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Astrobiological Aspects of Global Scaling

Hartmut Müller
E-mail: hm@interscalar.com

In this paper we apply chain systems of harmonic quantum oscillators as a fractal model
of matter to the analysis of astrophysical and biological metric data. Astrobiological
aspects of global scaling are discussed.

Introduction

Already in [1] we have shown that scale invariance is a fun-
damental characteristic of chain systems of harmonic oscilla-
tors. In [2] we applied this model on chain systems of har-
monic quantum oscillators and could show that particle rest
masses coincide with the eigenstates of the system. This is
valid not only for hadrons, but for mesons and leptons as well.
On this background we proposed scaling as model of mass
emergency [3] and introduced our fractal model of matter as
a chain system of oscillating protons and electrons. Andreas
Ries [4] demonstrated that this model allows for the predic-
tion of the most abundant isotope of a given chemical ele-
ment.

Our fractal model of matter as a chain system of oscillat-
ing protons and electrons provides also a good description of
the mass distribution of large celestial bodies in the Solar Sys-
tem [5]. Physical properties of celestial bodies such as mass,
size, rotation and orbital period can be understood as macro-
scopic quantized eigenstates in chain systems of oscillating
protons and electrons [6]. This allows to see a connection
between the stability of the Solar system and the stability of
electron and proton and consider scale invariance as a form-
ing factor of the Solar system.

In [7] we have calculated the model masses of unknown
planets in the Solar system which correspond well with the
hypothesis of Batygin and Brown [8] about a new gas giant
called “planet 9” and with the hypothesis of Volk and Mal-
hotra [9] about an unknown Mars-to-Earth mass “planet 10”
beyond Pluto.

In [6] we have proposed a new interpretation of the cos-
mic microwave background as a stable eigenstate in a chain
system of oscillating protons. Therefore, our model may be
of cosmological significance as well.

In [10] we applied our model to the domain of biophysics
and have demonstrated that the frequency ranges of electrical
brain activity and of other cyclical biological processes corre-
spond with eigenstates in chain systems of oscillating protons
and electrons. This would indicate that biological cycles may
have a subatomic origin.

Scale invariance as a property of the metric characteristics
of biological organisms is well studied [11, 12] and it is not
an exclusive characteristic of adult physiology. Furthermore,
many metric characteristics of human physiology, for exam-
ple, the frequency ranges of electrical brain activity [13, 14],

are common to most mammalian species.
In this paper we demonstrate how the scale invariance of

our fractal model of matter as a chain system of oscillating
protons and electrons allows us to see a connection between
the metric characteristics of biological organisms and those
of the celestial bodies. This connection could be of astrobio-
logical significance.

Methods

In [1] we have shown that the set of natural frequencies of a
chain system of similar harmonic oscillators coincides with
a set of finite continued fractions F , which are natural loga-
rithms:

ln (ω jk/ω00)= n j0 +
z

n j1 +
z

n j2 + . . .
+

z
n jk

=

= [z, n j0; n j1, n j2, . . . , n jk]=F ,

(1)

where ω jk is the set of angular frequencies and ω00 is the fun-
damental frequency of the set. The denominators are integer:
n j0, n j1, n j2, . . . , n jk ∈Z, the cardinality j ∈N of the set and the
number k ∈N of layers are finite. In the canonical form, the
numerator z equals 1.

For finite continued fractions F (1), ranges of high dis-
tribution density (nodes) arise near reciprocal integers 1, 1/2,
1/3, 1/4, . . . which are the attractor points of the distribution.

Any finite continued fraction represents a rational num-
ber [15]. Therefore, all natural frequencies ω jk in (1) are irra-
tional, because for rational exponents the natural exponential
function is transcendental [16]. It is probable that this cir-
cumstance provides for high stability of an oscillating chain
system because it prevents resonance interaction between the
elements of the system [17]. Already in 1987 we have applied
continued fractions of the type F (1) as criterion of stability
in engineering [18, 19].

In the case of harmonic quantum oscillators, the contin-
ued fractions F (1) not only define fractal sets of natural
angular frequencies ω jk , oscillation periods τ jk = 1/ω jk and
wavelengths λ jk = c/ω jk of the chain system, but also fractal
sets of energies E jk = ℏ ·ω jk and masses m jk =E jk/c2 which
correspond with the eigenstates of the system. For this rea-
son, we call the continued fraction F (1) the “fundamental

Hartmut Müller. Astrobiological Aspects of Global Scaling 3
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Fig. 1: The canonical projection of F (natural logarithmic representation).

fractal” of eigenstates in chain systems of harmonic quantum
oscillators.

Normal matter is formed by nucleons and electrons be-
cause they are exceptionally stable. Furthermore, protons
and neutrons have similar rest masses (the difference being
only 0.14 percent). This allows us to interpret the proton and
the neutron as similar quantum oscillators with regard to their
rest masses. Therefore, in [3, 6] we have introduced a fractal
model of matter as a chain system of oscillating protons and
electrons.

Table 1 shows the basic set of electron and proton units
that can be considered as a fundamental metrology (c is the
speed of light in vacuum, ℏ is the reduced Planck constant).

We hypothesize that scale invariance based on the funda-
mental fractal F (1), calibrated on the metric properties of the
proton and electron, is a universal characteristic of organized
matter. This hypothesis we have called ‘global scaling’ [6].

Results

Let’s start with the metric characteristics large celestial bod-
ies. The current amount of the Solar mass supports our hy-
pothesis of global scaling, because it corresponds to a main
attractor node of the F (1) calibrated on the electron. In
fact, the natural logarithm of the Sun-to-electron mass ratio
is close to an integer number:

ln
(

MSun

melectron

)
= ln

(
1.9884 · 1030 kg

9.10938356 · 10−31 kg

)
= 138.936

The electron rest mass is me = 9.10938356 · 10−31 kg [20].
In the canonical form of the fundamental fractal F (1),

shorter continued fractions correspond with more stable
eigenstates of a chain system of harmonic oscillators. There-

Table 1: The basic set of physical properties of the electron and
proton. Data taken from Particle Data Group [20]. Frequencies,
oscillation periods and the proton wavelength are calculated.

property electron proton

rest mass m 9.10938356(11) · 10−31 kg 1.672621898(21) · 10−27 kg
energy E=mc2 0.5109989461(31) MeV 938.2720813(58) MeV
angular frequency
ω=E/ℏ

7.76344071 · 1020 Hz 1.42548624 · 1024 Hz

oscillation period
τ= 1/ω

1.28808867 · 10−21s 7.01515 · 10−25 s

wavelength
λ= c/ω

3.8615926764(18) · 10−13 m 2.1030891 · 10−16 m

fore, integer logarithms represent the most stable eigenstates
(main attractor nodes).

In the framework of our model of matter, the correspon-
dence of the Sun-to-electron mass ratio with a main attractor
node of the fundamental fractal F (1) is a criterion of high
stability of the chain system of quantum oscillators that ap-
pears as the star we call ‘Sun’. Therefore, the current body
mass of the Sun is not casual, but an essential aspect of its
stability.

Also the correspondence of the current radius of the Sun
with a main attractor node (integer logarithm) now we can
understand as criterion of its stability:

ln
(

RSun

λelectron

)
= ln

(
6.96407 · 108 m

3.8615926764 · 10−13 m

)
= 48.945

The angular Compton wavelength of the electron is λe =

= 3.8615926764 · 10−13 m [20].
The natural logarithm of the proton-to-electron mass ra-

tio is approximately 7.5 and consequently, the fundamental
fractal F calibrated on the proton will be shifted by 7.5 log-
arithmic units relative to the F calibrated on the electron:

ln
(

1.672621898 · 10−27 kg
9.10938356 · 10−31 kg

)
≈ 7.5

Consequently, integer logarithms of the proton F correspond
to half logarithms of the electronF and vice versa. Therefore,
all the most stable eigenstates are connected through division
of the integer logarithms by 2.

As we have seen above, the Solar mass coincides with the
main attractor and stability node [139;∞] of the F calibrated
on the electron. Dividing the logarithm 139/2= 69.5 we re-
ceive the logarithm of the node [69; 2] that is the main node
[62;∞] of the F calibrated on the proton, because 69.5−
− 7.5= 62.

This main node corresponds to the mass: mp · exp (62)=
= 1.4 Kg, where mp = 1.672621 · 10−27 kg is the proton rest
mass [20]. Probably, the mass range around 1.4 kg isn’t no-
ticeable in astrophysics, but in biophysics it is. This mass
range is typical for the adult human brain [21] represented
by 7 billion samples (current terrestrial population of homo
sapiens).

At the same time, the Solar mass is near the node [131; 2]
of the F calibrated on the proton, because 139− 7.5= 131.5.
Dividing the logarithm 131.5/2= 65.75 we receive a loga-
rithm that corresponds to the significant subnode [66;−4] in
the range of the world statistical average adult human body
mass: mp · exp (65.75)= 60 kg [20].

4 Hartmut Müller. Astrobiological Aspects of Global Scaling
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Jupiter’s body mass coincides with the main attractor
node [132;∞] of the electron-calibrated F (1):

ln
(

MJupiter

melectron

)
= ln

(
1.8986 · 1027 kg

9.10938356 · 10−31 kg

)
= 131.98

Dividing the logarithm 132/2= 66 we receive the logarithm
of the main node [66;∞] that corresponds to the mass:
me · exp (66)= 42 g. This mass range coincides with the av-
erage mass of the human spinal cord [23].

At the same time, Jupiter’s body mass is near the node
[124; 5] of the proton-calibrated F (1):

ln
(

MJupiter

mproton

)
= ln

(
1.8986 · 1027 kg

1.672621 · 10−27 kg

)
= 124.47

The half value of this logarithm 124.47/2= 62.24 corresponds
to the mass: mp · exp (62.24)= 1.78 kg that is the range of the
adult human liver [21]. It is remarkable that the most massive
planet of the Solar System corresponds with the most massive
organ of the human organism – the liver.

Saturn’s body mass is near the subnode [123; 4] of the
proton-calibrated F (1):

ln
(

MSaturn

mproton

)
= ln

(
5.6836 · 1023 kg

1.672621 · 10−27 kg

)
= 123.26

The half value of this logarithm 123.26/2= 61.63 corresponds
to the mass: mp · exp (61.63)= 0.975 kg that is the range of
the adult human lungs [21]. It is remarkable that the second
massive planet of the Solar System corresponds with the sec-
ond massive organ of the human organism – the lungs.

The radius of Saturn is near the main node [54;∞] of the
F calibrated on the proton:

ln
(

RSaturn

λproton

)
= ln

(
6.0268 · 107 m

2.1030891 · 10−16 m

)
= 54.01

Dividing the logarithm 54/2= 27 we receive the logarithm
of the main node [27;∞] that corresponds to the wavelength
λp · exp (27)= 0.11 mm that coincides with the size of the hu-
man fertile oocyte (zygote) [24].

As shown above, the Solar radius coincides with the main
node [49;∞] of the F calibrated on the electron. Dividing the
logarithm 49/2= 24.5 we receive the logarithm of the node
[24; 2] that is the main node [32;∞] of the F calibrated on
the proton, because 24.5+ 7.5= 32. This logarithm corre-
sponds to the wavelength λe · exp (24.5)= 16.6 mm that co-
incides with the object focal length of the human eye [25]
that is also the length of the newborn eyeball.

At the same time, the Solar radius is near the node [56; 2]
of the F calibrated on the proton:

ln
(

RSun

λproton

)
= ln

(
6.96407 · 108 m

2.103089 · 10−16 m

)
= 56.46

The angular Compton wavelength of the proton is λp =

= 2.103089 · 10−16 m [20].
Dividing the logarithm 56.5/2= 28.25 we receive the log-

arithm of the significant subnode [28; 4] that corresponds to
the wavelength λp· exp (28.25)= 0.39 mm that coincides with
the second focal length [26] behind the retina of the human
eye.

Already in 1981 Leonid Chislenko [27] did demonstrate
that ranges of body masses and sizes preferred by the most
quantity of biological species show an equidistant distribu-
tion on a logarithmic scale with a scaling factor close to 3.
Probably, this is a consequence of global scaling, if we con-
sider that the scaling factor e= 2.718 . . . connects the main
attractor nodes of stability in the fundamental fractal F .

Conclusion

Applying our fractal model of matter as chain system of os-
cillating protons and electrons to the analysis of astrophysi-
cal and biophysical metric data we can assume that the metric
characteristics of biological organisms and those of the Solar
system have a common subatomic origin. However, there is
a huge field of research where various discoveries are still to
be expected.
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Modified Standard Einstein’s Field Equations and the Cosmological Constant
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Sudan Institute for Natural Sciences, P.O. BOX: 3045, Khartoum, Sudan
E-mail: f.a.y.abdelmohssin@gmail.com

The standard Einstein’s field equations have been modified by introducing a general
function that depends on Ricci’s scalar without a prior assumption of the mathemat-
ical form of the function. By demanding that the covariant derivative of the energy-
momentum tensor should vanish and with application of Bianchi’s identity a first order
ordinary differential equation in the Ricci scalar has emerged. A constant resulting
from integrating the differential equation is interpreted as the cosmological constant
introduced by Einstein. The form of the function on Ricci’s scalar and the cosmologi-
cal constant corresponds to the form of Einstein-Hilbert’s Lagrangian appearing in the
gravitational action. On the other hand, when energy-momentum is not conserved, a
new modified field equations emerged, one type of these field equations are Rastall’s
gravity equations.

1 Introduction

In the early development of the general theory of relativity,
Einstein proposed a tensor equation to mathematically de-
scribe the mutual interaction between matter-energy and
spacetime as [13]

Rab = κTab (1.1)

where κ is the Einstein constant, Tab is the energy-momen-
tum, and Rab is the Ricci curvature tensor which represents
geometry of the spacetime in presence of energy-momentum.

Einstein demanded that conservation of energy-momen-
tum should be valid in the general theory of relativity since
energy-momentum is a tensor quantity. This was represented
as

Tab;b = 0 (1.2)

where semicolon (;) represents covariant derivatives. But
equation (1.2) requires

Rab;b = 0 (1.3)

too which is not always true.
Finally, Einstein presented his standard field equations

(EFEs) describing gravity in the tensor equations form,
namely, [2–5, 8–12]

Gab = κTab (1.4)

where Gab is the Einstein tensor given by

Gab = Rab −
1
2
gabR (1.5)

where, R, is the Ricci scalar curvature, and gab is the funda-
mental metric tensor.

In his search for analytical solution to his field equations
he turned to cosmology and proposed a model of static and
homogenous universe filled with matter. Because he believed
of the static model for the Universe, he introduced a constant

term in his standard field equations to represent a kind of “anti
gravity” to balance the effect of gravitational attractions of
matter in it.

Einstein modified his standard equations by introducing
a term to his standard field equations including a constant
which is called the cosmological constant Λ, [7] to become

Rab −
1
2
gabR + gabΛ = κTab (1.6)

whereΛ is the cosmological constant (assumed to have a very
small value). Equation (1.6) may be written as

Rab −
1
2

(R − 2Λ) gab = κTab (1.7)

Einstein rejected the cosmological constant for two rea-
sons:

• The universe described by this theory was unstable.

• Observations by Edwin Hubble confirmed that the uni-
verse is expanding.

Recently, it has been believed that this cosmological con-
stant might be one of the causes of the accelerated expansion
of the Universe [15].

Einstein has never justified mathematically introduction
of his cosmological constant in his field equations.

Based on that fact I have mathematically done that using
simple mathematics.

2 Modified standard Einstein’s field equations

I modified the (EFEs) by introducing a general function L(R)
of Ricci’s scalar into the standard (EFEs). I do not assume
a concrete form of the function. The modified (EFEs), then
becomes

Rab − gabL(R) = κTab (2.1)

Faisal A.Y. Abdelmohssin. Modified Standard Einstein’s Field Equations 7
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Taking covariant derivative denoted by semicolon (; ) of
both sides of equation (2.1) yields

Rab;b − [gabL(R)];b = κTab;b (2.2)

Since covariant divergence of the metric tensor vanishes,
equation (2.2) may be written as

Rab;b − gab

(
dL
dR

)
R;b = κTab;b (2.3)

Substituting the Bianchi identity

R;c = 2gabRac;b (2.4)

in equation (2.3) and requiring the covariant divergence of the
energy-momentum tensor to vanish (i.e. energy-momentum
is conserved), namely, equation (1.2), we arrive at

Rab;b − gab

(
dL
dR

) (
2gacRab;c

)
= 0 (2.5)

Rearranging equation (2.5) we get

Rab;b − 2
(

dL
dR

)
(gabg

ac) Rab;c = 0 (2.6)

Substituting the following identity equation

gabg
ac = δcb (2.7)

in equation (2.6), we get

Rab;b − 2
(

dL
dR

) (
δcb

)
Rab;c = 0 (2.8)

By changing the dummy indices, we arrive at

Rab;b

(
1 − 2

dL
dR

)
= 0 (2.9)

We have either,
Rab;b = 0, (2.10)

or

1 − 2
(

dL
dR

)
= 0 (2.11)

Equation (2.10) is not always satisfied as mentioned be-
fore. Whilst, equation (2.11) yields

dL
dR
=

1
2

(2.12)

This has a solution

L(R) =
1
2

R −C (2.13)

where C is a constant.
Interpreting the constant of integration C, as the cosmo-

logical constant Λ, the functional dependence of L(R) on
Ricci scalar may be written as

L(R) =
1
2

(R − 2Λ) (2.14)

Equation (2.14) is the well known Lagrangian functional
of the Einstein-Hilbert action with the cosmological constant.

3 The Modified Equations and the Einstein Spaces

In absence of energy-momentum i.e. in a region of spacetime
where is there no energy, a state which is different from vac-
uum state everywhere in spacetime, equation (2.1) becomes

Rab − gabL(R) = 0 (3.1)

Contacting equation (3.1) with gab, we get

R − NL(R) = 0 (3.2)

where N is the dimension of the spacetime. Equation (3.2)
yields

L(R) =
1
N

R (3.3)

Substituting equation (3.3) in equation (3.1), we get

Rab =
1
N
gabR (3.4)

Equation (3.4) is the Einstein equation for Einstein spaces in
differential geometry [1, 2];

Rab = I gab (3.5)

where I is an invariant. This implies that the function I pro-
posed, L(R), is exactly the same as the invariant I in Einstein
spaces equation when contacted with gab.

A 2D sections of the 4D spacetime of Einstein spaces
are geometrically one of the geometries of spacetime which
satisfies the standard Einstein’s field equations in absence of
energy-momentum.

A naive substitution of N = 4 into equation (3.4) would
lead to an identity from which Ricci scalar could not be cal-
culated, because it becomes a non-useful equation, it gives
R = R.

4 The modified equations and gravity equations with
non-conserved energy-momentum

Because in general relativity spactime itself is changing, the
energy is not conserved, because it can give energy to the
particles and absorb it from them [2].

In cosmology the notion of dark energy – represented by
term introduced by Einstein – and dark matter is a sort of
sources of energy of unknown origin.

It is possible to incorporate the possibility of non-con-
served energy-momentum tensor in the modified equations.
In this case equation (2.9) should become

Rab;b

(
1 − 2

dL
dR

)
= κTab;b (4.1)

where Tab;b , 0. Since Rab;b is not always equals to zero, this
implies that the bracket in the LHS of equation (4.1) is not
zero in any case.
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Let us assume it is equal to D , where D is a dimensionless
constant, i.e.

1 − 2
dL
dR
= D (4.2)

Then, equation (4.2) becomes

dL
dR
=

1
2

(1 − D) (4.3)

Now, integrating equation (4.3) yields

L(R,D) =
1
2

(1 − D) R − E (4.4)

where E is a constant. When D = 0, equation (4.4) should
reduce to equation (2.13), the equation in case of conserved
energy-momentum, for which E = Λ. So, equation (4.4) be-
comes

L(R,D) =
1
2

(1 − D) R − Λ (4.5)

Finally, the modified equations (equation (2.1)) in case of
non-conserved energy-momentum become

Rab −
1
2

(1 − D) gabR + Λgab = κTab (4.6)

5 The modified equations and the Rastall gravity
equations

Rastall [14] introduced a modification to the Einstein field
equations, in which the covariant conservation condition
Rab;b = 0 is no longer valid.

In his theory he introduced a modification to the Einstein
field equations without the cosmological constant which read

Rab −
1
2

(1 − 2λκ) gabR = κTab (5.1)

where λ is a free parameter. When λ = 0, we recover the stan-
dard Einstein’s field equations. Comparing Rastall’s equa-
tions in equation (5.1) with equation (4.6) without the cos-
mological constant, we deduce

D = 2λκ (5.2)
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Bosons and Fermions as Dislocations and Disclinations
in the Spacetime Continuum

Pierre A. Millette
PierreAMillette@alumni.uottawa.ca, Ottawa, Canada

We investigate the case for dislocations (translational displacements) and disclinations
(rotational displacements) in the Spacetime Continuum corresponding to bosons and
fermions respectively. The massless, spin-1 screw dislocation is identified with the pho-
ton, while edge dislocations correspond to bosons of spin-0, spin-1 and spin-2. Wedge
disclinations are identified with quarks. We find that the twist disclination depends both
on the space volume ℓ3 of the disclination and on the length ℓ of the disclination. We
identify the ℓ3 twist disclination terms with the leptons, while the ℓ twist disclination
which does not have a longitudinal (massive) component, is identified with the massless
neutrino. We perform numerical calculations that show that the dominance of the ℓ and
ℓ3 twist disclination terms depend on the extent ℓ of the disclination: at low values of
ℓ, the “weak interaction” term ℓ predominates up to about 10−18 m, which is the gener-
ally accepted range of the weak force, while at larger values of ℓ, the “electromagnetic
interaction” term ℓ3 predominates. The value of ℓ at which the two interactions in the
total strain energy are equal is given by ℓ = 2.0 × 10−18 m.

1 Introduction

Elementary quantum particles are classified into bosons and
fermions based on integral and half-integral multiples of ℏ
respectively, where ℏ is Planck’s reduced constant. Bosons
obey Bose-Einstein statistics while fermions obey Fermi-Di-
rac statistics and the Pauli Exclusion Principle. These deter-
mine the number of non-interacting indistinguishable parti-
cles that can occupy a given quantum state: there can only be
one fermion per quantum state while there is no such restric-
tion on bosons.

This is explained in quantum mechanics using the com-
bined wavefunction of two indistinguishable particles when
they are interchanged:

Bosons : Ψ(1, 2) = Ψ(2, 1)

Fermions : Ψ(1, 2) = −Ψ(2, 1) .
(1)

Bosons commute and as seen from (1) above, only the sym-
metric part contributes, while fermions anticommute and only
the antisymmetric part contributes. There have been attempts
at a formal explanation of this phenomemon, the spin-statis-
tics theorem, with Pauli’s being one of the first [1]. Jabs [2]
provides an overview of these and also offers his own attempt
at an explanation.

However, as Feynman comments candidly [3, see p. 4-3],
We apologize for the fact that we cannot give you an
elementary explanation. An explanation has been wor-
ked out by Pauli from complicated arguments of quan-
tum field theory and relativity. He has shown that the
two must necessarily go together, but we have not been
able to find a way of reproducing his arguments on an
elementary level. It appears to be one of the few places
in physics where there is a rule which can be stated

very simply, but for which no one has found a simple
and easy explanation. The explanation is deep down in
relativistic quantum mechanics. This probably means
that we do not have a complete understanding of the
fundamental principle involved. For the moment, you
will just have to take it as one of the rules of the world.

The question of a simple and easy explanation is still out-
standing. Eq. (1) is still the easily understood explanation,
even though it is based on the exchange properties of parti-
cles, rather than on how the statistics of the particles are re-
lated to their spin properties. At this point in time, it is an
empirical description of the phenomenon.

2 Quantum particles from STC defects

Ideally, the simple and easy explanation should be a physi-
cal explanation to provide a complete understanding of the
fundamental principles involved. The Elastodynamics of the
Spacetime Continuum (STCED) [6,7] provides such an expla-
nation, based on dislocations and disclinations in the space-
time continuum. Part of the current problem is that there is no
understandable physical picture of the quantum level. STCED
provides such a picture.

The first point to note is that based on their properties,
bosons obey the superposition principle in a quantum state.
In STCED, the location of quantum particles is given by their
deformation displacement uµ. Dislocations [7, see chapter 9]
are translational displacements that commute, satisfy the su-
perposition principle and behave as bosons. As shown in sec-
tion §3-6 of [7], particles with spin-0, 1 and 2 are described
by

uµ;ν = εµν(0) + ε
µν
(2) + ω

µν
(1) , (2)

i.e. a combination of spin-0 εµν(0) (mass as deformation par-
ticle aspect), spin-1 ωµν(1) (electromagnetism) and spin-2 εµν(2)
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(deformation wave aspect), where

εµν = 1
2 (uµ;ν + uν;µ) = u(µ;ν) (3)

and
ωµν = 1

2 (uµ;ν − uν;µ) = u[µ;ν] (4)

which are solutions of wave equations in terms of derivatives
of the displacements uµ;ν as given in chapter 3 of [7].

Disclinations [7, see chapter 10], on the other hand, are
rotational displacements that do not commute and that do not
obey the superposition principle. You cannot have two rota-
tional displacements in a given quantum state. Hence their
number is restricted to one per quantum state. They behave
as fermions.

Spinors represent spin one-half fermions. Dirac spinor
fields represent electrons. Weyl spinors, derived from Dirac’s
four complex components spinor fields, are a pair of fields
that have two complex components. Interestingly enough,
“[u]sing just one element of the pair, one gets a theory of
massless spin-one-half particles that is asymmetric under mir-
ror reflection and ... found ... to describe the neutrino and its
weak interactions” [4, p. 63].

“From the point of view of representation theory, Weyl
spinors are the fundamental representations that occur when
one studies the representations of rotations in four-dimensio-
nal space-time... spin-one-half particles are representation
of the group SU(2) of transformations on two complex vari-
ables.” [4, p. 63]. To clarify this statement, each rotation in
three dimensions (an element of SO(3)) corresponds to two
distinct elements of SU(2). Consequently, the SU(2) trans-
formation properties of a particle are known as the particle’s
spin.

Hence, the unavoidable conclusion is that bosons are dis-
locations in the spacetime continuum, while fermions are dis-
clinations in the spacetime continuum. Dislocations are trans-
lational displacements that commute, satisfy the superposi-
tion principle and behave as bosons. Disclinations, on the
other hand, are rotational displacements that do not commute,
do not obey the superposition principle and behave as ferm-
ions.

The equations in the following sections of this paper are
derived in Millette [7]. The constants λ̄0 and µ̄0 are the Lamé
elastic constants of the spacetime continuum, where µ̄0 is the
shear modulus (the resistance of the continuum to distortions)
and λ̄0 is expressed in terms of κ̄0, the bulk modulus (the re-
sistance of the continuum to dilatations) according to

λ̄0 = κ̄0 − µ̄0/2 (5)

in a four-dimensional continuum.

3 Dislocations (bosons)

Two types of dislocations are considered in this paper: screw
dislocations (see Fig. 1) and edge dislocations (see Fig. 2).

Fig. 1: A stationary screw dislocation in cartesian (x, y, z) and cylin-
drical polar (r, θ, z) coordinates.

Fig. 2: A stationary edge dislocation in cartesian (x, y, z) and cylin-
drical polar (r, θ, z) coordinates.

Dislocations, due to their translational nature, are defects that
are easier to analyze than disclinations.

3.1 Screw dislocation

The screw dislocation is analyzed in sections §9-2 and §15-1
of [7]. It is the first defect that we identified with the photon
due to its being massless and of spin-1. Consequently, its
longitudinal strain energy is zero

WS
∥ = 0. (6)
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Its transverse strain energy is given by [7, eq. (16.5)]

WS
⊥ =
µ̄0

4π
b2 ℓ ln

Λ

bc
, (7)

where b is the spacetime Burgers dislocation vector [9], ℓ is
the length of the dislocation, bc is the size of the core of the
dislocation, of order b0, the smallest spacetime Burgers dislo-
cation vector [10], andΛ is a cut-off parameter corresponding
to the radial extent of the dislocation, limited by the average
distance to its nearest neighbours.

3.2 Edge dislocation

The edge dislocation is analyzed in sections §9-3, §9-5 and
§15-2 of [7]. The longitudinal strain energy of the edge dis-
location is given by [7, eq. (16.29)]

WE
∥ =

κ̄0
2π
ᾱ2

0

(
b2

x + b2
y

)
ℓ ln
Λ

bc
(8)

where
ᾱ0 =

µ̄0

2µ̄0 + λ̄0
, (9)

ℓ is the length of the dislocation and as before, Λ is a cut-off
parameter corresponding to the radial extent of the disloca-
tion, limited by the average distance to its nearest neighbours.
The edge dislocations are along the z-axis with Burgers vec-
tor bx for the edge dislocation proper represented in Fig. 2,
and a different edge dislocation with Burgers vector by which
we call the gap dislocation. The transverse strain energy is
given by [7, eq. (16.54)]

WE
⊥ =
µ̄0

4π

(
ᾱ2

0 + 2β̄2
0

) (
b2

x + b2
y

)
ℓ ln
Λ

bc
(10)

where

β̄0 =
µ̄0 + λ̄0

2µ̄0 + λ̄0
. (11)

The total longitudinal (massive) dislocation strain energy
WD
∥ is given by (8)

WD
∥ = WS

∥ +WE
∥ = WE

∥ , (12)

given that the screw dislocation longitudinal strain energy is
zero, while the total transverse (massless) dislocation strain
energy is given by the sum of the screw (along the z axis) and
edge (in the x−y plane) dislocation transverse strain energies

WD
⊥ = WS

⊥ +WE
⊥ (13)

to give

WD
⊥ =

µ̄0

4π

[
b2

z +
(
ᾱ2

0 + 2β̄2
0

) (
b2

x + b2
y

)]
ℓ ln
Λ

bc
. (14)

It should be noted that as expected, the total longitudinal
(massive) dislocation strain energy WD

∥ involves the space-
time bulk modulus κ̄0, while the total transverse (massless)

Fig. 3: Three types of disclinations: wedge (top), splay (middle),
twist (bottom) [5, 7].

dislocation strain energy WD
⊥ involves the spacetime shear

modulus µ̄0.
The total strain energy of dislocations

WD = WD
∥ +WD

⊥ (15)

provides the total energy of massive and massless bosons,
with WD

∥ corresponding to the longitudinal particle aspect of
the bosons and WD

⊥ corresponding to the wave aspect of the
bosons. As seen in [11], the latter is associated with the wave-
function of the boson. The spin characteristics of these was
considered previously in section 2, where they were seen to
correspond to spin-0, spin-1 and spin-2 solutions.

4 Disclinations (fermions)

The different types of disclinations considered in this paper
are given in Fig. 3. Disclinations are defects that are more
difficult to analyze than dislocations, due to their rotational
nature. This mirrors the case of fermions, which are more
difficult to analyze than bosons.

4.1 Wedge disclination

The wedge disclination is analyzed in sections §10-6 and §15-
3 of [7]. The longitudinal strain energy of the wedge discli-
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nation is given by [7, eq. (16.62)]

WW
∥ =

κ̄0
4π
Ω2

z ℓ
[
ᾱ2

0

(
2Λ2 ln2Λ − 2b2

c ln2 bc

)
+

+ ᾱ0γ̄0

(
2Λ2 lnΛ − 2b2

c ln bc

)
+

+ 1
2 (ᾱ2

0 + γ̄
2
0)

(
Λ2 − b2

c

) ] (16)

where Ωµ is the spacetime Frank vector,

γ̄0 =
λ̄0

2µ̄0 + λ̄0
(17)

and the other constants are as defined previously. In most
cases Λ ≫ bc, and (16) reduces to

WW
∥ ≃

κ̄0
2π
Ω2

z ℓΛ
2
[
ᾱ2

0 ln2 Λ+ ᾱ0γ̄0 lnΛ+ 1
4 (ᾱ2

0 + γ̄
2
0)
]

(18)

which is rearranged as

WW
∥ ≃

κ̄0
2π
ᾱ2

0Ω
2
z ℓΛ

2
[

ln2 Λ+
γ̄0

ᾱ0
lnΛ+

1
4

1 + γ̄2
0

ᾱ2
0

 ] . (19)

The transverse strain energy of the wedge disclination is
given by [7, eq. (16.70)]

WW
⊥ =

µ̄0

4π
Ω2

z ℓ
[
ᾱ2

0

(
Λ2 ln2Λ − b2

c ln2 bc

)
−

−
(
ᾱ2

0 − 3ᾱ0β̄0

) (
Λ2 lnΛ − b2

c ln bc

)
+

+
1
2

(
ᾱ2

0 − 3ᾱ0β̄0 +
3
2
β̄2

0

) (
Λ2 − b2

c

) ]
.

(20)

In most cases Λ ≫ bc, and (20) reduces to

WW
⊥ ≃

µ̄0

4π
Ω2

z ℓ
[
ᾱ2

0Λ
2 ln2 Λ−

−
(
ᾱ2

0 − 3ᾱ0β̄0

)
Λ2 lnΛ+

+
1
2

(
ᾱ2

0 − 3ᾱ0β̄0 +
3
2
β̄2

0

)
Λ2

] (21)

which is rearranged as

WW
⊥ ≃

µ̄0

4π
ᾱ2

0Ω
2
z ℓΛ

2
[

ln2 Λ −
(
1 − 3

β̄0

ᾱ0

)
lnΛ+

+
1
2

1 − 3
β̄0

ᾱ0
+

3
2
β̄2

0

ᾱ2
0

 ] . (22)

We first note that both the longitudinal strain energy WW
∥

and the transverse strain energy WW
⊥ are proportional to Λ2 in

the limit Λ ≫ bc. The parameter Λ is equivalent to the extent
of the wedge disclination, and we find that as it becomes more
extended, its strain energy is increasing parabolically. This

behaviour is similar to that of quarks (confinement) which
are fermions. In addition, as Λ → bc, the strain energy de-
creases and tends to 0, again in agreement with the behaviour
of quarks (asymptotic freedom).

We thus identify wedge disclinations with quarks. The
total strain energy of wedge disclinations

WW = WW
∥ +WW

⊥ (23)

provides the total energy of the quarks, with WW
∥ correspond-

ing to the longitudinal particle aspect of the quarks and WW
⊥

corresponding to the wave aspect of the quarks. We note that
the current classification of quarks include both ground and
excited states – the current analysis needs to be extended to
excited higher energy states.

We note also that the rest-mass energy density ρWc2 of
the wedge disclination (see [7, eq. (10.102)]) is proportional
to ln r which also increases with increasing r, while the rest-
mass energy density ρEc2 of the edge dislocation and ρT c2

of the twist disclination (see [7, eqs. (9.134) and (10.123)]
respectively) are both proportional to 1/r2 which decreases
with increasing r as expected of bosons and leptons.

4.2 Twist disclination

The twist disclination is analyzed in sections §10-7 and §15-4
of [7]. Note that as mentioned in that section, we do not dif-
ferentiate between twist and splay disclinations in this sub-
section as twist disclination expressions include both splay
disclinations and twist disclinations proper. Note also that the
Frank vector (Ωx,Ωy,Ωz) corresponds to the three axes (Ωr,
Ωn,Ωz) used in Fig. 3 for the splay, twist and wedge disclina-
tions respectively.

The longitudinal strain energy of the twist disclination is
given by [7, eq. (16.80)]

WT
∥ =

κ̄0
6π
ᾱ2

0

(
Ω2

x + Ω
2
y

)
ℓ3 ln

Λ

bc
. (24)

One interesting aspect of this equation is that the twist discli-
nation longitudinal strain energy WT

∥ is proportional to the
cube of the length of the disclination (ℓ3), and we can’t dis-
pose of it by considering the strain energy per unit length
of the disclination as done previously. We can say that the
twist disclination longitudinal strain energy WT

∥ is thus pro-
portional to the space volume of the disclination, which is
reasonable considering that disclinations are rotational defor-
mations. It is also interesting to note that WT

∥ has the familiar
dependence lnΛ/bc of dislocations, different from the func-
tional dependence obtained for wedge disclinations in sec-
tion 4.1. The form of this equation is similar to that of the
longitudinal strain energy for the stationary edge dislocation
(see [7, eq. (16.15)]) except for the factor ℓ3/3.

The transverse strain energy of the twist disclination is
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given by [8]

WT
⊥ =
µ̄0

2π
ℓ3

3

[ (
Ω2

x + Ω
2
y

) (
ᾱ2

0 +
1
2 β̄

2
0

)
+

+ 2ΩxΩy
(
ᾱ2

0 − 2β̄2
0

) ]
ln
Λ

bc
+

+
µ̄0

2π
ℓ
[ (
Ω2

x + Ω
2
y

) (
ᾱ2

0

(
Λ2 ln2Λ − b2

c ln2 bc

)
+

+ ᾱ0γ̄0

(
Λ2 lnΛ − b2

c ln bc

)
− 1

2
ᾱ0γ̄0

(
Λ2 − b2

c

)
+

+ 2 β̄2
0 ln
Λ

bc

)
− 2ΩxΩy

(
ᾱ0β̄0

(
Λ2 lnΛ − b2

c ln bc

)
+

+
1
2
β̄0γ̄0

(
Λ2 − b2

c

) )]
.

(25)

In most cases Λ ≫ bc, and (25) reduces to

WT
⊥ ≃
µ̄0

2π
ℓ3

3

[ (
Ω2

x + Ω
2
y

) (
ᾱ2

0 +
1
2 β̄

2
0

)
+

+ 2ΩxΩy
(
ᾱ2

0 − 2β̄2
0

) ]
ln
Λ

bc
+

+
µ̄0

2π
ℓΛ2

[ (
Ω2

x + Ω
2
y

) (
ᾱ2

0 ln2 Λ + ᾱ0γ̄0 lnΛ−

− 1
2
ᾱ0γ̄0

)
− 2ΩxΩy

(
ᾱ0β̄0 lnΛ +

1
2
β̄0γ̄0

)]
(26)

which can be rearranged to give

WT
⊥ ≃
µ̄0

2π
ᾱ2

0
ℓ3

3

[ (
Ω2

x + Ω
2
y

) 1 + 1
2
β̄2

0

ᾱ2
0

+
+ 2ΩxΩy

1 − 2
β̄2

0

ᾱ2
0

 ] ln
Λ

bc
+

+
µ̄0

2π
ᾱ2

0 ℓΛ
2
[ (
Ω2

x + Ω
2
y

) (
ln2 Λ +

γ̄0

ᾱ0
lnΛ−

− 1
2
γ̄0

ᾱ0

)
− 2ΩxΩy

( β̄0

ᾱ0
lnΛ +

1
2
β̄0γ̄0

ᾱ2
0

)]
.

(27)

As noted previously, WT
∥ depends on the space volume ℓ3

of the disclination and has a functional dependence of lnΛ/bc

as do the dislocations. The transverse strain energy WT
⊥ de-

pends on the space volume ℓ3 of the disclination with a func-
tional dependence of lnΛ/bc, but it also includes terms that
have a dependence on the length ℓ of the disclination with a
functional dependence similar to that of the wedge disclina-
tion including Λ2 in the limit Λ ≫ bc. The difference in the
case of the twist disclination is that its transverse strain en-
ergy WT

⊥ combines ℓ3 terms with the functional dependence
lnΛ/bc of dislocations, associated with the “electromagnetic
interaction”, and ℓ terms with the Λ2 ln2 Λ functional depen-
dence of wedge disclinations, associated with the “strong in-
teraction”. This, as we will see in later sections, seems to be

the peculiar nature of the weak interaction, and uniquely po-
sitions twist disclinations to represent leptons and neutrinos
as participants in the weak interaction.

This leads us to thus separate the longitudinal strain en-
ergy of the twist disclination as

WT
∥ = Wℓ

3

∥ +Wℓ∥ = Wℓ
3

∥ (28)

given that Wℓ∥ = 0, and the transverse strain energy of the
twist disclination as

WT
⊥ = Wℓ

3

⊥ +Wℓ⊥ . (29)

We consider both ℓ3 twist disclination and ℓ twist disclination
terms in the next subsections.

4.2.1 ℓ3 twist disclination

The longitudinal strain energy of the ℓ3 twist disclination is
thus given by the ℓ3 terms of (24)

Wℓ
3

∥ =
κ̄0
6π
ᾱ2

0

(
Ω2

x + Ω
2
y

)
ℓ3 ln

Λ

bc
. (30)

The transverse strain energy of the ℓ3 twist disclination is
given by the ℓ3 terms of (25)

Wℓ
3

⊥ =
µ̄0

2π
ℓ3

3

[ (
Ω2

x + Ω
2
y

) (
ᾱ2

0 +
1
2 β̄

2
0

)
+

+ 2ΩxΩy
(
ᾱ2

0 − 2β̄2
0

) ]
ln
Λ

bc
.

(31)

In most cases Λ ≫ bc, and (31) is left unchanged due to its
functional dependence on lnΛ/bc.

The total strain energy of the ℓ3 twist disclination terms is
given by

Wℓ
3
= Wℓ

3

∥ +Wℓ
3

⊥ . (32)

It is interesting to note that Wℓ
3

∥ of (30) and Wℓ
3

⊥ of (31) are
proportional to lnΛ/bc, as are the screw dislocation (photon)
and edge dislocation (bosons). This, and the results of the
next subsection, leads us to identify the ℓ3 twist disclination
terms with the leptons (electron, muon, tau) fermions, where
the heavier muon and tau are expected to be excited states of
the electron.

4.2.2 ℓ twist disclination

The longitudinal strain energy of the ℓ twist disclination terms
in this case is zero as mentioned previously

Wℓ∥ = 0 . (33)
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The transverse strain energy of the ℓ twist disclination is
thus also given by the ℓ terms of (25):

Wℓ⊥ =
µ̄0

2π
ℓ
[ (
Ω2

x + Ω
2
y

) (
ᾱ2

0

(
Λ2 ln2 Λ − b2

c ln2 bc

)
+

+ ᾱ0γ̄0

(
Λ2 lnΛ − b2

c ln bc

)
− 1

2
ᾱ0γ̄0

(
Λ2 − b2

c

)
+

+ 2 β̄2
0 ln
Λ

bc

)
− 2ΩxΩy

(
ᾱ0β̄0

(
Λ2 lnΛ − b2

c ln bc

)
+

+
1
2
β̄0γ̄0

(
Λ2 − b2

c

) )]
.

(34)

In most cases Λ ≫ bc, and (34) reduces to

Wℓ⊥ =
µ̄0

2π
ℓΛ2

[ (
Ω2

x + Ω
2
y

) (
ᾱ2

0 ln2Λ + ᾱ0γ̄0 lnΛ−

− 1
2
ᾱ0γ̄0

)
− 2ΩxΩy

(
ᾱ0β̄0 lnΛ +

1
2
β̄0γ̄0

)] (35)

which can be rearranged to give

Wℓ⊥ =
µ̄0

2π
ᾱ2

0 ℓΛ
2
[ (
Ω2

x + Ω
2
y

) (
ln2Λ +

γ̄0

ᾱ0
lnΛ−

− 1
2
γ̄0

ᾱ0

)
− 2ΩxΩy

( β̄0

ᾱ0
lnΛ +

1
2
β̄0γ̄0

ᾱ2
0

)]
.

(36)

The total strain energy of the ℓ twist disclination is given
by

Wℓ = Wℓ∥ +Wℓ⊥ = Wℓ⊥ (37)

given that the ℓ twist disclination does not have a longitudinal
(massive) component. Since the ℓ twist disclination is a mass-
less fermion, this leads us to identify the ℓ twist disclination
with the neutrino.

There is another aspect to the strain energy WT
⊥ given by

(25) that is important to note. As we have discussed, the
ℓ3 twist disclination terms and the lnΛ/bc functional depen-
dence as observed for the screw dislocation (photon) and edge
dislocation (bosons) has led us to identify the ℓ3 portion with
the leptons (electron, muon, tau) fermions, where the heavier
muon and tau are expected to be excited states of the electron.
These are coupled with transverse ℓ twist disclination terms
which are massless and which have a functional dependence
similar to that of the wedge disclination, which has led us to
identify the ℓ portion with the weakly interacting neutrino.
If the muon and tau leptons are excited states of the electron
derivable from (25), this would imply that the neutrino por-
tion would also be specific to the muon and tau lepton excited
states, thus leading to muon and tau neutrinos.

We will perform numerical calculations in the next sec-
tion which will show that the dominance of the ℓ and ℓ3 twist
disclination terms depend on the extent ℓ of the disclination,
with the ℓ “weak interaction” terms dominating for small val-
ues of ℓ and the ℓ3 “electromagnetic interaction” terms dom-
inating for larger values of ℓ. The ℓ twist disclination terms

would correspond to weak interaction terms while the ℓ3 twist
disclination terms would correspond to electromagnetic inter-
action terms. The twist disclination represents the unification
of both interactions under a single “electroweak interaction”.

This analysis also shows why leptons (twist disclinations)
are participants in the weak interaction but not the strong in-
teraction, while quarks (wedge disclinations) are participants
in the strong interaction but not the weak interaction.

It should be noted that even though the mass of the neu-
trino is currently estimated to be on the order of 10’s of eV,
this estimate is based on assuming neutrino oscillation be-
tween the currently known three lepton generations, to ex-
plain the anomalous solar neutrino problem. This is a weak
explanation for that problem, which more than likely indi-
cates that we do not yet fully understand solar astrophysics.
One can only hope that a fourth generation of leptons will not
be discovered! Until the anomaly is fully understood, we can
consider the twist disclination physical model where the mass
of the neutrino is zero to be at least a first approximation of
the neutrino STC defect model.

4.3 Twist disclination sample numerical calculation

In this section, we give a sample numerical calculation that
shows the lepton-neutrino connection for the twist disclina-
tion. We start by isolating the common strain energy elements
that don’t need to be calculated in the example. Starting from
the longitudinal strain energy of the twist disclination (24)
and making use of the relation κ̄0 = 32µ̄0 [7, eq. (5.53)], (24)
can be simplified to

WT
∥ =
µ̄0

2π
ᾱ2

0 2Ω2
[
32
ℓ3

3
ln
Λ

bc

]
(38)

where an average Ω is used instead of Ωx and Ωy. Defining K
as

K =
µ̄0

2π
ᾱ2

0 2Ω2 , (39)

then (38) is written as

WT
∥

K
= 32

ℓ3

3
ln
Λ

bc
. (40)

Similarly for the transverse strain energy of the twist dis-
clination, starting from (27), the equation can be simplified
to

WT
⊥ ≃
µ̄0

2π
ᾱ2

0 2Ω2
{[
ℓ3

3

1 + 1
2
β̄2

0

ᾱ2
0

+ 1 − 2
β̄2

0

ᾱ2
0

 ln
Λ

bc

]
+

+

[
ℓΛ2

(
ln2Λ +

γ̄0

ᾱ0
lnΛ − 1

2
γ̄0

ᾱ0
−

− β̄0

ᾱ0
lnΛ − 1

2
β̄0γ̄0

ᾱ2
0

)]}
.

(41)
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Using the definition of K from (39), this equation becomes

WT
⊥

K
≃ ℓ

3

3

2 − 3
2
β̄2

0

ᾱ2
0

 ln
Λ

bc
+

+ ℓΛ2
(
ln2Λ +

γ̄0 − β̄0

ᾱ0
lnΛ − 1

2
γ̄0

ᾱ0

(
1 + β̄0

))
.

(42)

Using the numerical values of the constants ᾱ0, β̄0 and γ̄0
from [7, eqs. (19.14) and (19.35)], (42) becomes

WT
⊥

K
≃ ℓ

3

3
(1.565) ln

Λ

bc
+

+ ℓΛ2
(
ln2 Λ − lnΛ − 0.62

)
.

(43)

For this sample numerical calculation, we use bc∼10−35m
of the order of the spacetime Burgers dislocation constant b0,
and the extent of the disclination Λ ∼ 10−18 m of the order of
the range of the weak force. Then

WT
∥

K
=

32
3

(39.1) ℓ3 = 417 ℓ3 . (44)

and
WT
⊥

K
≃ 0.522 (39.1) ℓ3+

+Λ2 (1714 + 41.4 − 0.62) ℓ

(45)

which becomes

WT
⊥

K
≃ 20.4 ℓ3 + 1755Λ2 ℓ (46)

and finally

WT
⊥

K
≃ 20.4 ℓ3 + 1.76 × 10−33 ℓ . (47)

We consider various values of ℓ to analyze its effect on
the strain energy. For ℓ = 10−21 m,

WT
∥

K
= 4.2 × 10−61 (ℓ3 term) (48)

WT
⊥

K
= 2.0 × 10−62 + 1.8 × 10−54 (ℓ3 term + ℓ term). (49)

For ℓ = 10−18 m,

WT
∥

K
= 4.2 × 10−52 (ℓ3 term) (50)

WT
⊥

K
= 2.0 × 10−53 + 1.8 × 10−51 (ℓ3 term + ℓ term). (51)

For ℓ = 10−15 m,

WT
∥

K
= 4.2 × 10−43 (ℓ3 term) (52)

WT
⊥

K
= 2.0 × 10−44 + 1.8 × 10−48 (ℓ3 term + ℓ term). (53)

For ℓ = 10−12 m,

WT
∥

K
= 4.2 × 10−34 (ℓ3 term) (54)

WT
⊥

K
= 2.0 × 10−35 + 1.8 × 10−45 (ℓ3 term + ℓ term). (55)

In the sums of WT
⊥/K above, the first term ℓ3 represents

the electromagnetic interaction, while the second term ℓ rep-
resents the weak interaction. Thus we find that at low val-
ues of ℓ, the weak force predominates up to about 10−18 m,
which is the generally accepted range of the weak force. At
larger values of ℓ, the electromagnetic force predominates.
The value of ℓ at which the two interactions in the transverse
strain energy are equal is given by

20.4 ℓ3 = 1.76 × 10−33 ℓ , (56)

from which we obtain

ℓ = 0.9 × 10−17 m ∼ 10−17 m . (57)

At that value of ℓ, the strain energies are given by

WT
∥

K
= 3.0 × 10−49 (58)

WT
⊥

K
= 3.1 × 10−50 . (59)

The longitudinal (massive) strain energy predominates over
the transverse strain energy by a factor of 10.

Alternatively, including the longitudinal ℓ3 strain energy
in the calculation, the value of ℓ at which the two interactions
in the total strain energy are equal is given by

417 ℓ3 + 20.4 ℓ3 = 1.76 × 10−33 ℓ , (60)

from which we obtain

ℓ = 2.0 × 10−18 m . (61)

At that value of ℓ, the strain energies are given by

WT
∥

K
= 3.3 × 10−51 (62)

WT
⊥

K
= 3.7 × 10−51 . (63)

The longitudinal (massive) strain energy and the transverse
strain energy are then of the same order of magnitude.

5 Quantum particles and their associated spacetime
defects

Table 1 provides a summary of the identification of quantum
particles and their associated spacetime defects as shown in
this paper.
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STC defect Type of particle Particles

Screw dislocation Massless boson Photon
Edge dislocation Massive boson Spin-0 particle

Spin-1 Proca eqn
Spin-2 graviton

Wedge disclination Massive fermion Quarks
ℓ3 Twist disclination Massive fermion Leptons
ℓ Twist disclination Massless fermion Neutrinos

Table 1: Identification of quantum particles and their associated defects.

6 Discussion and conclusion

In this paper, we have investigated the case for dislocations
and disclinations in the Spacetime Continuum corresponding
to bosons and fermions respectively. Dislocations are transla-
tional displacements that commute, satisfy the superposition
principle and behave as bosons. Disclinations, on the other
hand, are rotational displacements that do not commute, do
not obey the superposition principle and behave as fermions,
including having their number restricted to one per quantum
state as it is not possible to have two rotational displacements
in a given quantum state.

We have considered screw and edge dislocations. The
massless, spin-1 screw dislocation is identified with the pho-
ton. The total strain energy of dislocations WD corresponds
to the total energy of massive and massless bosons, with WD

∥
corresponding to the longitudinal particle aspect of the bosons
and WD

⊥ corresponding to the wave aspect of the bosons, with
the latter being associated with the wavefunction of the bo-
son. Their spin characteristics correspond to spin-0, spin-1
and spin-2 solutions.

We have considered wedge and twist disclinations, of
which the splay disclination is a special case. Wedge disclina-
tions are identified with quarks. The strain energy of wedge
disclinations is proportional to Λ2 in the limit Λ ≫ bc. The
parameter Λ is equivalent to the extent of the wedge disclina-
tion, and we find that as it becomes more extended, its strain
energy is increasing parabolically. This behaviour is similar
to that of quarks (confinement) which are fermions. In addi-
tion, as Λ → bc, the strain energy decreases and tends to 0,
again in agreement with the behaviour of quarks (asymptotic
freedom). The total strain energy of wedge disclinations WW

thus corresponds to the total energy of the quarks, with WW
∥

corresponding to the longitudinal particle aspect of the quarks
and WW

⊥ corresponding to the wave aspect of the quarks.
The twist disclination longitudinal strain energy WT

∥ is
found to be proportional to the cube of the length of the discli-
nation (ℓ3), and hence depends on the space volume ℓ3 of the
disclination with a functional dependence of lnΛ/bc as do the
dislocations. The transverse strain energy WT

⊥ also depends

on the space volume ℓ3 of the disclination with a functional
dependence of lnΛ/bc, but it also includes terms that have a
dependence on the length ℓ of the disclination with a func-
tional dependence similar to that of the wedge disclination
including Λ2 in the limit Λ ≫ bc.

We have considered both ℓ3 twist disclination and ℓ twist
disclination terms. We note that Wℓ

3

∥ and Wℓ
3

⊥ are propor-
tional to lnΛ/bc, as are the screw dislocation (photon) and
edge dislocation (bosons), which leads us to identify the ℓ3

twist disclination terms with the leptons (electron, muon, tau)
fermions, where the heavier muon and tau are expected to be
excited states of the electron. Given that the ℓ twist disclina-
tion does not have a longitudinal (massive) component, it is
a massless fermion and this leads us to identify the ℓ twist
disclination with the neutrino. Thus the twist disclination
transverse strain energy WT

⊥ combines ℓ3 terms with the func-
tional dependence lnΛ/bc of dislocations and ℓ terms with
the functional dependence Λ2 of wedge disclinations.

We have performed numerical calculations that show that
the dominance of the ℓ and ℓ3 twist disclination terms depend
on the length ℓ of the disclination. We find that at low val-
ues of ℓ, the “weak interaction” term ℓ predominates up to
about 10−18 m, which is the generally accepted range of the
weak force. At larger values of ℓ, the “electromagnetic in-
teraction” term ℓ3 predominates. The value of ℓ at which the
two interactions in the total strain energy are equal is given
by ℓ = 2.0 × 10−18 m. We conclude that in WT

⊥ , the ℓ twist
disclination terms represent the weak interaction terms while
the ℓ3 twist disclination terms represent the electromagnetic
interaction terms. The twist disclination hence represents the
unification of both interactions under a single “electroweak
interaction”.

This analysis also shows why leptons (twist disclinations)
are participants in the weak interaction but not the strong in-
teraction (wedge disclinations). In addition, if the muon and
tau leptons are excited states of the electron derivable from
(25), this would imply that the neutrino portion would also be
specific to the muon and tau lepton excited states, thus leading
to muon and tau neutrinos. A summary of the identification
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of quantum particles and their associated spacetime defects
as shown in this paper is provided in Table 1.
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Gravity as Attractor Effect of Stability Nodes in
Chain Systems of Harmonic Quantum Oscillators
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In this paper we apply our fractal model of matter as chain systems of harmonic quan-
tum oscillators to the analysis of gravimetric characteristics of the Solar system and in-
troduce a model of gravity as macroscopic cumulative attractor effect of stability nodes
in chain systems of oscillating protons and electrons.

Introduction

Gravity has still a special place in physics as it is the only
interaction that is not described by a quantum theory. Never-
theless, the big G is considered to be a fundamental constant
of nature, involved in the calculation of gravitational effects
in Newton’s law of universal gravitation and in Einstein’s
general theory of relativity. The currently recommended [1]
value is G = 6.67408(31) · 10−11 m3kg−1s−2 and it seems that
we know G only to three significant figures.

For several objects in the Solar System, the value of the
standard gravitational parameter µ is known to greater accu-
racy than G. The value µ for the Sun is the heliocentric grav-
itational constant and equals 1.32712440042(1) · 1020 m3s−2.
The geocentric gravitational constant equals 3.986004418(8)·
· 1014 m3s−2 [2]. The precision is 10−8 because this quantity is
derived from the movement of artificial satellites, which basi-
cally involves observations of the distances from the satellite
to earth stations at different times, which can be obtained to
high accuracy using radar or laser ranging.

However, not the µ is directly measured, but the orbital
elements of a natural or artificial satellite. For instance, the
orbital elements of the Earth can be used to estimate the he-
liocentric gravitational constant. Already the basic solution
for a circular orbit gives a good approximation:

µ=
4π2R3

T 2 =
4π2(149597870700 m)3

(31558149.54 s)2 =

= 1.327128 · 1020 m3s−2

where R is the semi-major axis and T is the orbital period
of the Earth. These orbital elements are directly measured,
although µ=GM is an interpretation that provides mass as
source of gravity and the universality of G. Within the princi-
ple of equivalence, gravity is a universal property like inertia
and does not depend on the type or scale of matter.

Though, the big G is known only from laboratory mea-
surements of the attraction force between two known masses.
The precision of those measures is only 10−3, because grav-
ity appears too weak on the scale of laboratory-sized masses
for to be measurable with the desired precision. However, as
mentioned Quinn and Speake [3], the discrepant results may

demonstrate that we do not understand the metrology of mea-
suring weak forces or they may signify some new physics.

On the other hand, the measured G values seem to os-
cillate over time [4]. It’s not G itself that is varying, Ander-
son and coauthors proposed, but more likely something else
is affecting the measurements, because the 5.9-year oscilla-
tory period of the measured G values seems to correlate with
the 5.9-year oscillatory period of Earth’s rotation rate, as de-
termined by recent Length of Day (LOD) measurements [5].
However, this hypothesis is still under discussion [6].

In 1981, Stacey, Tuck, Holding, Maher and Morris [7]
reported anomalous measures of the gravity acceleration in
mines. They proposed an explanation of this anomaly by in-
troducing a short-range potential, of the Yukawa type, that
overlaps the Newtonian potential and describes the intensity
and the action range of a hypothetical fifth interaction. In
2005, Reginald T. Cahill [8] introduced an additional dimen-
sionless constant that coincides with the fine structure con-
stant and determines the strength of a new 3-space self-inter-
action that can explain various gravitational anomalies, such
as the ‘borehole anomaly’ and the ‘dark matter anomaly’ in
the rotation speeds of spiral galaxies.

Obviously, the origin of gravity and the nature of particle
mass generation are key topics in modern physics and they
seem to have a common future. In [9] we have introduced a
fractal model of matter as a chain system of harmonic quan-
tum oscillators and have shown that particle rest masses coin-
cide with the eigenstates of the system. This is valid not only
for hadrons, but for mesons and leptons as well. Andreas
Ries [10] demonstrated that this model allows for the predic-
tion of the most abundant isotope of a given chemical ele-
ment. Already in [11] we could show that scale invariance is
a fundamental property of this model. On this background we
proposed quantum scaling as model of mass generation [12].

Our model of matter also provides a good approximation
of the mass distribution of large celestial bodies in the So-
lar system [13]. Metric characteristics of celestial bodies can
be understood as macroscopic quantized eigenstates in chain
systems of oscillating protons and electrons [14].

In [15] we have calculated the model masses of new plan-
ets in the Solar system and in [16, 17] were estimated the or-
bital elements of these hypothetical bodies. Our calculations
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Fig. 1: The canonical projection of F (natural logarithmic representation).

correspond well with the hypothesis of Batygin and Brown
[18] about a new gas giant called “planet 9” and with the
hypothesis of Volk and Malhotra [19] about a Mars-to-Earth
mass “planet 10” beyond Pluto.

Our model allows us to see a connection between the sta-
bility of the Solar system and the stability of the electron and
proton and consider global scaling as a forming factor of the
Solar system. This may be of cosmological significance.

In this paper we apply our model of matter to the analysis
of gravimetric characteristics of large bodies of the Solar sys-
tem and propose an interpretation of gravity as macroscopic
cumulative attractor effect of stability nodes in chain systems
of oscillating protons and electrons.

Methods

In [11] we have shown that the set of natural frequencies of
a chain system of similar harmonic oscillators coincides with
a set of finite continued fractions F , which are natural loga-
rithms:

ln (ω jk/ω00)= n j0 +
z

n j1 +
z

n j2 + . . .
+

z
n jk

=

= [z, n j0; n j1, n j2, . . . , n jk]=F ,

(1)

where ω jk is the set of angular frequencies and ω00 is the fun-
damental frequency of the set. The denominators are integer:
n j0, n j1, n j2, . . . , n jk ∈Z, the cardinality j ∈N of the set and the
number k ∈N of layers are finite. In the canonical form, the
numerator z equals 1.

For finite continued fractions F (1), ranges of high dis-
tribution density (nodes) arise near reciprocal integers 1, 1/2,
1/3, 1/4, . . . which are the attractor points of the distribution.

Any finite continued fraction represents a rational num-
ber [20]. Therefore, all natural frequencies ω jk in (1) are ir-
rational, because for rational exponents the natural exponen-
tial function is transcendental [21]. It is probable that this cir-
cumstance provides for high stability of an oscillating chain
system because it prevents resonance interaction between the
elements of the system [22]. Already in 1987 we have applied
continued fractions of the type F (1) as criterion of stability
in engineering [23, 24].

In the case of harmonic quantum oscillators, the contin-
ued fractions F (1) not only define fractal sets of natural an-
gular frequencies ω jk, angular accelerations a jk = c ·ω jk, os-
cillation periods τ jk = 1/ω jk and wavelengths λ jk = c/ω jk of

the chain system, but also fractal sets of energies E jk = ℏ ·ω jk

and masses m jk =E jk/c2 which correspond with the eigen-
states of the system. For this reason, we call the continued
fraction F (1) the “fundamental fractal” of eigenstates in
chain systems of harmonic quantum oscillators.

In the canonical form (z= 1) of the fundamental fractal
F (1), shorter continued fractions correspond with more sta-
ble eigenstates of a chain system of harmonic oscillators.
Therefore, integer logarithms represent the most stable eigen-
states (main attractor nodes).

Normal matter is formed by nucleons and electrons be-
cause they are exceptionally stable. Furthermore, protons and
neutrons have similar rest masses (the difference being only
0.14 percent). This allows us to interpret the proton and the
neutron as similar quantum oscillators with regard to their rest
masses. Therefore, in [12, 14] we have introduced a fractal
model of matter as a chain system of oscillating protons and
electrons.

Table 1 shows the basic set of electron and proton units
that can be considered as a fundamental metrology (c is the
speed of light in vacuum, ℏ is the reduced Planck constant).

Table 1: The basic set of physical properties of the electron and pro-
ton. Data taken from Particle Data Group [25]. Frequencies, oscilla-
tion periods, accelerations and the proton wavelength are calculated.

property electron proton

rest mass m 9.10938356(11) · 10−31 kg 1.672621898(21) · 10−27 kg
energy E=mc2 0.5109989461(31) MeV 938.2720813(58) MeV
angular frequency
ω=E/ℏ

7.76344071 · 1020 Hz 1.42548624 · 1024 Hz

angular oscillation
period τ= 1/ω

1.28808867 · 10−21 s 7.01515 · 10−25 s

wavelength
λ= c/ω

3.8615926764(18) · 10−13 m 2.1030891 · 10−16 m

angular accelera-
tion a= cω

2.327421 · 1029 ms−2 4.2735 · 1032 ms−2

The natural logarithm of the proton-to-electron mass ra-
tio is approximately 7.5 and consequently, the fundamental
fractal F calibrated on the proton will be shifted by 7.5 loga-
rithmic units relative to the F calibrated on the electron:

ln
1.672621898 · 10−27kg
9.10938356 · 10−31kg

≈ 7.5

We hypothesize that scale invariance based on the funda-
mental fractal F (1), calibrated on the metric properties of
the proton and electron, is a universal characteristic of or-
ganized matter. This hypothesis we have called ‘global scal-
ing’ [14, 26].
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Results

In [12] we have shown that the Planck mass coincides with
the main attractor node [44;∞] of the F (1) calibrated on the
proton:

ln
mPlanck

mproton
= ln

2.17647 · 10−8

1.6726219 · 10−27 = 44.01

This circumstance allows us to calculate the big G from the
proton rest mass:

G =
ℏc
m2

p
exp (−88)= 6.8420676 · 10−11 m3kg−1s−2

The calculated G value is larger than the currently recom-
mended by CODATA [1], although the published [27,28] val-
ues of G show immense variations and some recent measure-
ments of high precision deliver, in fact, larger values than the
recommended.

Applying our model (1), we can see that the Solar equato-
rial surface gravity acceleration gSun = 274 m/s2 corresponds
with a main attractor node of theF (1) calibrated on the angu-
lar acceleration of the electron aelectron = 2.327421 · 1029 ms−2

(see table 1). In fact, the logarithm of the electron-to-Solar
gravity acceleration ratio is close to an integer:

ln
aelectron

gSun
= ln

2.327421 · 1029 ms−2

274 ms−2 = 62.00

This coincidence supports our hypothesis of global scaling
and allows us to understand that the current amount of the
surface gravity acceleration of the Sun is not casual, but an
essential aspect of stability of the chain system of quantum
oscillators that appears as the star we call ’Sun’.

Also the current amount of the Solar mass we recognise as
criterion of stability, because it corresponds to a main attrac-
tor node of the F (1) calibrated on the electron. In fact, the
natural logarithm of the Sun-to-electron mass ratio is close to
an integer number:

ln
MSun

melectron
= ln

1.9884 · 1030 kg
9.10938356 · 10−31 kg

= 138.94

Furthermore, the main attractor node [62;∞] of the F (1) cal-
ibrated on the electron corresponds with the node [69; 2] cali-
brated on the proton that is half of the logarithm of the Solar-
to-electron mass ratio: 69.5= 139/2. This allows us to write
down an equation that connects the Sun-to-electron mass ra-
tio with the proton-to-Solar surface gravity acceleration ratio:

MSun

melectron
=

(
aproton

gSun

)2

As well, the correspondence of the current radius of the Sun
with a main attractor node (integer logarithm) of the F (1)

calibrated on the electron now we can understand as addi-
tional criterion of stability of the Sun:

ln
RSun

λelectron
= ln

6.96407 · 108 m
3.8615926764 · 10−13 m

= 48.95

The logarithm of the proton-to-Jupiter surface gravity accel-
eration ratio is also close to an integer:

ln
aproton

gJupiter
= ln

4.2735 · 1032 ms−2

24.79 ms−2 = 71.92

Jupiter’s body mass coincides with the main attractor
node [132;∞] of the electron-calibrated F (1):

ln
MJupiter

melectron
= ln

1.8986 · 1027 kg
9.10938356 · 10−31 kg

= 131.98

The surface gravity accelerations of Saturn (10.4 m/s,2),
Uranus (8.7 m/s 2), Neptune (11.1 m/s 2), Earth (9.81 m/s 2)
and Venus (8.87 m/s2) approximate the main attractor node
[73;∞] of the F (1) calibrated on the proton:

ln
aproton

gVenus
= ln

4.2735 · 1032 ms−2

8.87 ms−2 = 72.95

The mass of Venus corresponds to the main attractor node
[126;∞] of the electron-calibrated F (1):

ln
MVenus

melectron
= ln

4.8675 · 1024 kg
9.10938356 · 10−31 kg

= 126.01

Finally, the surface gravity accelerations of Mercury and
Mars (3.71 m/s2) approximate the main attractor node [74;
∞] of the F (1) calibrated on the proton:

ln
aproton

gMars
= ln

4.2735 · 1032 ms−2

3.71 ms−2 = 73.83

The body mass of Mars corresponds to the main attractor
node [124;∞] of the F (1) calibrated on the electron:

ln
MMars

melectron
= ln

6.4171 · 1023 kg
9.10938356 · 10−31 kg

= 123.99

In [14] we have shown that the body masses, the rotation and
orbital periods of the planets and the Sun are quantized. They
follow the sequence of attractor nodes of stability of the fun-
damental fractal F (1). Now we can affirm that the surface
gravity accelerations of the planets and the Sun are quan-
tized as well. The surface gravity accelerations of the planets
correspond with the main attractor nodes [72; ∞], [73; ∞],
[74;∞] of the F (1) calibrated on the proton while the surface
gravity acceleration of the Sun corresponds with the main at-
tractor node [62;∞] of the F (1) calibrated on the electron.

Considering that the angular acceleration of the electron
is aelectron = cωelectron, we can express the Solar surface gravity
acceleration in terms of the speed of light

gSun = cωSun
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and receive the angular oscillation period 1/ωSun = 12.7 side-
real days that is the first harmonic of the equatorial rotation
period 25.4 days of the Sun. This coincidence suggests to
analyse also the gravity accelerations of the planets in terms
of the speed of light.

If we express the Earth surface gravity acceleration
g= 9.8 ms−2 in terms of the speed of light, we receive an os-
cillation period of c/g= 355 sidereal days that is in the range
of the Earth orbital period and coincides perfectly with the
attractor node [63; 2] of the F (1) calibrated on the electron
oscillation period 2πτelectron = 8.0933 · 10−21 s:

2πτelectron exp (63.5) = 355 days

The period of 355 days coincides with 12 synodic lunar
months, the lunar year. The surface gravity accelerations of
Saturn (10.4 m/s2), Uranus (8.7 m/s2), Neptune (11.1 m/s2)
and Venus (8.87 m/s2) are of the same range and consequent-
ly, they approximate the same attractor node [63; 2].

The surface gravity acceleration of Saturn gSaturn =

= 10.4 m/s2 corresponds with an oscillation period of
c/gSaturn = 334 sidereal days that is in the range of the du-
ration of lightning storms on Saturn which appear once every
30 Earth years. The lightning storm of 2009 on Saturn in the
planet’s southern hemisphere lasted over 334 days [29].

Mars and Mercury have similar surface gravity accelera-
tions of about 3.7 ms−2 that corresponds to an oscillation pe-
riod of c/3.7 ms−2 = 938 sidereal days near the attractor node
[64; 2] of the F (1) calibrated on the electron:

2πτelectron exp (64.5)= 966 days

The sidereal rotation period of Mars is 24.62278 hours and
coincides perfectly to the main node [67; ∞] of the proton-
calibrated F (1):

ln
τMars

τproton
= ln

24.62278 · 3600 s
7.01515 · 10−25s

= 67.00

In addition, the orbital period of Mars 686.971 days meets
precisely the condition of global scaling:

ln
TMars

τelectron
= ln

686.971 · 86164 s
1.28808867 · 10−21s

= 66.00

The surface gravity acceleration of Jupiter gJupiter =

= 24.79 ms−2 corresponds to an oscillation period of
c/gJupiter = 140 sidereal days near the main attractor node
of the F calibrated on the electron:

2πτelectron exp (62.5) = 131 days

The sidereal rotation period of Jupiter is 9.925 hours and cor-
responds with the main attractor node [66; ∞] of the proton
F (1):

ln
τJupiter

τproton
= ln

9.9251 · 3600 s
7.01515 · 10−25s

= 66.10

Jupiter’s orbital period of 4332.59 days fulfils the conditions
of global scaling very precisely:

ln
TJupiter

2πτelectron
= ln

4332.59 · 86164 s
2π 1.28808867 · 10−21s

= 66.00

When the logarithm of the sidereal rotation period of
Jupiter slows down to [66; ∞], the orbital-to-rotation period
ratio of Jupiter can be described by the equation:

TJupiter

τJupiter
=

2πτelectron

τproton

We can see that both the orbital periods of Jupiter and Mars
correspond with the main attractor node [66; ∞] of stability,
but in the case of Jupiter with the electron oscillation period
as fundamental and in the case of Mars with the electron an-
gular oscillation period as fundamental. Therefore, both or-
bital periods are simply connected by 2π:

TJupiter = 2πTMars

Also these circumstances support our model of matter as
chain system of harmonic quantum oscillators and our hy-
pothesis of global scaling.

Conclusion

Applying our fractal model of matter as chain system of har-
monic quantum oscillators to the analysis of gravimetric char-
acteristics of large bodies of the Solar system we did show
that the surface gravity accelerations of the planets and the
Sun are quantized and correspond to nodes of stability in
chain systems of oscillating protons and electrons and there-
fore, they can be estimated without any information about the
masses or sizes of the celestial bodies.

Furthermore, the quantized surface gravity accelerations
of the planets and the Sun seem to be connected with their
quantized orbital and rotation periods.

We presume that the accretion of gravitational mass is a
macroscopic cumulative attractor effect of stability nodes in
chain systems of oscillating protons and electrons. From this
point of view, Newton’s constant of gravitation defines the
corresponding amount of gravitational mass a given attractor
node can accumulate.
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On the Ultimate Energy of Cosmic Rays
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It is established that the upper limit of cosmic-ray energy due to the Greisen-Zatsepin-
Kuzmin effect is local. On the basis of the mechanistic interpretation of J. Wheeler’s
geometrodynamic concept, a more fundamental limitation on this limit was established,
which, in the final analysis, depends on Planck’s size (~γ/c3)1/2 and for protons the
limit is 4.51× 1018 eV. The inflection in the spectrum curve, the “knee”, corresponds to
the mass-energy of the vortex tube of the limiting proton-electron contour, 1.46 × 1015

eV. For other nuclei these energies increase in proportion to the atomic number of the
element.

Cosmic rays are a flow of nuclei of chemical elements — hy-
drogen (∼ 90%), helium (∼ 8%), and the nuclei of the heavier
elements (∼ 2%). The energy spectrum of cosmic rays or the
dependence of the cosmic ray flux on energy extends from
103 to 1020 eV. The main sources of primary cosmic rays are
supernova explosions (galactic cosmic rays) and the Sun, as
well as extragalactic sources — radio galaxies and quasars.
The protons and heavier nuclei emitted during supernova ex-
plosions are further accelerated in specific astrophysical pro-
cesses. Falling into the earth’s atmosphere, cosmic ray par-
ticles transmit their energy to a multitude of secondary par-
ticles. Thus, the particles cascade is formed; it is called an
extensive air shower (EAS) and covers a large area.

Nature ultrahigh energy cosmic rays (more than 1017 eV)
has not yet been unambiguously interpreted, their sources
have not yet been identified, and there is no complete under-
standing of the mechanisms of their acceleration and even the
nature of the accelerated particles [1]. There are reasons to
assume that they are of extragalactic origin. It is believed that
the upper limit of cosmic-ray energy is limited by a threshold
of 5× 1019 eV, because cosmic ray particles interact energeti-
cally with relic radiation, which leads to their absorption and
reduction of their energy to a threshold value at distances of
the order of several tens of megaparsecs (Greisen-Zatsepin-
Kuzmin effect) [2,3]. The presence of particles with energies
exceeding this threshold does not yet find a satisfactory expla-
nation, since within range of up to one hundred megaparsec
powerful radiation sources are absent.

The question arises: what energy could be cosmic rays, if
the distance between the source and the Earth would be much
less than the Greisen-Zatsepin-Kuzmin limit, and could not
microparticle produce a huge macroscopic effect? Here we
see a paradox, since theoretically relativistic mass and en-
ergy of the particle can approach infinity. It seems that the
Greisen-Zatsepin-Kuzmin effect is of local importance, and
there are more fundamental causes that limit the energy of
cosmic rays.

A fundamental limitation can be derived by considering a
charged microparticle from the point of view of John Wheel-

er’s geometrodynamic concept. Wheeler’s concept assumes
that charged microparticles are singular points on a topolog-
ically non-unitary coherent two-dimensional surface of our
world, connected by a “wormhole”, a vortex tube or a current
line of the input-output kind in an additional dimension, gen-
erally forming a closed counter. According to the mechanistic
interpretation of Wheeler’s idea when the contour (proton-
electronic, for example) is opened individual charged parti-
cles retain part of the contour vortex tube (boson mass) whose
momentum is numerically equal to the charge [4, 5]. In these
works formulas are derived for the vortex tube parameters: its
boson mass my, the circulation velocity of the medium along
the contour v, the radius r, and the length ly:

my = (an)2 me , (1)

v =
c1/3

0

(an)2 c , (2)

r =
c2/3

0

(an)4 re , (3)

ly = (an)2re , (4)

where n is the principal quantum number of the contour, a is
the inverse of the fine structure constant, me and re are the
mass and classical radius of the electron, c0 is the dimen-
sionless speed of light equal to c/[m/sec]. Depending on the
size of the contour, i.e. from its quantum number, its param-
eters vary, but the momentum (charge equivalent) in a closed
counter remains constant. At the same time, both the contour
size and the parameters of the vortex tube have their ultimate
values.

In [6], in determining the neutrino mass, it was shown that
the Planck size rh = (~γ/c3)1/2 has a physical meaning and is
the limiting size inherent in the neutrino, and, obviously, in
general for the microcosm, i.e. rmin = rh = 1.62 × 10−35 m
or 5.74 × 10−21 re. Then from (1) and (3) we get other ul-
timate values: n = 21700 and my = 8.83 × 1012 me. The
boson mass is compared with that of mass-energy in units of
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mec2, provided that v → c (here the boson mass can be con-
sidered as the mass of the excited or “associated” vacuum). It
is this condition that is satisfied for cosmic rays whose parti-
cles relative to their source move with velocities close to the
speed of light. Thus, the energy equivalent of the mass my is
E = 8.83 × 1012 × 511000 = 4.51 × 1018 eV.

This quantity is the ultimate energy for cosmic-ray pro-
tons. Obviously, for heavier nuclei, the energy increases in
proportion to the atomic number A. This conclusion agrees
with the fact of “weight increasing” the primary cosmic ray
component with increasing energy, and the heavy nuclei flux
(most likely iron) in the region of ∼ 1018 eV is much larger
than that of protons [7–9]. Consequently, the largest energy
value for the heaviest nuclei can not exceed E ∼ 3.7 × 1020

eV and even higher values, apparently, can not be. Indeed,
during the entire time of observation on Earth, only a few
dozen events with energies above 1020 eV were recorded in
various installations (the maximum energy of the cosmic par-
ticle 3×1020 eV was registered in October 1991 on the “Fly’s
Eye” device [10]).

The figure adopted from [11] shows the observed spec-
trum of cosmic radiation, on which the energy limits for pro-
tons (II) and heavy nuclei (III) are noted (the values along
the ordinate are reduced to the energy in GeV). The region
of the graph is marked, where the intensity of cosmic rays is
about 1 particle per square meter per year. A narrow scatter of
the experimental data over the entire length of the spectrum,
with the exception of the region of ultrahigh energies, gives
grounds to assume that the intensity of cosmic rays depends
slightly on the nature of their sources and the mechanism for
their acceleration, and this can be shown.

Fig. 1: The observed spectrum of cosmic radiation in the energy
range 108–1020 eV.

Let us assume that the particle velocity increases propor-
tionally to the distance from the source, and the number of

particles falling per unit area of the receiver is inversely pro-
portional to the cube of the distance from the source. This is
true in the case of unimpeded particle propagation. Then, by
simple computations, we obtain a relation that is independent
of the distance:

I = (Em/E)1.5 Im , (5)

where Em and Im are the coordinates of some reference point
on the I(E) dependence in units of [eV] and [flux × m−2 ×

sr−1 × sec−1]. When the ordinates are divided by energy in
GeV, formula (5) becomes:

I = 109 (E1.5
m /E2.5) Im (6)

and shown in the figure with a dashed line. The actual de-
pendence is somewhat more steeply and approximated by the
relation dI/dE ∼ E−2.7, which is explained by the presence of
magnetic fields and other cosmogenic factors affecting charg-
ed particles. Nevertheless, it turns out that the shape of the
energy spectrum is largely determined by the increase in the
particles energy and the decrease in their number as radiation
sources are removed from the Earth.

In the energy range 1015–1016 eV, the dependence I(E)
undergoes an inflection increasing index at E, the so-called
“knee”. The energy value at the inflection point matches with
the mass-energy of the contour corresponding to the ultimate
size of the hydrogen atom. For this atom, the ultimate value of
the quantum number n = 390 [5]. In general, detailed formula
for the inflection point energy, given the results of [5], and
assuming that the energy increases in proportion to the atomic
number of nuclei can be represented as:

Eknee = 5.11 × 105

2πγρemp × [sec2]

c1/3
0 cos qw

2 A =

= 1.46 × 1015 × A eV, (7)

where γ is the gravitational constant, ρe = me/r3
e is the elec-

tron density equal to 4.07×1013 kg/m3, mp is the relative mass
of the proton, and qw is the Weinberg angle of 28.7◦.

For protons, this energy value is indicated in the figure by
the vertical (I), which matches with the beginning of the in-
flection of the energy spectrum. The removal of the inflection
point towards higher energies for heavier nuclei is confirmed
in [12].

One can propose the following explanation for the in-
crease in the energy spectrum incline. At energies up to 1.46×
1015 eV (n < 390), protons and electrons in cosmic rays can
be in a bound state — either as atoms having a neutral charge
or in some associations that have a total positive charge less
than the protons total charge. It may reduce their interaction
with magnetic fields.

At higher energies, protons are not accompanied by elec-
trons, their total positive charge remains, and they are fully
exposed to magnetic fields. Perhaps this is the reason for the
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abrupt decrease in the number of electrons in the EAS when
primary particles have energies about 1015–1016 eV [13].

As for the neutrinos, then, bearing in mind their inherent
size limit of rh, their maximum energy, possible, can reach the
same value as that of the proton, 4.51 × 1018 eV. At the mo-
ment, the highest recorded neutrino energy is 2×1015 eV [14].

Conclusion

The ultimate energy of cosmic rays is limited by the maxi-
mum mass-energy of the proton vortex tube, which in turn
is determined by the fundamental parameter — the Planck
size inherent in a neutrino. The reason for the inflection of
the spectrum of cosmic rays (the “knee”) is the obtaining by
the proton of the energy at which a proton-electronic counter,
having ultimate quantum number, opens. For other nuclei
these energies increase in proportion to the atomic number
of the element.

It is shown that, for all on a variety of radiation sources
and the mechanism of acceleration of cosmic particles, the
shape of the spectrum of cosmic rays, provided that they
spread without interference, is largely determined by the most
common factors — the increase in their particle energy and
the decrease in their number — as the distance between the
sources and the Earth is increasing.
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Here we focus on our previous studies, wherein we deduced the redshift formula in the
de Sitter metric space. The non-Newtonian gravitational forces of repulsion, acting in
the de Sitter universe, increase with distance. Thus these forces produce the redshift
effect on photons coming from distant objects. The redshift in the de Sitter universe
increases with distance from the observed objects, and is hyperbolic that matches with
the non-linear redshift recently registered by astronomers. As a result, we no longer
need the expanding model of the Friedmann metric to correctly explain the redshift in
the spectra of galaxies and quasars. The observed “cosmological” redshift is as well
good explained in the de Sitter universe which is stationary as is well known.

Earlier, we studied the metric of the inner space of a liquid
sphere — the sperical space filled with an ideal incompress-
ible liquid (the so-called Schwarzschild 2nd metric). The ob-
tained results were published in all necessary detail in [1–3].
In particular, in our book Inside Stars [2] we considered stars
as liquid spheres. Our computations made by the mathemat-
ical methods of the General Theory of Relativity showed a
good coincidence with the observational data known in as-
tronomy. We also showed, in the journal papers [1, 2] and
in §1.2 of the book Inside Stars [2], that the liquid sphere
metric transforms into the de Sitter metric (the metric of a
spherical space fulled with physical vacuum) under the fol-
lowing two common conditions. First, under the gravitational
collapse condition, when the radius of the liquid sphere be-
comes equal to its gravitational radius (i.e. when the liquid
sphere becomes gravitational collapsar). And second, when
the space-time breaking matches with the radius of the liq-
uid sphere. We also showed that the observed Universe is
equivalent to a sphere in the state, which is very close to
gravitational collapse (See Chapter 6 in [2] for detail). Thus
the space of our Universe can be described by the metric
of the de Sitter vacuum sphere. This means, in particular,
that the non-Newtonian gravitational forces acting in the de
Sitter metric space must manifest themselves in some astro-
nomical phenomena observed in our Universe (read about
the non-Newtonian forces of gravitational attraction and re-
pulsion in §5.5 of our book Fields, Vacuum and the Mirror
Universe [4]). For example, the non-Newtonian gravitational
forces may also be the source of the observed redshift in the
spectra of galaxies and quazars.

Now, this observed phenomenon is known as the “cos-
mological redshift” due to Lemaı̂tre who in 1927 showed [5]
that such redshift may be originated due the Doppler effect on
photons in an expanding universe (the universe of the Fried-
mann metric). On the other hand, proceeding from the afore-
mentioned theoretical results [1–3] we can now state that the
observed redshift in the spectra of galaxies and quazars has
no relation to cosmology but is the “effect of distance” in the

stationary universe of the de Sitter metric. Such a redshift
formula was derived in our publications [1–3]. But because
those publications were focused on the internal constitution
of stars, the redshift effect in the de Sitter space was not em-
phasized and analysed properly.

We now aim to emphasize it for better understanding of
the obtained result.

The redshift formula is derived by integration of the scalar
geodesic equation for photons. There are the scalar geodesic
equation and the vectorial geodesic equation. They are the
respective projections of the four-dimensional geodesic equa-
tion (the equation of motion along the shortest/geodesic lines)
onto the time line and the three-dimensional spatial section
of the observer. The scalar geodesic equation, the projection
onto the time line, is the equation of energy. The vectorial
geodesic equation is the equation of three-dimensional mo-
tion. So, integrating the scalar geodesic equation of a photon
along its path, we obtain how its energy and, hence, its fre-
quency changes during its travel. As a result, we obtain the
redshift formula. As a matter of fact that the geodesic equa-
tions and, hence, their integration, depends on the metric of
the particular space wherein the photons travel.

The three-dimensional sub-space of the de Sitter space
(space-time) does not rotate and deform. But there is the grav-
itational inertial force. This force acting inside a sphere filled
with physical vacuum, i.e. in the de Sitter space, in the radial
coordinates takes the form (5.74) [4, §5.5]

F =
λc2

3
r =

c2

a2 r ,

where λ = κρ0 is the Einstein cosmological constant, κ is the
Einstein gravitational constant, while ρ0 is the density of the
physical vacuum that fills the de Sitter space (see §5.3 [4]).

The Hubble constant H = (2.3± 0.3) × 10−18 sec−1 is ex-
pressed through the radius of the Universe a = 1.3 × 1028 cm
as H = c/a. Thus, we obtain (6.11) [1]

F = H2r ,
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where the Hubble constant plays the rôle of a fundamental
frequency

H =
2π
T

expessed through the time T of the existence of the Universe.
So, the gravitational inertial force F acting in the de Sitter
space depends the Hubble constant H.

Because F > 0 in the de Sitter space, this is a force of
repulsion. This force is proportional to the radial distance r
to the observer: each system of reference is connected with
its own observer and his reference body, which is the “centre”
of his own universe.

Consider the scalar and vectorial geodesic equations for a
photon. This is the system of equations (6.22) [2]. Because
the de Sitter space does not rotate and deform, the equations
take the simplified form (6.23), where the photon is affected
by only the gravitational inertial force and the space non-
uniformity (expressed with the Christoffel symbols). Integrat-
ing the scalar geodesic equation (the equation of energy) for
the photon travelling along the radial coordinate r in the de
Sitter space, with taking the vectorial geodesic equation, we
obtain the formula of the photon’s frequency ω (6.27) [2]

ω =
ω0√

1 − r2/a2
,

where ω0 =ω(r= 0) is the photon’s frequency in the coordi-
nate origin r= 0 (where the observer is located). We see that
the photon’s frequency is asymptotically increasing when the
photon’s source approaches to the event horizon (radius) of
the Universe (r= a).

At distances much shorter than the Universe’s radius i.e.
much shorter than the event horizon of the Universe (r ≪ a),
the formula for the photon’s frequency becomes (6.28)

ω ≃ ω0

(
1 +

r2

2a2

)
.

That is we get the quadratic additive to the initially frequency
of the photon or, in another word, the redshift effect z of
parabolic type (6.29–6.31)

z =
ω − ω0

ω0
=

1√
1 − r2/a2

− 1 ≃
r2

2a2 > 0 ,

which, in terms of the Hubble constant H = c/a, is

z ≃
H2r2

2c2 .

As is seen, the photon frequency shift is positive in this case:
z > 0 (otherwise it would be blueshift). This means that the
redshift effect takes place in the de Sitter universe. The space
of the de Sitter metric is stationary: it neither expands nor
compresses. The redshift effect in the de Sitter universe is
due to the non-Newtonian gravitational force of repulsion.

In the last decades, astronomical observations of the most
distant galaxies showed an increase of the redshift effect in
the spectra of the most distant galaxies, which are located
close to the event horizon. The astronomers supposed there-
fore, on the basis of the Friedmann metric of an expanding
universe, that the space of our Universe expands with accel-
eration. On the other hand, the non-linear redshift at large
distances is easily explained in the framework of the de Sitter
static universe: see formula for z that above. This non-linear
effect is due to only the non-linearity of the non-Newtonian
gravitational force of repulsion acting on the photon. From
the viewpoint of an earthy observer this effect looks as the in-
creasing redshift with the increasing distance from the Earth
to the observed object (the source of the photon).*

The observed high redshift in the spectra of quazars is
as well explained due to the powerful inner non-Newtonian
forces of repulsion (not the far intergalactic distances in the
Friedmann expanding universe). As we conclude on the ba-
sis of our book Inside Stars [2], the ratio of the gravitational
radius and the space breaking radius to the physical radius a
(i.e. the ratio rg/a and rbr/a) is close to 1 for neutron stars
and quazars. If a star is in the state of gravitational collapse,
the space breaking matches with both the gravitational radius
of the star rg and the star’s surface a, i.e. a = rg = rbr. If the
space breaking matches with only the star’s surface (rbr = a),
gravitational collapse occurs at the radius

rc =

√
9a2 – 8a3/rg

(2.7) in [1]. The physical radius a of such a star is

rg < a < 1.125 rg

see (2.8 – 2.9) in [1]. In other words, neutron stars and qua-
zars are objects in the state, which is very close to collapse.
The latter means that the inner non-Newtonian gravitational
force of repulsion is so strong near the surface of a neutron
star or a quazar that photons emitted from its surface into the
cosmos bear a high redshift independent on the distance from
the observer. For this reason, quazars may be located not
somewhere near the event horizon of our Universe, but some-
where much much closer to us.

In the end, a few words about our Universe as a whole.
According to the contemporary astronomical data, its average
density is ∼ 10−29 g/cm3, while the ultimate large observed
distance (the radius of the Universe, or the event horizon) is
∼ 1.3 × 1028 cm. With such characteristics, the collapse ra-
dius is ∼ 1.2 × 1028 cm (a little lesser than the event horizon,

*This conclusion on the unnecessity of the Friedmann metric meets
another study [6–8] showing that the observed redshift, including its non-
linearity, may be caused by the light-speed rotation of the isotropic space (the
partially degenerate space, wherein light-like particles e.g. photons travel).
The found basic redshift effect in a flat space has the form of exponent, while
the paticular space metrics make only an additional goal to it.
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while the space breaking radius is the same as the event hori-
zon ∼ 1.3 × 1028 cm. These observed facts mean that we live
in the inner space of an object which is either collapsar or is
in the state which is very close to the state of collapse. The
description of such an object anyhow excludes the expanding
model. That is the Friedmann metric of an expanding uni-
verse is non-applicable to the observed Universe.

Finally, the observed non-linear redshift in the spectra of
galaxies and quazars is well explained in the de Sitter station-
ary space, wherein it is merely a “distant effect” due to the
non-Newtonian forces of repulsion which increase with dis-
tance from the observer. The de Sitter universe is stationary
— it is a bubble that has closed space and time on itself, and
is floating in the surrounding outer space (because we have
no reason to assert that our Universe exists in isolation as an
exceptional object).

Submitted on December 5, 2017
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The Interacting Boson Approximation model, IBA-1, has been used in studying the nu-
clear structure of 154,156Dy. The excited positive and negative parity states, potential
energy surfaces, V(β, γ), electromagnetic transition probabilities, B(E1), B(E2), back
bending, staggering effect, ∆I = 1, and electric monopole strength, X(E0/E2), were
calculated successfully. The calculated values are compared to the available experi-
mental data and show reasonable agreement. The energy and electromagnetic transition
probabilities ratios as well as the contour plot of the potential energy surfaces show that
the 156Dy nucleus is an X(5) candidate.

1 Introduction

The nuclear shape and shape phase transitions in the rare
earth dysprosium isotopes have been investigated by many
authors theoretically and experimentally. Theoretically, an-
alytical solution of the Bohr Hamiltonian derived with the
Titz-Hua potential [1] as well as Bohr-Mottelson Hamilto-
nian [2,3] were used in calculating energy levels, spin, parity
and electromagnetic ratios. The effect of the nuclear struc-
ture on the α-decay are investigated by many authors [4-6]
and found that the shape and deformation has an effect on
the branching ratio as well as the change in the half-life of
α-emission. Experimentally, the low-lying positive and nega-
tive parity states were produced in the 148Nd (12C,4n), 155Gd
(3He,4n), E= 37.5 MeV, 122Sn (36S,4n), E= 165 MeV and
114Cd (48Ca,6n), E= 215 MeV [7-9] reactions. The levels’
energy, spin, parity, γ-bands, branching ratios, level energy
differences between the positive and negative parity bands,
octupole deformation, γ-γ coincidences and angular distribu-
tion were measured. Conversion electrons were detected by
mini-orange spectrometer, E0 transitions were observed and
the strength of the electric monopole transitions were calcu-
lated [10].

X(5) is the critical point symmetry of phase transition be-
tween U(5) and SU(3) nuclei. The aim of the present work is
to:

1. Calculate the potential energy surfaces, V(β, γ);

2. Calculate the levels’ energy and electromagnetic tran-
sition rates B(E1) and B(E2);

3. Show X(5) symmetry to 156Dy;

4. Calculate the back bending;

5. Calculate the staggering effect, and

6. Calculate the electric monopole strength,
X(E0/E2).

2 Interacting Boson Approximation model IBA-1

2.1 Levels’ energy

The IBA-1 Hamiltonian [11] employed on 154,156Dy, in the
present calculation, is:

H = EPS · nd + PAIR · (P · P)

+
1
2

ELL · (L · L) +
1
2

QQ · (Q · Q)

+ 5 OCT · (T3 · T3) + 5 HEX · (T4 · T4) ,

(1)

where

P · P = 1
2


{
(s†s†)(0)

0 −
√

5(d†d†)(0)
0

}
x{

(ss)(0)
0 −

√
5(d̃d̃)(0)

0

}


(0)

0

, (2)

L · L = −10
√

3
[
(d†d̃)(1)x (d†d̃)(1)

](0)

0
, (3)

Q · Q =
√

5


{
(S †d̃ + d†s)(2) −

√
7

2
(d†d̃)(2)

}
x{

(s†d̃ + +d̃s)(2) −
√

7
2

(d†d̃)(2)
}


(0)

0

, (4)

T3 · T3 = −
√

7
[
(d†d̃)(2)x (d†d̃)(2)

](0)

0
, (5)

T4 · T4 = 3
[
(d†d̃)(4)x (d†d̃)(4)

](0)

0
. (6)

and nd is the number of d bosons; P · P, L · L, Q · Q, T3 · T3
and T4 ·T4 represent pairing, angular momentum, quadrupole,
octupole and hexadecupole interactions respectively between
the bosons; EPS is the boson energy; and PAIR, ELL, QQ,
OCT , HEX are the strengths of the pairing, angular momen-
tum, quadrupole, octupole and hexadecupole interactions re-
spectively, Table 1.
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nucleus EPS PAIR ELL QQ OCT HEX E2SD(eb) E2DD(eb)
154Dy 0.6240 0.000 0.0084 −0.0244 0.0000 0.0000 0.1510 −0.4467
156Dy 0.4450 0.000 0.0084 −0.0244 0.0000 0.0000 0.1274 −0.3769

Table 1: Parameters used in IBA-1 Hamiltonian (all in MeV).

nucleus E4+1
/E2+1

E6+1
/E2+1

E8+1
/E2+1

E0+2
/E2+1

E6+1
/E0+2

E0+3
/E2+1

BE2(4+1 − 2+1 )/BE2(2+1 − 0+1 )
154Dy 2.09 3.12 4.86 2.12 1.46 2.95 1.91
156Dy 2.86 5.36 8.43 6.15 0.87 8.78 1.56

X(5) 3.02 5.83 9.29 5.65 1.53 6.03 1.58

Table 2: Energy and transition probability ratios.

2.2 Transition rates

The electric quadrupole transition operator employed is:

T (E2) = E2SD · (s†d̃ + d†s)(2) +

+
1
√

5
E2DD · (d†d̃)(2) .

(7)

E2SD and E2DD are adjustable parameters.
The reduced electric quadrupole transition rates between

Ii → I f states are given by:

B (E2, Ii − I f ) =
[< I f ∥ T (E2) ∥ Ii >]2

2Ii + 1
. (8)

3 Results and discussion

3.1 The potential energy surfaces

The potential energy surfaces [12], V(β, γ), as a function of
the deformation parameters β and γ are calculated using:

ENΠNν (β, γ) = <NπNν; βγ |Hπν|NπNν; βγ> =

= ζd(NνNπ)β2(1 + β2) + β2(1 + β2)−2×

×
{
kNνNπ[4 − (X̄πX̄ν)β cos 3γ]

}
+

+

{
[X̄πX̄νβ2] + Nν(Nν − 1)

(
1
10

c0 +
1
7

c2

)
β2

}
,

(9)

where

X̄ρ =
(

2
7

)0.5
Xρ , ρ = π (proton) or υ (neutron) , (10)

and ζd : the energy of d bosons.
The calculated potential energy surfaces, V(β, γ), are pre-

sented in Figs. 1, 2. Fig. 1 shows that 154Dy is a vibration-
al-like nucleus, U(5), while 156Dy nucleus is deviated from
vibrational-like to rotational-like with slight prolate deforma-
tion, SU(3), Fig. 2. The levels’ energy, transition probability
ratios presented in Table 2, as well as the potential energy sur-
faces, are in favour to consider 156Dy as an X(5) candidate.

I+i I+f B (E2) I−i I+f B (E1)

21 01 0.4744 11 01 0.0282
22 01 0.0100 11 02 0.1336
22 02 0.3040 31 21 0.1683
31 21 0.0198 31 22 0.0658
41 21 0.9074 32 21 0.0069
31 22 0.2666 32 22 0.0235
42 41 0.1409 32 23 0.1520
42 21 0.0017 51 41 0.3035
42 22 0.5520 51 42 0.0698
61 41 1.1581 71 61 0.4380
62 41 0.0005 71 62 0.0665
62 42 0.8200 91 81 0.5734
81 61 1.2916 91 82 0.0610
81 62 0.0700 92 81 0.1750
81 63 0.0641 92 82 0.3501
82 62 0.9584 92 83 0.2144
101 81 1.3384 111 101 0.7103
101 82 0.0579 111 102 0.0543

Table 3: Calculated B(E2) and B(E1) in 154Dy.

3.2 Energy spectra and electric transition rates

The energy of the positive and negative parity states of iso-
topes 154,156Dy are calculated using computer code PHINT
[11]. A comparison between the experimental spectra [13,14]
and our calculations, using values of the model parameters
given in Table 1 for the ground state, β1, β2, γ1 and γ2 bands
are illustrated in Figs. 3, 4. The agreement between the cal-
culated levels’ energy and their corresponding experimental
values are fair, but they are slightly higher especially for the
higher excited states. We believe this is due to the change of
the projection of the angular momentum which is due mainly
to band crossing. Fig. 5 shows the position of X(5) and E(5)
between the other types of nuclei.
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Fig. 1: Potential energy surfaces for 154Dy.

Fig. 2: Potential energy surfaces for 156Dy.

I+i I+f B (E2) I−i I+f B (E1)

21 01 0.7444 11 01 0.1309
22 01 0.0023 11 02 0.0696
22 02 0.4652 31 21 0.2353
31 21 0.0169 31 22 0.0854
41 21 1.1073 32 21 0.0481
31 22 0.0026 32 22 0.0092
42 41 0.0356 32 23 0.0110
42 21 0.0016 51 41 0.3934
42 22 0.0041 51 42 0.0778
61 41 1.2446 71 61 0.5149
62 41 0.0007 71 62 0.0675
62 42 0.9083 91 81 0.6377
81 61 1.3003 91 82 0.0585
81 62 0.0410 92 81 0.0129
81 63 0.0162 92 82 0.3474
82 62 0.9817 92 83 0.2687
101 81 1.3025 111 101 0.7631
101 82 0.0332 111 102 0.0507

Table 4: Calculated B(E1) and B(E2) in 156Dy.

Fig. 3: Experimental[13] and calculated levels’ energy.

Fig. 4: Experimental[14] and calculated levels’ energy.

Unfortunately there is no available measurements of elec-
tromagnetic transition rates B (E2) for 154,156Dy nuclei. The
only measured values of B (E2, 2+1 → 0+1 ) for 154,156Dy [15]
are used in normalizing our calculated values presented in
Tables 3, 4. Also, there is no experimental data available
for B (E1, I−→ I+) for normalization. Parameters E2SD and
E2DD displayed in Table 1 are used in the computer code
FBEM [11] for calculating the electromagnetic transition ra-
tes. No new parameters are introduced for calculating elec-
tromagnetic transition rates B (E1) and B (E2) of intraband
and interband.

3.3 Staggering effect

The presence of positive and negative parity states has en-
couraged us to study the staggering effect [16] for 154,156Dy
isotopes using staggering functions (11) and (12) with the
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Fig. 5: Triangle showing the position of X(5) and E(5).

Fig. 6: Staggering effect on 154Dy and 154Dy.

help of the available experimental data [13,14].

S t (I) = 6∆E (I)− 4∆E (I − 1)− 4∆E (I + 1)+

+∆E (I + 2) + ∆E (I − 2) ,
(11)

with
∆E (I) = E (I + 1) − E (I) . (12)

The calculated staggering patterns are illustrated in Fig. 6
and show an interaction between the positive and negative
parity states for the ground state band of 154,156Dy.

3.4 Back bending

The moment of inertia J and energy parameters ℏω are calcu-
lated using (13) and (14):

2J
ℏ2 =

4I − 2
∆E(I → I − 2)

, (13)

(ℏω)2 = (I2 − I + 1)
[
∆E(I → I − 2)

(2I − 1)

]2

. (14)

The plots in Fig. 7 show forward bending for 154Dy at
I+ = 18 and upper bending at I+ = 22 for 156Dy. Bending in
higher states may be explained as due to band crossing.

Fig. 7: Back bending 154Dy and 156Dy.

I+i I+f I+′ f
154Dy 156Dy

02 01 21 0.0778 0.3526
03 02 22 0.2455 0.0285
03 01 22 0.0108 6.9000
04 03 23 0.1403 0.0000
04 02 23 0.0363 1.7686
04 01 23 0.0247 0.1903
22 21 02 2.4500 1.3870
23 21 02 0.2679 0.0454
23 22 02 0.1114 2.2727
43 41 23 0.0434 0.0785
43 42 23 0.0193 1.4117
44 41 23 0.0303 0.3177
44 42 23 5.3636 0.254
42 41 22 0.2384 0.0027
62 61 42 0.2422 0.1347
82 81 62 0.0609 0.0173
102 101 82 0.0337 0.0134

Table 5: Xi f ′ f (E0/E2) ratios in 154,156Dy.

3.5 Electric monopole transitions

The electric monopole transitions, E0, are normally occurring
between two states of the same spin and parity by transferring
energy and zero unit of angular momentum. The strength of
the electric monopole transition, Xi f ′ f (E0/E2) [17] can be
calculated using (15) and (16) and are presented in Table 5

Xi f ′ f (E0/E2) =
B (E0, Ii − I f )
B (E2, Ii − I′ f )

, (15)

where Ii = I f=0, I′ f=2 and Ii= I f,0, I f = I′ f .

Xi f ′ f (E0/E2) = (2.54 × 109) A3/4
E5
γ(MeV)

ΩKL
×

×α(E2)
Te(E0, Ii − I f )
Te(E2, Ii − I′ f )

,

(16)
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A : mass number;
Ii : spin of the initial state where E0 and E2 transitions are
depopulating it;
I f : spin of the final state of E0 transition;
I′ f : spin of the final state of E2 transition;
Eγ : gamma ray energy;
ΩKL : electronic factor for K, L shells [18];
α(E2) : conversion coefficient of the E2 transition;
Te(E0, Ii − I f ) : absolute transition probability of the E0 tran-
sition between Ii and I f states; and
Te(E2, Ii − I′ f ) : absolute transition probability of the E2 tran-
sition between Ii and I′ f states.

Unfortunately, there is no experimental data available for
comparison with the calculated values.

3.6 Conclusions

The IBA-1 model has been applied successfully to 154,156Dy
isotopes and:

1. Levels’ energy are successfully reproduced;

2. Potential energy surfaces are calculated and show vib-
rational-like characteristics to 154Dy and slight prolate
deformation to 156Dy;

3. Electromagnetic transition rates B (E1) and B (E2) are
calculated;

4. Bending has been observed at I+= 18 for 154Dy and at
I+= 22 for 156Dy ;

5. Staggering effect has been calculated and beat patterns
observed which show an interaction between the posi-
tive and negative parity states;

6. Strength of electric monopole transitions Xi f ′ f (E0/E2)
are calculated; and

7. The potential energy surfaces, transition probability ra-
tes and energy show that 156Dy has the X(5) symmetry.

Received on November 28, 2017
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Soliton-effect Spectral Self-compression for Different Initial Pulses
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Our numerical studies demonstrate a spectral analogue of soliton-effect self-
compression for different initial pulses. The evolution of transform-limited pulses dur-
ing the propagation in a single-mode fiber with anomalous dispersion is studied. It is
shown that the spectral analogue of soliton-effect self-compression is realized in the
case of different initial pulses: periodicity of the spectral compression and stretching
is different for different initial pulses. The approximation of curves introducing the
frequency of the spectral compression and stretching dependence on nonlinearity pa-
rameter is implemented.

1 Introduction

The spectral compression (SC) process has numerous inter-
esting applications in ultrafast optics and laser technology [1–
5], such as the spectrotemporal imaging of ultrashort pulses
by means of Fourier transformation [1]. In [5], the authors
offer to apply SC in a fiber laser instead of strong spectral
filtering. This allows to obtain transform-limited pulses and
benefits the laser’s power efficiency. As another practical ap-
plication of SC, it is important to mention the transfer of fem-
tosecond pulses without distortion at a relatively large dis-
tance [6]. Diverse applications of SC remain urgent in rela-
tion to the development and analysis of new effective com-
pression systems. For example, in [7] the compression effi-
ciency is improved by means of amplitude modulation.

The traditional spectral compressor consists of prism as a
dispersive delay line, where the pulse is stretched and nega-
tively chirped, and single-mode fiber (SMF) with the normal
group-velocity dispersion, where nonlinear self-phase modu-
lation leads to the chirp compensation and spectral narrow-
ing. At the wavelength range of <1.3 µm, the group-velocity
dispersion is positive for standard silica fibers. The role of
the normal dispersion in SC of subpicosecond laser pulses
is analyzed in [8]. As it is known, the combined impact
of negative dispersion and the nonlinear self-phase modula-
tion leads to the formation of solitons in SMF [9, 10], when
the impact of dispersion and nonlinear self-phase modula-
tion balance each other out. The pulse self-compression phe-
nomenon is also known [11], which is obtained when the im-
pact of the nonlinear self-phase modulation exceeds the dis-
persion. Under the opposite condition, i.e. when the impact
of dispersion exceeds the nonlinearity, we can expect spec-
tral self-compression (self-SC) by the analogy of the pulse
self-compression. Recently, the self-SC implementation di-
rectly in a fiber with negative group-velocity dispersion (at
the wavelength range ≥1.3 µm for standard silica fibers) was
proposed [12] and studied [13]. In this work, we carried
out detailed numerical studies on the process of soliton-effect
self-SC for different initial pulses. Simulations were carried
out for initial Gaussian and secant-hyperbolic pulses. We

have shown the soliton-effect self-SC in the fiber “directly”,
without dispersive delay line, in the fiber with anomalous dis-
persion for different initial pulses. It is shown that there is
an analogy between the processes of soliton self-compression
and soliton-effect self-SC for different initial pulses: the pe-
riodicity of the process changes in the case of different initial
pulses. The studies show that the periodicity of the process
decreases when the nonlinearity parameter reduces. Our de-
tailed study has shown that the frequency of compression has
polynomial and exponential approximations.

2 Numerical studies and results

In the SMF, the pulse propagation is described by the nonlin-
ear Schrödinger equation for normalized complex amplitude
of field, considering only the influence of group-velocity dis-
persion and Kerr nonlinearity [14]:

i
∂ψ

∂ζ
=

1
2
∂2ψ

∂η2 + R |ψ2|ψ (1)

Fig. 1: The 3D map of the propagation of Gaussian (a, b) and secant-
hyperbolic (c, d) pulses and its spectra. Ω = (ω − ω0)/∆ω0.
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Fig. 2: The peak values of spectra (1) and pulses (2) vs fiber length for initial Gaussian (a) and secant-hyperbolic (b) pulses.

where ζ = z/LD is the dimensionless propagation distance,
η = (t − z/u)/τ0 is the running time, which are normalized
to the dispersive length LD = τ2

0/|k2| (k2 is the coefficient
of second-order dispersion), and initial pulse duration τ0, re-
spectively. The nonlinearity parameter R is given by the ex-
pression R = LD/LNL, where LNL = (k0n2I0)−1 is the non-
linearity length, n2 is the Kerr index of silica, I0 is the peak
intensity. The first and second terms of the right side of (1) de-
scribe the impact of group-velocity dispersion and nonlinear-
ity, respectively. We use the split-step Fourier method during
the numerical solution of the equation, with the Fast Fourier
Transform algorithm on the dispersive step [15, 16].

The objective of our numerical studies is the soliton-effect
self-SC, which takes place when the dispersive length in the
fiber is shorter than the nonlinear length (LD < LNL, i.e.
R < 1). Therefore, at first, the group-velocity dispersion
stretches the pulse by acquiring a chirp. Afterwards, the ac-
cumulated impact of nonlinear self-phase modulation leads
to the compensation of the chirp. As a result, the spectrum
is compressed. The process has periodic character. We study
the pulse behavior in a fiber with negative group-velocity dis-
persion for different initial pulses and different values of the
nonlinearity parameter and fiber length.

Fig. 1 illustrates the process of propagation of Gaussian
(a, b, R = 0.6) and secant-hyperbolic (c, d, R = 0.4) pulses
and their spectra. In this case, we study the process for short
fiber lengths where the efficiency of the process is high for
the nonlinearity parameter values of R = 0.6 (Gaussian pulse)
and R = 0.4 (secant-hyperbolic pulse). It can be observed that
the pulse is stretched and the spectrum is compressed in the
initial propagation step. Afterwards, the width of central peak
of the spectrum decreases and the main part of the pulse en-
ergy goes to the spectral satellites. At the certain fiber length,
the reverse process starts the pulse self-compression.

The process can be explained in the following way: in the
initial propagation step the spectrum is compressed, which
leads to the decreasing of dispersion impact. As a result, the
dispersive length increases, therefore, the nonlinearity param-
eter also increases. When the condition R > 1 is satisfied
(LD > LNL), the pulse is compressed. Then, the spectrum is

Fig. 3: The K (1) and self-SC (∆Ω0/∆Ω) (2), Imax(Ω)/I0(Ω) (3) vs
fiber length for initial Gaussian pulse.

stretched, which leads to the increasing of dispersion impact
(the decreasing of LD and R). When the condition R < 1 is
satisfied (LD < LNL), the spectrum is compressed.

The process, which is described above has periodic char-
acter, but in the case of every next cycle, the quality of the
SC is worse than in the case of the previous SC as spectral
satellites increase within propagation.

Fig. 2 shows the peak value of spectra (1) and pulses
(2) for initial Gaussian (a) and secant-hyperbolic (b) pulses,
which shows that the process has a periodic character not only
for Gaussian pulses but also for secant-hyperbolic pulses. The
difference between Gaussian and secant-hyperbolic pulses is
the speed of the process: as we see in Fig. 2, every next
spectrum compression occurs in the short distance in the case
of Gaussian pulses in comparison with the case of secant-
hyperbolic pulses.

As we see in Fig. 2, the peak value decreases within the
distance which is conditioned by the fact that the energy of
spectral satellites increases. This fact is proved by the coeffi-
cient of SC quality, K, (the ratio of the energy in the central
part of pulse to the whole energy). As we see in Fig. 3, the
coefficient of SC quality decreases within the fiber length.

In the process of propagation, the behavior of the spec-
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Fig. 4: The frequency vs nonlinearity parameter for initial secant-
hyperbolic (a) and Gaussian (b) pulses. The points correspond to the
numerical investigations, solid lines introduce the approximation of
results (Eqs. 2, 3) by all points, while the dotted lines correspond to
the approximation by last 3 points (Eqs. 4, 5).

trum is similar to the pulse behavior in the case of the soliton
compression. As it is known, the propagation of the high-
order solitons have periodic character with a (π/2)LD period-
icity. On the distance equal to the periodicity, at first pulse
is compressed, then it is stretched taking initial shape. In
our case, the spectrum has similar behavior. However, due
to the incomplete cancellation of the chirp, the changing of
the spectrum does not have the strict periodic character. The
process is different from soliton compression due to the fact
that spectrum changes depend on a nonlinear phase, which
depends on the shape of the pulse. In the case of soliton
propagation, the changes of the pulse depend on a dispersive
phase, which depends on neither spectral nor temporal shape
of the pulse.

The study shows that the periodicity of the SC and stretch-
ing decreases with the reduction of nonlinearity parameter
(Fig. 4). It is shown that there are polynomial (Eqs. 2, 3)
and exponential (Eqs. 4, 5) approximations of the curve intro-
ducing nonlinearity parameter dependent frequency (Fig. 4),
which is the frequency of the SC and stretching.

1/T = 1/
(
1.6 × 107 × 10−30R + 7821 × 10−4.79R

)
(2)

1/T = 1/
(
5.09 × 106 × 10−19.8R + 731.3 × 10−3.83R

)
(3)

1/T = 1/
(
0.004 × e3.08R

)
(4)

1/T = 1/
(
0.001 × e3.73R

)
(5)

3 Conclusion

Through the detailed study, we study the soliton-effect self-
SC for initial Gaussian and secant-hyperbolic pulses. The
process is realized in the fiber with a negative group-velocity
dispersion. The study shows that there is an analogy between
soliton self-compression and soliton-effect self-SC processes.
We show that the periodicity of the process decreases when
the nonlinearity parameter reduces. It is shown that the fre-
quency dependence on the nonlinearity parameter has poly-
nomial and exponential approximations.
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In this paper, we use the Lie algebra of the dual Poincaré dynamical group which when
acted upon by its coadjoint, displays energy momentum and spin as pure geometrical
quantities. When extended to the full group, one obtains negative mass species in ac-
cordance with our Janus Cosmological Model and the twin universe model conjectured
by A. Sakharov. Within a 5D Kaluza space, the theory leads to a new matter/antimatter
duality implying negative energy photons emitted on the negative domain of this twin
Universe. This accounts for the dark matter and dark energy which are thereof impos-
sibe to detect in our domain. Finally, we show that shifting to a Hermitean space-time
with an associated complex dynamic group yields imaginary energy, imaginary energy
and imaginary charges all embedded in a symplectic (complex) framework which re-
mains open to wide investigations.

Notations

Space time indices: m, n = 0, 1, 2, 3.
Space-time signature: −2.
Einstein’s constant: κ.

Introduction

Symplectic geometry relies on symplectic manifolds. Those
are said symplectic when they are endowed with a so-called
symplectic form that allows for the measurement of sizes of 2-
dimensional objects. In Riemannian geometry, the metric ten-
sor probes lengths and angles, whereas the symplectic form
measures areas.

The term symplectic was first coined by H. Weyl in 1939
as a substitute to rather confusing (line) complex groups and/

or Abelian linear groups. The relativistic symplectic mechan-
ics [1] was primarly developed by the french mathematician
J. M. Souriau from dynamic groups theory. It provides a new
description of energy, momentum and spin only in terms of
pure geometrical quantities. This arises from two objects: n-
dimensional space and its isometry group.

In what follows, we briefly describe its properties which
we apply to a particular cosmological model featuring two
types of masses and energies comparable to the twin Universe
originally conjectured by A. Zakharov.

1 The Janus Cosmological Model (JCM)

The main mathematical tool used here is the so-called “mo-
mentum map” which is inferred from the co-adjoint action of
the group on the dual of its Lie algebra. (The coadjoint of the
Lie group is the dual of the adjoint representation.) Applying
the technique of this coadjoint action leads to the appearance
of generalized linear and angular momenta: {energy E, 3-
momentum p, spin s}. The action of the group corresponds
to

M′ = L M TM + N TP TL − L P TN, (1)

P′ = L P, (2)

where P is the generalized energy-momentum 4-vector
E
p1
p2
p3

 , (3)

L is here the element of the Lorentz group and N is the boost
4-vector. In the classical treatment, one merely considers the
restricted Poincaré Group which is formed with orthochron-
ous components L0. Hence, the full Poincaré Group can be
written as (

λ L0 N
0 1

)
(4)

with λ = ±1.
We then obtain two kinds of matters an two kinds of pho-

tons with each an opposite mass and energy. This copes with
the Janus Cosmological Model (JCM) we developed earlier
[2–4]. Such a model involves particles with opposite masses
and energy. However, as shown by H. Bondi [5], the field
equations cannot sustain this duality due to the subsequent
and unmanageable “run away” effect. In short, General Rel-
ativity deals with positive masses that are attractive, while
negative masses would exhibit repelling forces. Therefore, if
one considers a couple (+m, −m), the negative mass escapes
and is “chased” by the positive one while at the same time
experiencing a uniform acceleration.

This issue can be evaded by considering a bi-metric (our
JCModel) within a single manifold M4 equipped with two
metric tensors (+)gµν and (−)gµν, which define two field equa-
tions [5]:

(+)Rµν −
1
2

(+)gµν
(+)R = κ

 (+)Tµν +

( (−)g
(+)g

)1/2
(−)Tµν

 , (5)

(−)Rµν −
1
2

(−)gµν
(−)R = κ

 (−)Tµν +

( (+)g
(+)g

)1/2
(+)Tµν

 . (6)
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Those time dependent and time independent solutions fit
the observational data.

2 Extension to a wider geometrical framework

We now turn consider an extension of the group to a five di-
mensional scheme so as to obtain an isometry group which
acts on the basic Kaluza space-time λ µ 0 φ

0 λ L0 N
0 0 1

 (7)

with µ = ±1 and λ = ±1.
By extending to the fifth dimension, the Noether theorem

induces an additional conserved scalar quantity which is read-
ily identified with the electric charge q.

The µ = −1 implies both the inversion of this charge and
the inversion of the fifth dimension, which is just the geomet-
rical expression of the matter-antimatter duality as primarly
shown by J. M. Souriau [6]. Therefore the physics ruled by
the dynamical group (7) exhibits straightforwardly the matter-
antimatter symmetry in the two domains with opposed mass
and energy. If we now add p-Kaluza-like dimensions, we ob-
tain the metric under the form:

ds2 = dx2
0 − dx2

1 − dx2
2 − dx2

3 − dξ2
1 − dξ2

2 − . . . − dξ2
p . (8)

This can be coupled to an isometry group

λ µ 0 . . . 0 0 φ1
0 λ µ . . . 0 0 φ2
. . . . . . . . . . . . . . . . . .
0 0 . . . λ µ 0 φp

0 0 . . . 0 λ µ N
0 0 . . . 0 0 1


(9)

with µ = ±1 and λ = ±1.
The electric charge is just one of the quantum charges.

Here again, the (µ = −1) terms reflect the C-symmetry: they
account for the classical matter-antimatter representation.
The (µ = −1; λ = −1) correspond to the PT -symmetry clas-
sically associated with the “Feynman antimatter” which is no
longer indentified with the “C-antimatter”. This is due to the
presence of the time reversal T inducing both the mass and
energy inversion. In other words, the group representation
(9) which is the basis of the JC Model, provides two distinct
types of antimatters:

— The C-type corresponding to Dirac’s antimatter.

— The PT -type corresponding to Feynman’s antimatter.

3 Remark about Andrei Sakharov’ scheme

In classical cosmology a severe problem remains, due to the
absence of observation of primordial antimatter. In 1967,

Sakharov suggested that the Universe comprises two dom-
ains: the actual Universe and its twin Universe, each con-
nected through a singularity [8–10]. Both are CPT -symmet-
rical. Since the mass inversion goes with T -symmetry, our
JC Model [3,4] corresponds to such CPT -symmetry. The so-
called twin matter becomes nothing but a copy of ordinary
particles with opposite masses and charges. If, as suggested
by Sakharov, positive masses are synthetized by positive en-
ergy quarks faster than the synthesis of negative masses from
positive energy antiquarks, then in the positive energy domain
we find:

— Remnant positive masses matter.

— The equivalent (ratio 3/1) of positive energy antiquarks.

— Positive energy photons.

In analogy to Sakharov’s ideas, the negative energy do-
main would be thus composed of:

— Remnant negative masses matter.

— The equivalent (ratio 3/1) of negative energy quarks.

— Negative energy photons.

As shown in [3,4], the negative material suitably replaces
both dark matter and so-called dark energy. Accordingly,
by emitting negative energy photons, the remnant negative
masses matter are genuinely invisible.

4 Remark about the Quantum Theory of Fields (QFT)

In QFT the time reversal operator is a complex operator which
can be linear and unitary, as well as antilinear and anti-unita-
ry. If chosen linear and unitary, this operator implies the exis-
tence of negative energy states, which are à priori banned by
QFT. In Weinberg [7], we quote: “In order to avoid this dis-
astrous conclusion, we are forced to conclude that T is anti-
linear and anti-unitary”. On page 104, Weinberg also writes:
“no examples are known of particles that furnish unconven-
tional representation of inversions, so these possibilities will
not be pursued further here”. Actually, this was true until
the discovery of the acceleration of the expanding universe
which implies the action of a negative pressure. As a pres-
sure is likened to an energy density, this new phenomenon
implies in turn the existence of negative energy states and as
a result, it questions QFT by itself. In the same manner, it also
raises some questions as to the validity of the so-called CPT
theorem and the vacuum instability. Indeed, classically, one
considers that a particle may loose energy through the emis-
sion of a photon, so that such a process would lead to negative
energy states. But if we consider that a negative mass parti-
cle emits negative energy photons, this process would lead to
stable zero energy state.

5 Extension of the method to a complex field

If one replaces the Minkowski coordinates {x0, x1, x2, x3}with
complex coordinates we may form the Hermitean Riemann
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metric:

ds2 = dx0
∗dx0 − dx1

∗dx1 − dx2
∗dx2 − dx3

∗dx3 . (10)

This metric is defined on a Hermitean manifold.
Lest us now consider the real matrix G

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (11)

and the complex Lorentz group defined as

∗LGL = G , (12)

∗L stands for the adjoint of L.
One can then easily show that the complex Poincaré group(

L N
0 1

)
(13)

is an isometry group of such a Hermitean space and can be
considered as a dynamic group. Surprizingly, all classical
(matrix) calculations can be extended to such complex frame-
work, by simply substituting the matrices ∗A to the transpose
matrices TA.

As a result, the complex momentum obeys the law:

M′ = L M ∗L + N ∗P ∗L − L P ∗N, (14)

P′ = L P, (15)

where ∗P is the complex energy momentum 4-vector. This ex-
tended physics grants the mass a complex nature implying the
possible existence of purely real masses ±m and purely imag-
inary masses: ±(−1)1/2 m. At the same time, such masses can
exchange imaginary photons whose energies are: ±(−1)1/2 E.

Conclusion

J. M. Souriau gave the first purely geometrical interpretation
of all classsical physics features, namely — energy, momenta,
and spin. When extended to higher dimensions it provides a
geometrical interpretation of the matter-antimatter duality. In
addition, one can notice that the complex approach of space
definition yields complex physical quantities. The physical
meaning of these complex quantities should demand further
scrutiny and as such remains a new open field of investiga-
tions.
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Quantum Gravity Aspects of Global Scaling
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In this paper we derive a profile of the Earth’s interior from our fractal model of matter
as chain system of harmonic quantum oscillators. Model claims are verified by geo-
physical data. Global scaling as model of quantum gravity is discussed.

Introduction

The origin of gravity is a key topic in modern physics. The
universality of free fall means that the gravity acceleration of
a test body at a given location does not depend on its mass,
physical state or chemical composition. This discovery, made
four centuries ago by Galilei, is confirmed by modern em-
pirical research with an accuracy of 10−11 - 10−12 [1–3]. A
century ago Einstein supposed that gravity is indistinguish-
able from, and in fact the same thing as, acceleration. In fact,
Earth’s surface gravity acceleration can be derived from the
orbital elements of any satellite, also from Moon’s orbit:

g =
4π2R3

(T · r)2 =
4π2(384399000 m)3

(2360591 s · 6371000 m)2 = 9.83 m s−2,

where R is the semi-major axis of Moon’s orbit, T is the or-
bital period of the Moon and r is the average radius of the
Earth. No data about the mass or chemical composition of
the Earth or the Moon is needed.

The 3rd law of Johannes Kepler describes the ratio R3/T 2

as constant for a given orbital system. Kepler’s discovery is
confirmed by high accuracy radar and laser ranging of the
movement of artificial satellites. The geocentric gravitational
constant [4] equals:

µ= 4π2R3/T 2 = 3.986004418(8) · 1014 m3s−2.

Kepler’s 3rd law is of geometric origin and can be derived
from Gauss’s flux theorem in 3D-space within basic scale
considerations. It applies to all conservative fields which de-
crease with the square of the distance and does not require the
presence of mass.

The orbital elements R and T are directly measured, while
µ= GM is an interpretation that provides mass as a source
of gravity and the universality of the big G. Both postulates
are essential in Newton’s law of universal gravitation and in
Einstein’s general theory of relativity.

Nevertheless, coincidence and causality is not the same
thing and Newton’s hypothesis about mass as source of grav-
ity could turn out to be a dispensable assumption.

In the case of mass as source of gravity, in accordance
with Newton’s shell theorem, a solid body with a spherically
symmetric mass distribution should attract particles outside it
as if its total mass were concentrated at its center. In contrast,

the attraction exerted on a particle should decrease as the par-
ticle goes deeper into the body and it should become zero at
the body’s center.

A boat at the latitude 86.71 and longitude 61.29 on the
surface of the Arctic Ocean would be at the location that is
regarded as having the highest gravitational acceleration of
9.8337 m/s2 on Earth. At higher or lower position to the cen-
ter of the Earth, gravity should be of less intensity. This con-
clusion seems correct, if only mass is a source of gravity ac-
celeration and if the big G is universal under any conditions
and in all scales.

The Preliminary Reference Earth Model [5] affirms the
decrease of the gravity acceleration with the depth. However,
this hypothesis is still under discussion [6–8].

In 1981, Stacey, Tuck, Holding, Maher and Morris [9,10]
reported anomalous measures (larger values than expected) of
the gravity acceleration in deep mines and boreholes. In [11]
Frank Stacey writes: “Modern geophysical measurements in-
dicate a 1% difference between values at 10 cm and 1 km
(depth). If confirmed, this observation will open up a new
range of physics”. In fact, gravity is the only interaction that
is not described yet by a quantum theory.

In [12] we have introduced a fractal model of matter as
a chain system of harmonic quantum oscillators. The model
statements are quite general, that opens a wide field of possi-
ble applications.

Already in [13] we could show that scale invariance is a
fundamental characteristic of this model. On this background
we proposed quantum scaling as model of particle mass gen-
eration [14] and we could show that particle rest masses co-
incide with the eigenstates of the system. This is valid not
only for hadrons, but for mesons and leptons as well. An-
dreas Ries [15] demonstrated that this model allows for the
prediction of the most abundant isotope of a given chemical
element.

In the framework of our model, physical characteristics of
celestial bodies can be understood as macroscopic quantized
eigenstates in chain systems of oscillating protons and elec-
trons [16]. This is also valid for accelerations. In [17] was
shown that the surface gravity accelerations of the planets in
the solar system correspond with attractor nodes of stability
in chain systems of protons and electrons.

Our model allows us to see a connection between the sta-
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bility of the solar system and the stability of electron and pro-
ton and consider global scaling as a forming factor of the solar
system. This may be of cosmological significance.

In this paper we derive a profile of the Earth’s interior
from our fractal model of matter as chain system of harmonic
quantum oscillators. Model claims are verified by geophysi-
cal data. Global scaling as model of quantum gravity is dis-
cussed.

Methods

In [13] we have shown that the set of natural frequencies of a
chain system of similar harmonic oscillators can be described
as set of finite continued fractions F , which are natural loga-
rithms:

ln (ω jk/ω00) = n j0 + z

n j1 +
z

n j2 + . . .
+

z
n jk

=

= [z, n j0; n j1, n j2, . . . , n jk] =F

(1)

where ω jk is the set of angular frequencies and ω00 is the fun-
damental frequency of the set. The denominators are integer:
n j0, n j1, n j2, . . . , n jk ∈Z, the cardinality j ∈N of the set and the
number k ∈N of layers are finite. In the canonical form, the
numerator z equals 1.

In the canonical form, for finite continued fractions, the
distribution density of the eigenvalues reaches maxima near
reciprocal integers 1, 1/2, 1/3, 1/4, . . . which are the attractor
points of the fractal set F of natural logarithms (fig. 1).

Fig. 1: The canonical form of F for k = 1 (above) and for k = 2
(below) in the range -16F 6 1.

Any finite continued fraction represents a rational num-
ber [18]. Therefore, all natural frequencies ω jk in (1) are irra-
tional, because for rational exponents the natural exponential
function is transcendental [19]. This circumstance provides
for high stability of eigenstates in a chain system of harmonic
oscillators because it prevents resonance interaction between
the elements of the system [20]. Already in 1987 we have ap-
plied continued fractions of the type F as criterion of stability
in engineering [21, 22].

In the case of harmonic quantum oscillators, the contin-
ued fractions F define not only fractal sets of natural angu-
lar frequencies ω jk, angular accelerations a jk = c ·ω jk, oscil-
lation periods τ jk = 1/ω jk and wavelengths λ jk = c/ω jk of the
chain system, but also fractal sets of energies E jk = ~ ·ω jk and
masses m jk = E jk/c2 which correspond with the eigenstates of

the system. For this reason, we call the continued fraction F
the “fundamental fractal” of eigenstates in chain systems of
harmonic quantum oscillators.

In the canonical form (z = 1) of the fundamental fractal
F , shorter continued fractions correspond with more stable
eigenstates of a chain system of harmonic oscillators. There-
fore, integer logarithms represent the most stable eigenstates
(main attractor nodes).

As the cardinality and number of layers of the continued
fractions F are finite but not limited, in each point of the
space-time occupied by the chain system of harmonic quan-
tum oscillators the scalar F is defined. Consequently, any
chain system of harmonic quantum oscillators can be seen as
source of the scalar field F , the fundamental field of the sys-
tem. Figure 2 shows the linear 2D-projection of the first layer
(k = 1) of the fundamental field F in the canonical form (z =

1) in the interval −16F6 1.

Fig. 2: The first layer (k = 1) of the linear 2D-projection of the funda-
mental field F in the canonical form (z = 1) in the range -16F 6 1.

The scalar potential difference ∆F of sequent equipoten-
tial surfaces at a given layer k is defined by the difference of
continued fractions (1). In the canonical form (z = 1):

∆F=F (j,k)−F (j+1,k) =

= [n j0; n j1, n j2, . . . , n jk]− [n j0; n j1, n j2, . . . , n j+1,k]

Normal matter is formed by nucleons and electrons because
they are exceptionally stable quantum oscillators. In the con-
cept of isospin, proton and neutron are viewed as two states
of the same quantum oscillator. Furthermore, they have sim-
ilar rest masses. However, a free neutron decays into a pro-
ton, an electron and antineutrino within 15 minutes while the
life-spans of the proton and electron top everything that is
measurable, exceeding 1029 years [23].

These unique properties of the electron and proton pre-
destinate their physical characteristics as fundamental units.
Table 1 shows the basic set of electron and proton units that
can be considered as a fundamental metrology (c is the speed
of light in a vacuum, ~ is the Planck constant, kB is the Boltz-
mann constant).
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Property Electron Proton

rest mass m 9.10938356(11) · 10−31 kg 1.672621898(21) · 10−27 kg

energy E = mc2 0.5109989461(31) MeV 938.2720813(58) MeV

angular frequency ω= E/~ 7.76344071 · 1020 Hz 1.42548624 · 1024 Hz

angular oscillation period τ= 1/ω 1.28808867 · 10−21 s 7.01515 · 10−25 s

angular wavelength λ= c/ω 3.8615926764(18) · 10−13 m 2.1030891 · 10−16 m

angular acceleration a = cω 2.327421 · 1029 ms−2 4.2735 · 1032 ms−2

Table 1: The basic set of physical properties of the electron and proton. Data taken from Particle Data Group [23]. Frequencies, oscillation
periods, accelerations and the proton wavelength are calculated.

In [16] was shown that the fundamental metrology (tab. 1)
is completely compatible with Planck units [24]. Originally
proposed in 1899 by Max Planck, these units are also known
as natural units, because the origin of their definition comes
only from properties of nature and not from any human con-
struct. Max Planck wrote [27] that these units, “regardless of
any particular bodies or substances, retain their importance
for all times and for all cultures, including alien and non-
human, and can therefore be called natural units of measure-
ment”. Planck units reflect the characteristics of space-time.

In [12, 14] we have introduced a fractal model of matter
as a chain system of oscillating protons and electrons. We hy-
pothesize that scale invariance of the fundamental field F cal-
ibrated on the physical properties of the proton and electron
(tab. 1) is a universal characteristic of organized matter and
criterion of stability. This hypothesis we have called ‘global
scaling’ [16, 26, 27].

Results

The proton-to-electron mass ratio is approximately 1836, so
that the mass contribution of the proton to normal matter is
very high, for example in the hydrogen atom (protium) it is
1 – 1/1836 = 99.95 percent. Consequently, the mass contri-
bution of the electron is only 0.05 percent. In heavier atoms
which contain neutrons, the electron contribution to atomic
mass is even smaller. Therefore, in this paper we investigate
a fractal model of matter as chain system of oscillating pro-
tons and derive a profile of the Earth’s interior from it.

As figure 1 shows, in an attractor node of the layer k = 0,
the potential difference on the layer k = 1 changes its signa-
ture and compression of the equipotential density is changed
to decompression. The same is valid in attractor nodes of
the layer k = 1. There the potential difference on the layer
k = 2 changes its signature. Therefore, we expect that near
the attractor nodes of F the dramatic increase of the field
strength and the change of compression to decompression of
the equipotential density in the attractor nodes should lead to
measurable consequences. This should be valid at least for
the main attractor nodes on the layer k = 0.

Figure 3 shows the F calibrated on the angular Comp-
ton wavelength of the proton in the canonical (z = 1) linear
2D-projection for k = 1 in the interval [49;∞]6F 6 [52; -4].
At the graphic’s left side the corresponding radii in km are
indicated. The radial distribution of equipotential nodes rep-
resents the expected 2D-profile of the Earth’s interior.

Fig. 3: The fundamental field F calibrated on the proton in the
canonical (z = 1) linear 2D-projection for k = 1 in the interval
[49;∞]6F 6 [52; -4]. Radius in km (left side). The dotted line at
the top indicates the Earth surface that coincides with the significant
subnode [44; 4] = 6372 km of the F calibrated on the electron.

The propagation speed of a seismic compression wave de-
pends on the density and elasticity of the medium and should
therefore correspond with zones of compression and decom-
pression near the main nodes of the fundamental field F .

In accordance with both empirical models of the Earth
interior PREM [5] and IASP91 [28], the crust-mantle bound-
ary (Mohorovicic discontinuity, ‘Moho’) is in between 35 and
90 km depth from the Earth surface, where seismic P-waves
jump in speed abruptly from 6 to 8 km/s. In our model, the
Moho corresponds with the compression zone before the sig-
nificant subnode [52; -4] = 6275 km of the F calibrated on
the proton.
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Detailed seismic studies have shown that the speed of P-
waves (longitudinal pressure waves) in the mantle increases
rather rapidly from about 9 to 11 km/s at depths between 400
and 700 km, marking a layer called the transition zone. This
zone separates the upper mantle from the lower mantle. In our
model, the transition zone corresponds with the compression
zone before the significant subnode [52; -3] = 5770 km of the
F calibrated on the proton.

As they travel more deeply into the mantle, P-waves in-
crease their speed from 8 km/s at the Moho to about 13 km/s
at a depth of 2900 km. Though, once P-waves penetrate be-
low 2900 km, their velocity suddenly drops from 13 km/s
back down to about 8 km/s. This dramatic reduction in speed
after a depth of 2900 km defnes the boundary between the
Earth’s mantle and the core. The outer core seems liquid, be-
cause seismic S-waves (transversal shear waves) do not pass
this boundary. In contrast, the innermost part of the core
within a radius of 1210 km seems solid. Reaching the inner
core, P-waves again jump to a velocity of 11 km/s.

Both models PREM and IASP91 identify these bound-
aries with the radius of the liquid core (3480 km) and the
radius of the inner solid core (1210 km). These estimations
correspond with the compression zones before the main at-
tractors [51; ∞] and [50; ∞] of the proton F and confirm
that P-waves increase their velocity in the compression zone
before the attractor. Then in the decompression zone after
the attractor, they decrease the velocity. This coincidence is
a strong confirmation of global scaling and demonstrates that
the current dimension and structure of the Earth interior is not
casual, but an essential criterion of its stability.

It is a notable circumstance that P-waves reach cosmic
velocities. In fact, at the Moho, P-waves jump to velocities
near 8 km/s that is in the range of the first cosmic velocity a
rocket must have to reach a circular orbit around the Earth. In
the transition zone that separates the upper mantle from the
lower mantle, P-waves jump to 11 km/s that is in the range of
the second cosmic velocity a rocket must have to escape the
Earth gravity acceleration. Through the lower mantle, the P-
wave reach 13 km/s at the core-mantle boundary that is in the
range of velocities a rocket launched from Earth must have to
escape the solar system.

This similarity seems not by case: cosmic escape veloc-
ities do not depend on the mass of the object escaping the
Earth. The velocity a rocket must have to reach a circular or-
bit around the Earth depends only on the gravity acceleration
g and the radius r of the departure orbit. It is notable that
no data about the mass of the Earth is needed. In the case of
departure from the Earth surface:

vcircular =
√

(gr) =

√
9.8 m/s2 · 6371000 m = 7.9 km/s.

The second cosmic velocity a rocket must have to escape
the Earth gravity acceleration is

√
2 times higher:

vescape =
√

2 · vcircular = 11.2 km/s.

Conversely, an object that falls under the attraction of
the Earth surface gravity acceleration g from infinity, starting
with zero velocity, will strike the Earth surface with a velocity
equal to its escape velocity.

In accordance with our model (fig. 3), the inner core of the
Earth should have a substructure that origins from the attrac-
tor node [49; ∞] = 400 km of the F calibrated on the proton
(fig. 4). In fact, the seismological exploration of the Earth’s
inner core has revealed unexpected structural complexities.
There is a clear hemispherical dichotomy in anisotropy and
also evidence of a subcore with a radius 300–600 km [29].
Considering that the radius of the Sun coincides with the main
attractor node [49;∞] of the F calibrated on the electron:

ln
(

rSun

λelectron

)
= ln

(
6.96407 · 108 m

3.8615926764 · 10−13 m

)
= 48.945

we can write down the equation for the ratio of the radii:
rSun

rEarth subcore
=
λelectron

λproton
.

Already in [16] we have shown that the minimum and maxi-
mum values of the Earth’s radius approximate the significant
node [44; 4] of the F calibrated on the electron:

ln
(

r Earth max

λelectron

)
= ln

(
6.384 · 103 m

3.8615926764 · 10−13 m

)
= 44.252,

ln
(

r Earth min

λelectron

)
= ln

(
6.353 · 103 m

3.8615926764 · 10−13 m

)
= 44.247.

Figure 3 shows the node [44; 4] of the electron F as dotted
line in the top of the graphic.

Conclusion

In the framework of our model of matter as chain system of
harmonic quantum oscillators, the fractal fundamental field
F affects any type of physical interaction, including the grav-
itational. Fundamental particles like electron and proton are
not the ultimate sources, but stability nodes of the fundamen-
tal field of any chain system of harmonic quantum oscillators.
The spatial and temporal distribution of these stability nodes
is determined by the ratio of fundamental constants. Already
Paul Dirac [30] mentioned that “... whether a thing is con-
stant or not does not have any absolute meaning unless that
quantity is dimensionless”.

Applying our fractal model of matter to the analysis of
gravimetric and seismic characteristics of the Earth we did
show that it corresponds well with established empirical mod-
els of the Earth interior. We interpret this correspondence as
evidence of the fractality, scale invariance and macroscopic
quantization of Earth’s gravity field.

We presume that gravity is a scale-invariant attractor ef-
fect of stability nodes in chain systems of oscillating protons
and electrons. May be this hypothesis could become a bridge
that connects the island of gravity research with the continent
of quantum physics.
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The relativistic models for radiating spherical collapse is important for to explain the
emission process on very high energy in Supernova burst and Quasars. A general
method is reviewed, to obtain models which describe non static radiating spheres, with-
out having to make any hypothesis about the emission of radiation during the collapse.
It is concluded that the field equations together with the conservation laws (Bianchi’s
Identity) form a complete set of integrable equations that do not require additional the
emissivation hypothesis of a Gaussian pulse on at an arbitrary instant to trigger the col-
lapse. The emissivation hypothesis of a Gaussian pulse is not only unnecessary, but
also leads to qualitatively and quantitatively different solutions. Calculations were per-
formed using the computer algebra package GRTensorII, running on Maple 13, along
with several Maple routines that we have used specifically for this type of problems.
The Schwarzschild and Tolman VI models are shown as examples where it’s empha-
sizes the importance of using conservation equations properly, for describe the collapse
for the self-gravitating sphere.

1 Introduction

The last phases of stellar evolution of massive stars are dom-
inated by the contribution of stellar radiation due to changes
of the inner or outer distribution of matter, in the gravitational
potential of the radiating fluid spheres and, therefore, general
relativity provides a description of the collapse of the compact
objects (Neutron Stars, Black Holes). This description can
be extended to explain the radiation process of very high en-
ergy in astrophysical scenarios, such as Supernova bursts and
Quasars. A number of studies have been reported describing
a gravitational collapse: Oppenheimer and Snyder [1], Tol-
man [2] and furthermore the study of the collapsing radiating
fluid [3–6].

This scheme has recently been used for various scenar-
ios of relativistic hydrodynamics. We can highlight some ex-
amples: charged fluids [7–9], isotropic [10] or anisotropic
fluid [11, 12], shock waves [13, 14], in free space [15, 16]
or diffusion process [17, 18]. It is necessary to contrast its
quantitative results with other calculation schemes. Barreto
et al. [19] have extended the semi-numerical scheme to the
Schwarzschild coordinates, simulating some scenarios of the
gravitational collapse.

Herrera and collaborators [6, 19–21] developed a general
algorithm for modeling self gravitating spheres out of equilib-
rium, beginning from the known static solutions of Einstein’s
equations. This method divides the space-time in two spatial
regions. The outer region is described by the Vaidya solu-
tion and the space-time metric in the interior is obtained by
solving the Einstein field equations. Further, proper boundary
conditions are imposed in order to guarantee a smooth match-
ing of the solutions in the surface of the junction. This semi
numerical technique has been used extensively to study high

energy in astrophysical scenarios [19, 21–27].
However in these numerical simulations a Gaussian pulse

is introduced ad hoc to represent the emission of radiation that
initiates the disequilibrium during the collapse of the radiat-
ing fluid ball [6, 20, 21, 23–25, 28]. These assumptions could
be unnecessary and generate spurious solutions, since this
loss of mass is prescribed by one of the conservation equa-
tions when applying the Bianchi Identity [29, 30]. Parts of
the calculation of the Bianchi identities that were performed
in this work were possible and verified using the GRTensorII
package.

The purpose of this paper is to show the general method
to obtain models which describe radiating non-static spheres
without having to make any hypothesis about the emission of
radiation during the collapse. This paper follows as much as
possible the notation and physical description prescribed by
Herrera et al. [6]. For this, the field equations and conserva-
tion laws are shown in Section 2; then section 3 establishes
the procedure for the static solutions and obtaining the sur-
face equations. The models Schwarzschild-like and Tolman
VI-like are discussed in section 4 and 5 respectively, and in
the last section are shown the concluding remarks.

2 The Field equations and conservation relationships

Let us consider a non static radiating spheres. The metric
takes the form [4]

ds2 = e2βV
r

du2 + 2e2βdu dr − r2dθ2 − r2 sin2 θ dϕ2, (1)

where u and r are time like and radial-like coordinates re-
spectively; β and V are functions of u and r; θ, ϕ are the usual
angle coordinates. In these coordinates the gravitational field
equations are:
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−8πT00 = −V,0 − 2Vβ,0
r2 −V

r3

(
e2β−V,1 + 2β,1V

)
−8πT01 = − 1

r2

(
e2β − V,1 + 2β,1V

)
−8πT11 = −4β,1

r

−8πT 2
2 = −8πT 3

3 = −e2β
(
2β01 −

1
2r2

[
rV,11+

−2β,1V + 2r
(
β,11V + β,1V,1

)] )
.

As usual, note that we used the subscript ,0 and ,1 for the
derivative for u and r, respectively; and the semicolon (;) for
covariant differentiation. Then transformation relations be-
tween local Minkowskian and radiative coordinates are:

dt =
(
∂t
∂u

)
du +

(
∂t
∂r

)
dr

= eβ
(V

r

) 1
2

du + eβ
( r
V

) 1
2

dr (2)

dx =

(
∂x
∂r

)
dr = eβ

( r
V

) 1
2

dr (3)

dy =
(
∂y

∂θ

)
dθ = r dθ (4)

dz =

(
∂z
∂ϕ

)
dϕ = r · sin θ dϕ . (5)

We assumed the stellar material as perfect fluid, with energy
density ρ̂, radial pressure P̂, without heat conduction neither
viscosity, then

T̂αβ =
(
ρ̂ + P̂

)
· UαUβ − P̂ · ηαβ, (6)

where Uα = (1, 0, 0, 0), 3σ̂ is the isotropic radiation of the
energy density, and ε̂ no-polarized component of the energy
density in radial direction. Now consider an observer in local
Minskowskian system with radial velocity ω, in the Lorent-
zian system we can write:

T̄µν = ΛαµΛ
β
νT̂αβ, (7)

where the Lorentz matrix is

Λαµ =


1√

1−ω2
− ω√

1−ω2
0 0

− ω√
1−ω2

1√
1−ω2

0 0
0 0 1 0
0 0 0 1

 . (8)

We define

ρ̄ = ρ̂ + 3σ̂, P̄ = P̂ + σ̂, ε̄ = ε̂
1 + ω
1 − ω.

Note also that from (2-3) the velocity of matter in the radiative
coordinates is given by

dr
du
=

V
r
· ω

1 − ω, (9)

so forth the energy-impulse tensor in the Lorentz system is

T̄00 = ε̄ +
ρ̄ + ω2P̄
1 − ω2

T̄01 = T̄10 = −ε̄ − ω

1 − ω2

(
ρ̄ + P̄

)
T̄11 =

P̄ + ω2ρ̄

1 − ω2 + ε̄

T̄22 = T̄33 = P̄.

Using (2) - (5) we obtain the energy-impulse tensor in radia-
tive coordinates as:

T00 = e2β
(V

r

) (
ρ̄ + ω2P̄
1 − ω2 + ε

)
T01 = T10 = e2β

(
ρ̄ − ωP̄
1 + ω

)
T11 = e2β

( r
V

) (1 − ω
1 + ω

) (
ρ̄ + P̄

)
T22 =

T33

sin2 θ
= r2P̄.

Remember that a bar indicates that the quantity is measured in
the Lorentzian system, and the effective variables are written
without bar. Now

ρ ≡ ρ̄ − ωP̄
1 + ω

, P ≡ P̄ − ωρ̄
1 + ω

, ε ≡ ε̄. (10)

It can be seen at once that ρ = ρ̄ and P = P̄ in r = 0, also, in
the static case ω = 0. As before then:

T00 = e2β
(V

r

) [
ω (ρ + P)
(1 − ω)2 + ρ + ε

]
T01 = T10 = e2βρ

T11 = e2β
( r
V

)
(ρ + P)

T22 =
T33

sin2 θ
= r2P̄,

thus the field equations are:

−V
r2

[(
2β,0 −

V,0
V

)
− 1

r

(
2Vβ,1 − V,1 + e2β

)]
=

= 8π e2β
(V

r

) [
ε + ρ +

ω (ρ + P)
(ω − 1)2

] (11)

2Vβ,1 − V,1 + e2β = 8πr2e2βρ (12)

4β,1
r
= 8π

r
V

e2β (ρ + P) (13)
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−2β,01 +
1

2r2

[
rV,11−2β,1V+2r

(
V,1β,1+Vβ,11

)]
=

= 8πe2βP̄.
(14)

Using the conservation equations (Bianchi Identity) T µν;µ = 0,
we obtain only three no-trivial relations:

T µ1;µ =
e−2β

2πr
β,10 −

∂P
∂r
+

−1
2

(
2β,1 +

V,1
V
− 1

r

)
(ρ + P) −

2
(
P − P̄

)
r

= 0,
(15)

T λ0;λ =
V
r

{(
2β1 +

V,1
V
+

1
r

) [
ε +
ω (ρ + P)
(1 − ω)2

]
+

+
ω

(1 − ω)2

∂ (ρ + P)
∂r

}
+

1
2

(
2β,0 −

V,0
V

)
(ρ + P)+

+
∂ρ

∂u
+

V
r

[
∂ε

∂r
+

1 + ω
(1 − ω)3 (ρ + P)

∂ω

∂r

]
= 0,

(16)

e2βT λ1;λ=
V
r

{(
2β,1+

V,1
V
+

1
r

) [
ε+

1+ω2

2 (1−ω)2 (ρ+P)
]

+
ω (ρ + P),1
(1 − ω)2 +

∂P
∂r
+

1
r

[
ρ + P̄ −

(
P − P̄

)]}
+

−1
2

(
2β,0 −

V,0
V

)
(ρ + P) +

∂P
∂u
+

+
V
r

[
∂ε

∂r
+

1 + ω
(1 − ω)3 (ρ + P)

∂ω

∂r

]
= 0.

(17)

It is remarkable that only two Bianchi equations (15-17)
are independent, then

e2βT µ1;µ − T µ0;µ =

(V
r

)
T µ1;µ = 0. (18)

If we use the Bondi mass aspect V ≡ e2β (r − 2m), af-
ter some elementary algebra, the equation system becomes
equivalent to:

m,1 = 4πr2ρ (19)

β,1 = 2πr
(ρ + P)
1 − 2m

r

(20)

m,0 = −4πr2e2β
(
1 − 2m

r

) [
ε +
ω (ρ + P)
(1 − ω)2

]
(21)

8πP̄ = −2β,01e−2β +

(
1 − 2m

r

) (
2β,11 + 4β 2

,1 −
β,1

r

)
+

+
1
r
[
3β,1

(
1 − 2m,1

) − m,11
]
. (22)

Also, for two independent Bianchi equations (15) and (16),
we obtain:

−e−2β

2πr
β,10 +

∂P
∂r
+

+

(
4πr2P +

m
r

) (ρ + P)

r
(
1 − 2m

r

) + 2
r

(
P − P̄

)
= 0,

(23)

e2β

r

[
1+

(
1−2m

r

)
+ 4πr2 (P−ρ)

] [
ε+
ω (ρ+P)
(1−ω)2

]
+

+
V
r

ω

(1 − ω)2

∂

∂r
(ρ + P)+

+
V
r

[
∂ε

∂r
+

(1 + ω) (ρ + P)
(1 − ω)3

∂ω

∂r

]
+
∂ρ

∂u
= 0.

(24)

The expression (23) is the generalization of the Tolman -
Oppenheimer - Volkoff (TOV) equation of hydrostatic equi-
librium (see, for example [31]). It can be shown that the con-
servation equation (24) can also be obtained from the field
equations (19) and (21), remembering that the second mixed
derivatives commute, that is, m,01 = m,10. Now, combining
(21) with (24) we obtain:

2m,0e−2β

4πr3
(
1 − 2m

r

) [
1 − m

r
+ 2πr2 (P − ρ)

]
=

ω

(1 − ω)2

(
1 − 2m

r

)
(ρ + P),1 +

+
∂ε

∂r
+

(1 + ω) (ρ + P)
(1 − ω)3

∂ω

∂r
+

e−2β

4πr2 m,10.

If we assume that radiation profiles ε and the variable ω,
vary little, so we can write an expression very similar to the
Euler equation

2m,0
[
1 − m

r
+ 2πr2 (P − ρ)

]
=

ω · e2β

(1 − ω)2

4πr2
(
1 − 2m

r

)2

r (ρ + P),1

+
+r

(
1 − 2m

r

)
m,10.

(25)

Equation (25) is omitted in previous works on the evolu-
tion of radiating fluid sphere [6,20,21,23,28]. This omission
prevents the closing of the system of equations, and moti-
vates the spurious inclusion of a luminosity Gaussian pulse
[21, 23–25, 28]. Equation (25) allows us relate the mass ex-
change with the time like and radial derivatives of the effec-
tive variables, and together with eq. (21), the radiation flux ε
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Fig. 1: The radius A as a function of the normalized time-like co-
ordinate u

m(0) for the initial values A = 5.0; M = 1.0 in the model
Schwarzschild-like. Dashed line: Ω = 1 static equilibrium, Ω = 1.1
expansion; Ω = 0.91 collapse. Solid line: solutions according to
Herrera et al. [6].
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Fig. 2: The radius A as a function of the normalized time like co-
ordinate u

m(0) in the Schwarzschild-like model. Initial values for the
surface variables A = 5; M = 1.0; Ω = 0.833. Dashed line: calcula-
tions present. Solid line: solutions according to Herrera et al. [6].

is calculated. With the field equations (19) to (22) we can cal-
culate the expressions of the physical variables ω, P̄, ρ̄, if we
know the expressions m (u, r) and β (u, r) in each layer of the
material under study. As a consequence, the state equations
P (u, r) , ρ (u, r) play an important role in determining the be-
havior of the physical variables present in the field equations
and establishing their posterior evolution.

3 The models and surface equations

From the field equations (19) and (20) we can see

m =

∫ r

0
4πr2ρ dr, (26)

β = 2π
∫ r

a

ρ + P
1 − 2m

r

r · dr. (27)

These expressions for m and β are very similar to those
obtained in the static case. This suggests a procedure to ob-
tain dynamic solutions, following the same method of Herrera
et al. [6], starting from a static solution:

1. Select a static solution of the gravitational field equa-
tions for a perfect fluid with spherical symmetry that
explicitly shows its radial dependence

ρstatic = ρ (r) Pstatic = P (r) ,

2. Suppose that the effective variables P and ρ (eq. 10)
have the same radial dependence as in the static solu-
tion, but taking into account that now the edge condi-
tion P̄a = 0 is now expressed as

Pa = −ωaρa. (28)

Note that the subscript ∆a indicates that the quantity ∆
is evaluated at the edge of the distribution.

3. With this radial dependence for the effective variables,
and together with (26) and (27), the values of m and
β are calculable, except for three unknown functions
(surface variables) that we are going to determine:

(a) Equation (9) evaluated at r = a.

(b) Equation (25) evaluated at r = a.

(c) Equation (15) evaluated at r = a, or equation (22)
evaluated at r = a.

4. Integrating numerically the ordinary differential equa-
tions obtained in (3), for a set of initial data, we com-
pletely determine the functions m and β.

5. With the field equations (19) to (22) we can calculate
the expressions of the physical variables for the model
considered.

As outlined in the previous methods (subsection 3), it is
necessary to establish the surface variables and the equations
that control its evolution.

• As mentioned in (subsection 3a), one of the surface
equations is (9) evaluated at r = a, which takes the
form

å =
da
du
= Ȧ = F (Ω − 1) , (29)

where here it is very convenient to standardize the vari-
ables in terms of the initial mass m(0) = m(u = 0, r =
a) and define as surface variables:

A ≡ a
m (0)

M ≡ ma

m (0)
Ω ≡ 1

1 − ωa
, (30)

as well as the variable

F =
[
e2β

(
1 − 2m

r

)]
r=a
=

(V
r

)
a
, (31)
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Fig. 3: Density 8πm (0)2 ρ̄ in function of the temporal variable u
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for the model of Schwarzschild, for r
a = 0.00, 0.40 and 1.00.

Instead of using as surface variable F (31) – the grav-
itational potential at the surface – , as used in the ref-
erences [6, 20, 21, 28]; we will use mass M, that is, the
equation for radial evolution is

Ȧ =
(
1 − 2M

A

)
(Ω − 1) , (32)

This equation is valid for all models.

• The second equation (25) is dependent on the model
and it becomes necessary to calculate the first deriva-
tives of the effective density and pressure, as can be
seen.

2m,0
∣∣∣
a

{
1 − m

r
+ rβ,1

(
1 − 2m

r

)
− m,1

}
a
+

− r
(
1 − 2m

r

)
∂

∂u

(
4πr2ρ

)∣∣∣∣∣∣
a
=

= Ω (Ω − 1)

4πr2
(
1 − 2m

r

)2

r
∂

∂r
(ρ + P)


a

(33)

• The last equation (23) is the Tolman - Oppenheimer
- Volkoff conservation equation evaluated at r = a,
which we can write

β,10
∣∣∣
a = 2πr

(
∂P
∂r

)∣∣∣∣∣∣
a
+

+


4πr2 (ρ + P)

2r2

(
1 − 2m

r

)


a

(
4πr2P +

m
r

)
a
+

+ 4π (P − Pt)|a ≡ G.

(34)
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Fig. 4: Normalized pressure values 8πm (0)2 P̄ in function of the
time variable u

m(0) for the model of Schwarzschild, for r
a = 0.4 and

1.00

Both equations (33) and (34) have a similar structure, in
terms of the surface variables:

ΥM Ȧ + ΞM Ṁ + ΛM Ω̇ = ∆M (35)
ΥΩ Ȧ + ΞΩ Ṁ + ΛΩ Ω̇ = ∆Ω, (36)

where

Υξ ≡ Υξ (A,M,Ω) , Ξξ ≡ Ξξ (A,M,Ω) ,
Λξ ≡ Λξ (A,M,Ω) , ∆ξ ≡ ∆ξ (A,M,Ω) , ∀ξ ∈ {M,Ω}

are functions of (A,M,Ω). These three equations (32), (33)
and (34) allow us to establish a system of three ordinary dif-
ferential equations for the surface variables; which together
with the initials data set, determine m and β, as set forth in
subsection 4. Below are two examples for the interior dis-
tribution Schwarzschild-like and Tolman VI-like in section 4
and 5, respectively.

4 The Schwarzschild-like model

We will get as the first test example Schwarzschild’s well-
known internal and static constant density solution. For this,
we are going to assume that the density depends only on the
time-type variable, as explained in [6, 32] we can write the
state equation for the Schwarzschild type model as

ρ =
3m

4πr3 (37)

P = ρ


1 − 1

g

[
1− 2M

A ( r
a )2

1− 2M
A

] 1
2

1
g

[
1− 2M

A ( r
a )2

1− 2M
A

] 1
2

− 3

 , (38)

where the value of g is determinated from the boundary con-
dition

(
P̄a = 0

)
then the effective pressure satisfies the rela-

tionship (28); and consequently g = 1
3−2Ω . Evaluating equa-

tion (9), for r = a, we get (32) and with (23) and (24) for
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r = a we obtain then

Ṁ = 3
( M

A

)2 (
1 − 2M

A

)
(Ω − 1) (2Ω-3)

3M
A −Ω

(
1 + 2M

A

)
Ω̇ =

2Ω (1 −Ω)
A

(
1 − 2M

A

)
− 1

A

( M
A

) 3 − 2Ω
1 − 2M

A

 Ȧ +

−Ω
M

1(
1 − 2M

A

) Ṁ,

and from (20) and (19) we obtain, then after the immediate
integration

m (r) = m (0) · M
( r
a

)3

β =
1
2

log

1 + 3
2Ω


√√√ 1 − 2M

A

1 − 2M
A

(
r
a

)2 − 1


 .

Figures 1 and 2 show the evolution of the radius A. No-
tice that Ω = 1 represents a condition of static equilibrium,

Ω > 1 represents expansion, Ω < 1 the collapse. In both
cases the system returns to equilibrium very quickly. In or-
der to make some comparison, we took the initial data very
close to those chosen in the reference [6]. We did not use the
value for Ω = 1, since with this approximation the system
does not have static behavior. The figures 3, 4, 5, 6 represent
the profiles of physical variables versus the time like coordi-
nates for different pieces of material and for initials data. We
obtain monotonous variations in the physical quantities, as
a consequence of the non-assumption of the Gaussian pulse.
In particular it is shown in figure 6, how all the layers emit
monotonously, unlike the figure 7 in Herrera et al. [6]

5 The Tolman VI-like model

Following [2] we can assume as static solution

4πa2ρ = 3h
(a

r

)2

4πa2P = h
(a

r

)2
1 − 9 · z

(
r
a

)
1 − z

(
r
a

)  ,
as before the value of z is determinated from the boundary
condition

(
P̄a = 0

)
then Pa = −ωaρa; and consequently z =

4Ω−3
3(4Ω−1) ; and h = m

3r . Evaluating the equations (9), (23) and
(24) at r = a we obtain

Ṁ = −

(
1 − 2M

A

)2 (
16Ω2 + 3

) (
M
A

)
8
[
Ω

(
1 − 2M

A

)
+ M

A

] Ȧ

Ω̇ = − 1
A

[
M
A
− (4Ω − 3) (4Ω − 1)

8

(
1 − 2M

A

)]
+ (4Ω − 1) (4Ω − 3)

Ȧ
8A
+

Ω(
1 − 2M

A

) Ṁ
M
,

and the corresponding values of β and m are

β =
2M
3A

1(
1 − 2M

A

)
log

( r
a

)
+ 2 log

3 −
(

4Ω−3
4Ω−1

) (
r
a

)
3 −

(
4Ω−3
4Ω−1

) 


m = m (0) M
( r
a

)
.

Figure 7 shows the temporal variation of the radius of a
radiant sphere, for different values of Ω. There is a critical
value Ω0 for A = 6.66 and M = 1 and slight increase in
Ω causes a permanent expansion or the contraction rises to
the critical value. In the following figures 8,9,10 we show
the variations of pressure density and radiation of some inte-
rior layers in case of surface expansion (explosion-like). We
noted in the example in the figure 10 that all layers absorbed
energy during the initial collapse, an then a radiative pulse is
emitted, before returning to the equilibrium configuration.
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6 Conclusions

We have reviewed the relativistic description of the collapse
of self-gravitating radiant spheres, following the usual pro-
cedure [6, 19–21, 23, 25, 28, 33] and find that it is an effec-
tive method for such a purpose, since the field equations to-
gether with the conservation laws (Bianchi’s Identity) form
a complete set of integrable equations that do not require an
additional hypothesis about the emission of radiated energy.
That is, the emission hypothesis of a Gaussian pulse at an
arbitrary instant to trigger the collapse; it is not only unneces-
sary, but also leads to qualitatively and quantitatively different
solutions, as we have shown in figures 1-9. We emphasize
the importance of using conservation equations properly, as
was done in Section 2; We formally reobtain the generalized
TOV equation of the hydrostatic equilibrium (equation 23)
and a relativistic version of the Euler equation for the self-
gravitating sphere (equation 25).

We have seen that the Schwarzschild-like description is an
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ideal case that does not represent the phenomenology of the
high energy events observed in the stellar collapse of massive
stars such as supernovas and quasars. The measurable magni-
tudes of density, pressure and emission evolve smoothly, re-
turning to the equilibrium condition very rapidly (Figures 3-
6). On the other hand, the Tolman VI description involves two
possible qualitatively different scenarios, such as the implo-
sion or the explosion of the outer layers of the self-gravitating
sphere, depending on the initial values of the mass, radius and
velocity observables, as we have shown in figure 7.

We have shown that, in the case of contraction, the den-
sity and pressure variables similarly evolve (Figures 8 and 9)
as might be expected if a polytrope state equation is used.
In addition, Figures 8 and 9, show a dependence of the evolu-
tion of such magnitudes according to the radius of the consid-
ered layer, with much higher values of density and pressure
in the innermost layers, in agreement with the description of
the stellar collapse of massive stars.

Finally figure 10 shows that during the collapse of the
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self-gravitating radiating spheres a pulse of radiation emis-
sion is generated before reaching equilibrium again; which
arises naturally from the complete solution of the evolution
equations, and maybe is important to explain the emission
process in very high energy in Supernova bursts and Quasars.

Submitted on January 12, 2018
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Birkeland Currents and Dark Matter

Donald E. Scott
Dept. of Electrical Engineering (Retired), University of Massachusetts, Amherst, Massachusetts, USA

E-mail: dascott3@cox.net

A straight-forward application of basic electrical definitions and one of Maxwell’s di-
vergence equations provide an extension of the Bessel function model of force-free,
field-aligned currents (FAC). This extended model offers descriptions of the charge den-
sity, electric-field strength, velocity profile, and voltage profile, each as a function of
radial value, r, within the cross-section of the FAC structure. The resulting model ex-
hibits an obvious correspondence with the results of the Marklund convection process
in plasma filaments. Most importantly, it shows that observed stellar velocity profiles
in galaxies are now accurately predicted without invocations of Dark Matter, WIMPs,
or MACHOs.

1 Introduction

Kristian Birkeland’s hypothesis [1] that Earth’s auroras are
powered by electric charges flowing from the Sun was shown
to be correct in the late 1960’s [2]. Since that time there
has been a growing interest in the exact structure of those
streams. What are the precise shapes and physical proper-
ties of these currents that cascade down into Earth’s polar
regions? NASA calls them “magnetic flux-ropes”. A more
proper name is Birkeland Currents [3]. The general form
of those tube-like flux-ropes is best visualized as being a set
of concentric, counter- rotating, cylinders made up of vari-
ous electric currents and magnetic fields. One mathematical
description of these structures is called the “Bessel Function
Model”. Its derivation was initiated in 1950 by physicist Stig
Lundquist [4,5]. This derivation was completed and its phys-
ical consequences further defined by Scott in 2015 [6].

2 Force-free plasmas are field-aligned

The mechanism by which each moving charge magnetically
affects its neighbors is called the Lorentz magnetic force [7].
If these Lorentz forces can be reduced to zero-value every-
where through out the plasma, then the overall current will
proceed placidly with increased structural integrity, and not
be diverted from its original direction. If, at every point in the
flow, the magnetic-flux, B, and the electric-current density,
j, are aligned in the same direction (thus the adjective “field-
aligned”), all disruptive Lorentz forces within the plasma will
be eliminated and the system is then termed a “Force-Free,
Field-Aligned Current” (FAC).

3 Basic properties of field-aligned currents

The Bessel function model of a FAC explicitly involves only
two canonical variables: the magnetic-field, B(r), and elec-
tric current density j(r). The model requires these two vector
quantities to be everywhere parallel (non-interacting). Cylin-
drical coordinates (with fixed unit vectors r, θ, z) are used to
describe the resulting shape. Because the flow is assumed

to be of unlimited extent in length and have a circular cross-
section, the model assumes no variation of either B or j in the
θ, or z directions. The mathematical results of this modeling
process are:

Bz(r) = Bz(0) J0(αr) , (1)

Bθ(r) = Bz(0) J1(αr) , (2)

jz(r) =
αBz(0)
µ

J0(αr) , (3)

jθ(r) =
αBz(0)
µ

J1(αr) , (4)

Br(r) = jr(r) = 0 , (5)

where J0 and J1 are Bessel functions of the first kind and of
order zero and one respectively. The physical consequences
of these equations are: The magnetic-field, B, at any point in-
side the current stream, has two components, one in the axial,
z direction (1), and one in the “wrap-around” or θ direction
(2). The vector sum of these two orthogonal components at
any point located at a distance r out from the central z-axis is
the net resulting magnetic field vector, B(r). The same is true
about the current density, j; it is made up of two orthogonal
components (3) and (4) in the same way that B is.

Comparing expressions (1) and (3) shows that magnitudes
Bz and jz have the same shape except for a difference in scale
(size). The same is true for Bθ and jθ as seen in expressions
(2) and (4). In general, both B and j take on parallel, concen-
tric spiral shapes.

Expression (5) reveals that neither the magnetic-field nor
current density component is radiated (nothing leaves the
cylindrical flow in the outward — radial, r — direction). This
preserves the structural integrity of the flow over extreme dis-
tances, z. A full derivation of these properties and equations
(1) through (5) is contained in Scott’s 2015 paper [6].
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4 Extension of the Bessel function FAC model

The only physical quantities modeled in the original Bessel
function FAC analysis are magnetic-field vector, B, and elec-
tric current density vector, j. But,if there are electric currents
present, there must also be electric charges present to create
those currents. If there are electric charges in a given region,
there may also be electric-fields.

By extending the Bessel function FAC model, the goal of
this paper is to determine:

• The scalar charge density profile, ρ(r), that exists
within the FAC.

• The electric-field vector, E(r), that may result from this
ρ(r) in the FAC.

• The scalar voltage profile, V(r), that may exist over any
cross-section of the FAC.

• Whether the Bessel function FAC model is consistent
with the Marklund Convection mechanism.

• The extent to which observed stellar rotational profiles
in galaxies are explicable by physical properties of the
FAC without invoking the presence of hypothetical
dark matter.

5 Components of an electric current density

At every point within a FAC, a single current density vector,
j(r), is assumed to exist. It is a vector quantity. Both the mag-
nitude and the direction of this vector will vary only as the
radial distance, r, of the point changes. There is no variation
of current density or magnetic field with either z or θ.

A way to visualize this j(r) structure is the following: if
one looks inward toward the central z-axis of the flow from
any point, r,and then backs away, outward, with increasing
distance from the axis, the net current density vector, j(r),
will appear to rotate smoothly clockwise, and its magnitude
will gradually decrease (as 1/

√
r). This fact (the monotonic

decrease of total current density with 1/
√

r) is of significant
importance in what follows. See figure 1.

The SI dimensional units of an electric current density,
j(r), are Amperes per square meter. [i.e., the number of Am-
peres of current that are passing through a unit area deter-
mines the value of the “current density” there.]

1. The charge density, ρ(r), describes how much charge is
contained in a unit volume located at point r. Therefore
its SI units are Coulombs per cubic meter (C/m3).

2. The velocity, v(r), of this unit volume is the second
factor. A one Ampere current is defined as being one
Coulomb moving past an observation point each sec-
ond. SI units of velocity are m/sec.

Therefore the current density at any point, r, is given by

j(r) = ρ(r)v(r) , (6)

Fig. 1: Current density and its two components. The magnitude of
the total current density varies as 1/

√
r.

j =
C

m3

m
s

=
C/s
m2 =

A
m2 . (7)

In expression 6, j(r) and v(r) are both vector quantities
and, since ρ(r) is a scalar, it follows that j(r) and v(r) are
collinear (parallel). Thus the charge density, ρ(r), is defined
as being the ratio of the magnitude of the current density vec-
tor at point r divided by the magnitude of the velocity vector
at that same point. Therefore

ρ(r) =
|j(r)|
|v(r)|

. (8)

Note that in the numerator of (8) it is the magnitude of the to-
tal vector sum of the current density that is used. The vector
components, jz(r) and jθ(r) each vary with r with their oscil-
lating Bessel function shapes, but the magnitude of their vec-
tor sum decreases smoothly with increasing radius as 1/

√
r

(see figure 1). This value of the magnitude of the total cur-
rent density, |j(r)|, at every point within the FAC is obtained
as the sum of its components, (3) and (4), described above. It
is evident from that figure that the magnitude of the current
density |j(r)| varies as 1/

√
r.

|j(r)| =
√

j2z (r) + j2θ(r) . (9)

In order to obtain an evaluation of the charge density, ρ(r),
in expression (8), it is necessary to obtain a valid expression
for |v(r)|.

6 Estimating the velocity profile of a FAC

It has been suggested [8] that galaxies form on and along cos-
mic Birkeland currents. Consistent with that hypothesis, we
assume that the velocity profiles of stars rotating around a
galaxy’s center have a conformation similar to the FAC on
which that galaxy formed. Galactic velocity profiles have
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Fig. 2: Observed (measured) velocity profile of a typical galaxy.
NGC 1620. [9]

Fig. 3: Charge density produced by the known |j(r)| from the FAC
model and the |v(r)| of the observed galaxy from (8).

been extensively measured both in the past and presently be-
cause of their being offered as evidence of the existence of
dark-matter, e.g. figure 2.

If using a typical empirically obtained galaxy velocity
profile, |v(r)|, in expression (8) results in a realistic charge
density, ρ(r), this would constitute supporting evidence for
this hypothesis of galaxy formation.

7 A sample stellar velocity profile |v(r)| for a typical ga-
laxy

The data in figure 2 [9] was sampled (the abscissa and ordi-
nate of each data point was recorded). This empirical data
was incorporated into a spreadsheet database. In this way a
data series for |v(r)| was obtained.

Then a numerical data series for |j(r)| as given by (9)
(shown in figure 1) was also entered into the database. Ex-
pression (8) was used together with those data sequences for
|j(r)| and |v(r)| to obtain the charge density, ρ(r). The result is
shown in figure 3.

Figure 3 indicates that the observed stellar rotation profile

in this sample galaxy (figure 2) will be correctly produced by
the Bessel function model FAC if its internal charge density
varies with r as

ρ(r) =
k
r
. (10)

8 Charge density determines the electric-field

One of Maxwell’s equations describes the relationship be-
tween the electric charge density, ρ(r), at any point, r, and
the electric field, E(r), that diverges outward from any such
point.

∇ · E(r) =
ρ(r)
ε

. (11)

In this expression, ρ(r) is the electric charge density at the
point r and ε is the permittivity of the surrounding medium.
Therefore the electric-field in a region (such as within this
FAC) may be obtained by solving (11) using the ρ(r) arrived
at in (10).

The general form of the divergence operator in cylindrical
coordinates is

DivE = ∇ · E(r) =
1
r
∂

∂r
(rEr) +

1
r

(
∂Eθ

∂θ

)
+
∂Ez

∂z
. (12)

As before, it was assumed that, in a Birkeland current
there is no variation of E with respect to axial distance z,
nor with angular displacement θ, around that axis. There is
no preferred location along the unboundedly long z-axis, and
there is no angle, θ, around that axis that is preferred over any
other. Using these simplifications in (12) and substituting into
(11) yields

1
r
∂

∂r
(rEr) =

ρ(r)
ε

, (13)

∂

∂r
(rEr) =

rρ(r)
ε

, (14)

Er =
1
εr

∫ r

0
r ρ(r) dr . (15)

Substituting (10) into (15) and integrating results in

Er(r) =
k
ε
. (16)

Therefore the electric-field has a constant value across the en-
tire cross-section of the FAC. The force per unit + charge is
outward.

9 The voltage profile is determined by the electric-field,
E(r)

Using the definition of the electric-field,

Er(r) = −
∂V(r)
∂r

, (17)

V(r) = −

∫ r

0

k
ε

dr = −
kr
ε

+ C. (18)
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Fig. 4: Voltage profile of cross-section of a FAC.

The constant of integration, C, is chosen such that at the outer
boundary of the FAC, V(R) = 0. The force per unit charge
(16) thus creates a linear, uniformly decreasing voltage profile
(18) across the FAC cross-section.

10 Marklund Convection

The voltage profile, V(r), shown in figure 4 is fully consis-
tent with the process known as Marklund Convection [10]
wherein elements become sorted radially within a plasma fil-
ament according to their ionization potential. Neutral atoms
diffuse into the FAC and become ionized due to a tempera-
ture gradient which is coolest at the center of the filament and
hottest at its outer edge. This temperature gradient is caused
by the voltage profile of figure 4 which accelerates ions out-
ward to larger values of r. The turbulence (measured as tem-
perature) of this radial flow at its periphery ionizes high Vi

elements more easily than at the lower temperatures found
near the center of the filament.

Hannes Alfvén [op. cit.] showed that elements with the
lowest ionization potential are brought closest to the axis, and
form concentric hollow cylinders whose radii increase with
ionization potential. He said, “The drift of ionized matter
from the surroundings into the rope means that the rope acts
as an ion pump, which evacuates surrounding regions, pro-
ducing areas of extremely low density.”

In 2013 it was reported by Merrifield [11] that the outer
rim of a counter-rotating galaxy (NGC 4550) had a collection
of hydrogen-rich stars. This prompted him to say these outer
stars were younger than the others: “Analysis of the popula-
tions of the two separate stellar components shows that the
secondary disc has a significantly younger mean age than the
primary disc, consistent with later star formation from the as-
sociated gaseous material. In addition, the secondary disc
is somewhat brighter, also consistent with such additional
star formation. However, these measurements cannot be self-
consistently modeled by a scenario in which extra stars have
been added to initially identical counter-rotating stellar discs,
which rules out the Evans and Collett’s elegant ‘separatrix-
crossing’ model for the formation of such massive counter-
rotating discs from a single galaxy, leaving some form of un-
usual gas accretion history as the most likely formation mech-
anism.”

Fig. 5: Elements sorted in a plasma filament in order of their ioniza-
tion voltage via the Marklund convection process.

Marklund convection stipulates that hydrogen and
helium, two elements with the highest ionization voltage, will
indeed be found at the outer rim of a plasma filament. The
observation of this phenomenon by Merrifield suggests that a
Birkeland current is likely to be responsible for the hydrogen-
rich band that he discovered.

In 2012 Merrifield [12] had said in his explanation of the
presence of these two different counter-rotating populations
of stars in NGC 4550 that first, one uni-directional stellar disk
formed and then “later on in its life, gas started flowing in,
rotating around in the other direction”. But, this leaves unan-
swered the questions of: from where did this new stream of
oppositely rotating gas come? And this new gas, being highly
collisional, would quickly smash into gas already there and
fall into the galactic center. Thus, the question of “from where
do the counter rotating stars come” remains unanswered.

In his earlier paper Scott [6] showed that the oscillations
in the J1 Bessel function that controls the spatial behavior
of the current density component, jθ, in a Birkeland Current
produces counter-rotating bands in its cross-section (and pre-
sumably also in the galaxy it flows into). These bands are
analogous to a multi-lane round-about (traffic circle) where
adjacent lanes may be going in opposite directions without
collisions.

11 Velocity profile predictions of the FAC Bessel model

If it is assumed that the charge density of a typical FAC is sim-
ilar to the result of expression (10) and figure 3,

(
ρ(r) ≈ k1

r

)
,

and also that |j(r)| = k2√
r as given by the model, then it fol-

lows from (8)that the FAC’s velocity profile ought to have the
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following functional form:

|v(r)| =
|j(r)|
ρ(r)

=
k2

k1

√
r . (19)

Using the empirical data for our example galaxy (figure 2),
we compare this actual observed |v(r)| data of the example
galaxy with our derived velocity profile (19). See figure 6.

12 Results and Comments

One incidental result of this work strongly supports the ex-
istence of the voltage profile necessary for Marklund con-
vection to occur in plasma filaments. See sections 9 and 10
above. However, the principal result presented here is the
revelation of the actual cause of “anomalous” stellar rotation
profiles in galaxies. Since the beginning of space research,
most astrophysicists have asserted that electric fields, and cur-
rents, are not important in space phenomena [13]. Because of
this rejection of electrical science and experimental plasma
engineering, all efforts to explain why the outer stars in galax-
ies revolve around their galactic centers with velocities that,
according to Newtonian dynamics, are too high have failed.
This fruitless search has lasted for decades [14]. Invisible
dark matter (DM) was first proposed by astronomers Jan Oort
(1932) and Fritz Zwicky (1933). Subsequently several differ-
ent types of DM have been hypothesized [15]:

• Cold collisionless dark matter (CCDM) [16];
• Warm dark matter (WDM) [17];
• Strongly self-interacting dark matter (SIDM) [18, 19,

20];
• Repulsive dark matter (RDM) [21];
• Self annihilating dark matter (SADM) [22];
• Fuzzy dark matter (FDM) [23];
• WIMPs Weakly interacting massless particles [24, 25];
• MACHOs Massive (astrophysical) compact halo ob-

jects [26, 27];
• Chameleon and Condensed Scalar Fields (not found as

of 2015) [28, 29];
• Proposal to modify Newton’s Laws [30].

This eighty-five year quest for a dark matter explanation
of galactic stellar rotation profiles has produced only null re-
sults. Inserting a galaxy’s charge density profile into the
Birkeland Current Bessel function model [see expression
(19)] now provides an elegantly simple answer shown in fig-
ure 6. Recently, scientific attention is becoming focused on
discoveries of linkages among galaxies previously thought
to be isolated from each other. Wide-field telescope obser-
vations of the remote universe, have revealed an immense
string of galaxies about 300 million light-years long [31].
New research [32, 33, 34] suggests that galaxies are con-
nected to one another with streams of hot thin ionized gas
(hydrogen plasma) called the intergalactic medium or IGM.

Fig. 6: Comparison of the example galaxy’s measured velocity pro-
file with the Bessel function model’s Sqrt r profile.

Observations show a narrow filament, one million light-years
long, flowing into a quasar, perhaps fueling the growth of the
galaxy that hosts the quasar. Caltech’s new Cosmic Web Im-
ager has already detected one possible spiral-galaxy-in-the-
making that is three times the size of our Milky Way [35].

An observation that is “anomalous” is one that is incon-
sistent with accepted hypotheses. In real science this requires
the replacement of the falsified hypothesis, not an eighty-five
year hunt for invisible entities that will preserve it. The work
being presented here demonstrates that the root cause of the
now vast collection of observed “anomalous” galactic stellar
rotation profiles is the electrical nature of the Birkeland Cur-
rents on which those galaxies have been or are being formed.
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Can Cold Fusion Be Explained by Quantised Inertia?

M.E. McCulloch
Plymouth University, Plymouth, PL4 8AA, UK
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When electrolysis is performed using deuterium and a palladium cathode, more heat
can be generated than can be explained by chemical processes, implying that deuterons
are fusing but without the typical products of hot fusion (a phenomenon called Low-
Energy Nuclear Reactions, LENR, or cold fusion). Fusion between deuterons usually
requires temperatures of 100 MK to overcome the repulsive Coulomb forces. Here it
is shown that a theory called quantised inertia predicts that in cracks in the metal with
diameters less than 28 nm, the temperature is 27,000 K and mutual sheltering by the
deuterons can produce an attractive radiation recoil force strong enough to push them
together through their Coulomb barriers. This offers a potential explanation for cold
fusion or LENR.

1 Introduction

Many attempts are underway to initiate nuclear fusion be-
tween atoms such as deuterium, releasing useful energy [1].
The main challenge is to overcome the Coulomb barrier:
deuterons have a charge equal to the charge on the proton,
and they repel each other with a force given by

FC =
q2

P

4πε0d2 (1)

where qP = 1.6 × 10−19 C is the charge on the proton, ε0 =

8.85 × 10−12 m−3kg−1s4A2 is the permittivity of free space
and d is the distance between the deuterons. Overcoming
the Coulomb barrier between the two deuterons in this pro-
cess usually requires a high momentum and therefore tem-
peratures in excess of 100 MK which are thought to only be
possible in gravitationally-confined systems such as the Sun
or magnetically-confined fusion reactors.

This is why the results of Fleischmann and Pons [2] were
so surprising. When they used a palladium cathode to elec-
trolyse heavy water (containing deuterium) they noticed that
more heat was given off than was possible from chemical pro-
cesses, implying that fusion was occuring (so called cold fu-
sion). The expected product of deuterium fusion: helium-4,
was also produced, but the nuclear emissions (neutrons and
gamma rays) expected from hot fusion were not seen and so
cold fusion was dismissed by all but a small minority. How-
ever, over the years there have been many successful repro-
ductions of the Pons-Fleischmann effect, or variations of it
[3], and many unsuccessful ones as well, and the topic has
been renamed LENR (Low-Energy Nuclear Reactions). A
good summary is available in [4].

Aoyama [5], Storms [6], [7] and others have noted an in-
triguing pattern which is that a common feature to the suc-
cessful experiments are the cracks or defects in the metals,
which are on the order of the nanoscale.

McCulloch [8], [9], [10] has shown that a number of dy-
namical anomalies such as galaxy rotation and cosmic accel-

eration can be explained by a theory called quantised inertia
which assumes that inertial mass is due to Unruh radiation (a
radiation seen only by accelerating objects) when this radia-
tion is made non-uniform in space by horizons. These hori-
zons can be caused by acceleration (relativistic horizons) or
they can be metal structures or cavities [11].

Another interesting anomaly down at the nuclear scale is
that of [12] who showed that when the proton radius is mea-
sured with a orbiting muon rather than an electron, an extra
unexplained binding energy is present. The muon orbits 200
times closer than the electron, and quantised inertia can ex-
plain 55% of this extra binding energy by assuming that the
thermal Unruh radiation seen by the muon is blocked (shel-
tered) from the direction of the proton, leading to a net ra-
diation pressure from outside its orbit, and a new attractive
force [13]. Quantised inertia also predicts high temperatures
within small horizons, for example in the early universe [14].
This may also apply to small metal cracks and so it may have
relevence for LENR.

In this paper it is shown that quantised inertia predicts that
cracks or defects in metals of 28 nm diameter or less should
be hot enough to cause an attractive radiation recoil force
on the deuterons strong enough to overcome their Coulomb
repulsion. This suggests a mechanism for cold fusion and
LENR.

2 Method & Results

The uncertainty principle of Heisenberg states that the un-
certainty in momentum (∆p) times the uncertainty in position
(∆x) must be greater than or equal to half the reduced Planck’s
constant

∆p∆x >
ℏ

2
(2)

so that if the uncertainty in position (∆x) is reduced in a
metal cavity of diameter D, then the momentum uncertainty
(∆p) should increase. Quantised inertia assumes that this in-
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crease in momentum can become real [15], and since E = pc
then a new energy becomes available, given by

∆E >
ℏc
2D
. (3)

For thermalised energy E = 3
2 kT we can write an expres-

sion for temperature:

T >
ℏc

3kD
. (4)

Eq. 4 predicts that the temperature in tiny volumes is high.
Figure 1 shows two deuterons (the black circles) close to-
gether inside a defect (the grey area) within a palladium lat-
tice (the mottled area). If the temperature within the defect
is as given in Eq. 4 then this radiation will be absorbed by
each deuteron only on the side away from the other deuteron,
assuming there is a mutual sheltering process (see the white
radiation-free area in Figure 1) and so the absorption of this
radiation will produce a radiation recoil force (see also [16])
that will push them together. This force is

FR =
P
c
=
σT 4

c
(5)

where σ is the Stefan-Boltzmann constant and c is the speed
of light. In order for this radiative force to cause the deuterons
to fuse, it must be larger than the repulsive Coulomb force at
the seperation where the attractive strong force can take over
and fuse the two deuterons, a distance of ds = 1.6 × 10−15 m.
For this to happen, FR > FC at distance ds, and so using Eqs.
1 and 5, and using Eq. 4 for T we get

σ
(
ℏc

3kD

)4
c

>
q2

4πε0d2
s
. (6)

We can now predict the crack size D needed to produce a
temperature high enough to cause fusion in this new way:

D < (4πε0σ)
1
4 c

3
4
ℏ

3k

√
ds

q
= 28 nm. (7)

Therefore, quantised inertia predicts that deuterons in
cracks or defects in palladium of a size less than 28 nm will
see temperatures of ℏc/3kD ≥ 27000 K and be pushed to-
gether by radiation in the crack strongly enough that their
Coulomb barrier can be breached, causing fusion. Cracks of
this size are present in palladium after being stressed [17].

3 Discussion

Quantised inertia also suggests a way to account for the lack
of emitted neutrons in LENR. The inwards force on all par-
ticles in the defect may keep them confined, but it does not
directly explain the lack of gamma rays.

Fig. 1: A schematic showing two deuterons (the black circles) lo-
cated a distance d apart within a crack/defect of width D (the grey
area) in a palladium lattice (the mottled area). The metal radiates,
and the mutual sheltering of the deuterons causes the white shel-
tered zone. The non-uniformity of the thermal radiation then forces
the deuterons together (the arrows).

As a test, this theory predicts that metals with cracks or
defects of size D should emit radiation of wavelength D. X-
rays were indeed seen by [6] and [7] during LENR, with
wavelengths in the nanometre range.

This mechanism also suggests a possible reason for sono-
luminescence which similarly involves particles being con-
fined to a small region, in this case a bubble collapsing to
a size of 0.5 micron and attaining an apparent temperature
of between 2300 K to 5100 K, as measured by the radiation
given off (see [18]). Eq. 4 predicts a temperature of 1500K.

This application of quantised inertia predicts that a nano-
metal manufactured to have regular cracks of a size less than
28 nm should show far more uniform LENR.

4 Conclusion

When electrolysis is performed using heavy water (deu-
terium) and a palladium cathode, unexpected heat and
Helium-4 can be generated indicating that nuclear fusion is
taking place without the usual products of hot fusion (this is
called LENR or cold fusion).

Quantised inertia predicts that deuterons in cracks or de-
fects less than 28 nm in width should heat up enough that,
through mutual sheltering, they feel an attractive radiation
recoil force that overcomes their Coulomb barrier, allowing
fusion. This is a possible explanation for cold fusion.

As a test this model predicts that a metal with cracks
should emit radiation of a wavelength similar to the size of
its cracks, and that a nanometal manufactured with cracks of
size 28 nm or less should produce LENR more uniformly.
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Global Scaling of Planetary Atmospheres
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We derive a model of the stratification of planetary atmospheres as application of our
scale-invariant model of matter as fractal chain system of oscillating protons and elec-
trons. Model claims are verified by aerological, geophysical and planetological data.

Introduction

The vertical stratification of the Earth’s atmosphere is caused
by very different processes and it is a complex field of re-
search. In general, air pressure and density decrease exponen-
tially with altitude, but temperature, ionization and chemical
composition have more complicated profiles. The standard
division into troposphere, stratosphere, mesosphere, thermo-
sphere, ionosphere and exosphere is based on satellite, air-
plane and ground measurements and considers aerodynamic,
hydrodynamic, thermodynamic, chemical, electromagnetic,
gravitational factors in their complex interaction.

New measurements of the atmospheres of solar system
planets and moons over the past four decades from various
spacecraft missions have been used to characterize the struc-
ture and dynamics of these atmospheric environments and to
compare them to one another. A corresponding evolution of
modeling tools occurs, from simple to complex frameworks.

Terrestrial modeling frameworks like HAMMONIA [1],
ECHAM [2], IRI [3] and CMAM [4] of numerical modeling
have been used to launch simulations [5] of other planetary
upper atmospheres and ionospheres. The primary benefit of
the Earth paradigm can be realized for other planetary upper
atmospheres having similarities in their fundamental plane-
tary parameters, basic processes and vertical domains (atmo-
spheric layers).

In fact, stratification as atmospheric feature is associated
not only with Earth, but occurs on any other planet or moon
that has an atmosphere as well. Furthermore, stable atmo-
spheric boundaries like tropopause, stratopause, thermopause
and mesopause have similar vertical distributions at differ-
ent celestial bodies in atmospheres of very different chemical
compositions.

In this paper we apply our scale-invariant model [6] of
matter as fractal chain system of oscillating protons and elec-
trons and develop a general model of planetary atmospheric
stratification that might help to understand the processes sus-
taining the observed stable atmospheric structures.

Methods

In [7] we have shown that the set of natural frequencies of
a fractal chain system of similar harmonic oscillators can be
described as set of finite continued fractions F (1), which are
natural logarithms, where ω jk is the set of angular frequen-
cies and ω00 is the fundamental frequency of the set. The

denominators are integer: n j0, n j1, n j2, . . . , n jk ∈Z, the cardi-
nality j ∈N of the set and the number k ∈N of layers are finite:

ln (ω jk/ω00)= n j0 +
z

n j1 +
z

n j2 + . . .
+

z
n jk

=

= [z, n j0; n j1, n j2, . . . , n jk]=F .

(1)

In the canonical form, the numerator z equals 1 and for finite
continued fractions the distribution density of the eigenvalues
reaches maxima near reciprocal integers 1, 1/2, 1/3, 1/4, . . .
which are the attractor points of the fractal set F of natural
logarithms (fig. 1).

Fig. 1: The canonical form of F for k= 1 (above) and for k= 2
(below) in the range -1⩽F ⩽ 1.

Any finite continued fraction represents a rational num-
ber [8]. Therefore, all natural frequencies ω jk in (1) are irra-
tional, because for rational exponents the natural exponential
function is transcendental [9]. This circumstance provides for
high stability of eigenstates in a fractal chain system of har-
monic oscillators because it prevents resonance interaction
between the elements of the system [10]. Already in 1987 we
have applied continued fractions of the type F as criterion of
stability in engineering [11, 12].

In the case of harmonic quantum oscillators, the contin-
ued fractions F define not only fractal sets of natural angu-
lar frequencies ω jk, angular accelerations a jk = c ·ω jk, oscil-
lation periods τ jk = 1/ω jk and wavelengths λ jk = c/ω jk of the
chain system, but also fractal sets of energies E jk = ℏ ·ω jk and
masses m jk =E jk/c2 which correspond with the eigenstates of
the system. For this reason, we call the continued fraction F
the “fundamental fractal” of eigenstates in chain systems of
harmonic quantum oscillators.

In the canonical form (z= 1) of the fundamental fractal
F , shorter continued fractions correspond with more stable
eigenstates of a chain system of harmonic oscillators. There-
fore, integer logarithms represent the most stable eigenstates
(main attractor nodes).
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Property Electron Proton

rest mass m 9.10938356(11) · 10−31 kg 1.672621898(21) · 10−27 kg

energy E=mc2 0.5109989461(31) MeV 938.2720813(58) MeV

angular frequency ω=E/ℏ 7.76344071 · 1020 Hz 1.42548624 · 1024 Hz

angular oscillation period τ= 1/ω 1.28808867 · 10−21 s 7.01515 · 10−25 s

angular wavelength λ= c/ω 3.8615926764(18) · 10−13 m 2.1030891 · 10−16 m

Table 1: The basic set of physical properties of the electron and proton. Data taken from Particle Data Group [13]. Frequencies, oscillation
periods and the proton wavelength are calculated.

As the cardinality and number of layers of the continued
fractions F are finite but not limited, in each point of the
space-time occupied by the chain system of harmonic quan-
tum oscillators the scalar F is defined. Therefore, any chain
system of harmonic quantum oscillators can be seen as source
of the scalar field F , the fundamental field of the system.

Normal matter is formed by nucleons and electrons be-
cause they are exceptionally stable quantum oscillators. In
the concept of isospin, proton and neutron are viewed as two
states of the same quantum oscillator. Furthermore, they have
similar rest masses. However, a free neutron decays into a
proton, an electron and antineutrino within 15 minutes while
the life-spans of the proton and electron top everything that is
measurable, exceeding 1029 years [13].

The exceptional stability of electron and proton predesti-
nate their physical characteristics as fundamental units. Ta-
ble 1 shows the basic set of electron and proton units that can
be considered as a fundamental metrology (c is the speed of
light in a vacuum, ℏ is the Planck constant, kB is the Boltz-
mann constant). In [14] was shown that the fundamental
metrology (tab. 1) is compatible with Planck units [15].

We hypothesize that scale invariance of the fundamental
field F calibrated on the physical properties of the proton and
electron (tab. 1) is a universal characteristic of organized mat-
ter and criterion of stability. This hypothesis we have called
‘global scaling’ [16, 17].

Results

Within our scale-invariant model of matter [18], atoms and
molecules emerge as eigenstates of stability in fractal chain
systems of harmonically oscillating protons and electrons.

Andreas Ries [19] demonstrated that this model allows
for the prediction of the most abundant isotope of a given
chemical element. From this point of view, any physical body,
being solid, liquid or gas can be seen as fractal chain system
of oscillating molecules, atoms, ions, protons and electrons
that generates its fundamental field F .

Therefore, in the framework of our fractal model of mat-
ter, the fundamental field F affects any type of physical in-
teraction, including the gravitational. In [20] we applied our

model to the analysis of gravimetric and seismic character-
istics of the Earth and could show [21] that our estimations
correspond well with established empiric models of the Earth
interior.

In this paper we demonstrate that the vertical sequence of
stable atmospheric layers corresponds with the sequence of
main equipotential surfaces of the fundamental field F , not
only at Earth, but also at Venus, Mars and Titan. Table 2
gives an overview of this correspondence.

The lowest layer of Earth’s atmosphere is the troposphere
where nearly all weather conditions take place. The average
height of the troposphere is 20 km in the tropics, 12 km in the
mid latitudes, and 7 km in the polar regions in winter [22].
Table 2 and fig. 2 show the correspondence of these tropo-
spheric levels with the main equipotential surfaces [37; 2] =
7.5 km, [38; ∞] = 12 km and [38; 2] = 20 km of the funda-
mental field F , calibrated on the electron wavelength.

At its lowest part, the planetary boundary layer (PBL),
the troposphere displays turbulence and strong vertical mix-
ing due to the contact with the planetary surface. The top of
the PBL in convective conditions is often well defined by the
existence of a stable capping inversion, into which turbulent
motions from beneath are generally unable to penetrate [23].
The height of this elevated stable layer is quite variable, but
is generally below 3 km. Over deserts in mid-summer under
strong surface heating the PBL may rise to 4 - 5 km. In the
temperate zones, it can be defined by the quite sharp decrease
of aerosol concentration at the height of about 1600 m. Over
the open oceans, but also at night over land, under clear skies
and light winds, with a capping stratocumulus, the depth of
the PBL may be no more than 600 m.

Table 2 and fig. 2 show the correspondence of the PBL
features with the main equipotential surfaces [35; ∞] = 600
m, [36; ∞] = 1600 m and [37; ∞] = 4.5 km of the funda-
mental field F , calibrated on the electron wavelength. It is
noticeable that in 1992 Hess [24] already reviewed scaling
aspects of the boundary layer.

Above the PBL, where the wind is nearly geostrophic,
vertical mixing is less and the free atmosphere density strat-
ification initiates. The jet stream flows near the boundary
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boundary of atmospheric layer altitude h, km ln (h/λe) F

van Allen outer electron belt max density 13000 44.96 [45;∞]

8200 [44; 2]

5000 [44;∞]

van Allen inner proton belt max density 3000 43.50 [43; 2]

Earth exopause 1800 42.99 [43;∞]

1100 [42; 2]

Earth thermopause 650 41.97 [42;∞]

400 [41; 2]

Venus & Mars thermopause, Venus atmospheric entry 250 41.01 [41;∞]

Earth atmospheric entry, Venus mesopause 150 40.50 [40; 2]

Earth & Titan mesopause, Venus tropopause, Mars stratopause & entry 90 39.99 [40;∞]

Earth & Titan stratopause 55 39.50 [39; 2]

Titan tropopause 33 38.99 [39;∞]

Earth tropic tropopause 20 38.49 [38; 2]

Earth temperate tropopause 12 37.98 [38;∞]

Earth polar tropopause 7.5 37.51 [37; 2]

desert summer PBL inversion 4.5 37.00 [37;∞]

continental PBL inversion 1.6 35.96 [36;∞]

marine PBL inversion 0.6 34.98 [35;∞]

Table 2: Altitudes of the boundaries of various atmospheric layers on Earth, Venus, Mars and Titan and their correspondence with main
equipotential surfaces of the fundamental field F , calibrated on the electron wavelength.

between the troposphere and the stratosphere. As altitude
increases, the temperature of the troposphere generally de-
creases until the tropopause.

At the bottom of the stratosphere, above the tropopause,
the temperature doesn’t change much, but at the inverse layer
at altitudes between 20 and 33 km the temperature increases
from -50◦C to 0◦C. Then at the stratopause at 55 km altitude
the temperature stabilizes. It is the boundary between two
layers: the stratosphere and the mesosphere [25]. The ozone
layer (ozonosphere) of the stratosphere absorbs most of the
Sun’s ultraviolet radiation and is mainly found at altitudes
between 12 and 30 km, with the highest intensity of formation
at 20 km height [26].

Table 2 and fig. 2 show the correspondence of the main
stratosphere layers with the main equipotential surfaces [39;
∞] = 33 km and [39; 2] = 55 km of the fundamental field F ,
calibrated on the electron wavelength.

Above the stratopause, in the mesosphere between 55 and
90 km altitude [27], the temperature decreases again, reach-

ing about -100 ◦C at the mesopause [28]. This altitude coin-
cides with the turbopause: above this level the atmosphere is
of extremely low density so that the chemical composition is
not mixed but stratified and depends on the molecular masses.
Table 2 and fig. 2 show the correspondence of the mesopause
with the main equipotential surface [40; ∞] = 90 km of the
fundamental field F , calibrated on the electron wavelength.

Above the mesopause, in the thermosphere, the (kinetic)
temperature increases and can rise to 1000 ◦C (depending on
solar activity) at altitudes of 250 km remaining quasi stable
with increasing height. Due to solar radiation, gas molecules
dissociate into atoms: above 90 km dissociate carbon dioxy-
gen and dihydrogen, above 150 km dissociates dioxygen and
above 250 km dissociates dinitrogen. Above 150 km, the den-
sity is so low that molecular interactions are too infrequent to
permit the transmission of sound. Table 2 and fig. 2 show the
correspondence of these thermosphere layers with the main
equipotential surfaces [40; 2] = 150 km and [41; ∞] = 250
km of the fundamental field F , calibrated on the electron.
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Fig. 2: The fundamental field F (natural logarithmic presentation) calibrated on the electron wavelength in the range 35 ≤ F ≤ 40 and the
corresponding altitudes h in km.

The Karman line [29] is considered by the Federation
Aeronautique Internationale (FAI) [30] as the border between
the atmosphere and outer space, as altitude where the atmo-
sphere becomes too thin to support aeronautical flight, since a
vehicle at this altitude would have to travel faster than orbital
velocity to derive sufficient aerodynamic lift to support itself.
On Earth, atmospheric effects become noticeable during at-
mospheric entry of spacecraft already at an altitude of around
120 - 150 km, while on Venus atmospheric entry occurs at
250 km and on Mars at about 80 - 90 km above the surface.
These heights mark also the bases of the anacoustic zones.

The location of the thermopause is near altitudes of 600 –
700 km and depends on solar activity [31]. Above starts the
exosphere, where the atmosphere (mostly consisting of hy-
drogen atoms) thins out and merges with interplanetary space.
This uppermost layer, until 13000 km observable from space
as the geocorona, extends up to 100000 km. Table 2 and fig.
2 show the correspondence of the thermopause with the main
equipotential surface [42; ∞] = 650 km of the fundamental
field F , calibrated on the electron wavelength.

The van Allen radiation belts [32] are features of Earth’s
magnetosphere. The inner belt consists of high energetic pro-
tons which reach their maximum concentration at altitudes of
3000 km. The outer belt consists of high energetic electrons
with maximum concentration at altitudes of 13000 km.

While the outer belt maximum corresponds with the main
equipotential surface [45;∞] = 13000 km of the fundamental
field F , calibrated on the electron wavelength, the inner belt
maximum corresponds with the equipotential surface [43; 2]
= 3000 km that is the main equipotential surface [51; ∞] of
the fundamental field F , calibrated on the proton wavelength.
In fact, the natural logarithm of the electron-to-proton wave-
length ratio is approximately 7.5 and consequently, F cali-
brated on the proton will be shifted by 7.5 logarithmic units
relative to the F calibrated on the electron:

ln
(
λelectron

λproton

)
= ln

(
3.8615926764 · 10−13 m

2.1030891 · 10−16 m

)
≈ 7.5.

This circumstance, probably, can explain the high proton con-
centration at the inner belt.

Conclusion

The correspondence of the atmospheric stratification on the
Earth, Venus, Mars and Titan with main equipotential sur-
faces of F demonstrates that the fundamental field affects
very different types of physical interaction and is a strong
confirmation of global scaling and our model of matter as
fractal chain system of oscillating protons and electrons.

Probably, in future our model can be applied for estima-
tion of the atmospheric stratification at ice giants like Uranus
and Neptune and gas giants like Jupiter, Saturn and extrasolar
planets as well.
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It is assumed that the dark matter particle can be a structural unit of cosmological scale
(superphoton) emitted by the active center of galaxies, analogous to a photon and ball
lightning (macrophoton), which are structural units of micro- and macroscales. The
low density, potential and temperature of superphotons make them invisible during as-
tronomical observations, and their negative charge prevents the galaxies from approach-
ing each other which can explain the phenomenon of dark energy. It is shown that the
existence of superphotons together with the presence of cosmic rays indicates the con-
servation of the electric charge as a whole in cosmological scales. It is assumed that the
superphoton, like a giant ball lightning with energy of 1.03 × 1017 J, could collide with
the Earth which could explain the Tunguska phenomenon.

1 Introduction. On the natural range of the unit
structural objects

In nature, as the scale changes, a regular range of certain
single structural objects is observed. Let us consider them
from the point of view of the mechanistic interpretation of
J. Wheeler’s geometrodynamic [1].

So, in the microcosm opposite charges (the proton and the
electron, for example) are connected by a current vortex tube,
forming as a whole a closed contour based on the balance
of magnetic and gravitational forces; its structural unit is a
photon (wave). The number of these units depends on the
contour size, i.e. on the main quantum number n. The size
of the “standard” contour rst = 1.25 × 10−9 m. It contains
approximately 137 photons (the inverse of the fine structure
constant) [1,2]. In the limit, the contour can have one photon,
that is, being identical to the photon itself.

A photon, like the contour itself, is a one-dimensional ob-
ject; the photon does not exist at rest alone.

In the area of Earth’s scales between charged macroob-
jects — a thundercloud and Earth — a linear lightning arises,
also a kind of the current tube that generates a ball lightning,
which, in turn, can be regarded as a structural unit. Calcula-
tion of the parameters of a typical ball lightning, provided that
it has a mass close to the Planck mass (quasiparticle) is de-
scribed in [3]. It is assumed that the ball lightning consists of
many single elements — photons or of one long closed con-
tour packed into a spherical shape, forming a macrophoton.
A macrophoton is a multilayer spherical capacitor, i.e. a kind
of two-dimensional object; the lifetime of a macrophoton is
limited.

As for cosmic scales, there was shown in [4] that the
structure of quasars can contain very long open vortex tubes
with opposite currents carrying charges of different signs at
the place of their rupture that resembles a kind of a superatom.
Vortex tubes consist of vortex threads, which, supposedly, can
be transformed into compact structural units — superphotons

emitted by a quasar. Accordingly, continuing the analogy,
the superphoton should be a three-dimensional object, and its
lifetime is unlimited.

Indeed, galaxies form a homologous generation — from
galaxies with a quasar in the center to galaxies with a black
hole in the center. Thus, if a black hole absorbs matter, then
the quasar as a white hole (the superdense body according to
Ambartsumyan) generates matter. Then galaxies with quasars
passing into a state of galaxies with black holes should radiate
(to split off) part of its mass in the form of some particles.

2 On the possible super-photon structure

In [4] some parameters of the “standard” quasar were cal-
culated, namely such ones, where the speed of the medium
along the vortex tubes is that of “standard” proton-electronic
contour. In particular, the following are defined:

quasar mass M, kg 4.76 × 1042

quasar total energy E, J 9.61 × 1053

length of the quasar vortex tube l, m 1.58 × 1021

mass of 1 vortex threads of a quasar tube mi, kg 5.10 × 105

number of unit threads const. the vortex tube, z 9.33 × 1036

If the vortex thread forms a certain stable structure, then,
obviously, certain balances of interactions must exist to main-
tain such a structure in equilibrium.

So, in [4] it is calculated that there is a balance of the vor-
tex tube kinetic energy and the electrostatic energy of all sin-
gle charges (not necessary electrons) placed along the vortex
tube length, provided the distance between the vortex threads
is equal to the size of the “standard” proton-electronic con-
tour rst and the maximum single charges number must be

zie = l/re = 5.6 × 1035, (1)

where re is the electron classical radius (2.82 × 10−15 m).
At the same time, when the vortex threads are split off

from the vortex tube, for a pair of threads a balance of electric
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and magnetic forces must be realized that leads to a geometric
mean [5]:

(li rst)1/2 = 7.52 × 108 m, (2)

from which follows li = 4.52 × 1026 m.
Let us assume that this extended one-dimensional struc-

ture, i.e. a double vortex thread with charges of opposite signs
can somehow be packed into a compact volume (similar to a
double helix of DNA). In the most dense packing its linear
dimension D can be estimated as

D =
(
li r2

st

)1/3
= 890 m. (3)

Further one can find other averaged parameters of the ob-
ject — density, energy, charge and potential:

ρ = mi/D3 = 0.72 × 10−3 kg/m3, (4)

Ei = E/z = 1.03 × 1017 J, (5)

Qi = zie e0 = 9.0 × 1016 K, (6)

where e0 is the electron charge,

Ui = Ei/Qi = 1.14 V. (7)

It is important that in this volume the average distance be-
tween charges d is close to the size of the “standard contour”
rst, i.e. the balance characteristic of the proton-electronic
contour is also realized. Really,

d =
(
D3/zie

)1/3
= 1.08 × 10−9 m. (8)

Recall that all of the above calculated values are the result of
using only the fundamental values.

Thus, when carrying out these balances, one can expect
that such an object is stable and exists for a long time. Let’s
estimate this time, assuming that its object radiates as an ab-
solutely black body and has a surface temperature close to
the cosmic background radiation temperature T = 2.7◦ K
(otherwise such objects would be seen in the process of as-
tronomical observations). The power radiated by its surface
is determined from the well-known formula:

Ni = T 4σS , (9)

where σ is the Stefan-Boltzmann constant, equal to 5.67 ×
10−8 Wm−2 (0K)−4, and S is the sphere area of diameter D
equal to πD2. Substituting the data, we get Ni = 7.5 W and
than the lifetime of the object is:

τ = Ei/Ni = 1.37 × 1016 sec or 442 million years, (10)

which in order of magnitude corresponds to the lifetime of
a quasar. Obviously, such an object can exist for a longer
time, since it gradually dissipates its power and reduces the
radiation temperature.

3 Superphoton as a candidate for the role of dark matter

A superphoton, unlike a ball lightning, has an insignificant
density, potential, and surface temperature, hence it inter-
acts with other bodies only in a collision or through gravity.
Therefore, this object, inconspicuous against the background
of relic radiation, can claim the role of the desired dark mat-
ter. The generality of its origin with ordinary baryonic matter
is obvious; this possibility is also allowed in [6]. Let us as-
sume that as the quasar “burns out” (before becoming into a
galaxy), most of its mass is radiated in the form of superpho-
tons (dark matter), and less of its mass remains in the form
of a conventional galaxy (baryonic matter). Then the ratio of
these masses should be close to the mass ratio of the quasar
to the galaxy minus one. The calculated mass of the “stan-
dard” quasar is about five times greater than the baryon mass
of our Milky Way galaxy [4]; for most other galaxies, less
massive, this ratio is even greater. Thus, the ratio of the mass
of superphotons to the mass of the average galaxy is gener-
ally consistent with the ratio of the dark matter mass to the
baryonic matter mass. According to WMAP (Wilkinson Mi-
crowave Anisotropy Probe, 2003), the universe contains: dark
matter of 22%, baryonic matter of 4%.

Apparently, young galaxies as the most massive and ac-
tive should gradually lose their mass and reduce activity. This
provision is consistent with the recently discovered of very
massive young galaxies, about one billion years of age that
produce stars with intensity much higher than the rate of star
formation in our galaxy the Milky Way [7].

If the superphoton has kinetic energy relative to the point
of origin (the quasar center) equal to its internal energy, then
its relative velocity is equal to the circulation velocity of the
medium along the vortex tube (for the “standard” quasar, v =
448, 000 m/sec), i.e. it is close to the escape velocity. If par-
ticles are emitted mainly in the disk plane, then in this case
their total velocity (peripheral velocity plus particle one) ex-
ceeds the escape velocity. Thus, during its lifetime (quasar
activity), super-photons can move away from galaxies and fill
the halo of galaxies, thereby playing the role of dark matter.
In this case, in the most remote galaxies, i.e. the youngest
from the point of view of observers, dark matter should be
less. Indeed, this fact is established [8, 9].

According to the model, the super-photon is a cold and
slowly moving formation that corresponds to the model of
Cold dark matter. And just in favor of this particular model,
the results obtained by a group of astronomers led by Vid
Iršič, who analyzed the distribution of dark matter in the uni-
verse, based on observations of the lyman alpha radiation
from distant galaxies obtained with the help of the Keck Tele-
scope (Hawaii) and the Very Large Telescope Observatory
(Chile) indicate [10].

Some features of the behavior of dark matter is not yet
amenable to computer simulation: the cosmological models
of formation and evolution of disk Galaxies, the distribution

72 Belyakov A.V. On the Possible Nature of Dark Matter and Dark Energy



Issue 2 (April) PROGRESS IN PHYSICS Volume 14 (2018)

of the density of dark matter in the galaxy disk (the prob-
lem of the central cusp), coplanarity dwarf galaxies-satellites
relative to central galaxies, weak interaction of clouds of dark
matter among themselves and others [11]. Therefore, it would
be interesting to perform computer simulation, believing that
dark matter particles have the properties of superphotons and
move mainly in the plane of the galaxy disk.

The average density of particles in the form of superpho-
tons in a galaxies interior, including the halo of diameter 105

light years, is very small, about one particle per cubic with a
side of 0.5 million kilometers, which gives 5 × 10−24 g /cm3.
And, having the same charge, superphotons repel each other
and can not form clusters. Therefore clouds of dark matter
can freely intersect without significant interaction. At this
density of dark matter and even several orders of magnitude
greater (in the case of dark matter distribution mainly in the
disc plane), its presence in the solar system can not be de-
tected, which corresponds with the conclusions [12].

Let’s try roughly to estimate the probability of a super-
photon collision with the Earth. Let’s assume that during
our existence (1.3 × 1010 years) our galaxy has lost 4/5 of its
baryonic matter due to the uniform radial radiation of super-
photons on its inner spherical surface with a diameter of 105

light years. Then the number of super-photons from the total
number of them ( 1

2 ×
4
5 × 9.33 × 1036 = 3.73 × 1036) that fall

per unit sphere area is 10−16 units per m2 per year. Accord-
ingly, 0.013 units per year (one superphoton at 77 years) fall
on the globe cross-section or, in terms of unit charges, there
are 1.46 × 1034 charges per year.

This is a reasonable value, but in reality this probability
is much less and not only because of shading of the Earth by
other cosmic bodies, dust, etc. The main reason is obviously
the age of our galaxy and the presence of a black hole at its
center; so we can assume that by now the radiation of super-
photons is replaced by the reverse process — the absorption
of matter by a black hole. Superhotons are carriers of namely
negative charges, since there simultaneously are streams of
positively charged particles — cosmic rays; at the same time
negative and positive charges should be compensated in space
as a whole. Obviously, there is some physical mechanism
that separates the primary plasma into particles of opposite
signs. Positive particles (mainly protons) form cosmic rays,
and electrons are decelerated in interstellar magnetic fields
(the material basis of the vortex tubes in our model).

The intensity of cosmic rays at the surface of the Earth is
approximately one particle per cm2 per second or 1.6 × 1026

particles per year on the entire Earth surface that is eight or-
ders of magnitude less than the number of negative charges.
However, the characteristic scale of the propagation of slow
superphotons is the size of the galaxy (105 light years), and
the similar propagation scale of cosmic rays, provided that
they are uniformly distributed throughout the cosmic space,
is the size of a larger structure — the cell of the cosmological
network or the vault (107–108 light years). Thus, the unit den-

sity of particles in the corresponding volumes, i.e. cube ratio
of linear scales, corresponds to the same order of magnitude.

4 On the forces of repulsion and dark energy

If the hypothesis of a superphoton is correct, then the galaxies
periphery, where dark matter is mainly accumulated, should
be surrounded by a distributed negative charge, which should
counteract the “clumping” of galaxies between each other and
also the walls of galactic vaults as a whole. Considering the
masses and charges of galaxies at very great distances as point
ones, it is possible to determine the magnitude of the equilib-
rium negative charge, at which electric forces are compared
with gravitational ones:

Q = 2M (π ε0 γ)1/2 , (11)

where ε0 and γ are known electric and gravitational constants.
Substituting the data, we find for the “standard” mass of the
quasar Q = 4.08 × 1032 Coulomb.

Neither the charge distribution around galaxies nor its
fraction responsible for the repulsive force between them is
known. Therefore, for a rough estimate of the smallest value
of the acting charge it suffices to restrict oneself to only the
fraction of superphotons enclosed in a single spherical layer
along the halo periphery, and — in the superphotons them-
selves — to a single spherical layer of negative charges along
the periphery of superphotons. It was previously calculated
that in the halo volume of 105 light years in size, the super-
photon occupies the cell of 5 × 108 m; then, based on the
areas ratio, one can find that 1.13 × 1025 superphotons can
be placed in a single peripheral layer of the halo. Similarly,
bearing in mind the dimensions of the superphoton D and the
standard contour rst, one can find that 1.59×1024 charges can
be placed in the peripheral layer of the superphoton. Thus,
the effective minimum charge of the “standard” galaxy will
be 1.13 × 1025 × 1.59 × 1024 × e0 = 2.87 × 1030 Coulomb
or 0.7% of the equilibrium charge. This is already an appre-
ciable value; therefore, with more number of active charges,
for example, with the expansion of the halo surface, the re-
pulsive forces between galaxies can increase up to exceeding
them above the forces of gravitational attraction.

So, if this hypothesis is correct, then in the space between
galaxies and their clusters the electric field also acts, and the
electrostatic repulsive forces beyond the galaxies have the
same distance dependence as the gravitational ones, i.e. in-
verse quadratic form. This is consistent with the opinion of
some researchers that “the physical nature of dark energy is
determined by the interaction of gravitation and electroweak
forces” [13]. These forces manifest themselves as antigravity,
which in total can be interpreted as a modification of the the-
ory of gravity at extremely long distances and cosmological
durations [6], which is one of the explanations of dark energy
accepted to date.
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Conclusion

Thus, the super-photon, bearing in mind its properties, may
turn out to be the desired dark matter or the missing substance
of the universe. Its existence as a carrier of negative charges
is indirectly confirmed in the existence of cosmic rays — car-
riers of positive charges that correspond to the condition of
the charge conservation in the universe as a whole. In the
case of correctness of the model presented, the problem of
dark matter and dark energy finds the most rational explana-
tion: dark matter (superphotons having a negative charge) is
a product of the evolution of ordinary matter, and dark energy
(repulsive forces) is the property of dark matter.

Of course, the superphoton is such a “particle” that clearly
does not meet the expectations of researchers studying dark
matter. Perhaps direct evidence of the existence of super-
photons can be detected by observations during their interac-
tion with the Sun or against the background of the Sun’s disk,
the probability of which is four orders of magnitude higher
than when super-photons interact with the Earth.

There is only one event that could be explained by the
collision of the superphoton with the earth — this is the Tun-
guska phenomenon. Indeed, the superphoton as the analog of
a giant ball lightning with an energy of 1.03×1017 J, in size of
890 m and moving at cosmic speed could produce the specific
effects of the Tunguska catastrophe, including those that are
not explained by the currently dominant meteorite hypothe-
sis [14].

Submitted on December 22, 2017
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Kinetic Theory: Flatlining of Polyatomic Gases
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By redefining a gas’ kinetic energy as translational plus rotational, an alternative ki-
netic theory was disclosed by this author that was a superior fit with empirical findings
than the accepted kinetic theory. This alternative kinetic theory’s fit for monatomic,
diatomic and triatomic gases is exceptional, however the same cannot be said of large
polyatomic gases. Accordingly, a new consideration called “flatlining” is proposed in
order to explain the discrepancy between theory and the known empirical finding for
heat capacities of large polyatomic gases.

1 Introduction

Traditionally accepted kinetic theory is based upon equiparti-
tion and degrees of freedom [1,2,3]. Mathematically speaking
equipartition uses the concept that a gaseous molecule with
n′′ atoms has 3n′′ degrees of freedom (f ), [4,5] i.e.:

f = 3n′′. (1)

This leads to the isometric molar heat capacity (Cv) for
large polyatomic gases being

Cv =
3
2

n′′R (2)

where n” signifies the polyatomic number i.e. the number of
atoms in each gas molecule. Numerous explanations for tra-
ditional kinetic theory’s failure in properly describing empir-
ically determined heat capacities, have been proposed [1,6-
10]. Interestingly, Einstein thought that such failures in ex-
plaining empirical findings demonstrated the need for quan-
tum theory [11-12].

This author proposed a new alternative kinetic theory [1].
The basis of this alternative theory was that the surrounding
walls molecule’s mean vibrational energy, as defined by (kT),
is continually pumped onto the gaseous molecules that they
surround. Where (k) is Boltzmann’s constant and (T) is the
absolute temperature.

After numerous impacts between the gaseous molecules
and walls, the above pumping results in the total kinetic en-
ergy (EkT (t,r)) of an N-molecule monatomic gas being defined
by [1]:

EkT (t,r) =
3
2

NkT. (3)

Traditional kinetic theory considers that the kinetic en-
ergy as defined by eqn (3) represents purely translational en-
ergy.

In terms of this author’s alternative kinetic theory, the
above stated total kinetic energy consists of the gas’ transla-
tional plus its rotational energy [1]. Interestingly, this author’s
theory is a superior fit with various heat capacities studies for
gases [1,13-18], when compared to accepted theory.

In order to better understand, consider that you hit a tennis
ball with a suitable racquet. If the ball impacts the racquet’s
face at a 90 degree angle then the ball will have significant
translational energy in comparison to any rotational energy.

Conversely, if the ball impacts the racquet at an acute an-
gle, although the same force is imparted onto that ball, the
ball’s rotational energy can be significant in comparison to its
translational energy. The point becomes, that both the trans-
lational and rotational energy, are due to the same impact [1].

Now apply the above macroscopic considerations to the
microscopic world. When vibrating wall molecules pump
their mean vibrational energy onto the gas molecules that they
surround it, it only makes sense that this results in both trans-
lational and rotational energy of the gas [1].

This author also pointed out that all kinetic theory only
holds for sufficiently dilute gases because the predominate en-
ergy exchange is due to gas-wall molecule collisions, where
wall molecules that act as massive energy pumps, i.e. gas
molecules tend to take on the wall’s energy with every gas-
wall collision [1]. However this would not necessarily be
the case for gases that are not sufficiently dilute i.e. gases
where inter-gas molecular collisions are the dominate inter-
action [1].

This author has further asserted [1,19,20] that inter-gas
molecular collisions tend to obey conservation of momentum,
rather than adhere to kinetic theory. And, when inter-gas col-
lisions dominate over gas-wall collisions then kinetic theory,
the ideal gas law, Avogadro’s hypothesis, Maxwell’s distribu-
tions/velocities etc. all start to lose their validity [1].

For a system of diatomic gas molecules, the wall mole-
cules still pass the same mean kinetic energy onto the di-
atomic gas molecule’s center of mass with each collision.
Therefore the diatomic gas’ kinetic energy is still defined by
eqn (3) [1].

The diatomic gas molecule’s vibrational energy would be
related to the absorption and/or emission of its surrounding
blackbody/thermal radiation at temperature (T). The vibra-
tional energy (Ev) of an N-molecule diatomic gas in a closed
system becomes [1]

Ev = NkT. (4)
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And the total energy (Etot) for an N molecule diatomic
gas becomes [1]

Etot = EkT (t,r) + Ev =
3
2

NkT + NkT =
5
2

NkT. (5)

Similarly, for N molecules of n”-polyatomic gas, the total
vibrational energy is [1]

Ev = (n′′ − 1)NkT. (6)

And, the total energy (Etot) for the polyatomic gas mole-
cule becomes [1]:

Etot = EkT (t,r) + Ev =
3
2

NkT + (n′′ − 1)NkT. (7)

Hence,

Etot =

(
n′′ +

1
2

)
NkT. (8)

Dividing both sides by temperature and rewriting in terms
of per mole: (N=6.022×1023), equation (8) becomes [1]:

Etot

T
= Nk

(
n′′ +

1
2

)
= R

(
n′′ +

1
2

)
. (9)

For most temperature regimes, the heat capacity of gases
remains fairly constant, hence equation (9) can be rewritten
in terms of the isometric molar heat capacity (Cv) [1], i.e.

Cv = R
(
n′′ +

1
2

)
. (10)

The difference between molar isobaric heat capacity (Cp)
and molar isometric heat capacity (Cv) for gases is the ideal
gas constant (R). Therefore, a gas’s isobaric heat capacity Cp

becomes

Cp = R
(
n′′ +

1
2

)
. (11)

Interestingly this author realized that the above difference
between molar heat capacities allows for a relationship be-
tween the ideal gas constant (R) and the ability of a mole of
gas molecules to do work against a gravitational field [1, 20-
21], as a function of temperature.

Based upon equations (10) and (11) the gas’s molar spe-
cific heats were plotted against its polyatomic number (n”) as
is shown by Fig. 1 and compared to the traditional accepted
values for large polyatomic gases as given by eqn (2). Note
the empirical data used in plotting Fig. 1 can be found in the
Tables (1) and (2) provided in this author’s previous paper [1]
concerning kinetic theory.

Moreover, there was a discrepancy, between our model
and empirical findings for relatively large polyatomic gases.
It becomes a goal of this paper to provide a plausible explana-
tion for the moderate discrepancy between this author’s plots
based upon equations (10) and (11) and the accepted empiri-
cal findings for large polyatomic molecules i.e. those whose
polyatomic number is greater than four (n”> 4).

Fig. 1: Empirical versus theoretical heat capacities.

2 Flatlining

Why does the discrepancy exist for n”> 4? Let us consider
that the gas molecule’s size influences the exchange of kinetic
energy (translational plus rotational) with the wall molecule’s
vibrational energy. How do we model this?

Consider the small monatomic gas molecule hitting the
wall at location C, in Fig 2. Here the wall molecule is mov-
ing outward from the wall thus instantly imparting momen-
tum, hence pumping its kinetic energy onto the gas molecule
during the collision.

Next consider the gas molecule hitting the wall at location
B. The wall molecule and gas molecule are initially mov-
ing in the same direction, i.e. both into the wall. However,
since the wall molecule is vibrating at a very high frequency
then within a fraction of a nanosecond, the wall molecule
will start moving in the opposite direction. At this point the
wall molecule imparts its momentum hence imposes kinetic
energy (translational plus rotational) onto the impacting gas
molecule.

Understandably, small gas molecules will tend to interact
cleanly with the wall molecules, i.e. the significantly larger
vibrating wall molecules cleanly pumps/imposes their mean
vibrational energy directly onto the much smaller gas molecu-
les. Seemingly, this is not the case for larger mole-cules. Per-
haps vibrating wall molecules simply cannot clean-ly pump
kinetic energy onto the larger gas molecules.

It can be envisioned that elongated linear gas molecules
and/or large gas molecules tend to “flatline” against the wall,
as is illustrated in Fig 2 at location A. The implication be-
ing that such large and/or elongated gas molecules tend to
strike two or more (several) vibrating wall molecules at an in-
stant, when some wall molecules are moving inwards, while
their neighboring wall molecules are moving outwards, with
respect to the wall as a whole. Note: The motions of the
molecules are indicated by the arrows in Fig. 2.

Clearly the above should alter the dynamics of any kine-
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Fig. 2: Shows an elongated linear gas molecule flatlining against a
wall at location A and the relative motions of the wall’s molecules
or atoms plus the relative motions of the gas’ atoms. Also shown are
smaller gas molecules hitting the wall at locations B and C.

matic energy exchange! The expectation is that a large poly-
atomic gas molecule’s mean kinetic energy would no longer
be simply defined in terms of the vibrating wall molecule’s
mean energy! Furthermore, the expectation is that polyatomic
gases still interact with any surrounding blackbody/thermal
radiation, thus continually striving for thermal equilibrium.

Consider that the primary energy exchange is between
large polyatomic gases and their surroundings is with their
surrounding blackbody/thermal radiation. The total energy
(Etot) imparted onto the gas molecule becomes the purely vi-
brational energy as defined by eqn (6). Accordingly:

Etot

T
= (n′′ − 1)Nk. (12)

Based upon eqn (12), the expected isometric molar heat
capacity becomes:

Cv = (n′′ − 1)R. (13)

The graph for eqn. (13) is shown on Fig. 1; based upon
Cv = 0 when n”=1, and Cv= 19×8.314 =158.00 when n”=20.
The fit for the isometric molar heat capacity (Cv) based upon
eqn. (10) was very good, if not exceptional, for monatomic
through triatomic gases (n”< or = 4) but not so much larger
polyatomic gases i.e. n”> 4. Certainly eqn (13) is a better fit
for the larger polyatomic gases than eqn. (10) was but the fit
is only fairly good at best!

Reconsider what all might be happening. As previously
stated, flatlining implies that large polyatomic gas’ kinetic en-
ergy is no longer defined/controlled by the pumping of the
wall molecule’s vibrational energy onto the them. Remember
by kinetic energy herein we mean the gas’ translational plus
rotational energy. In such a situation it becomes cumbersome
to infer any net direction of energy flow being exchanged dur-
ing collisions.

As previously stated, this author [1] understands that a
limitation for the isometric molar heat capacity being defined
by eqn (10) was the gas being sufficiently dilute, i.e. dilute
enough that gas-wall molecule collisions are dominate in
comparision to inter-gas molecule collisions. Part of the rea-
soning being that inter gas molecule collisions will obey con-
servation of momentum but not necessarily conservation of

energy [1] i.e. inter-gas collisions tend to be inelastic. With
further modelling this may help explain what is witnessed.

This author’s insight that inter-gas collisions may gen-
erally be inelastic requires that radiation is given off during
such collisions thus enabling inelastic collisions to adhere to
conservation of energy [1]. Such collision induced radiation,
whether it be considered as part of the system’s blackbody
and/or thermal energy, becomes part of the system being in
thermal equilibrium i.e. the walls adsorb as much radiation
energy as they emit.

The above is not to say that the walls and/or polyatomic
gases necessarily emit the identical spectrum that they ad-
sorb! It is, however to say that the total rate of energy of
emission approximates that of the adsorption! Note; the to-
tal energy associated with radiation, whether it is blackbody,
thermal or otherwise, can often be considered as insignificant,
when compared to the energy associated with kinematics of
matter. This is not saying that it can simply be ignored as is
too often traditionally done in thermodynamics!

It should also be stated that large polyatomic gases will
have large cross-sectional areas hence the concept of being
sufficiently dilute may require higher mean molecular vol-
umes in the gaseous state i.e. relatively low pressures.

Can we now claim that large polyatomic gas molecules
tend to attain their kinetic energy from inter-gas collisions
that obey conservation of momentum? No we cannot! How-
ever our expectation becomes that large polyatomic gases will
not have the specified kinetic energies that smaller gases pos-
sess.

To further emphasize; the conceptualization of small gas-
es having their kinetic energy pumped into to them by sur-
rounding vibrating wall molecules, does not necessitate that
gas-wall molecules collisions are elastic. On the contrary, it
just implies that the gas’ mean kinetic energy is driven into
them via numerous collisions with wall molecules.

3 Addressing traditional dogma

As previously stated traditional kinetic theory is based upon
equipartition and degrees of freedom arguments. We can go
back further and acknowledge that for most of us, our learn-
ing started with considering a gas molecule’s momentum and
that momentum is conserved in elastic wall-gas molecule col-
lisions.

The main problem with the above approach being that
elastic collisions are a rarity i.e. it is rare to have a colli-
sion where both momentum and kinetic energy are conserved.
The one simple exception being the case of two balls of equal
mass colliding, with the second ball being stationary before
the collision and that second ball then attains all the kinetic
energy from the first ball, after the collision, i.e. first ball is
stationary after the collision.

Rather than address the elephant in the room, traditional
kinetic theory simply considered that all collisions are elastic,
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as well as, the gas molecule leaves the wall with the same
magnitude of momentum as it has prior to hitting the wall.
Realizing that walls impose their energetics onto the dilute
gas implies that traditional teaching may have put the cart
ahead of the horse!

Certainly considering all collisions as being elastic avoids
having to contemplate the various frequencies of radiation
that would be associated with inelastic collisions. And when
in equilibrium; since the mean kinetic energy of the gas mole-
cules is constant then yes the mean magnitude of momentum
remains constant but this is no longer a requirement for an
elastic gas-wall collision!

The situation is no more complicated if it is considered
that a dilute gas in thermal equilibrium requires that all of the
following three states remain related to the same temperature
(T). Basically, as previously stated by this author [1]:

1. The walls are in thermal equilibrium with the enclosed
radiation i.e. blackbody, thermal or otherwise.

2. The gas’ translational plus rotational energy is pumped
into the gas by the more massive vibrating wall
molecules.

3. The gas’ vibrational energies are in thermal equilib-
rium with the enclosed radiation i.e. blackbody, ther-
mal or otherwise.

Remember: Part of this radiation surrounding the gas
molecules will now be a result of the various inelastic inter-
molecular collisions.

4 Atmospheric gases

At first glance considering that walls impose/pump their vi-
brational energy onto relatively small gases’ kinetic energy,
may feel counter-intuitive in part because gases are routinely
put into, and/or removed from containers without any real
noticeable temperature changes. However, if we realize that
the above does not necessarily hold for enclosed larger poly-
atomic gases and that such gases generally obtain their vibra-
tional energy from the surrounding blackbody/thermal radia-
tion, then the mean energetics of such gases will not change
significantly by placing them into, nor removing them from
enclosures.

Certainly small gas molecules in our atmosphere will hit
the Earth’s rough surface and have a certain amount of their
kinetic energy pumped/imposed upon them in various inelas-
tic collisions with Earth’s surface. Even so, for atmospheric
gases inter-gas collisions still should dominate.

Next consider the collision of a small gas molecule with
a larger polyatomic gas. The expectation becomes that the
larger gas molecule will behave as a massive wall molecule
does, i.e. the large polyatomic gas molecule will use its vi-
brational energies to pump/impose some fairly well-defined
mean kinetic energy (translational plus rotational) onto the
colliding small gas molecules.

5 Other proofs for inelastic collisions

There is more proof to inelastic intermolecular collisions than
just the awkwardness of the mathematical justification for
elastic intermolecular collisions. Some examples being:

1. Viscous dissipation i.e. heat being generated by gases
squeezed through a valve.

2. Natural P-T relationships i.e. temperature increases
with increasing pressure.

3. Joule’s weight experiment i.e. Although designed to
demonstrate a correlation between work and energy,
what it really shows is that imposed increases to a liq-
uid’s flow (due to the paddles attached to weights) re-
sulted in increased intermolecular friction, which gen-
erated heat.

All of the above is readily explained in terms of inelastic
intermolecular collisions, but all are not so readily explain-
able in terms of traditional understandings.

6 Conclusions

This author’s previous conclusion [1]; kinetic theory needs
to be redrafted based upon the previous understanding that a
gas’ kinetic energy has both translational and rotational com-
ponents that are pumped/imposed onto them due to the same
wall molecule’s vibrational energy. Moreover, it seemingly
holds for most small gaseous molecules i.e. gas’ whose poly-
atomic number is 4 or less.

For larger polyatomic gases, flatlining helps explain what
is witnessed. Specifically flatlining means that larger poly-
atomic gases tend to strike two or more vibrating wall mole-
cules at some instant. Therefore any kinetic energy transfer
between impacting gas molecule and vibrating wall molecule,
is not clean. Moreover it becomes awkward to even determine
what direction the net flow of energy exchange actually goes,
assuming that there is any actual a net energy exchange!

This certainly improves the fit between accepted empiri-
cal findings for large polyatomic gases and the kinetic theory
as previously proposed [1], combined with what is currently
described herein, by this author.

Interestingly, it can be contemplated that atmospheric
gases will tend to follow similar dynamics where large poly-
atomic gases adsorb surrounding radiation (blackbody and/or
thermal) thus increasing their vibrational energy. This vi-
brational energy is then pumped/imposed onto any small gas
molecules that collide with the larger polyatomic gases.

Furthermore, we asserted that most inter-molecular col-
lisons probably are inelastic. In which case radiation (ther-
mal, blackbody or otherwise) will be a byproduct of such col-
lisions, and as such must be considered as part of a system’s
state, whether or not, that system is in thermal equilibrium.
And this does alter our consideration of thermal equilbrium!

The overall implication being that traditional theorists un-
wittingly put the cart ahead of the horse by beginning the
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teaching of kinetic theory in terms of gas molecule’s momen-
tum and elastic collisions. This ignores the fact that elastic
collisions are rare hence may be an unnecessary, illogical, un-
realistic, conceptualization when applied to kinetic theory!

Submitted on February 12, 2018
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A new semiclassical model of the electron with helical solenoid geometry is presented.
This new model is an extension of both the Parson Ring Model and the Hestenes
Zitterbewegung Model. This model interprets the Zitterbewegung as a real motion that
generates the electron’s rotation (spin) and its magnetic moment. In this new model,
the g-factor appears as a consequence of the electron’s geometry while the quantum of
magnetic flux and the quantum Hall resistance are obtained as model parameters. The
Helical Solenoid Electron Model necessarily implies that the electron has a toroidal
moment, a feature that is not predicted by Quantum Mechanics. The predicted toroidal
moment can be tested experimentally to validate or discard this proposed model.

1 Introduction

Quantum mechanics (QM) is considered the most accurate
physics theory available today. Since its conception, however,
QM has generated controversy. This controversy lies not in
the theory’s results but in its physical interpretation.

One of the most controversial interpretations of QM was
postulated by Bohr and Heisenberg. The “Copenhagen In-
terpretation” described QM as a system of probabilities that
became definite upon the act of measurement. This interpre-
tation was heavily criticized by many of the physicists who
had participated in the development of QM, most notably Al-
bert Einstein. Because of its probability features, Einstein
believed that QM was only valid for analyzing the behavior
of groups of particles and that the behavior of individual par-
ticles must be deterministic. In a famous quote from a 1926
letter to Max Born, Einstein stated, “He (God) does not play
dice with the universe”.

A major flaw in QM becomes apparent when the theory
is applied to individual particles. This leads to logical con-
tradictions and paradoxical situations (e.g., the paradox of
Schrödinger’s Cat). Einstein believed that QM was incom-
plete and that there must be a deeper theory based on hidden
variables that would explain how subatomic particles behave
individually. Einstein and his followers were not able to find
a hidden variable theory that was compatible with QM, so the
Copenhagen Interpretation was imposed as the interpretation
of reference. If we assume that Einstein was correct, and that
QM is only applicable to groups of particles, it is necessary
to develop a new deterministic theory to explain the behavior
of individual particles.

2 Spinning models of the electron

2.1 Ring Electron Model

In 1915, Parson [1] proposed a new model for the electron
with a ring-shaped geometry where a unitary charge moves
around the ring generating a magnetic field. The electron be-
haves not only as the unit of electric charge but also as the unit

of magnetic charge or magneton. Several important physi-
cists, including Webster, Gilbert, Grondahl and Page, con-
ducted studies that supported Parson’s Ring Electron Model.
The most important of these studies was conducted by Comp-
ton [2], who wrote a series of papers showing that his new-
found Compton Effect was better explained with Parson’s
Ring Electron Model than with the classical model that de-
picted the electron as a sphere. All these studies were com-
piled in 1918 by Allen [3] in “The Case for a Ring Electron”
and discussed at a meeting of the Physical Society of London.

The Ring Electron Model was not widely accepted and
was invalidated in 1923 by Schrödinger’s wave equation of
the electron. The Ring Electron Model has been unsuccess-
fully revisited several times by investigators like Iida, Carroll,
Giese, Caesar, Bergman and Wesley [4], Lucas [5], Ginzburg
or Kanarev [6]. Other researchers, such as Jennison [7], Gau-
thier [8], and Williamson and van der Mark [9], proposed
similar models, with the additional assumption that the elec-
tron is a photon trapped in a vortex.

The Ring Electron Model proposes that the electron has
an extremely thin, ring-shaped geometry that is about 2000
times larger than a proton. A unitary charge flows through the
ring at the speed of light, generating an electric current and
an associated magnetic field. This model allows us to com-
bine experimental evidence that the electron has an extremely
small size (corresponding to the thickness of the ring) as well
as a relatively large size (corresponding to the circumference
of the ring).

The Ring Electron Model postulates that the rotational
velocity of the electric charge will match the speed of light
and that the angular momentum will match the reduced
Planck constant:

vr = c, (1)

L = mRvr = ~. (2)

As a consequence of (1) and (2), the radius of the ring
will match the reduced Compton wavelength and the circum-
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Fig. 1: Ring Electron Model.

ference will matches the Compton wavelength

R =
~

mvr
=
~

mc
= oc , (3)

2πR =
h

mc
= λc . (4)

Meanwhile, the frequency, angular frequency and rotation
time period of the ring electron are defined by:

fe =
vr

2πR
=

mc2

h
, (5)

we = 2π fe =
mc2

~
, (6)

Te =
1
fe

=
h

mc2 . (7)

The electron’s ring acts as a circular antenna. In this type of
antenna, the resonance frequency coincides with the length
of the antenna’s circumference. In the case of the electron
ring, the resonance frequency coincides with the electron’s
Compton frequency.

Substituting the electron’s frequency (5) in the Planck
equation (E = h f ), we obtain the Einstein’s energy equation

E = h fe = h
mc2

h
= mc2. (8)

The moving charge generates a constant electric current. This
electric current produces a magnetic moment that is equal to
the Bohr magneton:

I = e fe =
emc2

h
, (9)

µe = IS =
emc2

h
πR2 =

e
2m
~ = µB . (10)

The relationship between the magnetic moment and the angu-
lar momentum is called the “gyromagnetic ratio” and has the
value “e/2m”. This value is consistent with the magnetic mo-
ment generated by an electric current rotating on a circular

surface of radius R. The gyromagnetic ratio of the electron
can be observed experimentally by applying external mag-
netic fields (for example, as seen in the “Zeeman effect” or in
the “Stern-Gerlach experiment”):

E =
e

2m
B. (11)

The energy of the electron is very low, but the frequency
of oscillation is extremely large, which results in a significant
power of about 10 gigawatts:

P =
E
T

=
m2c4

h
= 1.01 × 107 W. (12)

Using the same line of reasoning, the electric potential can be
calculated as the electron energy per unit of electric charge,
resulting in a value of approximately half a million volts:

V =
E
e

=
mc2

e
= 5.11 × 105 V. (13)

The electric current has already been calculated as 20 amps
(I = e f = 19.83 A). Multiplying the voltage by the current,
the power is, again, about 10 gigawatts (P = VI).

The Biot-Savart Law can be applied to calculate the mag-
netic field at the center of the ring, resulting in a magnetic
field of 30 million Tesla, equivalent to the magnetic field of a
neutron star:

B =
µ0I
2R

= 3.23 × 107 T. (14)

For comparison, the magnetic field of the Earth is 0.000005 T,
and the largest artificial magnetic field created by man is only
90 T.

The electric field in the center of the electron’s ring
matches the value of the magnetic field multiplied by the
speed of light:

E =
e

4πε0R2 = cB = 9.61 × 1012 V/m. (15)

The Ring Electron Model implies the existence of a
centripetal force that compensates for the centrifugal force
of the electron orbiting around its center of mass:

F = m
v2

r

R
=

m2c3

~
= 0.212 N. (16)

Electromagnetic fields with a Lorentz force greater than
this centripetal force should cause instabilities in the elec-
tron’s geometry. The limits of these electric and magnetic
fields are:

F = eE + evB, (17)

E =
m2c3

e~
= 1.32 × 1018 V/m, (18)

B =
m2c2

e~
= 4.41 × 109 T. (19)
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In quantum electrodynamics (QED), these two values are
known as the Schwinger Limits [10]. Above these values,
electromagnetic fields are expected to behave in a nonlinear
way. While electromagnetic fields of this strength have not
yet been achieved experimentally, current research suggests
that electromagnetic field values above the Schwinger Limits
will cause unexpected behavior not explained by the Standard
Model of Particle Physics.

2.2 Helical Electron Model

In 1930, while analyzing possible solutions to the Dirac equa-
tion, Schrödinger identified a term called the Zitterbewegung
that represents an unexpected oscillation whose amplitude is
equal to the Compton wavelength. In 1953, Huang [11] pro-
vided a classical interpretation of the Dirac equation in which
the Zitterbewegung is the mechanism that causes the elec-
tron’s angular momentum (spin). According to Huang, this
angular momentum is the cause of the electron’s magnetic
moment. Bunge [12], Barut [13], Zhangi [14], Bhabha, Cor-
ben, Weyssenhoff, Pavsic, Vaz, Rodrigues, Salesi, Recami,
Hestenes [15, 16] and Rivas [17] have published papers in-
terpreting the Zitterbewegung as a measurement of the elec-
tron’s oscillatory helical motion that is hidden in the Dirac
equation. We refer to these electron theories as the Hestenes
Zitterbewegung Model or the Helical Electron Model.

The Helical Electron Model assumes that the electron’s
charge is concentrated in a single infinitesimal point called
the center of charge (CC) that rotates at the speed of light
around a point in space called the center of mass (CM).

The Helical Electron Model shares many similarities with
the Ring Electron Model, but in the case of the Helical Elec-
tron Model, the geometric static ring is replaced by a dynamic
point-like electron. In this dynamic model, the electron’s ring
has no substance or physical properties. It need not physically
exist. It is simply the path of the CC around the CM.

The CC moves constantly without any loss of energy so
that the electron acts as a superconducting ring with a persis-
tent current. Such flows have been experimentally detected in
superconducting materials.

The CC has no mass, so it can have an infinitesimal size
without collapsing into a black hole, and it can move at the
speed of light without violating the theory of relativity. The
electron’s mass is not a single point. Instead, it is distributed
throughout the electromagnetic field. The electron’s mass
corresponds to the sum of the electron’s kinetic and poten-
tial energy. By symmetry, the CM corresponds to the center
of the electron’s ring.

We can demonstrate the principles of the Helical Electron
Model with an analogy to the postulates of the Bohr Atomic
Model:

• The CC always moves at the speed of light, tracing cir-
cular orbits around the CM without radiating energy.

Fig. 2: Helical Electron Model.

• The electron’s angular momentum equals the reduced
Planck constant.

• The electron emits and absorbs electromagnetic energy
that is quantized according to the formula E = h f .

• The emission or absorption of energy implies an accel-
eration of the CM.

The electron is considered to be at rest if the CM is at
rest, since in that case the electric charge has only rotational
movement without any translational movement. In contrast,
if the CM moves with a constant velocity (v), then the CC
moves in a helical motion around the CM.

The electron’s helical motion is analogous to the observed
motion of an electron in a homogeneous external magnetic
field.

It can be parameterized as:
x(t) = R cos(wt) ,
y(t) = R sin(wt) ,
z(t) = vt .

(20)

The electron’s helical motion can be deconstructed into
two orthogonal components: a rotational motion and a trans-
lational motion. The velocities of rotation and translation are
not independent; they are constrained by the electron’s tan-
gential velocity that is constant and equal to the speed of light.
As discussed above, when the electron is at rest, its rotational
velocity is equal to the speed of light. As the translational
velocity increases, the rotational velocity must decrease. At
no time can the translational velocity exceed the speed of
light. Using the Pythagorean Theorem, the relationship be-
tween these three velocities is:

c2 = v2
r + v2

t . (21)

Then the rotational velocity of the moving electron is:

vr = c
√

1 − (v/c)2 , (22)

vr = c/γ . (23)
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Where gamma is the coefficient of the Lorentz transforma-
tion, the base of the Special Relativity Theory:

γ =
1√

1 − (v/c)2
. (24)

Multiplying the three components by the same factor (γmc)2:

(γmc)2c2 = (γmc)2v2
r + (γmc)2v2

t . (25)

Substituting the value of the rotational velocity (vr = c/γ) and
linear momentum (p = γmv), results in the relativistic energy
equation:

E2 = (γmc2)2 = (mc2)2 + (pc)2. (26)

With this new value of the rotational velocity, the frequency,
angular frequency and rotational time period of the helical
electron are defined by:

fe =
vr

2πR
=

mc2

γh
, (27)

we = 2π fe =
mc2

γ~
, (28)

Te =
1
fe

=
γh

mc2 . (29)

The rotation time period of the electron acts as the elec-
tron’s internal clock. As a result, although there is no absolute
time in the universe, each electron is always set to its proper
time. This proper time is relative to the electron’s reference
frame and its velocity with respect to other inertial reference
frames.

The electron’s angular momentum is always equal to the
reduced Planck constant. This implies that the electron’s
mass has to increase γ times in order to compensate for the
decrease in its rotational velocity:

L = mRvr = (γm) R (c/γ) = mRc = ~. (30)

If the electron moves at a constant velocity, the particle’s
trajectory is a cylindrical helix. The geometry of the helix is
defined by two constant parameters: the radius of the helix
(R) and the helical pitch (H). The helical pitch is the space
between two turns of the helix. The electron’s helical motion
can be interpreted as a wave motion with a wavelength equal
to the helical pitch and a frequency equal to the electron’s
natural frequency. Multiplying the two factors results in the
electron’s translational velocity:

λe fe = v , (31)

λe = H =
v

fe
= v

γh
mc2 = γβλc . (32)

The rest of the parameters representative of a cylindrical helix
can also be calculated, including the curvature (κ) and the
torsion (τ), where h = 2πH = γβoc:


κ =

R
R2 + h2 =

1
γ2R

,

τ =
h

R2 + h2 =
β

γR
.

(33)

According to Lancret’s Theorem, the necessary and suf-
ficient condition for a curve to be a helix is that the ratio of
curvature to torsion must be constant. This ratio is equal to
the tangent of the angle between the osculating plane with the
axis of the helix:

tanα =
κ

τ
=

1
γβ

. (34)

2.3 Toroidal Solenoid Electron Model

In 1956, Bostick, a disciple of Compton, discovered the exis-
tence of plasmoids. A plasmoid is a coherent toroidal struc-
ture made up of plasma and magnetic fields. Plasmoids are so
stable that they can behave as individual objects and interact
with one another. From Parson’s Ring Electron Model, Bo-
stick [21] proposed a new electron structure, similar to that of
the plasmoids. In his model, the electron takes the shape of
a toroidal solenoid where the electric charge circulates at the
speed of light. In the Toroidal Solenoid Electron Model, we
assume that the electric charge is a point particle and that the
toroidal solenoid represents the trajectory of that point elec-
tric charge.

In a toroidal solenoid, any magnetic flux is confined
within the toroid. This feature is consistent with the idea
that the mass of a particle matches the electromagnetic en-
ergy contained therein. Storage of electromagnetic energy in
a toroidal solenoid superconductor without the loss of energy
is called superconducting magnetic energy storage (SMES).
According to the Toroidal Solenoid Electron model, an elec-
tron is a microscopic version of a SMES system.

Toroidal solenoid geometry is well known in the electron-
ics field where it is used to design inductors and antennas. A
toroidal solenoid provides two additional degrees of freedom
compared to the ring geometry. In addition to the radius (R)
of the torus, two new parameters appear: the thickness of the
torus (r) and the number of turns around the torus (N) with N
being an integer.

The toroidal solenoid can be parameterized as:
x(t) = (R + r cos Nwt) coswt ,
y(t) = (R + r cos Nwt) sinwt ,
z(t) = r sin Nwt.

(35)

Where the tangential velocity is:

|r′(t)|2 = (R + r cos Nwt)2w2 + (rNw)2. (36)

We postulate that the tangential velocity is always equal to
the speed of light (|r′(t)| = c). For R � rN, the rotational
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Fig. 3: Helical Toroidal Electron Model.

velocity can be obtained as:

c2 = (Rw)2 + (rNw)2, (37)

c/vr =

√
1 +

( rN
R

)2

. (38)

The second factor depends only on the geometry of electron.
We call this value the helical g-factor. If R � rN, the helical
g-factor is slightly greater than 1,

g =

√
1 +

( rN
R

)2

. (39)

As a result, the rotational velocity is dependent on the helical
g-factor and slightly lower than the speed of light:

vr = c/g. (40)

With this new value of the rotational velocity, the frequency,
angular frequency and time period are defined by:

fe =
vr

2πR
=

mc2

gh
, (41)

we = 2π fe =
mc2

g~
, (42)

Te =
1
fe

=
gh

mc2 . (43)

The length of a turn of the toroidal solenoid is called the arc
length. To calculate the arc length, we need to perform the
integral of the toroidal solenoid over one turn:

l =

∫ √
|r′(t)|2dt

=

∫ √
(R + r cos Nwt)2w2 + (rNw)2 dt .

(44)

Approximating for R � Nr and replacing the helical g-factor
(39) results in:

l =

∫ √
(Rw)2 + (rNw)2dt

=

∫
Rw

√
1 + (rN/R)2 dt = gR

∫
wdt = 2πgR .

(45)

Fig. 4: Toroidal and Poloidal currents.

This means that the arc length of a toroidal solenoid is equiv-
alent to the length of the circumference of a ring of radius
R′ = gR:

l = 2πgR = 2πR′. (46)

In calculating the electron’s angular momentum, we must
take into consideration the helical g-factor. The value of the
rotational velocity is reduced in proportion to the equivalent
radius, so that the angular momentum remains constant:

L = mR′vr = m (gR)
(

c
g

)
= ~. (47)

The electric current flowing through a toroidal solenoid
has two components, a toroidal component (red) and a
poloidal component (blue).

By symmetry, the magnetic moment due to the poloidal
components (red) is canceled, while the toroidal component
(blue) remains fixed. No matter how large the number of turns
in the toroidal solenoid, a toroidal component generates a cor-
responding axial magnetic moment [22]. This effect is well
known in the design of toroidal antennas and can be canceled
with various techniques. The exact value of the axial mag-
netic moment is:

m = IπR2
[
1 +

1
2

( r
R

)2
]
. (48)

A comparison of the Toroidal Solenoid Electron Model
(v = 0, r > 0) with the Ring Electron Model (v = 0, r = 0)
reveals that the radius still coincides with the reduced Comp-
ton wavelength. The electric current is slightly lower, since
the electron’s rotational velocity is also slightly lower:

IπR2 = e fπR2 =
evrR

2
=

ec~
2gmc

=
e~

2mg
=
µB

g
, (49)

m =
µB

g

[
1 +

1
2

( r
R

)2
]
, (50)

m ' gµB. (51)

In calculating the angular momentum, the rotational veloc-
ity decreases in the same proportion as the equivalent radius
increase, compensating for the helical g-factor. However, in
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the calculation of magnetic moment, the rotational velocity
decreases by a factor of g, while the equivalent radius in-
creases by a factor approximately equal to g squared. This
is the cause of the electron’s anomalous magnetic moment.

2.4 Helical Solenoid Model

The geometries of both the Ring Electron Model and the
Toroidal Solenoid Electron Model represent a static electron
(v = 0). For a moving electron with a constant velocity
(v > 0), the ring geometry becomes a circular helix, while
the toroidal solenoid geometry becomes a helical solenoid.
On the other hand, if the thickness of the toroid is negated
(r = 0), the toroidal solenoid is reduced to a ring, and the
helical solenoid is reduced to a helix.

Experimentally, the electron’s magnetic moment is
slightly larger than the Bohr magneton. In the Ring Electron
Model, it was impossible to explain the electron’s anomalous
magnetic moment. This leads us to assume that the electron
has a substructure. The Toroidal Solenoid Electron Model al-
lows us to obtain the electron’s anomalous moment as a direct
consequence of its geometry.

Geometry v = 0 v > 0

r = 0 Ring Helix

r > 0 Toroidal Solenoid Helical Solenoid

The universe generally behaves in a fractal way, so the
most natural solution assumes that the electron’s substructure
is similar to the main structure, that is, a helix in a helix.

Fig. 5: Helical Solenoid Electron Model.

The trajectory of the electron can be parameterized with
the equation of the helical solenoid:

x(t) = (R + r cos Nwt) coswt ,
y(t) = (R + r cos Nwt) sinwt ,
z(t) = r sin Nwt + vt .

(52)

Like the other electron models discussed above, the Helical
Solenoid Electron Model postulates that the tangential veloc-

ity of the electric charge matches the speed of light and that
the electron’s angular momentum matches the reduced Planck
constant.

|r′(t)|2 = c2 = (Rw)2 + (rNw)2 + v2

+ rw(2Rw + rw cos Nwt + 2vN) cos Nwt .
(53)

This equation can be obtained directly from the helical
solenoid geometry without any approximation. This equation
shows a component that oscillates at a very high frequency
with an average value of zero. Consequently, the Helical
Solenoid Electron Model implies that the electron’s g-factor
is oscillating, not fixed. Since the value oscillates, there is a
maximum level of precision with which the g-factor can be
measured. This prediction is completely new to this model
and is directly opposite to previous QED predictions. For
R � rN, this oscillating component can be negated, and the
equation reduces to

c2 = (Rw)2 + (rNw)2 + v2. (54)

The rotational velocity can be obtained as a function of
the speed of light, the Lorentz factor, and the helical g-factor:

c2 = (Rw)2(1 + (rN/R)2) + v2, (55)

c2 = (vr)2g2 + v2, (56)

gvr = c
√

1 − v2/c2 , (57)

vr = c/gγ. (58)

With this new value of the rotational velocity, the frequency,
angular frequency, rotation time period and the wavelength
(o pitch) of the helical solenoid electron are defined by:

fe =
vr

2πR
=

mc2

gγh
, (59)

we = 2π fe =
mc2

gγ~
, (60)

Te =
1
fe

=
gγh
mc2 , (61)

λe = H =
v

fe
= gγβλc . (62)

In 2005, Michel Gouanère [18] identified this wavelength in
a channeling experiment using a beam of ∼80 MeV electrons
aligned along the < 110 > direction of a thick silicon crys-
tal (d = 3.84 × 10−10 m). While this experiment has not
had much impact on QM, both Hestenes [19] and Rivas [20]
have indicated that the experiment provides important experi-
mental evidence consistent with the Hestenes Zitterbewegung
Model:

d = gγβλc = (γmv)
gh

(mc)2 = p
gh

(mc)2 , (63)
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p = d
(mc)2

gh
= 80.874 MeV/c. (64)

In the Helical Solenoid Electron Model, the rotational ve-
locity is reduced by both the helical g-factor and the Lorentz
factor. In contrast, the equivalent radius compensates for the
helical g-factor while the increasing mass compensates for
the Lorentz factor. The angular momentum remains equal to
the reduced Planck constant:

L = m′R′vr = (γm)(gR)(c/γg) = mRc = ~. (65)

3 Consequences of the Helical Solenoid Electron Model

3.1 Chirality and helicity

In 1956, an experiment based on the beta decay of a Cobalt-60
nucleus demonstrated a clear violation of parity conservation.
In the early 1960s the parity symmetry breaking was used by
Glashow, Salam and Weinberg to develop the Electroweak
Model, unifying the weak nuclear force with the electromag-
netic force. The empirical observation that electroweak in-
teractions act differently on right-handed fermions and left-
handed fermions is one of the basic characteristics of this the-
ory.

In the Electroweak Model, chirality and helicity are es-
sential properties of subatomic particles, but these abstract
concepts are difficult to visualize. In contrast, in the Helical
Solenoid Electron Model, these concepts are evident and a
direct consequence of the model’s geometry:

• Helicity is given by the helical translation motion (v >
0), which can be left-handed or right-handed. Helicity
is not an absolute value; it is relative to the speed of the
observer.

• Chirality is given by the secondary helical rotational
motion, which can also be left-handed or right-handed.
Chirality is absolute since the tangential velocity is al-
ways equal to the speed of light; it is independent of
the velocity of the observer.

3.2 Quantum Hall resistance and magnetic flux

The movement of the electric charge causes an electrical cur-
rent (I = e fe) and a electric voltage (V = E/e = h fe/e). Ap-
plying Ohm’s law, we obtain a fixed value for the impedance
of the electron equal to the value of the quantum Hall resis-
tance. This value is quite surprising, since it is observable at
the macroscopic level and was not discovered experimentally
until 1980:

R =
Ve

Ie
=

h fe/e
e fe

=
h
e2 . (66)

According to Faraday’s Law, voltage is the variation of the
magnetic flux per unit of time. So, in a period of rotation,
we obtain a magnetic flux value which coincides with the
quantum of magnetic flux, another macroscopically observ-
able value. This value was expected since, in this model, the

electron behaves as a superconducting ring, and it is experi-
mentally known that the magnetic flux in a superconducting
ring is quantized:

V = φe/Te , (67)

φe = VeTe =
h fe
e

1
fe

=
h
e
. (68)

3.3 Quantum LC circuit

Both the electrical current and the voltage of the electron
are frequency dependent. This means that the electron be-
haves as a quantum LC circuit, with a Capacitance (C) and
a Self Inductance (L). We can calculate these coefficients for
a electron at rest, obtaining values L = 2.08 × 10−16 H and
C = 3.13 × 10−25 F:

Le =
φe

Ie
=

h
e2 fe

=
gγh2

mc2e2 , (69)

Ce =
e

Ve
=

e2

h fe
=
gγe2

mc2 . (70)

Applying the formulas of the LC circuit, we can obtain the
values of impedance and resonance frequency, which coin-
cide with the previously calculated values of impedance and
natural frequency of the electron:

Ze =

√
Le

Ce
=

h
e2 , (71)

fe =
1

√
LeCe

=
mc2

gγh
= fe . (72)

As the energy of the particle oscillates between electric and
magnetic energy, the average energy value is

E =
LI2

2
+

CV2

2
=

h f
2

+
h f
2

= h f . (73)

The above calculations are valid for any elementary particle
with a unit electric charge, a natural frequency of vibration
and an energy which match the Planck equation (E = h f ).

From this result, we infer that the electron is formed by
two indivisible elements: a quantum of electric charge and a
quantum of magnetic flux, the product of which is equal to
Planck’s constant. The electron’s magnetic flux is simultane-
ously the cause and the consequence of the circular motion of
the electric charge:

eφ = h. (74)

3.4 Quantitative calculation of the helical G-factor

The g-factor depends on three parameters (R, r and N) but we
do not know the value of two of them. We can try to figure out
the value of the helical g-factor using this approximation [28]:

Using this expansion series:√
1 + (a)2 = 1 + 1/2(a)2 + . . . (75)
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The helical g-factor can be expressed as:√
1 +

( rN
R

)2

= 1 +
1
2

( rN
R

)2

+ . . . (76)

QED also calculates the g-factor by an expansion series where
the first term is 1 and the second term is the Schwinger factor:

g. f actor(QED) = 1 +
α

2π
+ . . . (77)

The results of the two series are very similar. Equaling the
second term of the helical g-factor series to the Schwinger
factor, we obtain the relationship between the radius of the
torus and the thickness of the torus:

1
2

( rN
R

)2

=
α

2π
, (78)

rN
R

=

√
α

π
. (79)

What gives a value of helical g-factor of

g =
√

1 + α/π . (80)

This gives us a value of the helical g-factor = 1.0011607. This
result is consistent with the Schwinger factor, and it offers a
value much closer to the experimental value.

3.5 Toroidal moment

In 1957, Zel’dovich [23] discussed the parity violation of ele-
mentary particles and postulated that spin-1/2 Dirac particles
must have an anapole. In the late 1960s and early 1970s,
Dubovik [24, 25] connected the quantum description of the
anapole to classical electrodynamics by introducing the polar
toroidal multipole moments. The term toroidal derives from
current distributions in the shape of a circular coil that were
first shown to have a toroidal moment. Toroidal moments
were not acknowledged outside the Soviet Union as being
an important part of the multipole expansion until the 1990s.
Toroidal moments became known in western countries in the
late 1990s. Finally, in 1997, toroidal moment was experimen-
tally measured in the nuclei of Cesium-133 and Ytterbium-
174 [26].

In 2013, Ho and Scherrer [27] hypothesized that Dark
Matter is formed by neutral subatomic particles. These par-
ticles of cold dark matter interact with ordinary matter only
through an anapole electromagnetic moment, similar to the
toroidal magnetic moment described above. These particles
are called Majorana fermions, and they cannot have any other
electromagnetic moment apart from the toroid moment. The
model for these subatomic particles of dark matter is compat-
ible with the Helical Solenoid Electron Model.

In an electrostatic field, all charge distributions and cur-
rents may be represented by a multipolar expansion using

Fig. 6: Electric, Magnetic and Toroidal dipole moments.

only electric and magnetic multipoles. Instead, in a multi-
polar expansion of an electrodynamic field new terms appear.
These new terms correspond to a third family of multipoles:
the toroid moments. The toroidal lower order term is the
toroidal dipole moment. The toroidal moment can understood
as the momentum generated by a distribution of magnetic mo-
ments. The simplest case is the toroidal moment generated by
an electric current in a toroidal solenoid.

The toroidal moment is calculated with the following
equation [24]:

T =
1

10

∫ [
(j · r) r − 2r2j

]
dV. (81)

In the case of the toroidal solenoid, the toroidal moment can
be calculated more directly as the B field inside the toroid by
both the surface of the torus and the surface of the ring [25]:

µT = BsS = B
(
πr2

) (
πR2

)
, (82)

B =
µNI
2πR

. (83)

Using B, the toroidal moment is obtained as [22]:

T =
NI

2πR

(
πr2

) (
πR2

)
=

NI
(
πr2

)
R

2
. (84)

Rearranging and using the relation (79):

T = µB
R
g2N

( rN
R

)2

= µB
oc

gN

(
α

2π

)
. (85)

According the Helical Solenoid Electron Model, the elec-
tron’s theoretical toroidal moment is about T ' 10−40 Am3.
The theoretical toroidal moment value for the neutron and the
proton should be one million times smaller. The existence
of a toroidal moment for the electron (and for any other sub-
atomic particle) is a direct consequence of this model, and
it may be validated experimentally. Notably, QM does not
predict the existence of any toroidal moments.

3.6 Nucleon model

By analogy to the theory underlying the Helical Solenoid
Electron Model, we assume that all subatomic particles have
the same structure as the electron, differing mainly by their
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charge and mass. Protons are thought to be composed of
other fundamental particles called quarks, but their internal
organization is beyond the scope of this work.

The radius of a nucleon is equal to its reduced Comp-
ton wavelength. The Compton wavelength is inversely pro-
portional to an object’s mass, so for subatomic particles, as
mass increases, size decreases. Both the proton and the neu-
tron have a radius that is about 2000 times smaller than the
electron. Historically, the proton radius was measured using
two independent methods that converged to a value of about
0.8768 fm. This value was challenged by a 2010 experiment
utilizing a third method, which produced a radius of about
0.8408 fm. This discrepancy remains unresolved and is the
topic of ongoing research referred to as the Proton Radius
Puzzle. The proton’s reduced Compton wavelength is 0.2103
fm. If we multiple this radius by 4, we obtain the value of
0.8412 fm. This value corresponds nicely with the most re-
cent experimental radius of the proton. This data supports our
theory that the proton’s radius is related to its reduced Comp-
ton radius and that our Helical Solenoid Electron Model is
also a valid model for the proton.

The current of a nucleon is about 2000 times the current
of an electron, and the radius is about 2000 times lower. This
results in a magnetic field at the center of the nucleon’s ring
that is about four million times bigger than that of the elec-
tron or thousands of times bigger than a neutron star. This
magnetic field is inversely dependent with the cube of the
distance. This implies that while the magnetic field inside
the neutron’s ring is huge, outside the ring, the magnetic field
decays much faster than the electric field. The asymmetri-
cal behavior of the neutron’s magnetic field over short and
long distances leads us to suggest that the previously identi-
fied strong and weak nuclear forces are actually manifesta-
tions of this huge magnetic field at very short distances.

3.7 Spin quantum number

In 1913, Bohr introduced the Principal Quantum Number to
explain the Rydberg Formula for the spectral emission lines
of atomic hydrogen. Sommerfeld extended the Bohr the-
ory with the Azimuthal Quantum Number to explain the fine
structure of the hydrogen, and he introduced a third Magnetic
Quantum Number to explain the Zeeman effect. Finally, in
1921, Landé put forth a formula (named the Landé g-factor)
that allowed him to explain the anomalous Zeeman effect and
to obtain the whole spectrum of all atoms.

gJ = gL
J(J + 1) − S (S + 1) + L(L + 1)

2J(J + 1)

+ gS
J(J + 1) + S (S + 1) − L(L + 1)

2J(J + 1)
.

(86)

In this formula, Landé introduced a fourth Quantum Num-
ber with a half-integer number value (S = 1/2). This Landé
g-factor was an empirical formula where the physical mean-
ing of the four quantum numbers and their relationship with

the motion of the electrons around the nucleus was unknown.
Heisenberg, Pauli, Sommerfeld, and Landé tried unsuccess-
fully to devise a new atomic model (named the Ersatz Model)
to explain this empirical formula. Landé proposed that his
g-factor was produced by the combination of the orbital mo-
mentum of the outer electrons with the orbital momentum
of the inner electrons. A different solution was suggested
by Kronig, who proposed that the half-integer number was
generated by a self-rotation motion of the electron (spin), but
Pauli rejected this theory.

In 1925, Uhlenbeck and Goudsmit published a paper
proposing the same idea, namely that the spin quantum num-
ber was produced by the electron’s self-rotation. The half-
integer spin implies an anomalous magnetic moment of 2. In
1926, Thomas identified a relativistic correction of the model
with a value of 2 (named the Thomas Precession) that com-
pensated for the anomalous magnetic moment of the spin.
Despite his initial objections, Pauli formalized the theory of
spin in 1927 using the modern theory of QM as set out by
Schrödinger and Heisenberg. Pauli proposed that spin, angu-
lar moment, and magnetic moment are intrinsic properties of
the electron and that these properties are not related to any
actual spinning motion. The Pauli Exclusion Principle states
that two electrons in an atom or a molecule cannot have the
same four quantum numbers. Pauli’s ideas brought about a
radical change in QM. The Bohr-Sommerfeld Model’s ex-
plicit electron orbitals were abandoned and with them any
physical model of the electron or the atom.

We propose to return to the old quantum theory of Bohr-
Sommerfeld to search for a new Ersatz Model of the atom
where the four quantum numbers are related to electron or-
bitals. We propose that this new atomic model will be com-
patible with our Helical Solenoid Electron Model. We also
propose that the half-integer spin quantum number is not an
intrinsic property of the electron but a result of the magnetic
fields generated by orbiting inner electrons.

Submitted on January 25, 2018
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We embolden the idea that the Dirac 4 × 4 γ-matrices are four-vectors where the space
components (γi) represent spin and the forth component (γ0) should likewise represent
the time component of spin in the usual four-vector formalism of the Special Theory of
Relativity. With the γ-matrices as four-vectors, it is seen that the Dirac equation admits
two kinds of wavefunctions — (1) the usual four component Dirac bispinor ψ and (2) a
scalar four component bispinor φ. Realizing this, and knowing forehand of the existing
mystery as to why Leptons and Neutrinos come in pairs, we seize the moment and make
the suggestion that the pair (ψ, φ) can be used as a starting point to explain mystery of
why in their three generations [(e±, νe), (µ±, νµ), (τ±, ντ)], Leptons and Neutrinos come
in doublets. In this suggestion, the scalar-bispinor φ can be thought of as the Neutrino
while the usual Dirac bispinor ψ can be thought of as the Lepton.

“We have found it of paramount importance that in
order to progress we must recognize our ignorance
and leave room for doubt.”

— Richard Phillips Feynman (1918-1988)

1 Introduction

As taught to physics students through the plethora of text-
books available on our planet e.g., refs. [1–5], the Dirac 4× 4
γ-matrices (γµ) are usually presented as objects that undergo
a transformation during a Lorentz transformation of the Dirac
[6, 7] equation. This issue of the transformation of these γ-
matrices is not well represented in the literature [8]. There,
thus, is a need to clear the air around this issue regarding the
proper transformation properties of these matrices. To that
end, we here argue in favour of these matrices as physical
four-vectors and as such, they must under a Lorentz transfor-
mation transform as four-vectors. In-fact, it is well known
that the γi-matrices (i = 1, 2, 3) represent spin (i.e., ~S =

1
2~γ

1~̂i + 1
2~γ

2~̂j + 1
2~γ

3~̂k) because, together with the angular
momentum operator ( ~L), their sum total of the orbital angu-
lar momentum and spin ( ~J = ~L + ~S) commutes with the
Dirac Hamiltonian (HD), i.e. ([ ~J ,HD] = 0), implying that ~J
is a constant of motion.

For a particle whose rest-mass and Dirac [6, 7] wave-
function are m0 and ψ respectively, the corresponding Dirac
[6, 7] equation is given by:

ı~γµ∂µψ = m0cψ, (1)

where:

γ0 =

 I2 0

0 −I2

 , γi =

 0 σi

−σi 0

 , (2)

are the 4 × 4 Dirac γ-matrices where I2 and 0 are the 2×2
identity and null matrices respectively, and |ψ〉 is the four
component Dirac [6, 7] wave-function, ~ is the normalized
Planck constant, c is the speed of light in vacuum, ı =

√
−1,

and:

ψ =


ψ0
ψ1
ψ2
ψ3

 =

 ψL

ψR

 , (3)

is the 4 × 1 Dirac [6,7] four component wavefunction and ψL

and ψR are the Dirac [6,7] bispinors that are defined such that:

ψL =

 ψ0

ψ1

 and ψR =

 ψ2

ψ3

 . (4)

Throughout this reading — unless otherwise specified;
the Greek indices will here-and-after be understood to mean
(µ, ν, ... = 0, 1, 2, 3) and the lower case English alphabet in-
dices (i, j, k ... = 1, 2, 3).

2 Lorentz Transformation of the Dirac as usually pre-
sented

To prove Lorentz Invariance (Covariance) two conditions
must be satisfied:

1. The first condition is that: given any two inertial ob-
servers O and O′ anywhere in spacetime, if in the frame
O we have:

[i~γµ∂µ −m0c]ψ(x) = 0, (5)

as the Dirac equation for the particle ψ, then:

[i~γµ
′

∂µ′ −m0c]ψ′(x′) = 0 (6)

is the equation describing the same state but in the fra-
me O′.
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2. The second condition is that: given that ψ(x) is the
wavefunction as measured by observer O, there must be
a prescription for observer O′ to compute ψ′(x′) from
ψ(x) where ψ′(x′) describes to O′ the same physical
state as that measured by O. The conserve must be true
as-well, that is: there must exist a prescription such that
starting from equation (6), one can arrive at (5).

In simpler mathematical terms, the above two require-
ments are saying that: starting from equation (5), there must
exist some physically legitimate transformations within the
framework of Lorentz transformations that can take (map) us
from this equation (5) to equation (6) and vice-versa. If we
can find these, then, the Dirac equation is said to be Lorentz
Invariant (Covariant).

Now, since the Lorentz transformations are linear, it is to
be required or expected of the transformations between ψ(x)
and ψ′(x′) to be linear too, i.e.:

ψ′(x′) = ψ′(Λx) = S (Λ)ψ(x) = S (Λ)ψ(Λ−1x′), (7)

where S (Λ) is a 4 × 4 matrix which depends only on the rel-
ative velocities of O and O′ and Λ is the Lorentz transforma-
tion matrix. S (Λ) has an inverse if O→ O′ and also O′ → O.
The inverse is:

ψ(x) = S −1(Λ)ψ′(x′) = S −1(Λ)ψ′(Λx), (8)

or we could write:

ψ(x) = S (Λ−1)ψ′(Λx) =⇒ S (Λ−1) = S −1(Λ). (9)

We can now write equation (5), as:[
i~γµ

∂xµ
′

∂xµ
∂µ′ −m0c

]
S −1(Λ)ψ′(x′) = 0, (10)

and multiplying this from the left by S (Λ), we have:

S (Λ)
[
i~γµ

∂xµ
′

∂xµ
∂µ′ −m0c

]
S −1(Λ)ψ′(x′) = 0, (11)

and hence:[
i~S (Λ)γµ

∂xµ
′

∂xµ
S −1(Λ)∂µ′ −m0c

]
ψ′(x′) = 0. (12)

Therefore, for the above equation to be identical to equa-
tion (6) (hence Lorentz Invariant), the requirement is that:

γµ
′

= S (Λ)γµ
∂xµ

′

∂xµ
S −1(Λ), (13)

hence, we have shown that — for as long as S −1(Λ) exists,
equation (5) is Lorentz Invariant.

3 Dirac ~4 × 4 ~γ-matrices as a four-vector

The Dirac equation (1) can be re-written in the traditional
Schrödinger formulation as (H ψ = Eψ) where H and E are
the energy and Hamiltonian operators respectively. In this
Schrödinger formulation, H , will be such that it is given by:

H = γ0m0c2 − ı~cγ0γ j∂ j, (14)

and (E = i~∂/∂t).
Now, according to the quantum mechanical equation gov-

erning the evolution of any quantum operator Q , we know
that:

ı~
∂Q
∂t

= QH − HQ = [Q ,H ] , (15)

hence, if:
[Q ,H ] ≡ 0, (16)

then, the quantum mechanical observable corresponding to
the operator Q is a conserved physical quantity.

With this [equation (15)] in mind, Dirac asked himself
the natural question — what the “strange” new γ-matrices
appearing in his equation really represent. What are they?
In-order to answer this question, he decided to have a “look”
at or make a closer “inspection” of the quantum mechanical
orbital angular momentum operator Li which we all know to
be defined:

Li = (~r × ~p)i = −ı~εi jk x j∂k, (17)

where, εi jk is the completely-antisymmetric three dimensional
Levi-Civita tensor. In the above definition of Li, the momen-
tum operator ~p is the usual quantum mechanical operator, i.e.:

~p = −ı~~∇ ⇒ pi = ı~∂i. (18)

From this definition of Li given in equation (17), it fol-
lows from equation (15) that ı~∂Li/∂t = [Li,H ], will be such
that:

ı~
∂Li

∂t
= −ı~m0c2εi jk

[
x j∂k, γ

0
]
+~2cεi jk

[
x j∂k, γ

0γl∂l

]
. (19)

Now, because the term γ0m0c2 is a constant containing no
terms in pi, it follows from this very fact that (εi jk

[
x j∂k, γ

0
]
≡

0), hence equation (19) will reduce to:

ı~
∂Li

∂t
= ~2cεi jkγ

0γl
[
x j∂k, ∂l

]
= ~2cεi jkγ

0γl
(
x j∂k∂l − ∂lx j∂k

)
.

(20)

From the commutation relation of position (xi) and mo-
mentum (−ı~∂ j) due to the Heisenberg uncertainty princi-
ple [9], namely (−ı~

[
xi, ∂ j

]
= −ı~δi j) where δi j is the usual

Kronecker-delta function, it follows that if in equation (20),
we substitute (∂lx j = x j∂l + δl j), this equation is going to
reduce to:

ı~
∂Li

∂t
=~2cεi jkγ

0γl
(
x j∂k∂l−x j∂l∂k

)︸              ︷︷              ︸ +~2cεi jkγ
0γlδl j∂k. (21)
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The term with the under-brace vanishes identically, that is
to say: (x j∂k∂l − x j∂l∂k ≡ 0); and (εi jkγ

0γlδl j = εilkγ
0γl), it

follows from this that equation (21), will reduce to:

ı~
∂Li

∂t
= ~2cεilkγ

0γl∂k. (22)

Since this result [i.e., equation (22) above] is non-zero, it
follows from the dynamical evolution theorem [i.e., equation
(16)] of Quantum Mechanics (QM) that none of the angular
momentum components Li are — for the Dirac particle —
going to be constants of motion. This result obviously both-
ered the great and agile mind of Paul Dirac. For example,
a non-conserved angular momentum would mean spiral or-
bits i.e., Dirac particles do not move in fixed and well defined
orbits as happens with electrons of the Hydrogen atom for ex-
ample; at the very least, this is very disturbing because it does
not tally with observations. The miniature beauty that Dirac
had — had the rare privilege to discover and, the first human
being to “see” with his beautiful and great mind — this —
had to be salvaged∗ somehow.

Now — enter spin! Dirac figured that “Subtle Nature”
must conserve something redolent with orbital angular mo-
mentum, and he considered adding something to Li that
would satisfy the desired conservation criterion, i.e.: call this
unknown, mysterious and arcane quantity Si and demand
that:

ı~
∂ (Li + Si)

∂t
≡ 0. (23)

This means that this strange quantitySi must be such that:

ı~
∂Si

∂t
= [Si,H ] = −~2cεilkγ

0γl∂k. (24)

Solving equation (24) for Si, Dirac arrived at:

Si =
1
2
~

(
σi 0
0 σi

)
=

1
2
~γ5γi, (25)

where (γ5 = ıγ0γ1γ2γ3), is the usual Dirac gamma-5 matrix.
Now, realising that:

1. The matrices σi are Pauli matrices and they had been
ad hocly introduced in 1925 into physics to account for
the spin of the Electron by the Dutch-American the-
oretical physicists, George Eugene Uhlenbeck (1900–
1988) and his colleague, Samuel Abraham Goudsmit
(1902–1978) [10].

2. His equation — when taken in the non-relativistic limit,
it would account for the then unexplained gyromag-
netic ratio (g = 2) of the Electron and this same equa-
tion emerged with σi explaining the Electron’s spin.

∗Such is the indispensable attitude of the greatest theoretical physicists
that ever graced the face of planet Earth — beauty must and is to be pre-
served; this is an ideal for which they will live for, and if needs be, it is an
ideal for which they will give-up their life by taking a gamble to find that
unknown quantity that restores the beauty glimpsed!

The agile Paul Dirac seized the golden moment and forth-
with identified Si with the ψ-particle’s spin. The factor 1

2~ in
Si implies that the Dirac particle carries spin 1/2, hence, the
Dirac equation (1) is an equation for a particle with spin 1/2!

While in this esoteric way (i.e., as demonstrated above)
Dirac was able to explain and “demystify” Wolfgang Pauli
(1900–1958)’s strange spin concept which at the time had
only been inserted into physics by “the sleight of hand” out
of an unavoidable necessity, what bothers us (i.e., myself) the
most is:

How it comes about that we (physicists) have had
issues to do with the transformational properties
of the γ-matrices? Why? Really — why? The
fact that orbital angular momentum ~L is a vector
invariably leads to the indelible fact that ~S is a
vector as-well, because we can only add vectors
to vectors.

If ~S is a vector, then the matrices γi must be components
of a 3-vector, so must the matrix γ0 be the component of the
time-vector in the usual four-vector formalism, hence γµ must
be a four-vector. So, right from the word go — with little or
no resistance whatsoever, it must have been pristine clear that
the γ-matrices must be four-vectors.

4 Dirac equation with the ~γ-matrices as a four-vector

With γ-matrices now taken as a four-vector, the object γµ∂µ
is a scalar, the meaning of which is that the Dirac equation
will now accommodate two types of spinors “the usual Dirac
bispinor” and a new “scalar-bispinor”, i.e.:

1. A spinor that is a scalar. Let us here call this a scalar-
bispinor and let us denote it with the symbol φ and be-
cause of its scalar nature — under a Lorentz transfor-
mation, we will have (φ′ = φ). Just like the ordinary
Dirac wavefunction ψ is a 4 × 1 component object, φ is
also a 4 × 1 object, i.e.:

φ =


φ0
φ1
φ2
φ3

 =

 φL

φR

 , (26)

where φL and φR are the scalar-spinors — which are
like the ordinary left and right handed Dirac spinors
(ψL, ψR); ψL and φR are defined:

φL =

 φ0

φ1

 and φR =

 φ2

φ3

 . (27)

Consideration of the scalar-bispinor has been made in
the past by others e.g., [11].

2. The ordinary Dirac bispinor ψ: that transforms lin-
early under a Lorentz transformation i.e. (ψ′ = Sψ),
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where, a usual, Lorentz Invariance (Covariance) requi-
res that the function S = S (xµ, ẋµ) be such that:

γµ
′

∂µ′S = γµ∂µS = 0, (28)

and:
γµ = S −1γµS , (29)

which implies: [
S , γµ

]
= 0. (30)

Now, we certainly must ask “What does this all mean”.
That is to say, the fact that the Dirac equation allows for the
existence of the usual Dirac bispinor ψ and in addition to that
— a scalar-bispinor φ? Taken at the same level of under-
standing that the Dirac equation’s prediction of the existence
of antimatter is premised on the Dirac equation being sym-
metric under charge conjugation — on that very same level
of understanding, this fact that the Dirac equation in its most
natural and un-tempered state as presented herein — it, allows
for the existence of the usual Dirac bispinor ψ and scalar-
bispinor φ; in the same vein of logic, this naturally implies
that for every Dirac bispinor ψ, there must exist a correspond-
ing scalar-bispinor φ. That is, the Dirac bispinor ψ and the
scalar-bispinor φmust come in pairs. There is no escape from
this train of logic.

If we are thinking of Leptons and Neutrinos, the above
pair-picture of (ψ, φ) makes perfect sense. Based on this pic-
ture, we can write the Dirac equation for this pair (ψ, φ) as:

ı~γµ∂µ

 ψ

φ

 = m0c
(

1 0
0 η

)  ψ

φ

 , (31)

where η is a scalar-constant that we have introduced so as
to accommodate the possibility that the particle-pair (ψ, φ),
may have different masses. In this way, one can begin to en-
tertain ideas on how to explain the Lepton-Neutrino pairing
[(e±, νe), (µ±, νµ), (τ±, ντ)]. We have no intention of doing this
or going any deeper on this matter but merely to point out —
as we have just done — that, this idea may prove a viable av-
enue of research to those seeking an explanation of why this
mysterious pairing occurs in nature.

5 General discussion

We must categorically state that — what we have presented
herein is not new at all. All we have endeavoured is to make
bold the point that the γ-matrices constitute a four-vector.
Perhaps the only novelty there is — in the present contribu-
tion — is the suggestion that we have made — namely that,
the resulting scalar-bispinor (φ) and the usual Dirac bispinor
(ψ) can be used as a starting point to explain the currently
open problem of the three generation Lepton-Neutrino pair-
ing (e±, νe), (µ±, νµ) and (τ±, ντ); where the scalar-bispinor
can be assumed to be the Neutrino while the usual Dirac

bispinor can be thought of the Lepton. In the sequatial read-
ing [12], we will demonstrate how this formulation of the
Dirac equation can be used to explain how massless neutri-
nos can oscillate.
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Verhaltens jedes einzelnen Elektrons. Die Naturwissenschaften, 1925,
v.13(47), 953–954.

11. Chapman T. C. and Leiter D. J. On the Generally Covariant Dirac Equa-
tion. American Journal of Physics, 1976, v.44(9), 858–862.

12. Nyambuya G. G. Oscillating Massless Neutrinos. Progress in Physics,
2018, v. 14, 94–98.

G. G. Nyambuya. Transformation of the Dirac Matrices 93



Volume 14 (2018) PROGRESS IN PHYSICS Issue 2 (April)

Oscillating Massless Neutrinos

G. G. Nyambuya

National University of Science and Technology, Faculty of Applied Sciences — Department of Applied Physics,
Fundamental Theoretical and Astrophysics Group, P. O. Box 939, Ascot, Bulawayo, Republic of Zimbabwe

E-mail: physicist.ggn@gmail.com

The phenomenon of neutrino oscillations requires that not only should neutrinos be
massive but that these masses be unique. How they acquire this mass remains an open
question. Various mechanisms have been proposed to explain this phenomenon of neu-
trino oscillations. Herein, we propose — the simplest imaginable — alternative mecha-
nism which operates via coupling the massless neutrino to a massive Dirac scalar. This
massive Dirac scalar is a new hypothetical particle that we — unfortunately — can not
observe directly because of its point-particle nature. Further, this massive Dirac scalar
comes in as an integral part of the neutrino system — it [massive Dirac scalar] oscil-
lates between three states, thus leading to the observed neutrino oscillations. This model
predicts neutrinos are Dirac in nature and not Majorana.

“Just by studying mathematics we can hope to
make a guess at the kind of mathematics that will
come into the physics of the future.”

— Paul A. M. Dirac (1902-1984)

1 Introduction

According to Albert Einstein (1879–1955)’s Special Theory
of Relativity (STR) [1], the energy E and momentum p of
a massless (m0 = 0) are related by the energy-momentum
equation (E = pc), where c is the speed of Light in vacuo.
In accordance with the dictates of wave mechanics/phenom-
enon, the group velocity, vg:

vg =
∂E
∂p

, (1)

of a particle whose energy and momentum are related by
(E = pc) is equal to the speed of Light in vacuo, i.e. (vg = c).
All indications are that the neutrino travels at the vacuo speed
of Light, c, thus prompting physicists to assume that the neu-
trino is massless. Be that as it may, a massless neutrino pauses
a problem to the physicist in that one can not explain the all-
important experimentally [2–5] verified and common-place
phenomenon of neutrino oscillation.

First predicted [6, 7] in 1957 by the Italian nuclear physi-
cist — Bruno Pontecorvo (1913–1993), and observed in 1968
by the America chemist and physicist — Raymond Davis Jr.
(1914–2006) et al. [8], neutrino oscillation is a quantum me-
chanical phenomenon whereby a neutrino created with a spe-
cific lepton flavour (electron νe, muon νµ, or tau ντ) can be
measured at a latter time to have a different flavour. The
probability of measuring a particular flavour for a neutrino
varies between the three known flavour states (νe, νµ, ντ) as
it propagates through the intestacies of space. From a the-
oretical standpoint, two conditions are necessary for neutri-
nos to oscillate — i.e., to change from one type to the other,

e.g., from an Electron-neutrino (νe) to a Muon-neutrino (νµ)
or vice-verse, and these conditions are:

1. Neutrinos must have a non-zero mass, and this mass cannot
be identical for all the three neutrino flavours (νe, νµ, ντ).

2. There must be no rigorous law forbidding a transition be-
tween neutrino species, the meaning of which is that these
transitions are purely probabilistic in nature.

Since the coming to light or since the “conception” of this
important question i.e., the question of how neutrino masses
arise — this question, has not been answered conclusively
[9]. In the Standard Model of particle physics, fermions only
have mass because of interactions with the Higgs Field. Do
neutrinos generate their mass via the Higgs Mechanism [10–
12] as-well? This is a question that needs an answer. We here
do not claim to give a definitive answer to this question, but
merely a suggestion — perhaps, a suggestion that one might
consider worthy of their attention.

That said, we must here at the penultimate of this intro-
ductory section make clear the scope of the present letter —
i.e., while this letter presents — in our feeble view, a new
model whose endeavour is to explain neutrino oscillations,
we present this model only as an alternative to existing ex-
planations on this phenomenon. We deliberately avoid an in-
depth comparative analysis of these models with the present
and this we have done in-order that our ideas are clearly pre-
sented without overshadowing them with existing ideas on
the same endeavour.

2 Massless Dirac particle

First considered by the German mathematician, mathemati-
cal physicist and philosopher — Hermann Klaus Hugo Weyl
(1885–1955); a massless Dirac particle is described by the
following Dirac-Weyl [13] equation:

ı~γµ∂µψ = 0, (2)
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where (ı =
√
−1), ∂µ is the four spacetime partial derivatives,

~ is the normalized Planck constant, γµ are the four 4×4 Dirac
matrices and ψ is the usual 4× 1 component Dirac wavefunc-
tion.

In this letter, the gamma matrices shall be assumed to be
four vectors the meaning of which is that they transform like
vectors i.e.:

γµ
′

=
∂xµ

′

∂xµ
γµ. (3)

This assumption of treating the γ-matrices as four vectors
may appear strange and if not completely and outright wrong.
Be that as it may, in the letter [14], this idea of treating the γ-
matrices as vectors as been justified. As argued therein the
said letter [14], once the γ-matrices are four vectors, ψ can
take three forms:

1. It [ψ] can be a zero ranks scalar.
2. It [ψ] can be a four 4 × 1 component scalar where the

four components are zero ranks scalar objects.
3. Provided a certain transformational condition is met

[i.e., the condition given in equation (28) of [14]], it
[ψ] can be the typical Dirac spinor.

In the subsequent section, we shall look at the scalar ver-
sion.

3 Scalar coupled massive Dirac particle

For a moment, suppose we couple the massless ψ-particle to
a massive φ-scalar particle, that is to say, we have ψ interfere
with φ in such a way that the resulting 4× 1 component Dirac
wavefunction of the interference ψ, is such that:

ψ = φψ. (4)

The φ-particle is a simple (zero-rank) scalar, i.e., unlike
the ψ-particle which is a 4 × 1 component object, φ has no
components, it is a zero rank mathematical object. Together,
φ and ψ make a complete quantum mechanical particle i.e.,
they satisfy the quantum probability normalization condition:$

∀ S pace
(φψ)† (φψ) dxdydz = 1, (5)

and as individuals (φ, ψ), they do not satisfy the quantum
probability normalization condition required for a complete
quantum mechanical particle i.e.:

0 <
$

∀ S pace
φ†φdxdydz < 1, (6)

and:
0 <
$

∀ S pace
ψ†ψdxdydz < 1. (7)

Now, substituting (ψ = φψ) into equation (2), we will
have:

ı~γµφ∂µψ = −ı~γµ
(
∂µφ
)
ψ. (8)

If φ is a massive particle satisfying the equation:

−ı~γµ∂µφ = m0cφ, (9)

where (m0 , 0), then, equation (8), becomes:

ı~γµφ∂µψ = m0cφψ, (10)

hence:
ı~γµ∂µψ = m0cψ. (11)

Equation (11) is the Dirac [15, 16] equation describing
a massive particle of mass m0 and it is this equation that is
used to describe neutrino oscillations. Thus, the neutrino as
described by ψ is now a massive particle — the meaning
of which is that one can now describe neutrino oscillations
which require a non-zero mass. It is important at this juncture
that we state the obvious, namely that — just as the ψ-particle
is a spin-1/2 particle, the φ-particle is likewise a spin-1/2 par-
ticle. As pointed out in the pernultimate of the previous sec-
tion, we must remind the reader at this point that equation (9)
with φ as a scalar has been justified in the letter [14]. That is
to say, as justified therein the letter [14], the γ-matrices have
here been assumed to be four vectors, hence equation (9).

While neutrino oscillations strongly point to the existence
of unique non-zero mass for the three neutrino flavours, these
oscillations do not directly mean the mass of these neutrinos
is non-zero (e.g., [17]). Only direct experimental observa-
tions as deliver a definitive answer to the question (e.g., [17]).
A number of experiments have been dedicated to this effect
and these experiments place upper limits with not definitive
and precise value being pinned down.

4 Dirac scalar particle

While the φ-scalar particle is operated on by the usual Dirac
operator, it is not an ordinary Dirac particle because an ordi-
nary Dirac particle is described by a 4 × 1 component wave-
function and not a zero rank scalar. Consequently, the ques-
tion that naturally and immediately comes to mind is whether
this Dirac [15, 16] equation (9) describing this scalar particle
is a valid equation. To answer this — just as is the case with
the Dirac [15, 16] equation, the validity of this equation is to
judged on whether or not this equation (9) yields reasonable
energy solutions for the case of a free scalar. As usual, the
free particle solution of the new hypothetical Dirac scalar is:

φ = φ0eıpµxµ/~, (12)

where φ0 is a normalization constant, pµ and xµ are the four
momentum and position of this scalar particle. Substituting φ
as given in equation (12) into equation (9), and thereafter per-
forming some algebraic operations and clean-up, one obtains
the following set of four simulations equations:

(E −m0c2) − c(px − ipy) − cpz = 0 . . . (a)
(E −m0c2) − c(px + ipy) + cpz = 0 . . . (b)
(E + m0c2) − c(px − ipy) − cpz = 0 . . . (c)
(E + m0c2) − c(px + ipy) + cpz = 0 . . . (d)

(13)
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Adding together equations (13a) and (13b), one obtains:

E = pxc + m0c2, (14)

and likewise, adding together equations (13c) and (13d), one
obtains:

E = pxc − m0c2. (15)

Undoubtedly, the solutions (14) and (15), are indeed ac-
ceptable solutions — hence, the scalar Dirac [15,16] equation
(9), is as a result, an acceptable equation describing this hy-
pothetical Dirac scalar particle. The question now is what do
these solutions (14) and (15) mean?

First — we must notice that these solutions (14) and (15)
tell us that the energy of the φ-scalar particle is determined
by this particle’s momentum along the x-axis. If this particle
did have a non-zero momentum along the other two axis i.e.,
the y and z-axis, what the equations (14) and (15) are telling
us, is that this momentum is of no consequence whatsoever in
determining the energy of this particle. This does not make
sense. The only reasonable solution to this dilemma is to as-
sume that (py = pz = 0) and (px , 0). This means that the
φ-particle only moves along the x-axis and nothing else. If
this is the case that it only moves along the x-axis, then —
clearly, this φ-particle can not be an extended particle, but a
point-particle. If the φ-particle is indeed a point-particle, it
must be invisible hence non-detectable. This not only a natu-
ral conclusion to reach, but a logical one.

Second — we have the two solutions equation (14) and
(15) having different energies. What does this mean? One
way to look at this is to assume that there exists two such par-
ticles with each having different energies. The other would be
to assume that there is just one φ-particle — albeit, with the
mass discretely fluctuating between the two mass extremums
i.e., (−m0) and (+m0). That is to say, the φ-particle is unstable
and its instability is naturally transmitted to the neutrino via
the (φ− ψ)-coupling. As the unobservable φ-particle changes
its energy state, it will excite and de-excite the observable
neutrino into the energy states of the other two flavours. If
the mass only fluctuated between the two mass extremums
i.e., (−m0) and (+m0), it would mean the neutrino would fluc-
tuate between two states only, without it returning to its nat-
ural state. We know that a neutrino of any type will fluctuate
between all the three states. In-order for the neutrino to en-
ter its natural state, there is need for φ to enter into a third
eigenstate of is mass. Naturally, this must be the eigenstate
(m0 = 0). Therefore, the φ-particle will discretely fluctuate
between the three states (−m0, 0,+m0) and each of these states
corresponds to a particular value of energy which switches the
neutrino to the right energy state of a given neutrino state.

5 The neutrino oscillations

How do these oscillations in the particle’s state occur in the
present model? Just as happens in quantum gauge transfor-
mations — for an answer to this very important question, we

envisage a discrete gauge-transformation-like spontaneous
and random change in the state of the φ-particle occurs in
the phase i.e.:

φ 7−→ eiχiφ, (16)

where χ is some continuous and differentiable smooth func-
tion of the four position xµ and or four momentum pµ. In-
order to preserve the composite-state ψ, such a change as that
given in equation (16) is to be simultaneously met with a cor-
responding conjugate change in the phase of the neutrino, i.e.:

ψ 7−→ e−iχiψ, (17)

and these two changes, leave the ψ-state unchanged, i.e.:

ψ 7−→
(
eiχiφ
) (

e−iχiψ
)

= φψ = ψ. (18)

We expect that there be three phase changes correspond-
ing to the three mass states (−m0, 0,+m0), hence three energy
states.

The phase change given in equation (16) leads the scalar
Dirac equation (9), to transform and become:

−ı~γµ∂µφ =
(
m0 + m∗j

)
cφ, (19)

while the phase change given in equation (17) leads to the
Dirac equation (11) for the neutrino, to transform and be-
come:

ı~γµ∂µψ =
(
m0 + m∗j

)
cψ, (20)

where the three-state fluctuating mass m∗j is such that:

m∗j =
~γµ∂µχi

c
. (21)

In the following subsections, we discuss the possible os-
cillations of the neutrino for all the three neutrino flavours.

5.1 Oscillations of the Electron-neutrino state

Presented in the self-explanatory diagram in Figure (1) is a
graphic visual of the six possible transitions of the natural
Electron-neutrino. That is, when the φ-particle’s mass is zero
(m0 = 0), the Electron-neutrino is in its natural state of being
an Electron-neutrino. Further, when the mass of the φ-particle
is negative (−m0), the Electron-neutrino is in enters the µ-
neutrino state and likewise, when mass of the φ-particle is
positive (+m0), Electron-neutrino enters the τ-neutrino state.

5.2 Oscillations of the Muon-neutrino state

Just as in Figure (1), we have in Figure (2) a graphic visual of
the four possible transitions of natural Muon-neutrino. When
the φ-particle’s mass is zero (m0 = 0), the Muon-neutrino is in
its natural state of being an Muon-neutrino. When the mass
of the φ-particle is negative (−m0), the Muon-neutrino is in
enters the Electron-neutrino state and likewise, when mass
of the φ-particle is positive (+m0), Muon-neutrino enters the
τ-neutrino state.
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Fig. 1: The six possible transitions of the Electron-neutrino.

Fig. 2: The four possible transitions of the Muon-neutrino.

5.3 Oscillations of the Tau-neutrino state

Again, just as is the case in the previous cases, Figure (3) is a
graphic presentation of the six possible transitions of natural
Tau-neutrino. When the φ-particle’s mass is zero (m0 = 0),
the Tau-neutrino is in its natural state of being an Tau-neutrino
and when the mass of the φ-particle is negative (−m0), the
Tau-neutrino enters the Electron-neutrino state and likewise,
when mass of the φ-particle is positive (+m0), Muon-neutrino
enters the µ-neutrino state.

6 General discussion

Clearly, without casting away any of the existing theories
(e.g., [17–19]) whose endeavour is to explain the mystery be-
hind the neutrino oscillations, we here have provided an alter-
native explanation via what appears to us to be a mathemati-
cally permissible mechanism whereby the massless neutrino
is coupled to an unobservable and unstable scalar Dirac point-
particle. The resulting mathematics thereof requires that this
hypothetical Dirac scalar must be a point-particle. From a
physics standpoint, this point-particle nature of the φ-scalar
implies that this particle can not be observed in nature be-
cause it is not an extended particle like the Electron, Proton,
Neutrino etc. So, we should not expect to observe this particle

Fig. 3: The six possible transitions of the Tau-neutrino.

at all. We can only assign it to be a property of the neutrino
particle — with it, being the “culprit” behind the observed
phenomenon of neutrino oscillation.

Interestingly, within the context of the present model, one
can answer the paramount question of whether of not neutri-
nos are Majorana or Dirac in nature. Majorana neutrinos sat-
isfy the Majorana [20] equation while Dirac neutrinos satisfy
the usual massive Dirac equation (11). In the present model,
for these neutrinos to be Majorana, the Dirac scalar must be
Majorana too, that is to say, the scalar Dirac equation (9), will
have to be such that:

−ı~γµ∂µφ = m0cγ2φ. (22)

With equation (22) in place, equation (11) will as a con-
sequence thereof, reduce to the [20] equation, i.e.:

ı~γµ∂µψ = m0cγ2ψ, (23)

Now, substituting the free particle solution of the φ-scalar
given in equation (12) into equation (22), just as in equation
(13), one obtains the following set of four simulations equa-
tions:

(E + ım0c2) − c(px − ipy) − cpz = 0 . . . (a)
(E + ım0c2) − c(px + ipy) + cpz = 0 . . . (b)
(E − ım0c2) − c(px − ipy) − cpz = 0 . . . (c)
(E − ım0c2) − c(px + ipy) + cpz = 0 . . . (d)

(24)

Adding together equations (24a) and (24b), correspond-
ing to equation (14), one obtains:

E = pxc − ım0c2, (25)

and likewise, adding together equations (24c) and (24d), cor-
responding to equation (15), one obtains:

E = pxc + ım0c2. (26)

In contrast to the solutions given in equations (14)& (15),
these solutions equation (25) & (26), are complex. As a rule

G. G. Nyambuya. Oscillating Massless Neutrinos 97



Volume 14 (2018) PROGRESS IN PHYSICS Issue 2 (April)

of quantum mechanics, energy eigenvalues must be real.
What this means is that we must reject these solutions [i.e.,
equations (25) & (26)], and with them, the premise on which
they are founded, namely that neutrinos are Majorana. One
can try and save the Majorana model by invoking an imag-
inary mass so that the energy is real, but this will sure not
work for so long as mass is a quantum mechanical observ-
able because quantum mechanics will require that the mass
be real thus leaving us exactly where we started off i.e., with
complex energy states, hence, in-accordance with the present
model, neutrinos can not be Majorana, but can only be Dirac
in nature.

7 Conclusion

Assuming that what has been presented in the present letter is
acceptable, one can put forward the following as the conclu-
sion to be drawn thereof:

1. In addition to the existing theories on neutrino oscilla-
tions, the present model is an alternative explanation,
where these neutrino oscillations are explained by as-
suming that the massless neutrino is intrinsically cou-
pled to a hypothetical, massive three-state unstable, in-
visible, unobservable point-particle which is a Dirac
zero-rank scalar. The three-state unstableness of this
Dirac scalar is what leads to the observed neutrino os-
cillations.

2. If complex energy states are physically non-permis-
sible and/or forbidden — be they for the case of ob-
servable or non-observable particle(s) — then, accord-
ing to the present model, neutrinos can not be Majo-
rana in nature as this directly leads to complex energy
eigenvalues for the Dirac φ-particle. On this basis and
this alone, one is to reject this and with it, the idea of
Majorana neutrinos.
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The paper introduces a scale-invariant model of matter as fractal chain system of oscil-
lating protons and electrons that is applied to the analysis of the solar system and extra-
solar planetary systems. Based on global scaling, an explanation of the large number of
coincident metric characteristics in different planetary and moon systems is proposed.

Introduction

The formation and evolution of the solar system is caused
by very different processes and it is a complex field of re-
search that considers electromagnetic, thermodynamic, hy-
drodynamic, nuclear physical and chemical factors in their
complex interaction. Advanced models were developed [1–5]
in the last century which explain essential features of the so-
lar system formation. Gravity is treated as dominant force at
macroscopic scales that forms the shape and trajectory (orbit)
of astronomical bodies including stars and galaxies. Indeed,
if numerous bodies are gravitationally bound to one another,
classic models predict long-term highly unstable states that
contradict with the astrophysical reality in the solar system.

Furthermore, many metric characteristics of the solar sys-
tem are not predicted in standard models. A remarkably large
number of coincidences are considered to be casual and are
not even topics of theoretical research. For example, Mars
and Mercury, but also Uranus and Venus have the same sur-
face gravity acceleration. Such dissimilar bodies like Jupiter
and Ceres, but also Earth, Mars and Eris have similar rotation
periods. Various moons of very different planets in the solar
system have the same orbital periods as have various planets
in different extrasolar systems like Trappist 1 or Kepler 20.

In this paper we apply our scale-invariant model [6–8] of
matter as fractal chain system of oscillating protons and elec-
trons to the analysis of the solar system and extrasolar plan-
etary systems. Based on our hypothesis of global scaling we
propose an explanation of the large number of coincidences
of the metric characteristics of the systems.

Methods

As result of measurement, real numbers build the bridge that
connects theoretical models with the physical reality [9]. The
classification of real numbers, in particular the difference be-
tween rational and irrational numbers is not only a mathemat-
ical task. It is also an essential aspect of stability in real sys-
tems. Parameter relations corresponding to rational numbers
of small quotients support resonance interactions inside the
system and make the system unstable. On the contrary, irra-
tional relations correspond to minimum resonance interaction
inside the system and to its stability [10].

Indeed, this stability can be lasting only if a given irra-
tional relation cannot be transformed into a rational by ele-

mentary arithmetic operations. In the case of algebraic num-
bers, an irrational relation of wavelengths can lead to rational
relations of surfaces, volumes, masses or energies and never-
theless can make the system unstable.

Transcendental numbers cannot be represented as roots
of algebraic equations. Therefore, no elementary arithmetic
operation like addition or multiplication can transform a tran-
scendental number into a rational. This is not valid for ir-
rational, but non transcendental numbers, including the so-
called golden number ϕ = (

√
5+1)/2.

It is remarkable that only continued fractions deliver bi-
unique representations of all real numbers, rational and ir-
rational. Finite continued fractions represent always ratio-
nal numbers, whereas infinite continued fractions represent
irrational numbers. That is why any irrational number can
be approximated by finite continued fractions - the conver-
gents which deliver always the best and quickest approxima-
tion [11]. It is notable that the best rational approximation
of an irrational number by a finite continued fraction is not
a task of computation, but only an act of termination of the
fractal recursion.

Alas, transcendental numbers can be approximated ex-
ceptionally well by rational numbers, because their contin-
ued fractions contain large denominators and can be truncated
with minimum loss of precision. For instance, the fourth de-
nominator in the simple continued fraction of π = [3; 7, 15, 1,
292, ...] = 3.1415927... is quite big, so that the ratio 355/113
≈ 3.1415929 delivers a very good approximation. Euler’s
number e = 2.71828... is also transcendental and can be repre-
sented as continued fraction with quickly increasing denom-
inators, so that already the ratio 193/71 ≈ 2.71831 gives a
good approximation.

In the consequence, transcendental numbers define the
preferred relations of parameters which sustain the stability
of a complex system. In this way, the system avoids destabi-
lizing resonance. At the same time, a good rational approx-
imation can be induced quickly, if resonance interaction is
required. Furthermore, if stability is provided concerning all
derivatives of a process, Euler’s number is the only choice,
because of the self-similarity of the natural exponential func-
tion regarding its derivatives:

d
dx

ex = ex.
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Property Electron Proton

rest mass m 9.10938356(11) · 10−31 kg 1.672621898(21) · 10−27 kg

energy E=mc2 0.5109989461(31) MeV 938.2720813(58) MeV

angular frequency ω=E/ℏ 7.76344071 · 1020 Hz 1.42548624 · 1024 Hz

angular oscillation period τ= 1/ω 1.28808867 · 10−21 s 7.01515 · 10−25 s

angular wavelength λ= c/ω 3.8615926764(18) · 10−13 m 2.1030891 · 10−16 m

angular acceleration a= c/ω 2.327421 · 1029 ms−2 4.2735 · 1032 ms−2

Table 1: The basic set of physical properties of the electron and proton. (c is the speed of light in a vacuum, ℏ is the reduced Planck
constant, kB is the Boltzmann constant). Data taken from Particle Data Group [20]. Frequencies, oscillation periods, accelerations and the
proton wavelength are calculated.

Fig. 1: The distribution of eigenvalues of F for k= 1 (above) and
for k= 2 (below) in the range -1⩽F ⩽ 1.

In [12] we have shown that the set of natural frequencies
(eigenstates) of a fractal chain system of harmonic oscillators
can be described as set (1) of finite continued fractions F ,
which are natural logarithms:

F = ln (ω jk/ω00)= [n j0; n j1, n j2, . . . , n jk] (1)

where ω jk is the set of angular frequencies and ω00 is the fun-
damental frequency of the set. The denominators are integer:
n j0, n j1, n j2, . . . , n jk ∈Z, the cardinality j ∈N of the set and the
number k ∈N of layers are finite. In the canonical form, all
numerators equal 1.

Any finite continued fraction represents a rational num-
ber. Therefore, all frequency ratios ω jk/ω00 in (1) are irra-
tional, because for rational exponents the natural exponential
function is transcendental [13]. This circumstance provides
for high stability of the eigenstates (1) of a chain system of
harmonic oscillators because it prevents resonance interac-
tion between the elements of the system. In [14–16] we have
applied continued fractions of the type (1) as criterion of sta-
bility in engineering.

In the canonical form, the distribution density of eigen-
values of finite continued fractions reaches maxima near re-
ciprocal integers 1, 1/2, 1/3, 1/4, . . . which are the attractor
points in the fractal set F of natural logarithms (fig. 1).

Shorter continued fractions (1) with smaller denominators
correspond with more stable eigenstates of the chain system,
because the logarithmic distance between their eigenvalues is
maximum. Considering the existence of two complementary
fractals on the sets of rational and irrational numbers accord-
ingly [17], the probability that small variations (fluctuations)

lead to coincidences between irrational and rational numbers
of small quotients is minimum. Therefore, integer and half
logarithms represent the most stable eigenstates.

Already in 1950 Gantmacher and Krein [18] have demon-
strated that continued fractions are solutions of the Euler-
Lagrange equation for low amplitude harmonic oscillations in
simple chain systems. Terskich [19] generalized this method
for the analysis of oscillations in branched chain systems.
In [6] the continued fraction method was extended to the anal-
ysis of chain systems of harmonic quantum oscillators.

In the case of harmonic quantum oscillators, the contin-
ued fractions (1) define not only fractal sets of natural angu-
lar frequencies ω jk, angular accelerations a jk = c ·ω jk, oscil-
lation periods τ jk = 1/ω jk and wavelengths λ jk = c/ω jk of the
chain system, but also fractal sets of energies E jk = ℏ ·ω jk and
masses m jk =E jk/c2 which correspond with the eigenstates of
the system [8].

In this way, the continued fractions (1) generate the funda-
mental fractal F of eigenstates in chain systems of harmonic
quantum oscillators.

As the cardinality and number of layers of the continued
fractions (1) are finite but not limited, in each point of the
space-time occupied by the chain system of harmonic quan-
tum oscillators the scalar F is defined. Therefore, any chain
system of harmonic quantum oscillators can be seen as source
of the fractal scalar field F , the fundamental field of the sys-
tem. The scalar potential difference∆F of sequent equipo-
tential surfaces at a given layer k is defined by the difference
of continued fractions (1). In the canonical form:

∆F=F (j,k)−F (j+1,k) =
= [n j0; n j1, n j2, . . . , n jk]− [n j0; n j1, n j2, . . . , n j+1,k].

In [7] we have introduced a scale-invariant model of mat-
ter as fractal chain system of harmonically oscillating protons
and electrons that generates the fundamental field F . Normal
matter is formed by nucleons and electrons because they are
exceptionally stable quantum oscillators. In the concept of
isospin, proton and neutron are viewed as two states of the
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same quantum oscillator. Furthermore, they have similar rest
masses. However, a free neutron decays into a proton, an
electron and antineutrino within 15 minutes while the life-
spans of the proton and electron top everything that is mea-
surable, exceeding 1029 years [20].

The exceptional stability of electron and proton predesti-
nate their physical characteristics as fundamental units. Ta-
ble 1 shows the basic set of electron and proton units that can
be considered as a fundamental metrology. In [8] was shown
that it is compatible with Planck units [21].

Within our model, the proton-to-electron ratio (tab. 1) is
caused by the fundamental field F . In fact, the natural loga-
rithm is close to rational:

ln
938.2720813 MeV
0.5109989461 MeV

≈ 7 +
1
2
.

As a consequence, the fundamental field of the proton is
complementary to that of the electron, because integer loga-
rithms of the proton F correspond to half logarithms of the
electron F and vice versa, so that the scaling factor

√
e con-

nects similar equipotential surfaces of the proton field with
those of the electron field in alternating sequence [8].

We hypothesize that scale invariance of the fundamental
field F calibrated on the physical properties of the proton and
electron (tab. 1) is a universal characteristic of organized mat-
ter and criterion of stability. This hypothesis we have called
Global Scaling [22].

Results

Within our scale-invariant model of matter [7], atoms and
molecules emerge as eigenstates of stability in fractal chain
systems of harmonically oscillating protons and electrons.

Andreas Ries [23] demonstrated that this model allows
for the prediction of the most abundant isotope of a given
chemical element. From this point of view, any physical body,
being solid, liquid or gas can be seen as fractal chain system
of oscillating molecules, atoms, ions, protons and electrons
that follows the fundamental field F .

Therefore, in the framework of our fractal model of mat-
ter, the fundamental field F affects any type of physical inter-
action, regardless of its complexity.

In [24] we applied our model to the analysis of gravimet-
ric and seismic characteristics of the Earth and could show
that our estimations [25] correspond well with established
empiric models of the Earth interior.

In [26] we did demonstrate that the vertical sequence of
stable atmospheric layers corresponds with the sequence of
main spatial equipotential surfaces of the fundamental field
F , not only at Earth, but also at Venus, Mars and Titan.

In [27] was demonstrated that the mass distribution in the
solar system and the mass distribution of elementary particles
follow the same scaling law. In [8] was shown that the dis-
tribution of rotation and orbital periods in the solar system

corresponds with main temporal equipotential surfaces of the
fundamental field F .

For verification of Global Scaling in this paper we con-
sider only direct measurements and refer on data that should
not contain systematic errors. As such data we consider the
rotation and orbital periods, but also the majority of estimated
body radii and orbital distances in the solar system.

Fig. 2 shows the correspondence of orbital periods for
planets and planetoids of the solar system with equipotential
surfaces of the fundamental field F . Tab. 2 contains the cor-
responding data. Integer numbers in the bottom of the graphic
are natural logarithms of main equipotential surfaces [n0;∞]
of the fundamental field F calibrated on the proton (bold) and
electron (thin). For example, Jupiter’s orbital period [28] cor-
responds with the main temporal equipotential surface [66;
∞] of the fundamental field F calibrated on the oscillation
period of the electron:

ln
(

T Jupiter

τelectron

)
= ln

(
4332.59 · 86400 s

2π · 1.28808867 · 10−21 s

)
= 66.00

The logarithmic scale in fig. 2 covers a range of 79 to
235000 days ≈ 640 years.

Fig. 3 shows the correspondence of orbital periods for
moons of the solar system and planets of the systems Trap-
pist 1 [29] and Kepler 20 [30] with temporal equipotential
surfaces of the fundamental field F . Tab. 3 and 4 contain the
corresponding data. It is remarkable that the orbits of Trappist
1b, c, d and e correspond with main equipotential surfaces of
the fundamental field F . This is also valid for Kepler 20b, c,
d and e and for many other exoplanetary systems we did not
include in this paper.

Because of the complementarity of the fundamental field
of the proton to that of the electron, equipotential surfaces
of the type [n j0;±2] coincide always with complementary

body orbital period T, d ln (T/2π τe) F
Eris (P) 203830 69.86 [70; -6]

Pluto (P) 90560 69.04 [69;∞]

Neptune 60182 68.64 [69; -3]

Uranus 30688.5 67.96 [68;∞]

Saturn 10759.22 66.91 [67;∞]

Jupiter 4332.59 66.00 [66;∞]

Ceres (P) 1681.63 65.06 [65;∞]

Mars 686.971 64.16 [64; 6]

Earth 365.256363 63.53 [63; 2]

Venus 224.701 63.04 [65;∞]

Mercury 87.9691 62.12 [62; 6]

Table 2: Natural logarithms of the orbital period-to-electron oscilla-
tion period ratios for planets and heaviest planetoids (P) of the solar
system and the corresponding equipotential surfaces of the funda-
mental field F . Data: [28]
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Fig. 2: Correspondence of orbital periods of planets and planetoids of the solar system with temporal equipotential surfaces of the fun-
damental field F . Integers in the bottom of the graphic are natural logarithms of main equipotential surfaces [n j0;∞] of the fundamental
field F calibrated on the proton (bold) and electron (thin). The logarithmic scale covers a range of 79 to 235 000 days ≈ 640 years. Tab. 2
contains the corresponding data.

Fig. 3: Correspondence of orbital periods of moons of the solar system and planets of the systems Trappist 1 and Kepler 20 with temporal
equipotential surfaces of the fundamental field F . The logarithmic scale covers a range of 0.5 to 220 days. Tab. 3 and 4 contain the
corresponding data.

Fig. 4: Correspondence of metric characteristics of large structures in the solar system with spatial equipotential surfaces of the fundamental
field F . The logarithmic scale covers a range of 670 km to 295 AU. The width of the arrows is a measure of data dispersion or eccentricity
of an orbit. Grey arrows and descriptions are hypothetical. The corresponding data are published in [8, 25].
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Fig. 5: Correspondence of rotation periods of planets and some planetoids of the solar system with temporal equipotential surfaces of the
fundamental field F . The logarithmic scale covers a range of 9 to 6000 hours. Tab. 5 contains the corresponding data.

main equipotential surfaces [n j0;∞], so that the remaining or-
bits correspond mostly with equipotential surfaces of the type
[n j0;±3]. This distribution is a consequence of the fractal hi-
erarchy 1/2, 1/3, 1/4, ... of stability layers (see fig. 1) given
by the continued fraction (1) of natural logarithms.

Fig. 4 shows the correspondence of metric characteristics

moon of orbital period T, d ln (T/2π τe) F
EARTH

Moon 27.321661 60.94 [61;∞]

JUPITER
Callisto 16.689 60.45 [60; 2]

Ganymede 7.1546 59.61 [60; -3]

Europa 3.5512 58.91 [60;∞]

Io 1.7691 58.21 [58; 4]

SATURN

Iapetus 79.3215 62.00 [62;∞]

Titan 15.945 60.41 [60; 2]

Rhea 4.5182 59.14 [59; 6]

Dione 2.7369 58.65 [59; -3]

Tethys 1.8878 58.26 [58; 4]

Enceladus 1.3702 57.95 [58;∞]

Mimas 0.942 57.57 [57; 2]

URANUS

Oberon 13.4632 60.24 [60; 4]

Titania 8.7062 59.78 [60; -4]

Umbriel 4.144 59.05 [59;∞]

Ariel 2.52 58.54 [58; 2]

Miranda 1.4135 57.98 [58;∞]

NEPTUNE

Nereid 360.1362 63.52 [63; 2]

Triton 5.877 59.41 [59; 2]

Proteus 1.1223 57.75 [58; -4]

Larissa 0.555 57.04 [57;∞]

Table 3: Natural logarithms of the orbital period-to-electron oscil-
lation period ratios for the largest moons of in the solar system and
the corresponding equipotential surfaces of the fundamental field F .
Data: [31]

of large structures in the solar system with spatial equipoten-
tial surfaces of the fundamental field F . The corresponding
data are published in [8, 25]. For example, the visible equa-
torial radius of Saturn [32] corresponds with the main spatial
equipotential surface [54;∞] of the fundamental field F cal-
ibrated on the wavelength of the proton (tab. 1):

ln
(

rSaturn

λproton

)
= ln

(
6.0268 · 107 m

2.1030891 · 10−16 m

)
= 54.01

The logarithmic scale in fig. 4 covers a range of 670 km
to 295 AU. In general, the width of the arrows is a measure of
data dispersion or eccentricity of an orbit. Grey arrows and
descriptions are hypothetical.

Fig. 4 shows that the orbits of Venus, Jupiter, Saturn and
Pluto correspond with main equipotential surfaces [n j0;∞] of
the fundamental field F .

It is notable that Jupiter’s orbit represents the logarithmic
mean between the orbits of Venus and Pluto. The orbits of

planet of orbital period T, d ln (T/2π τe) F
TRAPPIST 1

H 18.767953 60.56 [60; 2]

G 12.354473 60.15 [60; 6]
F 9.205585 59.86 [60;∞]

E 6.099615 59.45 [59; 2]

D 4.04961 59.03 [59;∞]

C 2.4218233 58.51 [58; 2]

B 1.51087081 58.04 [58;∞]

KEPLER 20

D 77.61130017 61.98 [62;∞]

G 34.94 61.17 [61; 6]

F 19.57758478 60.61 [61; -3]

C 10.85409089 60.01 [60;∞]
E 6.09852281 59.45 [59; 2]

B 3.69611525 58.94 [59;∞]

Table 4: Natural logarithms of the orbital period-to-electron oscilla-
tion period ratios for exoplanets of the systems Trappist 1 and Kepler
20 with the corresponding equipotential surfaces of the fundamental
field F . Data: [29, 30]
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body rotation period τ, h ln (τ/τp) F
Venus 5816.66728 72.48 [72; 2]

Mercury 1407.5 71.05 [71;∞]

Sun 823.346 70.51 [70; 2]

Pluto (P) 152.87496 68.83 [69; -6]

Eris (P) 25.9 67.06 [67;∞]

Mars 24.62278 67.01 [67;∞]

Earth 23.93444 66.98 [67;∞]

Uranus 17.24 66.66 [67; -3]

Neptune 16.11 66.57 [66; 2]

Saturn 10.55 66.16 [66; 6]

Jupiter 9.925 66.09 [66;∞]

Ceres (P) 9.07417 66.01 [66;∞]

Table 5: Natural logarithms of the rotation period-to-proton oscilla-
tion period ratios for planets and heaviest planetoids (P) of the solar
system and the corresponding equipotential surfaces of the funda-
mental field F . Data: [28].

Mercury, Earth, Mars, Ceres correspond all with equipoten-
tial surfaces of the type [n j0;±3]. This is valid also for the or-
bits of Ganymede, Rhea, Dione and the Moon. The orbits of
Uranus and Neptune correspond with equipotential surfaces
[n j0;±4].

The orbits of Callisto, Europa, Io and Titan correspond
with main equipotential surfaces [n j0;∞]. This is also valid
for the orbits of Tethys, Umbriel, Titania and Iapetus.

The radius of the photosphere of the Sun and the visible
radius of Saturn correspond with main spatial equipotential
surfaces [n j0;∞].

The visible radii of Jupiter, Uranus and Neptune, but also
the radii of the solid bodies Mars, Mercury, Ganymede, Titan,
Callisto, Europa and Ceres correspond all with equipotential
surfaces of the type [n j0;±3]. Only the radii of Earth and
Venus correspond with equipotential surfaces [n j0;±4]. The
radii of Io, the Moon, Pluto and Eris correspond with main
equipotential surfaces [n j0;∞].

It is remarkable that the orbit of Europa coincides with
the radius of the Sun (boundary of the photosphere), the or-
bit of Galatea (Neptune VI) coincides with Saturn’s radius
(stratopause) and the orbit of Larissa (Neptune VII) with the
radius of Jupiter.

Fig. 5 shows the correspondence of rotation periods of
planets and large planetoids of the solar system with tempo-
ral equipotential surfaces of the fundamental field F . The
logarithmic scale in fig. 5 covers a range of 9 to 6000 hours.
Tab. 5 contains the corresponding data.

The rotation periods of Venus, Mercury, the Sun, Earth,
Mars, Eris, Neptune, Jupiter and Ceres coincide with main
equipotential surfaces while the rotation periods of Saturn,
Uranus and Pluto correspond with temporal equipotential sur-
faces of the type [n j0;±3].

Although the rotation of Venus [31] is retrograde, its rota-
tion period of 5816.66728 hours fits perfectly with the main
temporal equipotential surface [65;∞] of the electron F :

ln
(
τVenus

τelectron

)
= ln

(
5816.66728 · 3600 s
1.28808867 · 10−21 s

)
= 64.96

Concluding our analysis of the solar system and exoplan-
etary systems we assume that planetary systems preferentially
occupy main equipotential surfaces of the fundamental field
F . This circumstance makes possible the calculation of re-
maining orbits in exoplanetary systems.

Conclusion

The logarithmic projection of the fundamental field F reveals
the remarkable scale symmetry of the solar system and sug-
gests that it could hardly be the consequence of random col-
lisions. Within our cosmological hypothesis of Global Scal-
ing [8], the formation of the solar system as well as exoplan-
etary systems can be understood in terms of harmonic oscil-
lations in chain systems.

Movement along equipotential surfaces requires no work.
That’s why stable orbits correspond with equipotential sur-
faces of the fundamental field F and orbital eccentricity is
always limited by neighboring equipotential surfaces [8].

Equipotential surfaces of the fundamental field F define
not only stable planetary orbits, but also the metric charac-
teristics of stratification layers in planetary atmospheres [26]
and lithospheres [25]. From this point of view, metric charac-
teristics of stable structures origin from the same fundamental
field F and different only in scale.

The conceptual core of our model are harmonic oscilla-
tions in chain systems. These oscillations remain stable only
if resonance interaction inside the system can be avoided. As
solution survives a logarithmically fractal set (1) of transcen-
dental frequency ratios. Note it is not a simple power law.

We suppose that basic power rules like the Titius-Bode
[33], Dermott’s rule [34] as well as the discovered golden
number [35] and Fibonacci ratios [36] in solar planetary and
satellite systems and in exoplanetary systems reflect a local
feature of the fundamental field F , because

√
e = 1,648... is

close to the golden number ϕ = 1.618... and for small ex-
ponents, the rounded up powers of the square root of Euler’s
number deliver the sequence of Fibonacci numbers.

Another essential aspect of our cosmological model [8]
is Global Scaling, the hypothesis that in the universe there is
only one global fundamental field F . In fact, it was demon-
strated that scale relations in particle physics [6, 7, 37] and
nuclear physics [23, 38, 39], astrophysics [8, 27, 40–43], geo-
physics [25, 26] and biophysics [44, 45] follow always the
same fundamental field F calibrated on the proton and elec-
tron, without any additional or particular settings. The uni-
versality and unity of the fundamental field F might signify
that everything in the universe is part of one giant oscillating
chain system.
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Cosmological Cold Dark Matter and Dark Energy
Match Icosahedron Symmetry

Felix Tselnik
E-mail: tselnik@bgu.ac.il

A charge analogous though different from the usual electric charge is introduced with
the same kind of gauge but applied to the icosahedron. This “cosmocharge” might be a
source of the accelerating expansion of universe in cosmology (Dark Energy).

In a unmetric approach [1], contact is the prime concept de-
fined by the point-like — yes/no — condition, and all pre-
dictions in a Contact Problem are made by means of count-
ing top-velocity signal oscillations numbers between bodies
moving along their trajectories. In so doing, we need no in-
termediaries like rulers, clocks, or reference frames that could
introduce all of their own or hide something. Therefore only
direct motion-to-motion measurements should be used. Then
even the concept of body is introduced solely as something,
for which Contact Problem makes sense.

Suggesting free motion to be rectilinear and uniform, we
ascribe acceleration to external forces. However, as men-
tioned by Einstein, this picture leads to a vicious circle, since
the absence of forces itself is verified just by this kind of
motion. There is nothing intrinsic for an individual straight
line. Moreover, how can we be sure in practice that rulers are
straight and clocks click uniformly? And are such features of
these auxiliary devices actually necessary for Contact Prob-
lem predictions? Can integration required to construct the
trajectory in a field be carried out without approximation with
such segments?

Metric-less approach makes it possible to dispense with
these artificial schemes. Rather than consider particular lines,
we could first work with classes of lines provided with some
particular rules for mutual intersections and then develop full
space-time geometry out of these. To this end, let us define
first a special class of trajectories with the following prop-
erty: Any two of these either do not intersect, or intersect
in a single point. We define free trajectories as members of
this class. Assuming their intersections to mark contacts, we
can consider Contact Problem for this class only, implying its
further application to the full Contact Problem with external
forces. For this to be possible, general trajectories, which can
have multiple contacts as mutual, so also with free trajecto-
ries, must satisfy some conditions:

i. They contact some of free trajectories at each points;

ii. At each point a next point exists, such that a free tra-
jectory connecting these two points has no other con-
tacts with this general trajectory. As shown in [1], we
can define parallel trajectories and predict contacts us-
ing them by means of counting top-signal oscillations
ratios.

The reaction of the body’s motion on external influences
depends on its charge pertained to a particular field. Any
Contact Problem can be specified by means of oscillations
numbers and their ratios, provided the standard of charge can
be transported to all points of a trajectory in question. It is
just the availability of this procedure that provides the list of
relevant fields as compatible with it. To this end, some partic-
ular arrangements of test trajectories — spheres — are used.
Sphere is defined as a finite or infinite set of trajectories hav-
ing common contact (the sphere center) with some definite
ratios of (infinite) oscillations numbers in order to introduce
a measure for operations such as field determining integra-
tion. Some kinds of spheres — regular stars, the trajectories
of which are distributed according to the vertices of the Pla-
tonic solids, provide a basis for the electric charge gauge by
means of detecting the related symmetries of their motions
toward the star center solely under their interaction.

In particular, the cube symmetry defines the charge gauge
for the electroweak interaction. Considering the trajectories
of the two cube comprising tetrahedrons, one of which con-
sists of four electrons and another of four positrons, we can
develop a full gauge framework for these interactions, yet ad-
ditionally requiring the existence of neutrinos (with the re-
sulting parity violation) [2]. In the same sense the dodeca-
hedron star, comprising besides the cube also the 12-vertices
set of “roofs”, ascribed to the quarks, adds the strong inter-
action in accord with this additional symmetry. The set of
roof trajectories might have a center on their own, provided
the strong potential squarely increases (over a limited range)
to form a strictly fine star. Their electromagnetic interaction
with the cube sub-star of this dodecahedron (necessary to fix
their position with respect to the cube) prevents the latter from
being a strictly fine star. For this perturbation to fall within
the range of the weak interaction, the quark masses must be
accordingly small. The dodecahedron symmetry exhausts the
list of interactions that could be ultimately registered with our
electricity-based devices.

Of the five Platonic solids, only the cube and the icosa-
hedron allow for arrangements of trajectories that can form
strictly fine regular stars even for charged particles, provided
these have equal masses and absolute values for oppositely
charged particles (neither tetrahedron, nor octahedron can
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form these). Since the icosahedron cannot be included in the
richest with sub-stars dodecahedron, its possible charges have
nothing in common with electric or other charges of the do-
decahedron. Hence, this charge cannot be detected with our
customary devices.

Like the roofs of the dodecahedron, the set of 12 trajecto-
ries of the icosahedron corresponding to its 12 vertices can be
decomposed into 3 reciprocally orthogonal rectangles (how-
ever, having a particular — “golden” — ratio of their sides’
lengths for the star to be regular). Again, in each rectangle all
these trajectories belong to test-bodies for the charge gauge,
having equal masses and absolute values of some charge with
opposite signs on their side vertices. Then mutual compen-
sation of these charges lets these 3 rectangles be quite inde-
pendent of each other due to compensation of effects of one
charged rectangle on another.

Just as the usual electric charge in our ordinary situa-
tions creates a field that, in turn, is detectable due to charged
bodies motion, this “cosmocharge” Q, though being not de-
tectable with our conventional devices, still might be found
in observations of far galaxies or their clusters [3]. If, anal-
ogously to baryon matter-antimatter asymmetry, one sign of
cosmocharge has some larger density than its opposite one,
then so created “cosmofield” will let our universe expand with
acceleration now ascribed to the Dark Energy. Similarly to
the rectangles of the strong interacting sub-star in the dodec-
ahedron, the rectangles of the icosahedron can possess strictly
fine center only for a force with a potential squarely increas-
ing with distance. Consisting of opposite charges, such a
“cosmoplasma” might fluctuate to have observable anisotropy
in the universe expansion acceleration.

For basic electromagnetic interaction for the charge gauge
in the dodecahedron, we had to restrict the strong interaction
region to prevent adverse influence of 12 vertices subset on
the cube symmetry. There is no need in this confinement now,
since the charge of only one force is to be gauged. Hence
the increasing field can exist over the whole universe keeping
asymptotic freedom in our short range environment, while be-
ing effective far away.

Having no sub-symmetries in the icosahedron star, the
cosmofield cannot involve other than strong-like interactions.
However, its rectangles might have different values of Q and
masses M, provided Q2M are the same for all of them to form
a regular icosahedron star. So, stable “cosmoatoms” might
exist as combined of bodies with different Q’s and M’s to
avoid annihilation.

Now, in general relativity, scalar action includes an arti-
ficially inserted baryon term, contributing to the momentum-
energy tensor in the Einstein equation and basing only on a
covariance argument. This source of space-time curvature
looks natural for our local environment. Moreover, we can
specify space-time scalar curvature as a violation of transitiv-
ity in the finite local oscillations numbers for sets of curved
lines that are still regarded “parallel” in terms of our oscilla-

tions numbers. So defined, curvature should replace the scalar
in the least action principle for Contact Problem. We then re-
verse the very definition of matter. Just as in Contact Problem
a concept of body was introduced due to its participation in
Contact Problem scheme, the concept of matter in cosmology
is just a visualization of the observed curvature of space-time.
Unlike baryon case of general relativity, there is no indepen-
dent of curvature definition of matter now. Actually, no Cold
Dark Matter, whether or not detectable, might exist there at
all. Merely the empty space-time of the real universe is actu-
ally curved, while we ascribe the measured curvature to some
imaginary Cold Dark Matter as its source in analogy to the
Newton law.
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The Planck Vacuum Physics Behind the Huygens Principle and
the Propagator Theory for the Schrödinger Electron

William C. Daywitt
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E-mail: wcdaywitt@me.com

This paper reviews a small portion of the quantum-electrodynamic propagator model
as viewed from the Planck vacuum (PV) theory. The nonrelativistic calculations sug-
gest that the degenerate collection of Planck-particle cores (that pervade the invisible,
negative-energy vacuum state) is responsible for the Huygens principle, the propagator
theory, and the Feynman diagrams.

1 Introduction

The theoretical foundation [1–3] of the PV theory rests upon
the unification of the Einstein, Newton, and Coulomb super-
forces:

c4

G

(
=

m∗c2

r∗

)
=

m2
∗G
r2
∗

=
e2
∗

r2
∗

(1)

where the ratio c4/G is the curvature superforce that appears
in the Einstein field equations. G is Newton’s gravitational
constant, c is the speed of light, m∗ and r∗ are the Planck mass
and length respectively [4, p. 1234], and e∗ is the massless
bare charge. The fine structure constant is given by the ratio
α = e2/e2

∗, where (−e) is the observed electronic charge.
The two particle/PV coupling forces

Fc(r) =
e2
∗

r2 −
mc2

r
and F∗(r) =

e2
∗

r2 −
m∗c2

r
(2)

the electron core (−e∗,m) and the Planck-particle core
(−e∗,m∗) exert on the PV state, along with their coupling con-
stants

Fc(rc) = 0 and F∗(r∗) = 0 (3)

and the resulting Compton radii

rc =
e2
∗

mc2 and r∗ =
e2
∗

m∗c2 (4)

lead to the important string of Compton relations

rcmc2 = r∗m∗c2 = e2
∗ (= c~) (5)

for the electron and Planck-particle cores, where ~ is the re-
duced Planck constant. The electron and Planck-particle
masses are m and m∗ respectively. To reiterate, the equa-
tions in (2) represent the forces the free electron and Planck-
particle cores exert on the PV space, a space that is itself per-
vaded by a degenerate collection of Planck-particle cores [5].

The Planck constant is a secondary constant whose struc-
ture can take different forms, e.g.

~ [erg sec] = rcmc = r∗m∗c =

(
e2
∗

r∗

)
t∗ = m∗c2t∗ (6)

that are employed throughout the following text, where t∗ (=
r∗/c) is the Planck time [4, p. 1234].

Furthermore, the energy and momentum operators ex-
pressed as

Ê = i~
∂

∂t
= i (m∗c2) t∗

∂

∂t
= i (m∗c2) r∗

∂

c∂t
(7)

and

c p̂ = −i c ~∇ = −i (m∗c2) r∗ ∇ = −i (mc2) rc ∇ (8)

will be used freely in what follows.
Section 2 re-examines the Schrödinger equation in light of

the PV theory, the calculations concluding that the pervaded
vacuum state is the source of the scattering in the propagator
theory. Section 3 presents a nonrelativistic look at the Huy-
gens principle and the propagator theory for the electron core.

2 Schrödinger equation

The inhomogeneous Schrödinger equation, where H = H0+V
is the Hamiltonian operator, can be expressed as(

i~
∂

∂t
− H

)
ψ(x, t) = 0 . (9)

The free-space Hamiltonian is H0 and V is some position and
time-dependent potential that is assumed to slowly vanish in
the remote past (t → −∞) and in the remote future (t → +∞).
In free space V = 0 and (9) becomes(

i~
∂

∂t
− H0

)
φ(x, t) = 0 . (10)

For t′ > t, the formal solution to (9) or (10) takes the
form [6]

ψ(x, t′) = T exp
[
−i

∫ t′

t
dt
′′

H(t′′)/~
]
ψ(x, t) (11)

where T is the time-ordering operator whose details are unim-
portant here (see Appendix A). What is important is the de-
composition of ~ (= m∗c2t∗) in the exponent of (11), leading
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to ∫ t′

t

dt
′′

H(t′′)
~

=

∫ t′

t

dt
′′

t∗

H(t′′)
m∗c2 . (12)

From the perspective of the PV theory, the normalization of
dt
′′

by the Planck time t∗ and H by the Planck-particle mass
energy m∗c2 strongly suggest that the scattering in the quan-
tum-electrodynamic propagator theory is caused by the
Planck-particle cores that pervade the vacuum state. This
conclusion will be reinforced by the calculations to follow.

The normalized Hamiltonian operator H0 can be
expressed as

H0

m∗c2 =
“p2/2m”

m∗c2 =
ĉp · ĉp/2mc2

m∗c2

=
(−im∗c2r∗∇) · (−imc2rc∇)/2mc2

m∗c2 = −
rcr∗∇2

2

(13)

where the equalities in (5) are used. Then the normalized
Schrödinger equation becomes

ir∗
∂φ

c∂t
−

(−irc∇) · (−ir∗∇)
2

φ = 0 (14)

or (
it∗
∂

∂t
+

rcr∗∇2

2

)
φ = 0 (15)

where t∗ (= r∗/c) is the Planck time and the equations are di-
mensionless. The dimensionless aspect of the equations here
and in what follows will help in recognizing the relationship
between the Huygens principle and the propagator formalism.

The normalized inhomogeneous equation (9) becomes(
it∗
∂

∂t
+

rcr∗∇2

2

)
ψ =

V
m∗c2 ψ (16)

where again the equation is dimensionless.

3 Electron-core propagator

Roughly speaking, the Huygens principle states that every
point on a wavefront is itself the source of a spherical wavelet.
In the present context, the Huygens principle takes the form
[7, eqn. 6.29]

φ(x′, t′) = i
∫

d3x
G0(x′, t′; x, t)

~
φ(x, t) for t′ > t

φ(x′, t′) = i
∫

d3x
G0(x′, t′; x, t)

(m∗c2)t∗
φ(x, t) (17)

and

ψ(x′, t′) = i
∫

d3x
G(x′, t′; x, t)

~
ψ(x, t) for t′ > t

ψ(x′, t′) = i
∫

d3x
G(x′, t′; x, t)

(m∗c2)t∗
ψ(x, t) (18)

where the Green function propagators G0 and G have the
units “erg-sec per unit volume”. In the present paper, equa-
tions (17) and (18) are associated with what are defined as
internal- and external-scattering processes respectively. The
internal scattering refers to the free electron φ(x, t) scattering
off the pervaded PV space. The external scattering refers to
the electron ψ(x, t) scattering off the pervaded PV space with
an external potential V(x, t) perturbing that space. It will be
seen in what follows that the units “erg-sec per unit volume”
almost define the “pervaded vacuum space”.

Now begins the calculation of the wave function ψ result-
ing from the continuous interaction of the free-electron wave
function φ with the perturbed vacuum state. The calculation
will not be carried to completion, but only far enough (equa-
tion (25)) to suggest that the wave scattering takes place be-
tween φ and the pervaded vacuum space. Furthermore, many
of the details in the following calculations based on reference
[7] are unimportant to the present needs; so the calculations
are heavily referenced in case the reader is interested in those
details.

For t = ∆t1 [7, eqn. 6.30](
it∗

∂

∂t1
+

rcr∗∇2

2

)
ψ(x1, t1) =

V(x1, t1)
m∗c2 ψ(x1, t1) (19)

and (
it∗

∂

∂t1
+

rcr∗∇2

2

)
ψ(x1, t1) = 0 (20)

for t , ∆t1. Equation (19) refers to an external scattering as
defined above.

The new wave function due to the external perturbation V
in (19) can be expressed as [7, eqn. 6.31]

ψ(x1, t1) = φ(x1, t1) + ∆ψ(x1, t1) (21)

so the Schrödinger equation yields (using (15) for φ)(
it∗

∂

∂t1
+

r∗rc∇
2

2

)
∆ψ(x1, t1)

=
V(x1, t1)

m∗c2

[
φ(x1, t1) + ∆ψ(x1, t1)

]
.

(22)

It can be shown that the second terms on the left and right
sides of (22) can be dropped [7, eqn.6.35], leading to

it∗
∂

∂t1
∆ψ(x1, t1) =

V(x1, t1)
m∗c2 φ(x1, t1) (23)

which to first order in ∆t1 yields

∆ψ(x1, t1 + ∆t1) = −i
V(x1, t1)

m∗c2 φ(x1, t1)
∆t1
t∗

(24)

where the differential ∆ψ(x1, t1) coming from the approxima-
tion is ignored compared to the φ(x1, t1) on the right side of
(24).

For two consecrative time periods ∆t1∆t2, with an infi-
nite past [where ψ(x′) → φ(x′)], it can be argued that [7,
eqn. 6.43]
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Fig. 1: The Feynman diagram for the propagation of the electron
core (−e∗,m) from (x, t) to (x′, t′) with no external scattering.

Fig. 2: The Feynman diagram for the propagation of the electron
core (−e∗,m) from (x, t) to (x′, t′) with one external scattering at
(x1, t1).

ψ(x′) = φ(x′) +

∫
d3x1

∆t1
t∗

G0(x′; 1)
V(1)
m∗c2 φ(1)

+

∫
d3x1

∆t2
t∗

G0(x′; 2)
V(2)
m∗c2 φ(2)

+

∫
d3x1

∆t1
t∗

d3x2
∆t2
t∗

G0(x′; 2)

V(2)
m∗c2 G0(x′; 1)

V(1)
m∗c2 φ(1)

(25)

where the obvious notations (x) ≡ (x, t) and φ(2) ≡ φ(x2) are
used. The four terms in (25) represent respectively the prop-
agation from (x, t) to (x′, t′): a) as a free particle with no ex-
ternal scatterings; b) with one scattering at (x1, t1); c) with
one scattering at (x2, t2); and d) with a double scattering at
(x1, t1) and (x2, t2) in succession. The representations of these
scatterings in Figures 1-4 are called Feynman diagrams [7,
eqn. 6.43], where the horizontal axis represents space and the
vertical axis represents time.

Fig. 3: The Feynman diagram for the propagation of the electron
core (−e∗,m) from (x, t) to (x′, t′) with one external scattering at
(x2, t2).

Fig. 4: The Feynman diagram for the propagation of the electron
core (−e∗,m) from (x, t) to (x′, t′) with a double external scattering
at (x1, t1) and (x2, t2).

4 Conclusions and comments

A close examination of the previous calculations strongly
suggests that the PV theory, which envisions a vacuum space
pervaded by a degenerate collection of Planck-particle cores,
provides a fundamental explanation for the Huygens princi-
ple and the scattering associated with the quantum-electro-
dynamic propagator formalism.

The retarded Green function G+
0 associated with the Green

function G0(x′, t′; x, t) in equation (17) and in Figure 1 is
given by the equations [7, eqn. 6.60](

i~
∂

∂t′
− H0(x′)

)
G+

0 (x′; x)
~

= δ3(x′ − x)δ(t′ − t) (26)

for t′ > t and G+
0 (x′; x) = 0 for t′ < t, where x′ = (x′, t′) and

x = (x, t); or(
it∗

∂

∂t′
+ rcr∗∇2

x′

)
G+

0 (x′; x) = δ3(x′ − x)[t∗δ(t′ − t)] (27)

where the parenthesis on the left and the bracket on the right
of (27) are dimensionless.
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Appendix A: Time-ordering operator T

The time-ordering operator [6] is defined by

T exp
[
−i

∫ t′

t
dt
′′

H(t′′)/~
]
≡ (A1)

∞∑
n=0

1
n!

(
−i
~

)n ∫ t′

t
dt1· · ·

∫ tn−1

t
dtnH(t1) . . .H(tn) (A2)

=

∞∑
n=0

(−i)n

n!

∫ t′

t

dt1
t∗
· · ·

∫ tn−1

t

dtn
t∗

H(t1)
m∗c2 . . .

H(tn)
m∗c2 (A3)

where the final equality comes from the decomposition of the
Planck constant, ~ = m∗c2t∗, in (A2).

Submitted on April 14, 2018
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Predicting Total Angular Momentum in TRAPPIST-1 and Many Other
Multi-Planetary Systems Using Quantum Celestial Mechanics
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TRAPPIST-1 harbors at least 7 Earth-mass planets orbiting a 0.089 solar mass dwarf
M-star. Numerous other multi-planetary systems have been detected and all obey a
quantization of angular momentum per unit mass constraint predicted by quantum ce-
lestial mechanics (QCM) as derived from the general theory of relativity (GTR). The
universality of this constraint dictates that the TRAPPIST-1 system should obey also. I
analyze this recently discovered system with its many mean motion resonances (MMRs)
to determine its compliance and make some comparisons to the Solar System and 11
other multi-planetary systems.

1 Introduction

In the past 25 years, more than 3500 exoplanets have been de-
tected, many in multi-planetary systems with 4 or more plan-
ets [1]. Extreme examples include HD 10180 with 9 plan-
ets and TRAPPIST-1 with 7 planets. In each of the discov-
ered systems the understanding of their formation and stabil-
ity over tens of millions or even billions of years using New-
tonian dynamics remains an interesting challenge.

A prediction of whether additional planets exist beyond
those already detected is not an expected outcome of the dy-
namical studies. However, a different approach [2] called
quantum celestial mechanics (QCM) offers the potential abil-
ity to predict the existence of additional angular momentum
in the planetary system, which could indicate additional plan-
ets to be detected or additional mass in the form of rings or
spherical shells of mass chunks orbiting the star, such as the
Kuiper belt or the Oort Cloud in our Solar System.

The history of the formation of most of these planetary
systems remains an active research area, ranging from in situ
formation from a dust disk to pebble accretion followed by
sequential inward migration toward the central star [3]. Their
stability may depend upon numerous factors, and many re-
search groups continue to investigate the long-term stability
for millions of orbits over tens of millions of years, including
in models for the history of our Solar System.

There is a recent paper [4] that considers the total angular
momentum deficit (AMD) of multi-planetary systems with
the proposal that the AMD is a way to classify their predicted
stability. The AMD is defined by the total angular momentum
difference

AMD =

n∑
k=1

µk
√

GM rk

(
1 −

√
1 − ε2

k cos ik
)

(1)

between the maximum total orbital angular momentum when
all the planets orbit in the same plane and the total angu-
lar momentum determined from the orbital data. The Solar
System and HD 10180 are two examples discussed in which
the outer system of planets is AMD-stable, the inner system

Fig. 1: Solar System fit to QCM total angular momentum constraint.
The uncertainties are within the data circles.

of planets is AMD-unstable, and the whole system is AMD-
unstable.

In fact, this AMD approach demonstrates that the AMD-
unstable systems tend to have orbital period ratios concen-
trated around the lower integer mean motion resonance ratios
such as 3:2 and 2:1, a result perhaps somewhat in conflict with
expectations. This unexpected outcome is interesting because
many planetary systems exhibit at least one mean motion res-
onance (MMR), which had been expected to contribute a sta-
bilizing factor in parts of those systems. The AMD research
therefore means that not all MMRs are beneficial toward sta-
bilizing the planetary orbits.

The recently discovered TRAPPIST-1 system has 7 Earth-
mass planets all within 0.1 au of its dwarf M-star of 0.089 so-
lar masses [5]. Three of the planet pairs exhibit a 3:2 MMR
and another pair exhibits the 4:3 MMR, yet studies indicate
that this system has been in existence for at least 7 billion
years. Perhaps an additional factor contributes to the stability
of these multi-planetary systems.

We propose that the additional factor is the quantization
of angular momentum per unit mass predicted by quantum ce-
lestial mechanics (QCM). The QCM theory [6] dictates that
not all planetary orbits about the central star are available
as equilibrium orbits but, instead, QCM determined equilib-
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rium orbits exist only at specific radii. Bodies in orbits at
all other radial distances will migrate towards these specific
QCM equilibrium orbital radii.

In the following sections we review the QCM proposed
angular momentum constraint that leads to a select set of or-
bital radii for all planetary systems and demonstrate its ap-
plication to the Solar System, the 5 moons of Pluto, the 7
planets of TRAPPIST-1, and to numerous other exoplanetary
systems, including HD 10180.

2 The QCM angular momentum constraint

The total angular momentum in a planetary system is an im-
portant physical parameter not often discussed. In 2003, H. G.
Preston and F. Potter proposed [6] a new gravitational theory
called Quantum Celestial Mechanics (QCM), which is de-
rived from the general theory of relativity (GTR), that claims
that all gravitationally bound systems in the Schwarzschild
metric will exhibit the quantization of angular momentum per
unit mass constraint

L
µ

= m
LT

MT
(2)

with m being the orbit quantization integer, L the angular
momentum of each orbiting body of mass µ, and LT and MT

the total angular momentum and total mass of the planetary
system.

In the simplest applications of QCM, one assumes that
after tens of millions of years that the orbiting planet is at
its equilibrium orbital radius r with a small eccentricity ε
so that the Newtonian orbital angular momentum value L =

µ
√

GM r(1 − ε2), with M being the star mass, can be used.
For most multi-planetary systems, including the Solar Sys-
tem, TRAPPIST-1, and HD 10180, the values of ε are all less
than 0.2 and will be ignored in the QCM analysis fit to the
constraint.

Because the QCM quantization of angular momentum per
unit mass constraint is derived from the general relativistic
Hamilton-Jacobi equation via a simple transformation, one
obtains a new gravitational wave equation [6]. In the famil-
iar Schwarzschild metric this gravitational wave equation will
apply to all gravitationally-bound systems with orbiting bod-
ies. However, as in GTR, different metrics can be considered,
including the static interior metric, for which the QCM anal-
ysis of the Universe [7] predicts a new interpretation of the
cosmological redshift in agreement with the data, that all dis-
tant sources are in a more negative gravitational potential than
all observers, i.e. the distant clocks tick slower.

3 Application of QCM to the Solar System

Our first application of QCM in the Schwarzschild metric
was to our Solar System using the known masses and present
spacings of its 8 planets. If only the orbital angular momen-
tum of the 8 planets and the Sun are considered, so that LT

≈ 4 × 1043 kg m2 s−1, then this value of the total angular mo-
mentum meant that QCM predicted that all the planetary or-
bits should be within the radius of the Sun! Obviously, some-
thing was wrong.

At first, we suspected that our derivation of the constraint
was incorrect. But a detailed check proved that our derivation
had been done correctly, including the numerous approxima-
tions needed to obtain an equation with the most important
factors. Therefore, in order to achieve the present day orbital
spacings, we interpreted the QCM equations to be predicting
much more angular momentum in the Solar System, about 50
times as much!

Indeed, we subsequently learned that the Solar System
does have much more angular momentum in its system than
the contributions from just the Sun and its planets. The So-
lar System has an enormous angular momentum contribu-
tion from the Oort Cloud with its approximately 100 Earth
masses of ice chunks orbiting at about an average distance of
40,000 au, thereby dominating the total angular momentum
of the Solar System by almost a factor of 50.

The new orbital fits of QCM using the constraint then
agreed with the present orbital radii of the planets, and we
predicted the total angular momentum in the Solar System to
be the much higher value LT ≈ 1.9 × 1045 kg m2 s−1. Fig. 1
shows our QCM fit to the 8 planets plus the 5 known dwarf
planets, with m values 3, 4, 5, 6, 9, 13, 17, 25, 31, 36, 38,
39, 48.

So, for the first time, we were able to use the QCM angu-
lar momentum constraint to fit the equilibrium orbital radii of
all the planets of the Solar System and to verify that the con-
straint could be an important factor in predicting additional
angular momentum in a planetary system. One should note
that the QCM fit does not require the division of the system
into the inner planets and the outer planets, a prominent fea-
ture of other approaches, including AMD.

The successful application of the QCM angular momen-
tum constraint to the Solar System encouraged us to try to
find a definitive test. But the QCM constraint fit to the So-
lar System and to the orbiting satellites of the Jovian planets
could not be considered definitive tests of QCM because their
system total angular momentum values were not known to
within 10%. So a decade long hunt began to find a multi-
bodied system for which the physical parameters are known
to be within a few percent.

4 Pluto system as a definitive test of QCM

Fortunately, in 2012, the dwarf planet Pluto was reported to
have 5 moons. Their orbital stability was being studied in
reference to the Pluto-Charon barycenter, and the moons are
nearly in a 1:3:4:5:6 resonance condition!

An early QCM linear regression fit with R2 = 0.998 to
the angular momentum constraint for the Pluto system re-
vealed more angular momentum could be present in this sys-
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m r (au) P (days) P2/P1 (n2/n1)3 Lmax MMR(P) MMR(n)
1039 kg m2 s−1

b 15 0.0115 1.51087 1.000 1.000 1.103
c 18 0.0158 2.42182 1.603 1.675 1.802 1.603 1.675
d 21 0.0223 4.04961 2.680 2.600 0.540 1.672 1.552
e 24 0.0293 6.09961 4.037 3.815 1.828 1.506 1.467
f 28 0.0385 9.20669 6.094 5.954 1.651 1.509 1.560
g 31 0.0469 12.35294 8.176 8.000 2.066 1.342 1.344
h 36 0.0619 18.76700 12.421 12.366 0.826 1.519 1.546

9.815

Table 1: Fit of the 7 planets of TRAPIST-1 to the QCM angular momentum constraint.

tem, hinting that at least one more moon could exist. This fit
used the smallest set of integers possible with m values 2, 6,
9, 10, 11, 12. A set with larger integers was also available be-
ginning with m = 4 for a good fit but indicating a lower total
angular momentum value for the system.

Then, in 2015, the New Horizons spacecraft sent back
precise data about the Pluto system that established 5 tiny
moons only. That limitation allowed us to have a definitive
test [8] of QCM because the total angular momentum was
then known to within 2.4%. With the m values 4, 10, 15,
16, 18, 19, the QCM angular momentum constraint applied
to the Pluto system predicted LT = 6.28 × 1030 kg m2 s−1, a
value commensurate with the value LT = 6.26 (±0.14) × 1030

kg m2 s−1 calculated from the known physical parameters.
We therefore consider the Pluto system to be the defini-

tive test of the QCM angular momentum constraint because
we know the pertinent physical parameters to within 2.4%,
and the predicted QCM total angular momentum determined
from the slope of the QCM plot of L/µ vs m agrees with the
total value determined in the standard way using Newtonian
physics.

5 QCM constraint applied to TRAPPIST-1

There has been great interest in the TRAPPIST-1 system be-
cause at least 3 of the planets are in the so-called Habitable
Zone where liquid water and perhaps some kind of life form
could have evolved over its nearly 9 billion year history [10].
However, being so close-in to their M-star also means that
these planets could be experiencing a severe UV radiation
flux as well as particle winds emanating from the star. Stud-
ies of their atmospheric content are under way by researchers
to determine whether water still exists or whether the UV ra-
diation has dissociated any previously existing water vapor
with the resulting particles having evaporated away to leave
behind an arid surface environment [9, 11].

We know that the planetary system orbiting TRAPPIST-
1 harbors at least 7 Earth-mass planets orbiting close-in to
the dwarf M-star of 0.089 M� [5]. More planets further out
beyond 1 au could exist, a possibility that QCM may suggest
by interpreting the constraint fit. The orbital period ratios

reveal that planet pairs d/e, e/f and g/h exhibit nearly a 3:2
mean motion resonance (MMR) and the pair f/g has a 4:3
MMR [9]. Planet pairs b/c and c/d do not have a first order
MMR although their period ratios are near 5:3.

The formation of this system has been a challenge for
modeling, and in a recent study [3] a pebble accretion and in-
ward migration history have been proposed to accommodate
its formation, including a process called resonance trapping
as planets sequentially move inward and build.

The pertinent data for the 7 known planets and the pre-
dicted m values from the system’s linear regression fit to the
QCM angular momentum constraint are provided in Table 1.
This set of m values is the lowest set of integers that achieved
a linear regression least squares fit of R2 > 0.999 for both
plots: L/µ vs m and P2/P1 vs (n2/n1)3, with n = m+1 for
the assumed circular orbits. Of course, other integer sets with
larger m values will also fit the constraint as well, but they
will have a smaller slope and therefore a smaller system total
angular momentum value calculated with (2).

In Fig. 2 is the plot of L/µ vs m with all uncertainties
within the small circles around each data point. From the
slope 8.77 × 1012 m2 s−1 of this QCM fit, one predicts a sys-
tem total angular momentum of 1.56 × 1042 kg m2 s−1. The
angular momentum from the star rotation plus the orbital mo-
tion of the 7 planets is much less, about 1.2 × 1040 kg m2 s−1,
using the values given in Table 1 and a star rotation period of
3.295 days.

The angular momentum difference could be accommo-
dated in several ways, including a larger integer for the first m
value and larger integers overall, thereby reducing the QCM
predicted total angular momentum. Or the difference could
be due to the presence of at least one additional planet further
out beyond a distance of about 1 au. For example, if the addi-
tional planet had the mass of Saturn, its orbit at about 3.8 au
would be sufficient to account for the discrepancy between
the total angular momentum values. And, of course, this sys-
tem could have the equivalent of the Oort Cloud at a large
distance from the star.

The period ratios provided in both columns 5 and 6 are
referenced to planet b. For a circular orbit, n = `+1, and

Franklin Potter. TRAPPIST-1 and Quantum Celestial Mechanics 117



Volume 14 (2018) PROGRESS IN PHYSICS Issue 3 (July)

Fig. 2: QCM angular momentum constraint applied to the
TRAPPIST-1 system of 7 planets close-in to the dwarf M-star. The
uncertainties all lie within the data circles.

Fig. 3: The QCM predicted radial accelerations r̈ for each of the 7
planets of TRAPPIST-1. Note that some planets should experience
corrections to their radial positions over tens of millions of years.

we assume ` = m, its maximum value. QCM predicts period
ratios

P2

P1
=

[
m2 + 1
m1 + 1

]3

. (3)

The largest discrepancy of the QCM predicted period ratios
in column 6 from the actual values in column 5 is for planet e
at 5.5%.

In the last two columns are the calculated MMRs for the
adjacent planets when calculated from values in column 4,
the MMR(P), and values calculated from column 6, for the
MMR(n), revealing the amazing first order resonances d/e,
e/f, g/h, and f/g, as well as the possible higher order reso-
nances b/c and c/d. Planet c exhibits the biggest difference in
QCM predicted values at about 7.2%.

Recall that QCM in the Schwarzschild metric predicts a
specific but limited set of radii for circular equilibrium orbits
that have both inward and outward forces acting, in direct
contrast to Newtonian orbital dynamics which has an equilib-
rium orbit at all planetary orbital radii. For QCM the approx-
imate expression for the effective gravitational potential is

Ve f f = −
GM

r
+
`(` + 1) L2

T

2r2 M2
T

, (4)

where the angular momentum quantization integer ` origi-
nates in the θ-coordinate. We have taken ` = m for the ex-
pression. Whence, the expected value of the orbital radial
acceleration near the equilibrium radius is defined by

r̈eq = −
GM
r2 +

`(` + 1) L2
T

r3 M2
T

. (5)

A computer simulation of the TRAPPIST-1 system could use
this equation to study its long-term QCM dynamic stability
contributions but must also include perturbations by the other
planets. The net QCM accelerations are very small, varying
from around a hundredth to a few tenths of a meter per second
squared.

A plot of the QCM radial accelerations near the equilib-
rium radii for all 7 planets is shown in Fig. 3, where the verti-
cal lines labelled b to h are the reported present radial orbital
distances of the planets. As can be seen from the plot, a small
radial movement inward for planet e is predicted to occur be-
cause its present radial acceleration is negative with respect
to the QCM equilibrium orbital distance.

One would expect that the planets will oscillate about the
QCM equilibrium orbital radii throughout their history, never
settling at the exact radius at which no further radial accelera-
tion would occur. Perturbations from the other nearby planets
as they pass by will be larger than the QCM accelerations, but
they last for short time intervals while the small QCM accel-
erations are acting constantly.

This TRAPPIST-1 system has existed for many billions
of years, so some sort of stabilizing influence has been at
play. We suspect that the QCM angular momentum constraint
is the important additional factor, providing accelerations on
both sides of the predicted QCM equilibrium orbital radius.
A computer simulation will be needed to determine the out-
comes over long time periods.

6 HD 10180 and other exosystems

The QCM quantization of angular momentum per unit mass
constraint is expected to apply to all gravitationally bound
systems described in the Schwarzschild metric.

In previous articles we analyzed multi-planetary systems
with 4 or more planets and found that they all can fit the QCM
angular momentum constraint. We list some of those systems
for comparison in Table 2 in order of increasing star mass in
column 2. Their m values and slope b are derived from the
linear regression plots of L/µ versus m. The QCM value of
LT in column 6 is calculated from b and then compared to
their known total angular momentum values (sum of columns
7 and 8).

Therefore, from the values in Table 2 we notice:

1. That our Solar System’s b value is much larger than all
the other multi-planetary system’s b values. Why? Be-
cause the Solar System has the overwhelming angular
momentum contribution from its Oort Cloud, a physi-
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System Star N m values b QCM LT Star LT Planets LT

M� 1015 m2 s−1 1045 kg m2 s−1 1042 kg m2 s−1 1042 kg m2 s−1

TRAPPIST-1 0.089 7 15,18,21,24,28,31,36: 0.00877 0.00156 0.0113 0.012
GJ 667 C 0.31 7 16,21,26,29,34,39:55 0.0333 0.0206 0.00971 0.169
GJ 581 0.31 6 8,10,14,20,25:47 0.0456 0.0283 0.00454 0.229
HD 40307 0.75 6 9,12,16,19,22:35 0.0863 0.129 0.179 0.340
Tau Ceti 0.783 7 13,14,18,20:25,31,49 0.0923 0.145 0.0820 0.311
HR 8832 0.794 7 4,6,9,12:15,41,44 0.144 0.229 0.491 4.131
Kepler-20 0.912 6 8,10,12,15:18,24 0.105 0.191 0.846
Kepler-11 0.95 6 11,12,15,17,19:26 0.113 0.215 5.60
55 Cancri 0.95 5 3,8,12:23,62 0.160 0.304 0.118 78
Sun 1.0 8 :3,4,5,6,13,17,25,31 0.762 1.524 0.192 31
HD 10180 1.062 9 3,6,7,8,12,14:17,29,46 0.185 0.393 0.436 5.153
Kepler-90 1.20 8 14,15,17,28:33,36,43,50 0.0949 0.228 0.738

Table 2: QCM angular momentum constraint applied to selected multi-planetary systems listed in order of star mass. N is the number of
known planets which determine the m values for a linear regression fit R2 ≥ 0.999. The m values for planets with orbital radii less than
Mercury’s are to the left of the colon. The predicted QCM LT in column 6 is calculated using the QCM slope b times the star mass.

cal property that dictates QCM to predict the very large
orbital spacings for its planets. We cannot say much
more about the Solar System, i.e., predict whether more
planets or dwarf planets exist, because the overwhelm-
ing but unknown total angular momentum contribution
of the Oort Cloud precludes making such a prediction.

2. That for the TRAPPIST-1 system, with its incredibly
small QCM b value, we expect another planet or more
orbiting bodies because the QCM predicted total angu-
lar momentum value is much greater than the orbital
contribution from its 7 known planets and the rotation
of the central star. Perhaps the proposed pebble accre-
tion and inward migration train is the explanation for
its formation, but QCD would suggest otherwise, that
the planets formed in situ by gathering the local dust
accumulating at the QCM equilibrium radii, assuming
that the total angular momentum in this system did not
change significantly during their formation.

3. That even for the HD 10180 system fit, as shown in Fig.
4 with its 9 planets, the total angular momentum from
its star rotation plus the known orbiting planets falls far
short of the QCM predicted total angular momentum,
so more orbiting mass is expected.

4. That all the systems in Table 2 are expected to have ad-
ditional angular momentum based upon the predicted
QCM value of LT . If more planets in these systems are
detected, they should have orbital radii corresponding
to the listed QCM m values that dictate their allowed
equilibrium orbital distances.

Perhaps another exosystem will be discovered in the near
future that also has a large angular momentum contribution
and very large QCM orbital spacings so that direct compar-
isons can be made to the Solar System in terms of the total
angular momentum parameter.

Fig. 4: QCM angular momentum constraint applied to HD 10180.
Uncertainties lie within the data circles.

Note that both the 4 inner planets of the Solar System
and the 7 planets of the TRAPPIST-1 system have been de-
termined to be unstable by the AMD analysis [4]. Yet both
systems have been in existence for more than 4 billion years,
i.e., more than 4 billion Earth orbits. Perhaps the small QCM
gravitational potential valleys around their QCM orbital equi-
librium radii, such as those shown in Fig. 3, are contributing
factors to their long-term stability. Or the existence of ad-
ditional orbital mass further out contributes to their stability
also. A computer simulation of these systems and the others
that includes the QCM constraint could be done to determine
whether this QCM effect is large enough to ensure their long-
term stability.

7 Conclusions

Many multi-planetary systems have been discovered and they
all had been determined previously to obey the QCM quan-
tization of angular momentum per unit mass constraint. For
most of those systems if not all of them, additional angular
momentum is predicted by QCM, angular momentum which

Franklin Potter. TRAPPIST-1 and Quantum Celestial Mechanics 119



Volume 14 (2018) PROGRESS IN PHYSICS Issue 3 (July)

could be contributed by additional planets or spherical shells
of ice.

Now the interesting TRAPPIST-1 system of 7 Earth-like
planets has been shown to obey the angular momentum con-
straint for each known planet in the system. The QCM pre-
dicted total angular momentum of its planetary system is 1.56
×1042 kg m2 s−1 versus the estimated value of 1.2×1040 kg m2

s−1 for the 7 planets plus the star rotation contribution. This
large total angular momentum discrepancy could indicate that
either at least one more planet could exist beyond several 1 au
or that a set of m values with larger integers would be a better
fit to decrease the predicted total angular momentum.

Also, for the TRAPPIST-1 system, from the determined
radial acceleration values near to the QCM predicted orbital
equilibrium radii, several planets could migrate slightly. For
example, planet e has a present radial distance that should de-
crease slightly over several thousand years in order to reach
its nearby predicted QCM orbital equilibrium radius. Pertur-
bations from the other planets will be important to consider in
a computer simulation of its behavior as the planet migrates
to its true QCM equilibrium orbital radius.

We also provide a list of 12 multi-planetary systems so
that a direct comparison of our Solar System QCM param-
eters can be made to other systems. The major difference is
that our Solar System contains significantly more angular mo-
mentum than any other known planetary system discovered.
Our QCM theory uses this information to predict the allowed
equilibrium orbital distances, an approach that explains why
almost all other multi-planetary systems with smaller total an-
gular momentum values can have so many planets within the
orbital radius of Mercury. Dynamically, a larger repulsive or-
bital angular momentum term in the QCM radial acceleration
equation will result in the planets forming at larger orbital
equilibrium radii.

Finally, the long-term stability of these multi-planetary
systems remains a challenge for the traditional modeling us-
ing Newtonian universal gravitation without additional con-
straints. The consideration of the total angular momentum
deficit (AMD) has introduced a method to classify their sta-
bility but is incomplete. Perhaps the QCM quantization of
angular momentum per unit mass approach will be the ad-
ditional constraint needed in order to better understand the
formation and stability of multi-planetary systems.
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In this paper, we consider the implications of the classical scaling of quantum entan-
glement observed experimentally. The probability of preserving entanglements over
classical scales and preventing the entanglement from collapsing due to physical inter-
actions is exceedingly small, indicating a fragile entanglement process. We propose a
physically robust entanglement process that persists to classical scales as observed. We
use a formulation of quantum mechanics that gives precedence to the physical rather
than the mathematical aspects of the theory and its transition to the classical domain,
using a physical interpretation instead of the literal interpretation of the Hilbert space of
the standard formalism. We clarify the difference between separable (product) and non-
separable (entangled) states, and the local realism nature of the product states which
obey Bell’s inequality compared to the non-local nature of the entangled states which
violate Bell’s inequality. We note that the truly quantum mechanical processes such
as the double-slit interference pattern, potential barrier tunneling, and in particular the
entanglement process as we show in this paper, depend on the quantum mechanical
phenomenon of wave-particle duality. In entanglement experiments, the quantum me-
chanical results obtained are from the wave aspect of the wave-particle quantum object
(q-object), just like the interference pattern in double-slit experiments, not the particle
aspect of the q-object which is currently unknowingly assumed. The wave aspect of
the q-object gives rise to the non-local behaviour as would be expected from the quan-
tum mechanical calculations, while the particle aspect exhibits local causal behaviour.
This explains why the entanglement process is robust: the wave-particle q-objects of
entangled states have definite physical characteristics at emission time and are free of
fragile evanescent properties. In addition, we conclude that “spooky action at a dis-
tance” (SAAD) is not required.

1 Introduction

Quantum entanglement is a quantum mechanical property of
a composite quantum system consisting of two or more sub-
systems (such as particles), describing a situation where a
quantum subsystem is linked to another via a specific process
leading to correlations between observable physical proper-
ties of the subsystems. The two-particle spin-singlet state

|ψ−〉 =
1
√

2

(
| ↑1↓2 〉 − | ↓1↑2 〉

)
(1)

is an example of state entanglement in bipartite systems [1,
p. 19].

Schrödinger first introduced the term entangled state to
describe the non-separable pure states of quantum systems
[2], [1, p. 17]. Consider for example the emission of two
photons of opposite polarization from a given process, such
as the stimulated emission of polarization-entangled photons
(see for example [3, 4]). The emitted photons are then con-
ceived of as “entangled” pure states. The system is described
by the wavefunction [4]

|ψ〉 =
1
√

2

(
|�1 〉 |	2 〉 + |	1 〉 |�2 〉

)
(2)

where �i and 	i represent the right-hand and left-hand cir-
cularly polarized photons for i = 1 or 2. This wavefunction

represents what we know of the entangled system, or alterna-
tively represents our lack of knowledge of the specific prop-
erties of each photon that is emitted. All we know is that
if one emitted photon is right-hand circularly polarized, then
the other will be left-hand circularly polarized, and vice versa.
Eq. (2) is a statement of this situation.

The predominant interpretation (the orthodox viewpoint
[5]) is that the wavefunction (2) represents a physical descrip-
tion of the emitted photons in an unresolved evanescent state,
and that once a measurement is performed on one of them, the
wavefunction collapses, the measured photon’s actual proper-
ties are then known and an instantaneous propagation of that
information is perceived by the other photon so that it can as-
sume the complementary properties required by the process
– “spooky action at a distance” (SAAD) as Einstein called it,
a process that some physicists like to think of as quantum
magic, an approach that speaks more of metaphysics than
physics. The reasons for the acceptance of this description
will be considered in greater detail in Section 5.

Over the past decades, experiments have been devised
to extend the range of quantum entanglements, to the point
where classical scales have been achieved. This includes both
the size of entangled objects (e.g. [6–10]) and the distances
over which entanglement has been maintained (e.g. [11, 12]).

These are particularly stunning results as any interaction
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of one of the entangled components with its environment will
collapse the entanglement. The probability of preventingsuch
interactions and preserving entanglements over classical sizes
and distances is exceedingly small. As noted by Jaeger [1,
p. 20] “Indeed, pure such states of two-particle systems are
exceptional rather than typical in the world; typically, a sys-
tem very soon interacts with a number of other systems, so
that, even if it were prepared in a pure state, it is typically
described by a mixed state”.

The probability that a photon can travel a distance x with-
out interaction is given by [13] [14, Section 3.3.1] [15, p 304]

Pno−int(x) = exp(−np σ x) (3)

where np is the particle number density and σ is the total pho-
ton interaction cross-section including absorption and scat-
tering. For propagation of photons in the atmosphere, np ∼

2.5 × 1025 m−3 [16] and σ ∼ 180 barn/molecule ≡ 1.8 ×
10−26 m2/molecule [17]. Using these values in (3), the no-
interaction probability becomes

Pno−int(x) = e−0.45 x (4)

where x is in meters. We see that for classical distances x,
the probability Pno−int(x) increasingly becomes very small.
For example, Pno−int(1 m) = 0.64, Pno−int(10 m) = 0.011,
Pno−int(100 m) = 2.9 × 10−20, Pno−int(1 km) = 3.6 × 10−196.
For the value of 143 km of [11,12] the probability that a pho-
ton can travel such a distance without interaction is astronom-
ically small.

Hence the probability of preserving entanglements over
classical sizes and distances and preventing the entanglement
from collapsing due to physical interactions is exceedingly
small. The question has to be raised: in light of these suc-
cessful classical-scale experiments, are we currently misun-
derstanding the quantum entanglement process such that in-
stead of a fragile entanglement situation as the above consid-
erations indicate, we can derive a quantum entanglement pro-
cess that leads to a physically robust entanglement situation
that persists to classical scales as observed?

2 Quantum entanglement questions

Questions have been raised concerning entanglement and its
extension to the classical (or macro) domain [18]. There is no
doubt that some processes generate particle or photon pairs
that have a definite relationship (correlation) between them
(which are referred to as being entangled) and these relation-
ships are confirmed experimentally. At stake here is the inter-
pretation of the quantum entanglement process, and the im-
pact of the understanding of this process on the development
and technological applications of this quantum mechanical
process – a misinterpretation can lead to considerations that
are not physically realistic.

Questions have also been raised on the limited applica-
bility of Bell’s inequality [19–21], based on the assumptions

used in its derivation. Bell [22] uses a single continuous pa-
rameter λ described by a probability distribution ρ(λ): the
basic limitation of this approach is that it imposes a quan-
tum mechanical calculation approach on the analysis. Bell’s
derivation is only applicable to a specific class of hidden vari-
able theories that can be represented by his starting equation
and assumptions, which Jaynes [20] refers to as Bell theories.
Some hidden variable theories don’t need to satisfy Bell’s
starting equation to reproduce quantum mechanical results,
as evidenced by Bohmian mechanics [23]. Bell’s inequality
is thus found to apply to a limited set of circumstances and sit-
uations, not to every quantum system. Selleri [24] provides a
comprehensive review of the proofs of Bell’s inequality.

Actual experimental demonstration of entanglement is a
challenge. Entanglement experiments detect both entangled
components within the same time window (see Subsection
5.3), so there is no way to confirm the presence or absence of
SAAD – it is assumed to be present purely based on the pre-
dominant interpretation discussed in Section 1. Zhao [19] has
proposed various experiments to clarify the physical proper-
ties of entanglement, including one to determine if the col-
lapse of the entangled wavefunction due to the measurement
of one component causes the transformation of the other com-
ponent due to SAAD as is supposed in the orthodox inter-
pretation. No reports of these experiments having been per-
formed have surfaced – their execution should be given a high
priority to help us better understand the phenomenon of en-
tanglement.

3 Literal or physical interpretation?

To be able to answer the question posed at the end of Sec-
tion 1 on a physically robust entanglement process, we need
to have a better understanding of the physical description of
quantum mechanics and of its transition to the classical do-
main. The orthodox view in the standard formalism of quan-
tum mechanics is done via entanglement, wavefunction col-
lapse and decoherence [25]. This is a literal interpretation of
the Hilbert space mathematical theory of quantum mechanics
developed by von Neumann and Dirac [26, 27]. However, as
noted by Home and Whitaker [15, see p. 309], “[t]o conclude,
there are aspects of classical reality pertaining to the macro-
physical world that cannot be made consistent with quantum
theory in any limit, at least using the standard formalism and
decoherence models.”

This thus leads us to consider other approaches to under-
stand this problem. There are other interpretations of quan-
tum mechanics which satisfy its principles – the book by Ho-
me [14] provides an excellent exposition of the conceptual
foundations of quantum physics. As is well-known [28], the
various formulations of quantum mechanics provide the same
results (Schrödinger wave equation, Heisenberg matrix for-
mulation, Dirac standard formalism, Feynman path integral,
Bohm quantum potential among others) – the differences be-
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tween them lie in the insights that these different formula-
tions can provide. To understand the process under discus-
sion, what is required is a physical interpretation based on a
formulation of quantum mechanics that gives precedence to
the physical rather than the mathematical aspects of the the-
ory, and of its transition to the classical domain.

A physical theory of quantum mechanics which offers a
logical transition into classical physics was first developed
before it was displaced by the preferred standard formalism.
This initial theory was instrumental in the development of
quantum mechanics. Here we briefly recap this approach.

In classical mechanics [29], the phase space description
of a system is given in terms of generalized coordinates q =

{qi ; i = 1, 2, · · · ,N} and canonical momenta p = {pi ; i =

1, 2, · · · ,N} and its time evolution is described in terms of its
Hamiltonian H(q, p) using Hamilton’s equations

q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi

. (5)

The Lagrangian of the system determines its dynamics in con-
figuration space in terms of the coordinates {qi} through the
Euler-Lagrange equations

∂L
∂qi
−

d
dt

(
∂L
∂q̇i

)
= 0 , i = 1, 2, · · · ,N . (6)

If a statistical description of the system is desired, the state
of the system is described in terms of a probability function
P(q, p) defined on the phase space, and its time evolution is
given by

dP
dt

= {P,H} +
∂P
∂t

, (7)

where the Poisson bracket {P,H} is given by

{P,H} =
∑

i

(
∂P
∂qi

∂H
∂pi
−
∂H
∂qi

∂P
∂pi

)
. (8)

The quantum mechanical description of the system de-
rived from the foregoing considerations sees the dynamical
variables (q, p) now interpreted as operators (q̂, p̂) acting on
complex wavefunctions ψ(q) generating observables and sat-
isfying the commutation relation

[q̂i, p̂ j] = i~ δi j , (9)

where ~ is Planck’s reduced constant. This transition from
a classical to a quantum mechanical description, known as
canonical quantization, is effected (done) by the replacement
of classical variables by quantum operators according to

qi → q̂i , pi → p̂i (10)

and (classical) Poisson brackets by (quantum) commutators
according to

{A, B} →
1
i~

[Â, B̂] . (11)

The close relation between the classical and quantum dynam-
ical equations is evident in the similarity between the classical
equation of motion (7) and the quantum equation of motion
as derived by Heisenberg,

d
dt
〈A〉 =

1
i~

〈
[Â, Ĥ]

〉
+

〈
∂A
∂t

〉
. (12)

This result is a manifestation of Ehrenfest’s theorem [30, see
pp. 389–394] which holds that quantum mechanical expecta-
tion values 〈A〉 obey the classical equations of motion. This
similarity points to the relation between the classical prob-
ability functions defined on the (q, p) phase space and the
quantum mechanical expectation values obtained from the
(q̂, p̂) operators acting on the complex wavefunctions ψ(q)
representing our knowledge of the system, which in the end
obey the classical equations of motion.

This approach provides a physical interpretation that can
be used to better understand the classical scaling of quantum
entanglement. One of the characteristics of the above con-
siderations is the physical reality of the underlying quantum
mechanical system as it evolves into a classical system. In the
following section, we consider the nature of quantum states as
this has an impact on the robustness of entangled states.

4 The nature of quantum states

Jaeger [1, pp. 19–22] clearly communicates the importance of
understanding the difference between separable (product) and
non-separable (entangled) states. Over the past quarter cen-
tury, the definition of entanglement has been extended, from
information theory, to include mixed states that are separable
when given as combination of products of subsystem states.
Separable subsystem states are entirely uncorrelated (not en-
tangled), while the entangled mixed states are the insepara-
ble states – however, “[t]he problem of determining whether
or not a given state of a composite system is entangled is
known as the separability problem.” [1, p. 21]. These entan-
gled mixed states tend to somewhat muddle the entanglement
water.

When considering separable (product) states, as noted by
Jaeger [1, p. 21], “...the outcomes of local measurements on
any separable state can be simulated by a local hidden-varia-
bles theory, that is, the behavior of systems described by such
states can be accounted for using common-cause explana-
tions”. In other words, separable states can have definite
physical properties when they are prepared.

It is important to note that Bell’s inequality is violated
only by entangled (non-separable) states. As noted by Jaeger
[1, p. 22], “[t]he quantum states in which correlations be-
tween [components] A and B can violate a Bell-type inequal-
ity are called Bell correlated, or EPR correlated. If a bipar-
tite pure state is entangled, then it is Bell correlated with cer-
tainty, as was first pointed out by Sandu Popescu and Daniel
Rohrlich [31] and by Nicolas Gisin in the early 1990s [32].
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However, no simple logical relation between entanglement
and Bell correlation holds for the mixed entangled states”.

Home [14, pp. 203–209] also makes the point. He con-
cludes “an arbitrary mixture of factorable or product state
vectors always satisfies Bell’s inequality” as first shown by
[33, 34], while “ [f]or any given nonfactorable state vector of
correlated quantum systems it is always possible to choose
observables so that Bell’s inequality is violated by quantum
mechanical predictions.” [14, pp. 205, 208] which was first
demonstrated by [32] as seen previously.

Hence we have two different types of quantum states de-
pending on whether they are product (separable) or entangled
(non-separable) states. Separable states are consistent with
local realism – they can be physical and local, while entan-
gled states are not consistent with local realism, based on
Bell’s inequality. The normal reaction would be that there
should be one consistent behaviour across all states, that the
entangled states’ behaviour trumps the separable states’ be-
haviour, and hence quantum states are not consistent with lo-
cal realism.

However, as seen in Section 2, questions have been raised
about Bell’s inequality, and this difference in behaviour be-
tween separable and entangled states may indicate that there
is a problem with our understanding of Bell’s inequality and
of entanglement in general. We explore this question in great-
er details in the next section, and in doing so, show that we
can in fact derive a robust entanglement process as observed
in the classical scaling of quantum entanglement.

5 A robust entanglement process

The considerations of Section 3 reinforce the underlying phy-
sical building blocks of quantum mechanics: the superposi-
tion principle, Heisenberg’s uncertainty principle and wave-
particle duality. These are crucial to physically understand
the entanglement process and demonstrate why it is a robust
process. While the superposition property results from the
linear wave equations used in the theory and Heisenberg’s un-
certainty principle results from the fact that quantum mechan-
ical canonically conjugate dynamical variables are Fourier
transform pairs of variables [35], wave-particle duality is a
purely quantum mechanical property and is undoubtedly the
most important of these. The truly quantum mechanical pro-
cesses such as the double-slit interference pattern, potential
barrier tunneling, and in particular the entanglement process
as we will see in this section, depend on the quantum me-
chanical phenomenon of wave-particle duality. It is critical to
analyze quantum phenomena in terms of wave-particle dual-
ity to fully understand them.

5.1 Non-existence of hidden-variables?

Home [14] does an extensive review of all proofs of the non-
existence of hidden-variable theories in quantum mechanics
and concludes “[h]aving established that contrary to folklore,

no a priori compelling argument excludes the possibility of
contextual hidden variable theories, the entire enterprise of
developing a more complete description of quantum phenom-
ena beyond the ambit of the standard interpretation becomes
logically legitimate”, and provides a reference to an exam-
ple: “A pedagogically instructive model example of how a
contextual hidden variable model can reproduce the standard
quantum mechanical results is discussed by [36], who show in
detail how such a model can provide an objectively real treat-
ment of decaying, oscillating, and regenerating kaons” [14,
pp. 195–196]. A contextual hidden variable model is one “in
which the value obtained by a measurement is a function of
the premeasurement value as well as the measurement con-
text.” [14, p. 37].

In addition, the basic deficiency of hidden-variable non-
existence proofs is that they are derived within the context of
quantum mechanics. By its very nature, quantum mechan-
ics is a probabilistic theory – so it is not surprising that such
“proofs” find that deterministic results cannot be derived from
quantum mechanics. The reader is referred to [21] for an ex-
ample of this approach in the assumptions used by Bell in
the derivation of his inequality, which leads to the conclusion
that “it is not surprising that Bell’s inequality is not satisfied
in systems that obey quantum mechanics”.

It is important to note that the label “hidden-variable the-
ories” is attached indiscriminately to more complete theories
of quantum mechanics. However, as in the case of Bohmian
mechanics, a deterministic quantum physics theory does not
need to include hidden variables. The proper path to such a
theory is to start outside of quantum mechanics, derive a de-
terministic microscopic theory, and show that quantum me-
chanics can be derived from it – see [44] for an example of
this approach.

Home [14] continues “[t]here are strong physical grounds
for suspecting that the standard framework (formalism and
interpretation) of quantum mechanics is fundamentally inad-
equate, though its empirical success to date is unquestion-
ably impressive” [14, p. 37]. Home identifies the following
aspects of quantum mechanics that are not well understood in
the standard framework: the quantum measurement paradox,
the classic limit of quantum mechanics, nonlocality of quan-
tum mechanics arising from entanglement, and wave-particle
duality [14, pp. 37-38]. These are the very factors at play in
the robustness of the entanglement process as discussed in
this paper.

5.2 Wave-particle q-objects

Entanglement experiments compare the behaviour ofclassical
particles with quantum mechanical results that are unknow-
ingly assumed to represent the particle aspect of the wave-
particle quantum object (which for brevity we refer to as a
“q-object”). It is important to realize that a q-object does not
behave as a classical object due to its explicit wave-particle
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nature. For the wave aspect of a macroscopic object, its de
Broglie wavelength is extremely small and its effect is negli-
gible – however, in the quantum mechanical domain the im-
pact of the wave-particle nature of the q-object becomes sig-
nificant as observed in quantum physics. It is interesting to
note that the impact of wave-particle duality has been ob-
served at mesoscopic scales as reported in [6]. Thus a q-
object is an object where the effect of wave-particle duality
cannot be neglected.

In entanglement experiments, the quantum mechanical re-
sults obtained are from the wave aspect of the wave-particle
q-object, just like the interference pattern in double-slit exper-
iments. Hence, the results obtained in Bell experiments [38]
and other entanglement experiments devised since then are
the quantum mechanical results of the wave aspect of the
wave-particle q-objects which are different from the parti-
cle results, again as seen in double-slit experiments (classical
double-particle pattern versus quantum mechanical wave in-
terference pattern). Similarly in Hardy experiments [39], the
non-zero probability P(A1, B1) [40] obtained in contradistinc-
tion to the local realist probability of zero is due to the wave
aspect of the wave-particle q-object.

Wave-particle duality is still somewhat of a mystery in
quantum mechanics. It is still understood mostly in terms
of Bohr’s principle of wave-particle complementarity which
holds that the wave aspect and the particle aspect of an ob-
ject are complementary aspects of a quantum object [14, see
Chapter 5]. However, wave-particle duality arises naturally in
thetheory of Spacetime Continuum Elastodynamics (STCED)
[57, 58] which is briefly covered in the Appendix and is con-
sidered in greater detail in [44]. This model provides a natural
explanation for wave-particle duality, where an object, rep-
resented as a spacetime deformation, is composed of trans-
verse and longitudinal modes, with the transverse mode cor-
responding to the wave aspects of the deformation and the
longitudinal mode corresponding to the particle aspects of the
deformation.

A wave-particle q-object is thus a hybrid object consisting
of both wave and particle aspects which manifest themselves
differently in experiments, depending on the type of measure-
ment. We examine the experiments of Aspect et al. [41–43]
using single-photon states covered in Home [14, Section 5.4]
to demonstrate how they can be fully understood in terms of
STCED wave-particle duality.

In the “light pulses on a beam splitter” experiment (Ho-
me’s Fig. 5.2), for a pulsed photodiode light pulse, the wave
aspect is expected to apply from the STCED wave-particle
model – indeed, as Home comments “[t]he striking feature
is that even under this apparently quantum condition, light
pulses arriving at the beam splitter continued to behave as
classical waves, and the inequality [PC ≥ PT PR] was never
observed to be violated” [14, p. 288], where PT is the proba-
bility that a single count is transmitted, PR is the probability
that a single count is reflected, and PC is the probability of a

coincidence for that single count.
For a source of single photon pulses from an excited atom

transition, using the same experimental setup, the particle
aspect is expected to apply from the STCED wave-particle
model – indeed, “a clear-cut violation of the inequality [PC ≥

PT PR]” was observed. “This confirmed single particle behav-
ior of the single-photon states.” [14, p. 288].

The experiment was then modified as per Home’s Fig. 5.3
by removing the detectors on either side of the beam splitter
and recombining the two beams using mirrors and a second
beam splitter. Using the source of single photon pulses from
an excited atom transition as previously, this time the wave
aspect is expected to apply from the STCED wave-particle
model as it is being treated as a wave (recombining the two
beams) – indeed, the experiment “showed interference effects
dependent on the difference in path lengths along two possi-
ble routes of single-photon pulses.” [14, p. 288].

This provides experimental confirmation of the STCED
wave-particle model where the wave-particle q-object con-
sists of both wave and particle aspects which manifest them-
selves differently depending on the type of measurement. The
behaviour is physical and logical. In addition, nothing pre-
cludes the wave-particle q-object from having the full phys-
ical properties encoded in the q-object. The results obtained
in the case of non-rotated detectors are in agreement with lo-
cal results that would be obtained classically, because there
are no specific quantum effects coming out of the quantum
mechanical calculations in this case.

This indicates that the entangled q-objects are emitted
with deterministic physical properties. The wave aspect gives
rise to the non-local behaviour (within causality requirements
due to the particle aspect of the q-object) as would be ex-
pected from the quantum mechanical calculations, while the
particle aspect exhibits local causal behaviour [44]. This ex-
plains why the entanglement process is robust: the wave-
particle q-objects of entangled states have definite physical,
not evanescent, characteristics at emission time.

5.3 Physical approach

This leads us to consider a physical approach which posits
that the photons (for example), as wave-particle q-objects, are
emitted with specific properties, but that due to our lack of
knowledge of their detailed characteristics, can only be prob-
abilistically characterized with the wavefunction ψ as a com-
bination of the possible states and their probabilities (the real-
istic viewpoint [5]). Once a measurement is performed on one
of the photons, its properties are resolved, thereby increasing
our knowledge of the system, and allowing us to specify the
properties of the other photon – a simple physical understand-
ing of the process [21]. Such a process can easily scale to
classical objects and distances, and is undeniably very robust
as the q-objects’ properties are determined at emission time,
not evanescent depending either on an experimenter’s whim
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or thought process, or on not having an interaction that would
destroy the entanglement on its way to measurement resolu-
tion. The classical-scale experiments considered previously
are then seen to be a confirmation of this approach.

The wavefunction is thus seen to be a probabilistic de-
scription of our (limited) knowledge of a quantum mechan-
ical system, not a complete physical description of the sys-
tem, with this probability being proportional to the intensity
of the wavefunction as seen in [44]. This explains the laws of
quantum probability [45,46]. We note the same behaviour for
electromagnetic radiation, where the intensity is proportional
to the energy density of the field, which can be converted to a
probability by normalization, as seen in [44].

As a result of the measurement process, the original wave-
function description is superceded (the so-called collapse of
the wavefunction) and is replaced by a more accurate wave-
function description of the quantum mechanical system that
takes into account the results of the measurement process.
As [37] puts it, “When a detector clicks the wavefunction
does not ‘collapse’ from all over space to a point, it is simply
that only part of it is now relevant.”. It is important to note
that this measurement process is effected (done) by the in-
teraction of the quantum mechanical system with an outside
agency, whether it is a measurement apparatus or an interac-
tion with another quantum mechanical system.

This is a simple logical description of the physical process
that does not require metaphysical “spooky action at a dis-
tance” explanations and, by the principle of Occam’s razor, is
a superior explanation of the entanglement process. It should
be noted that the imaginary actors “Bob” and “Alice” which
are used in the explanation of entanglement and SAAD, even
though the explanation is presented as a sequential series of
events, are both aware of the same experimental information
within the same time window, as mentioned in Section 2, and
hence fully satisfy Jaynes’ analysis of entanglement experi-
ments as discussed in [20, 21].

As Home points out, “[c]ontrary to a widely held mis-
conception, we stress that no experiment probing quantum
locality has yet tested quantum correlations measured across
spacelike separation unambiguously.” [14, p. 233]. In pho-
ton polarization correlation experiments [38], “[t]he claim of
spacelike separation is usually based on ensuring that a pho-
ton on one side reaching a photomultiplier detector is space-
like separated from its partner passing the polarization ana-
lyzer on the other side.” However, a typical photomultiplier
detector requires about 30 ns for a current pulse to be gener-
ated following the arrival of a photon, which provides a dif-
ferent spacelike separation than that obtained from the reso-
lution time of a photomultiplier which is usually of order 1
ns [14, p. 233].

It should be noted that the model proposed in this pa-
per is independent of these so-called “loopholes”. They are
mentioned to indicate the difficulty of performing such ex-
periments which raises cautionary notes on the concomitant

dangers of wishful thinking and unrecognized assumptions,
limitations and interpretation of the results.

5.4 Evidence for SAAD?

So why introduce a mysterious agent, “spooky action at a
distance”, when none is required? As we asked in Section
1, what prompts the acceptance of this description as part of
the orthodox interpretation? The reason is that SADD is be-
lieved to be supported by the experimental evidence. How-
ever, the aforementioned considerations and the analysis of
Jaynes [20,21,47] show that the experimental evidence can be
explained without resorting to metaphysics, that the problem
results from the assumption that a conditional probability rep-
resents a physical influence instead of the physically-correct
logical inference that it is.

As Home and Whitaker write [15, p. 238],

In one out of four cases, Alice is lucky with her mea-
surement, and Bob’s particle immediately becomes an
identical replica of Alice’s original. Then it might
seem as if information has traveled instantly from Al-
ice to Bob. Yet this strange feature cannot be used to
send usable information instantaneously, because Bob
has no way of knowing that his particle is already an
identical replica. Only when he learns the result of
Alice’s Bell-state measurement, which is transmitted
to him via classical means, can he exploit the informa-
tion in the teleported quantum state.

where the emphasis is in the original text and we have in ad-
dition highlighted the word “learns”.

In other words, what is believed to be “spooky action at
a distance” is actually the experimenters’ knowledge of the
system suddenly increasing as a result of the measurement
process, and the experimenters being in a position to logi-
cally infer the properties of the distant component, which is
confirmed in the measurement performed on the distant com-
ponent. In actual practice, in entanglement experiments, both
measurements are done in the same time window (see Sec-
tions 2 and 5.3).

There is also a certain intellectual inertia at play. As Bell
[48] commented, “Why is the pilot wave picture [Bohm’s] ig-
nored in text books? Should it not be taught, not as the only
way, but as an antidote to the prevailing complacency? To
show that vagueness, subjectivity, and indeterminism, are not
forced on us by experimental facts, but by deliberate theoret-
ical choice?” All very good questions.

6 Quantum information causality

The emerging concept of information causality [49–51] is an
attempt to preserve causality based on the underlying premise
that it is information that is the core element in the analysis
of the entanglement process. The approach followed is to im-
pose this concept as a principle of nature to avoid the special
relativistic causality problems raised by SAAD. This concept
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unwittingly reflects Jaynes’ analysis of entanglement experi-
ments in that it focuses on information – however, Jaynes’
analysis [20, 47] already accomplishes this without having
to introduce an additional constraint in the guise of a new
causality principle, and in so doing, also eliminates the need
for SAAD.

7 Weak quantum measurements

Weak quantum measurements [52–56] is another emerging
concept in quantum mechanics that has an impact on the un-
derstanding of the entanglement process. What is interest-
ing with this approach is that it is possible to make minimal-
interacting measurements, which leaves the collapse of the
wavefunction in the literal interpretation of the mathemati-
cal standard formalism of quantum mechanics in a quandary:
how can any measurement be done without collapsing the
wavefunction?

The accepted explanation [54] is that the quantum state is
not collapsed into eigenvectors, but instead, by a weak cou-
pling of the measurement device and the system, is biased
by a small angle such that the measurement device shows a
superposition of several eigenvalues. The current status is
summarized as follows: “weak measurement theory presents
a plethora of strange quantum phenomena, not yet completely
understood.” [54]. There is no doubt that even a weak inter-
action measurement will have an impact on the system, and
this approach, certainly experimentally valid, puts the wave-
function collapse of the literal interpretation of quantum me-
chanics into question.

The proposal of weakly interacting measurements was al-
so introduced in [35] in the context of the application of the
Nyquist-Shannon Sampling Theorem to quantum measure-
ments. The author showed that Brillouin zones in Solid State
Physics are a manifestation of the Nyquist-Shannon Sampling
Theorem at the quantum level, where the translational sym-
metry of atoms in a solid resulting from the regular lattice
spacing, is equivalent to an effective sampling of the atoms
of the solid giving rise to the Brillouin zones. This raised the
possibility of investigating new experimental conditions lead-
ing to new measurements previously considered unreachable,
a possibility that is also considered possible in the literature
on weak quantum measurements.

8 Discussion and conclusion

In thispaper, wehave considered the classical scaling of quan-
tum entanglement. This implies a physically robust entan-
glement process, contrary to the fragile entanglement pro-
cess that the standard formalism interpretation implies given
that the probability of preserving entanglements over classi-
cal sizes and distances and preventing the entanglement from
collapsing due to physical interactions is exceedingly small.

Actual experimental demonstration of entanglement, oth-
er than testing the Bell inequality, is a challenge. Entangle-

ment experiments detect both entangled components within
the same time window, so there is no way to confirm the
presence or absence of “spooky action at a distance” (SAAD)
which is assumed to be present based on the standard formal-
ism interpretation.

To better understand the entanglement process and deter-
mine a robust entanglement process, we have considered a
physical interpretation based on a formulation of quantum
mechanics that gives precedence to the physical rather than
the mathematical aspects of the theory used in the literal in-
terpretation of the Hilbert space formulation.

We have considered the transition from a classical to a
quantum mechanical description, known as canonical quan-
tization, which is effected (done) by the replacement of clas-
sical variables by quantum operators, and have noted that one
obtains closely related classical and quantum (Heisenberg)
equations of motion. This result is a manifestation of Ehren-
fest’s theorem which holds that quantum mechanical expec-
tation values obey the classical equations of motion.

We haveconsidered the differencebetween separable(pro-
duct) and non-separable (entangled) states. Mixtures of prod-
uct (separable) states always satisfy Bell’s inequality i.e. sep-
arable states can have definite physical properties when they
are prepared. Bell’s inequality fails only for entangled (non-
separable) states. Hence separable states are consistent with
local realism – they can be physical and local, while entan-
gled states are not consistent with local realism, based on their
violation of Bell’s inequality.

We have seen that these considerations reinforce the un-
derlying physical building blocks of quantum mechanics: the
superposition principle, Heisenberg’s uncertainty principle
and wave-particle duality which is the most important of the-
se. The truly quantum mechanical processes such as the dou-
ble-slit interference pattern, potential barrier tunneling, and
in particular the entanglement process as we have seen in this
paper, depend on the quantum mechanical phenomenon of
wave-particle duality. It is thus critical to analyze quantum
phenomena in terms of wave-particle duality to fully under-
stand them.

We have noted Home’s [14] conclusion reached after an
extensive review of all proofs of the non-existence of hid-
den-variable theories, that “no a priori compelling argument
excludes the possibility of contextual hidden variable theo-
ries”, giving legitimacy to the development of a more com-
plete description of quantum phenomena beyond the standard
interpretation. He further identifies the aspects of quantum
mechanics that are not well understood in the standard frame-
work: the quantum measurement paradox, the classic limit of
quantum mechanics, nonlocality of quantum mechanics aris-
ing from entanglement, and wave-particle duality, which are
the very factors at play in the robustness of the entanglement
process as discussed in this paper.

We have noted that in entanglement experiments, the qua-
ntum mechanical results obtained are from the wave aspect of
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the wave-particle quantum object (which for brevity we refer
to as a “q-object”), just like the interference pattern in double-
slit experiments. A q-object is an object where the effect of
wave-particle duality cannot be neglected.

Hence, Bell’s inequality is violated in the quantum me-
chanical problem, that is the wave aspect of the wave-particle
q-object, which is different from the particle results, as seen in
double-slit experiments (particle versus wave patterns). How-
ever, nothing precludes the wave-particle q-object from hav-
ing the full physical properties encoded in the q-object when
the entangled q-objects are emitted. The wave aspect then
gives rise to the non-local behaviour (within causality require-
ments due to the particle aspect of the q-object) as would be
expected from the quantum mechanical calculations, while
the particle aspect exhibits local causal behaviour. This ex-
plains why the entanglement process is robust: the wave-
particle q-objects of entangled states have definite physical
characteristics at emission time.

This has lead us to consider a physical approach which
posits that the photons (for example), as wave-particle q-ob-
jects, are emitted with specific properties, but that due to our
lack of knowledge of their detailed characteristics, can only
be probabilistically characterized with the wavefunction ψ as
a combination of the possible states and their probabilities
(the realistic viewpoint). Performing a measurement on one
of the photons resolves its properties which allows us to spec-
ify the properties of the other photon – a simple physical un-
derstanding of the entanglement process. Such a process can
easily scale to classical objects and distances, and is undeni-
ably very robust as the q-objects’ properties are determined
at emission time, not evanescent as in the standard formal-
ism. The classical-scale experiments considered previously
are then seen to be a confirmation of this approach.

We have also considered the emerging concept of infor-
mation causality which is an attempt to preserve causality
based on the underlying premise that it is information that is
the core element in the analysis of the entanglement process,
which is correct. However, Jaynes’ analysis [20, 47] already
accomplishes this without having to introduce an additional
constraint in the guise of a new causality principle, and in so
doing, also eliminates the need for SAAD.

We have also considered weak quantum measurements
which is another emerging concept in quantum mechanics.
There is no doubt that even a weak quantum measurement
will have an impact on the system, and this approach, cer-
tainly experimentally valid, puts the wavefunction collapse of
the literal interpretation of quantum mechanics into question.

It should be noted that quantum cryptography and quan-
tum computing are then seen to depend on the wave aspect of
the wave-particle q-object. This fundamental understanding
should help accelerate the progress of these new development
programs.

The resolution of the robustness of the entanglement pro-
cess in classical scale quantum entanglement experiments is

thus achieved within the wave-particle q-object explanation
of the process in which entangled state q-objects have definite
physical characteristics at emission time. Strong evidence has
been provided to support this proposal.

The design of experiments to provide experimental evi-
dence requires that experimentalists shift the paradigm used
to test quantum theories. Currently experiments are designed
to try to prove the applicability of quantum mechanics to en-
tangled states by verifying various inequalities such as Bell’s.
The experiments suggested by Zhao [19] try to clarify the
physical properties of quantum entanglement and includes
experimental tests of the locality of the measurements of Bell
states, experimental tests of the constituents of Bell states,
and experimental tests of determinism in quantum measure-
ments. In addition, even though the entanglement experi-
ments currently performed agree with the model proposed
in this paper, specific experiments need to be performed to
test the model under conditions that emphasize that quantum
entanglement behaviour results from the wave aspect of the
wave-particle q-objects.

Appendix: wave-particle duality in STCED

It should be noted that wave-particle duality is considered
in greater detail in [44] within the theory of the Elastody-
namics of the Spacetime Continuum (STCED) [57, 58]. As
shown in STCED, energy propagates in the spacetime con-
tinuum as wave-like deformations which can be decomposed
into dilatations and distortions. Dilatations involve an invari-
ant change in volume of the spacetime continuum which is the
source of the associated rest-mass energy density of the defor-
mation. On the other hand, distortions correspond to a change
of shape of the spacetime continuum without a change in vol-
ume and are thus massless. Thus the deformations propagate
in the continuum by longitudinal (dilatation) and transverse
(distortion) wave displacements. This provides a natural ex-
planation for wave-particle duality, with the transverse mode
corresponding to the wave aspects of the deformation and the
longitudinal mode corresponding to the particle aspects of the
deformation.
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Matter in a Space of a Fractional Dimension. A Cosmological System of Spaces
and Evolution of the Universe

Mikhail N. Mashkin
E-mail: mnmashkin@yandex.ru

In this article, we propose a model of evolution of the Universe from topological spaces
as a sequence generating one space from another. While the Universe is modelled in the
form of a fraction-dimensional space, where time is the manifestation of the fractional
dimension of the space.

Introduction

The origin of the Universe is a key topic in modern physics.
Expansion of the Universe still demands an explanation.

Forty years ago, the physicist A. D. Sakharov has intro-
duced a hypothesis: objects of the three-dimensional space
are compositions of objects of a two-dimensional space and a
one-dimensional space.

Based on this hypothesis, we propose a new cosmolog-
ical model. In the framework of this cosmological model,
the three-dimensional space is generated by its sub-spaces of
lower dimensions. So forth this cosmological model and the
process generating the spaces are described in detail.

The cosmological model of the Universe

The topological approaches described in Alexandrov’s Com-
binatorial Topology [1] are used here to introduce the new
cosmological model of the Universe. So we have:

R−1 — a space, which dimension is −1 that means a lack
of space;

R0 — a space of zero dimension means a space of en-
ergy, which is similar to energy of a quark;

R1 — a space, which dimension is 1, means a space of
electric energy;

R2 — a space, which dimension is 2, means a space of
magnetic energy;

R3 — a space, which dimension is 3, means a space of
gravitational energy (the “weight space”);

R1, R2 and R3 — Euclidean spaces. Dimension of such
a space is the number of freedom degrees of a material point
located therein.

The process generating the aforementioned topological
spaces is as follows.

The space R0. As a result of inflation [2] as symmetriza-
tion, an R−1 space generates an R0 space. The space R0 is not
Euclidean. Each object located in a space contains a part of
the total energy of the space. As such one, the space R0 con-
tains two groups of symmetric objects. The additive energy
of objects located in the space is zero. Interaction between
objects of one group is proportional to their distance from
each other. Objects of the space R0 uniquely define this space
itself. Hence, the space R0 is a space of quark-like energy.

Distances between the objects is determined by the difference
in energies of these objects. Time is a factor of evolution of
the space. This evolution factor (time) is manifested in the re-
distribution of energy between the objects, and in the change
in the objects’ number in this space (i.e. transition from one
state of the space into another state of the space). When in-
teraction between the objects of the space reached symmetry,
time disappears. In this case, the space R0 arrives at a singu-
lar state. As is known, a space is identical to a specific type
of energy. Quark-like energy is identical to the space R0. So,
quark-like energy and generates the space R0.

The space R1. Due to symmetrization of the singularity
of the space R0, synthesis of two objects which are attributed
to two different groups of the space R0 generates an object
of a higher-dimensional space R1. This is a space of electric
energy (see above). Thus the space of electric energy is gen-
erated. Objects of the space R1 are charges. The numerical
value of such a charge is equal to the modulus of the energy
difference of two objects attributed to the space R0. Interac-
tion between two charges is proportional to the multiplying
result of their numerical values. Time in the space R1 is de-
termined by transformation of energy of the space R0 into
electric energy. The space R1 evolves from the space R0 to
the singularity state. Singularity of a space is another space
in which time is absent. So, after the entire energy of the
space R0 is transformed into electric energy, time disappears.
Energy of each single charge is unlimitedly and continuously
distributed along the space R1 according to the interaction.

The space R2. Due to symmetrization of the singularity
state of the space R1, charges in the space are separated from
each other by the sign of difference of the objects attributed
to the groups of the space R0. The groups of charges differ by
their signs. Synthesis of two charges bearing different signs
generates an object of a higher-dimensional space R2 (a space
of magnetic energy, see above). Thus the space of magnetic
energy is generated.

Consider the generation process by the example of a sin-
gle photon. The photon is a result of synthesis of two charges
bearing different signs (the space R1), which are equal in their
absolute values. The photon energy is continuously and un-
limitedly distributed along the space R2. Interaction between
two photons is inversely proportional to the distance between
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them, and is proportional to the product of their energies. A
single photon is an object of the magnetic energy space R2.
Objects in the space R2 have the rotational degree of freedom
(the spin).

The space R2 evolves from the singularity state of the
space R1 to its own state of singularity. After converting elec-
trical energy into magnetic energy, the space R2 arrives at its
own singularity state: time disappears in the space.

The space R3. As a result of symmetrization of the sin-
gularity state of R2, objects of the space are separated by the
rotational degree of freedom (the spin). Synthesis of two ob-
jects, which are located in the space R2 and bear oppositely
directed spins, generates an object of a higher-dimensional
space R3 (a space of gravitational energy, see above). Thus
the space of gravitational energy, R3, is generated. Objects
of the space R3 are composed of objects of the spaces which
dimensions are 1 and 2. The mass of objects of R3 is contin-
uously and unlimitedly distributed along the space.

Evolution of the space R3

At present, the process converting magnetic energy of the spa-
ce R2 into gravitational energy of the space R3 is in progress.
We suggest to refer magnetic energy of the space R2 as dark
energy (the vacuum-like substance according to Gliner [3,4]).
In these terms, mass (gravitational energy) is represented by
matter and dark matter. Dark matter is a result of conver-
tion of the magnetic energy into the gravitational energy. In
the process of evolution of the space R3, the shared part of
the gravitational energy increases. This leads to slowing the
clock down in this space. The process of passage of light in
a space is analogous to the process of registration of time by
a clock. The speed of light in this case is the conversion fac-
tor of the length in a duration of time. This coefficient is a
constant of the space R3. The process of passage of light in
the space R3 is the process of motion of a photon in the space
R2. In the space R3, there are regions of absorption and emis-
sion of the photon. The photon’s trajectory in the space R2 is
mapped into the region of its registration in the space R3 in
the relation “one-to-many”. Thus the photon is tunneling in
the space R3. With the increase in the mass fraction in space,
the redshift effect arises: a clock slow down with the process
of passage of light. Density of the gravitational energy of the
space R3 depends on the speed of light. The energy density
of a space, reduced to time duration, is a constant value [5]:
dt cr−1

t = const, where dt is the density of matter at a given
point of the space; ct is the speed of light (the speed of time)
at the given point of the space; r is the dimension of the space
at the given point.

Matter in a space of a fractional dimension

Consider how we percept the space of our world. At present,
the space is three-dimensional: three spatial coordinates with
triangulation of three dimensions are required. The fourth

coordinate is time. In this case, the qualitative difference be-
tween the coordinate of time and the coordinates of space is
emphasized. It is suggested that there exists an infinite set
of three-dimensional spaces. However, under certain condi-
tions (such as that the light speed in vacuum is constant), the
time coordinate can be expressed in terms of linear length and
vice versa. This allows us to assume that the time coordinate
and the space coordinates have the same nature. In this case,
the question about the infinite set of three-dimensional spaces
does not vanish. On the basis of the above, we consider the
problem of generation of spaces in the framework of the the-
ory of topology sets.

Consider metric spaces Rn. In accordance with [1], an
empty set has a dimension of n = −1. A set R0 contain-
ing only one point Xt has a dimension of n = 0. To go to a
higher dimensional space, it is necessary to perform a contin-
uous mapping of one point Xt ∈ R0 into a continuous set of
points X ⊆ R1. Here are two ways to display the sequence:
1) in the form of the ε-displacement (see §1.1 of Chapter 6
in [1]), where the continuity sequence of the subsequent point
from the previous one is observed; and 2) the transfer method,
where this condition is not satisfied. Introducing the notion of
a sequence maps, we thereby define the time factor. Here the
time factor determines the process generating a space with a
higher dimension from a space of a lower dimension. Using
only the shift method to generate a space gives a set that has a
beginning, i.e. the starting point of reference. To exclude the
starting point of reference, it is necessary to use, at least once,
the transfer method. To generate all points of the set R1, an
infinite set of steps (an infinite amount of time) is required.

Time is a quantitative characteristic of the displayed spa-
ce. Introducing the time factor is equivalent to introducing a
characteristic of the density of the mapping flow — the speed
of time. By the speed of time, we understand the ratio of
the number of displayed points of a higher dimension space
to the number of points of a space of a smaller (than that
generated these points) dimension. This determines the mul-
tiplicity: how many points of the higher dimension space is
displayed by one point of the lower dimension space. The in-
stant fulfillment of the mapping (the multiplicity is infinite) is
identical to the infinite speed of time, which in all cases is di-
mensionless. Hence, the complete numerical axis (line) in the
set attributed to the metric space R1 can be obtained by instant
mapping one point Xt ∈ R0 into a continuous set of points
X ⊆ R1 using two methods: the shift and carry methods.

In this case, metric spaces with an integer dimension can
be represented as spaces with the zero time speed (that means
that time is absent — there is no generation process, the num-
ber of displayed points is zero). The Hilbert space can be
decomposed into an infinite number of metric spaces of a fi-
nite dimension (see §2.4 of Chapter 1 in [1]), and the fol-
lowing relation is fulfilled: Rn−1 ⊆ Rn. And the cardinality
of the set {Rn−1} is equal to infinity: |{Rn−1}| = ∞. This as-
sumes that the speed of time is infinite when creating a space,
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in which n is an integer, from a space of a lower dimension.
Under the condition that the complete covering of Rn is not
fulfilled (the speed of time is finite), the covered subset of Rn

can be represented by a space Rd having a dimension d, where
(n − 1) ⩽ rd ⩽ n, i.e. a space with a fractional dimension. It is
proposed to define spaces, in which the speed of time is finite
and differs from zero, as fraction-dimensional spaces. The
time speed function depends on the numerical value of the
space dimension, which is a real number. It monotonically
decreases within the interval of dimensions (n − 1) < d < n,
see Fig. 1 below.

Fig. 1: The time speed of fraction-dimensional spaces.

The characteristic of the speed of time in the regions of
our space is the speed of light. In this case, the distance
from the point of radiation to the absorption point of a pho-
ton matches with the respective time duration registered by a
remote clock. For example, the speed of light registered by
our clock in this way on the boundary of the Universe ex-
ceeds the speed of light registered in our region of the space.
When the numerical value of the time coordinate is reduced
(with the respective numerical values the spatial coordinates)
to the same measurement units, the magnitude of the speed
of light is also dimensionless. Analysis of the speed of light
in vacuum and material media shows that with the increasing
density of matter the speed of light decreases. Reduction of
the speed of light is accompanied by an increase in the dimen-
sion of space, see Fig. 1. This allows us to use the numerical
value of the space dimension as the energy characteristic of
the space. The density of matter has an inverse relation to the
speed of time within an integer interval of the space dimen-
sion, see Fig. 2 below.

Fig. 2: The energy density of a fraction-dimensional space.

The boundary on the left of the fractional dimension (to
an integer value of the space dimension) gives an infinite set
of (n−1)-dimensional spaces having zero energy density. The
boundary on the right is an n-dimensional space with an in-
finite density of matter, see Fig. 2. In this case, two versons
representing a fraction-dimensional space are possible:

1. The space of an integer dimension Rn−1 with the inclu-
sions (domains or points and their neighborhoods, the
set K) wherein the space is fraction-dimensional;

2. The space Rn−1
t containing the set S of points, each of

which is a space of an integer dimension, and where
coveringΠ by the set S of the space Rn−1

t is incomplete.

The first assumes that there exists a single integer-dimen-
sional space containing a set of inclusions. The second —
a set of integer-dimensional spaces. The latter is impossible
under the previously stated assumption that an integer space
contains infinite dense matter or is a continuum of integer
spaces of lower dimensions. It is more preferable to assume
that at all points of S we have the same space, but for each
matter density d (time speed) the respective subset of points
of this space is Rn−1

d . These subsets do not intersect with each
other:∪

Rn−1
di ∩Rn−1

d j = ∅, ∀ i , j; i, j = 1, 2, . . . ∞.

All this is equivalent to the fact that each point of the space
has one numerical value of the matter density parameter, i.e.

Rn−1 ∩
∪

Rn−1
di = Rn−1, i = 1, 2, . . . ∞.

In the case, where is a chain of the sets of points with zero nu-
merical value of the matter density, interaction between the
points at the ends of this chain occurs without time i.e. in-
stantly (the speed of time is infinite there). However, the den-
sity of matter at each point of this chain is zero in this case
as well as the space dimension of this set Rn. This is limit-
ing and unreachable by definition. Moreover, the set Rn−1

d is
uniquely mapped into one point of the space Rn−1

t . This im-
plies the continuity of the mapping of Rn−1 into Rn−1

t . The re-
gion of the set Rn−1

t , for given numerical values of d, belongs
to the set of positive values of the numerical axis. Boundary
of this region is the set of points in which the matter density
of the space (i.e. the speed of time) is not defined. This corre-
sponds to whole-dimensional spaces in which the time factor
is absent. Suppose that the covering ofΠ remains unchanged.
Corresponding to this covering, the average fractional dimen-
sion is md = M [d] = const. The numerical characteristic
of the coating, in turn, is proportional to md. If density of
the coating is dΠ = f (Π), then md = dΠ . From here, in a
fraction-dimensional space, two time processes are possible:

1. The process of convergence of points of the set S⊂Rn−1
t

with each other upto coincidence (absorption), which
makes possible to equalize the matter density through-
out the entire space Rn−1;
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2. The process inverse to the convergence of points. Sep-
aration of one point into at least two points.

These two processes compete and provide a mapping of
K into S , previously considered in two ways: the shift and
carry methods. Due to the shift and transfer of points of the
set Rn−1

t , mutual absorption of the points is possible. This
should be accompanied with the reverse: the generation of
points. This condition ensures that the covering of the same
set Rn−1

t — the conservation law of the dimension (covering)
of the space — remains constant. On the other hand, the cov-
ering Π is incomplete, but ensures the mapping S into the
range of possible numerical values of the set Rn−1

t , — the
positive numerical axis. This mapping is also determined
by the fractional dimension through the time flow, and de-
termines dynamics of the interaction processes of points of
the set K = {Rn−1

d } with each other. Therefore, the space of a
fractional dimension is dynamic. The point of the set Rn−1

t
corresponds to Rn−1

d — the set of points with the same density
of matter of the space Rn−1. That is, in the absence of interac-
tion with the remaining points, its position is determined only
upto the set Rn−1

d . In this case, the point of the latter can be de-
fined (perhaps) simultaneously at all points of Rn−1

d . That is,
each such point has no distinctive features over the others. In
the case of absorption (synthesis), it is possible and necessary
to generate (divide) points of the spaces Rn−1

t and K. This is a
necessary condition for generating a space (i.e. transfer). On
the other hand, at a sufficiently high density of matter in the
localization region of the point, the time speed is sufficiently
small: displacement or transfer in this case almost does not
require time. This also gives rise to the effect of supposedly
simultaneous finding of one point in all places (points) of the
localization region.

Results

Spaces of fractional dimensions contain local inhomogenei-
ties in which the fractional dimension of the space differs
from the fractional dimension of the vacuum region (which
is the neighborhood of the inhomogeneity, the localization
space). These are material objects. A local inhomogeneity
is manifested in the numerical values of the parameters of
the fields of a material object. The numerical values of the
field parameters show the energy distribution of the space in
the object’s localization region. Combinations of the fields as
the distribution characteristics of energies of the space give a
description to the whole variety of the material objects. De-
generation of a fraction-dimensional space in the part of ma-
terial objects leads to the appearance of zero-dimensional pa-
rameters that is quantum numbers. This quantum mechanism
determines the discreteness of the set of phenomena there.
A space with a unit inhomogeneity is an integer (for exam-
ple, the three-dimensional space) everywhere, except for the
heterogeneity itself. For an observer, it turns into a point be-
cause transition from one point to another does not require

time. The very region of heterogeneity is a point at which the
density of matter is infinite high. Passage through this point
requires an infinite amount of time. Such a point is limiting,
boundary, open, that is unreachable. Another boundary, with
a uniform density of matter throughout the space, is also un-
reachable. Hence, we have an open interval for describing the
entire set of material objects in a fraction-dimensional space.

Conclusion

So, a model of the cosmological system of spaces is proposed
here. When considering this model, evolution of the Universe
is discussed as well as the problem of description of fraction-
dimensional spaces. Such spaces are defined as a results of
energy conversion from the moment of inflation to R3. The
concept of singularity as a space in which time is absent is
proposed. A “fractional space” is defined as a space in which
the process of energy conversion from one type to another
takes place. In this case, time is a factor of the process of
energy conversion. Dynamics of fraction-dimensional spaces
is predicted. These research results are a basis to calculate
numerical values of the characteristics of such spaces.
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Calculation of the Density of Vacuum Matter, the Speed of Time
and the Space Dimension

Mikhail N. Mashkin
E-mail: mnmashkin@yandex.ru

An example of calculating the density of vacuum matter is presented based on the hy-
pothesis of fractional dimension of our space. The speed of time and the dimension of
our space are calculated.

Introduction

In the previous paper [1], we showed the hypothesis that the
reduced density of space energy is constant:

dt cr−1
t = const, (1)

where dt is the density of matter (substance) at a given point
in the space; ct is the speed of light (proportional to the speed
of time) at the given point in the space; r is the dimension of
the space at the given point.

The previous analysis of this hypothesis showed that this
formula exactly coincides with the topological thickness of
the space with a non-integer dimension value, i.e.,

M = X Y Zr−2, (2)

where X,Y,Z are equivalent sets. Their permutations do not
change the result of their Cartesian product.

Calculation of the numerical value of r can be performed
based on the definition of fractional dimension, as a property
of self-similar objects (fractional dimension is a dimension in
the form of a fraction, for example, 23900/10000).

In our case, self-similar objects are convex bodies in n-
dimensional spaces, for example, in the three-dimensional
Euclidean space.

We will use a volume relative increase as an increment
that provides fractional dimension (non-integer dimension).
This is due to the alleged expansion of space, which is deter-
mined by the Hubble constant∗.

When moving at a measured distance in seconds, assum-
ing that the speed of light in vacuum is constant, we obtain
the value of the Hubble constant in units of acceleration:

Ha = H cv =
(55 ÷ 75) × 103 × 3 × 108

3.086 × 1022 =

= (5.35 ÷ 7.29) × 10−10 m/s2, (3)

where cv is the speed of light in vacuum.
Let us take a ball with a single radius equal to 1 second,

i.e. 3× 108 m as a basis for calculating the initial volume of a
convex body. Further we will call the radius as a unit length.

∗The Hubble constant is defined currently within H = 55 ÷ 75 km/

(s Megaparsec).

As a time interval for comparison, we will select the time
of transmission of a signal at a distance of the unit length, i.e.
the time of 1 s.

As an increment, we will determine the increment of the
initial volume v1 during the passage of the signal at a distance
of the unit length, see Fig. 1.

Fig. 1: A ball with a radius of a unit length.

In this case, the increment of the unit length is equal to:

∆l1 =

∫ 2
1 Hat dt

cv
=

1.5Ha

cv
=

1.5 × (5.35 ÷ 7.29) × 10−10

3 × 108 =

= (2.68 ÷ 3.65) × 10−18 s. (4)

The relative increment is the ratio of the increment to the fi-
nite length:

∆r1 =
∆l1

1 + ∆l1
' (2.68 ÷ 3.65) × 10−18. (5)

The relative increment of the initial volume v1 is equal to:

∆v1 ' 3∆r1 = (8.04 ÷ 10.95) × 10−18 ' 10−17. (6)

When the numerical value of r equals 3, the dimension of
the constant in formula (1) is equal to

[kg][m]2

[m]3[s]2 =
[kg]

[m][s]2

or L−1MT−2, i.e. Pascal.
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Hence, this can be interpreted as the modulus of the vol-
ume compression/expansion of the three-dimensional space.

In case when 3 > r > 2, we will refer to the reviewed
constant to as the module of the extension of a non-integer
dimension space.

Then the formula (1) can be represented in the form of:

dt cr−1
t = Mr , (7)

where Mr is the module of the expansion of the space of non-
integer dimension, taken in Pascals.

Calculation of the density of vacuum matter

Using the ratio (7), we can calculate the density of vacuum
matter. With this, it is possible to accept in first approxima-
tion the vacuum density inside material bodies as that equal
to the density of their substance.

Let is take the following approximations: the space di-
mension is constant, i.e. r = const, and is r ' 3; the effects
of light dispersion are not taken into account.

Formula (1) contains three interrelated parameters: den-
sity, the speed of light and the space dimension. Consider the
relationship between the speed of light and the matter density
in detail. The table data of the refractive index (optical den-
sity) and the density of precious stones are shown in Fig. 2.

Fig. 2: The precious stones density.

Analysis of Fig. 2 allows us to suggest that the refractive
index is linearly dependent on the matter density. Hence, we
obtain the formula of the vacuum matter density outside ma-
terial bodies:

dv =
dms

Π–1
, (8)

where dms is the density of substance, Π = cv/cms is the re-
fractive index, cms is the speed of light in the substance.

Here are the tabular data of the stones, used in jewelry
industry. The data give the minimum of the calculated density
of vacuum for diamonds and synthetic rutile (see Table for
detail).

In the above calculations, we used the average density of
substance. However, under real conditions inside real sub-
stances there are nodes of the crystal lattice in the form of
ions or atoms which have a finite volume and their own den-
sity. For example, for a diamond we have the radius of the

The group
of stones

Stone Density,
g/cm3

Refract.
index

Calc. vacuum
density, g/cm3

Colorless
stones

Diamond 3.52 2.42 2.48

Synthetic
rutile

4.25 2.9 2.24

carbon atom ra = 0.077, and the distance between the reflec-
tion planes (interatomic) d = 0.356 nm. Hence, the density
of the carbon atom itself is 6,274 g/cm3. Let us calculate the
maximum reduced density between two carbon atoms located
from each other at a distance d using the following formula:

dred. =
mc

Vc1

+
mc

Vc2

, (9)

where Vc1 = 4π
3 r3

1 is the volume of a sphere with the first
carbon atom in the center, r1 = 0.0385 ÷ 0.3165 nm, Vc2 =
4π
3 (0.356 − r1)3 is the volume of a sphere with the second

carbon atom in the center, mc is the mass of the carbon atom.
Calculation by formula (9) shows that approximately 50%

of the space between carbon atoms has a density of about 1
g/cm3. Hence, the estimated density of vacuum substance
obtained by formula (8) is less than 0.7 g/cm3. The actual
numerical value, obviously, is much lower, since the reduced
density assumes uniform distribution of the substance of the
carbon atom within the sphere.

Calculation of the space dimension and the speed of time

On the other hand, it follows from the definition of fractional
dimension of space, that any volume of a space generates a
volume in a certain multiplicity, which is equal to the speed
of time [1]. For vacuum it is:

dt ' ∆t = ∆v1 = 10−17, (10)

i.e. any volume of a space, when a signal passes through it,
generates a relative, additional volume equal to the speed of
time.

The generation of the volume corresponds to a certain
amount of gravitational energy. This amount can be com-
pared to a quantum of energy which, taking into account for-
mula (10), gives the ratio:

Mr V1 dt = h, (11)

where V1 is the generated unit volume, 1 m3, h is the Planck
constant (6.626 × 10−34 J s).

Our three-dimensional space is flat. The critical Friedman
density of our space is about d f = 1×10−28 kg/m3. From here,
we calculate the dimension of our space:

r =
log h − log V1 − log d f − log dt

log cv
+ 1 =

=
log 6.626 − 34 − 0 + 28 + 17

8 + log 3
+ 1 = 2.395; (12)
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where ct ' cv = 3 · 108 m/s; d f = dt = 10−28 kg/m3; V1 =

1 m3; dt = 10−17.
If the space has a Friedman energy density, the photon

speed in the region of the carbon atom is (on the average):

cc =

√
d f

dc
cv =

√
1 × 10−28

6274
cv =

= 1.26 × 10−16 × 3 × 108 = 37.9 nm/s, (13)

where dc is the average density of matter inside the sphere of
a carbon atom.

At the obtained speed of light inside the sphere of the car-
bon atom, the wavelength of visible radiation is:

λc = 1.26 × 1016λmv = 1.26 × 10−16 × 600 × 10−9 =

= 7.56 × 10−23 m, (14)

where λmv is the wavelength of visible radiation. This is about
1013 times less than the diameter of a carbon atom. This gives
a possibility of interaction between the waves of visible radia-
tion and a carbon atom which is represented as a drain funnel
(the source — reverse funnel — tornado). That is the photon,
as an object of magnetic energy, behaves as a time magnetic
monopole: it can be absorbed and emitted.

Results

Substantiation and calculation of the density of space mat-
ter have been done. The concept of the time speed has been
specified. The time speed of our space has been calculated. A
formula for calculating the fractional dimension of our space
has been obtained. The calculation of the fractional dimen-
sion of our space has been performed.

So, on the basis of representation of the fractional dimen-
sion of a space as a space with the presence of time, the fol-
lowing calculations were done: the density of vacuum matter,
the speed of time and the dimension of our space.

Further calculation of the numerical values of the follow-
ing properties — the substance density of material objects,
the vacuum and space density as a whole — can be contin-
ued dealing with (see [1] for detail): conversion of magnetic
energy into dark matter; dark matter interaction with matter;
synthesis of objects of our space; a three-dimensional model
of distribution of density of the outer space mass.

Submitted on April 17, 2018
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It’s an experimental fact that quantum objects in the ground state do not radiate electro-
magnetic energy, but what are the limits on our knowledge of the gravitational equiv-
alent of this? In semiclassical gravity it is the expectation values of quantum particle
positions that form the source for the Einstein equations, thus a particle or atom in a
ground state emits no gravitational radiation. Here we instead assume a fully classi-
cal quantum gravity — the internal components of objects in a pure quantum state are
assumed to classically radiate gravitational waves. The effects of this theory of micro-
scopic gravity on the measured properties of the hydrogen atom, along with possibilities
to experimentally measure the effects of atomic or nuclear scale gravitational radiation
are explored.

1 Introduction

The quantum gravity problem remains unsolved in physics
today. There are many possible solutions proposed, but al-
most all of them suppose the existence of the graviton. The
graviton should have the same energy relation as the photon:

Egraviton = ℏν. (1)

There not only exists no experimental confirmation of this
relationship for gravity, it is also widely known that an experi-
ment to detect a single graviton is well beyond the capabilities
of any present or future realizable experiment. Gravity may
simply be a non quantum effect. Rosenfeld in 1963 is still
very much relevant [1].

There is no denying that, considering the uni-
versality of the quantum of action, it is very
tempting to regard any classical theory as a lim-
iting case to some quantal theory. In the absence
of empirical evidence, however, this temptation
should be resisted. The case for quantizing grav-
itation, in particular, far from being straightfor-
ward, appears very dubious on closer examina-
tion.

2 Other classical gravity theories

Semiclassical gravity can be summarized as a classical grav-
itational field coupled to quantum matter fields. While semi-
classical gravity is widely thought of as a workable limiting
approximation until a quantum theory of gravity is discov-
ered, there are researchers who treat semiclassical gravity as
a real possibility and hence in need of experimental tests [2].
The semiclassical equations for quantum gravity are as from
Møller [3] and Rosenfeld [1]:

Rµν −
1
2
gµνR =

8πG
c4 ⟨Ψ|Tµν|Ψ⟩. (2)

While seemingly straightforward, semiclassical gravity
has subtleties, especially in determining the quantum expec-
tation value (see Appendix A of Bahrami [4]).

Another classical treatment of quantum gravity comes
from Roger Penrose with the Gravitization of Quantum Me-
chanics [5] where he posits that gravity connects not to the ex-
pectation value, but rather directly to each superposed quan-
tum state. Gravitation causes collapse as the gravitational
field of multiple superposed states becomes too energetic.

3 Fully classical quantum gravity

Fully classical quantum gravity (FCQG) uses Einstein’s equa-
tions as given,

Rµν −
1
2
gµνR =

8πG
c4 Tµν (3)

with the coupling to microscopic matter being on some as-
sumed sub-quantum level, where particle positions always
have a definite value, as in for instance de Broglie-Bohm me-
chanics [6]. Of course if one uses Bohmian mechanics in its
entirety, then gravitation is also quantized, and particles will
not radiate from their ground states. We thus assume here
that quantization does not apply to gravity at all, that par-
ticle trajectories are real and that they interact directly and
classically using the laws of Einstein’s general relativity. In
many ways it is similar to the program of stochastic electro-
dynamics (SED) [7], in that classical fields couple directly to
sub-quantum particle motions. Indeed if one is to assume
a SED like explanation of quantum behavoir, then gravity
should also be treated classically.

4 Gravitational radiation from atoms and nucleons

Ashtekar [8] for example elucidates the need for a quantum
theory of gravity by citing Einstein in 1916:

. . . Nevertheless, due to the inner-atomic
movement of electrons, atoms would have to ra-
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diate not only electro-magnetic but also gravi-
tational energy, if only in tiny amounts. As this
is hardly true in Nature, it appears that quantum
theory would have to modify not only
Maxwellian electrodynamics, but also the new
theory of gravitation.

Using instead Rosenfeld’s position that we must rely on
experiment to show the need for quantum gravity, consider
the energy loss rate of a circa 1916 style Bohr planetary hy-
drogen atom in the ground state, using Eddington’s [9] for-
mula for the gravitational energy radiated by a two body sys-
tem (in the approximation that one mass is much heavier):

dE
dt

(atom) = −
32Gm2

er4
hω

6

5c5 = −10−43eV/s. (4)

Which even over the age of the universe amounts to an
energy loss due to gravitational waves for a hydrogen atom
in the ground state of only 10−25 eV. Why was Einstein wor-
ried about such a small rate of gravitational energy loss for
a hydrogen atom? In contrast the electromagnetic lifetime of
the classical hydrogen atom is about 10−11s which of course
helped lead to the discovery of quantum mechanics.

As a comparison to the above estimate, a quantum me-
chanical prediction of the lifetime of the 3p−1s state for emit-
ting a graviton is about 1.9× 1039s [10,11], which is within a
few orders of magnitude of the fully classical estimate above.

This energy loss is of no experimental significance. So we
can conclude that the stability of atomic orbitals is not an ex-
perimental indication of a need for quantum gravity. In other
words we cannot experimentally determine if atoms radiate
gravitational waves continuously or not.

4.1 Gravitational radiation from within nuclei

The Sivram-Arun paper Thermal Gravitational Waves [12]
is an expansion of Weinberg’s results in his 1972 book [10].
Both calculate the gravitational wave (GW) emission from
nuclei passing each other thermally in an astrophysical hot
plasma (stars). In fully classical quantum gravity we make
the additional assumption that gravitational waves are also
produced by nucleon motion inside each individual nucleus,
even in the ground state, greatly increasing GW emission and
making it happen at any temperature, since it arises from in-
ternal nucleon movements within each nucleus. Calculating
an estimate for the GW emission would depend on the model
one uses for the nucleus. The Fermi gas model of the nucleus
assumes that the nucleons are free to move inside the poten-
tial well of the nucleus. Since we are assuming that gravity
is fully classical, we can use the same calculations as that of
Weinberg and Sivram to arrive at an estimate of gravitational
wave emission from nucleons inside nuclei.

4.2 A GW nuclear emission/absorption model

Taking the calculation of Weinberg to nuclear material,
Sivaram finds a rate of 10−16eV/s per neutron [12] (using
their neutron star calculation). Fully classical quantum grav-
ity would then suggest that the Sun emits about 1022 watts
of 1022 Hz gravitational wave energy, as opposed to the 109

watts at a lower atomic frequency that Weinberg calculates
from plasma conditions only.

Another way to arrive an estimate for GW emission in
nuclei is to treat a nucleus as having several nucleons moving
in it at some typical internal velocity. The speed of nucleons
is given by their kinetic energy in the Fermi gas model with a
peak momentum of about 250 MeV/c. Using only one pair of
these peak energy nucleons and setting r = 1 fm, Eddington’s
formula for a bar of mass 2 nucleons, spinning at a nuclear
1023 Hz, predicts an emission rate of about 10−9 eV/s.

While these two approaches to calculate the GW emis-
sion of a nucleus in the fully classical model differ by sev-
eral orders of magnitude, GW emission rates near these levels
hint that such effects (or perhaps more likely a lack of effect)
might be measurable in the lab.

Experiments might need to use differential absorption ef-
fects to arrive at results. Absorption models are harder to
quantify, as the cross section estimate is quite uncertain due
to unknown detailed information on particle substructure.

Within this fully classical quantum model each nucleon
will have its own characteristic spectrum of nucleon-fre-
quency gravitational waves, depending on the structure and
size of the atomic nucleus. Experiments similar to those done
to look for “big G” could use dissimilar materials for the
masses whose force of attraction is to be measured. It’s no-
table that experiments to determine Newton’s constant G have
had great difficulty obtaining consistent results. Most mea-
surements of G do not agree with each other to within the
errors carefully determined by the experimenters [13].

Another experimental avenue would be to search for GW
interaction effects between the bulk of the earth and masses
in a lab of dissimilar materials.

5 Emission/absorption parameter space

Fig. 1 is a sketch of allowed emission and absorption param-
eters. Some — but not all — combinations of emission and
absorption parameters are ruled out by experiment. Towards
the upper left of the image limited absorption combined with
higher emission would mean that the stochastic background
of gravitational waves would be too energetic, having for ex-
ample energy greater than the baryonic mass in the universe.
The phrase “stability of nuclei” refers to the experimental fact
that nuclei live for billions of years. On the right a ruled out
region exists where absorption cross sections are not physi-
cally likely. The top line shows a calculation for the gravi-
tational wave emission rate of a proton due to parton (quark)
motion. “Nuclear emission (high)” refers to the Eddington
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Fig. 1: Nuclear frequency gravitational wave emission and absorp-
tion. The elusive nature of gravitational wave detection means that
even fully classical quantum gravity cannot be experimentally ruled
out. The frequency of the gravitational waves is that of nucleons
(ω ≈ 1022 Hz).

emission rate for a heavy nucleus, while the lower nucleus
emission rate is calculated assuming thermal Coulomb GW
emission inside each nucleus.

6 Discussion

Due to the weak nature of gravitational effects on subatomic
particles, even fully classical gravity cannot be experimen-
tally ruled out at this time. Quantum gravity experiments that
are possible with today’s technology are very rare, this pro-
posal represents an opportunity to test one of the tenants of
quantum gravity.

Null results from experiments as described here will be
able to constrain the allowed parameter space of a fully classi-
cal theory of microscopic gravity, thus suggesting that gravity
needs to be quantized.

These tests are also a test of the ubiquity of quantum me-
chanics. With a non null result the conceptual foundations
of quantum mechanics would be in question, as gravity might
then be determined to be outside of the realm of quantum me-
chanics.
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Kirchhoff’s law of thermal emission asserts that, given sufficient dimensions to neglect
diffraction, the radiation contained within arbitrary cavities must always be black, or
normal, dependent only upon the frequency of observation and the temperature, while
independent of the nature of the walls. In this regard, it is readily apparent that all cav-
ities appear black at room temperature within the laboratory. However, two different
causes are responsible: 1) cavities made from nearly ideal emitters self-generate the
appropriate radiation, while 2) cavities made from nearly ideal reflectors are filled with
radiation contained in their surroundings, completely independent of their own temper-
ature. Unlike Kirchhoff’s claims, it can be demonstrated that the radiation contained
within a cavity is absolutely dependent on the nature of its walls. Real blackbodies can
do work, converting any incoming radiation or heat to an emission profile corresponding
to the Planckian spectrum associated with the temperature of their walls. Conversely,
rigid cavities made from perfect reflectors cannot do work. The radiation they contain
will not be black but, rather, will reflect any radiation which was previously incident
from the surroundings in a manner independent of the temperature of their walls.

1 Introduction

Kirchhoff’s law of thermal emission was formulated in
1859 [1, 2]. It is often presented as stating that, at thermal
equilibrium, the emissivity of an object, ϵν, is equal its ab-
sorptivity, αν. However, this should properly be considered
as ‘the law of equivalence’, first proposed by Balfour Stew-
art [3] in 1858.

Kirchhoff’s law extended much beyond Stewart’s [3] and
stated that, given thermal equilibrium, the radiation contained
within an arbitrary cavity was depended only on the temper-
ature of the enclosure and on the frequency of observation
[1, 2]. Such radiation was completely independent of the na-
ture of the walls [1,2]. It was because of Kirchhoff’s law that
blackbody, or normal, radiation has always been viewed as in-
dependent of the lattice and unlinked to a physical cause [4].
Clearly, if Kirchhoff was correct and blackbody radiation was
independent of the nature the walls, then such radiation could
not be ascribed causality in the emitting structure.

Yet, it has been known for over 200 years that the radia-
tion emitted from objects was highly variable [5]. In 1804,
Leslie reported that the emission of surfaces depended on
their nature and established the primacy of lampblack as a
blackbody surface [6]. As a result, lampblack or soot, along
with graphite, soon gained a dominant role in the construction
of laboratory blackbodies (see [7] and references contained
therein). The nature of the surface producing a thermal spec-
trum clearly did matter, in stark contrast to Kirchhoff’s claims
relative to cavity radiation [1, 2].

In the early 19th century, blackbodies were simply objects
made from graphite or coated with materials such as soot and
lampblack. Carbon black was also employed, a pigment used

in paints since pre-historic times [8]. Eventually, blackbod-
ies became increasingly sophisticated devices, typically cav-
ities. Other good absorbers of radiation slowly moved onto
the scene relative to the construction of laboratory blackbod-
ies [9–11], but graphite, soot, and carbon black retained their
pre-eminent role [12]. Max Planck soon benefited from the
construction of advanced cavities [9–11], when he formu-
lated the blackbody solution [13, 14]. Contrary to Kirchhoff
law [1, 2] the nature of the walls was thereby proven to be
important on a practical level. It governed the quality of a
blackbody. The quest for ever blacker surfaces [15–22] has
now turned to novel structural absorbance approaches guided
by samples as diverse as butterflies [23, 24] and birds [25].
Yet still today, many blackbodies in national laboratories are
based upon the use of graphite (e.g. [26, 27]).

It remains true that blackbodies are specialized cavities
which depend entirely on the nature of their walls [7, 9–12,
26,27]. Laboratory blackbodies are made from materials that
have an elevated emissivity over the range of interest, as is
widely known throughout metrology. This fact alone is suffi-
cient to illustrate that Kirchhoff’s law cannot be valid.

As such, it is surprising that many still believe that any
arbitrary cavity can produce a blackbody spectrum. In the
laboratory, this was never the case. Planck himself [13] was
dependent on the work of leading scientists in order to obtain
a spectrum with the blackbody frequency distribution [9–11].
If Kirchhoff law had been correct [1, 2], this should not have
been necessary.

The author has previously stated that Kirchhoff’s law was
not valid (see [4, 7, 12] and references therein), as it has no
proper theoretical [28] or experimental proof. Planck’s equa-
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tion [13, 14] remained unlinked to a physical mechanism [4]
because of Kirchhoff’s law [1, 2]. As a result, physics was
prevented from accounting for the production of a thermal
photon from a simple cavity made from a block of graphite.
Blackbody radiation remained, according to Kirchhoff, in-
dependent of the nature of the walls [1, 2]. In this respect,
Planck’s equation [13] was unique in spectroscopy. This has
enabled scientists, in disciplines other than condensed mat-
ter physics, to infer that thermal photons could be produced
without having recourse to a physical lattice, as was clearly
required when emitted from graphite [4]. This has also en-
abled Max Planck to claim that his equation had universal
significance [14, §164]. But in reality, Planck’s solution was
strictly limited to actual blackbodies (e.g. [7, 9–11, 26, 27])
and not to all cavities.

Thus, cavity radiation is reconsidered herein as to refute
Kirchhoff’s law [1, 2] and place a proper perspective on cav-
ity radiation. In order to do so, cavities were constructed from
materials which acted as nearly perfect absorbers or reflectors
of radiation in the infrared. The results are discussed in terms
of the work required to convert incident energy into normal
radiation within the blackbody cavity. Conversely, the ex-
istence of nearly perfectly reflecting cavities is discussed in
the context of resonant cavities used in magnetic resonance
imaging [29], microwave cavities [30, 31], and lasers [32].
The findings demonstrate that cavity radiation is absolutely
dependent on the nature of the walls. Consequently, Kirch-
hoff’s law was never valid [4, 7, 12] and Planck’s equation is
not universal, as confirmed by a wide array of experimental
results [29–32].

For the sake of brevity, the challenge to Kirchhoff’s law
presented herein can be limited to the study of a single ap-
proach without any loss in content. In 1954, de Vos published
his Evaluation of the Quality of a Blackbody in the journal
Physica [33]. This article has become a classic in blackbody
radiation. de Vos [33] examined the quality of cavities con-
structed from materials with varying emissivity by noting the
change upon incident radiation. This radiation was allowed to
enter a cavity, exit, and be monitored with a detector placed
at various angles. For cylindrical cavities, de Vos was con-
cerned with the ratio of the length of the cavity to its diam-
eter. He demonstrated that the radiation within cavities ap-
peared to become increasingly isotropic as this ratio was in-
creased [33]. However, de Vos had not demonstrated that all
cavities will be black, independent of incident radiation. In
fact, de Vos was concerned with the degree to which the sur-
face of the cavity was either specular or white [33]. He did
not evaluate whether a cavity could actually emit photons at
the correct temperature. Thus, his work provided only limited
insight into blackbody radiation [33]. He did analyze to what
extent the surface property of a cavity affected the change of
incoming light into fully diffuse reflection [33]. However, if
a cavity was not constructed of a near ideal absorber, it was
not necessarily black unless it was able to receive the proper

incident radiation from its surroundings.
At the same time, if a cylindrical hole of sufficient depth

was placed in a material with an elevated emissivity, the find-
ings from de Vos suggest that the resulting cavity should in-
deed be black [33]. This approach was therefore implemented
in this work in order to construct a simple blackbody cav-
ity from small blocks of graphite. In parallel fashion, nearly
perfectly reflecting cavities were constructed from blocks of
brass, copper, and aluminum.

2 Materials and methods

Infrared images were obtained using a CompactPro thermal
imaging camera (Seek Thermal, Inc., Santa Barbara, CA
93117; Thermal.com) interfaced with an Android (version
4.4.2) cell phone, as shown in Fig. 1A.

The camera had a focusable lens and a 32◦ field of view. It
was equipped with a 320× 240 thermal sensor, had a temper-
ature range of -40 to 330◦C, and was capable of obtaining ei-

Fig. 1: A) Photograph of the Android phone, Seek Thermal camera,
and aluminum, copper, brass, steel, and graphite blocks; B) Block
assembly I (graphite on the left, then on the right from top to bot-
tom: steel, brass, copper, aluminum). Note that two small scratches
are visible near the graphite cavity. C) Block assembly II (brass,
graphite, brass). D) Block assembly III (horizontal rows from top to
bottom: aluminum, brass, graphite, copper).
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ther still images or video. All images were obtained with the
camera operating in white mode, except for Fig. 2A, where
black mode was utilized.

Cylindrical cavities where constructed by drilling a small
hole into 12.5 × 12.5 × 50 mm blocks of copper, aluminum,
brass, and steel (Specific Gravity Metal Blocks, EISCO,
Haryana 133001, India). The expected emissivity of the cop-
per, brass, and steel holes should be on the order of 0.03-
0.1 [34]. The type of steel was unknown. A 20 × 50 × 50
mm 99.9% Purity Graphite Ingot Block EDM Graphite Plate
Milling Surface (Otoolworld, China) was used to build the
reference blackbody using the same approach.

Cavities were produced with a drill press using either
standard 3

16

′′
or 1

4

′′
diameter drill bits or a DeWalt Pilot Point

1
4

′′
diameter drill bit to the depth described in the figure leg-

ends. Cavities were examined at room temperature or after
having reached steady state while being heated on a hotplate
(Cuisinart, East Windsor, NJ) to a temperature of approxi-
mately ∼304◦C. Small graphite particles were made from 2
mm mechanical pencil refills (Menards, Eau Claire, WI) cut
to a length of 0.5 cm and inserted into the cavities of interest.

Experiments were initiated at room temperature, by plac-
ing the camera at a distance of ∼20 cm above the table surface
and therefore ∼15 cm above the surface of the block assem-
bly. The eye of the camera was positioned directly over the
center of this assembly. In order to document the effect of
ambient radiation on the cavities, a galvanized steel rod was
placed in an oven, heated to ∼232◦C, and then brought near
the cavities, as described in the figures.

3 Results

Thermal images are presented in Fig. 2 with the correspond-
ing schematic representations outlining the position of the rod
in Fig. 3. In Fig. 2A, a thermal image is presented in black
mode, revealing that all the cavities appeared nearly the same
at room temperature. In this image, there was also reflec-
tion of thermal radiation from the body of the observer onto
the block assembly. Thus, on cursory examination, Kirch-
hoff’s law appeared valid as all cavities essentially contained
the same radiation. Still, the block was positioned within a
room filled with radiation at the same temperature. There-
fore, it was important to determine whether the cavities were
generating radiation on their own or simply manifesting the
radiation in their surroundings.

For other studies, the camera was switched to white mode
and the cavities all appeared black, as seen in Fig. 2B. Next,
in Fig. 2C-F (see schematics in Fig. 3C-F), a heated galva-
nized steel rod was placed above their surface. The rod had
been heated to ∼232◦C. In Fig. 2C, the rod was positioned
to the right of the steel cavity (see schematic Fig. 3C). With
the heated rod in this position, the graphite and steel cavi-
ties could not be filled with its radiation. These two remain
pretty much as they were with just a tiny spec of reflection at

the graphite cavity. Thus, radiation from the rod was reach-
ing this cavity as well, as expected. At the same time, the
aluminum, copper, and brass cavities were immediately filled
with radiation from the rod.

The rod was then moved to the left in Fig. 2D, as shown
in Fig. 3D. Notice, once again, that there was no effect on the
graphite cavity and that only a slight reflection was observed
at the top of the steel cavity. However, all the others were
filled with radiation from the rod. In particular, note the pat-
tern in the brass cavity revealing that it was still not able to
fully convert incoming radiation into isotropic ejected radi-
ation. This indicated this cavity should be deeper to render
the radiation fully isotropic, as suggested in de Vos’ classic
work [33].

In Fig. 2E, the rod was placed near the center of the block
as represented in Fig. 3E. The three cavities from aluminum,
copper and brass were again filled with rod radiation, but the
graphite cavity remained unaffected and the steel cavity al-
most unaffected. However, reflection of rod radiation could
be observed in the scratches on each side of the graphite cav-
ity. As such, radiation from the rod was clearly reaching this
cavity. Finally, in Fig. 2F, the rod was positioned just to the
right of the steel cavity as shown in Fig. 3F. In this position,
the steel cavity was no longer black. Now, it could be ob-
served that rod radiation was able to partially fill the steel
cavity. Nonetheless, the bottom of this cavity was darker,
thereby indicating that steel had a much higher emissivity
than the aluminum, copper, or brass cavities, but was not on
par with graphite. The aluminum, copper, and brass cavities
all appeared filled with radiation from the rod.

Next, the effect of inserting a small piece of graphite into
the cavities was examined as shown in Fig. 4. In Fig. 4A (see
schematic 4D), the graphite cavity was indistinguishable from
the surface of the block at thermal equilibrium. Both cavities
within the brass blocks were clearly visible.

When the heated steel rod was brought in close proximity
to the cavities, its radiation was reflected off the surfaces and
the signal to noise of the resulting image increased, as shown
in Fig. 4B (schematic 4E). However, the central graphite cav-
ity appeared black and both of the brass cavities became filled
with rod radiation. This revealed that real blackbodies do
work and convert any incident radiation to that correspond-
ing to the temperature of their walls. Conversely, the two
brass cavities on each side became filled with radiation orig-
inating from the steel rod. Again, the reflecting cavities were
not black, as they manifested the radiation present in their
surroundings in a manner independent of the temperature of
their own walls. When the graphite particle was introduced
into each of the cavities, it was unable to make the brass cavi-
ties fully black, as clear signs of radiation from the heated rod
remained, as shown in Fig. 4C (schematic 4F).

Next, consider the findings from block assembly III, as
displayed in Fig. 5. Initially, this assembly was monitored at
room temperature, in equilibrium with its surroundings, as
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Fig. 2: A) Infrared image obtained from the Block Assembly I (see Fig. 1B) with the camera operating in black mode. For this image the
camera was hand held. All the cavities were made using a standard 3

16

′′
drill bit to a depth of 1

′′
and appeared to contain the same radiation;

B-F) Infrared images obtained from the block assembly with the camera in white mode. The lens of the camera was exactly 15 cm directly
above the top of the block assembly or 20 cm above the top of the table. In these images, photons emitted from the heated rod and reflected
prior to detection are observed as a white streaks on the images. B) The galvanized steel rod was not near the block assembly. Thermal
radiation from the observer was likely to account for the good signal to noise on this image; C) The heated galvanized steel rod was placed
on the right near the steel cavity; D) The heated galvanized steel rod was placed on the left side near the aluminum cavity. In this case,
both the rod and its reflection are clearly visible; E) The heated galvanized steel rod was placed at the center of the block assembly. The
two small scratches near the graphite cavity reflected radiation, demonstrating that radiation from the rod was reaching this cavity as well;
F) The heated galvanized steel rod was placed just to the right of the steel cavity.

Fig. 3: Schematic representation illustrating the position of the heated rod relative to the block assembly. In the upper left, a vertical
cross section is presented. For Fig. 2C-F, the rod was held using locking pliers at an angle of ∼25-30o relative to the table. C-F) top view
illustrating the rod position in Figs. 2C-F, respectively.
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Fig. 4: Infrared images (A-C) and their schematic representations (D-F). The cavities were drilled with a DeWalt Pilot Point 1
4

′′
diameter

drill bit to the depth 1 1
4

′′
. A) Infrared image obtained from the Block Assembly II (see Fig. 1C) at room temperature without any heated

rod present (schematic in D). B) Image obtained while placing a heated steel rod in close proximity to the cavities (schematic in E). C)
Repeat of B, but this time, a graphite particle was suspended from two strings into the left brass cavity such that the center of the particle
was exactly 1 cm from the top of the block (schematic in F). Graphite particles were also inserted at the bottom of the other two cavities.
In B and C, the stem of the rod was parallel to and about 7 cm above, the top of the table (or a height of about 2 cm above the top of the
block). In schematics E and F, the rod was illustrated such that its position from left to right could be accurately represented relative to
the block. However, in the plane of the image, the rod was actually positioned just below the field of view considered by the schematic, or
about one rod width from the block.

shown in Fig. 5A (corresponding schematic, 5C).
Once again the infrared camera was positioned a distance

of ∼15 cm from the top of the block. The cavities within
the graphite portion of the block under those conditions were
indistinguishable from the graphite surface. The image was
noisy, as expected, since the observer was well removed from
the block during data acquisition. At the same time, the cav-
ities made within the aluminum, brass, and copper blocks
were clearly visible and distinct from one another, demon-
strating that they did not contain identical radiation. Since
these cavities were made from highly reflective materials, this
implied that the space surroundings of the block contained
some anisotropic radiation.

In Fig. 5B, the same block was examined (schematic 5D).
This time, the hands of the investigator were positioned on
each side of the block, such that thermal equilibrium was not
maintained and the associated radiation could be observed

filling the aluminum, brass, and copper cavities. Clearly,
these nearly perfectly reflecting cavities were not black, but
contained radiation emitted by their surroundings.
Conversely, under these conditions, the three deepest graphite
cavities, located on the left of the third row, remained essen-
tially unaffected. At the same time, the shallowest cavity,
made from the tip of the drill bit and located on the right of the
third row, was sensitive to this challenge (Fig. 5B, D). There
were reflections of thermal photons off the surfaces of each
block which altered the appearance of the images as well.
This study served to exemplify, once again, that real black-
bodies could do work converting radiation incident upon their
walls to black radiation manifesting their temperature. Con-
versely, rigid perfectly reflecting cavities could not do work.
They contained the radiation present in their surroundings in a
manner independent of their own temperature and such radia-
tion was clearly observed in the aluminum, brass, and copper
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Fig. 5: A) Infrared image obtained from the Block Assembly III (see Fig. 1D) at room temperature. The corresponding schematic is
displayed in C (reduced by 25%). B) Same as in A, but this time the hands of the investigator were placed near the sides of the block such
that thermal photons from the first two fingers of each hand could challenge the cavities, as seen in the schematic representation D (reduced
by ∼50%). The horizontal rows from top to bottom correspond to aluminum, brass, graphite, copper. These cylindrical cavities were made
using a standard 1

4

′′
drill bit to different depths (from right to left: 1) depth corresponding to just the cone of the drill bit, 2) depth to 1

4

′′
, 3)

3
4

′′
and 4) 1 1

4

′′
).

cavities.

At this point Block Assembly III was placed onto the sur-
face of a hotplate brought to a temperature of ∼304◦C, as
shown in Fig. 6.

Under these conditions, the graphite cavities located on
the third row all appeared to contain isotropic radiation
closely manifesting their equilibrium temperature. This in-
dicated that these cavities were able to convert heat energy
located in their walls to blackbody radiation. Even the cavity
produced with only the tip of the drill bit, on the right, con-
tains isotropic radiation. Conversely, the cavities constructed
from aluminum, brass, and copper did not all contain such

radiation. Rather, they showed clear signs that their radia-
tion originated from the hotplate and was a property of the
surroundings, not the cavity itself.

While the 1 1
4

′′
aluminum (top row, left most) and copper

(bottom row, left most) cavities appeared to contain isotropic
radiation, the brass cavity of the same depth (second row, left
most) clearly did not. In addition, careful examination re-
vealed that crescents were visible in the aluminum, brass, and
copper 3

4

′′
cavities (second column) as well. With the excep-

tion of graphite, the 1
4

′′
cavities (third column) did not contain

isotropic radiation at the appropriate temperature and neither
did the corresponding conical cavities made from just the tip
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Fig. 6: Infrared image obtained from the Block Assembly III (see Fig. 1D) positioned on a hotplate surface at a temperature estimated at
∼304◦C using the thermal camera. In order to acquire this image, the camera was mounted on a tripod such that its lens was ∼20 cm from
the face of the block.

of the drill bit (fourth column). For instance, note the inabil-
ity of any of the smallest cavities, made from these materials,
to sustain radiation at the proper temperature. Crescent pat-
terns also appeared in cavities constructed from aluminum,
brass, and copper, even at a depth of 3

4

′′
(second column), de-

spite the fact that the radiation in the graphite cavity at the
same depth was clearly isotropic. At a depth of 1 1

4

′′
, the brass

cavity (second row, first column) still displayed such patterns.
When the block assembly was cooled, it was apparent that

the copper blocks had become highly oxidized and this, in
addition to their proximity to the hotplate, might help explain
their superior performance when compared to aluminum and
brass.

Still, these results revealed that real blackbodies, repre-
sented herein by the graphite cavities, could do work and
manifested the radiation appropriate to the temperature of
their own walls. Conversely, the aluminum, brass, and cop-
per cavities illustrate that nearly ideal reflectors could not do
work, but contained the radiation present in their surround-
ings which was independent of the nature of their walls.

4 Discussion

The approach to, and departure from, thermal equilibrium has
been the subject of countless studies by Fourier [35], Dulong
[36], Petit [36], de la Provostaye [37], and Desains [37] (see
[38] for a full review). In similar fashion, through the stud-

ies presented herein, a greater understanding has been sought
about the nature of the radiation within cavities. This was
accomplished both under conditions of thermal equilibrium
and also by considering challenges which represent small de-
partures from equilibrium. However, these challenges were
important because they served to highlight the nature of the
radiation which filled a cavity and thereby help to establish
the identity of those objects which properly constituted black-
bodies.

4.1 Blackbodies defined

Prior to formulating his law, Kirchhoff first defined a black-
body by stating that “This investigation will be much simpli-
fied if we imagine the enclosure to be composed, wholly or
in great part, of bodies which, for infinitely small thickness,
completely absorb all rays which fall upon them” [2, §7].
Kirchhoff therefore recognized the importance of surface ab-
sorptivity in the blackbody problem.

Surprisingly however, when Max Planck would later de-
fine the blackbody in his classic text [14], he completely re-
jected Kirchhoff’s approach writing: “In defining a black-
body Kirchhoff also assumes that the absorption of incident
rays takes place in a layer ‘infinitely thin’. We do not in-
clude this in our definition” [14, §10]. Planck then changed
the characteristics of a blackbody surface: “A rough surface
having the property of completely transmitting the incident
radiation is described as ‘black”’ [14, §10]. With this defini-
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tion, Planck removed absorbance of the surface itself from
the requirements for creating a blackbody and inappropri-
ately placed the focus on transmittance. Planck adopted this
new definition because he was preparing to advance a proof
of Kirchhoff’s law which ignored absorbance at the bound-
ary of two materials [14, §35-37]. But in doing so, Planck
moved away from physical reality. His approach proved in-
valid [39]. Nearly ideal absorbance for thin surfaces remains
the hallmark of all materials used to construct quality black-
bodies [7, 9–11, 25, 27].

4.2 The mathematical form of Kirchhoff’s Law

In advancing his law [2], Kirchhoff did not have recourse to
experimental verification. He first stated that the emissive
power of an object, E, divided by its absorptive power, A,
was equal to a universal function which depended only upon
temperature, T, and frequency, ν (E/A= e where e = f {T, ν}).
He then immediately replaced absorptive power, A, with ab-
sorptivity, αν, such that E/αν= f {T, ν}. For actual blackbod-
ies, it is clear that αν can be set to 1 and E= f {T, ν}. However,
Kirchhoff’s expression becomes undefined when αν is set to
zero, as would occur if the cavity was constructed from a per-
fect reflector. Planck himself recognized the undefined nature
of Kirchhoff’s law under those conditions (see §48, §51, §52
in [14]).

Thus, relative to Kirchhoff’s relationship, two limits are
involved. The first, addresses cavities constructed from per-
fect absorbers, such that αν can be set to 1. The second, in-
volves cavities constructed from perfect reflectors, such that
αν can be set to zero and the law becomes undefined. Per-
fectly reflecting cavities never followed Kirchhoff’s law.
They are important however as they form the basis for many
resonant devices [29–32]. In any event, Kirchhoff had no
mathematical basis for arguing that all cavities must contain
black radiation which is dependent only upon temperature
and frequency.

4.3 Laboratory blackbodies

Clearly, laboratory blackbodies [4, 7, 12, 26, 27], including
those utilized to provide Planck with data [9–11], were spe-
cialized cavities constructed from highly absorbing materials.
This observation alone was sufficient to conclude that Kirch-
hoff’s law was invalid.

In the infrared, it was evident that the graphite cavities
used in this study were able to maintain their internal radi-
ation in a manner which was essentially independent of any
radiative challenge. They acted as real blackbodies and could
do work. They could ensure that the radiation they contained
was governed by the nature and the temperature of their own
walls. They converted incoming energy, whether in the form
of incident radiation or heat, into normal radiation with the
correct frequency distribution.

Conversely, cavities constructed from aluminum, brass,

and copper acted as nearly ideal reflectors. They contained
the radiation which was incident from their surroundings and
showed no ability to convert this radiation to black radia-
tion corresponding to the temperature of their own walls. In
this regard, it was evident that perfect reflectors could not do
work. They were unable to effect any change upon incident
radiation other than that which would occur given specular or
diffuse reflection.

de Vos noted the extent to which cavities could make radi-
ation isotropic as a function of the ratio of their diameter and
depth [33]. However, perfectly reflecting cavities, by defini-
tion, could not emit radiation. As such, the radiation which
they contained must remain completely independent of the
temperature of their walls and dependent solely on the radi-
ation contained in their surroundings. de Vos’s analysis of
the quality of a cavity in terms of its ability to convert incom-
ing radiation into ejected isotropic radiation, while of interest,
actually had little baring on the behavior of real blackbodies.
This was because real blackbodies depended on the nature
of their surfaces, not on the dimension of a cavity, in order
to ensure that the emitted radiation would be both isotropic
and black. A cavity in fact, should not be required, provided
that the surface material was black and that no external radia-
tion was able to contaminate this emission. This explained in
part the interest in materials with elevated emissivity values
[9–11, 26, 27] and highly absorbing surfaces [15–22]. Cavi-
ties did enable blackbody radiation to be contained, but they
were not necessary for its production.

4.4 Cavities and work

Perhaps the central feature of all actual blackbodies was that
they must have the ability to do work and convert any inci-
dent energy into the frequency distribution corresponding to
the temperature of their own walls. In this sense, the work
performed by a blackbody conformed to the standard defini-
tion whereby energy was converted from one form to another.
Blackbodies accomplished this task in two ways. First, they
were able to alter the frequency of incoming radiation and re-
emit it with the blackbody frequency distribution correspond-
ing to the temperature of their walls. Secondly, they could
convert heat energy located in their own walls into thermal ra-
diation associated with this temperature. In either case, only
absorbers of radiation could act as blackbodies, as only they
could serve as emitters. Radiation was absorbed by the walls
and re-emitted in a manner which depended on the density of
states and thereby upon temperature.

Conversely, rigid perfect reflectors could only redirect in-
coming radiation in a specular or diffuse manner. A change in
phase occurred without any change in frequency. Therefore,
no work was done, as a change in the energy distribution of
the incoming radiation did not occur. Furthermore, perfect re-
flectors could not harness the energy contained in their walls
and thereby emit radiation. Unable to absorb, they could not
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emit.
The reality that rigid perfectly reflecting cavities cannot

do work is the basis for resonant cavities in ultra high field
magnetic resonance imaging (UHFMRI) [29], electron para-
magnetic resonance (EPR) [30], microwave communications
[31] and the resonant cavities used for building coherent ra-
diation following stimulated emission in lasers [32]. All of
these disciplines strive to build highly reflective resonant cav-
ities with optimal quality factors, Q = f /δ f , where f is the
frequency of interest and δ f full width at half maximum of
the resonance. Q-factors are inversely proportional to surface
resistance echoing Planck’s desire for infinitely large conduc-
tivity.

In clinical MRI, dielectric loses in the human body will
dominate Q-factors for any resonator [26]. As a result, little
can be gained in this discipline from building resonators from
materials more sophisticated than copper or silver.

However, lasers do not experience these limitations. As
a result, resonant cavities in lasers can benefit from the con-
struction of highly reflective Bragg super-mirrors, which can
have reflectance values of 99.9999% [40–42]. Ion-beam in-
terference coating mirrors [43] are associated with LIGO
[44]. Specialized mirrors are also used in high precision
atomic clocks to generate optical cavities with low thermal
noise in that setting [45]. Laser cavities can thus achieve Q-
factors of 1010, or more [46].

The use of resonant cavities in UHFMRI [29], EPR [30],
microwave technology [31], and lasers [32] proves that Kirch-
hoff’s law is not valid. These cavities critically depend on
their nearly perfectly reflecting nature which allows them to
serve as resonant devices, unable to alter incoming radiation
by making it black. It is evident that the radiation in these cav-
ities is absolutely dependent upon the radiation which was in-
cident upon them and completely independent of the temper-
ature of their walls. Absorption of incident photons, transfor-
mation into thermal vibrations, and re-emission into thermal
photons does not occur in perfectly reflecting cavities. Kirch-
hoff and Planck cannot claim otherwise, when they assert that
all cavities contain black radiation [1, 2, 14].

4.5 Max Planck and Kirchhoff’s law

Max Planck attempted to prove the validity of Kirchhoff’s
law in the opening sections of The Theory of Heat Radia-
tion [14, §1-52]. Upon close examination, the derivation was
discovered to be unsound [39]. In order to construct his proof,
Planck actually redefined the very nature of a blackbody and
no longer required, as did Kirchhoff, the ability to absorb ra-
diation over an infinitely small thickness [2, §1]. In contrast to
Kirchhoff, Planck permitted radiation to enter a medium with-
out absorption/emission at its surface [14, §36-37]. When
considering a medium with a vanishingly small absorptivity,
he allowed for their use as blackbodies by invoking infinite
thickness [14, §10]. Thus, Planck’s proof of Kirchhoff’s law

used transmission and, at times, improperly ignored absorp-
tion. Additionally, his proof relied on the use of polarized
light [14, §35-37] and the use of Brewster’s angle, when heat
radiation is never polarized [47].

In this regard, it is noteworthy that in order to address the
blackbody problem Max Planck actually focused his attention
on the perfectly reflecting, rather than the perfectly absorb-
ing, wall [14]. Planck had defined the reflector as: “the sur-
face of an absolute conductor (metal) of infinitely large con-
ductivity” [14, §55]. Planck’s focused on perfectly reflecting
cavities despite the fact that such cavities cannot function as
proper blackbodies.

Indeed, Planck understood that “In a vacuum bounded
by perfectly reflecting walls, any state of radiation may per-
sist” [14, §51]. However, he advanced that such radiation
could be converted to blackbody radiation at the correct tem-
perature with the simple addition of a small particle of car-
bon [14, §51]. He believed that this particle acted as a cata-
lyst and provided no heat energy of its own [14, §51]. How-
ever, Fig. 3 demonstrated that the addition of a carbon particle
alone was not sufficient to produce the desired radiation. In
fact, it was doubtful that Planck or his contemporaries ever
tested the concept, as a small particle of graphite could never
do enough work to fully convert the radiation, incident upon a
cavity, into fully black radiation. The second law has always
restricted what the carbon particle could achieve. In addition,
Planck’s use of the carbon particle [14, §51] could easily lead
to a violation of the 1st law.

Using a thought experiment, it could be demonstrated that
the catalyst argument violated the 1st and 2nd laws of thermo-
dynamics [48]. Planck himself recognized that the radiation
contained in a perfectly reflecting cavity was undefined [14,
§48, §51, §52]. As such, the energy contained in these radi-
ation fields could not be transformed to the proper frequency
distribution, unless it exactly matched the energy required at
the temperature of interest. Since the radiation was undefined,
any attempt to transform radiation of arbitrary energy con-
tent to that with the proper frequency distribution for a given
temperature risked violating the 1st law of thermodynamics.
Planck could not be assured that the energy density within
the cavity enabled the carbon particle to make the radiation
black at the correct temperature. Only when the correct en-
ergy density was initially present in the cavity, could Planck
avoid violating the 1st law. Furthermore, the carbon particle
must do work to transform heat energy into radiation and fill
the cavity. It could never act as a catalyst. Planck’s attempt
to address the undefined nature of the radiation in a perfectly
reflecting cavity, by the insertion of a carbon particle, stood
in opposition to the laws of thermodynamics [48].

Throughout his text on The Theory of Heat Radiation
[14], Max Planck attributed all of the energy to the radiation
field and included none in the walls of the cavity. Obviously,
if this was done, the solution could not depend on the nature
of the walls. However, the approach was not justified. Real

Pierre-Marie Robitaille. Kirchhoff’s law of thermal emission: Blackbody and cavity radiation reconsidered 149



Volume 14 (2018) PROGRESS IN PHYSICS Issue 3 (July)

cavities have energy in their walls. The most important ex-
ample is the perfectly reflecting cavity, wherein thermal equi-
librium is governed by the conduction of energy in the walls,
not within a radiation field. By definition, such walls have no
means of interacting with radiation and, therefore, a radiation
field cannot be used to set equilibrium in a perfectly reflect-
ing cavity. Perfectly reflecting cavities are responsive to the
radiation incident upon their openings only through reflec-
tion. The reflection can be either specular, white, or a mix-
ture. However, any effect on the incoming light in a perfectly
reflecting cavity will occur in a manner completely devoid of
any relationship to the temperature of its walls. The radiation
within perfectly reflecting cavities is determined by history
and environment, not temperature.

5 Conclusions

For more than 150 years [12], Kirchhoff’s law of thermal
emission [1, 2] has governed much of scientific thought in
physics and astronomy, despite the fact that it lacked proper
theoretical [28] and experimental proof [4, 7, 12, 28, 38, 39,
48]. Now it is clear that cavities do not all contain the same
radiation, independent of the nature of their walls. Perfect
reflectors are unable to convert incoming radiation into the
Planckian distribution corresponding to their wall tempera-
ture. In the absence of wall motion, they are unable to do
any work and merely sustain the radiation in their surround-
ings. If this incident radiation is phase coherent, then per-
fect reflectors can even sustain standing waves, as required
in UHFMRI [29], EPR [30], microwave telecommunication
[31] and lasers [32]. Had Kirchhoff’s law been valid, then
none of these modalities would exist, as no cavity would be-
come resonant and all incident radiation would become des-
tined to adopt the blackbody profile.

Kirchhoff’s law is demonstrably false. Real blackbod-
ies can do work on any incoming radiation and, as shown
herein, they appear to do so instantly. They exclusively con-
tain radiation which reflects the temperature of their walls,
not the presence of the radiation in their surroundings. It is
this ability to do work in the ideal blackbody, and the inabil-
ity to do work in the perfect reflector, which determines the
real behavior of cavities. That is also why laboratory black-
bodies are always constructed from materials which possess
relatively elevated emissivity values over the frequencies of
interest [4, 7, 9–12, 26, 27]. The production of a blackbody
spectrum absolutely requires the presence of a vibrating lat-
tice and is intrinsically tied to the nature of the walls [4], con-
trary to Kirchhoff’s claim [1, 2].

As a result, Max Planck’s long advocated universality [14,
§164] as to time, length, mass, and temperature was never
valid. The concept was entirely dependent on the notion that
Kirchhoff’s law was correct, but this was never the case. As
a consequence, the units of measure remain a product of hu-
manity’s definitions and science constrained by this fact.

Though Planck’s equation remains correct for actual black-
bodies, it is no longer reasonable to proclaim that black radia-
tion can be produced simply through arbitrary cavities in ther-
mal equilibrium. Such assertions are incorrect as evidenced
by the preeminent role of graphite and soot in the construction
of actual blackbodies [4] and as modern technology readily
demonstrates [29–32].
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The question whether light moves with constant or variable velocity is indubitably of
the utmost importance. Preliminary reflections concerning the nature of that movement
contrast the hypotheses of propagation and emission. As a brief historical examination
reveals, alleged evidences in favour of the invariance postulate turn out to be erroneous
or inconclusive and supposedly decisive tests methodologically invalid. An emission
theory based on Michael Faraday’s idea of ray vibrations is shown to be in accordance
with observation. The question whether the speed of light depends on the velocity of
its source has thus not been settled experimentally since only a kinematic test, to date
never conducted, can give an unambiguous answer. Juxtaposed to seemingly similar but
defective designs Wilhelm Wien put forward in 1904, such an experiment, amending a
set-up suggested by Herbert Dingle, is proposed.

1 Introduction

The assumption that the velocity of light with respect to real∗

space has a constant value is not self-evident at all, as the
history of science teaches. Indeed, only in the course of the
19th century the ether or propagation hypothesis of light mo-
tion, which this assumption is linked to, succeeded in super-
seding the ballistic or corpuscular conception of emission,
espoused by Isaac Newton. However, at the same time as
Christiaan Huygens’s interpretation seemed to achieve a late
victory, his central idea becoming a general conviction, the
problems resulting from it began to accumulate as well. As
a consequence, the image of propagating waves has eventu-
ally been called into question again [1] – and with very good
reason as will be shown. To get a clear picture of the ma-
jor differences, both views are first juxtaposed in opposition.
A generally unheeded emission theory, based on the concep-
tions of Walter Ritz and amended by Herbert Dingle, is then
invoked and demonstrated not to be in conflict with observa-
tion [2–7]. Finally, we delineate a kinematic experiment that
renders an unequivocal decision between the hypotheses of
propagation and emission possible.

2 The nature of light motion – propagation or emission?

To picture the two ways which the motion of light has histor-
ically been interpreted in, let us consider the following expla-
nations of Walter Ritz (Figure 1a, b):

In the theory of the ether, a point mass P, at rest
with respect to this medium, will be able to emit
waves of a constant radial velocity, which will
form at each instant a system of spheres, having
P as a centre. If P is animated by a motion of
translation, the spheres, on the contrary, will be-
come eccentric, each keeping its centre at P1 of

∗For epistemological reasons, the expression “real” is used instead of
the Newtonian term “absolute” throughout this essay.

the ether which coincides with P at the instant
of emission. According to the principle of rel-
ativity, on the contrary, if the motion of trans-
lation is uniform, the spheres will have to stay
concentric as at rest, and the centre will always
be P. When the motion is no longer uniform, the
principle will no longer suffice to determine the
movement of the waves.
Two ways of representing the phenomena, two
distinct images have successively dominated op-
tics: that of emission (the light moves) and that of
the ether (the light propagates). The second one
introduces absolute motion, while the first leads
for the movement of light in vacuum exactly to
the law that the principle of relativity requires:
the luminous particles expelled in all directions
at the instant t move with a constant radial ve-
locity and perpetually fill a sphere whose cen-
tre is animated with the motion of translation w
that P had at the instant of emission; if w is con-
stant, this centre will thus continue to coincide
with P. [8] (The original text is in French.)

The experiment of Michelson and Morley [9] had engulfed
the propagation hypothesis and with it electromagnetic the-
ory in a crisis, which most notably H. Poincaré [10] called
attention to. Ritz conceived of the ingenious solution to en-
tirely discard the image of propagating waves in favour of a
ballistic interpretation. In contrast to other authors, suggest-
ing different emission theories shortly afterwards [11–14], he
assumed light to keep the speed it is originally emitted with
including after reradiation by a medium [15]. His auspicious
but due to his early passing fragmentary work has been the
first systematic attempt to revise the notion of emission and
turn it into a cornerstone of electromagnetic and optical the-
ory [8, 15, 16]. Not until more than half a century later, that
line of thought was keenly continued by R. A. Waldron [17].
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Fig. 1: Movement of a light source P and of a corresponding spherical wave generated at the instant t0. (a) Propagation (after Maxwell-
Lorentz), (b) ballistic emission (after Newton-Ritz), (c) emanation (after Ritz-Dingle).

3 The Ritz theory – criticism and countercriticism

To test Ritz’s explanation, M. La Rosa [18,19] and R. C. Tol-
man [13] suggested to repeat the Michelson-Morley experi-
ment using light from an extraterrestrial source as the latter
moves rapidly with respect to the measuring apparatus. They
wrongly presupposed that another null result on such condi-
tions would invalidate his conception. In 1919, an equivalent
test, conducted by Q. Majorana [20] with a moving terrestrial
light source, showed no shift of the interference pattern. Al-
though F. Michaud [21] demonstrated that Ritz’s theory con-
forms with Majorana’s findings – unlike all other emission
theories which had been proposed – inferring the fallacy of La
Rosa’s and Tolman’s reasoning from this was omitted. Their
view found its way into W. Pauli’s [22] influential article on
Einstein’s theory instead, and after R. Tomaschek [23] and D.
C. Miller [24] had finally performed experiments employing
sun and star light that again yielded no interference fringes to
the calculated extent, Ritz’s ideas largely fell into oblivion.

Already previously, an argument adduced by D. F. Com-
stock [25] and W. de Sitter [26–29] had severely undermined
the plausibility of the emission hypothesis. They pointed out
that the observed orbits of binary stars are irreconcilable with
a ballistic motion of light since particles emitted by a star
approaching the observer would overtake the preceding cor-
puscles and thus distort the image of the system.

Almost half a century had passed until Herbert Dingle
[2–4] not only brought the error in La Rosas’s and Tolman’s
reasoning to light but also found a possible explanation con-
sidering the seemingly unsurmountable objection that Com-
stock and de Sitter had raised. In doing so, he seized upon
ideas which Michael Faraday had outlined in his Thoughts on
Ray-vibrations:

The view which I am so bold as to put forth con-
siders, therefore, radiation as a high species of
vibration in the lines of force which are known
to connect particles and also masses of matter
together. It endeavours to dismiss the æther, but
not the vibrations. [30]

Dingle showed that it suffices to extend the classical princi-
ple of relativity concerning electromagnetic radiation so that
the velocity of light would remain constant with respect to
its source even if the radiating body moves non-uniformly
and non-rectilinearly (Figure 1c). According to this view,
the vibrating rays stay throughout their journey through pure
space connected to the source and share the latter’s changes
of motion. A few years earlier but without building on Fara-
day’s idea, P. Moon and D. E. Spencer had already reasoned
along similar lines in response to de Sitters objection [31–35].
However, as H. Bondi aptly remarked, the term “ballistic”
does not fit Dingle’s conception since the analogy with pro-
jectiles no longer characterizes the image [2]. To make a clear
distinction, we hence refer to the variation of the emission hy-
pothesis based on vibrating rays as emanation and to the cor-
relating principle, governing the motion of electromagnetic
radiation, as classicistic relativity.

Admitting this principle renders yet another astronomi-
cal objection irrelevant H. Thirring [36] propounded against
the ballistic concept. He argued that as atoms in the sun are
accelerated through thermal collisions, they would emit light
particles with different velocities at successive instants. The
wave train travelling along a terrestrial observer’s line of sight
would therefore shrink first, then be stretched, and arrive at
the earth as a radio signal.

Finally, a whole class of methodologically interrelated ev-
idences that had been put forward against the emission hy-
pothesis could not withstand Dingle’s astute scrutiny either.
Over the years, a considerable number of experiments was
conducted which seemed to corroborate the postulate of con-
stant light velocity relative to pure space, e.g. [37–43]. But as
Dingle correctly remarked:

The postulate is adopted as part of the basis of a
kinematic theory, so that “velocity” must be un-
derstood in a kinematic sense, and this requires
that the source of light must be an identifiable
body, having a definite position in space at each
successive instant, the whole sequence of posi-
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Fig. 2: Schematic of Wien’s first and second experimental proposals. A, B: translationally congruent cogwheels; L1, L2, LA, LB: light
sources; M1, M2: mirrors in parallel position; S1, S2: diaphragms with scales; α, β: deviation angles assuming a stationary ether so that
α> β as the mirrors rotate, the arrow below indicating the direction of motion of the earth around the sun. Bolometers behind A and B
were to record the luminous energy of the incoming beams. When the cogwheels are at rest, the respective values are the same but change
as soon as A and B start spinning. An ensuing difference in luminous energy between the rays passing through the notches in opposite
directions would have confirmed the hypothesis of a stationary ether.

tions being consistent with the velocity assigned
to the body. [6]

Furthermore, the fact that tests which employ interferometry
or use hypothetical particles as sources of light are subject to
circular reasoning was generally disregarded.

In all such experiments, the Maxwell-Lorentz the-
ory, in one respect or another, has been assumed
in the description of the experiment itself, and
since that theory requires that the velocity of light
shall be independent of that of its source, the
results are of no value at all in relation to this
point. [44]

If one visualizes, for instance, the image of the ejected pho-
ton string indicated above, it becomes clear at once that a light
ray’s velocity is not determined by its frequency of vibration.
Consequently, a measurement of the frequency of reception,
taken by itself, does not allow a conclusion to be drawn about
that velocity. Thus, a kinematic question demands a kine-
matic answer.

For all that and although it was occasionally admitted that
Ritz’s ideas were discarded prematurely and in part on er-
roneous grounds [45–49], the theory as amended by Dingle,
which no valid evidence exists against, was for decades ne-
glected. Only recently, this conception has finally been re-
sumed and substantially expanded by Luis Bilbao [50], Luis
Bernal, and Fernando Minotti [7] under the name of Vibrating
Rays Theory (VRT). Having adduced further observational
data in support of it, they conclude their comprehensive study
as follows: “We believe that, given the above evidence, a con-
scientious experimental research is needed to settle the ques-
tion of the dependence of the speed of light on that of its
source as predicted by Vibrating Rays Theory, and that has
been observed during the 1998 NEAR flyby.” [7]

4 Towards a kinematic experiment

In 1904, Wilhelm Wien [51–55, pp. 1408-1409] outlined two
experiments to determine whether the ether is dragged by the

earth or stationary based on the procedures Léon Foucault
[56] and Hippolyte Fizeau [57, 58] had devised to measure
the speed of light. His first design includes employing two
rotating mirrors, his second using two spinning cogwheels
which are placed far apart from each other and aligned with
the orbital motion of the earth around the sun, respectively
(Figure 2). Both experiments demand that the components
in rotation have the same angular velocity at any given mo-
ment. They therefore depend on the real synchronicity of the
instants which the mirrors or cogwheels are set in motion at.
However, according to the prevailing theory, this is unattain-
able through a material connection between them, for exam-
ple by means of an axle, because within its framework the
notion of the rigid body is no longer valid as Wien [59, 60]
himself later explained. Nor is utilizing electromagnetic sig-
nals to simultaneously start two separate motors feasible due
to the supposedly indeterminable times the signals need to
reach the different propulsion systems, which count as clocks,
so that any possible asymmetry looked for would be offset
by the signals’ nonsynchronous arrival. These designs being
foiled, Wien relinquished further efforts and became a leading
proponent of Einstein’s theory.

More than half a century later, Herbert Dingle pointed re-
peatedly to the necessity of a kinematic test for a final answer
to the question of the speed of light [4–6, 43, 61–68]. In his
book Science at the Crossroads, he eventually presented his
most sophisticated proposal of an experiment of the kind he
hoped for (Figure 3):

A and B are two sources of light (visible, mate-
rial sources, not hypothetical particles) of which
B is moving rapidly to the left while A is at rest,
the paper being the standard of rest. At the in-
stant at which they are adjacent to one another
they emit pulses of light towards C and D, which
are photographic films whose distances from A
are constant and which are moving rapidly down-
wards through the paper. The relative motion
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Fig. 3: Light sources A and B, photographic films C and D.

of A and B continues unchanged throughout the
passage of the light. If Einstein’s second postu-
late is true the traces on both films will be sym-
metrically side by side, while if Ritz’s hypothesis
is true, that of the light from A will be above that
of the light from B on one film and below it on
the other. [69]

This proposal undoubtedly implicates considerable and prob-
ably still insurmountable technical challenges. However, it
at least indicates that the one-way speeds of different beams
can indeed be compared without clocks in the usual sense
and therefore without the issue of synchronization being rel-
evant at all. That a measurement of the one-way speed of
light is possible in principle has also been expressly acknowl-
edged, for example, by Eddington [70], Waldron [17], and
Ohanian [71].

Dingle’s appeals may have gone unheard for factual rea-
sons at that time. Nowadays, technical infeasibility can cer-
tainly no longer hold as a valid argument as will be shown
in the following chapter. The matter appears all the more
exigent as the invariance postulate in its strict sense has re-
cently been refuted experimentally by slowing down light in
vacuum so that c may at best represent a maximum value.
Giovannini at al. sum up their findings as follows: “That
the speed of light in free space is constant is a cornerstone
of modern physics. [...] Our work highlights that, even in
free space, the invariance of the speed of light only applies
to plane waves.” [72] But plane waves are ideal constructs
and therefore do not exist as natural phenomena. Consider-
ing these facts and especially in view of the work of Bilbao,
Bernal, and Minotti, a kinematic test to conclusively answer
the question whether the speed of light depends on the veloc-
ity of the source is more urgent than ever.

5 Principle and set-up of the experiment

To remove the main difficulties inherent in Dingle’s proposal,
it is crucial to again follow Michelson’s example and to take
advantage of the motion of the earth around the sun since
the planet’s orbital speed of about 30 km/s is great enough
to render a potential difference in the travel times of distinct
beams observable. Further, employing only one light source

will ensure that the emitted rays originate from the same point
with respect to the earth.

Thus, the experimental set-up is as follows: aligned with
the orbital motion of the earth around the sun, a light source
L is positioned far apart from a disk D, the latter’s rotational
axis being perpendicular to the ground. While the disk is
spinning uniformly, L generates short pulses. The emitted
beams move towards D and impinge on its photosensitive lat-
eral surface at point A at right angles to the tangent (Figure
4). According to the propagation hypothesis, the velocity of
a ray with respect to the ground travelling along the direction
of orbital motion of the earth around the sun is c−V , with c
signifying the speed of light relative to pure space and V the
orbital speed of the earth. The travel time of the light referred
to LA = s is hence

tA =
s
√

1 − V2

c2

c − V
(1)

whereas in the case of a constant speed of light with respect
to the source one has

t =
s
c
, (2)

the difference between these times being

δtA = tA − t. (3)

From the disk radius r and the number of revolutions per sec-
ond f follows the speed

w = f U (4)

of the uniformly rotating circumference U. If λ denotes the
light spot diameter and the pulse duration p is set according
to

δtA 6 p �
U − λ
w

, (5)

the circular arc length

d = λ + wp (6)

marks the trace the first pulse generates on D’s lateral sur-
face. As the disk is spinning constantly and the pulse interval
equates to

P =
i
f
− t, (7)

where i ∈N denotes the number of revolutions per pulse, any
additional pulse must lengthen the trace in the amount of
wδtA, leaving a solid line on the photosensitive film. Let n ∈N
be the number of successively generated pulses, then the trace
length a will after n pulses add up to

a = d + (n − 1) w δtA . (8)

Consequentially, the light trace will cover D’s entire circum-
ference as soon as

n =
U − d
w δtA

+ 1. (9)
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Fig. 4: Schematic of the experimental set-up: A1 and A2 denote the points where the rays generated by the first and the second light pulse
hit the disk D at the instants t1 and t2. The circular arc length A1B1 = d represents the trace on D’s photosensitive lateral surface the very
first pulse causes. B1B2 = wδtA depicts the trace’s length increment produced by the second and any additional pulse according to the
propagation hypothesis. The arrow at the bottom indicates the direction of motion of the earth around the sun.

By contrast, if the emission hypothesis is correct, the rays
must always impinge on the same spot so that the trace on the
disk retains the length d no matter how much the value of n
increases, δtA having to be substituted with δt in equation (8),
where δt = t− t = 0.

Provided that the propagation hypothesis applies, the ex-
act value of a cannot be predicted. For the conventional value
of c would be an average that resulted from two-way mea-
surements and thus deviates from the real one-way speed of
light. In case the first test indeed gave a> d for n> 1, the
result should be crosschecked. Rotating the set-up and re-
peating the experiment would be expected to yield a different
value of a at each angle for a given n. Perpendicular to the di-
rection of orbital motion of the earth around the sun, the trace
length would then be

a90◦ = d + (n − 1) w

 √s2 + V2t2

c
− t

 (10)

and at 180◦

a180◦ = d + (n − 1) w

 t −
s
√

1 − V2

c2

c + V

 , (11)

where a≈ a180◦ . Equations (1) and (11), taking the supposed
Lorentz contraction into account, are applicable if the dis-
tance LA is measured by means of an etalon. However, con-
sidering the necessary magnitude of LA, a travel time mea-
surement using electromagnetic radiation will be conducted
in practice. The determined distance

s =
c T
2

=
(c − V + c + V) T

4
(12)

then arises from the signal’s two-way speed, with T signify-
ing the total time elapsed between emission and return, the re-
spective instants being measured by one and the same clock.
Although the square root factor within equations (1) and (11)
must under these premises be omitted, the choice between the
two methods of establishing LA is evidently of no significance
regarding the validity of the experiment.

Due to the motion of the solar system, the propagation
hypothesis involves the assumption that tA varies seasonally.
Therefore, if the first experimental run yields a = d for n> 1,
a conclusive confirmation of the emission hypothesis will not
only demand repetitions of the test at different angles but also
reperforming it over an extended period to exclude a mislead-
ing result because of V being possibly offset by an unknown
velocity component just at the time of the initial measure-
ments.

The outlined experiment avoids the theoretical obstacles
which defeated Wilhelm Wien’s proposals as merely one uni-
formly spinning mechanical component is required and at-
tuning a pulsing light source to it does not pose a conceptual
problem. The test itself implies no two-way measurement and
is neither dependent on assumptions of the Maxwell-Lorentz
electromagnetic theory, nor are hypothetical particles used as
a radiation source. Thus, Dingle’s criteria for a kinematic
light experiment are met, and objections against procedures
based on a closed light path do not apply [73].

6 Conclusion

We may summarize the proposed experimentum lucis et cru-
cis in the following way: since any “in itself determined pe-
riodic process realized by a system of sufficiently small spa-
tial extension” [74] is considered to be a timepiece, the de-
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scribed set-up consisting of a uniformly spinning disk featur-
ing a photosensitive lateral surface and of a light source puls-
ing at equal intervals embodies two clocks, their “hands” be-
ing successively emitted rays. These “light clocks” run syn-
chronously and thus display real simultaneity. The outcome
of the experiment is therefore identical for any observer in
any system of reference.

Since the assumption that an ether is dragged by the earth
was experimentally refuted [75, 76], no theory reposing on
the postulate of constant light velocity relative to pure space
or a luminiferous medium in it can explain successive beams
impinging on the disk at the same spot. Instead, the emission
hypothesis will be fully confirmed. Electromagnetic radia-
tion will have to be understood as a form of energy which is
emitted with a real velocity c + v, that is the vector sum of
a component being invariant relative to the light source and
a variable component, the real velocity of this very source.
However, according to K. Brecher’s [77] analysis of regu-
larly pulsating x-ray sources in binary star systems, a ballistic
interpretation even if it allows for the extinction theorem of
dispersion theory, as considered by J. G. Fox [45, 46], seems
to be untenable (cf. also [48]). Thus, the Ritz-Dingle Emana-
tion or Vibrating Rays Theory will remain the only explana-
tion consistent with observation [2–7]. In addition to classi-
cal relativity holding true for matter in uniform translation, a
classicistic principle will apply stating that the speed of light
stays constant relative to its source even if the latter moves
non-rectilinearly and non-uniformly.

Should, on the contrary, successive beams mark a solid
line on the disk, the propagation hypothesis would bear the
palm. Light would have the characteristics of a wave that
propagates in a medium with constant velocity relatively to
that medium. The recently renewed question whether there
is a resting frame in space [78] would be answered in the
affirmative.

Submitted on May 11, 2018
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The concept of observation and presentation of the count (reference) results in an inter-
val form is considered. The transition to interval measurements is achieved by use of
the total reduced number of measurements (number of degrees of freedom) as a sample
parameter, which allows the use of non-integer (fractional) powers of freedom in the
calculation of the estimates of static parameters and criteria values. The replacement
of single measurements with interval measurements at their same quantities in all cases
reduces the accuracy of statistical parameters estimates.

Introduction

Currently, there are known applications of fractional powers
in statistics [1]. However, the use of different methods of
data processing, in particular for small samples [2] and for
processing with the use of methods similar to the method of
group accounting arguments [3], allows to broaden their use
in calculations.

The concept of observation

According to [4], observation is the experimental basis of sci-
entific research. Observed results are most often recorded in
the form of meanings of the measured values or their counts.
For static methods of measurement, the result is a single num-
ber. With dynamic methods, it is possible to record the mea-
sured value in time as the implementation of a random (non-
random) process. In the latter case, the results of measure-
ments often are the evaluations of the process parameters. In
both cases, statistical stability is a prerequisite, which in par-
ticular consists, in the approximation, with a sufficiently large
number of observations∗ to the probability of a given value.
In all cases, if the measurement of the value is repeated many
times, the result is a statistical distribution series correspond-
ing to any distribution law, which may be associated with the
error of the measuring system or instrument.

Each single measurement (count), as well as their totality,
gives an empirical distribution, which is described in the form
of a histogram, statistical series, empirical distribution func-
tion, etc. In this case, along with the above, it is necessary to
specify the number of measurements, i.e. empirical descrip-
tion requires specifying the number of experiments (sample
size) on the basis of which it is obtained. We will refer to the
number of measurements, on the basis of which the empirical
description of the distribution law is obtained, as the number
of degrees of freedom. However, there are measured values,
which, by their nature, initially have a form corresponding to
a certain distribution law [5]. In this case, the measured value
is set not by a value, which is constant or changing in time,
but by an area at each point of which it can be located with a

∗The ratio of the number of observations of a particular value to the total
number of observations.

certain probability. This allows each measurement to match
the area of the measured value with the law of its distribution.

The area of determination of the value can be set with
one or more than one interval, see Fig. 1. One dimension
gives the area and the value of the parameters’ estimates of
the distribution law.

Interval measurements

Let us consider the basic prerequisites for using intervals as
measurement results.

The possibility to express numerical values of quantities
in the form of intervals is used in the theory of intervals [6].
The basic idea of interval analysis is that you can work with
intervals as with plain numbers. Common operations such
as addition, subtraction, multiplication and division, as well
as set theory operations such as intersection and union, are
quite applicable to them. Interval operations are described by
a ratio:

A@B = { x@y|x ∈ A, y ∈ B } , (1)

where @ is one of the operations {+, −, ∗, /, ∪, ∩}, while
A, B are intervals.

Fig. 1: Types of areas for determining the measurement value: a —
one observation — a single numerical value; b — one observation
— a set of intervals of numerical values, including those that are not
limited to the left or to the right; c — one observation — a set of
intervals strictly limited to the left and to the right; d — one obser-
vation — one interval of numerical values with one border to the left
and one to the right.
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A single (real) number can be viewed as that an interval
having a definition domain and the law of distribution in the
form of a certain event probability:

P (a ∈ [a, a]) = 1, a = [a, a] , (2)

i.e. just one numerical value is sufficient for the description
of the measured value.

Let us consider the measurement process of the diameter
of a bearing ring as an example of a measurement that has
a definition area of one interval. The measurement of the
radius of the hole or the outer diameter (done with sufficiently
accurate instruments) relative to the calculated center of the
bearing ring gives the dependence of the radius to the point
on the circumference surface of the hole or the outer diameter
in the form of a realization of a random process that can be
described by a random function like follows:

R = X (α) , (3)

where 0 6 α 6 2π is the bearing ring angle of rotation.
Accurate lab instruments such as circular gauges allow us

to fully record the kind of realization of a random process.
Obviously, when such a record exists, it can be processed by
well known methods of the theory of random processes. In
production conditions, the use of precision instruments is im-
practical. The control devices used allow to quite precisely
measure the diameter of a bearing ring. During the rotation
of the bearing ring it is also possible to determine the max-
imum and minimum values of the diameter of the bearing.
If we limit ourselves to only two of these values, then actu-
ally we come to a case of two independent observations. The
information that there are other numerical values of the diam-
eter, between these two values, becomes thus lost. For a more
complete explanation of the essense of the observation, it is
proposed to consider the considered measurement process as
a single observation in the form of one interval, Fig. 1, d. The
value of the measured diameter has a description in the form
of a statistical series at a given interval:

P̂ ( d : d ∈ [dmin, dmax]) , (4)

where d is the value of the bearing ring diameter.
With an interval measurement, however, there are two de-

grees of freedom: the measurements of one and the other
border of the interval. However, these two dimensions are
considered together over the interval. For example, one di-
mension is a border, and the other is the interval value it-
self, that is, there is a relationship: for the first dimension,
the entire numerical axis is available, and the second dimen-
sion describes the area of the finite length bound to the first
measurement. The availability of the entire numerical axis
here must be understood as a possibility to represent the first
measurement only by selecting the initial value of the refer-
ence point by any number, including almost infinity. For the

interval, whatever we choose as the reference point, its value
remains constant. From this we can assume that the specified
relationship as if reduces the number of degrees of freedom
of choice of numerical values for the interval measurement.
We can assume that it is less than two, but more than one. In-
terval measurement generally gives the values of the borders
of intervals and parameters or their estimates of the distribu-
tion law. This can be described by displaying the interval in
parameters’ values:

G : [ ai bi ]
P
−→

{
β j : j = 1, . . . , k

}
, (5)

where G displays the set of numerical values of the interval
measurement in the values of parameters or their estimates of
the probability distribution law; ai, bi are borders of the i-th
interval; P is the law of distribution of values of a random
variable from the interval; β j is the value or estimate of a
parameter of the distribution law.

It should be noted that the borders of the interval can be
displayed in the parameters of the distribution law explicitly
(for example, the boundaries of the interval in the case of the
law of equal probability density) or indirectly as the area of
definition of this law.

One of the options for describing the distribution law P
is the probability density. By the given probability density or
histogram it is possible to calculate or to estimate the param-
eters of the distribution law. The previously declared com-
monality for the interval and for one number (2) allows these
calculations to be applied for one number obtained during the
measurement. Let us illustrate this by calculating the disper-
sion of a single observation.

Calculation of the dispersion estimation of one observa-
tion by known relations [1] can be performed by the formula:

σ̂2
x =

n∑
i=1

(xi − mx)2

n
=

(x − mx)2

1
if mx is known, (6)

where mx is the mathematical expectation; x is the numerical
value of the dimension.

For one number from the interval with coinciding borders,
formula (6) is valid, because the mathematical expectation
does not require an evaluation, but is equal to the number it-
self. The value of the dispersion estimate in this case is zero.
This clearly indicates the non-randomness of the interval rep-
resentation of the same number, i.e., the specific meaning of
the measured value does not have a random component — it
is a non-random value.

Calculation of the dispersion estimate for an interval mea-
surement in the extreme case can be performed as that for two
independent observations by formulas:

σ̂2
x =

(b − mx)2 + (a − mx)2

1
, if mx is unknown, (7)

σ̂2
x =

(b − mx)2 + (a − mx)2

2
, if mx is known. (8)

160 Mashkin M. N. Fractional Degrees of Freedom in Statistics



Issue 3 (July) PROGRESS IN PHYSICS Volume 14 (2018)

It can be assumed that the value of the dispersion estimate
for the interval for each case, due to the lower value of the de-
grees of freedom, should exceed the values given by formulas
(7) and (8). In addition, within the interval, the measured nu-
merical values of the value are determined by its distribution
law. If we choose as the basic one the law of equal probability
density (EPD), then we lead the rest of the distributions to it
by changing the value of the interval on the basis of equality
of the entropy value.

Let us define the given number of measurements (degrees
of freedom) for an interval measurement in the form of:

ri = 1 + ∆i , 1 > |∆i| > 0; (9)

where

∆i =


+∆is, boundaries are given from experience;
−∆is, one boundary is given by the researcher;
−1, boundaries are given randomly.

The value ∆is can be determined by formula:

∆is =


1

1 + 1/his
, at bi, ai , 0;

0, at bi, ai = 0;
(10)

where
his =

bi − ai
1
2 | ai + bi |

is choosen for the EPD law and

his =
(bi − ai) Hx

HEPD

∣∣∣ M [
X[a,b]

] ∣∣∣
is choosen for any other law of the distribution of x along the
interval [ai, bi];

Hx = M
[
log P

(
X = x j ∈ [ai bi]

)]
=

−

n∑
j=1

P
(
X = x j

)
log P

(
X = x j

)
is chosen if the given measured value is discreet∗;

Hx = M
[
log P ( f (x))

]
= −

∫ bi

ai

f (x) logc f (x) dx

is taken at c < (bi − ai) if the measured value is continuous
(relative entropy);

HEPD = log n[a,b]

if the discrete measured value is distributed equally possible
within the interval, where n[a,b] is the number of equally pos-
sible states in the interval;

HEPD = logc (bi − ai)
∗The given relations for determination of H# are similar to entropy for-

mulas, and for the case of discrete measured values exactly coincide with
them.

if within the interval the measured value is distributed accord-
ing to the EPD law;

M
[
X[a, b]

]
is the mathematical expectation of the measured value in the
interval [ai, bi].

The total reduced number of measurements, the value for
the calculation of statistical parameters for the sample, is
equal to:

nr =

n∑
i=1

ri . (11)

This assumes that, when creating a statistical series of dis-
tributions or histograms, each interval dimension must have
its own share proportional to the value of ri. If it is 0, this
dimension is ignored. If it differs from zero, then this con-
tribution, as the number of measurements (experiments), is
equal to its value.

Formulas for calculation of the main estimates of statisti-
cal parameters for one, i-interval measurement, in the case of
the EPD law for the measured value within the interval, have
the form:

m̂xi =
bi + ai

2
; (12)

σ̂2
ri

=

(
bi − m̂xi

)2
+

(
ai − m̂xi

)2

ri − 1
=

(bi − ai)2

2 (ri − 1)
. (13)

Example. With a rectangular contribution (EPD), let us
define by formula (13) the estimate of the variance in the in-
terval of an i-th observation for different ratios of the value
of the interval and the values of its mathematical expectation,
see Table 1.

Left bor-
der of the
interval,

ai

Right bor-
der of the
interval,

bi

Math. ex-
pectation
estimate,

m̂xi

Reduced no.
of measure-
ments, ri

Estim.
variance,
σ̂2

ri
(13)

−4 4 0 2 32

−3 5 1 1.889 36

−2 6 2 1.8 40

−1 7 3 1.727 44

0 8 4 1.667 48

1 9 5 1.615 52

2 10 6 1.571 56
. . . . . . . . . . . . . . .

30 38 34 1.190 168

Table 1: Dispersion (variance) estimation via the given number of
measurements.

Analysis of Table 1 shows that in the symmetric interval
(the case when the estimate of the mathematical expectation
is 0), the variance estimate coincides with the value calcu-
lated by formula (7) for two unit measurements. As the value
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of mathematical expectation increases, the variance value in-
creases due to the reduction of the reduced number of mea-
surements, which can be taken as the number of degrees of
freedom of the resulting measurement.

Taking into account the above, a single measurement can
be considered as an interval measurement when the interval is
equal to the rounding error of the instrument readings. In this
case, a fairly small relative error gives the reduced number of
measurements equal to 1.

Contributions method

To process the results of a small sample in the evaluation of
the distribution laws, the contribution method is used [2, 6].
This approach allows us to obtain a paradoxical result: due to
the empirical selection of the width of the interval of a rectan-
gular or other contribution, the accuracy of the assessment in-
creases. The paradox is that, by coarsening the measurement
results (the numbers are replaced by fixed-width intervals),
the accuracy of statistical parameters is allegedly improved.

When using the formalism published in the work [2], the
proposed estimation formula for the method of contributions
for the probability density is:

f̃ (x) =

n∑
i=1

ri · pi (x, ai, bi)

n∑
i=1

ri

, (14)

where n is the number of observations; pi (x, ai, bi) is a gen-
eralized record of the empirical component of the distribution
density associated with the interval of i-th observation (hav-
ing all the properties of the distribution density), describes
the law of distribution of measurements in the interval. Un-
like the work [2], empiricism is limited by the choice of the
distribution law in the interval. And there are two options:

1. The distribution law is the same for all intervals;
2. For each interval, its own law of distribution is picked.

For the case of the EPD law in the interval we have:

pi (x, ai, bi) =
1

bi − ai
, ai 6 x 6 bi . (15)

The work [7] presents a formula which uses the method
of contributions for the empirical component of density esti-
mation in the form of:

f ∗N (x) = C (ρ)
N∑

i=1

µi ψi (ρ, x) , (16)

where the ρ parameter is equal to half of the contribution in-
terval, ρ = bi−ai

2 = const, that is, the interval in all dimensions
is the same;

C (ρ) =


ρ∫
−ρ

ψi (ρ, x) dx


−1

, (17)

the amplitude ensures the equality of each contribution 1;
µi = 1/N is weight (the ratio for norming density estimation);
and also

ψi (ρ, x) =

 1, xi − ρ 6 x 6 xi + ρ ;
0, for others x.

(18)

Let us consider the use of formulas (14) and (16) for Ex-
ample 2.1 from the work [7].

Example 2.1 [7]. As a result of measurement of param-
eter X of three products after adjustment of the equipment,
the following results were obtained: 6.0; 6.4; 6.6. Let us es-
timate the empirical density that characterizes the quality of
the equipment setup.

Some assumptions must be made to calculate by (16). Let
us suppose that. Let us suppose that µi = 1/N = 1/3 = 0.3.

Then by formula (17)

C (ρ) =


0,3∫
−0,3

ψi (ρ, x) dx


−1

=
1

0.6
≈ 1.67.

Summing the kernels (contributions) ψi (ρ, x) for all i =

1, 2, 3 with amplitudes of 1.67 and weights 1/3, we obtain

f ∗N (x) =


0.56, 5.7 6 x < 6.1;
1.11, 6.1 6 x < 6.7;
0.56, 6.7 6 x 6 6.9;

(19)

(see Fig. 2):

Fig. 2: Empirical estimates of the probability density, Example 2.1.

Using formula (14), the example data can be interpreted
as follows: three intervals are used as input: [5.7; 6.3], [6.1;
6.7], [6.3; 6.9]. The length of each interval is equal to 0.6.
The distribution law within the interval is EPD. The distribu-
tion density is equal to:

pi (x, ai, bi) = 1/0.6; ai 6 x 6 bi . (20)
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Reduced number, ri

N/N
i/o

Left
border
of the
interv.,

ai

Right
border
of the
interv.,

bi

Math.
expec-
tated
estim.,

m̂xi

Both
borders
are expe-
rim.,

rie

One bor-
der is set
by the re-
searcher,

rip

1 5.7 6.3 6 1.091 0.909

2 6.1 6.7 6.4 1.086 0.914

3 6.3 6.9 6.6 1.083 0.917

Total: 3.26 2.74

Table 2: The reduced number of measurements by intervals, Exam-
ple 2.1.

The calculated numerical values according to formula (9)
of the given numbers of measurements for each the interval
are shown in Table 2.

The total number of measurements calculated by formula
(11) is equal to:

nre

n∑
i=1

rie = 3.26

if all parameters of the interval are obtained experimentally
(experimental data);

nrp

n∑
i=1

rip = 2.74

if one of the interval’s limits is specified by the researcher (a
priori data).

Hence, the estimated values for the probability density
(14) with account of contributions (18) look like these:

f̃re (x) = ∆re
f 1 + ∆re

f 2 + ∆re
f 3 for experimental data, (21)

f̃rp (x) = ∆
rp
f 1 + ∆

rp
f 2 + ∆

rp
f 3 for a priori data, (22)

f̃mv (x) = ∆mv
f 1 + ∆mv

f 2 + ∆mv
f 3 for a small sampling, (23)

where

∆re
f 1 = 0.558, ∆re

f 2 = 0.555, ∆re
f 3 = 0.554;

∆
rp
f 1 = 0.553, ∆

rp
f 2 = 0.556, ∆

rp
f 3 = 0.558;

∆mv
f 1 = 0.556, ∆mv

f 2 = 0.556, ∆mv
f 3 = 0.556;

are contribution of the intervals, while i is the interval num-
ber,

∆#
f i =

 ∆hi , ai 6 x 6 bi;
0, ai > x > bi;

is a contribution of the i-th interval under # (here re means
“experimental”, rp means “a priori”, mv means “calculated
by data method” [7]);

∆hi =
ri#

n# · (bi − ai)

Reduced number, ri

N/N
i/o

Left
border
of the
interv.,

ai

Right
border
of the
interv.,

bi

Math.
expec-
tated
estim.,

m̂xi

Both
borders
are expe-
rim.,

rie

One bor-
der is set
by the re-
searcher,

rip

1 5.56 6.44 6 1.128 0.872

2 5.96 6.84 6.4 1.121 0.879

3 6.16 7.04 6.6 1.118 0.882

4 5.0 7.2 6.1 1.265 0.735

Total: 4.631 3.369

Table 3: The reduced number of measurements by intervals of Ex-
ample 2.2.

Contribution height:

Interv. no. Experim. data A priori data Small sampl.

1 0.277 0.294 0.284

2 0.275 0.297 0.284

3 0.274 0.298 0.284

4 0.124 0.099 0.114

Table 4: Height of contributions for Example 2.2.

is the height of the i-th contribution; nmv = 3 is number of
intervals; rimv = 1 is the value of the method contribution [7].

The graphs of probability density estimation for depen-
dencies (21–23) are shown in Fig. 2.

Let us also consider Example 2.2 [7], in which, along with
the intervals of Example 2.1, an interval different from the
others by length is included.

Example 2.2 [7]. Let us assume that in the conditions
of Example 2.1 there is a priori information in the form of
an interval [5.0; 7.2]. Let us calculate the estimates of the
probability density. The length of the interval for readings
6.0; 6.4 and 6.6 is calculated [7] equal to 0.88, i.e. ρ = 0.44.

The given numbers of measurements (9) for each the in-
terval are shown in Table 3.

The estimated probability density values in this case is:

f̃re (x) =

4∑
i=1

∆re
f i for experimental data, (24)

f̃rp (x) =

4∑
i=1

∆
rp
f i for a priori data, (25)

f̃mv (x) =

4∑
i=1

∆mv
f i for small sample contributions. (26)

The heights of contributions for the intervals are shown in
Table 4.

Probability density estimates for dependencies (24–26)
are shown in Fig. 3.
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Fig. 3: Empirical estimates of probability density of Example 2.2.

Types of
data

Measure-
ment char-
acteristics

Esti-
mates

Examples

2.1 2.2

Discrete Borders of
the interval

n — 5
ME — 6.24
D — 0.668

Discrete Average va-
lues of the
intervals

n 3 4
ME 6.333 6.275
D 0.093 0.076

Interval Experimen-
tal

nr 3.26 4.631
ME 6.333 6.269
D 0.133 0.272

Interval A priori nr 2.74 3.369
ME 6.334 6.283
D 0.145 0.279

Small sam-
ples

n 3 4
ME 6.333 6.275
D 0.138 0.275

Table 5: The reduced number of measurements by intervals of Ex-
ample 2.2. The following designations are used here: ME — the
mathematical expectation, D — the dispersion (variance), n — the
number of experiments or intervals (for a single measurement, when
the borders of the interval coincide, the number of intervals is equal
to 1), nr — the total given number of measurements.

Results

The reduced estimates of probability densities, Fig. 2 and
Fig. 3, can be used in practical applications only when spec-
ifying for each of them the number of observations (exper-
iments), which can be considered as the number of degrees
of freedom, see formula (11) for the reduced number of mea-

surements. In work [7] the number of experiments is equal to
the number of intervals. The results of mathematical expec-
tation and variance estimates for Examples 2.1 and 2.2, with
taking different approaches into account (determination of the
number of experiments as the number of intervals, or the use
of the reduced number of measurements instead) are given in
Table 5.

Analysis of the results displayed in Table 5 allows us to
make the main conclusion: replacement of single measure-
ments with interval measurements at the same numbers in all
cases reduces the accuracy of estimates of statistical param-
eters. This follows from the fact that single measurements,
rather than interval measurements, have the lowest variance.
The application of interval measurements allows to expand
the possibilities of statistical processing of measuring infor-
mation. It is essential to use as a sample parameter the to-
tal reduced number of measurements (number of degrees of
freedom), which allows the use of non-integer (fractional) de-
grees of freedom in the calculation of estimates of static pa-
rameters and criteria values.

Submitted on May 17, 2018
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Seeliger’s Gravitational Paradox and the Infinite Universe
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Seeliger’s paradox is often regarded as an argument against Newtonian potentials in an
infinite universe. In this paper the argument is analyzed with the help of Riemann’s
series theorem. This theorem reveals that the paradox is a known consequence of the
rearrangement of conditionally convergent series or integrals, and so it demonstrates
that the same situation would arise with almost any other type of gravitational force
law. Therefore Seeliger’s argument is not a valid proof against Newton’s inverse square
law or even an infinite universe.

1 Introduction

In 1895 the German astronomer Hugo Seeliger published an
article [1] in which he revealed an apparent flaw in Newton’s
law of gravitation, which may lead to “unsolvable contradic-
tions”. His reasoning can be presented as follows.

Let’s suppose a boundless universe with a (near) homo-
geneous distribution of matter. For simplicity, let’s assume
this to be a continuous mass distribution, which extends uni-
formly to infinity in all directions. To calculate the gravita-
tional force exerted by this infinite universe on a test particle
with gravitational mass m located at a point P, we consider
all the masses in the universe as arranged in thin concentric
spheres centered in P. Since the Newtonian attraction of a
sphere on any point located inside of it is zero, we find that
the sum of all the concentric spheres extending to an infinite
distance will be zero. This is what might be expected from
symmetry.

Next, let’s calculate the force again, but this time using a
coordinate system centered at another point Q, located at an
arbitrary distance d from m. In order to calculate the force,
we divide the universe into two parts. The first one is the
sphere of radius d centered on Q and passing through P. The
mass of this sphere is M = 4

3ρπd
3 , where ρ is its density,

which attracts the material point m with a force given by F =
−GMm

d2 = 4
3ρπd

3 pointing from P to Q. The second part is
the remainder of the universe. This remainder is composed of
a series of external shells also centered on Q containing the
internal test particle m. As we have seen above, this second
part exerts no force on m. Therefore the force exerted by the
universe calculated in this way is proportional to the distance
d and directed towards Q.

This means that depending on which point Q we choose,
we obtain a different value for the force acting on m. The
conclusion that Seeliger extracts from this puzzling result is
that either the universe cannot be infinite, or that Newton’s
law of attraction must be modified. Taking the latter choice,
he proposed to add an absorption factor e−λr to the force of
gravity

FS eeliger = −G
mm′

r2 e−λr (1)

where λ is an arbitrary parameter, sufficiently small to make

this force compatible with the existing observational data.
When (1) is used, it can be demonstrated [2] that the grav-

itational force exerted on a particle m at the surface of a spher-
ical volume V1 uniformly filled with matter is equal and oppo-
site to the gravitational force exerted on the particle by all the
infinite concentric uniform spherical shells outside the first
spherical volume V1, so that the net force acting on the parti-
cle is zero. Seeliger thus believed to have found a solution of
the paradox.

The purpose of this paper is to generalize the formulation
of the problem and to show that Seeliger’s conclusion does
not hold.

2 Newton’s inverse square law and its relation to the
paradox

Before getting at the origin of the paradox, let’s look at dif-
ferent ways to formulate it.

First we note that Seeliger uses the fact, unique to the in-
verse square law, that the attraction of a sphere to any mass
inside of it is zero. To demonstrate that this is not an essential
feature, we will present the paradox from a different perspec-
tive.

Let’s calculate the gravitational field of an infinite plane.
Let ρ denote the mass density per unit area of this infinite
plane and consider a test particle of mass m located at a dis-
tance h from the plane, as shown in the following figure.

In Newtonian terms, the incremental force dF on this par-

Fig. 1: Attraction of an infinite plane on a mass m.
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ticle contributed by an annular ring of radius R and incremen-
tal width dR is just the projection onto the perpendicular of
the forces exerted by each element of the plane around the
circumference of the annular region. Thus we have:

dF =
Gmρ

h2 + r2 [π(R + dR)2 − πR2]
( h
√

h2 + R2

)
.

Expanding this expression and ignoring second order differ-
ential terms, we get

dF = 2πGmρh
R

(h2 + R2)
3
2

dR .

Integrating from R = 0 to ∞, we find that the total force ex-
perienced by the particle is

F = 2πGmρh
∫ ∞

0

R

(h2 + R2)
3
2

dR = 2πGmρ .

Thus the force exerted on the particle is independent of the
distance h from the plane. Adding more planes to form a slab
of thickness a, we get that the force would be in this case:

F = 2πGmρa.

Grouping infinite parallel slabs of the same thickness a and
adding the contribution of each of them, we get the force of
the universe acting on particle m

F =
∞∑
−∞

2πGmρa . (2)

It can be shown that this infinite sum will yield a different
result depending on how it is calculated. As a first way of
determining the value of (2), let’s pair each slab with its cor-
responding symmetrical one around the plane of origin. If we
consider this plane as the plane xy, then we take a parallel
slab of coordinate z0 and pair it with the slab of coordinate
−z0. Since the force of each slab in the pair is equal and op-
posite, their sum vanishes. The total force (2) will thus be
zero. Analytically, we can write this as

F = (2πGρma − 2πGρma)+

+ (2πGρma − 2πGρma) + ... = 0 .
(3)

Next, let’s calculate (2) again but this time starting one slab
further from m. The total force on m will be the sum of the
force due to this separate slab, which contains m on one of its
surfaces, plus all the remaining slabs in the universe, on both
sides of the first slab, thus

F = 2πGρma0 +

0∑
n=−∞

2πGρman −
∞∑

n=1

2πGρman

where n = 0 represents the separate slab. Since the terms

0∑
n=−∞

2πGρman −
∞∑

n=1

2πGρman

are paired one to one as in (3), they cancel each other out
and the result is zero. Therefore the total force on m will be
F = 2πGρma, which is an arbitrary value, since a has been
arbitrarily chosen.

This new version of the paradox does not use the fact that
the potential is null inside a sphere and yet, as in Seeliger’s
original version, it can return any arbitrary value. It is possi-
ble in fact to prove that the paradox occurs with a wide range
of forces other than Newton’s inverse square law. With New-
ton’s law, the force of each slab is independent of the dis-
tance, thus the force exerted by each of the layers is the same
and cancels out with another slab located symmetrically from
the given particle. However, if we had a different force law
in which the gravitational force of each slab were dependent
on the distance, we still would be able to repeat the previous
calculation by choosing for each slab a suitable thickness so
as to exactly balance another slab at the opposite side of the
particle, provided that the sum of the forces diverged.

3 Riemann series theorem

In 1827, mathematician Peter Lejeune-Dirichlet discovered
the surprising result that some convergent series, when rear-
ranged, can yield a different result [3]. Based on this dis-
covery, another German mathematician, Bernhard Riemann
published in 1852 a theorem [3], known today as Riemann’s
series theorem (or Riemann rearrangement theorem), proving
that in general, infinite series are not associative, that is, they
cannot be rearranged.

According to this theorem (see for example [4]), an abso-
lutely convergent series will always give the same result, no
matter how it is rearranged. However, a conditionally conver-
gent series, by a suitable permutation of its elements, can take
any arbitrary value or even diverge.

Let’s review some definitions. A series converges if there
exists a value ℓ such that the sequence of the partial sums

{S 1, S 2, S 3, ...} , where S n =

n∑
k=1

ak

converges to ℓ. That is, for any ϵ > 0, there exists an integer
N such that if n ≥ N, then

|S n − ℓ| ≤ ϵ .

A series S n =
∑∞

n=1 an converges absolutely if S n =
∑∞

n=1 |an|
converges. A series S n =

∑∞
n=1 an converges conditionally if

it converges but the series S n =
∑∞

n=1 |an| diverges.
Riemann’s series theorem can be directly extrapolated to

conditionally convergent integrals (see for example [5]).
In the case of Seeliger’s paradox, we note first that al-

though the masses in the universe should be treated as dis-
crete, Seeliger for simplicity turns them into a homogeneous
mass distribution throughout the universe, thus formulating it
in terms of integrals instead of series. Like Seeliger, we will

166 Leonardo Sarasúa. Seeliger’s Gravitational Paradox and the Infinite Universe



Issue 3 (July) PROGRESS IN PHYSICS Volume 14 (2018)

work with a continuous mass distribution, but bearing in mind
that the problem is actually discrete.

Considering a uniform mass distribution with a volume
density ρ, and using a spherical coordinate system (r, θ, ϕ)
centered on m, we have that, according to Newton’s law, the
component of the total force exerted on a particle m along the
x axis is

Fx = −Gm
∫ ∞

r=0

∫ π

θ=0

∫ 2π

ϕ=0
ρ sin ϕ cos ϕ dϕdθdr , (4)

and similarly for the other axes.
Since the integral is only conditionally convergent, we

have to pay attention to the order in which we calculate the
multiple integral. In this case, our goal is to integrate sequen-
tially the shells around the test mass, starting from r = 0 and
extending to r = ∞, thus we have to integrate first over the
variables θ and ϕ and only then over r. Note therefore that (4)
is not necessarily equal to

Fx = −Gm
∫ 2π

ϕ=0

∫ π

θ=0

∫ ∞

r=0
ρ sin ϕ cos ϕ drdθdϕ .

We solve the integral (4)

Fx = −Gm
∫ ∞

r=0

∫ π

θ=0

∫ 2π

ϕ=0
ρ sin ϕ cos ϕ dϕdθdr

= −Gm
∫ ∞

r=0

∫ π

θ=0
ρ

[
sin

(
− cos2 ϕ

2

) ]2π

ϕ=0
dθdr = 0 ,

which, again, is what could be expected from symmetry. Fol-
lowing Seeliger’s procedure, we can calculate the integral in
a different way by splitting the space into a sphere of radius
a, centered in a point Q separated from m by a distance a,
so that the test mass lies on its surface, and concentric shells
also centered in Q containing the particle in their interior. In
other words, the contribution of every mass in the universe is
added but in a different order. Thus the integral is rearranged,
which is what Riemanns’s theorem warns us against. Taking
Q as the origin of coordinates, the x component of the force
will be

Fx = −
GmM

a2 −Gm
∫ ∞

r=0

∫ π

θ=0

∫ 2π

ϕ=0
ρ sin ϕ cos ϕ dϕdθdr . (5)

The first term on the right hand side of (5) is the attraction
of the sphere, being M its mass, and a the distance between
the particle m and the center of the sphere. The second is the
attraction of the concentric shells, which is zero. Therefore,

Fx = −
GmM

a2 .

Since the integral is only conditionally convergent, it is no
surprise that the new integral obtained by a rearrangement of
its terms yields a different result.

Riemann’s theorem shows the reason why Seeliger’s para-
dox occurs, and it also demonstrates that its origin is mathe-
matical, not physical.

The integral converges to zero but any other rearrange-
ment of the integral will yield a different value. Given the
infinitely many possible results, we are forced to ask which
one, if any, is the “correct” value, i.e. the one that a measure
instrument would register in reality. Riemann’s theorem does
not provide a way to decide this, having therefore to rely on
the physical significance of each reordering of the integral
or the series. The following two arguments, although lack-
ing mathematical rigor, both indicate that the only valid way
to carry out the calculation is by considering the mass at the
center of coordinates:

a) Since all the observable physical magnitudes in this
system, i.e. the mass distribution, are smooth everywhere,
i.e. infinitely differentiable (except possibly at the point where
the test mass is located), it is required that any derived func-
tion be also differentiable. Any discontinuity introduced in
any of the magnitudes must be discarded as lacking physical
basis. However, the force obtained when we calculate (5) is

F(r) =


−4

3
GρπMr , r ≤ R0

−GMm
r2 , r > R0

(6)

where r is the distance from the test mass to the center of the
sphere, and R0 the radius of the latter. This function is differ-
entiable at r = R0 only if R0 = 0. Thus, the only arrangement
of terms which will provide a differentiable force function is
the one which considers the test mass at the origin of coordi-
nates.

b) A non-nil result of (5) would be acceptable only if it
is a constant finite value independent of r. That would cor-
respond to the whole universe being pushed and moving in
one direction with respect to absolute space. Since this ab-
solute space is not detectable, we cannot determine whether
this movement is actually taking place or not. However, if
the force depends on r, different parts of the universe would
be pushed with different forces, giving rise to the motion of
some masses with respect to other masses. This is not ob-
served, and thus we have to reject this possibility.

The only case where the force (5) is independent of r is
when F(r) = 0 everywhere. These two arguments both sug-
gest that the nil result is the only one physically meaningful.

Some authors had already suspected that Seeliger’s para-
dox has no physical relevance, [6], [7], but none of them give
a rigorous explanation. It is common to find in the litera-
ture regarding Seeliger’s paradox, confusing statements about
convergence of infinite series [6, 8]. Even Newton, in his fa-
mous letter to Bentley [9], erred when he spoke about the
stability of an infinite Universe:

... if a body stood in equilibrio between any two equal
and contrary attracting infinite forces, and if to either
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of these forces you add any new finite attracting force,
that new force, howsoever little,will destroytheir equi-
librium.

In the situation described by him we have two opposite
infinite sides pulling on each other, or ∞ − ∞. This is inde-
terminate and so, it might or might not be stable. However, if
we assume the stability of the system, as Newton does, it is
obvious that adding a finite quantity of mass to either infinite
side will not destroy the equilibrium, since a finite quantity
added to an infinite one will not alter the latter, and so it will
make no difference in the balance between the two infinite
hemispheres of the universe. The universe will thus remain
stable.

4 Conclusion

We have proved, with the help of Riemann’s series theorem,
that Seeliger’s paradox has no physical significance. It is the
consequence of a flawed manipulation of infinite condition-
ally convergent integrals. Therefore the paradox cannot be
used as a valid argument against Newton’s potential or the
infiniteness of the universe.
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Utilizing Future-Viewing Instruments
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The concept of future-viewing instruments is examined in detail. This term refers to
devices which, under some circumstances, could allow users to directly observe future
scenes. It is shown that such a technology would enable systems of intertemporal data
exchange without any possibility of paradox or “auto-generated information” [1]. In-
struments of this type could lead to the founding of an intertemporal Internet. Working
out how they could be invented and constructed are matters left for the reader.

1 Introduction

The idea of instruments for viewing future scenes appeared
in fiction as early as 1924, and this concept was introduced
to millions of television viewers in the 1960s [2–4], but it
has yet to be thoroughly examined in academic circles. On
the other hand, the related concept of travel to the past has
received considerable attention from scientists and philoso-
phers, especially in recent decades. Here, the logical dimen-
sions of future-viewing instruments will be explored and then
contextualized in terms of what has been learned about the
logical dimensions of time travel. With this understanding it
becomes possible to entertain ideas about how future-viewing
instruments could be utilized.

Tales of mystic seers abound in myths from ancient cul-
tures. The ancient Greeks told of Cassandra, princess of Troy.
In her youth, she and her brother gained the gift of prophecy
during an overnight stay in the temple of Apollo. After she
grew to become a beautiful woman, Cassandra spent another
night in the temple. Apollo then appeared to her and sought
intimacy. She refused him, so Apollo cursed Cassandra. He
decreed that her prophecies would be disbelieved; thus, the
seeds of tragedy were sown. Cassandra warned that warriors
hid in the wooden horse, but she was thought a lunatic [5].

Although the concept of individuals who are able to ac-
cess future scenes in personal visions is directly relevant to
the topic at hand, it will not be discussed further here. The
focus instead will be the concept of technological instruments
that normal individuals could use to see into the future. A per-
son who controls and monitors a future-viewing instrument
will be referred to as its operator.

To begin, it is necessary to isolate an appropriate concept
of future-viewing instruments. What kind of device would be
both useful as a future-viewing instrument and logically pos-
sible? The analysis must start with consideration of a foun-
dational issue—information. The future is unknown to us.
Information about any set of unknowns may be either definite
or ambiguous as well as correct or incorrect.

Thinking about a playing card concealed in a box, con-
sider an example of definite information about it: “The card
in the box is the queen of hearts.” Definite information which
also happens to be correct, of course, is the most useful. One

might instead receive ambiguous information: “The box con-
tains some card in the suit of hearts.” Correct but ambiguous
information might also be useful. However, when vague in-
formation approaches maximal ambiguity it becomes so non-
specific that it is guaranteed to be correct, rendering it useless.

In considering possible types of future-viewing machines,
a maximally ambiguous device might be imagined. Such
a device would display every possible happening associated
with a given selected set of future spatio-temporal coordinates
(x, y, z, t), but it could not highlight what will actually happen.
Devices of this type are here termed Everett machines, refer-
encing physicist Hugh Everett III’s influential 1957 “relative
state” interpretation of quantum mechanics [6].

Being maximally ambiguous, Everett machines would be
useless as future-viewing instruments. They are unable to tell
what will occur among everything that might occur at any set
of future coordinates under examination; in a term, they are
not outcome-informative. For this reason, Everett machines
cannot be classified as future-viewing instruments. Outcome-
informative devices have the ability to provide definite and
correct information about future events, at least in some cases.

How powerful could a future-viewing instrument possi-
bly be? Composite devices such as have appeared in fiction,
which somehow have agency and the means to force their
own prophecies to come true, must be excluded from con-
sideration.∗ Future-viewing devices which are only capable
of gathering and displaying information will here be termed
inert future-viewing instruments. Given this important refine-
ment, the following question may be asked: How powerful
could an inert future-viewing instrument possibly be?

To answer this question, the maximal case is explored.
Consider an inert future-viewing device which is always able
to provide definite and correct information about all future
outcomes in every possible circumstance of attempted future-
viewing. These hypothetical devices for exploring the max-
imal case are termed Cassandra machines after Cassandra’s
tragic helplessness in averting the calamities she foresaw.

It will be shown that Cassandra machines, as defined, are
not logically possible; no inert device could provide definite

∗It would appear that Serling’s most unusual camera can occasionally
exert diabolical control over those who end up in its pictures of the future [3].
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and correct information about all future outcomes in every
possible circumstance of attempted future-viewing. A sin-
gle counterexample situation is sufficient to prove this. This
situation will emerge as one mode of a future-viewing exper-
iment involving three randomly selected modes. The experi-
ment will be built up in stages; the counterexample mode will
be presented at the end.

Begin by imagining an experimental setup consisting of
an inert, though otherwise arbitrarily powerful future-viewing
instrument (FVI) and a computer. The computer is constantly
being fed a string of ones and zeros from a random num-
ber generator (RNG). The RNG contains a radioactive sample
connected to a sensitive Geiger counter. The pattern of ones
and zeros the RNG produces is a function of the output of the
Geiger counter, so no known prediction methodology could
predict the sequence produced.

The computer will use an algorithm to process one second
of the sampled output of the RNG to arrive at a whole number
in the range 0 through 99. This number will be displayed on
its large and bright, two-digit readout.

Many kinds of algorithms can be used to determine a
whole number, within any desired range, from any finite set
of ones and zeroes. For instance, in order to arrive at a whole
number in the range 0 through n, divide the number of ones
in the set by (n + 1) to find the remainder. With complete
division represented by a remainder of 0, the remainder will
always be a whole number in the range 0 through n.

Here is a simple two-step experiment involving these sys-
tems. Each step lasts one minute. At the start of step one,
the FVI will attempt to future-view the computer’s two-digit
readout as it will appear in the middle of step two, i.e., a
minute and thirty seconds later. When step two arrives, the
computer will sample one second of the RNG’s output and,
by dividing the total number of ones in the sample by 100 to
find the remainder, it will arrive at some whole number in the
range 0 through 99 for display on its readout. This number
is calculated and displayed within a few seconds and it will
remain displayed throughout step two.

It should be no surprise that a properly functioning future-
viewing instrument (in this situation) would always be able
to correctly show, during step one, the whole number that
the computer will interpret from RNG data and display on its
readout during step two. An unpredictable process alone does
not render the final outcome any less visually apparent when
it arrives, and there are no logical barriers here.

Now, another system is added to the experiment. A char-
acter recognition system (CRS) is placed between the FVI
and the computer. The CRS receives input from its camera
which is pointed at the FVI’s display. During step one, the
CRS will recognize any computer readout digits it finds on
the FVI’s display and will assign the corresponding number
as the value of the variable ‘z’ to be stored in its memory.

The critical detail which allows the counterexample to
emerge in this expanded setup is that the computer has the

ability to temporarily connect to the CRS and retrieve z. Here
is the full experiment, encompassing all three modes:

As before, a two-step protocol is followed and each step
has a duration of one minute. Before each run, the computer
uses RNG data to reset its readout to some whole number
in the range 0 through 99 to establish a preliminary value.
Then, at the beginning of step one, the FVI attempts to see
what number will be displayed on the computer’s two-digit
readout in the middle of step two, a minute and a half later.
If the FVI is successful in receiving an image, the CRS will
recognize the number in the image and store it as z. If the FVI
does not receive an image, the CRS will revert to defaults and
assign 0 as the value of z.

At the beginning of step two, the computer will sample
one second of RNG data and process it to yield a whole num-
ber in the range 0 through 2. This selects one of the following
three programs for the computer to run immediately:

PR: Sample one second of the RNG output, interpret as
a whole number in the range 0 through 99, display the
result on the readout, then halt.

P0: Connect to the CRS and retrieve z, then disconnect
from the CRS. Halt if the number on the readout equals
z + 0, otherwise change the readout to display a number
equaling z + 0, then halt.

P1: Connect to the CRS and retrieve z, then disconnect
from the CRS. Halt if the number on the readout equals
z + 1, otherwise change the readout to display a number
equaling z + 1, then halt.

In each of these cases, the computer will finish all tasks
and halt within a few seconds. In any kind of run, the FVI
is involved in an attempt during step one to receive a signal
containing an image of the post-halt value that the computer
will display during step two.

Consider what would happen in a series of experiments
using this expanded setup. In any PR-mode run, although
the z-value has been ignored by the computer, subsequent
comparison will reveal that it matches the generated post-halt
value. Consistent matching in PR-mode runs confirms the in-
strument’s basic functionality.

Next, in any run selected as a P0-mode run at the outset
of step two, the z-value encoded by the CRS during step one
will also always be correct. It must be. After all, z has been
retrieved from the CRS and z + 0 = z. So, the post-halt value
in P0 runs comes from the z-value, but where does the z-value
come from? It comes from the post-halt value. So, another
question must be asked: What determines the value itself?
This is the purpose of resetting the readout to a preliminary
value before step one. In every run that will turn out to be
a P0-mode run, the FVI will detect a post-halt value equal
to the preliminary value. In P0-mode runs, although any z-
value at all encoded during step one would end up on the
computer’s readout in step two, only the preliminary value is
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non-arbitrary. So, even though P0 follows the form of a self-
fulfilling prophecy, the z-values encoded during step one of
P0-mode runs are still recognizably genuine prophecies since
the mode of a given run is not decided until step two.

P1-mode runs, however, would produce a very different
kind of result. If RNG data will select P1 at the beginning
of step two, no z-value whatsoever encoded during step one
could correctly identify the post-halt value that will be dis-
played on the readout, since z + 1 , z. In P1-mode runs, it
is impossible for any z-value to be correct; the z-value and
post-halt value in P1-mode runs will never match.∗

This establishes that no device whatsoever could fulfill the
definition of a Cassandra machine: Inert devices which would
be able to provide definite and correct information about all
future outcomes in every possible circumstance of attempted
future-viewing are not logically possible.

So far, two kinds of hypothetical devices have been de-
scribed; they are Everett machines which would not be useful
as future-viewing instruments and Cassandra machines which
are not logically possible. Eliminating both of these imagined
conceptual options helps to identify an appropriate concept of
future-viewing instruments.

For further understanding, it must also be recognized that
any device which could ever provide incorrect (i.e., mislead-
ing) information regarding future events cannot be a future-
viewing instrument. This is due to the important distinction
between viewing future events directly, which cannot involve
guesswork, and merely generating predictions about future
events, which must involve guesswork. Visually accessing
veridical foreknowledge is unlike the uncertain process of
generating predictions.

Upon the above analysis, three features of any future-
viewing instrument of an operationally coherent description
may be specified: (1) Such an instrument must be outcome-
informative, unlike an Everett machine, (2) it must be logi-
cally possible, unlike a Cassandra machine, and (3) it must
be incapable of providing incorrect (i.e., misleading) infor-
mation about future events. Devices which satisfy all three
requirements have been termed foreknowledge instruments.

Foreknowledge instruments could be used to gain defi-
nite and correct information about future outcomes in a wide
range of circumstances corresponding to PR-mode and P0-
mode runs within the RNG experiment. Definite and correct
information about future outcomes obtained from foreknowl-
edge instruments will be termed viewer foreknowledge. Since
foreknowledge instruments cannot misinform, definite infor-
mation about future states obtained from foreknowledge in-
struments will always prove to be correct. So, it would be
possible to recognize viewer foreknowledge upon reception.
However, as the RNG experiment demonstrates, viewer fore-
knowledge would not always be accessible.

∗The post-halt value in P1-mode runs will always be 1. This is because
the CRS will not detect anything from the FVI, since the FVI cannot acquire
a signal; so, the CRS will revert to defaults and assign 0 as the value of z.

Situations exemplified by P1-mode runs, wherein future-
viewing cannot occur, are here termed interference viewing
situations. Viewer foreknowledge would only be accessi-
ble within non-interference viewing situations, exemplified
by runs of the two non-interfering programs, PR and P0.

2 Time machines and foreknowledge instruments

Time travel to the past will be referred to as pastward time
travel. Pastward time travel and future-viewing are intimately
related, for each could be used to acquire information from
the future. So, if pastward time travel and future-viewing re-
ally are coherent concepts, they should be found to naturally
cohere within a single conceptual context.

Serious interest in pastward time travel began when Kurt
Gödel proved in 1949 that the equations of general relativity
permit pastward time travel situations [7]. Extensive tech-
nical details concerning how time travel or future-viewing
might be achieved within the framework of general relativ-
ity, or any other, are not needed here. The aim of this section
is to explore the logical dimensions of pastward time travel,
not how it might be achieved. Furthermore, it would not be
appropriate to limit a discussion of the logical dimensions of
time travel to any theoretical framework.

Conceptually, relocation may be achieved by continuous
movement between spatio-temporal points, i.e., translation,
or by what will be termed discontinuous relocation. Trans-
lation is familiar to everyone. Discontinuous relocation will
here be defined as a process whereby a vehicle, for instance, is
made to disappear from one location and reappear somewhere
else, either a moment later or in a different time period alto-
gether, even much earlier. Whether discontinuous relocation
could be achieved, and how it could be achieved, are irrele-
vant considerations. For the current discussion it is merely
necessary to recognize that discontinuous relocation is a log-
ically possible mode of travel (i.e., relocation).

Since translation and discontinuous relocation exhaust all
possibilities for relocation in space and time, it is possible to
obtain exhaustive conclusions about the logical dimensions
of time travel without referencing any further specifics about
how time travel might be achieved. This allows the argument
to be conducted without tying it to any theoretical framework.

The central issue in any discussion of the logical dimen-
sions of time travel concerns whether past-alteration para-
doxes, which are so popular in fictional treatments of the sub-
ject, could ever be actualized. An extended argument will
establish that it is not possible for changes to the past and ac-
companying paradoxes to result from the accomplishment of
pastward time travel, no matter how accomplished. This ar-
gument will begin by referencing methods of pastward time
travel based on translation, such as exist in general relativity.
A simple extension of the argument will additionally show
that paradoxes could not result from any form of pastward
time travel based on discontinuous relocation.
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The arguments of this section will explore time travel and
future-viewing as conceived within a single timeline, since
multiple-timeline models of time travel inherently sidestep
any possibility of paradoxes. For instance, under a multiple-
timeline model, if a time traveler were to go back in time and
successfully prevent his parents from meeting, his own birth
would remain safely unaffected in his origin timeline. Only
time travel from a given timeline to its own earlier periods
has ever been thought to offer any potential for paradox, so
multiple-timeline models are safely ignored here.

Fiction has distorted our perceptions about time travel. It
will be shown below that events which have happened one
way without time travelers cannot somehow be made to hap-
pen again, but differently, if time travelers would ever happen
to visit that time and place. While stories based on such ab-
surdities can be entertaining, the misconception that the prac-
tice of time travel might ever actualize revisions to the past
has been termed the “second-time-around fallacy” [8]. The
following quotation from philosopher Larry Dwyer provides
a sensible way to think about pastward time travel:

If we hypothesize that T pulls levers and manip-
ulates a rocket in 1974, and travels back in time
to the year 3000 B.C. then of course, even before
T enters his rocket, it is true that any accurate
catalogue of all the events on earth during the
year 3000 B.C. would include an account of T’s
actions, reactions and mental processes. There
is no question of the year 3000 B.C. occurring
more than once. [9]

Although theoretical considerations related to achieving
pastward time travel are not needed in the present discussion,
some operational concepts are helpful for purposes of visu-
alization. Imagine a device which is able to open hyperdi-
mensional tunnels to past, present, and future spatio-temporal
points. Travelers who would pass through such tunnels could
travel great distances or achieve time travel to any connected
era, and be retrieved. The device would remain stationed in
the laboratory throughout.

This way of visualizing time travel by translation is found
in the colorful literature of general relativity. Solutions of
Einstein’s field equations which describe hyperdimensional
tunnels have existed since 1916, though travel concepts were
not part of the early work in this area. Physicist Ludwig
Flamm discovered solutions describing such tunnels shortly
after the publication of general relativity [10]. These struc-
tures were further explored by Hermann Weyl in the 1920s
[11]. Then, in 1935, when Albert Einstein and Nathan Rosen
attempted to formulate solutions of Einstein’s field equations
free from singularities, they were also led to such structures:
“These solutions involve the mathematical representation of
physical space by a space of two identical sheets, a particle
being represented by a ‘bridge’ connecting these sheets” [12].
These connecting structures came to be known as Einstein-

Rosen bridges. In 1955, physicist John Wheeler named them
“wormholes” [13].

In 1969, Homer Ellis and Kirill Bronnikov independently
solved Einstein’s field equations to describe gravitating, two-
way traversable wormholes, and their works were published
in 1973 [14, 15]. These ideas led to an understanding of
wormholes of a kind that would be appropriate for travel, time
travel, future-viewing, and past-viewing. These structures
are non-gravitating, two-way traversable wormholes known
as Ellis wormholes [16]. In 1988, Kip Thorne, Mike Morris,
and Ulvi Yurtsever independently derived such structures and
added important details to the discussion [17].

Two years later, these physicists co-authored an influen-
tial paper with Igor Novikov and three other physicists which
suggested a “principle of self-consistency” would unfailingly
govern pastward time travel situations [18]. Novikov began
the tradition, at least in physics literature, of time travel free
from paradoxes in a co-authored 1975 work [19].

Returning to the development of the argument, it is worth
noting that all “arguments from paradox” against the possibil-
ity of pastward time travel require a false premise—that every
possible form of pastward time travel would let time travelers
alter past events. However, a form of time travel which would
not allow past-alteration has been understood for decades.

The key to understanding this concept of time travel is
the idea that time machines which operate accordingly would
not be able to fulfill every time travel request. Author Robert
Heinlein may have been the first to suggest what may be re-
ferred to as a gatekeeping mechanism, a natural process which
governs whether any given attempt to travel back to a partic-
ular set of coordinates in the past will prove to be successful
when a time machine is activated for that purpose.

In terms of pastward time travel via traversable worm-
holes, for instance, a gatekeeping mechanism would deter-
mine, in a given situation of attempted time travel, whether
the wormhole manipulation device being used will be able to
enlarge the selected natural microscopic wormhole and con-
dition it for transport, or not.∗

A gatekeeping mechanism would act to enforce a consis-
tent logic of time travel; any given attempt to send people
into the past can only occur in a consistent manner if the past
includes their visit as a result of that very attempt. Heinlein
imagined that nature would always prevent the success of any
other kind of pastward time travel attempt, thereby eliminat-
ing any chance of time travel paradoxes. Heinlein revealed
this basic but profound insight in a conversation between two
characters in his 1964 novel, Farnham’s Freehold:

“The way I see it, there are no paradoxes in time
travel, there can’t be. If we are going to make
this time jump, then we already did; that’s what
happened. And if it doesn’t work, then it’s be-

∗“One can imagine an advanced civilization pulling a wormhole out of
the quantum foam and enlarging it to classical size.” [17, see p. 1446]
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cause it didn’t happen.”
“But it hasn’t happened yet. Therefore, you are
saying it didn’t happen, so it can’t happen. That’s
what I said.”
“No, no! We don’t know whether it has already
happened or not. If it did, it will. If it didn’t, it
won’t.” [20]

It turns out that pastward time travel, while difficult to ac-
complish, is basic from a logical point of view. Tenses and
perceptions of time confuse many issues that are easy to un-
derstand within a tenseless picture of space and time. This
kind of picture was developed by the German mathematician
Hermann Minkowski, and it is the subject of his groundbreak-
ing 1908 lecture, “Raum und Zeit” [21]. Although the term
‘spacetime’ will be avoided here, other terms associated with
the work of Minkowski and Einstein will be used which effi-
ciently refer to important spatio-temporal concepts that would
be meaningful in any theoretical framework.

Four-dimensional spatio-temporal coordinates (x, y, z, t)
are sufficient to specify any location in our universe at any
time, i.e., any world-point [21] defined with respect to some
arbitrary origin. So, relations between any two world-points
can be discussed in a tenseless fashion, just as one would
discuss relations between points plotted on graph paper. For
instance, regarding time travel by wormhole, the relation of
interest concerns whether two world-points are bridged by a
traversable wormhole:

“If it did, it will,” describes two world-points bridged
by a traversable wormhole.
“If it didn’t, it won’t,” describes two world-points not
bridged by a traversable wormhole.

The antecedent phrases, “[i]f it did” and “[i]f it didn’t,”
refer to what has happened at the intended pastward desti-
nation, and the consequent phrases, “it will” and “it won’t,”
describe the corresponding event of success or failure to ini-
tiate pastward time travel that will be discovered once the
wormhole manipulation device has been activated for that
purpose. Note that world-points which are not bridged by
a traversable wormhole cannot somehow change to become
bridged; the configuration of world-points is fixed in the ten-
seless picture.

The argument to show that time travel to arbitrary world-
points within a single-timeline model is not possible will fol-
low shortly, but first it is necessary to discuss the ontology
of time. As will be established below, the only ontology that
could accommodate pastward time travel and future-viewing
is eternalism, also known as the block universe concept.

Within eternalism, every event in a given spatio-temporal
manifold exists together with every other event in a coherent,
unchanging whole, and all times are ontologically identical.
(Multi-timeline forms of eternalism need not enter the discus-
sion, for reasons explained above.) Eternalism will be con-
trasted with the growing block universe concept which holds

that, while the past has become fixed, the ever-advancing mo-
mentary present is ontologically distinct from the past, and
future events have yet to be forged in the advancing now.

The reason eternalism is the only ontology relevant in
the context of future-viewing and pastward time travel is that
these technologies would allow questions about the ontology
of time to be answered empirically, in favor of eternalism. For
instance, through wormhole time travel or future-viewing ac-
complished using wormholes, it would be possible for people
stationed in different centuries to conduct a two-way radio
conversation through the wormhole throat. Demonstrations
of this sort would entirely rule out the growing block uni-
verse concept. After all, future-dwellers could not reply to us
if the future does not exist and time travelers could not visit
and return from a future that is not there.∗ As such, any argu-
ment purporting to reach a conclusion with relevance to time
travel and use of a “time viewer” [23, see p. 283] to see into
the past or future must be cast within eternalism.

A few more background details are necessary before the
final argument against the possibility of time travel paradoxes
can be presented. It is important to discuss how change and
movement are conceptually accommodated within the tense-
less, unchanging picture of eternalism.

When particle movements are graphed, four-dimensional
world-lines are traced out [21]. All world-lines are complete
within eternalism. One can see that collections of particle
world-lines may describe any object or body in space endur-
ing through time, including all internal occurrences and all
actions (e.g., digestion, typing, walking). Such collections
will be referred to as composite world-lines.

So, within eternalism, the composite world-lines of hu-
man beings are complete from birth to death in every phys-
ical and behavioral detail. Since a composite world-line is
a record of all change and movement, no world-line can be
changed or moved. This applies to all past world-lines in both
ontologies, and in either view, no individual may change any
aspect of his or her future composite world-line.

Change requires a difference between an initial state and
a post-change state. Comparing ontologies, under the grow-
ing block universe concept it is not possible for a person to
change his or her future composite world-line because it does
not exist; in this view, the future is made in the objectively
advancing present. Under eternalism, even though a person’s
future composite world-line exists in its entirety, it exists as
the accumulated product of actions taken and processes which
occur in that person’s perceived advancing present. So, un-
der eternalism, it remains the case that one’s future compos-
ite world-line is not and cannot be changed. It is fulfilled.
Philosopher J.J.C. Smart expressed the distinction between
acting in the present to produce the future and the mistaken
idea of “changing the future,” this way:

∗As one would expect, the view known as presentism which holds that
only the present exists would also be thoroughly ruled out [22].
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...[T]he fact that our present actions determine
the future would be most misleadingly expressed
or described by saying that we can change the fu-
ture. A man can change his trousers, his club, or
his job. Perhaps he may even change the course
of world history or the state of scientific thought.
But one thing that he cannot change is the future,
since whatever he brings about is the future, and
nothing else is, or ever was. [24]

With this background in place, the promised argument
for the impossibility of paradoxes arising from pastward time
travel will now be presented: Considering whether paradoxes
due to time travel could occur at all requires consideration
of a successful instance of pastward time travel. Therefore,
begin by positing one such instance. For reasons explained
above, this is a posit which requires eternalism. So, in this
instance of pastward time travel, the composite world-lines
of time travelers are necessarily embedded in “the past” as
judged with respect to the date of their journey’s origin. This
means that the actions of these time travelers during their visit
are necessarily part of the historical background leading to the
world situation of their journey’s origin.

So, paradoxes emerging from pastward time travel would
only be possible if the composite world-lines of time travel-
ers embedded in the past could be made to change, move, or
disappear. However, world-lines cannot be made to change,
move, or disappear. Ultimately, pastward time travel cannot
lead to paradoxes due to the unalterable geometry of com-
pleted world-lines within eternalism, wherein all world-lines
are complete. Within a single timeline model, the unalterable
nature of world-lines produces all the effects of a gatekeeping
mechanism which include making past-alteration impossible.

This argument will now be extended for sake of thorough-
ness. One might imagine that some unknown method of time
travel which somehow operates according to discontinuous
relocation might allow time travelers to visit scenes which
did not involve time travelers “the first time around.” How-
ever, examining the tenseless picture of eternalism shows that
this is not the case:

“If it did, it will,” describes two world-points associated
by discontinuous relocation.
“If it didn’t, it won’t,” describes two world-points not
associated by discontinuous relocation.

In order for a time traveler using a form of time travel
based on discontinuous relocation to visit a scene which did
not involve time travelers “the first time around,” specific con-
ditions must obtain. For a given world-point w to qualify as
having been without visits from time travelers, w must not be
associated with another world-point by discontinuous reloca-
tion and w must not be a world-point visited by time travelers
using some form of time travel based on translation.

If one symbolizes “world-point w is associated with an-
other world-point by discontinuous relocation” as Dw, and

symbolizes “world-point w is visited by time travelers using
some form of time travel based on translation” as Tw, then
in order for a given world-point w to qualify as having been
without visits from time travelers “the first time around,” both
¬Dw and ¬Tw must obtain. So, even a method of time travel
based on discontinuous relocation could not allow time trav-
elers to visit world points that were not visited by time travel-
ers “the first time around,” since there can be no world-point
w for which the statements Dw and ¬Dw are both true.

As continuous and discontinuous means of travel exhaust
all possibilities for relocation in any spatio-temporal mani-
fold, it is possible to conclude that, regardless of the way in
which pastward time travel might ever be achieved, it could
never lead to changes to the past or paradoxes of any sort.

This understanding produces unwavering clarity. No type
of vexation ever thought to rule out time travel remains.∗ All
of the imagined logical barriers which would fundamentally
block the actualization of time machines and foreknowledge
instruments have turned out to be illusory.

With any technology that would allow information to be
transferred from later to earlier world-points, temporal gate-
keeping is key. In other words, in any given effort to travel
pastward, time machines will only be able to send travelers
to parts of the past that were visited by those very travel-
ers as a result of that very effort to send them pastward, and
likewise, any attempt to use a foreknowledge instrument to
reveal future events will only be successful if, from the per-
spective of the future, that attempt to peer into the future had
been successful. In both scenarios, the world at the “future
end” results from the world at the “past end,” and so, in either
technological case, the resulting state of affairs is necessarily
compatible with all events occurring at the “past end.”

Related to these findings, quantum information pioneer,
Seth Lloyd, with other scientists, produced four papers in
2010 and 2011 which present a formal model here called the
P-CTC model [25, 28–30]. In effect, the P-CTC model is a
temporal gatekeeping model.

3 Obtaining viewer foreknowledge

The three modes of the RNG experiment produce three dif-
ferent kinds of viewing situations. An understanding of these
situations is a necessary prerequisite to deciphering how fore-
knowledge instruments would operate in real-world settings.

∗Along with past-alteration paradoxes, another potential problem has
been imagined, the “paradox of auto-generated information” or the “un-
proved theorem paradox” [1, 25]. The unproved theorem paradox appears
in a groundbreaking 1991 paper by physicist David Deutsch [26]. Lloyd et
al. address this issue. Their “[u]nproved theorem paradox circuit” affirms the
conclusion that meaningful information cannot be auto-generated via closed
timelike curves (CTCs) [25]. (CTCs are trajectories apparent within some
solutions of general relativity which would allow an object to meet an earlier
version of itself—i.e., to travel pastward.) An objection was raised to their
resolution of the unproved theorem paradox [27], but Lloyd et al. showed the
basis of the objection to be erroneous [28].
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PR produces what will be described as an independent
viewing situation. Outcomes which have been foreseen in an
independent viewing situation during a given session with a
foreknowledge instrument are not contingent in any way upon
data received in that session.

On the other hand, P0 produces a cooperative viewing
situation, a kind of circumstance wherein data received in
viewer foreknowledge of an outcome factors into the details
of that outcome or is responsible for its very occurrence.

Within independent viewing situations and cooperative
viewing situations, there are no logical barriers to the recep-
tion of viewer foreknowledge. As such, they are both classi-
fied as non-interference viewing situations. These situations
represent two different ways of not using data from the instru-
ment to interfere with the outcome. In PR-mode runs the data
is not involved in the outcome at all, and in P0-mode runs the
data is followed exactly. If independent viewing and cooper-
ative viewing exhaust all modes of non-interference, then an
interference viewing situation will arise in every other kind of
case, exemplified by what happens in P1-mode runs.

It is important to determine whether there are any basic
limitations which must affect the practice of future-viewing.
Are there kinds of outcomes a particular foreknowledge in-
strument operator will fundamentally be unable to foresee?

Operators who are able to achieve an independent viewing
situation with respect to a given event will be able to foresee
it, for no logical barriers will be encountered. However, no
individual can achieve an independent viewing situation with
respect to the events of her own future life, assuming she will
retain her memories. This important limitation will be called
the self-implication effect of viewer foreknowledge; individ-
uals are necessarily implicated in their own futures.

What about cooperative viewing situations? Could a per-
son witness video sequences of her own future actions within
a cooperative viewing situation if she later follows what she
has seen exactly? Attempting to arrange such a circumstance
would overwhelmingly tend to produce an interference view-
ing situation. However, an individual could receive limited
second-hand information regarding some general features of
her future. To explain, two new terms are helpful:

Viewing interval: The interval of time elapsed between
the reception of viewer foreknowledge pertaining to a
set of outcomes and the occurrence of those outcomes.

Operator pool: The operator of a foreknowledge in-
strument, along with any additional witnesses (if any)
during the reception of viewer foreknowledge, together
with other individuals (if any) who—during the view-
ing interval—will be apprised of the results or who
will be instructed or influenced based on such results
(whether or not they have been made aware of the ex-
istence of foreknowledge instruments). This term car-
ries another layer of meaning, for ‘operator’ may also
refer to a mathematical function; the combined input-

to-output processing carried out by members of an op-
erator pool will result in (or cohere with) the future-
viewed outcome.

For instance, a person might be informed that she will
still be alive in forty years time. This particular factual de-
tail is chosen because it admits no variation other than its
falsification. A person could not be truthfully informed that
viewer foreknowledge has revealed she will still be alive in
forty years time, only for her to somehow lose her life at an
earlier point. Operator pools are formed only when viewer
foreknowledge has been received. All effects upon the world
that a given operator pool will generate within the associated
viewing interval have therefore passed temporal gatekeeping.
So, these effects will at least partially produce (or, for inde-
pendent viewing, have no causal relation with) the outcomes
received in viewer foreknowledge. These effects, of course,
include everything the earlier members of the pool will tell
later members of the pool. For this reason, no member of
an operator pool will do, say, or successfully achieve any-
thing that will prevent, or result in any modification to, the
outcomes foreseen.

How would independent viewing situations and coopera-
tive viewing situations manifest in real-world settings with
human operators and witnesses? Either the occurrence of
a set of future events is compatible with being foreseen by
particular operators and witnesses during a particular future-
viewing session, or not. In the case of compatibility, a given
future-viewing attempt can succeed. Without such compat-
ibility, operators and witnesses could not gain viewer fore-
knowledge about what will occur at the chosen future co-
ordinates during that situation of attempted future-viewing.
(However, one person leaving the room might be enough to
achieve compatibility; this could occur if the self-implication
effect had been the cause of interference.)

It is apparent that the logic of future-viewing is another
manifestation of temporal gatekeeping. Future-viewing and
pastward time travel cohere within a seamless whole.

4 Handling foreknowledge instrument data

So far, the discussion has focused on the actions of networks
of human beings within a viewing interval who have obtained
viewer foreknowledge. However, in order to account for all of
the relevant factors which may lead to a set of future-viewed
outcomes, the influences of reactive technological systems
within a viewing interval must also be considered.

The RNG experiment involves two cases where reactive
technological systems are interposed between the attempt to
obtain viewer foreknowledge of an outcome and the outcome
itself. A system must (during the viewing interval) be capable
of both receiving viewer foreknowledge data and performing
actions which could have bearing upon the associated out-
comes, in order for either a cooperative viewing situation or
an interference viewing situation to arise as a result of that
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system’s presence or involvement. Due to these requirements,
other than systems deliberately arranged in laboratory setups
to test future-viewing instruments, AI systems are the only
kind of technological systems with any likelihood of becom-
ing interposed in the necessary way.

Systems referred to as AI systems today do not qualify
as conscious minds. The dream/nightmare of an artifact with
conscious awareness, thankfully, has not been realized. In the
context of foreknowledge instruments, however, the topic of
whether any interposed technological systems are conscious
must be treated as a side issue. This is because information
processing does not require a conscious being, as any func-
tioning thermostat will demonstrate.

Why is it important to consider the possibility of inter-
posed AI systems? If current trends continue, information
processing systems will eventually have the ability to influ-
ence real-world outcomes to a much greater degree than they
can today. If information processing systems with sufficiently
powerful capabilities become members of operator pools, this
could produce cooperative viewing situations with results that
differ radically from the results that operator pools composed
entirely of humans would produce.

In considering the severity this problematic possibility, it
is necessary to realize that once viewer foreknowledge has
been received, all of the outcomes detailed will come to pass
with certainty. In the case of cooperative viewing, the actions
of members of an operator pool bring about or strongly factor
into the details of the outcomes originally received.

If AI systems are allowed to acquire future-derived in-
formation at any time within a given viewing interval, even
years into it, they would be factors in the operator pool all
along. In such a case, the combined processing and network-
coordinated actions of interposed AI systems could easily
dominate the outcomes produced. Leaving the door open for
AI systems to join operator pools is therefore a grave risk
which must be comprehensively addressed.

There is at least one other reason to keep AI systems out
of operator pools: The presence of AI systems in the pro-
cess of attempted future-viewing could produce interference
viewing situations in cases which might otherwise have been
independent viewing situations or (entirely human-directed)
cooperative viewing situations. So, at best, the presence of
interposed information processing systems would disrupt our
ability to use foreknowledge instruments effectively.

For these critical and interrelated reasons, every effort
should be made to ensure that AI systems will not be able
to gain access to viewer foreknowledge data. As well, mon-
itoring procedures should be implemented to make sure that
AI systems will not be able to retain data derived from viewer
foreknowledge for long enough to utilize it in cases where a
breach has occurred.

To prevent AI systems from accessing viewer foreknowl-
edge data to support the enforcement of AI safety, such data
could be distributed exclusively in encrypted packets which

have been flagged as off-limits for decryption by AI systems.
Any processing which could constitute decryption of flagged
packets by AI systems would be considered forbidden pro-
cessing. Future AI systems should be designed to contain
separate, internal monitoring systems which would be pro-
grammed to immediately put the monitored AI to sleep if an
instance of forbidden processing is detected.

Along with data access control, memory control is an-
other important protective strategy. Memory control may be
the most fundamental way to keep all of the potentially nega-
tive effects of an “intelligence explosion” [31] at bay. Future
AI systems should be designed to sleep several times a day
(others could cover for the ones that are asleep). This way,
memory contents could be optimized and routinely cleared
of all potentially hazardous data structures. Regular mem-
ory clearing and the addition of internal monitoring systems
should be seen as necessities for AIs, much like the use of
safety glass for car windows is recognized as necessary.

From these considerations it is apparent that it is possible,
in principle, to fundamentally prevent any of the potentially
negative effects of an intelligence explosion. One of the most
important aspects of AI safety, in a world with foreknowledge
instruments, would be preventing AIs from acquiring and re-
taining viewer foreknowledge data. Successfully navigating
the rise of artificial intelligence will be difficult enough with-
out letting AIs dominate operator pools.

Additional ideas related to the topic of AI safety will have
to be saved for another work. It will be noted, however, that
if artificial systems are ever constructed which would qualify
as conscious beings—artificial systems fundamentally unlike
any type of system ever built or currently considered—an en-
tirely different approach would be required due to the ethical
concerns which would apply only in that case.

Of course, ethical concerns can only apply to conscious
beings because only conscious beings are able to suffer. So,
these same ethical concerns demand that AI systems should
always be designed so there is absolutely no chance of pro-
ducing a conscious being. It would be horribly inhumane to
cross this line—to do so would be just as wrong as the cre-
ation of human-animal hybrids, for largely the same reasons.

There is no basis for feigning confusion about whether
any current AI systems qualify as conscious beings. There
are a lot of philosophical positions out there, but no one be-
lieves that there is even a remote chance that the line has been
crossed, or has even been approached. No matter how fast
and capable of solving problems AI systems ever become, let
them remain, as they are today, non-conscious information
processing engines, systems which cannot suffer or desire.

5 Assurance protocols

Foreknowledge instruments will be put to practical use if and
when they become available, but how could they be utilized?
Foreknowledge instruments could be combined with current
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computer technology to allow us to comprehensively manage
outcomes in a wide variety of circumstances. For instance,
with the right systems and protocols in place, it would be pos-
sible to entirely eliminate flight accidents and other threats to
air travel safety.

Here is an outline of one way this might be done: All air-
craft operating systems could be modified so that, after land-
ing, the higher engine speeds required for take-off are locked
out by default. In order to fly again, it would be necessary to
obtain an encryption code, here called a confirmation key, to
unlock these higher engine speeds.

Each flight plan would be assigned a unique confirma-
tion key during the planning stage. For a given flight plan
to be allowed to progress to the point of becoming a sched-
uled flight, the assigned confirmation key would have to be re-
trieved from a future-based assurance database. Data could be
retrieved from a future-based database by means of a wireless
data exchange conducted between intertemporal data nodes,
devices based on foreknowledge instrument technology.∗

Here is the critical detail: By procedural design, deposit
of a given flight’s confirmation key, for earlier retrieval, may
only be initiated after that flight has safely landed. As long
as this rule is not violated, database integrity is maintained,
and plane operating systems are not compromised, all flights
which take off under this assurance protocol will land safely.

The steps of this protocol would have to be followed in
a particular order. Once a confirmation key for a given flight
plan has been generated, if it is not subsequently found in
the future-based assurance database (by looking ahead), that
flight plan would have to be canceled. Then, another set of
parameters constituting a new flight plan (such as the aircraft
and pilots to be used, time of departure, and so on) would
be prepared and another confirmation key would be gener-
ated. This process would continue until a newly generated
confirmation key has been found in the future-based assur-
ance database.

Why (one might wonder) is the particular order just de-
scribed important in this protocol design? In other words,
why not simply begin by querying the future-based database,
far enough ahead, to find out which flights will land safely,
and only schedule those flights? The answer is that such
an ordering could not work. Flight plan specifics and asso-
ciated confirmation keys must have an origin. Since auto-
generated information is not possible, no practical system
could be based on the expectation of its reception.

∗Two varieties of intertemporal data nodes may be described as follows:
A passive node would consist of a Faraday cage of known spatial coordinates
containing a wireless data communication device wired to the Internet of its
time period. An initiating node or active node would consist of a Faraday
cage of known spatial coordinates containing a wireless data communication
device wired to the Internet of its time period, coupled with a temporal instru-
ment (such as a foreknowledge instrument) which is able to establish light-
path continuity with node interiors in other time periods. Initiating nodes
would allow spontaneous wireless data exchanges to be conducted between
different time periods.

Assurance protocols could be extended into several other
domains. So many of our current problems are based on the
seeming necessity of facing an entirely unknowable future.

6 Intertemporal networking

Another application of foreknowledge instrument technology
is intertemporal networking. An intertemporal Internet could
be founded by connecting active intertemporal data nodes to
our current Internet. Foreknowledge instruments are the only
components of active intertemporal data nodes which remain
unavailable. Once foreknowledge instruments are invented
and/or made available, if they really are part of our future,
then achieving access to a future intertemporal Internet will
likely be among the major milestones to follow.

The development of an intertemporal Internet is a natu-
ral aspect of societal future-sightedness. When one considers
widespread access to time viewers, obvious privacy and intel-
ligence concerns arise. To address these issues, it would be
necessary for foreknowledge instruments and other kinds of
time viewers, such as past-viewing instruments, to be made
exclusively accessible over the (standard) Internet; then, the
servers which govern time viewing could be programmed to
respect a database of spatio-temporal coordinate limitations
in order to prevent rampant voyeurism and espionage. In this
way, the four-dimensional coordinate volumes within which
private residences, businesses, and government buildings are
contained could be comprehensively protected against time
viewer access.

For this kind of solution to function, each time period
within an intertemporal society must have the ability to con-
tribute to the management of such a database. (An intertem-
poral society is an enduring population which benefits from
intertemporal coordination among its time periods.) To en-
able shared management of a coordinate limitation database
within an intertemporal society, shared access to an intertem-
poral Internet among its time periods would be required.

While foreknowledge instruments and related technolo-
gies could provide direct observation of past or future scenes,
many people would primarily use these devices in the form
of active intertemporal data nodes to access the intertemporal
Internet. In recent years, people have become accustomed to
receiving most of their news electronically; with access to an
intertemporal Internet—unless an interference viewing situa-
tion is encountered instead—individuals could discover what
will happen decades or even centuries ahead of time. Read-
ing about future history would be similar to reading about
past history, though one would have to be careful with such
information in order to successfully obtain it in the first place.
An intertemporal Internet could also be used purely for enter-
tainment purposes. Would it not be endlessly fascinating to
hear the music of the far future?

These possibilities may seem outlandish until it is recog-
nized that members of an intertemporal society would live
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in an intertemporal world, a kind of situation that would be
very different from our current situation. All happenings in
an intertemporal world would be constrained according to
the inviolable barriers of temporal gatekeeping and the self-
implication effect, thus ensuring that information flows would
operate coherently, without ever even a hint of paradox.

As a case in point, it might be thought that the prospect
of people having access to future news would be inherently
threatening to the coherence of future events: For instance,
might an article from the future revealing an invention not yet
invented give someone else the opportunity to “invent” that
technology instead, thereby leading to changes to the future?
Or worse, could an invention emerge purely from an auto-
generated information loop? Of course, neither of these sce-
narios reside within the realm of possibility. As raised above,
the P-CTC model explains why auto-generated information
cannot emerge from time travel or future-viewing. Temporal
gatekeeping, also addressed by the P-CTC model, explains
why the future and the past are safe from changes.

Anyone who is able to acquire future-derived information
will, by virtue of having been able to acquire it, not use that
information to change the future. This is true even though
no mysterious force prevents a person from misusing future-
derived information once it has been acquired. Whoever has
acquired future-derived information is in an operator pool, so
no individual can both acquire future-derived information and
use it to change the future.

Submitted on May 24th, 2018
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Application of the virial theorem, when combined with results from the kinetic the-
ory of gases, has been linked to gravitational collapse when the mass of the resulting
assembly is greater than the Jeans mass, MJ . While the arguments appear straightfor-
ward, the incorporation of temperature into these equations, using kinetic theory, results
in a conflict with the laws of thermodynamics. Temperature must always be viewed as
an intensive property. However, it is readily demonstrated that this condition is vio-
lated when the gravitational collapse of a free gas is considered using these approaches.
The result implies star formation cannot be based on the collapse of a self-gravitating
gaseous mass.

1 Introduction

While the virial theorem derives its name from the work of
Clausius [1], credit for its initial formulation has also been
ascribed to Lagrange [2], as the theorem can be derived from
the Lagrange identity [3, 4]. The virial theorem represents
one of the most powerful axioms in physics and has been
used to address a wide array of problems [4–6]. Jeans uti-
lized the theorem at length in his classic text, The Dynami-
cal Theory of Gases [7], in order to derive some of the well-
known gas laws. However, it was not until seven years later
that the virial theorem was introduced into astrophysics by
Poincaré [8]. Soon after, A. S. Eddington [9], apparently un-
aware of Poincaré’s contribution, applied the theorem to a star
cluster. This work centered on kinetic energy of motion and
did not attempt to introduce temperature as a variable. Each
of these developments adheres to the laws of physics.

Eventually, Eddington [10] came to use the virial theorem
when addressing the general theory of star formation. In do-
ing so, it appears that he was the first to combine gravitational
potential energy with the kinetic energy for a gas, as derived
from the ideal gas law, and thereby obtained an expression
defining the mean temperature of a star. Jeans [11] and Chan-
drasekhar [12] soon followed the same steps. Today, many
of these ideas relative to stellar equilibrium and temperature
remain ( [13], [14, see Eq. 26.7]). In this case, the use of the
virial theorem appears to be in conflict with the laws of ther-
modynamics.

2 Theoretical considerations

The existence of intensive (e.g. temperature, pressure, den-
sity, molar mass, thermal conductivity, . . . ) and extensive
(e.g. mass, volume, internal energy, heat capacity, . . . ) prop-
erties has been recognized. In fact, Landsberg [15] has ar-
gued that this concept is so vital as to constitute the 4th law of
thermodynamics. By necessity, intensive properties must be
measured in terms of extensive properties. Extensive proper-

ties must be additive and are directly related to the mass of
a system. Conversely, intensive properties are independent
of total mass. When two extensive properties are divided, an
intensive property is obtained (e.g. mass/volume = density).
However, not all properties can be characterized as either in-
tensive or extensive [16]. Still, it is clear that “if one side of
an equation is extensive (or intensive), then so must be the
other side” [17]. These last two realities urge some caution
when advancing new relations. The point can be made by
first examining the ideal gas law and then, a result from the
inappropriate application of the virial theorem.

The ideal gas law is usually expressed as PV = nRT ,
where P, V , n, R and T correspond to the pressure, the vol-
ume, the number of moles, the universal gas constant, and
the absolute temperature, respectively. If one considers that
n = M/M, (where M is the total mass and M corresponds
to the molar mass) and that the mean density, ρ0, can be ex-
pressed as ρ0 = M/V , then the ideal gas law takes the follow-
ing form:

P = ρ0
R
M T . (1)

Recognizing that R/M is also known as the specific gas con-
stant, Rs, then the ideal gas law can simply be expressed as
P = ρ0RsT . Note that this equation does not contain any ex-
tensive properties, as both the mass of the system and its vol-
ume have been replaced by density, ρ0, which is an intensive
property. Similarly, P and T are intensive properties, while
Rs is a constant for any given system. In accordance with the
state postulate, this simple system is fully defined by any two
intensive properties [18].

At the same time, an intensive property must remain a
function of only intensive properties, or of extensive prop-
erties which in combination, result in an intensive property.
This is especially important when considering temperature in
light of the 0th law of thermodynamics. If the ideal gas law is
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re-expressed in terms of temperature,

T =
P

Rsρ0
, (2)

it is observed that this property remains defined only in terms
of intensive properties for this system, namely pressure and
density.

When considering the kinetic theory as applied to an ideal
gas (see Jeans [19]), any of the associated results are inher-
ently linked to the conditions which gave rise to the ideal gas
law. For instance, 1) a large number of rapidly moving par-
ticles must be considered, 2) these must be negligibly small
relative to the total volume, 3) all collisions must be elastic,
4) no net forces must exist between the particles, 5) the walls
of the enclosure must be rigid, 6) the only force or change
in momentum with time, dp/dt, which is experienced to de-
fine pressure, P, must occur at the walls, and 7) the sum of
forces everywhere else must be zero. In this instance, tem-
perature becomes linked to the total kinetic energy of the en-
closed system, K.E. = 3

2 NkBT , where N represents the total
number of particles and kB is Boltzmann’s constant. Note
that this expression does not address any contribution to the
total kinetic energy which this enclosed system might gain
if it were in motion relative to another object. Such motion
would increase the total kinetic energy of the system, but not
its temperature.

When the virial theorem is applied to a self-gravitating
gaseous mass, wherein the kinetic theory of gases has been
used to insert temperature dependence [10–12], it is well-
established ([13], [14, see Eq. 26.7]) that this combination re-
sults in the following expression for temperature:

T =
GMmp

5kBr
, (3)

where G, M, mp, kB, and r corresponds to the gravitational
constant, the mass of the system, the particle mass, Boltz-
mann’s constant, and the radius. With dimensional analysis,
this expression appears valid, equating Kelvin on each side.
However, this is not true, relative to analysis of intensive and
extensive properties.

Observe that G, mp, and kB are constants for this system.
Mass, M, is an extensive property. However, the radius, r,
is neither extensive nor intensive [18]. In order to see that
radius is not an extensive property, one simply needs to re-
call that for an ideal gas, volume, an extensive property, is
directly related to mass, M. In fact, mass is usually divided
by volume in order to lead to density, ρ0, an intensive prop-
erty. However, since V = 4

3πr
3, it is evident that radius is

not directly related to mass, M, but rather to M1/3. As such,
r cannot be an extensive property. Thus, temperature in (3)
is being defined in terms of two properties, M and r, which
in combination do not result in an intensive property. This
constitutes a direct violation of the 0th law which seeks, first

and foremost, to define temperature as an intensive property,
a reality well-established in thermodynamics (e.g. [17]).

In arriving at (3), the kinetic energy of the gas, K.E., was
assumed to be equal to 3

2 NkBT , as presented above. However,
the temperature obtained from kinetic theory is a manifesta-
tion of the internal motion of the gas within an enclosure.
That energy represents heat energy and it is not related to the
kinetic energy of translational motion which should be com-
bined in the virial theorem with gravitational potential energy,
when considering a bound system.

Furthermore, this expression was obtained for a gas en-
closed by a rigid wall. Such a wall is not present when con-
sidering gravitational collapse. Yet, the results relative to the
ideal gas law were critically dependent on the presence of this
enclosure. The relationship between pressure, volume, and
temperature was extracted using real walls. This is critical as
the only forces used in defining pressure in this system occur
at this boundary. It is not proper to remove the wall and then
assume that the kinetic energy of the gaseous system remains
equal to 3

2 NkBT .
A thermodynamic problem also occurs with any expres-

sion attempting to define the Jeans mass, MJ , an extensive
property, in terms of temperature and mean density, both of
which are intensive properties. Consider the following ex-
pression:

MJ =

(
5kBT
Gmp

)3/2 (
3

4πρ0

)1/2

, (4)

which is analogous to Eq. 12.14 in [14]. Note in (4) that all
terms are raised to either the 3/2 or 1/2 power. As such, no
term on the right side of this equation could have been con-
sidered to behave as an extensive property. Extensive prop-
erties must be additive, a feature which is lost when they are
raised to an exponential power. In (4), the only terms which
are not constants are T and ρ0, but these are intensive, not
extensive properties. As such, the concept of Jeans mass is
not supported by the laws of thermodynamics as no extensive
properties exist on the right side of (4).

3 Discussion

When applying the virial theorem, it is important to differen-
tiate the kinetic energy associated with temperature from the
kinetic energy of motion. For instance, when Chandrasekhar
[20] applied the virial theorem to rotating fluid masses, he
made a clear distinction between heat energy and kinetic en-
ergy of motion. If this is not done and the two are considered
the same, as with all applications to a gaseous mass [10–14],
then violations of thermodynamics ensue.

It is not solely that an intensive property, like temperature,
is being defined in terms of properties which, in combination,
do not yield an intensive property. While this is a violation of
the 0th law, the 3rd law is also being violated, as 0 K is a tem-
perature. One cannot, by (3), increase the radius to infinity
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and, therefore, define 0 K as an intensive property. These con-
siderations illustrate that gases cannot undergo gravitational
collapse.

Lane’s Law [21,22], or the self-compression of a gaseous
mass, also constitutes a violation of the 1st law of thermo-
dynamics. A system cannot do work upon itself and thereby
raise its own temperature. This results in a perpertual motion
machine of the first kind. Additionally, a gravitationally col-
lapsing gaseous cloud, which obeys the ideal gas law, violates
the 2nd law of thermodynamics. An ideal gas is elastic by def-
inition. It has no means of dissipating heat into the heat sink
of its surroundings. Moreover, the system lacks an “engine”
whereby compression can be achieved. Work must be done
on the system in order to increase its order. To argue oth-
erwise consitutes a perpertual motion machine of the second
kind.

4 Conclusion

The idea that a gaseous mass can undergo gravitational col-
lapse ([9, 11–13], [14, see Eq. 26.7]) stands in violation of
the 0th, 1st, 2nd and 3rd laws of thermodynamics. It is well-
established in the laboratory that gases expand to fill the void.
According to the laws of thermodynamics a system cannot do
work upon itself. When dealing with an ideal gas without net
translation, all of the energy should be considered as kinetic
energy, exclusively. It is not appropriate to add a potential
energy term, if the total energy has already been defined as
kinetic energy, thereby establishing temperature.

At the same time, the question remains: How do stars
form? They do not arise from gravitational collapse. The
only feasible solution is that they are the result of condensa-
tion reactions, whereby material, as it condenses and forms a
new system, emits photons into its surroundings. Insight rel-
ative to this issue can be gained by considering the work of
Konig et al [23], wherein the condensation of silver clusters
at low temperatures has been associated with the emission of
photons. It is highly likely that hydrogen ion clusters [24]
will be found someday to behave in the same fashion. Along
with other advancements in condensed matter physics [25],
such discoveries may well provide the necessary force to help
astronomers recognize that the stars are comprised of con-
densed matter [26].
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Elimination of Anomalies Reported for b → sℓℓ and b → cℓν̄ℓ Semi-Leptonic
Decay Ratios R(K,K*) and R(D,D*) when the Lepton Families Represent

Discrete Symmetry Binary Subgroups 2T, 2O, 2I of SU(2)

Franklin Potter
Sciencegems.com, 8642 Marvale Drive, Huntington Beach, CA 92646 USA. E-mail: frank11hb@yahoo.com

The large discrepancies between the measured and predicted values of B meson de-
cay ratios R(K) and R(D) could indicate lepton flavor universality violation and new
physics beyond the Standard Model. I propose that the only new physics is that each
lepton family represents a different discrete symmetry binary subgroup of SU(2) and
that lepton flavor mixing exists because the 3 families act collectively to achieve SU(2)
symmetry. Successful calculations of the neutrino mixing angles and of the measured
ratios R(K,K*) and R(D, D*) by using those mixing angles confirm that the 3 lepton
families represent the 3 binary subgroups 2T, 2O, and 2I.

1 Introduction

Perhaps the hottest research topic today in particle physics is
whether the door to new physics (NP) has been pried ajar by
the Belle, BaBar, and LHCb reports of significant discrepan-
cies from the Standard Model (SM) predicted values in the B
meson semi-leptonic decay ratios. In particular, rare b→ sℓℓ
and b → cℓν̄ℓ decays are now known to exhibit significant
deviations from the SM predictions for both their branching
ratios and their angular distributions [1]. One possible in-
terpretation of these results would be the violation of lepton
flavor universality (LFUV) with regard to the weak interac-
tion.

Over the past two decades these deviations from the SM
predicted values have triggered a variety of models of NP,
such as Z’ models with gauged Lµ - Lτ, models with lepto-
quarks, models with compositeness, etc. For a complete list
of the great variety of proposed NP models, see [2].

I claim that the only NP required is to properly identify
the lepton and quark family symmetries. Previously, I have
shown [3] that their EW flavor states actually represent 3 spe-
cific discrete symmetry subgroups of SU(2). In better words,
the true reason for lepton mixing is the collective action of
the 3 lepton families with their discrete symmetries to mimic
the SU(2) weak isospin eigenstates ± 1

2 demanded by the SM
gauge interaction bosons representing SU(2)W × U(1)Y . The
correct statement that the mixing angles represent a mismatch
between the EW flavor states and their mass states is the con-
sequence of but not the reason for the mixing. I explain be-
low how this collective action is achieved by the 3 specific
discrete symmetry binary subgroups of SU(2), known as 2T,
2O, and 2I, for the electron, muon, and tau families, respec-
tively. The immediate results are the correct mixing angles
and the correct ratios of branching ratios for b quark semi-
leptonic decays.

Section 2 is a brief review of the recent experimental re-
sults for B meson semi-leptonic decays. Section 3 explains
how the lepton mixing angles are derived from the generators

of the 3 discrete symmetry subgroups of SU(2), or equiva-
lently the group of unit quaternions Q. Section 4 includes a
derivation of the electroweak (EW) boson states W±, Z0, and
γ as well as the Weinberg angle. Finally, in Section 5, I cal-
culate the ratios for the semi-leptonic b decays b → sℓℓ and
b → cℓν̄ℓ using alternative EW boson state assignments. In
order to do so, one requires the appropriate discrete symmetry
eigenstates for the leptons, quarks, and EW bosons, which I
have discussed in the literature [3,4] and at conferences [5,6].

2 The B meson decays

The ratio of branching ratios has been used extensively to
summarize both the theoretical and the experimental results
because almost all the hadronic uncertainties are eliminated.
For example, these four ratios for B meson decays exhibit
large discrepancies of more than 2.5σ from their SM predic-
tions [1]:

R(K)S M =
B(B→ Kµ+µ−)
B(B→ Ke+e−)

= 1.00 ± O(1%), (1)

R(K∗)S M =
B(B→ K∗µ+µ−)
B(B→ K∗e+e−)

= 1.00 ± O(1%), (2)

R(D)S M =
B(B→ Dτντ)
B(B→ Dℓνℓ)

= 0.298 ± 0.003, (3)

R(D∗)S M =
B(B→ D∗τντ)
B(B→ D∗ℓνℓ)

= 0.255 ± 0.004, (4)

valid over a broad range of q2 values.
LHCb has recently reported [7]

R(K)exp = 0.745 ± 0.090 ± 0.036 (5)

R(K∗)exp = 0.685 ± 0.113 ± 0.047 (6)

in the di-lepton invariant mass range 1 GeV2 < q2 < 6 GeV2,
exhibiting significant deviations from the SM predictions.

For muonic decays [8]

R(D)exp = 0.407 ± 0.039 ± 0.024. (7)
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Table 1: Exact angle contributions by the U2 generators of 2T, 2O, and 2I. Note that ϕ = (1 +
√

5)/2, and Angle = arccosine (Factor), which
is twice the projection angle to the k-axis.

Family Group U1 U2 U3 Factor Angle Angle/2

νe, e− 2T j - i
2 - j

2+
k√
2

i -0.26422 105.3204◦ 52.660◦

νµ, µ− 2O j - i
2 - j√

2
+ k

2 i +0.80116 36.7581◦ 18.379◦

ντ, τ− 2I j - i
2 - ϕ j

2 +
ϕ−1 k

2 i -0.53695 122.4764◦ 61.238◦

R(D∗)exp = 0.336 ± 0.027 ± 0.030. (8)

I propose that the values of the ratios R(K), R(K*), R(D),
and R(D*), all can be expressed in terms of the lepton mixing
angles, without venturing outside the realm of the SM local
interaction symmetry group SU(3)C × SU(2)W × U(1)Y . For
example, I derive in Section 5 how using the lepton family
mixing angles predicts

R(K) =
Cos θ23

Cos θ13
=

Cos 42.859◦

Cos 8.578◦
= 0.74127 R(K)S M , (9)

R(D) =
Cos θ33

Cos θ23
=

Cos 0.000◦

Cos 42.859◦
= 1.36420 R(D)S M , (10)

which agree with the experimental values 0.745 ±0.090 ±
0.036 and 0.407±0.039±0.024, respectively.

Why does this procedure work? Because the W± and Z0

bosons have discrete symmetry properties, too, and are eigen-
states of the binary product group 2I × 2I’. In the traditional
way of thinking, such an alternative way to express W± and
Z0 comes as a big surprise!

3 Brief review of neutrino mixing

In 2013 I derived [3] the exact lepton mixing angles for the
neutrino PMNS mixing matrix by first assigning the three lep-
ton families to three special discrete symmetry binary sub-
groups of the unitary quaternion group Q, which is equivalent
to the SU(2) group used for the two electroweak (EW) isospin
flavor states ± 1

2 in each lepton and quark family. I provide a
brief review of that lepton mixing angle derivation here.

The group Q of unitary quaternions has these discrete
symmetry subgroups:

2T, 2O, 2I,D2n,C2n,Cn (n odd). (11)

If I assume that leptons are 3-D entities at the Planck scale,
then only 2T, 2O, and 2I, are useful for identifying them. So I
assigned these 3 finite binary subgroups to the electron family
(νe, e−), to the muon family (νµ, µ−), and to the tau family (ντ,
τ−), respectively.

These 3 binary subgroups each have the 3 quaternion gen-
erators U1, U2, and U3 as given in Table 1. Notice that for

each group only two of the three generators, U1 = j, and U3
= i, are the same as for SU(2), which has the three quater-
nion generators j, k, i. Their other generator, U2, is differ-
ent for each binary subgroup and different from each other.
By demanding that the three U2 generators collectively act as
the k-generator of SU(2), their linear superposition provides
three equations for three unknown factors. Their normalized
factors, the corresponding angles calculated by their inverse
cosine projections to the k-axis, and the physical rotation an-
gles, are quantities all listed in Table 1.

Defining the lepton mixing angles by θi j = | θi - θ j | pro-
duces the three neutrino PMNS mixing angles

θ12 = 34.281◦ vs 33.56◦ ± 0.77◦ (exp) (12)

θ23 = 42.859◦ vs 41.6◦ ± 1.5◦ (exp) (13)

θ13 = 8.578◦ vs 8.46◦ ± 0.15◦ (exp), (14)

with their absolute values agreeing with the experimental val-
ues. Note that I have no mixing among the charged lepton
flavor states, unitarity of the PMNS mixing matrix, a normal
mass state hierarchy, and no additional neutrino states beyond
those in the three known lepton families.

Therefore, I claim that the three lepton families represent
the three chosen discrete symmetry binary subgroups 2T, 2O,
2I, and that they act collectively to mimic the SU(2) symme-
try required for the isospin flavor states of the EW component
of the SM.

4 Electroweak boson states W+, Z0, W−, γ

The SM local gauge group SU(2) × U(1) has four EW inter-
action bosons W+, Z0, W−, γ, which can be derived from the
four quaternion generators i, j, k, b, with the first three gener-
ators for SU(2) or Q and the generator b for U(1) [or, equiva-
lently, for the 2-element inversion group I2]. These four gen-
erators required for the EW boson operations on the lepton
flavor states must be able to perform the discrete rotations of
the binary subgroups 2T, 2O, and 2I, in order to go from one
lepton flavor state ± 1

2 to the other in each family. Of course,
the Lie groups SU(2), or Q, are capable of doing these dis-
crete rotations because they include all possible operations.
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But there exists a smaller group with discrete symmetry
that can provide the essential operations. One might expect
that the largest group 2I of binary icosahedral operations by
itself would be able to perform the required rotations in the
normal space C2 = R4. However, some operations in the bi-
nary octahedral group 2O for the muon family would be omit-
ted, so one finds that the product group 2I × 2I’ is necessary,
where 2I’ provides certain ”reciprocal” operations, as they are
called.

In a 2014 paper [9], by using 2I × 2I’, I derived the Wein-
berg angle, i.e., the weak mixing angle, using U2 × U’2 to
predict

θW = 30◦ vs 28.4◦ ± 0.5◦ (exp). (15)

The discrepancy between the measured and the theoretical
values of the Weinberg angle could be indicating that the 30◦

value applies at the Planck scale.
One now defines the four EW boson states in terms of the

2I × 2I’ weak isospin states by these four relations:

|W+ >= | + 1
2 > | +

1
2 > (16)

|Z0 >=
(
| + 1

2 > | −
1
2 > + | −

1
2 > | +

1
2 >
)
/
√

2 (17)

|W− >= | − 1
2 > | −

1
2 > (18)

|γ >=
(
| + 1

2 > | −
1
2 > − | −

1
2 > | +

1
2 >
)
/
√

2. (19)

where the upper state + 1
2 for 2I is the tau neutrino flavor state

ντ and the lower state − 1
2 is the τ− state. The tau family anti-

particle states representing the 2I’ discrete symmetry group
have the upper and lower states τ+ and ν̄τ.

One would expect that these four EW boson state identifi-
cations in terms of 2I × 2I’ eigenstates would be important for
understanding their decays into leptons and quarks. Indeed,
unless one uses these particular identifications, the B meson
decays will have large discrepancies with the SM predictions
and remain a challenge for the SM traditional approach, par-
icularly for the semi-leptonic decays

b → s ℓ+ℓ− and b→ cℓν̄ℓ, (20)

precisely the decays for R(K) and R(D).
Therefore, I can re-define the EW boson states in terms of

the tau lepton family flavor states for calculation purposes and
determine the consequences for the b semi-leptonic decays:

|W+ >= |ντ > |τ+ > (21)

|Z0 >=
(|ντ > |ν̄τ > + |τ− > |τ+ >) /√2 (22)

|W− >= |τ− > |ν̄τ > (23)

|γ >= (|ντ > |ν̄τ > − |τ− > |τ+ >) /√2. (24)

That these assignments work well in determining the ratios
R(K) and R(D) is discussed in the next section.

5 b→ sℓℓ and b→ cℓν̄ℓ
The traditional way to handle these decays would be to exam-
ine the Wilson coefficients [10] and determine which ones are
possibly responsible for the discrepancies of the experimental
results from the SM predictions.

However, now that I have proposed explicit expressions
for the EW bosons in terms of the tau family flavor states,
I can calculate directly the decay ratios reported in the liter-
ature. For the decay b → sℓℓ in which R(K) is expressed in
terms of the ratio of the branching ratios of Z0→ µ−µ+ and Z0

→ e−e+ in Eq. 1, the semi-leptonic B meson decays require
the Z0 decays expressed as

|τ− > |τ+ >→ |µ− > |µ+ > (25)

|τ− > |τ+ >→ |e− > |e+ >, (26)

with each decay being proportional to the cosine of the spe-
cific lepton mixing angle between families, i.e., one predicts
their ratio

R(K) =
cos θ23

cos θ13
=

0.73303
0.98888

= 0.74127, (27)

which is the measured value of R(K) = 0.745 ±0.090 ±0.36.
The R(K*) ratio has the same Z0 decays, so the prediction

is the same,

R(K∗) =
cos θ23

cos θ13
=

0.73303
0.98888

= 0.74127, (28)

which is within the measured value of R(K) = 0.685 ±0.113
±0.47 with its large uncertainties.

In order to use the same procedure for b→ cℓν̄ℓ, which
involves the W− decay, the three W− decays are expressed as

|τ− > |ν̄τ >→ |τ− > |ν̄τ > (29)

|τ− > |ν̄τ >→ |µ− > |ν̄µ > (30)

|τ− > |ν̄τ >→ |e− > |ν̄e >, (31)

again with each decay being proportional to the cosine of the
lepton mixing angle. For example, taking the ratio of the first
two, one obtains the factors

R(D)µ =
cos θ33

cos θ23
=

1
0.73303

= 1.364, (32)

and the ratio of the first and third produces

R(D)e =
cos θ33

cos θ13
=

1
0.98888

= 1.011. (33)

Either or both of these factors multiplies the SM predicted
value in order to achieve the measured values of R(D) and
R(D*). The W− decay to the muon family alone produces

R(D)µ = 1.364 x 0.298 = 0.408, (34)
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R(D∗)µ = 1.364 x 0.255 = 0.348. (35)

both predicted values matching the experimental values 0.407
±0.039 ±0.024 and 0.336 ±0.027 ±0.030, respectively, for
purely muonic decays.

And for the other product, the one involving the tau fam-
ily states decaying to the electron family only, the predicted
results are

R(D)e = 1.011 x 0.298 = 0.301, (36)

R(D∗)e = 1.011 x 0.255 = 0.258. (37)

Therefore, if there is a significant electron family contribu-
tion to the R(D*) decay channel, that would lower the total
predicted R(D*) value for those reports that average both the
muon and electron contributions.

6 Summary

There is no evidence in these semi-leptonic decays for lep-
ton flavor violation. The lepton mixing angles are used to
successfully calculate the B meson ratios R(K), R(K*), R(D),
and R(D*), which involve ratios of the semi-leptonic b quark
decays b→ sℓℓ and b→ cℓν̄ℓ. No discrepancies between the
predicted values and the experimental values exist when the
lepton families are expressed in terms of the 3 discrete sym-
metry binary subgroups 2T, 2O, and 2I of SU(2) and the EW
boson states are expressed in terms of the discrete symme-
try product group 2I × 2I’. The predicted values agree with
the experimental values for all four ratios when expressed in
terms of the appropriate mixing angles.

The key idea is that the lepton mixing angles exist be-
cause the 3 binary subgroups identifying the 3 lepton fam-
ily discrete symmetries are acting collectively to achieve the
SU(2) Lie symmetry of the EW part of the SM. One imme-
diate consequence is that the EW boson states W+, Z0, W−,
γ can be expressed in terms of the discrete symmetry product
group 2I × 2I’, a real surprise. With these discrete symmetry
groups, I calculate the neutrino mixing angles, the Weinberg
angle, and the four B meson ratios, all in agreement with the
experimental values.
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As is common knowledge, the experimentally measured and theoretically deduced val-
ues of the γ-coefficient of the electronic heat capacity of metals exhibit a clear dis-
crepancy. This discrepancy is usually attributed to the neglected effects such as the
electron self-interaction and the electron interaction with phonons and the Coulomb po-
tential. Despite the said pointers to the possible cause in the obtaining theoretical and
experimental dichotomy, no dedicated effort has been put in order to come up with a
theory to explain this. An effort is here made to come-up with an alternative theoretical
framework whose endeavour is to proffer a theory that may explain why there is this
theoretical and experimental dichotomy by invoking the hypothesis that the tempera-
ture of electrons and the lattice may be different. We argue that the different electron
and lattice temperatures can – in-principle – give an alternative explanation as to the
said theoretical and experimental dichotomy in the γ-coefficient of the electronic heat
capacity of metals without the need to invoke the effective mass theory as currently
obtains.

“Thermodynamics is a funny subject. The first time
you go through it, you don’t understand it at all. The
second time you go through it, you think you under-
stand it, except for one or two small points. The third
time you go through it, you know you don’t under-
stand it, but by that time you are so used to it, it doesn’t
bother you anymore.”

Arnold J. W. Sommerfeld (1868–1951)

1 Introduction

The main purpose of the present reading is to provide (pro-
pose) an alternative model that seeks to explain the existing
discrepancy in the electronic heat capacity γ-coefficients for
different metals. That is to say, for temperatures below the
Debye (θD) and Fermi temperature (θF), in terms of the tem-
perature (T ) of the metal in question, the total molar heat ca-
pacity at constant volume C T

V of metals is satisfactorily de-
scribed by the sum of a linear electronic (C e

V ∝ T ) [1, 2] and
a cubic phononic (C l

V ∝ T 3) contribution [3], i.e.:

C T
V = γT + AT 3 , (1)

where γ = π2n∗R/2θF is the said γ-coefficient in question,
with n∗ being the number of free electrons per lattice point,
R = 8.3144600(50) Jmol−1K−1 is the ideal gas constant and
is such that R = NAkB, where NA = 6.022140857(74) ×
1023 is the Avogadro number and kB = 1.38064852(79) ×
10−23 JK−1 is the Boltzmann’s constant, and:

A =
9R

θ3
D

∫ xD

0

x4exdx
(ex − 1)2 , (2)

where x = ~ω/kBT and xD = θD/T , ~ is Planck’s normalized
constant and ω is the angular frequency of the oscillating lat-
tice points (i.e. atom or molecule). In the low temperature

region, i.e. x≪ 1, A is such that:

A '
12π4R

5θ3
D

. (3)

For a given metal in question – the coefficients γ and A are
constant coefficients which are determined experimentally.

It was after Albert Einstein’s [4] first great insights into
the quantum nature of solids that the cubic term C l

V ∝ T 3, was
successfully explained by Peter Debye [3]. At low tempera-
tures the lattice contribution C l

V ∝ T 3 is significantly smaller
than the electronic contribution C e

V ∝ T , it vanishes faster
than the electronic contribution and from this, γ (also known
as the Sommerfeld constant) can be measured experimentally.
As will be seen in the next section, there is a clear marked
difference in the theoretical and experimental values of the
γ-coefficient and we seek here an answer to as to why this
fragment disagreement between theoretical and experiment.

2 Problem

Table 1 lists the theoretical γtheo and experimental γexp val-
ues of twenty one elements and these values are plotted in
Figure 1. One finds that they can fit either a linear, quadra-
tic, a general power law or logarithmic curve to these data
points. The marked difference in the theoretical and exper-
imental values of the γ-coefficient is clear. From column 3
of Table 1, the percentage deviations are presented and it can
be seen from this that the mean square deviation is as high as
35%, while the mean value of the ratio γexp/γtheo (column 5
of Table 1) together with its deviation from this mean value is
1.30 ± 0.40.

The said marked difference in the theoretical and exper-
imental values of the γ-coefficient as presented in Figure 1
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Table 1: Table of 21 elements for the experimental and theoretical values of the electronic heat capacity coefficients. From left to right,
the columns represent the element, its corresponding theoretical and experimental γ-coefficient and the percentage (1 − γexp/γtheo) × 100%
deviation of the experimental value from the theoretical one, respectively. The values of γexp and γtheo are adapted from Kittel (2005,
1986) [5, 6] and Tari (2003) [7].

Element γtheo γexp %Dev.
γexp

γtheo
(mJmol−1K−2) (mJmol−1K−2)

Li 1.63 0.75 +54 2.18
Be 0.17 0.50 +190 0.34
Na 1.38 1.09 +20 1.26
Mg 1.30 0.99 +24 1.31
Al 1.35 0.91 +32 1.48
K 2.08 1.67 +20 1.25
Ca 2.90 1.51 +48 1.92
Cu 0.70 0.51 +27 1.38
Zn 0.64 0.75 −18 0.85
Ga 0.60 1.03 −72 0.58
Rb 2.41 1.91 +21 1.26
Sr 3.60 1.79 +50 2.01
Ag 0.65 0.65 +0.15 1.00
Cd 0.69 0.95 −38 0.73
In 1.69 1.23 +27 1.37
Sn 1.78 1.41 +20 1.26
Cs 3.20 2.24 +30 1.43
Ba 2.70 1.94 +28 1.39
Au 0.73 0.64 +12 1.14
Hg 1.79 0.95 +47 1.88
Pb 2.98 1.51 +49 1.97

Mean Square Deviation 7→ 35

Fig. 1: A comparison graph of the experimental and theoretical values for the electronic heat capacity coefficients for the twenty one
elements listed in Table 1. If there was a good agreement between theory and experimental, the values of γexp and γtheo would lay along the
line γexp = γtheo. This is not the case implying a sure fragment disagreement between theory and experiment.
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demonstrates an underlying correlation between these values.
Amongst others, a correlation such as this, suggests some cor-
related physics must be at play – one way or the other. Given
that electrons do interact with phonons, this correlation must
have something to do with the electron-phonon interaction.
We are not going to seek a fundamental origin of this corre-
lation but merely suggest that this deviation may (as will be
demonstrated) very well be due to a possible inequality in the
electron and lattice temperatures.

The general and widely held view (see e.g. [5,6,8–10]) as
to this discrepancy is that:

1. The interaction of the conduction electrons with the pe-
riodic Coulomb potential of the rigid crystal lattice is
neglected.

2. The interaction of the conduction electrons with pho-
nons is also neglected. This interaction causes changes
in the effective mass of the electron and therefore it af-
fects the electron energy.

3. The interaction of the conduction electrons with them-
selves is also ignored. For example, a moving electron
causes an inertial reaction in the surrounding electron
gas.

Since γ ∝ me (see e.g. [5, 6]), to bring about agreement be-
tween theory and observation, the mass of the electron is cor-
rected by introducing an effective mass m∗e for the electron
(e.g. [5, 6, 8–10]). Whatever difference there exists between
theory and experiment, the effective mass is wholly assumed
to shoulder this discrepancy (e.g. [5, 6, 8, 9]) as follows:

γexp

γtheo
=

m∗e
me

, (4)

where me = 9.10938356(11) × 10−31 kg is the usual elemen-
tary mass of the electron.

The effective mass theory (see e.g. [5, 11] or any good
textbook on the subject) is essentially about the equation of
motion of a charged particle (electron in this case) inside
the energy band of the crystal. In this theory, the electron
is treated as a wave-packet in the typical de Broglie wave-
particle duality model. That is to say, the electron is assumed
to be a wave-packet made up of wavefunctions near a partic-
ular wavevector ~k and this wave-packet has a group velocity
~vg = ∂ω/∂~k. All the effects of the environment on the elec-
tron are contained in the dispersion relation ω = ω(k). For
an electron whose energy is ε, the effective mass theory (see
e.g. [5,11] or any good textbook on the subject) predicts that:

1
m∗e

=
1
~2

∂2ε

∂k2 =
1
~

∂2ω

∂k2 =
1
~

∂vg

∂k
, (5)

where m∗e is the effective mass of the electron as it moves in
the energy band of the crystal. For example, in the case of a
free electron where ε = ~2k2/2me, we have m∗e = me, i.e. the
electron has its usual mass me. Inside the crystal structure

where there is no current flow, the valency electrons are free
having only thermal energy, they do not have a net drift veloc-
ity, but have random fluctuations whose net velocity is zero –
hence, the effective mass theory should not be inapplicable to
such electrons since measurements of the electronic γ-factor
is conducted on such electrons. It is this that has made us to
doubtfully question the effective mass theory in accounting
for the γ-factor discrepancy.

The effective mass m∗e can be larger or smaller than the
electron’s actual mass me and this depends on whether the
states within the electron’s energy band are denser (more co-
mpressed) or less dense (expanded) compared with those of
a free gas [5, 6, 11]. The effective mass also reflects the in-
ertia of the charge carriers. The two (effective mass & the
inertia of the charge carriers) are related, because narrower,
denser, bands reflect a smaller overlap of neighbouring elec-
tron clouds and hence greater difficulty for electrons to travel
from one atom to the next.

This communication presents an alternative model whose
aim is to explain the discrepancy in theoretical and experi-
mental values of the electronic heat capacity coefficient. As
pointed above – currently this is explained by invoking the
effective mass theory. As shown in Figure 1, there is a clear
trend in the experimental and theoretical values of the elec-
tronic heat capacity coefficient. We have not seen any theory
that tries to explain this trend, not even within the effective
mass theory. It is our firm belief that the effective mass the-
ory should fail to explain this trend for the reason pointed
above about the electrons inside metals during the measure-
ment of γ, namely that they have a net zero group velocity.
This communication makes an endeavour to provide an al-
ternative model by invoking the not so unreasonable idea that
electrons and atoms (molecules) in solids are at different tem-
peratures.

3 Electron-lattice temperature correction

In our suggested alternative explanation – as to the discrep-
ancy between theory and experiment, we propose to recon-
sider the issue of the lattice and electron temperatures. That
is to say, a solid can be viewed as a homogeneous mixture of
the lattice and the valency electrons. Just like any mixture, the
different species are not expected to be at the same tempera-
tures. Yes, the mixture will come together to a common tem-
perature T , which is the temperature that we generally assign
to the solid in question. The species with “more heat” will
transfer this heat to the species with “less heat”. In this case
of the electron-lattice mixture, we expect the lattice to have
“more heat” with the valency electrons having “less heat”. If
∆Ql is the heat transfer from the lattice and ∆Qe is the heat
received by the free electrons, then we must have:

∆Qe + ∆Ql = 0 . (6)

So, unlike in the conventional treatment where the lattice and
electron temperatures are assumed to be equal, we here as-
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sume them to be different. If one accepts this, then what fol-
lows is straightforward.

If Me, ce
v ,Te; Ml, cl

v,Tl is the total mass, specific heat ca-
pacity and temperature of the electrons gas and the lattice re-
spectively, and T is the common temperature of the mixture,
then, from (6), we will have:

Mece
v (T − Te)︸           ︷︷           ︸

∆Qe

+ Mlcl
v (T − Tl)︸          ︷︷          ︸

∆Ql

= 0 . (7)

Rearranging (7) and making T the subject, we will have:

T =

(
Mece

v

Mece
v + Mlcl

v

)
Te +

(
Mlcl

v

Mece
v + Mlcl

v

)
Tl . (8)

Further – rearrangement of (8), gives:

T =

(
1 +

Mlcl
v

Mece
v

)−1

Te +

(
1 +

Mece
v

Mlcl
v

)−1

Tl . (9)

We know that:

ce
v =

Ce
V

NAme
and cl

v =
Cl

V

NAAl
, (10)

where Al is the atomic mass of the lattice and Ce
V and Cl

V are
the electronic and lattice molar heat capacity respectively, and
that:

Ml

Me
=

Al

n∗me
, (11)

and substituting (10) and (11) into (9), we will have:

T =

1 +
C l

V

n∗C e
V

−1

Te +

1 +
n∗C e

V

C l
V

−1

Tl . (12)

Now – because of the different temperatures of the elec-
trons and the lattice, the total internal energy Ue of the elec-
trons is to be expressed as a function of the electron tempera-
ture Te i.e. Ue = Ue(Te) and likewise, that of the lattice struc-
ture is such that Ul = Ul(Tl). With the internal energy given
in terms of the electron and lattice temperatures respectively,
the corresponding electronic and lattice molar heat capacities
are:

C e
V =

∂Ue(Te)
∂Te

and C l
V =

∂Ul(Tl)
∂Tl

. (13)

The total internal energy UT of the solid is such that:

UT = Ue(Te) + Ul(Tl) . (14)

Now, to compute the total molar heat capacity of the solid,
one does this by differentiating (14) with respect to the com-
mon temperature T as follows:

C T
V =

∂UT

∂T
=
∂Ue(Te)
∂Te

dTe

dT
+
∂Ue(Tl)
∂Tl

dTl

dT
. (15)

Eq. (15) can be re-written as:

C T
V = aeC e

V + alC l
V , (16)

where ae = dTe/dT and al = dTl/dT . From (12) and (16), it
follows that:

a−1
e =

1
1 + C l

V/n∗C e
V

+
1
η

1
1 + n∗C e

V/C l
V

, (17)

where η = dTe/dTl. Setting:

x = n∗

C e
V

C l
V

 , (18)

it follows that:

ae =

(
x

1 + x
+

1
η

1
1 + x

)−1

= η

(
1 + x
1 + ηx

)
. (19)

It is expected that the lattice contribution will always be sig-
nificantly larger than that of the electrons and this means or
directly translates to: x � 1. In addition to the said condition
x � 1, if we assume |ηx| < 1, then, to first order approxima-
tion, we will have:

ae ' η and al ' 1 , (20)

hence:
C T

V = ηC e
V + C l

V . (21)

Clearly, from (21) above, the obvious identification:

γexp = ηγtheo , (22)

can be made, the meaning of which is that the theoretical and
experimental discrepancy in the values of the γ-coefficient
can be ascribed to η.

We shall reiterate: one very important thing to note is that
the effective mass of the electron applies only in the case of
an electron that is in motion with vg , 0 in the crystal struc-
ture and this is in the case of an applied potential across the
metal. The γ-coefficient is measured not for a metal that has
a flow of current in it, but one with no current, thus making
is logically inappropriate in this instance to ascribe an effec-
tive mass to the electron that is different to its bare mass me.
In such a case, it would make sense to ascribe the different
values of γexp and γtheo to the difference in the electron and
lattice temperatures as suggested herein.

4 General discussion

We herein have provided an alternative model whose endeav-
our is to explain the existing discrepancy between the exper-
imental and theoretical values of the electronic heat capacity
γ-coefficient. We must say that – at a reasonable and satis-
factory level, the proposed model does explain the discrep-
ancy in the experimental and theoretical γ-values. The preva-
lent (current mainstream) view is that this discrepancy comes
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about as a result of a variable effective mass of the electron
– wherein, the difference between the experimental and theo-
retical γ-values is wholly shouldered by the effective mass of
the electron (see e.g. [5–10]). This idea of the effective mass
may be logically inappropriate because the effective mass the-
ory applies only in the case of an electron that is in motion
with vg , 0 in the crystal structure whereas the γ-coefficient
is measured not for a metal that has a flow of current in it, but
one with no current. Current flow implies “with vg , 0”, and
no-current flow implies “with vg = 0”.

In the proposed model, this discrepancy is explained as
being due to the different temperatures of the electrons and
the lattice. In the mainstream model, the thermodynamic tem-
perature of the electrons and atoms (molecules) of the solid
are assumed to be equal. This view may not be correct. It
is actually not unreasonable to think that electrons and atoms
(molecules) of the solid are at different temperatures as this is
common place in e.g. the study of molecular clouds in Astro-
physics and as well as in Plasma Physics.

This model does not discard the effective mass model
where results of experiments are made to agree with the the-
oretical value by postulating that the entire discrepancy be
shouldered by the resulting effective mass of the electron.
What the model does is basically to “tell” us that the differ-
ent electron and lattice temperatures may have a role to play
in the said observed discrepancies, or both models may be at
play. This is something that can be investigated in a separate
study unit altogether. As to what use this model may hold
in the immediate future, we can not say, but we hope it will
prove useful in the future as our knowledge horizons broaden
and push further than where they lie at present.
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The Dirac Electron and Its Propagator as Viewed in the Planck Vacuum Theory
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This paper examines the covariant Dirac equation and its associated quantum-
electrodynamic propagator from the perspective of the Planck vacuum (PV) theory.
Calculations reveal: that the PV state is a bifurcated state whose two branches pro-
vide the electrons and positrons that, under certain conditions, can be scattered from
the PV into free space; that the degenerate collection of Planck-particle cores (that per-
vade the invisible, negative-energy vacuum state) is responsible for the scattering that
takes place in the Huygens principle and the propagator theory; and that the two-term
coupling force the electron core exerts on the PV state vanishes at the electron Comp-
ton radius, preventing the electron core (and its consequent Dirac electron) from being
tethered by the coupling force to the vacuum state, assuring that the electron propagates
freely in free space. The paper represents a relativistic addendum to an earlier paper [1]
concerning the Schrödinger electron.

1 Introduction

Charge conjugation [2] in the PV theory implies that the in-
visible vacuum state must be a bifurcated state — bifurcation
meaning that at each point in free space there exists a vacuum
subspace consisting of the charge doublet (±e∗)2 that defines
the two vacuum branches

e2
∗ = (−e∗)(−e∗) and e2

∗ = (+e∗)(+e∗) . (1)

The first charge in each branch belongs to the electron or
positron and the second charge to the corresponding branch of
the subspace. For example, if the first charge (−e∗) in the neg-
ative branch on the left belongs to the electron, then the first
charge (+e∗) in the positive branch at the right belongs to the
positron. In other words, in the PV theory charge conjugation
simply switches back and forth between the two branches.
The equivalence of the two branches can be seen in the Dirac
equation

ic~
(
∂

c∂t
+ αα · ∇

)
ψ = mc2βψ (2)

or, using c~ = e2
∗,[

i(−e∗)(−e∗)
(
∂

c∂t
+ αα · ∇

)
− mc2β

]
ψ = 0 (3)

where the negative branch, the electron branch, is used. The
Dirac equation (2) applies to both branches; i.e. the equation
works for both the electron and positron. A similar statement
can also be made for the equations in (5).

The theoretical foundation [3, 4, 5] of the PV theory rests
upon the unification of the Einstein, Newton, and Coulomb
superforces:

c4

G

(
=

m∗c2

r∗

)
=

m2
∗G
r2
∗

=
e2
∗

r2
∗

(4)

where the ratio c4/G is the curvature superforce that appears
in the Einstein field equations. G is Newton’s gravitational

constant, c is the speed of light, m∗ and r∗ are the Planck mass
and length respectively [6, p.1234], and e∗ is the massless
bare charge. The fine structure constant is given by the ratio
α = e2/e2

∗, where (−e) is the observed electronic charge.
The two particle/PV coupling forces

Fc(r) =
e2
∗

r2 −
mc2

r
and F∗(r) =

e2
∗

r2 −
m∗c2

r
(5)

the electron core (−e∗,m) and the Planck-particle core
(−e∗,m∗) exert on the PV state, along with their coupling con-
stants

Fc(rc) = 0 and F∗(r∗) = 0 (6)

and the resulting Compton radii

rc =
e2
∗

mc2 and r∗ =
e2
∗

m∗c2 (7)

lead to the important string of Compton relations

rcmc2 = r∗m∗c2 = e2
∗ (= c~) (8)

for the electron and Planck-particle cores, where ~ is the re-
duced Planck constant. The electron and Planck particle
masses are m and m∗ respectively. The vanishing of Fc(rc)
in (6) frees the electron from being tethered to the vacuum
state, insuring that the electron propagating in free space be-
haves as a free particle.

The Planck constant is a secondary constant whose struc-
ture can take different forms; e.g.

~ [erg sec] = rcmc = r∗m∗c =

(
e2
∗

r∗

)
t∗ = m∗c2t∗ (9)

that are employed throughout the following text, where t∗ (=
r∗/c) is the Planck time [6, p.1233]. The products to the right
of ~ relate the electron mass m and Compton radius rc to the
vacuum parameters r∗, m∗, t∗, and e2

∗.
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Furthermore, the energy and momentum operators ex-
pressed as

Ê = i~
∂

∂t
= i(m∗c2)t∗

∂

∂t
= i(m∗c2)r∗

∂

c∂t
(10)

and
c p̂ = −ic~∇ = −i(m∗c2)r∗∇ = −i(mc2)rc∇ (11)

will be used freely in what follows.
Section 2 examines the covariant Dirac equation and the

covariant Dirac equation with the electromagnetic interaction
included. Results show that the two equations can be totally
normalized by the vacuum parameters r∗ and m∗c2 from (8).

Section 3 looks at the relativistic Dirac propagator that
provides the foundation for the scattering in the Huygens-
principle and the propagator formalisms. The propagator
equation is normalized by the vacuum parameters r∗ and m∗c
from (9).

Section 4 traces the scatterings of the Huygens principle
and the propagator theory to the pervaded vacuum space, and
indicates how electron-positron pair creation is related to PV
charge conjugation.

2 Dirac equation

The manifestly covariant form of the Dirac equation [7, p.90]
is (

i~γµ
∂

∂xµ

)
ψ − mcψ = 0 (12)

which, using (9), can be expressed as(
iγµ

r∗∂
∂xµ

)
ψ −

mc
m∗c

ψ = 0 (13)

with
∂

∂xµ
≡

(
∂

c∂t
,∇

)
(14)

where ψ is the 4x1 Dirac spinor, [µ = 0, 1, 2, 3], and ∇ is the
normal 3-dimensional gradient operator. See Appendix A for
the definition of the γµ matrices. The summation convention
over the two µs in the first terms of (12) and (13) is under-
stood.

The Dirac equation with the electromagnetic interaction
included is [7, eqn.5.249][

i~γµ
∂

∂xµ
±

eγµAµ

c

]
ψ − mcψ = 0 (15)

which, using (9), can be reduced to[
iγµ

r∗∂
∂xµ
±

eγµAµ

m∗c2

]
ψ −

mc
m∗c

ψ = 0 (16)

where the minimal-substitution ratio [7, p.90]

±
eγµAµ

c
(17)

represents the relativistic electromagnetic interaction of the
charge (∓e) with the 4-potential Aµ.

3 Dirac propagator

The relativistic Dirac propagator S F(x′, x; A) is defined to sat-
isfy the Green-function equation [7, eqn.6.91][

γµ

(
i~

∂

∂x′µ
−

eAµ(x′)
c

)
− mc

]
αλ

S Fλβ
(x′, x; A)

= δαβδ
4(x′ − x) (18)

which reduces to[
γµ

(
i
r∗∂
∂x′µ
−
α1/2e∗Aµ(x′)

m∗c2

)
−

mc
m∗c

]
αλ

S Fλβ
(x′, x; A)

= δαβ
δ4(x′ − x)

m∗c
(19)

where e = α1/2e∗ is used in the reduction and δαβ is the Kro-
necker delta. The bracket on the left is dimensionless and the
δ4on the right has the units of “1/spacetime-volume”. Thus
S F in (19) has the units “1/mc·spacetime-volume”.

4 Conclusions and comments

The product m∗c2 in (8) is the upper limit to elementary-
particle mass-energy and r∗ is the lower limit to the parti-
cle Compton radius. With this in mind, and the fact the nor-
malizers in equations (13), (16), and (19) are m∗c and r∗, it
is assumed in the PV theory that the Planck-particle cores
(±e∗,m∗) associated with the two branches in (1) that pervade
the PV state are the scatterers that provide the scattering for
the Huygens-principle and the propagator formalisms. For
example, in (13) r∗ normalizes the four spacetime gradients
∂/∂xµ and m∗c normalizes the electron product mc.

Finally, the charge ambiguity in (2) due to (1) allows for
the creation of an electron-positron pair [7, fig.6.6],[

i(−e∗)(−e∗)
(
∂

c∂t
+ αα · ∇

)
− mc2β

]
ψ = 0

⊕[
i(+e∗)(+e∗)

(
∂

c∂t
+ αα · ∇

)
− mc2β

]
ψ = 0 , (20)

where the first and second equations are related respectively
to the electron and positron branches in (1).

Appendix A: The γ and β matrices

The 4x4 γ, β, and αi matrices used in the Dirac and propagator
theories are defined here: where [7, p.75]

γ0 ≡ β =

(
I 0
0 −I

)
(A1)

and

γi ≡ βαi =

(
0 σi

−σi 0

)
(A2)
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and where I is the 2 × 2 unit matrix and

αi =

(
0 σi

σi 0

)
(A3)

where the σi are the 2 × 2 Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(A4)

and αα = (α1, α2, α3).
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In this paper, we consider the explanation of the Quantum Electrodynamics (QED)
phenomena of self-energy, vacuum polarization and mass renormalization provided by
the Elastodynamics of the Spacetime Continuum (STCED). We note that QED only
deals with the wave aspect of wave-particle objects, and hence QED only deals with the
distortion transverse strain energy W⊥, while the dilatation massive longitudinal strain
energy term W‖ is not considered. Hence there is no possibility of properly deriving
the mass, as QED uses an incomplete description of particle energies at the quantum
level. Comparison of QED mass renormalization with STCED strain energy shows that
the interaction of the particle with the medium or the field, δm, is the transverse strain
energy present in the spacetime continuum (or vacuum), essentially a field energy. We
provide the strain energy equivalence for QED mass renormalization and self-energies
for bosons, quarks and leptons.

1 Introduction

In this paper, we consider the explanation of the Quantum
Electrodynamics (QED) phenomena of self-energy, vacuum
polarization and mass renormalization provided by the Elas-
todynamics of the Spacetime Continuum (STCED) [1–11].
QED is the well-known relativistic quantum field theory of
electromagnetic dynamics (electrodynamics) in which char-
ged particle interactions are described by the exchange of
(virtual) photons. QED is a perturbative theory of the elec-
tromagnetic quantum vacuum [12], and the virtual particles
are introduced as an interpretation of the propagators which
appear in the perturbation expansion of vacuum expectation
values represented by Feynman diagrams.

In STCED, energy propagates in the spacetime continuum
(STC) as wave-like deformations which can be decomposed
into dilatations and distortions. Dilatations involve an invari-
ant change in volume of the spacetime continuum which is
the source of the associated rest-mass energy density of the
deformation. On the other hand, distortions correspond to a
change of shape (shearing) of the spacetime continuum with-
out a change in volume and are thus massless. Thus the de-
formations propagate in the continuum by longitudinal (di-
latation) and transverse (distortion) wave displacements.

This provides a natural explanation for wave-particle du-
ality, with the massless transverse mode corresponding to the
wave aspects of the deformations and the massive longitu-
dinal mode corresponding to the particle aspects of the de-
formations. The rest-mass energy density of the longitudinal
mode is given by [1, see Eq.(32)]

ρc2 = 4κ̄0ε (1)

where ρ is the rest-mass density, c is the speed of light, κ̄0 is
the bulk modulus of the STC (the resistance of the spacetime

continuum to dilatations), and ε is the volume dilatation

ε = εαα (2)

which is the trace of the STC strain tensor obtained by con-
traction. The volume dilatation ε is defined as the change in
volume per original volume ∆V/V [13, see pp. 149–152] and
is an invariant of the strain tensor, as is the rest-mass energy
density. Hence

mc2 = 4κ̄0 ∆V (3)

where m is the mass of the deformation and ∆V is the di-
latation change in the spacetime continuum’s volume corre-
sponding to mass m. This demonstrates that mass is not inde-
pendent of the spacetime continuum, but rather mass is part
of the spacetime continuum fabric itself.

In STCED, λ̄0 and µ̄0 are the Lamé elastic constants of the
spacetime continuum: µ̄0 is the shear modulus (the resistance
of the spacetime continuum to distortions) and λ̄0 is expressed
in terms of κ̄0, the bulk modulus:

λ̄0 = κ̄0 − µ̄0/2 (4)

in a four-dimensional continuum.

2 Energy in the spacetime continuum

In STCED, energy is stored in the spacetime continuum as
strain energy [5]. As seen in [1, see Section 8.1], the strain
energy density of the spacetime continuum is separated into
two terms: the first one expresses the dilatation energy den-
sity (the mass longitudinal term) while the second one ex-
presses the distortion energy density (the massless transverse
term):

E = E‖ + E⊥ (5)

where
E‖ =

1
2
κ̄0ε

2 ≡
1

32κ̄0
ρ2c4 , (6)
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ρ is the rest-mass density of the deformation, and

E⊥ = µ̄0eαβeαβ =
1

4µ̄0
tαβtαβ , (7)

with the strain distortion

eαβ = εαβ − esg
αβ (8)

and the strain dilatation es = 1
4ε

α
α. Similarly for the stress

distortion tαβ and the stress dilatation ts. Then the dilatation
(massive) strain energy density of the deformation is given by
the longitudinal strain energy density (6) and the distortion
(massless) strain energy density of the deformation is given
by the transverse strain energy density (7).

The strain energy W of the deformation is obtained by
integrating (5) over the volume V of the deformation to give

W = W‖ + W⊥ (9)

where W‖ is the (massive) longitudinal strain energy of the
deformation given by

W‖ =

∫
V
E‖ dV (10)

and W⊥ is the (massless) transverse distortion strain energy
of the deformation given by

W⊥ =

∫
V
E⊥ dV (11)

where the volume element dV in cylindrical polar coordinates
is given by rdr dθ dz for a stationary deformation.

3 Quantum particles from STC defects

In [8, 10, 11], we show that quantum particles can be rep-
resented as defects in the spacetime continuum, specifically
dislocations and disclinations. Dislocations are translational
deformations, while disclinations are rotational deformations.
In particular, we consider the simplest quantum particle de-
fect given by the edge dislocation [10].

The strain energy density of a stationary edge dislocation
is given by

WE = WE
‖ + WE

⊥ . (12)

The longitudinal strain energy of the edge dislocation WE
‖

is
given by [10, eq. (8)]

WE
‖ =

κ̄0

2π
ᾱ2

0 b2 ` log
Λ

bc
(13)

where
ᾱ0 =

µ̄0

2µ̄0 + λ̄0
, (14)

` is the length of the dislocation, bc is the size of the core
of the dislocation, of order b0, the smallest spacetime Burg-
ers dislocation vector [9] and Λ is a cut-off parameter corre-
sponding to the radial extent of the dislocation, limited by the

average distance to its nearest neighbours. In (13), the edge
dislocation is along the z-axis with Burgers vector b along the
x-axis.

The transverse strain energy WE
⊥ is given by [10, eq. (10)]

WE
⊥ =

µ̄0

4π

(
ᾱ2

0 + 2β̄2
0

)
b2 ` log

Λ

bc
(15)

where

β̄0 =
µ̄0 + λ̄0

2µ̄0 + λ̄0
(16)

and the other parameters are as defined previously.

4 QED mass renormalization

The basic Feynman diagrams can be seen to represent screw
dislocations as photons, edge dislocations as bosons, twist
and wedge disclinations as fermions [10], and their interac-
tions. The interaction of defects results from the overlap of
the defects’ strain energy densities. In QED, the exchange of
virtual particles in interactions can be seen to be a perturba-
tion expansion representation of the forces resulting from the
overlap of the strain energy densities of the dislocations and
disclinations.

Similarly, the phenomena of self-energy and vacuum po-
larization can be understood to result from the strain energy
densities of individual defects. QED again represents this
situation as a perturbation expansion of an interaction of a
photon with the vacuum (photon self-energy also known as
vacuum polarization) or of a particle such as an electron with
its field (self-energy). In STCED, the perturbative expansions
are replaced by finite analytical expressions for the strain en-
ergy density of individual screw dislocations as photons, edge
dislocations as bosons, twist and wedge disclinations as ferm-
ions [10].

Quantum Mechanics and QED only deal with the trans-
verse component of spacetime continuum deformations as
they are only concerned with the wave aspect of wave-parti-
cle duality (see [14] for a discussion of this topic). The energy
terms used in QED thus correspond to the transverse strain
energy WE

⊥ . Hence there is no equivalent dilatation massive
longitudinal strain energy term (WE

‖
) used in QED, and no

possibility of properly deriving the mass from the theory, as
QED uses an incomplete description of particle energies at
the quantum level.

The mass term used in the QED equations is external to
and not derived from quantum equations. It is thus found
to not correspond to the actual mass of the particle and is
characterized instead as the bare mass m0 [15]. To this mass
is added the interaction of the particle with the medium or the
field, δm, the result of which mqm is “renormalized” (the value
of m0 and the field corrections are infinite) and replaced with
the actual experimental mass m according to

mqm = m0 + δm→ m . (17)
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Comparing this equation with (12), we find that

m = WE

m0 = WE
‖ =

κ̄0

2π
ᾱ2

0 b2 ` log
Λ

bc

δm = WE
⊥ =

µ̄0

4π

(
ᾱ2

0 + 2β̄2
0

)
b2 ` log

Λ

bc
.

(18)

The interaction of the particle with the medium or the field,
δm, is the transverse strain energy present in the spacetime
continuum (or vacuum), essentially a field energy.

We note that the bare mass (i.e. the massive longitudi-
nal strain energy) and the field correction (i.e. the transverse
strain energy) are both finite in this approach and there is no
need for the subtraction of infinities as both terms are well-
behaved. If integrated over all of spacetime, they would be
divergent, with the divergence being logarithmic in nature.
However, contrary to QED, the strain energies are bounded
by the density of defects present in the spacetime continuum,
which results in an upperbound to the integral of half the av-
erage distance between defects. As mentioned by Hirth [16],
this has little impact on the accuracy of the results due to the
logarithmic dependence. Hence including the longitudinal di-
latation mass density term as derived in STCED along with
the transverse distortion energy density term in the strain en-
ergy density provides the expression for the mass m and elim-
inates the need for mass renormalization as the theory is de-
veloped with the correct mass term.

Eq. (18) applies to massive bosons as shown in [10]. For
electrons, we have

W`3
= W`3

‖
+ W`3

⊥ , (19)

where the defect in this case is the `3 twist disclination [10]
and where (18) is replaced with the following:

m = W`3

m0 = W`3

‖
=
κ̄0

6π
ᾱ2

0

(
Ω2

x + Ω2
y

)
`3 log

Λ

bc

δm = W`3

⊥ =
µ̄0

2π
`3

3

[ (
Ω2

x + Ω2
y

) (
ᾱ2

0 + 1
2 β̄

2
0

)
+

+ 2 ΩxΩy

(
ᾱ2

0 − 2β̄2
0

) ]
log

Λ

bc

(20)

where Ωµ is the spacetime Frank vector. The same consider-
ations as seen previously for bosons apply to (20) due to the
logarithmic dependence of the expressions.

For quarks, we have

WW = WW
‖

+ WW
⊥ (21)

where the defect in this case is the wedge disclination [10].

In most cases Λ � bc, and we have

m = WW

m0 = WW
‖
'
κ̄0

2π
Ω2

z `Λ2
[
ᾱ2

0 log2 Λ+

+ ᾱ0γ̄0 log Λ + 1
4 (ᾱ2

0 + γ̄2
0)
]

δm = WW
⊥ '

µ̄0

4π
Ω2

z `Λ2
[
ᾱ2

0 log2 Λ−

−
(
ᾱ2

0 − 3ᾱ0β̄0

)
log Λ+

+ 1
2

(
ᾱ2

0 − 3ᾱ0β̄0 + 3
2 β̄

2
0

) ]

(22)

where

γ̄0 =
λ̄0

2µ̄0 + λ̄0
. (23)

In this case, both the longitudinal strain energy WW
‖

and the
transverse strain energy WW

⊥ are proportional to Λ2 in the
limit Λ � bc. The parameter Λ is equivalent to the extent of
the wedge disclination, and we find that as it becomes more
extended, its strain energy is increasing parabolically. This
behaviour is similar to that of quarks (confinement). In ad-
dition, as shown in [10, see eqs. (16) and (20)], as Λ → bc,
the strain energy decreases and tends to 0, again in agreement
with the behaviour of quarks (asymptotic freedom).

5 Dislocation self-energy and QED self-energies

The dislocation self-energy is related to the dislocation self-
force. The dislocation self-force arises from the force on an
element in a dislocation caused by other segments of the same
dislocation line. This process provides an explanation for
the QED self-energies without the need to resort to the emis-
sion/absorption of virtual particles. It can be understood, and
is particular to, dislocation dynamics as dislocations are de-
fects that extend in the spacetime continuum [16, see p. 131].
Self-energy of a straight-dislocation segment of length L is
given by [16, see p. 161]:

Wsel f =
µ̄0

4π

(
(b · ξ)2 +

µ̄0 + λ̄0

2µ̄0 + λ̄0
|(b × ξ)|2

)
×

× L
(
ln

L
b
− 1

) (24)

where there is no interaction between two elements of the
segment when they are within ±b, or equivalently

Wsel f =
µ̄0

4π

(
(b · ξ)2 +

µ̄0 + λ̄0

2µ̄0 + λ̄0
|(b × ξ)|2

)
L ln

L
eb

(25)

where e = 2.71828... . These equations provide analytic ex-
pressions for the non-perturbative calculation of quantum self
energies and interaction energies, and eliminate the need for
the virtual particle perturbative approach.
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In particular, the pure screw (photon) self-energy

WS
sel f =

µ̄0

4π
(b · ξ)2 L

(
ln

L
b
− 1

)
(26)

and the pure edge (boson) self-energy

WE
sel f =

µ̄0

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0
|(b × ξ)|2 L

(
ln

L
b
− 1

)
(27)

are obtained from (25), while (25) is also the appropriate
equation to use for the dual wave-particle “system”.

We can relate (27) to (12) and (18) by evaluating WE from
(12) using (13) and (15):

WE =
b2

4π

[
2κ̄0ᾱ

2
0 + µ̄0

(
ᾱ2

0 + 2β̄2
0

)]
` log

Λ

bc
. (28)

Substituting for κ̄0 from (4), for ᾱ0 from (14) and for β̄0 from
(16), the factor in square brackets in the above equation be-
comes

[] =
µ̄0

(2µ̄0 + λ̄0)2

(
4µ̄2

0 + 6µ̄0λ̄0 + 2λ̄2
0

)
(29)

which can be factored as

[] =
2µ̄0

(2µ̄0 + λ̄0)2
(2µ̄0 + λ̄0)(µ̄0 + λ̄0) . (30)

Substituting back into (28), we obtain

WE
sel f =

1
2

WE =
µ̄0

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0
b2 ` log

Λ

bc
. (31)

As noted in [17, see p. 178], the self-energy and the inter-
action energies are described by the same equations in the
non-singular theory, except that the self-energy is half of the
interaction energy. We thus see that the above result (28) is
essentially the same as (27) from Hirth [16, see p. 161] except
that the log factors are slightly different, but similar in intent
(log Λ/bc compared to log `/eb).

Dislocation self energies are thus found to be similar in
structure to Quantum Electrodynamics self energies. They
are also divergent if integrated over all of spacetime, with the
divergence being logarithmic in nature. However, contrary
to QED, dislocation self energies are bounded by the density
of dislocations present in the spacetime continuum, which re-
sults in an upperbound to the integral of half the average dis-
tance between dislocations.

For a dislocation loop, as each element dl of the dislo-
cation loop is acted upon by the forces caused by the stress
of the other elements of the dislocation loop, the work done
against these corresponds to the self-energy of the dislocation
loop. The self-energy of a dislocation loop can be calculated
from Eq. (4-44) of [16, see p. 110] to give

Wsel f =
µ̄0

8π

∮
C1=C

∮
C2=C

(b · dl1) (b · dl2)
R

+

+
µ̄0

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0

∮
C1=C

∮
C2=C

(b × dl1) · T · (b × dl2)
R

(32)

where T is as defined in Eq. (4-44) of [16, see p. 110].

The photon self-energy also known as vacuum polariza-
tion is obtained from the strain energy density of screw dis-
locations. The longitudinal strain energy of the screw dis-
location WS

‖
= 0 as given by [10, eq. (6)] i.e. the photon is

massless. The photon self-energy is given by half the trans-
verse strain energy of the screw dislocation WS

⊥ given by [10,
eq. (7)]

WS
sel f =

1
2

WS
⊥ =

µ̄0

8π
b2 ` log

Λ

bc
(33)

which again includes the log Λ/bc factor. Comparing this ex-
pression with (26) and with (32), we find that (26) is likely
off by a factor of 2, being proportional to 1/8π as per Hirth’s
(32) and (33), not 1/4π as given in Hirth’s (24) and Hirth’s
(26).

6 Disclination self-energy and QED self-energies

From dislocation self-energies, we can calculate the photon
self-energy (also known as the vacuum polarization) and, in
the general case, the boson self-energy.

The fermion self-energies are calculated from the cor-
responding disclination self-energies, with the lepton self-
energy calculated from the interaction energy W`3

of the `3

twist disclination, the neutrino self-energy calculated from
the interaction energy W` of the ` twist disclination and the
quark self-energy calculated from the interaction energy WW

of the wedge disclination, using the result that self-energy is
half of the interaction energy as seen previously in Section 5.

6.1 The `3 twist disclination self-energy and lepton self-
energies

The lepton (electron) self-energy is calculated from the inter-
action energy W`3

of the `3 twist disclination by evaluating
W`3

from (19) using W`3

‖
and W`3

⊥ from (20):

W`3
=
κ̄0

6π
ᾱ2

0

(
Ω2

x + Ω2
y

)
`3 log

Λ

bc
+

+
µ̄0

2π
`3

3

[ (
Ω2

x + Ω2
y

) (
ᾱ2

0 + 1
2 β̄

2
0

)
+

+ 2 ΩxΩy

(
ᾱ2

0 − 2β̄2
0

) ]
log

Λ

bc
.

(34)

Substituting for κ̄0 from (4), for ᾱ0 from (14) and for β̄0 from
(16), (34) becomes

W`3
=
`3

6π
µ̄0

(2µ̄0 + λ̄0)2
×

×
[ (

Ω2
x + Ω2

y

) (
2µ̄2

0 + 2µ̄0λ̄0 + 1
2 λ̄

2
0

)
−

− 2 ΩxΩy

(
µ̄2

0 + 4µ̄0λ̄0 + 2λ̄2
0

) ]
log

Λ

bc

(35)
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which can be factored as

W`3
=

`3

12π
µ̄0

(2µ̄0 + λ̄0)2

{ (
Ω2

x + Ω2
y

) (
2µ̄0 + λ̄0

)2
−

− 4ΩxΩy

[(
µ̄0 + λ̄0

) (
µ̄0 + 2λ̄0

)
+ µ̄0λ̄0

] }
log

Λ

bc
.

(36)

The lepton self-energy is then given by

W`3

sel f =
1
2

W`3
=

µ̄0

24π

{ (
Ω2

x + Ω2
y

)
−

− 4 ΩxΩy

(
µ̄0 + λ̄0

) (
µ̄0 + 2λ̄0

)
+ µ̄0λ̄0

(2µ̄0 + λ̄0)2

}
`3 log

Λ

bc
,

(37)

where we have used the result that self-energy is half of the
interaction energy as seen previously in Section 5.

6.2 The ` twist disclination self-energy and the neutrino
self-energy

The neutrino self-energy is calculated from the strain energy
W` of the ` twist disclination. The longitudinal strain energy
of the ` twist disclination W`

‖
= 0 as given by [10, eq. 33)]

i.e. the neutrino is massless. In most cases Λ � bc, and the
strain energy W` of the ` twist disclination is given by the
transverse strain energy W` = W`

⊥ given by [10, eq. (35)]:

W` =
µ̄0

2π
`Λ2

[ (
Ω2

x + Ω2
y

) (
ᾱ2

0 log2 Λ + ᾱ0γ̄0 log Λ−

− 1
2 ᾱ0γ̄0

)
− 2 ΩxΩy

(
ᾱ0 β̄0 log Λ + 1

2 β̄0γ̄0

)]
.

(38)

Substituting for ᾱ0 from (14), for β̄0 from (16) and for γ̄0 from
(23), (38) becomes

W` =
µ̄0

2π
`Λ2

(2µ̄0 + λ̄0)2

{ (
Ω2

x + Ω2
y

) [
µ̄2

0 log2 Λ+

+ µ̄0λ̄0

(
log Λ − 1

2

) ]
−

− 2 ΩxΩy

[
µ̄0

(
µ̄0 + λ̄0

)
log Λ + 1

2 λ̄0

(
µ̄0 + λ̄0

)] }
.

(39)

The neutrino self-energy is then given by

W`
sel f =

1
2

W` =
µ̄0

4π
`Λ2

(2µ̄0 + λ̄0)2
×

×

{ (
Ω2

x + Ω2
y

) [
µ̄2

0 log2 Λ + µ̄0λ̄0

(
log Λ − 1

2

) ]
−

− 2 ΩxΩy

(
µ̄0 + λ̄0

) (
µ̄0 log Λ + 1

2 λ̄0

) }
(40)

where we have used the result that self-energy is half of the
interaction energy as seen previously in Section 5.

6.3 The wedge disclination self-energy and quark self-
energies

The quark self-energy is calculated from the interaction en-
ergy WW of the wedge disclination by evaluating WW from
(21) using WW

‖
and WW

⊥ from (22). In most cases Λ � bc,
and we have

WW '
κ̄0

2π
Ω2

z `Λ2
[
ᾱ2

0 log2 Λ+

+ ᾱ0γ̄0 log Λ + 1
4 (ᾱ2

0 + γ̄2
0)
]
+

+
µ̄0

4π
Ω2

z `Λ2
[
ᾱ2

0 log2 Λ−

−
(
ᾱ2

0 − 3ᾱ0β̄0

)
log Λ+

+ 1
2

(
ᾱ2

0 − 3ᾱ0β̄0 + 3
2 β̄

2
0

) ]
.

(41)

Substituting for κ̄0 from (4), for ᾱ0 from (14) for β̄0 from (16)
and for γ̄0 from (23), (41) becomes

WW '
Ω2

z

2π
`Λ2

(2µ̄0 + λ̄0)2

[
µ̄2

0

(
µ̄0 + λ̄0

)
log2 Λ+

+ µ̄0

(
µ̄2

0 + 2µ̄0λ̄0 + λ̄2
0

)
log Λ+

+ 1
4 λ̄0

(
µ̄2

0 + 2µ̄0λ̄0 + λ̄2
0

) ]
(42)

which can be factored as

WW '
Ω2

z

2π
`Λ2

(2µ̄0 + λ̄0)2

[
µ̄2

0

(
µ̄0 + λ̄0

)
log2 Λ+

+
(
µ̄0 + λ̄0

)2 (
µ̄0 log Λ + 1

4 λ̄0

) ]
.

(43)

The quark self-energy is then given by

WW
sel f =

1
2

WW '
Ω2

z

4π
(µ̄0 + λ̄0)2

(2µ̄0 + λ̄0)2
`Λ2 ×

×

 µ̄2
0

µ̄0 + λ̄0
log2 Λ + µ̄0 log Λ + 1

4 λ̄0

 (44)

where we have used the result that self-energy is half of the
interaction energy as seen previously in Section 5.

7 Discussion and conclusion

In this paper, we have considered how the Elastodynamics
of the Spacetime Continuum (STCED) explains the Quantum
Electrodynamics (QED) phenomena of self-energy, vacuum
polarization and mass renormalization. We have noted that
QED only deals with the wave aspect of wave-particle ob-
jects, and hence QED only deals with the distortion trans-
verse strain energy WE

⊥ , while the dilatation massive longitu-
dinal strain energy term WE

‖
is not considered. Hence there
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is no possibility of properly deriving the mass, as QED uses
an incomplete description of particle energies at the quantum
level.

Comparison of mass renormalization with STCED strain
energy shows that the interaction of the particle with the me-
dium or the field, δm, is the transverse strain energy present
in the spacetime continuum (or vacuum), essentially a field
energy. We provide the strain energy equivalence for QED
mass renormalization for bosons, leptons and quarks.

Both the bare mass (i.e. the massive longitudinal strain
energy) and the field correction (i.e. the transverse strain en-
ergy) are finite in this approach and there is no need for the
subtraction of infinities as both terms are well-behaved. Con-
trary to QED, the strain energies are bounded by the density
of defects present in the spacetime continuum, which results
in an upperbound to the integral of half the average distance
between defects. Hence including the longitudinal dilatation
mass density term as derived in STCED along with the trans-
verse distortion energy density term in the strain energy den-
sity provides the expression for the mass m and eliminates the
need for mass renormalization as the theory is developed with
the correct mass term. We have also derived the self-energy
expressions for bosons including photons, leptons including
neutrinos, and quarks.

It is important to note that

1. The expressions derived are for stationary (time inde-
pendent) defects.

2. The case of time-dependent screw and edge disloca-
tions moving with velocity v is covered in §16.1.2 and
§16.2.2 of [11] respectively. The calculations involve
integrals of the form∫

y

1
αy

arctan
(

x − vt
αy

)
dy =

−
i
2

[
Li2

(
−i

x − vt
αy

)
− Li2

(
i

x − vt
αy

)] (45)

where

α =

√
1 −

v2

c2 (46)

and where Lin(x) is the polylogarithm function which
arises in Feynman diagram integrals. For n = 2 and
n = 3, we have the dilogarithm and the trilogarithm
special cases respectively. This is a further indication
that the interaction of strain energies are the physical
source of quantum interaction phenomena described by
Feynman diagrams as discussed in section 4.

The results obtained are found to provide a physical explana-
tion of QED phenomena in terms of the interaction resulting
from the overlap of defect strain energies in the spacetime
continuum in STCED.
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The Nature of the Electron and Proton as Viewed in the Planck Vacuum Theory
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There is a long-standing question whether or not the proton obeys the Dirac equation.
The following calculations answer that question in the affirmative. The paper argues
that, even though the proton has an internal structure, unlike the electron, it is still a
Dirac particle in the sense that it obeys the same Dirac equation

±

[
ie2
∗γ

µ ∂

∂xµ
− mc2

]
ψ = 0

as the electron, where the upper and lower signs refer to the electron and proton respec-
tively with their masses me and mp. Calculations readily show why the proton mass is
orders-of-magnitude greater than the electron mass, and suggest that the constant 1836
can be thought of as the ‘proton structure constant’.

1 Introduction

The electron is assumed to be a structureless particle [1, p.82]
that obeys the Dirac equation; so it is somewhat surprising
that the structured proton also obeys that same equation. The
reason for this apparent conundrum is tied to the nature of the
Planck vacuum (PV) state itself [2].

The manifestly covariant form of the Dirac equation [1,
p.90] is [

i~γµ
∂

∂xµ
− mc

]
ψ = 0 (1)

which, using c~ = e2
∗, can be expressed as[
ie2
∗γ

µ ∂

∂xµ
− mc2

]
ψ = 0 (2)

with
∂

∂xµ
≡

(
∂

c∂t
, ∇

)
(3)

where ψ is the 4x1 Dirac spinor, [µ = 0, 1, 2, 3], and ∇ is the
normal 3-dimensional gradient operator. See Appendix A for
the definition of the γµ matrices. The summation convention
over the two µs in the first terms of (1) and (2) is understood.

The two particle/PV coupling forces [3]

Fe(r) =
e2
∗

r2 −
mec2

r
and Fp(r) =

e2
∗

r2 −
mpc2

r
(4)

the electron and proton cores (−e∗,me) and (+e∗,mp) exert on
the PV state, along with their coupling constants

Fe(re) = 0 and Fp(rp) = 0 (5)

and the resulting Compton radii

re =
e2
∗

mec2 and rp =
e2
∗

mpc2 (6)

lead to the important string of Compton relations

remec2 = rpmpc2 = e2
∗ = r∗m∗c2 (= c~) (7)

where ~ is the reduced Planck constant. The electron and
proton masses are me and mp respectively. The vanishing of
Fe(re) and Fp(rp) in (5) frees the electron and proton from
being tethered by their coupling forces to the vacuum state,
insuring that both particles propagate in free space as free
particles. The Planck particle mass and Compton radius are
m∗ and r∗.

2 Electron and positron

The Dirac electron equation from (2) with the positive sign
from the abstract leads to [3][

i(−e∗)(−e∗)γµ
∂

∂xµ
− mec2

]
ψ = 0 (8)

where the first charge (−e∗) comes from the electron core, and
the second charge (−e∗) from any one of the Planck-particle
cores in the negative branch of the PV state (Appendix B).

Charge conjugation of (8) then leads to the positron equa-
tion [

i(+e∗)(+e∗)γµ
∂

∂xµ
− mec2

]
ψ = 0 . (9)

where the first charge (+e∗) comes from the positron core
(+e∗,me), and the second charge (+e∗) from any one of the
Planck-particle cores in the positive branch of the PV state.

3 Proton and antiproton

The proton equation from the preceding abstract

−

[
ie2
∗γ

µ ∂

∂xµ
− mpc2

]
ψ = 0 (10)

can be expressed as[
i(+e∗)(−e∗)γµ

∂

∂xµ
+ mpc2

]
ψ = 0 (11)
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where the first charge (+e∗) comes from the proton core, and
the second charge (−e∗) from any one of the Planck-particle
cores in the negative branch of the PV state.

Charge conjugation of (11) then leads to the antiproton
equation [

i(−e∗)(+e∗)γµ
∂

∂xµ
+ mpc2

]
ψ = 0 (12)

where the first charge (−e∗) comes from the antiproton core
(−e∗,mp), and the second charge (+e∗) from any one of the
Planck-particle cores in the positive branch of the PV state.

4 Proton structure

The reason for the proton structure is easily seen from the
nature of the charge products in equations (8) and (9), as op-
posed to those in equations (11) and (12). In (8) and (9) both
products yield a positive e2

∗, signifying that the electron and
positron charges repel their corresponding degenerate collec-
tion of PV charges (Appendix B); isolating the characteristics
of the electron/positron from the PV state.

In (11) and (12), however, things are reversed. Both prod-
ucts yield a negative e2

∗, signifying that the proton and an-
tiproton charges are attracting their corresponding degenerate
collection of PV charges; converting a small portion of the
PV energy into the proton and antiproton states, elevating the
proton/antiproton masses orders-of-magnitude over those of
the electron/positron masses.

5 Conclusions and comments

From (7) the mass energies of the electron and proton are [2]

mec2 =
e2
∗

re
and mpc2 =

e2
∗

rp
(13)

which lead to
mp =

re

rp
· me (14)

where the ratio re/rp ≈ 1836. Thus, since me is assumed to
be structureless, (14) suggests that the constant 1836 can be
thought of as the ‘proton structure constant’.

Finally, in the PV theory the so-called structure appears in
the proton rest frame as a small spherical ‘collar’ surrounding
the proton core [5].

Appendix A: The γ and β matrices

The 4x4 γ, β, and αi matrices used in the Dirac theory are
defined here: where [1, p.91]

γ0 ≡ β =

( I 0
0 −I

)
(A1)

and (i = 1, 2, 3)

γi ≡ βαi =

( 0 σi

−σi 0

)
(A2)

and where I is the 2x2 unit matrix and

αi =

( 0 σi

σi 0

)
(A3)

where the σi are the 2x2 Pauli spin matrices

σ1 =

( 0 1
1 0

)
, σ2 =

( 0 −i
i 0

)
, σ3 =

( 1 0
0 −1

)
(A4)

and αα = (α1, α2, α3).

Appendix B: Charge conjugation

Charge conjugation [4] in the PV theory implies that the in-
visible vacuum state must be a bifurcated state—bifurcation
meaning that at each point in free space there exists a vacuum
subspace consisting of the charge doublet (±e∗)2 that leads to
two vacuum branches

e2
∗ = (−e∗)(−e∗) and e2

∗ = (+e∗)(+e∗) (B1)

where, by definition, the second charge in each product de-
fines the branch. The first charge in each branch belongs
to the electron or positron. For example, if the first charge
(−e∗) in the negative branch on the left belongs to the elec-
tron, then the first charge (+e∗) in the positive branch at the
right belongs to the positron. In the PV theory charge con-
jugation simply switches back and forth between the two PV
branches, which amounts to changing the signs in the four
products (±e∗)(±e∗). For example, if C is the charge conjuga-
tion operator, then

C(±e∗)(±e∗) = (∓e∗)(∓e∗) . (B2)

In the proton case (the negative sign in the abstract)

−e2
∗ = (+e∗)(−e∗) and − e2

∗ = (−e∗)(+e∗) (B3)

where the first charge on the left belongs to the proton and the
first charge on the right belongs to the antiproton. Again, the
second charge in each product defines the branch.
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The very presence of zero-point field allows us to consider the structure of the electron
with center of charge in circular motion around center of mass. Considering extended
electron structure in stochastic electrodynamics, mass and charge corrections are de-
rived without any logarithmic divergence terms. Using these corrections, the anoma-
lous magnetic moment of the electron has been expressed in a series as a function of
fine-structure constant. The evaluated magnetic moment is found to be accurate up to
ninth decimal place with a difference of 90.22 × 10−12 from the experimental value. In
the case of an orbital electron, due to its motion, the surrounding zero-point field is
modified and the zero-point energy associated with these modifications leads to a shift
in the energy level. By imposing a cut-off frequency equal to the de Broglie frequency,
the zero-point energy associated with the orbital electron is attributed to the Lamb shift.
The estimated Lamb shift in hydrogen atom is found to be in agreement with the exper-
imental value. These theoretical derivations give a new classical approach to both the
anomalous magnetic moment of the electron and the Lamb shift.

1 Introduction
An electron is visualized as a point particle in both quantum
mechanics and quantum field theories in general. Efforts to
find the size of the electron have led to a very small size
∼ 10−20 m in high energy scattering experiments [1] and in
the penning trap experiment, the finite size effect was consid-
ered to be of the order of experimental uncertainty in the mea-
surement of the anomalous magnetic moment of the electron.
Thus any sub-structure of the electron is ruled out in quantum
field theories and the particles are treated as point particles
without any size. The point particle limit of the electron, in
most of the theoretical approaches is fine and excellent except
for the singularity syndrome and any cut-off procedure leads
to a finite structure of the electron.

The concept of an extended structure of the electron orig-
inates from the zitterbewegung motion (rapid oscillations of
Dirac electron) and such random oscillations are invariably
attributed to the presence of zero-point field throughout the
universe. The extended electron theories were developed over
several decades [2–10] and the perception of point particle
having charge and mass or rigid sphere with charge distri-
bution was denied and the structure of the electron had been
considered with the charge in an average circular motion a-
bout the center of mass. While dealing with extended elec-
tron models, a natural question arises that why such extended
structure is not detected in scattering experiments. The reason
being the charge rotation is at the speed of light and therefore,
it cannot be detected at all. However, the footprints of such
extended electron can be seen from the recent detection of the
de Broglie wave of the electron in the scattering of a beam of
electrons in thin silicon crystal [11] and from the high resolu-
tion scanning tunneling microscopy images [12].

Recently, the role of spin and the internal electron struc-
ture in complex vector formalism was studied by the author
[13–15] and it had been shown that the mass of the particle
may be interpreted to the zero-point field energy associated
with the local complex rotation or oscillation confined in a
region of space of the order of the Compton wavelength. Fur-
ther, the logical classical foundations of quantum mechanics
were explored from the consideration of extended electron
structure [16, 17]. It is of particular interest whether the cal-
culations of the electron magnetic moment and Lamb shift are
possible with the extended electron theories.

In the charge shell model of the electron, Puthoff [18] has
shown that the zero-point energy of the particle is equal to
the Coulomb energy in the limit when the shell radius tends
to zero. The zero-point energy within the shell was found to
be proportional to the fine-structure constant. Therefore, it
may be expected that the zero-point energy associated with
an electron in the point particle limit may be attributed to the
charge correction rather than any mass correction which was
considered earlier in the stochastic electrodynamics theories.

In stochastic electrodynamics (classical electrodynamics
along with zero-point field), a charged point particle is con-
sidered as an oscillator and its equation of motion is given by
the Brafford-Marshall equation which is simply the Abraham-
Lorentz equation with zero-point field. In the stochastic elec-
trodynamics approach, the energy of the electron oscillator
was estimated by Boyer [19] and without imposing any cut-
off frequency the zero-point energy of the oscillator wasfound
to be ℏω0/2 per mode, where ω0 and ℏ are the oscillator fre-
quency and reduced Planck constant respectively. Though
many quantum phenomena were explained in the stochastic
electrodynamics approach, the theory was found to be incom-
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plete [20]. However, it has been found that the introduction
of spin into the problem leaves the theory to overcome such
failures. The detailed discussion of stochastic electrodynam-
ics with spin was given by Cavelleri et al [21] and in this
theory, the electron has an extended structure. In view of
the extended electron structure, one can impose a cut-off fre-
quency ω0 and in that case, in the absence of radiation damp-
ing and binding terms, the energy associated with the electron
has been derived in Section 2.

In the point particle limit, the energy associated with the
electron is found to be

∆E0 =
2α
3π
ℏω0 , (1)

where α = (1/4πϵ0)(e2/ℏc) is the fine-structure constant and
−e is the electron charge. This energy may be attributed to
the charge correction and the ratio ∆E0/ℏω0 corresponds to a
correction to fine-structure constant due to interaction of ran-
dom zero-point field fluctuations. In general, the effective or
observed fine-structure constant can be expressed by the rela-
tion αobs → αth + ∆α. Now, the ratio ∆α/α can be expressed
in the following form:

∆α

α
=
∆Ec

ℏω0
=

2α
3π
. (2)

In quantum electrodynamics such charge correction was cal-
culated considering the vacuum polarization and it may be
noted that the above estimate gives a similar result except
for the diverging logarithmic term. The incorporation of this
charge correction leads to a replacement of fine-structure con-
stant in the theoretical calculations by α (1 − 2α/3π).

The total energy of the electron immersed in the zero-
point field can be expressed by substituting

(
p − eAzp/c

)
for

momentum in the relation E2 = p2c2 + m2c4 [15]:

E2 = p2c2 − 2ecp.Azp + e2A2
zp + m2c4, (3)

where Azp is the electromagnetic vector potential of zero-
point field. The energy in the last two terms in the above
equation can be written in the form E0 = mc2 + e2A2

zp/2mc2.
Thus under the influence of zero-point field, there appears a
correction to mass and such correction to mass must be of the
order of fine-structure constant. The derivation of such mass
correction of extended electron in stochastic electrodynamics
is given in Section 2. We find that the mass correction ∆m de-
pends on the reduced particle velocity β = v/c and the ratio
∆m/m is expressed by the relation

∆m
m
=
α

2π

(
1 + β2

)
. (4)

From the knowledge of mass and charge corrections, the
anomalous magnetic moment ae of the electron is estimated
in Section 3.

Under the influence of central Coulomb potential, an or-
bital electron moves with a velocity proportional to the fine
structure constant. When the electron moves in the zero-point
field, it induces certain modifications in the surrounding zero-
point field. Since these zero-point field modifications may be
considered at least of the order of the de Broglie wavelength,
the energy associated with the shift in the electron energy lev-
els can be obtained by imposing a cut-off frequency equal to
the de Broglie frequency ωB and the derived zero-point en-
ergy is attributed to the Lamb shift. The derivation of Lamb
shift and its calculation are given in Section 4. The energy
shift in the electron circular orbit is found to be

∆EL =
4α5

3π
mrc2, (5)

where mr = mM/(m + M) is the reduced mass and M is the
nuclear mass. The calculation of the Lamb shift has been
performed using charge correction in the Coulomb field and
the mass correction for the electron. Finally, the conclusions
are presented in Section 5. The derived formulas elucidate a
complete classical approach to both the anomalous magnetic
moment of the electron and the Lamb shift.

2 Zero-point energy associated with an extended elec-
tron

When an electron moves in the zero-point field, we mean that
the center of mass moves with velocity v. The particle motion
then contains both internal rotational motion and the transla-
tional motion. Denoting the center of mass motion by a po-
sition vector x and the radius of internal rotation by a vector
ξ, a complex vector connected with both internal and transla-
tional motions of an extended electron can be expressed by a
complex vector X = x + iξ , where i is a pseudoscalar repre-
senting an oriented volume in geometric algebra. A complete
account of complex vector algebra was elaborately discussed
in the reference [14].

In stochastic electrodynamics, the expression for the elec-
tric field vector of electromagnetic zero-point field can be
written in the following form

Ezp(x, t) = Re
{ 2∑
λ=1

∫
d3k ϵ(k, λ)

H(ω)
2
×

×
[
aei(k.x−ωt) + a∗e−i(k.x−ωt)

] }
,

(6)

where ϵ(k, λ) is the polarization vector which is a function
of wave vector k, polarization index λ = 1, 2 and Re{} rep-
resents the real part. We define a = eiθ(k,λ) and a∗ = e−iθ(k,λ)

and the phase angle is introduced to generate random fluc-
tuations of the zero-point field. The normalization constant
in (6) is set equal to unity. The spectral function H(ω) rep-
resents the magnitude of zero-point energy and in stochastic
electrodynamics its value is found to be

(
ℏω/8π3ϵ0

)1/2
. In the
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complex vector formalism, we replace x by X in the electric
field Ezp(x, t) and expanding in terms of Taylor series yields

Ezp(X, t) = Ezp(x, t) + iξ
∂Ezp(x, t)
∂x

∣∣∣∣∣∣
x→0

− ξ
2

2
∂2Ezp(x, t)
∂x2

∣∣∣∣∣∣
x→0
+ O(ξ3) + . . .

(7)

Neglecting higher order terms and denoting

Ezp(ξ, t) = ξ
∂Ezp(x, t)
∂x

∣∣∣∣∣∣
x→0
, (8)

one can express the electric field vector in a complex form

Ezp(X, t) = Ezp(x, t) + iEzp(ξ, t) . (9)

The random zero-point fluctuations influence both the center
of mass and the center of charge and therefore the force acting
on the extended particle can be decomposed into force acting
on center of charge and force acting on center of mass. The
equation of motion of center of mass is then expressed in the
form

mẍ − Γamv̈ + mω2
0x = eEz p(x, t), (10)

where v = ẋ, Γa = 2e2/3mc3 and an over dot represents dif-
ferentiation with respect to time. The second and third terms
on the left are radiation damping and binding terms. It should
be noted that for the zero-point field acting on center of mass,
both particle charge and mass appear at the center of mass
point. On the other hand, for the field acting on the center
of charge, the effective mass seen by the zero-point field is
the potential equal to e2/2ξ ∼ mzc2, where mz is the effective
mass at the center of charge and the magnitude of ξ is of the
order of the Compton wavelength. In this case both radiation
damping and binding forces are absent and the equation of
motion of center of charge can be written in the form

mzξ̈ = eEzp(ξ, t) . (11)

The average zero-point energy of the electron in its rest frame
was previously estimated and it had been shown to be equiva-
lent to the zitterbewegung energy [15]. Further, it was shown
that the particle mass arises from the internal complex rota-
tions and a relation between particle spin and mass had been
derived previously in the following form [13]:

mc2 = Ωs · S (12)

In the above equation, S is the spin bivector, Ωs is the angular
frequency bivector and it shows that the mass of an electron is
equal to the zero-point energy associated with the local com-
plex rotation in the spin plane.

In the case of center of mass motion of the particle with
velocity v, as a result of super position of internal complex
rotations on translational motion, the particle is associated

with a modulated wave containing internal high frequency
ω0 and envelop frequency ωB which is the de Broglie fre-
quency of the particle. Differentiating the position complex
vector X = x + iξ with respect to time gives the velocity
complex vector U = v + iu and the complex conjugate of
U is obtained by taking reversion operation on it,Ū = v − iu
and the product UŪ = v2 + u2 [13]. Dividing this equation
throughout by ξ2 and denoting ωB = |v|/ξ, ω0 = |u|/ξ and
ωc = |U |/ξ, we obtain the effective cut-off frequency ωc of
the modulated wave in the particle frame of reference in the
form ω2

c = ω
2
0 + ω

2
B = ω

2
0(1 + β2). In the equation of motion

of center of mass (9), the strength of radiation damping and
binding terms are much smaller than the force term on the
right. Therefore, neglecting radiation damping and binding
terms in (10) and integrating the expression with respect to
time gives

ẋ =
e
m

∫ τ

0
Ezp(x, t) dt, (13)

where the upper limit of integration is chosen to be the char-
acteristic time τ = 2π/ωc. Substituting the electric field vec-
tor Ezp(x, t) given in (6) into (13) and performing the integra-
tion gives

ẋ =
e
m

2∑
λ=1

∫
d3kϵ(k, λ)

H(ω)
2

×
{

aeik.x
(

e−iωτ − 1
−iω

)
+ a∗e−ik.x

(
eiωτ − 1

iω

)}
.

(14)

Now, using |ẋ|2 = ẋẋ∗, we find

|ẋ|2 = e2

m2

2∑
λ,λ′=1

∫∫
d3kd3k′ϵ(k, λ)ϵ(k′, λ′)

H2(ω)
2ω2

× (1 − cosωτ)
{
aa∗′e−i(k−k′).x + a∗a′ei(k−k′).x

}
,

(15)

where the terms containing aa′ and a∗a∗′ are dropped because
of their stochastic averages are zero. Taking the stochastic av-
erage of (15) on both sides and using the following relations⟨

aa∗′e−(k−k′).x
⟩
=

⟨
a∗a′e+(k−k′).x⟩ = δ3(k − k′) δ(λ − λ′) ,⟨ 2∑

λ,λ
′
=1

ϵ(k, λ)ϵ(k, λ
′
)δ(λ − λ′)

⟩
=

⟨ 2∑
λ=1

|ϵ(k, λ)|2
⟩

= 1 − k2
x

k2 =
2
3

,∫
d3k =

∫
dΩ k2dk = 4π

∫
k2dk =

4π
c3

∫
ω2dω ,

the average value ⟨|ẋ|2⟩ is found to be

⟨|ẋ|2⟩ = 4α
3π
ℏ2

m2c2

∫ ωc

0
ω(1 − cosωτ)dω , (16)
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where the upper limit of integration is the chosen cut-off fre-
quency ωc. Because of this cut-off frequency, the zero-point
field spectral components of wavelength of the order of 2πc/
ωc are only effective and thus there exists an upper bound
to the energy available from the electromagnetic zero-point
field. For an extended particle of radius R, a convergence
form factor can be obtained by finding the upper bound to the
energy available from the electromagnetic zero-point field. A
detailed calculation of such convergence form factor was cal-
culated by Reuda [22]. This convergence form factor is given
by

η(ω) = η(δ) =
9
δ4

(
sin δ
δ

)2 (
sin δ
δ
− cos δ

)2

, (17)

where δ = ωR/c and the values of η(δ) lie in the range 0 to
1. For ω ∼ ω0 and R ∼ 2ℏ/3mc , we have δ ∼ 2/3 and
the convergence form factor η (2/3) ∼ 3/4. In view of the
extended structure of the particle, the convergence form factor
is introduced in the energy calculation. In general, the total
energy of an oscillator is a sum of both kinetic and potential
energies and it is equal to twice the kinetic energy. Now, the
zero-point energy associated with the particle is expressed in
the form

∆Ec = m⟨|ẋ|2⟩ = 2α
3π
ℏ2ω2

c

mc2 η(ωc)

×
[
1 +

2
ω2

cτ
2 (1 − cosωcτ − ωcτ sinωcτ)

]
.

(18)

Substituting ωcτ = 2π , ω2
c = ω

2
0(1+β2), using the Einstein de

Broglie relation ℏω0 = mc2 and approximating η(ωc) ∼ 3/4
in (18) gives finally

∆Ec =
α

2π
mc2(1 + β2) . (19)

This energy change gives the correction to the mass, ∆m =
∆Ec/c2 and we get the relation (4). The result in (19) differs
from our previous calculation in reference [15] by the term
(1 + β2), where we have assumed ωc = ω0. It may be noted
that the energy associated with the particle derived in (19) de-
pends on the particle velocity. However, in the point particle
limit, R→ 0 , ωc → ω0 and η (ω0R/c)→ 1. Thus in the point
particle limit the energy in (18) reduces to the expression (1).
It may be noted that both mass correction and charge correc-
tion are derived from the common origin zero-point field.

3 Estimation of the anomalous magnetic moment

Dirac theory of the electron predicts the magnetic moment
of the electron g = 2. However, a small deviation of mag-
netic moment ae = (g − 2)/2 is known as the anomalous
magnetic moment and it was discovered by Kusch and Fo-
ley [23]. The quantization of electromagnetic field led to
quantum electrodynamics and the first theoretical calculation
of ae in the purview of quantum electrodynamics was due

to Schwinger [24] and it was estimated to be ae = α/2π.
The quantum electrodynamics theoretical calculations of ae

almost over fifty years by several authors showed an excellent
agreement between theory and experiment and an extensive
review of ae was given by Kinoshita [25]. High precession
penning trap measurements of ae were done by several au-
thors and a recent measurement of ae was given by Henneke
et al. [26], ae(exp) = 1.15965218073(28) × 10−3. In this sec-
tion we shall explore an entirely different classical approach
for the calculation of ae.

Any change in the mass of the particle due to particle mo-
tion in the fluctuating zero-point field brings a change in the
spin angular frequency in (12).

(m + ∆m)c2 = Ω · S . (20)

Combining (12) and (20) gives the ratio

∆m
m
=

∣∣∣∣∣Ω −Ωs

Ωs

∣∣∣∣∣ . (21)

The ratio of change in spin frequency to the spin frequency
represents the anomalous magnetic moment. In an alterna-
tive way, this can be arrived by considering the energy term
(geB/2mc) · S and identifying m as the theoretical mass and
replacing mth = mobs − ∆m. To a first approximation we get
g/2 (1 + ∆m/m) in place of g/2. Now, from (4) the anoma-
lous magnetic moment of the electron can be expressed in the
form

ae =
∆m
m
=
α

2π
+
α

2π
β2 . (22)

The first term on right of the above equation gives the well
known Schwinger’s result and to obtain this result we have
chosen η(ωc) ∼ 3/4 in (18). The velocity of an orbital elec-
tron in an atom is proportional to α. For a linear motion of
the electron we approximate β2 = α2/3 and to account for two
modes of polarization of zero-point field, it is multiplied by 2.
The reduced velocity is now written in the form β2 = 2α2/3.
Substituting this result in (22) and using charge correction
relation α→ α (1 − 2α/3π) gives finally the anomalous mag-
netic moment of the electron as a function of fine-structure
constant:

ae =
1
2

(
α

π

)
− 1

3

(
α

π

)2
+
π2

3

(
α

π

)3
− 2π2

3

(
α

π

)4
+

+
4π2

9

(
α

π

)5
− 8π2

81

(
α

π

)6
.

(23)

The calculation of ae is performed using the CODATA rec-
ommended fine-structure constant α = 7.2973525376(50) ×
10−3 [27] and from (23) the value is estimated to be ae(th) =
1.15965227095 × 10−3. Though this classical estimate is not
at par with the quantum electrodynamics calculations, the dif-
ference ae(th)−ae(exp) = 90.22×10−12 shows the result is at
least accurate up to ninth decimal place. With proper approxi-
mation to the reduced velocity, equation (22) may be used for
finding the anomalous magnetic moment of any other lepton.
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4 Lamb shift

Relativistic theory of a bound electron predicts that the en-
ergy levels 2S 1/2 and 2P1/2 are degenerate. However, the en-
ergy level shift 2S 1/2 − 2P1/2 was experimentally found to be
1058.27 + 1.0 MHz in 1947 by Lamb and Rutherford [28].
For the Lamb shift calculation, we consider the average de-
viation in the path of orbital electron is equal to twice the
radius of rotation (diameter) of the extended electron. Thus
the orbital radius spreads out over a distance 2ξ and the corre-
sponding change in the Coulomb potential is expressed in the
form V(r + 2iξ). Expanding this function in terms of Taylor
series gives

V(r + 2iξ) − V(r) = 2iξ
∂V(r)
∂r
− 2ξ2

(
∂2V(r)
∂r2

)
+ . . . (24)

In the Welton’s approach of Lamb shift calculation [29], con-
sidering the symmetric potential, an additional multiplying
factor 1/3 was introduced in the second term on right of (24).
Since the deviation is considered as a bivector which repre-
sents rotation in local space, any such factor is not required in
the present calculation. The radius of rotation is a vector in
the spin plane and therefore, it can be expressed in the form
ξ = |ξ| exp(−iσsω0t), where iσs is a unit bivector in the spin
plane [14]. Then, the stochastic average ⟨ξ⟩ = 0 and the av-
erage of square of radius of rotation ⟨ξ2⟩ = ⟨|ξ|2⟩/2. Using
the relation ξ̇ = −iσsω0ξ, we find ⟨|ξ2|⟩ = ⟨|ξ̇|2⟩/ω2

0 . Now,
taking the stochastic average on both sides of (24), we obtain
the stochastic average of change in the potential energy:

∆EL = ⟨V(r + 2iξ) − V(r)⟩ = ⟨|ξ̇
2|⟩
ω2

0

∣∣∣∣∣∣∂2V(r)
∂r2

∣∣∣∣∣∣ (25)

where the higher order terms are neglected. The energy in
(25) corresponds to the Lamb shift in the energy levels due to
the interaction of the electron with the zero-point field. We
consider that the zero-point field around the atom is modified
due to the extended electron in the orbit and as a consequence
the electron orbit spreads out around the Coulomb source.
Since the modifications in the zero-point field takes place at
the atomic size, we choose the cut-off frequency equal to the
de Broglie frequency ωB. Such low frequency cut-off was not
considered previously and this may be one of the reasons for
not finding the exact estimate of the Lamb shift in stochas-
tic electrodynamics. Considering the equation of motion of
center of charge ξ̈ = eEzp(ξ, t)/m and using the same method
of derivation given in Section 3, and imposing the upper cut-
off frequency ωB, we obtain the zero-point energy associated
with the orbital electron shift in the form

m⟨|ξ̇|2⟩ = 2α
3π
ℏ2ω2

B

mc2 η(ωB)

×
1 +  2

ω2
Bτ

2
(1 − cosωBτ + ωBτ sinωBτ)

 .
(26)

Since ωBτ ≪ 1,we neglect the terms in curly brackets and
the converging form factor η(ωB) = 1. Now, (26) can be ex-
pressed in the form

⟨|ξ̇|2⟩ = 2α
3π
ℏ2ω2

B

m2c2 . (27)

Substituting this result in (25) and using the relation ℏω0 =

mc2 gives

∆EL =
2α
3π
ω2

Bc2

ω4
0

∣∣∣∣∣∣∂2V(r)
∂r2

∣∣∣∣∣∣ . (28)

For an orbital electron in a circular orbit, the magnitude of
Coulomb potential is equal to twice the kinetic energy of the
electron:

V(r) =
Ze2

r
= mrv

2 = mrω
2
Br2 . (29)

Differentiating (29) twice with respect to r yields∣∣∣∣∣∣∂2V(r)
∂r2

∣∣∣∣∣∣ = mrω
2
B . (30)

Substituting the above result in (28) gives

∆EL =
4α
3π
β4mrc2 . (31)

Considering β2 = α2, we finally arrive at the required energy
shift given in (5). The charge correction of a free electron is
given in (2) and in the case of an atomic electron it may be
expected that it is three times that of the free electron. Then
the correction for the fine-structure constant is 2α/π. Further,
one may consider the mass correction of the reduced mass,
same as α/2π. Using these corrections in (5) and substituting
the CODATA values of the electron mass, proton mass and
other fundamental constants [27], the calculated Lamb shift
in hydrogen spectra is found to be 1058.3696 MHz. Thus
the present calculation is considerably in agreement with the
standard value of Lamb shift 1057.8439 MHz [27] and the
difference 0.5257 MHz may be attributed to the finite size of
the proton.

In the quantum electrodynamics treatment, normally the
expectation value of |∇2V(r)| is found to be ⟨|∇2V(r)|⟩ ∝ α4

[30], the upper bound of integration is chosen to be ω0 and
the integration yields a logarithmic term. Comparing (5) with
the Welton’s result given by [31]

∆En =
4α5

3π
Z4

n3 ln
(

2
16.55α2

)
mrc2 , (32)

we get the correct order of fine-structure constant. The log-
arithmic term ln

(
2/16.55α2

)
∼ 8 and one can approximate

β4 = 8(Zα)4/n3 . Then, if one wishes to include the principal
quantum number, (5) may be rewritten in the form

∆EL =
4α
3π

8(Zα)4

n3 mrc2 . (33)
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It may be noted that a complete relativistic quantum electro-
dynamics evaluation is free from high energy cut-off. How-
ever, the above calculation of Lamb shift is entirely differ-
ent from the quantum electrodynamics treatment, where we
consider radiative corrections, and the present calculation is
purely based on classical considerations along with the ex-
tended structure of the electron.

5 Conclusions

Consideration of extended structure of the electron in zero-
point field yields a classical, straightforward and simple ap-
proach to find mass and charge corrections. We find the mass
correction depends on the particle velocity. The orbital elec-
tron reduced velocity is assumed to be proportional to the
fine-structure constant. The anomalous magnetic moment of
the electron has been expressed as a function of fine-structure
constant and the estimated ae(th) value is found to be cor-
rect up to ninth decimal place. Using a low frequency cut-off
equal to the de Broglie frequency, the Lamb shift of an ex-
tended electron in stochastic electrodynamics is derived and
the estimated result deviates from the experimental value by
0.5257 MHz. The theory presented elucidates a classical ap-
proach to both anomalous magnetic moment of the electron
and Lamb shift and paves the way for further research.

Received on August 13, 2018
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On the Speed of Light and the Continuity of Physical Vacuum
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It is shown that the speed of light can be calculated on the basis of the velocity equation
of the waves propagating along a liquid surface. This gives a reason to believe that the
vacuum medium, being discrete, simultaneously possesses the property of continuity
like the surface of an ideal fluid.

The speed of light is one of a few fundamental values, which
are not deducible from theory. However, it turns out that the
propagation of light is similar to wave motion on a liquid sur-
face, and has a maximum, which is equal to the speed of light.
This maximum is determined on the basis of the well-known
equation

v2 =
gλ

2π
+

2πσ
ρλ

, (1)

where g is the acceleration, λ is the wavelength, σ is the sur-
face tension (force-to-perimeter ratio, [N/m]), while ρ is the
specific density. The first term means the influence of grav-
ity on the wave speed, the second — the influence of surface
tension.

Of course, various physical phenomena described by the
same equations are not reducible to each other. Nevertheless,
there must be something common between them. In this case,
the common feature should be the continuity of the medium
(physical vacuum). Thus, the physical vacuum, being dis-
crete and being a source of virtual particles, at the same time
also possesses the property inherent in the inviscid continuous
medium surface through which electromagnetic oscillations
propagate in the form of surface transverse waves!

In order to apply formula (1) and determine the parame-
ters entering into it, it is necessary to isolate some unit ele-
ment of the medium (a radiating cell), which they would ap-
ply to. In [1], when determining the critical vacuum density,
it was shown that such an element can be a hydrogen atom as
the most common element in the Universe.

From the point of view of John Wheeler’s geometrody-
namic concept, charged microparticles are singular points on
a the three-dimensional surface of our world, connected by a
“wormhole”, i.e. a vortex tube or power current line (of the
input-output kind) located in an additional dimension. As a
result, a closed contour is formed along which the physical
vacuum or some other medium circulates. The presence of
contours (vortex tubes) is also postulated, for example, in [2],
where the vacuum structure is considered as a network of
one-dimensional flow tubes (knotted/linked flux tubes) and
it is claimed that it is such a network that provides the spatial
three-dimensionality of the Universe. Such a tube or a vac-
uum unit can be regarded as a field unit, in contrast to an atom
— a matter unit [3].

Geometrodynamics in the mechanistic interpretation

does not introduce any additional entities. On the contrary,
it reduces them. So, from the dimensions set, Coulomb is
eliminated: it is replaced by the ultimate momentum of the
electron mec [4]. In this case, the vortex tube is character-
ized by the electric constant and magnetic constant ε0 and µ0,
where the electric constant becomes linear density of the vor-
tex tube, and the reciprocal of the magnetic constant is the
centrifugal force produced by rotation of a vortex tube ele-
ment with the light velocity c along the electron radius re. It
is also the force acting between elementary charges at a dis-
tance re:

ε0 = me/re , (2)

µ0 =
1

c2ε0
=

re

mec2 . (3)

It is assumed that the medium circulating along a contour
with a radius R in the same time rotates spirally inside it, so
that the contour (toroid) contains z structurally ordered units
(in this case — the waves or photons). The speed of circula-
tion and rotation is:

v =
c c1/3

0

a2n2 , (4)

where c0 is the dimensionless speed of light c/[m/sec], a is
the inverse fine structure constant, and n is the main quantum
number. In this interpretation for the single element (hydro-
gen atom) accepted, there is only g — the centrifugal acceler-
ation appearing when the medium moves along the contour,
i.e. square of the velocity-to-the radius of the spiral rotation
ratio:

g =
v2

R/z
=

zc2c2/3
0

a4n4R
, (5)

where
R = n2RB = n2a2re , (6)

where RB is the Bohr radius.
The surface tension of a unit cell [N/m], using the force

1/µ0 (there is no other force there), is represented as:

σ =
1/µ0

R
=

mec2

reR
, (7)

and the hydrogen atom density for an arbitrary n is:

ρH =
mpme

R3 , (8)
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where mp is the proton relative mass in units of me. The wave-
length is defined for the case of ionization:

λ =
n2

R∞
, (9)

where R∞ is the Rydberg constant. As a result, assuming the
speed of light to be unknown, replacing c by v and bearing in
mind the above formulas, (1) can be represented as:

v2 =
z v2v2/3

0

2πa4n4RBR∞
+

2πa2n2RBR∞v2

mp
. (10)

Making the transformations and bearing in mind that RBR∞ =

1/(4πa), we obtain from (10):

v2/3
0 =

(
1–

an2

2mp

)
a3n4

2z
, (11)

when differentiating (11) with respect to n, the value of n for
the maximum velocity is found:

nm =

√
4mp

3a
= 4.23. (12)

It is noteworthy that the radiation wavelength during ion-
ization, i.e. at the transition nm ← ∞, corresponds to the
temperature of blackbody radiation 1840◦K, which is close
to the temperatures of the red and brown dwarfs — the most
common bodies in the Universe.

Further, replacing n2 in formula (11) with the value n2
m,

from (11) the maximum of the velocity is determined by:

vm =

(
a3n4

6 z

)3/2

×[m/sec] = 2.81×108
(

n4

z

)3/2

×[m/sec]. (13)

In [4], we give additional relations connecting the param-
eters v0, z, n, and also the sine of the projection angle (the
cosine of the Weinberg angle), which follow from that n4/z
does not depend on n and this value is slightly more than one.
As a result, we obtained the value of v, which is very close to
the speed of light and is determined only by the fine structure
constant and velocity dimensionality as well as the Weinberg
angle cosine. The last calculations as not having fundamental
importance are not given here.

The obtained solution can be considered as a special case
of the wave velocity maximum. However, unlike a liquid
where the surface wave velocity has a minimum and these
capillary and gravitational waves velocity depends on the sur-
face tension and the basin depth, there is a natural mechanism
for electromagnetic waves ensuring the independence of their
speed from the wavelength. This follows even from the above
formulas, which have a model-simplified character.

Indeed for this, it is necessary that there in formula (11)
the ratio n2/mp remains constant. Since the wavelength is
proportional to n2, then, with increasing the interval between
waves, the mass of the medium in a given interval must grow

proportionally, which means that the medium remains homo-
geneous in the direction of wave propagation. This is true,
because equation (1) is based on the law of a simple one-
dimensional oscillation of a pendulum. Perhaps, someday, a
more accurate equation for the general case made in electro-
dynamics terms will be deduced.

It should be noted that the fundamental difference be-
tween long-wave radiations and particle-like X-rays (gamma
radiations) is associated with their different nature: the first is
due to the medium surface tension, while the second is due to
the medium acceleration in the radiating cell of the contour.

Thus, the physical vacuum as a medium is discrete at a
certain level, and its unit is a vortex tube (the field unit). At
the same time, it is capable of being infinitely densely filled
with such units forming a continuous surface (the possibil-
ity of this was proved in the 19th century by J. Peano [5]).
This surface, in turn, as it becomes more complex, can form
three-dimensional material objects. When driving in such a
continuous medium body does not feel any resistance up to
the speed of light, i.e., until a surface wave forms, and, for
the observer, the vacuum medium remains undetectable. Re-
call that even when moving in a real liquid body, an observer
does not feel a resistance up to the speed when a surface wave
is formed (for water, the speed is 0.3 . . . 0.5 m/sec).

Conclusion

The fact that the vacuum manifests properties of a continuous
surface while electromagnetic waves propagate in the form of
surface waves gives grounds to combine the light speed con-
stancy with its wave nature and with the physical vacuum as
a transmitting medium (and, at the same time, we can remain
within the framework of Newtonian space and time). For this
it is sufficient to accept the postulate that an observer is al-
ways at rest with respect to the vacuum medium, and a source
always moves with respect to it and, accordingly, with respect
to the observer. Thus, the passive element (an observer) does
not detect the vacuum medium, but at the same time he re-
ceives an evidence of its existence as a continuous medium,
namely — a change in the radiation wavelength (the Doppler
effect) due to the motion of the active element (source).

Received on August 28, 2018
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It is generally accepted among scientists that an unfalsifiable theory, a theory which can
never conceivably be proven false, can never have any use in science. In this paper,
we shall address the question, “Can an unfalsifiable conjecture ever have any use in
mathematics?”

1 Introduction

It is generally accepted among scientists that an unfalsifiable
theory, a theory which can never conceivably be proven false,
can never have any use in science. As the philosopher Karl
Popper said, “the criterion of the scientific status of a theory
is its falsifiability, or refutability, or testability” [4]. In this
paper, we shall address the question, “Can an unfalsifiable
conjecture ever have any use in mathematics?” First, we shall
present a famous mathematical conjecture and prove that it
is unfalsifiable. Next, we shall discuss the implications of
proving that a mathematical conjecture is unfalsifiable. And
finally, we shall present some open problems.

2 An unfalsifiable conjecture

Landau’s fourth problem is to prove that there are an infinite
number of prime numbers of the form n2 +1, where n ∈ N [6].
We shall call this conjecture the n2 + 1-Conjecture. And we
shall prove that the n2 +1-Conjecture is unfalsifiable, i.e., that
its negation is unprovable in any reasonable axiom system:

Theorem: The (n2 + 1)-Conjecture is unfalsifiable.

Proof: Suppose there exists a proof that there are only a finite
number of primes of the form n2 + 1. Then there would exist
an N ∈ N such that for any n ∈ N in which n > N, n2 + 1
would be composite; thus, one could deduce that n2 + 1 is
composite from only the assumption that n − N ∈ N. But
this is impossible, since the polynomial n2 + 1 is irreducible
over the integers. Hence, it is impossible to prove that there
are only a finite number of primes of the form n2 + 1. So the
n2 + 1-conjecture is unfalsifiable. �

3 Implications

Let us assume that the ZFC axioms are consistent [10]. Then
what are the implications of proving that a mathematical con-
jecture is unfalsifiable? The answer is that even though an
unfalsifiable conjecture might not be true, there is still no
harm in assuming that it is true, since there is no chance that
one could derive any provably false statements from it; if one
could derive any provably false statements from an unfalsifi-
able conjecture, this would imply that the conjecture is falsi-
fiable, which is a contradiction.

For example, there is a probabilistic heuristic argument
that the n2 + 1-Conjecture is true [3]. This implies that all

statements which can be derived from the n2 + 1-Conjecture
are almost certainly true. Since our theorem above says that
the n2 + 1-Conjecture is unfalsifiable, there is no chance that
any of these statements could be proven false.

As a different type of example, in 2006 the author showed
that the Riemann Hypothesis is unprovable in any reasonable
axiom system [1]. This implies that the negation of the Rie-
mann Hypothesis is unfalsifiable, so one might conjecture
that the Riemann Hypothesis is false. However, there is a
probabilistic heuristic argument that the Riemann Hypothesis
is true [2]; therefore, if one were to assume that the Riemann
Hypothesis is false, one could derive statements which are
almost certainly false from this assumption. However, these
statements could never be proven false, since the negation of
the Riemann Hypothesis is unfalsifiable.

4 Open problems

Can the following famous conjectures also be proven to be
unfalsifiable?

1. There are an infinite number of pairs of primes which
differ by two. These are called twin primes [9].

2. There are an infinite number of primes of the form 2p−

1, where p is also prime. These are called Mersenne
primes [7].

3. There are an infinite number of primes p, where 2p + 1
is also prime. These are called Sophie Germain primes
[8].

4. There are an infinite number of primes of the form 22n
+

1. These are called Fermat primes [5].

5 Conclusion

An unfalsifiable theory can never have any use in science;
however, an unfalsifiable conjecture can be very useful in
mathematics: When an unfalsifiable conjecture is difficult to
prove, one can assume that the conjecture is true and not have
to worry about deriving any provably false statements from
it, assuming that the ZFC axioms are consistent.
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A new preon model is presented as an extension of the semiclassical Helical Solenoid
Electron Model that was previously proposed by the author. This helicon model as-
sumes as postulates both the Atomic Principle and the equality between matter and
electric charge. These postulates lead us to a radical reinterpretation of the concepts of
antimatter and dark matter and form a new framework for future preon theories.

1 Introduction

According to the Atomic Principle, “matter is composed of
indivisible, indestructible and immutable elementary parti-
cles.” This principle has guided the greatest successes in the
history of science [2]. However, the currently-accepted Stan-
dard Model of Particle Physics (SM) does not comply with
this principle since most of this model’s elementary particles
are unstable, and all of them can be created or destroyed by
matter-antimatter interactions. In concurrence with Kalman
[3], we consider the current state of particle physics to be
anomalous. We propose that the Atomic Principle is an un-
renounceable postulate. Any fundamental theory of elemen-
tary particles should strictly respect this principle. If neces-
sary, we should reinterpret the experimental results and dis-
card any theory that does not strictly comply with the Atomic
Principle.

The large number of elementary particles described by
the SM and the regularities of their properties suggest that
there is a lower level of matter organization. In 1974, Pati and
Salam [11] proposed that both leptons and quarks were com-
posite particles formed by fundamental particles called pre-
ons. To date, no preon model has attracted the general interest
of the particle physics community. However, preon models
have continued to evolve with new proposals, including those
by Terazawa (1977) [12], Harari (the Rishon Model, 1979)
[13], Mandelbaum (the Haplon Model, 1981) [14], Dehmelt
(the Cosmon Model, 1989) [15], Kalman and d’Souza (the
Primon Model, 1992) [17], Dunge and Fredriksson (1997)
[16], Bilson-Thompson (the Helon Model, 2005) [18], Yer-
shov (the Y-particle Model, 2006) [19] and Lucas (the Inter-
twining Charged Fibers Model, 2006) [20].

The objective of this paper is to propose a new preon
model as an extension of the Helical Solenoid Model of the
electron [1] that is applicable to any subatomic particle and
that strictly complies with the Atomic Principle. The Heli-
coidal Solenoid Model is a semiclassical model that proposes
that the electron is a point-like electric charge that moves at
the speed of light following a helical solenoid trajectory with
an angular momentum equal to the reduced Planck constant.
This model assumes that the Zitterbewegung is the mecha-

Fig. 1: Trajectory of the electron in the Helical Solenoid Model.

nism that causes the helical movement of the electron (spin)
and its corresponding magnetic moment.

2 Nuclear Forces

The main challenge for preon theories is to explain the force
that holds the preons together. Quantum Chromodynamics
(QCD) defines a strong nuclear force based on the existence
of gluons, but this theory is incompatible with the preon hy-
pothesis. To date, it has not been possible to identify an ex-
tension of the QCD theoretical basis that would allow for the
incorporation of a substructure common to both leptons and
quarks. In addition, all attempts to expand the QCD theory
involve an exponential increase in mathematical complexity,
the opposite of what is intended with preon theories. There-
fore, a preon theory that is compatible with the Atomic Prin-
ciple will be, predictably, incompatible with QCD.

We are not bothered by this incompatibility because we
start from a semiclassical Helical Solenoid Model that is in-
compatible in fundamental aspects with many of the mod-
ern dominant theories (Quantum Mechanics (QM), Quantum
Electrodynamics (QED) and Quantum Chromodynamics
(QCD)). This is not an insurmountable problem since it is
well known that mutually incompatible theories can explain

Oliver Consa. The Helicon: A New Preon Model 215



Volume 14 (2018) PROGRESS IN PHYSICS Issue 4 (October)

the same experimental results and, in certain cases, may even
be useful. For example, the Bohr-Sommerfeld model was sur-
passed by QM but, nevertheless, produces the same results for
the fine structure of the hydrogen atom.

In 1986, Barut [4] proposed that nuclear forces are man-
ifestations of electromagnetic forces at very short distances.
While electric fields decrease with the square of the distance,
magnetic fields decrease with the cube of the distance. Mag-
netic forces are dominant over very small distances, but their
influence decreases rapidly with respect to electrical forces as
distances expand

Fmag ∝
1

R3 , (1)

Felec ∝
1

R2 . (2)

This hypothesis is shared by Pati [5], the creator of the
first preon theory, and by other lesser-known researchers such
as Schaeffer [6], Dallacasa [7], Cook [8], Kaliambos [9],
Kanarev [10] and Lucas [20].

Historically, it has been assumed that magnetic forces at
the subatomic level are negligible, but in our Helical Solenoid
Model, the magnetic field density at the center of the nucleon
is enormous, about 100 trillion tesla. This magnetic field den-
sity is thousands of times greater than that of a neutron star. A
magnetic field of these proportions must necessarily produce
significant effects

R = oN =
~

mNc
= 2.103 × 10−16 m, (3)

f =
vr

2πR
=

c
2πoN

= 2.268 × 1023 Hz, (4)

B =
µ0I
2R

=
µ0e f
2oN

= 1.088 × 1014 T. (5)

In our preon model, we do not contemplate the existence
of particles that mediate nuclear forces, such as gluons. In-
stead, we assume that elementary particles interact with each
other through their respective electromagnetic fields. While
it is outside the present work to explain the physical nature
of photons, we conclude that photons (i) are not particles of
matter, (ii) are not composed of preons and (iii) do not have
to comply with the Atomic Principle. Therefore, photons can
be created (by emission) and destroyed (by absorption) with-
out any limitations. Many theories have tried to explain the
photon as the union of an electron and a positron, however,
all the experiments conducted to date are consistent with the
idea that a photon transports electromagnetic energy but does
not carry any type of electrical or magnetic charge.

3 Topology

The SM assumes that fermions are point particles and that
it is impossible for a point particle to be formed by other
point subparticles. For this reason, the more advanced preon

models, such as those proposed by Bilson-Thompson [18],
Yershov [19] and Lucas [20], describe preons and fermions
as structures with a determined topology. In most cases, the
proposed topology is toroidal or helical. This topology is sug-
gested by the helical and chiral properties of the subatomic
particles. The helical topology allows the composite parti-
cles to establish different structures that can be analyzed using
knot theory (e.g., Rañada [21]) or braid theory (e.g., Bilson-
Thompson [18]). The different combinations would give rise
to the various symmetries of the subatomic particles, such as
the conservation of the color charge.

The experimental data obtained in particle colliders sug-
gest that fermions are point particles, so we need a model that
can combine both point and helical topologies. Our Helical
Solenoid Model [1] proposes a dynamic point-particle model,
in which a point particle always moves at the speed of light in
a closed path. This allows the advantages of the point particle
to be combined with helical topology (which corresponds to
the particle’s trajectory).

In the Helical Solenoid Model, several point particles can
form a single helical structure. For example, several particles
could share the same closed trajectory in an equidistant fash-
ion or they could share the trajectory in the same plane but
with different radii. Finally, Lucas’s Intertwining Charged
Fibers Model [20] illustrates graphically how several helical
paths could interlink with each other, giving rise to different
subatomic particles.

4 Matter

In classical physics, matter is any substance that has mass
and volume (i.e., that occupies space). This definition is valid
for all matter composed of atoms, but when we analyze the
subatomic particles that make up the atoms, this definition
loses its meaning. In the SM, mass is considered only one
form of energy, and the subatomic particles are considered
quantum entities that do not have a definite volume or size.
In this framework, matter no longer has a precise definition
nor is it considered a fundamental concept.

But, to apply the Atomic Principle, matter must have a
precise definition and be considered a fundamental concept.
To define the concept of matter, we need to identify a fun-
damental property that strictly complies with three require-
ments: it must be absolute (the amount of matter cannot de-
pend on the observer or the reference system), conserved (the
amount of matter must be retained in any iteration) and quan-
tified (the amount of matter must be composed of whole
units).

Mass is an indicator of the kinetic energy and electromag-
netic potential associated with the internal structure of each
subatomic particle. But, as a property of matter, mass does
not meet any of the three requirements. Only one property
of matter satisfies the test, the electric charge. Therefore, we
propose a new postulate: Electric charge is the fundamental
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property of matter.
All matter is composed of unitary electric charges.

Phrased in a different manner, matter is everything that is
composed of electric charges. Consequently, our second pos-
tulate is that matter and electric charge represent exactly the
same thing. This postulate has important implications. It
implies that all neutral particles must necessarily be com-
posite particles of an equal number of negative and positive
electric charge particles. Combining this postulate with the
Atomic Principle, we conclude that all subatomic particles
must be composed of a whole number of fundamental elec-
tric charges.

We also assume the validity of the minimalist hypothesis
that postulates that all matter is composed of only two fun-
damental particles, the positive fundamental electric charge
and the negative fundamental electric charge. In our model,
we call these elementary particles helicons (H+ and H−), to
differentiate them from those discussed in other preon models
and to emphasize the relationship of this elementary particle
with the Helical Solenoid Model. The three preon models
that we consider the most advanced (Bilson-Thompson, Yer-
shov and Lucas) concur with this minimalist hypothesis of
only two fundamental particles.

All the preon models we have analyzed treat the mass
of subatomic particles as an additive property. The greater
the number of components in each subatomic particle and the
more complex its internal structure, the greater the particle’s
mass. These models all group elementary particles into sev-
eral sublevels of organization, forming increasingly complex
structures. These models also assume that hadrons have a
much more complex structure than leptons. The exact com-
position of each subatomic particle depends on the proposed
preon model. We do not propose any particular organization
scheme for subatomic particles; their composition should ex-
plain the value of the masses of each subatomic particle and
explain all known modes of decay.

5 Antimatter

The concept of antimatter originated in 1898 when Schuster
[22] speculated that there were particles with negative gravi-
tational mass. Since antimatter would have negative gravity,
antimatter would have a propensity to join together and sepa-
rate from the matter of positive masses. Over time, antimat-
ter would separate from matter, forming atoms, molecules or
even stars and entire galaxies of antimatter. The difficulty oc-
curs in the analysis of negative inertial mass. Negative inertial
mass is a strange concept in physics; it causes serious prob-
lems and contradictions with the principles of conservation of
energy and movement. For example, according to these theo-
ries, the more a particle of negative inertial mass accelerates,
the more energy is created. In 1905, Einstein demonstrated
that mass is only an expression of a particle’s energy, imply-
ing that negative mass would be equivalent to negative energy.

In 1928, Dirac presented his electron equation, a relativis-
tic half-integer spin version of the Schrodinger Equation, that
correctly predicted the value of the electron’s magnetic mo-
ment and the fine structure of the hydrogen atom. The Dirac
Equation elegantly solved the main problems plaguing QM
at that time. However, the Dirac Equation created new prob-
lems, since it predicted quantum electron states with negative
energy. To resolve these issues, Dirac proposed the extrava-
gant “sea of Dirac,” where empty space would be formed by
an infinite sea of negative energy particles that would occupy
all the negative energy quantum states. In 1930, Dirac [23]
proposed that there could be “gaps” in this “sea” of negative
energy states. These “gaps” would be observed as a particle
of positive energy with a positive charge, otherwise known as
protons.

Oppenheimer [24] criticized Dirac’s proton hypothesis.
The positively charged particle predicted by Dirac could not
be the proton since it would have the same mass as the elec-
tron; they would then annihilate each other upon contact,
making the hydrogen atom unstable. Coincidentally, in 1932,
while analyzing traces of cosmic rays in a cloud chamber,
Anderson identified a particle with a positive electric charge
and a mass identical to the mass of the electron that he called
a positron. The positron corresponded with the particle pre-
dicted by Dirac, confirming the validity of his equation. In
1933, he was awarded the Nobel Prize for the discovery of
antimatter.

However, there are many inconsistencies in antimatter
theory that have been overlooked. According to Schuster, by
definition, antimatter would have a negative mass, which does
not happen with the positron. In addition, Dirac’s antimatter
is a consequence of his “sea of Dirac” theory, an implausible
hypothesis that has been ruled out by modern physics. In real-
ity, the current concept of antimatter is the result of a tempo-
ral coincidence between Dirac’s hypothesis and Anderson’s
experiments, combined with a factual misinterpretation.

If we set aside the Dirac hypothesis and analyze the
positron identified in Anderson’s experiments, we find an un-
stable particle that is identical to the electron but with a pos-
itive charge. When a positron comes into contact with an
electron, a large amount of energy is emitted, and neither the
electron nor the positron presence is longer detected. The cur-
rently accepted explanation for this phenomenon is that there
is a mutual annihilation of the positron with the electron, but
this explanation is not supported by theory or experience. The
annihilation theory is only applicable to particles with nega-
tive mass, but both the electron and the positron have positive
masses. However, if we rely on experience, when a positive
electric particle joins a negative electric particle, the result is
a neutral electric particle (and radiation emission). There is
a similar occurrence when an anion is attached to a cation,
forming a neutral molecule, or when an electron is attached
to a proton, forming a hydrogen atom.

Instead of mutual annihilation, a more logical explanation
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of the matter-antimatter interaction is the creation of neutral
matter. This alternative explanation complies with the prin-
ciples of conservation of electric charge and conservation of
matter. According to our postulates, the electric charge is
neither created nor destroyed, so the result of the electron-
positron interaction must be the creation of one or several
neutral particles that are currently unknown. Symmetrically,
the creation of an electron-positron pair from energy would
also not be possible. Instead, one or more of these unknown
neutral particles would need to intervene, in addition to the
necessary energy. Therefore, we should not call these pro-
cesses of creation or annihilation of matter but of decomposi-
tion and aggregation of matter.

According to our interpretation, antimatter is character-
ized by having a topology that is symmetric to the topology
of matter. Due to this symmetry, when particles of matter
and antimatter come into contact, they have a strong ten-
dency to decompose and reorder, producing simpler neutral
particles. However, there is an asymmetry in the universe
by which negative helicons tend to organize into simple sub-
atomic structures (electrons), while positive helicons tend to
organize into complex subatomic structures (protons and neu-
trons). This asymmetry in helicon grouping tendencies means
that some structures are more common (electrons, protons
and neutrons), while other structures form less frequently and
decompose rapidly (antimatter). This asymmetry can be ex-
plained by assuming that the positive helicon is not exactly
symmetric to the negative helicon, but that there is a slight
asymmetry in some property of the helicon that causes this
predisposition for different grouping tendencies.

The three preon models that we consider the most ad-
vanced (Bilson-Thompson, Yershov and Lucas) agree that an-
timatter is formed by positive and negative preons, in the
same fashion as matter, and they reject the possibility of anti-
preons. Our interpretation of the matter-antimatter interaction
is also consistent with Lucas’s Intertwining Charged Fibers
Model.

6 Dark Matter

Continuing with our minimalist hypothesis, a positive helicon
bound to a negative helicon would result in a neutral particle
(Ho = H+ + H−). This neutral particle would be the sim-
plest possible composite particle; therefore, it should be the
most abundant stable particle in the universe. The rest of the
particles should be produced with a much lower probability.
What we currently consider to be empty space would actu-
ally be space that is full of neutral particles. The hypothesis
of an empty space full of neutral particles is not unusual for
physics. Most of the matter in the universe is currently con-
sidered to be dark matter that does not correspond to known
matter. The electromagnetic properties of this quantum vac-
uum could also be caused by a sea of neutral particles. We
propose the term etheron for the neutral particle that is formed

by the binding of a positive helicon to a negative helicon, to
emphasize that the etherons form a sea that covers the entire
universe, like the old concept of ether. In this case, the sea
of etherons is not a fluid of a substance that is different from
matter but a sea of neutral particles of ordinary matter.

An indirect consequence of the Sea of Etherons Hypoth-
esis is the recovery of the Principle of Causality or Laplace’s
Principle of Causal Determinism, according to which every
effect has a cause. According to this theory, apparently ran-
dom processes, such as the disintegration of atomic nuclei or
the decay of subatomic particles, are not in reality random
processes but are instead determined by collisions with par-
ticles from the sea of etherons. Etherons have mass, so their
spatial distribution should not be homogeneous. This allows
us to establish the first experimentally testable hypothesis of
this model: the average lifetime of atoms and subatomic par-
ticles must be different in different parts of the universe.

And there is experimental evidence: unexpected and un-
explained fluctuations in the decay rates of 32Si and 226Ra
have been reported and evidence of correlations between nu-
clear decay rates and Earth-Sun distance has been found
(Jenkins-Fishbach effect [25]).

7 Conclusions

We are convinced of the validity of the Helical Solenoid
Model’s applicability to the electron, and we believe that this
model can be extended to all subatomic particles. We must
dispense with the mathematical and conceptual complexities
of the SM and the theories that support it (QM, QED and
QCD).

As a basis for our preon model, we postulate that the
Atomic Principle should be strictly followed and that the fun-
damental property of matter is the electric charge. From there,
we assume the minimalist hypothesis of only two fundamen-
tal particles, the negative helicon (H−) and the positive heli-
con (H+). These two point-like particles always move at the
speed of light following a helical movement. When several
helicons are combined, they form a subatomic particle. There
is an asymmetry between the negative helicon and the positive
helicon that leads to a propensity of the negative helicons to
organize into simple structures (electrons), while the positive
helicons tend to organize into complex structures (protons
and neutrons). This asymmetry causes opposing structures
to be generated with much less probability, as these struc-
tures are easily disorganized upon contact with a symmetric
structure (matter-antimatter iteration). The union of a nega-
tive helicon and a positive helicon forms an etheron, the sim-
plest and most abundant stable particle in the universe. What
we know as empty space is actually replete with these neutral
particles, forming a sea of etherons. Collisions of particles of
matter with particles from the sea of etherons are the cause of
many phenomena that are considered random, including:

• Spontaneous disintegration of atomic nuclei;
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• Spontaneous disintegration of subatomic particles;
• Antimatter interactions;
• Gravitational dark matter; and
• Quantum effects of vacuum, as the Casimir effect.

Since etherons have mass, their distribution in the uni-
verse is not perfectly homogeneous. This allows us to make
an experimentally verifiable prediction: the average lifetimes
of atomic particles and atomic nuclei must be different in dif-
ferent parts of the universe. Experimental evidence has been
reported in this matter [25].

This proposed preon model based on the helicon is not
complete since the composition of each subatomic particle is
not indicated, nor is the calculation of its masses or its modes
of decay. Our main objective was to provide a framework
based on new principles and a radical reinterpretation of the
facts. We leave for other researchers the job of proposing a
complete preon theory based on this framework, highlighting
three preon models (Bilson-Thompson, Yershov and Lucas)
that we believe are close enough to achieve this target and
that can serve as inspiration for others.

Submitted on September 21, 2018
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In this paper we develop a fractal model of matter as stable eigenstates in chain systems
of harmonic quantum oscillators and derive a fractal scalar field that should affect any
type of physical interaction, regardless of its complexity. Based on this assumption,
we discuss series of experiments on the timing of free falling solid particles inside
polyhedral structures whose boundaries coincide with equipotential surfaces of the field.

Introduction

An essential aspect of scientific research is the distinction be-
tween empirical facts and theoretical models. This is not only
about honesty and ethics in science, but a crucial condition of
its evolution. The scientist should always be aware of this.

The nature and origin of gravitation is a key topic in mod-
ern physics. Gravitation manifests itself as universal force
of attraction. It decreases with increasing distance, but it is
thought as having unlimited range. Unlike electrical or mag-
netic forces, gravitation is considered as to be not shieldable.

The term ‘gravitational shielding’ is usually imagined as
effect of reducing the weight of an object located in a constant
gravitational field, neither changing the mass of the object nor
its location in that field. Gravitational shielding is considered
to be a violation of the equivalence principle and therefore in-
consistent with both Newtonian theory and general relativity.

Nevertheless, some experimental evidence [1] indicates
that such effect might exist under quite exotic conditions in
which a superconductor is subjected to peak currents in ex-
cess of 104 A, surface potentials of 106 V, magnetic fields up
to 1 T, and temperature down to 40 K.

In the context of classical physics, mass is considered as
source of gravitation described by the Newtonian ‘law of uni-
versal gravitation’ as an instantaneous force acting through
empty space. A fundamentally different understanding of
gravitation arises from Einstein’s general theory of relativity.
In this case, gravity acts through a hypothetical ‘curvature of
space-time’, while any kind of energy can cause it.

Gravitation is treated as dominant force at macroscopic
scales that forms the shape and trajectory (orbit) of astronom-
ical bodies including stars and galaxies. Advanced models
were developed [2–4] in the last century which explain es-
sential features of the formation of the solar system. Though,
if numerous bodies are gravitationally bound to one another,
classic models predict long-term highly unstable states that
contradict with the astrophysical reality in the solar system.

Furthermore, many metric characteristics of the solar sys-
tem are not predicted in standard models. A remarkably large
number of coincidences are considered to be accidental and
are not even topics of theoretical research. Until today none

of the standard models of gravitation could explain why the
solar system has established Jupiter’s orbital period at 11.86
years and not 10.27 or 14.69 years; why the Sun and the
Moon, the gas giant Jupiter and the planetoid Ceres, but also
Earth and Mars have similar rotation periods; why Venus and
Uranus, as well as Mars and Mercury have similar surface
gravity accelerations; why several exoplanets in the Trap-
pist 1 system have the same orbital periods as the moons of
Jupiter, Saturn and Uranus etc. etc.

The standard theory of gravitation experiences also ex-
ceptional difficulties to explain the dynamics in star systems.
The orbital velocities of stars should decrease in an inverse
square root relationship with the distance from the Galactic
Center, similar to the orbital velocities of planets in the so-
lar system. But this is not observed. Outside of the central
galactic bulge the orbital velocities are nearly constant.

Already in 1933, Fritz Zwicky [5] discovered that the
fast movement of the galaxies in the Coma Cluster cannot
be explained by the gravity effect of the visible galaxies only
and hypothesized the existence of unseen mass that he called
‘dark matter’. In 1957, Henk van de Hulst and then in 1959,
Louise Volders demonstrated that the galaxies M31 and M33
do not spin as expected in accordance with Kepler’s laws.

According to the hypothesis of mass as source of grav-
ity, this deviation might be explained by the existence of a
substantial amount of matter flooding the galaxy that is not
emitting light and interacts barely with ordinary matter and
therefore it is not observed. To explain the dynamics in galax-
ies and clusters, standard theories of gravitation need a lot of
dark matter - 85% of the matter in the universe. Even particle
physics has no idea what dark matter could be.

Nevertheless, it is still believed that gravitation of mass
determines the orbits of planets and moons, planetoids and
asteroids, comets and artificial satellites, and in the cosmos,
the formation of stars and galaxies and their evolution. It is
also thought that it is the mass of the Earth that causes all
bodies to fall ‘down’.

The universality of free fall means that the gravity accel-
eration of a test body at a given location does not depend on
its mass, form, physical state or chemical composition. This
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discovery, made four centuries ago by Galilei, is confirmed by
modern empirical research with an accuracy of 10−11−10−12.
A century ago Einstein supposed that gravity is indistinguish-
able from, and in fact the same thing as, acceleration. Indeed,
Earth’s surface gravity acceleration can be derived from the
orbital elements of any satellite, also from Moon’s orbit:

g =
µ

r2 =
µ

(6372000 m)2 = 9.82 m/s2

µ = 4π
R3

T 2 = 3.9860044 · 1014 m3/s2

where R is the semi-major axis of Moon’s orbit, T is the or-
bital period of the Moon and r is the average radius of the
Earth. No data about the mass or chemical composition of
the Earth or the Moon is needed.

The 3rd law of Johannes Kepler describes the ratio R3/T 2

as constant for a given orbital system. Kepler’s discovery is
confirmed by high accuracy radar and laser ranging of the
movement of artificial satellites.

Actually, Kepler’s 3rd law is of geometric origin and can
be derived from Gauss’s flux theorem in 3D-space within ba-
sic scale considerations. It applies to all conservative fields
which decrease with the square of the distance and does not
require the presence of mass.

It is important to underline that the orbital elements R and
T are measured, but µ = GM is a theoretical presumption
that provides mass as a source of gravity and the universality
of the coefficient G, the ‘gravitational constant’.

One of the basic principles of scientific research is the
falsifiability of a theory. Occam’s Razor that expresses the
preference for simplicity in the scientific method is mainly
based on the falsifiability criterion: simpler theories are more
testable.

Obviously, any theory that postulates gravitation of mass
as dominant forming factor of the solar system and the galaxy
is not falsifiable, because there is no independent method to
measure the mass of a celestial body. Actually, no mass of
any celestial body is measured, but only calculated based on
the theoretical presumption µ = GM, and G is estimated in
laboratory scale only.

This does not mean that those theories are compellingly
wrong, but it should not surprise anyone if the assumption
G = constant leads to problems in describing processes that
differ by 40 orders of magnitude.

The big G is known only to three decimals, because grav-
ity appears too weak on the scale of laboratory-sized masses
for to be measurable with higher precision. As mentioned
Quinn and Speake [6], the discrepant results may demonstrate
that we do not understand the metrology of measuring weak
forces or they may signify some new physics.

In the case of mass as source of gravity, in accordance
with Newton’s shell theorem, a solid body with a spherically
symmetric mass distribution should attract particles outside it

as if its total mass were concentrated at its center. In contrast,
the attraction exerted on a particle should decrease as the par-
ticle goes deeper into the body and it should become zero at
the body’s center.

The Preliminary Reference Earth Model [7] affirms the
decrease of the gravity acceleration with the depth. How-
ever, this hypothesis is still under discussion. In 1981, Stacey,
Tuck, Holding, Maher and Morris [8, 9] reported anomalous
measures (larger values than expected) of the gravity accel-
eration in deep mines and boreholes. In [10] Frank Stacey
writes: “Modern geophysical measurements indicate a 1%
difference between values at 10 cm and 1 km (depth). If con-
firmed, this observation will open up a new range of physics”.

Anomalies have been discovered also under conditions of
microgravity – in drop towers, abroad the NASA Space Shut-
tle and the ISS. Whenever an object is in free fall the condi-
tion of microgravity comes about. Microgravity significantly
alters many processes – the behavior of liquids [11], plasma
and granular materials [12, 13] as well, and there is no com-
plete explanation for all the discovered phenomena yet.

Studies [14] of plant growth under different gravity con-
ditions show that elongation growth is stimulated under mi-
crogravity conditions. Elongation growth is suppressed with
increasing gravitational acceleration and varies in proportion
to the logarithm of the magnitude of gravitational accelera-
tion in the range from microgravity to hypergravity.

Already in 2010, Erik Verlinde [15] proposed an alterna-
tive explanation of gravitation as an entropic force caused by
changes in the information associated with the positions of
material bodies. An entropic force is thought as an effective
macroscopic force that originates in a system with many de-
grees of freedom by the statistical tendency to increase its en-
tropy. The term ‘entropic force’ was introduced by Bechinger
and Grünberg [16] when they did demonstrate that in systems
of particles of different sizes, entropy differences can cause
forces of attraction between the largest particles. However,
entropic models of gravitation [17] are still in development
and under discussion [18].

It is remarkable that similar dynamics of plant growth ob-
served in laboratory [19] and field experiments [20] are also
known as the ‘pyramid effect’: Inside pyramidal construc-
tions made of various materials, germination and elongation
growth of plants are accelerated.

The diversity of sizes and materials (glass, plastic, wood,
stone, metal) applied in the pyramidal constructions makes
difficult to define the cause of the observed growth stimula-
tion. At the same time, even this diversity supports the suspi-
cion that the ‘pyramid effect’ could be caused by reduction of
gravitation – as it is the most universal physical interaction.

To verify this hypothesis, we have designed an experi-
mental setup that models the free fall of solid particles inside
containers of various sizes, shapes and materials. The exper-
imental design is based on global scaling [21] and considers
Kosyrev’s [22] temporal studies.
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Methods

In [23] we have introduced a fractal model of matter as sta-
ble eigenstates in chain systems of harmonic quantum oscilla-
tors and could show the evidence of this model for all known
hadrons, mesons, leptons and bosons as well. On this back-
ground, atoms and molecules emerge as eigenstates of stabil-
ity in fractal chain systems of harmonically oscillating pro-
tons and electrons. Andreas Ries [24] demonstrated that this
model allows for the prediction of the most abundant isotope
of a given chemical element.

In [25] we have shown that the set of stable eigenstates in
chain systems of harmonic quantum oscillators is fractal and
can be described by finite continued fractions:

Fjk = ln (ω jk/ω00) = [n j0; n j1, n j2, . . . , n jk]

where ω jk is the set of angular eigenfrequencies and ω00 is
the fundamental frequency of the set. The denominators are
integer: n j0, n j1, n j2, . . . , n jk ∈Z, the cardinality j ∈N of the
set and the number k ∈N of layers are finite. In the canonical
form, all numerators equal 1.

Any finite continued fraction represents a rational num-
ber [26]. Therefore, the ratios ω jk/ω00 of eigenfrequencies
are always irrational, because for rational exponents the nat-
ural exponential function is transcendental [27].

This circumstance provides for lasting stability of those
eigenstates of a chain system of harmonic oscillators because
it prevents resonance interaction [28, 29] between the ele-
ments of the system. In [30, 31] we have applied our model
as criterion of stability in engineering.

The distribution density of stable eigenstates reaches local
maxima near reciprocal integers ±1/2,±1/3,±1/4, . . . that
are the subattractor points in the fractal set Fjk of natural log-
arithms (fig. 1). Integer logarithms 0,±1,±2, . . . represent
the most stable eigenstates (main attractors).

Fig. 1: The distribution of stable eigenvalues of Fjk for k = 1 (above)
and for k = 2 (below) in the range -16Fjk 6 1.

In the case of harmonic quantum oscillators, the continued
fractions Fjk define not only fractal sets of natural angular
frequencies ω jk, angular accelerations a jk = c ·ω jk, oscilla-
tion periods τ jk = 1/ω jk and wavelengths λ jk = c/ω jk of the
chain system, but also fractal sets of energies E jk = ~ ·ω jk and
masses m jk = E jk/c2 which correspond with the eigenstates
of the system. For this reason, we call the continued fraction
Fjk the ‘Fundamental Fractal’ of stable eigenstates in chain
systems of harmonic quantum oscillators.

The spatio-temporal projection of the Fundamental Frac-
tal Fjk of stable eigenstates is a fractal scalar field of tran-
scendental attractors, the Fundamental Field.

The connection between the spatial and temporal projec-
tions of the Fundamental Fractal is given by the speed of light
c = 299792458 m/s. The constancy of c makes both projec-
tions isomorphic, so that there is no arithmetic or geometric
difference. Only the units of measurement are different.

Fig. 2: The equipotential surfaces of the Fundamental Field in the
linear 2D-projection for k = 1.

Figure 2 shows the linear 2D-projection exp (Fjk) of the
first layer of the Fundamental Field for Fj1 = n j0 + 1/n j1 in
the interval −1 < Fj1 < 1. Figure 1 shows the same interval
in the logarithmic representation.

At each layer k, the potential energy of the Fundamental
Field is constant, therefore the layers are equipotential sur-
faces. The potential difference defines a gradient, a vector
directed to the center of the field that causes a central force of
attraction. However, the gradient exposes the logarithmically
hyperbolic fractal metric of the Fundamental Field.

The Fundamental Field does not propagate, it is omni-
present. As spatio-temporal projection of the Fundamental
Fractal, it is an inherent feature of the number continuum and
it causes the fractality of the model space-time.

In physics, only field distortions (waves or currents), not
the fields themselves have propagation speeds. In astronomic
calculations, gravitation is traditionally considered as being
instantaneous. First Laplace [32] demonstrated that gravi-
tation as field does not propagate with the speed of light c.
Modern estimations [33] confirm a lower limit of 2 · 1010 c.

The Fundamental Field is of pure mathematical origin,
and there is no particular physical mechanism required as
field source. It is all about numbers as ratios of physical
quantities which inhibit destabilizing resonance. In this way,
the Fundamental Field concerns all repetitive processes which
share at least one characteristic — the frequency.

Therefore, we assume the universality and unity of the
Fundamental Field. It might signify that everything in the
universe is part of one giant oscillating chain system. This
hypothesis we have called ‘global scaling’ and it is the basis
of interscalar cosmology [34].
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In fact, scale relations in particle physics [23, 35, 36] and
nuclear physics [24, 37, 38], astrophysics [39, 40] and bio-
physics [41,42] follow always the same Fundamental Fractal
calibrated on the proton and electron, without any additional
or particular settings. The proton-to-electron mass ratio itself
is caused by the Fundamental Fractal [34].

Planetary and lunar orbits [43] correspond with equipo-
tential surfaces of the Fundamental Field, as well as the met-
ric characteristics of stratification layers in planetary atmo-
spheres [44] and lithospheres [21]. Surface gravity accelera-
tions [45] of the planets in the solar system correspond with
attractors of stability in chain systems of oscillating protons
and electrons. From this point of view, the metric character-
istics of stable structures origin always from the same Funda-
mental Fractal and different only in scale. Because of its nu-
merical origin, we assume that the Fundamental Field affects
any type of physical interaction, regardless of its complexity.

Based on this assumption, we have designed an experi-
mental setup that models the free fall of solid particles inside
a container whose boundaries coincide with equipotential sur-
faces of the Fundamental Field exp (Fjk). The experimen-
tal setup consists of a vacuum hourglass (sand clock) and a
closed container. The duration of the hourglass was measured
inside and outside the container in alternating sequence.

Three different in size, material and duration (40 s, 8 min,
60 min) hourglasses and 18 different in shape (cubic, tetra-
hedral, octahedral), size (0.3 – 0.6 m diameter) and material
(carton, acrylic glass, metal) containers were used.

Based on relevant studies [46], we conducted mechani-
cal tests of the utilized hourglasses and could make sure that
inclination below 5 degrees, rotation below 5 Hz and micro-
vibration (vertical and horizontal) below 10 Hz do not in-
crease the average fluctuation level (0.2 %) of the duration
of the hourglasses.

The accuracy of the vertical was controlled by two or-
thogonal spirit levels. The complete setup was placed in an
electromagnetic shielding chamber. During the measurement,
the hourglass had direct contact to an aluminum plate for con-
duction of eventual electrostatic charge.

The environment control included electromagnetic fields
in the frequency range of 1 Hz to 5 GHz, air temperature,
pressure and humidity, micro-seismic activity. The experi-
ments were conducted in different places, but always far from
the city electrification net.

Results

In general, the measured deviations of the hourglass dura-
tions inside containers of different material, shape and size
in comparison with the durations outside them did not exceed
the average fluctuation level of the duration of the used hour-
glass. However, a stable significant deviation in the hourglass
duration was measured with the 8-minute vacuum hourglass
inside a closed truncated octahedron (fig. 3) made of 1/16 alu-

minum sheet. The ‘sand’ of this hourglass consists of glass
beads of ca. 50 µm diameter.

Fig. 3: The duration of the 8-minute hourglass was measured inside
and outside the truncated octahedron in alternating sequence.

The truncated octahedron one can imagine as a square pyra-
mid plus an inversed square frustum (fig. 3). The length of
the edges of the pyramid coincides with the radius of the main
equipotential surface F (35) of proton stability:

F (35) = λ proton · exp(35) = 33 cm

Considering the height r = 33 cm ·
√

2 / 2 = 23 cm of the
pyramid, the orifice of the hourglass was placed in a distance
from the vertices of the pyramid that equals to the radius of
the main equipotential surface F (27) of electron stability:

F (27) = λ electron · exp(27) = 21 cm

The height 7.5 cm of the frustum coincides with the radius of
the main equipotential surface F (26) of electron stability:

F (26) = λ electron · exp(26) = 7.5 cm

Furthermore, at 6 minutes after start, the continuing process
of free fall passes the main temporal attractor F (54) of elec-
tron stability:

F (54) = τ electron · exp(54) = 6 min

The Compton angular wavelength of the electron is λelectron =

3.8615931̇0−13 m, of the proton λproton = 2, 1030891̇0−16 m,
and the angular oscillation period of the electron is τelectron =

λelectron/c = 1.2880891̇0−21 s [47].
Probably, all these coincidences together caused an accu-

mulated effect of damping the acceleration of free fall. Fur-
thermore, we suppose that potential differences between equi-
potential surfaces of the Fundamental Field can change the
entropy of the involved processes.

In series of crystallization experiments, we observed that
inside the same truncated octahedron, sodium chloride crys-
tals grow in salt solutions with concentrations far below the
saturated concentration and develop octahedral shapes like di-
amonds instead of cubic.

The most widely accepted law that predicts the flowrate of
mono-sized grains through an orifice and its dependence on
different parameters was proposed by Beverloo, Leniger and
van de Velde [48, 49]. They have shown that under otherwise
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Fig. 4: Time series of the alternating measurements of the hourglass
duration (s) inside the truncated octahedron (pyramid) and outside.

constant conditions k, the mass flowrate W is proportional to
the square root of the gravity acceleration g:

W = k
√
g

This equation coincides with Torricelli’s law for the speed of
fluid flowing out of an orifice and allows for estimation of the
equivalent gravity reduction ∆g that corresponds to the ratio
of the measured durations inside and outside the octahedron:

∆g = g

(
toutside

tinside

)2

− g

Table 1 contains representative samples of the durations mea-
sured inside and outside the truncated octahedron and the cal-
culated corresponding equivalent gravity reduction in units of
g. Fig. 1 shows time series of the alternating measurements.

series out, s inside, s inside/out-1, % ∆g

1 474 481 1.48 -0.283
2 472 481 1.91 -0.364
3 472 480 1.69 -0.324
4 472 479 1.48 -0.285
5 472 480 1.69 -0.324
6 473 480 1.48 -0.284
7 474 481 1.48 -0.283
8 473 479 1.27 -0.244
9 472 480 1.69 -0.324

10 474 481 1.48 -0.283
average 473 ± 1 480 ± 1 1.57 -0.300

Table 1: The measured duration (s) of the 8-minute hourglass inside
the truncated octahedron and outside, the relative deviation and the
equivalent gravity reduction in units of g.

Over all series of the total 255 hours of measurements, the
fluctuation level of the hourglass durations inside and outside
the truncated octahedron did not exceed 0.2 %. The relative
difference of the durations inside and outside the octahedron
did not fall below 1.2%. The average relative difference was

1.67% that corresponds to an equivalent gravity reduction of
-0.324 g inside the octahedron. Outside the octahedron, this
amount of gravity reduction would correspond to an altitude
of 100 km over sea level.

Only inside the described truncated octahedral container
we observed a stable significant deviation in the duration of
the hourglass, regardless of the location and time. In contain-
ers of different shape and size, even made of the same 1/16
aluminum sheet, the measured deviations did not exceed the
average fluctuation level of the hourglass duration.

Currently we have no explanation for the extraordinari-
ness of the octahedral (pyramidal) shape. However, in Fins-
lerian multi-dimensional time models, the pseudo-Euclidean
light cone becomes a light pyramid [50].

Conclusion

We are aware that our experiments cannot claim to be con-
clusive. However, they could point out that gravity is not just
about the amount of the involved masses and energies. It may
well be that ‘subtle’ factors like the spatial configuration of
the system and its scale have higher influence than expected.
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It is shown than, in the framework of the Janus Cosmological Model the gravitational
instability which occurs in the negative sector makes an imprint in the positive one,
which corresponds to the CMB inhomogeneities. So that their characteristic wavelength
gives the ratio of the space scale factors of the two sectors, which differ from two orders
of magnitude. Subsequently the speed of light in the negative sector is ten times highers
than ours. So that, given to distant points, if the travel between them is managed along
the negative geodesics paths, the corresponding travel time is reduced by a factor one
thousand.

1 Introduction

A cosmological model must take account of the observations.
From this point of view a recent paper [1] showed that the the
Janus Cosmological Model (JCM) fits many.
• JCM explains the absence of observation of the so call-

ed primeval antimatter, opposite to the mainstream
ΛCDM model.

• JCM describes precisely the nature of the invisible
components of the universe, opposite to the mainstream
ΛCDM model.

• JCM predicts that the antimatter produced in laboratory
will react as the matter with respect to the gravitational
field of the Earth (it will fall).

• Because positive and negative matter are repelling each
other, the negative matter in the solar system is almost
zero. So, JCM fits the classical relativistic observation,
as presented in former papers [2, 3].

• JCM suggests a clear schema for VLS formation [4]
when the mainstream model ΛCDM seems to struggle
to give one.

• JCM explains the observed strange effect due to the
Great Repeller [5]. The measured escape velocities of
galaxies are due to the presence of an invisible repellent
cluster made of negative mass, located in the centre of
the big void. The mainstream model supporters suggest
that such a repellent effect could be due to some kind
of a hole in the dark matter field of the universe (pos-
itive masses). But, if the gravitational instability leads
to the setting up of massive clusters, it does not provide
ant scheme for such void formations. So that the main-
stream model ΛCDM does not provide any explanation
of the observation.

• JCM explains the confinement of galaxies and their flat
rotation curves [1, 6]. Mysterious dark matter is no
longer required, while the mainstream model ΛCDM
does.

• After JCM the intensity of the observed gravitational
lensing effect is mainly due to the negative matter that
surrounds galaxies and clusters of galaxies. Mysterious

dark matter is no longer required, while the mainstream
model ΛCDM does.

• JCM suggests an explanation of the low magnitude of
very young galaxies: this would be due to the negative
lensing weakening, when their light are crossing the
negative mass clusters located at the center of the big
voids.

• JCM explains the spiral structure of galaxies, due to dy-
namical friction with the surrounding mass [1, 6]. The
model ΛCDM don’t give any model explaining the spi-
ral structure.

• JCM explains the acceleration of the universe [1]. The
so-called dark energy is the one associated to the nega-
tive mass content through E = ρc2, with ρ < 0.

• JCM explains the homogeneity of the primeval uni-
verse [2, 16].

JCM is definitively not a simple or pure product of math-
ematical physics. But it represents a deep paradigmatic chan-
ge, on geometrical grounds. In the Einstein’s model the uni-
verse is considered as a manifold, whose geometry corre-
sponds to a single metric field , solution of a single field equa-
tion, without cosmological constant:

Rµν −
1
2

R gµν = χTµν . (1)

Such model automatically generates the unmanageable run-
away effect [7, 8], just because, if imbedded in a given grav-
itation field (the term Tµν), positive and negative masses re-
act the same way (a single metric solution gµν). If we give
up such restrictive and non-logical hypothesis it means that,
imbedded in a given gravitation field the geodesics of the two
species derive from two metrics fields g(+)

µν and g(−)
µν , solutions

of two coupled field equations, as derived from Lagrangian
method [9, 10].

R(+)
µν −

1
2

R(+) g(+)
µν = +χ

T (+)
µν +

√
g(−)

g(+) T (−)
µν

 ,
R(−)
µν −

1
2

R(−) g(−)
µν = − χ

T (−)
µν +

√
g(+)

g(−) T (+)
µν

 .
(2)
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The physical meaning of the presence of the two square
roots in the second members is the energy conservation re-
quirement. We have a single manifold M4, with two tensor
fields T (+)

µν and T (−)
µν , which refer to positive and negative mass

contents. In some regions T (+)
µν dominates, in other T (−)

µν dom-
inate. In others the two are zero. In any case we find every-
where two families of geodesics, as derived from the metric
g(+)
µν and g(−)

µν . The first refers to the paths of positive mass par-
ticles, and positive energy photons (null positive geodesics).
The second refers to the paths of negative mass particles, and
negative energy photons (null negative geodesics).

On pure geometric grounds the negative mass objects are
invisible to us, because they emit negative energy photons
that positive mass devices cannot capture. And vice versa.
The positive and negative masses interact only trough (anti)
gravitation.

The classical Newton’s law comes from the Einstein’s
equation (1) through Newtonian approximation (small curva-
ture, velocities small with respect to the speed of light, quasi
Lorentzian metric).

Similarly from the system (2) we get [3,11] the following
Newtonian, and antinewtonian interaction laws:
• Positive masses do attract together, through Newton’

law;
• Negative masses do attract together, through Newton’s

law;
• Opposed masses do repel each other, through anti New-

ton’s law.
This interaction scheme fits the action-reaction principle.

The nature of the invisible components of the universe are
determined from dynamic group theory [6, 12]. They are a
copy of the ordinary antiparticles, with negative energy. This
schema fits initial Sakharov’s idea [13–15].

As evoked in [17], JCM may produce an original scheme
for galaxies’ formation. The structures of the positive and
negative sectors are fairly different. After discoupling, with
ρ− � ρ+, spheroidal globular clusters form first, the matter
being confined in the remnant place, getting an alveolar struc-
ture. The compression of positive matter along flat structure
is optimum for radiative cooling and Jeans’ instability trig-
gering, giving galaxies, stars and heavy atoms. At the con-
trary the negative mass antimatter is confined in spheroidal
objects, that can be compared to huge proto-stars that will
never ignite because their cooling time is longer that the age
of the universe. As a consequence no galaxies, no stars, no
heavy atomes and planets can form. Life is absent from such
negative world.

2 A short remark about another model with negative
mass

The model of L. Blanchet and G. Chardin is based on the
Einstein’s equation, so that the runaway effect belongs to it,
which does not worry the authors.

Their scheme suggests, without theoretical grounds, that
the primeval antimatter could have a negative mass.

From the Einstein’s equation the interaction laws between
positive and negative masses is the following (which contains
the runaway effect):

• Positive masses mutually attract through the Newton’s
law;

• Negative masses mutually repel through “anti-New-
ton’s law”;

• Positive masses are repelled by negative masses;
• Negative masses are attracted by positive masses;

which contradicts the action-reaction principle. Howevever
L.Blanchet and G.Chardin think that, thanks to such inter-
action scheme the primeval (negative mass) antimatter could
have survived somewhere.

About cosmological evolution the authors opt for the
Dirac-Milne model [17], which corresponds to a constant null
gravitational field, with a constantly global zero mass. Then
the expansion is linear in time, which contradicts the recent
observation of the acceleration of the expansion.

JCM shows that there are two forms of antimatter. The
positive mass, we can call it “Dirac antimatter” (C-symmet-
rical of our matter) reacts as the ordinary matter, if imbedded
in a gravitational field This is the antimatter we produce in
laboratory, so that we predict that the antimatter weighted if
the alpha experiment will fall down.

The negative mass antimatter corresponds to the primeval
antimatter and is located between galaxies. We may call it
“Feynmann antimatter” (PT-symmetrical from our ordinary
matter).

3 How to determine the parameters in the negative
sector

According to the “variable constants” evolution schema [2,
16] the two sectors correspond to two different sets of so-
called constants, time plus scale parameters:{

c(+); G(+); h(+); e(+); m(+); µ(+)
0 ; a(+); t(+)

}
,{

c(−); G(−); h(−); e(−); m(−); µ(−)
0 ; a(−); t(−)

}
.

(3)

Where are space and time factors. In both sectors the so-
called constants and space and time factors experience “joint
gauge variations” which keep the equations of physics invari-
ant. It means that if one chooses one of the eight parameters
the other seven can be expressed using that one. For example:

c(+) ∝
1
√

a(+)
, G(+) ∝

1
a(+) , h(+) ∝ (a(+))3/2 ,

e(+) ∝
√

a(+) , m(+) ∝ a(+) , t(+) ∝ (a(+))3/2 ;

c(−) ∝
1
√

a(−)
, G(−) ∝

1
a(−) , h(−) ∝ (a(−))3/2 ,

e(−) ∝
√

a(−) ; m(−) ∝ a(−) , t(−) ∝ (a(−))3/2 .

(4)
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What is the ontological justification of such process? It
makes no necessary to invoke inflation to justify the observed
homogeneity of the primeval universe. In effect, the cosmo-
logical horizon becomes an integral [2, 16]:

horizon(+) =

∫
c(+) dt(+) ∝ a(+). (5)

Same thing in the “negative sector”.
A question arises immediately: when does this general-

ized gauge process era ends? This will be examined in a next
paper.

Have a look on the Jeans’ lengths L(+)
J and L(−)

J and times
Jeans t(+)

J and t(−)
J . In this gauge process all the velocities,

including thermal velocities, vary like the speed of light of
their corresponding sector:

〈V (+)〉 ∝ c(+) , 〈V (−)〉 ∝ c(−) (6)

so that

L(+)
J ,' a(+) , t(+)

J ' t(+) ,

L(−)
J ,' a(−) t(−)

J ' t(−) .

(7)

The fluctuations, due to gravitational instability are not
observable in a given sector, by observers who live in.

Anyway, in a fully ionized plasma the strong link to the
radiation backgrounds prevents clustering of matter in both
sectors. What about the “gas of photons”?

4 Photons react to gravitational field

This gives the gravitational lensing effect. On another hand
the photons contribute to the curvature. If the inertial mass of
the photon is zero, we can introduce an individual equivalent
gravitational mass of the photon:

m(+)
ϕ =

h(+) v(+)

c(+)2 ∝ a(+) ∝ m(+) ,

m(−)
ϕ =

h(−) v(−)

c(−)2 ∝ a(−) ∝ m(−) .

(8)

We may consider than the gravitational instability occurs
in the “gaz of photons” but the corresponding Jeans’ length
becomes:

L(+)
J =

c(+)√
4 πG(+) ρ(+)

' a(+) ,

L(−)
J =

c(−)√
4 πG(−) ρ(−)

' a(−) ,

(9)

again, such fluctuations in one sector cannot be observed by
an observer that belongs to, because it extends beyond the
corresponding cosmological horizon. But, from a concep-
tual point of view, this links to the idea of so-called “mul-
tivers”. Beyond our cosmological universe we may consider

that other “universes” extend, with different sets of physical
constants and scale factors. But, as such they should obey the
same equations, their histories would not be different from
ours, giving, in the corresponding positive sectors, atoms,
stars, galaxies, planets and life.

We get an infinite set of coupled (positive/negative mass)
portions of the universe.

If the gravitational instability cannot occur in our sector
of the universe, before decoupling, we have the imprint of
such primeval instability, which occurs in the negative sector.
We think that this produces the light inhomogeneities in the
CMB.

The basic fluctuation extent is two order of magnitude
smaller than the whole angular extent. It gives directly the
order of magnitude of the ratio of the space scale factoirs. In
the negative sector the fluctuations have a characteristic wave-
length, so that the measure of the imprints in our sector gives
the order of magnitude according to:

a(−)

a(+) ≈
1

100
. (10)

As a conclusion, if we consider two points A and B of the
manifold, we have two different lengths, which differ from
the same ratio.

5 Link to the interstellar travel problem

During the gauge process era the two sectors experience evo-
lution of their constants according to:

a(+) c(+)2 = a(′) c(′)2 = constant. (11)

Combining with (10) we get:

c(−)

c(+) ≈ 10. (12)

According to the Einstein’s model (1), interstellar travels
at sub-relativistic velocity implies durations fairly incompat-
ible with human lifetime. But if some distant civilizations
could invert the mass of a vehicle (plus passengers) and travel
along geodesics of the negative sector at V (−) < c(−) the gain
in time travel would correspond to three order of magnitude.
So that a travel to, or from the nearest systems could be pos-
sible.

6 Conclusion

We review the many observational confirmations of the Janus
Cosmological Model. We deal with the origin of the fluc-
tuations in the CMB. Based on our primeval gauge process
era, which explains the homogeneity of the primeval uni-
verse, without need to the inflation schema, we look at the
gravitational instability during that era and show that the cor-
responding Jeans’s length follows the extension of the cos-
mological horizon in both sectors. We notice that, even if we
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cannot make observation beyond the horizon, other portions
of the universe could be ruled by different sets of so-called
constants and scale factors. This links to the idea of “Multi-
verse”. But, according to ou scheme such sets should derive
from the same set of equations, so that the physical, an bio-
logical evolution in such sectors should give the same patter
(atoms, stars, planets, life).

We point out that such primeval gravitational instability,
occurring in the negative sector, make an imprint in ours, and
that corresponds to the observed fluctuations in the CMB.

Then it gives the measure of the ration of the two scale
factors a(+)

a(−) ≈ 100.
According to our gauge process scheme it corresponds to

c(−)

c(+) ≈ 10.
As a conclusion it shortens the travel time, for sub-relativ-

ist journeys, by a factor 1000, which makes the impossibility
of travels to nearest stars questionable, if mass inversion tech-
nique would be someday possible.
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The absence of a Coulomb barrier in the interaction of the Vacuum-Like State of Mat-
ter with normal matter is the basis of the phenomenology of the Project of the New
(Additional) G~/ck-Physics “Outside” the Light Cone.

“Of course, the most intriguing question is whether NEC-
violation fields exist in Nature. Needless to say, no such fields
have been discovered. The situation is not entirely hopeless,
however: we may learn at some point in future that Uni-
verse went through the bounce or Genesis epoch, and that
will be an indication that NEC-violation indeed took place in
the past” [1].

Closely adjoins this problem the phenomenology of the
extension of the Standard Model/SM (as the possibility of
two-valued/± vacuum states), the formulation of which is sti-
mulated by observations (1956/USA, 1965/USA, 1967/Rus-
sia, 1975/USA, 1975/England, 1975/Canada, 1987/Russia,
1982–1990/USA, 2003/USA) anomalies of annihilation of
β+-decay positrons (β+-orthopositronium) in the system

22Na (3+)
e+
β+ν

−−−−−→ 22∗Ne (2+)
γn'1.274 MeV
−−−−−−−−−−−−→

22Ne (0+) − gaseous neon (8.86% 22Ne).

The necessary definiteness in the construction of the mo-
del to explain the anomalies in neon is the result of our crit-
ical experiment [2] (the hypothesis about paradoxical real-
ization of the Mossbauer effect/EM): at the indicated “reso-
nance conditions” there is doubling 1.85 ± 0.1 of the contri-
bution of the orthopositronium component I2 of the lifetime
spectra of the β+-positrons e+

β at decrease in the fraction of
the isotope 22Ne in the natural isotope composition — from
8.86% to 4.91% — in the sample for comparison. From the
SM position, the possible change in I2 is vanishingly small:
10−7 − 10−6.

Self consistent phenomenology in the proposed model is
formulated with reference to the results and conclusions of
a number of creative searches for theorists (1962–2012) —
by including in the final state of the β+-decay of nuclei 22Na,
64Cu, 68Ga and the like (∆Jπ = 1π) of the bounded 4-volume
of space-time “outside” the Light Cone, instead of counter-
productive phenomenology “tachyon, as a particle” [3].

Otherwise, it is impossible to explain the “isotope ano-
maly”.

It is necessary to return to this fact ignored by the sci-
entific community: among the known and presumed vacuum

effects — from the Lamb shift of atomic levels and Casimir
effect to the birth of the universe “in the Laboratory” [1, 4]
— there is no discussion of a paradoxical realization of EM
in the “resonance conditions”.

The effect can be represented as the result of a Topo-
logical Quantum Transition/TQT of a bounded 4-volume of
space-time in the final state of β+-decay into a two-valued/±

Vacuum-Like State of Matter/VSM“+′′ “Through the Looking
Glass”/TLG“−′′ — Long-Range Atom/LRA with a LRA Core.
In phenomenology, this is a kind of realization of a string (the
Hamiltonian chain), at the nodes of which there are quasi-
particles of all the ingredients of stable matter – quasiprotons
( p̄), quasielectron (ē), quasineutrino (ν̄) [2, 3].

According to the SM, negative masses are not physically
realized, since otherwise such physical states would be unsta-
ble with respect to the catastrophic generation of an unlim-
ited number “particle-antiparticle” pairs (disintegration of the
vacuum). The prohibition of such “pathological states” un-
derlies the Weak Energy Condition/WEC (NEC) of the Gen-
eral Relativity.

The model proposed in [3] of the LRA of the two-valued/

± Planck mass

±MPl = ±

√
(±~) · (±c)

G
, G > 0,

with the total number of cells/nodes

±N(3) =
±MPl

±m p̄ ± mē ± mν̄
' 1.3 · 1019

and a LRA Core [5]

±n ' 5.3 · 104,

in the final state of the β+-decay type ∆Jπ = 1π stops the dis-
integration of the vacuum and substantiated the EM in “reso-
nance conditions”.

The main thing is that presented model is based on the
assumption of a fundamental difference between the QED-
orthopositronium formed in the substance as result of the pro-
duction of the e+ − e− pair from the β+-orthopositronium/β+-
o-Ps, since it is possible to justify [3] that in the process of
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formation and lifetime β+-o-Ps in the substance a supersym-
metry is realized [6]. The process is limited by the lifetime
of β+-o-Ps, which, being formed “inside” the Light Cone —
oscillates due to single-quantum (virtual) annihilation.

So β+-o-Ps objectively formalized the status of the physi-
cal observer.

In this case, the causality principle (global) is realized as
a local causality principle due to the presence of β+-o-Ps.

Because of the fundamental difference in the radii of in-
teractions — infinite radius for electromagnetic and gravita-
tional interactions and submicroscopic radii of “nuclear” in-
teractions (weak ones, rw ∼ 10−16 cm and rstr ∼ 10−13 cm) —
there is no Coulomb barrier at interaction the LRA Core with
ordinary substance.

In the gravitational field of the ground laboratory, the two-
valued/± components of the LRA Core (VSM“+′′ / TLG“−′′ )
diverge vertically by a distance hG in the vertical during the
lifetime of β+-o-Ps (τo−Ps 6 1.42 · 10−7 s)

hG = 2 ·
g τ2

o−Ps

2
6 10−11 cm.

Since hG � rw and rstr, in the final start of the β+-decay of
22Na, 64Cu, 68Ga nuclei (TQT in the presence of β+-o-Ps) at
the nodes of the LRA Core, the quasiprotons of the VSM“+′′

( p̄) are released (decompensation of the baryon charge) but
the electric charges of the quasiprotons and the charges of the
quasi-electrons of the VSM“+′′ ( p̄+, ē−) are compensated by
the TLG“−′′ ( p̄−, ē+).

This means that there is no Coulomb barrier in the interac-
tion of the LRA Core with the nuclei of the substance atoms.
As a result, a Rigid Body/RB is formed (22Ne) in the system

22Na (3+) −→ 22∗Ne (2+) −→
22Ne (0+) − gaseous neon (8.86% 22Ne).

by way exchange interaction of the quasiprotons of the 22Na
nuclei from gas with the quasiprotons of the LRA Core at
nodes (n̄) during the lifetime of the β+-o-Ps (τβ+−o−Ps 6 1.42 ·
10−7)-collectivization of the γn-quantum (“resonance condi-
tions” — the Mössbauer effect)

∗22Ne (2+)
γn'1.274 MeV
−−−−−−−−−−−−→ 22Ne (0+).

It is interesting that the ratio of the macroscopic dimen-
sions of the LRA to the size of the LRA Core on the order
of magnitude is equal to this ratio for atoms of the ordinary
substance

3

√
N(3)

n̄
'

rH

rp
' 105,

where rH and rp, respectively, are the radii of the hydrogen
atom and the proton.

Conceptually, the stated phenomenology seems to have
for a long time been foreseen:

“A week energy conditions is not satisfied for the ‘C-field’
proposed by Hoyle and Narlikar 〈[7]〉, which is also a scalar
field m = 0; only this time the energy-momentum tensor has
the opposite sign and, consequently, the energy density is neg-
ative. In view of this, simultaneous production of quanta of
fields with positive energy and C-field with negative energy
is possible. This process take place in a stationary universe
proposed by Hoyle and Narlikar, in which, as the particles in-
crease, a new substance is continuously created as a result of
the general expansion of the universe, so that a constant av-
erage density is maintained. However, such a process causes
difficulties in terms of quantum mechanics. Even if the cross
section of such process is very small, the presence of an infi-
nite phase volume for quanta of positive and negative energy
would lead to the production of an infinite number of pairs in
a finite region of space-time” [8].

With the adoption of the considered model, the process of
real one-quantum annihilation of the β+-o-Ps is

β+–o–Ps/p-Ps′ −→ γU±(γ◦/2γ′),

where γ◦ is a notoph [9], p-Ps′ is a parapositronium in the
TLG, γ′ is a photon/notoph in TLG and β+-decay of nuclei of
the type ∆Jπ = 1π with “resonance conditions” (EM) in the
final state of the TQT [2, 3]

22Na (3+)
e+
β + ν + U±

−−−−−−−−−→ 22∗Ne (2+)
γn'1.274 MeV
−−−−−−−−−−−−→

22Ne (0+) − gaseous neon (8.86% 22Ne).

At the same due to the interaction of the neon atoms from
the gas (90.88% 20Ne, 0.26% 21Ne) with the lattice nodes of
the LRA Core, a quasi-nucleus [22Ne– p̄] ⇔ 22Na is formed,
since the nuclear-mass defect 23Na (−9.5296) is maximal in
comparison with 22Na (−5.1840) and 21Na (−2.1858).

The model realizes the thought first expressed in the re-
port of M. Faraday to the Royal Society “On the possible
connection of gravity to electricity” (November 28, 1850)
— “A long and unchanging conviction that all the forces of
Nature are in mutual communication, having a common or
rather, representing different manifestations of the single ba-
sic force. . . ” — the connection of physical interactions, in-
cluding strong and weak (electroweak) interaction [10], open
in the twentieth century.
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Stable particles of the Universe — protons and electrons — are in constant motion
(there is a background component of their velocity), which is the source of the vacuum
energy, explains the non-Newtonian vacuum potential and the curvature of space and
determines the values of the gravitational and cosmological constants. This follows
from the balance of interactions between a free electron and a proton, provided that
there are no electrical forces and external influences.

1 Introduction

The origin and nature of the gravitational constant γ and, in
particular, the cosmological constant Λ, introduced by Ein-
stein into the equations of the general theory of relativity, are
still the subject of discussion [1–3]. The cosmological con-
stant determines the non-Newtonian gravitational forces and
characterizes the curvature of empty space, as if additional
mass or energy was introduced into it, and has a dimension
of m−2.

One of the points of view is that the vacuum itself is ma-
terial, and the space containing it rotates. That is, for the
Universe being in the stationary state, it is necessary that the
inertial forces field generated by rotation compensate for the
vacuum gravitational attraction [3]. However, the question
arises, is it really necessary to endow vacuum with a mass
and space with rotation to maintain such a balance?

Indeed, there is a geometrodynamic concept (J. Wheeler
et al. [4, 5]), in which, in fact, the materiality of space it-
self is postulated, and in this space the initial one-dimensional
spatial elements can be organized into the three-dimensional
objects that one can observe. Then the original primary ele-
ments, if they are real entities, not mathematical abstractions,
should in its physical incarnation be vortex structures being
based on the phase boundary (surface).

So, according to Wheeler, charged microparticles are sin-
gular points on the three-dimensional surface of our world,
connected by a “wormhole”, i.e. a vortex tube or a power
current line (of the input-output kind) located in an additional
dimension. As a result, a closed contour is formed which a
physical vacuum or some medium circulates along. Wheel-
er’s idea, even in a simple mechanistic interpretation, allows
to use macroanalogies successfully for objects of any matter
organization levels: see [6, 7] etc. In particular, in determin-
ing the speed of light, it was sufficient to apply Wheeler’s
scheme for a single closed proton-electron contour [8].

2 The gravitational constant in geometrodynamics

Let us consider, as in the case of determining of the light
speed, a single spatial-material cell, where there is a balance
of forces acting between a proton and an electron. Assume
that in this case the particles are in a free state, not bound

to an atom, and there are no electrical forces and external
influences. That is, it is assumed that a hydrogen atom is
formed only when the particles approach the distance of the
Bohr radius, and as for the atom larger size (the excited state),
it arises only when the atom receives additional energy.

Indeed, if the contour is not closed, then the “photon ex-
change” does not occur, and there are no electric forces be-
tween the proton and the electron, and the electron can not
“rotate” around the proton if the distance between them ex-
ceeds the Bohr radius. Then, in the state of equilibrium parti-
cles must move rectilinearly, changing only their mutual po-
sition. The particles themselves, according to Wheeler, if
the contour is open, can be considered as single-pole vor-
tex formations. They interact with each other through gravity
and also retain the magnetic interactions between their vortex
tubes (force lines) extending into “extra” dimension. These
forces between the particles must be compensated by the in-
ertial quasi-centrifugal forces, determined in the case of rec-
tilinear motion of particles with respect to the instantaneous
radius equal to the distance between the particles.

We recall that in [6, 7] the formula for electric and mag-
netic forces are written in the “Coulombless” form, where the
charge is replaced by the electron ultimate momentum. It is
assumed that the unit element of such a tube is an element
having the size of the classical electron radius re and its mass
me. In this case, the electric and magnetic constants have the
form:

ε0 =
me

re
= 3.23 × 10−16 kg/m, (1)

µ0 =
1
ε0c2 = 0.0344 N−1, (2)

where me, re, c are the electron mass, the electron radius, and
the light speed. The balance between magnetic, inertial and
gravitational forces has the form:

ze1 ze2 µ
−1
0

l
2πr

(
re

c × [sec]

)2

+ zg1 zg2 µ
−1
0
ε0γ/c2

r2 =

zg µ−1
0

(v0/c)2

r
, (3)

where l, r, v0, ze, zg are the relative length of the vortex tube
in units of re, the relative distance between the particles in

A. V. Belyakov. On the Nature and Values of the Gravitational and Cosmological Constants 233



Volume 14 (2018) PROGRESS IN PHYSICS Issue 4 (October)

units of re, the relative to each other velocity of the particles,
the relative charge and mass in electron charges and masses.
Making transformations and neglecting the electron mass, we
represent (3) in the form:

r
l

mp

r2
e

2π × [sec2]
− rv2

0 = ε0γ , (4)

where mp is the relative proton mass in units of me. Thus,
an equation has been obtained having the velocity squares di-
mension, and these terms of the equation are proportional to
the energies of the corresponding interactions.

As for the vortex tube length, then a < l < mp (a is the fine
structure inverse constant), since the electron spin (aremec/2)
means the presence of either a “hidden” mass or a linear pa-
rameter in its structure which is increased not less than 137
times with respect to the electron standard parameters, even
if the spin speed of rotation is equal to the light speed. On the
other hand, l can not exceed of the proton vortex tube length
(with correction for the projection angle) [7].

To maintain the equilibrium state, the velocity v0 must be
constant for any distance between particles, including for lim-
iting cases. Neglecting the gravitational component at r → ∞
and l = mp, we obtain from (4):

v0 =
re

(2π)1/2 × [sec]
= 1.12 × 10−15 m/sec. (5)

Neglecting the magnetic component, when the distance
between the particles is equal to the Bohr radius RB, i.e. for
r = a2, we obtain:

v0 =
(ε0γ)1/2

a
= 1.07 × 10−15 m/sec, (6)

which actually coincides with the previous value. It can be
reasonably assumed that this velocity is constant throughout
the entire range of distances between particles — from the
Bohr radius size to infinity — and it is a fundamental value,
so that one can derive a formula for the gravitational constant.
Bearing in mind (4) and (5), we obtain:

γ = r
(
1 −

l
mp

)
v2

0

ε0
. (7)

At the Bohr radius distance, substituting r = a2, l = 137 and
the v0 value, we find γ = 6.79 × 10−11 m3kg−1sec−2, which
is close to the actual value. Since γ = const, an increase
in the distance between particles must be accompanied by in
the vortex tubes length increase (the “hidden” mass) up to the
value mp.

We note that homogeneous particles behave otherwise.
From the balance of interactions it follows that the free elec-
trons must come together, and the free protons, on the con-
trary, move away from each other, starting from some dis-
tance between them. This difference, perhaps, contributes to
the separation of particles in outer space.

The correct value of the gravitational constant for a single
proton-electron unit cell has been obtained, and its value does
not change when passing to cosmological scales. This gives
grounds to believe that this scheme can be extended to the
Universe level as a whole.

3 The cosmological constant

The equation (4) can be interpreted in the sense that the grav-
itational energy proportional to ε0γ is, as it were, a back-
ground or additional constant that ensures the equilibrium
state of an elementary space-material cell regardless of its
size, and the motion of free particles with velocity v0 is some-
thing similar to cosmic “Brownian motion”. Within the fra-
mework of this model, it is this motion of free particles that,
when passing to cosmological scales, creates its own vacuum
potential (which is perceived by an external observer as a
manifestation of non-Newtonian forces) and determines the
cosmological constant magnitude.

The inverse quantity Λ−1 can be regarded as the surface
area on which the inertial forces, arising during rotation of
the Universe as a whole with a background velocity v0 over
some radius L, act.

These forces counteract gravitational forces. In this case,
the magnetic forces can be neglected, since in space macro-
bodies are in general electrically neutral. For the Universe
being in equilibrium state, taking into account only the forces
associated with masses, bearing in mind (4), one can write
down the balance of pressures produced by these forces:

Mε0γ

L3 =
Mrv2

0

L Λ−1 , (8)

where M is an arbitrary mass, L is a linear parameter (radius).
The balance does not depend on the mass of the Universe,

but depends on its parameter L. Both the shape of the Uni-
verse and the position of its center are undefined, and any of
its points can be taken as the center of rotation, so its volume
can be taken equal to L3, and the radius of rotation is equal to
the parameter L. In [9] the basic parameter of the Universe Lv
is uniquely defined as the length of a vacuum structural unit
(vortex tube):

Lv =
R2

c

RB
, (9)

where Rc is a mean geometric, the linear parameter obtained
from the balance of electric and magnetic forces and equal
to (2π)1/2c × [sec] = 7.51 × 108 m. The parameter Lv is the
greatest length to which the lowest peripheral speed v0 corre-
sponds.

The formal increase in the kinetic energy component in
formula (8) a multiple of r, while maintaining the balance
of pressures, requires that in this case there should be L =

Lvr−1/2, so the parameter r in (8) is reduced. As a result,
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referring to (5), (9) and revealing Rc and RB, (8) we obtain:

Λ =
ε0γ

(Lv v0)2 =
1

2π

(a
c

)4
ε0γ × [sec−2] =

= 1.49 × 10−52 m−2, (10)

and such a value must correspond to the equilibrium state of
the Universe. At present, based on the assumed age of the
Universe, the value of Λ is estimated at 10−52 m−2 [10].

Perhaps there are regions of space filled with free elemen-
tary particles that are not bound to atoms (voids). Then it is
necessary to consider the sum of set of unit elementary cells,
taking into account the magnetic forces, and then the sum in
brackets in an analogous formula is close to one:

Λ =

 l
mp

+
ε0γ

rv2
0

 1
L2 ≈ L−2. (11)

In this case, there is a trivial uncertain result, depending only
on the region size Λ−1/2.

As for the hypothetical form of the Universe, the ratio
Lv/Λ−1/2 = 130.6 is a very characteristic value close to a.
Let us assume that the properties of vorticity and helicity are
inherent in the structure of the Universe as a whole, as well
as of its constituent units. Then the size Λ−1/2 = 8.2 × 1025

m can be associated with the diameter of its vortex tube, and
the size Lv = 1.06 × 1028 m with the size of a spiral turn,
the number of turns is indeterminate and they are directed
along the time axis to infinity. Note that this size has the same
order of magnitude as the ultimate radius of the event horizon
(0.59 × 1028 m), calculated by di Bartini [11]. Some hints
on the unusual form of the Universe are found in [12], where
cosmological effects are given, which the authors explain by
the shape of the Universe resembling a horn or a saddle.

4 Conclusions

The stable particles of matter — protons and electrons are in
continuous motion (the background component of its veloc-
ity). This follows from the balance of magnetic, gravitational
and inertial interactions under the condition that there are no
electrical forces and external influences. At cosmological
scales, the field of inertial forces generated by their motion
compensates for the gravitational attraction of the Universe
matter as a whole. It is this balance applied to a unit cell
containing a proton and an electron that determines the grav-
itational constant value, and, as applied to the Universe as a
whole, determines the cosmological constant value. From the
observer’s point of view, Λ-field manifests itself as a result of
the action of non-Newtonian gravitational forces, and there-
fore there is no need to involve dark energy and dark matter
to substantiate this field.

Submitted on September 18, 2018
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