along with other cos-

mic bodies located along the entire synchronization path in

the cosmos. If their physical reference frames are synchro-

nized at a very close frequency, a resonance of noise fluctu-

ations occurs. In this case, concerning seismic noise, a pow-

erful earthquake occurs in the background of the noise from

micro-earthquakes (that exist continuously and everywhere in

the Earth’s crust). Concerning the weather, this means that a

weather cataclysm occurs in the background of noise fluctua-

tions of the weather.

In other words, if one or more of the powerful cosmic

bodies appear on the same path of synchronization with a

terrestrial observer, noise fluctuations of these cosmic bod-

ies become synchronized with the background noise of the

observer’s physical reference frame. A resonance occurs in

the physical reference frame of the observer that is the local

environment in the point of his observation. The background

noise of the environment experiences a huge fluctuation: i.e.,

a powerful earthquake, a weather cataclysm, etc.

Thank to Morozov’s geophysical studies we conclude that

the Sun and the Moon are not the main “synchronizers” that

cause a significant resonance in the physical reference frame

of a terrestrial observer. We must therefore take into account

the convergence of several “celestial synchronizers” of the

Solar System and our Galaxy in one synchronization path.

Therefore, all that is required for forecasting earthquakes

and weather cataclysms, according to our theoretical expla-

nation of the Shnoll effect, is as follows.

∗See details about physical reference frames, and about physical observ-

able quantities in Zelmanov’s publications [3–5], or in our books [14, 15].

1. First step — daily registrations of the basic noise fluc-

tuations in different environments at different locations

on the Earth. Analysis of the measurements, according

to the histogram techniques that were used by Shnoll,

in order to fix the details of the periods as determined

by the Shnoll effect. In other words, this is the “scan-

ning” of the local space of the planet in order to create

the complex map of the background noise fluctuations

of different environments of the Earth, according to so-

lar time and stellar time;

2. Second step — creating a detailed list of the more or

less powerful cosmic sources, which can be the main

“synchronizers” affecting the physical reference frame

of a terrestrial observer. The stellar (sidereal) coordi-

nates of the cosmic sources, and their ephemerides will

be needed in the third stage of the forecasting;

3. Third step — determining the moments of time when

these celestial synchronizers converge on the same syn-

chronization path, that is, their crossing the celestial

meridian (hour circle) at approximately the same mo-

ment of time as the point of observation, then compar-

ing these with the moments of time of the noise fluc-

tuations registered due to the Shnoll effect (in the first

step). As a result we will find those celestial synchro-

nizers whose synchronization with the terrestrial envi-

ronment produces the most powerful effect;

4. Fourth step — calculate further convergences of the

most powerful synchronizers at every location on the

Earth’s surface. As a result, by taking into account the

delay time of interaction rate in the respective terres-

trial environment (the ground, the atmosphere, etc.),

we will be able to forecast where and when the reso-

nant states will occur in the Earth’s crust (earthquakes)

and in the atmosphere (weather cataclysms).

Forecasting the other events of the above list such as ran-

dom mass migrations of people, fluctuations in the stock ex-

change market, fluctuations of the sickness rate, fluctuations

of social unrest, and others, is possible analogously. The

events predicted according to this method may have differ-

ent periods of delay from the synchronization moment. The

delay time depends on inertia in the medium that is being

affected: the Earth’s crust, atmosphere, interaction in the so-

cial medium, etc. Therefore, despite this, the moments of the

resonant synchronization are the same for all processes that

are registered at the point of observation; the resonant fluc-

tuations will appear at different moments of time in different

environments (including the technogenic environments and

the social medium). Nevertheless the method of forecasting

remains consistent for all the events around us.

So, forecasting powerful earthquakes and weather cata-

clysms is possible on the basis of our theoretical explanation

of the Shnoll effect. Other practical applications of the the-

D. Rabounski and L. Borissova. General Relativity Theory Explains the Shnoll Effect 69



Volume 10 (2014) PROGRESS IN PHYSICS Issue 2 (April)

ory and experiment are also possible, but they are outside the

scope of this short communication.
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The oldest enigma in fundamental particle physics is: Where do the observed masses

of elementary particles come from? Inspired by observation of the empirical particle

mass spectrum we propose that the masses of elementary particles arise solely due to

the self-interaction of the fields associated with a particle. We thus assume that the

mass is proportional to the strength of the interaction of the field with itself. A simple

application of this idea to the fermions is seen to yield a mass for the neutrino in line

with constraints from direct experimental upper limits and correct order of magnitude

predictions of mass separations between neutrinos, charged leptons and quarks. The

neutrino interacts only through the weak force, hence becomes light. The electron in-

teracts also via electromagnetism and accordingly becomes heavier. The quarks also

have strong interactions and become heavy. The photon is the only fundamental parti-

cle to remain massless, as it is chargeless. Gluons gain mass comparable to quarks, or

slightly larger due to a somewhat larger color charge. Including particles outside the

standard model proper, gravitons are not exactly massless, but very light due to their

very weak self-interaction. Some immediate and physically interesting consequences

arise: i) Gluons have an effective range ∼1 fm, physically explaining why QCD has

finite reach; ii) Gravity has an effective range ∼100 Mpc coinciding with the largest

known structures, the cosmic voids; iii) Gravitational waves undergo dispersion even in

vacuum, and have all five polarizations (not just the two of m = 0), which might explain

why they have not yet been detected.

The standard model of particle physics [1–4] is presently our

most fundamental tested [5] description of nature. Within the

standard model there are some 18 parameters (several more if

neutrinos are non-massless) which cannot be predicted but

must be supplied by experimental data in a global best-fit

fashion. There are coupling constants, mixing parameters,

and, above all, values for the different fundamental particle

masses. The theory is silent on where and how these param-

eters arise, and even more speculative theories, such as string

theory, have so far not been able to predict (postdict) their

values. Even if the Higgs particle is confirmed, and the Higgs

mechanism [6] is validated in one form or another, it still does

not explain “the origin of mass” as often erroneously stated.

Unknown/incalculable parameters for particle masses are in

the Higgs model replaced by equally unknown/incalculable

coupling constants to the Higgs field; the higher the coupling,

the larger the mass, while no coupling to the Higgs field gives

massless particles like the photon and gluons. So nothing is

gained in the fundamental understanding of masses. Fifteen

of the free parameters in the standard model are due to the

Higgs. Thirteen of them are in the fermion sector, and the

Higgs interactions with the fermions are not gauge invariant

so their strengths are arbitrary. So to make progress we must

understand masses.

There is no hope of predicting elementary masses from re-

normalized quantum field theory as the very process of renor-

malization itself forever hides any physical mass-generating

mechanism; the renormalized masses are taken as the exper-

imentally measured values, i.e. any possible physical con-

nection for predicting particle masses is lost. But surely, na-

ture herself is not singular, the infinities appearing in quantum

field theory instead arising from the less-than-perfect formu-

lation of the theory. If a truly non-perturbative description of

nature would be found it might be possible to calculate par-

ticle masses from first principles, but we still seem far from

such a description.

In this article we will instead take a more phenomenolog-

ical approach, but still be able to deduce a number of physical

results and some interesting consequences.

From standard (perturbative) quantum field theory, the lo-

west order contribution to the self-mass is [7] (see Fig. 1)

∆m = α

∫

ū γµK(1, 2)γµ u eipx12 δ(s2
12) d4x, (1)

where the loop integral is logarithmically UV divergent ∝
log( 1

r
) as the cut-off radius r → 0.∗ So (in perturbation the-

ory) the contribution is divergent but as all gauge fields di-

verge in the same way, the quotients are finite. (Another way

would be to assume that there exists a “shortest length” in

nature that would serve as a natural cut-off and give finite in-

tegrals.) As an aside, as all expressions are relativistically

invariant the usual relativistic factor γ = 1/
√

1 − v2/c2 is au-

tomatic if v , 0, i.e. if we are not in the rest frame of the

particle.

∗Also for a classical electron of radius r, ∆m = Cα ∝ α, but there the

coefficient is linearly divergent C ∝ 1/r. Additionally, the classical result is

exact, i.e. non-perturbative.
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Fig. 1: Feynman diagram for self-mass contribution from a gauge

field (squiggly line). Each vertex contributes one charge factor√
α ∝ q.

We will thus imagine the following pragmatic scenario:

a quantum field without any charges corresponds to a mass-

less particle; when charges, q, are attached the mass is m ∝
q2 ∝ α, where α is the relevant coupling constant. This sig-

nificantly reduces the number of ad hoc parameters. Also, the

lagrangian can still be completely massless (as in the Higgs

scenario), preserving attractive features such as gauge invari-

ance that would be broken by explicit mass terms, the gener-

ation of mass being a secondary physical phenomenon.

So we get

m(electron) ∝ αQED (2)

m(quark) ∝ αQCD (3)

m(neutrino) ∝ αQFD (4)

where the dominating coupling constant is αQED for quantum

electrodynamics, αQCD for quantum chromodynamics (strong

interactions) and αQFD for quantum flavordynamics (weak in-

teractions).

If we now assume that all gauge fields give a contribution

of roughly the same order of magnitude, so that the propor-

tionality factors cancel up to a constant of order unity (coming

from the different gauge groups), we get results for the quo-

tients of elementary masses without having to know the exact

(non-perturbative) contribution. Using the observed mass for

the electron, and αQED ∼ 137−1, αQCD ∼ 1, we get

m(quark) ≃ 50 MeV, (5)

(although physical quark masses are notoriously hard to de-

fine [8]) and pretending as if we knew nothing of the elec-

troweak theory (in order not to get entangled with the Higgs

mechanism again), using the old Fermi theory for weak inter-

actions (or quantum flavordynamics, QFD) as appropriate for

the low energies where observations of physical masses are

actually made, using the physical coupling derived from typi-

cal scattering cross sections or decay rates (τ−1 ∝ α2) , we get,

using τ−1
QFD
∼ 106s−1 (e.g. µ → eνµν̄e) and τ−1

QED
∼ 1016s−1

(e.g. π0 → γγ),

m(neutrino) ≃ 0.5 × 10−5MeV ≃ 5 eV. (6)

This is a prediction resulting from our simple assumption,

compatible with upper limits from direct experiments, where-

as in the Higgs model no predictions of masses are possible

(being connected to free parameters).

We see that we immediately get the right hierarchy of

masses, with the right magnitudes, which is encouraging con-

sidering the approximations made.

A clear indication of the relative effect of QED compared

to QCD is seen in the case of pions: π+ and π− both have mass

139.6 MeV, while the neutral pion π0 has a mass of 135 MeV.

The small difference ∆m = 4.6 MeV, attributable to QED,

predicts a charge radius ∼1 fm, consistent with scattering ex-

periments using pions.

One issue still remaining is why not m(Z) ∼ m(neutrino)

or m(W) ∼ m(electron). We take it as a sign that the interme-

diate vector bosons W and Z really are not fundamental, but

instead are composite [9, 10].

If we, disregarding renormalization issues, also include

the graviton as the force carrier of gravity (which is expected

to hold for weak gravitational fields) we see that QCD, QFD

and gravity all should disappear exponentially at sufficiently

large distances due to the non-zero physical masses of their

force carrier particles, only electromagnetism (QED) having

truly infinite reach as the physical mass of the photon is equal

to zero, as the photon carries no charge. The range can be

estimated by the Yukawa theory potential e−λmc/~/r, giving

λcuto f f ≃ ~/mc. This gives for the gluon with bare mass zero

(in the lagrangian), but physical mass m(gluon) , 0, the value

λcuto f f (QCD) ≃ 0.3 fm, which explains why QCD is only

active within nuclei, although the bare mass m = 0 naively

would give infinite reach as its coupling to the Higgs is zero.

Despite what many thinks, this problem has not been solved

[11].

For gravity, the same calculation leads to λcuto f f (gravity)

≃ 3×108 light-years, or 100 Mpc, which happens to coincide

with the largest known structures in the universe, the cosmic

voids [12]. The corresponding graviton mass is

m(graviton) ≃ 5 × 10−32 eV, (7)

well in line with the experimental upper limits [13]. Another

thing to keep in mind is that if/when gravity decouples, it will

appear as if the universe accelerates when going from the cou-

pled (decelerating) to the uncoupled (coasting) regime where

distance ≥ λcuto f f (gravity), perhaps making dark energy su-

perfluous as explanation for cosmic “acceleration” [14, 15].

If masses really originate in this way it might be possible to

include other interactions but the gravitational in an “equiva-

lence principle”, hence perhaps opening the door to a unified

description of all interactions.

The relation m(graviton) , 0 has other peculiar effects:

gravitational waves of different wavelengths (energies) would

travel at different velocities, smearing them out, the longer

the wavelength, the larger the effect. Also, not being strictly

massless, gravitons (spin s=2) should have 2s + 1 = 5 po-

larization states instead of the two conventionally assumed

helicity states if massless. This might be why gravitational

waves hitherto have escaped detection, as it would scramble

their signature.
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If we, just for the moment, tentatively reintroduce the per-

turbative running of coupling “constants” (renormalization

group) we obtain m(graviton) → ∞ as r → 0 implying that

(quantum) gravity gets a dynamical cutoff for small separa-

tions, as an increasingly more massive quantum is harder to

exchange, effectively making the interaction of gravity disap-

pear in that limit, perhaps showing a way out of the ultraviolet

divergencies of quantum gravity in a way reminiscent of how

massive vector bosons cured the Fermi theory.

We have not addressed the known replication of particles

into three generations of seemingly identical, but more mas-

sive, variants, the most exactly studied from an experimental

standpoint being the three charged leptons, i.e. (e, µ, τ), the

electron and its heavier “cousins” the muon and tauon.∗

A straightforward way would be to introduce some “gen-

eration charge” or quantum number, make e.g. a power-law

ansatz and fit to the observed values of the charged leptons

and deduce the masses of neutrinos and quarks in the higher

generations. That would, however, not bring us any closer to

a true understanding.

A more promising way could be to assume that the sta-

ble elementary particles of the first generation are exact soli-

ton solutions to the relevant quantum field theory, or its dual

[16], whereas unstable higher generation elementary particles

would be solitary wave (particle-like, but not stable) solutions

to the said quantum field theory. Unfortunately, there are no

known exact 3+1 dimensional soliton solutions to quantum

field theories, with non-trivial soliton scattering [16]. An-

other avenue would be to explore if Thom’s “catastrophe the-

ory” [17] (or other more general theories of bifurcation) ap-

plied to particle physics could spontaneously reproduce mul-

tiple generations, as it is known to include stable/unstable

multiple solutions. Thom’s theory states that all possible sud-

den jumps between the simplest attractors – points – are de-

termined by the elementary catstrophes, and the equilibrium

states of any dynamical system can in principle be described

as attractors. As one attractor gives way for another the sta-

bility of the system may be preserved, but often it is not. It

could be capable to generate masses spontaneously in a dif-

ferent and novel way compared to the Higgs mechanism. The

different charges, i.e. coupling constants, could define the

control surface, whereas the actual physical mass would de-

fine the behavior surface. Sudden bifurcations could signify

decay of previously stable elementary particles.

To summarize, our simple and physically compelling as-

sumption that particle masses are solely due to self-interact-

ions: i) Directly and simply gives the correct mass hierar-

chy between neutrinos, electrons and quarks. ii) Reduces the

number of ad hoc parameters in the standard model. iii) Qual-

∗Are there additional generations? Data on the decay width of the Z

indicate that there at least cannot be any additional light neutrinos. A fourth

neutrino would have to be very massive > mZ/2 ≃ 45 GeV. One might well

ask if the generation structure is a true aspect of nature, or just a result of our

incomplete understanding of the weak interaction [10].

itatively explains why the photon is the only massless funda-

mental particle, why QCD has short range, and why neutrinos

are not strictly massless. iv) Gives testable predictions, e.g.

regarding gravitons (gravitational waves).
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There are several arguments for the conventional form of the Zero Point Energy fre-

quency spectrum to be put in doubt. It has thus to be revised into that of a self-consistent

system in statistical equilibrium where the total energy density and the equivalent pres-

sure become finite. An extended form of the Casimir force is thereby proposed to be

used as a tool for determining the local magnitude of the same pressure. This can

be done in terms of measurements on the force between a pair polished plane plates

consisting of different metals, the plates having very small or zero air gaps. This corre-

sponds to the largest possible Casimir force. Even then, there may arise problems with

other adhering forces, possibly to be clarified in further experiments.

1 Introduction

The vacuum is not merely an empty space. Due to quantum

theory, there is a non-zero level of the ground state, the Zero

Point Energy (ZPE) as described by Schiff [1] among others.

An example of the related spectrum of vacuum fluctuations

was given by Casimir [2], who predicted that two metal plates

will attract each other when being separated by a sufficiently

small air gap. This prediction was first confirmed experimen-

tally by Lamoreaux [3].

In a number of investigations the author has called atten-

tion to the importance of ZPE in connection with fundamental

physics, on both the microscopic and the macroscopic scales.

This applies to revised quantum electrodynamics and its re-

lation to massive elementary particle models [4–6], as well

as to attempts of explaining the concepts of dark energy and

dark matter of the expanding universe [7, 8].

This paper presents an extended analysis of the ZPE fre-

quency spectrum and its effect on the Casimir force, thereby

leading to proposed experimental investigations on the fea-

tures of the same spectrum.

2 Frequency spectrum of the Zero Point Energy

The local Zero Point Energy density has to become derivable

from the frequency spectrum of an ensemble of ZPE photons.

Such a procedure has to be conducted in the same standard

way as for statistical systems in general, as described by Ter-

letskii [9] and Kennard [10] among others.

For a “gas” of ZPE photons the number of field oscilla-

tions per unit volume in the range (ν, ν+ dν) becomes

dn =
8π

c3
ν2 dν. (1)

This number can also be conceived to represent the various

“rooms” to be populated by the photon frequency distribution.

In finding the corresponding self-consistent and fully de-

termined contribution to the ZPE energy density, two points

have to be taken into account:

◦ The quantized energy of every single photon is

E0 =
1
2
hν.

◦ The photon population of the frequency states has to be

adapted to a statistical equilibrium, under the constraint

of a finite and given total energy density. The latter

corresponds to an average energy Ē0 =
1
2
hν̄ per photon

with a related average frequency ν̄.

Due to these points, the contribution to the energy density

within the range (ν, ν+ dν) becomes [7, 8]

du =
4πh

c3
ν3 exp

(

−
ν

ν̄

)

. (2)

Here the Boltzmann factor

PB = exp

(

−
E0

Ē0

)

= exp

(

−
ν

ν̄

)

(3)

is due to the probability of the various photon states in statis-

tical equilibrium.

In the present isotropic state, the contribution to the pres-

sure becomes dp= du/3. The local ZPE pressure then has the

total integrated value

p0 =
8πhν̄4

c3
(4)

as obtained from relation (2).

In the earlier conventional analysis, the factor (3) has been

missing, thus resulting in an infinite total ZPE energy den-

sity and pressure. Several investigators, such as Riess and

Turner [11] as well as Heitler [12], have thrown doubt upon

such an outcome. Attempts to circumambulate this irrelevant

result by introducing cutoff frequencies either at the Planck

length or at an arbitrary energy of 100 GeV, are hardly accept-

able. This omission does not only debouch into a physically

unacceptable result, but also represents an undetermined and

not self-consistent statistical system [7, 8].

3 Experimental possibilities

The average frequency ν̄ appearing in the factor (3) is an im-

portant but so far not determined basic parameter. It may have

a characteristic value in the environment of the Earth, or even

of our galaxy. It should therefore be investigated if this para-
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meter can be determined from experiments. This would re-

quire earlier experiments on the Casimir force to be extended.

Two options are here proposed for such investigations, all us-

ing polished plane metal plates:

◦ Air gaps of a smaller width than those in earlier ex-

periments, but being larger than the electromagnetic

skin depth of the plates, would extend the measurable

range. Thereby the insertion of insulating material of

very small thickness may be tested.

◦ The largest possible Casimir force is expected to oc-

cur at a vanishing air gap. In this case the skin depth

of the plates acts as an equivalent air gap. Even at

this maximum Casimir force, other surface and stick-

ing mechanisms such as by Van der Waals’ forces may

interfere with the measurements. To eliminate at least

part of these difficulties, any magnetic alloy should be

avoided as plate material in the first place. Further, as

pointed out by N. Abramson [13] and G. Brodin [14],

plates of different materials should be chosen to avoid

microscopic matching of the metal structures. Possi-

ble choices of plate material are Ag, Cu, Au, Al, Mg,

Mo, W, Zn, Ni, Cd, Sb, and Bi in order of decreasing

electric conductivity.

As a device for measurement of the Casimir force, a weight-

ing machine with two horizontal plates is proposed, in which

the weight of the upper plate is outbalanced and a vertical

Casimir force can be recorded.

4 The Casimir force

The Casimir force arises from the difference in pressure on

the out- and insides of the metal plates. Whereas the full ZPE

pressure acts at their outsides, there is a reduced pressure act-

ing on their insides, due to the boundary condition which sorts

out all frequencies below a limit ν̂. The latter corresponds to

wavelengths larger than λ̂= c/ν̂, as being further specified for

the two options defined in Sec. 3. The net Casimir pressure

thus becomes

p̂ =

∞
∫

0

dp −

∞
∫

ν̂

dp =
4πh

3c3

ν̂
∫

0

ν3 exp

(

−
ν

ν̄

)

dν (5)

due to the distribution (2). With x= ν/ν̄ and x̂= ν̂/ν̄ expres-

sion (5) obtains the form

p̂ = p0Π (x̂) (6)

where p0 is given by (4) and

Π =

x̂
∫

0

x3 exp (−x) dx =

= 1 −

(

1 + x̂ +
1

2
x̂2 +

1

6
x̂3

)

exp (−x̂) . (7)

4.1 Plates with an air gap

The first option concerns an air gap of the width a, being sub-

stantially larger than the skin depth of the plates at relevant

frequencies. Then the frequencies smaller than ν̂= c/2a and

wavelengths larger than λ̂= 2a are excluded. In the limit of

x̂≪ 1, Π then approaches the value x̂4/24, and the net pres-

sure becomes

p̂ �
πhc

48a4
(8)

being proportional to 1/a4 as earlier shown by Casimir [2].

For arbitrary values of x̂= c/2aν̄, the Casimir pressure (6)

can then for various gap widths be studied as a function of

ν̄. The set of obtained values of p̂ then leads to information

about the average frequency ν̄, within the limits of application

of this option.

4.2 Plates with zero air gap

With the second option of a vanishing air gap, the sum of

the skin depths at each plate plays the rôle of a total air gap.

Using two plates of different metals having the electric con-

ductivities σ1 and σ2, their skin depths at the frequency ν

become [15]

(δ1, δ2) =
1
√
πµ0ν

(

1
√
σ1

,
1
√
σ2

)

. (9)

The total skin depth can then be written as

δ1 + δ2 =
2
√
πµ0ν

1
√
σ12

(10)

where

σ12 =
4σ1σ2

σ1 + σ2 + 2
√
σ1σ2

. (11)

In the limiting case where half a wavelength λ/2= c/2ν is

equal to the total skin depth (10), the corresponding frequency

limit becomes

ν̂ =
µ0πc

2σ12

16
. (12)

Since λ varies as 1/ν and δ1 + δ2 as 1/
√
ν, it is seen that all

frequencies ν less than ν̂ are excluded by the boundary condi-

tion. Thus ν̂ represents the Casimir frequency limit, as in the

analogous case of a nonzero air gap.

With p0 given by (4), p̂ and Π by (6) and (7), ν̂ by (12),

and x̂= ν̂/ν̄, the Casimir pressure p̂ is obtained as a function

of the average frequency ν̄ for a given effective conductiv-

ity (11) of a pair of plates. Examples are given by (Ag/Cu,

Ni/Cd, Sb/Bi) for which σ12 = (60.5, 14.1, 1.26)× 106 A/Vm

and ν̂= (134, 31.2, 2.79)×1016 s−1 and λ̂= (2.23, 9.60, 107)×
10−10 m, respectively. The dependence of p̂ on ν̄ for the three

examples of metal plate combinations are demonstrated in

Fig. 1. The left-hand part of the figure relates to large val-

ues of x̂ for which p̂ nearly includes the full pressure (4), and
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Fig. 1: Casimir pressure p̂ as a function of the ZPE average fre-

quency ν̄ for the three metal plate combinations Ag/Cu, Ni/Cd, and

Sb/Bi.

for which there is a vanishing difference between the vari-

ous plate combinations. The right-hand part of the same fig-

ure corresponds on the other hand to small x̂ for which there

is a difference due to the various values of resistivity and ν̂.

This part leads to a pressure p̂ having the asymptotic limit

(πh/3c3) ν̂4 at large ν̄. To extend the range of resistivity de-

pendent Casimir pressures in respect to ν̄, plates with even

lower values of σ12 would have to be used. Provided that the

Casimir force is the dominant one, the measured pressure p̂

should thus be related to the same value of the average fre-

quency ν̄, then being independent of the choice of metal com-

binations. This would, in its turn, lead to an identification

of ν̄.

5 Conclusions

There are strong arguments for the frequency spectrum of

the Zero Point Energy to be determined by means of a self-

consistent system of statistical equilibrium in which there is

a finite total pressure and a related finite average frequency.

To investigate this state, an extended experimental analysis is

proposed, based on the largest possible Casimir force which

occurs on a pair of metal plates separated by a very small

or even vanishing air gap. Provided that these forces be-

come much stronger than those due to other possible adhering

mechanisms, the proposed measurements may give an esti-

mate of the average frequency defined in Section 2.
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In this paper we propose that the inertial masses of the proton and of the electron can be

associated to volumes of the unit cells of hyper-cubic lattices constructed in the momen-

tum space. The sizes of the edges of these cells are given by the Planck’s momentum

in the case of the electron, and by a modified Planck’s momentum in the case of the

proton. We introduce a “conservation of information principle” in order to obtain the

wave function which leads to this modified momentum. This modification is attributed

to the curvature of the space-time, and in doing this, the concept of the entropy of a

black hole has been considered. The obtained proton-electron mass ratio reproduces

various results of the literature, and compares well with the experimental findings.

1 Introduction

The volumes of certain associated symmetric spaces have

been used as a means to estimate the proton-electron mass

ratio, besides the ratios among leptons and mesons masses

[1–7]. Some of these papers [1–4] claim to present more

consistent physical interpretations of the particles mass ra-

tio, obtained through these geometric approaches. As was

pointed out by González-Martin, Smilga [1,4] obtained a vol-

ume factor from the decomposition of SO(3, 3) with respect to

the product group SO(3, 1) × SO(2). He calculated this vol-

ume factor that when compared with the volume factor of the

electron furnishes a proton-electron mass ratio very close to

known experimental result. The same evaluation was done

earlier by Wyler [7].

In this work we intend to pursue further on this subject,

by associating the masses of the proton and of the electron to

the volumes of unit cells in the momentum space, with each

unit cell having its appropriate size. For appropriate size we

mean that, the unit cell edge associated to the electron mass

is given by a characteristic momentum of the Planck’s scale.

On the other hand the unit cell related to the proton mass is

also evaluated with the aid of a Planck’s scale momentum,

but modified by the curvature of the space-time. The rea-

son to establish such differences is that the electron is usually

described through Quantum Electrodynamics (QED) [8], an

abelian field theory. Meanwhile the proton is described by

Quantum Chromodynamics (QCD) [9], a non-abelian field

theory, and we propose that this feature introduces a curvature

in space-time modifying the size of the cell of the momentum

space.

2 A conjecture about the conservation of the informa-

tion

If we consider a black hole of radius r, its entropy is given by

the well known Bekenstein-Hawking [10–12] formula

S =
A

4
=
πr2

L2
Pl

, (1)

where LPl is Planck’s length.

Let us write a “law of the conservation of the information”

in the form

S + I = C. (2)

In (2), C is a constant. Now we propose to associate the quan-

tity of information, I, to the logarithm of a density of proba-

bilityΨ2, whereΨ is a wave function associated to this curved

space-time. We have

πr2

L2
Pl

+ ln(Ψ2) = C. (3)

Equation (3) leads to

Ψ = Ψ0 exp













−

π r2

L2
Pl













. (4)

In order to better examine the content ofΨ it is convenient

to interpret it as a ground-state wave function of a kind of one-

dimensional harmonic oscillator. Inserting this function and

its second derivative in a Schrödinger equation for a particle

of mass M, we have

−

~
2

2M













π
2r2

L4
Pl













Ψ +
~

2

2M













π

L2
Pl













Ψ + VΨ = ǫ0Ψ. (5)

Making the identification of the “r-squared” and the “inde-

pendent of r” terms, we have

1

2

~
2
π

2

ML4
Pl

r2 =
1

2
kr2 = V(r) (6)

and
~

2
π

2ML2
Pl

= ǫ0 =
1

2
~ω. (7)

By taking

LPl =
~

MPl

and M ≡ MPl, (8)

we get

~ω = πMPl c2 = <p> c (9)
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with

<p> = πMPl c. (10)

We interpret (10) as the size of the unit cell in the curved

momentum space. Equation (9) can be seen as the difference

in energy levels in the curved space, namely ~ω being related

to the emission (absorption) of a boson of momentum <p>.

3 Estimate of the proton-electron mass ratio

As was pointed out by Wesson [13], Einstein’s Equivalence

Principle (EEP) may be a direct consequence of an extra di-

mension. Yet according to Wesson, a null path in five space-

time dimensions (5-D) can describe a massive particle which

usually lives in four dimensions. This null path conditions in

5-D can encompass both the gravitational mass of this par-

ticle (related to its Schwarzschild radius) as well its inertial

mass (related to its Compton length).

Partially inspired in Wesson work [13], we will assume

that particle masses are tied to some type of unit cell in a

five-dimensional momentum space lattice. First let us con-

sider the electron. The field theory which deals with the elec-

tron is the (abelian) QED [8]. We imagine that the amount of

inertial mass of the electron (me) is proportional to the five-

dimensional volume of the unit cell in the momentum space

lattice, which size is given by the Planck’s characteristic mo-

mentum, namely

p = MPl c, (11)

and

V5 = p5 = (MPl c)5
. (12)

Therefore we write

me = KV5 = K (MPl c)5
. (13)

On the other hand the proton is a hadron which structure

is described by QCD [9,14], a non-abelian field theory. QCD

has in common with General Relativity (GR), the fact that

both are known to be non-linear theories. It seems that in

evaluating the proton mass, a curved space-time must be con-

sidered. This leads to a modified size of the unit cell in the

momentum space lattice. Looking at the wave function given

by (4) and the structure of energy levels implied by it, we have

obtained <p> given by (10). But the curvature of a space

seems not to be displayed by a mathematical object such as a

volume. Then we propose that the inertial mass of the proton

mp is proportional to a five-surface area in the curved momen-

tum space lattice, this surface area being a derivative from a

six-volume. Therefore we write

<V6> = <p>6 (14)

<S 5> =
d<V6>

d<p>
= 6<p>5 (15)

and

mp = K <S 5> = K 6π5 (MPl c)5
. (16)

In writing (16) we have used (10), and considered that the

proportionality constant K is the same as that used in deter-

mining the electron mass. By comparing (13) and (16), we

finally obtain
mp

me

= 6π5
≈ 1836.12. (17)

The ratio given by (17) has been previously obtained by var-

ious authors, and compares relatively well with the experi-

mental values (please see [1,3,4] and references cited in those

papers).
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In this study we first evaluate the time between collisions related to the transport prop-
erties in liquid water, provided by the protons motion tied to the hydrogen bonds. As
water is an essential substance for the establishment of life in the living beings, we
take this time as the basic unit to measure some kinds of retention time related to their
memory. Besides this, integration is an important feature associated to the operation of
the memory. Then we consider two possible ways of doing integration and an average
between them. One of these characteristic times, the Darwin time, is given by adding
over the N basic units which forms the memory. The other possibility, the recent time,
is obtained by considering a kind of time-like random walk running over the N basic
units. Finally we perform a geometric average between these two times and call it gen-
erations’ time. As a means to estimate these characteristic times, we take the number of
protons contained in a volume of water compatible with the dimensions of the portion
of the brain responsible by its memory.

1 Introduction

It seems that water is fundamental to the flourishing of life
[1], and the hydrogen-bond kinetics [2] plays an important
role in the establishment of the transport properties of this
liquid. Besides this, living beings which exhibit the property
of to replicate, must have this feature encoded in its memory.
In electronic computers, electrical currents are the agents re-
sponsible for writing or deleting the information stored in its
memory. In this paper we propose that, in the living beings
case, the protonic currents do this job. In order to accomplish
this we will treat protonic currents in close analogy with the
electrical currents in metals.

First we will evaluate the averaged time between colli-
sions for protonic currents and after we will use this time in
an integration sense, in order to find characteristic times of
persistency of the information registered in the living beings
memories. By integration sense we mean that we are looking
for physical properties which depend on the whole system,
a kind of cooperative effect, or an emergent property of the
collective of particles.

2 Electrical conductivity through protons

Drude formula for the electrical conductivity of metals can be
written as

σ =
e2nτ
M
, (1)

where e is the quantum of electric charge, n is the number
of charge carriers per unit of volume, τ is the average time
between collisions and M is the mass of the charge carriers.

Besides this in reference [3], starting from Landauer’s
paradigm: conduction is transmission [4], the relation for the
electrical conductivity can be put in the form

σ =
e2

πℏℓ0
. (2)

where ℓ0 is the size of the channel of conduction. In the case
of the charge carrier being the proton, the maximum conduc-
tivity is reached when the length, ℓ0, becomes equal to the
reduced Compton wavelength of it, namely

ℓ0 =
ℏ

Mc
. (3)

Inserting equation (3) into equation (2) we get

σmax =
e2Mc
πℏ2 . (4)

Making the identification between the two relations for
the electrical conductivity, namely equating equation (1) to
equation (4), and solving for τ, we obtain for the maximum
time between collisions the expression

τmax = τ =
M2c
nπℏ2 . (5)

It would be worth to evaluate numerically equation (5). In
order to do this we consider that water molecules in the liq-
uid state are relatively closed packed. Therefore by taking
n = 1029 m−3, which seems to be an acceptable number for
n, we get

τ = 2.7 × 10−7 s. (6)

This time interval is seven orders of magnitude greater than
the time between collisions of electrons in metallic copper at
room temperature [5].

3 Hydrogen bond and the transport properties of liquid
water

As far we know, protonic currents have not been directly mea-
sured in water. Indeed, equation (5) for the maximum time
between collisions, does not show explicit dependency on the
quantum of electric charge e.
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Meanwhile, from equation (27) of reference [5], we have

λ2
F = λC ℓ . (7)

In equation (7), λF, λC and ℓ, are respectively the Fermi
and Compton wavelengths and the mean free path of the par-
ticle responsible by the transport property in water. Besides
this, Luzar and Chandler [2] pointed out that: “In the hydro-
gen — bond definition employed by them, two water molec-
ules separated by less than 3.5Å can be either bond or not
bonded, depending upon their relative orientations. At large
separations, a bond cannot be formed.” This information
comes from the first coordination shell of water, as measured
by its oxygen-oxygen radial distribution function. We will
idealize a lattice of water molecules, and by considering its
Fermi length λF = 3.5Å, and by taking λC equal to the reduced
Compton length of the proton, we obtain from equation (7)

ℓ = 6.2 × 10−4 m. (8)

Equation (8) is an estimate of the proton mean free path in
water. If we write

ℓ = VFτ (9)

where VF is a kind of Fermi velocity of the system and solving
for VF, we find after using equations (6) and (8)

VF ≈ 2300 m/s. (10)

We observe that this value of VF is comparable with the speed
of sound in water, approximately 1500 m/s. Therefore this
time between collisions estimated for the proton motion per-
forming the hydrogen bond in water seems to make some
sense.

4 Three characteristic times tied to the living beings

Recently Max Tegmark [6] published a paper entitled Con-
sciousness as a State of Matter. Tegmark was inspired in a
work by Giulio Tononi [7]: Consciousness as Integrated In-
formation: A Provisional Manifesto. According to Tegmark
[6], Tononi [7] stated that for an information processing sys-
tem to be conscious, it needs to have two distinct properties:

1. Have the ability to store a long amount of information;
2. This information must be integrated into unified whole.
Besides this, as was pointed out by Tegmark [6]: “Natural

selection suggests that self-reproducing information process-
ing systems will evolve integration if it is useful for them,
regardless of whether they are conscious or not”. In this work
we are interested in look at the integrated effects with respect
to time intervals, taking in account the great number N of ba-
sic units which compose the whole. By whole, we consider
for instance, a substantial part of the brain of a living being
responsible by its memory. We assume that the characteris-
tic times are measured in terms of units of time-base. This
unit will be taking as the time between collisions of the pro-
tons motion, related to the transport properties of water and
associated to the hydrogen-bond dynamics.

4.1 Integrated time: first possibility

Let us to take a time-like string of N unit cells or basic units.
We suppose that the time elapsed, τR, for the information
sweep the whole string can be computed by considering a
kind of Brownian motion on this time-like string. Then we
can write

τR = N
1
2 τ. (11)

Eighteen grams of liquid water occupies a volume of approxi-
mately 18 cm3 and contains 2NA protons, where NA stands for
Avogrado number. We assume that this volume corresponds
to a portion of the human brain compatible with the size of
the region of memory storage. As a means to estimate τR, let
us put numbers in (11) and we get

τR = (2NA)
1
2 τ ≈ 3 × 105 s. (12)

The time interval, given by equation (12), corresponds ap-
proximately to the duration of 3.5 days and perhaps can be
associated to the recent memory of the human brain. If the
volume of the memory’s device is ten times smaller, namely
1.8 cm3, the value of τR is reduced to approximately one day.

As a means of comparison, we cite a statement quoted in
a paper by S. Mapa and H. E. Borges [8] that a type of mem-
ory which they call working memory, may persist by one or
more hours. Meanwhile, with chemical aids this time can be
extended, as we can find in the words of Yassa and collab-
orators [9]: “We report for the first time a specific effect of
caffeine on reducing forgetting over 24 hours”.

4.2 Integrated time: second possibility

Another possibility to consider for the integrated time is as-
suming that the overall time is the sum over the basic time
units. Thinking in this way it is possible to write

τD = Nτ . (13)

If we take (2NA)/10 protons of 1.8 grams of water, we obtain
for τD,

τD ≈ 3.2 × 1016 ≈ 109 years. (14)

We will call τD the Darwin’s time. This choice can be
based in the following reasoning. According to Joyce [10]:
“The oldest rocks that provide clues to life’s distant past are
3.6 × 109 years old and by that time cellular life seems al-
ready to be established!” Another interesting paper about the
origins of life can be found in reference [11].

4.3 Third characteristic time

The two characteristic times we have discussed before were
associated by us to the recent memory time τR (order of mag-
nitude of one day) and the Darwin’s time τD (order of magni-
tude of one billion of years), this last one related to the estab-
lishment of life on earth. We judge interesting to consider an-
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other characteristic time corresponding to the geometric av-
erage of the two times we just described. We write

τG = (τDτR)
1
2 = N

3
4 τ . (15)

Inserting N = 1.2×1023, the number of protons contained
in 1.8 cm3 of water and the unit of time interval τ = 2.7 ×
10−7 s in equation (15), we obtain for the generations’ time
τD the value

τG = 1700 years. (16)

If we estimate a mean lifetime of the human beings as 70
years, the above number corresponds to approximately 24
generations.

5 Analogy with the polymer physics

Two characteristic times we have described in this paper can
be thought in analogy with polymer physics [12]. In four
dimensions, the scaling relation of polymers reproduces that
of a single random walk.

If we think about a time-like string of time-length τD,
composed by “monomers” having the duration of a unit-time
τ, we have after N steps the relation

τR = (τDτ)
1
2 = N

1
2 τ . (17)

We remember that τD is given by equation (13). Therefore
the Darwin’s time τD corresponds to the time-length of the
string and the recent time τR looks similar to the end to end
distance (equivalent to the gyration radius of polymers).

6 Concluding remarks

This work has been developed through two steps. In the first
one, an averaged time τ between collisions was calculated,
taking in account the proton current associated to the hydro-
gen bond in liquid water. As the human body, in particular its
brain, is constituted in great extension by this liquid, it seems
that any physical process occurring in it must consider the
relevancy of water in supporting this task. Perhaps the above
reasoning could be extended to all living beings. The falsifi-
ability of the calculated τ was verified by obtaining a kind of
Fermi velocity which is comparable to the sound velocity in
liquid water.

In the second step we considered an important property
of memory, namely its integrability. By taking a number N of
hydrogen bonds contained in a volume of water representa-
tive of the memory device of the living beings, we was able to
associate two characteristic times to them. The integrability
given by simple addition of unit-base time gives the Darwin
time which grows linearly with N. Another kind of integra-
tion, a time-like random walk, leads to the recent memory
time which grows with the square root of N. An intermediate
time interval given by the geometric average of the last two
ones was also evaluated and we call it generation’s time.

Although this work may sound very speculative, we think
that it perhaps could inspire other more robust research on the
present subject.

Submitted on February 9, 2014 / Accepted on February 13, 2014

References
1. Atteberry J. Why is water vital to life? 10 August 2010. http://

science.howstuffworks.com/environmental/earth/geophysics/water-
vital-to-life.html.

2. Luzar A., and Chandler D. Hydrogen-bond kinetics in liquid water. Na-
ture, v. 379, 4 January 1996, 55–57.

3. Silva P. R., Sampaio M., Nassif C., Nemes M. C. Phys. Lett. A, v. 358,
2006, 358–362.

4. Landauer R. IBMJ Res. Dev., 1957, issue 1, 223.

5. Silva P.R. Electrical conductivity of metals: a new look at this subject.
viXra: 1209.0071 (2012).

6. Tegmark M. Consciousness as a state of matter. arXiv: 1401.1219.

7. Tononi G. Consciousness as integrated information: a provisional man-
ifesto. Biol. Bull., 2008, 215–216. http://www.biobull.org/content/215/
3/216.full.

8. Mapa S. and Borges H. E. Modelagem de um mecanismo para
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New Experiments Call for a Continuous Absorption Alternative to Quantum
Mechanics – The Unquantum Effect

Eric S. Reiter
251 Nelson Avenue, 94044 Pacifica, CA, USA. E-mail: eric@unquantum.net

A famous beam-split coincidence test of the photon model was performed with γ-rays
instead of visible light. A similar test was performed to split α-rays. In both tests, co-
incidence rates greatly exceed chance, leading to an unquantum effect. In contradiction
to quantum theory and the photon model, these new results are strong evidence of the
long abandoned accumulation hypothesis, also known as the loading theory. Attention
is drawn to assumptions applied to past key experiments that led to quantum mechan-
ics. The history of the loading theory is outlined, and a few key experiment equations
are derived, now free of wave-particle duality. Quantum theory usually works because
there is a subtle difference between quantized and thresholded absorption.

1 Introduction

Since Einstein’s photoelectric work of 1905, quantum me-
chanics (QM) has endured despite its bizarre implications be-
cause no strong experimental evidence has been put forth to
refute it. Such new evidence is presented in detail here.

By QM and the photon model, a singly emitted photon
of energy h νL must not trigger two coincident detections in a
beam-split coincidence test (see p. 50 in [1] and p. 39 in [2])
where h is Planck’s constant of action, and νL is frequency
of the electromagnetic wave. Beam-split coincidence tests
of past have seemingly confirmed QM by measuring only an
accidental chance coincidence rate [3–6].

Here, new beam-split coincidence experiments use γ-rays
instead of visible light. The detectors employed have high
“energy” resolution, whereby their pulse-height is propor-
tional to νL. The γ-ray detection-pulses were within a full-
height window, indicating we are not dealing with frequency
down-conversion.

To measure such an unquantum effect implies that a
fraction of pre-loaded energy was present in the detector
molecules preceding the event of an incoming classical pulse
of radiant energy. It is called the accumulation hypothesis or
the loading theory [7–12] (see p. 47 in [12]). The pre-loaded
energy came from previous absorption that did not yet fill up
to a threshold. The unquantum tests give us a choice: we
either give up an always-applicable particle-energy conser-
vation, or give up energy conservation altogether. We uphold
energy conservation.

A beam-split coincidence test compares an expected
chance coincidence rate Rc to a measured experimental co-
incidence rate Re. Prior tests [3–6] all gave Re/Rc = 1. Past
authors admitted that exceeding unity would contradict QM.
These unquantum experiments are the only tests known to re-
veal Re/Rc > 1. This clearly contradicts the one-to-one “Born
rule” probability prediction of QM.

It is counterintuitive to attempt to contradict the photon
model with what was thought to be the most particle-like

form of light, γ-rays. Prior tests have only pitted QM against
an overly classical model that did not consider a pre-loaded
state. A beam-split coincidence test with γ-rays is fair to both
the loading theory and photon theory. The loading theory
takes h as a maximum. This idea of action allowed below
h is algebraically equivalent to “Planck’s second theory” of
1911 [9, 10, 14, 15]. There, Planck took action as a property
of matter, not light (see p. 136 in [10]). The unquantum ef-
fect implies that it was a false assumption to think h is due
to a property of light. The loading theory assumes light is
quantized at energy h νL only at the instant of emission, but
thereafter spreads classically.

Similar new beam-split tests with α-rays, contradicting
QM with Re/Rc > 1, are also described herein. This is im-
portant because both matter and light display wave-particle
duality, and its resolution requires experiment and theory for
both.

2 Gamma-ray beam-split tests

In a test of unambiguous distinction between QM and the
loading theory, the detection mechanism must adequately
handle both time and energy in a beam-split coincidence test
with two detectors, as shown in the following analysis. Sur-
prisingly, discussions of pulse “energy” (height) resolution
have not been addressed in past tests [3–6] which were per-
formed with visible light, and one test with x-rays. Refer-
ring to Fig. 1 we will analyze a photomultiplier tube (PMT)
pulse-height response to monochromatic visible light [16]. A
single channel analyzer (SCA) is a filter instrument that out-
puts a window of pulse heights ∆Ewindow to be measured; LL
is lower level and UL is upper level (italic symbols denote
notation in figures). If we set LL to less than half Emean, one
could argue we favored the loading theory, because a down-
conversion might take place that would record coincidences
in both detectors. Also, if LL were set too low, one could
argue we were recording false coincidences due to noise. If
we set LL higher than half Emean, one could argue we were
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Fig. 1: PMT pulse-height response. Data according to [16].

unfair to the loading theory by eliminating too many pulses
that would have caused coincidences. Therefore a fair test re-
quires high pulse-height resolution: Emean ≫ ∆Ewindow. This
criterion is not possible with a PMT or any visible light detec-
tor, but is easily met with γ-rays and scintillation detectors.

A high photoelectric effect detector-efficiency for the cho-
sen γ-ray frequency was judged to enhance the unquantum ef-
fect, and this proved true. The single 88 keV γ-ray emitted in
spontaneous decay from cadmium-109 (109Cd), and detected
with NaI(Tl) scintillators fit this criterion (see p. 717 [17]) and
worked well. All radioisotopes used were low-level license-
exempt.

A γ test of July 5, 2004 (see Fig. 6 in [18]) will be de-
scribed in detail, and others briefly. After spontaneous de-
cay by electron capture, 109Cd becomes stable 109Ag. 109Cd
also emits an x-ray, far below LL. We know that only one
γ is emitted at a time, from a coincidence test with the γ
source placed between two facing detectors that cover close
to 4π solid angle (see p. 693 [19]). That test only revealed the
chance rate, measured by

Rc = R1 R2 τ , (1)

where R1 and R2 are the singles rates from each detector, and
τ is the chosen time window within which coincident events
are counted.

The test was performed with two detectors like those
shown in Fig. 2, each being an NaI(Tl) crystal coupled to a
PMT. The 109Cd source was inside a tin collimator placed di-
rectly in front of detector #1, a custom made 4 mm thick 40 ×
40 mm crystal. Directly behind detector #1 was detector #2,
a 1.5′′ Bicron NaI-PMT. We call this thin-and-thick detector
arrangement tandem geometry. This test was performed in-
side a lead shield [20] that lowered the background rate 1/31.
Referring to Fig. 3, components for each of the two detector
channels are an Ortec 460 shaping amplifier, an Ortec 551
SCA, and an HP 5334 counter. For each detector channel,
singles rates R1 and R2 were measured by calculating (counter
pulses)/(test duration). A four channel Lecroy LT344 digital

Fig. 2: Two γ-ray detectors in tandem geometry; a demonstrator
unit. Detector #1 was used with other components for data shown.

storage oscilloscope (DSO) with histogram software, moni-
tored the analog pulses from each shaping amplifier on Ch1
(channel 1) and Ch2, and from the timing pulse outputs from
each SCA on Ch3 and Ch4. Stored images of each triggered
analog pulse assured that the number of misshaped pulses was
well below 1%. Misshaped pulses can occur from pulse over-
lap and cosmic rays. This DSO can update pulse-height E
and time difference ∆t histograms after each triggered sweep.
To assure exceeding particle-energy conservation, LL on each
SCA window was set to ∼ 2/3 of the 109Cd γ characteristic
pulse-height.

Data for this test is mostly from Fig. 4, a screen capture
from the DSO. A control test with no source present is ∆t his-
togram trace B of 16 counts/40.1 ks = 0.0004/s, a background
rate to be subtracted. With τ taken as 185 ns, the chance rate
from Eq. 1 was (291/s)(30/s)(185 ns) = Rc = 0.0016/s. From
trace A and numbers on Fig. 4, Re = 295/5.5 ks − 0.0004/s
= 0.053/s. The unquantum effect was Re/Rc = 33.5 times
greater than chance. The described test is not some special
case. Much critical scrutiny [18, 20] was taken to eliminate
possible sources of artifact, including: faulty instruments,
contamination by 113Cd in the 109Cd, fluorescence effects,
cosmic rays, possibility of discovering stimulated emission,
pile-up errors, and PMT artifacts. Hundreds of similar tests
and repeats of various form have successfully defied QM.
These tests include those with different sources (57Co, 241Am,
pair-annihilation γ from 22Na [21], 54Mn, 137Cs) and different
detectors (NaI, high purity germanium, bismuth germinate,
CsI), different geometries, and different collimator materials.

109Cd was prepared in two chemical states of matter (see
Fig. 11 in [18]). A salt state was prepared by evaporating an
isotope solution. A metal state was prepared by electroplating
the isotope in solution onto the end of a platinum wire. The
unquantum effect from the salt state was 5 times greater than
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Fig. 3: γ-ray coincidence experiment.

from the metal state. This discovery measures how chemistry
affects nuclear electron capture in isotope decay. We theorize
that γ from the salt-crystaline source are more coherent and
that the unquantum effect is enhanced by coherent waves. The
singles spectrum did not measurably change with this chem-
ical state change, so this sensitivity is due to the unquantum
effect. A similar effect was reported [22] but was not nearly
as sensitive or simple.

The unquantum effect is sensitive to distance (see Fig.
8–9 in [18]). A longer γwavelength from 241Am shows an en-
hanced unquantum effect when placed closer to the detectors,
while a shorter γ wavelength from 137Cs shows an enhanced
effect when placed farther from the detector. Therefore, we
can see how the spreading cone of a classical γ defines an area
that matches the size of the microscopic scatterer (electron).
We can measure how the short spatial and temporal qualities
of a classical spreading γ wave-packet trigger the unquantum
effect.

In addition to tandem geometry, a beam-split geometry
was explored successfully. Different materials were tested
to split an energy-fraction of a classical γ to one side, while
the remaining ray passed through (see Fig. 12 in [18]). This
beam-split geometry was developed into a spectroscopy
whereby the pulse-height spectrum of the second detector
was expanded. A non-shifted spectrum-peak indicates elastic
Rayleigh scattering. A shifted spectrum-peak indicates non-
elastic Compton scattering.

In beam-split geometry, crystals of silicon and germa-
nium were explored with an apertured γ path to obtain angle
resolution (see Fig. 13 in [18]). The unquantum effect var-

Fig. 4: γ-ray ∆t from DSO.

ied with crystal orientation to reveal a new form of crystal-
lography. This was not Bragg reflection from atomic planes,
but rather from periodicity smaller than inter-atomic distance,
perhaps electron-orbital structure.

The unquantum effect is sensitive to temperature of the
beam-splitter (see Fig. 18 in [18]). A liquid nitrogen cooled
slab of aluminum delivered a 50% greater unquantum effect,
as expected.

Magnetic effects were explored with coincident deflected
pulse-height analysis (see Fig. 14–16 in [18]) in beam-split
geometry. A ferrite scatterer in a magnetic gap revealed en-
hanced Rayleigh scattering, indicating a stiff scatterer, as one
would expect. A diamagnetic scatterer in a magnetic gap
revealed enhanced Compton scattering, indicating a flexible
scatterer, as expected.

The unquantum effect’s increase/decrease response to
several physical variables in the direction that made physical
sense solidifies its fundamental validity. Each of the above
mentioned modes of unquantum measurement represents a
useful exciting discovery.

There is a simple way to measure the unquantum effect
with a single NaI-PMT detector and a pulse-height analyzer
[20]. Measure the 109Cd sum-peak’s count rate within a pre-
set ∆E window that is set at twice 88 keV, and compare to
chance. The result approached chance × 2.

Our most impressive γ-split test [21] used 22Na emitting a
positron that annihilates into two 511 keV γ. The decay also
emits a stronger γ that was caught in a third detector. In this
triple-coincidence test Rc = R1 R2 R3 τ12 τ23. Only one from
each pair of annihilation γ-rays were then captured by two
detectors in tandem. Here Re/Rc = 963. Energy = h ν is still
true as a threshold value, but these experiments say there are
no photons.
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Fig. 5: α-split test in vacuum chamber.

3 Alpha-ray beam-split tests
241Am in spontaneous decay emits a single 5.5 MeV α-ray
and a 59.6 keV γ. An α is a helium nucleus. This sounds
like a particle, but consider a helium nuclear matter-wave. If
the wave was probabilistic, the particle would go one way
or another, and coincidence rates would only approximate
chance. I performed hundreds of various tests in four vacuum
chamber rebuilds. Two silicon Ortec surface barrier detec-
tors with adequate pulse-height resolution were employed in
a circuit nearly identical to Fig. 3. Fig. 5 shows the detectors
and pre-amplifiers in the vacuum chamber. These tests were
performed under computer CPU control by a program writ-
ten in QUICKBASIC to interact with the DSO through a GPIB
interface. Both SCA LL settings were at 1/3 of the charac-
teristic α pulse-height, because it was found that an α-split
usually maintains particle-energy conservation. The coinci-
dence time-window was τ = 100 ns. The ∆t histograms of
Fig. 6 were from DSO screen captures.

Data of Fig. 6-a was a two hour control test with the two
detectors at right angles to each other and the 241Am cen-
trally located. Only the chance rate was measured, assuring
that only one α was emitted at a time. This arrangement is
adequate, and 4π solid angle capture is not practical with α.
Any sign of a peak is a quick way to see if chance is exceeded.
Background tests of up to 48 hours with no source gave a zero
coincidence count.

Data of Fig. 6-b (Nov. 13, 2006) was from the arrange-
ment of Fig. 5 using two layers of 24 carat gold leaf over
the front of detector #1. Mounted on the rim of detector #2
were 241Am sources, shaded to not affect detector #2. Every
analog detector pulse in coincidence was perfectly shaped.
Rc = 9.8×10−6/s, and Re/Rc = 105 times greater than chance.

From collision experiments, the α requires ∼ 7 MeV per
nucleon to break into components, and even more for gold
[17]. It would take 14 MeV to create two deuterons. The only
energy available is from the α’s 5.5 MeV kinetic energy. So

Fig. 6: α-ray ∆t plots.

Fig. 7: Coincident α pulse-height pairs,

for any model of nuclear splitting there is not enough energy
to cause a conventional nuclear split. Also plotted from the
CPU program and data from the test of Fig. 6-b is data re-
plotted in Fig. 7. Fig. 7 depicts pulse heights plotted as dots
on a two dimensional graph to show coincident pulse heights
from both detectors. The transmitted and reflected pulse-
height singles spectra were carefully pasted into the figure.
We can see that most of the a pulses (dots) are near the half-
height marks; α usually splits into two lower kinetic-energy
He matter-waves. Six dots, circled, clearly exceeded particle-
energy conservation. Counting just these 6, we still exceed
chance: Re/Rc = 3.97. This is a sensational contradiction of
QM because it circumvents the argument that a particle-like
split, such as splitting into two deuterons, is somehow still at
play.

In search for alternative explanations, we found none and
conclude: an α matter-wave can split and continuous absorp-
tion can fill a pre-loaded state of He up to a detection thresh-
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old. Also, the α-split test demonstrates how the loading the-
ory applies to historical interference and diffraction tests with
electrons, neutrons, and atoms [23, 24]. Several other mate-
rials were tested in transmission and reflection geometries to
reveal the usefulness of this matter-wave unquantum effect in
material science [21]. It is not necessary to use gold to exceed
chance, but many materials tested just gave chance.

4 History of the loading theory and its misinterpretation

A believable report of such disruptive experimental results
requires an accompanying historical and theoretical analysis.

Lenard [7, 8] recognized a pre-loaded state in the photo-
electric (PE) effect with his trigger hypothesis. Most physi-
cists ignored this idea in favor of Einstein’s light quanta [25]
because the PE equation worked. Planck (see Eq. 14 in [9],
and p. 161 in [10]) explored a loading theory in a derivation of
his black body law that recognized continuous absorption and
explosive emission. Sommerfeld and Debye [11] explored
an electron speeding up in a spiral around a nucleus during
resonant light absorption. Millikan (see p. 253 in [13] de-
scribed the loading theory, complete with its pre-loaded state
in 1947, but assumed that its workings were “terribly difficult
to conceive.” In the author’s extensive search, physics liter-
ature thereafter only treats a crippled version of the loading
theory with no consideration of a pre-loaded state.

Most physics textbooks (e.g. [26], p. 79) and literature
(e.g. [27]) routinely use photoelectric response time as evi-
dence that the loading theory is not workable. Effectively,
students are taught to think there is no such thing as a pre-
loaded state. Using a known light intensity, they calculate
the time an atom-sized absorber needs to soak up enough en-
ergy to emit an electron. One finds a surprisingly long ac-
cumulation time (the longest response time). They claim no
such long response time is observed, and often quote ∼ 1 ns,
the shortest response time from the 1928 work of Lawrence
and Beams [28] (L&B). Such arguments unfairly compare a
shortest experimental response time with a longest calculated
response time. An absorber pre-loaded to near threshold ex-
plains the shortest response times. The longest response time
from L&B was ∼ 60 ns. L&B did not report their light inten-
sity, so it is not fair to compare their results to an arbitrary cal-
culation. Energy conservation must be upheld, so an appro-
priate calculation is to measure the longest response time and
the light intensity, assume the loading theory starting from an
unloaded state, and calculate the effective size of the loading
complex. The loading theory was the first and obvious model
considered for our earliest experiments in modern physics.
There is no excuse for the misrepresentation outlined here.

5 A workable loading theory

For brevity, the theory is elaborated for the charge matter-
wave. If we develop three principles, we will find they explain
both the quantum and unquantum experiments [29]:

1. de Broglie’s wavelength equation is modified to the
wavelength of a beat or standing-wave envelope-func-
tion of Ψ;

2. Planck’s constant h, electron charge e, and mass con-
stants like the electron mass me are maximum thresh-
olds whereby emission is quantized but absorption is
continuous and thresholded;

3. Ratios h/e, e/m, h/m, in our equations are conserved
as the matter-wave expands and thins-out.

In de Broglie’s derivation of his famous wavelength equa-
tion (see. p. 3 in [30])

λΨ =
h

me vp
, (2)

he devised a frequency equation

hνΨ = me c2, (3)

and a velocity equation

vp VΨ = c2. (4)

For equations (2–4), subscript Ψ is for either a matter-
wave or a probabilistic wave, λΨ is the phase wavelength, νΨ
the phase frequency, vp the particle velocity, VΨ the phase
velocity, and me the electron mass. Equations (3) and (4)
remain widely accepted, but have serious problems. Equa-
tion (3) is only true when using νL instead of νΨ to calculate
a mass equivalent. If we measure vp, λΨ, and me for mat-
ter diffraction, equation (3) fails. Our experimental equations
use h associated with kinetic energy, or momentum, not mass-
equivalent energy.

As for equation (4), one might attempt to extract it from
the Lorentz transformation equation of time by dimensional
analysis, but its derivation independent of equations (2) or (3)
has not been found by the author. Nevertheless, it describes
an infinite VΨ in any particle’s rest frame. Many physicists use
equation (4) to justify the probability interpretation of QM,
(see p. 89 in [31]) but this leads to “spooky action at a dis-
tance” we are all well aware of.

A much more reasonable frequency equation is the PE ef-
fect equation hνL =

1/2 mev
2
p, with the work function not yet

encountered. It is very reasonable to understand that some-
thing about charge is oscillating at the frequency of its emitted
light, but just how to replace νL with a charge frequency re-
quires insight. Recall the Balmer or Rydberg equation of the
hydrogen spectrum in terms of frequency in its simplest form:
νL = νΨ2 − νΨ1. Here νΨ is frequency of a non-probabilistic Ψ
matter-wave. The hydrogen atom is telling us that the re-
lationship between νL and νΨ is about difference-frequencies
and beats. Consider that this difference-frequency property
is fundamental to free charge as well as atomically bound
charge. Beats, constructed from superimposing two sine
waves are understood from a trigonometric identity to equal
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an averaged Ψ wave modulated by a modulator wave M, as
graphed in Fig. 8. If we take M as the coupling of light to
charge we see that there are two beats per modulator wave,
and we can write a relationship between light frequency and
the frequency of charge beats: 2νL = νg. Group velocity is
commonly substituted for particle velocity, so vp = vg. Sub-
stituting the last two equations into the PE equation makes
hνg = mev

2
g. Groups are periodic, so we apply νg = vg/λg to

derive a wavelength equation (principle 1):

λg =
h

me vg
. (5)

Notice that both the PE equation and equation (5) have
h/me. Recall several equations applicable to so-called “wave
properties of particles”: Lorentz force, PE, Compton effect,
Aharonov-Bohm effect, others. They all have ratios like e/m,
h/m, h/e. Examining h/me ≡ Qh/m, if action is less than
h and mass is less than me and the proportion is conserved,
we would not be able to tell if those values went below our
thresholds (h,m, e) while the charge-wave spreads out and
diffracts (principles 2 & 3). Therefore we can write equation
(5) as λg = Qh/m/vg and the PE equation as νL =

1/2 Qm/h vg
2.

At threshold, mgroup = me and at sub-threshold we use Q
ratios to emphasize wave nature (Q for quotient). To under-
stand the PE effect without photons, visualize the pre-loaded
state in the Qm/h ratio. Energy loads up to threshold and an
electron is emitted explosively (principle 2); thereafter, the
charge-wave can spread classically.

The Compton effect is often claimed to require QM treat-
ment. A classical treatment is in Compton and Allison’s book
(see p. 232 in [12]) based upon a Bragg grating of envelopes
from standing de Broglie waves. However, the envelopes
were weak. If charge structures were inherently composed of
beats of length d, it would naturally create a plausible Bragg
grating. Use the Bragg diffraction equation λL = 2d sin(ϕ/2),
where ϕ is deflection angle. Substitute for d, λg from equation
(5). Solve for vg and insert into the Doppler shift equation
∆λL/λL = (vg/c) sin(ϕ/2). Simplify using the trigonometric
identity sin2 θ = [1 − cos(2θ)]/2 and Qh/m to yield

∆λL =
Qh/m

c
(1 − cos(ϕ)),

the Compton effect equation.
Also related to the Compton effect are popular accounts

of the test by Bothe and Geiger. The measured coincidence
rate was not a one-to-one particle-like effect as often claimed,
but rather the coincidence rate was ∼ 1/11 [32].

What about quantized charge experiments? Measure-
ments of e are performed upon ensembles of many atoms,
such as in the Millikan oil drop experiment, and earlier by
J. J. Thompson. Granted, electron detectors go click, but that
is the same threshold effect demonstrated by the unquantum
α-split experiments. From evidence of charge diffraction

Fig. 8: Illustration of the concept of matter and antimatter. (a) Two
positron beats. (b) Two electron beats.

alone, it was a poor assumption to think charge was always
quantized at e. Charge, capable of spreading out as a wave
with a fixed e/me ratio for any unit of volume, loading up,
and detected at threshold e, would remain consistent with our
observations. Furthermore, the electron need not be relatively
small. Chemists performing Electron Spin Resonance mea-
surements often model the electron to be as large as a ben-
zene ring. A QM electron would predict a smeared-out ESR
spectrum.

The following is a list of famous experiments and prin-
ciples re-analyzed with this newly developed Loading The-
ory (LT) by the author [29]: PE effect, Compton effect, shot
noise, black body theory, spin, elementary charge quantiza-
tion, charge & atom diffraction, uncertainty principle, ex-
clusion principle, Bothe-Geiger experiment, Compton-Simon
experiment, and the nature of antimatter, as envisioned in
Fig. 8. The LT visualizes these fundamental issues, now free
of wave-particle duality.

The LT supported by the unquantum effect easily resolves
the enigma of the double-slit experiment. The wave of light or
matter would load-up, and show itself as a click at a threshold.

These realizations lead to matter having two states: (1) a
contained wave in a particle state, and (2) a spreading matter-
wave that is not a particle at all, yet carries the wave-form
matching a loading-up particle. One may protest by quot-
ing experiments in support of QM, such as giant molecule
diffraction, EPR tests, and quantum cryptography. My anal-
ysis of major flaws in such tests, and elaboration of topics
outlined here, are freely viewable from my posted essays and
at www.unquantum.net.
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The negative parity states of octupole vibrational bands in Tungsten and Osmium nuclei
have perturbed structure. To explore the ∆I = 1 staggering, we plotted the gamma
transitional energy over spin (EGOS) versus I2. Such a plot exhibit large deviation from
a linear I(I+1) dependence E(I) = A[I(I+1)]+B[I(I+1)]2 and effectively splits into two
different curves for odd and even spin states and a staggering pattern is found. The odd-
spin members Iπ = 1−, 3−, 5−, . . . were displaced relatively to the even-spin members
Iπ = 2−, 4−, 6−, . . . i.e. the odd levels do not lie at the energies predicted by the pure
rotator fit to the even levels, but all of them lie systematically above or all of them lie
systematically below the predicted energies because the odd-spin states can be aligned
completely, while the even-spin states can only be aligned partially. Also the ∆I = 1
staggering effect has been clearly investigated by examining the usual backbeding plot.

1 Introduction

The properties of nuclear rotational bands built on octupole
degrees of freedom have been extensively studied within var-
ious microscopic as will as macroscopic model approaches
in nuclear structure [1–6]. It is will known that heavy nuclei
have low-lying Kπ = 0− octupole deformed bands [7,8]. The-
oretical works of such bands have been presented in frame-
work of cranked random phase approximation (RPA) [9, 10],
the collective model [5], the interacting boson model (IBM)
[3, 11], the variable moment of inertia (VMI) model [12] and
the alpha particle cluster model [4, 13]. The IBM and the ex-
otic cluster models address the existence of negative parity
bands with Kπ , 0−.

Several staggering effects are known in nuclear spectros-
copy. The ∆I = 2 staggering has been observed and inter-
preted in superdeformed (SD) nuclei [14–22], where the lev-
els with I = I0 + 2, I0 + 6, I0 + 10, . . . are displaced relatively
to the levels with I = I0, I0 + 4, I0 + 8, . . ., i.e. the level with
angular momentum I is displaced relatively to its neighbors
with angular momentum I ± 2. There is another kind of stag-
gering happening in SD odd-A nuclei, the ∆I = 1 signature
splitting in signature partners pairs [23].

The ∆I = 1 Staggering in odd normal deformed (ND) nu-
clei is familiar for a long time [24–28], where the rotational
bands with K = 1/2 separate into signature partners, i.e. the
levels with I = 3/2, 7/2, 11/2, . . . are displaced relatively to
the levels with I = 1/2, 5/2, 9/2, . . .. In this paper, we will
investigate another type of ∆I = 1 energy staggering occur-
ring in the negative parity octupole bands of even-even nu-
clei, where the levels with odd spin Iπ = 1−, 3−, 5−, . . . are
displaced relatively to the levels with even spin Iπ = 2−, 4−,
6−, . . .. This is more strikingly revealed when one makes the
usual backbending plot of the energies in which the kine-
matic moment of inertia is plotted against the square of ro-
tational frequency. The negative parity octupole band breaks

into even and odd-spin bands with, however, very little back-
bending tendency.

2 Outline of the Theory of ∆I = 1 Energy Staggering

To analyze the ∆I = 1 energy staggering in collective bands,
several tests have been considered in the literature. In our
analysis, the basic staggering parameter is the gamma tran-
sitional energy over spin (EGOS=Eγ(I)/I) of the transitional
energies in a ∆I = 1, where E(I) is the energy of the state of
the spin I, and Eγ(I) denotes the dipole transition energy

Eγ(I) = E(I) − E(I − 1). (1)

The level energies in a band can be more realistic parameter-
ize by two-term rotational formula as a reference

E(I) = A[I(I + 1)] + B[I(I + 1)]2. (2)

The first two-term represents the perfect purely collective
rigid rotational energy, where A denotes the inertial param-
eter A = ℏ/2J (where J is the kinematic moment of inertia).
The introduction of the second term is based on the assump-
tion that, on rotation, the moment of inertia of the nucleus
increases as does the quadratic function of the square of the
angular velocity of rotation of the nucleus.

It is interesting to discuss the energy levels by plotting
EGOS against spin. This is not helpful to identify the struc-
ture of the nucleus, but also to see clearly changes as a func-
tion of spin. For pure rotator, the energies of the yrast states
are:

E(I) = A[I(I + 1)]. (3)

Then the E2 γ-ray energies are given by

Eγ(I) = A[4I − 2] (4)

which yield

EGOS = A
(
4 − 2

I

)
. (5)
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Table 1: The adopted best model parameters A and B for our selected octupole vibrational bands.

178W 180W 176Os 178Os 180Os 182Os
A (keV) 13.637 13.027 9.665 10.083 11.796 9.491
B (eV) -13.821 -8.517 -2.223 -3.032 -8.607 0.140

In units of A, EGOS evolves from 3 for I = 2 up to 4 for high
I, and so gradually increasing and asymptotic function of I.

EGOS for our proposed reference formula (2) is given by

EGOS = 2A + 4BI2. (6)

The EGOS when plotted against I2, it represent a straight line
of intercept 2A and slope 4B. Practically, the plot splits into
two different curves for the odd and even spin states respec-
tively. To see fine variation in the plot (EGOS & I2), we use
the staggering parameter

e(I) = EGOS −
(
2A + 4BI2

)
ref

(7)

where the unknown A and B are determined by minimizing
the function F

F(I, A, B) =
∑

I

|e(I)|2. (8)

The summation over spin in equation (8) is taken in step of
∆I = 1. The function F has a minimum value when all its
partial derivatives with respect to A and B vanish (∂F/∂A =
0, ∂F/∂B = 0), this leads to

2nA + 4
∑

I

I2B =
∑

I

EGOS (I) (9)

2
∑

I

I2A + 4
∑

I

I4B =
∑

I

I2EGOS (I) (10)

where n is the number of data points.
The behavior of the octupole band is most clearly illus-

trated by a conventional backbending plot. For each ∆I = 2
value, the effective nuclear kinematic moment of inertia is
plotted versus the square of the rotational frequency. If we
consider the variation of the kinematic moment of inertia J(1)

with angular momentum I, we can write

2J(1)

ℏ2 =
4I − 2

E(I) − E(I − 2)
. (11)

Lets us define the rotational frequency ℏω as a derivative
of the energy E(I) with respect to the angular momentum
[I(I + 1)]1/2,

ℏω =
dE

d[I(I + 1)]1/2 (12)

usually we adopt the relation

(ℏω)2 =
4(I2 − I + 1)
(2J(1)/ℏ2)2 . (13)

3 Numerical Calculation and Discusion

Our selected octupole bands are namely: 178W, 180W, 176Os,
178Os, 180Os and 182Os. The optimized model parameters A
and B for each nucleus have been adjusted by using a com-
puer simulation search program to fit the calculated theoret-
ical energies Ecal(Ii), with the corresponding experimental
ones Eexp(Ii). The procedure of fitting is repeated for sev-
eral trail values A and B to minimize the standard quantity χ
which represent the root mean square deviation

χ =

 1
N

N∑
i=1

(
Eexp(Ii) − ECal(Ii)
△Eexp(Ii)

)21/2

where N is the number of data points and ∆Eexp(Ii) are the
experimental errors. The best optimized parameters are listed
in table (1). The negative parity octupole bands have sev-
eral interesting characteristics, the most obvious of which is
the staggering effect. In this paper the ∆I = 1 staggering
is evident on a plot of staggering parameter e(I) against I2

and illustrated in figure (1), the band effectively splits into an
odd- and even-spin sequence with a slight favoring in energy
for the odd-spin states. In terms of an alignment of the an-
gular momentum of the octupole vibration, the odd energy
favoring can be understood since the odd-spin states can be
aligned completely (I ∼ R + 3, where R = 0, 2, 4, . . . is the
collective rotation), while the even spins can only be aligned
partially (I ∼ R + 2). As expected from a good rotor model,
the γ-ray transition energy Eγ(I) increases with increasing the
angular momentum I. It is found in some rotational deformed
nuclei that the transition energy decreases with increasing I,
this anomalous behavior is called nuclear backbending. In
order to represent this backbending, one prefers to plot twice
the kinematic moment of inertia 2J(1)/ℏ2 versus the square of
the rotational frequency (ℏω)2. Figure (2) shows the back-
bending plot for our selected octupole bands. It is seen that
the bands are essentially separate into odd and even spin se-
quences which shows the effects of rotation alignment. The
increase in Coriolis effects is due to the lowering of the Fermi
level, then these effects depress the odd spin states relative
to the even spin states. When the Coriolis effects are large
compered with the octupole correlations effected through the
residual interaction, it becomes inappropriate to identify these
bands as octupole bands (decoupled two quasiparticle bands).
These are bands in which the intrinsic spin has been aligned
with the rotational spin through the decoupling action of the
Coriolis force.
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Fig. 1: The odd-even ∆I = 1 energy staggering parameters e(I)
versus I2 for negative parity states of octupole vibrational bands in
doubly even nuclei 178,180W and 176,178,180,182Os.

Fig. 2: Plot of twice Kinematic moment of inertia 2J(1) against the
square of the rotational frequency (ℏω)2 for the negative parity bands
in 178,180W and 176,178,180,182Os isotopes.

4 Conclusion

In negative parity octupole bands of even-even W/Os nuclei,
the levels with odd spins Iπ = 1−, 3−, 5−, ... are displaced rel-
atively to the levels with even spins Iπ = 2−, 4−, 6−, .... The
effect is called ∆I = 1 staggering and its magnitude is clearly
larger than the experimental errors. The phase and amplitude
of the splitting is due to rotation particle Corialis coupling.
Our proposed two terms formula provided us with informa-
tion about the effective moment of inertia.
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One introduces an ansatz for the expansion factor a(t) = e(H(t)t−H0T0)/β for our Universe
in the spirit of the FLRW model; β is a constant to be determined. Considering that
the ingredients acting on the Universe expansion (t > 4 × 1012 s ≈ 1.3 × 10−5 Gyr) are
mainly matter (baryons plus dark matter) and dark energy, one uses the current mea-
sured values of Hubble constant H0, the Universe current age T0, matter density param-
eter Ωm(T0) and dark energy parameter ΩΛ(T0) together with the Friedmann equations
to find β = 0.5804 and that our Universe may have had a negative expansion accelera-
tion up to the age T⋆ = 3.214 Gyr (matter era) and positive after that (dark energy era),
leading to an eternal expansion. An interaction between matter and dark energy is found
to exist. The deceleration q(t) has been found to be q(T⋆) = 0 and q(T0) = −0.570.

1 Introduction

The Cosmological Principle states that the Universe is spa-
tially homogeneous and isotropic on sufficiently large scale
[1–4] and [7]. This is expressed by the Friedmann spacetime
metric:

ds2 = ℜ2(t) dψ2+ℜ2(t) f 2
k (ψ)

(
dθ2 + sin2θ dϕ2

)
−c2dt2, (1)

where ψ, θ and ϕ are comoving space coordinates (0 ≤ ψ ≤
π, f or closed Universe, 0 ≤ ψ ≤ ∞, f or open and f lat Uni-
verse, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π), t is the proper time shown by
any observer clock in the comoving system. ℜ(t) is the scale
factor in units of distance; actually ℜ(t) is the radius of cur-
vature of the Universe. The proper time t may be identified
with the cosmic time. In terms of the usual expansion factor

a(t) =
ℜ(t)
ℜ(T0)

, (2)

being T0 the current age of the Universe, equation (1) be-
comes

ds2 = ℜ2(T0) a2(t)(
dψ2 + f 2

k (ψ)
(
dθ2 + sin2θ dϕ2

))
− c2dt2,

(3)

f 2
k (ψ) assumes the following expressions:

f 2
k (ψ)


f 2
1 (ψ) = sin2ψ (closed Universe)

f 2
0 (ψ) = ψ2 (flat Universe)
f 2
−1(ψ) = sinh2ψ (open Universe)

(4)

The expansion process one will be considering here is the one
started by the time of 4 × 1012 s ≈ 1.3×10−5 Gyr when the so
called matter era began. Right before that, the Universe went
through the so called radiation era. In this paper one consid-
ers only the role of the matter (baryonic and non-baryonic)
and the dark energy.

2 Einstein’s field equations

Let one uses Einstein’s Field Equations [5], with the inclusion
of the Λ “cosmological constant” term.

Gµν = Rµν −
1
2
gµν R =

8πG
c4

(
Tµν + TΛµν

)
(5)

where gµν is the metric tensor, Rµν is the Ricci tensor, R is the
Ricci scalar curvature, Tµν is the energy-momentum tensor,
and, TΛµν the dark-energy-momentum tensor,

TΛµν = ρΛc2gµν, (6)

ρΛ =
Λc2

8πG
; (7)

Λ is the “cosmological constant”, which will be here allowed
to vary with time. The metric tensor for the metric above,
equation (3), is

(gµν) =


ℜ2(t) 0 0 0

0 ℜ2(t) f 2
k (ψ) 0 0

0 0 ℜ2(t) f 2
k (ψ)sin2θ 0

0 0 0 −c2

 (8)

where

ℜ(t) = ℜ(T0) a(t). (9)

The Ricci tensor is given by

Rµν = ∂λΓ
λ
µν − ∂νΓλµλ + Γ

η
µνΓ

λ
ηλ − Γ

η
µλΓ

λ
ην (10)

where the Christoffel symbols Γλµν are

Γλµν =
1
2
gλσ

(
∂µgσν + ∂νgσµ − ∂σgµν

)
. (11)

The Ricci scalar curvature is given by

R = gµνRµν , (12)
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and the energy-momentum tensor is

Tµν =
(
ρm +

1
c2 pm

)
uµuν + pmgµν , (13)

where ρm is the matter density and pm is the matter pressure,
both only time dependent. By making straightforward calcu-
lations, one gets

R = 6

 k
ℜ2(T0)a2(t)

+
1
c2

( ȧ(t)
a(t)

)2

+
ä(t)
a(t)


= 6

K(t) +
1
c2

( ȧ(t)
a(t)

)2

+
ä(t)
a(t)

 . (14)

Here K(t) is Gaussian curvature at cosmic time t:

K(t) =
k
ℜ2(t)

=
k

ℜ2(T0) a2(t)
. (15)

The Einstein’s field equations are

Gii =
8πG
c4

(
Tii + TΛii

)
↔

−
c2K(t) +

(
ȧ(t)
a(t)

)2

+ 2
ä(t)
a(t)

 = 8πG
(

1
c2 pm − ρΛ

) (16)

and
Gtt =

8πG
c4

(
Ttt + TΛtt

)
↔

3

c2K(t) +
(

ȧ(t)
a(t)

)2 = 8πG (ρm + ρΛ)

(17)

where i = (ψ, θ, ϕ); all off-diagonal terms are null. The equa-
tion of state for dark energy is

pΛ = −ρΛc2. (18)

Simple manipulation of equations above leads to

ä(t)
a(t)

= −4πG
3

(
ρm + 3

1
c2 pm − 2ρΛ

)
, (19)

(
ȧ(t)
a(t)

)2

+ c2K(t) =
8πG

3
(ρm + ρΛ) . (20)

Equations (19-20) are known as Friedmann equations. Hav-
ing in account that

ȧ(t)
a(t)
= H(t), (21)

ä(t)
a(t)

= Ḣ(t) + H2(t), (22)

where H(t) is time dependent Hubble parameter, and that
pressure pm = 0 (matter is treated as dust), one has

Ḣ(t) + H2(t) =
8πG

3

(
−1

2
ρm + ρΛ

)
, (23)

c2K(t) + H2(t) =
8πG

3
(ρm + ρΛ) , (24)

or
Ḣ(t)
H2(t)

+ 1 =
1
ρcrit

(
−1

2
ρm + ρΛ

)
, (25)

c2K(t)
H2(t)

+ 1 =
1
ρcrit

(ρm + ρΛ) , (26)

where

ρcrit =
3H2(t)
8πG

(27)

is the so called critical density. From equations (25-26) one
obtains, after simple algebra,

ρm =
1

4πG

(
c2K(t) − Ḣ(t)

)
, (28)

ρΛ =
1

4πG

(
1
2

c2K(t) +
3
2

H2(t) + Ḣ(t)
)
, (29)

or,

Ωm =

(
2
3

c2K(t)
H2(t)

− 2
3

Ḣ(t)
H2(t)

)
, (30)

ΩΛ =

(
1
3

c2K(t)
H2(t)

+
2
3

Ḣ(t)
H2(t)

+ 1
)
, (31)

where Ωm = ρm/ρcrit and ΩΛ = ρΛ/ρcrit are, respectively, the
cosmological matter and dark energy density parameters.

The Ricci scalar curvature stands as

R = 6
(
K(t) +

1
c2

(
2H2(t) + Ḣ(t)

))
. (32)

3 The ansatz

Now let one introduces the following ansatz for the expansion
factor:

a(t) = e(H(t)t − H0T0)/β (33)

where T0 is the current age of the Universe, H0 = H(T0)
is the Hubble constant, and β is a constant parameter to be
determined. From equations (21-23) one obtains

H(t) = H0

(
t

T0

)β−1

(34)

Ḣ(t) = H(t)
1
t

(β − 1) . (35)

By inserting equations (34-35) into equation (25) one has:

β − 1
H0t

(
t

T0

)1−β
+ 1 =

1
ρcrit

(
−1

2
ρm + ρΛ

)
(36)

β − 1
H0T0

(
t

T0

)−β
= −1

2
Ωm + ΩΛ − 1 (37)
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Fig. 1: a(t) = e
1
β

((
t

T0

)β
−1

)
H0T0

Fig. 2: H(t) = H0

(
t

T0

)β−1

Since β is assumed to be a constant, and, thatΩm(T0), ΩΛ(T0)
and H(T0) = H0 are measured quantities, one has for t = T0,

β − 1
H0T0

= −1
2
Ωm(T0) + ΩΛ(T0) − 1 (38)

which solved for β gives

β = 1 + H0T0

(
−1

2
Ωm(T0) + ΩΛ(T0) − 1

)
= 0.5804. (39)

where

H0 = 69.32 kms−1Mpc−1 = 0.0709 Gyr−1,

T0 = 13.772 Gyr,

Ωm(T0) = 0.2865 and ΩΛ(T0) = 0.7135 [6].
The plot of the expansion acceleration

ä(t) =
(
Ḣ(t) + H2(t)

)
a(t) (40)

as function of t = age of the Universe reveals that for t < T⋆,
the acceleration is negative and for t > T⋆, the acceleration is
positive. See Figure (4). This means that when the Universe
is younger than T⋆, the regular gravitation overcomes dark
energy, and after T⋆, dark energy overcomes gravitation. The
result is an eternal positive accelerated expansion after T⋆ =
3.214 Gyr. See ahead.

Fig. 3: ȧ(t) = a(t) H0

(
t

T0

)β−1

Fig. 4: ä(t) = a(t)
(
H0

(
t

T0

)β − (1 − β) 1
t

)
H0

(
t

T0

)β−1

Fig. 5: q(t) = −
(
1 + 1

H0T0
(β − 1)

(
t

T0

)−β)
In fact, by setting equation (40) to zero and just solving it

for t,

H(t)
1
t

(β − 1) + H2(t) = 0, (41)

one gets

t = T⋆ = T0

(
1 − β
H0T0

) 1
β

= 3.214 Gyr . (42)

From equation (26), one writes

c2k
ℜ2(t)H2(t)

= Ωm + ΩΛ − 1. (43)

The known recently measured values of Ωm(T0) and ΩΛ(T0)
[6] do not allow one to say, from above equation, that the
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Fig. 6: Left hand side of equation (43) is plotted for some values of
ℜ(T0). At the current Universe age T0 = 13.772 Gyr, the right side
of the referred equation has the margin of error equal to ±0.0191.

Fig. 7: Gaussian curvature K(t) = k

(ℜ(T0)a(t))2 and Ricci scalar cur-

vature R(t) = 6
(
K(t) + 1

c2 H(t)
(
2H(t) + 1

t (β − 1)
))

.

Universe is clearly flat (k = 0). The referred measured values
have a margin of error:

ΩΛ(T0) = 0.7135
{
+0.0095
−0.0096

Ωm(T0) = 0.2865
{
+0.0096
−0.0095

Considering also the margin of errors of the other measured
parameters [6], one cannot distinguish between k = 1, −1 or
0. The match between both sides of equations (43) requires
that, the today’s curvature radius of the Universe beℜ(T0) >
100 Gly, in the context of this paper. See Figure (6).

The so called deceleration parameter is

q(t) = − ä(t)a(t)
ȧ2(t)

= −
(

Ḣ(t)
H2(t)

+ 1
)

= −
1 + β − 1

H0T0

(
t

T0

)−β
(44)

which, at current Universe age is q(T0) = −0.570. See Figure
(5).

The expansion scalar factor a(t), Hubble parameter H(t),
expansion speed ȧ(t), expansion acceleration ä(t), and the de-
celeration parameter q(t) are plotted in Figures (1-5).

Fig. 8: Matter and dark energy density parameters for
k = 1, 0,−1: Ωm(t) = 2

3H2(t)

(
c2K(t) − (β − 1) H(t)

t

)
; ΩΛ(t) =

1
3H2(t)

(
c2K(t) + 2 (β − 1) H(t)

t + 3H2(t)
)
. The radius of curvature is

taken asℜ(T0) = 102 Gly.

Fig. 9: Matter and dark energy densities for k = 1, 0,−1: 6sssmmm
ρm(t) = 2

8πG

(
c2K(t) − (β − 1) H(t)

t

)
;

ρΛ(t) = 1
8πG

(
c2K(t) + 2 (β − 1) H(t)

t + 3H2(t)
)
.

The radius of curvature is taken asℜ(T0) = 102 Gly.

The sequence of Figures (7-10) shows the Gaussian K(t)
and R curvatures, matter density parameter Ωm(t), dark en-
ergy density parameter ΩΛ(t), matter density ρm(t), dark en-
ergy density ρΛ(t) and cosmological dark energy Λ(t).

The time derivatives of ρΛ(t) and ρm(t) reveal interesting
detail of the model in question:

ρ̇m + 3H
(
ρm +

1
c2 pm

)
= ρ̇m + 3Hρm = −Q (45)

ρ̇Λ + 3H
(
ρΛ +

1
c2 pΛ

)
= ρ̇Λ = Q (46)

Q = 2H
(

1
t2 (β − 2)(β − 1) + 3Ḣ − c2K

)
(47)

where pm = 0 and pΛ = −ρΛc2. This implies that

ρ̇m + ρ̇Λ = −3Hρm. (48)

The two perfect fluids interact with each other. In Figure (11)
one shows the plots for ρ̇m, ρ̇Λ and ρ̇m + ρ̇Λ as functions of
cosmic time.
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Fig. 10: Dark energy Λ(t), in units of cm−2 for k = 1, 0,−1.
Λ(t) = 1

c2 8πG ρΛ(t). The radius of curvature is taken as ℜ(T0) =
102 Gly. The result for Λ(t) satisfies the following inequality:
|Λ| < 10−42cm−2 [4].

Fig. 11: Time derivatives of ρΛ, ρm and of the sum ρΛ + ρm for
k = 1, 0,−1. The radius of curvature is taken asℜ(T0) = 102 Gly.

4 Conclusion

The expression for the expansion factor a(t) = e
H0T0
β

((
t

T0

)β
−1

)
,

where β = 0.5804, constitutes a model for the expansion of
the Universe for t > 4 × 1012s ≈ 1.3 × 10−5Gyr in which
gravity dominates up to the Universe age of T∗ = 3.214 Gyr
and after that dark energy overcomes gravity and that persists
forever. The acceleration of expansion is negative in the first
part (matter era) and positive after that (dark energy era). The
mathematical expressions for dark energy and matter densi-
ties indicate a clear interaction between the two perfect fluids
(dark energy and matter). The classical deceleration parame-
ter q(t) is found to have the value q(T0) = −0.570 for the cur-
rent Universe age and the current radius of curvature should
beℜ(T0) > 100 Gly.
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The theoretical analysis of the existence of a limit mass for compact astronomic ob-

jects requires the solution of the Einstein’s equations of general relativity together with

an appropriate equation of state. Analytical solutions exist in some special cases like

the spherically symmetric static object without energy sources that is here considered.

Solutions, i.e. the spacetime metrics, can have a singular mathematical form (the so

called Schwarzschild metric due to Hilbert) or a nonsingular form (original work of

Schwarzschild). The former predicts a limit mass and, consequently, the existence of

black holes above this limit. Here it is shown that, the original Schwarzschild met-

ric permits compact objects, without mass limit, having reasonable values for central

density and pressure. The lack of a limit mass is also demonstrated analytically just

imposing reasonable conditions on the energy-matter density, of positivity and decreas-

ing with radius. Finally the ratio between proper mass and total mass tends to 2 for

high values of mass so that the binding energy reaches the limit m (total mass seen by a

distant observer). As it is known the negative binding energy reduces the gravitational

mass of the object; the limit of m for the binding energy provides a mechanism for stable

equilibrium of any amount of mass to contrast the gravitational collapse.

1 Introduction to nonsingular Schwarzschild metric

The fate of extremely compact objects in the universe is ruled

by the particular solutions of the Einstein’s equations. As it

is true that no all the mathematical theorems and statements

have a corresponding meaning in the physical world, at the

same time there is not a general rule, other than the verifi-

cation by means of experimental and observational data, to

establish, a priori, which mathematical solution must be dis-

carded and which must be accepted.

In the case of the basic static model for compact objects,

in the theory up to date the collapse is ruled by a specific so-

lution (called Schwarzschild solution but not given explicitly

by Schwarzschild, coming from the Hilbert’s interpretation

instead) that contains mathematical and thus physical singu-

larities leading to a mass limit for ordinary compact objects

and to the consequent black hole hypothesis (generalization

to rotating or charged objects contains as well the features of

singularity and horizon surface and it is not necessary in this

context).

However, a different interpretation of the solution (non-

singular), particularly the original Schwarzschild solution,

cannot be excluded if the completely different consequences

(the nonexistence of mass limit and thus of black holes) are

not yet demonstrated to be inconsistent with observational

data.

1.1 Possible solutions to the static problem

Karl Schwarzschild in 1916 [1, eq. 14, page 194] gave an ex-

act solution in vacuum to Einstein’s field equation determin-

ing the line element for systems with static spherical symme-

try (in units such that c = G = 1):

ds2 =

(

1− α
R(r)

)

dt2− dR(r)2

1− α
R(r)

−R(r)2
(

dθ2 + sin2θ dφ2
)

, (1)

where α is a constant depending on the value of the mass, that

can be obtained from the newtonian limit, and

R(r) = (r3 + σ)1/3 (2)

where σ (indicated with ρ in the original article) is a sec-

ond constant to be determined and r is the same radial vari-

able of the spherically symmetric Minkowski spacetime. Ma-

thematically, there are two possible solutions that satisfy Ein-

stein’s field equation in vacuum (Rµν = 0): one is given by

the class of infinite values of R(r) such that [2, 3]

R(r) = (|r − r0|n + αn)1/n
(3)

with arbitrary r0 and r , r0, the other is given by setting

R(r) = r. (4)

It is worth to note that all the solutions of the class (3) can

be obtained one from another by means of a simple coordi-

nate transformation as must be in general relativity, while the

solution (4) cannot be obtained from (3) and viceversa with

a simple coordinate transformation. So, since the actual so-

lution must be of course unique, the actual solution must be

chosen among the form (3) and the form (4). At this stage,

the only request that Rµν = 0 cannot discriminate about these

solutions, additional considerations must be examined: in the
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following it will be shown that, since R(r) is related to the

Gaussian curvature, it cannot be set equal to the radial co-

ordinate r as in (4) because this brings to unphysical conse-

quences.

The choices made, for example, by Schwarzschild [1]

(r0 = 0, r > r0, n = 3), by Brillouin [4] (r0 = 0, r > r0,

n = 1) and by Droste [5] (r0 = α, r > r0, n = 1) belong to

the class of solutions of the first kind (3); all the solutions of

this class share the same constant α in the denominator (or,

like in the Droste’s solution, the additional condition for va-

lidity that r > α) that prevents the metric to become singular

and to change signature so that they could be called a class of

“nonsingular” solutions.

The other possibility is the “singular” solution (4), due

to the contribution by Hilbert [6], leading to the so called

“Schwarzschild Solution”, that from now on will be called

Schwarzschild-Hilbert or “singular” solution, that sets n = 1,

r0 = α in (3), so that σ = 0 in (2) i.e. R = r; this is simi-

lar to the Droste’s solution but with no limitation on r so that

0 6 r 6 ∞. The line element in this case is the well known

Schwarzschild (-Hilbert) metric

ds2 =

(

1 − α
r

)

dt2 − dr2

1 − α
r

− r2
(

dθ2 + sin2θ dφ2
)

, (5)

where r is (supposed to be) the usual radial coordinates (but

it is actually related to the Gaussian curvature as it will be

shown later) running from zero to infinity and α is determined

from the Newtonian potential in the limit r → ∞, so that

α = 2m where m is the mass in geometrized units while its

complete expression would be m = GM/c2.

The consequences of the line element (5) are well known,

among them the existence of an “event horizon”, a not remov-

able singularity in r = 0, the change in the sign of the g00 and

g11 elements of the metric when 0 6 r 6 2m and the existence

of a mass limit for equilibrium of massive neutron cores [7]

and the consequent black hole hypothesis.

There is an open question about if there is an actual differ-

ence between all these solutions, leading to different physical

consequences. An example of this discussion can be find on

references [2, 3, 8, 9].

The present article will not enter deep into the question,

instead it must be intended as a contribute for understanding

the possible physical consequences, on compact objects, ap-

plying the nonsingular metric (1 and 2).

1.2 Some characteristics of the Schwarzschild metric

This article, will start from a “nonsingular” solution, the one

given by K. Schwarzschild [1] (1 and 2) (from now on, sim-

ply, Schwarzschild solution), that set (eq. 13 in [1])

σ = α3 = 8m3 (6)

so that the line element of the Schwarzschild Solution (1),

using the coordinate r, becomes

ds2 =

(

1 −
α

(r3 + σ)1/3

)

dt2 −
r4(r3 + σ)−4/3

1 − α

(r3 + σ)1/3

dr2−

− (r3 + σ)2/3
(

dθ2 + sin2θdφ2
)

,

(7)

where σ has been explicitly left in order to compare all the

subsequent formulas for this Schwarzschild metric (7) to the

ones derived from the Schwarzschild-Hilbert metric (5), by

simply setting σ = 0.

A first glance at the metric (7) indicates that there is no

singularity at r = 2m, no “event horizon” and no change of

sign (and of nature of the light cone) in the g00 and g11 ele-

ments of the metric. The “problem” has been moved to the

origin r = 0 with the choice σ = α3. Moreover, the behavior

of Schwarzschild metric, at the origin, is totally different from

the one of Schwarzschild-Hilbert metric: in this latter, indeed,

the presence of r in the denominator produces a mathemati-

cal, and consequently physical, not removable singularity, in

the former there is just a smooth vanishing of the g00 and g11

metric elements, since in Schwarzschild metric (7)

lim
r→0
g00 = 0; lim

r→0
g11 = 0. (8)

It worths to note that the expression of the “time” element

g00 in the limit r → 0 is analogous to the limit r → 2m of the

same element in metric (5), so that there is a coordinate time

(time measured by a distant observer) going to infinite while

a radially ingoing object would approach r = 0.

Both singular (4) and nonsingular (3) class of solutions

give similar results in the weak field limit, that is the limit

where all the experimental proofs for general relativity are

performed. For example, Schwarzschild, applied his metric

(7) to solve the problem of the observed anomaly in the per-

ihelion of Mercury. He found the exact solution ( [1] eq.18

p.195) and noticed that the approximate Einstein’s solution is

the exact one by substituting the Einstein radial coordinate r

with (r3+α3)1/3 = r(1+α3/r3)1/3; since the term within paren-

thesis differs from 1 by a quantity of the order of 10−12, the

actual level of precision of the measurements cannot make a

distinction between the two kind of metrics. Quite a different

behavior appears in the strong field limit as it will be shown

later.

1.3 Different nature of r and different centers of spheri-

cal symmetry for the two kind of metrics

The further analysis to discriminate among these two kind

of metrics involves the nature of the r coordinate that repre-

sents two very different quantities in the two metrics. In effect

can be demonstrated that, in the Schwarzschild metric (1), r

is the usual radial coordinate analogue of the coordinate in
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Minkowski space and r = 0 is the actual center of the config-

uration with a finite curvature: in the derivation of metric (1),

Schwarzschild never changes the nature of r (see [1] eq.7)

that corresponds to the radial coordinate of the Minkowski

space. r = 0 corresponds to the center of the distribution and

this is demonstrated if one looks at a curvature invariant, the

Kretschmann scalar, that is maximized at r = 0 as it is re-

quired. In effect, considering the nonsingular Schwarzschild

solution, its expression is

Rkr = RµνλξR
µνλξ =

12α2

(

r3 + α3
)2

(9)

that has a maximum finite value in r = 0 of Rkr(0) = 12/α4.

At the same time, the Gaussian Curvature is defined by

KS =
R1212

g
=

1

R2
=

1

(r3 + α3)2/3
(10)

so that for r = 0⇒ KS = 1/α2 so KS is finite at the center.

On the other side, the r of the Schwarzschild-hilbert met-

ric (5) it is not the radial coordinate neither a distance at all

but it is, actually, the square of the inverse of the Gaussian

curvature of a spherically symmetric geodesic surface in the

spatial section of the spacetime manifold because

KS H =
R1212

g
=

1

r2
. (11)

Where are the centers of spherical distribution for the two

kind of metric? The answer to this question can be given

by the quantity that represents the proper distance Rp(r) =
∫

g11dr.

In the Schwarzschild-Hilbert case (5),

Rp(r) =

∫

g11dr =

∫

1
√

1 − α
r

dr =

=
√

r
√

r − α + α ln
[

2
(√

r +
√

r − α
)]

+C

(12)

where C is a constant. The center rc of the distribution is

found setting the proper distance equal to zero (Rp(rc) = 0)

that happens for rc = α and C = −α ln
(

2
√
α
)

. Finally the

expression for the proper distance is [2, 3]

Rp(r) =
√

r
√

r − α + α ln

( √
r +
√

r − α
√
α

)

. (13)

So, in the Schwarzschild-Hilbert metric α ≡ 2m < r 6 ∞,

while the range of the proper distance is 0 6 Rp 6 ∞, there is

no meaning for r 6 2m coherently with its nature connected

with the Gaussian curvature and the center of the distribution

is rc = 2m.

This means that, if is given a Minkowski spacetime, whe-

re E3 is its Euclidean space, the center of the spherical sym-

metry is rc = 0 and r coincides with the proper distance Rp

and with the radius of Gaussian curvature RG, r = Rp = RG,

considering the metric manifold M3, that is the spatial part

of Schwarzschild-Hilbert spacetime, then the central point

Rp(rc) = 0 corresponds to the point rc = 2m in E3 that is

any point on a spherical surface centered in r = 0 with radius

r = 2m. Only in this way there is a one to one correspondence

between all points of E3 and M3.

In the Schwarzschild case (7) instead,

Rp(r) =

∫

g11dr =

∫

√

√

√

√

√

√

√
r4

(

r3 + α3
)− 4

3

1 − α
(

r3 + α3
)

1
3

dr =

=
(

r3 + α3
)− 1

3 ×
√

(

r3 + α3
)

4
3 − α

(

r3 + α3
)

+

+α ln

[

2
(

r3 + α3
)

1
6
+ 2

√

(

r3 + α3
)

1
3 − α

]

+C.

(14)

The center of the distribution rc if found setting Rp(rc) = 0

that is for rc = 0 and C = −α ln
(

2
√
α
)

so that the expression

for the proper distance is

Rp(r) =
(

r3 + α3
)− 1

3

√

(

r3 + α3
)

4
3 − α

(

r3 + α3
)

+

+α ln

























(

r3 + α3
)

1
6
+

√

(

r3 + α3
)

1
3 − α

√
α

























.

(15)

In conclusion, in Schwarzschild metric (1) r is the actual

radial coordinate that goes from 0 to∞ (whole manifold) and

r = 0 is recognized to be the center where the Kretschmann

scalar is maximized (9) and the Gaussian Curvature KS (r) =

1/R(r)2 is finite since it goes from KS (0) = 1/α2 to KS (∞) =

0. In Schwarzschild-Hilbert metric, (5) instead, r has nothing

to do with the radial coordinate or distance but it is actually

related to the Gaussian curvature KS H = 1/r2 and it is defined

only from 2m to ∞ as recognized by Droste [5].

2 Metric inside matter and equilibrium equations

Let’s consider a mass of degenerate matter (without source of

energy [10]) in a finite volume, the full treatment consists in

solving Einstein’s equations (equilibrium equations) together

with an appropriate equation of state for the matter. There are

well known studies dedicated to the analysis of equilibrium in

the strong field limit, for massive compact objects in the envi-

ronment of the singular Schwarzschild-Hilbert metric, where

neutron massive cores of neutron stars have been considered,

imposing different equations of state for the neutron matter.

Anyway, all these different equations of state, from the pi-

oneer and fundamental work of Oppenheimer and Volkoff [7]

to the more realistic models [11] [12], share an important

common characteristic: all these models, applied to the sin-

gular metric (5), predict some theoretical upper limit to a
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mass in equilibrium due to the intrinsic relativistic effect of

the metric itself, and a consequent final collapse above this

limit. The difference between these approaches regards the

value of the limit that can change from 0.7 solar masses in

the Oppenheimer-Volkoff (O-V) model to few solar masses

in the other models [13]. Above these limits nothing can stop

the object from the final collapse inside its “Schwarzschild”

radius 2m and then, because of the changing of sign, up to

a not avoidable final singularity, where curvature reaches an

infinite value and the known physics meets its limits.

In this article, one of these models will be considered, in

particular the O-V model in the environment of the nonsin-

gular Schwarzschild metric (7) in the form valid inside the

matter. The O-V model is not quite realistic because it con-

siders the neutrons as a Fermi gas; however, no matter which

model is considered, all the models predict a limit to the mass

because of the singular metric, while it will be shown that in a

nonsingular metric even the O-V model, that otherwise gives

the sharper limit to the mass (≈ 0.7 of solar mass), does not

show it, instead it gives the equilibrium radius for any value

of the mass.

The procedure will follow the original one given by Op-

penheimer and Volkoff so that the results can be directly com-

pared. The difference will be that the nonsingular Schwarz-

schild metric inside matter will be applied instead of the sin-

gular one and the equations derived from the latter can be

obtained from the former setting σ = 0.

Let’s consider the static metric (7) with spherical symme-

try, valid in empty space and set the g00 and g11 elements in

the general exponential form:

ds2 = eν(r)dt2 − eλ(r)dr2 −
(

r3 + σ
)2/3 (

dθ2 + sin2θdφ2
)

. (16)

Solving Einstein’s equations (see Appendix A) the metric

inside the matter is found:

ds2=













1− 2m(r)
(

r3 + 8m3
)1/3













dt2−
r4

(

r3 + 8m3
)−4/3

1− 2m(r)
(

r3 + 8m3
)1/3

dr2 −

−
(

r3 + 8m3
)2/3 (

dθ2 + sin2θdφ2
)

.

(17)

The system of equilibrium equations becomes:

dp(r)

dr
= −

(p(r) + ̺(r))
[

m(r) + 4π
(

r3 + σ
)

p(r)
]

(

r3 + σ
)4/3

r2













1 − 2m(r)
(

r3 + σ
)1/3













dm(r)

dr
= 4π̺(r)r2



















































. (18)

where σ = 8m3 and

m(r) =
1

2

(

r3 + 8m3
)1/3













1 − e−λ
r4

(

r3 + 8m3
)4/3













.

If one setsσ = 0 in the first equation of (18), then the Tolman-

Oppenheimer-Volkoff equation (A-4) can be obtained; equa-

tions (18) together with an equation of state ̺ = ̺(p) consti-

tute the system to be integrated.

3 Equation of state and numerical integration

Following the procedure by Oppenheimer and Volkoff [7],

the matter is considered to consist of particles with rest mass

µ0 obeying Fermi statistics, neglecting thermal energy and

forces between them; the equation of state can be put in the

parametric form

̺ = K (sinh(t) − t) ,

p =
1

3
K (sinh(t) − 8 sinh(t/2) + 3t) ,

where K = πµ4
0
c5(4h3 and t = 4 log( p̂/µ0c+ [1+ ( p̂/µ0c)2]1/2)

where p̂ is the maximum momentum in the Fermi distribution

related to the proper particle density N/V = 8π p̂3/(3h3).

Setting K = 1/4π the units of length a and of mass b are

fixed such that, for neutron gas,

a =
1

π

(

h

µ0c

)2/3
c

(µ0G)1/2
= 1.36 × 106cm (19)

and b = c2a/G = 1.83 × 1034g.

Finally the system of adimensional equations, renaming

the adimensional mass m(r) ≡ u(r), to be integrated are

du

dr
= r2 (sinh(t) − t)

dt

dr
= − 4(sinh(t) − 2 sinh(t/2))

r3 + 8m3

r2

[

(

r3 + 8m3
)1/3
− 2u

]

×

×

[

1
3

(

r3 + 8m3
)

(sinh(t) + 8 sinh(t/2) + 3t) + u
]

cosh(t) − 4 cosh(t/2) + 3











































































. (20)

This system is the analogous of the system integrated by

Oppenheimer and Volkoff ( [7], Eqs. 18 and 19) which can

be obtained setting σ ≡ α3 ≡ 8m3 = 0.

The procedure followed by Oppenheimer and Volkoff first

fixes the value t0 for the parameter t when r = 0 (determin-

ing central energy density and pressure), then the equations

in [7] are numerically integrated for several finite values of

t0. Another boundary condition can be obtained setting of

u(0) ≡ u0 = 0. The equations are integrated till a value of

r = rb for which t (and consequently the pressure) drops to 0,

representing the border radius of the matter distribution; the

corresponding value u(rb) = m is then, the value of the mass

that can stay in equilibrium with a radius rb and the imposed

central density.

In the original paper (O-V) the first 4 results for t0 equal

to 1, 2, 3 and 4 are reported in a table (table I in [7], reported
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Table 1: Comparison with Oppenheimer Volkoff table [7]; numbers

not in parenthesis are in units a and b defined in (19).

m(Ms) t0(̺0(1014g/cm3)) rb (km)

O-V 0.033 (0.30) 1.000 (1.014) 1.550 (21.1)

Eqs. (20) 0.033 (0.30) 1.006 (1.033) 1.506 (20.49)

O-V 0.066 (0.60) 2.000 (9.418) 0.980 (13.33)

Eqs. (20) 0.066 (0.60) 1.835 (6.923) 1.001 (13.61)

O-V 0.078 (0.71) 3.000 (40.62) 0.700 (9.52)

Eqs. (20) 0.078 (0.71) 2.166 (12.376) 0.861 (11.71)

here in table 1) together with an asymptotic value: the char-

acteristics of the results is that, starting from t0 = 1, the mass

is increasing for increasing t0 (the central density) but soon,

for t0 = 3, the mass reaches its maximum value calculated to

be Mmax = 0.71 solar masses.

Increasing further t0, causes a decreasing of values for the

mass (see [7], Fig. 1) so, for m < Mmax there are two values

for central density but only the lower value must be consid-

ered to describe stable neutron stars; the maximum mass is

thus considered the maximum possible mass for a stable equi-

librium configuration of neutron stars with a Fermi equation

of state as obtained by Oppenheimer and Volkoff. Different

equations of state give different values of the maximum mass

(till some units of solar masses) but anyway, as it will be seen

later, a limit exists and is due to the use of the singular metric.

In our case, the equations to be integrated (20) came from

the Schwarzschild nonsingular metric (17) so results can be

quite different: in particular, there is an additional parameter

that is the constant mass m, as seen by a distant observer. The

integration procedure must then be modified: first, the param-

eter m is set and a prove of integration is performed starting

from a low value of the central parameter t0; integration on r

ends at r = rb, the border radius, where t(rb) = 0 (null pres-

sure): if the starting value t0 is set too low, then the resulting

mass would be u(rb) < m. If this would be the case, then it

would be necessary to increase t0 to the minimum value such

that u(rb) = m. This minimum value t0 together with m fixed

and rb found, will be the correct values for central density

and pressure, mass and radius of the configuration in stable

equilibrium.

For low values of the mass, i.e. for weak gravitational

fields, results are expected to be similar to those of O-V while

for increasing mass values the nonsingular metric should lead

to results very different from those resulting from the singu-

lar one. In table I, the results are compared with the first three

values of O-V table. It can be noted that for the lower mass

(0.30 Ms), almost the same values are obtained for central

density and radius, while on increasing the mass, the two ap-

proaches diverge and the nonsingular one leads to a “softer”

equilibrium, with lower central density and greater radius,

with respect to the O-V calculation.

If the mass is further increased, the two metrics behave in

a complete different way: the O-V equations show a decreas-

Fig. 1: Central density and equilibrium radius vs. mass: (a) central

density shows a maximum; (b) equilibrium radius shows a mini-

mum, straight line represents the so called Schwarzschild radius for

that mass.

ing mass and a mass above the maximum found limit 0.71Ms

cannot be sustained in equilibrium. On conversely, the non-

singular Schwarzschild metric will permit equilibrium for in-

creasing masses and will not have a limit mass. The central

density indeed will meet a maximum limit and, then, will de-

crease for increasing masses. At the same time the radius,

instead of continuously decreasing for increasing masses as

in O-V case, will show a minimum to keep the equilibrium

configuration.

Let’s first consider the behavior of various parameters for

low masses: in Fig. 1 values of central density ρ0 and radius

rb for low masses (up to 20 solar masses) are plotted; turning

zones are clearly visible before the value of 2 solar masses

in which the central density reaches a maximum and the ra-

dius a minimum. In particular, the central density reaches the

maximum value of 1.048 × 1016g cm−3 at 1.84 solar masses

while the radius reaches the minimum value of 6.172 km at

1.47 solar masses. It can be noted, in Fig. 1(b), that, in this

zone, the equilibrium radius of the mass is below the value

rb < 2m where 2m here is the constant in the denominator

of the nonsingular metric and not a limit like the so called

“Schwarzschild” radius for the singular metric.

The behavior of ρ0 and rb is, thus, totally different from

the results obtained by Oppenheimer and Volkoff for the equi-

librium with the singular metric; an interpretation for this be-

havior could derive from recalling the concept of proper mass
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Mp, linked to the concept of gravitational binding energy EB:

the total mass m, i.e. the mass seen by a distant observer,

is defined by m =
∫ rb

0
4π̺(r)r2dr but if one integrates the

energy-density ̺ over the proper “local” volume, the proper

mass Mp of the system can be defined.

The proper volume element dτ is defined from dτ2 =

gi jdxidx j where i, j = 1, 2, 3 are only spatial coordinates.

The proper volume from the O-V singular metric (5) then is

dτS = 4πr2(1 − 2m/r)−1/2dr and the proper volume from the

actual Schwarzschild nonsingular metric (7) dτNS = 4πr2(1−
2m/(r3 +σ)1/3)−1/2dr; coherently can be defined respectively

as two proper masses MP:

MP
S =

∫ rb

0

̺4πr2(1 − 2m/r)−1/2dr (21)

and

MP
NS =

∫ rb

0

̺4πr2(1 − 2m/(r3 + σ)1/3)−1/2dr. (22)

The physical meaning of proper mass is connected with

the difference MP − m = EB where EB is the gravitational

binding energy ( [14] p. 126). In Fig. 2 the completely differ-

ent behavior of the binding energy is shown, in the cases of

singular solution and nonsingular solution: in the first case,

the binding energy increases dramatically (together with the

increasing of the central density to unphysical values) and

above the maximum mass limit of about 0.7 solar masses the

function becomes multivalued.

On the other side, in the nonsingular case, the binding

energy increases smoothly with increasing mass and does not

indicate any mass limit. In Fig. 2 only low mass values are re-

ported but it will be shown later that, in the nonsingular case,

the binding energy for higher mass values increases linearly

with the mass and, considering that the ratio MP/m in Fig. 3

tends→ 2, the binding energy tends to the value m of the rest

mass.

Central (̺0) and average ̺AV ≡ M/( 4
3
πr3

b
) densities have

a similar behavior: starting from values of ̺0(0.184Ms) =

3.29 × 1013g/cm3 and ̺AV (0.184Ms) = 5.40 × 1012g/cm3,

reaching the maximum values of ̺0(1.84Ms) = 1.0476 ×
1016g/cm3 and ̺AV (2.30Ms) = 3.688× 1015g/cm3 and finally

reaching the values for the last considered mass, ̺0(3.68 ×
106Ms) = 1.243×1010g/cm3 and ̺AV (3.68×106Ms) = 8.687×
109g/cm3.

Behavior evidences the presence of a maximum for both

the densities and a decreasing for increasing masses: the cen-

tral density converges to the average density values which

decrease because volume grows with radius with an higher

power than the mass.

Integration of the system (20) admits solution with an

equilibrium radius for any amount of mass: in Fig. 3, higher

values of mass are considered till, as an example, a value

around 4 million of solar masses as it is supposed to be con-

centrated in the Milky Way’s center.

Fig. 2: Gravitational binding energy vs. mass: comparison between

Oppenheimer-Volkoff results [7] (multivalued line with circles) and

this article results (squares).

Fig. 3: Ratio between proper mass and mass vs. mass logarithm:

limit tends to value 2 corresponding to an efficiency of 100% of

mass conversion in gravitational binding energy

Together with the density decreasing with mass, there is

another peculiar behavior, the one referred to the ratio of

proper mass on mass: in Fig. 3 it is shown that this ratio tends

to the value 2, meaning that there ia a 100% efficiency in con-

verting mass into binding energy. The total mass of the com-

pact object includes both the rest-mass energy and the nega-

tive binding energy so that the mass of the collapsed object

is smaller than the sum of the component particles [15]. For

neutron stars this mass deficit can be as large as 25% [16] but

here it increases till 100% above 1 thousand of solar masses

(depending on the equation of state) and this can be the mech-

anism to support stable equilibrium for such objects.

4 Inequality for nonexistance of a limit mass

Numerical results show that there is not a mass limit for equi-

librium. This result can be seen also analytically trying to

find an upper limit for the mass, independently from the spe-

cific equation of state. This limit exists in the case of singular
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metric and it is possible to see that this limit does not exist

in the case of nonsingular metric following the procedure ex-

pressed, for example, by R.M. Wald [14, p. 130].

A first less sharp limit exists for the singular metric as

necessary condition for the metric to be static: a metric is

said to be static if it is stationary and, in addition, exists a

spacelike hypersurface Σ (orthogonal to the timelike Killing

vector field ξα); in order for Σ to be spacelike the necessary

condition for staticity is that the radial element of the metric

g11 would be greater than zero (in the following calculation,

it will be used the Wald notation of g11 ≡ h(r) and g00 ≡ f (r),

with the Suffix S to indicate the expression from the singular

metric and NS for the nonsingular one).

So for the two metrics (5) and (7) it will be

hS (r) =

(

1 − 2m(r)

r

)−1

(23)

and

hNS (r) = r4
(

r3 + σ
)−4/3

(

1 − 2m(r)

(r3 + σ)1/3

)−1

. (24)

The necessary condition for stability implies that, for a

given mass M and equilbrium radius rb, h(rb) > 0 so, it

clearly requires a limit for M only in the singular case, that

is M < rb/2 (eq. 6.2.32 in [14]) while, in the nonsingular

case, hNS (rb) > 0 is always satisfied for any value of M and

rb (considering that σ ≡ 8M3).

This limit for M (for the singular metric) can be sharpened

using the condition g00 ≡ f (r) > 0 that imposes the Killing

field ξα to be timelike everywhere. The term f (r) has the

form, for the singular and nonsingular metric, respectively

fS (r) =

(

1 − 2m(r)

r

)

fNS (r) =

(

1 − 2m(r)

(r3 + σ)1/3

)



































. (25)

Since f (r) must be greater than zero everywhere, it could

seem that it would be necessary to know the specific equation

of state for matter but, actually, the only conditions that must

be assumed are very basic i.e. the density must be such that

̺ > 0 and d̺/dr 6 0 while there is no need for whatsoever

assumption about pressure P.

Applying these conditions, the following inequalities are

obtained (see Appendix B): in the singular case it is found an

upper mass limit

M 6
4

9
rb , (26)

in the nonsingular case, instead, the following inequality is

found:

1 −












8M3

r3
b
+ 8M3













1
3

>
1

9













1 −
8M3

r3
b
+ 8M3













. (27)

Since it is always true that 0 6 8M3/(r3
b
+ 8M3) 6 1, the

inequality for the nonsingular case (27), i.e. the condition of

stability, is always satisfied for any values of both M and rb so

that there is no upper limit for the mass, to have equilibrium,

whatever would be the, reasonable, equation of state.

5 Conclusions

In conclusion, the application of the class of nonsingular sta-

tic spherically symmetric metrics (particularly the Schwarz-

schild solution [1]) to the problem of hydrostatic equilibrium

gives completely different solutions from those of the singular

case. In this latter, there is a mass limit (whose value depends

from the specific state equation) for dense cores of degen-

erate matter: above this limit, nothing can stop the config-

uration from a final gravitational collapse with formation of

event horizon and inner physical singularity. In the case of

nonsingular metric (that does not include the possibility of

an event horizon) instead, the equilibrium is always reached

whatever would be the amount of mass.

The application with a Fermi gas state equation, as in

the Oppenheimer-Volkoff work [7], shows that central den-

sity has the same behavior, for increasing mass, than average

density i.e. a maximum (with reasonable physical value), be-

fore reaching the 2 solar masses and then a decreasing. The

equilibrium radius of the system shows a minimum before

the 2 solar masses then grows with increasing masses but re-

maining well below the so called “Schwarzschild radius” for

that mass which, in the nonsingular metric environment, is

not the dimension of an event horizon but only a parameter

connecting the general relativistic metric with the newtonian

one. Proper mass of the system tends to the limit of twice

the mass. This means that the negative binding energy tends

to the limit of m counterbalancing the gravitational mass m.

This is a mechanism that can stop gravitational collapsing and

that can sustain stable equilibrium.

Considering experimental observations, weak field expe-

riments give same results, within errors, for the singular and

nonsingular metrics, while for strong fields, the nonsingular

metric admits stable configuration of greater amount of mass

while singular metrics admits black hole formation. Few ob-

servational, indirect, evidences for black holes existence have

been performed in years but it seems that an alternative hy-

pothesis of very compact degenerate matter configurations,

permitted by nonsingular metrics, could be compatible with

observations: let’s consider, for example, a single nonrotating

compact object of 9.2 solar masses (m=1 in units of (19)), in

the singular metric, it would be a black hole, no matter of

which state equation is used, and a “Schwarzschild radius”

rs = 27.17 km would define the horizon event whose sur-

face would have an infinite gravitational redshift and would

surround a pointlike singularity.

The application of nonsingular metric (with a Fermi equa-

tion of state) instead, would give a very compact object, of

104 Massimo Germano. Binding Energy and Equilibrium of Compact Objects



Issue 2 (April) PROGRESS IN PHYSICS Volume 10 (2014)

radius rb = 13.23km, made by ordinary (degenerate) matter

with a central density ̺0 = 13.23 × 1015g/cm3; the density

value is not far from the ordinary nuclear density, moreover a

more realistic state equation would keep density value within

reasonable physical limit.

Gravitational redshift factor f =
√−g11 (the ratio be-

tween wavelength observed at infinity and wavelength emit-

ted at distance r) at the surface of the matter configuration

would be f = 1.165. This redshift would correspond, in the

black hole case, to a redshift of a photon emitted ad distance

r = rs f 2/( f 2 − 1) = 3.8rs. This difference, theoretically,

could be observable but total luminosity would be so faint not

to permit direct observations while indirect observations due

to, for example, the accretion disk surrounding these com-

pact objects, would be very similar. The existence of com-

pact massive (several solar masses) objects could justify why

observed emissions from individuated neutron stars and black

hole candidates are so similar [17] despite the totally different

characteristics of a hard surface and an event horizon.

Recent observations involving magnetic fields of quasars

also put in doubt the existence of inner super-massive black

holes [18]. It must be remarked that at the state of the art there

is still no observational proof of a black hole event horizon

[19].

Lack of single compact objects of very great mass it is

due more to mechanism of formation of such object than to

some mass limit, anyway in the galactic’s centers there is

gravitational evidence for compact objects of millions of so-

lar masses. Let’s resume how it would be such an object in

the nonsingular model with a Fermi gas state equation (others

EOS would not change the qualitative features): considering

an object 3.6 millions of solar masses, it would have a radius

of about 58, 000 km that is the half percent of its estimated

“Schwarzschild radius” in the black hole hypothesis, a cen-

tral density ̺0 = 1.24 × 1010g/cm3 and a central pressure

P0 = 7.3 × 1016 Pa both smoothly decreasing outward.

Sagittarius A, the radio point source associated with the

dark mass located at the center of the Milky Way, is the best

studied black hole candidate to date, but till now has not be

possible to verify or to exclude the presence of a horizon [20].

The horizon existence has been inferred because a surface

emission, to remain undetected, would require large radiative

efficiencies, greater than 99.6% [21] anyway, this is actually

the phenomenon predicted by the application of nonsingular

metric, because, as seen in Fig. 3, the limit value of 2 for the

ratio MP/M means an efficiency limit of about 100%. This

could be justified, actually, by a not exotic object having a

hard surface, emissions and gravitational effects compatible

with observations, and that could be permitted because the

contribution of the negative binding energy.
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Appendix A

The only non vanishing components of the Einstein Tensor G

are G0
0
, G1

1
and G2

2
= G3

3
. Considering a matter that supports

no transverse stresses and has no mass motion then the energy

momentum components are [22] T 1
1
= T 2

2
= T 3

3
= −p and

T 0
0
= ̺ where p is the pressure and ̺ is the macroscopic

energy density measured in proper coordinates. So Einstein’s

equations are

G0
0 = 8πT 0

0 = 8π̺ = e−λ
[

λ′r2

r3 + σ
− r4

(r3 + σ)2
−

−
4rσ

(r3 + σ)2

]

+
1

(r3 + σ)2/3

(T00)

G1
1 = 8πT 1

1 = 8πp = e−λ
[

ν ′r2

r3 + σ
+

r4

(r3 + σ)2

]

−

− 1

(r3 + σ)2/3

(T11)

G2
2 = 8πT 2

2 = e−λ
[

(ν ′ − λ′)r2

2(r3 + σ)
−
λ′ν ′

4
+
ν ′ 2

4
+

+
2rσ

(r3 + σ)2
+
ν ′′

2

]

+
1

(r3 + σ)2/3

(T22)

where p, ̺, λ and ν are functions of r and the primes indi-

cates a differentiation with respect to r. Since T 1
1
= T 2

2
then

(T 1
1
− T 2

2
) × 2/r = 0 and from equations (T00) it is easy to

verify that

d

dr

(

−T 1
1

)

+
(

T 0
0 − T 1

1

) ν ′

2
=

(

T 1
1 − T 2

2

) 2

r
= 0 (A-1)

so that this latter equation can be read

dp

dr
= −

p + ̺

2
ν ′. (A-2)

Equations (T00), (T11) and (A-2) constitute the system of

equations to be solved and correspond to the ones in Oppen-

heimer Volkoff article [7, Eqs. 4,3 and 5] if σ is set equal to 0;

an opportune equation of state ̺ = ̺(p) must also be included

in the system.

Eliminating ν ′ in (T11) and (A-2), the hydrostatic equi-

librium equation in exponential form is

dp

dr
= − p + ̺

2
×

×
[

8πp eλ
(r3 + σ)

r2
+ eλ

(r3 + σ)1/3

r2
− r2

(r3 + σ)

]

.

(A-3)

If it is set σ = 0 and the singular metric (5) (inside the

matter) is considered where eλ(r) = (1 − 2m(r)/r)−1 (and con-

sequently m(r) = 1
2
r(1−e−λ)) then the Tolman-Oppenheimer-

Volkoff equilibrium equation is obtained

dp

dr
= −

(p(r) + ̺(r))
[

m(r) + 4πr3 p(r)
]

r2

(

1 −
2m(r)

r

) . (A-4)

In our case (A-3) instead, it is possible to give the correct

physical meaning to m(r) setting, for the nonsingular metric

inside the matter,

eλ(r) =
(r3 + σ)−4/3

1 − 2m(r)

(r3 + σ)1/3

r4; (A-5)

in effect, at the border r = rb there will be continuity with the

metric in vacuum (7) and (6) so that

eλ(rb) = eλ =
r4(r3 + 8m3)−4/3

1 − 2m

(r3 + 8m3)1/3

and m(rb) will assume its value m as seen by an external ob-

server

m(rb) =
1

2

(

r3
b+8m3

)1/3





















1−e−λ
r4

b
(

r3
b
+8m3

)4/3





















= m. (A-6)

Finally the Schwarzschild metric inside the matter (in conti-

nuity with (7) where it is set α = 2m(r) and σ = 8m3 so that

σ = α3 outside the matter) will be

ds2 =













1 − 2m(r)
(

r3 + 8m3
)1/3













dt2−

−
r4

(

r3 + 8m3
)−4/3

1 − 2m(r)
(

r3 + 8m3
)1/3

dr2−

−
(

r3 + 8m3
)2/3 (

dθ2 + sin2θdφ2
)

.

(A-7)

So, with eλ(r) given by (A-5), the equilibrium equation

(A-3) (that is the merging of the two Einstein’s equations

(T11) and (A-2)) and the other Einstein’s equation (T00) will

become respectively

dp(r)

dr
= −

(p(r) + ̺(r))
[

m(r) + 4π(r3 + σ)p(r)
]

(

r3 + σ
)4/3

r2













1 − 2m(r)
(

r3 + σ
)1/3













dm(r)

dr
= 4π̺(r)r2























































, (A-8)

where σ = 8m3.
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Appendix B

Pressure P can be eliminated from Einstein’s equations con-

sidering that G1
1
− G2

2
= 0, this, together with the definition

of h(r) (23) leads to the following equation for the singular

metric (using the notation by Wald, eq. 6.2.34 in [14])

d

dr















r−1hS (r)−1/2
d f

1/2

S
(r)

dr















=

=
[

fS (r)hS (r)
]1/2 d

dr

[

m(r)

r3

]

(B-1)

while, for the nonsingular metric

d

dr

[

(r3 + σ)−1/3hNS (r)−1/2 d fNS (r)1/2

dr

]

=

=
(r3 + σ)2/3

r2

[

fNS (r)hNS (r)
]1/2 d

dr

[

m(r)

r3 + σ

]

.

(B-2)

The right sides for both equations are proportional to the

derivative with respect to r of the average density, so because

the condition d̺/dr 6 0, the left sides must be both less or

equivalent to 0. Integrating the inequalities for the left sides,

inward from the border rb to a generic radius r we obtain

1

rh
1/2

S
(r)

d fS (r)1/2

dr
>

M

r3
b

, (B-3)

1

(r3 + σ)1/3h
1/2

NS
(r)

d f
1/2

NS
(r)

dr
>

M

r3
b
+ σ
. (B-4)

These inequalities can be integrated again inward from

rb to 0. The condition d̺/dr 6 0 implies that m(r) cannot be

smaller than the value it would have for a uniform density star

so, for the singular case, m(r) > Mr3/r3
b

and, for the nonsin-

gular one, m(r) > M(r3+σ)/(r3
b
+σ), so that inequalities (B-3

and B-4) become: for the singular case (Wald, eq. 6.2.39)

f
1/2

S
(0) 6

3

2

(

1 − 2M

rb

)1/2

− 1

2
(B-5)

and for the nonsingular case

f
1/2

NS
(0) 6

3

2













1 − 2M

(r3
b
+ σ)1/3













1/2

− 1

2













1 − 2Mσ2/3

r3
b
+ σ













(B-6)

(as usual for σ = 0 the two cases are equivalent). Finally, the

condition f 1/2(0) > 0 implies that, for the singular case, the

necessary condition for staticity involves a maximum limit

for the mass: from (B-5)

M 6
4

9
rb . (B-7)

For the nonsingular case instead, the stability condition

implies, from (B-6) and inserting the value σ ≡ 8m3, the

inequality

1 −












8M3

r3
b
+ 8M3













1
3

>
1

9













1 −
8M3

r3
b
+ 8M3













. (B-8)
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Addendum to “Phenomenological Derivation of the Schrödinger Equation”

Fernando Ogiba
E-mail: Ogiba@cpovo.net

This addendum to the article [1] is crucial for understanding how the complex effective

action, despite its derivation based on classical concepts, prevents quantal particles to

move along extreme action trajectories. The reason relates to homogenous, isotropic

and unpredictable impulses received from the environment. These random impulses al-

lied to natural obedience to the dynamical principle imply that such particles are perma-

nently and randomly passing from an extreme action trajectory to another; all of them

belonging to the ensemble given by the stochastic Hamilton-Jacobi-Bohm equation.

Also, to correct a wrong interpretation concerning energy conservation, it is shown that

the remaining energy due to these permanent particle-medium interactions (absorption-

emission phenomena) is the so-called quantum potential.

1 Introduction

The central subject of the article [1] is: Quantal particles

(such as electrons), due to its interactions with the environ-

ment, move in accordance with the complex effective action

S e f f = S + i
~

2
ln P (1)

which was obtained following the classical Hamilton’s dy-

namical principle but considering the motion as a whole, that

is, taking averages. The resulting canonical equations coin-

cide with those extracted from the Schrödinger equation writ-

ing ψ=
√

P exp (iS/~), namely:

∂S

∂t
+
∇S · ∇S

2m
+ V + Q = 0 (2)

and
∂P

∂t
+ ∇ ·

(

P
∇S

m

)

= 0 , (3)

where

Q =
~

2

8m

∇P · ∇P

P2
− ~

2

4m

∇ · ∇P

P
(4)

is the quantum potential which, visibly, is the remaining en-

ergy of two distinct concurrent phenomena.

The main motivation for writing this addendum concerns

the result
∫

P

(

i
~

2

1

P

∂P

∂t

)

d3r = 0 (5)

which is not the expression of energy conservation, as argued

in connection with Eg. 23 of the article. In true, the null value

of this average means that the involved energy (the enclosed

quantity) does not remain in the particle; it is radiation, as will

be shown. In doing this, it is necessary to explain how Q — as

an energy resulting from the particle-medium interactions —

agrees with the energy conservation required by the so-called

quantum equilibrium.

Also, in the mentioned article the meaning of the effec-

tive action (1) is not so clear. It was derived supposing a

particle over a possible trajectory; what, in view of the re-

sults, must be true. On the other hand, a continuous trajec-

tory of elementary particles is an experimentally discredited

concept. So, there must be a link between these two oppos-

ing points of view. In true, there is, as will be seen. Indeed,

it will be shown that quantal particles occupies, sequentially

and instantly, just one point over different trajectories which

are randomically chosen in the ensemble (2). This means that

quantal particles don’t move along extreme action trajectories

but occupy trajectories (permited by the dynamical principle)

just for a moment.

The interacting medium — primarily responsible for

quantum effects — is the zero-point field (ZPF) which, ac-

cording to the classical description of the Casimir’s experi-

ment, is viewed as a homogeneous and isotropic distribution

of electromagnetic waves pervading all space. As the phases

of these waves are randomically distributed in the range

[0, 2π], then electrical charged particles (balanced or not) are

permanently receiving unpredictable impulses. This has two

main consequences: First, the accelerated charged particles

radiate all the absorbed energy. Second, the unpredictable im-

pulses prevent quantal particles to follow predictable paths.

Even so, the overall motion obeys the Hamilton’s principle

which is founded on trajectories. How can all this happen?

2 The quantum potential and the ensemble of virtual

trajectories

The answer to the above question lay in the fact that the nat-

ural behavior of any moving particle, at any time, is obeying

the classical dynamical principle. This must be interpreted as

follows: In the absence of random forces, they move along

extreme action trajectories. However, in the case of parti-

cles which are significantly affected by the ZPF the situation

is drastically modified. Indeed, homogeneous, isotropic and

random forces (including beck reaction forces) are not part of

the traditional classical description of the motion.

Here, it will be proved that the quantal motion occurs as

follows: Immediately before any particle-field random inter-
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action the particle is over a given trajectory (obedience to

the dynamical principle), but upon receiving an unpredictable

impulse it is withdrawing from this trajectory to an unpre-

dictable place. Again, in the new position it continues obey-

ing the dynamical principle; that is, the particle is over an-

other trajectory. As this is a permanent process, then the parti-

cle occupies these possible trajectories only instantly (virtual

trajectories). In a sense, we can say that the unpredictable

impulse has created initial conditions (arbitrary) for a new

trajectory.

In the light of the foregoing, at each position actually oc-

cupied by the particle pass an infinite number of such virtual

trajectories. This assumption is in agreement with the fol-

lowing facts: First, Eq. (2) represents an ensemble of unpre-

dictable trajectories; P(x, t) — preserving its uniqueness —

can take any value at x. Moreover, ∇P is not deterministic.

Second, energy and momentum in quantum mechanics are in-

dependent of coordinates. This means that everywhere there

are equivalent ensembles of partial derivatives ∂S/∂t and ∇S

— requiring continuous virtual functions S — which on av-

erage give the corresponding observed quantities. This state-

ment implies the same uncertainty everywhere (non locality).

Thirty, Probability density, classically, is defined over trajec-

tories; it is canonically conjugate to the action function S (this

remains valid in the equations above). Over extreme action

trajectories ∂P/∂t = 0 (we know where the particle is at the

time t). Therefore, if ∂P/∂t , 0, then it means that the particle

was “banned” from its trajectory.

To formally prove that the trajectories represented by the

virtual ensemble (2) are instantly visited by the particle, it is

necessary finding a valid expression which leads to the idea

that such trajectories (or momenta ∇S ) are randomly chosen

(or induced) where the particle is. This is better made after

knowing the meaning of the quantum potential.

If a moving particle is not actuated by random forces,

then, given the potential V and the initial conditions, we can

predict its extreme action trajectory. However, the presence

of random forces — exactly like that found in the ZPF —

modify this classical way to see the motion. This rupture re-

lates to the fact that now there is only a probability of finding

the particle at a given position at the time t.

Whenever a particle is removed from a given position by

random forces, the probability of find it there is diminished.

Consequently, as probability is a conserved quantity, this de-

crease of probability leads to the emergence of an outgoing

compensatory probability current. Formally, following stan-

dard techniques and considering the ZPF properties, at each

position there is a diffusion of probability density currents

(Pv), in such a way that

∂P

∂t
+ ∇ · (Pv) = 0 . (6)

In true, Pv represents all possible local outflows of mat-

ter whose velocities v have the directions of the vectors ∇P.

Therefore, all currents obey

Pv = α∇P, (7)

where α is a proportionality factor, to be determined.

Being the matter-field interaction conservative, then there

is no net momentum transfer to the particle. This implies that

the average probability density current is zero, i.e.

∫

P (Pv) d3r =

∫

P (α∇P) d3r = 0 . (8)

Integrating the second form by parts and considering that

P → 0 at infinity, we find that its null value is plenty satis-

fied if α is a constant. In true, it is an imaginary diffusion

constant because there is no effective dislocation of matter in

all directions (this is a single-particle description). In fact, in

accordance with the imaginary part of the effective action (1),

the unpredictable impulses received by the particle are given

by

mv = ∇
(

i
~

2
ln P

)

= i
~

2

∇P

P
, (9)

which, compared with (7), implies that α = i~/2m.

The consequent average kinetic energy induced by the

ZPF on the particle is

〈TZPF〉 =
∫

P

(

1

2
m |v|2

)

d3r , (10)

which considering (9), reads

〈TZPF〉 =
~

2

8m

∫

(∇P)2

P
d3r. (11)

However, the implicated acceleration makes the electrical

charge radiates. So, we must appeal to the general rule con-

cerning accelerated charged particles, namely: The change in

the kinetic energy in the absorption-emission process is equal

to the work done by the field minus the radiated energy. This

is the energy conservation implicit in the determination of the

Abraham-Lorentz back reaction force.

Therefore, varying the average kinetic energy, that is, tak-

ing the functional derivative of (11) with respect to P, we find

that the remaining energy due to particle-field interactions is

δ〈TZPF〉 =
~

2

8m

(

∇P · ∇P

P2
− 2
∇ · ∇P

P

)

, (12)

where, therefore, the first term relates to absorption of radia-

tion, and the second to emission.

Coincidentally, this remaining energy is the quantum po-

tential (4) which, therefore, is the expression of the required

energy conservation implied in the so-called quantum equi-

librium.

At this point we have sufficient valid information to prove

that extreme action trajectories are randomly chosen at each

position actually occupied by the particle.
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Indeed, the probability density conservation (6), consid-

ering (9), reads

∂P

∂t
+ i
~

2m
∇2P = 0 , (13)

which has the shape of a diffusion equation; local diffusion

of probability density currents or virtual outflows of matter at

the actual particle position.

The validity of this equation is unquestionable. In fact, it

is absolutely equivalent to Eq. (3), or

∂(ψ∗ψ)

∂t
+ i
~

2m
∇ · (ψ∗ ∇ψ − ψ∇ψ∗) = 0 , (14)

as can be proven from |∇ψ|2 = −ψ∗∇ψ and the parameterized

forms of S and P in terms of ψ.

Very important, the equations (13) and (3) represent the

same diffusion at each position x actually occupied. Equiv-

alently, these two ways of expressing probability conserva-

tion contain implicitly all possibilities for the particle flow at

x. As Eq. (3) expresses this in terms of ∇S , then ∇S must

represent all possible momenta at x. However, as these par-

tial derivatives require continuous action functions, then there

pass multiple virtual trajectories. One of them infallibly will

be occupied, but only for a moment because in the next posi-

tion the same phenomenon is repeated.

In this sence, the obedience to the dynamical principle,

implicit in the effective action (1), is traduced as follows: At

a given time the particle is over a trajectory represented by the

action S (real part), but at this very moment there is a choice

for the next motion, which is dictated by the probability de-

pendent local action (imaginary part). In other words, the

imaginary part chose the next action function (S ) represent-

ing another trajectory to be occupied during an infinitesimal

time; and so on.

Now, it is possible to correct the interpretation given to

(5) in the article [1]. Just rewrite Eq. (13) in the energy form

i
~

2

1

P

∂P

∂t
=
~

2

4m

∇ · ∇P

P
, (15)

which implies that

∫

all

P

(

i
~

2

1

P

∂P

∂t

)

d3r =

∫

all

P

(

~
2

4m

∇ · ∇P

P

)

d3r = 0 . (16)

Being the second member of (15) the emitted energy of

the balance (12), then the result (5) means that the involved

energy doesn’t remain in the particle.

3 Conslusion

The subsequent particle’s positions, randomly chosen in the

interactions, are on different trajectories. Therefore, there are

continuous trajectories, but never followed by quantal parti-

cles. They simply represent the obedience to the mechanical

principle, regardless of where the particle is. Nevertheless, as

these virtual trajectories are inherent to the Schrödinger pic-

ture, then it is expected that they — properly determined and

used as statistical tools - can give the same predictions. How-

ever, the convenience of such procedure needs to be better

discussed.

On the other hand, were highlighted permanent emissions

and absorptions of radiation, meaning that particles are actu-

ated by forces and back reaction forces, which, on average,

are zero. This explains why the interactions become trans-

parent in the quantum description. Nevertheless, speculating,

these permanent absorptions and emissions of electromag-

netic waves (a delicate asymmetry accompanying particles

everywhere) may be important to interpret certain properties

of matter.
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Motivated by the recently published “Oxford Questions” we review the foundational

character of the wave function collapse theme. We show that the respective theme, as

well as its twin analogue represented by the Schrödinger’s cat problem, are not real

scientific topics but plain and rather trivial fictions. Consequently, we suggest that the

related items of the “Oxford Questions” have to be perceived with some epistemic cau-

tion.

1 Introduction

The newly diffused The Oxford Questions on the Foundations

of Quantum Physics [1], known also as “Oxford Questions,

aims to formulate “a list of main open questions about the

foundations of quantum physics”. Within the respective list,

the issue “whether or not the ‘collapse of the wave packet’ is

a physical process” is approached in “several Oxford Ques-

tions: in particular, 1b, 2a, 2c, 3a, 3c and 5a”. The issue is

mainly brought into attention in 3c: “How can the progressive

collapse of the wave function be experimentally monitored?”.

It is expected that, in the future, the Oxford Questions

will stimulate more or less extensive studies in both advanced

and pedagogic research. Previous to these studies, it is im-

portant to examine the correctness of the items gathered in

the Oxford Questions, particularly the ones pertaining to the

above-mentioned quantum collapse. Such an examination is

intended in this short paper, by using some ideas noted in

some of our recent works. Section 2 is focused on the theme

of Wave Function Collapse. Additionally, in Section 3, we

examine the case of Schrödinger’s Cat Thought Experiment

which in fact is a twin analogue of the Wave Function Col-

lapse. We find that both the Wave Function Collapse and the

Schrödinger’s Cat Thought Experiment are not real scientific

topics but only pure fictions.

The present paper ends in Section 4 with some closing

thoughts, particularly with the suggestion that, for real sci-

ence, the invalidated Oxford Questions items have to be re-

garded as needless.

2 On the wave function collapse

Historically speaking, the Wave Function Collapse concept

was brought into scientific debate by the conflict between the

following two suppositions:

s1 The old opinion that a Quantum Measurement of a

(sub)atomic observable should be regarded as a sin-

gle sampling (trial) which gives a unique deterministic

value. �

s2 The agreement, enforced by theoretical considerations,

is such that to describe such an observable one should

resort to probabilistic (non-deterministic) entities

represented by an operator together with a wave func-

tion. �

To avoid conflict between suppositions s1 and s2 it was

in diffused the thesis that, during a Quantum Measurement,

the corresponding wave function collapses into a particular

eigenfunction associated with a unique (deterministic) eigen-

value of the implied operator. Such a thesis has led to the

Wave Function Collapse concept regarded as a true dogma.

The respective concept was assumed, in different ways and

degrees, within a large number of mainstream publications

(see [2–8] and references therein). But, as a rule, the pre-

viously mentioned assumptions were (and still are) not ac-

companied with adequate elucidations concerning the initial

correctness of the alluded concept in relation to the natural

themes of Quantum Mechanics.

Now, explicitly or implicitly, the Oxford Questions [1] put

forward the problems:

p1 Whether or not the “collapse of the wave packet” is a

physical process. �

p2 How can the progressive collapse of the wave function

be experimentally monitored? �

p3 According to which theoretical scheme, justified by

physical reality alone, can a Wave Function Collapse be

described properly? (This is in the situation [6] where

a whole “zoo of collapse models” have already been

invented. �

In order to generate significant remarks on the above-

mentioned Oxford Questions problems p1–p3, now we wish

to bring into attention some ideas prefigured and to a certain

extent argued in our recent paper [9, 10]. We mainly pointed

out the ephemeral character (i.e. caducity) of the Wave Func-

tion Collapse concept. Basically our argumentations are

grounded on the following indubitable facts. Mathematically,

a quantum observable (described by a corresponding opera-
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tor) is a true random variable. Then, in a theoretical frame-

work, such a variable must be regarded as endowed with a

spectra of eigenvalues. For a given quantum state/system the

mentioned eigenvalues are associated with particular proba-

bilities incorporated within the wave function of the men-

tioned state/system. Consequently, from an experimental per-

spective, a measurement of a quantum observable requires an

adequate number of samplings finished through a significant

statistical group of data/outcomes. That is why one can con-

clude that the supposition s1 of the Wave Function Collapse

concept appears as a false premise while the whole respective

concept proves oneself to be a useless fiction.

The previously noted conclusion can be consolidated in-

directly by mentioning the quantum-classical probabilistic

similarity (see [11–14]) among quantum mechanical observ-

ables and macroscopic random variables, studied within the

thermodynamic theory of fluctuations. On the whole, a mac-

roscopic random variable is characterized by a continuous

spectra of values associated with an intrinsic probability den-

sity. Then, for measuring a macroscopic random variable, a

single experimental sampling delivering a unique value (re-

sult) is worthless. Such a sampling is not described as a col-

lapse of the mentioned probability density. Similarly, a quan-

tum measurement must not be represented as a wave func-

tion collapse. Moreover, a true experimental evaluation of

a macroscopic random variable requires an adequate lot of

samplings finished through a statistical set of individual re-

sults. A plausible model for a theoretical description of the

alluded evaluation can be done [14–16] through an informa-

tion transmission process. In the respective model, the mea-

sured system appears as an information source while the mea-

suring device plays the role of an information transmission

channel to the recorder of measurement data. As part of the

mentioned measuring process, the quantum mechanical oper-

ators (describing quantum observables) preserve their mathe-

matical expressions. Additionally, the transmission to the the

recorder of quantum probabilistic attributes is described by

means of linear transformations for probability density and

current(associated with the corresponding wave function).

Taking into account the above mentioned indubitable ar-

guments, we think that in natural perception the “collapse of

the wave function” cannot be considered as a physical pro-

cess. Consequently, the Wave Function Collapse concept

does not have the qualities of a real scientific topic, it be-

ing only a purely trivial and worthless fiction. Moreover, the

above noted problems p2 and p3 make no sense. That is why

the further studies expected to be raised by the Oxford Ques-

tions would be more appropriate if ignoring all the elements

regarding the Wave Function Collapse concept.

3 As regards the Schrödinger’s cat

Subsidiarily to the above considerations about the Wave

Function Collapse concept, some remarks can be brought into

question [9] concerning the famous Schrödinger’s Cat

Thought Experiment. The essential element in the respective

experiment is represented by a single decay of a radioactive

atom (which, through some macroscopic machinery, kills the

cat). But the individual lifetime of a single decaying atom

is a random variable. That is why the mentioned killing de-

cay is in fact a twin analogue of the above mentioned single

sampling taken into account in supposition s1 of the Wave

Functions Collapse concept. So, the previous considerations

reveal the notifiable fact that is useless (even forbidden) to

design experiments or actions that rely solely on a single de-

terministic sampling of a random variable (such is the decay

lifetime). Accordingly, the Schrödinger’s Cat Thought Ex-

periment appears as a twin analogue of the Wave Functions

Collapse i.e. as a fiction (figment) and a deontology without

any real scientific value.

The previously mentioned fictional character of the

Schrödinger’s Cat Thought Experiment can be argued once

more by observation [9] that it is possible to imagine a macro-

scopic thought-experiment completely analogous with Shrö-

dinger’s quantum one. Within the respective analogue, a

cousin of Schrödinger’s cat can be killed through launching a

single macroscopic ballistic projectile. More specifically, the

killing macroscopic machinery is activated by the reaching of

the projectile in a probable hitting point. But the respective

point has characteristics of a true macroscopic (non-quantum)

random variable. Consequently, the launching of a single pro-

jectile is a false premise, similar to the supposition s1 of the

Wave Function Collapse concept. Add here the known fact

that within the practice of traditional artillery (operating only

with macroscopic ballistic projectiles but not with propelled

missiles) designed for an expected destruction of a military

objective, one uses a considerable (statistical) number of pro-

jectiles but not a single one. So the whole situation with a

macroscopic killing projectile is completely analogous with

the Schrödinger’s Cat Thought Experiment which uses a sin-

gle quantum radioactive decay. Therefore, the acknowledged

classical experiment makes clear once more the fictional char-

acter of the Schrödinger’s Cat Thought Experiment.

According to the above-noted remarks, certain things

must be regarded as being worthless, i.e. allegations such

as: ”the Schrödinger’s cat thought experiment remains a top-

ical touchstone for all interpretations of quantum mechan-

ics”. Note that such or similar allegations can be found in

many science popularization texts, e.g. in the ones dissemi-

nated via the Internet.

4 Closing thoughts

Through the contents of the previous sections, we have

brought into attention a few significant remarks regarding the

themes of the Wave Function Collapse and the Schrödinger’s

Cat Thought Experiment. Through the respective remarks,

we argue that the mentioned themes are not real scientific
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topics but pure and trivial fictions. So we find that the Ox-

ford Questions have an important, prolonged drawback and,

consequently, their invalidated items have to be regarded as

needless things for science.
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This short paper derives the electron and proton Planck-vacuum coupling forces so that

both the electron and proton, and their antiparticles, possess a Compton radius and obey

the Dirac equation.

1 Introduction

The Dirac equation can be expressed as [1] [2]

e2
∗

(

i
∂

∂ct
+ αα · i∇

)

ψ = mc2βψ (1)

where in the Planck vacuum (PV) theory the coefficients e2
∗

and mc2 are particle-PV coupling constants associated with

the polarization and curvature forces

(±e∗)(−e∗)

r2
= ∓

e2
∗

r2
and

mm∗G

r∗r
=

mc2

r
(2)

where (±e∗) and mc2 are the charge and rest mass energy of

the free-space Dirac particles and (−e∗) refers to the separate

Planck particles making up the PV continuum. G is Newton’s

gravitational constant, m∗ and r∗ are the mass and Compton

radius of the Planck particles, and e∗ is the massless bare

charge. The ‘Dirac particles’ refer in the present paper to

the electron and proton and their respective antiparticles.

The coupling constants in (1) and (2) are presently asso-

ciated with the rest-frame coupling forces [3]

F(r) = ∓
e2
∗

r2
−

mc2

r
(3)

but there is a problem. The negative polarization force in (3)

is due to the positive charge in (±e∗) of (2) and yields the

equation

−e2
∗

(

i
∂

∂ct
+ αα · i∇

)

ψ = mc2βψ (4)

which, because of the negative sign, is not a Dirac equation.

Thus these coupling forces do not lead to a Dirac particle in

the positron and proton cases — nor can they produce their

corresponding Compton radii rc = e2
∗/mc2 from (3), where

F(rc) must vanish. So there is something wrong with these

coupling forces and, to resolve the problem, it is necessary to

look more closely at the foundation of the PV theory.

2 Single superforce

The two observations: “investigations point towards a com-

pelling idea, that all nature is ultimately controlled by the ac-

tivities of a single superforce”, and “[a living vacuum] holds

the key to a full understanding of the forces of nature” ; come

from Paul Davies’ popular 1984 book [4, p.104] entitled “Su-

perforce: The Search for a Grand Unified Theory of Nature”.

This living vacuum consists of a “seething ferment of virtual

particles”, and is “alive with throbbing energy and vitality”.

These statements form the foundation of the PV theory [5] [6]

that, among other things, derives the primary constants as-

sociated with Newton’s constant G (= e2
∗/m

2
∗), Planck’s re-

duced constant ~ (= e2
∗/c), and the fine structure constant

α (= e2/e2
∗).

The single-superforce idea is taken here to mean that the

superforces associated with General relativity [5] and the

Newton and Coulomb forces have the same magnitude. In

particular it is assumed that

m2
∗G

r2
∗

=
c4

G
= (±)

e2
∗

r2
∗

(5)

where the first, second, and third ratios are the superforces for

Newton’s gravitational force and General relativity, and the

free-space forces and superforces associated with the Cou-

lomb force.

Equating the first and second ratios in (5) leads to

c4

G
= (±)

m∗c
2

r∗
(6)

where, since c4 and G are positive-definite constants, the neg-

ative sign in (6) must refer to some other aspect of the ratio

— this other aspect is the c4/G association with the two-term

particle-PV coupling forces. Equating the second and third

ratios in (5) and using (6) yields

(±)
m∗c

2

r∗
= (±)

e2
∗

r2
∗

(7)

both sides of which are coupling forces.

Equating the first and third ratios in (5) gives

G =
e2
∗

m2
∗

(8)

as the definition of the secondary constant G in terms of the

primary constants e2
∗ and m2

∗.
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Using the curvature and polarization forces in (7), the

two-term coupling forces take the form

F(r∗) = (±)
e2
∗

r2
∗

(±)
m∗c

2

r∗
(9)

where the proper choice of the plus and minus signs leads to

coupling forces consistent with the existence of a Compton

radius. Thus the proper choice is

F(r∗) = ±

(

e2
∗

r2
∗

−
m∗c

2

r∗

)

(10)

defining coupling forces that vanish at the Compton radius

(r∗ = e2
∗/m∗c

2) of the Planck particle. The vanishing of (10)

reveals a basic property of the PV state that establishes how

the stable free-space particle interacts with the vacuum — i.e.,

via a two-term coupling force that generates a characteristic

Compton radius (rc = e2
∗/mc2) for the particle.

For the free-space electron and proton and their antipar-

ticles, the results of the previous paragraph suggest that their

coupling forces should be

F(r) = ±

(

e2
∗

r2
−

mec2

r

)

=

{

electron

positron
(11)

and

F(r) = ∓

(

e2
∗

r2
−

mpc2

r

)

=

{

proton

antiproton
(12)

where the plus and minus signs correspond to the particles

indicated on the right of the braces, and the subscripts ‘e’

and ‘p’ refer to the electron and proton respectively. These

coupling forces replace the problematic forces in (3). The

radius r in these equations is the radius from the free-space

Dirac particle to the separate particles of the PV.

The vanishing of equations (10)–(12) leads to the impor-

tant string of Compton relations

remec2 = rpmpc2 = r∗m∗c
2 = e2

∗ (= c~) (13)

relating the Dirac particles to the Planck particles.

3 Conclusions and comments

The forces (11) and (12) vanish at the electron and proton,

and their respective antiparticle, Compton radii

re =
e2
∗

mec2
and rp =

e2
∗

mpc2
(14)

and lead to the Dirac equations

±e2
∗

(

i
∂

∂ct
+ αα · i∇

)

ψ = ±mc2βψ . (15)

Dividing through by ±mc2 gives

rc

(

i
∂

∂ct
+ αα · i∇

)

ψ = βψ (16)

where the Compton radius rc (= e2
∗/mc2) and m now represent

any of the Dirac particles (rc = re, rp).

The particle-PV potential energy associated with the cou-

pling forces in (11) and (12) is defined as

V(r) = −

∫ r

rc

|F(r)| dr (17)

for r 6 rc, resulting in (using (13))

V(r)

mc2
=

rc

r
− 1 − ln

rc

r
(18)

where V(rc) = 0. The potential increases as the Dirac-particle

cores (±e∗,m) are approached (as r decreases), making the

negative energy vacuum susceptible to free-space (where the

cores reside) perturbations. This susceptibility leads to an

internal vacuum structure for the Dirac particles; where, in

the “The Dirac Proton and its Structure” calculations [6] [7],

quantitative confirmation for the preceding Dirac-particle cal-

culations is provided.
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Kirchhoff’s law of thermal emission states that cavity radiation must always be black,

or normal, irrespective of the nature of the walls. Arbitrary cavity radiation must be

solely dependent upon the equilibrium temperature and the frequency of observation.

Despite such theoretical claims, it is well established that laboratory blackbodies are

not constructed from arbitrary materials, but rather from nearly perfect absorbers of

radiation over the frequency of interest. In the laboratory, arbitrary cavities do not

contain black radiation. This experimental fact stands in direct conflict with Kirchhoff’s

formulation. Nonetheless, Kirchhoff’s law of thermal emission endures, in part, due to

Gedanken experiments whose errors in logic are difficult to ascertain. In this work,

thought experiments are discussed in order to expose some logical shortcomings. It will

be demonstrated that Kirchhoff’s law cannot be supported in this context.

If a space be entirely surrounded by bodies of the

same temperature, so that no rays can penetrate

through them, every pencil in the interior of the

space must be so constituted, in regard to its quality

and intensity, as if it had proceeded from a perfectly

black body of the same temperature, and must there-

fore be independent of the form and nature of the

bodies, being determined by temperature alone. . .

In the interior therefore of an opake red-hot body

of any temperature, the illumination is always the

same, whatever be the constitution of the body in

other respects.
Gustav Robert Kirchhoff, 1860 [1]

1 Introduction

Recently, the validity of Kirchhoff’s law [1, 2] and the uni-

versality of the laws of thermal emission [3–6] have been

brought into question [7–13]. This reformulation of an estab-

lished thermodynamic principle has repercussions throughout

the fields of physics and astronomy. The issues at hand not

only concern our understanding of the nature of the stars [14]

and the microwave background [15], but also the universal-

ity endowed upon Boltzmann’s and Planck’s constants [12].

Thus, although 150 years have passed since Kirchhoff’s law

was formulated [1,2], it is appropriate to carefully reconsider

its authenticity. In this respect, the author has argued against

the validity of this law of thermal emission [7–13].

Stewart’s law [16], not Kirchhoff’s [1, 2], properly ac-

counts for the equivalence between emissivity and absorptiv-

ity in thermal equilibrium. Unlike his contemporaries [1,2,6],

Stewart [16] does not require that all radiation within cavities

be black, or normal. In this work, the variable nature of cav-

ity radiation is affirmed by addressing a Gedanken experiment

which is often invoked to justify Kirchhoff’s law, either in the

classroom or within textbooks.

2 Experiment I: Two ideal cavities

In this experiment, two cavities of the same dimensions are

imagined to exist in an empty universe at the same tempera-

ture (see Fig. 1A). In order to ensure that the heat contained

within each cavity cannot escape, let us surround the exterior

of these enclosures with an adiabatic wall. The interior of

each cavity is then placed under vacuum to prevent convec-

tive processes. The inner surface of the first enclosure (cavity

1) is comprised of an ideal, or perfect, emitter (Emissivity

(ǫ)= 1, Reflectivity (ρ)= 0; at the frequency of interest). The

interior of cavity 2 is constructed from an ideal, or perfect,

reflector (ǫ = 0, ρ= 1; at the frequency of interest). For ped-

agogical purposes, a perfectly adiabatic structure is selected

for the inner wall of cavity 2. The cavities are in temperature

equilibrium with a third object in the same universe, which is

also surrounded by an adiabatic wall.

The physics community currently maintains that, under

these conditions, both cavities must contain black radiation,

in accordance with Kirchhoff’s law [1,2], despite the fact that

the second cavity, being fully adiabatic, acts as a perfect re-

flector and, hence, is unable to emit a single photon. How can

it be argued that cavity 2 is filled with black radiation?

Let the two cavities come into contact with one another

and place a small hole between them, as displayed in Fig. 1B.

When this occurs, photons must cross from cavity 1 (perfectly

emitting) into cavity 2 (perfectly reflective). Yet, if cavity 2

is devoid of black radiation, it will not be able to transfer a

photon back into the first cavity. As a result, since the first

cavity would be losing net photons into the second cavity, its

energy content or temperature would drop. Conversely, the

energy content of the second cavity would rise. This cannot

be permitted according to the zeroth law of thermodynamics,

since all three objects are already at the same temperature.

Consequently, it is argued that the perfectly reflecting cavity
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Fig. 1: Schematic representation of our thought experiments. A)

Two cavities are presented. Cavity 1 is constructed from a perfect

emitter (ǫ = 1, ρ= 0) surrounded by an adiabatic wall. Cavity 2 rep-

resents a perfect reflector (ǫ = 0, ρ= 1). In this case, we assume that

both the inner lining and the outer wall are fully adiabatic. B) The

cavities displayed in A are brought together and a small hole is made

between them in order to permit radiation to flow from one enclosure

into the other. C) Two cavities are presented which again have been

brought in contact with one another. The inner surface of cavity 1 is

constructed from graphite, or soot, and is assumed to act as a perfect

emitter (ǫ = 1, ρ= 0). The inner surface of cavity 2 is constructed

from silver which is assumed to act as a perfectly reflector (ǫ = 0,

ρ= 1). Both cavities are surrounded by adiabatic walls. However,

when the two cavities are brought together, the adiabatic walls be-

tween them are removed. This allows for direct thermal contact of

the two inner surfaces. A small hole is included to permit radiation

to move from one enclosure into the other.

must have contained black radiation all along, such that ra-

diative equilibrium could always be maintained and that the

temperature of the cavities can remain intact.

The error in such arguments must be found in permitting

net energy to be transferred from cavity 1 into cavity 2. This

cannot be allowed, simply based on the zeroth law of thermo-

dynamics, if both cavities are said to be at the same tempera-

ture. A logical misstep must have been made in this thought

experiment. The two cavities must not have been properly

conceived.

The problem can be attributed to the inner surface of the

second cavity and in the fact that both cavities must be sur-

rounded by an adiabatic wall to prevent the emission of pho-

tons into the surrounding empty universe. This was central

to maintaining the energy/temperature stability of each sub-

system.

In designing the second cavity from a perfectly adiabatic

wall, a physical regimen has been adopted which has no rela-

tionship to the best reflectors. Adiabatic walls are immune to

all thermal processes. As a consequence, scientists who in-

voke their use in this setting, fail to recognize that such walls

cannot be characterized with a temperature. Thus, if Kirch-

hoff’s law is invalid and there are actually no photons within

cavity 2, one cannot even set a temperature for the second sys-

tem. By default, adiabatic walls cannot store energy within

themselves. Namely, in addition to being perfectly reflective,

they cannot support thermal conduction or electron flow. This

stands in direct opposition to the known properties of the best

reflectors and real heat shields.∗

In reality, all good reflectors are also good conductors. As

a case in point, silver constitutes a very efficient reflector in

the infrared, but it is also one of the best electrical and thermal

conductors.†

Since the formulation of a law of physics must depend

upon the proper characterization of the physical world, one

must be careful not to invoke a mathematical or physical reg-

imen which has lost all relation to reality. The use of a fully

adiabatic perfectly reflecting cavity has not allowed for suffi-

cient degrees of freedom in which to store energy, as it cannot

sustain any phonons within its walls. The only degree of free-

dom which might be available to such a cavity would rest in

its ability to contain a radiation field. However, can cavity

2 actually have the ability to spontaneously generate such a

field, despite its complete lack of phonons and perfect reflec-

tion, simply driven by a law of physics which is currently

under question?

As cavity 2 is perfectly reflecting, the proper conclusion

remains that it cannot self-generate a single photon. Thus, it

should initially be devoid of a radiation field. Because it also

cannot hold any energy in its adiabatic walls, cavity 2 cannot

be characterized by any temperature.

Consequently, at the beginning of the experiment, cavity

2 cannot be in thermal equilibrium with cavity 1. Therefore,

cavity 1 is allowed to transfer photons into cavity 2, simply

because there is no thermal equilibrium initially. The temper-

ature of cavity 1 must drop, as it pumps photons into cavity 2.

Thus, cavity 1 falls out of thermal equilibrium with the third

object, and Kirchhoff’s law has not been proven.

Obviously, there are shortcomings in cavity 2. As such,

the cavities should be redesigned, such that the validity of

Kirchhoff’s law can be assessed from a slightly different per-

spective.

∗Superconducting magnets for MRI utilize heat shields in their interior

that may well represent the closest example of an adiabatic shield in na-

ture. Such shields are typically made from a highly reflective and conductive

metal. They are suspended in the interior of the cryostat using very thin

and insulating fiberglass rods which act to help eliminate all conductive ther-

mal contact between the shield and other portions of the magnet system (i.e.

the liquid helium Dewar containing the magnet windings, other heat shields,

the liquid nitrogen Dewar, the outer casing of the magnet, etc.). These heat

shields are typically suspended in a vacuum environment. This is done in

order to minimize any convective contact between the shield and the rest of

the magnet.
†Silver is amongst the best conductors with a resistivity of only ∼ 1.6 ×

10−8 Ω m at 300 K and of ∼ 0.001 × 10−8 Ω m at 4 K [17]. It is also an

excellent reflector in the infrared, our frequency range of interest.
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3 Experiment II: Two cavities in thermal contact

Once again, each cavity is surrounded, under vacuum, with

an adiabatic wall such that heat radiation cannot be lost into

the universe and the temperature of each cavity can be main-

tained. As before, these two cavities are in temperature equi-

librium with a third object in the same universe, which is also

surrounded by an adiabatic wall.

The inner surface of cavity 1, the perfectly emitting cav-

ity, will be constructed from graphite, or soot. These mate-

rials are known to be very good physical examples of black-

bodies in the laboratory [18–21]. Departure from physical

reality will consist solely in assuming that the emissivity of

the inner surface is perfect (ǫ = 1, ρ= 0).

Silver will be used to line the inner surface of cavity 2.

This metal is perhaps the best known reflector in the labo-

ratory. In parallel fashion, a single departure is made from

physical reality, namely in assuming that the reflectivity of

the silver interior will be perfect (ǫ = 0, ρ= 1), much like the

second cavity in section 2.

Each cavity has a total energy which is now equal to the

sum of the energy it contains in the photons it encloses and

in the phonons which exists in its walls.∗ In this sense, each

cavity is given access to only two possible degrees of free-

dom: 1) the vibrational/phonon system in its walls and 2) the

radiation field.

Since the systems must be in thermal equilibrium, net

conduction is forbidden in accordance with the requirements

set forth by Max Planck [6, p. 23].

Let us now bring the two cavities together. But this time,

before making the small hole, let us remove the adiabatic

outer wall from that section of the cavities which come into

direct contact. In this manner, thermal conduction can occur

between the two cavities, if necessary. Finally, let us make

the small hole and permit cavity 1 to transfer a photon into

cavity 2 (see Fig. 1C).

Under these conditions, if a photon from cavity 1 enters

cavity 2, an identical quantum of energy instantly propagates

from the second perfectly reflecting cavity, through conduc-

tion and phonon action, into the walls of the first cavity. In

a sense, cavity 1 has instantly converted this phonon into the

photon it just expelled. As a result, cavity 1 has simply acted

as a transformer of energy. It has taken phonon energy from

cavity 2, created a photon, and sent energy back into cavity 2.

Cavity 1 has not lost any net photons. The total energy of each

system does not change and the zeroth law is not violated.

Thus, when a small hole is made between the two enclo-

sures, each cavity eventually becomes filled with blackbody

radiation when thermal equilibrium is reestablished. This

conclusion has previously been demonstrated mathematically

[9] and was recognized long ago in the laboratory. The net

∗For the purpose of this discussion, the energy associated with the elec-

trons in conduction bands, or any other degree of freedom, can be neglected,

as these do not provide additional insight into this problem.

result is that no net energy has been exchanged. The temper-

ature does not change, and no laws of thermodynamics have

been violated. Yet, for the period of time when photon and

phonon transfer was occurring, the entire system fell out of

thermal equilibrium, even if temperature equilibrium was be-

ing maintained. Eventually however, thermal equilibrium is

re-established and both cavities are filled with black radiation.

Over the course of this experiment, something very im-

portant has occurred in cavity 2. The energy which this cav-

ity contained has been redistributed amongst its two degrees

of freedom. Although the net temperature of cavity 2 has not

changed, phonon energy has been lost to the radiation field.

This simple observation has consequences in physics, as it

signifies that the law of equipartition which characterizes so

much of statistical thermodynamics cannot hold. The energy

of a system is not necessarily distributed equally between all

of its available degrees of freedom.

It could be argued, of course, that a behavior has been de-

manded from real materials which can never exist. This is a

question of how closely physical reality can be modeled. Is

it a more grievous error to assume 1) that a perfectly adia-

batic cavity can exist, a material which cannot emit photons,

cannot sustain conduction in any form, or be associated with

any temperature, or 2) that graphite and silver come to rep-

resent two ‘perfect’ examples of emissivity and reflectivity,

respectively?

Relative to this question, it is clear that the construction

of a perfectly reflecting cavity from an ideally adiabatic wall

(Experiment I) constitutes the greater departure from physi-

cal reality. Adiabatic surfaces, with their inability to emit any

photons and their incapability of sustaining thermal or elec-

trical conduction simply are not approached by anything in

nature. It is impossible to state that a truly adiabatic wall is at

any given temperature, as temperature in the physical world

must be associated with energy content and adiabatic walls

contain none. They represent a convenient intellectual con-

cept and offer very little relative to properly modeling physi-

cal reality. For this reason, their use results in the finding that

all cavities must be filled with blackbody radiation, even if

their walls lack the physical ability to emit a single photon.

Obviously, a logical conflict has been produced which high-

lights that our model has deviated too far from physical real-

ity. As a result, it is unlikely that such a model (Experiment

I) provides a proper proving ground relative to the validity of

Kirchhoff’s formulation.

Conversely, it is known that laboratory blackbodies con-

structed from graphite, or soot (carbon black, lampblack),

can reach rather high emissivities over certain frequencies

[18–21]. The requirement that these materials can come to

have an emissivity of 1 is very close to reality. At the same

time, silver can manifest an excellent reflectivity over certain

frequencies. Silver surfaces are the best reflectors known. As

a result, the assumption that silver can exhibit a reflectivity

of 1, is not very far from experimental fact. In this regard,
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it must be concluded that Experiment II constitutes a much

better representation of nature. It is known that laboratory

blackbodies are always made from near perfect emitters of

radiation, like graphite or soot [10, 11]. They are never made

of excellent reflectors, such as silver [10, 11].

The silver cavity was initially devoid of any radiation,

precisely because it can emit none. It is only when it is

placed in contact with a perfectly absorbing cavity, that the

energy contained in its vibrational degrees of freedom can be

transformed into a radiation field. This directly highlights that

Kirchhoff’s formulation cannot be correct. We do not find an

equal ability to construct blackbody cavities in the laboratory

irrespective of the nature of the walls. Silver cavities cannot

hold black radiation unless they have been subjected to the

action of a perfect absorber [9].

4 Conclusions

When properly analyzed, Gedanken experiments reveal that

Kirchhoff’s law of the thermal emission cannot be valid. The

proper analysis of cavity radiation must be open to realistic

treatments of energy balance within real materials. When

this is correctly accomplished, cavity radiation becomes ab-

solutely dependent on the nature of the enclosure. Phonon

transfer can balance photon transfer. As such, Kirchhoff’s law

holds no validity, either mathematically, in the experimental

setting, or in the context of thought experiments [7–13]. Cav-

ity radiation is not always black, but is absolutely dependent

on the nature of the enclosure. As demonstrated in Experi-

ment II, two cavities can be at the same temperature, but not

contain identical radiation. The introduction of black radia-

tion into opaque enclosures absolutely depends on the pres-

ence, or action, of a perfect emitter. Based on this presenta-

tion, the constants of Planck and Boltzmann are not univer-

sal [12].

Beyond Kirchhoff’s law, the analysis of cavity radiation

leads to the conclusion that the equipartition theorem cannot

be valid across all systems. The amount of energy associated

with a given degree of freedom at temperature equilibrium

is not necessarily equal to that contained in all other degrees

of freedom. The zeroth law of thermodynamics, by which

temperature is defined, is not concerned with radiation fields,

but simply temperature equilibrium. If two objects are at the

same temperature, they are by definition in thermal equilib-

rium, provided that their is no net emission, conduction, and

convection taking place in the systems of interest.

In Experiment II, a system is initially placed under tem-

perature and thermal equilibrium. It then is allowed to remain

under temperature equilibrium, while it temporarily falls out

of thermal equilibrium, as the small hole is created to en-

able the exchange of phonons and photons. At any time, if

the two cavities are physically separated and the hole filled,

they would immediately regain both temperature and thermal

equilibrium. At that point, the second cavity would contain

an arbitrary number of photons and not black radiation. It is

only if cavity 1 is given sufficient time to act that cavity II

will contain black radiation. However, the action of the first

cavity was absolutely critical to this transformation. A per-

fect emitter had to be present. It is not simply a question of

time, but of physical action by a perfect emitter.

Experiment II is indicating that it is not necessarily pos-

sible to equilibrate the energy contained within the degrees

of freedom within real materials. Under these conditions,

equipartition cannot hold. Equipartition requires that all de-

grees of freedom have the same ability to contain energy. This

cannot be correct. The most compelling example is illustrated

by the hydrogen and hydroxyl bonding systems within wa-

ter [14]. The force constants in these two systems are dras-

tically different. As a result, the hydrogen bonding system

is likely to be filled with energy at temperatures just above

absolute zero (∼3K). This is the reason, in fact, why the mi-

crowave background which surrounds the Earth does not vary

in intensity in response to seasonal changes [14]. Equiparti-

tion is also invalid in the photosphere, where dramatic differ-

ences in the energy content of the translational and vibrational

degrees of freedom are likely to exist [22].

Throughout his treatise on heat radiation [6], Max Planck

invoked a carbon particle, which he surmised to act as a sim-

ple catalyst (see [10] for a detailed review). However, he in-

serted a perfect emitter into his cavity. This particle could

then fill the cavity with black radiation, provided that it was

placed in physical contact with the energy source to be con-

verted. It did not matter how much carbon was inserted, as

this only governs the time involved. For this reason, when

Planck introduced the carbon particle into his cavity [6], it

was as if he had lined it completely with carbon [10]. He had

not demonstrated that all cavities contained black radiation,

only that all perfectly emitting cavities are black.
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Sylvain Bréchet is recognized for valuable insight relative

to phonon transfer during conduction. Luc Robitaille is ac-

knowledged for the preparation of Fig. 1.

The first draft of this work was completed at the home

of Professor Lawrence J. Berliner immediately following a

discussion which took place at my poster (H1.00227 — The

Sun on Trial) during the APS March Meeting. Larry and his

wife Barbara are recognized for their unceasing encourage-

ment and for welcoming me into their Denver home.

Dedication

This work is dedicated to my father, Noel Antoine Robitaille

(born on December 22, 1929). He devoted his life to the prac-

tice of family and emergency medicine, delivering over 800

babies and tending the medical needs of the communities in

which he resided, both in Canada and Iowa. He retired on

August 30, 2013, at the age of nearly 84, after having, for
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many years, served at his small clinic in LaPorte City and

making visits to the local nursing home. A few years ago,

as he walked with nostalgia in the cemetery of his village, he

recalled how so many buried there were once his patients and

friends. His daughter-in-law, to help lighten the atmosphere,

had inquired: “So Noel, do you think you were a good doc-

tor?”

In February 2014, he passed the 50 year anniversary of

receiving the rare privilege, as a white man, to be named an

honorary Indian Chief — “Kitchitouagegki”. He was the first

named by any of the Three First Nations: The Council of

Three Fires (Ojibway, Odawa, and Potawatomi). In describ-

ing the honor conferred upon him, Allen Toulouse recalled,

“His presence contributed to reducing the infant mortality

rate of the Sagamok First Nation (Reducing the number of

deaths during pregnancy for both the mothers and their ba-

bies). He also made many actions to improve the conditions

of the people of Sagamok — including having running water

and wells installed in the reserve in the early 1960s” [23]. It

appears that his elevation to Chief represents “the first official

case of a First Nation bestowing this honor upon a Caucasian

medical doctor in North-American history” [23].

Fig. 2: Noel Antoine Robitaille, honorary chief “Kitchitouagegki”.

Photo courtesy of Allen Toulouse and Christine Robitaille.
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Various parameters tied to the electrical conductivity of typical metals are estimated
and are expressed in terms of universal constants. It happens that they are close to
those found in metallic copper at room temperature. The fact that the realization of
the model occurs at room temperature is explained by using the Landauer’s erasure
principle. The averaged collision time of the electron of conduction is also thought as a
particle lifetime. Finally an analogy is established between the motion of the electron of
conduction and the cosmological constant problem, where a spherical surface of radius
equal to the electron mean free path has been thought as a surface horizon for the charge
carriers.

1 Introduction

Highly purified water is a bad electrical conductor. However,
the addition of small amounts of sodium chloride (NaCl) to
this liquid, can increase its electrical conductivity in a sub-
stantial way. At the ambient temperature (295K), the wa-
ter’s dielectric constant of 80, permits the Na+ and Cl- ions
to move freely through the liquid and this feature can ac-
count for the change in its conductive behavior. It seems
that the concentration of free charge carriers has the most
relevant role in determining the electrical conductivity of the
substances. But what to say about electrical conductivity in
metals? Isolated metallic atoms have their inner electrons
belonging to closed shells and hence tightly bound to their
corresponding atomic nucleus. However the electrons of the
outer most shell are weakly bonded to its respective nucleus.
When arranged in a crystal lattice structure, the bond weak-
ness of these outer electrons is enhanced due to the interac-
tions among neighbor atoms of the lattice, so that the elec-
trons of conduction are free to travel through the whole crys-
tal. Resistance to their motion is due to the thermal vibrations
(phonons) and defects provoked by the presence of impurities
and lattice dislocations. In a perfect crystal at zero absolute
temperature, these free electrons can be described by using
the quantum mechanical formalism of the Bloch waves [1,2].
The concentration of free electrons plays an important role in
the description of the electrical conductivity in metals.

2 Evaluation of typical parameters tied to the electrical

conductivity of metals

A possible way to estimate the concentration of conduction
electrons in a typical good metal will be next presented. An
alternative form to estimate the Casimir force between two
parallel uncharged metallic plates separated by a close dis-
tance d was developed in reference [3]. There, we considered
the cutting of a cubic cavity of edge d in a metallic block.
We imagined that the free electrons in metal as a gas of non-
relativistic particles confined by the vacuum pressure in the
interior of a cubic box of edge equal to d. On the other hand

as was pointed out by Jaffe [12], the Casimir force can be
calculated without reference to the vacuum fluctuations, and
like other observable effects in QED, it vanishes as the fine
structure constant α goes to zero.

In reference [3], we treated a non-relativistic Fermi gas
confined by the vacuum pressure B and found the relation

Bd3 =
2
5

Eav , (1)

where Eav stands for the average energy of the gas. Mean-
while it is convenient to consider that an equivalent way to
treat the problem is by taking in account the electromagnetic
interaction through the dependence of the energy levels of the
system on the fine structure constant α. We reproduce here
some steps of the reasons outlined in reference [3]. One of
the simplest models which exhibits energy levels dependence
on the fine structure α is the Bohr atom, namely

En = −
α2mc2

2n2
= −

E1

n2
. (2)

By taking the maximum occupied energy level equal to N
2 , we

get the maximum energy EM of the system

EM = −
4E1

N2
. (3)

The average energy could be estimated as

EF =
2
N

∫ N
2

1
(−) E1 n−2dn =

2
N

E1
2 − N

N
. (4)

In the limit, as N ≫ 1, we have

Eav = − 2
E1

N
. (5)

Now let us estimate the vacuum pressure. We have

Bd3 = −
2
5
α2mc2

N
=

2
5

Eav . (6)
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By taking p0 =
αmc

2 and λ0 =
h
p0
= 2h
αmc

, it is possible to
make the choice

N =
d

λ0
=
αmcd

2h
. (7)

Inserting equation (7) into equation (6), we obtain

B = −
8

5π
απ2
~c

d4
. (8)

Therefore we notice that by making the choice indicated by
equation (7), the explicit dependence of B on the electron
mass m and on the maximum quantum number N has dis-
appeared. The alternative way we have used in order to treat
the Casimir force problem, permit us to calculate a typical
density of charge carriers in good metals. Let us write

nd3 =
4π
3

N3 3! = 8πN3 . (9)

In equation (9), we have considered the volume of a sphere in
the N-space, and the possible number of permutations among
the Nx, Ny and Nz quantum numbers. Putting equation (7)
into equation (9) we obtain

n = π

(

αmc

h

)3
. (10)

Numerical evaluation of equation (10) gives n = 8.56 ×
1028 m−3, which could be compared with 8.45×1028 m−3, the
density of charge carriers in metallic copper [1, 2]. Mean-
while the Fermi energy of metals could be expressed as [1,4]

EF =
h2

8m

(

3n

π

)
2
3

. (11)

Inserting equation (10) into equation (11), we get

EF =
3

2
3

8
α2mc2. (12)

Numerical estimate of equation (12) gives EF = 7.07 eV,
which naturally is very close to the value found in metallic
copper.

In order to proceed further, let us compute the electrical
conductivity of a typical good metal. To do this we first sup-
pose that we have n scatters per unit of volume and by con-
sidering a prism shaped tube having longitudinal size equal
to the electron mean free path ℓ, width ℓF equal to half of
the Fermi wavelength of the electron, and thickness ℓC equal
to half of its Compton wavelength. If we consider that the
electrical conductivity always happens in a regime of charge
neutrality, the number of scatters per unit of volume will be
equal to the number density of charge carriers, and we can
write

nℓFℓCℓ = n
h

2mvF

h

2mc
vFτ = 1. (13)

In equation (13), ℓC stands for the wavelength of a pho-
ton with a momentum related to the creation of a electron-
positron pair and this corresponds to a minimum thickness of
the prism, which also implies in a maximum τ, the average
time between collisions. From equation (13) we obtain the
relation

nτ =
m2c

π2~2
. (14)

Now, Drude formula for the electrical conductivityσ is given
by ( Kittel [1])

σ =
e2nτ

m
. (15)

Inserting nτ of equation (14) into equation (15), we obtain

σ =
e2mc

π2~2
. (16)

Numerical estimate of the electrical resistivity ρ, gives ρ =
1
σ
= 1.57 × 10−8Ωm which can be compared with the resis-

tivity of the metallic copper measured at the temperature of
295 K, namely ρcopper = 1.70 × 10−8Ωm. From equation (10)
and equation (14) we also obtain the averaged time between
collisions

τ =
1
α3

4h

πmc2
. (17)

Numerical estimate of equation (17) gives τ = 2.65× 10−14s.
This umber must be compared with the value estimated of
τcopper = 2.5 × 10−14s, for copper at the room temperature as
quoted by Allen [2]. It is also interesting to write formulas
for the Fermi velocity vF and the electron mean free path ℓ.
We have

vF =

(

2EF

m

)
1
2

=
3

1
3

2
αc, (18)

and

ℓ = vFτ =
3

1
3 2h

α2πmc
. (19)

These relations for the quantities associated to the electrical
conduction in typical metals are exhibited in table 1, as well
their respective numerical estimates and are also compared
with the corresponding ones quoted for copper at the room
temperature.

3 Realization at the room temperature: a possible expla-

nation

It is an intriguing question why a model describing the elec-
trical conductivity of a typical good metal just realizes itself
in copper crystals at room temperature. The answer to this
question could be elaborated through these reasons.

• As was pointed out by Jacobs [9], Landauer’s era-
sure principle [8] states that: whenever a single bit of
information is erased, the entropy in the environment
to which the information storing system is connected
must increase at least kB ln 2, where kB is the Boltz-
mann’s constant;

122 Paulo Roberto Silva. Electrical Conductivity of Metals: A New Look at this Subject



Issue 2 (April) PROGRESS IN PHYSICS Volume 10 (2014)

• A free electron in a metal travels in average a distance
equal to its mean free path, with a constant velocity vF ,
until to collide with the ionic vibrations (phonons). In
the collision process, the free electron looses its mem-
ory.

We think that we may associate to the Fermi energy EF , a
string of length equal to its Fermi wavelength, composed by
unit cells having a length equal to the Compton wavelength
of the electron. Let us to introduce a quasi-particle with a
mass-energy µc2 defined as

µc2 = EF

vF

c
. (20)

As we can see from equation (20), this quasi-particle has a
mass-energy equal to the Fermi energy divided by the number
of cells in the string. Defining

∆F = ∆U − T∆S =
1
2
µc2
− kB ln 2 . (21)

And after making the requirement that

∆F |T=T⋆ = 0 , (22)

we obtain the relation

E3
F =

(

kBT⋆
)2

2 (ln 2)2 mc2 . (23)

Putting EF = 7.1eV (table 1) and mc2 = 0.511MeV in equa-
tion (23) and solving for kBT⋆, we find

kBT⋆ = 26 meV (24)

The above number for the characteristic temperature T⋆ must
be compared with kBTRoom = 25 meV. Therefore the ob-
tained result for the characteristic temperature given by equa-
tion (24) seems to make sense to the fact that the realization
of the model for the electrical conductivity of good metals to
happen for copper crystals at the room temperature.

4 Three characteristic lenghts and the grow of a poly-

mer chain

In a paper dealing with the cosmological constant problem
[6], the time evolution of the universe world line was com-
pared with the growing of a polymer chain by making use
of a Flory-like free energy. It is possible to think the electron
mean free path as the length of a polymer chain, composed by
monomers of size equal to the Compton wavelength of elec-
tron. Within this analogy, the radius of gyration of the chain is
identified with the Fermi wavelength of electron. We consider
as in the de Gennes derivation [7] two contributions for the
Flory’s free energy. The first term which goes proportional
to N2

Rd , corresponds to a repulsive-like monomer-monomer in-
teraction. A second term which comes from an entropic con-
tribution, namely a logarithm of a Gaussian distribution (a

signature of a random walk process) goes as R2

(NλC )2 . We write

F =
N2λd

C

Rd
+

R2

Nλ2
C

, (25)

where F is a Flory-like free energy, λC is the Compton length,
N is the number of monomers in the chain, and d is the space-
time dimension. Setting ℓ = NλC and minimizing equation
(25) relative to R, we obtain for the radius of gyration Rg the
relation

Rg = ℓ
3

2+d λ
d−1
2+d

C
. (26)

We identify Rg(d = 4) with the Fermi length of the electron,
λF . We have

λF = (ℓλC)
1
2 . (27)

We observe that equation (27) , relating the three charac-
teristics lengths of the problem, agrees with the upper bound
to the electron mean free path found in reference [13]. Please
see equation (21) of the cited reference. It is worth to no-
tice that the agreement between both calculations occurs just
when the radius of gyration is evaluated in the space-time di-
mension d = 4.

5 High temperature behaviour of the collision time

It would be interesting to evaluate a relation expressing the
high temperature behavior of the collision time appearing in
the Drude formula for the electrical conductivity. By consid-
ering a viscous force which depends linearly on the velocity,
the power dissipated by this force can be written as

dE

dt
= −Fviscousv = −

1
τ

pv . (28)

The power dissipated by this viscous force acting on the
charge carrier will appear as an increasing in the internal en-
ergy of the lattice and we write

dU

dt
= −

dE

dt
=

1
τ

pv . (29)

By taking

p =
~

2R
and vdt = dR , (30)

where the first relation in equation (30) comes from the un-
certainty principle, we get

dU =
~

2τ
dR

R
. (31)

Performing the integration of equation (31) between the limits
R0 =

~

mc
and R1 =

~

mvF
, we obtain

∆U =
~

2τ
ln

c

vF
. (32)

Now, let us consider an entropy variation given by

∆S = kB ln 2D = DkB ln 2 . (33)

Paulo Roberto Silva. Electrical Conductivity of Metals: A New Look at this Subject 123



Volume 10 (2014) PROGRESS IN PHYSICS Issue 2 (April)

In equation (33), we have written an entropy variation similar
to that considered in applying the Landauer’s erasure princi-
ple [8], but here putting D = 4, by taking in account the four
dimensions of the space-time. Taking the extremum of the
free energy, namely writing

∆F = ∆U − T∆S = 0 , (34)

and solving for τ, we have

τ =
~

8kBT
ln

c

vF
. (35)

In the case of copper
(

vF = 1.57 × 106m s−1
)

at the room tem-
perature (T = 300 K), we find

τcopper (300 K) = 2.4 × 10−14s. (36)

As we can see in table 1, the result of equation (36) is very
close to the room temperature mean collision time of the elec-
trons of conduction in copper, as quoted in the literature.

6 Average collision time as a particle lifetime

There are two characteristics linear momenta that we can as-
sociate to the free electrons responsible for the electrical con-
ductivity in good metals. They are: the Fermi momentum
mvF and the Compton momentum mc. By taking into account
that the free electron has a fermionic character, we will write
a non-linear Dirac-like equation describing the “motion” of
this particle. We have

∂Ψ

∂x
−

1
c

∂Ψ

∂t
=

mvF

~
Ψ −

mc

~
|Ψ⋆Ψ| Ψ . (37)

We see that equation (37) contains only first order derivatives
of the field Ψ. Besides this, the field Ψ has not a spinorial
character. Making the two sides of equation (37) equal to
zero and solving for |Ψ⋆Ψ|, we get

|Ψ⋆Ψ| =
vF

c
=

3
1
3

2
α . (38)

In obtaining equation (38), we also used the result for vF
shown in table 1. On the other hand in the collision process,
the free electron loss its memory. We may think that this fea-
ture looks similar to the annihilation of a particle- antiparticle
pair, each of mass-energy equal to EF . Putting this thing in a
form of the uncertainty principle yields

2EF∆t =
h

2
or

hν

2
= 2EF . (39)

Solving equation (39) for ν, we get

ν =
1
∆t
= 4

EF

h
=

3
2
3

2h
α2mc2. (40)

By combining the results of equation (38) and equation(40)
we obtain the line width Γ tied to the “particle” decay

Γ = ν |Ψ⋆Ψ| =
3

4h
α3mc2 . (41)

Finally the “particle” lifetime τ is given by

τ =
1
Γ
=

4h

3α3mc2
. (42)

Comparing τ giving by equation (42) with the time between
collisions shown in table 1, we verify that the present result
displays the number 3 in the denominator, instead of the num-
ber π which appears in table 1.

Table 1: Formulas related to the electrical conductivity of typical
metals, in terms of universal constants (this work). Numerical esti-
mates of them are compared with those quoted for Copper at room
temperature.

Formula Numerical
estimates

Copper at room tem-
peratures

n = π
(

αmc
h

)3
8.56× 1028 m−3 8.45×1028 m−3 [1,2]

EF =
3

2
3

8 α
2mc2 7.07 eV 7.0 eV [1]

ρ = 1
σ
= π

2
~

2

e2mc
1.57× 10−8Ωm 1.70×10−8Ωm [1,2]

τ = 1
α3

4h
πmc2 2.65 × 10−14 s 2.5×10−14 s [2,5]

vF =
3

1
3

2 αc 1.6× 106 m s−1 1.6 × 106 m s−1 [1]

ℓ = 3
1
3 2h
α2πmc

419Å 400Å [5]

7 Analogy with the cosmological constant problem

In this section we assume, for simplicity, that ~ = c = kB = 1.
One worth point we can consider now is the analogy that can
be made with the cosmological constant problem. Hsu and
Zee [10] have proposed an effective action Ae f f as a means to
deal with the cosmological constant problem. They wrote

Ae f f = −













ΛL4 +
M4

P

Λ













+ independent of Λ-terms, (43)

where MP is the Planck mass, L is the radius of the event
horizon of the universe and Λ is the cosmological constant.
Taking the extremum of this action they got

Λ =

(

MP

L

)2

. (44)
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We could think Ae f f above as a four-dimensional representa-
tion of a kind of free energy, where the first term plays the
role of the internal energy and the second one is related to the
entropy S . The absolute temperature is taken to be equal to
one. We propose that

Ω ∼ exp













M4
P

Λ













(45)

with
S = lnΩ. (46)

On the other hand, there is a proposal [11] that the universe
can be considered as a black hole with its entropy being eval-
uated by counting the number of cells contained in the area
of its event horizon (the holographic principle), namely

S universe ∼

(

L

LP

)2

= L2 M2
P . (47)

By considering the two equivalent ways of the entropy evalu-
ation, from equation (46) and equation (47) relations, we can
write

L2 M2
P =

M4
P

Λ
, (48)

which reproduces the results of Hsu and Zee [10], please see
equation (44). Turning to the problem of the electrical con-
ductivity in good metals, let us consider for instance in a cop-
per crystal an electron of the conduction band which just suf-
fered a collision. In the absence of an external electric field,
all the directions in the space have equal probability to be cho-
sen in a starting new free flight. Therefore if we take a sphere
centered at the point where the electron has been scattered,
with a radius equal to the electron mean free path, the surface
of this sphere may be considered as an event horizon for the
phenomena. Any electron starting from this center will be on
average scattered when striking the event horizon, loosing the
memory of its previous free flight. Besides this, all the lattice
sites of the metallic crystal are treated on equal footing, due
to the translational symmetry of the system. Based on the
previous discussion and inspired on the black hole physics,
let us to define the entropy related on the event horizon for
the electron of conduction in metals. We write

S Metal = π

(

ℓ

w

)2

, (49)

where ℓ is the electron mean free path and w is the equivalent
to the Planck length of the problem. It is possible to write
an action analogous to that of Hsu and Zee [10], in order to
describe the electrical conductivity in metals. We have

AMetal ∼

(

ΛMℓ
4 +

1
Λw4

)

. (50)

Making the equality between the two ways of writing the en-
tropy, namely equaling the entropy of a surface horizon of

radius ℓ and ultra-violet cutoff w with the last term of equa-
tion(50), we get

π

(

ℓ

w

)2

=
1
ΛMw4

, (51)

which leads to
Λ

(− 1
4 )

M
= π

1
4 (ℓw)

1
2 . (52)

Upon to identifyΛ(− 1
4 )

M
with the Fermi wavelength of the elec-

tron λF and w with its Compton wavelength λC , we obtain

λF = π
1
4 (ℓλC)

1
2 . (53)

Relation (53) must be compared with equation (27).
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In this work, the equation which properly governs cavity radiation is presented. Given

thermal equilibrium, the radiation contained within an arbitrary cavity depends upon the

nature of its walls, in addition to its temperature and its frequency of observation. With

this realization, the universality of cavity radiation collapses. The constants of Planck

and Boltzmann can no longer be viewed as universal.

Science enhances the moral value of life, because it

furthers a love of truth and reverence. . .

Max Planck, Where is Science Going? 1932 [1]

When Max Planck formulated his law [2, 3], he insisted that

cavity radiation must always be black or normal [3, Eqs. 27,

42], as first proposed by Gustav Robert Kirchhoff [4, 5]. The

laws of thermal emission [2–7] were considered universal in

nature. Based on Kirchhoff’s law [4, 5], cavity radiation was

said to be independent of the nature of the walls and deter-

mined solely by temperature and frequency. Provided that

the cavity walls were opaque, the radiation which it contained

was always of the same nature [2–5]. All cavities, even those

made from arbitrary materials, were endowed with this prop-

erty.

Cavity radiation gained an almost mystical quality and

Planck subsequently insisted that his equation had overar-

ching consequences throughout physics. The constants con-

tained within his formulation, those of Planck and Boltzmann

(h and k), became fundamental to all of physics, leading to the

development of Planck length, Planck mass, Planck time, and

Planck temperature [3, p. 175].

However, it can be demonstrated that cavity radiation is

not universal, but depends on the nature of the cavity itself [8–

15]. As such, the proper equation governing cavity radiation

is hereby presented.

It is appropriate to begin this treatment by considering

Kirchhoff’s law [3, Eqs. 27, 42]:

ǫν

κν

= f (T, ν) , (1)

where f (T, ν) is the function presented by Max Planck [3, Eq.

300].∗ In order to avoid confusion, Eq. 1 can be expressed by

∗Note that Max Planck refers to ǫν as the “emissionskoeffizienten” [3,

§26], which M. Masius translates as the “coefficient of emission”. Today, the

emission coefficient is also known as the emissivity of a material. Unfortu-

nately, it is also referred to by the symbol ǫν and this can lead to unintended

errors in addressing the law of emission. In Eq. 1, dimentional analysis

(see [3, Eq. 300]) reveals that Max Planck is referring to the emissive power,

denoted by E, and not to emissivity, usually denoted by ǫν. Still, at other

points within “The Theory of Heat Radiation” (e.g. see §49) he utilizes the

using the currently accepted symbols for emissive power, E,

and absorptivity, κν:

Eν

κν

= f (T, ν) . (2)

As Eq. 1 was hypothesized to be applicable to all cavities,

we can adopt the limits of two extremes, namely the “perfect

absorber” and the “perfect reflector”.†

First, the condition under which Kirchhoff’s law is often

presented, the “perfectly absorbing” cavity, can be considered

(emissivity (ǫν)= 1, absorptivity (κν)= 1, reflectivity (ρν)= 0;

at the frequency of interest, ν). In setting κν to 1, it is apparent

that the mathematical form of the Eq. 1 remains valid. Sec-

ond, if a “perfectly reflecting” cavity is utilized (ǫν = 0, κν = 0,

ρν = 1), it is immediately observed that, in setting κν to 0, Eqs.

1 and 2 become undefined. Max Planck also recognized this

problem, but chose to ignore its consequences (see § 48, 49).

Yet, this simple mathematical test indicates that arbitrary cav-

ities cannot be black, as Kirchhoff’s law cannot be valid over

all conditions.

It is also possible to invoke Stewart’s law of thermal emis-

sion [16] which states that, under conditions of thermal equi-

librium, the emissivity and absorptivity are equal:

ǫν = κν . (3)

Therefore, Eq. 2 can be expressed as follows:

Eν = ǫν · f (T, ν) . (4)

Once again, this expression never states that all cavities

contain black radiation. Rather, at thermal equilibrium, cavi-

ties contain raditation which will be reduced in intensity from

the Planck function by an amount which manifests the lower

symbol, E, to refer to emissive power or “the radiation emitted”. To fur-

ther complicate the question, in his Eq. 27, Max Planck refers to κν as the

“absorptionskoeffizienten” which M. Masius translates at the “coefficient of

absorption”. In this case, dimentional analysis reveals that he is indeed refer-

ring to absortivity, κν, and not to the absorptive power, A, of the medium.
†Perfectly absorbing or reflecting cavities do not exist in nature.

Nonetheless, they are hypothesized to exist in mathematical treatments of

blackbody radiation (see [3]).
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emissivity of the material involved. It is evident that a lower

emissivity is tied to a higher reflectivity, but the effect of re-

flection has not been properly included in Kirchhoff’s law.

For any material, the sum of the emissivity and reflectivity

is always equal to 1. This constitutes another formulation of

Stewart’s law [10, 16] which can also be expressed in terms

of emissivity or absorptivity:

ǫν + ρν = κν + ρν = 1 . (5)

With simple rearrangement, it is well known that absorp-

tivity, κν, and emissivity, ǫν, can be expressed as:

ǫν = κν = 1 − ρν. (6)

As such, let us substitute these relations into Eq. 2:

Eν

(1 − ρν)
= f (T, ν) . (7)

With simple rearrangement, the law for arbitrary cavity

radiation under conditions of thermal equilibrium, arises:

Eν = f (T, ν) − ρν · f (T, ν) . (8)

This law is now properly dependent on the nature of the

cavity walls, because it includes the reflectivity observed in

real materials.

Note that this expression is well known. Planck, for in-

stance, presents it in a slightly modified form [3, § 49]. How-

ever, he choses to dismiss its consequences. Still, it is evident

that when a cavity is constructed from a material which is

“perfectly absorbing”, the second term in Eq. 8 makes no

contribution (ρν · f (T, ν) = 0) and the emissive power is sim-

ply determined by the Planck function. If the cavity walls

are “perfectly reflecting”, Eq. 8, unlike Eq. 1 and 2, does

not become undefined, but rather, equal to 0. For all other

situations, the radiation contained within a cavity will be de-

pendent on the manner in which the reflection term is driven.

This will be discussed seperately.

Dedication

This work is dedicated to our mothers on whose knees we

learn the most important lesson: love.
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und dem Absorptionsvermogen. der Körper fur Wärme und Licht.
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Gravitational Wave Experiments with Zener Diode Quantum Detectors:
Fractal Dynamical Space and Universe Expansion with Inflation Epoch

Reginald T. Cahill

School of Chemical and Physical Sciences, Flinders University, Adelaide 5001, Australia.

The discovery that the electron current fluctuations through Zener diode pn junctions in
reverse bias mode, which arise via quantum barrier tunnelling, are completely driven by
space fluctuations, has revolutionized the detection and characterization of gravitational
waves, which are space fluctuations, and also has revolutionized the interpretation of
probabilities in the quantum theory. Here we report new data from the very simple
and cheap table-top gravitational wave experiment using Zener diode detectors, and
reveal the implications for the nature of space and time, and for the quantum theory of
“matter”, and the emergence of the “classical world” as space-induced wave function
localization. The dynamical space possesses an intrinsic inflation epoch with associated
fractal turbulence: gravitational waves, perhaps as observed by the BICEP2 experiment
in the Antarctica.

1 Introduction
Physics, from the earliest days, has missed the existence of
space as a dynamical and structured process, and instead took
the path of assuming space to be a geometrical entity. This
failure was reinforced by the supposed failure of the earli-
est experiment designed to detect such structure by means of
light speed anisotropy: the 1887 Michelson-Morley experi-
ment [1]. Based upon this so-called “null” experiment the
geometrical modelling of space was extended to the space-
time geometrical model. However in 2002 [2, 3] it was dis-
covered that this experiment was never “null”: Michelson had
assumed Newtonian physics in calibrating the interferometer,
and a re-analysis of that calibration using neo-Lorentz relativ-
ity [4] revealed that the Newtonian calibration overestimated
the sensitivity of the detector by nearly a factor of 2000, and
the observational data actually indicated an anisotropy speed
up to ±550 km/s, depending of direction. The spacetime mo-
del of course required that there be no anisotropy [4]. The key
result of the neo-Lorentz relativity analysis was the discovery
that the Michelson interferometer had a design flaw that had
gone unrecognized until 2002, namely that the detector had
zero sensitivity to light speed anisotropy, unless operated with
a dielectric present in the light paths. Most of the more recent
“confirmations” of the putative null effect employed versions
of the Michelson interferometer in vacuum mode: vacuum
resonant cavities, such as [5].

The experimental detections of light speed anisotropy, via
a variety of experimental techniques over 125 years, shows
that light speed anisotropy detections were always associated
with significant turbulence/fluctuation wave effects [6,7]. Re-
peated experiments and observations are the hallmark of sci-
ence. These techniques included: gas-mode Michelson inter-
ferometers, RF EM Speeds in Coaxial Cable, Optical Fiber
Michelson Interferometer, Optical Fiber / RF Coaxial Cables,
Earth Spacecraft Flyby RF Doppler Shifts and 1st Order Dual
RF Coaxial Cables. These all use classical phenomena.

However in 2013 the first direct detection of flowing space
was made possible by the discovery of the Nanotechnology
Zener Diode Quantum Detector effect [8]. This uses wave-
form correlations between electron barrier quantum tunnel-
ling current fluctuations in spatially separated reverse-biased
Zener diodes: gravitational waves. The first experiments dis-
covered this effect in correlations between detectors in Aus-
tralia and the UK, which revealed the average anisotropy vec-
tor to be 512 km/s, RA=5.3 hrs, Dec=81◦S (direction of Earth
through space) on January 1, 2013, in excellent agreement
with earlier experiments, particularly the Spacecraft Earth-
Flyby RF Doppler Shifts [9].

Here we elaborate the very simple and cheap table-top
gravitational wave experiments using Zener diode detectors,
and reveal the implications for the nature of space and time,
and for the quantum theory of “matter”, and the emergence
of the “classical world” as space-induced wave function lo-
calization. As well we note the intrinsic inflation epoch of
the dynamical 3-space theory, which arises from the same
dynamical term responsible for bore hole g anomalies, flat
spiral galaxy rotation plots, black holes and cosmic filaments.
This reveals the emerging physics of a unified theory of space,
gravity and the quantum [10].

2 Quantum gravitational wave detectors

The Zener diode quantum detector for gravitational waves is
shown in Fig. 1. Experiments reveal that the electron cur-
rent fluctuations are solely caused by space fluctuations [8].
Fig. 5, top, shows the highly correlated currents of two almost
collocated Zener diodes. The usual interpretations of quan-
tum theory, see below, claim that these current fluctuations
should be completely random, and so uncorrelated, with the
randomness intrinsic to each diode. Hence the Zener diode
experiments falsifies that claim. With these correlations the
detector S/N ratio is then easily increased by using diodes
in parallel, as shown in Fig. 1. The source of the “noise” is,
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Fig. 1: Right: Circuit of Zener Diode Gravitational Wave Detector,
showing 1.5V AA battery, two 1N4728A Zener diodes operating in
reverse bias mode, and having a Zener voltage of 3.3V, and resistor
R= 10KΩ. Voltage V across resistor is measured and used to de-
termine the space driven fluctuating tunnelling current through the
Zener diodes. Correlated currents from two collocated detectors are
shown in Fig. 5. Left: Photo of detector with 5 Zener diodes in par-
allel. Increasing the number of diodes increases the S/N ratio, as
the V measuring device will produce some noise. Doing so demon-
strates that collocated diodes produce in-phase current fluctuations,
as shown in Fig. 5, top, contrary to the usual interpretation of proba-
bilities in quantum theory.

in part, space induced fluctuations in the DSO that measures
the very small voltages. When the two detectors are sepa-
rated by 25 cm, and with the detector axis aligned with the
South Celestial Pole, as shown in Fig. 4, the resulting current
fluctuations are shown in Fig. 5, bottom, revealing that the N
detector current fluctuations are delayed by ∼ 0.5 µs relative
to the S detector.

The travel time delay τ(t) was determined by computing
the correlation function between the two detector voltages

C(τ, t) =

∫ t+T

t−T
dt′ S 1(t′ − τ/2) S 2(t′ + τ/2) e−a(t′−t)2

. (1)

The fluctuations in Fig. 5 show considerable structure at the
µs time scale (higher frequencies have been filtered out by the
DSO). Such fluctuations are seen at all time scales, see [11],
and suggest that the passing space has a fractal structure, il-
lustrated in Fig. 7. The measurement of the speed of pass-
ing space is now elegantly and simply measured by this very
simple and cheap table-top experiment. As discussed below
those fluctuations in velocity are gravitational waves, but not
with the characteristics usually assumed, and not detected de-
spite enormous effects. At very low frequencies the data from
Zener diode detectors and from resonant bar detectors reveal
sharp resonant frequencies known from seismology to be the
same as the Earth vibration frequencies [12–14]. We shall
now explore the implications for quantum and space theories.

3 Zener diodes detect dynamical space

The generalized Schrödinger equation [15]

Fig. 2: Current-Voltage (IV) characteristics for a Zener Diode.
VZ = −3.3V is the Zener voltage, and VD ≈ −1.5V is the operating
voltage for the diode in Fig. 1. V > 0 is the forward bias region,
and V < 0 is the reverse bias region. The current near VD is very
small and occurs only because of wave function quantum tunnelling
through the potential barrier, as shown in Fig. 3.

i~
∂ψ(r, t)
∂t

= − ~
2

2m
∇2ψ(r, t) + V(r, t)ψ(r, t)−

− i~
(
u(r, t) ·∇ +

1
2
∇· v(r, t)

)
ψ(r, t)

(2)

models “quantum matter” as a purely wave phenomenon. He-
re u(r, t) is the velocity field describing the dynamical space
at a classical field level, and the coordinates r give the rela-
tive location of ψ(r, t) and u(r, t), relative to a Euclidean em-
bedding space, also used by an observer to locate structures.
At sufficiently small distance scales that embedding and the
velocity description is conjectured to be not possible, as then
the dynamical space requires an indeterminate dimension em-
bedding space, being possibly a quantum foam [10]. This
minimal generalization of the original Schrödinger equation
arises from the replacement ∂/∂t → ∂/∂t + u.∇, which en-
sures that the quantum system properties are determined by
the dynamical space, and not by the embedding coordinate
system, which is arbitrary. The same replacement is also to
be implemented in the original Maxwell equations, yielding
that the speed of light is constant only with respect to the lo-
cal dynamical space, as observed, and which results in lens-
ing from stars and black holes. The extra ∇ · u term in (2)
is required to make the hamiltonian in (2) hermitian. Essen-
tially the existence of the dynamical space in all theories has
been missing. The dynamical theory of space itself is briefly
reviewed below.

A significant effect follows from (2), namely the emer-
gence of gravity as a quantum effect: a wave packet analysis
shows that the acceleration of a wave packet, due to the space
terms alone (when V(r, t) = 0), given by g = d2<r>/dt2 [15]

g(r, t) =
∂u

∂t
+ (u ·∇) u. (3)

That derivation showed that the acceleration is independent
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Fig. 3: Top: Electron before tunnelling, in reverse biased Zener
diode, from valence band in doped p semiconductor, with hole states
available, to conduction band of doped n semiconductor. A and C re-
fer to anode and cathode labelling in Fig. 1. Ec is bottom of conduc-
tion bands, and Ev is top of valence bands. EF p and EFn are Fermi
levels. There are no states available in the depletion region. Middle:
Schematic for electron wave packet incident on idealized effective
interband barrier in a pn junction, with electrons tunnelling A to C,
appropriate to reverse bias operation. Bottom: Reflected and trans-
mitted wave packets after interaction with barrier. Energy of wave
packet is less than potential barrier height V0. The wave function
transmission fluctuations and collapse to one side or the other after
barrier tunnelling is now experimentally demonstrated to be caused
by passing space fluctuations.

of the mass m: whence we have the first derivation of the
Weak Equivalence Principle, discovered experimentally by
Galileo. The necessary coupling of quantum systems to the
fractal dynamical space also implies the generation of masses,
as now the waves are not propagating through a structureless
Euclidean geometrical space: this may provide a dynamical
mechanism for the Higgs phenomenology.

4 Quantum tunnelling fluctuations

It is possible to understand the space driven Zener diode rev-
erse-bias-mode current fluctuations. The operating voltage
and energy levels for the electrons at the pn junction are sho-
wn schematically in Figs.2 and 3. For simplicity consider
wave packet solutions to (2) applicable to the situation in
Fig. 3, using a complete set of plane waves,

ψ(r, t) =

∫
d3 k dωψ(k, ω) exp(ik·r − iωt). (4)

Then the space term contributes the term ~u·k to the equa-

Fig. 4: Zener diode gravitational wave detector, showing the two
detectors orientated towards south celestial pole, with a separation
of 50cm. The data reported herein used a 25cm separation. The
DSO is a LeCroy Waverunner 6000A. The monitor is for lecture
demonstrations of gravitational wave measurements of speed and
direction, from time delay of waveforms from S to N detectors.

tions for ψ(k, ω), assuming we can approximate u(r, t) by a
constant over a short distance and interval of time. Here
k are wave numbers appropriate to the electrons. However
the same analysis should also be applied to the diode, con-
sidered as a single massive quantum system, giving an en-
ergy shift ~u·K, where K is the much larger wavenumber
for the diode. Effectively then the major effect of space is
that the barrier potential energy is shifted: V0 → V0 + ~u·K.
This then changes the barrier quantum tunnelling amplitude,
T (V0 − E) → T (V0 + ~u·K − E), where E is the energy of
the electron, and this amplitude will then be very sensitive to
fluctuations in u.

Quantum theory accurately predicts the transition ampli-
tude T (V0−E), with |T |2i giving the average electron current,
where i is the incident current at the pn junction. However
quantum theory contains no randomness or probabilities: the
original Schrödinger equation is purely deterministic: proba-
bilities arise solely from ad hoc interpretations, and these as-
sert that the actual current fluctuations are purely random, and
intrinsic to each quantum system, here each diode. However
the experimental data shows that these current fluctuations
are completely determined by the fluctuations in the passing
space, as demonstrated by the time delay effect, herein at the
µs time scale and in [8] at the 10-20 sec scale. Hence the
Zener diode effect represents a major discovery regarding the
so called interpretations of quantum theory.

5 Alpha decay rate fluctuations

Shnoll [16] discovered that the α decay rate of 239Pu is not
completely random, as it has discrete preferred values. The
same effect is seen in the histogram analysis of Zener diode
tunnelling rates [18]. This α decay process is another exam-
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Fig. 5: Top: Current fluctuations from two collocated Zener diode
detectors, as shown in Fig. 1, separated by 3-4 cm in EW direction
due to box size, revealing strong correlations. The small separation
may explain slight differences, revealing a structure to space at very
small distances. Bottom: Example of Zener diode current fluctua-
tions (nA), about a mean of ∼3.5 µA, when detectors separated by
25cm, and aligned in direction RA=5hrs, Dec=-80◦, with southerly
detector signal delayed in DSO by 0.48 µs, and then showing strong
correlations with northerly detector signal. This time delay effect
reveals space traveling from S to N at a speed of approximately
476km/s, from maximum of correlation function C(τ, t), with time
delay τ expressed as a speed. Data has been smoothed by FFT fil-
tering to remove high and low frequency components. Fig. 6, top,
shows fluctuations in measured speed over a 15 sec interval.

ple of quantum tunnelling: here the tunnelling of the α wave
packet through the potential energy barrier arising from the
Coulomb repulsion between the α “particle” and the residual
nucleus, as first explained by Gamow in 1928 [17]. The anal-
ysis above for the Zener diode also applies to this decay pro-
cess: the major effect is the changing barrier height produced
by space velocity fluctuations that affect the nucleus energy
more than it affects the α energy. Shnoll also reported corre-
lations between decay rate fluctuations measured at different
locations. However the time resolution was ∼60 sec, and so
no speed and direction for the underlying space velocity was
determined. It is predicted that α decay fluctuation rates with
a time resolution of ∼1 sec would show the time delay effect
for experiments well separated geographically.

6 Reinterpretation of quantum theory

The experimental data herein clearly implies a need for a rein-
terpretation of quantum theory, as it has always lacked the

Fig. 6: Average projected speed, and projected speed every 5 sec,
on February 28, 2014 at 12:20 hrs UTC, giving average speed = 476
± 44 (RMS) km/s, from approximately S → N. The speeds are ef-
fective projected speeds, and so do not distinguish between actual
speed and direction effect changes. The projected speed = (actual
speed)/cos[a], where a is the angle between the space velocity and
the direction defined by the two detectors, and cannot be immedi-
ately determined with only two detectors. However by varying di-
rection of detector axis, and searching for maximum time delay, the
average direction (RA and Dec) may be determined. As in previous
experiments there are considerable fluctuations at all time scales, in-
dicating a fractal structure to space.

dynamical effects of the fractal space: it only ever referred
to the Euclidean static embedding space, which merely pro-
vides a position labelling. However the interpretation of the
quantum theory has always been problematic and varied. The
main problem is that the original Schrödinger equation does
not describe the localization of quantum matter when mea-
sured, e.g. the formation of spots on photographic films in
double slit experiments. From the beginning of quantum the-
ory a metaphysical addendum was created, as in the Born
interpretation, namely that there exists an almost point-like
“particle”, and that |ψ(r, t)|2 gives the probability density for
the location of that particle, whether or not a measurement of
position has taken place. This is a dualistic interpretation of
the quantum theory: there exists a “wave function” as well
as a “particle”, and that the probability of a detection event is
completely internal to a particular quantum system. So there
should be no correlations between detection events for differ-
ent systems, contrary to the experiments reported here. To
see the failure of the Born and other interpretations consider
the situation shown in Fig. 3. In the top figure the electron
state is a wave packet ψ1(r, t), partially localized to the left
of a potential barrier. After the barrier tunnelling the wave
function has evolved to the superposition ψ2(r, t) + ψ3(r, t):
a reflected and transmitted component. The probability of
the electron being detected to the LHS is ||ψ2(r, t)||2, and to
the RHS is ||ψ3(r, t)||2, the respective squared norms. These
values do indeed predict the observed average reflected and
transmitted electron currents, but make no prediction about
the fluctuations that lead to these observed averages. As well,
in the Born interpretation there is no mention of a collapse of
the wave function to one of the states in the linear combina-

134 Reginald T. Cahill. Gravitational Wave Experiments with Zener Diode Quantum Detectors



Issue 3 (July) PROGRESS IN PHYSICS Volume 10 (2014)

Fig. 7: Representation of the fractal wave data as revealing the
fractal textured structure of the 3-space, with cells of space having
slightly different velocities and continually changing, and moving
wrt the Earth with a speed of ∼500 km/s.

tion, as a single location outcome is in the metaphysics of the
interpretation, and not in any physical process.

This localization process has never been satisfactorily ex-
plained, namely that when a quantum system, such as an elec-
tron, in a de-localized state, interacts with a detector, i.e. a
system in a metastable state, the electron would put the com-
bined system into a de-localized state, which is then observed
to localize: the detector responds with an event at one loca-
tion, but for which the quantum theory can only provide the
expected average distribution, |ψ(r, t)|2, and is unable to pre-
dict fluctuation details. In [10] it was conjectured that the de-
localized electron-detector state is localized by the interaction
with the dynamical space, and that the fluctuation details are
produced by the space fluctuations, as we see in Zener diode
electron tunnelling and α decay tunnelling. Percival [19] has
produced detailed models of this wave function collapse pro-
cess, which involved an intrinsic randomness, and which in-
volves yet another dynamical term being added to the original
Schrödinger equation. It is possible that this randomness may
also be the consequence of space fluctuations.

The space driven localization of quantum states could gi-
ve rise to our experienced classical world, in which macro-
scopic “matter” is not seen in de-localized states. It was the
inability to explain this localization process that gave rise to
the Copenhagen and numerous other interpretations of the
original quantum theory, and in particular the dualistic model
of wave functions and almost point-like localized “particles”.

7 Dynamical 3-space

If Michelson and Morley had more carefully presented their
pioneering data, physics would have developed in a very dif-
ferent direction. Even by 1925/26 Miller, a junior colleague
of Michelson, was repeating the gas-mode interferometer ex-
periment, and by not using Newtonian mechanics to attempt a
calibration of the device, rather by using the Earth aberration
effect which utilized the Earth orbital speed of 30 km/s to set

the calibration constant, although that also entailed false as-
sumptions. The experimental data reveals the existence of a
dynamical space. It is a simple matter to arrive at the dynam-
ical theory of space, and the emergence of gravity as a quan-
tum matter effect as noted above. The key insight is to note
that the emergent matter acceleration in (3), ∂u/∂t + (u ·∇) u,
is the constituent Euler acceleration a(r, t) of space

a(r, t) = lim
∆t→0

u(r + u(r, t)∆t, t + ∆t) − u(r, t)
∆t

=
∂u

∂t
+ (u ·∇) u

(5)

which describes the acceleration of a constituent element of
space by tracking its change in velocity. This means that
space has a structure that permits its velocity to be defined
and detected, which experimentally has been done. This then
suggests that the simplest dynamical equation for u(r, t) is

∇ ·
(
∂u

∂t
+ (u·∇) u

)
= −4πG ρ(r, t);

∇ × u = 0
(6)

because it then gives ∇ · g = −4πG ρ(r, t); ∇ × g = 0, which
is Newton’s inverse square law of gravity in differential form.
Hence the fundamental insight is that Newton’s gravitational
acceleration field g(r, t) is really the acceleration field a(r, t)
of the structured dynamical space∗, and that quantum matter
acquires that acceleration because it is fundamentally a wave
effect, and the wave is refracted by the accelerations of space.

While the above lead to the simplest 3-space dynamical
equation this derivation is not complete yet. One can add ad-
ditional terms with the same order in speed spatial derivatives,
and which cannot be a priori neglected. There are two such
terms, as in

∇ ·
(
∂u

∂t
+ (u·∇) u

)
+

5α
4

(
(trD)2 − tr(D2)

)
+. . . = −4πG ρ (7)

where Di j = ∂vi/∂x j. However to preserve the inverse square
law external to a sphere of matter the two terms must have
coefficients α and −α, as shown. Here α is a dimensionless
space self-interaction coupling constant, which experimental
data reveals to be, approximately, the fine structure constant,
α = e2/~c [21]. The ellipsis denotes higher order derivative
terms with dimensioned coupling constants, which come into
play when the flow speed changes rapidly with respect to dis-
tance. The observed dynamics of stars and gas clouds near
the centre of the Milky Way galaxy has revealed the need for
such a term [22], and we find that the space dynamics then
requires an extra term:

∇ ·
(
∂u

∂t
+ (u·∇) u

)
+

5α
4

(
(trD)2 − tr(D2)

)
+

∗With vorticity ∇ × u , 0 and relativistic effects, the acceleration of
matter becomes different from the acceleration of space [10].
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+ δ2 ∇2
(
(trD)2 − tr(D2)

)
+ . . . = −4πG ρ (8)

where δ has the dimensions of length, and appears to be a very
small Planck-like length, [22]. This then gives us the dynam-
ical theory of 3-space. It can be thought of as arising via a
derivative expansion from a deeper theory, such as a quantum
foam theory [10]. Note that the equation does not involve c,
is non-linear and time-dependent, and involves non-local di-
rect interactions. Its success implies that the universe is more
connected than previously thought. Even in the absence of
matter there can be time-dependent flows of space.

Note that the dynamical space equation, apart from the
short distance effect - the δ term, there is no scale factor, and
hence a scale free structure to space is to be expected, namely
a fractal space. That dynamical equation has back hole and
cosmic filament solutions [21,22], which are non-singular be-
cause of the effect of the δ term. At large distance scales it
appears that a homogeneous space is dynamically unstable
and undergoes dynamical breakdown of symmetry to form a
spatial network of black holes and filaments [21], to which
matter is attracted and coalesces into gas clouds, stars and
galaxies.

We can write (8) in non-linear integral-differential form

∂u
∂t

= − (∇u)2

2
+ G

∫
d3r′

ρ(r′, t) + ρDM(u(r′, t))
|r − r′| (9)

on satisfying ∇ × u = 0 by writing u = ∇u. Effects on the
Gravity Probe B (GPB) gyroscope precessions caused by a
non-zero vorticity were considered in [24]. Here ρDM is an
effective “dark density” induced by the 3-space dynamics, but
which is not any form of actual matter,

ρDM(u(r, t)) =
1

4πG


5α
4

(
(trD)2 − tr(D2)

)
+

+ δ2 ∇2
(
(trD)2 − tr(D2)

) .
(10)

8 Universe expansion and inflation epoch

Even in the absence of matter (6) has an expanding universe
solution. Substituting the Hubble form u(r, t) = H(t)r, and
then using H(t) = ȧ(t)/a(t), where a(t) is the scale factor of
the universe for a homogeneous and isotropic expansion, we
obtain the exact solution a(t) = t/t0, where t0 is the age of
the universe, since by convention a(t0) = 1. Then comput-
ing the magnitude-redshift function µ(z), we obtain excellent
agreement with the supernova data, and without the need for
‘dark matter’ nor ‘dark energy’ [20]. However using the ex-
tended dynamics in (8) we obtain a(t) = (t/t0)1/(1+5α/2) for a
homogeneous and isotropic expansion, which has a singular-
ity at t = 0, giving rise to an inflationary epoch. Fig. 8 shows
a plot of da(t)/dt, which more clearly shows the inflation.
However in general this space expansion will be turbulent:

Fig. 8: Plot of da(t)/dt, the rate of expansion, showing the inflation
epoch. Age of universe is t0 ≈ 14 ∗ 109 years. On time axis 0.01 ×
10−100t0 = 4.4 × 10−83 secs. This inflation epoch is intrinsic to the
dynamical 3-space.

gravitational waves, perhaps as seen by the BICEP2 exper-
iment in the Antarctica. Such turbulence will result in the
creation of matter. This inflation epoch is an ad hoc addition
to the standard model of cosmology [26]. Here it is intrinsic
to the dynamics in (8) and is directly related to the bore hole g
anomaly, black holes without matter infall, cosmic filaments,
flat spiral galaxy rotation curves, light lensing by black holes,
and other effects, all without the need for “dark matter”.

9 Zener diodes and REG devices

REGs, Random Event Generators, use current fluctuations in
Zener diodes in reverse bias mode, to supposedly generate
random numbers, and are used in the GCP network. How-
ever the outputs, as shown in [8], are not random. GCP data
is available from http://teilhard.global-mind.org/. This data
extends back some 15 years and represents an invaluable re-
source for the study of gravitational waves, and their vari-
ous effects, such as solar flares, coronal mass ejections, earth-
quakes, eclipse effects, moon phase effects, non-Poisson fluc-
tuations in radioactivity [16], and variations in radioactive de-
cay rates related to distance of the Earth from the Sun [23],
as the 3-space fluctuations are enhanced by proximity to the
Sun.

10 Earth scattering effect

In [8] correlated waveforms from Zener diode detectors in
Perth and London were used to determine the speed and di-
rection of gravitational waves, and detected an Earth scat-
tering effect: the effective speed is larger when the 3-space
path passes deeper into the Earth, Fig. 9. Eqn. (9) displays
two kinds of waveform effects: disturbances from the first
part, ∂u/∂t = −(∇u)2/2; and then matter density and the
“dark matter” density effects when the second term is in-
cluded. These later effects are instantaneous, indicating in
this theory, that the universe (space) is highly non-locally
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Fig. 9: Travel times from Zener Diode detectors (REG-REG) Perth-
London from correlation delay time analysis, from [8]. The data in
each 1 hr interval has been binned, and the average and rms shown.
The thick (red line) shows best fit to data using plane wave travel
time predictor, see [8], but after excluding those data points between
10 and 15hrs UTC, indicated by vertical band. Those data points are
not consistent with the plane wave fixed average speed modelling,
and suggest a scattering process when the waves pass deeper into
the Earth, see [8]. This Perth-London data gives space velocity: 528
km/s, from direction RA = 5.3 hrs, Dec = 81◦S. The broad band
tracking the best fit line is for +/- 1 sec fluctuations, corresponding to
speed fluctuation of +/- 17km/s. Actual fluctuations are larger than
this, as 1st observed by Michelson-Morley in 1887 and by Miller in
1925/26.

connected, see [10], and combine in a non-linear manner with
local disturbances that propagate at the speed of space. The
matter density term is of course responsive for conventional
Newtonian gravity theory.

However because these terms cross modulate the “dark
matter” density space turbulence can manifest, in part, as a
speed-up effect, as in the data in Fig. 9. Hence it is conjec-
tured that the Earth scattering effect, manifest in the data, af-
fords a means to study the dynamics arising from (10). That
dynamics has already been confirmed in the non-singular spa-
ce inflow black holes and the non-singular cosmic filaments
effects, which are exact analytic solutions to (8) or (9). Indeed
by using data from suitably located Zener diode detectors, for
which the detected space flow passes through the centre of the
Earth, we could be able to study the black hole located there,
i.e. to perform black hole scattering experiments.

11 Gravitational waves as space flow turbulence

In the dynamical 3-space theory gravity is an emergent quan-
tum effect, see (3), being the quantum wave response to time
varying and inhomogeneous velocity fields. This has been
confirmed by experiment. In [12] it was shown that Zener
diodes detected the same signal as resonant bar gravitational
wave detectors in Rome and Frascati in 1981. These detectors

respond to the induced g(r, t), via (3), while the Zener diode
detectors respond directly to u(r, t). As well the Zener diode
data has revealed the detection of deep Earth core vibration
resonances known from seismology, but requiring supercon-
ductor seismometers. The first publicized coincidence detec-
tion of gravitational waves by resonant bar detectors was by
Weber in 1969, with detectors located in Argonne and Mary-
land. These results were criticized on a number of spurious
grounds, all being along the lines that the data was inconsis-
tent with the predictions of General Relativity, which indeed
it is, see Collins [27]. However in [7] it was shown that We-
ber’s data is in agreement with the speed and direction of the
measured space flow velocity. Data collected in the exper-
iments reported in [8] revealed that significant fluctuations
in the velocity field were followed some days later by so-
lar flares, suggesting that these fluctuations, via the induced
g(r, t), were causing solar dynamical instabilities. This sug-
gests that the very simple Zener diode detection effect may
be used to predict solar flares. As well Nelson and Ban-
cel [25] report that Zener diode detectors (REGs) have repeat-
edly detected earthquakes. The mechanism would appear to
be explained by (9) in which fluctuations in the matter density
ρ(r, t) induce fluctuations in u(r, t), but with the important ob-
servation that this field decreases like 1/

√
r, unlike the g field

which decreases like 1/r2. So in all of the above examples
we see the link between time dependent gravitational forces
and the fluctuations of the 3-space velocity field. A possi-
bility for future experiments is to determine if the incredibly
sensitive Zener diode detector effect can directly detect pri-
mordial gravitational waves from the inflation epoch, 3-space
turbulence, as a background to the local galactic 3-space flow
effects.

12 Conclusions

We have reported refined direct quantum detection of 3-space
turbulence: gravitational waves, using electron current fluc-
tuations in reverse bias mode Zener diodes, separated by a
mere 25cm, that permitted the absolute determination of the
3-space velocity of some 500 km/s, in agreement with the
speed and direction from a number of previous analyzes that
involved light speed anisotropy, including in particular the
NASA spacecraft Earth-flyby Doppler shift effect, and the
first such Zener diode direct detections of space flow using
correlations between Perth and London detectors in 2013.
The experimental results reveal the nature of the dominant
gravitational wave effects; they are caused by turbulence /

fluctuations in the passing dynamical space, a space miss-
ing from physics theories, until its recent discovery. This
dynamical space explains bore hole anomalies, black holes
without matter infall, cosmic filaments and the cosmic net-
work, spiral galaxy flat rotation curves, universe expansion in
agreement with supernova data, and all without dark matter
nor dark energy, and a universe inflation epoch, accompanied
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by gravitational waves. Quantum tunnelling fluctuations have
been shown to be non-random, in the sense that they are com-
pletely induced by fluctuations in the passing space. It is also
suggested that the localization of massive quantum systems is
caused by fluctuations in space, and so generating our classi-
cal world of localized objects, but which are essentially wave
phenomena at the microlevel. There is then no need to in-
voke any of the usual interpretations of the quantum theory,
all of which failed to take account of the existence of the dy-
namical space. Present day physics employs an embedding
space, whose sole function is to label positions in the dynam-
ical space. This [3]-dimensional embedding in a geometrical
space, while being non-dynamical, is nevertheless a property
of the dynamical space at some scales. However the dynami-
cal space at very small scales is conjectured not to be embed-
dable in a [3]-geometry, as discussed in [10].
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Chromes of quarks are changed under the Cartesian turns. And the Lorentz’s trans-

formations change chromes and grades of quarks. Baryons represent one of ways of

elimination of these noninvariancy.

Introduction

According to the quark model [1], the properties of

hadrons are primarily determined by their so-called valence

quarks. For example, a proton is composed of two up quarks

and one down quark. Although quarks also carry color

charge, hadrons must have zero total color charge because

of a phenomenon called color confinement. That is, hadrons

must be “colorless” or “white”. These are the simplest of the

two ways: three quarks of different colors, or a quark of one

color and an antiquark carrying the corresponding anticolor.

Hadrons with the first arrangement are called baryons, and

those with the second arrangement are mesons.

1 Cartesian rotation

Let α be any real number and

x′0 := x0,

x′1 := x1 cos (α) − x2 sin (α) ;

x′2 := x1 sin (α) + x2 cos (α) ; (1)

x′3 := x3;

Since jA is a 3+1-vector then from [2, p. 59]:

j′A,0 = −ϕ†β[0]ϕ,

j′A,1 = −ϕ†
(
β[1] cos (α) − β[2] sin (α)

)
ϕ; (2)

j′A,2 = −ϕ†
(
β[1] sin (α) + β[2] cos (α)

)
ϕ;

j′A,3 = −ϕ†β[3]ϕ.

Hence if for ϕ′:

j′
A,0
= −ϕ′†β[0]ϕ′,

j′
A,1
= −ϕ′†β[1]ϕ′;

j′
A,2
= −ϕ′†β[2]ϕ′;

j′
A,3
= −ϕ′†β[3]ϕ′,

and

ϕ′ := U1,2 (α) ϕ

then

U
†
1,2

(α) β[0]U1,2 (α) = β[0],

U
†
1,2

(α) β[1]U1,2 (α) = β[1] cosα − β[2] sinα;

U
†
1,2

(α) β[2]U1,2 (α) = β[2] cosα + β[1] sinα; (3)

U
†
1,2

(α) β[3]U1,2 (α) = β[3];

from [2, p. 62]: because

ρA = ϕ
†ϕ = ϕ′†ϕ′,

then

U
†
1,2

(α) U1,2 (α) = 14. (4)

If

U1,2 (α) := cos
α

2
· 14 − sin

α

2
· β[1]β[2]

i.e.:

U1,2 (α) =



e−i 1
2
α 0 0 0

0 ei 1
2
α 0 0

0 0 e−i 1
2
α 0

0 0 0 ei 1
2
α


(5)

then U1,2 (α) fulfils to all these conditions (3), (4).

Then let

x′0 := x0,

x′1 := x1 cos (α) − x3 sin (α) ,

x′2 := x2, (6)

x′3 := x1 sin (α) + x3 cos (α) .

Let

U1,3 (α) := cos
α

2
· 14 − sin

α

2
· β[1]β[3].

In this case:

U1,3 (α) =



cos 1
2
α sin 1

2
α 0 0

− sin 1
2
α cos 1

2
α 0 0

0 0 cos 1
2
α sin 1

2
α

0 0 − sin 1
2
α cos 1

2
α


(7)

and

U
†
1,3

(α) β[0]U1,3 (α) = β[0],

U
†
1,3

(α) β[1]U1,3 (α) = β[1] cosα − β[3] sinα, (8)

U
†
1,3

(α) β[2]U1,3 (α) = β[2],

U
†
1,3

(α) β[3]U1,3 (α) = β[3] cosα + β[1] sinα.

If

ϕ′ := U1,3 (α)ϕ
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and

j′A,k := ϕ′†β[k]ϕ′

where (k ∈ {0, 1, 2, 3}) then

j′A,0 = jA,0, (9)

j′A,1 = jA,1 cosα − jA,3 sinα, (10)

j′A,2 = jA,2,

j′A,3 = jA,3 cosα + jA,1 sinα.

Then let

x′0 := x0,

x′1 := x1,

x′2 = cosα · x2 + sinα · x3, (11)

x′3 = cosα · x3 − sinα · x2.

Let

U3,2 (α) = cos
α

2
· 14 − sin

α

2
· β[3]β[2]

In this case:

U3,2 (α) =



cos 1
2
α i sin 1

2
α 0 0

i sin 1
2
α cos 1

2
α 0 0

0 0 cos 1
2
α i sin 1

2
α

0 0 i sin 1
2
α cos 1

2
α


, (12)

and

U
†
3,2

(α) β[0]U3,2 (α) = β[0],

U
†
3,2

(α) β[1]U3,2 (α) = β[1],

U
†
3,2

(α) β[0]U3,2 (α) = β[0] cosα + β[3] sinα, (13)

U
†
3,2

(α) β[3]U3,2 (α) = β[3] cosα − β[2] sinα

If

ϕ′ := U3,2 (α) ϕ

and

j′A,k := ϕ′†β[k]ϕ′

where (k ∈ {0, 1, 2, 3}) then

j′A,0 = jA,0,

j′A,1 = jA,1, (14)

j′A,2 = jA,2 cosα + jA,3 sinα,

j′A,3 = jA,3 cosα − jA,1 sinα.

2 Lorentzian rotation

Let v be any real number such that −1 < v < 1.

And let:

α :=
1

2
ln

1 − v
1 + v

.

In this case:

coshα =
1

√
1 − v2

,

sinhα = − v
√

1 − v2
. (15)

Let

x′0 := x0 coshα − x1 sinhα, (16)

x′1 := x1 coshα − x0 sinhα,

x′2 := x2,

x′3 := x3.

Let

U1,0 (α) = cosh
α

2
· 14 − sinh

α

2
· β[1]β[0].

That is:

U1,0 (α) :=



cosh 1
2
α sinh 1

2
α 0 0

sinh 1
2
α cosh 1

2
α 0 0

0 0 cosh 1
2
α − sinh 1

2
α

0 0 − sinh 1
2
α cosh 1

2
α



. (17)

In this case:

U
†
1,0

(α) β[0]U1,0 (α) = β[0] coshα − β[1] sinhα, (18)

U
†
1,0

(α) β[1]U1,0 (α) = β[1] coshα − β[0] sinhα,

U
†
1,0

(α) β[2]U1,0 (α) = β[2],

U
†
1,0

(α) β[3]U1,0 (α) = β[3].

If

ϕ′ := U1,0 (α)ϕ

and

j′A,k := ϕ′†β[k]ϕ′

where (k ∈ {0, 1, 2, 3}) then

j′A,0 = jA,0 coshα − jA,1 sinhα, (19)

j′A,1 = jA,1 coshα − jA,0 sinhα,

j′A,2 = jA,2,

j′A,3 = jA,3.

Then let

x′0 := x0 coshα − x2 sinhα, (20)

x′1 := x1,

x′2 := x2 coshα − x0 sinhα,

x′3 := x3.
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Let

U2,0 (α) := cosh
α

2
· 14 − sinh

α

2
· β[2]β[0]. (21)

That is:

U2,0 (α) =



cosh 1
2
α −i sinh 1

2
α 0 0

i sinh 1
2
α cosh 1

2
α 0 0

0 0 cosh 1
2
α i sinh 1

2
α

0 0 −i sinh 1
2
α cosh 1

2
α



.

In this case:

U
†
2,0

(α) β[0]U2,0 (α) = β[0] coshα − β[2] sinhα, (22)

U
†
2,0

(α) β[1]U1,0 (α) = β[1],

U
†
2,0

(α) β[2]U1,0 (α) = β[2] coshα − β[0] sinhα,

U
†
2,0

(α) β[3]U2,0 (α) = β[3].

If

ϕ′ := U2,0 (α) ϕ

and

j′A,k := ϕ′†β[k]ϕ′

where (k ∈ {0, 1, 2, 3}) then

j′A,0 = jA,0 coshα − jA,1 sinhα, (23)

j′A,1 = jA,1,

j′A,2 = jA,2 coshα − jA,0 sinhα,

j′A,3 = jA,3.

Then let

x′0 := x0 coshα − x3 sinhα, (24)

x′1 := x1,

x′2 := x2,

x′3 := x3 coshα − x0 sinhα.

Let

U3,0 (α) := cosh
α

2
· 14 − sinh

α

2
· β[3]β[0].

That is:

U3,0 (α) =



e
1
2
α 0 0 0

0 e−
1
2
α 0 0

0 0 e−
1
2
α 0

0 0 0 e
1
2
α


. (25)

In this case:

U
†
3,0

(α) β[0]U3,0 (α) = β[0] coshα − β[3] sinhα, (26)

U3,0 (α) β[1]U3,0 (α) = β[1],

U3,0 (α) β[2]U3,0 (α) = β[2],

U3,0 (α) β[3]U3,0 (α) = β[3] coshα − β[0] sinhα.

If

ϕ′ := U3,0 (α)ϕ

and

j′A,k := ϕ′†β[k]ϕ′

where (k ∈ {0, 1, 2, 3}) then

j′A,0 = jA,0 coshα − jA,3 sinhα, (27)

j′A,1 = jA,1,

j′A,2 = jA,2.

j′A,3 = jA,3 coshα − jA,0 sinhα.

3 Equation of motion

Function ϕ submits to the following equation [2, p. 82]:

1
c
∂tϕ −

(
iΘ0β

[0] + iΥ0β
[0]γ[5]

)
ϕ =

=

(
3∑
ν=1

β[ν]
(
∂ν + iΘν + iΥνγ

[5]
)
+

+iM0γ
[0] + iM4β

[4]−
−iMζ,0γ

[0]

ζ
+ iMζ,4ζ

[4]−
−iMη,0γ

[0]
η − iMη,4η

[4]+

+iMθ,0γ
[0]

θ
+ iMθ,4θ

[4]

)
ϕ.

That is:
(

3∑
ν=0

β[ν]
(
∂ν + iΘν + iΥνγ

[5]
)
+

+iM0γ
[0] + iM4β

[4]−
−iMζ,0γ

[0]

ζ
+ iMζ,4ζ

[4]−
−iMη,0γ

[0]
η − iMη,4η

[4]+

+iMθ,0γ
[0]

θ
+ iMθ,4θ

[4]

)
ϕ = 0.

(28)

Like coordinates x5 and x4 [2, p. 83] here are entered new

coordinates yβ, zβ, yζ , zζ , yη, zη, yθ, zθ such that

−πc
h
≤ yβ ≤ πc

h
, − πc

h
≤ zβ ≤ πc

h
,

−πc
h
≤ yζ ≤ πc

h
, − πc

h
≤ zζ ≤ πc

h
,

−πc
h
≤ yη ≤ πc

h
, − πc

h
≤ zη ≤ πc

h
,

−πc
h
≤ yθ ≤ πc

h
, − πc

h
≤ zθ ≤ πc

h
.

and like ϕ̃, [2, p. 83] let:

[
ϕ
] (

t, x, yβ, zβ, yζ , zζ , yη, zη, yθ, zθ
)

:= (29)

:= ϕ (t, x) × exp
(
i(yβM0 + zβM4 + y

ζMζ,0 + zζMζ,4 +

+yηMη,0 + zηMη,4 + y
θMθ,0 + zθMθ,4)

)
.
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In this case if
([
ϕ
]
,
[
χ
])

:=

:=

∫ πc
h

− πc
h

dyβ
∫ πc

h

− πc
h

dzβ
∫ πc

h

− πc
h

dyζ
∫ πc

h

− πc
h

dzζ×

×
∫ πc

h

− πc
h

dyη
∫ πc

h

− πc
h

dzη
∫ πc

h

− πc
h

dyθ
∫ πc

h

− πc
h

dzθ×

×
[
ϕ
]† [
χ
]

(30)

then
([
ϕ
]
,
[
ϕ
])
= ρA, (31)

([
ϕ
]
, β[s] [ϕ]

)
= −

jA,k

c
,

and in this case from (28):
(

3∑
ν=0

β[ν]
(
∂ν + iΘν + iΥνγ

[5]
)
+

+γ[0]∂
β
y + β

[4]∂
β
z−

−γ[0]

ζ
∂
ζ
y + ζ

[4]∂
ζ
z−

−γ[0]
η ∂
η
y − η[4]∂

η
z+

+γ
[0]
θ
∂θy + θ

[4]∂θz

) [
ϕ
]
= 0.

(32)

Because

γ
[0]
η =



0 0 0 i

0 0 −i 0

0 i 0 0

−i 0 0 0


, η[4] = i



0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0


; (33)

γ
[0]
θ
=



0 0 −1 0

0 0 0 1

−1 0 0 0

0 1 0 0


, θ[4] = i



0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0


; (34)

γ
[0]
ζ
=



0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0


, ζ[4] = i



0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


; (35)

then from (32):

3∑
ν=0

β[ν]
(
∂ν + iΘν + iΥνγ

[5]
) [
ϕ
]
+

+γ[0]∂
β
y

[
ϕ
]
+ β[4]∂

β
z

[
ϕ
]
+

+





0 0 −∂θy ∂
ζ
y − i∂

η
y

0 0 ∂
ζ
y + i∂

η
y ∂θy

−∂θy ∂
ζ
y − i∂

η
y 0 0

∂
ζ
y + i∂

η
y ∂θy 0 0


+

i



0 0 ∂θz ∂
ζ
z + i∂

η
z

0 0 ∂
ζ
z − i∂

η
z −∂θz

−∂θz −∂ζz − i∂
η
z 0 0

−∂ζz + i∂
η
z ∂θz 0 0





×
[
ϕ
]
= 0.

(36)

Let a Fourier transformation of

[
ϕ
] (

t, x, yβ, zβ, yζ , zζ , yη, zη, yθ, zθ
)

be the following;

[
ϕ
] (

t, x, yβ, zβ, yζ , zζ , yη, zη, yθ, zθ
)
=

=
∑

w,p1,p2,p3,nβ,sβ,nζ ,sζ ,nη ,sη,nθ ,sθ

c(w, p1, p2, p3, n
β, sβ,

nζ , sζ , nη, sη, nθ, sθ) ×

× exp

(
− i

h

c
(wx0 + p1x1 + p2x2 + p3x3 + (37)

+nβyβ + sβzβ + nζyζ + sζzζ +

+nηyη + sηzη + nθyθ + sθzθ)

)
.

Let in (36) Θν = 0 and Υν = 0.

Let us design:

G0 :=

(
3∑
ν=0

β[ν]∂ν + γ
[0]∂
β
y + β

[4]∂
β
z−

−γ[0]

ζ
∂
ζ
y + ζ

[4]∂
ζ
z−

−γ[0]
η ∂
η
y − η[4]∂

η
z+

+γ
[0]
θ
∂θy + θ

[4]∂θz

)
.

(38)

that is:

G0 =


−∂0 + ∂3 ∂1 − i∂2 ∂
β
y − ∂θy ∂

ζ
y − i∂

η
y

∂1 + i∂2 −∂0 − ∂3 ∂
ζ
y + i∂

η
y ∂

β
y + ∂

θ
y

∂
β
y − ∂θy ∂

ζ
y − i∂

η
y −∂0 − ∂3 −∂1 + i∂2

∂
ζ
y + i∂

η
y ∂

β
y + ∂

θ
y −∂1 − i∂2 −∂0 + ∂3



+i



0 0 ∂
β
z + ∂

θ
z ∂

ζ
z + i∂

η
z

0 0 ∂
ζ
z − i∂

η
z ∂

β
z − ∂θz

−∂βz − ∂θz −∂ζz − i∂
η
z 0 0

−∂ζz + i∂
η
z −∂βz + ∂θz 0 0



(39)

G0

[
ϕ
]
= −i

h

c

∑

w,p1,p2,p3,nβ,sβ,nζ ,sζ ,nη,sη,nθ ,sθ

ǧ(w,

p1, p2, p3, n
β, sβ, nζ , sζ , nη, sη, nθ, sθ)

3∑

k=0

ck(w, p1, p2, p3, n
β, sβ, nζ , sζ , nη, sη, nθ, sθ) ×

× exp

(
− i

h

c
(wx0 + p1x1 + p2x2 + p3x3 + (40)

+nβyβ + sβzβ + nζyζ + sζzζ +

+nηyη + sηzη + nθyθ + sθzθ)

)
.
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Here

ck(w, p1, p2, p3, n
β, sβ, nζ , sζ , nη, sη, nθ, sθ)

is an eigenvector of

ǧ(w, p1, p2, p3, n
β, sβ, nζ , sζ , nη, sη, nθ, sθ)

and

ǧ(w, p1, p2, p3, n
β, sβ, nζ , sζ , nη, sη, nθ, sθ) := (41)

:= β[0]w + β[1] p1 + β
[2] p2 + β

[3] p3 +

+γ[0]nβ + β[4]sβ − γ[0]

ζ
nζ + ζ[4]sζ −

−γ[0]
η nη − η[4]sη + γ

[0]

θ
nθ + θ[4] sθ.

Here

{c0, c1, c2, c3}

is an orthonormalized basis of the complex4-vectors space.

Functions

ck(w, p1, p2, p3, n
β, sβ, nζ , sζ , nη, sη, nθ, sθ) × (42)

× exp

(
− i

h

c
(wx0 + p1x1 + p2x2 + p3x3 +

+nβyβ + sβzβ +

+nζyζ + sζzζ + +nηyη + sηzη + nθyθ + sθzθ)

)

are eigenvectors of operator G0.

4 Chromes under Lorentz’s and Cartesian

transformations

ϕ
ζ
y := c(w, p, f ) exp

(
− i

h

c
(wx0 + px + γ

[0]

ζ
f yζ )

)

is a red lower chrome function,

ϕ
ζ
z := c(w, p, f ) exp

(
− i

h

c
(wx0 + px − iζ[4] f zζ )

)

is a red upper chrome function,

ϕ
η
y := c(w, p, f ) exp

(
− i

h

c
(wx0 + px + γ[0]

η f yη)

)

is a green lower chrome function,

ϕ
η
z := c(w, p, , f ) exp

(
− i

h

c
(wx0 + px − iη[4] f zη)

)

is a green upper chrome function,

ϕθy := c(w, p, f ) exp

(
− i

h

c
(wx0 + px+γ

[0]

θ
f yθ)

)

is a blue lower chrome function,

ϕθz := c(w, p, sθ) exp

(
− i

h

c
(wx0 + px − iθ[4] f zθ)

)

is a blue upper chrome function.

Operator −∂ζy∂
ζ
y is called a red lower chrome operator,

−∂ζz∂ζz is a red upper chrome operator, −∂ηy∂ηy is called a green

lower chrome operator, −∂ηz∂ηz is a green upper chrome oper-

ator, −∂θy∂θy is called a blue lower chrome operator, −∂θz∂θz is

a blue upper chrome operator.

For example, if ϕ
ζ
z is a red upper chrome function then

−∂ζy∂ζyϕζz = −∂ηy∂ηyϕζz = −∂ηz∂ηzϕζz =
= −∂θy∂θyϕ

ζ
z = −∂θz∂θzϕ

ζ
z = 0

but

−∂ζz∂
ζ
zϕ
ζ
z = −

(
h

c
f

)2

ϕ
ζ
z .

Because

G0

[
ϕ
]
= 0

then

UG0U−1U
[
ϕ
]
= 0.

If U = U1,2 (α) then G0 → U1,2 (α) G0U−1
1,2

(α) and
[
ϕ
]
→

U1,2 (α)
[
ϕ
]
.

In this case:

∂1 → ∂′1 := (cosα · ∂1 − sinα · ∂2),

∂2 → ∂′2 := (cosα · ∂2 + sinα · ∂1),

∂0 → ∂′0 := ∂0,

∂3 → ∂′3 := ∂3,

∂
β
y → ∂

β′
y := ∂

β
y,

∂
β
z → ∂β′z := ∂

β
z ,

∂
ζ
y → ∂

ζ′
y :=

(
cosα · ∂ζy − sinα · ∂ηy

)
,

∂
η
y → ∂η′y :=

(
cosα · ∂ηy + sinα · ∂ζy

)
,

∂
ζ
z → ∂ζ′z :=

(
cosα · ∂ζz + sinα · ∂ηz

)
,

∂
η
z → ∂

η′
z :=

(
cosα · ∂ηz − sinα · ∂ζz

)
,

∂θy → ∂θ′y := ∂θy,

∂θz → ∂θ′z := ∂θz .

Therefore,

−∂ζ′z ∂
ζ′
z ϕ
ζ
z =

(
f

h

c
cosα

)2

· ϕζz ,

−∂η′z ∂η′z ϕζz =

(
− sinα · f

h

c

)2

ϕ
ζ
z .

If α = − π
2

then

−∂ζ′z ∂ζ′z ϕζz = 0,

−∂η′z ∂η′z ϕζz =

(
f

h

c

)2

ϕ
ζ
z .
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That is under such rotation the red state becomes the green

state.

If U = U3,2 (α) then G0 → U3,2 (α) G0U−1
3,2

(α) and
[
ϕ
]
→

U3,2 (α)
[
ϕ
]
.

In this case:

∂0 → ∂′0 := ∂0,

∂1 → ∂′1 := ∂1,

∂2 → ∂′2 := (cosα · ∂2 + sinα · ∂3),

∂3 → ∂′3 := (cosα · ∂3 − sinα · ∂2),

∂
β
y → ∂β′y := ∂

β
y,

∂
ζ
y → ∂ζ′y := ∂

ζ
y,

∂
η
y → ∂η′y :=

(
cosα · ∂ηy − sinα · ∂θy

)
,

∂θy → ∂θ′y :=
(
cosα · ∂θy + sinα · ∂ηy

)
,

∂
β
z → ∂β′z := ∂

β
z ,

∂
ζ
z → ∂ζ′z := ∂

ζ
z ,

∂
η
z → ∂η′z :=

(
cosα · ∂ηz − sinα · ∂θz

)
,

∂θz → ∂θ′z :=
(
cosα · ∂θz + sinα · ∂ηz

)
.

Therefore, if ϕ
η
y is a green lower chrome function then

−∂η′z ∂η′z ϕηy =
(
h

c
cosα · f

)2

· ϕηy,

−∂θ′y ∂θ′y ϕ
η
y =

(
h

c
sinα · f

)2

· ϕηy.

If α = π/2 then

−∂η′z ∂η′z ϕηy = 0,

−∂θ′y ∂θ′y ϕ
η
y =

(
h

c
f

)2

· ϕηy.

That is under such rotation the green state becomes blue

state.

If U = U3,1 (α) then G0 → U3,1 (α) G0U−1
3,1

(α) and
[
ϕ
]
→

U3,1 (α)
[
ϕ
]
.

In this case:

∂0 → ∂′0 := ∂0,

∂1 → ∂′1 := (cosα · ∂1 − sinα · ∂3),

∂2 → ∂′2 := ∂2,

∂3 → ∂′3 := (cosα · ∂3 + sinα · ∂1),

∂
β
y → ∂′3 := ∂

β
y,

∂
ζ
y → ∂ζ′y :=

(
cosα · ∂ζy + sinα · ∂θy

)
,

∂
η
y → ∂η′y := ∂

η
y,

∂θy → ∂θ′y :=
(
cosα · ∂θy − sinα · ∂ζy

)
,

∂
β
z → ∂β′z := ∂

β
z ,

∂
ζ
z → ∂

ζ′
z :=

(
cosα · ∂ζz − sinα · ∂θz

)
,

∂
η
z → ∂η′z := ∂

η
z ,

∂θz → ∂θ′z :=
(
cosα · ∂θz + sinα · ∂ζz

)
.

Therefore,

−∂ζ′z ∂ζ′z ϕζz = −
(

f
h

c
cosα

)2

· ϕζz ,

Fig. 1:

−∂θ′z ∂θ′z ϕ
ζ
z = −

(
sinα · f

h

c

)2

ϕ
ζ
z .

If α = π/2 then

−∂ζ′z ∂
ζ′
z ϕ
ζ
z = 0,

−∂θ′z ∂θ′z ϕ
ζ
z = −

(
f

h

c

)2

ϕ
ζ
z .

That is under such rotation the red state becomes the blue

state. Thus at the Cartesian turns chrome of a state is changed.

One of ways of elimination of this noninvariancy consists

in the following. Calculations in [2, p. 156] give the grounds

to assume that some oscillations of quarks states bend time-

space in such a way that acceleration of the bent system in

relation to initial system submits to the following law (Fig. 1):

g (t, x) = cλ/
(
x2 cosh2

(
λt/x2

))
.

Here the acceleration plot is line (1) and the line (2) is plot

of λ/x2.

Hence, to the right from point C′ and to the left from point

C the Newtonian gravitation law is carried out.

AA′ is the Asymptotic Freedom Zone.

CB and B′C′ is the Confinement Zone.

Let in the potential hole AA′ there are three quarks ϕ
ζ
y, ϕ

η
y,

ϕθy. Their general state function is determinant with elements

of the following type: ϕ
ζηθ
y := ϕ

ζ
yϕ
η
yϕ
θ
y. In this case:

−∂ζy∂ζyϕζηθy =
(

h

c
f

)2

ϕ
ζηθ
y

and under rotation U1,2 (α):

−∂ζ′y ∂ζ′y ϕζηθy =

(
h

c
f

)2 (
γ

[0]

ζ
cosα − γ[0]

η sinα
)2 (
ϕ
ζ
yϕ
η
yϕ
θ
y

)

=

(
h

c
f

)2

ϕ
ζηθ
y .

That is at such turns the quantity of red chrome remains.
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As and for all other Cartesian turns and for all other

chromes.

Baryons ∆− = ddd, ∆++ = uuu, Ω− = sss belong to such

structures.

If U = U1,0 (α) then G0 → U
−1‡
1,0

(α) G0U−1
1,0

(α) and
[
ϕ
]
→

U1,0 (α)
[
ϕ
]
.

In this case:

∂0 → ∂′0 := (coshα · ∂0 + sinhα · ∂1),

∂1 → ∂′1 := (coshα · ∂1 + sinhα · ∂0),

∂2 → ∂′2 := ∂2,

∂3 → ∂′3 := ∂3,

∂
β
y → ∂β′y := ∂

β
y,

∂
ζ
y → ∂

ζ′
y := ∂

ζ
y,

∂
η
y → ∂η′y :=

(
coshα · ∂ηy − sinhα · ∂θz

)
,

∂θy → ∂θ′y :=
(
coshα · ∂θy + sinhα · ∂ηz

)
,

∂
β
z → ∂β′z := ∂

β
z ,

∂
ζ
z → ∂

ζ′
z := ∂

ζ
z ,

∂
η
z → ∂η′z :=

(
coshα · ∂ηz + sinhα · ∂θy

)
,

∂θz → ∂θ′z :=
(
coshα · ∂θz − sinhα · ∂ηy

)
.

Therefore,

−∂η′y ∂η′y ϕηy =
(
1 + sinh2 α

)
·
(

h

c
f

)2

ϕ
η
y,

−∂θ′z ∂θ′z ϕ
η
y = sinh2 α ·

(
h

c
f

)2

ϕ
η
y.

Similarly chromes and grades change for other states and

under other Lorentz transformation.

One of ways of elimination of this noninvariancy is the

following:

Let

ϕ
ζηθ
yz := ϕ

ζ
yϕ
η
yϕ
θ
yϕ
ζ
zϕ
η
zϕ
θ
z .

Under transformation U1,0 (α):

−∂θ′z ∂θ′z ϕ
ζηθ
yz = −

(
i
h

c
f

)2

ϕ
ζηθ
yz .

That is a magnitude of red chrome of this state doesn’t

depend on angle α.

This condition is satisfied for all chromes and under all

Lorentz’s transformations.

Pairs of baryons

{p = uud, n = ddu} ,{
Σ+ = uus,Ξ0 = uss

}
,

{
∆+ = uud,∆0 = udd

}

belong to such structures.

Conclusion

Baryons represent one of ways of elimination of the chrome

noninvariancy under Cartesian and under Lorentz transforma-

tion.
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CKM and PMNS Mixing Matrices from Discrete Subgroups of SU(2)

Franklin Potter
Sciencegems.com, 8642 Marvale Drive, Huntington Beach, CA 92646 USA E-mail: frank11hb@yahoo.com

One of the greatest challenges in particle physics is to determine the first principles
origin of the quark and lepton mixing matrices CKM and PMNS that relate the flavor
states to the mass states. This first principles derivation of both the PMNS and CKM
matrices utilizes quaternion generators of the three discrete (i.e., finite) binary rotational
subgroups of SU(2) called [3,3,2], [4,3,2], and [5,3,2] for three lepton families in R3

and four related discrete binary rotational subgroups [3,3,3], [4,3,3], [3,4,3], and [5,3,3]
represented by four quark families in R4. The traditional 3×3 CKM matrix is extracted
as a submatrix of the 4×4 CKM4 matrix. The predicted fourth family of quarks has not
been discovered yet. If these two additional quarks exist, there is the possibility that the
Standard Model lagrangian may apply all the way down to the Planck scale.

1 Introduction

The very successful Standard Model (SM) local gauge group
SU(2)L × U(1)Y × SU(3)C defines an electroweak (EW) in-
teraction part and a color interaction part. Experiments have
determined that the left-handed EW isospin flavor states are
linear superpositions of mass eigenstates. One of the greatest
challenges in particle physics is to determine the first princi-
ples origin of the quark and lepton mixing matrices CKM and
PMNS that relate the flavor states to the mass states.

In a recent article [1] I derived the lepton PMNS mix-
ing matrix by using the quaternion (i.e., spinor) generators of
three specific discrete (i.e., finite) binary rotational subgroups
of the EW gauge group SU(2)L × U(1)Y , one group for each
lepton family, while remaining within the realm of the SM
lagrangian. All the derived PMNS matrix element values are
within the 1σ range of the empirically determined absolute
values.

The three lepton family groups, binary rotational groups
called [3,3,2], [4,3,2], and [5,3,2], (or 2T, 2O, and 2I), have
discrete rotational symmetries in R3. Each group has two de-
generate basis states which must be taken in linear superposi-
tion to form the two orthogonal fermion flavor states in each
family, i.e., (νe, e), (νµ, µ), and (ντ, τ).

In order to have a consistent geometrical approach toward
understanding the SM, I have proposed in a series of arti-
cles [2–4] over several years that the quark flavor states rep-
resent discrete binary rotational groups also. However, one
must move up one spatial dimension from R3 to R4 and use
the related four discrete binary rotational subgroups [3,3,3],
[4,3,3], [3,4,3], and [5,3,3], (or 5-cell, 16-cell, 24-cell, and
600-cell), for the quarks, thereby dictating four quark fami-
lies. Recall that both R3 and R4 are subspaces of the unitary
space C2.

Therefore, following up the success I had deriving the
neutrino PMNS matrix, the CKM mixing matrix should be
derivable by using the same geometrical method, i.e., based
upon the quaternion generators of the four groups of specific
discrete rotational symmetries. In this quark case, however,

first one determines a 4×4 mixing matrix called CKM4 and
then extracts the appropriate 3×3 submatrix as the traditional
CKM matrix.

These seven closely-related groups representing specific
discrete rotational symmetries dictate the three known lep-
ton families in R3 and four related quark families in R4, the
fourth quark family still to be discovered. That is, neither
leptons nor quarks are to be considered as point objects at
the fundamental Planck scale of about 10−35 meters. If this
geometrical derivation of both the PMNS and CKM mixing
matrices is based upon the correct reason for the mixing of
flavor states to make the mass states, then one must recon-
cile the empirical data with the prediction of a fourth quark
family.

My proposal that leptons are 3-D entities and that quarks
are 4-D entities has several advantages. There is a clear dis-
tinction between leptons and quarks determined by inherent
geometrical properties such as explaining that leptons do not
experience the color interaction via SU(3)C because gluons
and quarks would involve 4-D rotations associated with the
three color charges defined in R4. Also, one now has a geo-
metrical reason for there being more than one family of lep-
tons and of quarks. In addition, the mass ratios of the funda-
mental fermions are determined by the group relationships to
the j-invariant of the Monster Group. These physical proper-
ties and many other physical consequences are discussed in
my previous papers.

2 Review of the PMNS matrix derivation

This section reviews the mathematical procedure used in my
2013 derivation [1] of the PMNS matrix from first principles.
One constructs the three SU(2) generators, the U1 = j, U2 =

k, and the U3 = i, (i.e., the Pauli matrices in quaternion form),
from the three quaternion generators from each of the discrete
subgroups [3,3,2], [4,3,2], and [5,3,2]. As you know, the three
Pauli matrices, i.e., the quaternions i, j, and k, can generate
all rotations in R3 about a chosen axis or, equivalently, all
rotations in the plane perpendicular to this axis. For example,
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Table 1: Lepton Family Quaternion Generators U2

Fam. Grp. Generator Factor Angle◦

νe,e 332 − 1
2 i − 1

2 j + 1√
2
k -0.2645 105.337

νµ,µ 432 − 1
2 i − 1√

2
k + 1

2 j 0.8012 36.755

ντ,τ 532 − 1
2 i − ϕ2 j + ϕ

−1

2 k -0.5367 122.459

the quaternion k is a binary rotation by 180◦ in the i-j plane.
The complete mathematical description [5] for the gener-

ators operating on the unit vector x in R3 extending from the
origin to the surface of the unit sphere S2 is given by Rs =

i x Us where s = 1, 2, 3 and

U1 = j, U2 = −icos
π

q
− jcos

π

p
+ ksin

π

h
, U3 = i, (1)

with h = 4, 6, 10 for the three lepton flavor groups [p,q,2],
respectively. Their U2 generators are listed in Table 1.

My three lepton family binary rotational groups, [3,3,2],
[4,3,2], and [5,3,2], all have generators U1 = j and U3 = i, but
each U2 is a different quaternion generator operating in R3.
One obtains the correct neutrino PMNS mixing angles from
the linear superposition of their U2’s by making the total U2 =

k, agreeing with SU(2). This particular combination of three
discrete angle rotations is now equivalent to a rotation in the
i-j plane by the quaternion k.

The sum of all three U2 generators should be k, so there
are three equations for the three unknown factors, which are
determined to be: -5.537, 16.773, and -11.236. Let the quan-
tity ϕ = (

√
5+1)/2, the golden ratio. The resulting angles in

Table 1 are the arccosines of these factors (normalized), i.e.,
their projections to the k-axis, but they are twice the rotation
angles required in R3, a property of quaternion rotations.

Using one-half of these angles produces

θ1 = 52.67◦, θ2 = 18.38◦, θ3 = 61.23◦, (2)

resulting in mixing angles

θ12 = 34.29◦, θ13 = −8.56◦, θ23 = −42.85◦. (3)

The absolute values of these mixing angles are all within the
1σ range of their values for the normal mass hierarchy [6–11]
as determined from several experiments:

θ12 = ±34.47◦, θ13 = ±8.73◦, θ23 = ±(38.39◦−45.81◦). (4)

The experimental 1σ uncertainty in θ12 is about 6%, in θ13
about 14%, and θ23 has the range given. The ± signs arise
from the squares of the sines of the angles determined by the
experiments.

For three lepton families, one has the neutrino flavor states
νe, νµ, ντ, and the mass states ν1, ν2, ν3, related by the PMNS

matrix Vi j  νeνµ
ντ

 =
 Ve1 Ve2 Ve3

Vµ1 Vµ2 Vµ3
Vτ1 Vτ2 Vτ3


 ν1ν2
ν3

 .
The PMNS entries are the products of the sines and cosines
of the derived angles (3) using the standard parametrization
of the matrix, producing: 0.817 0.557 −0.149e−iδ

−0.413 − 0.084eiδ 0.605 − 0.057eiδ −0.673
−0.383 + 0.090eiδ 0.562 + 0.061eiδ 0.725

 .
For direct comparison, the empirically estimated PMNS

matrix for the normal hierarchy of neutrino masses is 0.822 0.547 −0.150 + 0.038i
−0.356 + 0.0198i 0.704 + 0.0131i 0.614
0.442 + 0.0248i −0.452 + 0.0166i 0.774


Comparing the Ve3 elements from each, the phase angle δ is
confined to be 0◦ ≤ δ ≤ ±14.8◦, an angle in agreement with
the T2K collaboration value of δ ≈ 0 but quite different from
other proposed δ ≈ π values.

3 The CKM4 matrix derivation

The success of the above geometrical procedure for deriving
the lepton PMNS matrix by using the quaternion generators
from the 3 discrete binary rotation groups demands that the
same approach should work for the quark families in R4 using
the 4 discrete binary rotation groups [3,3,3], [4,3,3], [3,4,3],
and [5,3,3]. If this procedure succeeds in deriving the CKM
matrix elements as a 3×3 submatrix of CKM4, then a fourth
sequential quark family, call its quark states b’ and t’, exists
in Nature.

These 4 binary rotational groups for the quark family fla-
vors each have rotation subgroups of SO(4) = SO(3) × SO(3),
and they also have the double covering SU(2) × SU(2). The
SO(4) is the rotation group of the unit hypersphere S3 in R4,
with every 4-D rotation being simultaneous rotations in two
orthogonal planes.

The only finite (i.e., discrete) quaternion groups are [12]

2I, 2O, 2T, 2D2n, 2Cn, 1Cn (n odd) (5)

with the 2 in front meaning binary (double) group, the dou-
ble cover of the normal 3-D rotation group by SU(2) over
SO(3). Mathematically, the 4 discrete binary groups for the
quark families each can be identified as (L/LK ; R/RK) with
the homomorphism L/LK = R/RK . Here L and R are specific
discrete groups of quaternions and LK and RK are their ker-
nels.

P. DuVal [13] established that one only needs the cyclic
groups 2Cn and 1Cn when considering the four discrete ro-
tational symmetry groups, i.e., the ones I am using for the
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quark families. Essentially, vertices on the 4-D regular poly-
tope can be projected to be a regular polygon on each of the
two orthogonal planes in R4.

There will be 6 quaternion generators for each of the 4
groups, producing simultaneous rotations in two orthogonal
planes. The two sets of Pauli matrices for producing contin-
uous rotations can be identified as i, j, k, and another i, j, k,
but they act on the two different S2 spheres, i.e, in the two or-
thogonal planes. One can consider this 4-D rotational trans-
formation as the result of a bi-quaternion operation [14], or
equivalently, a bi-spinor or Ivanenko-Landau-Kähler spinor
or Dirac-Kähler spinor operation.

For three quark families, one has the “down” flavor states
d’, s’, b’, and their mass states d, s, b, related by the CKM
matrix. This quark mixing matrix for the left-handed compo-
nents is defined in the standard way as

V = ULD†L, (6)

but for four quark families the mathematics is a little different,
for one must consider the bi-quaternion case in which there
will be Bogoliubov mixing [14], producing two subfactors for
each component, i.e.,

UL = Wu
14,23Wu

12,34, DL = Wd
14,23Wd

12,34 (7)

with the Wu and Wd factor on the right mixing the 1st and 2nd
generations and, separately, mixing the 3rd and 4th genera-
tions. The Bogoliubov mixing in the factor on the left mixes
the 1st and 4th generations and, separately, the 2nd and 3rd
generations. Therefore, the CKM4 matrix derives from

VCKM4 = ULD†L = Wu
14,23Wu

12,34(Wd
14,23Wd

12,34)†. (8)

The product Wu
12,34Wd†

12,34 is given by

Wu
12,34Wd†

12,34 =


x1 y1 0 0
z1 w1 0 0
0 0 x2 y2
0 0 z2 w2

 .
The upper left block is an SU(2) matrix that mixes genera-
tions 1 and 2 while the lower right block is an SU(2) matrix
that mixes generations 3 and 4. Each 2x2 block relates the
rotation angles and the phases via[

x y
z w

]
=

[
cosθ eiα −sinθ eiβ

sinθ eiγ cosθ eiδ

]
.

The 4×4 matrix that achieves the Bogoliubov mixing has
four possible forms for the four possible isospin cases obey-
ing SU(2) × SU(2): (0, 0), (1/2, 0), (0, 1/2), and (1/2, 1/2).
The (1/2, 1/2) is the one for equal, simultaneous, isospin 1/2
rotations in the two orthogonal planes for CKM4:

Wu,d
14,23 =

1
√

2


1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1

 .

Table 2: Quark Family Discrete Group Assignments for U2

Fam. Grp. Generator Angle◦ Factor Angle◦

u,d 333 exp[2πi/5] 72 1.132 81.504
c,s 433 exp[2πi/8] 45 1.132 50.940
t,b 343 exp[2πi/12] 30 1.132 33.960
t’,b’ 533 exp[2πi/30] 12 1.132 13.584

Multiplying out these three 4×4 bi-quaternion mixing matri-
ces, one determines that

VCKM4 =
1
2


x1 + x2 y1 + y2 x1 − x2 y1 − y2
z1 + z2 w1 + w2 z1 − z2 w1 − w2
x1 − x2 y1 − y2 x1 + x2 y1 + y2
z1 − z2 w1 − w2 z1 + z2 w1 + w2


in which the phases α, β, γ, δ have been ignored.

One determines the angles θ1 and θ2 from the quaternion
generators of the 4 discrete binary rotation groups for the
quark families. Projections of each of the four discrete sym-
metry 4-D entities onto the two orthogonal planes produces
a regular polygon [5, 13] with the generator iexp[2πj/h], as
given in Table 2, where the h values are 5, 8, 12, 30, for the
[3,3,3], [4,3,3], [3,4,3], and [5,3,3], respectively.

Again, we need to determine the contribution from each
group generator that will make the sum add to 180◦, i.e., make
their collective action produce the rotation U2 = k. Expanding
out the exponentials in terms of sines and cosines reveals four
unknowns but only two equations. Alternately, because the
four rotation angles sum to only 159◦, we can use the same
factor for each group, i.e., the ratio 180◦/159◦ = 1.132.

In the last column of Table 2 are the normalized angles
which are twice the angle required. Therefore, taking the ap-
propriate half-angle differences produces the mixing angles

θ1 = 15.282◦, θ2 = 10.188◦. (9)

Substituting the cosines and sines of these two derived angles
into the CKM4 matrix form above produces a mixing matrix
symmetrical about the diagonal. Remember that I have ig-
nored up to eight possible phases in the 2x2 blocks.

VCKM4 =


0.9744 0.2203 0.0098 0.0433
0.2203 0.9744 0.0433 0.0098
0.0098 0.0433 0.9744 0.2203
0.0433 0.0098 0.2203 0.9744

 .
One can compare the upper left 3×3 submatrix to the most

recent estimated absolute values [7]

VCKM =

 0.9745 0.2246 0.0036
0.2244 0.9736 0.0415
0.0088 0.0407 0.9991

 .
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Note that most of these estimated VCKM values are probably
good to within a few percent but some could have uncertain-
ties as large as 10% or more.

Of concern are my low values of 0.2203 for Vus and Vcd.
However, according to the Particle Data Group (2013) there
are two possible values [7]: 0.2253 and 0.2204, the latter from
tau decays. Also, my derived symmetric CKM4 matrix Vub

value is high while the Vtd value is reasonable, i.e., Vtd at
0.0098 compares well with the estimated value of 0.0088.

The Vtb element of CKM4 is 0.9744, quite a bit smaller
than the suggested 0.9991 Vtb value for the 3×3 CKM matrix.
However, if one imposes the unitarity condition on the rows
and columns of the extracted CKM, the new value for this Vtb

matrix element would be 0.999, in agreement.
My final comment is that if one calculates CKM using

only the first three quark groups [3,3,3], [4,3,3], and [3,4,3],
the resulting 3×3 CKM matrix will disagree significantly with
the known CKM matrix. Therefore, one cannot eliminate
a fourth quark family when discrete rotational subgroups of
SU(2) are considered.

4 Discussion

In the SM the EW symmetry group is the Lie group SU(2)L

× U(1)Y . This local gauge group operating on the lepton and
quark states works extremely well, meaning that all its predic-
tions agree with experiments so far. However, in this context
there is no reason for Nature to have more than one fermion
family, and certainly no reason for having 3 lepton families
and at least 3 quark families. As far as I know, the normal
interpretation of the SM provides no answer that dictates the
actual number of families, although the upper limit of 3 lep-
ton families with low mass neutrinos is well established via
Z0 decays and via analysis of the CMB background.

My geometrical approach with discrete symmetries alters
the default reliance upon SU(2) and its continuous symmetry
transformations, for I utilize discrete binary rotational sub-
groups of SU(2) for the fundamental fermion states, a differ-
ent subgroup for each lepton family and for each quark fam-
ily. In this scenario one can surmise that the enormous suc-
cess of the SM occurs because SU(2)L ×U(1)Y is acting like a
mathematical “cover group” for the actual underlying discrete
rotations operating on the lepton states and quark states.

Assuming that the above matrix derivations are correct,
the important question is: Where is the b’ quark of the pre-
dicted 4th quark family? In 1992 I predicted a top quark
mass of about 160 GeV, a b’ quark mass of 65–80 GeV, and
a t’ quark at a whopping 2600 GeV. These mass predictions
were based upon the mass ratios being determined by the j-
invariant function of elliptic modular functions and of frac-
tional linear transformations, i.e., Möbius transformations.
Note that all seven discrete groups I have for the fermions are
related to the j-invariant and Möbius transformations, which
have direct connections to numerous areas of fundamental

mathematics.
With a predicted b’ mass that is much smaller than the top

quark mass of 173.3 GeV and even smaller than the W mass
at 80.4 GeV, one would have expected some production of the
b’ at LEP, Fermilab, and the LHC. Yet, no clear indication of
the b’ quark has appeared.

Perhaps the b’ quark has escaped detection at the LHC
and lies hidden in the stored data from the runs at 7 TeV
and 8 TeV. With a mass value below the W and Z masses,
the b’ quark must decay via flavor changing neutral current
(FCNC) decay channels [16] such as b’→ b + γ and b’→ b
+ gluon. The b’ could have an average lifetime too long for
the colliders to have detected a reasonable number of its de-
cays within the detector volumes and/or the energy and angle
cuts. However, the b’ quark and t’ quark would affect certain
other decays that depend upon the heaviest “top” quark in a
box diagram or penguin diagram.

Another possibility is that a long lifetime might allow the
formation of the quarkonium bound state b’-anti-b’, which
has its own specific decay modes, to bb-bar, gg, γγ, and WW*
→ ννℓℓ. Depending upon the actual quarkonium bound state,
the spin and parity JPC = 0++ or 0−+.

And finally, there is an important theoretical problem as-
sociated with the mismatch of three lepton families to four
quark families, e.g., the famous triangle anomalies do not
cancel in the normal manner. Perhaps my fundamental lep-
tons and quarks, being extended particles into 3 and 4 dimen-
sions, respectively, can avoid this problem which occurs for
point particles. Someone would need to work on this possi-
bility.

5 The bigger picture!

We know that the SM is an excellent approximation for under-
standing the behavior of leptons, quarks, and the interaction
bosons in the lower energy region when the spatial resolution
is less than 10−24 meters. At smaller distance scales, perhaps
one needs to consider a discrete space-time, for which the
discrete binary rotation groups that I have suggested for the
fundamental particles would be appropriate. Quite possibly,
with this slight change in emphasis to discrete subgroups of
the local gauge group, the SM lagrangian will hold true all
the way down to the Planck scale.

If indeed the SM applies at the Planck scale, then one can
show [2] that the Monster group dictates all of physics! The
surprising consequence: The Universe is mathematics and is
unique. Indeed, we humans are mathematics!

This connection to the Monster Group is present already
in determining the lepton and quark mass ratios, which are
proportional to the j-invariant of elliptic modular functions,
the same j-invariant that is the partition function for the Mon-
ster Group in a quantum field theory [17].

The mathematics of these discrete groups does even more
for us, for there is a direct connection [2] from the lepton
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groups [3,3,2], [4,3,2], [5,3,2], and the quark groups [3,3,3],
[4,3,3], [3,4,3], [5,3,3], in R3 and R4, respectively, via spe-
cial quaternions called icosians to the discrete space R8. One
then brings in another R8 for relativistic space-time trans-
formations. The two spaces combine into a 10-D discrete
space-time obeying the discrete symmetry transformations of
“Weyl” SO(9,1) =Weyl E8 ×Weyl E8. This proposed unique
connection to “Weyl” SO(9,1) was a surprise to me because
one has two 8-D spaces combining to make a 10-D space-
time! Its direct and unique relationship to the SM certainly is
a welcome replacement to the 10500 ways for M-theory.

Finally, among the advantages to having a fourth family
of quarks is a possible explanation of the baryon asymmetry
of the Universe (BAU). From the CKM and the PMNS ma-
trices, one learns that the predicted CP violation (CPV) is at
least 10 orders of magnitude too small to explain the BAU.
That is, the important quantity called the Jarlskog value is
much too small. But a 4th quark family resolves this is-
sue [18] because substituting the fourth quark family mass
values into the Jarlskog expression increases the CPV value
by more than 1013! Voilà. One now has penguin diagrams
distinguishing the particle and antiparticle decays with suffi-
cient difference to have the particle Universe we experience.

6 Conclusion

The quark mixing matrix CKM4 has been derived using four
quark families. Using quaternion generators from four spe-
cific related discrete binary rotational groups [3,3,3], [4,3,3],
[3,4,3], and [5,3,3], I have derived the quark CKM4 and its
CKM submatrix. However, neither quark of the 4th quark
family has been detected at the colliders. Their appearance
could mean that the Standard Model lagrangian might be a
good approximation to the ultimate lagrangian all the way
down to the Planck scale if space-time is discrete.
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Within the framework of the non-gravitational generalization of the special relativity,

a problem of possible superluminal motion of particles and signals is considered. It

has been proven that for the particles with non-zero mass the existence of anisotropic

light barrier with the shape dependent on the reference frame velocity results from the

Tangherlini transformations. The maximal possible excess of neutrino velocity over

the absolute velocity of light related to the Earth (using the clock with instantaneous

synchronization) has been estimated. The illusoriness of the acausality problem has

been illustrated and conclusion is made on the lack of the upper limit of velocities of

signals of informational nature.

1 Introduction

In the special relativity (SR) the velocity of establishing con-

nection between two events “1” and “2” (particle motion, in-

formation transfer, quantum teleportation and so on) could

not exceed the velocity of light c in vacuum. The attempts to

overcome such a prohibition encounter the problem of causal-

ity principle violation, namely, if in the initial inertial ref-

erence frame (IRF) K a signal moves with the superluminal

velocity u> c, then exists such IRF K′ that moves with the ve-

locity v < c, but v ·u> c2, in which the event-effect “2” antici-

pates the event-cause “1”, t′
2
< t′

1
(while in the K IRF – t2 > t1).

In some papers (see, e.g. [1]) the extreme paradoxicalness of

this problem, namely, the appearance of the acausal loops,

when the cyclic process terminates at the point of its begin-

ning, but before its beginning, is discussed. The absurdity

of acausality leads one to the conclusion about the existence

of the isotropic light barrier, i.e. in the space of the possible

velocities of particles and signals that realize the cause-and-

effect relationship the velocity vectors lie inside the sphere of

the radius c. In other words, the 4-interval between the cause-

and-effect events could be the time-like one only. The event-

effect must be inside the light cone of the future event-cause.

All the mentioned above follows from the Lorentz transfor-

mations (LT).

Below, however, we will show that the causality princi-

ple violation is illusory, and the assumption about the possi-

bility of the appearance of the acausal loop is wrong. This

problem is discussed in detail in Sect. 6, while here we will

indicate only the important fact noted by Leonid I. Mandel-

stam in his SR-related lectures [2]: the time involved in LT

is measured by the clock synchronized by the light signals

with a priori assumption about the light velocity invariance.

The consequence of such synchronization (in fact, the conse-

quence of the light velocity invariance postulate) is the rela-

tivity of simultaneity: the spatially split events, simultaneous

in one IRF, are not simultaneous in the other one, i.e. t′
2
, t′

1
at

t2 = t1. Mandelstam in the same lectures explained also that in

case of using the clock with instantaneous synchronization at

the spatially split points the simultaneity of events will be ab-

solute. Hence the irrefutable logical conclusion follows about

the non-invariance of the velocity of light measured using the

clock with instantaneous synchronization (because from the

light velocity invariance the simultaneity relativity follows).

The principal possibility of such synchronization was proven

in the works by Vitaliy L. Ginzburg and his followers (see,

e.g. [3]). Namely, the clock at the points “1” and “2” could

be synchronized by means of a photo relays switched on by

the light spot that moves from “1” to “2” with the velocity

V =ωR at the light source rotation with the angular velocity

ω (the light source being located at the distance R). Since

the product ωR could be, in principle, unrestrictedly large,

ωR≫ c, then V≫ c as well, i.e. such synchronization can

be considered almost instantaneous. For instance, the above

light spot produced by the emission of the NP.0532 pulsar

in the Crab nebula moves the Earth surface with the velocity

V = 1.2 × 1022 m/s (ω= 200 rad/s, R= 6 × 1019 m). Another

way of almost instantaneous synchronization was realized in

Marinov’s experiments [4,5] on measuring the velocity of the

Earth with respect to the ether (see below Sect. 3).

Note that in the classical physics the clock at the spatially

split points is considered synchronized just by the instanta-

neous signals. As shown below, to explain the lack of inter-

ference in the Michelson-Morley (MM) experiment [6] there

was no necessity to change the above synchronization and,

thus, discard such a fundamental property of time as the abso-

lute simultaneity of the spatially split events. The theoretical

model of relativistic processes for the case of instantaneously

synchronized clock was developed, mainly, in the Frank R.

Tangherlini’s Ph.D thesis [7, 8] (see also [9]). In this model,

the existence of a dedicated absolute inertial reference sys-

tem (AIRF), in which the velocity of light is isotropic, is pos-

tulated. It seems most naturally to represent this reference

system as resting with respect to the ether. Note that the lack

of the ether does not follow from the MM experiment, this

experiment failed only to find its presence for the reason ex-

plained in Sect. 2. The second postulate of this theory is the
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invariance of the average velocity of light at the motion along

the closed contour, just this property of the light velocity fol-

lows with the necessity from the MM experiment and all the

following interference experiments, in which the light either

passed twice the same distance or moved around a closed loop

(see, e.g. [10,11]). The following space-time transformations

(i.e. the Tangherlini transformations, TT) [7, 8] are obtained

from the above postulates:

x′ = γ(x − vt), y′ = y, z′ = z; (1)

t′ =
t

γ
, γ =

(
1 −
v2

c2

)−1/2

. (2)

Here (x, y, z, t) are the coordinates and time of the point event

in AIRF K, whereas (x′, y′, z′, t′) are those in the IRF K′ that

moves with the velocity v along the X-axis in AIRF K.

A detailed discussion of the above transformations as well

as the new ways of their deriving could be found in [12–19].

Relation (2) demonstrates the absolute simultaneity: from the

condition ∆t = 0 follows that ∆t′ = 0 as well. Therefore, one

may, similarly to [18,19], call TT the “synchronized transfor-

mations”.

One may call the TT-based theory the “non-gravitational

SR generalization” (see Sect. 7 below).

As shown in the pioneer work [7,8], the main experimen-

tally verified LT and TT consequences coincide (since they do

not depend on the way of synchronizing the clock). In partic-

ular, both TT and LT equally successfully explain the MM ex-

periment [6] and all the following interference experiments.

The same results are obtained by calculating the momentum-

energy characteristics as well (see below equations (29) and

(30)).

Only the values of velocities (and other physical values

determined by the time derivative) differ. In Sect. 2, the trans-

formation properties of the velocity characteristics in the Tan-

gherlini theory (TTh) are described and the “coefficient of re-

calculation” of these characteristics from TTh to SR and vice

versa is obtained. These results are used in Sect. 3 to obtain

the theoretical estimates of the possibility of the excess of the

neutrino velocity u′ (with respect to the Earth) over the abso-

lute velocity of light c, i.e. the velocity of light with respect

to AIRF. It is proved in Sect. 4 that the particle having a non-

zero rest mass cannot go before the light when moving in the

same direction in any IRF. Its velocity u′ may only exceed

the absolute velocity of light c, i.e. the situation may occur

when c< u′(θ′)< c′(θ′), where c′ is the velocity of light with

respect to IRF K′. Thus, in TTh the light barrier (isotropic

in SR) appears to be anisotropically deformed, and the de-

gree of such deformation depends on the velocity v of IRF

K′. The light cone undergoes the similar deformation (see

Sect. 4). It is explained in Sect. 5 why the mass of the particle

moving with the velocity exceeding the absolute velocity of

light c remains real (unlike the tachyon mass in SR). Section

6 is dedicated to the discussion of the properties of time in

TTh and SR. The illusoriness of the problem of violation of

the causality principle in SR and, hence, that of prohibition

of motion with superluminal velocity have been found. The

final remarks and conclusions are presented in Sect. 7.

2 Transformational properties of the velocity character-

istics in the Tangherlini theory

Let u= (ux; uy; uz) be the vector of the velocity of the parti-

cle with respect to AIRF K. Let us determine the value and

direction of the velocity u′ in IRF K′ that moves with the ve-

locity v along the X-axis in AIRF K. From TT (1), (2) we

obtain [7, 8]:

u′x = γ
2(ux − v), u′y = γuy, u′z = γuz. (3)

Hence, the below expressions for the velocity u′ ≡ |u′| and

angle θ′ = (û′, v) follow from here:

u′(u, v) =

√
(u − v)2 −

(
u×v

c

)2

1 − v
2

c2

, (4)

cos θ′ =
cos θ − v

u√(
cos θ − v

u

)2
+

(
1 − v

2

c2

)
sin2 θ

. (5)

If we use LT to calculate the velocity projections in IRF K′,

we obtain:

ũ′x =
u − v

1− uv cos θ
c2

, ũ′y =
uy

γ
(
1− uv cos θ

c2

) , ũ′z =
uz

γ
(
1− uv cos θ

c2

) . (6)

Here and below “∼” denotes characteristics calculated from

LT.

As seen, each of projections of the vector u′ is obtained

by multiplying the relevant projection of the vector ũ′ onto

the same “coefficient of recalculation”

χ =
1 − u·v

c2

1 − v
2

c2

; (7)

u′x = ũ′xχ, u′y = ũ′yχ, u′z = ũ′zχ. (8)

Hence, two conclusions result here:

1. The directions of the vectors u′ and ũ′ coincide.

2. The value of the velocity in TTh is obtained by multi-

plying this value in SR u′ by χ: u′ = χũ′, where

ũ′(u, v) =

√
(u − v)2 −

(
u×v

c

)2

1 − u·v
c2

. (9)

The nature of the coefficient χ is easy to understand: it

arises due to the difference in the ways of synchronizing the

clock in SR and TTh. As the consequence of this difference,

we obtain the following relation between the time intervals in
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TTh and SR for the particle that moves with the velocity u in

AIRF K (see Sect. 6):

dt′ =
dt̃′

χ
. (10)

Thus, the time interval between two events (in the same

IRF) differs dependent of the way of the clock synchroniza-

tion. What time is more adequate to the physical reality —

t′ or t̃′? The answer to this question is discussed below in

Sect. 6.

Using the reverse TT, one may express the coefficient χ

through u′ and v (and through ũ′, v):

χ = 1 −
u′ · v

c2
=

1

1 + ũ′ ·v
c2

. (11)

Consider an important particular case: i.e. the transfor-

mational properties of the velocity of light. If in AIRF K the

light propagates with the velocity c at the angle θ with respect

to the X-axis, then we obtain from (4) and (5):

c′(v, θ) = c
1 − v

c
cos θ

1 − v
2

c2

, (12)

cos θ′ =
cos θ − v

c

1 − v
c

cos θ
. (13)

From (13) we obtain:

cos θ =
cos θ′ + v

c

1 + v
c

cos θ′
. (14)

Relations (13) and (14) coincide with the relevant SR formu-

lae. Inserting (14) into (12) we obtain [7, 8]:

c′(v, θ′) =
c

1 + v
c

cos θ′
. (15)

In the 1st degree of expansion in v/c, expression (15) coin-

cides with that resulted from the Galilean velocity addition:

c′(v, θ′) = c − v cos θ′ + o

(
v2

c2

)
. (16)

Formula (15) describes the anisotropy of the velocity of

light in IRF K′. Such anisotropy was observed in [20, 21].

Note that formula (15) does not contradict the postulate of the

light velocity invariance in SR, what is meant here are the two

different velocities differing in the way of synchronizing the

clock they are determined by. It is easy to state that formula

(15) explains the lack of interference in the MM experiment

[6] since the time of the “back and forth” motion is

t↑↓ = t↑ + t↓ =
L

c′(θ′)
+

L

c′(θ′ + π)
=

2L

c
= invar. (17)

Formula (15) enables one to understand how the ether

“hided” from Michelson (more exactly, it did not allow him to

find it), i.e. at adding the reverse velocities in (17) the “ether

terms” are mutually abolished. The reader has to recognize

the methodological value of formula (15), since it indicates

that the lack of interference in the MM experiment could be

explained not postulating the assumption about the indepen-

dence of the velocity of light on the observer’s motion veloc-

ity. All the difficulties in the time behavior in SR seat in this

assumption.

3 Estimation of the possible excess of the absolute veloc-

ity of light in IRF related to the Earth

Let us use equation (4) to obtain the estimate of the possible

excess of the neutrino velocity over the absolute velocity of

light. Let v and u be the velocity of the Earth and that of neu-

trino with respect to AIRF K (conditionally speaking, with

respect to the ether), respectively, u′ be the neutrino veloc-

ity value with respect to the Earth. According to Marinov’s

measurements [4, 5]

v = (360 ± 40) km/s. (18)

The same estimate follows from the analysis of the exper-

imental data on the light velocity anisotropy [20, 21].

Let us assume that the velocity u is very close to the veloc-

ity of light c: u= c− δ, δ≪ c. Taking also into account that

v≪ c, we obtain from (4) to the accuracy of the first-order

values over v/c and δ/c:

u′ − c

c
= −
v

c
cos θ −

δ

c
, θ = (û, v). (19)

At the neutrino energies of the order of GeV, taking into

account the smallness of the neutrino rest mass (several eV),

δ≪ v. Then
u′ − c

c
= −
v

c
cos θ. (20)

The maximal value of the above excess is reached at θ= π:
(

u′ − c

c

)

MAX

= (121 ± 13.3) × 10−5, (21)

This is approximately 50 times larger than the infamous

CERN result [22] obtained with a technical mistake that, ob-

viously, could not be considered the contestation of theoret-

ical estimates (20) and (21). It is important to achieve the

correct confirmation of estimates (20) and (21) for the sake

of the further progress of physics. To do this it is necessary to

ensure the clock synchronization close to instantaneous. One

may also use the “light synchronization” (GPS) that is more

convenient technically, but in this case one has to take into

account in (15) the difference of velocities of electromagnetic

signals propagating in the opposite directions.

Note that in case of the use of the clock synchronized “ac-

cording to Einstein” we may obtain from (9) for the situation

under discussion:

ũ′ − c

c
= −

(
v

c
cos θ

)2

⇒ ũ′ < c, (22)
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i.e. the “superluminal” motion would not be observed as is

true according to SR.

Note a specific circumstance: the estimate (20) could be

obtained from the Galilean velocity addition u′ = u− v, de-

spite the fact that the velocities u′ and u are relativistic. This

is due to the fact that the Tangherlini transformations are the

less correction of the Galilean transformations (GT) than the

Lorentz ones. To make the velocity addition law (3)–(5) (that

follows from TT) coincide in the first order with the Galilean

one, the fulfillment of the condition v≪ c is sufficient,

whereas formulae (6) and (9) coincide with the Galilean ones

only when u≪ c and v≪ c, and this is demonstrated by for-

mula (22).

4 Anisotropic deformation of the light barrier and light

cone in the Tangherlini theory

It follows from (4) and (15) that the velocities of the particle

u′ and light c′ in IRF K′ that moves with respect to the ether

may exceed the absolute velocity of light c. However, the

following holds true:

Statement 1 The velocity u′ of the particle with a non-zero

rest mass is always less than the velocity c′ of light that moves

in the same direction:

u′(θ′)< c′(θ′) (23)

Proof. Using formulae (4), (9), (11) and (15), we obtain:

u′(θ′)

c′(θ′)
=

ũ′

c

1 + v
c

cos θ′

1 + ũ′v
c2 cos θ′

=
1 + v

c
cos θ′

c
ũ′
+ v

c
cos θ′

. (24)

Since always c> ũ′, it follows from (24) that
u′(θ′)

c′(θ′)
< 1, i.e.

quod erat demonstrandum.

Thus, it follows from TT that in IRF K′ that moves with

respect to the ether with the velocity v an anisotropically de-

formed light barrier appears:

u′ <
c

1 + v
c

cos θ′
.

Only in AIRF K (v=0) this barrier takes a form of an absolute

SR barrier. In other IRTs, the value of deformation depends

on the velocity v of IRF with respect to the ether. Therefore,

even in case when the velocity of particle exceeds, according

to (20), the absolute velocity of light, it will not overcome the

light barrier, this barrier is simply such deformed that the mo-

tion with the velocity exceeding the absolute velocity of light

(c< u′ < c′) becomes possible. Therefore, one has not to ex-

pect the “vacuum” Cherenkov effect. If the neutrino outruns

its self-radiation, then, according to Kohen-Glashow calcula-

tions [23], it would lose almost its total energy for the pro-

duction of a pair of particles, which has not been observed

experimentally.

Thus, for the particle with the non-zero mass, even at

u′ > c, the term “superluminal motion” is conditional.

To obtain the equation that describes the light “quasi-

cone” in TTh, we will use the non-invariant metric tensor

[7, 8]:

g′µν(v) =



1 − v
c

0 0

− v
c

v2

c2 − 1 0 0

0 0 −1 0

0 0 0 −1


. (25)

The invariant 4-interval is:

dS ′2 = g′µνdx′µdx′ν = gµνdxµdxν =

= c2dt2 − (dx2 + dy2 + dz2). (26)

For the light “quasi-cone” we obtain the following equa-

tion:

ct′ −
v

c
x′ = ±

√
x′2 + y′2 + z′2. (27)

At v≪ c, this “quasi-cone” transforms into the SR light cone.

Taking into account relation (15), equation (27) should be

written in a form:

c′(θ′)t′ = ±

√
x′2 + y′2 + z′2, (28)

and this vindicates the use of the term “light quasi-cone”.

5 Energy and momentum of the “superluminal” particle

Let us ascertain that at the “superluminal” motion, i.e. at

u′ > c, the mass of the particle remains real. According to

TT (1), (2), one may obtain the following expressions for the

momentum P′ and energy E′:

P′ =
mu′√
χ2 −

(
u′

c

)2
= P̃′, (29)

E′ =
χmc2

√
χ2 −

(
u′

c

)2
= Ẽ′. (30)

These expressions were obtained in [7, 8] from the extreme

action principle with the certain-type Lagrangian. In [17], the

same expressions were obtained by means of the two simpler

methods: a) by using the notion “proper time” and b) by ap-

plying TT to the 4-vector of energy-momentum. It is easy

to show that the Statement 1 provides the positiveness of the

radicand expression in (29) and (30), including that at u′ > c.

Hence, there is no necessity to postulate the imaginary char-

acter of the rest mass m (in contrary to the tachyon hypothesis

in SR).

6 Notion of time in TTh and SR. Acausality illusoriness

Let us discuss now the difference of the properties of time

in TTh and SR resulting from the difference of the ways of

the clock synchronizing. The TT set (1), (2) does not form a

group, but, substituting:

t′ → t̃′ = t′ −
v

c2
x′, (31)
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we obtain the time part of LT:

t̃′ = γ

(
t −
v

c2
x

)
(32)

(the co-ordinate parts in TT and LT are the same).

The Lorentz transformations form a group and, therefore,

seem to be more preferred than TT. However, is it correct

to call the time the value t̃′ that is a linear combination of

the time t′ and co-ordinate x′? One may call the quantity

t̃′ the “quasi-time”, and the derivative with respect to t̃′ the

radius-vector r′ – the “quasi-velocity”. Then the second SR

postulate sounds as follows: “the quasi-velocity of light is in-

variant”. This coincides with the second TTh postulate, since

the quasi-velocity of light equals to the average velocity of

light when moving along the closed contour.

Let us express the relation between the intervals dt′ and

dt̃′ through the velocities v and u′x = dx′/dt′. From (31) we

obtain:

dt̃′ =

(
1 −
vu′x

c2

)
dt′ =

(
1 −

v · u′

c2

)
dt′ = χdt′ (33)

and this explains the relation between the velocities in TTh

and SR (see Section 2).

In IRF related to the Earth (v≈ 360 km/s), deviation of the

coefficient χ from unit is insufficient (i.e. it is about 10−3).

However, for the precise measuring the velocities with an-

nounced error less than 10−3 (as in the CERN experiment [22]

on finding the superluminal neutrino motion) this difference

should be taken into account. Of particular consideration is

the situation of the “superluminal” motion, i.e. when u′ > c.

It is seen from (2) that at dt> 0 the condition dt′ > 0 always

holds true as well, i.e. the time in TTh, as it has been always

in physics, varies in any IRF towards one side, i.e. from the

past to the future. No “backward time motion” does exist. As

regards the interval dt̃′, it follows from (33) that given the ful-

fillment of the condition v · u′ > c2 this interval becomes neg-

ative, i.e. dt̃′ < 0 (at dt′ > 0). This allows one to understand

the illusoriness of the so-called problem of violation of the

causality principle in SR: the illusion of the acausality arises

due to neglecting the difference in the velocities of light in

case of the opposite directions. Let us dwell upon this prob-

lem in more detail. Let the superluminal signal propagate

in IRF K′ along the X-axis from the point “1” to the point

“2”. According to the instantaneously synchronized clock,

the motion time interval is ∆t′ = t′
2
− t′

1
. If one uses the light

synchronization (GPS) with fixing at the point “3” the light

signals emitted at the points “1” and “2” (let us consider for

simplicity that x3 = (x1 + x2)/2), then the motion time interval

is:

∆t̃′ = t̃′2 − t̃′1 = ∆t′ −
Lv

c2
, L = x2 − x1. (34)

Thus, at Lv/c2 >∆t′ (that is equal to the condition u′v > c2) the

“acausality” takes place, i.e. t̃′
2
< t̃′

1
. Everything is extremely

simple here, i.e. the light signal from the event-effect “2” is

detected earlier than the light signal from the event-cause “1”

due to the fact that the signal from the event-cause “1” moves

(along the IRF motion direction) for a time longer than the to-

tal time of the superluminal motion and the reverse (i.e. in the

opposite to the IRF motion) light beam motion from the point

“2” to the point “3”. The acausality illusion vanishes, if one,

formulating the causality principle, clearly states the things

implied as well, i.e. the event-effect always occurs later than

the event-cause according to the clock with the instantaneous

synchronization.

Perception of the illusoriness lifts the ban on the superlu-

minal motion: the velocity of the signals of the informational

origin (in particular, the quantum teleportation) could be ar-

bitrarily large.

It is easy to understand that the assumption about the pos-

sibility of appearance of the acausal loop is wrong. Indeed,

the intervals ∆t′ and ∆t̃′ between the events taking place at

the same point coincide. Therefore, it follows from ∆t′ > 0

for the cyclic process that ∆t̃′ > 0 as well.

Note that in TTh, as seen from (2), the experimentally

proven delay of time also exists. However, unlike SR, this

delay depends not on the relative velocity of the two reference

frames, but on the velocity of motion of a given IRF with

respect to the ether. For the two reference systems K′
1

and K′
2

moving with the same velocities in the opposite directions v′

and v′′ = − v′ the time varies similarly, i.e. t′′ = t′, though

their relative velocity 2v′/(1− (v′/c)2) could be as much as

desired large.

Obviously, the clock paradox doesn’t take place in TTh.

7 Final comments and conclusions

The above discussion allows one to conclude that TTh is a

wider theory than SR, however, all the TTh results almost co-

incide with those of SR in the cases when one may neglect

the non-invariance of the velocity of light (this is a kind of

application of the Bohr’s correspondence principle). In IRF

related to the Earth, this condition holds true very frequently.

Just due to this, such a brilliant agreement of the SR calcu-

lations with a huge number of experimental data does exist.

However, the motion with the superluminal velocities is out

of the SR competence. As it had been shown above, the ap-

parent violation of the causality principle at the superluminal

velocities in SR is due to neglecting the light velocity dif-

ference in case of motion in opposite directions. Therefore,

no restrictions on the velocity of particles and signals are im-

posed by the causality principle. However, as proven in State-

ment 1, when comparing the velocity of particle with the non-

zero mass u′ with that of the light c′ in the arbitrary reference

frame, condition u′ < c′ is always valid (though in this case u′

could be arbitrarily large, including the case u′ > c).

In the case of the non-local correlation interaction be-

tween the “entangled states” of the quantum objects, the ve-
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locity of its propagation is not restricted at all. The experi-

mental excess of this velocity over the velocity of light has

been observed for the first time in the paper by Alan Aspect

et al. [24] devoted to the correlation of the photon pairs po-

larized states. The theoretical justification of the possibility

of information transfer with the superluminal velocity could

be easily found, say, in [25]. The possibility of the technical

realization of the superluminal signals in the communication

networks is discussed in [26] in the section with the charac-

teristic name “Superluminal communications”.
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In this work, the equation which properly governs cavity radiation is addressed once

again, while presenting a generalized form. A contrast is made between the approach

recently taken (P. M. Robitaille. On the equation which governs cavity radiation. Progr.

Phys., 2014, v. 10, no. 2, 126–127) and a course of action adopted earlier by Max

Planck. The two approaches give dramatically differing conclusions, highlighting that

the derivation of a relationship can have far reaching consequences. In Planck’s case,

all cavities contain black radiation. In Robitaille’s case, only cavities permitted to tem-

porarily fall out of thermal equilibrium, or which have been subjected to the action of

a perfect absorber, contain black radiation. Arbitrary cavities do not emit as black-

bodies. A proper evaluation of this equation reveals that cavity radiation is absolutely

dependent on the nature of the enclosure and its contents. Recent results demonstrating

super-Planckian thermal emission from hyperbolic metamaterials in the near field and

emission enhancements in the far field are briefly examined. Such findings highlight

that cavity radiation is absolutely dependent on the nature of the cavity and its walls.

As previously stated, the constants of Planck and Boltzmann can no longer be viewed

as universal.

Science enhances the moral value of life, because it

furthers a love of truth and reverence. . .

Max Planck, Where is Science Going? 1932 [1]

1 Introduction

The equation which governs radiation in an arbitrary cavity

has been presented [2, Eq. 8] by combining Kirchhoff’s law

of thermal emission [3, 4] with Stewart law [5, 6]:

Eν = f (T, ν) − ρν · f (T, ν) , (1)

where Eν corresponds to the frequency dependent emissive

power, ρν to the frequency dependent reflectivity, and f(T, ν)

to the function defined by Max Planck [2, 7, 8].∗ This expres-

sion is valid under assumptions made by the German scientist

in neglecting the effects of diffraction and scattering [8, §2].

At the same time, it implies that all materials used to assemble

blackbodies will act as Lambertian emitters/reflectors. The

total emission will vary with the cosine of the polar angle in

accordance with Lambert’s Law (see e.g. [9, p. 19] and [11,

p. 22–23]). Planck assumes that white reflectors, which are

Lambertian in nature, can be utilized in the construction of

blackbodies (e.g. [8, §61, §68, §73, §78]). But very few ma-

terials, if any, are truly Lambertian emitters/reflectors.

∗The emissivity of an object, ǫν, is equal to its emissive power, E, divided

by the emissive power of a blackbody of the same shape and dimension.

Similarly, the reflectivity, ρν, can be taken as the reflected portion of the

incoming radiation, divided by the total incoming radiation, as often provided

by a blackbody [9, 10]. Like emissivity, the reflectivity of an object is an

intrinsic property of the material itself. Once measured, its value does not

depend on the presence of incident radiation. As a result, Eq. 1 can never be

undefined, since ρν can only assume values between 0 and 1. For a perfect

blackbody, ρν = 0 and ǫν = 1.

Consequently, a fully generalized form of Eq. 1 must take

into account that all of these conditions might not necessarily

be met:

Eν,θ,φ = f (T, ν, θ, φ, s, d,N) − ρν,θ,φ · f (T, ν, θ, φ, s, d,N), (2)

where θ and φ account for the angular dependence of the

emission and reflection in real materials, s and d account for

the presence of scattering and diffraction, respectively, and N

denotes the nature of the materials involved.

Since laboratory blackbodies must be Lambertian emit-

ters [11, p. 22–23], they are never made from materials whose

emissivity is strongly directional. This explains why strong

specular reflectors, such as silver, are not used to construct

blackbodies. It is not solely that this material is a poor emitter.

Rather, it is because all reflection within blackbodies must be

diffuse or Lambertian, a property which cannot be achieved

with polished silver.

It should also be noted that when Eq. 1 was presented in

this form [2], the reflectivity term was viewed as reducing

the emissive power from arbitrary cavities. There was noth-

ing within this approach which acted to drive the reflection.

Within the cavity, the absorptivity must equal the emissiv-

ity. Hence, any photon which left a surface element to ar-

rive at another must have been absorbed, not reflected. The

overall probability of emission within the cavity must equal

the probability of absorption under thermal equilibrium. This

precludes the buildup of reflective power and, thereby, pre-

vents a violation of the 1st law of thermodynamics.

However, are there any circumstances when the reflection

term can be driven? In order to answer this question, it is

valuable to return to the work of Max Planck [8].
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2 Max Planck’s treatment of reflection

In his derivation of Eq. 1,∗ Max Planck had also sought to

remove the undefined nature of Kirchhoff’s law, when ex-

pressed in term of emission and absorption [8, §45–49]. How-

ever, in order to address the problem, he actively placed the

surface of interest in contact with a perfect emitter [8, §45–

49]. In so doing, Planck permitted a perfectly emitting body

to drive the reflection and, thereby, build the radiation within

his cavities, noting in §49 that “the amount lacking in the in-

tensity of the rays actually emitted by the walls as compared

with the emission of a black body is supplied by rays which

fall on the wall and are reflected there”. In §45, he had in-

formed the reader that the second medium was a blackbody.

It is for this reason that Planck insists that all cavities must

contain black radiation.

Thus, despite the advantage of expressing Eq. 1 in terms

of reflection, Planck abandoned the relationship he had pre-

sented in §49 [8], as reflection became inconsequential if it

could be driven by a carbon particle. He subsequently sum-

marized “If we now make a hole in one of the walls of a size

dσ, so small that the intensity of the radiation directed to-

wards the hole is not changed thereby, then radiation passes

through the hole to the exterior where we shall suppose there

is the same diathermanous medium as within. This radiation

has exactly the same properties as if dσ were the surface of

a black body, and this radiation may be measured for every

color together with the temperature T” [8, §49].

The problem of radiation emitted by an arbitrary cavity

had not been solved, because Planck ensured, throughout his

Theory of Heat Radiation [8], that he could place a minute

particle of carbon within his perfectly reflecting cavities in

order to release the “stable radiation” which he sought [12].

He advanced that the carbon particle simply had a catalytic

role [8, 12]. In fact, since he was placing a perfect emitter

within his cavities at every opportunity [8, 12], he had never

left the confines of the perfectly absorbing cavity, as repre-

sented by materials such as graphite or soot. His cavities

all contained black radiation as a direct result. Perhaps this

explains why he did not even number Eq. 1 in his deriva-

tion. Since he was driving reflection, all cavities contained the

same radiation and Eq. 1 had no far reaching consequences.

Planck’s approach stands in contrast to the derivation of

Eq. 1 presented recently [2]. In that case, particles of carbon

are never inserted within the arbitrary cavities. Instead, the

emissivity of an object is first linked by Stewart’s law [5,6] to

its reflectivity, before a cavity is ever constructed

ǫν + ρν = κν + ρν = 1 . (3)

∗Planck obtains I = E + (1 − A)I = E + RI, where E corresponds to

emitted power, R(= ǫ) is the fraction of light reflected and I(= f (T, ν)) is the

blackbody brightness which, in Planck’s case, also drives the reflection [8,

§49]. This is because he places a carbon particle inside the cavity to produce

the black radiation.

This is how the emissivity of a real material is often mea-

sured in the laboratory. The experimentalist will irradiate the

substance of interest with a blackbody source and note its re-

flectivity. From Stewart’s law (Eq. 3), the emissivity can then

be easily determined.

It is only following the determination of the emissivity

and reflectivity of a material that the author constructs his ar-

bitrary cavity. As such, the recent derivation of Eq. 1 [2],

does not require that materials inside the cavity can drive the

reflectivity term to eventually “build up” a blackbody spec-

trum. This is a fundamental distinction with the derivation

provided by Max Planck [8, §49].

The emissivity of a material is defined relative to the emis-

sivity of a blackbody at the same temperature. To allow,

therefore, that reflectivity would “build up” black radiation,

within an arbitrary cavity in the absence of a perfect emit-

ter, constitutes a violation of the first law of thermodynam-

ics (see [2] and references therein). Planck himself must

have recognized the point, as he noted in §51 of his text that

“Hence in a vacuum bounded by perfectly reflecting walls

any state of radiation may persist” [8].

Consequently, one can see a distinction in the manner in

which Eq. 1 has been applied. This leads to important dif-

ferences in the interpretation of this relationship. For Planck,

all cavities contain black radiation, because he has insisted on

placing a small carbon particle within all cavities. The parti-

cle then actively drives the reflection term to produce black

radiation.

In contrast, in the author’s approach, arbitrary cavity ra-

diation will never be black, because a carbon particle was

not placed within the cavity. Emissivity and reflectivity are

first determined in the laboratory and then the cavity is con-

structed. That cavity will, therefore, emit a radiation which

will be distinguished from that of a blackbody by the pres-

ence of reflectivity. This term, unlike the case advocated by

Max Planck, acts to decrease the net emission relative to that

expected from a blackbody.

In this regard, how must one view arbitrary cavities and

which approach should guide physics? Answers to such ques-

tions can only be found by considering the manner in which

blackbodies are constructed and utilized in the laboratory.

3 Laboratory blackbodies

Laboratory blackbodies are complex objects whose interior

surfaces are always manufactured, at least in part, from nearly

ideal absorbers of radiation over the frequency of interest

(see [13], [14, p. 747–759], and references therein). This fact

alone highlights that Kirchhoff’s law cannot be correct. Ar-

bitrary cavities are not filled with blackbody radiation. If this

was the case, the use of specialized surfaces and components

would be inconsequential. Blackbodies could be made from

any opaque material. In practice, they are never constructed

from surfaces whose emissive properties are poor and whose
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emissivity/reflectivity are far from Lambertian.

Sixty years ago, De Vos summarized black body science

as follows: “Resuming, it must be concluded that the formu-

lae given in the literature for the quality of a blackbody can

be applied only when the inner walls are reflecting diffusely

to a high degree and are heated quite uniformly” [15]. De

Vos was explicitly stating that mathematical rules only apply

when a cavity is properly constructed. Even if the tempera-

ture was uniform, the walls must have been diffusely reflect-

ing. Everything was absolutely dependent on the nature of

the walls. Lambertian emitters/reflectors had to be utilized.

Specialized materials were adopted in the laboratory, in sharp

contrast to Kirchhoff’s claims (see [2] and references therein).

At the same time, there is another feature of laboratory

blackbodies which appears to have been overlooked by those

who accept universality and Planck’s use of reflection to pro-

duce black radiation.

Laboratory blackbodies (see [13], [14, p. 747–759], and

references therein) are heated devices: “In photometry and

pyrometry often use is made of blackbodies i.e. opaque hol-

low bodies which are provided with one or more small holes

and whose walls are heated uniformly” [15]. They tend to

be cylindrical or spherical objects heated in a furnace, by im-

mersion in a bath of liquid (water, oil, molten metal), through

electrical means like conduction (where resistive elements are

placed in the walls of the cavity) and induction (where elec-

tromagnetic fields are varied), and even by electron bombard-

ment [13–15].

The question becomes, when does the heating in a labo-

ratory blackbody stop? For most experiments, the answer is

never. Once the desired temperature is achieved, additional

heat continues to be transferred to the blackbody with the in-

tent of maintaining its temperature at the desired value. The

consequences of this continual infusion of energy into the

system are ignored. Since temperature equilibrium has been

achieved, scientists believe that they have now also reached

the conditions for thermal equilibrium. The two, however,

are completely unrelated conditions.

4 Theoretical considerations

As an example, an object can maintain its temperature, if it

is heated by conduction, or convection, and then radiates an

equivalent amount of heat away by emission. In that case,

it will be in temperature equilibrium, but completely out of

thermal equilibrium. For this reason, it is clear that heated

cavities cannot be in thermal equilibrium during the measure-

ments, as this condition demands the complete absence of net

conduction, convection, or radiation (neglecting the amount

of radiation leaving from the small hole for discussion pur-

poses).

Planck touched briefly on the subject of thermal equilib-

rium in stating, “Now the condition of thermodynamic equi-

librium required that the temperature shall be everywhere the

same and shall not vary with time. Therefore in any given

arbitrary time just as much radiant heat must be absorbed

as is emitted in each volume-element of the medium. For the

heat of the body depends only on the heat radiation, since,

on account of the uniformity in temperature, no conduction

of heat takes place” [8, §25]. Clearly, if the experimental-

ists were adding energy into the system in order to maintain

its temperature, they could not be in thermal equilibrium, and

they could not judge what the effect of this continual influx of

energy might be having on the radiation in the cavity.

4.1 Consequences of preserving thermal equilibrium

Consider an idealized isothermal cavity in thermal equilib-

rium whose reflection has not been driven by adding a car-

bon particle. Under those conditions, the emissivity and ab-

sorptivity of all of its surface elements will be equal. Then,

one can increase the temperature of this cavity, by adding an

infinitesimal amount of heat. If it can be assumed that the

walls of the cavity all reach the new temperature simultane-

ously, then the emissivity of every element, ǫν, must equal

the absorptivity of every element, κν, at that instant. The

process can be continued until a much higher temperature is

eventually achieved, but with large numbers of infinitesimal

steps. Under these conditions, reflection can play no part, as

no energy has been converted to photons which could drive

the process. All of the energy simply cycles between emis-

sion and absorption. The cavity will now possess an emissive

power, E, which might differ substantially from that set forth

by Kirchhoff for all cavities. In fact, at the moment when

the desired temperature has just been reached, it will simply

correspond to

Eν = ǫν · f (T, ν) , (4)

because the emissivity of a material remains a fundamental

property at a given temperature. This relationship will deviate

from the Planckian solution by the extent to which ǫν deviates

from 1.

4.2 Consequences of violating thermal equilibrium

At this stage, an alternative visualization can be examined. It

is possible to assume that the influx of energy which enters

the system is not infinitesimal, but rather, causes the emissiv-

ity of the cavity to temporarily become larger than its absorp-

tivity. The cavity is permitted to move out of thermal equilib-

rium, if only for an instant. Under these conditions, the tem-

perature does not necessarily increase. The additional energy

can simply be converted, through emission, to create a reflec-

tive component. Thermal equilibrium is violated. Emissivity

becomes greater than absorptivity and the difference between

these two values enters a reflected pool of photons. A condi-

tion analogous to

ǫν = κν + δρν (5)

has been reached, where δρν is that fraction of the reflectivity

which has actually been driven.
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The emissive power might still not be equal to the Kirch-

hoff function in this case, depending on the amount of pho-

tons that are available from reflection. If one assumes that the

radiation inside the cavity must be governed in the limiting

case by the Planck function, then the emissive power under

these circumstances will be equal to the following:

Eν = (ǫν + δρν) · f (T, ν) . (6)

The cavity is still not filled with blackbody radiation, as

the reflective term has not yet been fully driven. Nonetheless,

the process can be continued until δρν = ρν and the reflective

component has been fully accessed. At the end of the process,

Eq. 3 becomes valid in accordance to Stewart’s Law [5, 6].

The temperature has not yet increased, but the energy which

was thought to heat the cavity has been transformed to drive

the reflective component.

Finally, thermal equilibrium can be re-established by lim-

iting any excess heat entering the system. The reflected pho-

tons will bounce back and forth within the cavity. Balfour

Stewart referred to these photons as “bandied” [5] and, for

historical reasons, the term could be adopted. Thus, given

enough transfer of energy into the system, and assuming that

the material is able to continue to place excess emitted pho-

tons into the reflected pool, then eventually, the cavity might

become filled with black radiation, provided that emission

and reflection are Lambertian. In that case, the Planckian re-

sult is finally obtained:

Eν = (ǫν + ρν) · f (T, ν) . (7)

In practice, when a blackbody is being heated, some re-

flected photons will always be produced at every temperature,

as the entire process is typically slow and never in thermal

equilibrium. However, for most materials, the introduction

of photons into the reflected pool will be inefficient, and the

temperature of the system will simply increase. That is the

primary reason that arbitrary cavities can never contain black

radiation. Only certain materials, such as soot, graphite, car-

bon black, gold black, platinum black, etc. will be efficient in

populating the reflected pool over the range of temperatures

of interest. That is why they are easily demonstrated to be-

have a blackbodies. Blackbodies are not made from polished

silver, not only because it is a specular instead of a diffuse

reflector, but because that material is inefficient in pumping

photons into the reflected pool. With silver, it is not possible

to adequately drive the reflection through excessive heating.

The desired black radiation cannot be produced.

In order to adequately account for all these effects, it is

best to divide the reflectivity between that which eventually

becomes bandied, δρν,b, and that which must be viewed as

unbandied, δρν,ub:

ρν = δρν,b + δρν,ub . (8)

The unbandied reflection is that component which was

never driven. As such, it must always be viewed as subtract-

ing from the maximum emission theoretically available, given

applicability of the Planck function. With this in mind, Eq. 1

can be expressed in terms of emissive power in the following

form:

Eν = (1 − δρν,ub) · f (T, ν) , (9)

where one assumes that the Planckian conditions can still ap-

ply in part, even if not all the reflectivity could be bandied. In

a more general sense, then the expression which governs the

radiation in arbitrary cavities can be expressed as:

Eν = (1 − δρν,θ,φ,ub) · f (T, ν, θ, φ, s, d,N) . (10)

In this case, note that f (T, ν, θ, φ, s, d,N) can enable ther-

mal emission to exceed that defined by Max Planck. The

specialized nature of the materials utilized and the manner

in which the cavity is physically assembled, becomes impor-

tant. In this regard, Eqs. 1, 9, and 10, do not simply remove

the undefined nature of Kirchhoff’s formulation when consid-

ering a perfect reflector, but they also properly highlight the

central role played by reflectivity in characterizing the radia-

tion contained within an arbitrary cavity.

5 Discussion

Claims that cavity radiation must always be black or normal

[7,8] have very far reaching consequences in physics. Should

such statements be true, then the constants of Planck and

Boltzmann carry a universal significance which provide tran-

scendent knowledge with respect to matter. Planck length,

mass, time, and temperature take on real physical meaning

throughout nature [8, §164]. The advantages of universal-

ity appear so tremendous that it would be intuitive to protect

such findings. Yet, universality brings with it drawbacks in

a real sense, namely the inability to properly discern the true

properties of real materials.

Moreover, because of Kirchhoff’s law and the associated

insistence that the radiation within a cavity must be indepen-

dent of the nature of the walls, a tremendous void is cre-

ated in the understanding of thermal emission. In this re-

spect, Planckian radiation remains the only process in physics

which has not been linked to a direct physical cause. Why is

it that a thermal photon is actually emitted from a material

like graphite or soot?

This question has not yet been answered, due to the be-

lief that Kirchhoff’s law was valid. Thus, Kirchhoff’s law

has enabled some to hope for the production of black radia-

tion in any setting and in a manner completely unrelated to

real processes taking place within graphite or soot. It is for

this reason that astronomers can hold that a gaseous Sun can

produce a thermal spectrum. Such unwarranted extensions of

physical reality are a direct result of accepting the validity of

Kirchhoff’s formulation. Real materials must invoke the same

mechanism to produce thermal photons. Whatever happens
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within graphite and soot to generate a blackbody spectrum

must also happen on the surface of the Sun.

The belief that arbitrary materials can sustain black radi-

ation always results from an improper treatment of reflection

and energy influx. In Max Planck’s case, this involved the

mandatory insertion of a carbon particle within his cavities.

This acted to drive reflection. In the construction of labora-

tory blackbodies, it involves departure from thermal equilib-

rium as the inflow of energy enables the emissivity to drive

the reflection. In the belief that optically thick gases can emit

blackbody radiation [16], it centers upon the complete dis-

missal of reflection and a misunderstanding with respect to

energy inflow in gases [17].

Relative to the validity of Kirchhoff’s Law, it is also pos-

sible to gain insight from modern laboratory findings. Recent

experiments with metamaterials indicate that super-Planckian

emission can be produced in the near field [18–20]. Such

emissions can exceed the Stefan-Boltzmann law by orders of

magnitude [18–20].

Guo et al. summarize the results as follows: “The usual

upper limit to the black-body emission is not fundamental and

arises since energy is carried to the far-field only by propa-

gating waves emanating from the heated source. If one allows

for energy transport in the near-field using evanescent waves,

this limit can be overcome” [18]. Beihs et al. states that, “Ac-

cordingly, thermal emission is in that case also called super-

Planckian emission emphasizing the possibility to go beyond

the classical black-body theory” [19].

Similar results have been obtained, even in the far-field,

using a thermal extraction device [21, 22]. In that case, the

spatial extent of the blackbody is enhanced by adding a trans-

parent material above the site of thermal emission. A four-

fold enhancement of the far-field emission could thus be pro-

duced. In their Nature Communications article, the authors

argue that this does not constitute a violation of the Stefan-

Boltzmann law, because the effective “emitting surface” is

now governed by the transmitter, which is essentially trans-

parent [21]. However, this was not the position advanced

when the results were first announced and the authors wrote:

“The aim of our paper here is to show that a macroscopic

blackbody in fact can emit more thermal radiation to far field

vacuum than P = σT 4 S ” [22].

In the end, the conclusion that these devices do not violate

the Stefan-Boltzmann relationship [21] should be carefully

reviewed. It is the opaque surface of an object which must

be viewed as the area which controls emission. Kirchhoff’s

law, after all, refers to opaque bodies [3, 4]. It is an extension

of Kirchhoff’s law beyond that previously advanced to now

claim that transparent surface areas must now be considered

to prevent a violation of the laws of emission.

In this regard, Nefedov and Milnikov have also claimed

that super-Planckian emission can be produced in the far-

field [23]. In that case, they emphasize that Kirchhoff’s law

is not violated, as energy must constantly flow into these sys-

tems. There is much truth in these statements. Obviously,

modern experiments [18–23] fall short of the requirements

for thermal equilibrium, as the cavities involved are heated

to the temperature of operation. But given that all laboratory

blackbodies suffer the same shortcomings, the production of

super-Planckian emission in the near and far fields [18–23]

cannot be easily dismissed. After all, in order for Planck to

obtain a blackbody spectrum in every arbitrary cavity, he had

to drive the reflection term, either by injecting a carbon par-

ticle or by permitting additional heat to enter the system, be-

yond that required at the onset of thermal equilibrium.

An interesting crossroads has been reached. If one as-

sumes that modern experiments cannot be invoked, as they

require an influx of conductive energy once temperature equi-

librium has been reached, then the same restriction must be

applied to all laboratory blackbodies. Yet, in the absence of

bandied reflection, very few cavities indeed would adhere to

Kirchhoff’s law. In fact, many cavities can never be filled with

black radiation, even if one attempts to drive the reflection

term. That is because certain materials are not conducive to

emission and prefer to increase their temperature rather than

drive reflection. Arbitrary cavities do not contain black radi-

ation, and that is the measure of the downfall of Kirchhoff’s

law.

Taken in unison, all of these observations, even dating

back to the days of Kirchhoff himself, highlight that the uni-

versality of blackbody radiation has simply been overstated.

The emissive characteristics of a cavity are absolutely depen-

dent on the nature of the cavity walls (see [13], [14, p. 747–

759], and references therein). This has broad implications

throughout physics and astronomy.

Dedication

This work is dedicated to our mothers on whose knees we

learn the most important lesson: love.
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The neutron/gamma pulse shape discrimination (PSD) is measured for the newly dis-
covered plastic scintillator EJ 299-33 using a fast digitizer DDC10. This plastic scin-
tillator (EJ 299-33) discovered by Lawrence Livermore National Laboratory(LLNL) is
now commercially available by Eljen Technology. Some of its properties include light
output emission efficiency of 56/100 (of Anthracene), wavelength of maximum emis-
sion of 420 nm, C:H ratio of 1:1.06 and density of 1.08 g/cm3. The PSD between
neutrons and gamma rays in this plastic scintillator is studied using a 5.08-cm diameter
by 5.08-cm thick sample irradiated by a neutron-gamma source AmBe-241 and em-
ploying charge integration method. The results show that EJ 299-33 has a very good
PSD, having a figure of merit of approximately 0.80, 2.5 and 3.09 at 100 KeVee, 450
KeVee and 750 KeVee light outputs respectively. The performance of this new material
is compared to that of a liquid scintillator with a well proven excellent PSD performance
NE213, having a figure of merit of 0.93, 2.95 and 3.30 at 100 KeVee, 450 KeVee and
750 KeVee respectively. The PSD performance of EJ 299-33 is found to be comparable
to that of NE 213.

1 Introduction

For several years efforts to develop plastic scintillators with
efficient neutron/gamma discrimination yielded little success
[1, 2]. Plastic scintillators are preferred over liquid scintil-
lators for a number of attractive features including low cost,
self-containment, and ease of machining. This is why the in-
vention of the plastic scintillator EJ 299-33 [3], with a very
good PSD capability has generated a great interest in the com-
munity [4–8].

Applications of this type of scintillator in complex nuclear
physics experiments or in homeland security and nonprolifer-
ation and safeguards are now possible. The goal of this paper
is to report our recent off-line evaluation of PSD capability of
EJ 299-33.

2 Experimental method

The experiment was performed at Nuclear Science Research
Laboratory in Rochester. This experiment was done prior
to our in-beam experiment at Laboratori Nazionali del Sud
(LNS) in Catania [8]. It was meant to test the response of
the organic plastic scintillator EJ 299-33, the same scintillator
used in the in-beam experiment. Our results from the in-beam
experiments have since been published elsewhere [8].

The experiment was done using a fast digital signal pro-
cessing module, DDC10 made by SkuTek instruments [9].
The DDC10 is fashioned with 10 analog inputs, each of which
is capable of a 14bit analog to digital conversions operating
at 100 Ms/s. The neutron/gamma study was performed using
neutron-gamma source AmBe-241, shielded with a 5.0-cm
lead block which reduced the γ rates to a magnitude com-
parable to that of neutrons, to irradiate the 5.08-cm diameter

× 5.08-cm thick EJ 299-33 sample. The plastic scintillator
EJ 299-33 was coupled to the photomultipler(PMT) Hama-
matsu R7724 and PMT base of ELJEN model VD23N-7724
operated at 1750 Volts. The liquid scintillator NE-213 was
however coupled to PMT XP-2041 operated at 1750 Volts.

In order to separate neutrons from γ-rays, integration is
performed in two parts of the pulse from the digital wave-
forms. The first integration is done from the beginning of
the pulse rise time and the other integration is done over the
tail part. These two integrals are designated Qtotal and Qtail

respectively. The ratio between them is used to separate neu-
trons from γ-rays. Thus PSD is defined as

PS D =
Qtail

Qtotal
. (1)

The point where the tail begins can be optimized for better
neutron/gamma separation. For this case, the tail begins 40-
ns after the rise time.

The quantitative evaluation of PSD was made using fig-
ures of merit (FOM) defined below.

FOM =
∆X

(δgamma + δneutron)
, (2)

where ∆X is the separation between the gamma and neu-
tron peaks, and δgamma and δneutron are the full width at half
maximum of the corresponding peaks (see Figs. 2A-F). The
separation, ∆X was calculated as the difference between the
mean delayed light fraction Qtail

Qtotal
, for neutrons and gamma-

rays taken as a normal distribution in PSD over a specified
energy range [3]

A reference parameter to define a good PSD in the tested
sample is arrived at by noting that a reasonable definition
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Fig. 1A: Pulse shape discrimination patterns for γ-rays and neutrons
obtained using charge integration method for the plastic scintillator
EJ 299-33.

Fig. 1B: Pulse shape discrimination patterns for γ-rays and neutrons
obtained using charge integration method for the liquid scintillator
NE213.

for well separated Gaussian distributions of similar popula-
tions sizes is ∆X > 3(σgamma + σneutron), where σ is the
standard deviation for each corresponding peak. Consider-
ing that full width at half maximum for each peak is related
to the standard deviation by the expression, FWHM≈2.36σ,
FOM≥3(σgamma + σneutron)/2.36(σgamma + σneutron) ≈ 1.27 is
considered a good PSD [3].

3 Experimental results

The main experimental results are represented in Figs. 1A-1B
and Figs. 2A-2F. The quality of PSD achieved with the plastic
scintillator EJ 299-33 is illustrated in Fig. 1A, where one ob-
serves a very good separation of intensity ridges due to γ-rays
(effectively recoil electrons) and neutrons(effectively recoil
protons). Fig. 1B illustrates similar result but for the standard
liquid scintillator NE 213 with proven excellent PSD capabil-
ity for purposes of comparison. As one observes in 1A-B, the

Fig. 2A: PID pattern obtained with organic plastic scintillator EJ
299-33 showing n/γ separation for the light output cut 50-150
KeVee.

Fig. 2B: PID pattern obtained with organic plastic scintillator EJ
299-33 showing n/γ separation for the light output cut 400-500
KeVee.

degree of separation of neutrons from γ-rays for the EJ 299-
33 and NE 213 is comparable. This excellent PSD capability
is what makes this new scintillator unique among the plastic
scintillators and is a welcome feature from the point of neu-
tron detection and identification in the presence of gamma-ray
background.

The quality of particle identification(PID) i.e. separation
of neutrons and γ-rays is further evidenced by the figure of
merit(FOM) as illustrated in Figs. 2A-2C for EJ 299-33 for
the energy cuts 100 KeVee, 450 KeVee and 750 KeVee re-
spectively, as indicated by the labels. Figs. 2D-2F show sim-
ilar results but this case for the liquid scintillator NE 213 in-
cluded for the purpose of comparison. In order to calculate
the FOM, we make energy cut and project only the points
within the energy cut along the y-axis. The resulting plot has
a PSD along the x-axis and counts on the y-axis as shown in
Figs. 2A-2F. The obtained figures of merit suggest the per-
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Fig. 2C: PID pattern obtained with organic plastic scintillator EJ
299-33 showing n/γ separation for the light output cut 700-800
KeVee.

Fig. 2D: PID pattern obtained with organic liquid scintillator NE213
showing n/γ separation for the light output cut 50-150 KeVee.

formance of the standard liquid scintillator NE 213 and the
new plastic scintillator are comparable. This results suggest
that the replacement of liquid scintillators by plastic scintilla-
tors for applications challenged by the well known problems
of liquids such as toxicity, flammability, high freezing points,
among others is now possible [3, 4].

4 Summary

The results show excellent PSD capability of the new plas-
tic scintillator EJ 299-33 to a level useful for practical ap-
plications in complex nuclear physics experiments, nuclear
forensics etc. Along with its good charged particle identifica-
tion [8], EJ 299-33 is expected to provide a viable alternative
to the widely used CsI(Tl)detetctor.
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Fig. 2E: PID pattern obtained with organic liquid scintillator NE213
showing n/γ separation for the light output cut 400-500 KeVee.

Fig. 2F: PID pattern obtained with organic liquid scintillator NE213
showing n/γ separation for the light output cut 700-800 KeVee.
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In this work, the claim that optically thick gases can emit as blackbodies is refuted. The

belief that such behavior exists results from an improper consideration of heat transfer

and reflection. When heat is injected into a gas, the energy is primarily redistributed

into translational degrees of freedom and is not used to drive emission. The average

kinetic energy of the particles in the system simply increases and the temperature rises.

In this respect, it is well-know that the emissivity of a gas can drop with increasing

temperature. Once reflection and translation are properly considered, it is simple to

understand why gases can never emit as blackbodies.

Supposing all the above conditions to have been

verified, then the physicist’s picture of the external

universe has only one further requirement to fulfill.

Throughout its whole composition it must be free

from everything in the nature of a logical incoher-

ence. Otherwise the researcher has an entirely free

hand. [Intellectual freedom]. . . is not a mere arbi-

trary flight into the realms of fancy.

Max Planck, Where is Science Going? 1932 [1]

1 Introduction

In the laboratory, blackbodies are specialized, heated, and

opaque enclosures, whose internal radiation is determined by

the Planckian function [2, 3]. Not all cavities contain this

type of radiation, even if Kirchhoff’s law of thermal emission

had dictated such an outcome [4, 5]. There are demonstrable

shortfalls in Kirchhoff’s ideas [6–15] and arbitrary cavities

are not black. Everything is very much dependent on the na-

ture of the walls [6–15].

Nonetheless, if can be shown that the interior of a cavity

is lined with a nearly ideal absorber, or subjected to the action

of a carbon particle [8–10], then it can support black body ra-

diation [15]. It is also possible, under special circumstances,

to drive the reflectivity of a cavity through a temporary vio-

lation of thermal equilibrium [15]. Under those conditions, a

cavity, if it has walls which can support Lambertian radiation,

might also come to be filled with black radiation. These are

unique settings which do not ratify Kirchhoff’s claims [15].

In its proper formulation, the law which governs radia-

tion in arbitrary cavities [14, 15] under the limits set by Max

Planck [2,3], combines the laws of Kirchhoff [4,5] and Stew-

art [16] (see Eq. 1 and 9 in [15]). These solutions include

the effect of reflectivity, which can act to produce substantial

deviations from the behavior expected for cavity radiation, as

advanced in 1860 [4, 5]. That real materials possess reflec-

tivity implies that they cannot generate a blackbody spectrum

without driving this reflective component [15].

2 Optically thick gases

Finkelnburg [17] advocated that optically thick gases can also

produce blackbody radiation [3–6], since he did not properly

consider reflection and energy transfer within a gas. Real

gases can never meet the requirements for generating a black-

body spectrum, as they possess both convection and reflec-

tion.

Relative to the claim that optically thick gases [17] can

sustain blackbody radiation [2, 3], the arguments advanced

[17] fail to properly address the question. It is easy to demon-

strate that, if reflection is not considered, cavity radiation

will always be black, independent of the nature of the walls

[8–10, 15]. However, real materials, including gases, possess

reflection. As a direct consequence, this property must be

included.

In his classic paper [17], Finkelnburg makes the sugges-

tion that even if gases are transparent at certain frequencies,

they can come to absorb slightly over all frequencies because

“a thermally excited gas by necessity is ionized to a certain,

though occasionally small degree”. He continues, “As a con-

sequence of this ionization, a continuous spectrum resulting

from the stopping of the free discharge electrons in the fields

of the positive ions covers the whole spectral region. The

same applies (with largely varying intensity ) for a number of

continuous spectra beyond the series limits where the emis-

sion results from recombination of free electrons with ions

into different excited states of atoms. Even if any broadening

of the discrete lines or bands emitted by the gas is disregarded

the absorption coefficient of every luminous gas thus is differ-

ent from zero for ‘all’ wave-lengths” [17]. In this respect,

Finkelnburg has overlooked that internal reflection within the

gas is also likely to be different from zero at all wavelengths.

Finkelnburg failed to properly address the reflection. That

is why he advocated that optically thick gases could emit as

blackbodies. He made the assumption that surface reflectivity

was negligible in a gas [17]. Yet, since gases have no surfaces,
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there can be little relevance in such statements.

The reality remains that all gases possess internal reflec-

tion over certain wavelengths and that this characteristic can-

not be distinguished from emissivity.∗ Unlike the transmis-

sivity, the reflective properties of a gas remain independent of

path length and is an ever present property which cannot be

ignored. Photons can be reflected within a gaseous system,

even if no surface exists. This is not the same as if the pho-

tons were emitted because reflection is a driven phenomenon

which involves an external source to drive the departure from

thermal equilibrium [15].

It has recently been argued that, in order to obtain black

radiation in an arbitrary cavity, the reflectivity of a material

must be driven [15]. While gases cannot be characterized by

reflectivity, since they do not have a surface, they do possess

internal reflection. In order for a gas to gain a blackbody

appearance, it is this reflection which must be driven.

Yet, there are only two ways in which reflection can be

driven. The first method, adopted by Max Planck, involves

placing a small carbon particle within the cavity of interest

[15]. Obviously, this cannot be achieved when considering

optically dense gases in space. The second method involves

driving the reflection, by the addition of energy [15], without

an associated change in temperature.†

For a gas to emit like a blackbody, it must be possible

to channel energy into this system and produce an excess of

emission over absorption. This must occur in a manner which

can serve to drive reflection [16], rather than promote con-

vection and increase temperature. However, within a gas, this

is extremely unlikely to occur. Gases are known to increase

their temperature in response to the inflow of energy. They do

not easily increase their emissivity [18]. In fact, the emissivi-

ties of some gases are known to drop with increasing temper-

ature, directly confirming this conclusion [18, p. 214–217].

Gases primarily respond to energy by channeling it into trans-

lational (not simply in their vibrational, rotational, or elec-

tronic) degrees of freedom. Gases increase their average ki-

netic energy, hence their temperature. When confronted with

heat, the atoms of a gas do not simply conserve their kinetic

energy in order to promote emission. Therefore, gases can

never act as blackbodies, since they can easily access convec-

tion. This situation is completely unlike a solid, like graphite,

which cannot invoke convection to deal with the influx of en-

ergy. Planck insisted that blackbodies have rigid walls [3].

∗When monitoring a gas, it is impossible to ascertain whether a photon

which reaches the detector from the “interior of the gas” has been directly

produced by emission, or whether the photon has undergone one or more

reflections before arriving at the detector.
†This second method relies on a temporary departure from thermal equi-

librium. In the case of real cavities, a situation such as ǫν = κν + δρν must be

considered, where ǫν corresponds to emissivity, κν to absorptivity, and δρν to

that fraction of the reflectivity which has been driven [15]. In a gas, we can

reformulate this relationship in terms of emissive and absorptive powers, E

and A, and obtain E = A + δR · I, where δR is the fraction of the internal

reflection which has been driven by some function, I [15].

There can be no convection.

As a side note, all experiments on pure gases on Earth

involve some form of container. This places the gas within

the confines of an enclosure, which though not necessarily

opaque to photons, will act to permit gaseous atoms to expe-

rience collisional broadening. Such an effect can dramatically

alter the conclusions reached, when studying gases in the lab-

oratory versus how gases behave in the unbounded condi-

tions of space. It is not possible for Finkelnburg to assert

that “Even if any broadening of the discrete lines or bands

emitted by the gas is disregarded the absorption coefficient of

every luminous gas thus is different from zero for ‘all’ wave-

lengths” [4], as the experimentalist who is studying a gas re-

mains restricted to his container and the effects which it im-

poses on his conclusions. Obviously, if no broadening of the

lines can be observed, then the gas under study is even fur-

ther from approaching the blackbody spectrum. If broaden-

ing does not occur, then the lines, by definition, remain sharp

and this implies no absorption between the bands.

3 Discussion

When the interaction between a photon and a gas is consid-

ered, one must include the effect of reflection or scattering.

Such processes are ignored in all derivations which lead to the

conclusion that gases can act as blackbodies, when they are

sufficiently optically thick [17]. A gaseous atom can interact

briefly with a photon and this can result in diffuse reflection

or scattering. This term prevents any mathematical proof that

all gases, given sufficient optical thickness, can act as black-

bodies. The proper equations for radiation in thermal equilib-

rium with an enclosure, even in the illogical scenario that a

gas can be in thermal equilibrium with a self-provided enclo-

sure, involves reflection [15]. The momentary loss of thermal

equilibrium, associated with the injection of an infinitesimal

amount of heat into a gas, is seldom associated with increased

emissivity and the ability to drive reflection [15]. Rather, the

additional energy is channeled towards the translational de-

grees of freedom.

Gases can easily support convection. That is why no gas

can ever behave as a blackbody, even when “optically thick”.

Long ago, Sir William Huggins and his wife, Margaret

Lindsay Huggins [19], demonstrated that planetary nebula

can manifest extremely sharp lines in spite of their great spa-

tial extent [20, p. 87]. These findings provide strong evidence

that astronomical gases do not emit as blackbodies.

As previously emphasized [6–15], condensed matter is

absolutely required for the production of a thermal spectrum.
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5. Kirchhoff G. Über den Zusammenhang zwischen Emission und Ab-
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Black Hole Structure in Schwarzschild Coordinates
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In the analysis of the interior region of both stationary and rotating black holes, it is

customary to switch to a set of in-falling coordinates to avoid problems posed by the

coordinate singularity at the event horizon. I take the view here that to understand the

physics of black holes, we need to restrict ourselves to bookkeeper or Schwarzschild

coordinates of a distant observer if we are to derive measurable properties. I show

that one can derive interesting properties of black holes that might explain some of

the observational evidence available without the necessity of introducing further ad hoc

conjectures.

1 The Schwarzschild black hole

Birkhoff’s theorem [1] assures us that for any non-rotating

spherically symmetric distribution of matter, the gravitational

effect on any test mass is solely due to whatever mass lies

closer to the center of symmetry. This allows us to infer what

happens inside the event horizon, by comparing a hypothet-

ical distribution of matter that is identical but with all mass

outside the point of interest removed, with that of (say) a col-

lapsing star. Making no further assumptions, let the density

at any point inside the event horizon be ρinitial(r) where r is

the reduced distance from the center of symmetry. Now con-

sider a test mass m at a distance rp from the center of a black

hole, but inside an event horizon of radius reh. Now com-

pare this in a thought experiment with a similar test mass m

with an identical distribution of mass but with all mass at a

distance greater than rp set to zero. Clearly, our test mass in

both cases will head towards the origin, but so too will every

other particle that makes up the mass distribution ρinitial but

is not yet at the origin. In our thought experiment, the spher-

ical mass distribution will become increasingly compressed

with our test particle riding on the collapsing surface. A point

in time will be reached in our thought experiment where the

mass enclosed by the collapsing surface becomes a black hole

in its own right. To a distant observer, the test mass can then

never in a finite time cross the event horizon formed by this

newly created black hole. This will be true in our thought ex-

periment, and thus must be equally true in the original black

hole. At this point in time, to have formed a black hole, we

must have

r′ =
2Gm′

c2
,

where m′ is the total mass enveloped by a surface with a ra-

dius of r′. As the test mass was at an arbitrary distance from

the origin, this will become equally true for every point within

the event horizon of the original black hole. As a conse-

quence, the eventual distribution of mass must be such that

for all r less than reh

r =
2G

c2

∫ r

0

4πr2
ρ(r)dr

with ρ(r) being the eventual mass distribution function. This

relation is satisfied by

ρ(r) =
c2

8πGr2
.

The black hole has a density inside its outer event horizon

that is inversely proportional to the square of the (reduced)

distance from the origin.

2 The Kerr black hole

In Boyer-Lindquist coordinates [2], there is a spherical in-

ner event horizon for a Kerr black hole [3]; also in the limit

of zero rotation, these coordinates, not surprisingly, reduce

to Schwarzschild coordinates. The curvature tensors at the

surfaces of the (inner) event horizons seem very different but

are in fact identical. To understand this, see section 3, be-

low. Therefore, in Boyer-Lindquist coordinates, both the Kerr

black hole and the Schwarzschild black hole, have identi-

cal gravitational fields at their respective event horizons and

therefore identical internal structure as a consequence of the

holographic principal [4]. Let us clarify this: they are iden-

tical in Boyer-Lindquist coordinates but not from a viewing

platform here on earth. From here, the spinning black hole

will have an event horizon that appears as an oblate spheroid.

3 Comparing infinities

Consider two men with infinite piles of money, but with one

having additional small piles of money. Which is the richer?

Clearly they are equal. This was an example using scalar

quantities, but let us extend this to vectors. Two vectors each

have an infinite component but one of them has additional

non-zero components at right angles. Which is the larger?

Convert to polar coordinates to see that again they are equal.

The same is true for tensors. Consider first two tensors each

with one large and equal (but not infinite) component, but

one tensor having small non-zero additional components (the

other having all other components at zero). Now scale all

components to the size of the largest by dividing through by

the largest component. Then let the largest component in-

crease without limit. The largest component remains at unity
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whilst all other components approach zero. Thus we are left

with two identical tensors.

4 Consequences

With this solution, every point inside a black hole is sitting on

a local event horizon, where, to a distant observer, time stands

still, and so no two points inside a black hole will ever move

closer together. Consequently, the black hole must be truly

rigid in a way that no other physical object can be; it then fol-

lows directly from consideration of the Ehrenfest paradox [5]

that the angular velocity of a black hole can never increase

— it is fixed at birth. When a black hole increases in mass,

it must also increase in angular momentum in order to keep

the angular velocity constant up to the maximum speed of ro-

tation set by the periphery being unable to exceed the speed

of light, which thus limits the ultimate size a black hole can

grow to. We thus formulate a new fifth law of black hole

dynamics: it is never possible to change the angular ve-

locity of a black hole. Rigidity means that black holes can-

not be deformed by any outside processes, so it is difficult to

comprehend a process that will allow black holes to coalesce.

Ignoring this problem, it can be seen that the limitations of

the laws of black hole dynamics severely restrict the possible

outcomes whenever two black holes meet.

5 Observational justification

No definitive experimental evidence to confirm these results

is produced at this time, but observe that with stellar black

holes we would expect that at creation they would have to

have a typical mass range of 3–30 solar masses. One would

also expect them to be created with high spin due to the con-

servation of the angular momentum of the collapsing (spin-

ning) star. This limits the maximum mass that a stellar mass

black hole could ever grow to. This may apparently be justi-

fied by current observations but leaves the unanswered ques-

tion of how supermassive black holes are ever formed. I sug-

gest that although black holes may never merge, neutron stars

can, and with counter-rotating neutron stars, this can give

rise to a stellar mass black hole with exceptionally low spin.

These black holes are not so limited in growth as normal stel-

lar mass black holes and could grow to become supermas-

sive. All measurements to date suggest that the spin rates for

supermassive black holes are extremely high; that is they are

approaching the end of their growth phase.

6 Counterarguments

In general relativity, any convenient system of coordinates

can be used and is valid [6]. I suggest that as far as obser-

vational data goes, Schwarzschild coordinates are the most

appropriate as these alone can correlate with observations.

Two different coordinate systems — Schwarzschild and in-

falling coordinates — give very different results in the vicin-

ity of a black hole horizon and yet we know that they must

describe the same reality for different observers. Understand-

ing the relation between these two results is therefore cru-

cial to accepting the validity of this result. Consider twins,

one of whom descends towards the event horizon of a black

hole. We accept that one, the traveler, will appear to be slow-

ing down due the gravitational effect on the passage of time.

However, the traveler sees the opposite: time for the stay at

home twin seems to speed up. There is nothing fictitious or

illusory about this — if the traveler returns home, he will cer-

tainly be younger than his twin. Depending upon how close to

the event horizon he travels, he could be many days or years

younger. In principal, he could be 100,000 years younger and

still not have crossed the event horizon. (Apart from the tech-

nical difficulties, we are assuming eternal life.) So when does

the traveler cross the event horizon. By his own watch, it may

be just a few hours but for the stay at home twin it will be

eternity. So the traveler does arrive at the real singularity at

the center, but for the stay at home twin, this is after the Uni-

verse has ceased to exist. Both are real but only one produces

a measurable outcome.
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Starting from a string with a length equal to the electron mean free path and having a
unit cell equal to the Compton length of the electron, we construct a Schwarzschild-like
metric. We found that this metric has a surface horizon with radius equal to the electron
mean free path and its Bekenstein-like entropy is proportional to the number of squared
unit cells contained in this spherical surface. The Hawking temperature is inversely
proportional to the perimeter of the maximum circle of this sphere. Also, interesting
analogies on some features of the particle physics are examined.

1 Introduction

Drude model of the electrical conductivity of metals [1, 2],
considers that in this medium the free electrons (the elec-
trons in conductors) undergo Brownian motion with an av-
erage characteristic time τ between collisions. Due to the
Pauli’s exclusion principle, only the electrons with energies
which are close to the Fermi energy participate in the con-
duction phenomena. These electrons travel freely on average
by a distance called electron mean free path equal to ℓ = vFτ,
where vF is the Fermi velocity.

Meanwhile, let us note the following feature of black hole
physics [3]: an observer at a distance greater than RS (the
Schwarzschild or the surface horizon radius) of the black
hole’s origin, does not observe any process occurring inside
the region bounded by this surface.

Going back to the phenomena of electrical conductivity
in metals. let us consider (for instance in a copper crystal) an
electron in the conduction band which just suffered a colli-
sion. In the absence of an external electric field, all the direc-
tions in space have equal probability to be chosen in a start-
ing new free flight. Therefore if we take a sphere centered at
the point where the electron have been scattered, with radius
equal to the electron mean free path, the surface of this sphere
may be considered as an event horizon for this process. Any
electron starting from this center will be, on average, scat-
tered when striking the event horizon, losing the memory of
its previous free flight. Besides this, all lattice sites of the
metallic crystal are treated on equal footing, due to the trans-
lational symmetry of the system.

This analogy between two branches of physics, general
relativity (GR) and the electrical conduction in metals (ECM),
will be considered in the present work. As we will see, we are
going to use the GR tools to evaluate some basic quantities re-
lated to ECM. We are also going to use some concepts related
to the study of particle lifetimes in particle physics (PP).

2 The electron mean free path as a Schwarzschild
radius

Let us consider a string of length ℓ (coinciding with the elec-
tron mean free path), composed by N unit cells of size equal

to the Compton wavelength of the electron (λC). Associat-
ing a relativistic energy pc to each of these cells, we have an
overall kinetic energy K given by

K = N pc =
ℓ

λC
pc =

(
ℓmc2

h

)
p. (1)

In a paper entitled: “Is the universe a vacuum fluctua-
tion?”, E.P. Tryon [4] considers a universe created from noth-
ing, where half of the mass-energy of a created particle just
cancels its gravitational interaction with the rest of matter in
the universe. Inspired by the Tryon proposal we can write

K + U = 0 (2)

implying that

U = −K = −
(
ℓmc2

h

)
p. (3)

However, we seek for a potential energy which depends on
the radial coordinate r, and by using the uncertainty relation
p = h

r , we get

U = −
(
ℓmc2

r

)
. (4)

Next we deduce a metric, in the curved space, which is
governed by the potential energy defined in (4). We follow
the procedure established in reference [5]. A form of equiva-
lence principle was proposed by Derek Paul [6], and when it
is applied to the potential energy (4) yields

ℏdω = dU =
ℓmc2

r2 dr. (5)

Now we consider de Broglie relation

ℏω = 2mc2. (6)

Dividing (5) by (6) yields

dω
ω
=

ℓ

2r2 dr. (7)
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Performing the integration of (7) between the limits ω0 and
ω, and between R and r, we get

ω = ω0 exp
(
− ℓ

2

(
1
r
− 1

R

))
(8)

and

ω2 = ω2
0 exp

(
−ℓ

(
1
r
− 1

R

))
. (9)

Making the choice R = ℓ, leads to

ω2 = ω2
0 exp

(
1 − ℓ

r

)
(10)

Then we construct the auxiliary metric

dσ2 = ω2dt2 − k2dr2 − r2
(
dθ2 + sin2 θdϕ2

)
. (11)

In (11) we take k2, such that

k2

k2
0

=
ω2

0

ω2 . (12)

Relation (12) is a reminiscence of the time dilation and
space contraction of special relativity. Now we seek for a
metric which becomes flat in the limit r → ∞. This can be
accomplished by defining [7]

ω2 = ln
ω2

ω2
0

 , and k2 =
1
ω2 . (13)

Making the above choices we can write

ds2=

(
1−ℓ

r

)
dt2−

(
1−ℓ

r

)−1

dr2−r2
(
dθ2+ sin2 θdϕ2

)
. (14)

We observe that (14) is the Schwarzschild metric, where
ℓ is just the Schwarzschild radius of the system.

3 A Schwarzschild-like metric

In the last section we deduced a metric where the so called
Schwarzschild radius is just the conduction’s electron mean
free path. But that construction seems not to be totally sat-
isfactory, once the viscous character of the fluid embedding
the charge carriers has not yet been considered. By taking
separately in account the effect of the viscous force, we can
write

m
dv
dt
= − p

τ∗
. (15)

In (15), τ∗ is a second characteristic time, which differs
from the first one τ that was defined in the previous section.
Pursuing further we write

vdt = dr, and p =
h
r
. (16)

Upon inserting (16) into (15), and multiplying (15) by v
and integrating, we get the decreasing change in the kinetic
energy of the conduction’s electron as

∆Kqt = −
h
τ∗

ln
( r
R

)
, (17)

where R is some radius of reference.
Next, by defining ∆Uqt = −∆Kqt, we have the total po-

tential energy Ut, namely

Ut = U + ∆Uqt = −
mc2ℓ

r
+

h
τ∗

ln
( r
R

)
. (18)

In the next step, we consider the equivalence principle [6]
and de Broglie frequency to a particle pair, writing

dU
2mc2 =

dω
ω
=
ℓ

2

(
dr
r2

)
+

1
2

(
dr
r

)
. (19)

Upon integrating we get

ω = ω0 exp
(
− ℓ

2r
+

1
2

ln
(er
ℓ

))
. (20)

In obtaining (20), we have also made the choices

mc2τ∗ = h, and
r
R
=

er
ℓ
. (21)

Squaring (20), yields

ω2 = ω2
0 exp

(
−ℓ

r
+ ln

(er
ℓ

))
. (22)

Defining

ω2 = ln
ω2

ω2
0

 , and k2 =
1
ω2 , (23)

we finally get

ds2=

(
ln

(er
ℓ

)
−ℓ

r

)
dt2−

(
ln

(er
ℓ

)
−ℓ

r

)−1

dr2−r2dΩ2. (24)

Relation (24) is a Schwarzschild-like metric [5], that dis-
plays the same qualitative behavior like that describing the
Schwarzschild geometry. We also have used in (24) a com-
pact form of writing the solid angle differential, namely dΩ
(please compare with the last term of eq. (11)).

4 Average collision time as a particle lifetime

There are two characteristics linear momenta that we can as-
sociate to the free electrons responsible for the electrical con-
ductivity of metals. They are the Fermi momentum mvF and
the Compton momentum mc. By taking into account the
fermionic character of the electron, we will write a non-linear
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Dirac-like equation describing the “motion” of this particle.
We have [8]

∂ψ

∂x
− 1

c
∂ψ

∂t
=

mvF

ℏ
ψ − mc

ℏ
|ψ∗ψ|ψ. (25)

We see that eq. (25) contains only first order derivatives
of the field ψ. Besides this, the field ψ exhibits not a spinorial
character. Taking the zero of (25) and solving for |ψ∗ψ|, we
get

|ψ∗ψ| = vF

c
. (26)

On the other hand in the collision process, the conduc-
tion’s electron loss its memory. We may think that this fea-
ture looks similar to the annihilation of a particle-anti particle
pair, each of mass-energy equal to EF . Putting this in a form
of the uncertainty principle yields

2EF∆t =
h
2

or
hν
2
= 2EF . (27)

Solving equation (27) for ν, we get

ν =
1
∆t
= 4

EF

h
. (28)

By combining the results of (28) and (26) we obtain the
line width Γ tied to the “particle” decay

Γ = ν|ψ∗ψ| = 4EFvF

hc
. (29)

The averaged time between collisions τ is then given by

τ =
1
Γ
=

hc
4EFvF

. (30)

Now, let us compare the two characteristic times appearing in
this work. By considering (21) and (30), we get

τ

τ∗
=

1
2

(
c
vF

)3

(31)

and the electron mean free path

ℓ = vFτ =
1
2

(
c
vF

)2 h
mc

. (32)

Evaluating the number of unit cells in the string of size ℓ, we
have

N =
ℓ

λC
=

mc2

4EF
. (33)

It is also possible to define an effective gravitational con-
stant GW as

ℓ = 2
GW Nm

c2 =
GWm2

2EF
. (34)

Taking M = Nm, we can write

2
GW M

c2 = ℓ =
GWm
v2

F

, (35)

which leads to

M =
1
2

m
(

c
vF

)2

. (36)

In order to better numerically evaluate the quantities we
have described in this work, let us take

EF =
1
4
α2mc2. (37)

This value for EF [eq. (37)], is representative of the Fermi
energy of metals, namely it is close to the Fermi energy of the
copper crystal. Using (37) as a typical value of EF , we get(

c
vF

)2

=
2
α2 . (38)

Inserting (38) into the respective quantities we want to
evaluate, we have

ℓ =
h

α2mc
, τ =

√
2h

α3mc2 , M =
m
α2 . (39)

Putting numbers in (39) yields

ℓ = 453 Å, τ = 2.93 10−14s, M = 9590
MeV

c2 . (40)

It would be worth to evaluate the strength of GW . We have

GW M2 ∼ 10−8ℏc. (41)

We notice that M is approximately equal to ten times the
proton mass.

5 The event horizon temperature and entropy

To obtain the Hawking [9, 11, 12] temperature of this model,
we proceed following the same steps outlined in reference [5].
First, by setting t → iτ, we perform Wick rotation on the
metric given by (24). We write

ds2 = −
(
ydτ2 + y−1dr2 + r2dΩ2

)
, (42)

where y is given by

y = ln
(er
ℓ

)
− ℓ

r
. (43)

Now, let us make the approximation

y
1
2 ∼ ℓ− 1

2

(
r ln

(er
ℓ

)
− ℓ

) 1
2
= ℓ−

1
2 u

1
2 . (44)

In the next step we make the change of coordinates

Rdα = ℓ−
1
2 u

1
2 dτ, and dR = ℓ

1
2 u−

1
2 dr. (45)

Upon integrating, taking the limits between 0 and 2π for
α, from 0 to β for τ, and from ℓ to r for r, we get

R = ℓ
1
2 u

1
2 , and R 2π = ℓ−

1
2 u

1
2 β. (46)
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Finally from (46), we find the temperature T of the hori-
zon of events, namely

T ≡ 1
β
=

1
2πℓ

. (47)

Once we are talking about event’s horizon, it would be worth
to evaluate the Bekenstein [10–12] entropy of the model. Let
us write

∆F = ∆U − T∆S . (48)

In (48), we have the variations of the free energy F, the
internal energy U, and the entropy S . In an isothermal pro-
cess, setting ∆F = 0, and taking ∆U = Nmc2, and inserting
T given by (47), we have

∆F =
(
ℓ

λC

)
mc2 − hc

2πℓ
∆S = 0 (49)

which leads to

∆S = 2π
(
ℓ

λC

)2

. (50)

The entropy of the event’s horizon is then (putting S 0 = 0)

S = S 0 + ∆S = 2π
(
ℓ

λC

)2

. (51)

6 Conclusion

Therefore the analogy developed in this work between black
hole physics and the electrical conductivity of metals is very
encouraging. This feature was discussed in a previous pa-
per [8] where the connection with the cosmological constant
problem [13] has also been considered
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Why the Proton is Smaller and Heavier than the Electron
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This paper argues that the proton is smaller and heavier (more massive) than the electron

because, as opposed to the electron, the proton is negatively coupled to the Planck

vacuum state. This negative coupling appears in the coupling forces and their potentials,

in the creation of the proton and electron masses from their massless bare charges, and

in the Dirac equation. The mass calculations reveal: that the source of the zero-point

electric field is the primordial zero-point agitation of the Planck particles making up the

Planck vacuum; and that the Dirac-particle masses are proportional to the root-mean-

square random velocity of their respective charges.

1 Introduction

The Planck vacuum (PV) is an omnipresent degenerate con-

tinuum of negatively charged Planck particles, each of which

is represented by (−e∗,m∗), where e∗ is the massless bare

charge and m∗ is the Planck mass [1]. Associated with each

of these particles is a Compton radius r∗ = e2
∗/m∗c

2. This

vacuum state is a negative energy state separate from the free

space in which the proton and electron exist. That is, the pro-

ton and electron do not propagate through the Planck particles

within the PV, but their charge- and mass-fields do penetrate

that continuum.

The proton and electron cores denoted by (e∗,mp) and

(−e∗,me) are “massive” bare charges. The two cores are

“shrouded” by the local response of the PV that surrounds

them and gives the proton and electron their so-called struc-

ture [2]. These two particles are referred to here as Dirac

particles because they are stable, possess a Compton radius,

rp (= e2
∗/mpc2) and re (= e2

∗/mec
2) respectively, and obey the

Dirac equation. They are connected to the PV state via the

three Compton relations

remec2 = rpmpc2 = r∗m∗c
2 = e2

∗ (= c~) (1)

which are derived from the vanishing of the coupling equa-

tions in (2).

In their rest frames the Dirac particles exert a two-term

coupling force on the PV that takes the form [3]

F(r) = ∓
(
e2
∗

r2
− mc2

r

)
= ∓

e2
∗

r2

(
1 − r

rc

)
(2)

where the∓ sign refers to the proton and electron respectively.

The force vanishes at the Compton radius rc (= e2
∗/mc2) of

the particles, where m is the corresponding mass. The PV

response to the forces in (2) is the pair of Dirac equations

∓e2
∗

(
i
∂

∂ct
+ αα · i∇

)
ψ = ∓mc2 βψ (3)

(with the Compton radius
∓e2
∗

∓mc2 = rc) which describe the dy-

namical motion of the free Dirac particles.

The potential defined in the range r 6 rc

V(r) =

∫ rc

r

F(r)dr

(
F(r) = −dV(r)

dr

)
(4)

leads to (with the help of (1))

V(r)

mc2
= ∓

(
rc

r
− 1 − ln

rc

r

)
(5)

with

Vp(r 6 rp) 6 0 and Ve(r 6 re) > 0 . (6)

For r ≪ rc, the potentials become

Vp(r) = −
e2
∗
r
=

(e∗)(−e∗)

r
≪ 0 (7)

and

Ve(r) = +
e2
∗
r
=

(−e∗)(−e∗)

r
≫ 0 (8)

where the final (−e∗) in (7) and (8) refers to the Planck parti-

cles at a radius r from the stationary Dirac particle at r = 0.

The leading (e∗) and (−e∗) in (7) and (8) give the free proton

and electron cores their negative and positive coupling poten-

tials.

Equations (6)–(8) show that the proton potential is nega-

tive relative to the electron potential — so the proton is more

tightly bound than the electron. Thus the Compton relations

in (1) imply that the proton is smaller and heaver than the

electron. These results follow directly from the fact that the

proton has a positive charge, while the electron and the Planck

particles in the PV have negative charges.

The masses of the proton and electron [4] [5] are the result

of the proton charge (+e∗) and the electron charge (−e∗) be-

ing driven by the random zero-point electric field Ezp, which

is proportional to the Planck particle charge (−e∗) of the first

paragraph. A nonrelativistic calculation (Appendix A) de-

scribes the random motion of the proton and electron charges

as
2 r̈±

3
= ∓

(
π

2

)1/2 c2

rc

Izp (9)
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where the upper and lower signs refer to the proton and elec-

tron respectively, rc to their respective Compton radii, and

where Izp is a random variable of zero mean and unity mean

square. The radius vector r [NOT to be confused with the ra-

dius r of equations (2) thru (8)] represents the random excur-

sions of the bare charge about its average position at 〈r〉 = 0.

The 2/3 factor on the left comes from the planar motions (Ap-

pendix A) of the charges±e∗ that create the Dirac masses m±.

The ∓ sign on the right side of (9) is the result of the ∓ sign

on the right side of the potentials in (5).

After the charge accelerations in (9) are “time integrated”

and their root-mean-square (rms) calculated [5], the following

Dirac masses emerge (with the help of (1))

m±

m∗
=

2

3

〈
ṙ2
±
〉1/2

c
(10)

where m± are the derived masses whose sources are the driven

charges — consequently the average center of charge and the

average center of mass are the same. Equations (10) and (1)

lead to the following ratios

〈
ṙ2
+

〉1/2
〈
ṙ2
−
〉1/2 =

mp

me

=
re

rm

≈ 1800 (11)

where the rms random velocity of the proton charge is 1800

times that of the electron charge because of the proton’s neg-

ative coupling potential.

2 Summary and comments

The negative and positive potentials in (6)–(8) imply that the

proton is smaller and heavier than the electron. Furthermore,

these two facts are manifest in the ∓ signs of the random mo-

tion of the bare charges that create, with the help of the zero-

point field Ezp, the Dirac masses m±.

In the PV theory, the radian-frequency spectrum of the

zero-point electric field is approximately (0, c/r∗), where the

upper limit is the Planck frequency c/r∗(∼ 1043 rad/s). On

the other hand, the rms accelerations and velocities associ-

ated with the random variables r̈ and ṙ in (9)–(11) are pre-

dominately associated with the two decades

c

100r∗
,

c

10r∗
,

c

r∗
(12)

at the top of that spectrum [6]. Thus the continuous creation

of the Dirac masses m± takes place in a “cycle time” approx-

imately equal to 200πr∗/c ∼ 10−41 sec, rapid enough for the

masses in (2) and (3) to be considered constants of the motion

described by (3).

The theory of the PV model suggests that the proton and

electron are stable particles because the PV response to the

coupling forces in (2), i.e. the Dirac equation in (3) with

rc = e2
∗/mc2, maintains the separate identities of the two cou-

pling constants e2
∗ and mc2. In other words, the charge and

mass of the free Dirac particle are separate characteristics of

the motion in (3), even though the m± are derived from the

random motion of the bare charges ±e∗.

Appendix A: Dirac masses

The nonrelativistic planewave expansion (perpendicular to

the propagation vector k̂) of the zero-point electric field that

permeates the free space of the Dirac particles is [1] [5]

Ezp(r, t) = −e∗Re

2∑

σ=1

∫
dΩk

∫ kc∗

0

dk k2 êσ

(
k

2π2

)1/2

× exp [i (k · r − ωt + Θ)]

(A1)

where (−e∗) refers to the negative charge on the separate

Planck particles making up the PV, kc∗ =
√
π/r∗ is the cutoff

wavenumber (due to the fine granular nature of the PV [7]),

êσ is the unit polarization vector perpendicular to k̂, and Θ is

the random phase that gives the field its stochastic nature.

Equation (A1) can be expressed in the more revealing

form

Ezp(r, t) =

(
π

2

)1/2 (
−e∗

r2
∗

)
Izp(r, t) (A2)

where Izp is a random variable of zero mean and unity mean

square; so the factor multiplying Izp (without the negative

sign) is the rms zero-point field. This equation provides di-

rect theoretical evidence that the zero-point field has its origin

in the primordial zero-point agitation of the Planck particles

(thus the ratio −e∗/r
2
∗) within the PV. The random phase Θ in

(A1) is a manifestation of this agitation.

The random motion of the massless charges that lead to

the Dirac masses mp and me are described by [4] [5]

±e∗
2 r̈±

3
=

c2

rc

r2
∗Ezp =

(
π

2

)1/2 c2

rc

(
−e∗Izp

)
(A3)

which yield the accelerations in (9). The upper and lower

signs in (A3) and (9) refer to the proton and electron respec-

tively. The 2/3 factor is related to the two-dimensional charge

motion in the êσ plane. The physical connection leading to

these equations is the particle-PV coupling ∓e2
∗ in (2).

Finally, there is a detailed (uniform and isotropic at each

frequency) spectral balance between the radiation absorbed

and re-radiated by the driven dipole ±e∗r in (A3); so there

is no net change in the spectral energy density of the zero-

point field as it continuously creates the proton and electron

masses [5] [8].
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and Expanding Luminous World
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The dichotomous cosmology is an alternative to the expanding Universe theory, and

consists of a static matter Universe, where cosmological redshifts are explained by a

tired-light model with an expanding luminous world. In this model the Hubble constant

is also the photon energy decay rate, and the luminous world is expanding at a constant

rate as in de Sitter cosmology for an empty Universe. The present model explains

both the luminosity distance versus redshift relationship of supernovae Ia, and ageing

of spectra observed with the stretching of supernovae light curves. Furthermore, it

is consistent with a radiation energy density factor (1 + z)4 inferred from the Cosmic

Microwave Background Radiation.

1 Introduction

Our model is inspired by the tired-light theory that was first

proposed by [1] to explain cosmological redshifts, which has

been subject to other investigations [2–4]. Generally, tired-

light models describe a static Universe; however, in the

present model only the matter component of the Universe is

static, and the luminous component is expanding. The idea

of a static Universe was proposed in Einstein’s cosmologi-

cal model [5], which is the first of the relativist cosmologies.

Einstein had to introduce a cosmological constant to make

his Universe static; otherwise it would have collapsed due to

the gravitational field. Einstein came to the conclusion that

his cosmology describes a spatially finite spherical Universe,

as he encountered a degeneracy of coefficient gµν at infinity.

Also, Poisson’s equation, ∇2Φ = 4πGρ, where Φ is the scalar

potential and ρ the matter density, played an important role in

Einstein’s cosmology. As Einstein’s wrote in [5]: “It is well

known that Newton’s limiting condition of the constant limit

for Φ at spatial infinity leads to the view that the density of

matter becomes zero at infinity.”

Let us do a simple thought experiment for inertial bod-

ies in an infinite Universe that is isotropic and has no edge

in Newton’s absolute Euclidean space. Imagine you are a

galaxy, there is a galaxy on your left and on your right, and

both exert a gravitional force of same magnitude on you; the

two forces would offset and you would not move from your

position. From this view, based on the principle of inertia

in an absolute Euclidean space, each galaxy in an isotropic

Universe would be in this position of equilibrium, and the

Universe would be static overall. However, for galaxy clus-

ters where the cluster has an edge, we would expect that the

galaxies will end up merging.

De Sitter introduced the concept of “relativity of inertia”

based on his analysis of the degeneracy of the gµν at infinity in

Einstein cosmology [6]. To overcome this problem, de Sitter

found a solution by extending Einstein’s cosmology in three-

dimensional space to the four dimensional Minkowski space-

time — a world of hyperboloid shape — and with no matter.

De Sitter’s cosmological model is a solution to Einstein’s field

equation applied to a vacuum, with a positive vacuum energy

density, and describes an expanding Universe. Contemporary

cosmological models based on general relativity such as the

ΛCDM assume a uniform distribution of matter in space, but

the effect of the deformation of space-time due to massive

bodies may be preponderant only locally, hence this hypoth-

esis may not be valid. In special relativity, light moves along

the geodesics of the Minkowski space-time, whereas matter is

confined in the three-dimensional Euclidean space. From the

equivalence principle in curved space-time, an inertial parti-

cle and a pulse of light both follow the same geodesic. Con-

trary to Newtonian physics which describes interactions be-

tween bodies, general relativity is often employed to describe

the dynamics of light, such as the deflection of light, or the

event horizon of black holes. In contrast, the theory of gen-

eral relativity does not establish such a dichotomy beteween

matter and light; based on the weak field approximation of

general relativity [7], Newton’s laws are a good approxima-

tion of the properties of physical space only when the grav-

itational field is weak. As a matter of fact, in the present

cosmological model, the luminous portion of the Universe is

expanding at a constant rate as in the de Sitter cosmology in

a flat Universe; this is also the condition required in order for

the model to match the luminosity distance versus redshift

relationship of supernovae Ia. The dichotomous cosmology

differs in the sense that it is the light wavelength that gets

stretched due to a tired-light process and not space itself that

expands.

The present model describes the dynamics of light using

two transformations. First, we allow a time-varying light

wavefront in order to accomodate the stretching of light’s

wavelength when photons lose energy. Second, a time dila-

tion is incorporated into the model in order for the light wave-

front to stay at the celerity of light. A consequence of this
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model is the “time-dilation effect” (a.k.a. the ageing of spec-

tra) observed for supernovae light curves [8] with a stretching

of the light curves by a factor (1+ z). In addition, the expand-

ing luminous world is consistent with the radiation energy

density factor (1 + z)4 inferred from the CMBR (Cosmic Mi-

crowave Background Radiation).

2 Light ageing model

In the tired-light cosmology where redshifts are explained by

a decay of the photon energy, the following equation replaces

the cosmological redshift equation of the expanding Universe

theory:

1 + z =
λobs

λemit

=
E(z)

E0

, (1)

where λobs and λemit are the observed and emitted light wave-

length respectively, E0 the photon energy at reception, and

E(z) the photon energy when emitted at redshift z.

A simple law of decay of the photon energy is considered:

Ė

E
= −H , (2)

where E is the photon energy, and H the decay of photon

energy. From now on we assume that the decay rate of photon

energy is constant over time and is always equal to H0.

By integrating (2) we get:

E(t) = E0 exp(−H0 t) , (3)

where t is the time which is equal to zero time of observation,

and E0 the photon energy at reception.

Let us apply the following change of coordinates T = t0−

t, where T is the light travel time when looking back in the

past and to the present time. Hence, (3) can be rewritten as

follows:

E(T ) = E0 exp(H0 T ) , (4)

where T is the light travel time when looking back in the past

from the earth.

It is shown below that a constant decay rate for the pho-

ton energy conforms to the supernovae luminosity distance

versus redshift relationship.

3 Light travel time with respect to the point of emission

and luminosity distance

Here, we consider a set of two transformations to describe

the photon energy decay. During this process the number of

light wave cycles is constant, but due to the stretching of light

wavelengths when photons lose energy we allow a superlu-

minal light wavefront, resulting in an expansion. Then a time

dilation is applied in order to maintain the speed of light at the

celerity with respect to the emission point. The velocity of the

light wavefront before time dilation is expressed as follows:

v(t) = c
Eemit

E(t)
, (5)

where Eemit is the photon energy at emission, E(t) the photon

energy at time t, and c the celerity of light. We note that in

(5) the light wavefront is at the speed of light at the point of

emission.

In order to maintain the light wavefront at the speed of

light with respect to the emission point, the following time

dilation is applied:
δt′

δt
=

Eemit

E(t)
, (6)

where δt′
δt

is a time scale factor between time t′ and time t.

The light travel time with respect to the point of emission is:

T ′ =

∫ 0

−T

δt′

δt
dt =

∫ 0

−T

Eemit

E(t)
dt , (7)

where T ′ is the light travel time with respect to the point of

emission, and T the light travel time with time-varying speed

of light.

Introducing (3) into (7) we get:

T ′ =
Eemit

E0

∫ 0

−T

exp(H0t)dt . (8)

Integrating (8) we obtain:

T ′ =
Eemit

E0

1

H0

(

1 − exp(−H0T )
)

. (9)

By substitution of (4) into (9), we get:

T ′ =
Eemit

E0

1

H0

(

1 −
E0

Eemit

)

. (10)

Introducing (1) into (10) we get:

T ′ =
z

H0

. (11)

After the time dilation (6), the light wavefront is at the

speed of light, hence the luminosity distance is expressed as

follows:
drL

dT ′
= c . (12)

By integrating (12) between 0 and T ′ we get the following

equation:

rL(T ′) = cT ′ . (13)

By combining (11) and (13) we get the following relation-

ship between luminosity distance and redshifts:

rL =
c

H0

z . (14)

Ultimately, we find the linear relationship between lumi-

nosity distance and redshifts which is observed in supernovae

Ia data. A rectilinear plot of the luminosity distance versus

redshift of slope of 14.65 where the luminosity distance is
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expressed in Gly (billion light years) was obtained in [9] us-

ing the redshift adjusted distance modulus [10] which is based

on photon flux. The corresponding decay rate of photon en-

ergy which is the inverse of the slope from (11) is equal to

H0 = 2.16 × 10−18 sec−1 or 67.3 km s−1 Mpc−1.

To compute the luminosity distance, the light travel time

with respect to the emission point must be used. In the lumi-

nosity distance the light wavefront is maintained at the speed

of light with respect to the emission point where the time di-

lation is equal to unity. For an indication of distances of an

object with respect to the observer, the light travel time with

respect to the point of observation is used for which the time

dilation is equal to unity.

4 Light travel time with respect to the observer

The light travel time measured with respect to the observer

is the light travel time obtained with a time dilation equal to

unity at the point of observation. In this scenario, the velocity

of the light wavefront before time dilation is as follows:

v(t) = c
E0

E(t)
, (15)

Thus, the time-dilation effect is:

δt0

δt
=

E0

E(t)
, (16)

where
δt0
δt

is a time scale factor between present time t0 and

time t.

Therefore, the light travel time with respect to the ob-

server is:

T0 =

∫ 0

−T

δt0

δt
dt =

∫ 0

−T

E0

E(t)
dt , (17)

where T0 is the light travel time with respect to the point

of observation, and T the light travel time with time-varying

speed of light.

Introducing (3) into (17) and integrating we get:

T0 =
1

H0

(

1 − exp(−H0T )
)

, (18)

Introducing (4) into (18) we get:

T0 =
1

H0

(

1 −
E0

Eemit

)

. (19)

Finally, introducing (1) into (19):

T0 =
1

H0

z

(1 + z)
. (20)

We note that in (20) when redshift tends to infinity, the

light travel time with respect to the observer converges to-

wards 1/H0. This is the farthest distance from which light

can reach an observer in the Universe. There is a squeezing

effect by the factor (1+z) for the light travel time when mea-

sured with respect to the point of observation instead of the

point of emission. This squeezing of light travel time is due

to the fact that time dilation is relative to the reference point

in time from which the light wavefront is measured.

5 Equivalence in the de Sitter cosmology for an expand-

ing Universe

The de Sitter cosmology is dominated by a repulsive cosmo-

logical constant Λ which in a flat Universe yields an expan-

sion rate of the Universe H that does not vary over time.

In this cosmology, the luminosity distance is calculated as

follows:
drL

dT
= c + H rL (21)

with boundary condition rL = 0 at T = 0 , where rL is the

luminosity distance, T the light travel time between emission

and observation of the light source, and H the Hubble con-

stant at time T .

By integrating (21) we get:

rL =
c

H0

(

exp(H T ) − 1
)

. (22)

Because dt = da
H a

, where a is the scale factor, the light

travel time versus redshift is as follows:

T =

∫ 1

1/(1+z)

da

H a
=

1

H
ln(1 + z) . (23)

Eqs. (22) and (23) yield:

rL =
c

H
z , (24)

which is the same equation as (14).

A measure of distance is obtained by calculating the cor-

responding the distance if there were no expansion of the

Universe, which we call the Euclidean distance. Consider a

photon at a Euclidean distance y from the observer, moving

towards the observer. Hence:

dy

dt
= −c + Hy . (25)

By setting time zero at a reference Tb in the past, we get

t = Tb − T ; therefore, dt = −dT . Hence, (25) becomes:

dy

dT
= c − Hy , (26)

with boundary condition y(T = 0) = 0.

Solving (26) we get:

y =
c

H

(

1 − exp(−HT )
)

. (27)

By substitution of (23) into (27) we get:

y =
c

H

z

(1 + z)
, (28)
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which is the same equation as (20) where T0 =
y

c
.

We have shown that de Sitter cosmology is the equivalent

to our light ageing model in an expanding Universe. In the de

Sitter cosmology, the cosmological constantΛ corresponding

to a positive vacuum energy density sets the expansion rate

H =

√

1
3
Λ for a flat Universe, which is the photon energy

decay rate of light traveling in vacuum.

6 Radiation density and the CMBR

The CMBR was a prediction of the work of George Gamow,

Ralph Alpher, Hans Bethe and Robert Herman on the Big

Bang nucleosynthesis [11, 12], and was discovered later in

1964 by Penzias and Wilson. It is believed that the CMBR

is the remnant radiation of a primordial Universe made of

plasma, and that galaxies are formed by gravitational collapse

of this plasma phase. Here, we investigate a requirement for

the CMBR to originate from a hot plasma.

From Wien’s displacement law for thermal radiation from

a black body, there is an inverse relationship between the

wavelength of the peak of the emission spectrum and its tem-

perature is expressed as follows:

λpT = b , (29)

where λp is the peak wavelength and T the absolute tempera-

ture.

From this law we get:

λobsT0 = λemitTemit , (30)

where T0 is the temperature of the black body spectrum today,

which is 2.7 K for the CMBR, and Temit the temperature of the

emitting plasma.

Hence:

Temit = T0

λobs

λemit

= T0(1 + z) . (31)

From the Stefan-Boltzmann’s law, the energy flux radiat-

ing from a black body is as follows:

Flux = σT 4 , (32)

where σ is the Stefan-Boltzmann constant, and T the temper-

ature of the black body.

Combining (31) and (32), we find that the energy flux of

the source of a black body that is redshifted is of order (1+z)4.

Hence, the energy flux of the emitting black body must be di-

luted by a factor (1 + z)4. For an expanding luminous phase,

the photon flux is diluted by a factor (1 + z)3. Because pho-

tons lose energy as the light wavelength is stretched, another

factor (1 + z) must be accounted for, and the resulting energy

flux is diluted by a factor (1 + z)4. This is the required condi-

tion for the redshifted spectrum of a black body to be a black

body spectrum itself. It appears that our cosmology with an

expanding luminous world is consistent with the radiation en-

ergy density inferred from the CMBR.

7 Conclusion

The dichotomous cosmology is inspired by the tired-light

model and consists of a static material world and an expand-

ing luminous world. In this model the luminous world is ex-

panding at a constant rate as in de Sitter cosmology. The

model consists of two transformations, respectively: (1) to

compensate for the stretching of the light’s wavelength when

the photon loses energy, we allow a time-varying light wave-

front; (2) a time-dilation effect is incorporated into the model

in order for the light wavefront to stay at the speed of light.

This model explains both the luminosity distance versus red-

shift relationship of supernovae Ia, and “time-dilation effect”

observed with the stretching of supernovae light curves. Fur-

thermore, it is consistent with a radiation energy density fac-

tor (1+ z)4 inferred from the CMBR. This alternative cosmol-

ogy only differs from the expanding Universe theory from the

viewpoint that it is the light wavelength that is stretched due

to a tired light process and not space itself that expands.
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LETTERS TO PROGRESS IN PHYSICS

Tractatus Logico-Realismus: Surjective Monism and the Meta-Differential

Logic of the Whole, the Word, and the World

Indranu Suhendro

The Zelmanov Cosmological Group; Secretary of the Abraham Zelmanov Journal

for General Relativity, Gravitation, and Cosmology

“Surjective Monism” is a creation of a whole new stage after: 1) “Primitive Monism” of

Leibniz, Pascal, and to some extent also the dualist Descartes. 2) “Reflexive-Geometric-

Substantival Monism” of Spinoza’s geometric “Tractatus” and “Ethics”, which Einstein

embraced, loved and lived, and its variants which he deemed more profound than Kan-

tianism and which one can see very profoundly present in the scientific creation and

philosophy of Zelmanov. 3a) “Machian Empirico-Monism” (as formulated in its final

form by Bogdanov) along with “Pavlovian Material Monism” (a form defined as sup-

posedly strict “materialistic ontology” in close connection with the school of Sechenov

and Pavlov). 3b) “Russellian Neutral-Primitive Monism” (used in process philosophy).

Thus “Surjective Monism” finally goes beyond Husserlian Phenomenology, Substanti-

valism, Psychologism, Existentialism, Picture/Logo Theory and the Analytical Philos-

ophy of Mind and Language (of Wittgenstein’s “Tractatus” and its “Language Game

Theory” sublimation). It also complements Smarandachean Neutrosophic Logic and

Multi-Space Theory. In the above, 3a) and 3b) simply ran developmentally parallel and

somewhat competing in history.

Dedicated to the vastly profound intellection,

memory, and solitude of A. L. Zelmanov (1913–

1987), fountainhead of the celebrated Zelmanov

Cosmological School; and to the closely follow-

ing centennial anniversary of Einstein’s General

Theory of Relativity (1915–2015)

1 OMNUS: “Omnetic Reality” and the Summary-

Quiddity of Surjective Monism (the Surjective Monad

Theory of Reality)

In condensed form, we can present our Reality Theory —

Surjective Monism — as the following singular meta-

differential picture, i.e., “Qualon-Logos” (“OMNUS” or

“Metanon”):

M : N
(

U(g, dg)
)

∼ S .

1.1 Reality is absolutely ONE, one-in-itself, beyond con-

crete and abstract count, beyond even the oft-defined

“phenomena” and “noumena” (the way most philo-

sophical abstractions define or attempt them self-

limitedly); such that

1.2 Between Reality (M), i.e., Reality-in-itself, and Phe-

nomenality (O) there BE(S ) — in the four-fold, asym-

metric, anholonomic, meta-categorical (meta-

differential) Unity of Sight and Sense (i.e., “Univer-

sum” (U) of Surject-Reality (g) and Surjectivity-

Quality (dg)) of Surjective Monism — (capitalized

with emphasis) a Surjective-Reflexive, Omnetic-

Ontometric, Verizontal-Horizontal, Meta-Differential,

Diffeo-Unitic Meta-Picture of Reality and Phenome-

nality, of Being and Existence, of Surject and Reflex,

of the Verizon and the Horizon, of Onticity and Epis-

temicity, of Unity, Unicity, and Multiplicity, of the In-

finite, the Infinitesimal, and the (Trans-) Finite, of the

Whole, the Word, and the World, of Eidos, Nous,

Noema, and Plaeroma, i.e., of the most fundamental

“Qualon” (N) (Reality as its own Quality — “Qualic-

ity”); such that

1.3 That which is meta-categorically between Phenome-

nality and Reality is EXISTENCE (X), i.e., Existence-

in-itself: the reflexive Mirror and Boundary and the

meta-differential Horizon, while that which is between

Reality and Phenomenality is BEING (M:), i.e., Being-

in-itself: the surjective Reality, Unity, and Difference

(the Qualon) and the meta-differential Verizon; such

that

1.4 The meta-categorical Distance between Reality and

Phenomenality is Different from that between Phenom-

enality and Reality: OM , MO — unless by way of

Surjection (Reality’s singular Exception, just Reality

is, in itself, the “surjective-diffeonic” Exception of it-

self); such that

1.5 Reality contains all things phenomenal but these con-

tain Reality not; such that

1.6 Reality is meta-categorically Different from all differ-

ences and similarities — and Different still; such that
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1.7 If Reality were not SUCH, Reality and Non-Reality

(Unreality), Being and Non-Being, Existence and Non-

Existence would be absolutely NOT, once and for-ever,

which is meta-categorically absurd.

As such Reality, as outlined in Surjective Monism, has 7

(seven) meta-differential ontic-epistemic levels. In addition,

Reality possesses 4 (four) asymmetric, anholonomic, meta-

categorical logical modalities/foliages encompassing:

M1. Meta-Onticity of (A, non-A, non-non-A, and none of

these);

M2. Meta-Ergodicity of (without, within, within-the-within,

without-the-without);

M3. Meta-Universality of (the material Universe, the ab-

stract Universe, the Universe-in-itself, Reality);

M4. Meta-Epistemicity of (thought, anti-thought, Un-

thought, Reality).

In the above surdetermination and most direct presenta-

tion of Reality, the Whole Object ([O]bject, Surject, Qualon)

that intrinsically (in the utmost eidetic-noetic sense) tran-

scends and overcomes all logical predication (transitive and

intransitive) between object and subject — as well as between

occasionalism and substantivalism, i.e., between existential-

ism and essentialism — is uniquely determined by the meta-

differential “Qualon-Logos” (“Metanon”) of [O]bject = (Sur-

ject, Prefect, Abject, Subject, Object), through the unified

qualitative-quantitative ontological-cosmological triplicity of

Surjectivity, Reflexivity, and Projectivity.

2 ONTOMETRICITY: “Ontometric Reality”, Unified

Field Theory (Geometrization of Space-Time and Sub-

stance, i.e., Fields, Matter, and Motion), and the Ulti-

mate Nature of the Physico-Mathematical Universe

Our fundamental “ontometric picture” of physical reality is

embodied in the following purely geometric (and kinemetric)

equation:

(DD − R) U(g, dg) = 0 ,

where DD is a differential wave operator and R is the very pe-

culiar “ontometric spin-curvature” — both are built from the

fundamental generalized asymmetric metric tensor (g) and

connection form (W), in such a way that there is no point

x in our space not dependent on the kinemetric pairs (x, dx)

and (g, dg) —, and U is the wave function of the Universe

— again as a kinemetric function of the metric and its dif-

ferential. This way, there is no geometric point in our space

that is merely embedded in it; rather it serves as a fundamen-

tal, fully geometric (and fully kinemetric) “ontometric meta-

point” — constituting already fully geometric and intrinsic

charge, mass, magnetic moment, and spin-curvature — for

which the space, derived from it, is correspondingly emer-

gent as a meta-space of geometrized fields — the “ontometric

meta-space” of geometrically emergent and unified gravity,

electromagnetism, chromodynamics, and superfluidity (mat-

ter) along with the fundamental properties of chronometricity,

kinemetricity, and orthometricity.

This section, just as the above introductory description,

is again a condensed form of our peculiar views on the na-

ture of physical reality as outlined in, e.g., “Spin-Curvature

and the Unification of Fields in a Twisted Space” and sev-

eral other unified field theories referred to therein, such as “A

Four-Dimensional [Meta-]Continuum Theory of Space-Time

and the Classical Physical Fields” — as well as the more re-

cent superfluidity geometrization model “A Hydrodynamical

Geometrization of Matter and Chronometricity in [Extended]

General Relativity”. These are generally theoretical meta-

pictures where I have attempted a theoretical “ontometric”

meta-continuum picture of cosmophysical reality aimed at

unifying gravitation, electromagnetism, and chromodynam-

ics on one hand, and superfluidity, chirality, spin-curvature,

matter, and motion — self-realizably along with Zelmanov’s

chronometricity, kinemetricity, and orthometricity — on the

other, as also independently and quintessentially alluded to

in our works cited above. Particularly, we will here outline

a fresh summary of the nature of Universe whose ontologi-

cal and epistemological reality would be most satisfactory to

the sense of the profound Zelmanov school of scientific cre-

ation. Our common aim, as a scientific group and as a whole

— in the tradition of Zelmanov — is not simply to “think

differently” (a slogan readily laden with post-modern cliche

nowadays), but also to be meta-categorically “different from

all differences and similarities, and different still” in the truest

and most qualified epistemic sense of science and scientific

creation.

As a reminder, a present-day category of approaches to

unification (of the physical fields) lacks the ultimate episte-

mological and scientific characteristics as I have always

pointed out elsewhere. This methodological weakness is typ-

ical of a lot of post-modern “syllogism physics” (and ulti-

mately the solipsism of such scientism in general). Herein,

we shall once again make it clear as to what is meant by a true

unified field theory in the furthest epistemological-scientific-

dialectical sense, which must inevitably include also the most

general (and natural) kinemetric unity of the observer and

physical observables, i.e., “ontometricity”.

Herein, I shall state my points very succinctly. Apart

from the avoidance of absolutely needless verbosity, this is

such as to also encompass the scientific spirit of Albert Ein-

stein, who tirelessly and independently pursued a pure kind

of geometrization of physics as demanded by the real geo-

metric quintessence of General Relativity, and that of Abra-

ham Zelmanov, who formulated his theory of chronometric

invariants and a most all-encompassing classification of in-

homogeneous, anisotropic general relativistic cosmological

models and who revealed a fundamental preliminary version

of the kinemetric monad formalism of General Relativity for

the unification of the observer and observables in the cosmos.
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Thus, we can very empathically state the following:

1. A true unified field theory must not start with an ar-

bitrarily concocted Lagrangian density (with merely the ap-

pearance of the metric determinant
√
−g together with a sum

of variables inserted by hand), for this is merely a way to em-

bed — and not construct from first principles — a variational

density in an ad hoc given space (manifold). In classical Gen-

eral Relativity, the case of pure vacuum, i.e., Rαβ = 0, there

is indeed a rather unique Lagrangian density: the space-time

integral over R
√
−g, the variation of which gives Rαβ = 0.

Now, precisely because there is only one purely geometric

integrand here, namely the Ricci curvature scalar R (apart

from the metric volume term
√
−g, this renders itself a valid

geometric-variational reconstruction of vacuum General Rel-

ativity, and it is a mere tautology: thus it is valid rather in

a secondary sense (after the underlying Riemannian geome-

try of General Relativity is encompassed). Einstein indeed

did not primarily construct full General Relativity this way.

In the case of classical General Relativity with matter and

fields, appended to the pure gravitational Lagrangian density

are the matter field and non-geometrized interactions (such

as electromagnetism), giving the relevant energy-momentum

tensor: this “integralism procedure” (reminiscent of classi-

cal Newtonian-Lagrangian dynamics) is again only tautolog-

ically valid since classical General Relativity does not ge-

ometrize fields other than the gravitational field. Varying such

a Lagrangian density sheds no further semantics and informa-

tion on the deepest nature of the manifold concerned.

2. Post-modern syllogism physics — including string the-

ory and other toy-models (a plethora of “trendy salad ap-

proaches”) — relies too heavily on such an arbitrary proce-

dure. Progress associated with such a mere approach — often

with big-wig politicized, opportunistic claims –, seems rapid

indeed, but it is ultimately a mere facade: something which

Einstein himself would scientifically, epistemologically ab-

hore (for him, in both the pure Spinozan and Kantian sense).

3. Thus, a true unified field theory must build the spin-

curvature geometry of space-time, matter, and physical fields

from scratch (first principles). In other words, it must be con-

structed from a very fundamental level (say, the differential

tetrad and metricity level), i.e., independently of mere em-

bedding and variationalism. When one is able to construct

the tetrad and metricity this way, he has a pure theory of kine-

metricity for the universal manifold M: his generally asym-

metric, anholonomic metric gαβ, connection W, and curvature

R will depend on not just the coordinates but also on their

generally non-integrable (asymmetric) differentials:

M(x, dx)→ M(g, dg)→ W(g, dg)→ R(g, dg) .

In other words, it becomes a multi-fractal first-principle

geometric construction, and the geometry is a true chiral

meta-continuum. This will then be fully capable of produc-

ing the true universal equation of motion of the unified fields

as a whole in a single package (including the electromagnetic

Lorentz equation of motion and the chromodynamic Yang-

Mills equation of motion) and the nature of pure geometric

motion — kinemetricity — of the cosmos will be revealed.

This, of course, is part of the the emergence of a purely ge-

ometric energy-momentum tensor as well. The ultimate fail-

ure of Einstein’s tireless, beautiful unification efforts in the

past was that he could hardly arrive at the correct geomet-

ric Lorentz equation of motion and the associated energy-

momentum tensor for the electromagnetic field (and this is

not as many people, including specialists, would understand

it). In my past works (with each of my theories being inde-

pendent and self-contained), I have shown how all this can

be accomplished: one is with the construction of an asym-

metric metric tensor whose anti-symmetric part gives pure

spin and electromagnetism, and whose differential structure

gives an anholonomic, asymmetric connection uniquely de-

pendent on x and dx (and hence x and the world-velocity

u, giving a new kind of Finslerian space), which ultimately

constructs matter (and motion) from pure kinemetric scratch.

Such a unified field theory is bound to be scale-independent

(and metaphorically saying, “semi-classical”): beyond (i.e.,

truly independent of) both quantum mechanical and classical

methods.

4. Such is the ultimate epistemology — and not just

methodology — of a scientific construct with real mindful

power (intellection, and not just intellectualism), i.e., with

real scientific determination. That is why, the subject of quan-

tum gravity (or quantum cosmology) will look so profoundly

different to those rare few who truly understand the full epis-

temology and the purely geometric method of both our topic

(on unification) and General Relativity. These few are the true

infinitely self-reserved ones (truly to unbelievable lengths)

and cannot at all be said to be products of the age and its

trends. Quantizing space-time (even using things like the

Feynman path-integrals and such propagators) in (extended)

General Relativity means nothing if somewhat alien proce-

dures are merely brought (often in disguise) as part of a mere

embedding procedure: space-time is epistemologically and

dialectically not exactly on the same footing as quantum and

classical fields, matter, and energy (while roughly sharing

certain parallelism with these things); rather, it must categor-

ically, axiomatically qualify these things. Even both quantum

mechanically and classically it is evident that material things

possessed of motion and energy are embedded in a configu-

ration space, but the space-time itself cannot be wholly found

in these constituents. In the so-called “standard model”, for

example, even when quarks are arrived at as being material

constituents “smaller than atoms”, one still has no further

(fundamental) information of the profounder things a quark

necessarily contains, e.g., electric charge, spin, magnetic mo-

ment, and mass. In other words, the nature of both electro-

magnetism and matter is not yet understood in such a way. At

the profoundest level, things cannot merely be embedded in
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space-time nor can space-time itself be merely embedded in

(and subject to) a known quantum procedure. Geometry is ge-

ometry: purer, greater levels of physico-mathematical reality

reside therein, within itself, and this is such only with the first-

principle construction of a new geometry of spin-curvature

purely from scratch — not merely synthetically from with-

out — with the singular purpose to reveal a complete kine-

metric unity of the geometry itself, which is none other than

motion and matter at once. Again, such a geometry is scale-

independent, non-simply connected, anholonomic, asymmet-

ric, inhomogeneous: it ultimately has no “inside” nor “out-

side” (which, however, goes down to saying that there are

indeed profound internal geometric symmetries).

5. Thus, the mystery (and complete insightful understand-

ing) of the cosmos lies in certain profound scale-independent,

kinemetric, internal symmetries of the underlying geometry

(i.e., meta-continuum), and not merely in ad hoc projective,

embedding, and variational procedures (including the popular

syllogism of “extra dimensions”).

3 On the Furthest-Qualified Metaphysics, Phenomenol-

ogy, Ontology, and Cosmology

We have, in our time, very fortunately witnessed the heroic

emergence of a class of neutral, vast generalizations (“neu-

trosophies”, to use the Smarandachean term, after the pio-

neering logician, mathematician, and polymath F. Smaran-

dache) of logic and dialectics — worked out entirely by very

few original, profound minds of genuine universal character

— aiming at envisioning a much better future for human-

ity in the cosmos, e.g., scientific, psychological, social, and

economic terms, thus forming an inspirational surge beyond

the blatant superficialities and tyranny of certain politically,

inter-subjectively established paradigms often masquarading

as the “true scientific method” and “objectivity”. The in-

herently flawed assumptions of these misleading paradigms,

as such, can be seen only with clear independent epistemic-

ity (true, objective knowledge, even “un-knowledge”, on the

horizon of things), and not in terms of methodology alone

(which can often be fabricated and imitated), as to how they

are chiefly non-epistemic — thus ultimately pseudo-scientific

and pseudo-objective — trends that pretend that certain onti-

cally and epistemically intricate matters are already settled by

“consensus” of the majority.

All this is crucially taking place in the incessant, highly

nervous background of science and certain peculiar scientific

affairs of today (as Thomas Kuhn has indicated just what the

“tectonic rims” of science might be), just as it has always ap-

peared historically, and will always appear as such, to rescue

the state-of-the art of science from “usual human tendencies

towards promulgating corruption” at very critical epistemo-

logical junctions. The common objective of these general-

izations is to form a broader window — a truly open win-

dow pretty much without cumbersome curtains indeed — for

a more genuine outlook on the landscape of science and hu-

manity.

Having said the above, I hereby applaud any lone epis-

temic effort — among other such lone efforts — in the di-

rection of a new reality theory and a new semantics theory

aimed at, e.g., a new neutral synthesis of ubiquitous doctrines

such as substantivalism and occasionalism, as well as abso-

lutism and relativism, for cosmology and cosmogony. Such a

work, to the one who knows “how corrugated, discrete, and

paradoxical landscapes in the cosmos can be”, is a pure di-

alectical enjoyment in itself, in the solitary niche where true

epistemic minds often hide their solitary effulgence and bril-

liance. Therein, one is obliged to outline a genuine solu-

tion to the persistent, often popularly misunderstood prob-

lems and challenges in scientific epistemology from the an-

cient epochs of the Greeks and the Indians (the Sanskrit/Vedic

“Indo-Aryans”), through the medieval ages of the Perso-

Arabic — and then pan-Hellenic European — civilization

and Renaissance, to the most recent eras of modernism, post-

modernism, and scientism.

However, the reader should be aware that behind this sim-

ple appraisal a supposedly genuine thought aimed at a con-

scious stationing (dialectical synthesis) of phenomena consti-

tutes a train of further in-going paradoxical thoughts. Thus,

let us do a brief (and yet dense), crucial, signaling surgery on

the manifold of thoughts of modernism, post-modernism, and

scientism (including critical post-modernism) — as to why

such intellectual strands ultimately fail to transcend anything

real — and on the dialectical anatomy (“cosmogony”) of the

problems of the world in general.

Keep in mind, once and for all, that, despite diverse

causes, the root of this meta-situation can be traced back to

the cosmic “superset” as to whether the world we inhabit

is essentially autonomous in itself or extraneously governed

by some kind of intelligence. Further independent epistemic

qualifications (including disqualifications) can be applied to

these options as new horizons are encompassed. This should

suffice to underline what is crucial in any original reality (and

linguistics) theory, among other similar and dissimilar epis-

temically sincere proposals ranging from absolute agnosti-

cism to a further sense of knowing and enlightenment.

I’d like to re-identifty, in my own words, the very prob-

lem that any genuine reality theory has to deal with in terms

of scientific epistemology as follows (as I have stated else-

where on past occasions, especially in my work on a new kind

of Reality theory, namely “The Surjective Monad Theory of

Reality” or “Surjective Monism”, and on my seminal address

“On Meta-Epistemic Determination of Quality and Reality in

Scientific Creation”). Despite many conscious and conspicu-

ous attempts at elevating the use of process-synthetic philos-

ophy and integralism to a “new” key paradigm at the critical

crossroads between world affairs and individual well-being,

many thinkers have not developed the first-principle logical-

dialectical tool needed to solve fundamental existential and
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phenomenological problems in modern philosophy (that is to

say, since Kant and Copernicus), be it one that directly or in-

directly underlies the pure workings of science. This way,

the complete surgical tool of meta-logic is still missing from

their hands, and so true determination — in the profound-

est sense of the word “determination” — is absent. Thus,

the purported newness [and trend] of post-modern paradigms

do not really constitute a first-principle philosophical new-

ness: it is merely a magnified old-nostalgic trace of process-

integralism, an issue contested by the likes of Russell and

Whitehead (philosophically, scientifically, and morally) at the

critical, dehumanizing, life-shearing onset of last century’s

two world-wars as well as the cold war (which continues to

prevail under the surface of history, precisely as a dialectical

part of epistemicity and historicity, not mere hermeneutics,

linguistics, and history).

This is precisely why mere post-modern visions of revi-

sionist holism and inter-subjective facticity (somewhat akin

to Gestalt psychology) — both as a natural scientific-

revisionist investigation and a purportedly broader philosoph-

ical picture — still suffer from the contingency (that is, re-

flexes, conditions, and associations) of [their] embedding

solipsistic sphere, when this on-going contingency ought to

be categorically deconstructed in the first place, and not

merely highlighted in the light of further arbitrary psycho-

logical associationism put forth arbitrarily as “objective sci-

ence” (such as the “second-hand” inclusion of the convenient

psychologism and propaganda that “syntax-only science su-

persedes semantics”).

Thus, while such an approach may be sufficiently inspira-

tional for a psychological reform within a known, ultimately

defective established scientific, political, and cultural system,

it is not yet an adequate framework for genuine humanis-

tic revolution and logical determination. A genuine thinker

should look for a meta-language, a meta-paradigm for sci-

ence; one that is free of the usual kinds of pretense and big-

otry we encounter from time to time in the history of thought,

especially modern thought: a journey from Cartesian dual-

ism to Spinozaic monism to Berkeleyan psychologism via the

weary intellectual bridges of Hume, Kant, Hegel, Husserl,

Heidegger, and Wittgenstein (both the analytic young Witt-

genstein and the post-modern old Wittgenstein).

Or else, much of humanity has forgotten — or is simply

absolutely, blissfully, complacently ignorant of — the essence

of what Max Planck and Ernst Mach — the two pedagogy

and epistemology giants (and innovative scientists in their

own right) surrounding Albert Einstein in his scientific rev-

olutionary days — once argued about. They argued about

the essences, modes, limits, and expansions of science vis-

a-vis Reality quite long before Einstein debated Niels Bohr

on the nature of the quantum, cosmos, and Reality. And

certainly long before Karl Popper outlined his epistemology

and ideal criteria for “falsifiable science” against the overly-

positivistic Vienna circle led by Moritz Schlick (whose po-

sition is blindly, arbitrarily taken by “throngs of scientists”

in the USA and Western hemisphere as of today, whether

they know it or not: few are those who are truly conversant

with ontology and epistemology, and not just methodology,

after all).

At the same time, in fact soon after Mach launched his

epistemological program towards “purifying absolutism in

science” (especially in Newtonian and celestial mechanics)

in Europe, Russia, witnessed heated debates of the nature of

science and philosophy vis-a-vis Reality as contested by the

likes of Ouspensky (who defended the simultaneously neo-

Platonic and neo-Aristotelian traditions of meta-physics),

Bogdanov (who tried to generalize Machian thought into a

single “empirico-monism”), and those who harshly forced the

notion of “materialism over Machianism and all sorts of psy-

chologism and idealism” on scores of Soviet scientists, gain-

ing ultimate support from materialist philosophers and scien-

tists such as the foremost expert on the “reflexes of the higher

nervous system”, Ivan Pavlov.

In the sense of critical epistemicity, Einstein, for exam-

ple, criticized both certain self-assured theists and atheists,

among both vocal scientists and vocal lay people concerned

about often blurry, oversimplified entities such as “god” and

“nature”, as “rogue solipsists”.

4 The Meta-Differential Logic of the Whole, the Word,

and the World: Surjective Monism and the “Qualonic

Unity” of Sight and Sense

What, then, is a meta-science in our case? It is none other

than the great reflex of ontic-epistemic Unity — the Unity

of Sight and Sense — in the sense of beholding an object

(or phenomenon), while recognizing categorically (up to a

point of Absolute Difference) that Existence (Nature, space-

time in the most qualified phenomenological sense) is as-it-

is a mirror-like apogetic Horizon and Reality is in-itself an

eidetic Verizon: one “perigetically” witnesses the object in

space (“sight”) and “apogetically” withholds space in the ob-

ject as “internal time” (“sense”) whereby time here is the

sensation (a priori representation) of space by way of the

complete dialectical-phenomenological unity of space-time,

matter, and motion (in the sense of epistemologically qual-

ified objective events, not arbitrary “frills”). When objec-

tivity is asymmetrically moved along social time-lines and

synthetic-paradoxical thinking (“Understanding”, i.e., “think-

ing about thinking” and “doing about doing”), it becomes

“Praxis/Paradigm as it is” — Surdetermination —: a vortex of

historicity, capable of creative-reflexive stellar motion at the

societal stage, yet whose infinitesimal center of “insight” and

“inhering” remains non-integrable and solitary. The highest

(eidetic) degree of Quality concerning this, given as a Whole

Object (where the Horizon is dialectically part of it, instead

of arbitrarily including, eliminating, or excluding it), is none

other than the furthest qualification of “noema”, while it shall
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be termed “surholding” in the sense of “noesis”: it possesses

“Surjective Verizon” as Being and “Reflexive Horizon” as

Existence, and not mere inter-subjective projection and inter-

objective boundary.

Mere integralism, just like non-epistemic over-

simplification and over-generalization, is at best a rhapsodic

trend in post-modernism and psychologism (including post-

structuralism and neo-psychoanalysis); ultimately, however,

it — like the psychologism of Gestalt — is no substitute for

a first-principle categorical underpinning of phenomena, that

is, the complete dialectical unity — the ontological-

epistemological-phenomenological-axiological unicity —

between the Real and the Ideal, the material and the mental,

the whole and the partial, and all the asymmetric existential-

predicative tension between the object and the subject in gen-

eral. The same defect can be said about the uncritical use

of process philosophy without original refined recourse to

“noema” (objects-as-they-are) or phenomenology (at least in

the sense of Husserl, who was both a mathematician and

philosopher, as we need not mention how “phenomenolo-

gists” after him have easily misunderstood the fundamentals

of Husserlian phenomenology and, thereafter, they have also

arbitrarily misunderstood and dismissed each other in the

realm of post-modernism).

Again, most post-modern authors of scientism, as well as

the majority of so-called “scientists”, do not seem to intu-

itively emphasize the need for the deconstruction of the ul-

timately illogical-pathological state of a world much plagued

with hypersemiotics, hypernarration, oxymoronism, syco-

phancy, pseudo-objectivity, pseudo-science, pseudo-

philosophy, pseudo-spirituality, pseudo-artistry, solipsism,

and ontic-epistemic shallowness.

As easy to see, the prevalent solipsistic type of world-

scientism — and, indeed the associated panhandling and psy-

chologism of scientific affairs, coupled with superficial po-

litical and economic affairs — is ultimately unscientific and

non-logical for not taking into account in the first place the

important logico-phenomenological branch of dialectics, let

alone of neutrosophy, namely a comprehensive science that

attempts to throw light at logic, empiricism, psychologism,

existentialism, essentialism, science, philosophy, and history,

thereby transforming mere history into dialectical historicity.

Consensus solipsism, no matter how much it is often

falsely put forth as “science” and “objectivity” before both the

more naive “scientists” and the gullible public, is solely based

on a desired paradigm concentrated in, and funded by, corpo-

rate and governmental hands by way of visible and invisible

“control by proxy” monopoly in many aspects of life, and it

attempts to primitively capsize all the rest of scientific exis-

tence under its sway by non-dialectically embedding an es-

sentially inhomogeneous, non-simply-connected, variegated

world of paradigms and ideas (which it ultimately knows

not!) in its own homogenizing pseudo-parametric space, and

this, with all the bias, vested political interests, and duplic-

ity contained in it, is often neatly disguised — helplessly by

way of syllogism and solipsism — as the so-called “scientific

method” (thus, some have warned us that there is not a sin-

gle “scientific method” — just as there is not a single quan-

tum mechanics: there is more than one version of quantum

mechanics, than the one following the “Copenhagen inter-

pretation” — and that a scientific economy precept known

as “Ockham’s razor” is often misused). Clearly, a “given

consensus science” hiding ulterior motives is not the same

as science itself, for which new ways of thinking and gen-

uine epistemic objectivity are the primary goals often follow-

ing long processes of logico-dialectical thinking as well as

solitary revolutionary thinking or ideation (alas, as Michael

Crichton has pointed out, history has provided us with a set

of scoundrels-in-power of mere opportunism when it comes

to “consensus science”).

This stuff at the heart of the matter is essentially, intel-

lectually primitive and cumbersome, no matter how much

power, psychologism, techno-scientism, and modernity it dis-

plays: a set of mere opinions made strong by way of any

kind of political favoritism does not solve the age-long prob-

lem of syllogistic solipsism and solipsistic syllogism in sci-

ence and philosophy. Indeed, the world of science — sup-

posedly inherited, both arbitrarily and qualifyingly, from the

“ancients” and the more recent “Aufklarung”, just like the

world of philosophy — still inherently suffers from mere syl-

logism and solipsism, albeit in a different intellectual cate-

gory than other types of solipsism, thereby often resulting in

advanced opaque types of dogmatism, absolutism, and rel-

ativism, and in the said types of sycophantism and sophism.

Note how these are easily interchangeable in each other’s garb

and served with fresh inductive duplicity on the daily menu

of “loud, bubbly, verbose, trendy, big-wig scientism”.

That is why, a truly qualified science production is always

crucial — beyond the said integralism and mere post-modern

holism — in all the branches of science, including cosmol-

ogy, ecological science, and the humanities: it must be based

on independent, neutrosophically guided free inquiry, beyond

all forms of superficial political control, especially funding

systems and political interests. In this scheme, such science

production is the first and foremost logical foundation of a

revolutionary social-democratic culture, and not capital sums

(and so not pretentious scientism — pseudo-intellectual big-

otry — with all its hidden subjectivity and opportunism).

Back to the problem of ontology and epistemology as

well as cosmology and cosmogony addressed herein, then

wholly illuminated, by any genuine reality theory: is the Uni-

verse, our home, autonomous or is it dependent (on a sup-

posed “demi-urge” or “creator” — while the word “creation”

should in any case be epistemically qualified)? If it is au-

tonomous, is it machine-like and ultimately random, or is

it quasi-anthropomorphic and teleological, or is it absolutely

autonomous? If it is dependent, what kind of dependency (or

creation) is there: epiphanic (as in the neo-Platonic sense), or
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theological (as in the Kalam cosmological argument and in

the Thomian sense), or none of these? Before answering — or

rather, epistemically addressing — such questions, a sense of

mindful humility is very important, one akin to Einstein who,

as known, did not believe in a personal god, but for whom —

like for Spinoza — the word “God” should represent a very

broad, genuine sense of Reality and Onto-Realism, namely

a non-personal transcendental universal intellect whose at-

tributes and laws are not anthropomorphic and arbitrarily pro-

jective but “summa-rational” and “meta-rational”, and whose

horizon in the intricate and beautiful cosmos renders “mere

reflective human minds” like vanishing dots thereon.

The philosophical propositions for cosmology and cos-

mogony elaborated upon by such a theory must then tran-

scend the intrinsic self-limitations and extrinsic ex-limitations

of both mere dogmatic materialism (solipsistic objectivism)

and psychologism (solipsistic subjectivism): a more infinitely

reflexive-neutral, let alone “surjective”, realism will be in-

herently different from mere passive, dogmatic, and biased

(thus ultimately solipsistic) “randomness” and “design”, es-

pecially when determining a genuine sense of cosmic semi-

autonomy as well as both the weak and strong anthropic prin-

ciples. Such a vein then must be seen as sincere and epis-

temic enough, and is meant to enrich public understanding of

the matter in the very arena of “science and philosophy at a

cross-roads”.

Meta-physics is the science dealing not with “non-

science”, “non-sense”, or “para-physics”, as many have mis-

interpreted it, but with the epistemic qualification and en-

tification of the sciences. Ockham’s razor, too, is a meta-

physical stance. And so is materialism. As such a “neu-

trosophist”, in countering the currently prevalent, financially

and politically more supported dogma of a self-sufficient ma-

terial universe emerging by chance and populated by random-

ness, does not side with creationism, let alone “biblical cre-

ationism” or “intelligent design” for he has assuredly maxi-

mum epistemic distance from falling solipsistically into this

or that (while, like Einstein, considering “religion” only psy-

chologically and historically); rather, like Einstein, he aims

to humbly show how the problem is not culturally settled: be

it among the Greeks, among medieval thinkers, or among the

contemporary minds of today. He, like Einstein, humbly sees

a “superior manifestation of intelligence” in Nature and on

the horizon of things and, on a psychological and historical

note, is merely sympathetic with the minority in this category

— and the faintest of voices —, and this is true in any case.

No matter what one’s meta-physical stance is in science

and philosophy, the problem presented here is a truly beau-

tiful, profound one. In my view, Reality should be ontologi-

cally simple (yet “not that simple”) in the sense of what I term

the “Qualic Unity (Unicity) of Sight and Sense”, while being

epistemologically so complex (yet “not arbitrarily complex”)

at the same time: it is necessarily One-in-itself beyond con-

crete and abstract, even “noumenal”, count. Metaphorically

speaking of Reality and the Universe, onticity is the whole

mountain and ontology is the peak and the verizon; epistemic-

ity is then the quintessential gradient and epistemology is the

entire slope: this makes truly qualified knowledge and under-

standing possible, whether universal or particular, categorical

or phenomenal, philosophical or scientific; phenomenology

is the mountain’s appearance (verisimilitude) and “stuff” as

well as the corresponding horizon and landscape; at last axi-

ology is the rest as concerns judgment and values. This way,

there is a profound, four-fold categorical, asymmetric, an-

holonomic difference between “Being” and “Existence” (as,

again, outlined in my own “Surjective Monad Theory of Re-

ality” as a qualified generalization of reflexive monism), just

as the meta-categorical, ontic-epistemic, surjective-reflexive

distance (“Qualicity”) between Reality and Phenomenality is

asymmetric. I will undertake to explain this a little bit, as

presented below.

5 The Diffeo-Unitics of Being and Existence in Surjec-

tive Monism

Whether one is concerned about the strenuous synthesis be-

tween the mundane and the other-worldly, between the eco-

nomical and the ecological, between the one and the many

— that is, basically between a thesis and an anti-thesis in a

rather universal sense —, phenomenologically, dialectically

speaking, one is essentially referring to Existence as a “neg-

ative totality” — instead of both the arbitrary, subjective Un-

known of solipsistic mysticism and the equally solipsistic,

overly positivistic valence of narrow (non-dialectical) mate-

rial dogmatism —; that is, Existence is an “inconsistent inner

multiplicity in and of itself”: it has parts that do not con-

stitute the Whole by way of simple representation, and yet,

unlike mere holism, it is livingly capable of unifying logi-

cal synthesis and determination when a portion of humanity

is in touch with the said synthesis. The problem here since

time immemorial, as renewed by Kantian categorical analy-

sis, overly-symmetrically projected by Hegel, attempted by

Husserlian phenomenological analysis, and brought to a fur-

ther critical stand-still by Heidegger, has been the infinites-

imal (essentially surdeterminate) difference between Being

and Existence (“Being-as-Being” vis-a-vis “Being-here”)

— and also between Idealism and Realism, between noumena

and phenomena, as well as between Transcendence

and Immanence. Only when this is universally — that is,

categorically-eidetically — solved can one truly speak of

what is beyond mere essentialism and existentialism, that is,

the most qualified Thing-in-itself: the Word and the World,

the Whole and the While. That is, in other words, true ontic-

epistemic objectivity.

This way, then, Surdetermination (universal determina-

tion) of the Whole, the Word, and the World — in the sense

of Reality’s Verizon and Horizon — must be aimed at the very

Present, more than at the theoretical future.
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A logical system is hereby categorical-synthetic-

revolutionary (that is, universal) if and only if it encompasses

the spiraling interaction between: 1) Existence as the eideti-

cally negative totality and horizon of “non-A and non-non-A”

for any entity “A” and the infinitesimality (surdeterminate in-

finite difference) of “non-A” and the infinity of “non-non-A”

— the entirety of possible inter-related, compositional things

— and 2) the “twice-aprioristic” (non-arbitrary objective-

aprioristic) epistemic set of “A and non-A” representing

things-as-they-are (categorically aprioristic-objective exist-

ents in pure phenomenological-natural space beyond mere so-

cietal conditionings). This, when fully implemented, gives

a dialectical “humanity-epistemicity spiral” instead of both

the concentrically closed circle of logism (such as dogma-

tism and monopoly) and the interconnected circles and “bio-

sphere” of post-modernism (especially integralism). Such a

fully phenomenological spiral (“connex of causation”) is in

the “genes” of Revolution and Praxis without any need to

resort to mere idealism and integralism (of the many, espe-

cially in the post-modern sense) — other than dealing with

noematic object-magnification and object-illumination: not

only can an island exist after all in its essentially negative and

paradoxical oceanic surroundings, it can also be of the den-

sity of a great continent with its spiraling mountain peaks and

profound valleys irrespective of its phenomenal size (as per-

ceived by the majority of people).

Having said that, I maintain that “Being-qua-Being” is the

“none-of-these” part of the above meta-logic and a most di-

rect Surdetermination (“Surholding”) of Reality, in the sub-

sequent vicinity of the most neutral “non-non-A” determina-

tion of Existence whose universal object is a “Qualon”, that

is [O]bject = (Surject, Prefect, Abject, Subject, Object) —

again, see the work on “Surjective Monism” for the peculiar

new-contented glossary of these terms.

6 Epilogue

Such a meta-categorical view on Reality, as presented above,

is in eidetic and twice-aprioristic contrast to the pseudo-

synthetic, inter-subjective, commutative logism of a thing “A”

being arbitrarily, conditionally given as “A and non-A” at the

same time by way of a homogenizing, “modernizing”, “newly

introduced” human interaction-type superficially (beyond just

artificially!) prevalent in today’s society. Consider, for ex-

ample, both the case of classical Hegelian solipsistic syllo-

gism (in the case of absolutist history and sociology) and the

generic example of the one-dimensionality (one-sidedness)

between technological gadgets (which can easily be substi-

tuted by any given operational post-modern notion) in the

“free market” and the majority of their users: a great gap ex-

ists between the given (gadgets as conditions) and the condi-

tioned (subjects), that is, unless the subjects are the creators

or producers — not mere buyers — of the said gadgets. Here,

subjects do not genuinely, aprioristically exist with respect

to Existence (but only with respect to the capriciously con-

ditioning inter-subjective society) and so are devoid of epis-

temicity; instead, they are conditioned by their whole range

of habits determined through the given gadgets and associated

contemporary urges.

The full extent of solipsism and syllogism — and the stark

absence of true Eidos, Logos, and Eros (of course, not ex-

actly in the Marcusian sense and use of the merely contrasting

phrase “Logos and Eros”, rather in a most unified and quali-

fied substantiation of the “Ergo” and not a mere “ego”, being

somewhat akin to the very term “ergodicity”) is at the very

heart of the problem of contemporary neo-simplistic world

at large in relation to puppetry, especially intellectual pup-

petry: most contemporary people do not touch the ground

with their feet (to know the real contour of Existence, and

not just the “societal sphere”), and they are unable and not

allowed to do so; instead, they are hanging (whether high

or low) by conditional proxy and post-modern threads, prod-

ded by ultracapitalistic-ultraconsumerist-hypernarrative rods

and sustained daily by superficial image-making tantamount

to overall solipsistic-syllogistic defect: that of hypernarration,

hyperoxymoronism,hypersemiotics, duplicity, solipsism, and

utter ontic-epistemic shallowness. In other words, they are

not real, as they do not inhere within Existence (let alone Be-

ing!) and its noematic mirror: they are apparitions upon Ex-

istence and that mirror. They are not “wrong”: they are “not

even wrong” (as a notable mathematician puts it).

The known towering figures of analytic philosophy, who

have stood as stern horizons before many, have not been able

to completely solve this epistemic problem, owing to the fact

that their systems are largely overly-symmetrical, be they em-

pirical, positivistic, or idealistic. Yet the fact remains that

the unity referred to as Existence is indeed a negative total-

ity with a positive nescience on the part of multiplicity of

most conscious existents: it has an underlying asymmetric

connection between things perceived as “parts” and is non-

integrable by way of logical representation. Thus, the aim

of dialectics is not to “integrate” Existence as such, but to

synthesize the given ambiguities in the logical-ideal form of

an eidetic-noematic category encompassing object-oriented

Praxis/Paradigm, where a priori and posteriori categories are

taken as not mere process (a-la Russell and Whitehead), but

“surgical modalities” in the face of anti-dogmatism. This,

then, would be a positive, dialectical kind of idealism capable

of Progress (and real dialectical synthesis) in the real back-

ground of the said negative totality — again, akin to consti-

tuting a solid island or continent in the greatly paradoxical

oceanic surroundings —, in contrast to mere syllogism and

solipsism, dogmatism and sophism, absolutivism and rela-

tivism.

Except for those who are uncritically conditioned and em-

bedded by it (unfortunately, such sorry individuals account

for the majority, as in any age, which is why the superficial

world of modernity remains running on misleading wheels
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and false horses as it does today), Progress on all fronts of

Ideation does not intrinsically belong to non-epistemic solip-

sism: never it has been so and never it will be. What is of-

ten taunted as “scientific progress” (not exactly the same as

technological progress, let alone genuine epistemic scientific

progress) in the fast linkage of contemporary dehumanization

and pseudo-enlightenment (instead of a set of neutral, multi-

fractal “micro-paradigms”: a model for an epistemological

scientific system incapable of being integrated arbitrarily into

an embedding political bastardization of dogmatic scientism

and religionism on the large scale) often entails logico-moral

duplicity which in turn causes a typical inept individual and

stooge to deny any existential footing, almost deliberately

mistaking the superficial world (in homogeneous, conform-

ing chains) for the real, paradoxical, non-dogmatic terrain of

Existence: the weight, the feet, and the ground of Existence

he never realizes and touches, for he is ineptly hoisted high by

the external manipulative world upon superficial hooks, hang-

ers, and logisms (seeming situational logical thoughts that are

ultimately, on the edge of the world, “not even wrong”), and

still it is somewhat guaranteed by the collective solipsism of

the majority that such one is able to derive his happiness — if

not his entire absurd situation and way of being — from sub-

conscious folly and conceit often arising merely from shallow

international conformity and hidden feudalism based on com-

mon image-making (indeed, instead of common good and

true democracy); in other words, from internal incapacity and

inconsistency as to what really transpires on the small and

large scales of the cosmos and the world of human activities

and considerations.

In short, solipsistic logism, including both the schemers

and the blind workers, suffers from all kinds of pseudo-

objectivity, especially on the horizon of things. The penulti-

mate revolutionary-intellectual human, however, firmly

touches the ground with his own feet, and is capable of the

paradoxical contour of Existence — by way of encompassing

the four categorical, meta-epistemic “a priori’s” and

“a posteriori’s”: ontic-eidetic-noetic, synthetic-apogetic-

a priori, synthetic-peripheral-a posteriori, and subjective-

psychological — leading all the way from the abyss to the

summit, as Revolution in the sciences is always ardently

wholly needed, not a mere reform: a new Word for the World,

and a new World for the Word.
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In a recent paper, the expression a(t) = e
H0T0
β

[(
t

T0

)β
−1

]
where β = 0.5804, was proposed

for the expansion factor of our Universe. According to it, gravity dominates the expan-
sion (matter era) until the age of T⋆ = 3.214 Gyr and, after that, dark energy dominates
(dark energy era) leading to an eternal expansion, no matter if the Universe is closed,
flat or open. In this paper we consider only the closed version and show that there is
an upper limit for the size of the radial comoving coordinate, beyond which nothing is
observed by our fundamental observer, on Earth. Our observable Universe may be only
a tiny portion of a much bigger Universe most of it unobservable to us. This leads to the
idea that an endless number of other fundamental observers may live on equal number
of Universes similar to ours. Either we talk about many Universes — Multiverse — or
about an unique Universe, only part of it observable to us.

1 Introduction

The Cosmological Principle states that the Universe is spa-
tially homogeneous and isotropic on a sufficiently large scale
[1–7]. This is expressed by the Friedmann spacetime metric:

ds2 = ℜ2 (T0) a2 (t)(
dψ2 + f 2

k (ψ)
(
dθ2 + sin2 θdϕ2

))
− c2dt2,

(1)

where ψ, θ and ϕ are comoving space coordinates (0 ⩽ ψ ⩽ π,
for closed Universe, 0 ⩽ ψ ⩽ ∞, for open and flat Universe,
0 ⩽ θ ⩽ π, 0 ⩽ ϕ ⩽ 2π), t is the proper time shown by
any observer clock in the comoving system. ℜ(t) is the scale
factor in units of distance; actually it is the modulus of the
radius of curvature of the Universe. The proper time t may
be identified as the cosmic time. The function a(t) is the usual
expansion factor

a(t) =
ℜ(t)
ℜ(T0)

, (2)

being T0 the current age of the Universe. The term f 2
k (ψ)

assumes the following expressions:

f 2
k (ψ)


f 2
1 (ψ) = sin2 ψ (closed Universe)

f 2
0 (ψ) = ψ2 (flat Universe)
f 2
−1(ψ) = sinh2 ψ (open Universe)

. (3)

In a previous paper [8], we have succeeded in obtaining
an expression for the expansion factor

a(t) = e
H0T0
β

((
t

T0

)β
−1

)
, (4)

where β = 0.5804 and H0 is the so called Hubble constant,
the value of the Hubble parameter H(t) at t = T0, the current
age of the Universe. Expression (4) is supposed to be describ-
ing the expansion of the Universe from the beginning of the
so called matter era (t ≈ 1.3 × 10−5 Gyr, after the Big Bang).

Right before that the Universe went through the so called ra-
diation era. In reference [8] we consider only the role of the
matter (baryonic and non-baryonic) and the dark energy.

In Figure 1 the behaviour of the expansion acceleration,
ä(t), is reproduced [8]. Before t = T⋆ = 3.214 Gyr, ac-
celeration is negative, and after that, acceleration is positive.
To perform the numerical calculations we have used the fol-
lowing values: H0 = 69.32 km×s−1 ×Mpc−1 = 0.0709 Gyr−1,
T0 = 13.772 Gyr [9].

Fig. 1: ä(t) = a(t)
(
H0

(
t

T0

)β
− (1 − β) 1

t

)
H0

(
t

T0

)β−1
.

2 The closed Universe

In reference [8], some properties such as Gaussian curvature
K(t), Ricci scalar curvature R(t), matter and dark energy den-
sity parameters (Ωm,Ωλ), matter and dark energy densities
(ρm, ρλ), were calculated and plotted against the age of the
Universe, for k = 1, 0,−1. It was found that the current cur-
vature radius ℜ(T0) has to be larger than 100 Gly. So, arbi-
trarily, we have chosenℜ(T0) = 102 Gly. None of the results
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were sufficient to decide which value of k is more appropriate
for the Universe. The bigger the radius of curvature, the less
we can distinguish which should be the right k.

In this paper we explore only the k = 1 case (closed Uni-
verse). First, we feel it is appropriate to make the following
consideration. At time t ≈ 3.8×10−4 Gyr, after the Big Bang,
the temperature of the universe fell to the point where nu-
clei could combine with electrons to create neutral atoms and
photons no longer interacted with much frequency with mat-
ter. The universe became transparent, the cosmic microwave
background radiation (CMB) erupted and the structure for-
mation took place [10]. The occurrence of such CMB and
the beginning of the matter era happen at different times, but,
for our purpose here, we can assume that they occured ap-
proximately at the same time t ≈ 0, since we will be dealing
with very large numbers (billion of years). We have to set
that our fundamental observer (Earth) occupies the ψ = 0 po-
sition in the comoving reference system. To reach him(her)
at cosmic time T , the CMB photons spend time T since their
emission at time t ≈ 0, at a specific value of the comoving
coordinate ψ. Let us call ψT this specific value of ψ. We
are admitting that the emission of the CMB photons occured
simultaneously (t ≈ 0) for all possible values of ψ.

Having said that, we can write, for the trajectory followed
by a CMB photon (ds2 = 0, dϕ = dθ = 0), the following:

− cdt
ℜ(t)

= dψ, (5)

−
∫ T

0

c
ℜ(t)

dt =
∫ 0

ψT

dψ, (6)

ψT =
c

ℜ(T0)

∫ T

0

1
a(t)

dt. (7)

The events (ψ = 0, t = T ) and (ψ = ψT , t = 0) are con-
nected by a null geodesics. ψ gets bigger out along the radial
direction and has the unit of angle.

The comoving coordinate which corresponds to the cur-
rent “edge” (particle horizon) of our visible (observable) Uni-
verse is

ψT0 =
c

ℜ(T0)

∫ T0

0
1

a(t) dt

= c
ℜ(T0)

∫ T0

0 e
H0T0
β

(
1−

(
t

T0

)β)
dt

= 0.275 Radians = 15.7 Degrees.

(8)

So CMB photons emitted at ψT0 and t = 0 arrive at ψ = 0
and t = T0, the current age. Along their whole trajectory,
other photons emitted, at later times, by astronomical objects
that lie on the way, join the troop before reaching the fun-
damental observer. So he(she) while looking outwards deep
into the sky, may see all the information “collected” along the
trajectory of primordial CMB photons. Other photons emit-
ted at the same time t = 0, at a comoving position ψ > ψT0

Fig. 2: rT =
∫ T

0
1

a(t) dt /
∫ T0

0
1

a(t) dt. The relative comoving coordinate
rT , from which CMB photons leave, at t ≈ 0, and reach relative co-
moving coordinate r = 0 at age t = T gives the relative position of
the “edge” of the Universe (rT→∞ → 1.697). (Axes were switched.)

will reach ψ = 0 at t > T0, together with the other photons
provenient from astronomical objects along the way. As the
Universe gets older, its ”edge” becomes more distant and its
size gets bigger.

The value of ψ depends on ℜ(T0), the curvature radius.
According to reference [8], it is important to recall that the
current radius of curvature should be greater than 100 Gly
and, in order to perform our numerical calculations, we
choose ℜ(T0) = 102 Gly. The actual value for ψT0 should
be, consequently, less than that above (equation (8)).

To get rid of such dependence on ℜ(T0), we find conve-
nient to work with the ratio r

r ≡ ψ

ψT0

, (9)

which we shall call the relative comoving coordinate.
Obviously, at the age T , rT is a relative measure of “edge”

position with respect to the fundamental observer. For a plot
of rT see Figure 2.

3 Universe or Multiverse?

One question that should come out of the mind of the funda-
mental observer is: “Is there a maximum value for the relative
comoving coordinate r?” What would be the value of r∞?

By calculating r∞, we get

r∞ =

∫ ∞
0

1
a(t) dt∫ T0

0
1

a(t) dt
=

47.558
28.024

= 1.697. (10)

To our fundamental observer (Earth), there is an upper
limit for the relative comoving coordinate r = r∞ = 1.697,
beyond that no astronomical object can ever be seen. This
should raise a very interesting point under consideration.
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Fig. 3: This illustration tries to show schematically a hypersurface
at time T with our Universe surrounded by other similar Universes,
arbitrarily positioned, some of them overlapping.

Any other fundamental observer placed at a relative co-
moving coordinate r > 2r∞ (ψ > 2ψ∞), with respect to ours,
will never be able to see what is meant to be our observable
Universe. He (she) will be in the middle of another visible
portion of a same whole Universe; He (she) will be thinking
that he (she) lives in an observable Universe, just like ours.
Everything we have been debating here should equally be ap-
plicable to such an “other” Universe.

The maximum possible value of ψ is π (equation (1)), then
the maximum value of r should be at least 11.43. Just recall
that r = 1 when ψ = ψT0 . This ψT0 was overevaluated as
being 0.275 Radians = 15.7 Degrees, in equation (8) when
considering the current radius of curvature as ℜ(T0) = 102
Gly. As found in reference [8] ℜ(T0) should be bigger than
that, not smaller. Consequently the real ψT0 should be smaller
than 0.275 Radians = 15.7 Degrees. One direct consequence
of this is that there is room for the ocurrence of a large number
of isolated similar observable Universes just like ours.

We may say that the Big Bang gave birth to a large Uni-
verse, of which our current observable Universe is part, per-
haps a tiny part. The rest is unobservable to us and an endless
number of portions just the size of our visible Universe cer-
tainly exist, each one with their fundamental observer, very
much probable discussing the same Physics as us.

Of course, we have to consider also the cases of overlap-
ping Universes.

The important thing is that we are talking about one Uni-
verse, originated from one Big Bang, and that, contains many
other Universes similar to ours. Would it be a multiverse? See
Figure 3.

4 Proper distance, volume, recession speed and redshift

When referring to the relative coordinate rT we are not prop-
erly saying it is a function of time. Actually rT is the value
of the relative comoving coordinate r from which the CMB

Fig. 4: Proper distances for r = (0.503, 1.000, 1.697). xxxxeeeexx
d(r)(T ) = a(T )rd(T0) (red curves), xxxxxxxx
d(T ) = a(T )rT d(T0) (dashed curve),
d(r)(T ) − d(T ) = a(T )(r − rT )d(T0) (blue curves).
Axes were switched for convenience.

photons leave, at t ≈ 0, to reach our fundamental observer at
cosmic time T . Because of the expansion of the Universe, the
proper distance from our observer (r = 0) and a given point
at r > 0, at the age t, is

d(t) = ℜ(t)rψT0 = a(t)cr
∫ T0

0

1
a(t′)

dt′. (11)

The proper distance from our observer (r = 0) to the farthest
observable point (r = rT ), at the age T , is known as horizon
distance:

d(T ) = ℜ(T )
∫ T

0

1
ℜ(t)

dt = a(T )crT

∫ T0

0

1
a(t)

dt. (12)

Besides defining the “edge” of the observable Universe at age
T , it is also a measure of its proper radius and does not depend
on the radius of curvature. In Figure 4 it is the dashed curve.
Its current value is

d(T0) = c
∫ T0

0

1
a(t)

dt = 28.02 Gly. (13)

It will become d(T → ∞) → ∞. Although there is an upper
value for r ( or ψ), the proper radius of the Universe is not
limited because of the continuous expansion (equation 1).

The proper distance from the observer to the position of
arbitrarily fixed value of r is

d(r)(T ) = a(T )rd(T0). (14)

where d(T0) is given in equation (13). In Figure (4) we
plot the age of the Universe as function of the proper dis-
tance, for three values of the relative comoving coordinate r
(0.503, 1.000, 1.697) – red curves. Blue curves refer to null
geodesics

d(r)(T ) − d(T ) = a(T )(r − rT )d(T0) (15)
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Fig. 5: Two evaluations of the volume of the Universe:xxxxxxx
Vol1(T ) = 2πℜ3(T0)a3(T )(rTψT0 − 1

2 sin 2rTψT0 ), xxxxxxx
Vol2(T ) = 2πℜ3(T0)a3(T )(ψT0 − 1

2 sin 2ψT0 ).

for fixed values of r , 0. (The axes in Figure 4 are switched,
for convenience.)

Consider the volume of our observable Universe. The
general expression is

Vol(t) = ℜ3(T0)a3(t)
∫ ψ

0 sin2 ψdψ
∫ π

0 sin θdθ
∫ 2π

0 dϕ

= 2πℜ3(T0)a3(t)
(
ψ − 1

2 sin 2ψ
)
.

(16)

Our fundamental observer may ask about two volumes:
First, the volume of the allways visible (observable) part

since the beginning - such volume should be approximately
zero for t ≈ 0; Second, the volume of what became later the
current visible part and that was not visible in its integrity in
the past since t ≈ 0. They are respectively,

Vol1(T ) = 2πℜ3(T0)a3(T )(ψ − 1
2 sin 2ψ)

= 2πℜ3(T0)a3(T )(rTψT0 − 1
2 sin 2rTψT0 ).

(17)

Vol2(T ) = 2πℜ3(T0)a3(T )(ψT0 −
1
2

sin 2ψT0 ). (18)

By evaluating equations (17 − 18) with T = 0, we get

Vol1(0) = 0
Vol2(0) = 0.006 × 105Gly3.

(19)

These results are not surprising. To our observer, located
at r = 0, at t ≈ 0, the visible Universe is approximately zero,
just because all the CMB photons are “born” at the same mo-
ment (T = 0); He (she) sees first the closest photons and then,
in the sequence, the others as time goes on.

On the other hand,

Vol2 (T0) = Vol1 (T0) = 0.9 × 105Gly3, (20)

Fig. 6: v(T ) = a(T )H(T )rd(T0). Recession speed is calculated for
three values of the relative comoving coordinate r, as function of the
age T of the Universe. For convenience the axes were switched.

which is the volume of current observable Universe. See Fig-
ure 4. It is only about 150 times bigger than it was at t = 0.

Just one comment: If the reader wants to calculate the
volume using the classical euclidean expression for the sphere
((4π/3)ℜ3(T0)a3(t)ψ3), he (she) will get practically the same
result. So here, as in reference [8], no distinction between
k = 0 and k = 1.

The recession speed of a point of the Universe at a given
relative comoving coordinate r, at cosmic time t, is

v(t) = a(t)H(t)rd(T0), (21)

where ȧ(t) was replaced by

ȧ(t) = a(t)H(t), (22)

and the Hubble parameter H(t) is given by [8]

H(t) = H0

(
t

T0

)β−1

. (23)

The cosmological redshift is defined as

z =
∆λ

λe
=

a(to)
a(te)

− 1, (24)

where λe and λo are, respectively, the photon wavelength at
the source (t = te) and at the observer (r = 0, t = to). Due to
expansion of the Universe, these two wavelengths are differ-
ent. The redshift to be detected by the observer at r = 0, at
current age should be

z =
1

a(te)
− 1 = e

H0T0
β

(
1− te

T0

)β
− 1. (25)

The recession speed at coordinate r at time (t = te) is

v(te) = a(te)H(te)rd(T0). (26)
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Fig. 7: v(z) =
(
1 − β

H0T0
Log(1 + z)

)β− 1
β H0r

1+z d(T0). Recession speeds
calculated as function of the cosmological redshift and plotted with
switched axes, for convenience.

From equation (25) we obtain

te = T0

(
1 − β

H0T0
Log(1 + z)

) 1
β

, (27)

which inserted into equation (24) gives

v(z) =
(
1 − β

H0T0
Log(1 + z)

)β− 1
β H0r

1 + z
d(T0). (28)

Because of the transition from negative to positive expan-
sion acceleration phenomenon, we have, in many situations,
two equal recession speeds separated in time leading to two
different redshifts. See Figure 7.

5 Conclusion

The expansion factor a(t) = e
H0T0
β

((
t

T0

)β
−1

)
, where β = 0.5804

[8], is applied to our Universe, here treated as being closed
(k = 1). We investigate properties of comoving coordinates,
proper distances, volume and redshift under the mentioned
expansion factor. Some very interesting conclusions were
drawn. One of them is that the radial relative comoving co-
ordinate r, measured from the fundamental observer, r = 0
(on Earth), to the ”edge” (horizon) of our observable Uni-
verse has an upper limit. We found that r → 1.697 when
T → ∞. Therefore all astronomical objects which lie be-
yond such limit would never be observed by our fundamental
observer (r = 0). On the other hand any other fundamental
observer that might exist at r > 2×1.697 would be in the mid-
dle of another Universe, just like ours; he(she) would never
be able to observe our Universe. Perhaps he(she) might be
thinking that his(her) Universe is the only one to exist. An
endless number of other fundamental observers and an equal
number of Universes similar to ours may clearly exist. Situ-
ations in which overlapping Universes should exist too. See
Figure 3.

The fact is that the Big Bang originated a big Universe.
A small portion of that is what we call our observable Uni-
verse. The rest is unobservable to our fundamental observer.
Equal portions of the rest may be called also Universe by their
fundamental observers if they exist. So we may speak about
many Universes - a Multiverse - or about only one Universe,
a small part of it is observable to our fundamental observer.
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It is suggested herein a test able to reveal the physical evidence of the homogeneous
electromagnetic vector potential field in relation to quantum theory. We take into con-
sideration three reliable entities as main pieces of the test: (i) influence of a potential
vector of the de Broglie wavelength (ii) a G. P. Thomson-like experimental arrangement
and (iii) a special coil designed to create a homogeneous vector potential. The alluded
evidence is not connected with magnetic fluxes surrounded by the vector potential field
lines, rather it depends on the fluxes which are outside of the respective lines. Also the
same evidence shows that the tested vector potential field is a uniquely defined phys-
ical quantity, free of any adjusting gauge. So the phenomenology of the suggested
quantum test differs from that of the macroscopic theory where the vector potential is
not uniquely defined and allows a gauge adjustment. Of course, we contend that this
proposal has to be subsequently subjected to adequate experimental validation.

1 Introduction

The physical evidence of the vector potential A⃗ field, dis-
tinctly of electric and/or magnetic local actions, is known as
Aharonov-Bohm-effect (A-B-eff). It aroused scientific dis-
cussions for more than half a century (see [1–8] and refer-
ences). As a rule in the A-B-eff context, the vector potential
is curl-free field, but it is non-homogeneous (n-h) i.e. spa-
tially non-uniform. In the same context, the alluded evidence
is connected quantitatively with magnetic fluxes surrounded
by the lines of A⃗ field. In the present paper we try to sug-
gest a test intended to reveal the possible physical evidence
of a homogeneous (h) A⃗ field. Note that in both n-h and h
cases herein, we take into consideration only fields which are
constant in time.

The announced test has as constitutive pieces three reli-
able entities (E) namely:

E1: The fact that a vector potential A⃗ field changes the values
of the de Broglie wavelength λdB for electrons. ■

E2: An experimental arrangement of the G. P. Thomson type,
able to monitor the mentioned λdB values. ■

E3: A feasible special coil designed so as to create a h-A⃗
field. ■

Accordingly, on the whole, the test has to put together the
mentioned entities and, consequently, to synthesize a clear
verdict regarding the alluded evidence of a h-A⃗ field.

Experimental setup of the suggested test is detailed in the
next Section 2. Essential theoretical considerations concern-
ing the action of a h-A⃗ field are given in Section 3. The above-
noted considerations are fortified in Section 4 by a set of nu-
merical estimations for the quantities aimed to be measured
through the test. Some concluding thoughts regarding a pos-

sible positive result of the suggested test close the main body
of the paper in Section 5. Constructive and computational
details regarding the special coil designed to generate a h-A⃗
field are presented in the Appendix.

2 Setup details of the experimental arrangement

The setup of the suggested experimental test is pictured and
detailed below in Fig. 1. It consists primarily of a G. P.
Thomson-like arrangement partially located in an area with
a h-A⃗ field. The alluded arrangement is inspired by some
illustrative images [9, 10] about G. P. Thomson’s original ex-
periment and it disposes in a straight line of the following
elements: electron source, electron beam, crystalline grating,
and detecting screen. An area with a h-A⃗ field can be obtained
through a certain special coil whose constructive and compu-
tational details are given in the above-mentioned Appendix at
the end of this paper.

The following notes have to be added to the explanatory
records accompanying Fig. 1.

Note 1: If in Fig. 1 the elements 7 and 8 are omitted (i.e.
the sections in special coil and the lines of h-A⃗ field)
one obtains a G. P. Thomson-like arrangement as it is
illustrated in the said references [9, 10]. ■

Note 2: Surely the above mentioned G. P. Thomson-like ar-
rangement is so designed and constructed that it can be
placed inside of a vacuum glass container. The respec-
tive container is not shown in Fig. 1 and it will leave
out the special coil. ■

Note 3: When incident on the crystalline foil, the electron
beam must ensure a coherent and plane front of de
Broglie waves. Similar ensuring is required [11] for
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Fig. 1: Plane section in the image of suggested experimental setup,
accompanied by the following explanatory records. 1 – Source for a
beam of mono-energetic and parallel moving electrons; 2 –Beam of
electrons in parallel movements; 3 – Thin crystalline foil as diffrac-
tion grating; 4 – Diffracted electrons; 5 – Detecting screen; 6 –
Fringes in the plane section of the diffraction pattern; 7 – Sections
in the special coil able to create a h-A⃗ field; 8 – h-A⃗ field ; ϕ = the
width of the electron beam with ϕ ≫ a (a = interatomic spacing in
the crystal lattice of the foil -3); θk = diffraction angle for the k-th
order fringe (k = 0, 1, 2, 3, . . .); yk = displacement from the center
line of the k-th order fringe; i = interfringe width = yk+1 − yk; D =
distance between crystalline foil and screen (D ≫ ϕ); L = length of
the special coil (L ≫ D) ; I = intensity of current in wires of the
coil.

optical diffracting waves at a classical diffraction
grating. ■

Note 4: In Fig. 1 the detail 6 displays only the linear projec-
tions of the fringes from the diffraction pattern. On the
whole, the respective pattern consists in a set of con-
centric circular fringes (diffraction rings). ■

3 Theoretical considerations concerning action of a h-A⃗
field

The leading idea of the above-suggested test is to search for
possible changes caused by a h-A⃗ field in the diffraction of
quantum (de Broglie) electronic waves. That is why we begin
by recalling some quantitative characteristics of the diffrac-
tion phenomenon.

The most known scientific domain wherein the respective
phenomenon is studied regards optical light waves [11]. In
the respective domain, one uses as the main element the so-
called diffraction grating i.e. a piece with a periodic structure
having slits separated each by a distance a and which diffracts
the light into beams in different directions. For a light nor-
mally incident on such an element, the grating equation (con-
dition for intensity maximums) has the form: a · sin θk = kλ,
where k = 0, 1, 2, . . . In the respective equation, λ denotes the
light’s wavelength and θk is the angle at which the diffracted

light has the k-th order maximum. If the diffraction pattern is
received on a detecting screen, the k-th order maximum ap-
pears on the screen in the position yk given by the relation
tan θk = (yk/D), where D denotes the distance between the
screen and the grating. For the distant screen assumption,
when D ≫ yk, the following relation holds: sinθk ≈ tan θk ≈
(yk/D). Then, with regard to the mentioned assumption, one
observes that the diffraction pattern on the screen is charac-
terized by an interfringe distance i = yk+1 − yk given through
the relation

i = λ
D
a
. (1)

Note the fact that the above quantitative aspects of diffrac-
tion have a generic character, i.e. they are valid for all kinds of
waves including de Broglie ones. The respective fact is pre-
sumed as a main element of the experimental test suggested
in the previous section. Another main element of the alluded
test is the largely agreed upon idea [1–8] that the de Broglie
electronic wavelength λdB is influenced by the presence of a
A⃗ field. Based on the two afore-mentioned main elements the
considered test can be detailed as follows.

In the experimental setup depicted in Fig. 1 the crystalline
foil 3 having interatomic spacing a plays the role of a diffrac-
tion grating. In the same experiment, on the detecting screen
5 it is expected to appear a diffraction pattern of the elec-
trons. The respective pattern would be characterized by an
interfringe distance idB definable through the formula idB =

λdB · (D/a). In that formula, D denotes the distance between
the crystalline foil and the screen, supposed to satisfy the con-
dition D ≫ ϕ), where ϕ represents the width of the incident
electron beam. In the absence of a h-A⃗ field, the λdB of a
non-relativistic electron is known to satisfy the following ex-
pression:

λdB =
h

pkin
=

h
mv
=

h
√

2mE
. (2)

In the above expression, h is Planck’s constant while pkin,
m, v and E denote respectively the kinetic momentum, mass,
velocity, and kinetic energy of the electron. If the alluded en-
ergy is obtained in the source of the electron beam (i.e. piece
1 in Fig. 1) under the influence of an accelerating voltage U,
one can write E = e · U and pkin = mv =

√
2meU.

Now, in connection with the situation depicted in Fig. 1,
let us look for the expression of the electrons’ characteristic
λdB and respectively of idB = λdB · (D/a) in the presence of a
h-A⃗ field. Firstly, we note the known fact [6] that a particle
with the electric charge q and the kinetic momentum p⃗kin =

mv⃗ in a potential vector A⃗ field acquires an additional (add)
momentum, p⃗add = qA⃗, so that its effective (eff) momentum
is P⃗e f f = p⃗kin + p⃗add = mv⃗ + qA⃗. Then for the electrons (with
q = −e) supposed to be implied in the experiment depicted in
Fig. 1, one obtains the effective (eff) quantities

λdB
e f f (A) =

h
mv + eA

; idB
e f f (A) =

hD
a (mv + eA)

. (3)
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Further on, we have to take into account the fact that the h-A⃗
field acting in the experiment presented before is generated
by a special coil whose plane section is depicted by the ele-
ments 7 from Fig. 1. Then from the relation (10) established
in the Appendix, we have A = K · I, where K = µ0N

2π · ln
(

R2
R1

)
.

Add here the fact that in this experiment mv =
√

2meU. Then
for the effective interfringe distance idB

e f f of the diffracted elec-
trons, one finds

idB
e f f (A) = idB

e f f (U, I) =
hD

a
(√

2meU + eK I
) , (4)

respectively

1
idB
e f f (U, I)

= f (U, I) =
a
√

2me
hD

√
U +

aeK
hD

I . (5)

4 A set of numerical estimations

The verisimilitude of the above-suggested test can be forti-
fied to some extent by transposing several of the previous for-
mulas into their corresponding numerical values. For such a
transposing, we firstly will appeal to numerical values known
from G. P. Thomson-like experiments. So, as regarding the
elements from Fig. 1, we quote the values a = 2.55×10−10 m
(for a crystalline foil of copper) and D = 0.1 m. As regard-
ing U, we take the often quoted value: U = 30 kV. Then
the kinetic momentum of the electrons will be pkin = mv =√

2meU = 9.351 × 10−23 kg m/s. The additional (add) mo-
mentum of the electron, induced by the special coil, is of
the form padd = eK × I where K = µ0N

2π × ln
(

R2
R1

)
. In or-

der to estimate the value of K , we propose the following
practically workable values: R1 = 0.1 m, R2 = 0.12 m,
N = 2πR1 × n with n = 2 × 103 m−1 = number of wires
(of 1 mm in diameter) per unit length, arranged into two lay-
ers. With the well known values for e and µ0 one obtains
padd = 7.331 × 10−24(kg m C−1) · I (with C = Coulomb).

For wires of 1 mm in diameter, by changing the polarity
of the voltage powering the coil, the current I can be adjusted
in the range I ∈ (−10 to + 10)A. Then the effective momen-
tum P⃗e f f = p⃗kin + p⃗add of the electrons shall have the values
within the interval (2.040 to 16.662) × 10−23 kg m/s. Con-
sequently, due to the above mentioned values of a and D, the
effective interfringe distance idB

e f f defined in (4) changes in the
range (1.558 to 12.725) mm, respectively its inverse from (5)
has values within the interval (78.58 to 641.84) m−1. Then
it results that in this test the h-A⃗ field takes its magnitude
within the interval A ∈ (−4.5 , +4.5) × 10−4 kg m C−1, (C =
Coulomb).

Now note that in the absence of the h-A⃗ field (i.e. when
I = 0) the interfange distance idB specific to a simple
G. P. Thomson experiment has the value idB = hD

a
√

2meU
=

2.776 mm. Such a value is within the range of values of idB
e f f

characterizing the presence of the h-A⃗ field. This means that
the quantitative evaluation of the mutual relationship of idB

e f f

versus I, and therefore the testing evidence of a h-A⃗ field can
be done with techniques and accuracies similar to those of the
G. P. Thomson experiment.

5 Some concluding remarks

The aim of the experimental test suggested above is to verify
a possible physical evidence for the h-A⃗ field. Such a test can
be done by comparative measurements of the interfringe dis-
tance idB

e f f and of the current I. Additionally it must examine
whether the results of the mentioned measurements verify the
relations (4) and (5) (particularly according to (5) the quantity
(idB

e f f )
−1 is expected to show a linear dependence of I). If the

above outcomes are positive, one can notice the fact that a h-A⃗
field has its own characteristics of physical evidence. Such a
fact leads in one way or another to the following remarks (R):

R1: The physical evidence of the h-A⃗ field differs from the
one of the n-h- A⃗ field which appears in the A-B-eff.
This happens because, by comparison to the illustra-
tions from [12], one can see that: (i) by changing the
values of n-h- A⃗, the diffraction pattern undergoes a
simple translation on the screen, without any modifi-
cation of interfringe distance, while (ii) according to
the relations (4) and (5) a change of h-A⃗ (by means of
current I) does not translate the diffraction pattern but
varies the value of associated interfringe distance idB

e f f .
The mentioned variation is similar to that induced [12]
by changing (through accelerating the voltage U) the
values of kinetic momentum p⃗kin = mv⃗ for electrons. ■

R2: There is a difference between the physical evidence (ob-
jectification) of the h-A⃗ and the n-h-A⃗ fields in relation
with the magnetic fluxes surrounded or not by the field
lines. The difference is pointed out by the following
subsequent aspects:
(i) On the one hand, as it is known from the A-B-eff,
in case of the n-h-A⃗ field, the corresponding evidence
depends directly on magnetic fluxes surrounded by the
A⃗ field lines.
(ii) On the other hand, the physical evidence of the
h-A⃗ field is not connected to magnetic fluxes sur-
rounded by the field lines. But note that due to the rela-
tions (4) and (5), the respective evidence appears to be
dependent (through the current I) on magnetic fluxes
not surrounded by the field lines of the h-A⃗. ■

R3: A particular characteristic of the physical evidence fore-
casted above for the h-A⃗ regards the macroscopic ver-
sus quantum difference concerning the uniqueness
(gauge freedom) of the vector potential field. As is
known, in macroscopic situations [13, 14] the vector
potential A⃗ field is not uniquely defined (i.e. it has a
gauge freedom). In such situations, an arbitrary A⃗ field
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allows a gauge fixing (adjustment), without any alter-
ation of macroscopic relevant variables/equations (par-
ticularly of those involving the magnetic field B⃗). So
two distinct vector potential fields A⃗ and A⃗1 have the
same macroscopic actions (effects) if A⃗1 = A⃗ + ∇ f ,
where f is an arbitrary gauge functions. On the other
hand, in a quantum context, a h-A⃗ has not any gauge
freedom. This is because if this test has positive results,
two fields like h − A⃗ = A · k⃗ and h − A⃗1= h − A⃗ + ∇ f
are completely distinct if f = (−z · A · k⃗), where k⃗
denotes the unit vector of the Oz axis. So we can con-
clude that, with respect to the h-A⃗ field, the quantum
aspects differ fundamentally from those aspects orig-
inating in a macroscopic consideration. Surely, such
a fact (difference) and its profound implications have
to be approached in subsequently more elaborated
studies. ■

Postscript

As presented above, the suggested test and its positive results
appear as purely hypothetical things, despite the fact that they
are based on essentially reliable entities (constitutive pieces)
presented in the Introduction. Of course, we hold that a true
confirmation of the alluded results can be done by the action
of putting in practice the whole test. Unfortunately, at the
moment I do not have access to material logistics able to al-
low me an effective practical approach of the test in question.
Thus I warmly appeal to the concerned experimentalists and
researchers who have adequate logistics to put in practice the
suggested test and to verify its validity.

Appendix: Constructive and computational details for a
special coil able to create a h-A⃗ field

The case of an ideal coil

An experimental area of macroscopic size with the h-A⃗ field
can be realized with the aid of a special coil whose construc-
tive and computational details are presented below. The an-
nounced details are improvements of the ideas promoted by
us in an early preprint [15].

The basic element in designing the mentioned coil is the
h-A⃗ field generated by a rectilinear infinite conductor carrying
a direct current. If the conductor is located along the axis Oz
and the current has the intensity I, the Cartesian components
(written in SI units) of the mentioned h-A⃗ field are given [16]
by the following formulas:

Ax (1) = 0 , Ay (1) = 0 , Az (1) = −µ0
I

2π
ln r . (6)

Here r denotes the distance from the conductor of the point
where the hct-A⃗ is evaluated and where µ0 is the vacuum per-
meability.

Fig. 2: Schemes for an annular special coil.

Note that formulas (6) are of ideal essence because they
describe the h-A⃗ field generated by an infinite (ideal) recti-
linear conductor. Further onwards, we firstly use the respec-
tive formulas in order to obtain the h-A⃗ field generated by an
ideal annular coil. Later on we will specify the conditions
in which the results obtained for the ideal coil can be used
with fairly good approximation in the characterization of a
real (non-ideal) coil of practical interest for the experimental
test suggested and detailed in Sections 2,3 and 4.

The mentioned special coil has the shape depicted in
Fig. 2-(a) (i.e. it is a toroidal coil with a rectangular cross sec-
tion). In the respective figure the finite quantities R1 and R2
represent the inside and outside finite radii of the coil while
L → ∞ is the length of the coil. For evaluation of the h-A⃗
generated inside of the mentioned coil let us now consider an
array of infinite rectilinear conductors carrying direct currents
of the same intensity I. The conductors are mutually paral-
lel and uniformly disposed on the circular cylindrical surface
with the radius R. The conductors are also parallel with Oz
as the symmetry axis. In a cross section, the considered array
is disposed on a circle of radius R as can be seen in Fig. 2b.
On the respective circle, the azimuthal angle φ locates the in-
finitesimal arc element whose length is Rdφ. On the respec-
tive arc there was placed a set of conductors whose number
is dN =

(
N
2π

)
dφ, where N represents the total number of con-

ductors in the whole considered array. Let there be an obser-
vation point P situated at distances r and ρ from the center
O of the circle respectively from the infinitesimal arc (see the
Fig. 2b). Then, by taking into account (6), the z-component
of the h-A⃗ field generated in P by the dN conductors is given
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by relation

Az (dN) = Az (1) dN = −µ0
NI
4π2 ln ρ · dφ , (7)

where ρ =
√(

R2 + r2 − 2Rr cosφ
)
. Then all N conductors

will generate in the point P a h-A⃗ field whose value A is

A = Az (N) = −µ0
NI
8π2

2π∫
0

ln
(
R2 + r2 − 2Rr cosφ

)
· dφ . (8)

In calculating the above integral, the formula (4.224-14) from
[17] can be used. So, one obtains

A = −µ0
NI
2π

ln R . (9)

This relation shows that the value of A does not depend on
r, i.e. on the position of P inside the circle of radius R. Ac-
cordingly this means that inside the respective circle, the po-
tential vector is homogeneous. Then starting from (9), one
obtains that the inside space of an ideal annular coil depicted
in Fig. 2a is characterized by the h-A⃗ field whose value is

A = µ0
NI
2π

ln
(

R2

R1

)
. (10)

From the ideal coil to a real one

The above-presented coil is of ideal essence because their
characteristics were evaluated on the basis of an ideal for-
mula (6). But in practical matters, such as the experimental
test proposed in Sections 2 and 3, one requires a real coil
which may be effectively constructed in a laboratory. That is
why it is important to specify the main conditions in which
the above ideal results can be used in real situations. The
mentioned conditions are displayed here below.

On the geometrical sizes: In a laboratory, it is not possible
to operate with objects of infinite size. Thus we must
take into account the restrictive conditions so that the
characteristics of the ideal coil discussed above to re-
main as good approximations for a real coil of simi-
lar geometric form. In the case of a finite coil having
the form depicted in the Fig. 2a, the alluded restrictive
conditions impose the relations L ≫ R1, L ≫ R2 and
L ≫ (R2 − R1). If the respective coil is regarded as a
piece in the test experiment from Fig. 1, indispensable
are the relations L ≫ D and L ≫ ϕ.

About the marginal fragments: On the whole, the mar-
ginal fragments of coil (of width (R2 − R1)) can have
disturbing effects on the Cartesian components of A⃗ in-
side the the space of practical interest. Note that, on the
one hand, in the above-mentioned conditions L ≫ R1,
L ≫ R2 and L ≫ (R2−R1) the alluded effects can be ne-
glected in general practical affairs. On the other hand,

in the particular case of the proposed coil the alluded
effects are also diminished by the symmetrical flows of
currents in the respective marginal fragments.

As concerns the helicity: The discussed annular coil is sup-
posed to be realized by winding a single piece of wire.
The spirals of the respective wire are not strictly par-
allel to the symmetry axis of the coil (the Oz axis) but
they have a certain helicity (corkscrew-like path). Of
course, the alluded helicity has disturbing effects on the
components of A⃗ inside the coils. Note that the men-
tioned helicity-effects can be diminished (and practi-
cally eliminated) by using an idea noted in another con-
text in [18]. The respective idea proposes to arrange the
spirals of the coil in an even number of layers, with the
spirals from adjacent layers having equal helicity but of
opposite sense.
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On Materiality and Dimensionality of the Space.

Is There Some Unit of the Field?

Anatoly V. Belyakov

E-mail: belyakov.lih@gmail.com

The article presents arguments with a view to recognize that space is material and has

possibly a fractal dimension in the range of from three to two. It is proposed that along

to the unit of substance (atom) Some Unit of the field (vortex tubes) should be set. It is

shown that the formation of the field structures being a kind “doubles” of atomic ones is

possible. The existence of the three-zone electron structure is confirmed. It is indicated

that this concept have already resulted in to the successful explanation of phenomena

and to finding of their important parameters at different levels of the organization of

matter.

1 Introduction

Some of the observed cosmological effects can not find a

satisfactory explanation. These include, in particular, mis-

match of the rotation velocity around the galactic center of the

substance, located on the periphery of galaxies, to Kepler’s

laws.

In accordance with Kepler’s laws, following the law of

universal gravitation, the peripheral rotation velocity of galac-

tic objects should, in accordance with their distancing from

the galactic center to the periphery, decrease inversely pro-

portional to the square of their distance from the center. Mea-

surements also showed that this rotation velocity remains al-

most constant for many galaxies at a very significant distance

from the center. The need to explain these facts has led to

the conclusion that there is a dark matter filling up the galac-

tic halo.

The other explanation was given by Israeli astrophysi-

cist Mordechai Milgrom. His Modified Newtonian Dynamics

(MOND) is an empirical correction of Newton’s laws of grav-

ity and inertia, proposed as an alternative to dark matter. The

basic idea is that at accelerations below a0 ∼ 10−8 cm/sec2

effective gravitational attraction approaches the value (gN a0),

where gN — usual Newtonian acceleration; that allows phe-

nomenologically to reproduce the flat rotation curves of spiral

galaxies [1].

It is possible that the reported anomalous acceleration de-

tected by the Pioneer spacecrafts refers to the same type of

phenomena, i.e. it is caused by not so rapid decrease in the

force of attraction, as the Newton’s law requires.

2 On the true dimensionality of the space and of its ma-

teriality

Is there a need to involve extra entities (dark matter) or to

modify forcibly the fundamental Newton’s law to explain of

this and others cosmological effects? Could be more natural

to accept reduction of the dimensionality of the space from

three — in the region of cluster masses, to two — for the void

intergalactic space?

Assume that wih distancing from the cluster masses at

intergalactic distances the three-dimensional space gradually

“flattens” in a two-dimensional surface. The force of gravity

in the case of the three-dimensional space is inversely pro-

portional to the square of the distance between gravitating

masses. With decreasing the dimensionality of the space the

natural modification of Newton’s law occurs, and the force

of gravitational attraction for the two-dimensional space be-

comes inversely proportional to the distance in the first de-

gree, which leads to the constancy of the rotation velocity of

objects at great distances from the galactic center.

Perhaps a slight dimension decreasing and therefore the

modification of Newton’s law manifests itself at a lower scale

with the distance incresing from the Sun, which may explain

the anomaly of the Pioneer spacecrafts.

Thus, a picture emerges of three-dimensional or nearly

three-dimensional material galaxies islands floating in a two-

dimensional or nearly two-dimensional void spatial sea. Ob-

viously, need has ripened for recognizing of the existence of

a unified material medium and for replacement by this con-

cept of the whole variety entities like ether, physical vacuum,

space, and matter.

Indeed, according to the concept of J. A. Wheeler’s idea,

the surface can be two-dimensional, but at the same time is

fractalized, topologically non-unitary coherent and consists

of linkages of “appendices” or “wormholes” of the first and

subsequent orders forming as a whole the three-dimensional

structure [2]. Thus matter itself can finally be organized with

step-by-step complication of the initial cells and be a “woven

cloth”, which in its turn, is deformed into the objects (masses,

substance) we observe. The objects therefore are the very

fractalized (upto micro-world scales) surfaces, which have a

fractional dimension of the value almost approaching three

and presumably equal to the number e [3]. As a result, empty

space is logically interpreted as a nondeformed surface and,

accordingly, electromagnetic waves as surface waves thereon.

Note, it is the concept of a flat two-dimensional inter-

galactic space that agrees best with the point of view existing
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today among the majority of cosmologists that the observ-

able universe has zero curvature and is very close to spatially

flat having local deformations at the location where there are

massive objects (flat Universe).

There are also other facts pointing to the reasonableness

of the foregoing. Recently in the paper [4] interesting effects

have been given, namely —:

— the unusual nature of the distribution of “hot” and

“cold” spots in the cosmic microwave radiation;

— the damping of a signal at large scales (there is absence

of any clearly expressed “hot” or “cold” areas at the

angles greater than about 60◦);

— the form of small spots on the map, drawn WMAP, like

an ellipse.

The authors consider that these effects can be explained

by assuming that the Universe has the shape of a horn. Then

its curvature explains these facts, because the whole surface

of the horn is a continuous saddle. This negatively curved

space acts like a distorting lens, turning spots in something

like an ellipse.

It would be interesting to analyze, whether the same ef-

fects can be explained in accordance with the concept set

forth above, i.e. be the result of observation out of the three-

dimensional space of our galaxy of remote objects through a

void two-dimensional space?

Finally, there is a known photometric paradox that is, in

the framework of the proposed concept, explained naturally

by decrease in the amount of luminous objects entering the

target of the observer during the transition of a solid angle in

a planar angle as far as these objects are moving away from

the observer.

3 Field masses and their structurization

The idea about transitions between distant regions of space

in the form of Wheeler’s “appendices” or “wormholes” can

be extended to the scale of macrocosm, and some contem-

porary astrophysical theories has already made use of it [5].

These “wormholes”, obviously, should be interpreted as vor-

tical current tubes or threads, or field lines of some kind.

It is considered that matter exists in the form of the sub-

stance and the field. A familiar element of our world is an

atom, i.e. the unit of the substance is the structure that is,

on Bohr’ model, based (simplified, of course) on the balance

between dynamic and electric forces. By analogy, one can

imagine the unit of the field — the structure that is based

(also simplified) on the balance between dynamic and mag-

netic forces.

In the paper [6] it is shown that the balance of dynamic

and magnetic forces defines a family of unidirectional vor-

tex threads of number ni, of the length li, rotating about the

longitudinal axis of the radius ri with the rotary velocity v0i;

with the additional presence of the balance of gravitational

and magnetic forces contra-directional closed vortex tubes

form closed structures or contours. These structures can be

attributed to some mass, but not in the ordinary sense of the

word, but as having the sense of the measures of organization

of the field.

It is given that the elementary unit of vortex tubes is the

unit with the radius and mass close to those of a classical

electron (re and me) [7, 8]. Then the linear density of the

vortex tube for vacuum will be:

ε0 =
me

re

= 3.231×10−16 kg/m. (1)

Accepted that for a medium other than vacuum the mass

of a vortex tube or the mass of a conture, i.e. the mass per unit

of the field, is proportional to the number of vortex threads in

the tube. Then the total mass of the contour of the length li
will be:

Mi = ε0 ni li . (2)

Number of vortex threads shows how material medium

differs from vacuum, and their greatest value corresponds to

the ratio of electrical-to-gravitational forces, i.e. value:

f =
c2

ε0γ
= 4.167×1042, (3)

where c, γ are the light velocity and the gravitational constant.

The balance of electrical and magnetic forces gives a

characteristic linear parameter that is independent of the di-

rection of the vortex tubes and the number of charges:

Rc =
√

2π c × [sec] = 7.515×108 m. (4)

This quantity has a magnitude close to the Sun radius and the

sizes of typical stars.

Further, this value corresponds to the characteristic grav-

itational mass, close to the Jeans mass during recombination:

Mm = Rc

c2

γ
= f Rc ε0 = 1.012×1036 kg. (5)

Let the field structure meets the above conditions and has

a total mass M0 = zi Mi, i.e. consists of zi vortex tubes which,

in turn, consist of ni of vortex threads. While atomic objects

are complicated with increasing its mass, field objects are, on

the contrary, complicated with decreasing its mass, forming

the hierarchy of structures. These changes can be traced if

some additional relations are set, for example:

zi =
Rc

li
, a j =

Rc

ri

, (6)

where a is the reciprocal fine structure constant and

j = 0, 1, 2 . . ..

In the paper [6] the formulas are given, where all param-

eters of objects are expressed in the terms of a dimensionless

mass M = M0/Mm.
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Objects

Parameters Jeans mass Typical star Typical small

planet

Biggest multicellu-

lar organism
Human individual Most small multi-

cellular organism

j 0 2 4 11 12 15

zi 1 26.6 706 6.8 × 107 3.5 × 108 4.8 × 1010

ri, m 7.5 × 108 4.0 × 104 2.13 2.3 × 10−15 1.7 × 10−17 6.8 × 10−24

li, m 7.5 × 108 2.8 × 107 1.1 × 106 11.0 2.13 0.016

vi0, m/sec 3.0 × 108 1.1 × 107 4.2 × 105 4.4 0.85 0.0063

M0, kg 1.0 × 1036 2.0 × 1030 4.1 × 1024 4.6 × 104 65.5 1.9 × 10−7

ni 4.2 × 1042 8.3 × 1036 1.7 × 1031 1.9 × 1011 2.8 × 108 ∼1

Table that here shows the hierarchy of the parameters zi,

ri, li, v0i, M0, ni with decreasing the mass M0 for some values

of j. It is evident that the fine structure constan is the scale

factor in the whole range of mass.

Calculations show that some parameters of objects are

quite characteristic. For example, at j = 2 the mass of an

object is exactly equal to the mass of the Sun, at j = 4 the

mass of an object is equal to the mass of Earth-like planets.

Apparently, the mass range for j = 11 . . .15 correspond to

the masses of living multicellular organisms.

Indeed, for the minimum mass at j = 15 the parameter

ni = 1, and it limits the existence of the complex structures

having masses below 1.9×10−7 kg. For the maximum mass

at j > 11ri < re. In this case, there is a possibility of the

formation within the vortex tubes of p+–e− contours of gen-

eral radius re (their parameters were previously determined

from the condition of the charge constancy [7]) of even more

fine secondary structures consisting of the vortex elements of

radius ri.

It would be reasonable to assume that the additional infor-

mation filling of such structures, i.e. the ability to record and

store information on a deeper level than the atomic-molecular

level (DNA), just also is the condition of the formation of the

most complex organisms (multicellular ones).

Provided ri = re, the maximum mass of such organism is

limited to 59 tons (with roughly at j = 11). The overwhelm-

ing diversity of living multicellular organisms fit into this

mass range. This applies to both flora and fauna. The small-

est animals endowed with a cerebrum and nervous system are

rotifers (Rotatoria), and the most massive animals are whales

(Cetacea), and among multicellular plants — from wolffia

rootless (Wolffia arrhiza) to redwoods (Sequoia). Their mean

masses are close to those specified in the table of minimum

and maximum masses.

It is interesting to note that at j = 12 the mass of the ob-

ject becomes equal to the average mass of a human individual,

while the length of the vortex tube corresponds to the length

of a stretched human DNA. Complexity of such a field struc-

ture containing 3.5×108 vortex tubes, each of which contains

nearly the same amount by 2.8×108 vortex threads, is com-

parable to the complexity of a human body, which contains

about 1014 cells.

Thus, the atomic structures are accompanied by their field

“doubles”; this duality in general determines the total proper-

ties of objects. And possibly it is the ”harmonic complexity”

of the existing wave objects having masses close to that of

human that defines the most highly organized biological life

and the existence of mind.

One might ask why these vortex structures are not de-

tected. But it is not quite so. There where there is a suit-

able material medium, plasma, for example, vortex structures

manifest themselves at the different levels of organization of

matter.

Undoubtedly, inside the Sun there is a gravimagnitody-

namical structure that manifests itself in the form of paired

dark spots in the equatorial zone of the Sun. These spots seem

to be the outputs of the vortex force tubes undergoing mag-

netic reversal and changing their intensity and polarity. Their

registered quantity (from several one to a hundred) does not

contradict the calculated mean zi = 26.6 [6].

On the Earth’s surface the reflection of such structures are

numerous geomagnetic anomalies, at least those that are not

associated with the features of geological structure.

Regarding the scale of human, it can be assumed that

the material essence of living in his field form is expressed

through the form and structure of the corona discharge ob-

served around living organisms (Kirlian effect).

4 About the three-zone electron structure and the divis-

ibility of charge

In the microcosm the charge and spin of the electron are de-

termined by momentum and angular momentum of the vortex

p+–e− contour, and these values are constant regardless of the

size of the contour [7].

Let for some wave object, whose parameters are deter-

mined from the foregoing balances, the momentum of one

vortex tube Mi v0i is also equal to the total momentum p+–e−

contour, i.e. the amount of charge (in the “coulombless” sys-

A. V. Belyakov. On Materiality and Dimensionality of the Space. Is There Some Unit of the Field? 205



Volume 10 (2014) PROGRESS IN PHYSICS Issue 4 (October)

tem) corrected by the Weinberg angle cosine ex = e0 cos qw,

where qw = 28.7◦ [8]. Then using the formulas given in [6]

one can find the number of vortex threads, which one vortex

tube is composed of:

ni = f

(

ex

c Mm

)2/3

= 2.973 ≃ 3. (7)

Thus, a unit contour or vortex tube having a momentum

equivalent to the electron charge contains three unit vortex

threads. This fact points to the three-zone electron structure

and possible divisibility of the charge and confirms the con-

clusions reached in papers [8, 11].

5 Conclusion

The concept of the unified material medium and recognition

of the existence the elementary vortex structures as material

units of the field made it possible to reflect on and explain

logically variety physical phenomena at the different scale

levels of organization of matter using the single approach —

J.Wheeler’s geometrodynamic concept.

Someone might say that the author’s constructions are too

simplistic, mechanistic, even speculative and not supported

by a properly mathematical apparatus, and some results could

be occasional coincidences. However, the author has repeat-

edly stated that these works are not a formalized theory.

These papers only have demonstrated by means of the illus-

trative mechanistic models the opportunities for understand-

ing, interpretation, and, in some cases, for calculation of im-

portant physical parameters on the scale of from microcosm

to cosmos.

This approach has proved successful. This proves the re-

sults, for example: the definition of the independent deter-

mination of the ultimate density of physical vacuum [3], the

explanation of the nature of electron charge and finding its

numerical value as well as numerical values of the constants

of radiation [7, 9], the determination of the proton-electron

mass ratio, the accounting of the forces of gravity in micro-

cosm, the finding the neutron lifetime [8], the modeling the

Hertzsprung-Russell diagram, the definition of model param-

eters of pulsars [6], the conclusion about the existence of two

types of planetary systems [10], etc.

The obtained results totality, correct both qualitatively

and quantitatively, is so great that this fact completely ex-

cludes the opportunity of occasional coincidences. Thus, the

method of approach and proposed models can serve as a ba-

sis for the development of full physical theories based on the

recognition of the existence of the unified material medium.
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This is a summary of the presentations at the seminar headed by Yakov G. Sinai. Held

in July 8, 2014, in Institute for Information Transmission Problems, Russian Academy

of Sciences, in Moscow.

“My lords! I came to you to tell most unpleasant

news: random physical processes do not exist.”

No one person, never, got random time series in the mea-

surements of physical processes on the Earth. There is “non-

vanishing scatter of results” which can be found in any physi-

cal measurements and observations. It remains existing in the

registered data after vanishing all conceivable and inconceiv-

able sources of errors. The “non-vanishing scatter of results”

is not random. It is due to the following factors:

— the daily motion and the orbital motion of the planet

Earth, where all the observers are located, through the

non-isotropic and inhomogeneous cosmic space;

— the motion of the Solar System in the Galaxy;

— changes in the relative positions of the Earth, Moon,

Sun and planets.

These conclusions are based on the transformation of the

time series of physical measurement data into the series of

“insolvent histograms” (such histograms, in which the num-

ber of bits and the number of measurements are comparable).

The evidence of non-randomness of the time series is the

periodic change of shape of the insolvent histograms.

The non-randomness of shape of the insolvent histograms

follows from the next experimental facts:

1. Significant similarity of the histograms obtained from

the measurement any processes (from Brownian motion to the

alpha-decay) that were recorded in the same moment of time,

and in the same geographic location. We call this the “effect

of absolute synchroneity”;

2. Significant similarity of the histograms, obtained in

different geographic locations, but in the same moments of

local time;

3. Significantly higher probability of the similarity of the

histograms created on the basis of the neighbour (near) non-

overlapping segments of the time series, compared to the dis-

tant segments of the time series (the “near-zone effect”);

4. The clear presence of the near-day, near 27-day, and

yearly periods of the appearance of similar histograms;

5. The “space anisotropy effect”. It means, in the mea-

surement of nuclear decay fluctuations, that the histogram

shape depends on the space direction of the collimators. Also,

in light fluctuation measurements, the space anisotropy effect

means that the histogram shape depends on the space direc-

tion of the light beam generated by LEDs or lasers;

6. The near-day periods of similar histograms were not

registered when the light beam coming from a LED, or the

alpha-particle beam coming through a collimator are directed

to Polaris (this effect was registered in Puschino, Russia).

Also, the near-day periods of similar histograms were not reg-

istered in the measurements done at the North Pole;

7. Splitting the near-day period into the “sidereal period”

(1436 min) and the “solar period” (1440 min);

8. Splitting the yearly period of similar histograms into

the “calendar period” (365 days), the “tropical period” (365

days, 5 hours, 48 min), and the “sidereal (stellar) period” (365

days, 6 hours, 9 min);

9. Appearance of similar histograms with the rotation

periods of a source slowly rotating in a special device;

10. No near-day periods was registered on a source rotat-

ing with a speed of one revolution per day in the opposite di-

rection than the Earth’s rotation (thus compensating the daily

rotation of the Earth);

11. The “palindrome effect”. It is the periodic repeti-

tion of mirrored histograms in the moments of time when the

daily, orbital, or artificial rotation change its sign (i.e. in the

opposite locations on the rotation circle);

12. The algorithmic nature of shape of histograms. Dis-

crete distributions of the number of cofactors. Fluctuations of

the number system. Omnibus of the natural numbers.

* * *

Nature (physics) of the registered regularities that are dis-

cussed herein is as follows:

1. Because the very different scales of energies in the

registered processes (Brownian motion, visible light, alpha-

decay), the registered effects can not be explained by “exter-

nal influences” on these processes. The effects can only be
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explained due to the appearance of the observer in similar re-

gions of space along the Earth’s trajectory in the cosmos;

2. There exist an optimally small number of measure-

ments used in the histogram creation, in which the accuracy

of the similarity of histograms is maximally high. This op-

timally small number does not depend on the duration of the

time interval of the histograms. A fractality is observed: from

hours to milliseconds;

3. Similarity of “insolvent histograms” is not due to the

statistical (random) regularities. Goodness criteria of hypo-

theses are inapplicable for histogram shape (the fine structure

of insolvent histograms);

4. Beginning from some number of measurement, the

fine structure of the distributions does not depend on this

number. Remaining this fine structure unchanged with the in-

crease of measurement number contradicts to the large num-

ber law. This leads to the “layered histograms phenomenon”.

It is unclear whether this phenomenon can be explained by

the “statistical inertia” or not?

5. Could the characteristic structure of changes in the

number of cofactors in the natural numbers, and the depen-

dence of the number system on the “scale unit” to explain the

regularities of insolvent histograms?

6. Is the amazing phenomenon of chirality of insolvent

histograms also depending on the motion of the Earth in the

anisotropic space?

7. Synchronous change of histograms in different geo-

graphic locations, with the collimators directed to some spe-

cial directions in space does not depend on the distance be-

tween the locations. The measurements were done along the

geographic latitude (the North Pole — Antarctic). Also, syn-

chronous change of histograms is apparently not screened;

8. Nevertheless, when located at a fixed place on the

Earth, but with the oppositely directed collimators (to the

West and the East) the similarity of histograms appears with

the half-day period. It was also registered in experiments with

artificial rotation of the source;

9. The presence of clear daily and yearly periods of his-

tograms means that the spatial structure (relievo) of the fractal

“coastline” of the Universe remains stable (at least within the

scale of our lifespan);

10. It is amazing and remains unexplained that the sim-

ilarity of histogram series obtained from the measurements

done in the equinox moments of time: the moments of transit

of the Sun, Moon, Mars, Venus, Mercury through the “point-

gap” in the plane of the celestial equator, from above or below

the plane;

11. The equinox moments of time also manifested the

palindrome effect — the periodic repetition of mirrored his-

tograms.
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A hypothesis based on the exchange and the inter-conversion of the “real” and the equiv-

alent “virtual” particles of the quantum vacuum can resolve the contradiction of wave-

particle duality, the “spookiness” and the other conflicting properties of the quantum

particles. It can be shown using simple mathematics that the extent of the wave or the

particle nature of a quantum particle depends on the rate of this “real/virtual” particle

exchange, the velocity and the rest mass of the exchanging “real” particle.

The revolutionary quantum phenomena has posed both on-

tological and epistemological problems for natural science

and philosophy; that remains unresolved even after more than

a century of its discovery. The wave-particle duality, the

characteristic non-locality, the prevalence of the interplay of

chance and necessity among other things distinguish the

quantum phenomena, from hitherto anything previous episte-

mology could even conceive of. The great intuition of Dem-

ocritus that matter is composed of some elementary particles

or atoms more or less holds true and has been vindicated even

at the subatomic level; but the contrary nature of matter as a

wave at quantum level has also now been well established.

This has given rise to conflicting and mutually exclusive

philosophical claims of the objective reality, ranging from

positivist and subjective idealism to the realist views of a

deterministic, unchanging and a permanent objective reality,

to a mechanistic measurement problem as expressed by the

Heisenberg’s uncertainty principle, But however much wildly

differing interpretations of the quantum phenomena are, the

rationalist notion of a certain, deterministic and inherently un-

changing reality (knowable or not) as the basis of epistemol-

ogy is widely accepted. At the quantum level this amounts to

assuming that the stable quantum particles like protons, elec-

trons, photons, etc., retain their unique and singular identity

on a permanent basis; or at least since the creation of the uni-

verse, through a Big Bang or otherwise. The only recognized

change of the stable and the everlasting fundamental particles

is their fusion at the core of the stars to form higher elements.

Albert Einstein, who was a pioneer in the development

of the quantum theory, rejected the “spooky” quantum phe-

nomena for its lack of certainty and causality. He (and many

others) also opposed the generally accepted but confusing

and opportunistic interpretation of the Copenhagen consen-

sus. Einstein tried to avoid the quantum conundrum by adopt-

ing a notion of physical reality based on a “continuous field”

rather than material particles, particularly in his theory of

general relativity (GR). In Einstein’s own words, “Since the

theory of general relativity (GR) implies the representation of

physical reality by a continuous field, the concept of parti-

cles and material points cannot play a fundamental part and

neither can the concept of motion. The particle can only ap-

pear as a limited region in space in which the field strength or

energy density is particularly high” [1].

The popularity of “continuous field” based GR have been

responsible for the undermining of the original particle based

orientation of quantum electrodynamics (QED); as “field”

based theories like quantum field theory (QFT) now dom-

inate quantum mechanics and the related domains of cos-

mology. The fact that the quantum vacuum is seething with

ghostly virtual particles that pop in and out of existence has

been very well established after the discovery of the Lamb

Shift [2], with a precision that is unmatched by any other

physical measurements. The Casimir Force is also generally

attributed to be due to the presence of virtual particles. These

virtual particles can be made real using various well-known

techniques [3]. Yet except for being a mere nuisance for cre-

ating infinities in the quantum mechanical equations, the vir-

tual particles has so far received little attention from an onto-

logical and epistemological point of view. A new theoretical

and experimental re-evaluation of the intuitively derived un-

certainty principle of Werner Heisenberg suggest that, the un-

certainty does not always come from the disturbing influence

of the measurement, but from the more fundamental quantum

nature of the particle itself [4]. This points to a possible role

of the virtual particles in the uncertainty relation.

All the experimental evidence and technological experi-

ence so far, suggest that the virtual particles of the quantum

vacuum may play a significant role in determining the at-

tributes of the quantum phenomena, namely the wave-particle

duality, its non-locality, its uncertain nature and influence

(based on chance and necessity) on the macroscopic biochem-

ical and astrophysical processes etc., than hitherto appreci-

ated.

In opposition to the view of a static objective reality,

where the stable and fundamental quantum particles retain

their permanent and unique identity; it is assumed in the pre-

sent hypothesis that the objective reality is dynamic, where

there is perpetual exchange of position and identity between

the real quantum particles with their respective and reciprocal

virtual counterparts; such that no permanent and unique iden-
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tity of “real” quantum particles is possible. This exchange is

mediated by Heisenberg’s uncertainty relation:

∆E ∆t >
h

4π
,

where ∆E is the energy gained by the virtual particle dur-

ing the time interval ∆t, that is equivalent to the mass/energy

of the real particle that would exchange with it, and h is the

Planck constant. It is clear that the time ∆t required for this

exchange is extremely small compared to the time of the

change in position or the velocity of the real quantum par-

ticles that must be within the limit of the velocity of light (c)

according to Einstein’s theory of special relativity (SR).

If we consider a point source for a “real” quantum particle

at the centre of a sphere, then the particle could be any where

(during a specific time interval) within this sphere defined by

a radius which is proportional to the velocity of the particle.

The particle will then have the possibility to exchange posi-

tion and identity with equivalent virtual particles within this

sphere; assuming that the real/virtual exchange does not af-

fect the velocity of the real particle under consideration. This

rate (R) of exchange of “virtual” particles par “real” parti-

cle par unit time, then will be directly proportional to the

volume of the sphere and inversely proportional to ∆E, the

energy equivalent of the mass (m) of the real particle that is

exchanged with a corresponding virtual particle, according to

the following equation:

R =

h
4π

4
3
πr3

∆E
=

h
3

r3

∆E
=

h
3

kv3

mc2
,

where h is the Planck constant, r is the radius of the sphere

that is proportional to the velocity v of the particle, and k is

a proportionality constant. For a particle with the velocity of

light (c), the rate is

R =

h
3

kc

m
.

Now, it is obvious from the above equation that for par-

ticles with zero rest mass like photons, neutrinos, gravitons

etc. the rate of exchange will be infinite, hence the particle

or a group of particles will have a wave character spreading

in all three dimensions and also can act as long range force

carriers.

With massive and stable particles like electrons, posi-

trons, protons, etc., this exchange rate will be finite but much

smaller and hence will be restricted around the direction

(from the source) of the motion of the particle as a cylindri-

cal or a conical wave front and like an arc in two dimensions;

over a tangible distance. The arc-length of the wave packet

in two dimensions will depend on the mass and the velocity

of the quantum particle. The heavier the mass and slower the

velocity, the shorter will be the length of the arc and the wave-

packet. The rapid slowing down of the quantum particle along

the original direction of its motion is likely to taper down the

cylindrical wave-front into a cone shape. More massive and

slow moving objects will demonstrate no wave character at

all and follow the laws of classical mechanics. It is because

a slower velocity will cover less volume of space in specified

time and the greater mass will have exorbitant energy require-

ment for the uncertainty principle and hence lower exchange

rate with the potential virtual particles. These aspects of the

wave-packet for different quantum particles can possibly be

verified with adjustable two slit experiments. This approach

to the problem of the propagation of quantum particles very

superficially compares with the “Path Integral Formulation”

of quantum mechanics by Richard Feynman, where the in-

tegration over an infinity of possible trajectories is used to

compute a “quantum amplitude” [5].

This real/virtual (and vice versa) exchange of the quan-

tum particles explains their “spookiness”, the wave-particle

dual character and their non-locality within the limit of the

speed of light. Whether all the properties of the quantum par-

ticles aside from their charge, such as parity, spin etc. are

also conserved or whether their entanglement is affected dur-

ing these exchanges; needs to be worked out. This hypothesis

will be contrary to the generally accepted notions of causality

and formal logic, or what G. W. F. Hegel termed as “the view

of understanding”. But it will be in conformity with the law

of “the unity of the opposites” and the other laws of dialectics.

The “view of understanding” abhors contradictions and

posits a sharp distinction between the opposites, based on

Aristotelian doctrine of “unity, opposition and an excluded

middle in between”. This view assumes the presence (at least

from the time of the creation of the world) of an objective

reality that is essentially permanent, certain, unchanging, de-

terministic and continuous etc. Any change, motion or devel-

opment in this view can only come from an “impulse” from

outside; following the law of cause and effect. There is lit-

tle wonder that the conflicting and the uncertain nature of

the quantum phenomena has given rise to confusion and to

mutually exclusive philosophical claims of the objective re-

ality, ranging from the positivist and subjective idealism to

the realist views of the “guiding waves” of a continuous and

permanent objective reality on the one hand and to a mech-

anistic and simplistic measurement problem as expressed by

the Heisenberg’s uncertainty principle, on the other.

An exactly opposite view of the objective reality mainly

attributed to the Greek philosopher Heraclitus and later de-

veloped by G. W. F. Hegel, Karl Marx and Frederick Engels

posits “eternal change due to inner strife” as the permanent

feature of the objective reality and the world. Any stability

or apparent permanence is only relative and conditional. The

world in this view is infinite, eternal and ever changing. This

view follows from Hegel’s elaboration of dialectics as the

“Absolute Identity of identity and non-identity” — “the unity

of the opposites” i.e., a simultaneous unity and conflict of the

opposites residing together at the very element of a thing or a

process in a logical contradiction. Any material existence is a
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contradiction of the opposites and must eternally be resolved

to a new “becoming” through a dialectical “negation of the

negation”, in a chain of processes in triads that give rise to

the phenomenology of the world. At fundamental quantum

level, the objective reality is a contradiction of “being” and

“nothing”, giving rise to “becoming” or existence. The QED

established fact that the quantum vacuum seethes with virtual

particles, the notion of an eternal real/virtual exchange and a

dynamic equilibrium as the basis of the objective reality is in

conformity with a dialectical view of the universe.

From a dialectical point of view, “being” and “nothing”

must always exist together in contradiction, as a part of the

objective reality of the universe. One cannot supersede or ex-

haust the other, so there can be no question of a beginning or

an end of the universe. For dialectics, there is also no mega-

leap (like Big Bang) in nature; precisely because nature is

made entirely of infinite leaps of the “negation of the nega-

tion”, mediated by chance and an iron necessity that is inher-

ent in chance! In addition to real/virtual particle exchange,

inter-conversion of real and virtual particles through quan-

tum tunnelling and through yet other still unknown processes

is possible. The energetic core of the galaxies are likely to

be the favourable sites for the generation of new matter and

anti-matter from the virtual particles This author had previ-

ously attempted to use these ideas to explain some cosmic

phenomena [6], the origin, evolution and the structure of the

galaxies [7] and other aspects of modern cosmology [8].
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The concept of the infinite as a mathematical, a scientific and as a philosophical cate-

gory is differentiated. A distinction between Hegel’s dialectical concept of the infinite

as opposed to his idealist-philosophical “system” of the “Absolute Idea” as the “True

Infinite” is emphasized.

1 The infinite as a mathematical category

The concept of the infinite as a mathematical category arose

naturally enough with the invention of the numerical system

by the Sumerians around 3000 B.C. and the subsequent de-

velopments of the concepts of geometry, the measure of time,

mathematical operations (arithmetic, algebraic, exponentials

etc.), One could always add or subtract a unit of number,

length or time to get a new one ad infinitum without an end.

This infinite is undetermined, has no characterization and was

termed the “spurious” or the “false” infinite (bad infinity) by

G. W. F. Hegel (1770–1831 A.D.), as opposed to the “True In-

finite” (to be discussed later).

“The spurious infinite” according to Hegel [1],

“. . . seems to superficial reflection something

very grand, the greatest possible. . . . When time

and space for example are spoken of as infinite,

it is in the first place the infinite progression on

which our thoughts fasten . . . the infinity of

which has formed the theme of barren declama-

tion to astronomers with a talent for edification.

In an attempt to contemplate such an infinite our

thought, we are commonly informed, must sink

exhausted. It is true indeed that we must abandon

the unending contemplation, not however

because the occupation is too sublime, but be-

cause it is too tedious . . . the same thing is con-

stantly recurring. We lay down a limit: then pass

it: next we have a limit once more, and so for

ever.”

The infinite as a mathematical category took a mystical

form once Pythagoras of Samoa (580?–520 B.C.), and later

Plato (429–347 B.C.) idealized the numbers, their relations

and geometry into their philosophical system, where the in-

finite along with the numbers and the forms were universals

that exists in a realm beyond space and time for all eternity,

a realm that sense perception cannot reach; it is only given to

thought and intuition.

As Frederick Engels [2, p. 46] wrote,

“Like all other sciences, mathematics arose out

of the need of man; from measurement of land

and of the content of vessels, from computation

of time and mechanics. But, as in every depart-

ment of thought, at a certain stage of develop-

ment, the laws abstracted from the real world be-

come divorced from the real world and are set

over against it as something independent, as laws

coming from outside to which the world has to

conform. This took place in society and in the

state, and in this way, and not otherwise, pure

mathematics is subsequently applied to the

world, although it is borrowed from this same

world and only represents one section of its

forms of interconnection — and it is only just

precisely because of this that it can be applied

at all”.

The mathematical pursuit of the infinite therefore, of ne-

cessity became a spiritual endeavor. In his attempt to know

the infinite and to prove his continuum hypothesis, Georg

Cantor (1845–1914 A.D.) for example, was eventually com-

pelled to make a distinction between consistent and inconsis-

tent collections; for him only the former were sets. Cantor

called the inconsistent collections the absolute infinite that

God alone could know. His idea of an “actual infinite” at-

tracted theological interest because of its implication for an

all-encompassing God; but at the same time it inspired scorn

of the contemporary mathematicians. What Cantor, other

mathematicians and natural science pursued in reality is the

“spurious infinite” of Hegel. An infinite series starting with

a first term is also undefined, because there is no end to the

other side, and one cannot come back to the first term starting

from the other end. Cantor’s pursuit of the infinite led him

to the ridiculous idea of the infinity of infinities, and no other

mathematicians followed his steps. If there is more than one

infinite then by definition they become mere finites. Math-

ematicians of all ages had no clue as to the nature of the

infinite; some denied its existence all together; while others

maintained (following Plato) that mathematical entities can-
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not be reduced to logical propositions, originating instead in

the intuitions of the mind.

2 The infinite as a scientific category

Historically, natural science took a rather pragmatic and an

opportunistic approach towards infinity, i.e., reductio ad ab-

surdum argument which avoids the use of the infinite. It trun-

cates infinity by putting an arbitrary limit as Georg Cantor

did, and calls the rest the “absolute infinite” that is known

only to infinite God. It deals with infinity with some arbi-

trary mathematical tricks, for example, a circle is the limit

of regular polygons as the number of sides goes to infinity;

an infinite series starts with a first term; in renormalization,

one set of infinite is cancelled by invoking another set of in-

finite to get a finite result that was desired in the first place

and so on.

Isaac Newton (1642–1727 A.D.) and Albert Einstein

(1879–1955 A.D.) faced the same conceptual problems of the

infinite universe in formulating their theories of gravity. Ein-

stein declared, “Only the closed ness of the universe can get

rid of this dilemma” [3]. He then set himself to develop a

theory of gravity based on geometry, because geometry deals

with closed space!

But an attempt to truncate infinity this way can only lead

us back to medieval geocentric cosmology. The unpleasant

fact is that, by definition a truncated infinite is also infin-

ity and any mathematical operation on infinity leaves it un-

changed as Galileo asserted in his famous 1638 pronounce-

ment on infinity that, “Equal”, “greater”, and “less” cannot

apply to infinite quantities [4]. The arbitrary renormalization

process and reductio ad absurdum practiced by natural sci-

ence cannot resolve the contradiction of the infinite; it only

leads to more and more contradictions and a dependence on

ever more mysteries and theology, as we observe in modern

theoretical natural science. The reason why Albert Einstein

chose a finite and closed universe as opposed to the open

ones was not only to make his equations meaningful and/or

because of his love for simplicity and aesthetics, as reduc-

tionist ideologues and worshipers of symmetry would have

us believe, but also because of his sober realization that his

Machean-philosophy based cosmology collapses in an infi-

nite universe. If Mach’s principle is followed, then an infinite

universe means that the inertia and the mass of atoms etc.

also become infinite. To keep the world as we see it now

(inertia, mass, etc.); all Mach based cosmologies must have

the universe started at a finite past and also must have a fi-

nite extension. So this way the contradiction of infinity is not

solved.

The notion of the infinite in natural science became ever

more clouded after Albert Einstein established the primary

role of mathematics in natural science. Natural science be-

came seduced to the idea that where experimental evidence

and empirical data is difficult and/or impossible to obtain

“logical consistency of mathematics” will lead the way. The

stunning success of the theories of relativity in early 20th

century, led Einstein to revive Pythagoras’s notion of math-

ematics. “How can it be” he wondered, “that mathematics

being a product of human thought which is independent of

experience, is so admirably appropriate to the objects of

reality?” [5].

The theory of general relativity is a classic example where

the power of mathematics, pure thought and aesthetics devoid

of any empirical content is purported to have conceived the

ultimate reality of the universe. “Our experience hitherto jus-

tifies us in believing that nature is the realization of the sim-

plest conceivable mathematical ideas. I am convinced that

we can discover by means of purely mathematical construc-

tions the concepts and the laws connecting them with each

other, which furnish the key to the understanding of natural

phenomena. . . . In a certain sense, therefore, I hold it true

that pure thought can grasp reality, as the ancients dreamed”,

declares Albert Einstein [6].

With his mathematical idealism Einstein erased the dif-

ference between the pure mathematics, whose program is the

exact deduction of consequences from logically independent

postulates, and the applied mathematics of approximation

needed for science. Natural science uses approximate em-

pirical data, which are fitted on in various ways to analytic

functions of pure mathematics that helps in the systematiza-

tion, generalization, and the formulation of tentative theories.

But the results and the inferences are only valid in a narrow

range of the data values for the argument for which approxi-

mate empirical information is available.

A convenient property of the analytic functions (such as

the field equations) is that, such functions are known for all

values of their argument when their values in any small range

of the argument values are known and thereby allowing an

unlimited extension of this procedure from the macrocosm to

the microcosm. Thus, the a priori assumption that the laws of

Nature involve analytic functions leads to a complete mech-

anistic determination of the world based on their experimen-

tally determined value in a narrow range only. But the validity

of such a procedure of unlimited extension of mathematical

functions for the real world, were questioned both by math-

ematician/philosophers such as Bridgman [7] and scientists

like Klein [8] at the advent of quantum mechanics; based as

they argued (on different grounds) on the unavoidable inac-

curacies of empirical knowledge. And as quantum mechan-

ics clearly shows, there is uncertainty in the ontological na-

ture of reality itself at micro level. So, our epistemological

knowledge must always be defective, tentative and approxi-

mate, increasing in scope from one generation of humanity

to the next; like an infinite mathematical series, without ever

coming to a termination or without ever reaching one final

and ultimate truth.

The quantum phenomena and the failure so far [9];

(in spite of over a century-long intense efforts by some of
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the most brilliant mathematicians including Einstein) to unify

“ALL” the particles and “ALL” the forces of Nature into a

simple and reductionistic “theory of everything” demonstrate

the folly of this kind of naı̈ve and over- simplified extrapola-

tion of idealized mathematics to the real world at the two op-

posite directions of infinity, i.e., macrocosm and microcosm.

3 The infinite as a philosophical category

The concept of the infinite was implicit in the early philosoph-

ical developments especially among the early Greek thinkers

that centered around the basic questions of the primacy of

spirit or nature, unity or multipliticity, stasis or motion. This

debate divided the philosophers into two great camps. Those

who asserted the primacy of spirit, unity and stasis formed

the camp of idealism; the contrary camp formed the various

schools of materialism.

The earliest idealist Greek philosophers (the Eleatics) de-

nied the reality of becoming, multiplicity or motion; these

characteristics they maintained, are of the sense-world or

physical Nature. These they argued are not real but only

appearances and hence these are illusions. For Parmenides

(515–450 B.C.) for example the sole reality is Being, Being

is One, only the One is; the Many not. This Being cannot be

perceived by senses, it is given only to thought or mind. This

line of thinking permeates the range of idealist philosophers

like Plato, Aristotle, Berkeley, Hume, Hegel and all monothe-

istic religions. The Unity of Being in this view means that

the infinite must be contained in this one Being. The Being

meaning God in theological terms, the infinite, then became

associated with abstract God. The idealist view of infinity

was later incorporated into mathematics and theoretical natu-

ral science.

But the dialectically opposite and the materialist view of

reality — i.e. the validity of the sense perception of change,

multiplicity and motion in material Nature also arose simulta-

neously in early Greek philosophy. The founder of the dialec-

tical view, Heraclitus (544–483 B.C.) on the contrary saw the

world as a process — as changing eternally. For him Unity

is not a homogenous unity, but is a “unity of the opposites or

of opposite tendencies”. The Unity is a complex entity that

contains at least two dominant opposite fragments that are in

constant conflict with each other and renders this unity sus-

ceptible to diversity, change and movement. The concept of

the infinite in this view is therefore, open ended. Epicurus

(341∼270 B.C.) following the tradition of Heraclitus was the

first to assert that the universe is infinite in its extension in all

directions and that multiplicity, time and motion are endless.

Benedict Spinoza (1632–1677 A.D.) made an important

advance on the concept of infinity along the dialectical tra-

dition which helped Hegel (himself an idealist) to formulate

in a comprehensive way the dialectical view of the infinite in

particular and his dialectical method in general. Spinoza for-

mulated the profound idea that to define something is to set

boundaries for it; i.e., to determine is to limit. The infinite

then is something that is undetermined or that has no limit or

boundary. In other words the Infinite is limited only by itself

and like God is “self-determined”.

In popular concept, God is supposed to be infinite. Spi-

noza’s idea of the infinite led to an insurmountable difficulty

for conventional philosophy and theology which regarded the

infinite and the finite as mutually exclusive opposites; abso-

lutely cut off from each other. How then the infinite can be

conceived; how infinite God can have contact with finite man,

since it will limit His infiniteness. Finiteness of the world

became a primary requirement for medieval theology. The

inquisition did not hesitate to spill blood and torture victims

to defend its doctrine. Hegel, following Spinoza called the

“Absolute Idea” of his philosophy the “True Infinite” which

is self-determined. For him the material world or Nature is a

crude replica — an alienated form of the “Absolute Idea”.

The fundamental difference between these two world-

views and hence their implication for the concept of infin-

ity gets its concrete expression in the question of matter and

motion. While Newton recognized matter as a real entity, for

Einstein matter is a particular representation of an all pervad-

ing (space-time) reality (“Being” of Parmenides?). Einstein

expressed this point of view in an unambiguous way, “Since

the theory of general relativity (GR) implies the representa-

tion of physical reality by a continuous field, the concept of

particles and material points cannot play a fundamental part

and neither can the concept of motion. The particle can only

appear as a limited region in space in which the field strength

or energy density is particularly high” [10]. Motion in the

view of both Newton and Einstein could only arise from an

impulse from without — from God — the “unmoved mover”.

And why energy density at particular points must arbitrarily

be high to form material points must also depend on interven-

tion by Providence. For dialectics (and quantum mechanics)

on the contrary, matter and motion are the fundamental ele-

ments and the primary conditions of all physical reality; mo-

tion is the mode of existence of matter. Matter without motion

is as inconceivable as motion without matter.

The only way the conceptual problem of infinity can be

resolved is through the dialectics of Hegel — the law of the

unity of the opposites. The notion that the finite and the in-

finite reside together in a contradiction; that they are united

as well as are in opposition to each other. That, the finite is

the infinite and vice versa. That this contradiction resolves

itself continuously in the never-ending development in time

and extension in space of the universe, in the same way as

for example intellectual advance find its resolution in the pro-

gressive evolution of humanity from one particular generation

to the next. Just as Nature or the universe (ontologically) is

incapable of reaching a final, ever lasting, unchanging or an

ideal state so is thought (which is only a reflection of Nature

in the mind of man) epistemologically is incapable of com-

prehending a completed, exhaustive or immutable knowledge
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— the so-called absolute truth of the world. For dialectics,

“eternal change” (with temporary stages of infinite number

of leaps) is the only thing that is permanent and the only ab-

solute. Hegel’s dialectics therefore, is a condemnation of all

claims to absolute truth by all idealism including the mathe-

matical idealism of modern official natural science, which is

but a reincarnation or rather restoration of the old idealism.

In human history, as well as in the history of natural science,

hitherto all claims to the “final truth” are but the partial mas-

querading as the complete.

The continuous resolution of the contradiction of the fi-

nite and the infinite like the other evolutionary processes are

not only dialectical but they also develop historically follow-

ing the three general laws i.e. i) transformation of quantity

into quality and vice versa, ii) interpenetration of the oppo-

sites and iii) the negation of the negation. Engels [11] summa-

rized these three laws from Hegel’s Logic, where the first law

comprises the Doctrine of Being, the second, the Doctrine of

Essence, while the third constitutes the fundamental law for

the construction of the whole system. Hegel deduced his phi-

losophy from the history of Nature, of society and of thought.

The infinite universe is not a mere abstract, quality less, bor-

ing, endless extension of uniformity (spurious or bad infin-

ity), it includes a variety of qualitative contents with different

forms of movements passing one into the other and develop-

ing historically. The infinite space is adorned with the drama

of things “coming into being” and “passing out of existence”

in each of the innumerable island universes; each island uni-

verse with innumerable galaxies and each galaxy in turn with

innumerable stars and planets. Under favorable conditions,

galaxies propagate [12, 13]; the stars produce the higher ele-

ments; the planets give rise to the evolution of molecules, to

organic life and finally to the thinking brain through which

infinite Nature (for a brief period of time) becomes conscious

of itself ! Self-consciousness is therefore, the property of the

highest developed form of matter, which like everything else

comes into being and passes out of existence as temporary

bubbles in the eternal and infinite universe.

The knowledge of the infinite is therefore proportional to

the knowledge of the finite. This knowledge is necessarily

a historical and an iterative process progressing through suc-

cessive generations of mankind without ever terminating in

one final or absolute truth a quest of which was the aim of

all idealism — mathematical, scientific or philosophical. A

progressively better understanding of the infinite universe can

only come about by studying the finite around us guided by

the general laws of dialectics.

There are innumerable number of water and other mol-

ecules and atoms on earth and yet we understand (in a limited

sense) and live at ease with these! The properties of mat-

ter and its structure under the various conditions in terrestrial

nature must be the same that exists under similar conditions

billions of light years away. In fact, one sun with its planets

and its life supporting earth and one Milky Way galaxy with

its surrounding family group form the essential basis for an

understanding of the universe. Beyond 15 billion light years

there is no wonderland or lurking monsters to be seen. What

we will see there is more or less the same we now see within

a few million light years around us! The same applies to the

micro-world. There is no limit of space, time or length in any

direction; up-down, left-right; back-front, at least up to the

level beyond which the terms mass, time or length lose their

meaning (in the usual sense of the term) because of quantum

uncertainty and due to other yet unknown effects. The lim-

its from quasars (at the ultimate boundary of the universe?)

to the quarks at the lowest end, set by Official Science must

therefore be false; because this represents an arbitrary limita-

tion of infinity, conditioned by the limitation of the empirical

knowledge of our time.

4 The “Absolute Idea” of Hegel as the “True Infinite”

As Engels pointed out [14], the dialectical view of the in-

finite as discussed above, are necessary logical conclusions

from the dialectical method of Hegel; but conclusions he him-

self never expressed so explicitly. Hegel was an idealist and

above all he was the official philosopher of the Royal Prus-

sian court of Frederick William III. His task was to make a

system of philosophy that must specify one absolute truth or

a “first cause” of the world, as tradition demanded it. There-

fore, even though Hegel, especially in his Logic emphasized

that this absolute truth is nothing but the logical. i.e., histori-

cal process itself, he nevertheless found it necessary to bring

his dialectical process to a termination in the “Absolute Idea”.

For his philosophical “system” his dialectical “method” had

to be untrue. Hegel also turned his philosophy upside down,

where the “Absolute Idea” (like all idealism) became primary

and nature only a crude reflection of the “Idea”, even though

(through unprecedented detail and encyclopedic work) he ex-

tracted the laws of dialectics from the history of the material

and the human world.

But nevertheless, the dialectical method of Hegel helped

him to overcome the impossible contradiction of the infinite

and the finite faced by Spinoza, theology and all previous ide-

alist philosophies. For Hegel, the finite and the infinite are

no independent entities separated from each other by an un-

bridgeable gap in between, as old philosophy asserted; but

these are the integral components of a single unity within

which the two opposites reside together in active unity and

opposition, and hence in a logical contradiction. A resolution

of this contradiction to an ever new “unity of the opposites”

and so on — the negation of the negation is what gives rise to

motion, change, development, and historical evolution of the

universe as a never ending process.

Idealist Hegel can terminate the infinite process of change

by making his “Absolute Idea” (the self-determined, the True

Infinite”) as the ultimate end result of all change, motion, de-

velopment or history, and making it the beginning again, i.e.
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the end as the true beginning. For Hegel, the finite Nature

or man IS the infinite “Absolute Idea” itself! The “Absolute

Idea” alienates and disguises itself into Nature, evolves his-

torically through all the usual twists and turns following the

laws of dialectics and comes back to itself again through the

consciousness of man and particularly through the philoso-

phy of Hegel himself, who for the first time in the history

of mankind perceived in thought the ultimate truth of this

dialectical movement, in absolute profoundness. For Hegel

the “Absolute Idea” which is the end result of all change, de-

velopment, motion, history etc. — the static reality of Par-

menides, the abstract God of theology, the self-determined

entity of Spinoza, is the “True Infinite” and the absolute truth

of the world.

But this “Absolute Idea” or the “True Infinite” of Hegel

like the mathematical “Absolute Infinite” of Cantor; are only

absolutes in the sense that they have absolutely nothing to

say about it! Thus in spite of his prodigious intellect and

in spite of the logical implication of his profound dialectical

“method” to the contrary, Hegel unfortunately pursued the il-

lusion of an absolute truth, like all the other idealist philoso-

phers and all theological prophets of all times. The mathemat-

ical idealism and reductionism of modern official theoretical

natural science inherited this illusion — i.e., the empty shell

of all idealism but not the kernel — the dialectical “method”

of this great idealist thinker.

5 Conclusion

During the last few centuries especially since Copernicus

(1473–1543), natural science accumulated impressive empir-

ical evidence and gained variable degrees of understanding

of the terrestrial nature; that collectively vindicate Hegel’s

assertion that change is the only absolute truth and that the

dialectical laws are the only eternal laws that govern the de-

velopment and the transformation of matter and life. But iron-

ically, natural science claims its own invariable truth exactly

in the areas where it possesses the least empirical evidence!

As intoxicated modern official natural science celebrates its

achievement of a definitive knowledge of one single event i.e.,

the “Big Bang” origin of the universe and the triumph of its

mathematical idealism; with the award of Nobel Prizes, and

as the world awaits in breathless anticipation the imminent

discovery of a “theory of everything” that will bring an “End

of Physics” and possibly the end of all knowledge (by “know-

ing the mind of God”, according to one of the leading physi-

cists Stephen Hawking [15]); it would be instructive for us to

remember the sober dialectical assessment of Frederick En-

gels [2, pp. 43–44] — one of the greatest inheritors of Hegel’s

philosophy:

“The perception that all the phenomena of Na-

ture are systematically interconnected drives sci-

ence to prove this interconnection throughout,

both in general and in detail. But an adequate,

exhaustive scientific statement of this intercon-

nection, the formulation in thought of an exact

picture of the world system in which we live, is

impossible for us, and will always remain impos-

sible. If at any time in the evolution of mankind

such a final, conclusive system of the intercon-

nections within the world — physical as well as

mental and historical — were brought to comple-

tion, this would mean that human knowledge had

reached its limit, and, from the moment when

society had been brought into accord with that

system, further historical evolution would be cut

short — which would be an absurd idea, pure

nonsense. Mankind therefore finds itself faced

with a contradiction; on the one hand, it has to

gain an exhaustive knowledge of the world sys-

tem in all in its interrelations; and on the other

hand, because of the nature both of man and of

the world system, this task can never be com-

pletely fulfilled. But this contradiction lies not

only in the nature of the two factors — the world,

and man — it is also the main lever of all intellec-

tual advance, and finds its solution continuously,

day by day, in the endless progressive evolution

of humanity. . . ”.
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We tested alternative cosmologies using Monte Carlo simulations based on the sam-
pling method of the zCosmos galactic survey. The survey encompasses a collection of
observable galaxies with respective redshifts that have been obtained for a given spec-
troscopic area of the sky. Using a cosmological model, we can convert the redshifts
into light-travel times and, by slicing the survey into small redshift buckets, compute a
curve of galactic density over time. Because foreground galaxies obstruct the images
of more distant galaxies, we simulated the theoretical galactic density curve using an
average galactic radius. By comparing the galactic density curves of the simulations
with that of the survey, we could assess the cosmologies. We applied the test to the
expanding-universe cosmology of de Sitter and to a dichotomous cosmology.

1 Introduction

We tested cosmological models using relatively small sim-
ulations that can be run on a home computer. Simulation
is a promising and powerful tool for the field of cosmology.
For example, the Millennium Simulation project at the Max
Planck Institute for Astrophysics, the largest N-body simu-
lation carried out so far, simulated the formation of large
structures in the universe using a cluster of 512 processors.
Our rationale was to slice a galactic survey into small red-
shift buckets. We then used cosmological models to compute
the volume of each bucket and derived the galactic density
curve versus the redshift, or light-travel time. We used the
simulation to generate a uniform distribution of galaxies for
each redshift bucket. We then computed the number of visi-
ble galaxies (i.e. those that were not covered by foreground
galaxies) to derive a simulated galactic density curve. Our
method requires only a cosmological model, a behavior for
the galactic density, and the average galactic radius versus
the redshift.

We are interested in a special class of cosmological mod-
els: cosmologies with a Hubble constant that does not vary
over time to conform to the linear relationship between the
luminosity distance and the redshift observed for Type Ia su-
pernovae [1]. This choice was motivated by the idea that the
laws of nature follow simple principles. There are two dis-
tinct cosmologies that satisfy this condition: the de Sitter flat-
universe cosmology and the dichotomous cosmology intro-
duced in [2].

The de Sitter cosmology is a solution to the Friedmann
equation for an empty universe, without matter, dominated by
a repulsive cosmological constant Λ corresponding to a pos-
itive vacuum energy density, which sets the expansion rate

H =

√
1
3 Λ. The dichotomous cosmology consists of a static

material world and an expanding luminous world. It is not
difficult to envision a mechanism whereby light expands and
matter is static. For example, consider that the light wave-
length is stretched via a tired-light process when photons lose

energy. The number of light wave cycles is constant, result-
ing in an expanding luminous world and static material world.
In order to maintain a constant speed of light, we would still
have to introduce a time-dilation effect [2].

The same equation relates light-travel time to redshifts for
both the dichotomous and the de Sitter cosmologies, making
it easy to compare both models using our testing framework.

2 Method

2.1 The cosmological model

Consider an expanding luminous world, or an expanding uni-
verse, with a constant expansion rate H0. Because of the ex-
pansion, the distance between two points is stretched. Let us
introduce the Euclidean distance y, which is the equivalent
distance measured if there were no expansion. The Euclidean
distance is also the proper distance at the time light was emit-
ted, which is the comoving distance times the scale factor at
the time of emission. Now, consider a photon at a Euclidean
distance y from the observer, moving towards the observer.
Hence, y must satisfy the following differential equation:

dy
dt

= −c + H0y , (1)

where c is the speed of light.
By setting time zero at a reference Tb in the past, we get

t = Tb − T ; therefore, dt = −dT . Hence, (1) becomes:

dy
dT

= c − H0y , (2)

with boundary condition y(T = 0) = 0. Integrating (2) bet-
ween 0 and T , we get:

y =
c

H0

(
1 − exp(−H0T )

)
. (3)

Because dt = da
H a , where a is the scale factor, the proper

light-travel time versus redshift is:

T =

∫ 1

1/(1+z)

da
H0 a

=
1

H0
ln(1 + z) . (4)
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By substitution of (4) into (3), we get:

y =
c

H0

z
(1 + z)

. (5)

As T0 =
y
c , we finally get:

T0 =
1

H0

z
(1 + z)

, (6)

where T0 is the light-travel time in the temporal reference
frame of the observer, H0 the Hubble constant, and z the red-
shift. Eq. (6) is our cosmological model relating light-travel
time to redshifts.

2.2 The sampling method

The zCosmos-deep galactic survey [3] consists of a collec-
tion of visible galaxies with respective redshifts obtained for
a given spectroscopic area in the sky. Here we used Data
Release DR1, which contains galactic observations up to a
redshift of 5.2. We sliced the collection of galaxies into small
redshift buckets and counted the number of galaxies in each
bucket. Using our cosmological model, we converted the red-
shifts into light-travel times. The volume of each bucket is
equal to the volume of the slice for the whole sphere con-
tained between the lower and upper radius boundaries of the
bucket multiplied by the ratio of the spectroscopic area of the
survey divided by the solid angle of the sphere.

For an observer at the center of a sphere, the volume of a
slice of the sphere is:

Vi =
4π
3

(
r3

i − r3
i−1

)
, (7)

where ri−1 and ri are the lower and upper radius boundaries
of the bucket, respectively.

The spectroscopic area of the zCosmos galactic survey
was determined to be 0.075 square degrees [4]. Hence, the
ratio of the survey spectroscopic area divided by the solid an-
gle of the sphere is as follows:

ηsurv =
0.075

4π(180/π)2 = 1.81806 × 10−6 . (8)

Thus, the volume of the ith bucket of the survey is ηsurvVi.
The galactic density of the bucket is the number of galaxies
contained within the redshift boundaries of the bucket divided
by the bucket volume. By computing the galactic density for
each bucket, we get the galactic density curve of the survey
versus the redshift or light-travel time.

2.3 The simulation method

To simulate the galactic density curve, we need in addition to
a cosmological model, two other behaviors: the galactic den-
sity versus redshift and the relationship between the average
galactic radius and redshifts. For the sake of convenience, we

used the same redshift slicing that we used to compute the
survey galactic-density curve, say z ∈ {0, z1, z2, ..., zn}, where
zi+1 = zi + δz. By iteration from redshifts z1 to zn, we gen-
erated Ni galaxies with a uniform distribution in an isotropic
universe and then determined whether each galaxy is visible
amongst the foreground galaxies. We determined the position
of each galaxy using the astronomical spherical coordinates
(r, θ, ϕ), where r is the radial distance, θ ∈ [− π2 , π2 ] is the dec-
lination, and ϕ ∈ [0, 2π] is the right ascension. Each galaxy
also has an associated radius.

First, we fixed the spectroscopic area of the simulation by
taking boundaries for the declination and right ascension, say
ϕ ∈ [ϕmin, ϕmax] and θ ∈ [θmin, θmax]. The spectroscopic area
of the simulation is:

specArea =

(
180
π

)2

(sin θmax − sin θmin) ×

× (ϕmax − ϕmin)

(9)

and the spectroscopic area of the simulation to solid angle of
the sphere is:

ηsim =
specArea

4π(180/π)2 . (10)

To determine the number of galaxies to generate for a
redshift bucket [zi−1, zi], we computed the volume Vi of the
spherical shell using (7) and then multiplied the galactic den-
sity by ηsimVi, hence:

Ni = ρi ηsimVi , (11)

where Ni is the number of galaxies generated, ρi is the galac-
tic density at redshift zi, and ηsim and Vi are as defined previ-
ously.

To generate a galaxy, we drew two independent, uniform
random variables, say X and Y, on the interval [0, 1] and com-
puted the declination and right ascension of the galaxy as fol-
lows:

θ = θmin + X(θmax − θmin)

ϕ = ϕmin + Y(ϕmax − ϕmin) .
(12)

The newly generated galaxy was attributed the radial distance
corresponding to the light-travel time at redshift zi.

Next, we determined whether each generated galaxy was
hidden by foreground galaxies. As an example, consider the
calculations for galaxy B with galaxy A in the foreground.
We compute the distance between the projection of galaxy A
on the plan of galaxy B and galaxy B itself, which we call the
“projected distance” projectedDist. If the projected distance
is smaller than or equal to the critical distance, then galaxy
B is determined to be not visible. The projected distance is
calculated as:

projectedDist =
√

squareDist , (13)

where the square distance is:

squareDist = (xA − xB)2 + (yA − yB)2 + (zA − zB)2 , (14)
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and (x, y, z) are the Cartesian coordinates of both galaxies pro-
jected in the plan of galaxy B, and subscripts A and B desig-
nate the coordinates of galaxies A and B, respectively.

The spherical coordinates are converted to Cartesian co-
ordinates as follows:

x = rB cos θ sinϕ ,

y = rB cos θ cosϕ ,

z = rB sin θ ,

(15)

where rB is the radial distance of galaxy B required to project
galaxy A into the plan of galaxy B. The critical distance is
calculated as:

criticalDist =
rB

rA
RA + RB , (16)

where RA and RB are the respective radii of galaxies A and B.
The ratio of radial distances, rB/rA, applied to the radius of
galaxy A represents the projection of galaxy A into the plan
of galaxy B according to Thales’ theorem.

For the special case when the foreground galaxy A lies
over galaxy B but covers it only partially (see Fig. 1), we
consider galaxy B to be not visible. The zCosmos galactic
survey was obtained using an automated device, and an algo-
rithm cannot identify a galaxy that is not isolated from other
sources of light. Still, galaxy B could hide more distant galax-
ies.

Fig. 1: A foreground galaxy partially covering a more distant galaxy.

Finally, we count the visible galaxies in each redshift buc-
ket and multiply the counts by the ratio of the survey area to
the simulated spectroscopic area in order to have numbers that
are comparable between the survey and the simulation.

To generate the declination and right ascension angles of
a galaxy, we used the Mersenne Twister algorithm [5], which
is a pseudo-random number generator based on the Mersenne

prime 219937 − 1. The algorithm has a very long period of
219937 − 1 and passes numerous tests for statistical random-
ness.

2.4 Galactic density and radius function of redshifts

In the dichotomous cosmology, where the material world is
static and the luminous world is expanding, the galactic den-
sity is constant over time, but the image of galaxies is dilated
by a factor of (1 + z), because the expanding luminous world
acts like a magnifying glass. Because light is stretched, the
apparent size of galaxies is also stretched by the same factor,
resulting in a lensing effect across the whole sky. In con-
trast, in the expanding universe theory, the galactic density
increases by a factor (1 + z)3 as we look back in time.

The radius of a galaxy in an expanding universe can be
tackled in two different ways. If we consider that the whole
space expands, then the galactic radius expands over time and
is divided by the factor (1 + z). Because the expanding uni-
verse has the same magnifying effect as the expanding lumi-
nous world, the galactic radius is also multiplied by a factor
of (1 + z). The net effect is that the galactic radius is constant
over time, as in Expanding Cosmology A in Table 1. The
other approach is to consider that galaxies do not expand in
size, but because of the magnifying effect of the expansion,
the image of the galaxies is dilated by a factor (1 + z), as in
Expanding Cosmology B in Table 1.

In Table 1, ρ0 is the present galactic density, and R0 is
the present average galactic radius. Because of the cluster of
galaxies around the Milky Way, the number of galaxies in the
bucket with redshift 0.1 was generated to match the galactic
density of the survey. For buckets with redshifts above 0.1,
we used the functions in Table 1.

3 Results and discussion

3.1 Galactic density curves

For both the survey and simulated galactic density curves, we
used redshift buckets of size δz = 0.1. We used 0.082 square
degrees as the spectroscopic area for the dichotomous cos-
mology simulation. We used a smaller value of 0.025 square
degrees for the expanding universe theory because of the large
number of galaxies generated. For the Hubble constant em-
ployed in the cosmological model (6), we used a value of
H0 = 67.3 km s−1 Mpc−1, or 2.16 × 10−18 sec−1 [1].

Figure 2 shows the simulated galactic density curve for
the dichotomous cosmology versus the galactic density curve
obtained from the survey. For this simulation, we used a con-
stant galactic density of ρ = 3× 106 galactic counts per cubic
Glyr (billion light years) and an average galactic radius of
R = 40, 000 (1 + z) light years. The factor (1 + z) accounts for
the magnifying effect of the expanding luminous world in the
dichotomous cosmology (see section 2.4).

The present average galactic radius of 40, 000 light years
is within the range of dwarf galaxies and large galaxies. In
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Table 1: Galactic density and radius functions of redshifts for the dichotomous cosmology and expanding universe theory.

Galactic density Galactic radius
Dichotomous Cosmology ρ0 R0(1 + z)
Expanding Cosmology A ρ0(1 + z)3 R0
Expanding Cosmology B ρ0(1 + z)3 R0(1 + z)

[6], the galaxies were divided into two groups based on their
respective mass: a group with M∗ ≈ 1011M�, corresponding
to dwarf galaxies, and a group with M∗ > 1011.5M�, cor-
responding to large galaxies. According to that study, the
present average radius of dwarf galaxies is 20, 200 light years,
whereas that of large galaxies is 65, 200 light years. Because
dwarf galaxies are much more numerous than large galax-
ies, we would expect the overall average galactic radius to be
smaller than 40, 000 light years. The gravitational lensing ef-
fect that creates a halo around galaxies, and some blurring ef-
fect from the luminosity of galaxies, can be accounted for by
the fact that foreground galaxies obstruct the images of distant
galaxies over a larger area than that of the circle defined by
the intrinsic radius of the foreground galaxies. Furthermore,
a minimum distance must be observed between galaxies for
the selection algorithm of the telescope to be able to identify
the galaxies as being distinct from one another.

Fig. 2: Galactic density curve for the dichotomous cosmology. Glyr
are billion light years. The solid triangles indicate densities based
on the zCosmos survey. The open dots indicate densities obtained
by Monte Carlo simulation for the dichotomous cosmology with a
galactic radius of 40,000 light years.

Figure 3 shows the simulated galactic density curve for
Expanding Cosmology A versus the galactic density curve
obtained from the survey. The galactic density used for this
simulation was ρ = 3 × 106 (1 + z)3 counts per cubic Glyr.
Two curves were simulated with an average galactic radius of
48, 000 and 78, 000 light years, respectively. The grounds for

using a constant galactic radius in Expanding Cosmology A
are explained in Section 2.4. In this cosmology, we can vary
ρ0 and R0, and there is no solution such that the simulated
galactic density curve matches the galactic density curve of
the survey.

Fig. 3: Galactic density curve for Expanding Cosmology A, where
Glyr are billion light years. The solid triangles indicate densities
based on the zCosmos survey. The open dots indicate densities ob-
tained by Monte Carlo simulation with a galactic radius of 78,000
light years. The open triangles are the simulated densities obtained
with a galactic radius of 48,000 light years.

Figure 4 shows the simulated galactic density curve for
Expanding Cosmology B versus the galactic density curve
obtained from the survey. We again used a galactic density
ρ = 3 × 106 (1 + z)3 counts per cubic Glyr. The two curves
simulated for this cosmology have an average galactic radius
of R = 40, 000 (1 + z) light years and R = 13, 000 (1 + z)
light years, respectively. There is no solution for Expanding
Cosmology B such that the simulated galactic density curve
matches the galactic density curve of the survey.

3.2 Size-biased selection in galactic surveys

As the redshift increases, the number of foreground galaxies
increases, leaving only small areas where more distant galax-
ies can be observed. This effect of increasing redshifts de-
creases the likelihood of selecting large galaxies and smaller
galaxies are preferentially selected. This size-biased selection
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Fig. 4: Galactic density curve for Expanding Cosmology B. Glyr
are billion light years. The solid triangles indicate densities based
on the zCosmos survey. The open dots indicate densities obtained
by Monte Carlo simulation with a galactic radius of 40,000 light
years. The open triangles are the simulated densities obtained with
a galactic radius of 13,000 light years.

could have a significant impact on studies of the morpholog-
ical evolution of galaxies. The effect of size-biased selection
can be quantified by using a Monte Carlo simulation to gener-
ate galactic radii with a size distribution obtained from galac-
tic surveys at low redshifts.

4 Conclusion

We developed a Monte Carlo simulation framework to test
cosmologies. The framework is based on the sampling me-
thod of the zCosmos galactic survey. We used simulations
to generate a theoretical galactic density curve for a given
cosmology. The theoretical density curve was then compared
with the galactic density curve obtained from the galactic sur-
vey. We applied the test to the flat-universe de Sitter cosmol-
ogy and to a dichotomous cosmology.

The simulated galactic density curve of the dichotomous
cosmology matched the survey galactic density curve remark-
ably well. For the expanding universe classes that we con-
sidered, there was no solution such that the simulated galac-
tic density curve matched the galactic density curve of the
survey. On the basis of this test, we conclude that the di-
chotomous cosmology provides an accurate description of the
physics underlying cosmological redshifts.
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Climate Change Resulting from Lunar Impact in the Year 1178 AD
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In June of the year 1178, an impact was observed on the Moon. Within a few years,

Europe experienced a climatic event known as the Little Ice Age. Calculations of the

reduction in sunlight due to dust in high earth orbit are consistent with the historical

temperature decrease. Other past temperature reductions may have resulted from similar

impacts on the Moon.

1 Historical events

Shortly after sunset on June 25, 1178 AD, a large explosion

occurred on the surface of the Moon. This event was observed

by several people in Canterbury, England and recorded in the

Chronicles of Gervase. The Julian calendar date was June 18,

or June 25 Gregorian.

In this year on the Sunday before the feast of St John

the Baptist, after sunset when the Moon had first

become visible, a marvellouse phenomenon was wit-

nessed by some five or more men . . . and suddenly

the upper horn slit in two. From the midpoint of this

division a flaming torch sprang up, spewing out over a

considerable distance fire, hot coals and sparks. Mean-

while the body of the Moon which was below, writhed,

as it were in anxiety. . . and throbbed like a wounded

snake. Afterwards it resumed its proper state. This

phenomenon was repeated a dozen times or more, the

flames assuming various twisting shapes at random

and then returning to normal. Then after these trans-

formations the Moon from horn to horn, that is along

its whole length took on a blackish appearance. [4]

2 The crater Giordano Bruno

This event was caused by the impact of a comet or asteroid

onto the surface of the Moon, in the approximate area 45 de-

grees North latitude, 90 degrees East longitude. The crater

named Giordano Bruno is believed to have been formed by

this impact [6]. Giordano Bruno is a crater which is 20 kilo-

metres in diameter, having unusually sharp rims and an ex-

tremely large system of rays. Sharp rims are indicative of re-

cent formation, since micro-meteorites cause erosion which

gradually softens land features on the surface of the Moon.

Rays, which are believed to be powered material ejected dur-

ing the crater’s formation, do not last very long and are also

regarded as evidence of very recent formation. The physi-

cal features and location of this crater are consistent with its

having been formed by the event of 1178.

3 Energy of crater formation

When an object, such as a comet or asteroid, impacts the sur-

face of the Moon, it penetrates a relatively short distance be-

fore being slowed to sub-sonic velocity. Once this has hap-

pened, vaporized material from the impact site expands up

and out, forming a fireball and a crater. Factors such as the

density of the impactor, the density of the target, and the an-

gle of impact affect the size of the final crater. The most im-

portant factor is the total energy of the impacting projectile.

In general, calculations involving the crater size will provide

only a minimum energy of crater formation. Various formu-

lae have been published which relate the size of a crater to the

impact parameters. These formulae show a high sensitivity to

the exponent used for the energy, and produce results which

rarely have more than one digit of accuracy.

The first method of estimating the energy of formation of

the crater is to calculate the energy using a formula which

was calibrated with actual data from nuclear bomb tests and

multi-ton conventional explosions.

The relationship between crater size and explosion size

for an optimal crater forming explosion is the Glasstone for-

mula [5]:

Yield =

(

Crater Radius at Lip

62.5 meters

)3.33

.

Yield is quoted in kilotons of TNT, which are defined in

this context as 4.184 × 1012 Joules. In standard format:

D = 2.03 × 10−2 E0.3003,

where D is crater diameter in meters, E is energy in Joules.

The crater Giordano Bruno has a radius of 10 km, or

10,000 meters. Using the Glasstone formula gives an explo-

sion energy of 21,800,000 kilotons, or 9.1 × E19 Joules. This

is approximately the energy required to vaporize 21 Gigatons

of rock.

A second formula has been published, based on similar

data sets, the Dence formula [3]. This formula is for a crater

produced by an explosion (sphere or hemisphere) on a flat

surface):

D = 1.96 × 10−2 E0.294,

where D is crater diameter in meters, E in energy in Joules.

Using the Dence formula gives 2.74×1020 Joules, or 65.5

Gigatons. This is larger than the Glasstone number by a factor

of 3, which shows the difference between an optimal depth

crater-forming explosion and a surface explosion.
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The third method of estimating the energy of formation of

the crater relies on laboratory data and computer simulations.

The de Pater formula is [2]:

D = 1.8ρ0.11
i ρ−0.33

t g−0.22
t (sin θ)0.333 (2r)0.13 E0.22.

These parameters are as follows:

D = 20, 000 crater diameter meters,

ρi = 2 density of impactor gram/cm3,

ρt = 3.333 density of the Moon gram/cm3,

gt = 1.625 gravity of the Moon meters/sec2,

θ = 45 impact angle degrees,

r = 300 radius meters,

v = 28, 000 velocity of impact meters/sec,

E energy Joules.

This formula requires us to either make an assumption

about the velocity of the incoming object, or about its mass

(radius). Because of the date of the impact, the object which

caused Giordano Bruno is believed to be part of the Taurid

meteor complex, which would imply an impact velocity of

28000 meters/sec and a density of 2. Based on these num-

bers, the radius of the impactor is calculated to be 300 meters,

which gives an energy of impact formula of

20000 = 1.8 × 1.08 × 0.67 × 0.90 × 0.89 × 2.3 × E0.22,

which resolves to 6.6 × 1017 Joules (158 Megatons). This is

less than 1% of the Glasstone number.

The fourth method is to measure the volume of the crater

in cubic meters, estimate the weight of the material which

was removed, and estimate how much energy was required

to remove the material. The way it works is to model the

crater as a hemi-spheroid, then find the mass of the ejecta,

and then to calculate the energy required to lift the ejecta to

an altitude equal to the crater radius. This method produces a

minimalistic number, and is intended as a sanity check on the

other methods:

volume = 2
3
π × radius2

× depth

= 2
3
π × 100002

× 1000

= 2.09 × 1011 m3,

mass = volume × 1000 × density

= (2.09 × 1011) × 1000 × 3.333

= 7.0 × 1014 kg,

E = mass × g × altitude

= (7 × 1014) × 1.625 × 10000

= 1.1 × 1019 Joules,

= 2.7 Gigatons.

In standard form, this is:

D = 1.9 × 10−1
× E0.25.

Note that this formula produces a number which is pro-

portional to the crater radius to the one-fourth power. This is

consistent with the simplest formula published [2].

The four methods of estimating the energy of formation

of the crater are as follows:

Glasstone 9.1 × 1019 Joules,

Dence 2.7 × 1020 Joules,

de Pater 6.2 × 1017 Joules,

volume method 1.1 × 1019 Joules.

What is interesting is how much effect the exponent in the

formula has:

Glasstone E0.30,

Dence E0.29,

de Pater E0.22,

volume method E0.25.

A relatively small change in the exponent between Glas-

stone and Dence produced a relatively large change between

those two results, and the de Pater result is far away from

the others. Given that the Glasstone formula is described as

calculating an explosion at optimal cratering depth, I suspect

that the true number is somewhere between Glasstone and

Dence. The best estimate for the energy of crater formation

is therefore 1 × 1020 Joules.

4 Historical temperature decrease

Various historical records indicate a global temperature de-

crease starting in approximately the year 1190 AD [7]. The

grape crop in England, which was moderately large in the

year 1100, had dwindled to almost nothing by the year 1300.

The records of harbour freezing in Reykjavik, Iceland, indi-

cate that the weather became sharply colder around the year

1200. At the same time, the growing season in Greenland be-

came so short that the Viking colonies there were abandoned.

Poland and Russia experienced a major famine in the year

1215 AD, which was attributed to the cold weather causing

large-scale crop failures:

. . . in AD 1215, when early frosts destroyed the har-

vest throughout the district around Novgorod, people

ate pine bark and sold their children into slavery for

bread, “many common graves were filled with corpses,

but they could not bury them all. . . . those who re-

mained alive hastened to the sea”.

Other bad years came in 1229 and 1230, and in the

latter there were many incidents of cannibalism “over

the whole district of Russia with the sole exception of

Kiev”. [8]

Outside of Europe, tree ring data from around the world

suggests that the planet became colder starting in the late

1100’s [1, 7]. This temperature drop amounted to approxi-

mately 1 degree Kelvin.
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5 Reduction in sunlight arriving on the planet

These recorded temperature declines are consistent with a re-

duction in the amount of sunlight arriving on the planet. To

reduce the global temperature from 283 to 282 degrees Kelvin

using a gray-body model would require that incident radiation

be reduced by a factor 1− (282/283)4, or 1.4%. Using a more

realistic model which includes positive feedback, only half of

the temperature reduction needs to be caused by a decrease

in sunlight. With a positive feedback model, we find that ra-

diation needs to be reduced by a factor of 1 − (282.5/283)4,

which equals 0.7%. Such a temperature reduction would be

caused by lunar dust orbiting the Earth.

The most efficient reduction in sunlight per unit mass re-

sults from dust particles approximately 1 micron in diameter.

Dust particles smaller than this do not absorb light efficiently;

they scatter it. Dust particles larger than 1 micron have a re-

duced surface area relative to their mass, and are less efficient

at blocking sunlight.

Given that the required area density of dust particles is

0.7%, we find that 7 × 109 particles are needed per square

meter of the Earth’s surface. Assuming a dust cloud as high

as the Moon, this equals an average particle density of 17.5

particles per cubic meter, or a total of 5.8 × 1026 particles:

area shadow = 0.007/1× 10−12

= 7 × 109 particles/m3,

density of particles = 7 × 109/4 × 108

= 17.5 particles/m3.

An orbiting dust cloud can be modelled as a solid sphere

which contains uniformly distributed particles. The cloud’s

radius is assumed to be at the altitude of the Moon (400,000

km). The volume is therefore:

volume cloud = 4
3
π (4 × 108)3 = 2.7 × 1026 m3.

Assuming a mass density of 2, each particle would have a

mass of 2 × 10−15 kilograms, which gives a mass for the total

cloud of 9.5×1012 kilograms, or approximately 9.5 Gigatons:

massparticle = 2 × (1 × 10−5)3 = 2 × 10−15 kg,

masstotal = 2 × 10−15
× 17.5 × 2.7 × 1026 = 9.5 × 1012 kg.

The escape velocity of the Moon is 2373 m/sec, or 2.8 ×

106 Joules per kilogram of mass removed from the Moon’s

gravity well. This gives a total energy required to lift the dust

cloud of 2.6 × 1019 Joules, which is less than the calculated

energy of the event:

Eorbital = 0.5 × (9.5 × 1012) × 23732 = 2.6 × 1019 Joules.

Since not all of the energy went into placing matter into

high earth orbit, and since not all of the orbiting matter is in

the form of optimal light-blocking dust, we could expect an

efficiency of perhaps 5% in converting the original explosion

into an orbiting dust cloud. The indicated efficiency, given

that the explosion was 1 × 1020 Joules, is 26%. This sug-

gests that the actual energy of the crater-forming explosion

was closer to the Dence number, above.

6 Orbital characteristics of a dust cloud

An orbiting dust cloud such as the one described above would

not be stable. Individual particles would experience perturba-

tions in their orbit due to the Moon’s gravity, and would also

be subject to orbital change due to solar wind, atmospheric

drag, and collision with other particles.

In the intermediate term, particles colliding with each

other would cause the cloud to assume the shape of a ring. In

the long term, the particles would be removed from orbit.

The orbital velocity of the Moon is approximately 1000

meters/sec. For a dust particle moving through the dust cloud

described above, the mean distance between collisions would

be approximately 1.4 × 1010 meters, which is 1.4 × 107 sec-

onds, or 6 months:

cross section collision = 4 × (1 × 10−6)2
× 17.5

= 7 × 10−11 m3,

mean free path = 1/(7 × 10−11)

= 1.4 × 1010 m,

mean collision interval = mean free path/velocity

= 1.4 × 1010/1000

= 1.4 × 107 sec.

How long the cloud would remain in orbit depends on

various assumptions regarding its initial orbital characteris-

tics and the level of solar wind activity. An orbital half-life of

a few decades seems reasonable.

7 Evidence of Lunar impacts in marine sediments

Much of the mass placed into earth orbit would be recaptured

by the Moon, and some would escape to solar orbit, but some

large fraction would be deposited on the surface of the Earth.

Assuming that some large fraction of the dust eventually was

deposited on the surface of the Earth, it should be possible to

locate the characteristic Titanium Oxide from the Moon rock

in marine sediment or polar ice core samples. If half of the

total orbiting dust cloud was deposited on the Earth’s surface,

there would be approximately 5 grams/square meter. Of this,

perhaps 10% (0.5 grams) would be Titanium.

dust density = 50% ×masstotal/Earth surface area

= 0.5 × (9.5 × 1012)/(4π × (6.3 × 106)2)

= 0.00475 kg/m2,

titanium density = 0.10 × dust density

= 0.000475 kg/m2.
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It must also be considered that many of the major ice ages

were caused by orbiting dust from the Moon, and that they

will also have left traces in the marine sediments. An exam-

ination of the sediment samples would show whether the Ice

Age which began 15,000 years ago was also caused by an

object impacting on the Moon.

8 Objections to this idea

It has been suggested that, after an impact on the Moon simi-

lar to the one described in this paper, a large amount of debris

would impact the Earth a few days later. It has also been sug-

gested that these impacts would create a spectacular meteor

storm, and that the absence of such a meteor storm in the his-

torical record suggests that there was no such impact in the

year 1178.

Analysis shows that most of the debris would not create

dramatic effects, and that the amount of light emitted by the

impacts would be diffuse.

Objects falling from the altitude of the Moon will have

an impact velocity approximately equal to the escape veloc-

ity of the Earth (11200 meters/sec). The energy released by

a 1 micro-gram particle (the size of a grain of sand) impact-

ing at this speed is 62.7 Joules. When this enters the Earth’s

atmosphere, it will look like a 60-Watt light bulb shining for

one second, which is probably not going to create a big psy-

chological impact. Dust particles will produce an even less

dramatic effect. Even if 10 Megatons of lunar regolith and

dust particles were to hit the Earth in the first month after

the impact, it would only add up to 6 × 1014 Joules, or 240

Megawatts. More to the point, this is 4 micro-watts per square

meter of the Earth’s surface, which is less than 1% of the light

from a full Moon.

This amount of light concentrated into a small number of

fireballs might be noticed, but spread into billions of individ-

ual particles, the energy released would not be spectacular.

Submitted on August 08, 2014 / Accepted on August 12, 2014
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Each vector of state has its own corresponing element of the CayleyDickson algebra.

Properties of a state vector require that this algebra was a normalized division algebra.

By the Hurwitz and Frobenius theorems maximal dimension of such algebra is 8. Con-

sequently, a dimension of corresponding complex state vectors is 4, and a dimension

of the Clifford set elements is 4×4. Such set contains 5 matrices — among them —

3-diagonal. Hence, a dimension of the dot events space is equal to 3+1.

Further I use CayleyDickson algebras [1, 2]:

Let

1, i, j, k,E, I, J,K

be basis elements of a 8-dimensional algebra Cayley (the oc-

tavians algebra) [1, 2]. A product of this algebra is defined

the following way [1]:

1) For every basic element e:

ee = −1;

2) If u1, u2, v1, v2 are real number then

(u1 + u2i) (v1 + v2i) = (u1v1 − v2u2) + (v2u1 + u2v1) i.

3) If u1, u2, v1, v2 are numbers of shape w = w1 + w2i (ws,

and s ∈ {1, 2} are real numbers, and w = w1 − w2i) then

(

u1 + u2j
) (

v1 + v2j
)

= (u1v1 − v2u2) + (v2u1 + u2v1) j (1)

and ij = k.

4) If u1, u2, v1, v2 are number of shape w = w1 + w2i +

w3j + w4k (ws, and s ∈ {1, 2, 3, 4} are real numbers, and w =

w1 − w2i − w3j − w4k) then

(u1 + u2E) (v1 + v2E) = (u1v1 − v2u2) + (v2u1 + u2v1) E (2)

and
iE = I,

jE = J,

kE = K.

Therefore, in accordance with point 2) the real numbers

field (R) is extended to the complex numbers field (R), and

in accordance with point 3) the complex numbers field is ex-

panded to the quaternions field (K), and point 4) expands the

quaternions fields to the octavians field (O). This method

of expanding of fields is called a Dickson doubling proce-

dure [1].

If

u = a + bi + cj + dk + AE + BI +CJ + K

with real a, b, c, d, A, B,C,D then a real number

‖u‖ :=
√

uu =
(

a2 + b2 + c2 + d2 + A2 + B2 +C2 + D2
)0.5

is called a norm of octavian u [1].

For each octavians u and v:

‖uv‖ = ‖u‖ ‖v‖ . (3)

Algebras with this conditions are called normalized alge-

bras [1, 2].

Any 3+1-vector of a probability density can be repre-

sented by the following equations in matrix form [4, 5]

ρ = ϕ†ϕ ,

jk = ϕ
†β[k]ϕ

with k ∈ {1, 2, 3}.
There β[k] are complex 2-diagonal 4 × 4-matrices of Clif-

ford’s set of rank 4, and ϕ is matrix columns with four com-

plex components. The light and colored pentads of Clifford’s

set of such rank contain in threes 2-diagonal matrices, corre-

sponding to 3 space coordinates in accordance with Dirac’s

equation. Hence, a space of these events is 3-dimensional.

Let ρ(t, x) be a probability density of event A (t, x), and

ρc(t, x|t0, x0)

be a probability density of event A (t, x) on condition that

event B (t0, x0).

In that case if function q(t, x|t0, x0) is fulfilled to condi-

tion:

ρc(t, x|t0, x0) = q(t, x|t0, x0)ρ(t, x), (4)

then one is called a disturbance function B to A.

If q = 1 then B does not disturbance to A.

A conditional probability density of event A (t, x) on con-

dition that event B (t0, x0) is presented as:

ρc = ϕ
†
cϕc

like to a probability density of event A (t, x).

Let

ϕ =





























ϕ1,1 + iϕ1,2

ϕ2,1 + iϕ2,2

ϕ3,1 + iϕ3,2

ϕ4,1 + iϕ4,2




























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and

ϕc =





























ϕc,1,1 + iϕc,1,2

ϕc,2,1 + iϕc,2,2

ϕc,3,1 + iϕc,3,2

ϕc,4,1 + iϕc,4,2





























(all ϕr,s and ϕc,r,s are real numbers).

In that case octavian

u = ϕ1,1 + ϕ1,2i + ϕ2,1j + ϕ2,2k + ϕ3,1E+

+ ϕ3,2I + ϕ4,1J + ϕ4,2K

is called a Caylean of ϕ. Therefore, octavian

uc = ϕc,1,1 + ϕc,1,2i + ϕc,2,1j + ϕc,2,2k + ϕc,3,1E+

+ ϕc,3,2I + ϕc,4,1J + ϕc,4,2K

is Caylean of ϕc.

In accordance with the octavian norm definition:

‖uc‖2 = ρc ,

‖u‖2 = ρ .
(5)

Because the octavian algebra is a division algebra [1, 2]

then for each octavians u and uc there exists an octavian w

such that

uc = wu.

Because the octavians algebra is normalized then

‖uc‖2 = ‖w‖2 ‖u‖2 .

Hence, from (4) and (5):

q = ‖w‖2 .

Therefore, in a 3+1-dimensional space-time there exists

an octavian-Caylean for a disturbance function of any event

to any event.

In order to increase a space dimensionality the octavian

algebra can be expanded by a Dickson doubling procedure:

Another 8 elements should be added to basic octavians:

z1, z2, z3, z4, z5, z6, z7, z8

such that:
z2 = iz1,

z3 = jz1,

z4 = kz1,

z5 = Ez1,

z6 = Iz1,

z7 = Jz1,

z8 = Kz1,

and for every octavians u1, u2, v1, v2:

(u1 + u2z1) (v1 + v2z1) = (u1v1 − v2u2) + (v2u1 + u2v1) z1

(here: if w = w1+w2i+w3j+w4k+w5E+w6I+w7J+w8K with

real ws then w = w1−w2i−w3j−w4k−w5E−w6I−w7J−w8K).

It is a 16-dimensional Cayley-Dickson algebra.

In accordance with [3], for any natural number z there

exists a Clifford set of rank 2z. In considering case for z = 3

there is Clifford’s seven:

β[1] =

[

β[1] 04

04 −β[1]

]

, β[2] =

[

β[2] 04

04 −β[2]

]

, (6)

β[3] =

[

β[3] 04

04 −β[3]

]

, β[4] =

[

β[4] 04

04 −β[4]

]

, (7)

β[5] =

[

γ[0] 04

04 −γ[0]

]

, (8)

β[6] =

[

04 14

14 04

]

, β[7] = i

[

04 −14

14 04

]

. (9)

Therefore, in this seven five 4-diagonal matrices (7) de-

fine a 5-dimensional space of events, and two 4-antidiagonal

matrices (9) defined a 2-dimensional space for the electro-

weak transformations.

It is evident that such procedure of dimensions building

up can be continued endlessly. But in accordance with the

Hurwitz theorem∗ and with the generalized Frobenius the-

orem† a more than 8-dimensional Cayley-Dickson algebra

does not a division algebra. Hence, there in a more than 3-

dimensional space exist events such that a disturbance func-

tion between these events does not hold a Caylean. I call such

disturbance supernatural.

Therefore, supernatural disturbance do not exist in a 3-

dimensional space, but in a more than 3-dimensional space

such supernatural disturbance act.

Submitted on August 15, 2014 / Accepted on August 17, 2014

References

1. Kantor I.L.; Solodownikow A.S. Hipercomplex Numbers, Nauka,

Moscow, 1973, p. 99; Kantor I.L.; Solodownikow A.S. Hyperkomplexe

Zahlen. B. G. Teubner, Leipzig, 1978.

2. Mel’nikov O.V., Remeslennikov V.N. et al. General Algebra. Nauka,

Moscow, 1990, p. 396.

3. Zhelnorovich V.A. Theory of Spinors. Application to Mathematics and

Physics. Nauka, Moscow, 1982, p. 21.

4. Abers E. Quantum Mechanics. Addison Wesley, 2004, p. 423.

5. Quznetsov G. Final Book on Fundamental Theoretical Physics. Amer-

ican Research Press, American Research Press, Rehoboth (NM), 2011,

pp. 60–62.

∗Every normalized algebra with unit is isomorphous to one of the fol-

lowing: the real numbers algebra R, the complex numbers algebra C, the

quaternions algebra K, the octavians algebra O [1].
†A division algebra can be only either 1 or 2 or 4 or 8-dimensional [2].

Gunn Quznetsov. Dimension of Physical Space 227



Volume 10 (2014) PROGRESS IN PHYSICS Issue 4 (October)

Informational Time

Gunn Quznetsov

E-mail: gunn@mail.ru, quznets@yahoo.com

I call any subjects, connected with an information the informational objects. It is clear

that information received from such informational object can be expressed by a text

which is made of sentences. I call a set of sentences expressing information about some

informational object recorder of this object. Some recorders systems form structures

similar to clocks. The following results are obtained from the logical properties of a set

of recorders: First, all such clocks have the same direction, i.e. if an event expressed

by sentence A precedes an event expressed by sentence B according to one of such

clocks then it is true according to the others. Secondly, time is irreversible according

to these clocks, i.e. there’s no recorder which can receive information about an event

that has happened until this event really happens Thirdly, a set of recorders is naturally

embedded into metrical space. Fourthly, if this metrical space is Euclidean, then the

corresponding “space and time” of recorders obeys to transformations of the complete

Poincare group. If this metric space is not Euclidean then suitable non-linear geometry

may be built in this space.

Here I use numbering of definitions and theorems from book

[1] which contains detailed proofs of all these theorems.

1 Recorders

Any information, received from physical devices, can be ex-

pressed by a text, made of sentences.

Let â be some object which is able to receive, save, and/or

transmit an information. A set a of sentences, expressing an

information of an object â, is called a recorder of this object.

Thus, statement: “Sentence ≪A≫ is an element of the set

a” denotes: “ â has information that the event, expressed by

sentence≪A≫, took place”. In short: “ â knows that A”. Or

by designation: “a•≪A≫”.

Obviously, the following conditions are satisfied:

I. For any a and for every A: false is that a• (A& (¬A)),

thus, any recorder doesn’t contain a logical contradic-

tion;

II. For every a, every B, and all A: if B is a logical conse-

quence from A, and a•A, then a•B;

*III. For all a, b and for every A: if a•≪b•A≫ then a•A.

2 Time

Let’s consider finite (probably empty) path of symbols of

form q•.
Def. 1.3.1: A path α is a subpath of a path β (design.:

α ≺ β) if α can be got from β by deletion of some (probably

all) elements.

Designation: (α)1 is α, and (α)k+1 is α (α)k.

Therefore, if k 6 l then (α)k ≺ (α)l.

Def. 1.3.2: A path α is equivalent to a path β (design.:

α ∼ β) if α can be got from β by substitution of a subpath of

form (a•)k by a path of the same form (a•)s.

In this case:

III. If β ≺ α or β ∼ α then for any K: if a•K then

a• (K& (αA ⇒ βA)).

Obviously, III is a refinement of condition *III.

Def. 1.3.3: A natural number q is instant, at which a

registrates B according to κ-clock {g0, A, b0} (design.: q is[
a•B ↑ a, {g0, A, b0}

]
) if:

1. for any K: if a•K then

a•
(
K&
(
a•B⇒ a•

(
g•0b•0
)q

g•0A
))

and

a•
(
K&

(
a•
(
g•0b•0
)q+1

g•0A⇒ a•B
))

.

2. a•
(
a•B&

(
¬a•
(
g•

0
b•

0

)q+1
g•

0
A

))
.

Def. 1.3.4: κ-clocks {g1, B, b1} and {g2, B, b2} have the

same direction for a if the following condition is satisfied:

If

r =
[
a•
(
g•

1
b•

1

)q
g•

1
B ↑ a, {g2, B, b2}

]
,

s =
[
a•
(
g•

1
b•

1

)p
g•

1
B ↑ a, {g2, B, b2}

]
,

q < p,

then

r 6 s .

Th. 1.3.1: All κ-clocks have the same direction. Con-

sequently, a recorder orders its sentences with respect to in-

stants. Moreover, this order is linear and it doesn’t matter

according to which κ-clock it is established.

Def. 1.3.5: κ-clock {g2, B, b2} is k times more precise than

κ-clock {g1, B, b1} for recorder a if for every C the following

condition is satisfied: if
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q1 =
[
a•C ↑ a, {g1, B, b1}

]
,

q2 =
[
a•C ↑ a, {g2, B, b2}

]
,

then

q1 <
q2

k
< q1 + 1.

Def. 1.3.6: A sequence H̃ of κ-clocks:

〈
{g0, A, b0} , {g1, A, b2} , . . . ,

{
g j, A, b j

}
, . . .
〉

is called an absolutely precise κ-clock of a recorder a if for

every j exists a natural number k j so that κ-clock
{
g j, A, b j

}
is

k j times more precise than κ-clock
{
g j−1, A, b j−1

}
.

In this case if

q j =
[
a•C ↑ a,

{
g j, A, b j

}]

and

t = q0 +

∞∑

j=1

q j − q j−1 · k j

k1 · k2 · . . . · k j

,

then

t is
[
a•C ↑ a, H̃

]
.

3 Space

Def. 1.4.1: A number t is called a time, measured by

a recorder a according to a κ-clock H̃, during which a sig-

nal C did a path a•αa•, design.:

t := m
(
aH̃
)

(a•αa•C),

if

t =
[
a•αa•C ↑ a, H̃

]
−
[
a•C ↑ a, H̃

]
.

Th. 1.4.1:

m

(
aH̃
)

(a•αa•C) > 0.

Def. 1.4.2:

1) for every recorder a: (a•)† = (a•);

2) for all paths α and β: (αβ)† = (β)† (α)†.

Def. 1.4.3: A setℜ of recorders is an internally station-

ary system for a recorder a with a κ-clock H̃ (design.: ℜ is

IS S
(
a, H̃
)
) if for all sentences B and C, for all elements a1

and a2 of set ℜ, and for all paths α, made of elements of set

ℜ, the following conditions are satisfied:

1)
[
a•a•

2
a•

1
C ↑ a, H̃

]
−
[
a•a•

1
C ↑ a, H̃

]
=

=
[
a•a•

2
a•

1
B ↑ a, H̃

]
−
[
a•a•

1
B ↑ a, H̃

]
;

2) m
(
aH̃
)

(a•αa•C) = m
(
aH̃
) (

a•α†a•C
)
.

Th. 1.4.2:

{a} − IS S
(
a, H̃
)
.

Def. 1.4.4: A number l is called an aH̃(B)-measure of

recorders a1 and a2, design.:

l = ℓ
(
a, H̃, B

)
(a1, a2)

if

l= 0.5 ·
([

a•a•
1
a•

2
a•

1
B ↑ a, H̃

]
−
[
a•a•

1
B ↑ a, H̃

])
.

Th. 1.4.3: If {a, a1, a2, a3} is IS S
(
a, H̃
)

then

1) ℓ
(
a, H̃
)

(a1, a2) > 0;

2) ℓ
(
a, H̃
)

(a1, a1) = 0;

3) ℓ
(
a, H̃
)

(a1, a2) =ℓ
(
a, H̃
)

(a2, a1);

4) ℓ
(
a, H̃
)

(a1, a2)+ℓ
(
a, H̃
)

(a2, a3) >ℓ
(
a, H̃
)

(a1, a3).

Thus, all four axioms of the metrical space are accom-

plished for ℓ
(
a, H̃
)

in an internally stationary systeminternally

stationary system of recorders.

Consequently, ℓ
(
a, H̃
)

is a distance length similitude in

this space.

Def. 1.4.6: B took place in the same place as a1 for a

(design.: ♮ (a) (a1, B)) if for every sequence α and for any

sentence K the following condition is satisfied: if a•K then

a•
(
K&(αB⇒ αa•

1
B)
)
.

Th. 1.4.4:

♮ (a)
(
a1, a

•
1
B
)
.

Th. 1.4.5: If

♮ (a) (a1, B) , (1)

♮ (a) (a2, B) , (2)

then

♮ (a)
(
a2, a

•
1B
)
.

Th. 1.4.6: If {a, a1, a2} is IS S
(
a, H̃
)
,

♮ (a) (a1, B) , (3)

♮ (a) (a2, B) , (4)

then

ℓ
(
a, H̃
)

(a1, a2) = 0.

Th. 1.4.7: If {a1, a2, a3} is IS S
(
a, H̃
)

and there exists

sentence B such that

♮ (a) (a1, B) , (5)

♮ (a) (a2, B) , (6)

then

ℓ
(
a, H̃
)

(a3, a2) = ℓ
(
a, H̃
)

(a3, a1) .

Def. 1.4.7: A real number t is an instant of a sentence B

in frame of reference
(
ℜaH̃

)
, design.:

t =
[
B | ℜaH̃

]
,
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if

1) ℜ is IS S
(
a, H̃
)
,

2) there exists a recorder b so that b ∈ ℜ and ♮ (a) (b, B),

3) t =
[
a•B ↑ a, H̃

]
−ℓ
(
a, H̃
)

(a, b).

Def. 1.4.8: A real number z is a distance length between

B and C in a frame of reference
(
ℜaH̃

)
, design.:

z = ℓ
(
ℜaH̃

)
(B,C) ,

if

1) ℜ is IS S
(
a, H̃
)
,

2) there exist recorders a1 and a2 so that a1 ∈ ℜ, a2 ∈ ℜ,

♮ (a) (a1, B)) and ♮ (a) (a2,C)),

3) z = ℓ
(
a, H̃
)

(a2, a1).

According to Theorem 1.4.3 such distance length satisfies

conditions of all axioms of a metric space.

4 Relativity

Def. 1.5.1: Recorders a1 and a2 equally receive a signal

about B for a recorder a if

≪ ♮ (a)
(
a2, a

•
1
B
)
≫ =≪ ♮ (a)

(
a1, a

•
2
B
)
≫.

Def. 1.5.2: Set of recorders are called a homogeneous

space of recorders, if all its elements equally receive all sig-

nals.

Def. 1.5.3: A real number c is an information velocity

about B to the recorder a1 in a frame of reference
(
ℜaH̃

)
if

c =
ℓ
(
ℜaH̃

) (
B, a•

1
B
)

[
a•

1
B | ℜaH̃

]
−
[
B | ℜaH̃

] .

Th. 1.5.1: In all homogeneous spaces:

c = 1.

That is in every homogenous space a propagation velocity

of every information to every recorder for every frame refer-

ence equals to 1.

Th. 1.5.2: Ifℜ is a homogeneous space, then
[
a•

1
B | ℜaH̃

]
>

[
B | ℜaH̃

]
.

Consequently, in any homogeneous space any recorder

finds out that B “took place” not earlier than B “actually take

place”. “Time” is irreversible.

Th. 1.5.3: If a1 and a2 are elements ofℜ,

ℜisIS S
(
a, H̃
)

, (7)

p :=
[
a•1B | ℜaH̃

]
, (8)

q :=
[
a•2a•1B | ℜaH̃

]
, (9)

z := ℓ
(
ℜaH̃

)
(a1, a2) ,

then

z = q − p.

According to Urysohn’s theorem∗ [2]: any homogeneous

space is homeomorphic to some set of points of real Hilbert

space. If this homeomorphism is not Identical transformation,

thenℜ will represent a non- Euclidean space. In this case in

this “space-time” corresponding variant of General Relativity

Theory can be constructed. Otherwise,ℜ is Euclidean space.

In this case there exists coordinates system Rµ such that the

following condition is satisfied: for all elements a1 and a2 of

setℜ there exist points x1 and x2 of system Rµ such that

ℓ
(
a, H̃
)

(ak, as) =

(∑µ
j=1

(
xs, j − xk, j

)2)0.5
.

In this case Rµ is called a coordinates system of frame of

reference
(
ℜaH̃

)
and numbers

〈
xk,1, xk,2, . . . , xk,µ

〉
are called

coordinates of recorder ak in Rµ.

A coordinates system of a frame of reference is specified

accurate to transformations of shear, turn, and inversion.

Def. 1.5.4: Numbers
〈
x1, x2, . . . , xµ

〉
are called coordi-

nates of B in a coordinate system Rµ of a frame of reference(
ℜaH̃

)
if there exists a recorder b such that b ∈ ℜ, ♮ (a) (b, B)

and these numbers are the coordinates in Rµ of this recorder.

Th. 1.5.4: In a coordinate system Rµ of a frame of ref-

erence
(
ℜaH̃

)
: if z is a distance length between B and C,

coordinates of B are

(b1, b2, . . . , bn)

coordinates of C are

(c1, c2, . . . , c3)

then

z =


µ∑

j=1

(
c j − b j

)2


0.5

.

Def. 1.5.5: Numbers
〈
x1, x2, . . . , xµ

〉
are called coordi-

nates of the recor-der b in the coordinate system Rµ at the

instant t of the frame of reference
(
ℜaH̃

)
if for every B the

condition is satisfied: if

t =
[
b•B | ℜaH̃

]

then coordinates of ≪ b•B ≫ in coordinate system Rµ of

frame of reference
(
ℜaH̃

)
are the following:

〈
x1, x2, . . . , xµ

〉
.

Let v be the real number such that |v| < 1.

∗Pavel Samuilovich Urysohn, a.k.a. Pavel Uryson (February 3, 1898,

Odessa — August 17, 1924, Batz-sur-Mer) was a Jewish mathematician who

is best known for his contributions in the theory of dimension, and for devel-

oping Urysohn’s Metrization Theorem and Urysohn’s Lemma, both of which

are fundamental results in topology.
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Th. 1.5.5: In a coordinates system Rµ of a frame of ref-

erence
(
ℜaH̃

)
: if in every instant t: coordinates of∗:

b :
〈
xb,1 + v · t, xb,2, xb,3, . . . , xb,µ

〉
,

g0 :
〈
x0,1 + v · t, x0,2, x0,3, . . . , x0,µ

〉
,

b0 :
〈
x0,1 + v · t, x0,2 + l, x0,3, . . . , x0,µ

〉
,

and
tC =
[
b•C | ℜaH̃

]
,

tD =
[
b•D | ℜaH̃

]
,

qC =
[
b•C ↑ b, {g0, A, b0}

]
,

qD =
[
b•D ↑ b, {g0, A, b0}

]
,

then

lim
l→0

2 · l√(
1 − v2)

· qD − qC

tD − tC
= 1.

Consequently, moving at speed v κ-clock are times slower

than the one at rest.

Th. 1.5.6: Let: v (|v| < 1) and l be real numbers and ki be

natural ones.

Let in a coordinates system Rµ of a frame of reference(
ℜaH̃

)
: in each instant t coordinates of

b :
〈
xb,1 + v · t, xb,2, xb,3, . . . , xb,µ

〉
,

g j :
〈
y j,1 + v · t, y j,2, y j,3, . . . , y j,µ

〉
,

u j :
〈
y j,1 + v · t, y j,2 + l/

(
k1 · . . . · k j

)
, y j,3, . . . , y j,µ

〉
,

for all bi: if bi ∈ ℑ, then coordinates of

bi :
〈
xi,1 + v · t, xi,2, xi,3, . . . , xi,µ

〉
,

T̃ is
〈
{g1, A, u1} , {g2, A, u2} , . . . ,

{
g j, A, u j

}
, . . .
〉
.

In that case: ℑ is IS S
(
b, T̃
)
.

Therefore, a inner stability survives on a uniform straight

line motion.

Th. 1.5.7: Let:

1) in a coordinates system Rµ of a frame of reference(
ℜaH̃

)
in every instant t:

b :
〈
xb,1 + v · t, xb,2, xb,3, . . . , xb,µ

〉
,

g j :
〈
y j,1 + v · t, y j,2, y j,3, . . . , y j,µ

〉
,

u j :
〈
y j,1 + v · t, y j,2 + l/

(
k1 · . . . · k j

)
, y j,3, . . . , y j,µ

〉
,

for every recorder qi: if qi ∈ ℑ then coordinates of

qi :
〈
xi,1 + v · t, xi,2, xi,3, . . . , xi,µ

〉
,

T̃ is
〈
{g1, A, u1} , {g2, A, u2} , . . . ,

{
g j, A, u j

}
, . . .
〉
,

∗Below v is a real positive number such that |v| < 1.

C :
〈
C1,C2,C3, . . . ,Cµ

〉
,

D :
〈
D1,D2,D3, . . . ,Dµ

〉
,

tC =
[
C | ℜaH̃

]
,

tD =
[
D | ℜaH̃

]
;

2) in a coordinates system Rµ′ of a reference frame
(
ℑbT̃
)
:

C :
〈
C′

1
,C′

2
,C′

3
, . . . ,C′µ

〉
,

D :
〈
D′

1
,D′

2
,D′

3
, . . . ,D′µ

〉
,

t′
C
=
[
C | ℑbT̃

]
,

t′
D
=
[
D | ℑbT̃

]
.

In that case:

t′D − t′C =
(tD − tC) − v (D1 −C1)

√
1 − v2

,

D′1 −C′1 =
(D1 −C1) − v (tD − tC)√

1 − v2
.

This is the Lorentz spatial-temporal transformation.

Conclusion

Thus, if you have some set of objects, dealing with informa-

tion, then “time” and “space” are inevitable. And it doesn’t

matter whether this set is part our world or some other worlds,

which don’t have a space-time structure initially.

I call such “Time” the Informational Time.

Since, we get our time together with our information sys-

tem all other notions of time (thermodynamical time, cosmo-

logical time, psychological time, quantum time etc.) should

be defined by that Informational Time.
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Indications for a Diurnal and Annual Variation in the Anisotropy of Diffusion

Patterns — A Reanalysis of Data Presented by J. Dai (2014, Nat. Sci.)

Felix Scholkmann

Bellariarain 10, 8038 Zürich, Switzerland. E-mail: felix.scholkmann@gmail.com

Anisotropic diffusion patterns of a toluidine blue colloid solution in water were recently

reported by J. Dai (Nat. Sci., 2014, v. 6 (2), 54–58). According to Dai’s observations the

fluctuation of anisotropy showed a diurnal and annual periodicity. Since these obser-

vations were only qualitatively described in the original manuscript, the data was re-

assessed by performing a detailed statistical analysis. The analysis revealed that indeed

(i) the diffusion patterns exhibit a non-random characteristic (i.e. the maximum diffu-

sion trend is not uniformly distributed), and (ii) a diurnal as well as an annual oscillation

could be extracted and modeled with a sinusoidal function. In conclusion, the present

analysis supports Dai’s findings about anisotropy in diffusion of colloids in water with a

daily and annual periodicity. Possible explanations of the observed effect are discussed

and suggestions for further experiments are given.

1 Introduction

Recently, J. Dai published an interesting observation [1]: the

diffusion of a toluidine blue colloid solution in water mea-

sured over a 3-year time span showed anisotropic patterns,

i.e. a preferred direction of diffusion (quantified by the maxi-

mum diffusion trend (MDT)) could be detected. Additionally,

the MDT values showed non-random fluctuations with daily

(diurnal) and yearly (annual) periods.

In the manuscript published by Dai the observed diurnal

and annual variability was only qualitatively described and

lacks a statistical analysis of the obtained data. This fact mo-

tivated the author of the present paper to reassess the data by

performing a detailed statistical analysis. Thus, the aim of

the present paper was to reanalyze the interesting experimen-

tal results reported by Dai using statistical methods.

2 Materials and methods

As reported by Dai [1] the experimental setup and the proce-

dure was following: a circular plastic disc, covered in a con-

tainer, was filled with deionized water, and 10 µl of a 0.5%

Toluidine blue (C15H16CIN3S) solution was dropped in the

center of the disc filled with water. Under constant illumi-

nation and temperature, the developing diffusion pattern was

then photographed at different times (t = 30 s, 630 s, 1230 s,

1830 s and 2430 s; i.e. every 10 minutes for 40 minutes after

initially waiting 30 seconds). The MDT with respect to the lo-

cal north-south direction of the geomagnetic field (0◦ = 360◦

= east, clockwise scaling) was determined according to the

diffusion trend at t = 1830 s. According to Dai, the diffu-

sion experiment was performed on 15 days between Decem-

ber 22, 2011 and March 23, 2013. On each day, the exper-

iment was repeated each hour over the whole day (i.e. 24

experiments/day).

For the subsequent analysis, the raw data were extracted

from Figure 3 of [1]. The analysis aimed to address two spe-

cific questions: (i) Do the measured MDT values follow a

uniform distribution (indicating that the underlying process

is purely random)? To evaluate this, the values for each day

were tested using the Chi-square test to determine whether

they obey a uniform distribution. The significance level was

set to α = 0.05. (ii) Is there a diurnal and annual oscilla-

tion present in the data? This was analyzed using two ap-

proaches. First, a sinusoidal function of the form f (MDT) =

a0 + a1 cos(MDTω) (with the free parameters a0, a1 and ω)

was fitted to the daily and the seasonally grouped data using

the Trust-Region-Reflective Least Squares Algorithm. The

grouping of the data according to the seasons was performed

as in Dai (i.e. Table 1 of [1]). Second, it was tested whether

the distributions of the MDT values differ for the four sea-

sons. Therefore a nonparametric test (Wilcoxon rank-sum

test) was employed. Due to the multiple comparison situa-

tions, a False Discovery Rate correction to the obtained p-

values was applied. The data analysis was performed in Mat-

lab (version 2008b, The MathWorks, Natick, Massachusetts).

3 Results

Figure 1(a) shows the raw (hourly) MDT data as obtained

from Figure 3 of [1]. In Figure 2(b), the median values and

the respective median absolute deviations of daily intervals

are plotted. The data grouped according to the seasons are

depicted in Figure 2(c), and Figure 2(d) shows the block av-

erage for the daily values.

The analysis about the randomness in the data revealed

that neither the daily nor the seasonally grouped MDT val-

ues follow a uniform distribution (p < 0.05). The seasonally

grouped data showed a significant trend: the MDT values in

spring were higher compared to summer (p < 0.0001), au-

tumn (p < 0.0001) and winter (p = 0.0131) whereas no sta-

tistically significant difference could be detected between the

distribution of the MDT values for the combinations summer

vs. autumn (p = 0.7269), summer vs. winter (p = 0.8509)
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Fig. 1: (a) Raw data as given in Table 1 and Figure 1 of Dai [1]. (b) Daily averaged MDT values (median ± median absolute deviation).

(c) Averages MDT values according to the seasons with fitted sinusoidal function (bold red line) and error bounds (95%, thin red lines).

(d) Block average of daily MDT values with fitted sinusoidal function (bold red line) and error bounds (95%, thin red lines).

and autumn vs. winter (p = 0.8902). Fitting a sinusoidal

function to the daily and seasonally grouped MDT data re-

sulted in a good correlation quantified by the squared Pear-

son correlation coefficient (r2) and root-mean-square error

(RMSE): (i) seasonally grouped data: r2 = 0.9821, RMSE

= 50.25, and (ii) daily grouped data: r2 = 0.4885, RMSE =

26.21. The fit with a linear function showed lower r2 values

(seasonally grouped data: r2 = 0.1735, RMSE = 33.96, daily

grouped data: r2 = 0.1579, RMSE = 32.86).

4 Discussion

Based on the analysis performed the following two conclu-

sion can be drawn:

(i) The measured MDT values obtained by Dai do not fol-

low a random uniform distribution, i.e. there is a sta-

tistically significant (p < 0.05) trend in the direction of

diffusion.

(ii) The MDT value fluctuations are not random either, i.e.

a diurnal and annual oscillation explains the variability

better than a linear fit.

Both conclusions are in agreement with the conclusion

drawn by Dai in the original paper [1]. In order to estab-

lish the causes behind these observations, three possibilities

should be considered:

Systematic errors. Changes in environmental parameters

(e.g. temperature, humidity, pressure and illumination), elec-

trostatic effects and surface irregularities of the experimental

setup could have an effect on diffusion processes observed.

However, even though such effects could explain the first find-

ing (i.e. non-randomness of the MDT data) the second find-
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ing (i.e. diurnal and seasonal periods in the MDT data) is

hard to explain since such systemic influences must then cre-

ate gradients in the diffusion process with diurnal and annual

variability. In a temperature-controlled room with constant il-

lumination and with a setup operating on a flat surface (as was

the case according to Dai [1]) the formation of such periodic

changes of spatial gradients is quite unlikely.

Classical geophysical and astrophysical effects. Particles

of a medium in a rotating system experience a deviation of

the isotropic distribution due to the centrifugal and Coriolis

force [2]. Whereas the centrifugal force causes a radially out-

ward drift of the particles, the Coriolis force induces a force

perpendicular to the particle’s direction of motion. Consider-

ing the earth’s rotation and it’s revolution around the sun, a

net force can be calculated that represents a “helical force

field over the earth” [3]. As discussed by He et al. [3–6]

this force has a diurnal and annual variability. Another possi-

ble factor contributing to the anisotropic diffusion may be the

anisotropy in arrival direction of cosmic rays. The anisotropy

of cosmic rays is well documented [7–11], but it is difficult

to explain how cosmic rays would cause the changes in MDT

since the transported momentum of cosmic rays is very small

(e.g. for a muon with a mass of 1883531475 × 10−28 kg

and travelling with light speed, a momentum in the order of

10−11 Ns results).

Other effects. A third option in explaining the experi-

mental results of Dai is to consider them caused by (i) the

“anisotropy of space” (as experimentally investigated over

decades by Shnoll et al. [12–17]), interaction with (ii) the

(quantum) vacuum (which, according to experimental find-

ings of Graham and Lahoz, can be regarded as “something in

motion” [18]), (iii) a “cosmological vector potential” [19],

or (iv) a fundamental medium [20–31], also regarded as a

“complex tension field” [32]. In this context, a relation of the

observed anisotropic diffusion to the Saganc effect [33–36]

should be considered too. Dai himself considers the observed

effect caused by a global astrophysical force or entity (termed

“universal field”) [1, 37]. In addition, the anisotropic dif-

fusion effect could be related to the signal (with an annual

oscillation) detected by the DAMA/LIBRA/NaI experiments

designed to detect dark matter [38–40], or the observation of

direction-dependent temporal fluctuations in radiation from

radon in air at confined conditions [41–43]. Finally, the effect

could be related to the observation of an annual fluctuation

in radioactive decay which was reported by several groups so

far (e.g. [44–47]).

The most similar experiment to the present one was con-

ducted by Kaminsky & Shnoll [12] who analyzed the dy-

namical behavior of fluctuations of the velocity of Brown-

ian motion. Therefore, the motion fluctuations of two aque-

ous suspensions of 450-nm polystyrene microspheres were

measured by dynamic light scattering. By analyzing the dy-

namical characteristics of the fluctuations with the histogram

analysis method developed by the research group of Shnoll,

it was discovered that the “shapes of the histograms in the

independent Brownian generators vary synchronously”. In a

further analysis it could be shown that the direction of the ex-

perimental setup with respect to the cardinal directions has

an influence on the results: the shape of the histograms were

most similar when the recorded time series were not shifted to

each other (in case of the alignment to the north-south direc-

tion), or shifted with ∆t = 11.6 ms (in case of the alignment

to the west-east direction). This clearly indicates that there is

an anisotropy of the observed effect. One could speculate that

the source of this anisotropy and the source of the anisotropy

of diffusion as described in the present paper are similar, or

even identical.

5 Conclusion

In conclusion, the re-analysis of the data obtained by Dai [1]

revealed that measured MDT values (i) do not follow a ran-

dom uniform distribution, and (ii) exhibit two fluctuations

with a daily and annual period, respectively. For further re-

search, the diffusion experiments need to be repeated and the

experimental setup optimized. Examples of optimization in-

clude improved shielding the experimental setups against en-

vironmental influences and the simultaneous measurement of

environmental parameters (e.g. temperature, humidity, pres-

sure, illumination, acceleration of the setup in all three di-

rections of space, fluctuations of the geomagnetic field, etc.).

Performing the same experiment simultaneously at different

geographical positions could also put forward new indica-

tions about the origin of the effect. Also repeating the ex-

periments with different kinds of shielding could offer new

insights.
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Sagnac interferometry for the determination of rotations in geodesy and

seismology. Gyroscopy and Navigation, 2010, v. 1 (4), 291–296.

37. Dai J. “Universe collapse model” and its roles in the unification of four

fundamental forces and the origin and the evolution of the universe.

Natural Science, 2012, v. 4 (4), 199–203.

38. Bernabei R., Belli P., Capella F., Caracciolo V., Castellano S.,

Cerulli R., et al. The annual modulation signature for dark matter:

DAMA/LIBRA-phase1 results and perspectives. Advances in High En-

ergy Physics, 2014, 605659.

39. Bernabei R., Belli P., Capella F., Cerulli R., Dai C. J., d’Angelo A.,

et al. First results from DAMA/LIBRA and the combined results with

DAMA/NaI. The European Physical Journal C, 2008, v. 56 (3), 333–

355.

40. Ling F.-S., Sikivie P., & Wick S. Diurnal and annual modulation of cold

dark matter signals. Physical Review D, 2004, v. 79, 123503.

41. Steinitz G., Kotlarsky P., & Piatibratova O. Anomalous non-isotropic

temporal variation of gamma-radiation from radon (progeny) within

air in confined conditions. Geophysical Journal International, 2013,

v. 193, 1110–1118.

42. Steinitz G., Piatibratova, O., & Gazit-Yaari N. Influence of a component

of solar irradiance on radon signals at 1 km depth, Gran Sasso, Italy.

Proceedings of the Royal Society A, 2013, v. 469 (2159), 20130411.

43. Steinitz G., Piatibratova O., & Kotlarsky P. Sub-daily periodic radon

signals in a confined radon system. Journal of Environmental Radioac-

tivity, 2014, v. 134, 128–135.

44. Sturrock P. A., Fischbach E., Javorsek II D, Lee R. H., Nistor J. &

Scargle, J.D. Comparative study of beta-decay data for eight nuclides

measured at the Physikalisch-Technische Bundesanstalt. Astroparticle

Physics, 2014, v. 59, 47–58.

45. O’Keefe D., Morreale B. L., Lee R. H., Buncher J. B., Jenkins J. H.,

Fischbach E., Gruenwald T, Javorsek II D & Sturrock P.A. Spectral

content of 22Na/44Ti decay data: implications for a solar influence.

Astrophysics and Space Science, 2013, v. 344 (2), 297–303.

46. Jenkins J. H., Fischbach E, Buncher J. B., Gruenwald J. T., Krause

D. E., Mattes J.J. Evidence of correlations between nuclear decay

rates and Earth–Sun distance. Astrophysics and Space Science, 2009,

v. 32 (1), 42–46.

47. Parkhomov A. G. Deviations from beta radioactivity exponential drop.

Journal of Modern Physics, 2011, v. 2 (11), 1310–1317.

F. Scholkmann. Diurnal and Annual Variation in the Anisotropy of Diffusion Patterns 235



Volume 10 (2014) PROGRESS IN PHYSICS Issue 4 (October)

Solar Flare Five-Day Predictions from Quantum Detectors of Dynamical Space
Fractal Flow Turbulence: Gravitational Wave Diminution

and Earth Climate Cooling

Reginald T. Cahill

School of Chemical and Physical Sciences, Flinders University, Adelaide 5001, Australia. Email: reg.cahill@flinders.edu.au

Space speed fluctuations, which have a 1/f spectrum, are shown to be the cause of solar
flares. The direction and magnitude of the space flow has been detected from numer-
ous different experimental techniques, and is close to the normal to the plane of the
ecliptic. Zener diode data shows that the fluctuations in the space speed closely match
the Sun Solar Cycle 23 flare count, and reveal that major solar flares follow major space
speed fluctuations by some 6 days. This implies that a warning period of some 5 days in
predicting major solar flares is possible using such detectors. This has significant conse-
quences in being able to protect various spacecraft and Earth located electrical systems
from the subsequent arrival of ejected plasma from a solar flare. These space speed
fluctuations are the actual gravitational waves, and have a significant magnitude. This
discovery is a significant application of the dynamical space phenomenon and theory.
We also show that space flow turbulence impacts on the Earth’s climate, as such tur-
bulence can input energy into systems, which is the basis of the Zener Diode Quantum
Detector. Large scale space fluctuations impact on both the sun and the Earth, and as
well explain temperature correlations with solar activity, but that the Earth temperatures
are not caused by such solar activity. This implies that the Earth climate debate has
been missing a key physical process. Observed diminishing gravitational waves imply
a cooling epoch for the Earth for the next 30 years.

1 Introduction

We report evidence that space flow turbulence causes solar
flares, and that very simple Zener Diode Quantum Detectors,
ZDQD, may be easily used to measure and characterise this
turbulence. As well the major space flow turbulence pre-
cedes the solar flare eruptions by some 6 days, making it
possible to have an early warning system in operation so as
to limit damage to spacecraft electronics, power system net-
works, and other electronic infrastructure systems, when the
resulting plasma reaches Earth. We demonstrate these devel-
opments by two methods: 1st by showing that the current
fluctuations from ZDQD over the last Solar Cycle 23 track
very accurately the Solar Flare count rate, see Fig. 1. Those
correlations do not establish any causal relation. However
in Fig. 6 we establish that significant space speed fluctuations
cause the solar flares, as the flares are delayed by some 6 days.
The solar flare data is of the Halloween Space Weather Storm
of 2003, while the ZDQD data is from a GCP detector∗.

∗The GCP network is a worldwide collection of Zener Diode detec-
tors that report space fluctuations every 1 sec. However it was not set
up for that purpose, and was incorrectly based on the belief that quantum
fluctuations are truly random and intrinsic to each quantum system, see
http://noosphere.princeton.edu/. The GCP network was then being used to
suggest that correlations in the network data were not caused by any physi-
cal process, but by collective human “consciousness”. This has been shown
to be false, as the correlated fluctuations have been shown to be caused by
flowing space turbulence [1–3].

2 Dynamical space

The dynamics and detection of space is a phenomenon that
physics missed from its beginning, with space modelled as a
geometric entity without structure or time dependence. That
has changed recently with the determination of the speed and
direction of the solar system through the dynamical space,
and the characterisation of the flow turbulence: gravitational
waves. Detections used various techniques have all produced
the same speed and direction Cahill [1–6]. The detected dy-
namical space was missing from all conventional theories in
physics: Gravity, Electromagnetism, Atomic, Nuclear, Cli-
mate,... The detection of the dynamical space has led to a
major new and extensively tested theory of reality, and goes
under the general name of Process Physics [7]. Here we
cite only those aspects relevant to Solar Flares and Climate
Change.

The Schrödinger equation extension to include the dy-
namical space is [8]

iℏ
∂ψ(r, t)
∂t

= − ℏ
2

2m
∇2ψ(r, t) + V(r, t)ψ(r, t) +

−iℏ
(
v(r, t)·∇ + 1

2
∇·v(r, t)

)
ψ(r, t). (1)

Here v(r, t) is the velocity field describing the dynami-
cal space at a classical field level, and the coordinates r give
the relative location of ψ(r, t) and v(r, t), relative to a Eu-
clidean embedding space, and also used by an observer to
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Fig. 1: Top: Measure of Zener diode GCP network current fluctua-
tions over Solar Cycle 23, beginning with zero on January 1, 2000,
adapted from R. Nelson, Long Term Cumulative Deviation of Net-
work Variance: http://noosphere.princeton.edu/longterm.html. Bot-
tom: Sunspot numbers for the same time period, adapted from
T. Phillips, http://science.nasa.gov/media/medialibrary/2013/03/01/
shortfall.jpg. We see the close correlation between these two
phenomena. A causal relationship between space speed fluctua-
tions and sunspots is demonstrated in Fig. 6: space flow fluctua-
tions/turbulence precede by some 6 days the solar flares, implying
that it is the space flow turbulence that causes the solar flares. This
data shows the weakening of the solar cycle as being caused by
weakening of the space flow turbulence. The data in Fig. 8 shows
sea temperature history tracking solar flares, but not caused by the
solar flares. There is a fundamental difference between correlations
and cause and effect dynamics.

locate structures. At sufficiently small distance scales that
embedding and the velocity description is conjectured to be
not possible, as then the dynamical space requires an indeter-
minate dimension embedding space, being possibly a quan-
tum foam [7]. This minimal generalisation of the original
Schrödinger equation arises from the replacement ∂/∂t →
∂/∂t+v.∇, which ensures that the quantum system properties
are determined by the dynamical space, and not by the em-
bedding coordinate system. The same replacement is also to
be implemented in the original Maxwell equations, yielding
that the speed of light is constant only wrt the local dynami-
cal space, as observed, and which results in lensing from stars

Fig. 2: Circuit of Zener Diode Gravitational Wave Detector, show-
ing 1.5V AA battery, two 1N4728A Zener diodes operating in re-
verse bias mode, and having a Zener voltage of 3.3V, and resistor
R= 10KΩ. Voltage V across resistor is measured and used to de-
termine the space driven fluctuating tunnelling current through the
Zener diodes. Current fluctuations from two collocated detectors are
shown to be the same, but when spatially separated there is a time
delay effect, so the current fluctuations are caused by space speed
fluctuations [2, 3]. Using diodes in parallel increases S/N. The data
used herein is from a GCP detector that has a XOR gate that partially
degrades the data.

and black holes. The extra ∇·v term in (1) is required to make
the hamiltonian in (1) hermitian. Essentially the existence of
the dynamical space in all theories has been missing. The dy-
namical theory of space itself is briefly reviewed below. The
dynamical space velocity has been detected with numerous
techniques, dating back to the 1st detection, the Michelson-
Morley experiment of 1887, which was misunderstood, and
which lead to physics developing flawed theories of the var-
ious phenomena noted above. A particularly good technique
used the NASA Doppler shifts from spacecraft Earth-flybys,
[6], to determine the anisotropy of the speed of EM waves, as
indicated in Fig. 4. All successful detection techniques have
observed significant fluctuations in speed and direction: these
are the actually “gravitational waves”, because they are asso-
ciated with gravitational and other effects∗

A significant effect follows from (1), namely the emer-
gence of gravity as a quantum effect: a wave packet analysis
shows that the acceleration of a wave packet, due to the space
terms alone (when V(r, t) = 0), given by g = d2<r>/dt2, [8],
gives

g(r, t) =
∂v
∂t
+ (v· ∇)v. (2)

That derivation showed that the acceleration is indepen-
dent of the mass m: whence we have the 1st derivation of
the Weak Equivalence Principle, discovered experimentally
by Galileo. As noted below the dynamical theory for v(r, t)
has explained numerous gravitational phenomena.

∗Note that vacuum-mode Michelson interferometers, such as LIGO,
cannot detect these wave effects. Only dielectric-mode versions have de-
tected such waves, although there is a variety of other successful techniques
[1, 4]. In particular we report here the role of these waves in solar flare exci-
tations and Earth climate science.
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Fig. 3: Reflected (LHS) and transmitted (RHS) wave packets after
interaction with barrier at a reverse-biased pn junction, as in Fig. 2.
Energy E of wave packet is less than potential barrier height V0. The
wave function transmission varies with the speed v of the passing
space as that varies E → E + ℏk · v according to (1) and so we may
measure v.

Fig. 4: South celestial pole region. The dot (red) at RA=4.3h,
Dec=75◦S, and with speed 486km/s, is the direction of motion of
the solar system through space determined from NASA spacecraft
Earth-flyby Doppler shifts [6], as revealed by the EM radiation speed
anisotropy. The thick (blue) circle centred on this direction is the ob-
served velocity direction for different months of the year, caused by
Earth orbital motion and sun 3-space inflow. The corresponding re-
sults from the 1925/26 Miller gas-mode interferometer are shown by
2nd dot (red) and its aberration circle (red dots). For December 8,
1992, the speed is 491km/s from direction RA=5.2h, Dec=80◦S, see
Table 2 of [6]. EP is the pole direction of the plane of the ecliptic,
and so the space flow is close to being perpendicular to the plane of
the ecliptic.

3 Dynamical 3-space

The experimental data reveals the existence of a dynamical
space. It is a simple matter to arrive at the dynamical theory
of space, and the emergence of gravity as a quantum mat-
ter effect, as noted above. The key insight is to note that
the emergent quantum-theoretic matter acceleration in (2),
∂v/∂t + (v · ∇)v, is also, and independently, the constituent
Euler acceleration a(r, t) of the space flow velocity field,

a(r, t) = lim
∆t→0

v(r + v(r, t)∆t, t + ∆t) − v(r, t)
∆t

=
∂v
∂t
+ (v·∇)v (3)

Fig. 5: Representation of the fractal wave data revealing the fractal
textured structure of the 3-space, with cells of space having slightly
different velocities and continually changing, and moving wrt the
Earth with a speed of ∼500 km/s, and in the directions indicated
in Fig. 4, namely almost perpendicular to the plane of the ecliptic.
This “red space” is suggestive of the 1/f spectrum of the detected
fluctuations, see [5]. These space flow fluctuations inject energy into
both the sun and the Earth. For solar flare effects low pass filtering
of the data is necessary to isolate cells that overlap the Earth and
sun, as in Fig .6.

which describes the acceleration of a constituent element of
space by tracking its change in velocity. This means that
space has a structure that permits its velocity to be defined
and detected, which experimentally has been done. This then
suggests, from (2) and (3), that the simplest dynamical equa-
tion for v(r, t) is

∇·
(
∂v
∂t
+ (v·∇)v

)
= −4πGρ(r, t); ∇ × v = 0 (4)

because it then gives ∇.g = −4πGρ(r, t), ∇ × g = 0, which
is Newton’s inverse square law of gravity in differential form.
Hence the fundamental insight is that Newton’s gravitational
acceleration field g(r, t) for matter is really the acceleration
field a(r, t) of the structured dynamical space∗, and that quan-
tum matter acquires that acceleration because it is fundamen-
tally a wave effect, and the wave is refracted by the accelera-
tions of space.

While the above leads to the simplest 3-space dynamical
equation this derivation is not complete yet. One can add ad-
ditional terms with the same order in speed spatial derivatives,
and which cannot be a priori neglected. There are two such
terms, as in

∇·
(
∂v
∂t
+ (v·∇)v

)
+

5α
4

(
(trD)2 − tr(D2)

)
+ ... = −4πGρ (5)

where Di j = ∂vi/∂x j. However to preserve the inverse square
law external to a sphere of matter the two terms must have

∗With vorticity ∇ × v , 0 and relativistic effects, the acceleration of
matter becomes different from the acceleration of space [7].

238 Cahill R.T. Solar Flare Five-Day Predictions from Quantum Detectors of Dynamical Space Fractal Flow Turbulence



Issue 4 (October) PROGRESS IN PHYSICS Volume 10 (2014)

coefficients α and −α, as shown. Here α is a dimensionless
space self-interaction coupling constant, which experimental
data reveals to be, approximately, the fine structure constant,
α = e2/ℏc, [11]. The ellipsis denotes higher order derivative
terms with dimensioned coupling constants, which come into
play when the flow speed changes rapidly wrt distance. The
observed dynamics of stars and gas clouds near the centre
of the Milky Way galaxy has revealed the need for such a
term [9], and we find that the space dynamics then requires
an extra term:

∇·
(
∂v
∂t
+ (v·∇)v

)
+

5α
4

(
(trD)2 − tr(D2)

)
+

+δ2∇2
(
(trD)2 − tr(D2)

)
+ ... = −4πGρ (6)

where δ has the dimensions of length, and appears to be a very
small Planck-like length [9]. This then gives us the dynam-
ical theory of 3-space. It can be thought of as arising via a
derivative expansion from a deeper theory, such as a quantum
foam theory, [7]. Note that the equation does not involve c,
is non-linear and time-dependent, and involves non-local di-
rect interactions. Its success implies that the universe is more
connected than previously thought. Even in the absence of
matter there can be time-dependent flows of space.

Note that the dynamical space equation, apart from the
short distance effect - the δ term, there is no scale factor, and
hence a scale free structure to space is to be expected, namely
a fractal space. That dynamical equation has back hole and
cosmic filament solutions [9, 11], which are non-singular be-
cause of the effect of the δ term. At large distance scales it
appears that a homogeneous space is dynamically unstable
and undergoes dynamical breakdown of symmetry to form a
spatial network of black holes and filaments, [11], to which
matter is attracted and coalesces into gas clouds, stars and
galaxies.

The dynamical space equation (6) explains phenomena
such as Earth bore-hole gravity anomalies, from which the
value of α was extracted, flat rotation curves for spiral galax-
ies, galactic black holes and cosmic filaments, the universe
growing/expanding at almost a constant rate, weak and strong
gravitational lensing of light,... [4,9–11]. A significant aspect
of the space dynamics is that space is not conserved: it is
continually growing, giving the observed universe expansion,
and is dissipated by matter. As well it has no energy density
measure. Nevertheless it can generate energy into matter.

4 Detecting dynamical space speed and turbulence with
diodes

The Zener diode in reverse bias mode can easily and reliably
measure the space speed fluctuations, Fig. 2, and two such de-
tectors can measure the speed and direction of the space flow
and waves, Cahill [1–4]. Consider plane waves with energy
E = ℏω. Then (1) with v = 0 and V = 0 gives ψ = e−ωt+ik·r.

When v , 0, but locally uniform wrt to the diode, the energy
becomes E → E + ℏk · v. This energy shift can be easily
detected by the diode as the electron transmission current in-
creases with increased energy∗. By using spatially separated
diodes the speed and direction has been measured [1–4], and
agrees with other detection techniques.

Although this Zener diode effect was only discovered in
2013, [3], Zener diode detectors have been available commer-
cially for much longer, and are known as Random Event Gen-
erators, (REG). That terminology was based on the flawed as-
sumption that the quantum tunnelling fluctuations were ran-
dom wrt an average. However the data in [3] 1st showed
that this is not the case. That experimental result contradicts
the standard interpretation of “randomness” in quantum pro-
cesses, which dates back to the Born interpretation in 1926.
To the contrary the recent experiments show that the fluctua-
tions are not random, but are directly determined by the fluc-
tuations in the passing dynamical space.

5 Gravitational waves and solar flares

Fig. 1 shows the strong correlation between gravitational
wave turbulence, as detected by the Earth-based ZDQD net-
work, and the count rate of solar flares. At very low frequen-
cies we can determine correlations based upon large “cells”
of space, Fig. 5, passing almost perpendicular to the plane of
the ecliptic. One key discovery herein is that the large space
flow turbulences are the cause of significant solar flares, as
shown in Fig. 6, top plot. That shows that the pattern of
solar flares during the Halloween Space Weather Storms of
2003 closely match the pattern of 6-day-delayed space tur-
bulence. Hence by using low-pass filtered data from Earth
based ZDQD it is possible to predict with some 5 day warn-
ing the occurrence of major solar flares. This effect reveals
the the space turbulence generates energetic activity in the
sun, which eventually reaches the surface. However Fig. 6,
bottom plot, suggests that the same mechanism is not rele-
vant to Coronal Mass Ejections, although the data reported
herein is limited to only one case.

6 Space flow turbulence and earth weather

There have been many studies noting correlations between
solar cycles and changes in the Earth Weather, see [13] for
review and references. The most notable being the Maunder
minimum 1645-1715, during which there was no sunspot ac-
tivity, and which coincided with the “little ice age”. However
correlations do not provide causal relations. The assumption
has always been that increased sunspot activity results in in-
creased solar irradiance which subsequently causes increased
Earth temperatures, although no convincing mechanism has

∗The Zener diode currents reported in [1–4] were incorrectly deter-
mined. The Digital Storage Oscilloscope (DSO )was operated with 50Ω in-
put impedance, which meant the voltage was developed across that resistance
and not the 10kΩ cited, and shown in Fig. 2. This means that the actual tun-
nelling currents were 200 times larger. This had no effect on the conclusions.
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Fig. 6: Top: Vertical blue lines indicate start times of major solar flares beginning October 22, 2003. The height of the lines is indicative
of the magnitude of the solar flare, and is on a logarithmic scale. These solar flares are known as the Halloween Space Weather Storms of
2003, [12]. The curve is data from a single ZDQD, located in Switzerland, low-pass filtered to include only periods longer than 2 days,
and advanced in time by 6 days, and plotted relative to the average. For a space speed of 500 km/s this corresponds to a cell size ∼0.5 of
the Sun-Earth distance. This advance followed from matching the two data sets. The low-pass filter ensures that we see space fluctuations
corresponding to cell sizes that can overlap the Earth and the sun, as the space flow is close to being perpendicular to the plane of the
ecliptic, as shown by the analysis of the NASA Earth-flyby spacecraft Doppler shifts in Fig. 4, [6]. The strong correlation between the two
data sets show that solar flares follow increases in the space velocity, by some 6 days: the solar flares are caused by the space fluctuations:
these fluctuations are a galactic phenomenon. Bottom: Vertical blue line indicates start of massive Coronal Mass Ejection (CME) on July
23, 2012, and plotted with ZDQD low-pass data, but without time shift. The main speed fluctuation peak coincides with the CME, on July
23. This suggests that CME may not be caused by space fluctuations, and that the coincident peak may be gravitational waves produced by
the extremely large mass ejection, although there is a smaller peak in the ZDQD data some 6 days earlier.

Fig. 7: Plot of Gravitational Wave Turbulence vs years 1749 to present (red plot), based upon Solar Flare counts as a proxy, as shown in
Fig. 1. Data adapted from from D. Archibald, Solar Update March 2012 (http://www.warwickhughes.com/blog/?p=2753), [15]. The Solar
Flare data has been low-pass filtered using Fast Fourier Transfoms. It is argued herein that the 11 year cycle and longer cycles are caused
by galactic space flow turbulence, which can now be easily measured using ZDQD. Beyond 2014 we have used the Fourier amplitudes to
extrapolate to 2050 (blue plot), which assumes an ongoing 1/f spectrum. This extrapolation suggests we are facing an epoch of low space
flow turbulence, and hence reduced Earth temperatures. The modern warm period extended from 1900s to end of solar cycle 23 (the last
cycle in red).
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Fig. 8: Shows strong correlations between solar sunspot numbers
and Earth sea surface temperature deviations. This, however, does
not imply a causal relation between these two phenomena, as was
also noted in Fig. 1. It is conjectured herein that the cause is the
galactic space flow turbulence, which pumps energy into both the
sun and the Earth.

been accepted. However the variation in irradiation is too
small to cause the observed Earth temperature fluctuations.
See Fig. 8 for correlations between sea temperature and solar
flare counts. However the data herein offers a different mech-
anism, namely that the Earth’s climate is affected by changes
in the space flow turbulence, which is very evident in Fig. 1,
with the causal relation established in Fig. 6. Such space flow
fluctuations change the energy of matter, according to ℏv ·k,
as discussed above. These energy changes are the basis of
the detection of the space flow turbulence by the ZDQD tech-
nique. So this suggests another possible factor affecting the
Earth’s climate, namely an energy generation that arises from
space flow turbulence directly interacting with the Earth. The
heating mechanism is that atoms/molecules having a momen-
tary wave vector k have their energy raised if k · v > 0. These
then scatter with lower energy atoms/molecules and so dis-
sipate the temporary energy lift to the gas in general. The
GCP ZDQD data, going back some 18 years, thus provides
an incredible data set that could be used to test this conjec-
ture. Another indication of heat production internal to the
Earth is that the geoneutrino flux from the decay of uranium-
238 and thorium-232 can explain only about 50% of the heat
production of the Earth of some 44.2±1.0 TW [14]. So there
would appear to be another source of ongoing energy produc-
tion within the Earth, and this could arise from space-flow
turbulence effects.

Beginning Solar Cycle 24 is the weakest in more than 50
years. Fig. 7 shows the low frequency gravitational wave
turbulence measure using the solar flare count as a proxy,
which follows from the data in Fig. 1, and so permitting an
analysis of such turbulence back to 1750. However by us-
ing Fourier transforms to extract the frequency spectrum and

phases we may use that data to extrapolate into the future,
which is shown in blue in Fig. 7, from mid 2014 to 2050.
The prediction is that there will be a reduced energy genera-
tion in the Earth system over the next 30 years, as the galactic
space turbulence will enter an epoch of reduced turbulence,
as in 1860-1910, and resulting in the cooling of the Earth’s
atmosphere.

7 Conclusions

The discovery of the Zener Diode quantum detector effect
has rendered the detection of 3-space flow turbulence, grav-
itational waves∗, to be trivial and robust. The speed and di-
rection of the flow from such detectors has confirmed the re-
sults from earlier experiments, beginning with Michelson and
Morley in 1887 using a gas-mode interferometer. Other ex-
perimental techniques have used RF speeds in coaxial cables,
dual RF coaxial cables and optical fibers, RF speeds in dual
coaxial cables, to mention only some: see [1, 4] for recent
reviews. The major implication is that space exists, because
it is detectable, has significant fractal flow turbulence, and
is a complex dynamical system, contrary to the claims since
1905 that space does not exist. The turbulence effects are
significant, typically some 20% of the average flow veloc-
ity at present. The dynamical theory has become well estab-
lished by testing against various experimental and observa-
tional phenomena [6, 9–11]. Here we have reported evidence
that solar flares are caused by major gravitational wave fluc-
tuations. Using Zener Diode gravitational wave detectors and
low pass filtering the data now offers the opportunity to pre-
dict with some 5 days warning of a major solar flare. As
these detectors are so simple they could be included on all
future space probes, as a larger scanning region would con-
siderably increase reliability of the new warning system. The
data used here comes from the GCP project, which has had
Zener diode detectors operating for some 18 years, but was
based upon an incorrect assumption that the current fluctua-
tions in the reverse-biased pn junction were random quantum
fluctuation, as asserted in the usual interpretation of the quan-
tum theory. However recent experiments [2, 3], and without
the XOR gate used in GCP detectors, it was shown that the
diode current fluctuations are completely determined by fluc-
tuations in the passing space. Nevertheless the GCP data base
represents an enormously significant record of 3-space turbu-
lence, which will permit various studies to be undertaken. A
second major discovery is that the long established correla-
tions between Earth temperature fluctuations and solar flare
counts is explained by both phenomena being a result of grav-
itational waves, and not by the very small changes in sun ir-
radiance that accompanies solar flares. This has led to the
prediction that there is a diminution epoch of gravitational
waves that is already detectable in Figs. 1 and 6, that will

∗The detected gravitational waves are not those of GR. Such waves have
never been detected.
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result in a cooling of the Earth’s atmosphere, as was expe-
rienced in earlier Earth epochs when the gravitational waves
underwent a period of diminished activity. Dropping temper-
atures would normally decrease cereal food production, but
that may be compensated for by extra growth following form
the increased CO2 levels. We note that the statistical argu-
ments in [16] are invalidated by the discovery of the space
flow turbulence effect reported herein: Climate Science has
been missing a key physical process until now.
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Proton-Neutron Bonding in the Deuteron Atom and its Relation to the Strong
Force as Viewed from the Planck Vacuum Theory
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This paper argues that the two-particle proton-neutron bond results from the proton-
proton/Planck-vacuum coupling force associated with the two particles. The neutron
is assumed to be a proton with a weakly attached electron whose sole function is to
eliminate the Coulomb repulsion between the two protons. Results lead to a simple
model of the deuteron atom and a definition for the strong force.

1 Introduction

The proton core (e∗,mp) located at the radius r = 0 exerts the
two-term coupling force [1]

F(r) = −
(

e2
∗

r2 −
mpc2

r

)
= −e2

∗
r2

(
1 − r

rp

)
(1)

on the omnipresent Planck vacuum (PV) state, where rp (=
e2
∗/mpc2) is the Compton radius at which the force vanishes.

The radius r extends from the core to any point within the
PV continuum. The massless bare charge is e∗ and mp is the
proton rest mass. Since the Planck particles within the PV
suffer a primordial zero-point agitation that is the source of
the zero-point electromagnetic fields, the radius r in (1) is an
average over the small instantaneous random motion (r(t) − r
at r ≈ 0) of the proton’s bare charge (e∗) [2, 3]. In part, the
response of the PV to the force (1) is to create the proton mass
mp from the zero-point-field driven proton charge (e∗).

Figure 1 is a plot of the normalized coupling force

F(r)
e2
∗/r2

p
=

F(r)
mpc2/rp

= −
r2

p

r2 +
rp

r
(2)

where the abscissa is in units of rp (equation (5) is used in the
calculation). The two fiducial points, r = rp and r = 2rp, are
the radii at which the force vanishes and attains its maximum
respectively. The Compton radius rp has been discussed in a
number of earlier papers (see www.planckvacuum.com). It
is seen in what follows that the separation between the proton
and neutron cores in the deuteron is related to the maximum
at 2rp.

The coupling potential from (1) is

V(r) = −
∫

F(r)dr + V0 (3)

where V(rp) = 0 yields the normalized potential

V(r)
mpc2 = −

rp

r
+ 1 + ln

rp

r
. (4)

The corresponding mass and Compton radius of the proton
are tied to the PV state via the Compton relations

rpmpc2 = r∗m∗c2 = e2
∗ (= cℏ) (5)

which are a manifestation of the fact that the proton possesses
a Compton radius rp, where r∗ and m∗ are the Compton radius
and mass of the Planck particles making up the negative en-
ergy PV.

For r ≪ rp, (1) reduces to

F(r) = −e2
∗

r2 =
(e∗)(−e∗)

r2 (6)

where (e∗) belongs to the proton and (−e∗) belongs to the sep-
arate Planck particles of the PV.

Fig. 1: The graph plots F(r)/(e2
∗/r

2
p), with rp = 1. The maximum of

the curve is at 2rp = 2.

The neutron is assumed to be a proton with a negative
charge weakly attached to make the neutron charge-neutral.
Theoretically, it is tempting to assume that this added nega-
tive charge is the massless bare charge (−e∗). However, the
zero-point fields permeate both free space and any particle in
that space [3]; and if that particle is the bare charge, that bare
charge rapidly becomes an electron or a proton, depending
upon whether the charge is negative or positive respectively.
Thus the added negative charge in the neutron is assumed in
the PV theory to be an electron.

2 Proton-proton bond

The PV is a degenerate state [5], which implies that the force
in (1) does not distort the vacuum structure, except possibly
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Fig. 2: The graph plots V(t)/mpc2 (the upper curve) and Vt(r)/mpc2

(the three-humped curve) with x0 = 2.5rp and rp = 1. The two
intersect points are at r = x0 ± rp = 2.5 ± 1.

deep within the proton core. Thus the total coupling force
felt by the PV due to two protons (the free proton and the
proton in the neutron) is the sum of two forces similar to (1).
If the two protons are separated by distance equal to x0, with
one of the protons at the origin, the total normalized proton-
proton/PV coupling potential is simply (with r = (x, 0, 0))

Vt(r)
mpc2 = −

rp

r
+ 1 + ln

rp

r
−

rp

|r − x0|
+ 1 + ln

rp

|r − x0|

= −rp

(
r + |r − x0|

r|r − x0|

)
+ 2 + ln

 r2
p

r|r − x0|

 (7)

which is plotted in Figure 2 with x0 set to 2.5rp, where the
abscissa is in units of the proton Compton radius rp. The
upper curve is the potential for a single proton at the coordi-
nate origin. The three-hump two-proton curve intersects the
single-proton curve at the two points (8) where the second
potential in the first equation of (7) vanishes. The potential
difference between the intersect points provides a means for
determining the equilibrium separation x0 (the assumed sepa-
ration between the proton and neutron cores in the deuterium
atom). The two intersect radii in Figure 2 follow easily from

Vt(r) = V(r) =⇒ r = x0 ± rp (8)

and appear on either side of x0.
To determine the equilibrium x0, it is convenient to define

W(x0) ≡
Vt(x0 + rp) − Vt(x0 − rp)

mpc2 (9)

=
V(x0 + rp) − V(x0 − rp)

mpc2 (10)

in terms of the separation distance x0, which is plotted in Fig-
ure 3 with rp set to one. The equilibrium x0 is then obtained

Fig. 3: The graph plots W(x0) with rp = 1. The minimum of the
curve is at x0 ≈ 2.4rp = 2.4.

from
dW(x0)

dx0
=

2rp(x2
0 − r2

p) − 4r2
px0

(x2
0 − r2

p)2
= 0 (11)

whose solution is

x0 = (1 ± 21/2)rp (12)

yielding
x0 = (1 + 21/2)rp ≈ 2.4rp (13)

for the deuteron proton-neutron core separation. A very rough
experimental estimate (Appendix A) for the separation is
3.0rp.

3 Strong force

The vanishingly small magnitude (< rp/39000) of the proton-
core radius [4] suggests that it may be related to the so called
strong force Fs. So identifying the Coulomb force from (6)
as the strong force leads to the ratio

Fs(r)
Fg(r)

=
(e∗)(−e∗)/r2

−m2
pG/r2 =

m2
∗

m2
p
=

r2
p

r2
∗
∼ 1038 (14)

of that force to the gravitational force Fg between two proton
masses separated by a distance r (G = e2

∗/m
2
∗ from [1, 5], and

(5) are used in the calculation).
To reiterate, the positive charge in (14) is the bare charge

of the proton and the negative charge corresponds to the bare
charges of the separate Planck particles in the PV. So (14) is
a composite ratio involving the proton-PV coupling force for
r ≪ rp and the free-space gravitational force.

4 Summary and comments

The PV theory assumes that the proton-neutron bond results
from the proton-proton/PV coupling force associated with the
proton and the proton-part of the neutron. It explains the
proton-neutron bond as a minimum in the proton/PV coupling
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potentials as characterized by equations (8)–(13) and Figure
3, with a minimum at 2.4rp that is directly related to the max-
imum force at 2rp in Figure 1. This characterization assumes
that the bonding takes place suddenly when x0 = x0 as the
proton and neutron approach each other. That is, the two nu-
cleons do not possess some type of strong mutual attraction
for x0 , x0. In summary, then, the proton-neutron bond in the
PV theory is a new type of bonding that intimately involves
the invisible, negative-energy vacuum state and its interaction
with the proton core (e∗,mp).

The strong force, (e∗)(−e∗)/r2, is seen to be a force exist-
ing between the positive proton charge and the separate neg-
ative charges of the PV. It is not a force acting between two
free space particles.

Appendix A: deuteron size

This is a rough heuristic estimate of the separation distance
between the proton and neutron cores within the deuteron. It
starts with the standard formula for the radius of the stable
nucleus with a mass number A [6, p.551]

R(A) = 1.2 A1/3 [fm] = 5.71rpA1/3 (A1)

in units of femtometers or the proton Compton radius rp (=
0.21 fm). The radii of the proton and neutron are defined by
A = 1, and the deuteron by A = 2. Inserting these parameters
into (A1) leads to the radii R1 = 5.71rp and R2 = 7.19rp for
the nucleons and deuteron respectively.

Taking the cores at the origin of the two spheres defined
by R1 and R2, it is easy to see that the separation between the
nucleon cores in the deuteron is

2(R2 − R1) = 2(7.19rp − 5.71rp) ≈ 3.0rp . (A2)
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Two-parameters formula based on the conventional collective rotational model is ap-
plied to describe superdeformed rotational bands (SDRB’s) in nuclei in the A ∼
190 mass region, namely the five SDRB’s 192Hg(SD1), 194Hg(SD1), 194Hg(SD2),
194Pb(SD1) and 194Pb(SD2). The bandhead spins of the observed levels have been ex-
tracted by first and second-hand estimation corresponding to pure rotator and our pro-
posed formula respectively by plotting the E-Gamma Over Spin (EGOS) versus spin.
A computer simulated search program is used to extract the model parameters in order
to obtain a minimum root mean square (rms) deviation between the calculated and the
experimental transition energies The values of spins resulting from second estimation
method are excellent consistent with spin assignment of other models. The calculated
transition energies, level spins, rotational frequencies, kinematic and dynamic moments
of inertia are systematically examined. The difference in γ- ray transition energies ∆Eγ
between transitions in the two isotones 192Hg(SD1) and 194Pb(SD1) were small and con-
stant up to rotational frequency ℏω ∼ 0.25 MeV. Therefore, these two bands have been
considered as identical bands. The ∆I = 2 energy staggering observed in 194Hg(SD1)
and 194Hg(SD2) of our selected SDRB’s are also described from a smooth reference
representing the finite difference approximation to the fourth order derivative of the
transition energies at a given spin.

1 Introduction

Superdeformed (SD) nuclei were observed in a wide range of
nuclear chart, and a wealth of experimental data on the result-
ing superdeformed rotational bands (SDRR’s) was accumu-
lated in recent years [1, 2]. These bands consists of long cas-
cades of regularly spaced quadruple γ-ray transitions, which
reveal a high degree of collectivity in a strongly deformed
prolate nucleus. Lifetime measurements lead to very large
values for the quadrupole moments of Q0 ∼ 15−20 eb which
indeed correspond to an elongated ellipsoid with an axis ratio
close to 2:1.

The superdeformation at high angular momentum re-
mains one of the most interesting and challenging topics of
nuclear structure. At present, although a general understand-
ing of the properties of such SD nuclei has been achieved,
there are still many open un expected problems. One of the
outstanding experimental problems in the study of SD nuclei
concerns their decay to the ground state. After a rapid de-
cay out occurs over 2-4 states, and transitions linking the SD
band to known levels in the first well are unobserved. As
a result, the excitation energy, spin and parity of the levels
in the first well are unobserved. As a result several theoret-
ical approaches to predict the spins of SD bands were sug-
gested [3–14].

To date, SD spectroscopy has given us much informa-
tion concerning the behavior of moment of inertia in SD nu-
clei. For example it was shown [15] that for SD nuclei near
A ∼ 150, the variation in the dynamical moment of inertia
J(2) with rotational frequency ℏω is dependant on the proton
and neutron occupation of high-N intruder orbitals. For most

SD bands in even-even and odd-A nuclei in the A ∼ 190, J(2)

exhibits a smooth gradual increase with increasing ℏω [16],
which is due to the gradual alignment of quasinucleons oc-
cupying high -N intruder orbitals (originating from the i13/2
proton and j15/2 neutron subshells)in the presence of the pair
correlations, while in the odd-odd nuclei, quite a good part of
the moments of inertia for SD bands keep constant.

An unexpected discovery was the existence of identical
bands (IB’s) [17–21]. IB’s are two bands in different nuclei,
which have essentially identical transition energies within 2
keV, and thus essentially identical dynamical moment of in-
ertia.

It was found that some SDRB’s in different mass regions
show an unexpected ∆I = 2 staggering effects in the γ-ray
energies [22–25]. The effect is best seen in long rotational
sequences, where the expected regular behavior of the energy
levels with respect to spin or to rotational frequency, is per-
turbed. The result is that the rotational sequences is split into
two parts with states separated by ∆I = 4 (bifurcation) shift-
ing up in energy and the intermediate states shifting down
in energy. The curve found by smoothly interpolating the
band energy of the spin sequence I, I + 4, I + 8, ..., is some
what displaced from the corresponding curve of the sequence
I+2, I+6, I+10, ..... The magnitude of the displacement in the
gamma transition energy is found to be in the range of some
hundred eV to a few keV. The ∆I = 2 staggering effect has at-
tracted considerable interest in the nuclear structure commu-
nity. A few theoretical proposal for the possible explanation
of this ∆I = 2 staggering have already been made [26–31].

Calculations using the cranked Nilsson-Strutinsky
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method [32], and the Hartee-Fock method [33] suggest that
nuclei with N = 112 and Z = 80 or 82 should be particularly
stable, due to the existence of SD gaps in the single particle
spectrum. As a result 192Hg and 194Pb are considered as dou-
bly magic SD nuclei. Excited SD bands in these two nuclei
are therefore expected to exist a somewhat higher excitation
energies, and consequently to be populated with lower inten-
sity than excited SD bands in other nuclei in this region.

In this paper, we shall present a theoretical study for Hg
and Pb nuclei, our results are in framework of collective rota-
tional formula including two parameters, obtained by adopted
best fit method. We need first and second estimation to pre-
dict the spins for the studied SDRB’s, and the best fitted pa-
rameters have been used to evaluate the E2 transition γ-ray
energies, rotational frequencies, kinematic and dynamic mo-
ments of inertia. The appearance of identical bands (IB’s)
and the occurrance of a ∆I = 2 staggering effect have been
examined.

2 Parametrization of SDRB’s by Two-Parameter
Collective Rotational Formula

For the description of normally deformed (ND) bands, some
useful expressions were presented. Bohr and Mottelson [34]
pointed out that, under the adiabatic approximation, the rota-
tional energy of an axially symmetric even-even nucleus may
be expanded as (for k = 0, where k is the projection of the
angular momentum I onto the symmetric axis) a power series
in terms of of I2=I(I+1):

E(I) = A[I(I + 1)] + B[I(I + 1)]2 (1)

with common constants A and B. We will adopt the energy of
the SD state with spin I by equation (1).

For SD bands, gamma-ray transition energies are unfortu-
nately, the only spectroscopic information universally avail-
able. The gamma-ray transition energy between levels differ-
ing by two units of angular momentum ∆I = 2 are:

Eγ(I) = E(I) − E(I − 2)
= (I − 1/2)

[
4A + 8B(I2 − I + 1)

]
.

(2)

3 Spin Assignment of SDRB’s in A ∼ 190 Mass Region

In the method used, the energies of the SD nuclear rotational
bands are firstly expressed by pure rotator as a first estimation
of bandhead spin

E(I) = AI(I + 1). (3)

Thus
Eγ(I) = 4A(I − 1/2). (4)

If I0 represent the bandhead spin, then

Eγ(I0 + 4)
Eγ(I0 + 2)

=
4I0 + 14
4I0 + 6

. (5)

Therefore,

I0 =
1
4

[
8Eγ(I0 + 2)

Eγ(I0 + 4) − Eγ(I0 + 2)
− 6
]
. (6)

The ratio Eγ(I) over spin I (E-Gamma Over Spin(EGOS)) is
given by

EGOS =
Eγ(I)

I − 1/2
= 4A (7)

when EGOS plotted against spin, it gives horizontal line.
For second estimation of bandhead spin, our proposed

formula equation (1) is used, thus EGOS becomes

EGOS = 4A + 8B(I2 − I + 1) (8)

which decrease hyperbolically.

4 Rotational Frequency and Moments of Inertia

In the framework of nuclear collective rotational model with
k = 0, the rotational frequency ℏω for the expression (1) is
given by

ℏω(I) =
dE(I)

d
√

I(I + 1)
= 2A [I(I + 1)]

1
2 + 4B [I(I + 1)]

3
2 .

(9)

The kinematic J(1) and dynamic J(2) moments of inertia
for the expression(1) are:

J(1)

ℏ2 =
1√

I(I + 1)

 dE(I)

d
√

I(I + 1)

−1

= J0 −
B
A2 [I(I + 1)]

+
2B2

A3 [I(I + 1)]2 − 4
B3

A4 [I(I + 1)]3

(10)

J(2)

ℏ2 =

[
d2E(I)

d[I(I + 1)]2

]−1

= J0 − 3
B
A2 [I(I + 1)]

+18
B2

A3 [I(I + 1)2] − 108
B3

A4 [I(I + 1)]3

(11)

where J0 is refereed to as the bandhead moment of inertia

J0 =
1

2A
. (12)

The two moments of inertia are obviously dependent.
One has

J(2) = J(1) + ω
dJ(1)

dω
. (13)

A.M. Khalaf and M.D. Okasha. Properties of Nuclear Superdeformed Rotational Bands in A ∼ 190 Mass Region 247



Volume 10 (2014) PROGRESS IN PHYSICS Issue 4 (October)

Table 1: Bandhead spin for 194Hg(SD1) derived from EGOS for first estimation A=5.2902 keV, I0 = 10.5

I Eγ EGOScal(keV/ℏ) EGOSexp(keV/ℏ)
ℏ (keV) I0 − 2 I0 I0 + 2 I0 − 2 I0 I0 + 2

12.5 253.929 25.392 21.16 18.137 25.393 21.160 18.137
14.5 296.2512 24.687 21.16 18.515 24.665 21.142 18.499
16.5 338.572 24.183 21.16 18.809 24.084 21.073 18.732
18.5 380.894 23.805 21.16 19.044 23.586 20.966 18.869
20.5 423.216 23.512 21.16 19.237 23.144 20.830 18.936
22.5 465.537 23.376 21.16 19.397 22.738 20.670 18.948
24.5 507.859 23.084 21.16 19.533 22.357 20.494 18.917
26.5 550.180 22.924 21.16 19.649 21.995 20.303 18.852
28.5 592.502 22.788 21.16 19.750 21.650 20.104 18.764
30.5 634.824 22.672 21.16 19.838 21.316 19.895 18.652
32.5 677.145 22.571 21.16 19.916 20.997 19.685 18.527
34.5 719.467 22.483 21.16 19.985 20.689 19.472 18.390
36.5 761.788 22.405 21.16 20.047 20.394 19.261 18.247
38.5 804.110 22.336 21.16 20.102 20.108 19.050 18.097
40.5 846.432 22.274 21.16 20.153 19.840 18.848 17.950
42.5 888.753 22.218 21.16 20.198 19.591 18.658 17.810
44.5 931.075 22.168 21.16 20.240 19.360 18.480 17.676
46.5 973.396 22.122 21.16 20.279 19.148 18.316 17.553

The dynamical moment of inertia varies often in a very
sensitive way with rotational frequency ℏω. In particular for
rigid rotor, we shall obtain:

J(2) = J(1) = Jrigid. (14)

Experimentally, for SDRB’s, the gamma-ray transition
energies are the only spectroscopic information universally
available. Therefore, to compare the structure of the SD
bands, information about their gamma-ray transition energies
are commonly translated into values of rotational frequency
ℏω and moments of inertia:

ℏω =
1
4

[Eγ(I) + Eγ(I + 2)] (MeV) (15)

J(1)(I − 1) =
2I − 1
Eγ(I)

(ℏ2MeV−1) (16)

J(2)(I) =
4

∆Eγ(I)
(ℏ2MeV−1) (17)

where ∆Eγ(I)=Eγ(I + 2)-Eγ(I) is the difference between two
consecutive transition energies. Therefore, the dynamical
moment of inertia J(2) which is linked to the second deriva-
tives of energy, does not depend on the knowledge of the spin
I but only on the measured transition energies. Theoretically,
the J(2) moment of inertia reflects the curvature of the single-
particle orbitals, while experimentally it is simply extracted
from the measured γ-ray energies. In terms of A and B, yield
directly:

J(1) =
1

2[A + 2B(I2 − 2I + 1)]
, (18)

J(2) =
1

2[A + B(6I2 + 6I + 5)]
. (19)

5 Identical Bands in SDRB’s

Since the experimental discovery of SD bands in rapidly ro-
tating nuclei, many unexpected features of these highly ex-
cited configurations were observed. One of the most strik-
ing feature is the existence of identical bands (IB’s) or twin
bands, that is identical transition energies Eγ in bands be-
longing to neighboring nuclei with different mass numbers.
To determine whether a pair of bands is identical or not, one
must calculate the difference between their gamma-transition
energies of the two bands 1 and 2, ∆Eγ=Eγ(1)-Eγ(2).

6 ∆I = 2 Staggering Effect in Transition Energies

To explore more clearly the ∆I = 2 staggering, for each band
the deviation of transition energies from a smooth reference is
determined by calculating the finite difference approximation
to the fourth derivative of the γ-ray energies at a given spin
d4Eγ/dI4. This smooth reference is given by

∆4Eγ(I) = 1
16 [Eγ(I − 4)

−4Eγ(I − 2) + 6Eγ(I)

−4Eγ(I + 2) + Eγ(I + 4)].

(20)

This formula includes five consecutive transition energies and
is denoted by five-point formula. For equation (1), we can
easily notice that in this case ∆4Eγ(I) vanishes.
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Table 2: The same as in Table (1) but for second estimation A = 5.5904 keV and B= −3.395 × 10−4 keV, I0 = 10

I Eγ EGOScal(keV/ℏ) EGOSexp(keV/ℏ)
ℏ (keV) I0 − 2 I0 I0 + 2 I0 − 2 I0 I0 + 2
12 253.102 26.642 22.008 18.748 26.729 22.080 18.809
14 295.399 25.686 21.881 19.058 25.738 21.925 19.096
16 336.884 24.954 21.734 19.250 24.976 21.753 19.267
18 377.513 24.355 21.572 19.359 24.347 21.565 19.353
20 417.181 23.838 21.393 19.403 23.805 21.364 19.376
22 455.830 23.375 21.201 19.397 23.321 21.151 19.351
24 493.408 22.949 20.996 19.349 22.877 20.930 19.288
26 529.873 22.547 20.779 19.268 22.462 20.701 19.195
28 565.185 22.164 20.552 19.158 22.075 20.469 19.082
30 599.324 21.793 20.316 19.026 21.704 20.232 18.948
32 632.266 21.432 20.071 18.873 21.353 19.997 18.803
34 664.012 21.079 19.821 18.704 21.018 19.763 18.649
36 694.573 20.733 19.565 18.521 20.698 19.532 18.490
38 723.943 20.392 19.305 18.327 20.391 19.304 18.326
40 752.145 20.057 19.041 18.123 20.104 19.086 18.166
42 779.183 19.726 18.775 17.912 19.839 18.883 18.015
44 805.102 19.400 18.508 17.694 19.593 18.692 17.870
46 829.924 19.078 18.240 17.472 19.368 18.517 17.737

7 Results and Discussion

The SDRB’s 192Hg(SD1), 194Hg(SD1), 194Hg(SD2),
194Pb(SD1) and 196Pb(SD1) in A ∼ 190 mass region are con-
sidered. For each nucleus the optimized two parameters A,B
of the model in question are fitted to reproduce the observed
experimental γ-ray transition energies Eexp

γ (I). The proce-
dure is repeated for several trial values A,B by using a com-
puter simulation search programm. The best parameters lead
to minimize the root mean square (rms) deviation

χ =

 1
N

N∑
i=1

Eexp
γ (Ii) − Ecal

γ (Ii)

Eexp
γ (Ii)

2


1
2

(21)

where N is the total number of experimental points consid-
ered in fitting procedure. The experimental data are taken
from reference [1,2]. The bandhead spins of the observed lev-
els have been extracted by applying the first and second-hand
estimations corresponding to pure rotator and our proposed
formula respectively by plotting EGOS versus spin.

The EGOS is a horizontal line for the exact I0 and will
shift to parabola when I0 ± 2 is assigned to I0 for pure rotator
(first estimation) and three parabola curves for our proposed
model (second estimation). As an example, this procedure il-
lustrated in Figure (1) for 194Hg(SD1) for bandheads I0 + 2,
I0, I0 − 2. The closed circles represents the experimental val-
ues while the solid curves the calculated ones. The numerical
values are presented in Tables (1,2).

The resulting best parameters A,B of the model and the
values of the lowest bandhead spins I0 and the bandhead mo-
ment of inertia J0 for our selected SDRB’s are listed in

Table (3).
In framework of the applied theoretical model, the dy-

namic J(2) and kinematic J(1) moments of inertia correspond-
ing to the calculated spins have been extracted. The com-
parison between the experimental γ-ray transition energies
and our calculations using the values of the model parame-
ters given in Table(1) for the SD bands of our selected nuclei
is illustrated in Figure(2).

Figure (3) illustrates the calculated kinematic J(1) (open
circle) and dynamic J(2) (closed circle) moments of inertia as
a function of rotational frequency ℏω. Both the moments of
inertia J(1) and J(2) exhibits a smooth increase with increasing
rotational frequency, the J(2) is significantly larger than J(1)

over a large rotational frequency range.
Investigating the tables and figures, we know that the γ-

ray transition energies, the kinematic J(1) and dynamic J(2)

moments of inertia of the SD states can be quantitatively de-
scribed excellently with our two-parameters collective rota-
tional formula. The J(2) values for both 192Hg(SD1) and
194Pb(SD1) are very close over the entire frequency range
ℏω < 0.25 MeV. However, at higher frequencies the differ-
ences in transition energies are no longer constant.

Moreover, the SD band of 194Pb(SD1) is populated at
lower spin values I0 = 6ℏ than that of 192Hg(SD1), I0 = 10ℏ.
The difference in γ-ray energies ∆Eγ between transitions in
192Hg(SD1) and 194Pb(SD1) are plotted in Figure (4). Up
to ℏω ∼ 0.25 MeV, the ∆Eγ values are small and constant.
Therefore, these two bands have been considered as identi-
cal bands (IB), however at higher frequency the difference in
transition energies are no longer constant. also the difference
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Table 3: The adapted model parameters A,B obtained by fitting procedure, the suggested bandhead spins I0 and the bandhead moments of
inertia J0. The SDRB’s are identified by the lowest observed Eγ.

SDRB A(keV) B(10−4keV) I0(ℏ) J0(ℏ2MeV−1) Eγ(keV)
192Hg(SD1) 5.6470 -3.5087 8 88.5425 214.4
194Hg(SD1) 5.5904 -3.3951 10 89.4390 253.93
194Hg(SD2) 5.3154 -2.2537 8 94.0662 200.79
194Pb(SD1) 5.6637 -1.5590 4 88.2815 124.9
196Pb(SD1) 5.7282 -3.1319 6 87.2874 171.5

Fig. 1: EGOS versus spin to determine the band head spin for
194Hg(SD-1) (a) for first estimation (b) for second estimation.

∆Eγ between 194Hg(SD1) and 192Hg(SD1) is approximately
4 keV at low frequency (see Figure (4)) are too longer to con-
sider these two bands as identical ones.

Another result of the present work is the observation of
a ∆I = 2 staggering effects in the transition energies for
194Hg(SD1) and 194Hg(SD2). For each band, the deviation of
the γ-ray transition energies from a smooth reference repre-
senting the finite difference approximation to the fourth
derivative of the γ-ray transition energies in a ∆I = 2 band
is calculated. Figure (5) show the resulting values of ∆4Eγ(I)
against rotational frequency ℏω for the two SD bands. A sig-
nificant staggering has been observed for 194Hg(SD2) in fre-

Fig. 2: Theoretical (solid curve) and experimental (closed circles)
gamma-ray transition energies Eγ of the SD bands observed in even-
even Hg and Pb nuclei. The theoretical values are calculated with the
corresponding parameters taken from Table (3).

quency range ℏω ∼ 0.3 MeV.

8 Conclusion

We studied in a simple version of two parameters collec-
tive model the five SDRB’s 192Hg(SD1), 194Hg(SD1,SD2),
194Pb(SD1) and 196Pb(SD1) in the mass region 190. Transi-
tion energies, rotational frequencies, dynamic and kinematic
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Fig. 3: The calculated results of kinematic J(1) (open circles) and
dynematic J(2) (closed circles) moments of inertia plotted as a func-
tion of the rotational frequency ℏω for the studied SDRB’s.

Fig. 4: Differences in the calculated γ-ray transition ener-
gies between 192Hg(SD-1)-194Pb(SD-1) and between 192Hg(SD-1)-
194Hg(SD-1).

moments of inertia have been calculated. An excellent agree-
ment with the experimental data justifies the application of

Fig. 5: The ∆ = 2 staggering obtained by the five points formula
∆4Eγ(I) as a function of rotational frequency ℏω for 194Hg(SD-1,
SD-2).

this version of the model. For the first-hand estimation of the
bandhead spin I0 of each SD band we have used the simple
rigid rotator to extrapolated the experimentally transition en-
ergies, and from the ratio between two consecutive transition
energies Eγ(I0+4)

Eγ(I0+2) , the spin value of the bandhead has been cal-
culated. For second hand estimation of I0, the EGOS versus
spin for our model are plotted, the plot gives three parabola
curves for I0 and I0 ± 2. The existence of identical bands
in the isotones 192Hg(SD1) and 194Pb(SD1) are investigated.
The ∆I = 2 staggering has been examined in the notation of
Cedercwall [23]. The staggering plot has been extracted and
investigated.
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We propose two kinds of least action principles. The first one is defined in a periodic
time, and when applied to creation and annihilation of particle pairs, leads to the formula
for the de Broglie frequency. The second one is defined in a double-time’s metric,
namely the longitudinal and transverse (related to the discreteness of the space) times.
If applied to a problem dealing with the fluctuations of the metric, this second principle
permit us to infer a coherence time. We interpret this as the neutron decay time, where
we take the fluctuation in the kinetic energy as being the difference between the mass-
energy of the neutron minus the sum of the mass-energies of the proton and electron.
The neutron decay time evaluated in this way, does not make any explicit reference to
the weak interactions.

1 Introduction

The least action (or Hamilton’s) principle [1,2] states that the
variation of the action A gives null result, namely

δA = δ
∫

Ldt = 0. (1)

In equation (1) L is the Lagrangian function, which de-
pends on the coordinates and velocities and sometimes also
on the time. Performing the variation of the action A we con-
sider the various paths, all of them starting in the initial time
t1 and ending in the final time t2.

2 The de Broglie Frequency

In this section we are giving somewhat more general char-
acter to the Lagrangian L, as being associated to some kind
of field which is able to create or to destroy virtual particles
pairs from the vacuum. Let us take the difference between the
initial and final times, as being a time interval of period T ,

t2 − t1 = T. (2)

Now we write

δA = δ
∮

Ldt =
∮
δL dt = 0. (3)

In equation (3) we used the closed-line-integral symbol,
but here it means that the difference in time is a periodic time
interval. Pursuing further we get∮

δL dt =
∫ T/2

0
δL dt +

∫ T

T/2
δL dt = 0. (4)

Indeed the creation and annihilation of particles pairs is a
stochastic process, but we are going to consider a “regular-
ized” form of it and we write∫ T/2

0
δL dt = −h, and

∫ T

T/2
δL dt = +h. (5)

According to equation (5), in the first half period a quantum
of action is destroyed, and in the second half one a quantum
of action is created. The sum of the two contributions gives
null result, recovering the classical case of the least action
principle.

Now we take the first integral of (5) as being the process
of creation of a virtual particle-antiparticle pair. We have∫ T/2

0
δL dt = < δL >

∫ T/2

0
dt (6)

In equation (6) < δL > corresponds to a time average of the
quantity δL. Next we interpret it as the energy decreasing of
the vacuum as a means to create a particle-antiparticle pair.
Therefore we have

< δL >|first half period = −2mc2. (7)

From equations (6) and (7), we get

2mc2 T
2
= h, (8)

leading to
mc2 = hν. (9)

Observe that equation (9) is the relation for the de Broglie’s
frequency, where ν ≡ 1/T.

3 The second action and the time of coherence

Inspired in the spirit of the string theory [3], we define a sec-
ond action A(2), where the integration of the Lagrangian func-
tion will be also done along a “transverse time” t′, besides the
integration which is usually performed along the “longitudi-
nal time” t. We write

A(2) =

∫ ∫
L dtdt′. (10)
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Now let us consider, as in reference [4], a fluctuating contri-
bution for the Lagrangian such that

δL =
1

2m
piχi j p j, (11)

where χi j is a tensor connecting the fluctuating momenta of
a particle of mass m. By taking the variation of the second
action, equation (10), we have

δA(2) =< δL >
∫ ∫

dtdt′ = 0. (12)

We observe that in this case, the average quantity < δL > is
equal to zero, due to the fluctuating nature of δL, namely

< δL >=
1

2m
< piχi j p j >= 0. (13)

In equation (12) we have extracted from the double inte-
gral, the “first momentum” or the time-average of the function
δL.

By analogy with the previous section where we have ob-
tained the frequency of de Broglie, let us evaluate the second
momentum (the variance) of δL. We write∫ ∫

(δL)2dtdt′ =< (δL)2 >

∫ τ/2
0

dt
∫ λ/c

0
dt′ = h2, (14)

where τ is the coherence time and λ is the Planck length.
Meanwhile we have

< (δL)2 >=
p4

4m2 . (15)

From equation (14) and (15) we have

p4

4m2

τλ

2c
= h2, (16)

and solving equation (16)for the coherence time we get

τ =
8m2ch2

p4λ
. (17)

4 Neutron decay and the discreteness of the space-time

In the previous section, the quantum fluctuations on the met-
ric [4] were related to the discreteness of the space-time. Then
a transverse time λ/c was considered, by taking a string of
width equal to the Planck length λ. On the other hand, in the
neutron-decay’s reaction, we have the available maximum ki-
netic energy K given by

K = (mn − Mp − me)c2 =
p2

2m
. (18)

From equations (17) and (18) we get

τ =
2ch2

K2λ
. (19)

Numerical evaluation of equation (19) gives for the coherence
time τ, the magnitude

τ = 1.04 × 103s. (20)

This value for the coherence time must be compared with the
calculated and measured times of the neutron decay, both of
approximately 900 s (please see references [5] and [6]). This
result suggests that the neutron decay, besides being a process
governed by the weak interactions, can also be related to the
fluctuations of the metric and to the discreteness of the space-
time.

5 Concluding remarks

Besides to be essentially a quantum object, due to its size and
its mass-energy content, neutron also is a composed particle
with its three constituent quarks of two down and one upper
flavor. Proton also is a composed particle, but some conser-
vation laws seem to forbid its decay. We can imagine that
in the decay process of the neutron, there is an intermediate
step where we have a fluctuation between the wave function
describing the integer neutron and the total wave function de-
scribing the reaction’s products. It seems that the fluctuating
kinetic energy introduced in section 4, nicely accounts for
this feature of the neutron decay. Jointly with the here in-
troduced concept of second action, which also considers the
discreteness of the space-time, we were able to estimate the
neutron decay time without explicit reference to the weak in-
teractions [5–7]. Finally a paper entitled “Improved Deter-
mination of the Neutron Lifetime”, was recently published in
the Physical Review Letters [8] (please see the discussions
and the references cited therein.)
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We examine the nature of the wave-particle duality in the Elastodynamics of the Space-

time Continuum (STCED), due to the propagation of deformations in the STC by lon-

gitudinal dilatation and transverse distortion wave displacements. We first consider the

special case of Electromagnetism which consists of transverse waves only, and use the

photon wavefunction to demonstrate that |Ψ|2 represents a physical energy density, not

a probability density. However, normalization by the system energy allows use of the

probabilistic formulation of quantum theory. In the STCED longitudinal and transverse

wave equations, the transverse wave is the source of the interference pattern in double

slit experiments, influencing the location of the longitudinal wave, as observed experi-

mentally. We note the similarity of STCED wave-particle duality and Louis de Broglie’s

“double solution”.

1 Introduction

As shown previously, in the Elastodynamics of the Spacetime

Continuum (STCED) [1–6], energy propagates in the STC

(spacetime continuum) as wave-like deformations which can

be decomposed into dilatations and distortions.

Dilatations include an invariant change in volume of the

spacetime continuum which is the source of the associated

rest-mass energy density of the deformation. The rest-mass

energy density of this longitudinal mode is given by [1, see

Eq.(32)]

ρc2 = 4κ̄0ε (1)

where ρ is the dilatation rest-mass density, c is the speed of

light, κ̄0 is the bulk modulus of the STC (the resistance of

the spacetime continuum to dilatations), and ε is the volume

dilatation. On the other hand, distortions correspond to a

change of shape (shearing stress) of the spacetime continuum

without a change in volume and are thus massless.

Thus deformations propagate in the spacetime continuum

by longitudinal (dilatation) and transverse (distortion) wave

displacements. This provides a natural explanation for wave-

particle duality, with the transverse mode corresponding to

the wave aspects of the deformations and the longitudinal

mode corresponding to the particle aspects of the deforma-

tions.

2 Wave-particle duality in Electromagnetism

In Electromagnetism, as shown in [1, see (121)], the volume

dilatation is ε = 0. Hence, the photon is massless and there is

no longitudinal mode of propagation. Electromagnetic waves

are massless transverse distortion waves.

The photons correspond to an energy flow along the di-

rection of propagation in 3-space resulting from the Poynting

vector. This longitudinal electromagnetic energy flux is mass-

less as it is due to distortion, not dilatation, of the spacetime

continuum. However, because this energy flux is along the

direction of propagation, it gives rise to the particle aspect of

the electromagnetic field, the photon. We should note how-

ever that the modern understanding of photons is that they are

massless excitations of the quantized electromagnetic field,

not particles per se. Thus in this case, the kinetic energy in

the longitudinal direction is carried by the distortion part of

the deformation, while the dilatation part, which carries the

rest-mass energy, is not present as the mass is 0.

This situation provides us with an opportunity to investi-

gate the transverse mode of propagation, independently of the

longitudinal mode. In general, the transverse propagation of

electromagnetic waves is given by sinusoidal waves ψ and the

intensity of the waves, corresponding to the energy density, is

given by |ψ|2. This is equivalent to the modulus squared of

the wavefunction used in Quantum Mechanics as a probabil-

ity density. A full analysis requires that we investigate further

the Quantum Mechanics of the photon, and in particular, the

photon wavefunction.

2.1 Photon wavefunction

The photon wavefunction is a first quantization description of

the electromagnetic field [7,8]. Historically, this development

was not done, as second quantization of the electromagnetic

field was first developed. As a result, photon wave mechanics

is not fully accepted in the scientific community, mainly be-

cause of the differences between particle and photon dynam-

ics. As opposed to a particle, the photon has zero rest-mass

and propagates at the speed of light. In addition, the position

operator cannot be defined for a photon, only the momentum

operator (photon localization problem).

Bialynicki-Birula [8–12], Sipe [13], and more recently

Mohr [14], Raymer and Smith [15–17] and others have de-

rived and promoted the use of the photon wavefunction. Bia-

lynicki-Birula defines the photon wavefunction as “a complex

vector-function of space coordinates r and time t that ade-

quately describes the quantum state of a single photon” [8].
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He sees three advantages to introducing a photon wavefunc-

tion [11]: it provides 1) a unified description of both mas-

sive and massless particles both in first quantization and sec-

ond quantization; 2) an easier description of photon dynamics

without having to resort to second quantization; 3) new meth-

ods of describing photons.

As pointed out in [7] and references therein, the pho-

ton wave equation is now used to study the propagation of

photons in media, the quantum properties of electromagnetic

waves in structured media, and the scattering of electromag-

netic waves in both isotropic and anisotropic inhomogeneous

media. Raymer and Smith [16, 17] have extended the use

of the photon wavefunction to the analysis of multi-photon

states and coherence theory. To the above list, in this paper,

we add an additional benefit of the photon wavefunction: the

clarification of the physical interpretation of the quantum me-

chanical wavefunction.

The photon wavefunction is derived from the description

of the electromagnetic field based on the complex form of

the Maxwell equations first used by Riemann, Silberstein and

Bateman [8] (the Riemann–Silberstein vector). As summa-

rized by Bialynicki-Birula [12], “[t]he Riemann–Silberstein

vector on the one hand contains full information about the

state of the classical electromagnetic field and on the other

hand it may serve as the photon wave function in the quan-

tum theory”. The Maxwell equations are then written as [8]

i ∂tF(r, t) = c∇ × F(r, t)

∇ · F(r, t) = 0
(2)

where

F(r, t) =















D(r, t)
√

2ǫ0

+ i
B(r, t)
√

2µ0















(3)

and where D(r, t) and B(r, t) have their usual significance.

Then the dynamical quantities like the energy density and

the Poynting vector are given by [8]

E =

∫

F∗ · F d3r

S =
1

2ic

∫

F∗ × F d3r

(4)

where F∗ denotes the complex conjugate. The sign selected in

(3) reflects positive helicity (projection of the spin on the di-

rection of momentum) corresponding to left-handed circular

polarization. Photons of negative helicity corresponding to

right-handed circular polarization are represented by chang-

ing the sign from i to −i in (3). Hence (3) can be written as

F±(r, t) =















D(r, t)
√

2ǫ0

± i
B(r, t)
√

2µ0















(5)

to represent both photon polarization states.

A photon of arbitrary polarization is thus represented by

a combination of left- and right-handed circular polarization

states. The photon wavefunction is then given by the six-

component vector

Ψ(r, t) =

(

F+(r, t)

F−(r, t)

)

. (6)

The corresponding photon wave equation is discussed in [11].

2.2 Physical interpretation of the photon wavefunction

From (6) and (5), we calculate the modulus squared of the

photon wavefunction to obtain [7]

|Ψ(r, t)|2 =
(

ǫ0|E|2

2
+
|B|2

2µ0

)

. (7)

The modulus squared of the photon wavefunction Ψ(r, t) gi-

ves the electromagnetic energy density at a given position and

time. This is the physical interpretation of the quantum me-

chanical |Ψ(r, t)|2 for electromagnetic transverse waves in the

absence of longitudinal waves.

Bialynicki-Birula proposes to convert |Ψ(r, t)|2 to a prob-

ability density as required by the accepted quantum mechan-

ical probabilistic interpretation [11]. This he achieves by di-

viding the modulus squared of the photon wavefunction by

the expectation value of the energy <E> [11, see his equation

(44)]. In this way, it is made to describe in probabilistic terms

the energy distribution in space associated with a photon.

Thus the probabilistic formulation of quantum theory is

preserved, while the physical interpretation of |Ψ|2 is shown

to correspond to an energy density. Raymer and Smith [17]

state that “[a] strong argument in favour of the energy-density

wave function form of PWM [Photon Wave Mechanics] is

that it bears strong connections to other, well-established the-

ories—both quantum and classical—such as photodetection

theory, classical and quantum optical coherence theory, and

the biphoton amplitude, which is used in most discussions of

spontaneous parametric down conversion”.

Hence, we have to conclude that the appropriate physi-

cal interpretation of |Ψ|2 is that it represents a physical en-

ergy density, not a probability density. However, the energy

density can be converted to a probability density once it is

normalized with the system energy (as done by Bialynicki-

Birula for the photon wavefunction). In this way, STCED

does not replace the probabilistic formulation of quantum the-

ory, it just helps to understand the physics of quantum the-

ory. The two formulations are equivalent, which explains the

success of the probabilistic formulation of quantum theory.

In actual practice, the quantum mechanical probability for-

mulation can be used as is, as it gives the same results as

the physical energy density formulation of STCED. However,

the physical intensity waves of STCED help us understand

the physics of the quantum mechanical wavefunction and the

physics of wave-particle duality.

256 Pierre A. Millette. Wave-Particle Duality in the Elastodynamics of the Spacetime Continuum (STCED)



Issue 4 (October) PROGRESS IN PHYSICS Volume 10 (2014)

It is important to note that the energy density physical

interpretation of |Ψ|2 applies just as much to systems as to

single particles, as for the probability density interpretation.

3 Wave-particle duality in STCED

In STCED, the displacement uν of a deformation from its un-

deformed state can be decomposed into a longitudinal (dilata-

tion) component uν‖ and a transverse (distortion) component

uν⊥. The volume dilatation ε is given by the relation [1, see

(44)]

ε = u‖
µ

;µ. (8)

The longitudinal displacement wave equation and the trans-

verse displacement wave equation of a deformation are given

respectively by [1, see (196)]

∇2uν‖ = −
µ̄0 + λ̄0

µ̄0

ε;ν

∇2uν⊥ +
k̄0

µ̄0

ε (xµ) uν⊥ = 0

(9)

where ∇2 is the 4-D operator, λ̄0 and µ̄0 are the Lamé elas-

tic constants of the spacetime continuum and k̄0 is the elastic

force constant of the spacetime continuum. The constant µ̄0

is the shear modulus (the resistance of the continuum to dis-

tortions) and λ̄0 is expressed in terms of κ̄0, the bulk modulus

(as in (1) in Section 1) according to

λ̄0 = κ̄0 − µ̄0/2 (10)

in a four-dimensional continuum. The wave equation for uν‖
describes the propagation of longitudinal displacements, whi-

le the wave equation for uν⊥ describes the propagation of trans-

verse displacements in the spacetime continuum. The STCED

deformation wave displacements solution is similar to Louis

de Broglie’s “double solution” [18, 19].

3.1 Wave propagation in STCED

The electromagnetic case, as seen in Section 2, provides a

physical interpretation of the wavefunction for transverse wa-

ve displacements. This interpretation should apply in general

to any wavefunction Ψ. In STCED, in the general case, ev-

ery deformation can be decomposed into a combination of a

transverse mode corresponding to the wave aspect of the de-

formation, and a longitudinal mode corresponding to the par-

ticle aspect of the deformation [2]. Thus the physical interpre-

tation of Section 2.2 applies to the general STCED transverse

wave displacements, not only to the electromagnetic ones.

Hence, |Ψ|2 represents the physical intensity (energy den-

sity) of the transverse (distortion) wave, rather than the prob-

ability density of quantum theory. It corresponds to the trans-

verse field energy of the deformation. It is not the same as

the particle, which corresponds to the longitudinal (dilata-

tion) wave displacement and is localized within the deforma-

tion via the massive volume dilatation, as discussed in the

next Section 3.2. However, |Ψ|2 can be normalized with the

system energy and converted into a probability density, thus

allowing the use of the existing probabilistic formulation of

quantum theory. Additionally, the physical intensity waves of

STCED help us understand the physics of wave-particle dual-

ity and resolve the paradoxes of quantum theory.

3.2 Particle propagation in STCED

Particles propagate in the spacetime continuum as longitudi-

nal wave displacements. Mass is proportional to the volume

dilatation ε of the longitudinal mode of the deformation as

per (1). This longitudinal mode displacement satisfies a wave

equation for ε, different from the transverse mode displace-

ment wave equation for Ψ. This longitudinal dilatation wave

equation for ε is given by [1, see (204)]

∇2ε = − k̄0

2µ̄0 + λ̄0

uν⊥ε;ν . (11)

It is important to note that the inhomogeneous term on the

R.H.S. includes a dot product coupling between the trans-

verse displacement uν⊥ and the gradient of the volume dilata-

tion ε;ν for the solution of the longitudinal dilatation wave

equation for ε. This explains the behavior of electrons in the

double slit interference experiment.

The transverse distortion wave equation for ωµν [1, see

(210)]

∇2ωµν +
k̄0

µ̄0

ε (xµ) ωµν =
1

2

k̄0

µ̄0

(ε;µuν⊥ − ε;νu
µ
⊥) (12)

shows a R.H.S. cross product coupling between the transverse

displacement uν⊥ and the gradient of the volume dilatation ε;µ

for the solution of the transverse distortion wave equation

for ωµν. The transverse distortion wave ωµν corresponds to

a multi-component wavefunction Ψ.

A deformation propagating in the spacetime continuum

consists of a combination of a transverse and a longitudinal

wave. The transverse wave is the source of the interference

pattern in double slit experiments, which impacts the location

of the associated longitudinal wave of the individual parti-

cle in generating the interference pattern. The longitudinal

dilatation wave behaves as a particle and goes through one

of the slits, even as it follows the interference pattern dic-

tated by the transverse distortion wave, as observed experi-

mentally [20, see in particular Figure 4] and as seen in the

coupling between ε;ν and uν⊥ in (11) and (12) above.

These results are in agreement with the results of the Ján-

ossy-Naray, Clauser, and Dagenais and Mandel experiments

on the self-interference of photons and the neutron interfer-

ometry experiments performed by Bonse and Rauch [21, see

pp. 73-81]. The transverse distortion wave generates the inter-

ference pattern, while the longitudinal wave’s dilatation (par-

ticle) follows a specific action, with its final location guided

by the transverse wave’s interference pattern.
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The longitudinal wave is similar to the de Broglie “singu-

larity-wave function” [18]. However, in STCED the particle

is not a singularity of the wave, but is instead characterized by

its mass which arises from the volume dilatation propagating

as part of the longitudinal wave. There is no need for the

collapse of the wavefunction Ψ, as the particle resides in the

longitudinal wave, not the transverse one. A measurement

of a particle’s position is a measurement of the longitudinal

wave, not the transverse wave.

4 Discussion and conclusion

In this paper, we have examined the nature of the wave-parti-

cle duality that comes out of the Elastodynamics of the Space-

time Continuum (STCED). We have noted that deformations

propagate in the spacetime continuum by longitudinal (dilata-

tion) and transverse (distortion) wave displacements, which

provides a natural explanation for wave-particle duality, with

the transverse mode corresponding to the wave aspects of the

deformations and the longitudinal mode corresponding to the

particle aspects of the deformations.

We have considered the special case of Electromagnetism,

which is characterized by a transverse mode (the electromag-

netic radiation), but no longitudinal mode (as the photon is

massless), to help in the clarification of the physical inter-

pretation of the quantum mechanical wavefunction. To that

purpose, we have considered the photon wavefunction, and

have demonstrated that the physical interpretation of |Ψ|2 rep-

resents an energy density, not a probability density. However,

it can be normalized with the system energy to be converted

to a probability density and allow the use of the probabilistic

formulation of quantum theory. We have also noted that the

energy density physical interpretation of |Ψ|2 applies just as

much to systems as to single particles.

We have then looked at the general STCED case, where

every deformation can be decomposed into a combination of

a transverse mode corresponding to the wave aspect of the de-

formation, and a longitudinal mode corresponding to the par-

ticle aspect of the deformation, and concluded that the phys-

ical interpretation of the photon wavefunction applies to the

general STCED transverse wave displacements, not only to

the electromagnetic ones.

We have reviewed the STCED longitudinal dilatation wa-

ve equation for ε corresponding to the mass component (par-

ticle) and the transverse distortion wave equation for ωµν cor-

responding to a multi-component wavefunction Ψ. We have

noted the coupling on the R.H.S. of both equations between

ε;µ and uν⊥, showing that even though the transverse wave is

the source of the interference pattern in double slit experi-

ments as for the photon wavefunction, and the longitudinal

dilatation wave behaves as a particle, the latter follows the in-

terference pattern dictated by the transverse distortion wave

as observed experimentally.

We have also noted the similarity of STCED wave-particle

duality to Louis de Broglie’s “double solution” and “singula-

rity-wave function”, even though in STCED the particle is not

a singularity of the wave, but is instead characterized by its

mass which arises from the volume dilatation propagating as

part of the longitudinal wave.
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This paper investigates the Gödel’s exact solution of the Einstein equations which

describes a stationary homogeneous cosmological Universe inducing closed timelike

curves CTCs). This model is generally dismissed because it exhibits a rotational sym-

metry and it requires a non zero cosmological constant in contradiction with the current

astronomical observations. If the cosmological term is assumed to be slightly variable,

we show that this metric can be compatible with the Hubble expansion, which makes

the Gödel model a viable representation of our Universe.

Introduction

In his original paper [1], Kurt Gödel has derived an exact so-

lution to Einstein’s field equations in which the matter takes

the form of a pressure-free perfect fluid (dust solution). This

R
4 manifold is homogeneous but non-isotropic and it exhibits

a specific rotational symmetry which allows for the existence

of closed time like curves since the light cone opens up and

tips over as the Gödel radial coordinate increases. In addition,

it implies a non zero cosmological term and a constant scalar

curvature, therefore it doesnot admit a Hubble expansion in

the whole, which tends to contradict all current observations.

We suggest here to stick to the Gödel model which we

consider as the true Universe, and we state that the Hubble

expansion can yet be maintained in a particular location with

specific coordinates transformations, where the Gödel rota-

tion is unobservable.

In this distinguished location, our derivations lead to an

open Universe without cosmological term and as a result, no

future singularity will ever appear in this local World.

Our model however, is bound to a main restriction: for

physical reasons, it provides a solution which holds only for

the existence of the cosmic scale factor, within the Gödel

metric.

This improved Gödel Universe which we present here,

has nevertheless the advantage of agreeably coping with the

observational facts.

Some notations

Space-time indices: 0, 1, 2, 3.

Newton’s gravitation constant: G.

The velocity of light is c = 1.

Space-time signature: −2.

1 Homogeneous space-times

1.1 Roberston-Walker space

Our actual observed Universe is spatially homogeneous: if

we can see these observations identically in different direc-

tions, the model is said isotropic. The Robertson-Walker met-

ric is an exact spherically symmetric solution. This prop-

erty would imply that the Universe admits a six-parameter

group of isometries whose surfaces of transitivity are space-

like three-surfaces of constant curvatures. (An action of a

group is transitive on the manifoldM, if it can map any point

of M into any other point of M.) The spatial metric is ex-

pressed by

dl2 =
dr2

1 + r2/F2
+ r2

(

sin2 θ dϕ2 + dθ2
)

. (1.1)

In the full RW model F(t) is called the cosmic scale factor

which varies with the (cosmic) proper time t of the whole

space.

For an open (infinite) Universe, with negative curvature

K(t) =
k

F2
, where k = −1. (1.2)

and the three-spaces are diffeomorphic to R3.

The standard formulation is given by

(ds2)RW = F2
(

dη2–dχ2 − sinh2 χ
(

sin2 θ dϕ2 + dθ2
)

)

(1.3)

with the usual parametrizations

dt = F dη and r = F sinhχ . (1.4)

In the RW Universe, the matter with mean density ρ is non

interacting (dust) and the energy-momentum tensor is that of

a pressure free perfect fluid:

Tab = ρ ua ub . (1.5)

From the corresponding field equations we arrive at the

temporal coordinate [2]

η = ±

∫

dF

F

√

[

8πG
3
ρ F2 + 1

]

, (1.6)

F = F0 (cosh η − 1) , (1.7)

with

F0 =
4πGρF3

3
, (1.8)

Where the ± sign depends on the light emitted either from the

coordinates origin or reaching this origin.
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1.2 The Gödel metric

The Gödel line element is generically given by

(ds2)G = B2
[

dx2
0 − dx2

1 +
e2x1

2
dx2

2 – dx2
3 +

+ 2e2x1 (dx0 + dx2)

]

, (1.9)

where B > 0 is a constant in the original formulation.

This space-time has a five dimensional group of isome-

tries which is transitive. It admits a five dimensional Lie al-

gebra of Killing vector fields generated by a time translation

∂x0
, two spatial translations ∂x1

, ∂x2
plus two further Killing

vector fields:

∂x3
–x2∂x3

and 2ex1∂x0
+ x2∂x3

+













e2x1 −
x2

2

2
∂x2













.

In all current papers, the Gödel metric is always described

as the direct sum of the metric

(ds2)G1
= B2

[

dx2
0 − dx2

1 + dx2
2

e2x1

2
+

+ 2ex1 (dx0 + dx2)

]

(1.10)

on the manifoldM1 = R3 and

(ds2)G2
= B2(−dx2

3) (1.11)

on the manifoldM2 = R1.

This means that in the usual treatments, in order to ana-

lyze the properties of the Gödel solution it is always sufficient

to consider onlyM1. The coordinate dx3 is deemed irrelevant

and is thus simply suppressed in the classical representation,

which in our opinion reveals a certain lack of completeness.

In what follows, we consider the complete solution, where we

assign a specific meaning to dx3.

Let us remark that the Gödel space is homogeneous but

not isotropic.

1.3 Classical features of Gödel’s metric

Computing the connection coefficients Γ c
ab

from the gab given

in (1.9) eventually yield

R00 = 1, R22 = e2x1 , R02 = R20 = ex1 . (1.12)

All other Rab vanish.

Hence:

R =
1

B2
. (1.13)

The unit vector (world velocity) following the x0-lines is

shown to have the following contravariant components

1

B
, 0, 0, 0

and the covariant components

B, 0, Bex1 , 0

so we obtain

Rab =
1

B2
ua ub . (1.14)

Since the curvature scalar is a constant, the Gödel field

equations read

(Gab)G = Rab −
1

2
gabR = 8πGρ ua ub + Λgab , (1.15)

where Λ is the cosmological term which is here inferred as

−4πGρ, i.e.:

1

B2
= 8πGρ , (1.16)

Λ = −
R

2
= −

1

2B2
. (1.17)

We next define new coordinates (t, w, φ) onM1 by

Ex1 = cosh 2w + cosφ sinh 2w , (1.18)

x2 ex1 =
√

2 sin φ sinh 2w , (1.19)

tan
1

2

(

φ +
x0 − 2t
√

2

)

= e−2w tan
φ

2
. (1.20)

This leads to the new line element

(ds2)G = 4B2
((

dt2–dw2–dy2 + sinh4 w − sinh2 w
)

dφ2 +

+ 2
√

2 sinh2 w dφ dt
)

(1.21)

which exhibits the rotational symmetry of the solution about

the axis w = 0, since we clearly see that the gab do not depend

on θ. Gödel inferred that matter everywhere rotates with the

angular velocity 2
√

4πGρ.

Let us consider the reduced Gödel metric

(ds2)G1
= 4B2

((

dt2 − dw2 + sinh4 w − sinh2 w
)

dφ2 +

+ 2
√

2 sinh2 w dφ dt
)

.

All light rays emitted from an event on the symmetry axis

reconverge at a later event on this axis, with the null geodesics

forming a circular cusp [3].

If a curve c is defined by sinh4 w = 1, that is

c = ln(1 +
√

2), (1.22)

hence, any circle w > ln(1+
√

2) in the plane t = 0, is a closed

timelike curve.
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2 The modified Gödel metric

2.1 Conformal transformation

Now we will assume that the Λ-term is slightly varying with

the time t, so B is also variable through the dust density. See

(1.16) for detail.

By setting

y = r coshw, (2.1)

where r is another radial parameter, we choose:

B =
1

2















1 –
L0

2
√

t2–y2















2

(2.2)

where L0 is a constant whose meaning will become apparent

in the next sub-section. B is now identified with a conformal

factor.

Note: one of the Kretschmann scalar is no longer an in-

variant

Rabcd Rabcd =
6

B4
(2.3)

which reflects the fact that the Gödel space-time may be not

fully homogeneous.

Anticipating on our postulate, we will state that the vari-

ation of B is only localized in a certain region of the Gödel

model. TheΛ-term remains constant throughout the complete

metric as initially derived, thus preserving its homogeneity.

2.2 The postulate

Our fundamental assumption will now consist of considering

our observed Universe as being local. By local we mean that

the rotation φ is unobservable since we assume that our world

is situated at

w = 0.

Our (local) Universe is now becoming isotropic.

In this case, the Gödel metric reduces to a standard con-

formal solution where the light cone is centered about the t-

axis:

(ds2)G =

[

1 −
L0

2
√

t2 − r2

] 4
(

dt2–dr2
)

. (2.4)

We now make the following transformations

L0 = F0 (2.5)

with F0 defined in (1.8)

r =
F0

2
eη sinhχ , t =

F0

2
eη coshχ , (2.6)

F0

2
eη =

√
t2–r2 , (2.7)

tanhχ =
r

t
, (2.8)

and we retrieve the Roberston-Walker metric for an open Uni-

verse with the sole radial coordinate r:

(ds2)RW = F2(η)
[

dη2 – dχ2
]

. (2.9)

Remark: The Weyl tensor of the Gödel solution

Cab
cd = Rab

cd +
R

3
δa

[ c δ
b

d ] + 2δ
[ a

[ c
R

b ]

d ]
(2.10)

which has Petrov type D, vanishes for (2.9). Indeed, the

equivalent metric (2.4) implies that Cab
cd
= 0 for this con-

formally flat space-time.

Our observed Universe would then be devoid of the Weyl

curvature which explains why it is purely described in terms

of the Ricci tensor alone. In this view, Einstein was perhaps

an even more exceptional visionary mind than is yet currently

admitted.

2.3 Hubble expansion

In our local world, the null geodesics are obviously given by

(ds2)RW = 0, that is

dη = ± dχ (2.11)

and integrating

χ = ±η + const. (2.12)

Let us place ourselves at t(η), where we observe a light

ray emitted at χ where its frequency is ν0. In virtue of (2.12),

the emission time will be t(η−χ), and we observe an apparent

frequency given by:

ν =
ν0 F (η − χ)

F (η)
. (2.13)

As F (η) increases monotonically, we have ν < ν0 which

is the expression of a red shifted light. Most observed red

shifts are rather small, so that F (η − χ) can be expanded as a

Taylor series about t(η− χ) = t(η) and we finally get, limiting

to the first two terms

F (η − χ) = F (η) +
[

t (η − χ) − t (η)
]

F′(η) (2.14)

= F (η)
{

1 + H0

[

t (η − χ) − t (η)
]

}

(2.15)

where F′ denotes differentiation with respect to η

H0 =
F′(η)

F (η)
(2.16)

is the present numerical value of Hubble constant.

The Gödel solution has a non-zero cosmological term, but

not the local RW metric.

This agrees with the fact that our open local Universe has

a singularity in the past and no singularity in the future [4], in

accordance with astronomical observations.
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Concluding remarks

Closed timelike curves turn out to exist in many other exact

solutions to Einstein’s field equations.

It would seem that the first model exhibiting this property

was pioneered by C. Lanczos in 1924 [5], and later rediscov-

ered under another form by W. J. Van Stockum in 1937 [6].

However, unlike the Gödel solution, the dust particles

of these Universes are rotating about a geometrically distin-

guished axis.

Even worse, the matter density is shown to increase with

radius w, a feature which seriously contradicts all current ob-

servations.

In this sense, the Gödel metric appears as a more plausible

model characterizing a broaden Universe which is compatible

with our astronomical data, provided one is prepared to accept

the fact that our observed world is purely local.
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