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SPECIAL REPORT

WMAP: A Radiological Analysis

Pierre-Marie Robitaille
Dept. of Radiology, The Ohio State University, 130 Means Hall, 1654 Upham Drive, Columbus, Ohio 43210, USA

E-mail: robitaille.1@osu.edu

In this work, results obtained by the WMAP satellite are analyzed by invoking
established practices for signal acquisition and processing in nuclear magnetic
resonance (NMR) and magnetic resonance imaging (MRI). Dynamic range, image
reconstruction, signal to noise, resolution, contrast, and reproducibility are specifically
discussed. WMAP images do not meet accepted standards in medical imaging
research. WMAP images are obtained by attempting to remove a galactic foreground
contamination which is 1,000 times more intense than the desired signal. Unlike water
suppression in biological NMR, this is accomplished without the ability to affect the
signal at the source and without a priori knowledge. Resulting WMAP images have
an exceedingly low signal to noise (maximum 1–2) and are heavily governed by data
processing. Final WMAP internal linear combination (ILC) images are made from 12
section images. Each of these, in turn, is processed using a separate linear combination
of data. The WMAP team extracts cosmological implications from their data, while
ignoring that the ILC coefficients do not remain constant from year to year. In contrast
to standard practices in medicine, difference images utilized to test reproducibility are
presented at substantially reduced resolution. ILC images are not presented for year
two and three. Rather, year-1 data is signal averaged in a combined 3-year data set.
Proper tests of reproducibility require viewing separate yearly ILC images. Fluctua-
tions in the WMAP images arise from the inability to remove the galactic foreground,
and in the significant yearly variations in the foreground itself. Variations in the map
outside the galactic plane are significant, preventing any cosmological analysis due to
yearly changes. This occurs despite the masking of more than 300 image locations.
It will be advanced that any “signal” observed by WMAP is the result of foreground
effects, not only from our galaxy, but indeed yearly variations from every galaxy in
the Universe. Contrary to published analysis, the argument suggests there are only
questionable findings in the anisotropy images, other than those related to image
processing, yearly galactic variability, and point sources. Concerns are also raised
relative to the validity of assigning brightness temperatures in this setting.

1 Introduction

The WMAP satellite [1] was launched with the intent of
measuring the microwave signals present in space. It is wide-
ly held that these signals are anisotropic and relay informa-
tion relative to the creation and formation of the early Uni-
verse [1–27]. WMAP has been hailed as providing some
of the most important findings in science [2]. Reports by
Spergel et. al. [15] and Bennett et. al. [7] are highly cited
[28]. The ensemble of WMAP publications [3–26] appears
to constitute a phenomenal assortment of data. WMAP is
being praised both for its precision and the insight it provides
into the earliest stages of the formation of the Universe [1,
2]. NASA and the WMAP team of scientists, representing
the premier academic institutions [1], have made numerous
claims, most notably stating that their data enables them to
visualize what happened in the first trillionth of a second
after the Big Bang [27]. From data with a signal to noise
just beyond 1, a number of constants is provided relative to
the age of the Universe (13.7±0.2 Gyr), the amount of dark

energy (∼73%), dark matter (∼22%), and baryons density or
“real” matter (∼4%) [7, 25]. It is surmised that “decoupling”
occurred just after the Big Bang (379±8 kyr) at a redshift
of 1089±1. The thickness of the decoupling surface is
given as 195±2, and the total mass-energy in the Universe
(1.02±0.02) is also amongst the constants [7, 25].

WMAP does not measure the absolute intensity of any
given microwave signal. Rather, it is equipped with antennae
whose difference is constantly recorded. Thus, all WMAP
data represent difference data. The satellite is positioned
at the second Lagrange point of the Sun-Earth system, L2,
approximately 1.5 million km from Earth. At this position,
the Earth continually shields WMAP from the Sun, as they
each complete their orbits. The first year of data collection
extended from 10 August 2001 — 9 August 2002, with data
release in March 2003. A complete 3-year average data set,
spanning 10 August 2001 — 9 August 2004, was released in
March 2006.

The WMAP satellite acquires signals at five observation-
al frequencies: 23, 33, 41, 61, and 94 GHz. These are also
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Fig. 1: The five frequency bands observed by the WMAP satellite.
Images correspond to 23 GHz (K band, upper left), 33 GHz (Ka
band, upper right), 41 GHz (Q band, middle left), 61 GHz (V band,
middle right), and 94 GHz (W band, bottom). Reprinted portion of
Figure 2 with permission from Tegmark M., de Oliveira-Costa A.,
Hamilton A.J.S. A high resolution foreground cleaned CMB map
from WMAP. Phys. Rev. D, 2003, v. 68(12), 123523; http://link.aps.
org/abstract/PRD/v68/e123523. Copyright (2003) by the American
Physical Society.

known as the K, Ka, Q, V, and W bands. Images generated
at these bands are displayed in Figure 1. Final anisotropy
maps are prepared by combining the signals represented
in Figure 1 with particular weighting at 61 GHz. Maps for
each year are prepared individually and then combined “for
a number of reasons” [23]. Extensive image processing is
applied prior to generating the final anisotropy map (see
Figure 2). The noise level in the data sets depends on the
number of observations at each point. The major hurdle for
WMAP is the presence of the strong foreground signal from
our galaxy. In a sense, the WMAP team is trying to “look
through” the galaxy, as it peers into the Universe.

In recent years, WMAP results have been widely dis-
seminated both in the scientific literature and the popular
press. Nonetheless, there are sufficient questions relative to
the manner in which the WMAP data is processed and analy-
zed, to call for careful scrutiny by members of the imaging
community. The implications of WMAP are not only financ-
ial and scientific but, indeed, have the potential to impact the
course of science and human reason for many generations.
As a result, images which are the basis of such specific sci-
entific claims must adhere to standard practices in imaging
science. Consequently, and given the precision of the con-
stants provided by WMAP, it is appropriate to review the
underlying images and subject them to the standards applied
in radiological image analysis. These include most notably
signal to noise, resolution, reproducibility, and contrast.
These four characteristics represent universally accepted

Fig. 2: Cleaned internal linear combination (ILC) map produced
by the WMAP team [7]. This image corresponds to Figure 11 in
Bennett et. al. [7]. Reproduced with permission of the AAS. Image
provided courtesy of the NASA/WMAP team.

measures of image quality. However, before embarking on
this exercise, it is important to address dynamic range and
the removal of the galactic foreground. In addition, it is
useful to review the procedure which the WMAP team em-
ploys in image reconstruction.

2 Image analysis

2.1 Dynamic range and the removal of the Galactic
foreground

The WMAP satellite acquires its data in five frequency
bands. Five images obtained at these bands (K, Ka, Q, V, and
W) are displayed in Figure 1 [29]. The galactic foreground
dominates this entire series of images. The foreground is
seen as a bright red signal across the central portion of each
frequency map. Indeed, the center of the galactic foreground,
observed by WMAP, exceeds the desired anisotropic signal
in brightness by a factor of ∼1,000 [11]. Therefore, the
WMAP team is attempting to visualize extremely weak an-
isotropy in the presence of a much more powerful contami-
nating signal. This becomes a dynamic range issue analogous
to water suppression in biological proton nuclear magnetic
resonance (NMR).

Water suppression is an important technique in proton
NMR, since most compounds of biochemical interest are
typically found dissolved in the aqueous cytosol of the cell.
This includes a wide array of proteins, signal messengers,
precursors, and metabolic intermediates. Water is roughly
110 molar in protons, whereas the signal of interest to the
biochemist might be 1–100 millimolar. In the best case
scenario, biological proton NMR, like WMAP, presents
a ∼1,000 fold problem in signal removal. In the worst case,
factors of 100,000 or more must be achieved. Extensive
experience in biological NMR obtained throughout the world
has revealed that it is impossible to remove a contaminating
signal on these orders of magnitude without either (1) ability

4 P.-M. Robitaille. WMAP: A Radiological Analysis
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Fig. 3: Proton nuclear magnetic resonance (NMR) spectra acquired
from a 0.1 M solution of 0.1 M N-benzoyl-L-arginine ethyl ester
hydrochloride in water (A, B). The spectrum is shown in full scale
(A). In (B) the vertical axis has been expanded by a factor of 100,
such that the resonance lines from the N-benzoyl-L-arginine ethyl
ester can be visualized. A 1H-NMR spectrum acquired from 0.1
M N-benzoyl-L-arginine ethyl ester hydrochloride in deuterium
oxide (D2O) is also displayed (C). Spectra display only the central
region of interest (4.0–5.5 ppm). Acquisition parameters are as
follows: frequency of observation 400.1324008 MHz, sweep width
32,768 Hz, receiver gain 20, and repetition time 5 seconds. The
sample dissolved in D2O (C) was acquired first using a single
acquisition and a 90 degree nutation. A field lock was obtained
on the solvent. This was used in adjusting the field homogeneity
for both samples. For (A) and (B), 20 acquisitions were utilized to
enable phase cycling of the transmitter and receiver. In this case,
the nutation angle had to be much less than 90 degrees in order
not to destroy the preamplifier. A field lock could not be achieved
since D2O was not present in the sample. These slight differen-
ces in acquisition parameters and experimental conditions make
no difference to the discussion in the text relative to problems of
dynamic range.

to affect the signal at the source, and/or (2) a priori know-
ledge. Unfortunately for WMAP, neither of these conditions
can be met in astrophysics.

In NMR, ability to effect signal at the source requires
direct manipulation of the sample, either biochemically
through substitution, or physically, through specialized spin
excitation. Biochemical substitution involves the removal of
the protons associated with water, using deuterium oxide
(D2O) as an alternative solvent [30]. Often, the sample is
lyophilized [31]. That is, it is frozen and placed under
vacuum so that all of the water can be removed through
sublimation. The solvent is then replaced by the addition of
D2O. This process can be repeated several times to remove
most of the exchangeable protons contained in the sample.
The protons are hence replaced by deuterium, which is no
longer detectable at the frequency utilized to acquire the

desired proton NMR spectrum. Thus, in order to achieve a
factor of 1,000 in suppression, the biochemist, in the labora-
tory, often invokes a rather dramatic modification of the
sample at the source.

In Figure 3, a series of 1H-NMR spectra is presented.
Figure 3A corresponds to a mixture of 0.1 M N-benzoyl-L-
arginine ethyl ester hydrochloride in water. Since water is
110 M in protons, this solution constitutes roughly a 1,000
fold excess of water protons versus sample protons. Interest-
ingly, the only signal which can be detected in Figure 3A is
that of water at 4.88 ppm. The multiple resonances from the
N-benzoyl-L-arginine ethyl ester hydrochloride have about
the same intensity as found in the line width. In Figure 3B,
the same spectrum is reproduced but, this time, the vertical
scale has been expanded 100 times. Now, the resonances
from the sample are readily observed. The ratio of the water
resonance in Figure 3A or B to the quartet at 4.3 ppm is
670. Note, however, that a doublet pair, located at ∼4.63
ppm (Figure 3B) is being distorted by the intense resonance
line from water. This is easy to assess by examining Figure
3C, wherein a solution of 0.1 M N-benzoyl-L-arginine ethyl
ester hydrochloride was reconstituted in 99.8% D2O. In the
D2O spectrum (C), the ratio of the water resonance to the
quartet at 4.3 ppm is 21. In this case, the water line is greatly
attenuated, since most of the water protons have been re-
placed with deuterium. Indeed, substitution of D2O for water
(C) results in a 30 fold drop in the intensity of the water line.
With this sample, all of the resonances from the N-benzoyl-
L-arginine ethyl ester hydrochloride in the vicinity of the
water resonance can be visualized, including the doublet
pair, at 4.63 ppm. From this information, the ratio of the
water to the doublet pair at 4.63 ppm is ∼1,500.

Through Figure 3, it is easy to envision the tremendous
challenge involved in removing a contaminating signal
which dominates the species of interest by ∼1,000 fold. In
Figure 3B, it is readily apparent that the doublet pair at 4.63
ppm is being distorted by the water line. Consequently, the
presence of the intense water resonance affects spins which
are adjacent, not only co-resonant. The situation is actually
much worse for WMAP as the satellite is attempting to visu-
alize signals contained at the same frequency of observation
as the galactic foreground signals. In a sense, the WMAP
team is trying to see signals directly beneath the water line,
not adjacent to it. To further aggravate the situation, the
WMAP team is dealing with extremely weak signals, on
the same order of magnitude as the noise floor (see below).
Note that the obscured resonances at ∼4.63 ppm in the water
spectrum would still have a signal to noise of ∼5:1, if the
water line had not contaminated this region. This can be
gathered by comparing Figures 3B and 3C. For WMAP, the
signal to noise is less than 2:1, and the signal of interest is
located at the same frequency of the contamination.

Relative to dynamic range and removal of a contaminat-
ing water signal in NMR however, an alternative to replacing
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water with deuterium oxide exists. In fact, it is possible to
utilize specialized spin excitation techniques which either
exploit the position of the water line in the spectrum [32–
36] or invoke gradient and/or multiple quantum selection
[37–39]. Indeed, the approaches to water suppression and
dynamic range problems in NMR are so numerous that only
a few methods need be discussed to adequately provide ex-
perimental insight relative to WMAP.

If the experimentalist is not concerned with signals lying
at the same frequency of the water resonance, it is sometimes
possible to excite the spins in such a manner that the protons
co-resonating with water are nulled and other regions of the
spectrum are detected [32–36]. This approach is adopted
by methods such as presaturation [32], jump-return [33],
and other binomial sequences for spin excitation [34–36].
In each case, the spectral region near the water resonance
is sacrificed in order to permit the detection of adjacent
frequencies. Despite the best efforts, these methods depend
on the existence of very narrow water line widths. Water
suppression with these methods tends to be limited to factors
of ∼100. The situation in-vivo might be slightly worse given
the wider line widths typically observed in this setting.
Despite this apparent success, these methods fail to preserve
the signal lying “beneath” the water resonance. Such infor-
mation is lost.

In certain instances, it is also possible to excite the spec-
trum by applying specialized gradient-based methods and
quantum selection for spin excitation. In so doing, advantage
is made of the unique quantum environment of the spins.
These methods have the advantage that spins, which co-
resonate with water, are not lost. As such, water suppression
can be achieved while losing little or no chemical informa-
tion. The most powerful of these methods often have re-
course to gradient fields, in addition to RF fields, during spin
excitation [37–39]. These approaches have been particularly
important in the study of proteins in solution [39]. Using
quantum selection, it is not unreasonable to expect spin ex-
citation with factors of 1,000–10,000 or more in water sup-
pression.

Methods which rely on coherence pathway selection, or
hetero-nuclear multiple quantum selection, constitute impor-
tant advances to NMR spectroscopy in general, and protein
NMR in particular [39]. In the absence of these methods,
modern aqueous proton NMR would be impossible. In fact,
over the course of the last 50 years, it has been amply
demonstrated that it is simply not possible to acquire any in-
formation of interest, near the water resonance in biological
NMR, by data processing a spectrum obtained from an aqu-
eous sample without a priori water suppression. Yet, the
WMAP map team attempts the analogous data processing
feat, in trying to remove the foreground galactic signal.

Unlike the situation in astrophysics, it is possible to ad-
dress dynamic range issues in NMR, since the spectroscopist
literally holds the sample in his hands. The required signals

can be selected by directly controlling spin excitation and,
therefore, the received signal. Water suppression is addressed
prior to signal acquisition, by carefully avoiding the excita-
tion of spins associated with water. The analogous scenario
is not possible in astrophysics.

To a smaller extent, water suppression in biological NMR
could perhaps be achieved with a priori knowledge (i.e. a
perfect knowledge of line shapes, intensity, and position).
However, such an approach has not yet been successfully im-
plemented in the laboratory. As a result, a priori knowledge
in NMR is theoretically interesting, but practically unfeasible.
This is an even greater limitation in astrophysics where very
limited knowledge of the sample exists. The vast experience
of NMR scientists demonstrates that the removal of a strong
contaminating signal, for the detection of a much weaker
underlying signal, is impossible without affecting the signals
at the source. Biological NMR has been in existence for
over half a century. During most of this time, achieving a
factor of 1,000 in signal removal was considered a dramatic
achievement, even when combining spin excitation methods
with lyophylization. Only in the past 15 years have methods
improved, and this solely as a result of gradient-based or
multiple-quantum techniques, which provide even more
powerful spin selection during excitation [39]. Signal sup-
pression, by a factor of 100, or more, while still viewing
the underlying signal, depends on the ability to control the
source. This has been verified in numerous laboratories
where the sample is known and where the correct answer
can be readily ascertained. As such, it is impossible for
the WMAP team to remove the galactic foreground given
the dynamic range situation between the contaminant and
the signal of interest. Attempts to the contrary are futile,
as indicated by the need to segment the final images into
12 sections, and alter, from section to section, the linear
combination of data, as will be discussed below.

The galactic problem alone is sufficient to bring into
question any conclusion relative to anisotropy from both
WMAP and COBE. Nonetheless, additional insight can be
gained by examining image reconstruction.

2.2 ILC image reconstruction

2.2.1 Combining section images

Despite this discussion relative to NMR, the WMAP team
claims that removal of the galactic foreground is possible
and therefore proceeds to ILC image generation. As men-
tioned above, the WMAP satellite obtains its data in five
frequency bands (23, 33, 41, 61, and 94 GHz). In order to
achieve galactic foreground removal, the WMAP team utili-
zes a linear combination of data in these bands, essentially
adding and subtracting data until a null point is reached. In
doing so, the WMAP team is invoking a priori knowledge
which cannot be confirmed experimentally. Thus, the WMAP
team makes the assumption that foreground contamination

6 P.-M. Robitaille. WMAP: A Radiological Analysis
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Fig. 4: Illustration of the 12 regions used to generate the ILC
maps for year 3 average data. This image corresponds to the
upper portion of Figure 8 in Hinshaw et. al. [23]. Reproduced
with permission of the AAS. Image provided courtesy of the
NASA/WMAP team.

is frequency dependent, while the anisotropy is independent
of frequency. This approach, however, is completely unsup-
ported by the experimental data, as will be discussed further
below.

Furthermore, galactic foreground removal cannot be
achieved with a single linear combination of data. Rather,
WMAP achieves its final maps by first generating separately
processed section images. Eleven of these regions lie directly
in the galactic plane, as shown in Figure 4. Each section is
processed individually. The twelve processed section images
are then combined and smoothed to generate the final
ILC maps.

The WMAP team invokes completely different linear
combinations of data to process adjacent regions of the gal-
actic plane. In medical imaging, there is seldom, if ever, the
need to process final images in sections. Given this fact, note
the processing applied to generate regions 4 and 5 in the 3-
year average data (see Figure 4). The coefficients, for section
4, correspond to −0.0781, 0.0816, −0.3991, 0.9667, and
0.4289 for the K, Ka, Q, V, and W bands, respectively [23].
In sharp contrast, the coefficients for section 5 correspond to
0.1839, −0.7466, −0.3923, 2.4184, and −0.4635, for these
same bands [23]. The WMAP team alters the ILC weights
by regions, used in galactic signal removal, by more than a
factor of 100% for the fourth coefficient, despite the adjacent
locations of these sections. The same problem exists for
several other adjacent sections in the galactic plane [23]. The
sole driving force for altering the weight of these coefficients
lies in the need to zero the foreground. The selection of
individual coefficients is without scientific basis, with the
only apparent goal being the attainment of a null point. The
full list of ILC coefficients adopted by the WMAP team are
reproduced in Table I (reprint of Table 5 in reference [23]).
Analysis of this table reveals the tremendous coefficient var-
iability used, from section to section, for zeroing the galactic
foreground.

In generating the ILC maps, the WMAP team chose to
primarily weigh the V-band. As a result, the coefficients
selected tend to reflect this emphasis. However, there is no

Region K-band Ka-band Q-band V-band W-band

0 0.1559 −0.8880 0.0297 2.0446 −0.3423

1 −0.0862 −0.4737 0.7809 0.7631 0.0159

2 0.0358 −0.4543 −0.1173 1.7245 −0.1887

3 −0.0807 0.0230 −0.3483 1.3943 0.0118

4 −0.0781 0.0816 −0.3991 0.9667 0.4289

5 0.1839 −0.7466 −0.3923 2.4184 −0.4635

6 −0.0910 0.1644 −0.4983 0.9821 0.4428

7 0.0718 −0.4792 −0.2503 1.9406 −0.2829

8 0.1829 −0.5618 −0.8002 2.8464 −0.6674

9 −0.0250 −0.3195 −0.0728 1.4570 −0.0397

10 0.1740 −0.9532 0.0073 2.7037 −0.9318

11 0.2412 −1.0328 −0.2142 2.5579 −0.5521

Table 1: ILC weights by regions. ILC coefficients used in the
analysis of 3-year data by the WMAP team. This table corres-
ponds to Table 5 in Hinshaw et. al. [23]. Utilized courtesy of
the NASA/WMAP team.

a priori reason why the weighting could not have empha-
sized the Q band, for instance. This is especially true since
anisotropy is advanced as being frequency independent.
Indeed, it is interesting that the Q and W bands have coeffi-
cients on the order of −0.4, while lying in proximity to the
V band which is given a weight of 2.4 for region 5.

Nonetheless, the scientifically interesting region in the
ILC map corresponds to section 0 (see Figure 4). Thus, prob-
lems in removing the galactic foreground could be tolerated,
given that the WMAP team has no other alternative. It is the
processing utilized for section 0 which is most important.
This brings yet another complication. Completely different
ILC maps of the Universe would be obtained, if the WMAP
team had decided to emphasize a frequency other than the V
band. In that case, an altered set of cosmological constants
is very likely to be generated, simply as a result of data
processing.

In removing the galactic foreground, the WMAP team
has assumed that the anisotropy is frequency independent.
In reality, it is already clear that an ILC map generated with
weighting on the Q-band, for instance, will be dramatically
different. The requirement that the signals of interest are fre-
quency independent cannot be met, and has certainly never
been proven.

In the first data release, the only real requirement for
generating the ILC maps was that the coefficients sum to 1.
As such, an infinite number of maps can be generated. There
is no single map of the anisotropy, since all maps are equally
valid, provided coefficients sum to 1. In this regard, alter-
native anisotropic maps have been presented [29]. Tegmark
et. al. [29] generate a new anisotropy map by permitting

P.-M. Robitaille. WMAP: A Radiological Analysis 7
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Fig. 5: Cleaned internal linear combination (ILC) anisotropy map
produced by the WMAP team (top) and Wiener filtered anisotropy
map (bottom) produced by Tegmark et. al. [29]. Reprinted portion
of Figure 1 with permission from Tegmark M., de Oliveira-
Costa A., Hamilton A.J.S. A high resolution foreground cleaned
CMB Map from WMAP. Phys. Rev. D, 2003, v. 68(12), 123523;
http://link.aps.org/abstract/PRD/v68/e123523. Copyright (2003) by
the American Physical Society.

the coefficient weighting to depend both on angular scale
and on distance to the galactic plane. This approach was
substantially different from that implemented by the WMAP
team and it reinforces the finding that no single anisotropy
map exists. In Figure 5, it is apparent that the map generated
by the WMAP team (top) does not agree with the map
generated by Tegmark et. al. (bottom) [29].

An infinite number of maps can be generated from the
5 basis sets. There is no unique solution and therefore each
map is indistinguishable from noise. There are no findings
relative to anisotropy, since there are no features in the maps
which could guide astrophysics relative to the true solution.

With the release of the 3-year data set however, the
WMAP team claims that they can use mathematical methods
to find the maximum likelihood sky map [23]. Unfortunately,
there are no means to test the validity of the solution. In this
regard, astrophysics is at a significant disadvantage relative
to clinical MRI. Thus, the radiological scientist is guided by
known anatomy, and by the results of all other imaging mo-
dalities focused on the same sample. This is not the case in
astrophysics, since no single spectroscopic frequency holds
an advantage over any other. There is no “known” signature
to guide the choice of coefficients. A map might appear
to be favored, however, devoid of secondary experimental
verification, its legitimacy can never be established. Alter-
native methods could produce alternative maximum likeli-

Fig. 6: Ultra High Field 8 Tesla MRI image of an 18 cm ball of
mineral oil acquired using a 3-dimentional acquisition. A) Axial
slice representing a region contained within the physical space
occupied by the 18 cm mineral oil ball. (B) Axial slice through
a region located outside the physical space occupied by the ball.
Note that the image displayed in (B) should be entirely devoid of
signal. The severe image processing artifacts contained in (B) are a
manifestation that the processing of powerful signals can result in
the generation of weak spurious ghost signals.

hood maps. Another level of testing is being added. None-
theless, the conclusion remains that an infinite number of
maps can be generated since, given sufficient resources, one
can generate a number of maximal likelihood approaches
with no clear way of excising the “true” solution. Therefore,
any discussion relative to the cosmological significance of
these results is premature.

2.2.2 Generation of spurious signals

Attempts to remove, by signal processing, a powerful galac-
tic signal will invariably generate unwanted features in the
maps, indistinguishable from real findings. The process of
removing an intense signal can result in the unexpected crea-
tion of many spurious weak ghost signals, at any point in the
image plane. Therefore, it is crucial that the signal to noise,
in the final image or spectrum of interest, be significant.

In biological NMR, the post-water suppression spectrum
typically has good signal to noise. It would not be unusual
to achieve 1,000 fold suppression of the water signal and
obtain a spectrum with a signal to noise well in excess of
10, or even 100, for the species of interest. This signal to
noise is high enough to differentiate it from spurious ghost
signals, generated either directly by suppression or through
data processing.

In MRI, it is well established that the processing of
large signals can lead to spurious signal ghosts throughout
an image or a set of images. This is displayed in Figure 6.
Figure 6A shows an MRI image of an 18 cm phantom
sample containing mineral oil. This image is part of a much
larger group of images obtained during a 3D test study. In
Figure 6B, a series of signal rings are observed. These rings
are spurious ghosts. They were produced by obtaining a 3-
dimensional data set on an 18 cm ball containing mineral oil,
using an 8 Tesla MRI scanner [40–42]. The signal is acquired
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Fig. 7: Illustration of galactic foreground removal for year-1 and
for the 3-year average. “Cleaning” is illustrated for the Q, V, and
W bands. Similar data are not presented for the K and Ka bands
[23]. This image corresponds to Figure 10 in Hinshaw et. al. [7].
Reproduced with permission of the AAS. Image provided courtesy
of the NASA/WMAP team.

from the entire ball in the time domain and then Fourier
transformed to achieve a set of images in the frequency
domain [43]. The image displayed in Figure 6B corresponds
to an imaging slice which lies outside the actual physical
space occupied by the ball. Ideally, this image should be
completely black. The spurious signal is a manifestation of a
truncation artifact in Fourier transformation during data pro-
cessing. There should be no signal in this image. However,
for the sake of this discussion, it provides an excellent illus-
tration of what can happen when powerful signals must be
mathematically manipulated to generate final images.

While the WMAP team is not using simple Fourier trans-
formation to process their images, this lesson nonetheless
applies. When mathematically manipulating large signals,
weak spurious signals can be created. This phenomenon is
common to all image processing, and hence the importance
of relatively strong signals of interest once the contaminating
signal is removed. This is not the case for WMAP. The
contaminating foreground is ∼1,000 times the “signal” of
interest. Yet, the final signal to noise is poor.

The WMAP team invokes the “cleaning” of its raw
images acquired at the K, Ka, Q, V, and W bands prior
to presenting the images for these bands [7]. The affect
of “cleaning” is demonstrated in Figure 7. Note how the
process of “cleaning” the images appears to remove the
galactic foreground for the Q, V, and W bands. Interestingly,
similar images are not being presented for cleaning the K
and Ka bands. This is precisely because the galactic signal
contamination is so significant for these two bands. Indeed,
the WMAP team needs to present the data for the K and
Ka bands in this same figure, in order to place the galactic
signal contamination and the associated “cleaning” in proper
perspective.

While the galactic center appears to affect only a central

region of the Q, V, and W bands in the cleaned image,
the situation is more complex. In fact, it is impossible to
discern if a given signal is truly independent of the galaxy
at any location on the image. This is because the process
of “cleaning” images, to remove powerful contaminating
signals, is never clean. Mathematical manipulation of power-
ful signals, whose attributes are not fully characterized or
understood, will invariably lead to the generation of image
ghosts. Through “cleaning”, the WMAP team is taking the
risk that it is generating image ghosts. The removal of
powerful signals, at certain image locations, can easily be
associated with the generation of weak signals at the same
(or other) image locations, just as a result of processing. The
lesson from Figure 6 applies.

Consequently, the WMAP team is unable to distinguish
whether the “features” found in its images are truly of cos-
mological importance, or whether these features are simply
the result of processing (and/or acquiring) a much larger
contaminating signal from the galaxy. It is clear, for instance,
that K band reveals galactic signal at virtually every point in
the sky map (see Figure 1). The same contaminations must
be expected in all other bands. That the human eye fails to
visualize contamination does not mean that contamination
is absent. Because any real signal will be weak, and the
contaminating signal is so strong, the WMAP team is unable
to distinguish spurious ghosts related to either processing or
acquisition from the actual signal of interest. This is true at
every image location.

Data processing artifacts tend to be extremely consistent
on images. Since similar mathematical methods must be
utilized to clean the raw images and zero the galactic fore-
ground, it is highly likely that a significant portion of the
maps contains such spurious ghosts. This is especially true
given that the WMAP team has chosen to invoke complex
mathematical methods for “cleaning” their raw images. That
a given image location cannot be positively ascertained to
be free of contamination implies that none of the image
locations can be validated as free of galactic ghosts on any
map. Therein lies the overwhelming complication of dealing
with powerful contaminating signals while trying to examine
weak ones. Apparent anisotropy must not be generated by
processing.

2.2.3 Signal to noise, contrast, and resolution

There is perhaps no more important determinant of image
quality than signal to noise. In medicine, signal to noise
can directly impact diagnosis. As such, radiological methods
which are rich in signal to noise are always sought. If signal
to noise is high (>100:1), then image quality will almost
certainly be outstanding. Methods which have high signal to
noise can “burn signal” to generate either contrast, resolu-
tion, or shortened exam times. Consequently, signal to noise
is paramount. Without it, resolution will remain poor and
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Fig. 8: Section (490 × 327) of a high resolution sagittal image of
the human head acquired at 1.5 Tesla. Acquisition parameters are
as follows: acquisition sequence = gradient recalled echo, matrix
size = 512 × 512, slice thickness = 2 mm, field of view 20 cm
× 20 cm, repetition time = 750 msec, echo time = 17 msec, and
nutation angle = 45 degrees.

contrast will rapidly deteriorate. In fact, enhancements in
signal to noise were the primary driving force for the intro-
duction of Ultra High Field MRI [40–42].

In order to gain some insight into the importance of
signal to noise, one can examine the images displayed in
Figures 8 and 9. Figure 8 corresponds to a sagittal section
of a human brain, acquired using a 1.5 Tesla MRI scanner.
There are more than 15,000 such scanners in existence. In
this image, the 1.5 Tesla instrument was brought to the very
limits of its performance [43]. The resolution is high (matrix
size = 512 × 512) and the slice thickness is thin (2 mm). At
the same time, the nutation angle, echo times, and repetition
times are all suboptimal. As a result, this image is of extre-
mely poor clinical quality. The contrast between grey and
white matter has disappeared and the signal to noise is ∼5.

Figure 9 was acquired with the first UHFMRI scanner
[40–42]. This scanner operates at a field strength of 8 Tesla.
Note the phenomenal contrast, the delineation of grey and
white matter and the appearance of vasculature. Interestingly,
this image was acquired with a much larger image resolution
(matrix size = 2,000 × 2,000) while maintaining nearly the

Fig. 9: Section (1139 × 758) of a high resolution sagittal image of the human head acquired at 8 Tesla. Acquisition parameters are as
follows: acquisition sequence = gradient recalled echo, matrix size = 2,000 × 2,000, slice thickness = 2 mm, field of view 20 cm ×
20 cm, repetition time = 750 msec, echo time = 17 msec, and nutation angle = 17 degrees. This image corresponds to Figure 3A in
Robitaille P.M.L., Abduljalil A.M., Kangarlu A. Ultra high resolution imaging of the human head at 8 Tesla: 2K×2K for Y2K. J Comp.
Assist. Tomogr., 2000, v. 24, 2–7. Reprinted with permission.
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same parameters as found for Figure 8. Despite higher reso-
lution, the image has a signal to noise of ∼20. It did take
longer to acquire, due to increased phase encoding steps, but
the time per pixel remains less than that for Figure 8. Clearly,
signal to noise can purchase both contrast and resolution.

Images with high signal to noise also tend to be “reli-
able”. Namely, their gross features are rarely affected by
minor fluctuations, in either the instrument or the sample.
High signal to noise images tend to have the quality of
stability and reproducibility, attributes which are often lost
in low signal to noise images. In fact, the only measure of
reliability for a low signal to noise image is reproducibility.
It is important to establish that a low signal to noise image
does not change from one acquisition to the next.

Figure 10A-C displays three low signal to noise images.
In these images, a computer has added random noise, such
that the final signal to noise is ∼2.5:1 in each case. Figure
10A corresponds to an axial image of the human head. Its
identity is revealed by the presence of signal arising both
from the brain and the scalp. The image is relatively uniform
in signal, making the assignment simple. Figure 10B cor-
responds to a photograph of the Moon. The subject can be
distinguished from other spherical objects (a baseball, the
Sun, etc.) through the gentle change in contrast, produced
by craters on the lunar surface. The object is difficult to
identify since the shape provides few clues. Figure 10C
corresponds to an MRI image of the author’s wrist. In this
image, it is increasingly difficult to ascertain the source.
The maximal signal to noise remains ∼2.5:1. However, the
signal distribution is no longer uniform. Faint features can be
seen on the image, but no detail. Inhomogeneous signal dis-
tributions often make images more challenging to interpret,
particularly when the origin of the sample is not known.

In Figure 11A-C, the images of Figure 10A-C are re-
produced, but this time the signal to noise is at least 5:1. A
nearly 10-fold increase in signal to noise for the head image
(A) is now associated with increased contrast. The same
holds true for the wrist image displayed (C) with a signal
to noise of ∼40:1. Thus, the first rule of image contrast is
that it is non-existent on low signal to noise images. It takes
signal to make contrast. If the images in Figure 11 look so
much more appealing, it is because they have higher signal
to noise and contrast. It is also interesting that a mere doubl-
ing of signal to noise has such a dramatic effect for the Moon
image. This highlights that there is also an enormous differ-
ence between an image with a 1.5:1 signal to noise and an
image with a 2.5:1 signal to noise.

Unfortunately, in the WMAP images, the maximum sig-
nal to noise is just in excess of 1. This can be ascertained in
Figures 12 and 13. Figure 12 displays a map of instrument
noise released by NASA for WMAP. The largest signals on
this map have a noise power of approximately 70 uK. Figure
12 displays a corresponding map, created by combining the
Q and V bands. The galactic plane dominates the figure with

Fig. 10: A set of images generated by adding random noise to
the images displayed in Figure 11. A maximum signal to noise of
∼ 2.5:1 is now illustrated. (A) MRI image of the human head at 1.5
Tesla, (B) photographic image of the Moon, and (C) MRI image of
the author’s wrist acquired at 8 Tesla.

Fig. 11: Images displaying varying signal to noise. (A) MRI image
of the human head at 1.5 Tesla with signal to noise ∼ 20:1, (B)
photographic image of the Moon with the signal to noise adjusted
to ∼ 5:1, and (C) MRI image of the human wrist acquired at 8 Tesla
with the signal to noise ∼ 40:1. Note the dramatic effect on image
quality for the moon image (B) in simply doubling the signal to
noise (see Figure 10B).

signal truncated at the 100 uK level. Outside the galactic
plane, few signals, if any, exist at the 100 uK level. As such,
by combining the information in Figure 13 with the image in
Figure 12, it is clear that the WMAP signal to noise is below
2:1 and probably below 1.5. In fact, since these images are
obtained by difference methods, the signal to noise at many
locations is much less than 1. It is clear that some of the data
points on these images have signal values of 0. Therefore,
the real signal to noise on the anisotropy maps is somewhere
between 0 and 1.5 at all locations. Note, in contrast, that the
example images in Figures 10A, B, and C had a maximum
signal to noise of ∼2.5:1, well in excess of WMAP and
without the presence of a contaminating foreground.

Relative to signal to noise, the WMAP team is unable to
confirm that the anisotropic “signal” observed at any given
point is not noise. The act of attributing signal characterist-
ics to noise does not in itself create signal. Reproduci-
bility remains the key, especially when signal to noise values
are low.

2.2.4 Reproducibility

The presence of low signal to noise on an image is not
unusual in science, and many a great discovery has been
made through the careful analysis of the faintest signals. In
medicine, the tremendous advancements in functional MRI
mapping of the brain [44–46] stand perhaps without rival,

P.-M. Robitaille. WMAP: A Radiological Analysis 11



Volume 1 PROGRESS IN PHYSICS January, 2007

Fig. 12: Map of the instrument noise for WMAP. This image
corresponds to the lower portion of Figure 9 in Bennett et. al. [7].
Reproduced with permission of the AAS. Image provided courtesy
of the NASA/WMAP team.

relative to lack of signal to noise and the profoundness of
the implications. Whenever the signal to noise is low, care
must be exercised such that noise is not mistaken for signal.
The key to this problem is reproducibility.

In medicine, when an image has poor signal to noise, it
is vital that its central features be reproducible.

In fact, the only measure of reliability for a low signal
to noise image is reproducibility. The information contained
within the image must not change from one acquisition to
the next. Correlation between an event and the change in
an image are also powerful indicators that the change is
real. This principle has been applied extensively in human
functional MRI [44–46]. In this case, cognitive tasks, such as
visual activation or finger tapping, can be directly correlated
to very small changes on the MRI images of the human brain
[44–46]. Often, changes on a pixel by pixel basis, with a
signal to noise change on the order of 5:1 or even less, can be
trusted simply based on correlation. In medicine, whenever a
known physiological change (blood flow, blood oxygenation
level, and myocardial contraction) can be correlated to radio-
logical changes, even low signal to noise images can yield
powerful diagnostic conclusions. Three components in this
case act in unison to produce the diagnosis: instrument
stability, image reproducibility, and the presence of cor-
relation.

Note, most importantly, that in medicine, when low signal
to noise images are used for diagnosis, it is never in the pre-
sence of strong overlapping contaminating signal. Moreover,
in human functional imaging, a set of control images are
acquired to help ensure that all perceived changes are real.

Unfortunately for WMAP, not only are the images ob-
scured by galactic contamination, but they do not appear
to be reproducible. In this regard, it is concerning that the
WMAP team chooses to alter the ILC coefficients for gene-
rating section 0 from year to year. In fact, the coefficients
used in year-1 (0.109, −0.684, −0.096, 1.921, and −0.250)
are substantially different from those used in presenting a 3-
year average (0.1559, −0.8880, 0.0297, 2.0446, and

Fig. 13: The 53 GHz map from COBE (bottom) and the combined
Q/V map generated by the WMAP team. This Figure corresponds
to Figure 8 in Bennett et. al. [7]. Reproduced with permission of
the AAS. Image provided courtesy of the NASA/WMAP team.

−0.3423). The coefficient for K band has changed by nearly
50%, while the coefficient for Q band not only changes sign,
but decreases in magnitude by a factor of 3. Such changes
cannot be simply explained by variations in instrument gain
over time. The WMAP team does describe an attempt to find
the maximum likelihood map in the 3-year data presentation.
This new approach may account for some of the variability.
Nonetheless, the WMAP team should have reprocessed the
data from all years using this new approach, so that a direct
comparison could be made between images processed with
identical parameters.

It is also concerning that the WMAP team does not
present separate ILC images for years 1, 2, and 3. Rather,
after presenting the year-1 ILC image in 2003, they then
compare it only to the 3-year average in 2006. However,
the 3-year average contains data from the first year. The
proper test for reproducibility involves the comparison of
each yearly ILC image with one another, without invoking
the 3-year average. Ideally, difference ILC images should be
taken from year-1 and year-2, year-2 and year-3, and finally
from year-1 and year-3. The WMAP team neglects to present
these vital comparisons.

Despite these objections, the first year image simply does
not agree with the 3-year average. It is true that the images
generally agree, but this does not occur on a pixel by pixel,
or even a regional basis. This can be readily visualized in the
difference images displayed in Figures 14 and 15. In fact, the
situation is actually worse than can be easily gathered, since
the coefficients used in generating the first year ILC maps
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Fig. 14: Comparison of 3-year average data with year-1 data
through difference for the K, Ka, Q, V, and W bands of the WMAP
satellite. Note that the difference images are shown with reduced
resolution contrary to established practices in imaging science. This
figure corresponds to Figure 3 in Hinshaw et. al. [23]. Reproduced
with permission of the AAS. Image provided courtesy of the
NASA/WMAP team.

do not agree with those used for the 3-year average map.
The comparison made by the WMAP team in Figure 15 is
not valid, since the images were generated using different
coefficients.

Perhaps most troubling, the WMAP team chooses to
reduce the resolution on its difference images. This approach
is known to minimize apparent differences. In imaging, the
only resolution which can be claimed is that which can be
trusted on difference. As such, if the difference images must
be degraded to a pixel resolution of 4 degrees, then the
WMAP team cannot claim to have imaged the sky at a 1
degree resolution.

Tremendous variability can be observed in the WMAP
data sets. This is apparent by examining the variability found
in the galactic foreground. It has been well established in ast-
rophysics that galaxies can contain Active Galactic Nuclei.
These have been studied extensively outside the microwave
region [47]. These nuclei can vary by an order of magnitude
in certain frequency bands [47]. Even in the microwave, it
is clear that our own galaxy is highly variable from year to
year. This is evidenced by the need to change, from year to
year, the coefficients required to null the galactic contribu-
tion. The galaxy is highly variable in the microwave relative
to the magnitude of any real anisotropy. This is an observa-
tion which could be made by examining old data from COBE
[48]. Given this state, it is also clear that every galaxy in the

Fig. 15: Comparison of the 3-year average ILC map with the
year-1 ILC map. Note that the difference images are shown at
reduced resolution contrary to established practices in imaging
science. This figure corresponds to Figure 9 in Hinshaw et. al. [23].
Reproduced with permission of the AAS. Image provided courtesy
of the NASA/WMAP team.

Universe will also share in this variability in a manner which
is completely dissociated from any cosmological implication.
Indeed, herein lies another great problem for the cosmologist.
It is impossible to visualize, in our lifetime, the true simple
galactic variability not only from our galaxy, but from every
other galaxy. Even a signal which appears stable over the
course of humanity’s existence may well be variable.

Consider the case where only 4 pixels vary substantially
over the course of the WMAP experiment from year-1 to
year-4. From this situation, it can be expected that as many
as 1,000 pixels might vary over the course of 1,000 years.
Yet, 1,000 years is barely on the cosmological timescale.
Over the course of 1,000,000 years, a total of 1,000,000
pixels could be potentially affected. Even 1,000,000 years
is just starting to be meaningful relative to cosmology. As a
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result, the situation relative to WMAP and COBE is extre-
mely difficult. In reality, in order to have true cosmological
meaning, the maps must be temporally stable well beyond
what has been determined to date. The situation is much
worse than the hypothetical case described above, as signi-
ficantly more than 4 pixels will vary between year-4 and
year-1. The requirements for image stability in cosmology is
well beyond the reach of both COBE and WMAP.

2.3 The flat model of the Universe

Bennett et. al. [7] claim that the WMAP results are consistent
with a 2-dimensional flat model of the Universe. Clearly, by
their intrinsic nature, these images are incapable of supporting
any higher order model. WMAP cannot establish the origin
of the photons which it detects other than in a directional
sense. The satellite is completely unable to differentiate data
based on distance to the source. In this respect, WMAP
images resemble classic X-rays in medicine. Such images
are 2-dimensional and unable to reveal the 3-dimensional
nature of the human being. WMAP and X-rays stand in
sharp contrast to the CT and MRI systems of today, which
are able to provide a true 3-dimensional visualization of the
human body. That the flat model of the Universe can be
fitted is completely appropriate, given that this data cannot
be utilized to model a 3-dimensional Universe.

2.4 The assignment of brightness temperature

Perhaps the most serious concern relative to the Penzias and
Wilson, COBE, and WMAP findings involves the assign-
ment of brightness temperatures [49]. The Universe is not
in thermal equilibrium with a perfectly absorbing enclo-
sure [49, 50, 51, 52]. As a result, the assignment of these
temperatures constitutes a violation of Kirchhoff’s Law [50,
52]. It is improper to assign a temperature merely because a
spectrum has a thermal appearance. That a spectrum appears
thermal does not imply that it was generated by a blackbody
[52, 53]. Indeed, the proper application of the laws of Planck
[54], Stefan [55], and Wien [56] requires that the emitting
sample corresponds to a solid, best approximated on Earth
by graphite or soot [50]. It has been advanced [49, 57–59],
and it is herein restated, that the monopole signal first
detected by Penzias and Wilson, and later confirmed by
COBE, will eventually be reassigned to the oceans of the
Earth. The brightness temperature does not appear to make
any sense precisely because the oceans fail to meet the re-
quirements set forth by Kirchhoff in assigning a temperature
[50, 52, 53].

In this regard, the basis of universality in blackbody radi-
ation has come under serious question [52, 53]. Blackbody
radiation is not universal. Rather, it is strictly limited to an
experimental setting which, on Earth, is best approximated
by graphite and soot [52]. That Kirchhoff interchangeably
used either an adiabatic enclosure or an isothermal one was a

Fig. 16: The microwave dipole observed by the WMAP satellite.
This image corresponds to the upper portion of Figure 10 in Bennett
et. al. [7]. Reproduced with permission of the AAS. Image provided
courtesy of the NASA/WMAP team.

natural extension of his belief in universality. Nonetheless, it
appears that the adiabatic case is not valid [52]. Kirchhoff’s
experiments far from supporting universality, actually con-
strains blackbody radiation to the perfect absorber [52]. Con-
ditions for assigning a blackbody temperature are even more
stringent [52] than previously believed [58]. As such, an
adiabatic enclosure is not sufficient [52, 58]. Rather, in order
to obtain a proper temperature, the enclosure can only be
perfectly absorbing and isothermal. The assignment of these
temperatures by the WMAP team constitutes an overexten-
sion of the fundamental laws which govern thermal emis-
sion, given the lack of universality [52, 53].

2.5 The Dipole Temperature

Despite this discussion, it is nonetheless clear that the WMAP
satellite has detected a CMB dipole signal presumably assoc-
iated with motion of the local group [7, 23]. The dipole
signal is shown in Figure 16. The presence of a dipole is
thought, by many, as further proof for the presence of the
monopole signal at the position of WMAP. The detection of
this dipole by WMAP constitutes a finding of importance as
it confirms earlier findings, both by the COBE team [60] and
by the Soviet Relikt-1 mission [61]. Indeed, the discussion
of the dipole is sufficiently important to be treated sepa-
rately [62].

3 Conclusion

Analysis of data from WMAP exposes several problems
which would not be proper in medical imaging. Experi-
ence from NMR spectroscopy relative to biological samples
reveals that removal of a contaminating signal, which ex-
ceeds the signal of interest by up to a factor of 1,000, re-
quires ability to control the sample at the source. This re-
quirement can never be met by the WMAP team. It is impos-
sible to remove this contamination and thereby “see beyond
the galaxy”. It is also dangerous to mathematically mani-
pulate large signals during image reconstruction, especially
when the final images have low signal to noise ratios. The
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galactic signal is not stable from year to year, making signal
removal a daunting task as seen by the yearly changes in ILC
coefficients for regions 1–11. In actuality, the WMAP team
must overcome virtually every hurdle known to imaging: fo-
reground contamination and powerful dynamic range issues,
low signal to noise, poor contrast, limited sample knowledge,
lack of reproducibility, and associated resolution issues. It is
clear that the generation of a given anisotropy map depends
strictly on the arbitrary weighting of component images. The
WMAP team attempts to establish a “most likely” anisotropy
map using mathematical tools, but they have no means of
verifying the validity of the solution. Another team could
easily produce its own map and, though it may be entirely
different, it would be equally valid. Figure 5 points to this
fact. It remains surprising that separate ILC maps are not
presented for years 1, 2, and 3. In addition, the WMAP team
does not use the proper tests for reproducibility. Difference
images between all three yearly ILC maps should be pre-
sented, without lowering the final resolution, and without
changing the ILC coefficient from year to year. It is improper
to compare images for reproducibility if they are not pro-
cessed using identical methods. Reproducibility remains a
critical issue for the WMAP team. This issue will not be
easily overcome given human technology. In order to make
cosmological interpretations, the WMAP images must be
perfectly stable from year to year. Even fluctuation at the
level of a few pixels has dramatic consequences, since the
data must be stable on a cosmological timescale. This time-
scale extends over hundreds, perhaps thousands, or even
millions of years. Finally, there are fundamental issues at
stake, relative to the application of the laws of Kirchhoff
[50], Planck [54], Stefan [55], and Wien [56]. It has not been
established that the WMAP team is theoretically justified in
assigning these temperatures.

The only significant observations relative to this satellite
are related to the existence of a dipole signal [7, 23]. This
confirms findings of both the NASA COBE [60], and the
Soviet Relitk, satellites [61]. The WMAP satellite also high-
lights that significant variability exists in the point sources
and in the galactic foreground. Relative to the Universe, the
findings imply isotropy over large scales, not anisotropy. All
of the cosmological constants which are presented by the
WMAP team are devoid of true meaning, precisely because
the images are so unreliable. Given the tremendous dynamic
range problems, the inability to remove the galactic fore-
ground, the possibility of generating galactic ghosts through
“cleaning”, the lack of signal to noise, the lack of reprodu-
cibility, the use of coefficients which fluctuate on a yearly
basis, and the problem of monitoring results on a cosmo-
logical timescale, attempts to determine cosmological con-
stants from such data fall well outside the bounds of proper
image interpretation.

In closing, it may well be appropriate to reflect once
again on the words of Max Planck [63]:

“The world is teeming with problems. Wherever man
looks, some new problems crops up to meet his eye —
in his home life as well as in his business or profes-
sional activity, in the realm of economics as well as in
the field of technology, in the arts as well as in science.
And some problems are very stubborn; they just refuse
to let us in peace. Our agonizing thinking of them may
sometimes reach such a pitch that our thoughts haunt
us throughout the day, and even rob us of sleep at
night. And if by lucky chance we succeed in solving
a problem, we experience a sense of deliverance, and
rejoice over the enrichment of our knowledge. But it is
an entirely different story, and an experience annoying
as can be, to find after a long time spent in toil and
effort, that the problem which has been preying on
one’s mind is totally incapable of any solution at all.”
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und der Temperature. Sitzungsberichte der mathematischna-
turwissenschaftlichen Classe der kaiserlichen Akademie der
Wissenschaften, Wien 1879, v. 79, 391–428.

56. Wien W. Ueber die Energieverteilung in Emissionspektrum
eines schwarzen Körpers. Ann. Phys., 1896, v. 58, 662–669.

57. Robitaille P.M.L. The MAP satellite: a powerful lesson in
thermal physics. Spring Meeting of the American Physical
Society Northwest Section, F4.004, May 26, 2001.

58. Robitaille P.M.L. The collapse of the Big Bang and the
gaseous Sun. New York Times, March 17, 2002.

59. Robitaille P.M.L. WMAP: an alternative explanation for the
dipole. Fall Meeting of the American Physical Society Ohio
Section, E2.0001, 2006.

60. Fixsen D.L., Gheng E.S., Gales J.M., Mather J.C., Shafer R.A.,
Wright E.L. The Cosmic Microwave Background spectrum
from the full COBE FIRAS data set. Astrophys. J., 1996,
v. 473, 576–587.

61. Klypin A.A, Strukov I.A., Skulachev D.P. The Relikt missions:
results and prospects for detection of the Microwave Back-
ground Anisotropy. Mon. Not. Astr. Soc., 1992, v. 258, 71–81.

62. Robitaille P.M.L. On the origins of the CMB: insight from the
COBE, WMAP and Relikt-1 satellites. Progr. in Phys., 2007,
v. 1, 19–23.

63. Planck M. Scientific autobiography. Philosophical Library,
New York, 1949.

18 P.-M. Robitaille. WMAP: A Radiological Analysis



January, 2007 PROGRESS IN PHYSICS Volume 1

On the Origins of the CMB: Insight from the COBE, WMAP,
and Relikt-1 Satellites

Pierre-Marie Robitaille
Dept. of Radiology, The Ohio State University, 130 Means Hall, 1654 Upham Drive, Columbus, Ohio 43210, USA

E-mail: robitaille.1@osu.edu

The powerful “Cosmic Microwave Background (CMB)” signal currently associated
with the origins of the Universe is examined from a historical perspective and relative
to the experimental context in which it was measured. Results from the COBE satellite
are reviewed, with particular emphasis on the systematic error observed in determining
the CMB temperature. The nature of the microwave signal emanating from the oceans
is also discussed. From this analysis, it is demonstrated that it is improper for the
COBE team to model the Earth as a 285 K blackbody source. The assignment of
temperatures to objects that fail to meet the requirements set forth in Kirchhoff’s
law constitutes a serious overextension of the laws of thermal emission. Using this
evidence, and the general rule that powerful signals are associated with proximal
sources, the CMB monopole signal is reassigned to the oceans. In turn, through the
analysis of COBE, WMAP, and Relikt-1 data, the dipole signal is attributed to motion
through a much weaker microwave field present both at the position of the Earth and
at the second Lagrange point.

1 Introduction

More than 40 years have elapsed since Penzias and Wilson
first reported the existence of a thermal signal in the micro-
wave region of the electromagnetic spectrum [1]. This mea-
surement of the “Cosmic Microwave Background (CMB)”
has been viewed as one of the most important in the history
of science. Cosmology is now inextricably linked to its val-
idity. Given this realization, it remains interesting that the
logical steps first made by Penzias and Wilson [1] have not
come under more considered review.

Penzias and Wilson [1] made the assumption that their
signal was thermal in origin and inferred that the source
could be treated as an ideal blackbody [2]. Without acknow-
ledging the strict requirements involved in setting a black-
body temperature [2–4], they made recourse to the laws of
thermal radiation, obtaining a temperature of 3.5±1.0 K [1].
Although the cosmos can never meet the requirements for
enclosure set forth by Kirchhoff [2], Dicke et. al. [5] would
ultimately assign the signal to the average temperature of
the Universe. Penzias and Wilson were thought to have dis-
covered the “CMB”, a powerful signal bathing everything.

The COBE satellite [6–12] provided the most important
confirmation of the thermal nature of the “CMB” [1]. This
satellite is positioned at an elevation of ∼900 km above sea
level. COBE also reaffirmed the presence of a dipole signal
presumably associated with motion of the local group. The
dipole signature had been clearly observed by the Soviet
Relikt-1 satellite [13], nearly 10 years earlier. Eventually,
the WMAP satellite would affirm the existence of the dipole
signal [14–16].

2 COBE and the assignment of temperatures

2.1 The “CMB” monopole

In acquiring the “CMB” signal [1], COBE produced a nearly
perfect spectrum [11]. The signal to noise from the FIRAS
instrument is exceedingly high. The error bars constitute a
small fraction of the linewidth and must be expanded, by a
factor of 400, to be visualized [11]. The validity of the abso-
lute temperature was not questioned. The source responsible
was thought to be at ∼3 K. Soon, the “CMB” became the
central experimental proof for the Big Bang [17].

It has always been understood, in communications, that
powerful signals imply proximal sources. This practical
knowledge was neglected [1, 5]. Yet, concerns should have
lingered over the amount of power found in the “CMB” [1,
11]. In addition, the experimental justification, for setting
blackbody temperatures, was overlooked. The belief, that
blackbody radiation was universal [4], enabled the dismissal
of all laboratory experiments relative to its nature [3].

The experimental [3] and theoretical [4] basis of univers-
ality has now been brought into question. Blackbody radia-
tion is not universal in nature [4], but, rather, is strictly
limited to a physical setting best approached by graphite
and soot on Earth [3]. A spectrum, like the “CMB” signal
[11], may well appear to be thermal, but the temperature will
not be valid unless the requirements set forth in Kirchhoff’s
experiment are strictly followed [3].

The Planckian equation [18] remains detached from the
physical world. Thermal emission is explained mathematic-
ally [4], without regard to the physical setting. Blackbody
radiation is the only process in physics wherein the setting,
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transition species, and energy levels are devoid of physical
meaning [3, 4]. In large part, this is a result of the erroneous
belief in universality [3, 4]. Given universality, temperatures
were set without the inconvenience of laboratory constraints.

2.2 The “CMB” dipole

In addition to the “CMB” monopole, the COBE satellite
reports a dipole signature associated with motion [7], con-
firming Relikt-1 findings [13]. The WMAP satellite has also
detected this dipole signal [19]. The dipole is thought to
reflect a doppler phenomenon associated with motion of
the local group. Based on COBE measurements, the dipole
has an amplitude of 3.353±0.024 mK in a direction (l, b)=
= (264.26◦±0.33◦, 48.22◦±0.13◦), where l is the Galactic
longitude and b, the latitude [15]. A nearly identical value,
of 3.346±0.017 mK in a direction (l, b) = (263.85◦±0.1◦,
48.25◦±0.04◦), has been reported by the WMAP team [15].
Interestingly, the COBE satellite was able to determine a
dipole value both from the DMR and the FIRAS instruments
[6, 7]. The WMAP satellite is equipped solely with differen-
tial radiometers, and measures the dipole in a manner similar
to the DMR on COBE [6, 14].

3 An alternative assignment for the “CMB” signals

3.1 Assignment of the monopole

During flight, the COBE satellite experienced an anomaly.
“Most of the occurrences were in the High Frequency Re-
gion known as the South Atlantic Anomaly” [8]. Since the
anomaly was produced over the Atlantic, it is interesting
that the “CMB” results are devoid of interfering oceanic
signals. The COBE team describes thermal instabilities when
the limb of the Earth appears above the shield of the satellite.
Data acquired during such events are discarded, but the
COBE shield is not adequate to guard the instrumentation
from the effects of being immersed in a scattered oceanic
signal.

From the days of Penzias and Wilson [1], the Earth has
not been considered as a powerful contaminating source for
the “CMB”. The COBE team believes that the Earth can be
modeled as a circular source of emission, with a radius of
∼61◦ and a mean temperature of 285 K [9]. All scattering of
microwave signals, by the atmosphere, is neglected. Whether
the Penzias and Wilson signal [1] is measured from the
ground, using balloons, or from COBE, the monopole sig-
nature is noticeably clean. However, based on the extent of
the oceanic surface, and the known behavior of the oceans
in the microwave, it is inappropriate to model the Earth as a
285 K source [21].

Water is a good absorber of microwave power. This
forms the basis of practical microwave applications. In addi-
tion, submarine communications, at microwave frequencies,

Fig. 1: Brightness temperature of a specular sea surface at 1.4, 2.6,
10, and 37 GHz. Note that when the angle of incidence approaches
90◦, the brightness temperature of both the horizontal and vertical
components falls to 0 K. As a result, the limb of the Earth appears
as a source at nearly 0 K relative to COBE. The assumption that the
Earth can be treated as a 285 K source is not valid. Reproduced by
permission Figure 11.45 from F. T. Ulaby, R. K. Moore, A. K. Funk.
Microwave remote sensing active and passive. — Volume 2: Radar
remote sensing and surface scattering emission theory. Norwood
(MA), Artech House, Inc., 1982. Copyright by Artech House,
Inc., 1982.

are not possible while submerged, indicating powerful ab-
sorption. The oceans may be good absorbers of microwave
power, but they are certainly not equal emitters. This is
because liquids can never be in compliance with Kirchhoff’s
law [3, 20]. Liquids attempt to reach thermal equilibrium
through conduction, thermal radiation, and convection. In
fact, Planck has warned that objects, which sustain convec-
tion currents, can never be treated as blackbodies [20]. None-
theless, it is unreasonable to believe that the oceans will be
microwave silent on emission [21].

The behavior of oceanic emissions in the microwave is
not simple (see Figure 1), depending significantly on the
angle of observation [21]. The oceans cannot be treated as
a blackbody source simply based on this fact [3]. Note that
the brightness temperature of the oceans is dependent on
the angle of incidence. Brightness temperatures with a 0◦

angle of incidence are less than 130 K over the frequency
range spanning 1.4–37 GHz. For the vertical polarization, the
brightness temperature increases to ∼270 K, as the angle of
incidence is raised from 0◦ to ∼75◦. The brightness tempe-
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rature of the vertical polarization then precipitously drops to
0 K. For the horizontal polarization, the brightness tempera-
ture falls gradually from 100 to 0 K, as the incidence angle
is increased from 0◦ to 90◦. The situation relative to oceanic
emission in the microwave is much more complex than cur-
rently assumed by the COBE team [21].

When these facts are combined with atmospheric scat-
tering, concerns linger that the measured “CMB” signal is
devoid of Earthly interference. It would have been reassuring
if the “CMB” experiments were being contaminated by an
oceanic signal whose contributions could not be easily sup-
pressed. Yet, the Penzias and Wilson signal [1, 11] was
devoid of external interference. Conversely, oceanographic
studies reveal that the seas can produce signals with a bright-
ness temperature near 0 K, as demonstrated in Figure 1.
Given the power observed in the monopole [1, 11], it is
reasonable that the oceans cannot produce interference in
the measurements since, in reality, they constitute the source
of the “CMB” [22–25].

3.2 Assignment of the dipole

It is currently believed that the dipole signal is being produc-
ed by motion of the Relikt-1, COBE, or WMAP satellites
through a powerful “CMB” monopole field ascribed to the
Universe. However, a second situation exists. The satellites
could be flowing through a field much weaker than that
detected on Earth. In this scenario, the strong monopole
field detected on Earth does not exist at the position of
WMAP [59]. Using the data available, it should be possible
to distinguish between these two alternatives.

3.3 Absolute measurements and error bars in the
COBE satellite

The source of Penzias and Wilson signal [1] and its assign-
ment to the “CMB” may be resolvable from Earth. In the
first scenario, discussed is section 3.2, the contribution to
the dipole arises strictly from the “CMB” monopole, thought
to be of cosmic origin. In the second scenario, the “CMB”
temperature would reflect two effects: (1) the motion of the
Earth through the weak microwave field also present at the
position of WMAP, and (2) the additional effect from the
monopole generated by the Earth. In this case, when viewed
from COBE, the “CMB” temperature measured by FIRAS,
and direct calibration, would not necessarily agree with that
determined through visualization of the dipole.

Using the FIRAS instrument, COBE initially reports the
“CMB” monopole temperature as 2.730±0.001 K [11]. This
temperature should have been extremely reliable, since the
FIRAS data have tremendous signal to noise [11]. Moreover,
FIRAS was equipped with an external calibrator [8]. In Fix-
sen et al. [11] the “CMB” temperature obtained from the
dipole is first reported as 2.717±0.003 K. These uncertain-
ties are at the 1σ level. “By choosing the monopole tempera-

ture as the point to evaluate dBν/dT ”, the COBE team “has
forced the dipole temperature to be that of the monopole”
[7]. Despite this fact, the value of the “CMB” temperature,
from the dipole measurement, is significantly lower than the
value obtained from the monopole. The difference between
these two numbers remains highly significant, even at the
99% confidence level. Considering the signal to noise using
FIRAS, and the magnitude of the associated dipole, it is
interesting that any systematic error exists. Such a dramatic
divergence should not have been dismissed, especially since
these two numbers might be expected to differ in the second
scenario.

The COBE team also presents another method of assign-
ing the “CMB” temperature, based on frequency calibration,
using the CO and C+ lines [11]. This third method yields
a temperature of 2.7255±0.0009 K [11]. This value rests on
factors outside the “CMB” and the dipole. While appearing
to be even more precise, this value may be more prone to
error and less accurate. The key determinations remain those
from FIRAS, with external calibration, and from the dipole.

In Fixsen et. al [11], the COBE team recognizes that the
“CMB” temperatures derived, from the monopole and from
the dipole, are irreconcilable. They attribute the difference to
systematic errors. In order to address this issue, the error bars
on the dipole measure are arbitrarily raised to 0.007 [11]. All
statistical significance is removed to account for systematic
error arising from the galactic cut [11]. The inequality in
these two numbers was later reexamined. In Mather et al.
[12], the absolute value of the “CMB” temperature assigned
using FIRAS, and the external calibrator, is shifted to 2.725±
±0.002 K (2σ; 95% confidence interval). The change is at-
tributed to systematic errors in the calibrator [12]. Yet, in
Fixsen et al. [11], the FIRAS measure was thought to be
accurate to within 1 mK, based on pre-flight calibration. The
new value for the “CMB” temperature, provided by FIRAS,
of 2.725±0.002 K (2σ; 95% confidence interval), is now sta-
tistically different from the original value, of 2.730±0.001 K
(1σ), reported by the same instrument [11, 12].

The COBE FIRAS data has excellent signal to noise.
Thus, it is troubling that a significant recalibration must be
completed, nearly 10 years after launch. In the end, the pru-
dent approach is to consider that the “CMB” temperatures,
obtained from the monopole (2.730±0.001 K at 1σ) and the
dipole (2.717±0.003 K at 1σ), are indeed significantly dif-
ferent, as initially reported. It is inappropriate to make so
many adjustments for “systematic errors”, and thereby re-
move a highly significant difference between two numbers,
long after completion of an experiment, especially given that
COBE remains in orbit.

If the “CMB” signal truly originates for the Universe, the
“CMB” temperatures evaluated, from the dipole and from
FIRAS, with external calibration, must be identical. How-
ever, the values might be expected to be different in the
second scenario, wherein the “CMB” arises from the Earth
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and a much weaker field is present in the Universe. As a
result, it appears that the COBE satellite provides the first
evidence that the “CMB” monopole does indeed arise from
the Earth. The systematic error, first detected by COBE in
the dipole evaluation of the “CMB” temperature [11], may
be, in actuality, the critical proof.

The European Space Agency is now in the final stages of
preparation for launching the PLANCK satellite [26]. This
satellite is also equipped to scan the sky in the microwave
band. Unlike WMAP, the PLANCK instruments are not dif-
ferential. Consequently, this satellite should be able to finally
establish that the Penzias and Wilson signal [1] does indeed
arise from the Earth. Once positioned at L2, PLANCK will
fail to detect the monopole signal [1]. Instead, its instrument
will report only the galactic signal, the variable sources, and
the weak noisy background currently attributed to aniso-
tropy.

4 Conclusions

When Penzias and Wilson used thermodynamic principles to
set a temperature of 3.5 K, they did not consider the phases
of matter [1]. The signal did not change with the seasons
[1], and the Earth was not at ∼3 K, so Dicke et. al. [5]
surmised that it originated from the Universe. A powerful
spectrum was present, but the concept that the receiver must
be close to the source was not considered. They believed,
much like Planck [20], that the laws of thermal emission
[18, 27, 28] were universally applicable. Yet, Kirchhoff’s
law states that, for a blackbody, the temperature must be
determined in the presence of thermal equilibrium, within
an enclosure [2–4]. The Universe can never meet this re-
quirement.

The oceans of the Earth cannot be treated as blackbodies,
as demonstrated in Figure 1. The possibility should be con-
sidered that they are emitting at an apparent temperature,
Tapp, such that Tapp=T/α, where T corresponds to the
real temperature and α is ∼100. Alpha may have a slight
temperature or salinity dependence, since the Penzias and
Wilson signal [1, 11] reflects a single spectrum. It is adv-
anced that the apparent temperature, Tapp, discussed above,
corresponds to the ∼3 K signature previously assigned to the
Cosmos. Through this simple introduction of α and Tapp,
the laws of Planck [18], Wien [27], and Stefan [28] can
be reformulated for our oceans. This is the case, even if
the oceans can produce additional emissions, in the infrared
band, or elsewhere. The inclusion of an apparent temperature
solves a problem, but the temperature is no longer real. Con-
densed matter physics may benefit in dissecting the lattice
behavior responsible for oceanic emissions. In doing so, they
may discover the importance in thinking, like Planck [18],
of physical oscillators [25].

In regard to the interaction of the oceanic monopole sig-
nal, produced by the Earth, and the dipole signal, produced

by motion through a weak microwave field of external origin,
further insight may require the application of General Rela-
tivity [29].

It remains true that the temperature of the Universe can
never be measured. That is a limitation given to us by Kirch-
hoff’s law [2–4]. The enclosure required by Kirchhoff, dur-
ing the experimental characterization of blackbody radiation,
cannot be removed. At the same time, Kirchhoff’s belief in
universality is incorrect [3]. Indeed, this simple error will
ultimately be viewed as the central oversight relative to the
assignment of the Penzias and Wilson signal [1]. Kirchhoff
erred 140 years ago relative to universality [3], and sci-
ence failed to realize the profound implications [30]. There
continues to be a lack of understanding relative to the fund-
amental experiments, which resulted in the laws of thermal
radiation in general [18, 27, 28], and the complicating nature
of liquids in particular.

Dedication

This work is dedicated to the memory of Charles-Auguste
Robitaille.
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The Relativistic Effect of the Deviation between the CMB Temperatures
Obtained by the COBE Satellite

Dmitri Rabounski
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The Far-Infrared Absolute Spectrophotometer (FIRAS) on the COBE satellite, gives
different temperatures of the Cosmic Microwave Background. This deviation has a
theoretical explanation in the Doppler effect on the dipole (weak) component of the
radiation, the true microwave background of the Universe that moves at 365 km/sec,
if the monopole (strong) component of the radiation is due to the Earth. Owing to the
Doppler effect, the dipole radiation temperature (determined by the 1st derivative of
the monopole) is lower than the monopole radiation temperature, with a value equal to
the observed deviation. By this theory, the WMAP and PLANCK satellites, targeting
the L2 point in the Sun-Earth-Moon system, should be insensitive to the monopole
radiation. In contrast to the launched WMAP satellite, the PLANCK satellite will
have on board absolute instruments which will not be able to detect the measured
temperature of the Cosmic Microwave Background. That the monopole (strong)
component of the observed Cosmic Microwave Background is generated by the Earth
is given a complete theoretical proof herein.

The COBE satellite, launched in 1989, has on board two
instruments targeting the temperature of the Cosmic Micro-
wave Background (CMB), namely the Far-Infrared Absolute
Spectrophotometer (FIRAS) and the Differential Microwave
Radiometer (DMR). FIRAS, having just a single channel
for a signal, is sensitive to both the strong (monopole) and
weak (dipole) components of the Background Radiation, and
measures the general temperature in the Background without
distinction between the monopole and dipole components of
the field. The DMR has another construction: having a few
channels for a signal, the DMR recognizes only the diffe-
rence between the signals in the channels, and so gives just a
difference between the temperature of the Background in the
different directions. In other words, the DMR is sensitive to
only the weak (dipole) component of the field that provides
a possibility of direct search for its anisotropy [1].

The WMAP satellite launched in 2001 has on board
only differential instruments working similarly to the DMR
on COBE, so its data accounts only for the weak (dipole)
component of the Background [2].

The anisotropy in the Background measured by the dif-
ferential instruments is actually the same: DMR at COBE
registered the anisotropy 3.353±0.024 mK, while WMAP
gave 3.346±0.017 mK. The main direction of the anisotropy,
by COBE, is l= 264.26◦±0.33◦, b= 48.22◦±0.13◦ (l is the
Galactic longitude, b is the Galactic latitude). WMAP gives
l= 263.85◦±0.1◦, b= 48.25◦±0.04◦ [3].

The absolute temperature of the Background initially ob-
tained from the direct measurement by FIRAS

TFIRAS = T0 = 2.730± 0.001 K ,

is the undifferentiated temperature of the monopole and di-
pole components of the field. However, the COBE team also

extracted the absolute temperature from the 1st derivative of
the monopole, which was interpreted as the actual tempera-
ture of the dipole component of the field. They obtained
another numerical value [4]

T = 2.717± 0.003 K ,

so the average deviation ΔT = 0.013 K between these two
results is a dozen times bigger than the measurement preci-
sion. So we have a minimal relative deviation between the
CMB temperature by FIRAS from the monopole and from
the 1st derivative of the monopole

ΔT/T0 = 0.33% at 1σ,

ΔT/T0 = 0.18% at 2σ,

which is small number, but is significantly not zero. So the
CMB temperature measured by FIRAS from the monopole
and its 1st derivative aren’t the same. This is a systematic
deviation with many years of the COBE observations. The
COBE team attempted to explain the deviation as systematic
errors in the calibration of the instruments. However, as
pointed out by Robitaille [5], so large an increase of σ sup-
posed by the COBE team is unlikely for the FIRAS instru-
ment, which has excellent signal to noise ratio. The system-
atic deviation shouldn’t be removed from the consideration.

As pointed out by Robitaille [5], this systematic devia-
tion has no chance of being explained by anything other
than the fact that the monopole and dipole components of
the Background have different origins. He has elucidated the
similarity of the Cosmic Microwave Background Radiation
with radiation of Earth origin. He supposed that the mono-
pole field has a different origin to that of the dipole, and
is due to the Earth, not the whole Universe. According to
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Robitaille [5, 6], the monopole (strong) field, is nothing
but that generated by Earth objects (mostly oceans) and
moves, in common with the Earth, with respect to the dipole
(weak) field which is the real microwave background of the
Universe.

Robitaille’s claim, obtained from purely experimental an-
alysis, can be easily checked by the relativistic effects which
should appear in the COBE measurements, if the monopole
field moves, in common with the Earth, with respect to the
dipole field related to the whole Universe.

It follows from the measurement that the COBE satellite,
in unison with the Earth, moves relative to the Cosmic Mic-
rowave Background with a velocity of 365±18 km/sec [7].
DMR is sensitive to only the dipole field, so we are sure of
the velocity with respect to the dipole field.

If the monopole field is due to the Earth, the COBE
satellite is at rest with respect to the monopole field, but
moves, in common with the Earth, at 365±18 km/sec relative
to the dipole field which is the true microwave background
of the Universe. In such a case, two kinds of relativistic
effects should appear for COBE: (1) the effects caused by the
relative motion with respect to the dipole field (the Doppler
effect and the effect of Special Relativity); (2) the effects
caused by the physical properties of the local space of the
COBE-bound observer, such as the presence of the Earth’s
gravitational field, and also the space rotation due to the
daily rotation of the Earth (the effects of General Relativity).

By the Doppler effect, the temperature T of a radiation,
the source of which moves with a velocity v at an angle θ re-
lative to the direction from the observer to the source, differs
from the same radiation’s temperature T0 measured when its
source is at rest: T = T0

1+ v
c
cos θ

. Assuming that the source of

the dipole radiation moves with v= 365±18 km/sec away
from the observer and the Earth (the monopole radiation
source), we obtain

ΔT

T0
=
T0 − T
T0

=
v

c
= 0.12%± 0.006%

i.e., due to the Doppler effect, the dipole radiation tempera-
ture T (measured by the 1st derivative of the monopole)
should be 0.12% smaller than the monopole radiation tem-
perature T0 (measured by FIRAS).

This theoretical result is very close to the 0.18% regis-
tered at 2σ. In the real situation, this coincidence can be ac-
counted for if one takes into account that fact that the COBE
team provided different data for the dipole-measured tempe-
rature [5]. So the relativistic lowering of the Cosmic Micro-
wave Background temperature due to the Doppler effect on
its dipole component, the source of which moves away from
the Earth (the source of the monopole), is in good agreement
with that observed by COBE.

Now consider the effect of Special Relativity. It is well
known [8], that the temperature T of radiation, the source of

which moves relative to the observer with a velocity v, is:

T =T0

√
1− v2

c2
. With v= 365 km/sec we obtain the rela-

tivistic lowering of the observed temperature of the dipole
radiation due to the Special Relativity effect

ΔT

T0
=
T0 − T
T0

= 7.4×10−7 = 0.000074% ,

that is inconsequentially small for ΔT
T0
= 0.12% produced by

the Doppler effect, and really registered by COBE. So there
is no essential rôle played by Special Relativity in the rela-
tivistic lowering of the dipole radiation temperature.

The effects of General Relativity can also be examined.
By General Relativity, if the monopole radiation is due to
the Earth, it is affected by the gravitation and rotation of
the Earth’s space so that the temperature of the monopole
radiation is as well higher than the dipole radiation far away
from the Earth. It has been obtained that the temperature de-
viation between the monopole and dipole radiations expects
to be ∼10−8%.

The effects caused by the COBE satellite itself (its own
mass and spin), were a few orders smaller than the above
effects caused by the Earth. The values are also inconsequen-
tially small for 0.12% produced by the Doppler effect, and
observed by COBE. So General Relativity’s rôle in the rela-
tivistic lowering of the dipole radiation temperature is infi-
nitesimal.

The General Relativity effects are bulky for deduction
and calculation. For this reason the calculations for these
effects are no presented in this paper.

We therefore conclude that:

The different temperature of the Cosmic Microwave
Background measured by the FIRAS instrument of
COBE has a theoretical explanation in the Doppler
effect on the dipole (weak) component of the radiation,
the true microwave background of the Universe that
moves away at 365 km/sec from the monopole (strong)
component of the radiation due to the Earth. Owing
to the Doppler effect, the CMB radiation temperature,
measured by the 1st derivative of its monopole compo-
nent, is lower than the monopole radiation temperature
directly measured by FIRAS. This important finding
can be referred to as a relativistic effect of the devia-
tion between the temperature of the monopole and
dipole components of the Cosmic Microwave Back-
ground.

The calculation herein provides the theoretical proof of
the assertion that the monopole component of the Cosmic
Microwave Background is due to the Earth. If so, the WMAP
satellite, located far away from the Earth, at the Lagrange 2
(L2) point in the Earth-Moon system, should be insensitive
to the monopole radiation. Its instruments should register
only the dipole radiation from the Universe. Therefore, the
absolute and differential instruments located at the L2 point
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should manifest no difference in the measured temperature
of the radiation.

The WMAP satellite, unfortunately, has on board only the
differential instruments (working like the DMR on COBE).
However the PLANCK satellite, which will soon be launch-
ed, has on board absolute instruments. PLANCK will also be
located at the L2 point, so its absolute instruments should be
unable to register any signal from the monopole origination
(from the Earth). This is in contrast to COBE, located near
the Earth.

The above theoretical calculation and the measurement
by COBE are the complete theoretical and experimental
proofs of the assertion that the monopole (strong) component
of the Cosmic Microwave Background is derived from the
Earth, while the dipole (weak) component is the true micro-
wave background of the Universe relative to which the Earth
moves with a velocity of 365 km/sec. Due to the theoretical
and experimental proofs, we expect to have a profoundly
altered understanding of the Cosmic Microwave Background.

I am very thankful to Professor Pierre-Marie Robitaille
who turned my attention to the systematic deviation in the
Cosmic Microwave Background temperature by the FIRAS
instrument on the COBE satellite, and spent much time to
explain to me the details of the experiment.
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Momentum of the Pure Radiation Field

Bo Lehnert

Alfvén Laboratory, Royal Institute of Technology, S-10044, Stockholm, Sweden
E-mail: Bo.Lehnert@ee.kth.se

The local momentum equation of the pure radiation field is considered in terms of an
earlier elaborated and revised electromagnetic theory. In this equation the contribution
from the volume force is found to vanish in rectangular geometry, and to become
nonzero but negligible in cylindrical geometry. Consequently the radiated momentum
is due to the Poynting vector only, as in conventional electrodynamics. It results in
physically relevant properties of a photon model having an angular momentum (spin).
The Poynting vector concept is further compared to the quantized momentum concept
for a free particle, as represented by a spatial gradient operator acting on the wave
function. However, this latter otherwise successful concept leads to difficulties in the
physical interpretation of known and expected photon properties such as the spin, the
negligible loss of transverse momentum across a bounding surface, and the Lorentz
invariance.

1 Introduction

In the original and current presentation of Quantum Electro-
dynamics, the Poynting vector forms a basis for the quant-
ized momentum of the pure radiation field [1, 2]. Thereby
Maxwell’s equations with a vanishing electric field diverg-
ence in the vacuum state are used to determine the electro-
magnetic field strengths and their potentials which, in their
turn, are expressed by sets of quantized plane waves.

In the deduction of the Schrödinger equation, the quant-
ized momentum for a free particle with mass has on the
other hand been represented by an operator acting on the
wave function and including a spatial gradient [1].

Since the individual photon can appear both as a wave
and as a particle, the question may be raised whether its
momentum should be represented by the Poynting vector
concept, or by the spatial gradient operator concept. This
question is discussed and illustrated in the present paper,
in terms of a revised electromagnetic theory described in a
recent review [3]. A summary of the basic equations of the
theory is presented in Section 2, followed by two simple
examples in Section 3 on a slab-shaped dense photon beam
and on an axisymmetric model of the individual photon. A
comparison between the two momentum concepts is finally
made in Section 4.

2 Basic equations of the revised theory

The zero-point-energy of the vacuum state, its related elect-
romagnetic vacuum fluctuations, the Casimir effect, and the
electron-positron pair formation out of the vacuum support
the hypothesis of a local electric charge density and an as-
sociated nonzero electric field divergence in such a state. On
account of this, a Lorentz and gauge invariant theory has
been elaborated, the details of which are given elsewhere

[3–8]. The basic equations for the electric and magnetic
fields E and B become

curlB/μ0 = ε0 (divE)C+ ε0∂E/∂t , (1)

curlE = −∂B/∂t , (2)

divE = ρ̄/ε0 . (3)

Here ρ̄ is the local electric charge density in the vacuum,
ε0 and μ0 are the conventional dielectric constant and mag-
netic permeability of the vacuum, c2=1/μ0ε0, and C2=c2

results from the Lorentz invariance where C has the char-
acter of a velocity vector. Combination of equations (1) and
(2) yields the extended wave equation
(
∂2

∂t2
− c2∇2

)

E+

(

c2∇+C
∂

∂t

)

(divE) = 0 (4)

for the electric field, and the associated relation
(
∂

∂t
+C ∙ ∇

)

(divE) = 0 (5)

provided that divC=0 which is an adopted restriction
henceforth.

Using known vector identities, the basic equations (1),
(2), and (3) result in the local momentum equation

div 2S = f +
∂

∂t
g , (6)

where 2S is the electromagnetic stress tensor,

f = ρ̄E′ E′ = E+C×B (7)

is the local volume force density, and

g = ε0E×B =
1

c2
S (8)
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can be interpreted as a local electromagnetic momentum den-
sity of the radiation field, with S standing for the Poynting
vector. Likewise a local energy equation

−divS = ρ̄E ∙C+
1

2
ε0
∂

∂t

(
E2 + c2B2

)
(9)

is obtained. It is here to be observed that equations (6)
and (9) are rearranged relations which do not provide more
information than the original basic equations.

In the examples to be considered here, a velocity vector
of the form

C = c (0, cosα, sinα) (10)

is adopted, either in a rectangular frame (x, y, z) or in a
cylindrical frame (r, ϕ, z). All field quantities are assumed
to vary with t and z as exp

[
i(−ωt + kz)

]
where ω and

k are the corresponding frequency and wave number of an
elementary normal mode. Equation (5) then results in the
dispersion relation

ω = kv v = c(sinα) . (11)

In order not to get in conflict with observations, such as
those due to the Michelson-Morley experiments, the analysis
is restricted to the condition

0 < cosα ≡ δ � 1 . (12)

With a smallness parameter δ6 10−4, the difference be-
tween v and c would become less than a change in the eight
decimal of c.

3 Normal modes in slab-shaped and axisymmetric geo-
metries

The first example is given by a slab-shaped dense light
beam. The beam propagates in the z-direction of a rectangul-
ar frame (x, y, z), has a core region defined by −a<x<a,
and two narrow boundary regions at −b<x<−a and
a<x<b. Within the core there is a homogeneous conven-
tional electromagnetic wave field. This field is matched to
the electromagnetic field in the inhomogeneous boundary
regions as shown elsewhere [3, 8]. The analysis is here
restricted to these regions within which the inhomogeneity
in the x-direction requires the revised field equations to
be used. In an analogous beam of circular cross-section,
the source of angular momentum becomes localized to a
corresponding inhomogeneous boundary region [3, 8].

The wave equation (4) now results in the relations

Ex = −(i/kδ
2)
∂Ez
∂x

, (13)

Ey = −(sinα)Ez/δ , (14)

where the field Ez plays the rôle of a generating function for
the components Ex and Ey . From equation (2) the magnetic

field components become

Bx = −Ey/c(sinα) , (15)

By = Ex/c(sinα) +
i

kc(sinα)

∂Ez
∂x

= (sinα)Ex/c , (16)

Bz = −
i

kc(sinα)

∂Ey
∂x

= −δEx/c . (17)

Insertion of relations (13)–(17) into the expression (7)
for the volume force then yields E′=0.

Further turning to the momentum density (8) of the rad-
iation field, relations (13)–(17) give

gx = 0 , (18)

gy = δε0
[
E2x + E

2
y/(sinα)

2
]
/c , (19)

gz = ε0
[
E2x + E

2
y/(sinα)

2
]
/c . (20)

Finally the power term in the energy equation (9) van-
ishes because relations (10), (13), and (14) combine to

E ∙C = 0 . (21)

This example thus demonstrates the following features:

• The volume force density f vanishes in rectangular
geometry.

• The momentum density g of the radiation field has a
primary component gz in the direction of propagation.

• There is a secondary component gy of the order δ,
directed along the boundary and being perpendicular
to the direction of propagation. This component cor-
responds to that which generates angular momentum
(spin) in cylindrical geometry.

• There is a vanishing component gx and no momentum
is flowing across the boundary of the beam.

• The local power term in the energy equation vanishes.

The second example concerns an axisymmetric model of
the individual photon. A wave or a wave packet of preserved
and limited geometrical shape and undamped motion in a
defined direction has then to be taken as a starting point. This
leads to cylindrical geometry with propagation along z in a
frame (r, ϕ, z). From earlier deductions based on equations
(1)–(5), the electric and magnetic field components of an
elementary normal mode then become [3–6]

Er = −ig0R5/θ , (22)

Eϕ = g0 δ(sinα)R3 , (23)

Ez = g0 δ
2R4 (24)

and

Br = −Eϕ/c(sinα) = −g0 δR3/c , (25)

Bϕ = Er(sinα)/c = −ig0 (sinα)R5/θc , (26)

Bz = −ig0 δR8/θc . (27)
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Here we have introduced g0=G0/δ2 where G0 is the
characteristic amplitude of a normalized generating function
G, θ= kr0 with r0 as a characteristic radial length, and

R3 = ρ
2DG R4 = 1−R3 (28)

R5 =
∂

∂ρ
R4 R8 =

(
∂

∂ρ
+
1

ρ

)

R3 (29)

with ρ= r/r0 and the operator D given by

D =
∂2

∂ρ2
+
1

ρ

∂

∂ρ
− θ2δ2 . (30)

For the electric field E′ the components now reduce to

E′r = −ig0 δ
2(R5 +R8) , /θ (31)

E′ϕ = 0 , (32)

E′z = g0 δ
2(R3 +R4) (33)

and the momentum components of the radiation field are
given by

cgr/ε0g
2
0 = iδ2(sinα)(R4R5 −R3R8)/θ , (34)

cgϕ/ε0 g
2
0 = δR5R8/θ

2 − δ3R3R4 , (35)

cgz/ε0 g
2
0 = −(sinα)R25/θ

2 + δ2(sinα)R23 . (36)

Finally the power term in the energy equation (9) becomes

ρ̄E ∙C = δ2ρ̄ cg0 (sinα)(R3 +R4) (37)

thus being of second order in the parameter δ.
To the first order in δ the axisymmetric geometry then

has features being analogous to those of the slab-shaped
geometry:

• There is a negligible contribution from the volume
force density f , as well as from the radial component
gr of the radiation field.

• A secondary component gϕ of order δ gives rise to a
spin of the photon model [3].

• The power term in the energy equation is negligible.

A corresponding analysis of a non-axisymmetric photon
model with periodic ϕ-dependence and screw-shaped geo-
metry leads to similar results [7].

The total(net) electric charge and magnetic moment of
the present photon models have finally been shown to vanish
through spatial integration [5–7].

4 Comparison between the momentum concepts

In the spatial gradient concept the momentum is represented
by the operator

p = −ih̄∇ . (38)

For the normal modes being considered here, the corres-

ponding axial component reduces to

pz = h̄k = h/λ = hν/c (39)

which in conventional theory becomes related to a photon of
energy hν, moving along z at the velocity c of light.

A comparison between the concepts of equations (8) and
(38) is now made in respect to the remaining components
being perpendicular to the direction of propagation, as well
as in respect to the related question about Lorentz invariance.

4.1 The transverse component directed across a confin-
ing boundary

As compared to the axial component gz , the momentum
density g has a vanishing component gx in slab-shaped geo-
metry, and a nonzero but negligible component gr in axi-
symmetric geometry. The corresponding relations between
the momentum pz and the components px and pr are in a
first approximation represented by

|px/pz| ∼= λ/2πLx , |pr/pz| ∼= λ/2πLr (40)

with Lx and Lr as corresponding characteristic lengths. Then
the transverse components px and pr cannot generally be
neglected. This becomes questionable from the physical point
of view when considering individual photons and light beams
which have no transverse losses of momentum.

4.2 The transverse component directed along a confin-
ing boundary

With vanishing derivatives ∂/∂y or ∂/∂ϕ, along a boundary
in rectangular geometry or around the axis in cylindrical
geometry, there are components gy and gϕ being related
to a nonzero spin. This behaviour differs from that of the
momentum p for which the components py and pϕ vanish,
as well as the spin. Such a behaviour appears to lack physical
explanation.

When there are nonvanishing derivatives ∂/∂y and
∂/∂ϕ, the concepts of g and p both result in transverse
components along a boundary, but being of different forms.

4.3 The Lorentz invariance

In the present revised Lorentz invariant theory on the photon
model, there is a component of the momentum g around the
axis. This provides a spin, at the expense of the axial velocity
of propagation. The latter then has to become slightly less
than c, as required by the dispersion relation (11).

With the definition (38) of the momentum p, there is
a different situation. Thus equation (39) is in conventional
theory consistent with an individual photon that moves at
the full velocity c along the axial direction. But for the
same photon also to possess a nonzero spin, it should have
an additional transverse momentum pϕ, with an associated
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velocity vϕ which circulates around the z-axis. For a radia-
tion field within the volume of the photon to be considered as
a self-consistent entity, the total local velocity then becomes
equal to (c2+v2ϕ)

1/2>c. This would represent a superlumin-
al field configuration not being Lorentz invariant.

5 Conclusions

As expressed in terms of the present revised electromagnetic
theory, the momentum concept of the pure radiation field
appears to be physically relevant. The corresponding volume
force density thus vanishes in rectangular geometry and is
nonzero but negligible in cylindrical geometry. The momen-
tum density is represented by the Poynting vector, as in con-
ventional theory. Thereby its transverse components become
consistent with the spin of the photon, and with a negligible
loss of transverse momentum across a bounding surface.

The spatial gradient operator concept for the quantized
momentum of a free particle with mass has earlier been
used with success in the Schrödinger equation. However,
when applying this concept to the free radiation field of
the individual photon or of dense light beams, the obtained
results differ from those based on the Poynting vector, and
are in some cases difficult to interpret from the physical
point of view. This discrepancy requires further investigation.

In this connection it should finally be mentioned that
the present axisymmetric photon model [3, 6] is radially
polarized. The core of a dense light beam being treated
earlier [8] consists on the other hand of a linearly polarized
conventional electromagnetic wave, with a boundary region
having a radial gradient and leading to a spin of the beam
considered as an entity.

The theory of this latter model can as well be applied to
the limit of an individual photon with a linearly polarized
core, a boundary region of finite radial extension, and a
nonzero spin. It should thereby be kept in mind that such a
model concerns the internal structure of a single photon, and
therefore does not deal with the entangled quantum states of
two interacting photons.
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New Measurement of the Earth’s Absolute Velocity with the Help
of the “Coupled Shutters” Experiment

Stefan Marinov∗

Submitted by Erwin Schneeberger, e-mail: office@erwinschneeberger.com

An account is given of a new execution of my “coupled shutters” experiment. This
time the following definite figures for the Earth’s absolute velocity have been obtained:
magnitude 360± 40 km/sec with equatorial coordinates of the apex δ=−24◦± 7◦,
α= 12.5h± 1h (for February 1984).

1 Introduction

I carried out the “coupled shutters” experiment for the first
time in 1979 in Brussels [1, 2]. The precision achieved
with that first experiment was not sufficient for accurately
determining the Earth’s absolute velocity. Thus with that
experiment I could only establish that this velocity was not
greater than 3,000 km/sec. The “coupled shutters” experi-
ment is relatively very simple and cheap [1, 2], however no
scientist in the world has repeated it. The general opinion
expressed in numerous letters to me, in referees’ comments
on my papers, and in speeches at various space-time confe-
rences which I attended or organized [3] is that my experi-
ments are very sophisticated and difficult to execute. The
unique discussion in the press on the technical aspects of
my experiments is made by Chambers [4]. Here I should
like to cite the comments of my anonymous Foundations
of Physics referee sent to me by the editor, Prof. van der
Merwe, on the 23 June 1983:

I was informed by (name deleted) of the Department
of the Air Force, Air Force Office of Scientific Re-
search, Bolling Air Force Base, that Dr. Marinov’s ex-

∗Stefan Marinov (1931–1997), a Bulgarian born experimental and
theoretical physicist who invented a new and highly original method to
measure the anisotropy of the observable velocity of light (the “coupled
shutters” experiment). He reported on the results of his experiment in a
few short papers published in the peer-reviewed journals (Physics Letters,
General Relativity and Gravitation, Foundations of Physics, etc.). After
his formal education, Stefan Marinov worked from 1960 to 1974 with the
research staff and also as an Assistant Professor, at the Faculty of Physics,
Sofia University. Whilst there he devised and set up his first “coupled shut-
ters” experiment and with it detected an anisotropy in the observed velocity
of light. His life in Bulgaria was difficult: he was jailed in 1966/1967,
1974, and 1977, by the Bulgarian communist regime, for inappropriate
“political thinking”. In 1977 Marinov was deported from Bulgaria as a
“political dissident”. After a few years in Belgium, the USA, and Italy, he
continued his research in Graz, Austria, which became his home until his
tragic death in 1997. Despite the significant attention drawn to his experi-
ment in the 1980’s (many papers discussing his experiment were publish-
ed in Nature and other journals), no other scientists attempted to repeat
it. On the other hand, the experiment is simple, cheap, and can be easily
repeated in any well-equipped physics laboratory. We therefore publish this
detailed description of the experiment, as given by Marinov himself in
Deutsche Physik, in 1992. The editors hope that this posthumous publication
encourages and assists scientists who would like to repeat and enhance the
“coupled shutters” experiment. (This paper was submitted by courtesy of
Erwin Schneeberger, who was a close friend of Dr. Marinov, at Graz.)

periments were to be repeated by the Joint Institute
for Laboratory Astrophysics. On inquiry, I learnt that
JILA is not carrying out the experiments, because pre-
liminary engineering studies had indicated that it lay
beyond the expertise of the laboratory to achieve the
mechanical tolerances needed to ensure a valid result.

After presenting my objections that the fact that JILA
in the USA is unable to repeat my experiments cannot be
considered as a ground for the rejection of my papers on the
measurement of absolute velocity, Prof. van der Merwe sent
me on the 24 January 1984 the following “second report” of
the same referee:

It is with regret that I cannot change my recommenda-
tion regarding Dr. Marinov’s papers. In trying to jus-
tify the validity of his experimental work, Dr. Marinov
highlights the points which cause the rest of the com-
munity so much concern. He states, “If I in a second-
hand workshop in a fortnight for USD 500 achieve the
necessary accuracy, then, I suppose, JILA can achieve
it too.” I know of no one in the precision measurement
community who believes that measurements of the
quality claimed by Dr. Marinov could be realized
under such conditions and in so short a time. It will
take very much more than this to change the direction
of physics. I suspect that even scientists working in the
most reputable laboratories in the U.S. or the world,
would encounter great opposition in attempting to
publish results as revolutionary as those claimed by
Dr. Marinov.

In this paper I present an account of the measurement of
the laboratory’s absolute velocity, executed by me in Graz
with the help of a new configuration of my “coupled shut-
ters” experiment. Now the apparatus was built not in seven
days but in four. As the work was “black” (a mechanician in
a university workshop did it after working hours and I paid
him “in the hand”), the apparatus was built predominantly
over the weekend and cost 12,000 Shillings (USD 1000.–).
The driving motor was taken from an old washing-machine
and cost nothing.

As no scientific laboratory was inclined to offer me hos-
pitality and the possibility to use a laser source and labora-
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tory mirrors, my first intention was to use as a light source,
the Sun. As I earn my bread and money for continuing the
scientific research, working as a groom and sleeping in a
stall in a small village near Graz, I carried out the experiment
in the apartment of my girl-friend. The sensitivity which I
obtained with Sun’s light (a perfect source of homogeneous
parallel light) was good, but there were two inconveniences:
(1) The motion of the Sun is considerable during the time
when one makes the reversal of the axle and one cannot be
sure whether the observed effect is due to the delay times of
the light pulses or to the Sun’s motion; (2) One can perform
measurements only for a couple of hours about noon and
thus there is no possibility to obtain a 24-hour “sinusoid”
(explanation of the measuring procedure follows). On the
other hand, at fast rotation of the axle the holed rotating
disks became two sirens, so that when my apparatus began to
whistle the neighbors knocked on the door, asking in dismay:
“Fliegt schon der Russe über Wien?” (Is Ivan already flying
over Vienna?). After a couple of altercations, my girl-friend
threw out of her apartment not only my apparatus but also me.

Later, however, I found a possibility to execute the ex-
periment in a laboratory (Fig. 1). The scheme of the experi-
ment, its theoretical background and measuring procedure,
are exactly the same as for the Brussels variation [1, 2].
Since the description is extremely simple and short, I shall
also give it here, noting that the mounting of the laser and
of the mirrors on the laboratory table lasted two hours.

But first, following the example of Nature which gives
interesting quotations from its editions many years ago, I
should like to also give one similarly:

If it were possible to measure with sufficient accuracy
the velocity of light without returning the ray to its
starting point, the problem of measuring the first
power of the relative velocity of the Earth with respect
to the aether would be solved. This may not be as
hopeless as might appear at first sight, since the dif-
ficulties are entirely mechanical and may possibly be
surmounted in the course of time.

The names of the authors are Michelson and Morley,
the year of publication is 1887. This is the paper in which
Michelson and Morley give their account of the historical
experiment for “measurement” of the two-way light velocity.
The paper was published in two journals: The Philosophical
Magazine and American Journal of Science. After giving
this general opinion, Michelson and Morley proposed an
experiment which is almost the same as my deviant “coupled
mirrors” experiment [5, 6, 2]. They proposed to use a bridge
method with two selenium cells where the null instrument is
a telephone. I must emphasize that I could not succeed in
finding a single paper or book treating the historic Michelson-
Morley experiment, where information on their one-way pro-
posal should be given. Let me note that in the Michelson-
Morley experiment one compares the two-way light velocity

Fig. 1: The Graz “coupled shutters” experiment during preliminary
measurements in the air of the laboratory; when performing mea-
surements in vacuum the laser was mounted in parallel with the
axle and the regulator for motor’s velocity (to be seen between the
motor and the far disk) was taken outside the evacuated space. At
the left corner of the apparatus’ plate one sees the socket for one of
the reflecting mirrors for the case that Sun’s light should be used
(the socket of the other reflecting mirror is at the far right corner).
The mechanician spent considerable time (and I lost money) for
mastering the adjustable reflecting mirrors for Sun’s light which
have not been used in the laser arrangement, so that the price of
the actually used apparatus had to be less than the half.

in two mutually perpendicular directions, but one cannot
measure its value.

2 Theory of the “coupled shutters” experiment

A rotating axle driven by an electromotor, located exactly at
the middle of the axle, has two holed discs at its extremities.
The distance from the centres of the holes to the centre of
the axle is R and the distance between the discs is d. Light
from a laser is divided by a semi-transparent prism and the
two beams are directed by a couple of adjustable mirrors, to
the opposite ends of the rotating axle, so that the beams can
pass through the discs’ holes in mutually opposite directions.
Any of the beams, after being chopped by the near disc
and “detected” by the far disc, illuminates a photocell. By
means of a galvanometer one measures the difference in the
currents generated by both photocells. If covering one of the
cells, one measures the current produced by the other cell.

One arranges the position of the laser beam with respect
to the discs’ holes in such a manner that when the axle is
at rest the light of the laser which passes through the near
hole illuminates half of the far hole. One then sets the axle
in rotation, gradually increasing its speed. Since the light
pulses cut by the near holes have a transit time in order to
reach the far holes, with the increase of the rate of rotation
less and less light will pass through the far holes, when the
distant holes “escape” from the light beam positions, and,
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conversely, more and more light will pass through the far
holes, when the distant holes “enter” into the light beam
positions. For brevity I shall call the first kind of far holes
“escaping” and the second kind of far holes “entering”.

If one assumes that the holes as well as the beams’ cross-
sections are rectangular and the illuminations homogeneous,
then the current Ihom produced by either of the photocells
will be proportional to the breadth b of the light spot measur-
ed on the surface of the photocell when the axle is rotating,
i.e., Ihom∼ b. When the rotational rate of the axle increases
by ΔN , the breadth of the light beam passing through the
“escaping” holes will become b−Δb, while the breadth of
the light beam passing through “entering” holes will become
b+Δb, and the produced currents will become Ihom−ΔI ∼
∼ b−Δb, Ihom+ΔI ∼ b+Δb. Thus

Δb = b
ΔI

Ihom
, (1)

where ΔI is the half of the change in the difference of the
currents produced by the photocells.

One rotates the axle first with ΔN
2 counter-clockwise and

then with ΔN
2 clockwise, that corresponds to a change ΔN

in the rate of rotation. Since

Δb = (d/c)πΔNR , (2)

for the one-way velocity of light one obtains

c =
2πΔNRd

b

Ihom
ΔI

(3)

In my experiment the holes, as well as the light beams,
were circular, not rectangular. Consequently, instead of the
measured light spot’s breadth, one has to take a certain
slightly different “effective” breadth. As the breadth b can
never be measured accurately, the discussion of the differen-
ce between real breadth and “effective” breadth is senseless.
Much more important, however, was the fact that the illumi-
nation in the beams’ cross-sections was not homogeneous: at
the centre it was maximum and at the periphery minimum.
Thus the simplified relation (1) did not correspond to reality
if under Ihom one would understand the measured current. I
shall give here a certain amelioration of formula (1), which
was omitted in Ref. [1], because of a fear that the presumed
referee would consider my analysis as an “artificial specu-
lation” in a search “to adapt the observed values to the
theoretical formula”. Now I am no more afraid of the referee.
The illumination will be assumed to increase linearly from
zero on the periphery of the light beam to a maximum at its
center where the beam is “cut” by the holes’ rims. The real
current I which one measures is proportional to a certain
middle illumination across the whole light beam, while the
real current ΔI is proportional to the maximum illumination
at the centre of the light beam. On the other hand, one must
take into account that when the holes let the light beam fall

on the photocell, first light comes from the peripheral parts
and at the end from the central parts. When half of the beam
has illuminated the photocell, the “left” part of the beam
begins to disappear and its “right” part begins to appear,
the breadth remaining always half of the beam. Then the
holes’ rims begin to extinguish first the central parts of the
beam and at the end the peripheral parts. Here, for simplicity,
I suppose that the cross-sections of the beams and of the
holes are the same (in reality the former were smaller than
the latter). Thus during the first one-third of the time of
illumination the “left” half of the light beam appears, during
the second one-third of the time of illumination the “left”
half goes over to the “right” half, and during the last one-
third of the time of illumination the “right” half disappears.
Consequently, the real current, I , produced by the photocell
will be related to the idealized current, Ihom, corresponding
to a homogeneous illumination with the central intensity and
generated by a light spot having the half-breadth of the
measured one, by the following connection

I =
1

2

∫ 1

0

Ihom x

(
2

3
−
x

3

)

dx =

=
Ihom
6

(

x2 −
x3

3

)∣∣
∣
∣

1

0

=
Ihom
9

.

(4)

In this formula Ihomdx is the current produced by a
strip with breadth dx of the light beam; at the periphery
of the beam (where x=0) the produced current is zero
and at the centre (where x=1) it is Ihomdx. The current
Ihomdx is produced (i.e. the corresponding photons strike
the photocell) during time 2

3 −
x
3 ; for the periphery of the

beam this time is 2
3 −

0
3 =

2
3 and for the centre of the beam

this time is 2
3 −

1
3 =

1
3 . The factor 1

2 before the integral is
present because the measured breadth of the light spot over
the photocell is twice its working breadth. Putting (4) into
(3), one obtains

c =
2πΔNRd

b

9I

ΔI
. (5)

According to my absolute space-time theory [2, 6, 7]
(and according to anybody who is acquainted even superfi-
cially with the experimental evidence accumulated by huma-
nity), if the absolute velocity’s component of the laboratory
along the direction of light propagation is v, then the velocity
of light is c− v along the propagation direction and c+ v
against. For these two cases formula (5) is to be replaced by
the following two

c− v =
2πΔNRd

b

9I

ΔI + δI
,

c+ v =
2πΔNRd

b

9I

ΔI − δI
,

(6)

where ΔI + δI and ΔI − δI are the changes of the currents
generated by the photocells when the rate of rotation changes
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byΔN . Dividing the second formula (6) by the first one, one
obtains

v =

(
δI

ΔI

)

c . (7)

Thus the measuring method consists of the following:
One changes the rotational rate by ΔN and measures the
change in the current of either of the photocells, which is
ΔI 'ΔI±δI; then one measures the difference of these
two changes which is 2δI . I made both these measurements
by a differential method with the same galvanometer, apply-
ing to it the difference of the outputs of both photocells.
To measure 2ΔI I made the far holes for one of the beam
“escaping” and for the other “entering”. To measure 2δI
I made all far holes “escaping” (or all “entering”).

3 Measurement of c

In the Graz variation of my “coupled-shutters” experiment I
had: d= 120 cm, R= 12 cm. The light source was an Ar
laser, the photocells were silicon photocollectors, and the
measuring instrument was an Austrian “Norma” galvanome-
ter. I measured I = 21 mA (i.e., Ihom= 189 mA) at a rota-
tional rate of 200 rev/sec. Changing the rotation from clock-
wise to counter-clockwise, i.e., with ΔN = 400 rev/sec, I
measured ΔI = 52.5μA (i.e., the measured change in the
difference current at “escaping” and “entering” far holes was
2ΔI = 105μA). I evaluated a breadth of the light spot b=
= 4.3±0.9 mm and thus I obtained c= (3.0±0.6)×l08 m/sec,
where error is taken as only the error in the estimation of b,
because the “weights” of the errors introduced by the mea-
surement of d, R, ΔN , I , ΔI were much smaller. I repeat,
the breadth b cannot be measured exactly as the peripheries
of the light spot are not sharp. As a matter of fact, I chose
such a breadth in the possible uncertainty range of ±1 mm,
so that the exact value of c to be obtained. I wish once more
to emphasize that the theory for the measurement of c is
built on the assumption of rectangular holes and light beams
cross-sections and linear increase of the illumination from
the periphery to the center. These simplified assumptions
do not correspond to the more complicated real situation.
Let me state clearly: The “coupled shutters” experiment is
not to be used for an exact measurement of c. It is, however,
to be used for sufficiently accurate measurement of the var-
iations of c due to the absolute velocity of the laboratory
when, during the different hours of the day, the axis of the
apparatus takes different orientations in absolute space due
to the daily rotation of the Earth (or if one would be able to
place the set-up on a rotating platform). The reader will see
this now.

4 Measurement of v

The measurement of c is an absolute, while the measurement
of v is a relative, taking the velocity of light c as known.

According to formula (7) one has to measure only two diffe-
rence currents: 2ΔI (at “escaping” and “entering” far holes)
and 2δI (at “escaping” or “entering” far holes). The measu-
rement in the air of the laboratory had two important incon-
veniences: (1) Dust in the air led to very big fluctuations in
the measured current differences and I had to use a big con-
denser in parallel with the galvanometer’s entrance, making
the apparatus very sluggish; (2) The shrill of the holed disks
at high rotational rate could lead to the same gloomy result as
when executing the experiment in the apartment of my girl-
friend. Thus I covered the whole set-up with a metal cover
and evacuated the air by using an oil pump (this amelioration
cost an additional 9,000 Shilling, i.e. USD 700,–). The per-
formance of the experiment in vacuum has also the advan-
tage that those people who wish to save at any price the false
dogma of the constancy of the velocity of light, cannot raise
the objection that the observed effect is due to temperature
disturbances.

The measurement of ΔI is a simple problem as the effect
is huge. Moreover all existing physical schools cannot raise
objections against the theory presented above. However, the
measurement of δI which is with three orders lower than
ΔI has certain peculiarities which must be well understood.
When changing the rotation from clockwise to counter-
clockwise, the current produced by the one photocell changes,
say, from I1 to I1+ΔI1+ δI1 and of the other photocell
from, say, I2 to I2+ΔI2− δI2. One makes I1 to be equal
to I2, changing the light beam positions by manipulating the
reflecting mirrors micrometrically. One can with difficulty
obtain an exact compensation, so that the galvanometer shows
a certain residual current I ′. The current change ΔI1 will be
equal to the current change ΔI2 only if the experiment is
entirely symmetric. But it is difficult to achieve a complete
symmetry (and, of course, I could not achieve it in my
experiment). There are the following disturbances: On the
one hand, the distribution of the light intensities in the cross-
sections of both beams and the forms of the beams are not
exactly the same; thus the covering of the same geometrical
parts of both beams when changing the rotation of the axle
does not lead to equal changes in the light intensities of
both beams and, consequently, to ΔI1=ΔI2. On the other
hand, although the photocells were taken from a unique
Sun collector cut in two pieces, even if the changes in the
illuminations should be equal, the produced currents may
become different (the current gain at the different points
of the photocells is not the same, the internal resistances
of the cells are not equal, etc. etc.). Thus after changing
the rotational rate from clockwise to counter-clockwise, I
measured certain current I ′′, but I ′′− I ′ was not equal to
2δI , as it must be for an entirely symmetric setup. However,
measuring the difference I ′′− I ′ during different hours of
the day, I established that it was “sinusoidally modulated”.
This “sinusoidal modulation” was due to the absolute veloci-
ty v. All critics of my “rotating axle” experiments vociferate
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Fig. 2: Measurement of 2δI . The points give the measurements at
the even hours for the days from the 9th to the 13th February 1984.

mostly against the vibrations of the axle, asserting that these
vibrations will mar the whole measurement. Meanwhile the
axle caused me absolutely no troubles. When measuring in
vacuum the axis of the apparatus pointed north/south.

I measured the “sinusoidal modulation” over 5 days,
from the 9th to the 13th February 1984. As I did the experi-
ment alone, I could not cover all 24 hours of every day.
The results of the measurements are presented in Fig. 2. The
most sensible scale unit of the galvanometer was 10 nA and
the fluctuations were never bigger than 20 nA. The daytime
hours are on the abscissa and the current differences on the
left ordinate. After plotting the registered values of I ′′− I ′

and drawing the best fit curve, the “null line” (i.e., the
abscissa) is drawn at such a “height” that the curve has
to cut equal parts of the abscissa (of any 12 hours). Then
on the right ordinate the current 2δI is taken positive up-
wards from the null line and negative downwards. Since
105μA corresponds to a velocity 300,000 km/sec, 10 μA
will correspond approximately to 30 km/sec. Considering
the fluctuations of the galvanometer as a unique source of
errors, I took ±30 km/sec as the uncertainty error in the
measurement of v.

When 2δI has maximum or minimum the Earth’s abso-
lute velocity lies in the plane of the laboratory’s meridian
(Fig. 3). The velocity components pointing to the north are
taken positive and those pointing to the south negative. I
always denote by va the component whose algebraic value
is smaller. When both light beams pass through “escaping”
holes, then, in the case that the absolute velocity component
points to the north, the “north” photocell produces less cur-
rent than the “south” photocell (with respect to the case
when the absolute velocity component is perpendicular to
the axis of the apparatus), while in the case that the absolute
velocity component points to the south, the “north” photocell
produces more current. If the light beams pass through “en-
tering” holes, all is vice versa. Let me note that for the case

Fig. 3: The Earth and its absolute velocity at the two moments
when the laboratory meridian lies in the velocity’s plane.

shown in Fig. 3 (which does not correspond to the real situa-
tion, as in reality va is negative) both velocity components
point to the north and both va and vb are positive. In this
case the “variation curve” no longer has the character of a
“sinusoid”; it has 4 extrema (for 24 hours) and the “null line”
must be drawn tangentially to the lowest minimum.

As can be seen from Fig. 3, the two components of
the Earth’s absolute velocity in the horizontal plane of the
laboratory, va and vb, are connected with the magnitude v
of the absolute velocity by the following relations

va = v sin(δ − φ) , vb = v sin(δ + φ) , (8)

where φ is the latitude of the laboratory and δ is the declina-
tion of the velocity’s apex. From these one obtains

v =

{
v2a + v

2
b − 2vavb

(
cos2φ− sin2φ

)} 1
2

2 sinφ cosφ
,

tan δ =
vb + va
vb − va

tanφ .

(9)

Obviously the apex of v points to the meridian of va.
Thus the right ascension α of the apex equaled the local
sidereal time of registration of va. From Fig. 2 it is to be
seen that this moment can be determined with an accuracy
of ±1h. Thus it was enough to calculate (with an inaccuracy
not larger than ±5 min) the sidereal time tsi for the meridian
where the local time is the same as the standard time tst of
registration, taking into account that the sidereal time at a
middle midnight is as follows:

22 September — 0h 23 March — 12h

22 October — 2h 23 April — 14h

22 November — 4h 23 May — 16h

22 December — 6h 22 June — 18h

21 January — 8h 23 July — 20h

21 February — 10h 22 August — 22h.

S. Marinov. New Measurement of the Earth’s Absolute Velocity with the Help of the “Coupled Shutters” Experiment 35



Volume 1 PROGRESS IN PHYSICS January, 2007

The graph in Figure 2 shows that on the 11th February
(the middle day of observation) I registered in Graz (φ= 47◦,
δ= 15◦ 26′) the following components of the absolute
velocity at the following hours (for 2(δI)a=−120nA, and
2(δI)b=50nA)

va = −342± 30 km/sec, (tst)a = 3h ± 1h,

vb = +143± 30 km/sec, (tst)b = 15h ± 1h,
(10)

and formulae (9) give

v = 362± 40 km/sec,

δ = −24◦ ± 7◦, α = (tsi)a = 12.5h ± 1h.
(11)

where the errors are calculated supposing φ = 45◦.
The local sidereal time for the observation of va (i.e., the

right ascension of the absolute velocity’s apex) was calcul-
ated in the following manner: As for any day the sidereal
time increases by 4m (with respect to the solar time), the si-
dereal time at midnight on the 11th February (which follows
21 days after midnight on the 21 January) was 8h+1h 24m=
= 9h 24m. At 3h middle European (i.e., Graz) time on the
11th February the local sidereal time on the 15th meridian
was 9h 24m+ 3h= 12h 24m. On the Graz meridian the local
sidereal time was 12h 24m+ 2m= 12h 26m' 12.5h.

Important remark. I now establish that when calculating
the local sidereal time of observation of va for my interfe-
rometric “coupled mirrors” experiment [2, 6, 8, 9], I made a
very unpleasant error. As Sofia (λ= 23◦ 21′) lies westwards
from the middle zonal meridian (λ= 30◦), I had to subtract
the difference of 6◦ 39′, which corresponds to 27m, from the
local sidereal time of the zonal meridian. Instead of doing
this, I wrongly added. Thus the numbers given by me are to
be corrected as follows:

Observation: Wrongly calculated: To be corrected to:

12 July 1975 (tsi)a=14h 23m (tsi)a=13h 30m

11 January 1976 (tsi)a=14h 11m (tsi)a=13h 17m

Right ascension of
the apex of the Sun’s
absolute velocity

α=14h 17m α=13h 23m

I beg the persons who will refer to the measurement of
the Sun’s absolute velocity determined by me in 1975/76
to cite always the corrected figures given here and not the
wrongly calculated figures presented in [2, 6, 8, 9, 10, 11]
and in some others of my papers.

5 Conclusions

Comparing the figures obtained now by the Graz variation of
my “coupled shutters” experiment with the figures obtained
some ten years ago in Sofia by the interferometric “coupled

Fig. 4: February 1984. Explaining the essence of the “coupled
shutters” experiment. My fingers show the ways in which both light
beams go from the one perforated disk to the other. One can see on
the photograph only a small part of the laser producing the initial
light beam which is split by the semitransparent mirror seen in the
photograph. The reflected beam goes to the left, while the refracted
beam, after a reflection on the mirror seen in the photograph, goes
to the right. Between the perforated disks, these two beams proceed
in the opposite directions. The person who gave me a possibility to
carry out my “coupled shutters” experiment in his laboratory took
from me the solemn promise that I shall never say where have I
carried it out. To my question, why is he so afraid, the answer was:
“I do not wish one day to be poisoned by certain special services.”

mirrors” experiment, one sees that within the limits of the
supposed errors they overlap. Indeed, on the 11 January 1976
I registered in Sofia the following figures

v = 327± 20 km/sec,

δ = −21◦ ± 4◦, α = 13h 17m ± 20m.
(12)

As for the time of one month the figures do not change
significantly, one can compare directly the figures (11) with
the figures (12). The declinations are the same. As the Graz
measurements were done every two hours, the registration of
the right ascension was not exact enough and the difference
of about one hour is not substantial. I wish to point only to
the difference between the magnitudes which is 35 km/sec. I
have the intuitive feeling that the figures obtained in Sofia
are more near to reality. The reason is that I profoundly
believe in the mystique of the numbers, and my Sofia mea-
surements led to the magic number 300 km/sec for the Sun’s
absolute velocity (which number is to be considered together
with 300,000 km/sec for light velocity and 30 km/sec for the
Earth’s orbital velocity). The Graz measurement destroys
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this mystic harmony.
The presented account on the Graz “coupled shutters”

experiment shows that the experiment is childishly simple, as
I always asserted [1, 2]. If the scientific community refuses
to accept my measurements for so many years and nobody
tries to repeat them, the answer can be found in the following
words of one of my best physical and moral teachers:

Terrible is the power which an authority exerts
over the world.

Albert Einstein

I wish to add in closing that with a letter of the 29 Dec-
ember 1983 I informed the Nobel committee that I am ready
at any time to bring (for my account) the “coupled shutters”
experiment to Stockholm and to demonstrate the registration
of the Earth’s absolute motion. With a letter of 28 January
1984 Dr. B. Nagel of the Physics Nobel committee informed
me that my letter had been received.
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Upper Limit in the Periodic Table of Elements
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The method of rectangular hyperbolas is developed for the first time, by which a means
for estimating the upper bound of the Periodic Table is established in calculating that
its last element has an atom mass of 411.663243 and an atomic number (the nuclear
charge) of 155. The formulating law is given.

1 Introduction. The mathematical basis

The periodic dependence of the properties of the elements
on their atomic mass, as discovered by D. I. Mendeleev in
1869, predicted the existence of new elements in appropriate
locations in the Periodic Table.

Progress in synthesis and in the study of the properties
of the far transuranium elements has increased interest in the
question of the upper limits of the Periodic Table. G. T. Sea-
borg, J. L. Bloom and V. I. Goldanskii emphasized that the
charge of the atomic nucleus and the position occupied by
the element “define unambiguously the structure of electron
jackets of its atoms and characterize the whole set of its
chemical properties”. They suggested the existence of nuclei
containing 114, 126 and 164 protons, 184, and 258 neutrons
and the Table arrangement of the relevant elements [1, 2].

The objective of this study is to determine the possible
number of chemical elements, along with atomic masses and
atomic numbers up to the final entry in the Periodic Table.

The calculations were performed on the basis of IUPAC
[3] table data for all known elements. The basic principle
resides in the idea that the proportion of the defined element
Y in any chemical compound of molecular mass X should
be related to its single gram-atom. In this case, if K is the
atomic mass, the equation Y = K

X
would represent a rectang-

ular hyperbola in the first quadrant (K> 0). Its asymptotes
conform to the axis coordinates, and semi-axis a= b=
=
√
2 |K|. The peak of the curve should occur on the virtual

axis inclined at an angle of 45◦ to the positive direction of
the abscissa axis. The necessary conditions associated with
this chemical conception are: Y 6 1 and K 6X .

The foregoing equation differs only in the atomic mass
for each element of the Periodic Table and allows calculation
of the proportion of the element in any compound. Accuracy
plotting the curve and the associated straight line in the loga-
rithmic coordinates depends on the size of the steps in the
denominator values, which can be entirely random but must
be on the relevant hyperbola in terms of X . Consequently, it
can be computed without difficulty by prescribing any value
of the numerator and denominator. In Table 1a are given
both known oxygen containing compounds and random data
on X arranged in the order of increasing molecular mass.
Fig. 1 depicts the hyperbola (the value of the approximation

Fig. 1: Oxygen content versus the molecular mass of compounds
on estimation to 1 gram-atom (hyperbola y= k/x) and the total
amount of O (maxima, leaders). The molecular mass in the table is
given according to its increase.

certainty R2=1), calculated for 1 gram-atom of oxygen.
Estimation of the unobserved content in the chemical

compound as determined by the formula is expressed on the
plot by the polygonal line (Table 1b, Fig. 1). It is obvious
from the Fig. 2a that the hyperbolic function of the elemental
proportion in chemical compounds plotted against molecular
mass, by the example of the second Group, is true (R2=1).
In the logarithmic coordinates (Fig. 2b) it is represented as
the straight lines arranged in the fourth quadrant (to the right
of hydrogen) all with slope 1. With the view to expansion
of the basis of the arguments, this example is given for
the first Group including “roentgenium” No. 111, a more
recently identified element, and the predicted No. 119 and
No. 155. The real axis is shown here, on which the peaks
of all hyperbolas of the Periodic Table are arranged (see
below).

2 Using the theorem of Lagrange

It is clear from the Fig. 2a that with the rise of the atomic
mass the curvature of the hyperbola decreases (the radius of
curvature increases), and the possibility to define its peak,
for example, by means of graphical differentiation, becomes
a problem due to errors of both subjective and objective
character (instrument, vision and so on). Therefore, to esti-
mate the curve peak of the hyperbola the mathematical
method of the theorem of Lagrange was used [4].
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K X Y = K

X
lnX lnY Compound Compound X Y =n K

X

15.9994 15.999 1 2.77255 0 O O 15.9994 1

15.9994 17.007 0.9408 2.83363 −0.0611 1
2
H2O2 H2O 18.015 0.88811546

15.9994 18.015 0.8881 2.8912 −0.1187 H2O BeO 25.01 0.63972011

15.9994 20 0.8 2.99573 −0.2232 — CO 28.01 0.57120314

15.9994 22 0.7272 3.09104 −0.3185 — NO 30.006 0.53320669

15.9994 23.206 0.6895 3.14441 −0.3719 1
3
B2O3 H2O2 34.01 0.94089974

15.9994 25.01 0.6397 3.21928 −0.4467 BeO MgO 40.304 0.39698293

15.9994 28.01 0.5712 3.33256 −0.56 CO N2O 44.012 0.36353722

15.9994 30.006 0.5332 3.4014 −0.6288 NO CaO 56.077 0.28532197

15.9994 33.987 0.4708 3.52598 −0.7534 1
3
Al2O3 COS 60.075 0.26633375

15.9994 37 0.4324 3.61092 −0.8384 — B2O3 69.618 0.68947686

15.9994 40.304 0.397 3.69645 −0.9239 MgO N2O3 76.01 0.63149586

15.9994 44.012 0.3635 3.78446 −1.0119 N2O CuO 79.545 0.20114401

15.9994 50.663 0.3158 3.9252 −1.1526 1
3
Cr2O3 Cl2O 86.905 0.18410908

15.9994 53.229 0.3006 3.9746 −1.2021 1
3
Fe2O3 CrO3 99.993 0.4800336

15.9994 56.077 0.2853 4.02673 −1.2542 CaO Al2O3 101.96 0.47077285

15.9994 60.075 0.2663 4.09559 −1.323 COS N2O5 108.008 0.74068588

15.9994 71.844 0.2227 4.2745 −1.5019 FeO CdO 128.41 0.12460089

15.9994 79.545 0.2011 4.37632 −1.6038 CuO Cr2O3 151.99 0.31581025

15.9994 86.905 0.1841 4.46482 −1.6923 Cl2O Fe2O3 159.687 0.30058803

15.9994 108.6 0.1473 4.6877 −1.9151 1
3
La2O3 Co2O3 165.86 0.2894007

15.9994 128.41 0.1246 4.85523 −2.0827 CdO V2O5 181.88 0.43985045

15.9994 143.09 0.1118 4.96348 −2.1909 Cu2O WO2 215.84 0.14825797

15.9994 153.33 0.1043 5.03257 −2.26 BaO Fe3O4 231.53 0.27642206

15.9994 216.59 0.0739 5.37801 −2.6055 HgO UO2 270.027 0.11850667

15.9994 231.74 0.069 5.44562 −2.6731 Ag2O Ag2CO3 275.75 0.174064

15.9994 260 0.0615 5.56068 −2.7881 — UO2Cl2 340.94 0.0938546

15.9994 300 0.0533 5.70378 −2.9312 — Gd2O3 362.5 0.132409

15.9994 350 0.0457 5.85793 −3.0854 — Tl2O3 456.764 0.10508709

15.9994 400 0.04 5.99146 −3.2189 — Bi2O3 465.96 0.103009

15.9994 450 0.0356 6.10925 −3.3367 — Re2O7 484.4 0.231205

15.9994 500 0.032 6.21461 −3.4421 — Tl2SO4 504.8 0.1267781

15.9994 600 0.0267 6.39693 −3.6244 — Ce2(SO4)3 568.43 0.33776

Table 1: Content of oxygen Y in compounds X per gram-atom (Table 1a) left and summarized O (Table 1b) on the right.
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Fig. 2a: Element proportion in chemical compounds against mo-
lecular mass (y= k/x) on the example of the 2nd Group of the
Periodic Table, plus No.126 and No.164.

Fig. 2b: Element content versus the molecular mass in chemical
compounds of the 1st Group and No.111, calculated No.119,
No.155; + virtual axis.

For example, the coordinates of the peak for beryllium
are as follows: X = 60.9097, Y = 0.14796, the normal equa-
tion is Y = 0.0024292X . Taking into consideration that the
semiaxis of the rectangular hyperbola a= b=

√
2 |K|, the

coordinates of the point X0=Y0=
√
K.

Let us examine this fact in relation to elements with the
following atomic masses (K): beryllium Be (9.0122), ran-
dom Z (20), chromium Cr (51.9961), mercury Hg (200.59),
No. 126 (310), random ZZ (380), No. 164 (422), random
ZZZ (484). In this case X0=Y0=

√
K, and correspond-

ingly, 3.00203, 4.472136, 7.210825, 14.16298, 17.606817,
19.493589, 20.54264, 22.

The obtained values are the coordinates of the rectan-
gular hyperbola peaks (X0=Y0), arranged along the virtual
axis, the equation of which is Y =X (because tanα=1).

3 The point of crossing and the scaling coefficient

Our attention is focused on the point of crossing of the
virtual axis with the line Y =1 in Fig. 3 when the atomic
mass and the molecular mass are equal, i.e. K =X . It is
possible only in the case when the origin of the hyperbola
and its peak coincide in the point with the maximum content
Y according to the equation Y = K

X
.

The atomic mass of this element was calculated with ap-
plication of the scaling coefficient and the value of the slope
of the virtual axis (the most precise mean is 0.00242917):
tanα= y

x = 0.00242917, from which x= y
tanα . Due to

Fig. 3: The virtual axis of the hyperbolas y= k/x with application
of the scaling coefficient.

Fig. 4: Inversely proportional dependency in coordinates at calcul-
ation of the scaling coefficient.

the fact that at this point k=x we have: y
tanα =

1
tanα =

= 411.663243. This value is equal to the square of the scal-
ing coefficient too: 20.28952= 411.6638, Δ= 0.0006.

The coefficient was calculated from matching of the co-
ordinates of the peak hyperbola for beryllium: X0=Y0=

√
K

and X=60.9097, Y=0.14796. Using this data to construct
two triangles (Fig. 4), one easily sees an inversely proportion-
al relationship: X

X0
= Y0

Y
, whence X

X0
= 60.9097

3.00203
=20.2895041

and Y0
Y
= 3.00203

0.14976
= 20.28947013, Δ= 0.000034.

The calculated value M = 20.2895 is the scaling coeffi-
cient. With its help the scale of system coordinates can be
reorganised.

Now if one rectangular hyperbola peak is known, X0=
=Y0=

√
K, then the new coordinates will be: X =X0M

or X =M
√
K, Y =

√
K
M

. Furthermore, tanα0=
Y0
X0
=1, so

tanα= Y
X
= 1

M2
. At the same time at Y =1 and K = X ,

X = Y
tanα or K = Y

tanα =
1

tanα =M
2.
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Fig. 5: Element content versus the compound’s molecular mass and
the hyperbola virtual axes of type y= k/x for the entire Periodical
Table. Additionally No.126, No.164 and that rated on (ZZZZ) are
introduced.

The results obtained are plotted in Fig. 5 in comparison
with the hyperbolas of such elements as Be, Cr, Hg and the
hypothetical No.126 (atomic mass = 310), No.164 (atomic
mass = 422), ZZZZ (atomic mass = 411.66). It is obvious
that it is practically impossible to choose and calculate preci-
sely the curve peak for an atomic mass exceeding the value
250 without the application of the mathematical method ad-
duced herein.

The rated element ZZZZ is the last in the Periodic Table
because the hyperbola No.164 after it crosses the virtual
axis at the point which coordinates are: X0=Y0=

√
422=

= 20.5426386.
After scaling we have X = 20.2895×20.5426386= 416.8

and Y = 20.5426386/20.2895= 1.0125, but this makes no
sense because Y cannot exceed the value 1. In addition, the
hypothetical atomic mass 422 occurred higher than the mo-
lecular mass 416.8, i.e. X <K, but that is absurd. Similarly,
it is obvious from Fig. 2b how the virtual axis (the equation
Y =X − 6.0202 where Y = ln y, X = lnx) crossing all the
logarithmic straight lines at the points corresponding to the
hyperbola peaks, takes the value lnx= 6.0202 at ln y=0,
or after taking logarithms, X = 411.66, Y = 1.

4 The atomic (ordinal) number

To determine important characteristics of the atomic number
some variants of graphical functions of the atomic mass
versus the nucleus of all the elements were studied, including
No.126. One of them is exponential, with the equation Y =
= 1.6091e1.0992x (where y is the atomic mass, x is lnNo)
at R2= 0.9967. After taking the logarithm of the both sides
and inserting the atomic mass of 411.66 we have No.155.
The calculations also demonstrated that the ordinal No.126
should have the atomic mass 327.2 but not 310.

Finally, the following atomic masses were obtained:
No.116 — 298.7, No.118 — 304.4, No.119 — 307.2, No.120
— 310, No.126 — 327.3, No.155 — 411.66.

5 The new law

Based on the foregoing, the heretofore unknown Hyperbolic
law of the Periodic Table of Elements is established.

This law is due to the fact that the element content Y
when estimated in relation to 1 gram-atom, in any chemical
combination with molecular mass X , may be described by
the adduced equations for the positive branches of the rectan-
gular hyperbolas of the type Y = K

X
(where Y 6 1, K 6X),

arranged in the order of increasing nuclear charge, and hav-
ing the common virtual axis with their peaks tending to the
state Y =1 or K =X as they become further removed from
the origin of coordinates, reaching a maximum atomic mass
designating the last element.
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There have been various explanations of Pioneer blueshift anomaly in the past few
years; nonetheless no explanation has been offered from the viewpoint of Q-relativity
physics. In the present paper it is argued that Pioneer anomalous blueshift may
be caused by Pioneer spacecraft experiencing angular shift induced by similar Q-
relativity effect which may also affect Jupiter satellites. By taking into consideration
“aether drift” effect, the proposed method as described herein could explain Pioneer
blueshift anomaly within ∼0.26% error range, which speaks for itself. Another new
proposition of redshift quantization is also proposed from gravitational Bohr-radius
which is consistent with Bohr-Sommerfeld quantization. Further observation is of
course recommended in order to refute or verify this proposition.

1 Introduction

In the past few years, it is becoming well-known that Pioneer
spacecraft has exhibited an anomalous Doppler frequency
blueshifting phenomenon which cannot be explained from
conventional theories, including General Relativity [1, 4].
Despite the nature of such anomalous blueshift remains un-
known, some people began to argue that a post-einsteinian
gravitation theory may be in sight, which may be considered
as further generalisation of pseudo-Riemannian metric of
general relativity theory.

Nonetheless, at this point one may ask: Why do we re-
quire a generalization of pseudo-Riemannian tensor, instead
of using “patch-work” as usual to modify general relativity
theory? A possible answer is: sometimes too much path-
work doesn’t add up. For instance, let us begin with a
thought-experiment which forms the theoretical motivation
behind General Relativity, an elevator was put in free-falling
motion [8a]. The passenger inside the elevator will not feel
any gravitational pull, which then it is interpreted as formal
analogue that “inertial acceleration equals to gravitational
acceleration” (Equivalence Principle). More recent experi-
ments (after Eötvös) suggest, however, that this principle is
only applicable at certain conditions.

Further problem may arise if we ask: what if the elevator
also experiences lateral rotation around its vertical axis?
Does it mean that the inertial acceleration will be slightly
higher or lower than gravitational pull? Similarly we observe
that a disc rotating at high speed will exert out-of-plane
field resemble an acceleration field. All of this seems to
indicate that the thought-experiment which forms the basis
of General Relativity is only applicable for some limited
conditions, in particular the F =mdv

dt part (because General
Relativity is strictly related to Newtonian potential), but it
may not be able to represent the rotational aspects of gravita-

tional phenomena. Einstein himself apparently recognizes
this limitation [8a, p.61]:

“. . . all bodies of reference K ′ should be given prefer-
ence in this sense, and they should be exactly equiva-
lent to K for the formation of natural laws, provided
that they are in a state of uniform rectilinear and non-
rotary motion with respect to K.” (Italic by Einstein).

Therefore, it shall be clear that the restriction of non-
rotary motion remains a limitation for all considerations by
relativity theory, albeit the uniform rectilinear part has been
relaxed by general relativity theory.

After further thought, it becomes apparent that it is re-
quired to consider a new kind of metric which may be able
to represent the rotational aspects of gravitation phenomena,
and by doing so extends the domain of validity of general
relativity theory.

In this regard, the present paper will discuss the afore-
mentioned Pioneer blueshift anomaly from the viewpoint of
Q-relativity physics, which has been proposed by Yefremov
[2] in order to bring into application the quaternion number.
Despite the use of quaternion number in physical theories
is very scarce in recent years — apart of Pauli matrix —
it has been argued elsewhere that using quaternion number
one could expect to unify all known equations in Quantum
Mechanics into the same framework, in particular via the
known isomorphism between Dirac equation and Maxwell
equations [5].

Another problem that was often neglected in most treat-
ises on Pioneer spacecraft anomaly is the plausible role of
aether drift effect [6]. Here it can be shown that taking
this effect into consideration along with the aforementioned
Q-relativity satellite’s apparent shift could yield numerical
prediction of Pioneer blueshift within ∼0.26% error range,
which speaks for itself.
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We also suggest a new kind of Doppler frequency shift
which can be predicted using Nottale-type gravitational Bohr-
radius, by taking into consideration varying G parameter as
described by Moffat [7]. To our knowledge this proposition
of new type of redshift corresponding to gravitational Bohr-
radius has never been considered before elsewhere.

Further observation is of course recommended in order
to verify or refute the propositions outlined herein.

2 Some novel aspects of Q-relativity physics. Pioneer
blueshift anomaly

In this section, first we will review some basic concepts of
quaternion number and then discuss its implications to qua-
ternion relativity (Q-relativity) physics [2]. Then we discuss
Yefremov’s calculation of satellite time-shift which may be
observed by precise measurement [3]. We however introduce
a new interpretation here that such a satellite Q-timeshift is
already observed in the form of Pioneer spacecraft blueshift
anomaly.

Quaternion number belongs to the group of “very good”
algebras: of real, complex, quaternion, and octonion [2].
While Cayley also proposed new terms such as quantic, it
is less known than the above group. Quaternion number can
be viewed as an extension of Cauchy imaginary plane to
become [2]:

Q ≡ a+ bi+ cj + dk , (1)

where a, b, c, d are real numbers, and i, j, k are imaginary
quaternion units. These Q-units can be represented either via
2×2 matrices or 4×4 matrices [2].

It is interesting to note here that there is quaternionic
multiplication rule which acquires compact form:

1qk = qk1 = qk , qjqk = −δjk + εjknqn , (2)

where δkn and εjkn represent 3-dimensional symbols of
Kronecker and Levi-Civita, respectively [2]. Therefore it
could be expected that Q-algebra may have neat link with
pseudo-Riemannian metric used by General Relativity. Inte-
restingly, it has been argued in this regard that such Q-units
can be generalised to become Finsler geometry, in particular
with Berwald-Moor metric. It also can be shown that Finsler-
Berwald-Moor metric is equivalent with pseudo-Riemannian
metric, and an expression of Newtonian potential can be
found for this metric [2a].

It may also be worth noting here that in 3D space Q-
connectivity has clear geometrical and physical treatment as
movable Q-basis with behaviour of Cartan 3-frame [2].

It is also possible to write the dynamics equations of
Classical Mechanics for an inertial observer in constant Q-
basis. SO(3, R)-invariance of two vectors allow to represent
these dynamics equations in Q-vector form [2]:

m
d2

dt2
(xkqk) = Fkqk . (3)

Because of antisymmetry of the connection (generalised
angular velocity) the dynamics equations can be written in
vector components, by conventional vector notation [2]:

m
(
~a+ 2~Ω× ~v + ~Ω× ~r + ~Ω×

(
~Ω× ~r

))
= ~F . (4)

Therefore, from equation (4) one recognizes known types
of classical acceleration, i.e. linear, coriolis, angular, centri-
petal. Meanwhile it is known that General Relativity intro-
duces Newton potential as rigid requirement [2a, 6b]. In
other words, we can expect — using Q-relativity — to predict
new effects that cannot be explained with General Relativity.

From this viewpoint one may consider a generalisation
of Minkowski metric into biquaternion form [2]:

dz = (dxk + idtk) qk , (5)

with some novel properties, i.e.:

• temporal interval is defined by imaginary vector;

• space-time of the model appears to have six dimen-
sions (6D);

• vector of the displacement of the particle and vector
of corresponding time change must always be normal
to each other, or:

dxkdtk = 0 . (6)

It is perhaps quite interesting to note here that Einstein
himself apparently once considered similar approach, by pro-
posing tensors with Riemannian metric with Hermitian sym-
metry [8]. Nonetheless, there is difference with Q-relativity
described above, because in Einstein’s generalised Riemann-
ian metric it has 8-dimensions, rather than 3d-space and 3d-
imaginary time.

One particularly interesting feature of this new Q-relativ-
ity (or rotational relativity) is that there is universal character
of motion of the bodies (including non-inertial motions),
which can be described in unified manner (Hestenes also
considers Classical Mechanics from similar spinor language).
For instance advanced perihelion of planets can be described
in term of such rotational precession [2].

Inspired by this new Q-relativity physics, it can be argued
that there should be anomalous effect in planets’ satellite
motion. In this regard, Yefremov argues that there should
be a deviation of the planetary satellite position, due to
discrepancy between calculated and observed from the Earth
motion magnitudes characterizing cyclic processes on this
planet or near it. He proposes [2]:

Δϕ ≈
ωVeVp
c2

t , (7)

or

Δϕ′ ≈ −
ωVeVp
c2

t′. (8)

Therefore, given a satellite orbit radius r, its position
shift is found in units of length Δl = rΔϕ. His calculation
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Satellites Cycle frequency ω, 1/s Angular shift Δϕ, ′′/100 yrs Linear shift Δl, km/100 yrs Linear size a, km

Phobos (Mars) 0.00023 18.2 54 20

Deimos (Mars) 0.00006 4.6 34 12

Metis (Jupiter) 0.00025 10.6 431 40

Adrastea (Jupiter) 0.00024 10.5 429 20

Amalthea (Jupiter) 0.00015 6.3 361 189

Table 1: The following table gives values of the effect for five fast satellites of Mars and Jupiter. Orbital linear velocities are: of the
Earth VE = 29.8 km/s, of Mars VP = 24.1 km/s, of Jupiter VP = 13.1 km/s; the value of the light velocity is c= 299 793 km/s; observation
period is chosen 100 years. Courtesy of A. Yefremov, 2006 [3].

for satellites of Mars and Jupiter is given in Table 1. None-
theless he gave no indication as to how to observe this
anomalous effect.

In this regard, we introduce here an alternative interpreta-
tion of the aforementioned Q-satellite time-shift effect by
Yefremov, i.e. this effect actually has similar effect with Pio-
neer spacecraft blueshift anomaly. It is known that Pioneer
spacecraft exhibits this anomalous Doppler frequency while
entering Jupiter orbit [1, 4], therefore one may argue that
this effect is caused by Jupiter planetary gravitational effect,
which also may cause similar effect to its satellites.

Despite the apparent contradiction with Yefremov’s own
intention, one could find that the aforementioned Q-satellite
time-shift could yield a natural explanation of Pioneer space-
craft blueshift anomaly. In this regard, Taylor [9] argues that
there is possibility of a mundane explanation of anomal-
ous blueshift of Pioneer anomaly (5.99×10−9 Hz/sec). The
all-angle formulae for relativistic Doppler shift is given
by [9a, p.34]:

v′ = v0γ
(1− β cosφ)
√
1− β2

, (9)

where β= v/c. By neglecting the
√
1−β2 term because of

low velocity, one gets the standard expression:

v′ = v0γ (1− β cosφ) . (9a)

The derivative with respect to φ is:

dv′

dφ
= v0γ β sinφ , (10)

where dv′

dφ = 5.99×10−9 Hz/sec, i.e. the observed Pioneer
anomaly. Introducing this value into equation (10), one gets
requirement of an effect to explain Pioneer anomaly:

dφ =
arcsin (5.99×10−9 Hz)

v0γ β
= 1.4×10−12 deg/sec. (11)

Therefore, we can conclude that to explain 5.99×10−9

Hz/sec blueshift anomaly, it is required to find a shift of
emission angle at the order 1.4×10−12 degree/sec only (or
around 15.894

′′
per 100 years).

Interestingly this angular shift can be explained with the
same order of magnitude from the viewpoint of Q-satellite
angular shift (see Table 1), in particular for Jupiter’s Adrastea
(10.5

′′
per 100 years). There is however, a large discrepancy

at the order of 50% from the expected angular shift.
It is proposed here that such discrepancy between Q-

satellite angular shift and expected angular shift required
to explain Pioneer anomaly can be reduced if we take into
consideration the “aether drift” effect [6]. Interestingly we
can use experimental result of Thorndike [6, p.9], saying
that the aether drift effect implies a residual apparent Earth
velocity is vobs= 15 ± 4 km/sec. Therefore the effective Ve
in equation (8) becomes:

Ve.eff = vobs + Ve = 44.8 km/sec. (12)

Using this improved value for Earth velocity in equation
(8), one will get larger values than Table 1, which for Adras-
tea satellite yields:

Δϕobs =
ωVe.effVp

c2
t =

Ve.eff
Ve

Δϕ = 15.935
′′

/100 yrs. (13)

Using this improved prediction, the discrepancy with
required angular shift only (15.894

′′
per 100 years) becomes

∼ 0.26%, which speaks for itself. Therefore one may con-
clude that this less mundane explanation of Pioneer blueshift
anomaly with Q-relativity may deserve further consideration.

3 A new type of redshift from gravitational Bohr radius.
Possible observation in solar system.

In preceding paper [10, 11] we argued in favour of an alter-
native interpretation of Tifft redshift quantization from the
viewpoint of quantized distance between galaxies. A method
can be proposed as further test of this proposition both at
solar system scale or galaxies scale, by using the known
quantized Tifft redshift [14, 15, 16]:

δr ≈
c

H
δz . (14)

In this regards, we use gravitational Bohr radius equation:

rn = n
2GM

v20
. (15)
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Inserting equation (15) into (14), then one gets quantized
redshift expected from gravitational Bohr radius:

zn =
H

c
n2
GM

v20
(16)

which can be observed either in solar system scale or galax-
ies scale. To our present knowledge, this effect has never
been described elsewhere before.

Therefore, it is recommended to observe such an accele-
rated Doppler-freequency shift, which for big jovian planets
this effect may be detected. It is also worth noting here
that according to equation (16), this new Doppler shift is
quantized.

At this point one may also take into consideration a
proposition by Moffat, regarding modification of Newtonian
acceleration law to become [7]:

a(r) = −
G∞M

r2
+K

exp(−μφr)
r2

(1 + μφr) (17)

where

G∞ = G

[

1 +

√
M0

M

]

. (17a)

Therefore equation (16) may be rewritten to become:

zn ≈
H

c
n2
GM

v20

[

1 +

√
M0

M

]

≈ χ
H

c
n2
GM

v20
(18)

where n is integer (1, 2, 3, . . . ) and:

χ =

[

1 +

√
M0

M

]

. (18a)

To use the above equations, one may start by using Bell’s
suggestion that there is fundamental redshift z= 0.62 which
is typical for various galaxies and quasars [14]. Assuming
we can use equation (16), then by setting n= 1, we can
expect to predict the mass of quasar centre or galaxy centre.
Then the result can be used to compute back how time-
variation parameter affects redshift pattern in equation (18).
In solar system scale, time-varying radius may be observed
in the form of changing Astronomical Unit [4].

This proposition, however, deserves further theoretical
considerations. Further observation is also recommended in
order to verify and explore further this proposition.

4 Concluding remarks

In the present paper it is argued that Pioneer anomalous
blueshift may be caused by Pioneer spacecraft experiencing
angular shift induced by similar Q-relativity effect which
may also affect Jupiter satellites. By taking into considera-
tion aether drift effect, the proposed method as described
herein could predict Pioneer blueshift within ∼0.26% error
range, which speaks for itself. Further observation is of course
recommended in order to refute or verify this proposition.

Another new proposition of redshift quantization is also
proposed from gravitational Bohr-radius which is consistent
with Bohr-Sommerfeld quantization. It is recommended to
conduct further observation in order to verify and also to
explore various implications of our propositions as described
herein.
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Laser-induced breakdown spectroscopy (LIBS) has been applied to perform a study of
the matrix effect on the plasma characterization of soil sediment targets. The plasma
is generated by focusing a pulsed Nd: YAG laser on the target in air at atmospheric
pressure. The plasma emission spectrum was detected using a portable Echelle
spectrometer (Mechelle 7500 — Multichannel Instruments, Stockholm, Sweden) with
intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced
plasmas has been characterized in terms of their spectra, and electron temperature.
Four heavy elements V, Pb, Mn and Co were determined in the obtained spectra.
The LTE and optically thin plasma conditions were verified for the produced plasma.
The electron temperature and density were determined using the emission intensity
and stark broadening, respectively, of the spectral lines of the heavy elements in the
soil sediments. The electron temperature does not change with concentration. For
environmental applications, the obtained results showed the capability of the proposed
LIBS setup with the portable Mechelle 7500 spectrometer to be applied in-situ for
real-time measurements of the variation of the matrix elemental composition of soil
sediments by following up only a single element as a marker for the composition of
the soil sediment without need of analysis of the other elements.

1 Introduction

The Laser Induced Breakdown Spectroscopy (LIBS) tech-
nique has been already applied to the determination of ele-
mental concentrations in a wide range of materials in solid,
liquid and gaseous phase. Measurements consist of spectral
and time resolved analysis of the atomic and ionic emis-
sion lines, arising from the plasma generated by an intense
laser pulse. In the case of condensed samples, the plasma
is produced through laser-induced evaporation of the sample
surface layer [1]. The use of laser induced breakdown spect-
roscopy (LIBS) in the analysis of soil and soil sediments has
been studied in recent years as a technique for in-situ detec-
tion of hazardous metals [2–7]. One of the main problems
in the use of LIBS is the necessity of making a calibration
curve with samples possessing the same matrix composition
of the samples to be analyzed. In 1998, Valery Bulatov
et al. proposed a method in which the composition of a
sample could be determined without the need of calibra-
tion curves [8]. However, this method is based on the mea-
surement of the emission from all the species present in
the sample, a requirement difficult to satisfy when dealing
with soil sediments. The physical and chemical properties of
the sample can affect the produced plasma composition, a
phenomenon known as the matrix effect. The matrix effect
can result in the sample being ablated differently from the
target sample. The interaction between the laser and the

target in LIBS is influenced significantly by the overall com-
position of the target, so that the intensity of the emission
lines observed is a function of both the concentration of the
elements of interest and the properties of the matrix that
contains them. Plasma composition is dependent not only on
the composition of the sample, but also on laser parameters,
sample surface conditions as well as on thermal and optical
properties of the sample. Previously published works studied
the matrix effect under different experimental conditions to
specify causes and find out the methods of correction [9–14].
The different approaches have been undertaken to discrim-
inate between the problems resulting from the fractionation
of the ablation and matrix effects. The most convenient ap-
proach is to determine elemental abundance by comparing
the analyte line intensities with signals obtained from the
proper reference standards having a similar matrix composi-
tion [15]. But it is not always possible to obtain such calibra-
tion curves because there are no available standard samples,
or it is impossible to have an internal standard of known
concentration [16]. In addition, plasma formation dynamics,
sample ablation and associated processes, are highly non-
linear and not fully understood and may also play an import-
ant rôle in the matrix effect.

Recently an alternative procedure, based on the LIBS
technique, for quantitative elemental analysis of solid mater-
ials has been proposed, which can, in principle, provide
quantitative data with no need of calibration curves or intern-
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al standards [17, 18]. The method relies on the assumption
about the existence of the stoichiometric ablation and local
thermodynamic equilibrium (LTE) i.e. Boltzmann distribu-
tion and Saha equation amongst the level population of any
species and electron density and temperature of the plasma.
However for application of this method experimentally one
needs to obtain both equilibrium and thin plasma conditions,
a task that may not be always possible to perform. Thus, in
spite of the many advantages of LIBS the realization of a
quantitative analytical method, which is able to measure the
main constituents in samples from different matrices, still
remains a difficult task because of the complex laser-sample
and laser-plasma interaction mechanisms. As a rule, laser
ablation plasma is characterized by complex spatial and tem-
poral structures, and one meets a wide range of parameter
variation during the plasma existence time.

In this paper we report on the optimized conditions for
LIBS to analyze the emission spectrum of soil sediment
samples with high resolution using a portable Echelle spec-
trometer — Mechelle 7500 — equipped with an ICCD camera.
Spectroscopic analysis of plasma evolution of laser produced
plasmas has been characterized in terms of their spectra, and
electron temperature. Four heavy elements V, Pb, Mn and
Co were determined in the obtained spectra. The electron
temperature was determined using the emission intensity of
the spectral lines of the heavy elements in the soil sediments.
The dependence of the electron temperature on the concen-
trations of these heavy elements was studied.

The aim of this paper is to prove that the proposed LIBS
setup could be used in the on-line environmental applications
control. This could be done by following up only a single
element as a marker for the composition of the soil sediment
without need of analysis of the other elements.

2 Methodology

A typical LIBS experimental setup, described in detail else-
where [3, 9, 10, 15], was used throughout the present inves-
tigations. Laser induced plasma was produced by focusing
180 mJ of a Q-switched Nd: YAG laser (surelite I, continuum,
USA) operating at 1064 nm (pulse duration of 7 ns) on soil
sediment samples. An energy meter (Nova 978, Ophir Opt-
ronics Ldt., USA) was employed to monitor the shot to shot
pulse energy. The laser beam was focused on soil sediment
samples by a 10 cm focal length quartz lens to generate the
plasma. The focal point was set 5 mm below the surface of
the sample in order to generate plasma of 800 μm spot dia-
meter. This also minimized breakdown above the surface of
any particles and aerosols generally present above the sam-
ple. A one meter length of used-silica optical fiber (600 μm
diameter) mounted on a micro xyz-translation stage was
used to collect the emission light from the plasma plume and
feed it to a portable Echelle spectrometer of a 0.17 m focal
length (Mechelle 7500, Multichannel instruments, Sweden).

The use of a micro xyz-translation stage as a holder for
fused-silica optical fibre facilitated maximum intensity of
the observed emission light from the plasma plume. On the
other hand, the Echelle grating spectrometers, designed for
operation in high orders and high angles of incidence and
diffraction, can provide high resolution in a more compact
size and cover a much wider spectral range than conventional
grating spectrometers [19]. This is because the Mechelle
7500 provides a constant spectral resolution (CSR) of 7500
corresponding to 4 pixels FWHM over a wavelength range
200–1000 nm displayable in a single spectrum. A gateable,
intensified CCD camera, (DiCAM-Pro-12 bit, UV enhanced,
43000 channels, PCO Computer Optics, Germany) coupled
to the spectrometer was used for detection of the dispersed
light. The overall linear dispersion of the spectrometer cam-
era system ranges from 0.006 (at 200 nm) to 0.033 nm/pixel
(at 1000 nm). To avoid electronic interference and jitters,
the intensifier high voltage was triggered optically. Echelle
spectra display, control, processing and analysis were done
using both Mechelle software (Multichannel Instruments,
Stockholm, Sweden) and GRAMS/32 version 5.1 Spectro-
scopic Data Analysis Software (Galactic Industries, Salem,
NH, USA).

To improve LIBS precision, spectra from several laser
shots have to be averaged in order to reduce statistical error
due to laser shot-to-shot fluctuation. We reproduced the mea-
surements at four locations on the sample surface in order to
avoid problems linked to sample heterogeneity. Fifty laser
shots were fired at each location and saved in separated files
and the average (average of 250 spectra) was computed and
saved to serve as the library spectrum. For each recorded
spectrum, the peak intensity, the Lorentzian curve fitting,
the full width at half maximum FWHM, and the center
wavelength of each line, as well as the background emission
continuum were determined. Data treatment preprocessing of
the averaged spectra was performed in the Microsoft Win-
dows XP environment on a Pentium 4 PC using GRAMS/32,
Excel (Microsoft office Excel 2003) and Origin software
version 7.0220 (Origin Lab corporation, USA). The averages
of peak tables (lists of wavelengths and intensities) of the
averaged spectra were roll generated in GRAMS/32 and
exported for data evaluation.

Three certified reference samples were purchased from
the International Atomic Energy Agency (IAEA). The stand-
ard samples were named IAEA-SL-1, IAEA-SL-5 and IAEA-
SL-7. Another three standard samples have been made by
mixing of the IAEA-samples in different ratios. These sam-
ples were named Mix A, Mix B, and Mix C. The composition
of Mix A, Mix B and Mix C are (37.3% of IAEA-SL-1 +
62.7% of IAEA-SL-5), (37.3% of IAEA-SL-7 + 62.7% of
IAEA-SL-5) and (26.3% of IAEA-SL-1 + 73.7% of IAEA-
SL-7) respectively. These mixtures were carefully blended
and grounded in a ceramic grinder, then seived using a stain-
less steel sieve with a net grain size of 70 microns to ensure
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Fig. 1: Typical LIBS spectrum for soil sediment target. The laser
energy was 100 mJ at wavelength 1064 nm, plasma emissions are
accumulated with delay 2.5μs, and gate width 1μs.

Sample Mn Pb Co V

IAEA-SL-1 3460 37.7 19.8 170

IAEA-SL-5 852 129 14.8 151

IAEA-SL-7 631 60 8.9 66

Mix A 1825 95 16.6 158

Mix B 770 103.2 12.6 119.3

Mix C 1375 54.1 11.7 93.4

Table 1: The elemental concentrations of Mn, Pb, Co
and V in the six standard soil sediments (in ppm).

good homogeneity and to simulate the properties of the ori-
ginal standard samples. The powder of each of the six stand-
ard samples was put into a stainless steel dish (30-mm dia-
meter × 7-mm deep) to be pressed into a form of tablet
at a hydraulic press weight of 20 tons/cm2 to be suitable for
handling in LIBS experiments. The elemental concentrations
of Mn, Pb, Co and V in the six standard soil sediments are
given in Table 1.

3 Results and discussion

3.1 LIBS spectrum

Figure 1 shows a typical plasma emission spectrum for soil
sediment sample IAEA-SL-1. This spectrum is the average
of 250 single shot spectra recorded at 1.5 μs delay time and
1μs gate width.

The panoramic Echelle spectra in the spectral range 200–
750 nm show the UV-visible emission lines of soil sediment
samples which have a very rich spectral structure and, conse-
quently a lot of interfering lines. In particular, soil sediment
samples, made mostly of inorganic material constituents,
give rise to a dense spectrum due to the contribution of heavy
atom emissions in the investigated range [6]. Moreover, our
observed spectra reflect the wide spectral range and the high
resolution of the spectroscopic system used.

Fig. 2: Shows a high resolution spectrum of Mn with concentration
of 0.346% in soil sediment sample IAEA-SL-1. Intensities ratios of
the manganese triplet at wavelengths: 403.08, 403.31 and 403.45
nm are consistent with the ratios of the statistical weights of their
upper level (7:5:3).

3.2 Plasma characterization

In LIBS experiments, after the initial plasma decay and
during the entire observation interval, the local thermodyn-
amic equilibrium (LTE) conditions are assumed to hold.

On the other hand, optically thin plasma has been con-
firmed by checking the intensity ratios of the manganese
triplet at wavelengths: 403.08, 403.31 and 403.45 nm which
are consistent with the ratios of the statistical weights of their
upper level (7:5:3) as shown in Fig. 2 (refer to Table 2). This
result indicates that the plasma was optically thin according
to a procedure described previously by Simeonsson and Mi-
ziolek [20].

For optically thin plasma, the re-absorption effects of
plasma emission are negligible, so the emitted spectral line
intensity I is a measure of the population of the correspond-
ing energy level of this element in the plasma. For the LTE
plasma, the population of an excited level can be related to
the total density N(T ) of neutral atom or ion of this element
by Boltzmann equation as:

I =
hc

4πλ
N(T )

Aki gk
U (T )

exp

(

−
Ek
KT

)

, (1)

where λ is the wavelength, Aki is the transition probability,
gk is the statistical weight for the upper level, Ek is the
excited level energy, T is the temperature (in LTE all tempe-
ratures are assumed to be equal, i.e. Te≈Tion≈Tplasma, K
is Boltzmann’s constant, U(T ) is the partition function.

The emitted spectral line intensity from a given state of
excitation can be used to evaluate the plasma temperature.
The lines must be well resolved for accurately evaluating
their wavelengths λ, intensities I , and their transition proba-
bilities Aki must be well known [21].

Reformulating Eqn. 1 gives:

ln
I λ

Aki gk
= −

1

KT
Ek + ln

C F

U(T )
, (2)
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Element Wavelength,
nm

Aki, s−1 Ek, cm−1 gk Element Wavelength,
nm

Aki, s−1 Ek, cm−1 gk

Pb 240.194 2.79E+07 49439.62 3 Co 242.493 3.20E+08 41225.76 10

Pb 244.6181 2.45E+07 48686.93 3 Co 243.221 2.60E+08 41918.41 8

Pb 244.6181 2.45E+07 48686.93 3 Co 252.136 3.00E+08 39649.16 8

Pb 247.6378 3.78E+07 48188.63 5 Co 252.897 2.80E+08 40345.95 6

Pb 247.6378 3.78E+07 48188.63 5 Co 253.596 1.90E+08 40827.77 4

Pb 257.726 6.68E+07 49439.62 3 Co 254.425 3.00E+08 41101.8 2

Pb 257.726 6.68E+07 49439.62 3 Co 340.512 1.00E+08 32841.99 10

Pb 261.3655 1.87E+07 46068.44 3 Co 344.364 6.90E+07 33173.36 8

Pb 261.4175 2.35E+08 46060.84 5 Co 345.35 1.10E+08 32430.59 12

Pb 262.8262 5.59E+07 48686.93 3 Co 347.402 5.60E+07 33466.87 8

Pb 265.7094 9.91E+05 45443.17 5 Co 348.94 1.30E+08 36092.44 6

Pb 266.3154 1.01E+08 48188.63 5 Co 350.228 8.00E+07 32027.5 8

Pb 280.1995 1.08E+08 46328.67 7 Co 351.835 1.60E+08 36875.13 4

Pb 282.3189 3.04E+07 46060.84 5 Co 356.938 1.50E+08 35450.56 8

Pb 283.3053 5.92E+07 35287.22 3 Co 358.719 1.40E+08 36329.86 6

Pb 287.3311 4.15E+07 45443.17 5 Co 389.408 6.90E+07 34133.59 8

Pb 357.2729 4.08E+08 49439.62 3 V 230.785 2.60E+08 47345.94 11

Pb 363.9568 3.20E+07 35287.22 3 V 231.16 2.80E+08 47807.58 9

Pb 367.1491 1.11E+08 48686.93 3 V 231.405 2.80E+08 48151.07 7

Pb 368.3462 1.70E+08 34959.91 1 V 231.496 2.70E+08 48388.62 5

Pb 373.9935 8.30E+07 48188.63 5 V 235.341 1.90E+08 47039.27 7

Pb 401.9632 3.55E+07 46328.67 7 V 236.38 2.10E+08 46320.96 9

Pb 405.7807 9.12E+07 35287.22 3 V 237.862 1.90E+08 45378.85 9

Pb 406.2136 1.07E+08 46068.44 3 V 238.345 1.80E+08 45972.17 7

Co 231.16 2.80E+08 47807.58 9 V 238.892 2.80E+08 45197.78 11

Co 231.405 2.80E+08 48151.07 7 V 240.416 1.50E+08 46786.53 3

Co 235.341 1.90E+08 47039.27 7 V 240.725 3.60E+08 41528.53 12

Co 236.38 2.10E+08 46320.96 9 V 241.446 3.40E+08 42811.44 8

Co 237.862 1.90E+08 45378.85 9 V 241.53 3.60E+08 43199.65 6

Co 238.345 1.80E+08 45972.17 7 V 242.493 3.20E+08 41225.76 10

Co 238.892 2.80E+08 45197.78 11 V 243.221 2.60E+08 41918.41 8

Co 240.416 1.50E+08 46786.53 3 V 243.666 2.60E+08 42434.23 6

Co 240.725 3.60E+08 41528.53 12 V 243.905 2.70E+08 42796.67 4

Co 241.446 3.40E+08 42811.44 8 V 252.136 3.00E+08 39649.16 8

Co 241.53 3.60E+08 43199.65 6 V 252.897 2.80E+08 40345.95 6

V 253.596 1.90E+08 40827.77 4 Mn 404.14 7.87E+07 41789.48 10

V 254.425 3.00E+08 41101.8 2 Mn 404.88 7.50E+07 42143.57 4

V 340.512 1.00E+08 32841.99 10 Mn 405.55 4.31E+07 41932.64 8

V 344.364 6.90E+07 33173.36 8 Mn 405.89 7.25E+07 42198.56 2

V 345.35 1.10E+08 32430.59 12 Mn 406.17 1.90E+07 49415.35 6

V 347.402 5.60E+07 33466.87 8 Mn 406.35 1.69E+07 42053.73 6

V 348.94 1.30E+08 36092.44 6 Mn 407.92 3.80E+07 42143.57 4

V 350.228 8.00E+07 32027.5 8 Mn 408.29 2.95E+07 42053.73 6

V 351.835 1.60E+08 36875.13 4 Mn 408.36 2.80E+07 41932.64 8

V 356.938 1.50E+08 35450.56 8 Mn 423.51 9.17E+07 46901.13 6

V 358.719 1.40E+08 36329.86 6 Mn 441.49 2.93E+07 45940.93 6

V 389.408 6.90E+07 34133.59 8 Mn 445.16 7.98E+07 45754.27 8

Mn 401.81 2.54E+07 41932.64 8 Mn 446.20 7.00E+07 47207.28 10

Mn 403.08 1.70E+07 24802.25 8 Mn 475.40 3.03E+07 39431.31 8

Mn 403.31 1.65E+07 24788.05 6 Mn 478.34 4.01E+07 39431.31 8

Mn 403.45 1.58E+07 24779.32 4 Mn 482.35 4.99E+07 39431.31 8

Table 2: A list of the spectroscopic data of the spectral lines used for the determination of plasma temperature and
density of soil sediment samples.
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Fig. 3: Four Boltzmann plots were determined form the emission
line intensities of Pb, Mn, V, and Co (shown, respectively, from up
to down) observed in the laser-induced plasma of soil sediments.
The slope of the plotted curves yields temperatures of for the
elements 8526 K, 7700 K, 9693 K, and 6658 K respectively.

Fig. 4: Temperature measured at 2.5μs delay time and 1μs gate
width for different concentrations of manganese in soil sediment
samples.

where F is an experimental factor and C is the species
concentration.

By plotting the left hand side of Eqn. 2 against the excit-
ed level energy Ek, the plasma temperature can be obtained
from the slope of the resulting straight line.

The temperatures were determined form the emission
line intensities of Mn, V, Co, and Pb observed in the laser-
induced plasma of soil sediments. Figure 3 shows four Bol-
tzmann plots of Eqn. 2, for each of these four trace elements
where the data were fitted with the least-squares approxima-
tion. The spectral line wavelengths, energies of the upper
levels, statistical weights, and transition probabilities used
for each element are obtained from Griem [21], NIST [22]
and Kurucz [23], and listed in Table 2. The slope of the
plotted curves yields temperatures 7700 K, 9693 K, 6658 K,
and 8526 K for the elements Mn, V, Co, and Pb respectively.
The average value of the plasma temperature is 8000 K for
soil sediment, which agrees with the value obtained by V.
Lazic et al. [27] under conditions similar to ours. The differ-
ence in the plasma temperature of the four elements may be
attributed to the difference in the excitation and ionization
potentials between these elements.

Study of the matrix effect on the plasma temperature was
done by plotting the corresponding temperature for each el-
ement against its concentration in the soil sediment samples.
The variation of the plasma temperature with the concentra-
tion of the four elements was found to be about ±500 K
around the 8000 K as shown in Fig. 4 for Mn as an example.
The figure reveals that plasma temperature has a small var-
iation, due to some experimental errors and matrix effect,
around an average value with the elemental concentration.
This can be understood as follows; for optically thin plasma,
increasing the element concentration returns an increasing
intensity of its corresponding spectral lines with roughly the
same ratio, which leads to the same slope of the Boltzmann
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plot and results in the same plasma temperature.
The electrons in the plasma can perturb the energy levels

of the individual ions which broaden the emission lines ori-
ginating from these excited levels. Stark broadening of well-
isolated lines in the plasma is, thus, useful for estimating the
electron number densities provided that the Stark-broadening
coefficients have been measured or calculated. The line pro-
file for Stark broadening is well described by a Lorentzian
function. The Stark line width ΔλFWHM can be extracted from
the measured line width Δλobserved by subtracting the inst-
rumental line broadening Δλinstrument:

ΔλFWHM = Δλobserved −Δλinstrument . (3)

In our case Δλinstrument was 0.05 nm (determined by
measuring the FWHM of the Hg lines emitted by a standard
low pressure Hg lamp).

The width of Stark broadened spectral lines depends on
the electron density Ne. The electron density Ne (in cm−3)
could be determined from the FWHM of the line from the
formula [21]:

Ne ≈

(
ΔλFWHM

2w

)

× 1016, (4)

where w is the electron impact parameter (stark broadening
value). This formula is generally used for calculations of
plasma generated from solid targets [7, 27, 28]. Substituting
the values of Stark broadening w from [21], [30], [31],
and [32] in Eqn. 4, the electron density for soil sediment
samples is 3×1017 cm−3. The obtained results agree with
those reported by O. Samek [29].

Finally, by knowing the electron density and the plasma
temperature we can determine whether the local thermodyn-
amic equilibrium (LTE) assumption is valid by applying the
criterion given by McWhirter [26].

The lower limit for electron density for which the plasma
will be in LTE is:

Ne > 1.6×1012ΔE T 1/2, (5)

where ΔE is the largest energy transition for which the
condition holds and T is the plasma temperature [20].

In the present case ΔE= 4.9 eV for Si (one of the main
elements in soil sediments) and the electron density lower
limit value given by Eqn. 5 is 6×1015 cm−3 (see ref. 21).
The experimentally calculated densities are greater than this
value, which is consistent with the assumption that the LTE
prevails in the plasma.

4 Conclusion

In summary, we have carried out an accurate LIBS setup
using a portable commercial Echelle spectrometer equipped
with ICCD detector to study soil sediments matrix effects
on the plasma characterization. Four trace heavy elements V,
Pb, Mn and Co were determined in the obtained spectra. The

electron density and plasma temperature were determined for
the soil sediment targets. For a plasma diagnostics perspecti-
ve, the target physical properties play an important role in
the obtained values of the laser induced plasma temperature
Te and electron density Ne. The obtained results indicate
that the produced plasma parameters (Te, Ne) are the same
for any of the elements in the same matrix composition. On
the other hand, Te and Ne are different for different matrix
composition as proven previously by our group [10]. So the
proposed LIBS setup could be used in on-line environmental
applications control. This could be done by following up
only single element as markers for the composition of the
soil sediment without need of analysis of the other elements.

Acknowledgements

The authors especially acknowledge Prof. M. Abdel Harith
for offering the soil sediment samples.

References

1. Piepmeier E.H. Laser ablation for atomic spectroscopy analyt-
ical application of laser. John Wiley & Sons, N.Y., 1986.

2. Davies B.E. Trace metals in the environment: retrospect and
prospect. In: Adriano D.C., Ed. Biogeochemistry of Trace
Metals, Advances in Trace Substances Research, Lewis Pub-
lishers, Boca Raton, FL, 1992, 1–17.

3. Soliman M., Tawfik W., and Harith M.A. Quantitative ele-
mental analysis of agricultural drainage water using laser
induced breakdown spectroscopy, First Cairo conference on
plasma physics & applications. Cairo, Egypt, Forschungs-
zentrum Juelich GmbH, Bilateral Seminars of the International
Bureau, v. 34, 2003, 240–243.

4. Wisbrun R., Schechter I., Niessner R., and Shröder H. Laser
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A laser diffraction experiment was conducted to study light propagation in air. The
experiment is easy to reproduce and it is based on simple optical principles. Two
optical sensors (segmented photo-diodes) are used for measuring the position of
diffracted light spots with a precision better than 0.1 μm. The goal is to look for signals
of anisotropic light propagation as function of the laser beam alignment to the Earth’s
motion (solar barycenter motion) obtained by COBE. Two raster search techniques
have been used. First, a laser beam fixed in the laboratory frame scans in space due to
Earth’s rotation. Second, a laser beam mounted on a turntable system scans actively
in space by turning the table. The results obtained with both methods show that the
course of light rays are affected by the motion of the Earth, and a predominant first
order quantity with a Δc/c=−β(1 + 2 a) cos θ signature with ā=−0.393±0.032
describes well the experimental results. This result differs in amount of 21% from the
Special Relativity Theory prediction and that supplies the value of a=− 1

2
(isotropy).

1 Introduction

There are several physical reasons, theoretical and experi-
mental, that could justify a search for anisotropies in light
propagation. It is well known that Lorentz and Poincaré were
the first ones to build the major part of the relativity theory
on the basis of the ether concept as an inertial rest frame, and
it is compatible with the Einstein’s Special Relativity Theory
(SRT). There are also some test theories of SRT, where
the Lorentz transformations are modified. For example, an
ether theory that maintains the absolute simultaneity and is
kinematically equivalent to Einstein SRT was constructed
[1]. These test theories are considered useful to examine
potential alternatives to SRT. On the other hand, the recon-
struction of the SRT, on the basis of the Lorentz-Poincaré
scheme implies in an undetectable ether rest frame (non ether
drift) at least in the first order [2].

This behavior of the Lorentz-Poincaré, as well as, of the
Einstein theories arise because they do not govern the whole
physics, for instance they do not involve gravitation. It is
also well known that the presence of a gravitational field
breaks the Lorentz symmetry.

On the other hand, periodic boundary conditions or close
space-time topology, such as the Sagnac effect [3] where
two opposite light beams travel in different time intervals
the same closed path on a rotating disk, as well as the twin
paradox, leads to preferred frame effects. This assumption of
a preferred frame comes from an analysis made by Brans and
Stewart [4] on the twin paradox, where a description of the
close topology of the universe has imposed a preferred state
of rest so that the principle of special relativity, although
locally valid, is not globally applicable. Similar conclusion
is obtained in the Wucknitz’s paper [5], where standard nota-

tion of SRT using Lorentz transformations leads to coordi-
nates which are valid locally. Periodic boundary conditions
or close space-time topology, such as the Sagnac effect and
the twin paradox, leads to preferred frame effects.

The above conclusion is reinforced by the generalized
Sagnac effect [6] observed in a light waveguide loop consist-
ing of linearly and circularly segments, any segment of the
loop contributes to the phase difference between two counter-
propagating light beams in the loop. Showing that the acce-
leration is not essential to take into account the effect.

A preferred frame emerge also from an analysis on the
Global Positioning System (GPS) made by R. Hatch [7] and
T. Van Flandern [8] where the preferred frame is not uni-
versal, but rather coincides with the local gravity field.

On the other hand, according to Fox [9], it is possible
to preserve the general Lorentz Poincaré symmetry group
without assuming the constancy of light speed. There are
also the so called extended theories, where the SRT is modi-
fied in order to including the Planck scale parameters [10]
(double relativity theories), suggesting several dispersion re-
lations that include theories where an energy dependent speed
of light [11] is claimed.

There are also evidences suggesting that the propagation
of light over cosmological distances has anisotropic charact-
eristics [12], with dependence on direction and polarization.
This picture is in agreement with the interpretations of the
COBE [13] measurements giving the Earth’s “absolute” vel-
ocity in relation to the uniform cosmic microwave back-
ground radiation (CMBR). Of course, there are also inter-
pretations claiming that the COBE measurements give only a
velocity for the “relative” motion between the Earth and the
CMBR [14]. For instance, it is possible to obtain a “virtual”
image, where an isotropic distribution of CMBR with small
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fluctuations (δT/T ∼ 10−5) can be seen, by removing the
Earth motion.

So far, several tests about violation of the isotropy of
the speed of light have been made. In most cases, the tests
involve the so called round-trip test of light-speed isotropy
like Michelson-Morley experiment and all its variants. Part-
icularly, Miller [15, 16] has claimed a non-null results in the
M-M experiments. These aspects are presented in Appendix.

On the other hand, there are also several one-way test of
light isotropy experiments. In most cases, they have claimed
a null result [17, 18, 19, 20]. Particularly the NASA’s Deep
Space Network [21] using hydrogen-maser frequency have
to obtained a crude bound Δc(θ)/c< 4.5×10−6 for the an-
isotropy of the one way velocity of light and refined to
Δc(θ)/c< 3.5×10−7. However, according to their own con-
clusions the validity of these limits rest upon the assumption
that the prediction phase variations were not partially can-
celed. There are also experiments that have claimed success
[22, 23]. Particularly, Silvertooth has claimed an experiment-
al detection of the ether drift velocity using a device capable
of detecting the beams arriving in opposite directions [23].
Silvertooth reported in 1986 a light anisotropy toward the
direction of Leo constellation and compatible with COBE
results. The experiment is an unusual double interferometer,
an arrangement of light paths and detectors hard to be repro-
duced. In addition, the presence of a feedback into the laser
is quite probable.

In this paper, we report results of a search for anisotropic
light propagation as a function of the laser beam alignment
relative to the Earth’s velocity vector, using a diffraction
device. The method is based on simple optical principles.
Initial attempts have used digital images of the diffraction
spots. However, this method was working in the limit of
sensitivity. In other words, the signal’s size was close to
the measurement resolution. Now, our results are obtained
by using the highly sensitive segmented photo-diodes to
measure the position of diffracted light spots. In Section 2,
the experimental setup and the basic operating principles of
the diffractometer are presented. The Earth’s velocity vector
on the basis of the Doppler shift of the CMBR results are
presents in Section 3. In Section 4, the two scanning methods
and their results are presented, and finally Section 5 contains
our conclusions.

2 Experimental setup and method

The diffraction experiment is installed on the campus of the
Universidade Federal Fluminense, Niterói, Rio de Janeiro-
Brazil at sea level. The position is given by 22◦54′33′′ S
latitude and 43◦08′39′′ W longitude. The diffraction experi-
ment is mounted on a horizontal rotating circular table.

The layout of the diffraction device is shown in Fig. 1.
A laser beam transverse to a diffraction grating is diffracted
in several rays. In order to determine the position of the
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Fig. 1: General layout of the diffraction experiment. Two segment-
ed photo-diodes (D1 and D2) are positioned using two vertical
platforms with two positioning system (micrometers Mx−My)
to detect two diffracted rays produced by a HE-Ne laser on a
grating diffraction device. The relative position of a light spot with
respect to the center on a segmented photo-diode is obtained by
simply measuring the output current of each segment. The setup is
mounted on a turntable system

light spots, we have used two segmented PSD photo-diodes
divided into two segments, separated by a gap (see Fig. 2).
The position of each photo-diode coincides with the positions
of the maxima intensity of the diffraction images, for n=+1
and n=−1 respectively, as shown in Fig. 1. Two precision
multi-axis positioning systems, and each one consist of a
vertical platform with two independent (X–Y ) micrometers,
have been used to mount the photo-diodes.

Following Fig. 1, it is possible to see that the maxima of
intensity of the diffraction images (rays) satisfy the condition

sinαn = ±n
λ

η δ
, with n = 0, 1, 2, . . . , (1)

where λ(= 632.8 nm) is the wave length, δ (= 1/600 mm) is
the diffraction grating step and η (= 1.000226) is the refrac-
tion index of air. The wave length λ can be obtained as the
ratio between the speed of light c and the light frequency ν
resulting in λ= c/ν. An expression for c as a function of the
angle α can be obtained as

c =
η ν δ

n
sinαn . (2)

Under the assumption that ν and η remain constant
during the experiment, and if c depends on the direction
of propagation, variations of the diffraction spot positions,
αn, for instance, as a function of the laser beam alignment,
relative to the Earth’s velocity vector, can be interpreted as
an indication of violation of the isotropy of c. The relative
variation can be expressed as

Δc

c
=
Δ(sinαn)

sinαn
= cotαn Δαn . (3)

We look for this anisotropic light propagation signal
through measurements of Δαn as a function of the Earth’s
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Observer Year vE , km/s α, hour δ, degree

Pensias & Wilson (ground) [27] 1965 I s o t r o p i c

Conklin (ground) [28] 1969 200±100 13±2 30±30

Henry (balloon) [29] 1971 320±80 10±4 −30±25

Smoot et al. (airplane) [30] 1977 390±60 11.0±0.5 6±10

COBE (satellite) [32] 1991 371±0.5 11.20±0.01 −7.22±0.08

WMAP (satellite) [33] 2003 368±0.2 11.20±0.01 −7.22±0.08

Table 1: Vector velocity of the Earth (solar system) relative to the CMBR rest frame,
measured using the anisotropy of the CMBR in several experiments.

velocity vector. The search has been made by using two
independent types of scanning, and the methods as well as
the results are presented in Section 4.

The determination of the position of the light spots is
made by measuring the output photo-current in each segment
of the photo-diodes. A symmetric spot, positioned at the
center, generates equal photo-currents in the two segments.
The relative position is obtained by simply measuring the
output current of each segment. The position of a light spot
with respect to the center on a segmented photo-diode is
found by

Δl = l0

(
I1 − I2
I1 + I2

)

, (4)

where l0 is a proportionality constant. The method offers
position resolution better than 0.1μm, and the angular varia-
tion can be obtained as

Δαn =
Δl

R
=
l0
R

(
I1 − I2
I1 + I2

)

. (5)

For the diffraction experiment with R= 30.0 cm, the
angular resolution is better than 3.3×10−7 rad.

We have used the data acquisition system of the Tupi
muon telescope [24, 25, 26], which is made on the basis of
the Advantech PCI-1711/73 card. The analog output signal
from each segmented photo-diodes is linked to the analog
input of the PCI card. The PCI card has 16 analog input
channels with a A/D conversion up to 100 kHz sampling
rate. All the data manipulations such as the addition and
the subtraction of currents are made via software, using the
virtual instrument technique. The application programs were
written using the Lab-View tools. A summary of the basic
circuit is shown in Fig. 2.

3 The Earth’s velocity vector

The discovery of a pervasive background radiation from the
universe by Penzias and Wilson [27] in 1965 is probably the
strongest evidence for the hot Big Band model. The CMBR
is a 2.7 Kelvin thermal black body spectrum with a peak in
the micro wave range, and it is considered a relic of the Big
Bang. In the past when the Universe was much smaller, the
radiation was also much hotter. As the Universe expanded,
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Fig. 2: Block diagram of the diffraction experiment data acquisition
system. D1 and D2 represent the segment photo-diodes.

it cooled down to the present level.
In Penzias-Wilson’s data, the radiation appeared as high-

ly isotropic. However, in the next round of experiments [28,
29, 30] temperature anisotropies were found. These aniso-
tropies are expressed using the spherical harmonic expan-
sion, and the Earth’s motion with velocity β= v/c relative to
the CMBR rest frame of temperature T0 produces a Doppler
shift as

ΔT

T0
= β cos θ +

β2

2
cos 2θ +O(β3) . (6)

In Table 1, measurements of the velocity vector of the
Earth (solar system) in several experiments in chronological
order using the anisotropy of the CMBR are summarized.
Southern Hemisphere airborne measurements of the aniso-
tropy in the cosmic microwave background radiation by
Smoot and Lubin [31] (1979 — Lima, Peru) are in essential
agreement with previous measurements from the northern
hemisphere and the first-order anisotropy is readily inter-
preted as resulting from a motion of the Sun relative to the
background radiation.

The COBE data [32] indicate a big temperature aniso-
tropy in the cosmic background radiation which is repre-
sented by a dipole form with an amplitude of ΔT/T0=
= 1.23×10−3= 0.123%. This arises from the motion of the
solar system barycenter, with a velocity v= 371±0.5 km/s
(β=0.001237±0.000002) at 68%CL, relative to the so called
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“CMBR rest frame” and towards a point whose equatorial
coordinates are (α, δ)= (11.20h±0.01h, −7.22◦±0.08◦).
This direction points to the Leo constellation. Recently, the
WMAP [33] mission has improved the resolution of the
angular power spectrum of the CMBR and has verified the
COBE results.

4 Raster search techniques

We look for an anisotropy signal in the light propagation
as a function of the Earth’s velocity vector. At our latitude
(∼ 23◦ S) there are two passages of the Leo constellation on
the horizon every 24 hours. The first one is near the West
direction, and the second is approximately 12 hours later,
and it is near the East direction. Consequently it is possible
to mount a laser diffraction experiment on a horizontal turnt-
able system and point the laser beam toward the Leo constel-
lation. The raster search can be made by using two methods
as are described below.

4.1 Passive raster search system due to Earth’s rotation

This method consists in to fix the laser beam direction to-
ward the first or second passage of the Leo constellation
on the horizon. As the Earth rotates, the laser beam will be
aligned to the first or second passage of the Leo constellation
(CMBR apex according to COBE) on the horizon over a 24
hour period.

As the laser, the diffraction grating, and the detectors are
always fixed, the method is free of mechanical perturbations,
which can be introduced, for instance, when the system is
rotated. However, the method requires measurements over
a long period of time (at least 12 hours) and several days
and this introduces the so called DRIFT-long-term timing
variation by aging due to temperature variations (diurnal and
semi-diurnal temperature dependence). In the case of dif-
fraction experiments, this effect is amplified due to the tem-
perature dependence of the refraction index. Even so, the
situation is not critical, because the angular variation of the
diffracted rays is obtained from the ratio (I1− I2)/(I1+ I2)
and the systematic effects tend to the cancel.

There is also the JITTER-timing (short term) noise due to
statistical fluctuations of the signal (shot and thermal noises),
and they have a “white” frequency distribution, where the
spectral power densities are constant.

If the CMBR apex has an altitude, h, and an azimuth
angle, θA, the projection of the Earth’s velocity, v, on the
laser beam direction is

vp = v cos (θA − θbeam) cosh , (7)

where θbeam is the azimuth of the laser beam and coincides
with the CMBR apex azimuth when it is on the horizon.
Consequently, the values θA= θbeam and h=0 represents
the CMBR apex culmination on the horizon.

-15 -10 -5 0 5 10 15 20 25 30

B
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B
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ΔΔ ΔΔc
 / 

c
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Fig. 3: Expected variation of the one way light speed anisotropy
relative to the CMBR dipole direction for a period of 24 hours
according to Mausouri and Sexl test theory (with a 6=− 1

2
) and

modulated by the altitude variation of the CMBR apex due to
Earth rotation. The curve was obtained for the Latitude= 23◦ S.
The vertical arrows A and B indicates the moment of the passage
of the CMBR apex for the horizon. In A (B) the laser beam is
parallel (anti-parallel) to the Earth velocity vector.

On the other hand, we have analyzed the experimental
data using the test theory of Mausouri and Sexl [1]. accord-
ing to this test theory, the one way speed of light is aniso-
tropic by an among

c (θ) = c− v (1 + 2a) cos θ , (8)

where θ is the angle between the velocity, v, of the moving
system (i.e. the Earth motion) and the direction of light
propagation. In our experiment θ= θA− θbeam. The value
a=− 1

2 correspond to the isotropic SRT prediction, and a 6=
6=− 1

2 represents an anisotropic signal in the one-way path
speed of light. According to Eq. 7 in the passive raster search
system, the Mausouri and Sexl equation is modulated by the
altitude variation and can be expressed as

c (θ, h) = c− v (1 + 2a) cos(θA − θbeam) cosh , (9)

and the relative variation is

Δc(θ, h)/c = −β (1 + 2a) cos(θA − θbeam) cosh , (10)

where β= v/c. As we know the equatorial coordinates of the
CMBR (α, δ)= (11.20h±0.01h, −7.22◦±0.08◦) according
to COBE. The transformation from equatorial coordinate
system (α, δ) to the horizontal coordinate system (θA, h)
permits to obtain a correlation between θA and h as

h = arcsin (sinφ sin δ + cosφ cos δ cosH) , (11)

θA = arcsin (− cos δ sinH/cosh) , (12)
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Fig. 4: Histogram obtained in the passive scan system averaging the
raw data in blocks of 10 minutes The vertical arrow indicates the
moment of the passage of the CMBR apex (according to COBE)
for the horizon. The bold line represent a polynomial fit on the
data.

where φ(=−23◦ S) is the latitude and H (=T −α) is the
hour angle and T is the sidereal time. Under this conditions,
the behavior of (Δc/c) given by the Eq. 10 is reproduced
in Fig. 3, where the vertical arrows A and B indicates the
moment of the passage of the CMBR apex (according to
COBE) for the horizon. In A (B) the laser beam is parallel
(anti-parallel) to the Earth velocity vector.

In the experiment Δc/c is inferred from Δαn measure-
ments (see Eq. 3 and Eq. 5 from Section 2). Examples of
raster scans (in the passive mode) were obtained in the first
set of measurements (June of 2006) as shown in Fig. 4,
Fig. 5 and Fig. 6. Four months after we have repeating the
experiment and the result obtained on November of 2006 is
shown in Fig. 7. In all cases, built-in a DRIFT-long-term it
is possible to see peculiar signatures (see Fig. 3) where the
culmination of the CMBR apex on the horizon is between a
depression and a peak of the Δc/c.

In order to extract the Earth’s velocity from these experi-
mental data, it is necessary to remove the DRIFT-long-term
timing variation, because they are obtained in different days.
Meantime this procedure is not free from experimental bias.
The calibration will be done in the next search with active ro-
tation which is free of the DRIFT-long-term timing variation.

Before publication of this paper we were informed by V.
Gurzadyan [34, 35] of a similar study on anisotropy of the
one way velocity of light relative to the dipole of the CMBR
based on the Compton edge of laser photons scattered in el-
ectron beam at GRAAL ESRF (Grenoble) accelerator, where
a similar behavior in the time series was obtained (see Fig. 4
from ref. [35]). However, according to the authors this varia-
tions comes probably from temperature variations. We were
also informed that is in progress an analysis with new data.
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Fig. 6: The same as Fig. 4

4.2 Active raster search with a turntable system

In this active system, the laser beam is first pointed toward
the direction of the Leo constellation (CMBR apex) when it
is exactly on the horizon. Then the turntable, upon which the
entire laser diffraction experiment is mounted, is rotated in
steps of 30 degrees up to 180 degrees. At every angular step,
the output current of the photo-diodes is registered during
one minute at a counting rate of 10 readings per second.
A complete set of measurements can be done in less than
ten minutes. Consequently the measurements are free from
DRIFT-long-term timing variations. They are influenced only
by the JITTER-timing uncertainties (noise in the system by
statistical fluctuations of the signals). However, this method
requires a careful rotation of the system in order to avoid
mechanical perturbations. The measurements, after a gauss-
ian fit in the raw data, are shown in Fig. 8 for seven angular
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regions, and the one-way light path anisotropy can be ex-
tracted from

Δc

c
= cotαΔα , (13)

with
Δα =

l0
R

[
I1 − I2
I1 + I2

]

, (14)

where the calibration factor obtained for these measurements
is l0 (= 0.407±0.034 mm).

We have analyzed the experimental data using also the
test theory of Mausouri and Sexl [1] where the one way
speed of light is anisotropic by the among

c (θ) = c− v (1 + 2a) cos θ . (15)

The parameter a can be obtained by fitting the test theory
to the experimental results using the expression

Δc

c
= cotαΔα = −β (1 + 2a) cos θ , (16)

where β (= 0.001237±0.000002) is the COBE Earth’s vel-
ocity parameter. The comparison between our measurements
and the test theory is shown in Fig. 9, where an offset such
that (I1− I2)/(I1+ I2)= 0 at θ= 90◦ has been used. The
experimental results seem to agree to a β (1+2a) cos θA
signature, and the parameter a extracted from our data is

a = −0.4106± 0.0225 , (17)

which differs from the a=− 1
2 SRT prediction, as well as,

some experimental upper limits using the Mössbauer ef-
fect [19].

The measurements above shown were made on June of
2006, they were confirmed in a new set of measurements
(including a new calibration) in November of 2006 and the
result is presented in Fig. 10. The parameter a extracted from
this new data is a= 0.3755±0.0403 in agreement with the
previous value.
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Fig. 8: Counting rate is plotted as a function of (I1− I2)/(I1+ I2)
at a given laser beam alignment relative to the Earth’s velocity
vector obtained in June of 2006. The complete set of measurements
was made in ten minutes.

5 Conclusions and remarks

The discovery of a dipole anisotropy in the CMBR is inter-
preted as a Doppler shift produced by the Earth’s motion
(solar barycenter). An experimental survey has been made
in order to test if the Earth’s velocity is relevant on light
propagation in a quantity of first order. The measurements
have been obtained by using a laser diffraction experiment
mounted on turntable system. Two optic sensors (segmented
photo-diodes) were used for measuring the position of dif-
fracted light spots with a precision better than 0.1 μm. The
experiment is easy to reproduce, and it is based on simple
optical principles. Two raster search techniques (scan sub-
jected to Earth’s rotation and scan subjected to an active
rotation) have been used to look for signals of anisotropic
light propagation as a function of the laser beam alignment
relative to the Earth’s motion. The results obtained with
both methods show that the course of the rays is affected
by the motion of the Earth. They are susceptible of being
interpreted by the test theory of Mausouri and Sexl [1] where
the one way speed of light is anisotropic by the amount
c(θ)= c− v (1+2a) cos θ.

In the scan subjected to Earth’s rotation, this pure∗ de-
pendence is modulated by the variation of the altitude, h,
of the CMBR apex and expressed as Δc/c=−β (1+2a)×
× cos (θA− θbeam) cosh. Despite of the statistical fluctua-

∗This meas cos θ= cos (θA− θbeam).
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Fig. 9: Comparison between the one-way path light anisotropy
Δc/c=−β (1+2a) cos θ function, relative to the Earth’s velocity
vector and the experimental data obtained in June of 2006, for
two different values of the fit parameter, a=−0.4106 and a=− 1

2

respectively. Here θA=0 represent the laser beam pointing to the
CMBR apex on the horizon.

tions (short term noise), the results of these scans are in
agreement with the prediction of the “modulated” Mousouri
and Sexl test theory (with a 6=− 1

2 ). In all cases, built-in a
DRIFT-long-term it is possible to see peculiar signatures (see
Fig. 3) where the culmination of the CMBR apex on the
horizon is between a depression and a peak of the Δc/c.

In the scan subjected to an active rotation, the altitude
of the CMBR apex is always h=0, because a complete set
of measurements can be done in 10 minutes. The azimuth
varies from zero to 180 degree relative to the Earth’s velocity
direction. Consequently it is free from DRIFT-long-term tim-
ing variations. In this case, the Mausouri and Sexl parameter
is extract from a fit of the data giving a=−0.4106±0.0225
(from data obtained on June 2006), and a=−0.3755±0.0403
(from data obtained on November 2006), and they differs
from SRT prediction where a=−0.5.

We remark that the CMBR dipole is a frame dependent
quantity. According to Scott and Smoot [39], we can thus
determine the “absolute rest frame” of the universe as that in
which the CMBR dipole would be zero. In short, our results
point out that it is not possible to neglect the preferred frame
imposed by cosmology.
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Appendix: The Miller’s ether drift direction

According to the theories that incorporate the length contrac-
tion principle (Einstein and Lorentz-Poincaré theories), ex-
periments where two orthogonal light paths are compared
(two way speed experiments) like the Michelson-Morley in-
terferometer and all variants are incapable of detecting the
Earth’s motion (no ether drift) due to the length contraction
of the interferometer arm parallel to the direction of the
Earth’s velocity.

Strictly speaking, a null result is expected only in vacuum
where the refractive index is η=1. While, if η 6=1 the Fre-
snel’s drag effect in the rest frame of the medium (Σ) cancels
the effect of the genuine Lorentz transformation to a moving
frame (Σ′). Following the Lorentz transformation equations
from Σ′ with speed v to Σ, and taking into account the
Fresnel relation of the speed of light in the medium c′= c/η,
it is possible to obtain the so called two-way speed of light
anisotropy as

c̄′(θ) =
2c′(θ) c′(θ + π)

c′(θ) + c′(θ + π)
, (A1)

and the relative variation as

Δc′(θ)

c
= −

v2

c2

[
η2 − 1
η2

(
1−

3

2
sin θ 2

)]

. (A2)

We can see that the two-way speed of light anisotropy is
null only in the case η=1 (vacuum). This prediction is in
agreement with modern ether drift experiments in vacuum
[36, 37], using two cavity-stabilized lasers and whose value is

Δc′

c
∼ 10−15. (A3)

In the gaseous mode, for instance air (η= 1.000226), a
maximum value of Δc′/c happens in reference axis parallel
to Earth’s velocity. The tiny fringe shifts, observed in various
Michelson-Morley type experiments, represent a non-null
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effect for the two-way speed of light anisotropy. Dayton
Miller [15, 16] was one of the first few in claiming that
the Michelson-Morley data and his own data obtained in the
mount Wilson are non-null results. Particularly, the mount
Wilson data obtained in 1925–1926 is compatible with an
obrvable Earth velocity of v∼ 8.5±1.5 km/s, when the data
is analyzed on the basis of classical physics. While on the
basis of a different calibration including the length contrac-
tion (see Eq. A2), the Miller result gives speeds for the
movement of the Earth, larger than v > 300 km/s.

A review of the Dayton Miller’s ether drift experiments
made by James DeMeo [38] shows indisputable evidence
that data collected by Miller was affected by the sidereal
period and this is clear proof of a cosmological ether drift
effect. However, the Miller’s determination of the velocity
direction of the Earth does not coincide with the direction
obtained by COBE. The Miller’s direction for the Earth
velocity is almost perpendicular to the direction established
by COBE, observing the CMBR anisotropy. In our opinion,
Miller’s result has the same problem as the first results of
the CMBR survey as is shown in Table 1. For instance,
both Miller and Conklin have obtained a non-null result
on the two-way path light speed anisotropy and the dipole
anisotropy of the CMBR, respectively. Nevertheless, both
experiments have failed to obtain the coordinates of the
Earth’s velocity vector direction correctly.
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The rotational velocity curves for clusters of galaxies cannot be explained by
Newtonian gravitation using the baryonic mass nor does MOND succeed in reducing
this discrepancy to acceptable differences. The dark matter hypothesis appears to
offer a solution; however, non-baryonic dark matter has never been detected. As
an alternative approach, quantum celestial mechanics (QCM) predicts that galactic
clusters are in quantization states determined solely by the total baryonic mass of the
cluster and its total angular momentum. We find excellent agreement with QCM for ten
galactic clusters, demonstrating that dark matter is not needed to explain the rotation
velocities and providing further support to the hypothesis that all gravitationally bound
systems have QCM quantization states.

1 Introduction

The rotational velocity curves of galaxy clusters [1] are very
similar to the rotational velocity curves of individual gala-
xies, with the rotational velocity value rising rapidly at very
small radial distances only to quickly reach an approximately
constant velocity for all greater radial distances from about
200 kpc to out beyond 1500 kpc. Newtonian gravitation using
only the observed baryonic mass fails to explain the curves
both for galaxies and for clusters of galaxies. In clusters, the
baryonic mass is predominantly due to the hot intracluster
gas that is observed by its free-free X-ray emissions. This
gas fraction plus the stellar masses make up the observed
baryonic mass of about 10%–15% of the dynamic mass
required to explain the rotational velocity curves using New-
tonian gravitation, an enormous discrepancy.

Three interesting possible explanations for galactic rota-
tion curves have been proposed: (1) the dark matter hypo-
thesis (DM) introduces non-baryonic matter that is insensi-
tive to all interactions except gravitation, but there has been
no detection of any possible form of dark matter; (2) a modi-
fied Newtonian dynamics (MOND) effective at all distance
scales when the accelerations are less than 1.2×10−10 m/s2,
which has been very successful in explaining the rotation
and luminosity curves of individual galaxies but has large
discrepancies for galaxy clusters [2] in both the cluster core
and in the outer regions; (3) quantum celestial mechanics
(QCM) derived [3] from the general relativistic Hamilton-
Jacobi equation which dictates that all gravitationally bound
systems have quantization states. The QCM states are deter-
mined by two physical quantities only — the system’s total
baryonic mass and its total angular momentum. QCM agrees
with MOND and the baryonic Tully-Fisher relation for indi-
vidual galaxies.

In this paper, we compare the QCM predictions for the

baryonic mass for ten galaxy clusters to the detected bary-
onic masses. Our new result is that the QCM baryonic mass
values agree with the measured baryonic values even where
DM succeeds and MOND fails. No dark matter is required
to explain the observed rotation curves. The baryonic matter
in a single QCM quantization state produces the correct
rotational velocity for the cluster.

2 Conceptual review of QCM

In a series of papers [3, 4, 5], we derived a Schrödinger-like
scalar wave equation from the general relativistic Hamilton-
Jacobi equation via a tranformation that utilizes the total an-
gular momentum of the gravitationally bound system instead
of an angular momentum proportional to Planck’s constant.
We have shown agreement of its quantization state solutions
with the energy states of the planets of the Solar System,
of the satellites of the Jovian planets, and of the disk states
of galaxies. In a preliminary table-top investigation with a
torsion bar system that is now being modified to minimize
possible extraneous influences, the QCM predicted quanti-
zation states with quantized energy per mass and quantized
angular momentum per mass have been detected. The results
from the improved apparatus will be reported.

According to QCM, the quantization state energies per
orbiting particle mass μ are

En
μ
= −

G2M4

2n2H2
Σ

(1)

where G is the gravitational constant, M is the total mass
of the gravitationally bound system, HΣ is the system’s total
angular momentum, and n is an integer. Typically, En is
on the order of 10−6μc2. Unlike the quantum mechanics of
atomic states whereby each electron is in its own quantum
state, in QCM there can be billions of stars (i.e., particles)
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Cluster kT , keV R200, kpc M200, ×1014M� vkT , ×106 m/s M , ×1013M� HΣ, ×1070 kg×m2/s

A1983 2.18±0.09 1100±140 1.59±0.61 0.65±0.03 1.12±0.21 5.10±1.65

MKW9 2.43±0.24 1006±84 1.20±0.30 0.68±0.08 1.34±0.63 7.00±5.76

A2717 2.56±0.06 1096±44 1.57±0.19 0.70±0.02 1.50±0.17 8.57±1.71

A1991 2.71±0.07 1106±41 1.63±0.18 0.72±0.02 1.68±0.19 10.4±2.0

A2597 3.67±0.09 1344±49 3.00±0.33 0.84±0.02 3.11±0.30 30.7±5.1

A1068 4.67±0.11 1635±47 5.68±0.49 0.95±0.03 5.09±0.64 72.7±16.1

A1413 6.62±0.14 1707±57 6.50±0.65 1.13±0.03 10.2±1.1 245.±46

A478 7.05±0.12 2060±110 10.8±1.8 1.16±0.02 11.3±0.8 294.±36

PKS0745 7.97±0.28 1999±77 10.0±1.2 1.24±0.05 14.8±2.4 469.±132

A2204 8.26±0.22 2075±77 11.8±1.3 1.26±0.04 15.7±2.0 525.±116

Table 1: QCM predicted galactic cluster baryonic mass M and angular momentum HΣ.

in the same QCM state. Also notice that there is no explicit
distance dependence in this energy state expression, in sharp
contrast to classical mechanics, because the state radial wave
function extends over a large range. QCM tells us that grav-
itationally bound systems, such as planetary systems and ga-
laxies, are quantized systems and that their behavior cannot
be fully understood by classical general relativistic dynamics.

QCM has been used also to derive the general expression
for the MOND acceleration a0= 1.2×10−10 m/s2, this speci-
fic MOND value being an average value for many galaxies.
Our general expression is

a0 =
G3M7

n4H4
Σ

, (2)

a result which suggests that a0 would be slightly different
for each galaxy instead of being taken as a universal value.

We combine these equations algebraically to solve for
M and HΣ in terms of the measured asymptotic rotational
velocity and the MOND acceleration. Assuming that the
virial theorem holds for galaxies, the velocity v is derived
from Eq. 1 to yield

M =
v4

Ga0
, HΣ =

v7

nGa20
. (3)

These expressions hold true for galaxies. In the next
section they will be applied to clusters of galaxies and the
predicted baryonic mass values will be compared to the
dynamic mass values determined from observational data.

3 Galaxy cluster QCM masses

QCM is assumed to have universal application to isolated
gravitationally bound systems. To a good approximation,
clusters of galaxies are isolated gravitationally bound sys-
tems and therefore should demonstrate the quantization sta-
tes dictated by QCM. In many cases the galaxy clusters
have no dominant central mass, with the intragalactic gas

dispersed throughout the cluster. For simplicity, we assume
that the cluster system is in the n=1 state, that the virial the-
orem applies, that a0= 1.2×10−10 m/s2, and that the cluster
is approximately a flattened ellipsoid similar to the Local
Group [6] that includes our Galaxy and M31. The latter as-
sumption is not strictly required but allows an easy analogy
to disk galaxies where we know that QCM and MOND apply
extremely well.

We use the ten galaxy clusters analyzed by Arnaud et
al. [7] to determine the QCM predicted baryonic mass and
angular momentum via Eqs. 3 above. Their radial distance
R200 is the distance where inside that radius the mean mass
density is 200 times the critical density of the universe, and
theirM200 is the total mass within this radius in solar masses
M� as determined by a standard NFW universal density
profile for a dark matter halo as determined by Navarro et al.
[8] from N -body simulations. The kT (keV) represents the
spectroscopic temperature of the 0.16 r6 0.5R200 region,
and the velocity vkT comes from these temperatures. Table
1 lists our results for the total baryonic mass M and the total
angular momentum HΣ.

4 Discussion

Our predicted QCM baryonic masses M in Table 1 for the
clusters are about a factor of ten smaller (1013 vs. 1014)
than the dynamic masses M200 which were determined by
assuming a dark matter NFW profile. There is reasonable
agreement between our QCM baryonic mass values and the
baryonic masses from the spectroscopic data. There is no
need to invoke the gravitational consequences of DM. The
galactic cluster is in a QCM quantization state. This result
indicates that quantum celestial mechanics determines cer-
tain dynamic behavior of galaxies and galactic clusters.

One additional physical quantity we know now is the
total baryonic angular momentum of each galactic cluster.
This angular momentum value determines all the quantiza-
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tion states of the system in which the gas and the individual
galaxies (i.e., particles) can occupy. Particles at all radii
from the cluster center are in the same angular momentum
quantization state. Note that we have assumed that n=1 for
each cluster; however, some clusters could have baryonic
mass in the n=2 state as well.

QCM has been applied successfully to solar systems,
galaxies and clusters of galaxies. The results strongly suggest
that the known baryonic mass in each system is sufficient
to explain the rotational velocity values without invoking
the gravitational consequences of dark matter. As expected
from QCM, these gravitationally bound systems all behave
as non-classical systems exhibiting quantization states deter-
mined by the total mass and the total angular momentum.
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The main subject of this work is an experimental investigation of the existence of a
local-time effect on the laboratory scale, i.e. longitudinal distances between locations
of measurements from one metre to tens of metres. A short review of our investigations
of the existence of a local-time effect for longitudinal distances from 500 m to 15 km
is also presented. Besides investigations of the minimal spatial scale for a local-time
effect, the paper presents investigations of the effect in the time domain. In this relation
the structure of intervals distribution in the neighbourhood of local-time peaks was
studied and splitting of the peaks was revealed. Further investigations revealed second
order splitting of local-time peaks. From this result it is concluded that space-time
heterogeneity, which follows from the local-time effect, probably has fractal character.
The results lead to the conclusion of sharp anisotropy of space-time.

1 Introduction

Our previous works [1–4] give a detailed description of mac-
roscopic fluctuations phenomena, which consists of regular
changes in the fine structure of histogram shapes built on
the basis of short samples of time series of fluctuations in
different process of any nature — from biochemical reactions
and noises in gravitational antennae to fluctuations in α-
decay rate. From the fact that fine structure of histograms,
which is the main object of macroscopic fluctuation phenom-
ena investigations, doesn’t depend on the qualitative nature
of the fluctuating process, so it follows that the fine structure
can be caused only by the common factor of space-time
heterogeneity. Consequently, macroscopic fluctuation phe-
nomena can be determined by gravitational interaction, or
as shown in [5, 6], by gravitational wave influence.

The present work was carried out as further investiga-
tions into macroscopic fluctuation phenomena. The local
time effect, which is the main subject of this paper, is synch-
ronous in the local time appearance of pairs of histograms
with similar fine structure constructed on the basis of mea-
surements of fluctuations in processes of different nature at
different geographical locations. The effect illustrates the
dependence of the fine structure of the histograms on the
Earth’s rotation around its axis and around the Sun.

The local time effect is closely connected with space-
time heterogeneity. In other words, this effect is possible
only if the experimental setup consists of a pair of separated
sources of fluctuations moving through heterogeneous space.
It is obvious that for the case of homogeneous space the
effect doesn’t exist. Existence of a local-time effect for some
space-time scale can be considered as evidence of space-time
heterogeneity, which corresponds to this scale. Dependence

of a local-time effect on the local time or longitudinal time
difference between places of measurements leads to the con-
clusion that space heterogeneity has axial symmetry.

The existence of a local time effect was studied for diffe-
rent distances between places of measurement, from a hun-
dred kilometres up to the largest distance possible on the
Earth (∼15000 km). The goal of the present work is an inve-
stigation of the existence of the effect for distances between
places of measurements ranging from one metre up to tens
of metres. Such distances we call “laboratory scale”.

2 Experimental investigations of the existence of a local-
time effect for longitudinal distances between places
of measurements from 500 m to 15 km

The main problem of experimental investigations of a local-
time effect at small distances is resolution enhancement of
the macroscopic fluctuations method, which is defined by
histogram duration. All investigations of a local-time effect
were carried out by using α-decay rate fluctuations of 239Pu
sources. Histogram durations in this case are one minute. But
such sources of fluctuations become uselessness for distances
in tens of kilometres or less when histogram durations must
be about one second or less. For this reason in work [7–8] we
rejected α-decay sources of fluctuations and instead used as
a source, noise generated by a semiconductor diode. Diodes
give a noise signal with a frequency band of up to tens of
megahertz and because of this satisfy the requirements of the
present investigations.

To check the suitability of the selected diode noise source
for local-time effect investigations, comparative tests were
made at distances for which existence of the effect was
proved by using α-decay sources of fluctuations [7]. This
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work confirmed the suitability of diode semiconductor noise
for studies of the local-time effect.

Below we present a short description of our experiments
for investigation of a local-time effect for longitudinal dis-
tances of 500 m up to 15 km between locations of measure-
ments. The first experiment studied the local-time effect for
a longitudinal distance of 15 km between locations of mea-
surements, the second one for a set of longitudinal distances
from 500 m to 6 km. A more detailed description of these
experiments is given in [8].

In the first experiment a series of synchronous measure-
ments were carried out in Pushchino (Lat. 54◦50.037′ North,
Lon. 37◦37.589′ East) and Bolshevik (Lat. 54◦54.165′ North,
Lon. 37◦21.910′ East). The longitudinal difference α between
places of measurements was α= 15.679′. This value of α
corresponds to a difference of local time Δt= 62.7 sec and
longitudinal distance Δl= 15 km.

To study the local-time effect in Pushchino and Bolshe-
vik, we obtained 10-minute time series by digitizing fluc-
tuations from noise generators with a sampling frequency of
44100 Hz. From this initial time series with three different
steps of 735, 147 and 14 points, we extracted single mea-
surements and obtained three time series with equivalent
frequency equal 60 Hz, 300 Hz and 3150 Hz. On the basis
of this time series, in a standard way [1–3] using a 60-
point sample length for the first and second time series and a
63-point sample length for third time series, we constructed
three sets consisting of histograms with duration 1 sec,
0.2 sec and 0.02 sec.

Fig. 1a depicts the intervals distribution obtained after
comparisons of the 1-sec histogram sets. The distribution
has a peak, which corresponds to a time interval of 63±1 sec,
and which accurately corresponds to a local time difference
Δt= 62.7 sec between places of measurements.

Local time peaks ordinarily obtained on the interval dis-
tributions are very sharp and consist of 1–2 histograms [1–3]
i.e. are practically structureless. The peak in Fig. 1a can also
be considered as structureless. This leads us to the further
investigation of its structure.

The fact that all sets of histograms were obtained on
the basis of the same initial time series on the one hand,
enables enhancement of time resolution of the method of
investigation, and on the other hand, eliminates necessity
of very precise and expensive synchronization of spaced
measurements. The intervals distribution obtained for the 1-
sec histograms set allows the use of information about the
location of a local-time peak alignment of time series. The
alignment makes possible the use of the set of histograms of
the next order of smallness.

Using the 0.2-sec histograms set increased resolution
five times and allowed more detailed investigations of local-
time peak structure and its position on the time axis. Since
the positions of the peak on the 1-sec intervals distribution
(Fig. 1a) are known, it is possible to select their neighbour-

Figure 1a

Figure 1b

Figure 1c

Fig. 1: Intervals distributions obtained after comparisons of 1-sec
(a), 0.2-sec (b), and 0.02-sec (c) histogram sets. The Y-axis depicts
the number of histograms, which were found to be similar; the
X-axis — time interval between pairs of histograms, sec.
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hood by means of 60 sec relative shift of initial time series
and prepare after this a 0.2-sec histograms set for further
comparison.

The intervals distribution obtained from comparisons for
the 0.2-sec histograms set is presented in Fig. 1b. One can
see that maximum similarity of histogram shape occurs for
pairs of histograms separated by an interval of 63±0.2 sec.
This value is the same as for the 1-sec histogram intervals
distribution, but in the latter case it is defined with an accu-
racy of 0.2 sec.

It’s easy to see from the intervals distribution, Fig. 1b,
that after fivefold enhancement of resolution, the distribution
has a single sharp peak again. So a change of time scale in
this case doesn’t lead to a change of intervals distribution.
This means that we must enhance the time resolution yet
again to study the local time peak structure. We can do this
by using the 0.02-sec histograms set.

The intervals distribution for the case of 0.02-sec histo-
grams is presented in Fig. 1c. Unlike the intervals distribu-
tions in Fig. 1a and in Fig. 1b, distribution in Fig. 1c consists
of two distinct peaks. The first peak corresponds to a local
time difference of 62.98±0.02 sec, the second one to 63.16±
0.02 sec. The difference between the peaks is Δt′= 0.18±
0.02 sec.

Splitting of the local-time peak in Fig 1c is similar to
splitting of the daily period in two peaks with periods equal
to solar and sidereal days [9–11]. This result will be consi-
dered in the next section.

The experiment described above demonstrates the exist-
ence of a local-time effect for longitudinal distance between
locations of measurements at 15 km, and splitting of the
local-time peak corresponding to that distance. It is natural to
inquire as to what is the minimum distance for the existence
of a local time effect. The next step in this direction is the
second experiment presented below.

In this experiment two measurement systems were used:
stationary and mobile. Four series of measurements were
carried out. The longitudinal differences of locations of stat-
ionary and mobile measurement systems was 6 km, 3.9 km,
1.6 km and 500 m. The method of experimental data process-
ing used was the same as for first experiment. It was found
that for each of foregoing distances, a local-time effect exists
and the local-time peak splitting can be observed.

3 Second-order splitting of the local-time peak. Preli-
minary results

Four-minute splitting of the daily period of repetition of his-
togram shape on solar and stellar sub-periods was reported in
[3]. In that paper the phenomenon is considered as evidence
of existence of two preferential directions: towards the Sun
and towards the coelosphere. After a time interval of 1436min
the Earth makes one complete revolution and the measure-
ment system plane has the same direction in space as one

stellar day before. After four minutes from this moment, the
measurement system plane will be directed towards the Sun.
This is the cause of a solar-day period — 1440 min.

Let us suppose that the splitting described in the present
paper has the same nature as splitting of the daily period.
Then from the daily period splitting ΔT = 4 min it is pos-
sible to obtain a constant of proportionality k:

k =
240 sec

86400 sec
≈ 2.78×10−3. (1)

The longitudinal difference between places of measure-
ments presented in the second section is Δt= 62.7 sec and
we can calculate splitting of the local-time peak for this
value of Δt:

Δt′ = kΔt = 62.7×2.78×10−3 ≈ 0.17 sec . (2)

It is easy to see from Fig. 1c that splitting of the local-
time peak is amounts to 0.18±0.02 sec. This value agrees
with estimation (2). Values of splitting of the local-time
peak, which were obtained for the mobile experiment, are
also in good agreement with values obtained by the help of
formula (2).

This result allows us to consider sub-peaks of local-time
peak as stellar and solar and suppose that in this case the
cause of splitting is the same as for daily-period splitting.
But the question about local-time peak structure remains
open.

In order to further investigations of the local-time peak
structure an experiment was carried out using synchronous
measurements in Rostov-on-Don (Lat. 47◦13.85′ North, Lon.
39◦44.05′ East) and Bolshevik (Lat. 54◦54.16′ North, Lon.
37◦21.91′ East). The local-time difference for these locations
of measurements is Δt= 568.56 sec. The value of the local-
time peak splitting, according to (2), is Δt′= 1.58 sec. The
method of experimental data processing was the same as
described in section 2.

In Fig. 2, a summation of all results of expert comparison
is presented. For the considered case we omit presentation
of our results in the form of interval distributions, like those
in Fig 1, because it involves multiplicity graphs.

Fig. 2 consists of four lines. At the leftmost side of
each line is the duration of a single histogram in the four
sets of histograms, which were prepared for comparison.
So we have four sets consisting of 1-sec, 0.2-sec, 0.0286-
sec and 1.36 ms histograms. The rectangle in the first line
schematically shows a local-time peak, obtained as a result
of comparisons for the 1-sec histograms set. Taking into ac-
count synchronization error (about one second), the result is
567±2 sec. This value is in agreement with the calculated lon-
gitudinal difference of local time Δt= 568.56 sec (through-
out Fig. 2, calculated values are given in parentheses).

The second line in Fig. 2 presents results for the 0.2-sec
histograms set. The values in the rectangles show sidereal
and solar sub-peaks of the local-time peak. The value between
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Fig. 2: Local-time peak splitting obtained in the experiment with
synchronous measurements of fluctuations of a pair of semicon-
ductor noise generators, carried out in Rostov-on-Don and Bol-
shevik.

Fig. 3: Expected structure of local-time peak splitting for experi-
ment with synchronous measurements in Rostov-on-Don and Bol-
shevik, calculated on the base of formula (4).

the rectangles gives the splitting of the local-time peak. The
experimentally obtained splitting value is 1.6±0.2 sec, which
is in good agreement with the value calculated on the basis
of formula (2).

The third and fourth lines of Fig.2 present the results
of additional investigations of local-time peak structure. In
the third line is the result of comparisons of the 0.0286-
sec histograms set for intervals, which constitute the closest
neighbourhood of 567.2±0.2-sec peak. Using the 0.0286-
sec histograms set increased resolution almost ten times and
defines peak position on the intervals distribution at 567.22±
0.03 sec. The obtained peak is structureless. Further increase
of resolution moves to the 1.36-ms histograms set, presented
in fourth line. In this case resolution enhancement revealed
splitting of 567.22±0.03 sec peak.

The splitting presented in last line of the diagram, can
be regarded as second-order splitting. It can be calculated

using first-order splitting Δt′= 1.58 sec by the analogue of
formula (2):

Δt′′ = kΔt′. (3)

It easy to see from (3) and from Fig. 2, for second-order
splitting Δt′′ the value of first-order splitting Δt′ plays the
same rôle as the local-time value Δt for Δt′. Numerical
calculations using (3) gives Δt′′= 4.39 ms, which is in good
agreement with the experimentally obtained splitting value
5.44±1.36 ms.

Experimental evidence for the existence of second-order
splitting leads us to conjecture the possibility of n-order
splitting. It easy to see from (2) and (3) that the n-order
splitting value Δtn can be obtained in the following way:

Δtn = knΔt . (4)

Fig. 3 presents an idealized structure of local-time peak
splitting for the considered experiment, which was calculated
on the base of formula (4). Unlike Fig. 2, the structure of
local-time peak splitting in Fig. 3 is symmetrical. Studies of
a possible splitting of 565.6±0.2 sec peak is our immediate
task. At this time the results presented in the Fig. 2 can be
considered as preliminary.

4 Experimental investigations of the existence of a local-
time effect for longitudinal distances between places
of measurements from 1 m to 12 m

The experiments described in two previous sections demon-
strate the existence of a local-time effect for a longitudinal
distance of 500 m between locations of measurements, and
the existence of second-order splitting of the local-time peak.
The next step in our investigations is a study of the local-
time effect on the laboratory scale.

The main difference between local-time effect investiga-
tions on the laboratory scale and the experiments described
above is an absence of a special synchronization system.
In the laboratory case the experimental setup consists of
two synchronous data acquisition channels and two spaced
noise generators, which are symmetrically connected to it.
A LeCroy WJ322 digital storage oscilloscope was used for
data acquisition. Standard record length of the oscilloscope
consists of 500 kpts per channel. This allowed obtaining of
two synchronous sets of 50-point histograms. The maximum
length of every set is 10000 histograms.

Fig. 4 presents values of local time shift as a function of
distance between two noise generators. The graph presents
the results of investigations of a local-time effect for distan-
ces of 1 m, 2 m, 3 m, and 12 m. Local-time values were
found with an accuracy of 9.52 ms for the 12 m experiments
and with an accuracy of 1.36 ms for the 1 m, 2 m, and 3 m
experiments.

An example of an intervals distribution for 1 m longitu-
dinal distance between two noise generators is presented in

V. A. Panchelyuga, V. A. Kolombet, M. S. Panchelyuga, S. E. Shnoll. Investigations of a Local-Time Effect on the Laboratory Scale 67



Volume 1 PROGRESS IN PHYSICS January, 2007

Fig. 4: Values of local time shift as a function of distance between
two sources of fluctuations. The graph presents investigations of
the local-time effect for distances 1 m, 2 m, 3 m, and 12 m.

Fig. 5. The intervals distribution was obtained on the basis
of the 0.5-ms histograms set. Using the Earth’s equatorial
radius value (6378245 m) and the latitude of the place of
measurements (54◦50.0.37′), it is possible to estimate the
local-time difference for a 1m longitudinal distance. The
estimated value is 3.7 ms. It is easy to see from Fig. 5
that the experimentally obtained value of local-time peak is
4±0.5 ms, which is in good agreement with the theoretical
value.

The results of our investigations for the laboratory scale,
which are presented in this section, confirm a local-time
effect for distances up to one metre. So we can state that
a local-time effect exists for distances from one metre up to
thousands of kilometers. This is equivalent to the statement
that space heterogeneity can be observed down to the 1m
scale.

5 Discussion

Local-time effect, as pointed out in [1], is linked to rotational
motion of the Earth. The simplest explanation of this fact is
that, due to the rotational motion of the Earth, after time
Δt, measurement system No. 2 appears in the same place
where system No. 1 was before. The same places cause the
same shape of fine structure of histograms. Actually such an
explanation is not sufficient because of the orbital motion of
the Earth, which noticeably exceeds axial rotational motion.
Therefore measurement system No. 2 cannot appear in the
same places where system No. 1 was. But if we consider
two directions defined by the centre of the Earth and two
points were we conduct spaced measurement, then after time
Δt measurement system No. 2 takes the same directions
in space as system No. 1 before. From this it follows that
similarity of histogram shapes is in some way connected

Fig. 5: Example of intervals distribution for longitudinal distance
between two sources of fluctuations at one metre separation. Single
histogram duration — 0.5 ms.

with the same space directions. This conclusion also agrees
with experimental results presented in [12–13].

In speaking of preferential directions we implicitly sup-
posed that the measurement system is directional and because
of this can resolve these directions. Such a supposition is
quite reasonable for the case of daily period splitting, but
for splitting of the local-time peak observed on the 1m scale
it becomes very problematic because an angle, which must
be resolved by the measurement system, is negligible. It is
most likely that in this case we are dealing with space-time
structure, which are in some way connected with preferential
directions towards the Sun and the coelosphere. Second-
order splitting of local-time peaks can also be considered
as an argument confirming this supposition. Apparently we
can speak of a sharp anisotropy of near-earth space-time.
Existence of a local-time effect leads us to conclude that this
anisotropy is axially symmetric.

The Authors are grateful to Dr. Hartmut Muller, V. P. Ti-
khonov and M. N. Kondrashova for valuable discussions and
financial support. Special thanks go to our colleagues
O. A. Mornev, R. V. Polozov, T. A. Zenchenko, K. I. Zenchen-
ko and D. P. Kharakoz.

References

1. Shnoll S.E., Kolombet V.A., Pozharskii E.V., Zenchenko T.A.,
Zvereva I.M. and Konradov A.A. Realization of discrete
states during fluctuations in macroscopic processes. Physics-
Uspekhi, 1998, v. 41(10), 1025–1035.

2. Shnoll S.E., Zenchenko T.A., Zenchenko K.I., Pozharskii E.V.,
Kolombet V.A. and Konradov A.A. Regular variation of the
fine structure of statistical distributions as a consequence of
cosmophysical agents. Physics-Uspekhi, v. 43(2), 205–209.

68 V. A. Panchelyuga, V. A. Kolombet, M. S. Panchelyuga, S. E. Shnoll. Investigations of a Local-Time Effect on the Laboratory Scale



January, 2007 PROGRESS IN PHYSICS Volume 1

3. Shnoll S.E. Periodical changes in the fine structure of statistic
distributions in stochastic processes as a result of arithmetic
and cosmophysical reasons. Time, Chaos, and Math. Problems,
No. 3, University Publ. House, Moscow, 2004, 121–154.

4. Shnoll S.E. Changes in the fine structure of stochastic distri-
butions as consequence of space-time fluctuations. Progress in
Physics, 2006, v. 6, 39–45.

5. Panchelyuga V.A. and Shnoll S.E. Experimental investigations
of gravitational-wave influence on the form of distribution
function of alpha-decay rate. Abstracts of VI International
Crimean Conference “Cosmos and Biosphere”, Partenit,
Crimea, Ukraine, September 26 — October 1, 2005, 50–51.

6. Panchelyuga V.A. and Shnoll S.E. Experimental investigation
of spinning massive body influence on fine structure of dis-
tribution functions of alpha-decay rate fluctuations. In: Space-
Time Structure, Moscow, TETRU, 2006, 328–343.

7. Panchelyuga V.A., Kolombet V.A., Kaminsky A.V., Panche-
lyuga M.S. and Shnoll S.E. The local time effect observed in
noise processes. Bull. of Kaluga University, 2006, No. 2, 3–8.

8. Panchelyuga V.A., Kolombet V.A., Panchelyuga M.S. and
Shnoll S.E. Local-time effect on small space-time scale. In:
Space-Time Structure, Moscow, TETRU, 2006, 344–350.

9. Shnoll S.E. Discrete distribution patterns: arithmetic and cos-
mophysical origins of their macroscopic fluctuations. Biophys-
ics, 2001, v. 46(5), 733–741.

10. Shnoll S.E., Zenchenko K.I. and Udaltsova N.V. Cosmophys-
ical Effects in the structure of daily and yearly periods of
changes in the shape of histograms constructed from the mea-
surements of 239Pu alpha-activity. Biophysics, 2004, v. 49,
Suppl. 1, 155.

11. Shnoll S.E., Zenchenko K.I. and Udaltsova N.V. Cosmophys-
ical effects in structure of the daily and yearly periods of
change in the shape of the histograms constructed by results
of measurements of alpha-activity Pu-239. arXiv: physics/
0504092.

12. Shnoll S.E., Zenchenko K.I., Berulis I.I., Udaltsova N.V. and
Rubinstein I.A. Fine structure of histograms of alpha-activity
measurements depends on direction of alpha particles flow
and the Earth rotation: experiments with collimators. arXiv:
physics/0412007.

13. Shnoll S.E., Rubinshtejn I.A., Zenchenko K.I., Shlekhtarev
V.A., Kaminsky A.V., Konradov A.A. and Udaltsova N.V.
Experiments with rotating collimators cutting out pencil of
alpha-particles at radioactive decay of 239Pu evidence sharp
anisotropy of space. Progress in Physics, 2005, v. 1, 81–84;
arxiv: physics/0501004.

V. A. Panchelyuga, V. A. Kolombet, M. S. Panchelyuga, S. E. Shnoll. Investigations of a Local-Time Effect on the Laboratory Scale 69



Volume 1 PROGRESS IN PHYSICS January, 2007

SPECIAL REPORT

A High Temperature Liquid Plasma Model of the Sun∗

Pierre-Marie Robitaille
Dept. of Radiology, The Ohio State University, 130 Means Hall, 1654 Upham Drive, Columbus, Ohio 43210, USA

E-mail: robitaille.1@osu.edu

In this work, a liquid model of the Sun is presented wherein the entire solar mass
is viewed as a high density/high energy plasma. This model challenges our current
understanding of the densities associated with the internal layers of the Sun, advocating
a relatively constant density, almost independent of radial position. The incompressible
nature of liquids is advanced to prevent solar collapse from gravitational forces.
The liquid plasma model of the Sun is a non-equilibrium approach, where nuclear
reactions occur throughout the solar mass. The primary means of addressing internal
heat transfer are convection and conduction. As a result of the convective processes
on the solar surface, the liquid model brings into question the established temperature
of the solar photosphere by highlighting a violation of Kirchhoff’s law of thermal
emission. Along these lines, the model also emphasizes that radiative emission is a
surface phenomenon. Evidence that the Sun is a high density/high energy plasma
is based on our knowledge of Planckian thermal emission and condensed matter,
including the existence of pressure ionization and liquid metallic hydrogen at high
temperatures and pressures. Prior to introducing the liquid plasma model, the historic
and scientific justifications for the gaseous model of the Sun are reviewed and the
gaseous equations of state are also discussed.

1 Introduction

1.1 Historical perspective

The modern theory of the Sun [1–5] can be traced back to
1870 when Lane published his discussion of the gaseous
nature of this sphere [6]. At the time, of course, one could
have had little idea about whether or not the Sun was really
a gas. Nonetheless, Eddington [7, 8] would build on these
early ideas. He believed that the laws of physics and thermo-
dynamics could be used to deduce the internal structure
of the Sun without any experimental verification [7, 8]. In
1926, he would speak hypothetically about being able to
live on an isolated planet completely surrounded by clouds.
Under these conditions, he still thought he could analyze
the Sun without any further knowledge than its mass, its
size, and the laws of physics [7, 8]. It was in this spirit that
Eddington set out to expand on Lane’s model of the Sun.

Eddington, more than any other person, has shaped our
current understanding of the Sun. Consequently, it is fitting
that a review of the current model be centered on his contri-
butions. Some may argue that we have moved well beyond
Eddington in our reasoning. However, Eddington has set a
scientific course for the study of the Sun which has remained

∗This work was posted as arXiv: astro-ph/0410075, October 4, 2004.
The discussion relative to the internal constitution of the stars in the
introduction places a heavy emphasis on the writings of A. S. Eddington.
The author wishes to also highlight the work of Nikolai Kozyrev on
“Sources of Stellar Energy and the Theory of Internal Constitution of Stars”
translated from the original Russian dissertation in Progress in Physics
2005, v. 3, 61–99. Kozyrev’s excellent work provides additional important
contributions and insight relative to the gaseous models of the stars.

essentially unchallenged for nearly eighty years. Every new
finding has been rationalized within the context of the gase-
ous model and no alternative starting point exists. Yet, the
gaseous model is characterized by inconsistencies and phys-
ical interpretations which cannot be easily explained based
on laboratory findings.

As such, the hot liquid plasma model is presented herein.
The new model provides a scientific alternative in solar ana-
lysis. It is based on a reevaluation of the internal processes
and structures associated with the gaseous model. The liquid
model advocates a much higher photospheric density and
temperature, thereby directly invoking the physics associated
with high energy/high density plasmas. In addition, it com-
pletely eliminates Eddington’s radiative zone and brings into
question the existence of the current very high density
(150 g/cm3) core.

1.2 Eddington’s polytrope and solar collapse

Eddington began his analysis of the Sun by assuming that
Lane’s gaseous model was correct [6]. The Sun was treated
as a simple polytrope [3], wherein a direct relationship exist-
ed between pressure, P , and density, ρ [9]. Eddington’s poly-
trope was of the form ρ = K1P

1/γ , where K1 is a constant
and the polytrope exponent, γ, was set to 4

3 . Under these con-
ditions, the central density of the Sun was ∼54 times the ave-
rage density and the central pressure was 1.24×107dyn/cm2

[3]. By having recourse to the ideal gas law and fully radia-
tive heat transfer, Eddington deduced a central core tempera-
ture of 1.2×107 [3, 7, 8]. Today, this remains the range for

70 P.-M. Robitaille. A High Temperature Liquid Plasma Model of the Sun



January, 2007 PROGRESS IN PHYSICS Volume 1

the internal temperature of the Sun ∼1.5×107 K (e.g., [2–5]).
At the same time, Eddington realized that a gaseous

Sun should collapse on itself [7, 8]. Specifically, the great
forces of gravity should compress the mass into a much
smaller sphere. Like his predecessors, Eddington pondered
on why the gaseous Sun did not collapse. He solved the
problem by invoking outward radiation pressure originating
from the central core. Reasoning that the inside of the Sun
was generating light, Eddington thought that these photons
could produce the outward pressure sought. Since light quan-
ta clearly possessed momentum, this “light pressure” kept
the gaseous Sun from collapsing [7, 8]. Consequently, Ed-
dington postulated that the inner portion of the Sun produced
photons. He then deduced that these individual light quanta
would sooner or later collide with a gas ion or atom and
propel it against the forces of the Sun’s gravity. The region
of the Sun where this occurs was called the radiative zone. It
remains a central portion of solar theory to this day. Impor-
tantly, however, this zone exists primarily as a result of
Eddington’s reasoning. For stars on the order of the solar
mass, it is currently held that internal radiation pressure is
not as significant as Eddington had advanced. A radiative
zone is still present, but the effects of radiation pressure are
downplayed. Rather, modern theory holds that the Sun is
prevented from collapse due to electron gas pressure [3].
The radiation zone is still present in the Sun, but radiation
pressure becomes dominating only for heavy stars on the
order of 10 solar masses [3].

The modern theory of the Sun also makes use of a signi-
ficant convective zone, which extends throughout the outer
envelope. Convective zones extend to deeper levels as stellar
masses decrease, such that small stars can be viewed as
fully convective. Conversely, for stars with masses larger
than the Sun, it is the core of the star which is convective
[3]. The extent of the convective zone then grows towards
the envelope of the star, as mass increases. Eventually, the
convective zone extends to 70% of the stellar radius in stars
on the order of 50 solar masses. In this case, the envelope
is radiative in nature. Supermassive stars, like the smallest
stars, finally become fully convective [3].

1.3 Photon shifts and opacity considerations

While Eddington believed that he properly understood a key
aspect of solar structure with the creation of the radiative
zone, he also wanted to know exactly how many photons the
Sun could produce to support this hypothesis. Not sufficient-
ly considering Kirchhoff’s work [10], Eddington incorrectly
believed that Stefan’s law was universal [11]. He then ap-
plied this law to estimating the amount of photons produced.
Given the dimensions involved, and the temperatures hypo-
thesized for the solar interior, this photon output would have
been tremendous. Eddington also recognized that a black-
body at millions of degrees should produce its photons at

X-ray frequencies [12].
Thus, Eddington had deduced that the internal portion of

the Sun was at 1.2×107 K. This resulted in the generation
of photons at X-ray frequencies. At the same time, Langley
had previously measured the solar spectrum and was setting
the temperature of the photosphere at ∼6,000 K. In order
to resolve this dilemma, Eddington simply stated that when
photons are emitted, they are initially produced at X-ray
frequencies [7, 8]. However, as these photons are scattered or
absorbed in the collisions associated with radiation pressure,
they slowly lose some of their energy. In this manner, after
millions of years and many collisions, the photons emerge
from the Sun’s photosphere shifted to the visible region.
Only a very small fraction of the total photons in the radia-
tive zone manage to escape at any time. According to Ed-
dington, the radiative zone is acting as a very slowly-leaking
“sieve” [7, 8]. The photons traveling through this zone were
thought to experience free-free, bound-free, and bound-
bound absorptions along with scattering [2, 3]. The entire
process would result in producing a certain opacity in the
solar interior.

Eddington’s model requires that these processes (scatter-
ing and free-free, bound-free, and bound-bound transitions)
result in a final opacity which becomes Planckian in appear-
ance. This was needed in order to permit the proper absorp-
tion and reemission of all photons, at all frequencies, and at
all levels of the solar interior. In fact, the “opacity problem”
constitutes one of the great weaknesses in a model of an
interiorly radiating object. The issue is so complex that Ros-
seland mean opacities [2, 3], which are frequency indepen-
dent, are often utilized. Such a procedure completely side-
steps the central issue. It is always possible to build an
absorption or opacity profile given enough elements and
weighted physical mechanisms (scattering and free-free,
bound-free, and bound-bound transitions). However, the re-
quirement that these profiles continually and systematically
change throughout the interior of the Sun, while remaining
blackbody in nature and yielding the proper frequency de-
pendence, does not appeal either to simplicity or objective
reality. In fact, the generation of a Planckian spectrum re-
quires a Planckian process [10]. Such a spectrum can never
be generated from the sum of many non-Planckian processes.
Once again, the current gaseous model has serious short-
comings in the manner in which solar thermal emission is
explained.

Unfortunately, for Langley and Eddington, the situation
is even more complex than they initially believed [10]. The
Sun is not in thermal equilibrium with an enclosure. In real-
ity, enormous convection currents are present both on the
solar surface and within the solar interior. These convection
currents can easily act to violate the integrity of Eddington’s
layers. Therefore, the interior of the Sun represents a signi-
ficant deviation of the requirements set forth in Kirchhoff’s
law (equilibrium with a perfectly absorbing enclosure [10]).
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The application of the laws of thermal emission [11–13] to
the Sun constitutes a violation of thermodynamic principles.

1.4 Coronal heating

Beyond Eddington, the next big step in solar theory came in
the 1950’s when scientists were beginning to obtain interest-
ing data from the solar corona. It was observed that the
corona possessed, within it, highly ionized ions produced
at temperatures well in excess of 1.0×106 K [14]. The width
of Lyman-α lines further demonstrates that temperatures in
the corona ranged from 2.6×106 to 1.2×106 K at 1.5 and
4 solar radii, respectively [14]. These findings of very hot
temperatures in the corona presented a problem for solar
theory. A temperature within the corona (>1.0×106 K) which
exceeded that of the photosphere (∼6,000 K) indicated a
violation of the 2nd law of thermodynamics. That is, heat
could not be coming from inside the Sun to heat the corona,
while remaining incapable of heating the photosphere. Thus,
if the photosphere was really at ∼6,000 K, there must be
found an alternative means to heat the corona. It has now
been widely accepted that the local heating in the corona
occurs as a result of a process involving the flow of ions
through the magnetic fields of the Sun [5].

1.5 Helioseismology

Currently, much of the support for the gaseous models of
the Sun arises from helioseismology [15] or the study of
solar quakes on the surface of the Sun. It is claimed that
excellent agreement exists between the theoretical models
and the actual seismological data. In large part, this is a
direct measure of the gaseous model’s ability to permit var-
iations in density, pressure, temperature, composition, depth
and opacity values throughout the solar interior. Given
enough variables, good agreement with experimental data
can be achieved. Nonetheless, it is interesting that despite
phenomenal agreement between theory and experiment, the
theoretical fits completely break down in the outer 5% of
the solar disk [16]. This is not surprising since the solar
photosphere currently has a hypothetical density which is
lower than that present within the best vacuums achieved on
earth. Since acoustic waves cannot propagate in a vacuum,
it is not surprising that the theorists are unable to fit the
exterior the Sun [16]. Yet, this is precisely that region of the
Sun from which all the data is being collected.

1.6 Summary of the gaseous models

Eddington was concerned with the great problems of solar
theory: (1) how to prevent the gaseous Sun from collapsing
on itself, (2) how to set the internal temperature, and finally,
(3) how to shift the frequency of photons produced at X-ray
frequencies to the observed visible region. He solved these
problems by invoking radiation pressure and the laws of
thermal radiation. The creation of the radiative zone resulted

in tremendous radiation pressure within the Sun. For Edding-
ton, this radiation pressure exactly balanced with the grav-
itational forces and resulted in one of the earliest gaseous
models of the Sun. The gaseous Sun had been prevented
from collapsing and photons were produced appropriately
in the visible range. The interior of Eddington’s gaseous
Sun was at very high temperatures estimated at millions of
degrees. Yet, this extremely hot object was surrounded by a
very cool photosphere, only ∼1,000 kilometers thick and at
a temperature of just ∼6,000 K.

Regrettably, the idea that photons become the primary
means of striving for internal thermal equilibrium in a star
is not in accordance with our knowledge of the thermal
behavior of objects [17, 18]. Rather, for all other objects, in-
ternal thermal equilibrium is achieved through thermal con-
vection and conduction [17, 18]. In contrast, radiative heat
transfer enables an object to dissipate heat and reach thermal
equilibrium with the outside world (e.g., [17–20]). Astro-
physical treatments of thermal radiation [21–23] minimize
these arguments and, like all other textbooks, fail to state the
underlying cause of the radiation [10].

Under the gaseous model, the internal temperature of the
stars continues to rise, despite the fact that photons are being
emitted. Stellar compression becomes an uncontrollable pro-
cess. In order to cool the stars, photons must be injected into
their interior. Eddington best summarizes this violation of
thermodynamics and the dilemma it creates for all gaseous
models [2]: “I do not see how a star which has once got
into this compressed condition is ever going to get out of
it. So far as we know, the close packing of matter is only
possible so long as the temperature is great enough to ionize
the material. When a star cools down and regains the normal
density ordinarily associated with solids, it must expand and
do work against gravity. . . Imagine a body continually losing
heat but with insufficient energy to grow cold!”

Note that the second sentence in this quote is the essence
of the problem. Eddington has ignored the consequences
of van der Waals’ equation and the incompressibility of
the liquid state. He constructs a model wherein the known
behavior of the condensed states of matter on Earth is dis-
carded. The gaseous model requires production of photons
at high frequency (X-ray, gamma) within the core of the
Sun, which are then shifted to the visible region [7, 8].
However, the shifting of a blackbody radiation spectrum
produced at one Wien’s displacement temperature to another
is without experimental verification. The current complexity
associated with the calculations of stellar opacities hint at the
unreasonableness of such conjectures. A Planckian process is
required to generate a Planckian spectrum [10]. However, the
gaseous stellar models are incapable of yielding a Planckian
process, since they “a priori” exclude the existence of con-
densed matter and of a photospheric lattice.

Since modern stellar theory remains based on gaseous
models, the analytical equations of state [24, 25] are founded
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on the assumption that the Sun can be treated as a compress-
ible gas. The emergence of numerical solutions [24, 25],
including such refinements as the addition of partial ioniza-
tion and Debye-Huckle theory, alters nothing of the under-
lying framework. Currently, the density of the central core
is thought to be ∼150 g/cm3, while that of the lower photo-
sphere is on the order of 10−7 g/cm3 [26]. Neither of the
numbers, of course, can be verified by direct experimenta-
tion. The modern Sun and all of the main sequence stars
remain viewed as compressible gases without lattice struc-
ture. Only the details of the local densities, temperatures,
composition, opacities, radiative emission, and convection
currents, are altered. For stars near the solar mass, it is
advanced that electron gas pressure now acts to prevent solar
collapse [2, 3]. This is true even though the mathematical
analysis of electron gas pressure relies on the use of real or
imaginary rigid surfaces [2] which can never exist within
the stars. The stars are quite unlike the Earth’s atmosphere,
since the latter is resting on a distinct surface. As a result,
electron gas pressure is unlikely to prevent solar collapse
since the gaseous models cannot invoke rigid surfaces while
maintaining the integrity of the gaseous state. Irrespective
of such arguments, one cannot discount that Eddington’s
radiative pressure remains extremely important for the gase-
ous theories, especially in the more massive stars.

2 Liquids and gases

The flow of material on the surface of the Sun (e.g., [2, 3,
5, 27]) makes both the gaseous and liquid states prime can-
didates for discussing the nature of the photosphere. Un-
fortunately, the distinction between the gaseous and liquid
state is often difficult to establish. Gases and liquids are
often viewed simply as fluids with no further distinction,
but differences do exists. Liquids are characterized by their
relatively high densities and by their surface tensions [28–
31]. They also have real internal structure and can be seen as
possessing “fleeting lattices” with short range order [28–31].
Gases, on the other hand, fail to display a surface and have
no internal structure. Liquids can boil and thereby produce
the gaseous state. Gases cannot boil. Liquids, unlike gases,
are essentially incompressible [28–31]. In conjunction with
solids, liquids correspond to the densest form of matter de-
tected in the laboratory. In this regard, a significant increase
in the density of the liquid state would require changes
within the atomic nucleus itself, as the atomic number is
increased. Large changes in pressure, by themselves, are
incapable of significantly altering, by orders of magnitude,
the density of the liquid state [28–32]. This is quite unlike
the behavior of highly compressible gases, as reflected in the
ideal gas law [28, 32].

Although their exact thermal behavior remains extremely
poorly documented [20], liquids can also emit continuous
radiation by virtue of their continuous physical nature. Most-

ly liquid metals have been studied [20], and little is known
about the thermal properties of nonmetallic liquids. Studies
with water at microwave frequencies only add to the com-
plexity of the problem. For instance, it is easy to establish
that the oceans are not blackbody in nature. At the Nadir
angle (view is normal to the water surface), the sea surface
appears with a brightness temperature of less than 100 K at
1.4 GHz [33]. In addition, the brightness temperature of salt
water can be relatively independent of actual temperature
[33]. When larger observation angles are used, the brightness
temperature of sea water rapidly rises [33], although it is
always short of the correct value. Since the brightness tem-
perature of salt water is so highly dependent on salinity, it is
clear that an understanding of thermal emission processes in
liquids is complex [33].

Liquids unlike gases, can support transverse wave propa-
gation as reflected by the presence of weak phonons. The
behavior of phonons has been examined in liquid helium
[34]. Phonons have also been studied in superionic conduct-
ors which are characterized by liquid-like mobility of one
of the ionic species [35]. The study of phonons in solids
and liquids usually involves neutron scattering experiments
(e.g., [34–38]). As for gases, they are unable to support
transverse phonons. Neutron scattering experiments, aimed
at determining structure in solids and liquids, do not exist
as related to gases. Acoustic experiments with gases involve
the study of longitudinal waves.

Differences clearly exist between the liquid and gaseous
states [28–32]. As such, these two phases are not simply a
continuum of one another, as is often assumed. Unlike the
ideal gas law, the equations used in the analysis of liquids
tend to be complex. Herein lies a major difficulty in advanc-
ing a liquid model of the Sun. Nonetheless, in order to dis-
cern the relative merits of a gaseous versus a liquid model,
solar observations themselves, not mathematical simplicity,
must guide the theorist. Thus, solar behavior must be re-
examined and the most critical data remains the nature of
the solar spectrum.

3 Thermal emission

3.1 Local thermal equilibrium

Modern solar models make extensive use of local thermal
equilibrium in order to simplify the analysis of stellar struc-
ture [1–3]. Nonetheless, plasmas are well-known to support
electronic and ionic temperatures which are not at equilib-
rium. Recent work [10] highlights that the Sun cannot meet
the requirements for a blackbody, as set down by Kirchhoff,
for the simple reason that it is not in thermal equilibrium
with a perfectly absorbing enclosure [9, 19]. The analysis of
the Sun is a non equilibrium problem, as manifested by the
presence of convection currents, solar eruptions, solar wind,
and emission of light without confinement. All transport
processes, including convection, are non equilibrium pro-
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cesses [29]. Planck has previously warned that the presence
of convection currents is sufficient to completely destroy
local thermal equilibrium arguments [39]. That local thermal
equilibrium does not exist is of profound consequence to any
theorist, since simplifying assumptions are removed. Despite
this complication, the lack of local thermal equilibrium for
the interior of the Sun is consistent with observations of non-
equilibrium in the solar corona, where significantly diffe-
rent electronic and ionic temperatures have been detected
[40]. Nonequilibrium within the corona may well be a mani-
festation of the state of the entire star. The photosphere is
clearly not in thermal equilibrium with an enclosure (e.g., [9,
19]). Furthermore, it possesses convection currents rendering
it unsuitable as a candidate in blackbody radiation [10, 39].

As such, it was improper for Langley [41, 42] to set a
temperature of the photosphere at ∼6,000 K, simply because
a thermal emission spectrum was present. The proper assign-
ment of a temperature based on thermal arguments depends
on the known presence of a perfectly absorbing enclosure,
namely a solid graphite box [10]. Langley’s use of Planckian
arguments [11–13, 39, 41, 42] to set a temperature for the
photosphere constitutes a violation of Kirchhoff’s law of
thermal emission [10, 43, 44]. The presence of local thermal
equilibrium is central to the assignment of any temperature
based on thermodynamic arguments [10, 39].

Eddington’s need to shift the solar spectrum to lower
frequencies requires that gaseous atom or ionic hydrogen
or helium be able to both absorb and re-emit a blackbody
spectrum. This creates essentially impossible constraints on
the opacities needed inside the Sun, especially given that
only scattering and free-free, bound-free, and bound-bound
transitions can be considered. None of these processes are
individually capable of providing the proper Planckian be-
havior. Only complex summations, involving many discon-
tinuous phenomena, can lead to the required continuous opa-
cities. The problem is so complicated that the entire task
is often sidestepped. Rosseland mean opacities, which are
frequency independent, are often used to deal with this issue
[2, 3]. However, the use of Rosseland mean opacities is
unsatisfactory. The requirements set on opacity by Edding-
ton for the radiative zone are contrary to our knowledge
of thermal emission spectra in either gases or plasmas (e.g.,
[45, 46]). As mentioned above, the production of a Planckian
spectrum must involve a Planckian process and not the sum-
mation of many non-Planckian spectra. The “opacity prob-
lem” represents the greatest single warning sign that a gase-
ous model of the stars cannot be correct.

3.2 Thermal emission in liquids

Like solids, liquids possess a lattice, although this structure
is often fleeting (e.g., [29–31]). This is manifested in the
presence of Brownian motion within the liquid. Thus, in a
liquid, not all of the energy is contained within the vibration-

al degrees of freedom of the lattice. This directly accounts
for the inability to obtain a complete monitoring of the en-
ergy distribution within a liquid based only on its thermal
emission. Indeed, most of the nonnuclear energy in a liquid
may well be contained in the translational and rotational
degrees of freedom. The ability of a liquid to store energy in
translational degrees of freedom certainly leaves less energy
than expected at a given temperature in the vibrational de-
grees of freedom. This is a problem for a Planckian oscillator
model which does not consider translational and rotational
energy [13]. As a result, it is hypothesized that the presence
of translational and rotation degrees of freedom can cause
a liquid to report a much lower temperature than its real
temperature, when the laws of thermal emission [11–13]
are utilized to monitor its emission spectrum. As mentioned
above, the idea that radiation pressure is present within the
Sun is not in accordance with the known mechanisms of heat
transfer within objects [17]. There is no experimental basis
on Earth for invoking that an object can strive for internal
thermal equilibrium using thermal radiation. Conduction and
convection dominate heat transfer within objects [17]. A
liquid model is more apt to deal with heat transfer through
these two mechanisms, since it provides increased density,
facilitating both more efficient conduction and convection.

4 The liquid model of the Sun

A central tenant of the liquid plasma model is that the density
within the solar interior is nearly constant. It has been well
established that liquids are essentially incompressible and
that their compressibility decreases quite dramatically as pre-
ssure is increased [28–31]. Therefore, in the liquid plasma
model, the liquid framework is regarded as incompressible
and the issue of solar collapse never arises.

There are numerous arguments supporting a liquid plas-
ma model. These include: (1) the continuous nature of the
emission spectrum, (2) the average density of the solar mass,
(3) the gentle oblateness of the solar sphere, (4) the presence
of a distinct solar surface, (5) the presence of surface gravity
waves and helioseimology studies, (6) the known existence
of hydrogen on Earth in the liquid metallic plasma state at
high pressures and temperatures, (7) the existence of solar
boiling, and (8) the presence of the corona, transition zone,
and chromosphere. In addition, the liquid plasma model pro-
vides for the mixing of solar materials, resulting in important
evolutionary consequences for the stars. At the same time,
the liquid plasma model addresses the issue of coronal heat-
ing and helps to resolve the thermodynamic problems in
this area.

4.1 Solar emission

The solar spectrum deviates from a blackbody in appearance
in that the high frequency region is distorted. This finding
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urges caution in setting a temperature to the photosphere
using Planckian arguments. Based on experimental work in
thermal emission, the photosphere cannot be a low density
gas or plasma. Gases and plasmas, outside the confines of an
enclosure, simply cannot produce a Planckian-shaped ther-
mal emission profile as seen in the visible light of the photo-
sphere. These issues have previously been discussed in detail
[10]. The production of a continuous blackbody spectrum is
incongruent with an origin from a low density source. Expe-
rimental blackbodies are exclusively solids (e.g., [47–51]).

The concept that the photosphere, as an “opaque gas”,
is able to emit as a blackbody is not supportable. Without
exception, the approach to opaque behavior by gases or
plasmas is accompanied by an increase in density and press-
ure. In contrast, the density advanced for the photosphere is
on the order of 10−7 g/cm3 [26]. No gas has been demon-
strated to approach optically opaque behavior at such den-
sities. Thus, while it is believed that, in the limit of high
pressures, some gases can become opaque, it is more likely
that they simply become liquids. The idea, that free gases
or plasmas can become optically opaque [45, 46] and can
follow Kirchhoff’s law, ignores the known observation that
such behavior cannot be produced outside the confines of
a solid enclosure [10]. Studies in which gases or plasmas
approach optically opaque behavior are always confined to
enclosures at high pressure. For instance, note that the To-
kamak reactors used in plasma physics are often lined with
graphite [52]. This situation is exactly analogous to the ex-
perimental conditions under which Kirchhoff’s law was de-
veloped [10]. Real blackbodies always involve enclosures
which are either made from graphite [49, 50] or lined with
soot (graphite) containing paints [47, 48, 51]. As a result, it
is not surprising that, in the limit of high pressure within the
confines of a Tokamak, the approach to blackbody behavior
can be reached [10, 45, 52]. In any case, such a setting is
completely unlike the surface of the Sun, wherein a solid
enclosure is not present.

Unfortunately, it appears that the exact physical mechan-
ism for producing a blackbody radiation spectrum has not
been defined by the scientific community [10]. Nonetheless,
thermal radiation must be linked to one of the simplest pro-
cesses within matter, namely atomic or nuclear vibrations
within the confines of a lattice structure [10]. This is re-
miniscent of Planck and his oscillators [13, 39]. In the final
analysis, whatever physical mechanism is invoked for black-
body radiation, it should be independent of nuclear reactions,
since all solids are able to emit some form of continuous
thermal radiation [20].

If it is true that the frequency and amount of photons
released by an object is related only to the amount of energy
in the vibrational degrees of freedom of the lattice [10], it is
easy to see why Langley believed that the photosphere was
at a temperature of only ∼6,000 K. Note the well established
convection currents on the surface of the Sun (e.g., [4, 5, 27]).

These currents contain translational energy which is not read-
ily available for thermal emission. However, during flares
and other eruptions, it is well-known that X-rays can be re-
leased from the solar surface. These X-rays reveal brightness
temperatures of millions of degrees (e.g., [4, 5, 27]). In
this case, the translational energy of the liquid envelope is
being converted to thermal photons in a manner revealing
a stored energy bath with temperatures well in excess of
6,000 K. Such X-ray findings from the solar surface were
not at the disposal of Langley when he set the photospheric
temperature in the mid-1800’s [41, 42].

It is therefore hypothesized that a liquid can instantan-
eously lower the total output of photons, at a given tempera-
ture, and release them at a frequency significantly lower
than what would be predicted from their real energy content
and temperature. This is simply an energy partition problem
which arises in the presence of convection currents. The
sea surface temperature at microwave frequencies discussed
above hints to this behavior.

A liquid photosphere with a temperature of ∼7.0×106 K
could be generating photons not at X-ray frequencies, as
expected, but rather in the visible range. This occurs because
the photosphere has convection. Since most of the energy of
the photosphere is tied up in the translational (or rotational)
degrees of freedom and its associated convection, it is simply
not available for the generation of thermal photons. However,
this energy can become available during a solar eruption
which reveals that the real temperatures of the solar photo-
sphere are well in excess of 6,000 K. The liquid phase pro-
vides a means of producing a thermal radiation curve for the
Sun at a lower apparent temperature than its real temperature.
All that is required is to lower the force constant in Planck’s
oscillators. In this regard, note that an oscillator representing
a van der Waals interaction would have a much weaker force
constant than one representing covalent bonds.

This hypothesis remedies the problem with Langley’s
temperature for the photosphere. Setting a real temperature
of the photosphere at ∼7.0×106 K permits the free flow of
heat throughout the outer layers of the Sun. The 2nd law
of thermodynamics is no longer violated. Photons do not
take millions of years to leave the Sun [7, 8]. Rather, they
are solely produced and released at the photosphere using a
mechanism common to all condensed objects on Earth. The
radiative zone is eliminated and the need to shift high energy
photons removed.

4.2 Solar densities

The Sun has an average density (∼1.4 g/cm3) which can
easily support the liquid plasma model. Indeed, the gaseous
model applies extremes of density which are not easily justi-
fied (150 g/cm3 for the core and 10−7 g/cm3 for the photo-
sphere [26]). Instead, the liquid plasma model simply requi-
res a very ordinary density throughout the body of the Sun.
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The presence of a liquid structure eliminates the need for
radiation pressure to prevent the Sun from collapsing on
itself. The liquid alone can support the upper layers. For
the gaseous models, solar collapse is prevented by having
recourse to internal radiation and electron gas pressure both
of which are without sound experimental justification. In a
liquid model, the problem of solar collapse is simply ad-
dressed by invoking the incompressibility of liquids. Inte-
restingly, the Jovian planets all have densities consistent with
the liquid state (Jupiter: ∼1.33 g/cm3; Saturn: 0.7 g/cm3,
Uranus: 1.30 g/cm3, and Neptune 1.76 g/cm3). For a gaseous
model of the Sun, it would have been convenient if at least
one of these planets had an average density consistent with
the sparse gaseous states (e.g., 10−4–10−7 g/cm3) currently
proposed for the convective zone and the photosphere
(10−7 g/cm3) [26]. Note that the latter density approaches
the value of a reasonably good vacuum in the laboratory. The
Jovian planets have high average densities (0.7–1.76 g/cm3)
despite their small size and masses relative to the Sun. As
such, the sparse densities currently assigned to the outer
layers of the Sun are incongruent with the high average
densities of the Jovian planets, especially given that these
are also constituted primarily of hydrogen and helium. This
leads us to deduce that the Jovian planets are also condensed
in nature and that they may have significant liquid compo-
nents, both on their surface or in their interior.

The densities of materials on Earth is determined prima-
rily by the atomic number and by the packing of the crystal
lattice. As far as the existence of a solar core is concerned,
there is no experimental evidence for reaching densities of
∼150 g/cm3 using a hydrogen and helium framework. With-
out exception, high densities involve high atomic numbers.
Mathematical arguments to the contrary are based exclusi-
vely on the collapse of a gaseous model of the Sun and
are without experimental justification in the laboratory. Once
again, the Jovian planets do not support the idea of a dense
core given that they, like the Sun, possess average densities
on the order of 1 g/cm3. Unlike the gaseous model, which
must have a dense core to compensate for its sparse convect-
ive zone and photosphere, the liquid model does not necess-
itate the presence of a dense core. Such a core may or may
not be present. However, laboratory observations, with the
densities achievable using helium and hydrogen, suggest that
it cannot exist.

4.3 The solar surface

The Sun has a reasonably distinct surface. This point has
recently been emphasized by images obtained with the Swe-
dish Solar Telescope [53, 54]. These images reveal that the
solar surface is not simply composed of clouds hovering
about, but has a clear three-dimensional appearance which
evolves in a manner reflecting “solar hills, valleys, and can-
yons” [53, 54]. Solar granulations appear to be “puffy hills

billowing upwards” [53, 54]. This represents strong evidence
that the solar surface is dense and has surface tension, a clear
property of the liquid state.

Gases are not characterized as possessing surfaces. This
accounts for the extension of the corona (which is a gaseous
plasma) for millions of miles beyond the Sun without a dis-
tinct boundary. The hot liquid plasma model of the Sun helps
to explain the distinct nature of the solar surface, wherein a
transition is observed between the photospheric density and
that of the solar atmosphere. The chromosphere is remini-
scent of the critical opalescence of a gas in the vicinity of cri-
ticality [30], and the existence of such a zone is highly sup-
portive of a liquid model. Furthermore, the surface nature of
the Sun is well visualized using imaging methods, including
Doppler techniques [40, 53–55]. The surface tension of a
liquid provides an elegant explanation for the distinct nature
of the solar surface, which is not easily available within the
context of a gaseous model.

4.4 The solar oblateness

Solar oblateness, ε is a dimensionless quantity

ε = (RE −RP )/RE

obtained by comparing the values of the equatorial (RE) and
the polar radii (RP ). The existence of gentle solar oblateness
has been recognized for nearly thirty years. Initial values
measured by Dicke and Goldberg [56] were as large as
4.51±0.34×10−5. More modern values are slightly less pro-
nounced at 8.77×10−6 [57]. While such oblateness appears
extremely small and negligible at first glance, it provides a
dilemma for the gaseous models.

In order to properly analyze solar oblateness, it is necess-
ary to have recourse to models of rigid body rotation [57]. In
this regard, the theory of rotating liquid masses is well deve-
loped and extensive discussions can be found in Littleton’s
classic text [58]. In addressing the oblateness of the Sun
[56, 57], the density of this rotating sphere is maintained
as essentially constant throughout the solar radius [57]. The
model used is described by an analytical form and is able to
account both for the rotation of the convective zone and for
the differential rotation of the inner Sun [57]. Importantly,
the rigid body model [57, 58] is not dependent on the solar
density. This is in sharp contrast with the well-known equa-
tions of state for stellar structure [2, 3, 24, 25]. The latter,
of course, possess a strong interdependence of density and
pressure with radial distance.

Beyond the Sun, other stars also possess varying degrees
of oblateness. The most significant of these, at present, ap-
pears to be the southern star Achernar, a hot B-type star with
a mass currently estimated at six times the mass of the Sun.
The oblateness of this star is caused by rapid rotation and is a
stunning 1.56±0.05 [59]. Achernar’s oblateness is so severe
that it is completely incompatible with the Roche model,
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wherein the mass of a star is concentrated near the stellar
interior [3, 59]. The oblateness of the Sun and some stars
provides significant support for the liquid plasma model of
the Sun and a tremendous hurdle for the gaseous models.

4.5 Surface gravity waves and helioseismology

A liquid plasma model of the Sun is also best suited to
the study of helioseismology (e.g., [15]). This is because
terrestrial observations of this nature are exclusively limited
to the oceans and continents, materials with high densities.
It would be incongruent to advance such studies for the
terrestrial atmosphere. Yet, the density of the terrestrial at-
mosphere at sea level is ∼1,000 times greater than the den-
sity proposed by the gaseous models for the solar surface.

A solar seismic wave [55] was produced in association
with a flare on the surface of the Sun on 9 July 1996 [40].
Such a Sun quake demonstrates that the solar surface is
fully able to sustain a surface gravity (or transverse) wave
extending over millions of meters. These are described as
“resembling ripples from a pebble thrown on a pond” [40,
55]. The ability to sustain such a wave requires the presence
of very dense materials. Indeed, sparse gases are completely
unable to sustain surface gravity waves as these require the
presence of condensed matter. Such Sun quakes provide pow-
erful evidence that the solar surface is comprised of a ma-
terial attaining a very high density. While a gaseous model
can easily deal with longitudinal acoustic waves within the
solar interior, the same cannot be said for its ability to deal
with the presence of a surface gravity (or transverse) seismic
wave on the surface. Once again, it is clear that the current
theoretical fits fail at the solar surface [16].

The ability to conduct helioseismology studies on the
Sun (e.g., [15, 40, 55]) is incongruent with a true gaseous
nature. While sparse gases and plasmas are able to sustain
longitudinal acoustic waves, they are unable to support trans-
verse seismic waves. Terrestrial seismology is limited to the
study of the oceans and the continents. The Earth’s atmo-
sphere is much too thin to enable such studies. The liquid
plasma model of the Sun is better suited to explain the pre-
sence of seismologic activity on the surface of the Sun.

4.6 Hydrogen as a liquid metal plasma

At atmospheric temperatures and pressures, hydrogen exists
as a diatomic molecular gas. At low temperatures, condensed
molecular hydrogen is an insulator with a relatively wide
band gap (Eg= 15 eV). It is noteworthy that when hydrogen
is shock-compressed, and thereby submitted to extreme pre-
ssures (>140 GPa) and temperatures (3000 K), it is able to
under pressure ionization [60]. In so doing, hydrogen as-
sumes a liquid metallic state, as revealed by its greatly in-
creased conductivity [60]. Similar results hold for deuterium,
although the insulator to metal transition occurs under less

intense conditions [61]. The existence of liquid metallic hyd-
rogen plasmas is of tremendous importance in astrophysics
and has direct consequences on the structures of Jupiter
and Saturn [30, 60]. However, these findings have not been
extended to the Sun, even though the Sun is able to subject
hydrogen to higher temperatures and pressures.

In any case, dense liquid metallic plasmas of hydrogen
provide very interesting possibilities in stellar structure which
should be considered by the plasma physicist. That liquid
metallic hydrogen is known to exist, directly implies that the
Sun can be treated as a liquid metal plasma. The equations of
magnetohydrodynamics [62] become relevant not only in the
corona, but also within the entire Sun. This has tremendous
consequences for stellar and plasma physics, further implying
that the gaseous equations of state must be abandoned.
A liquid metal plasma model of the Sun implies (1) high,
nearly constant, densities, (2) a rigid body problem, and
(3) the use of continuous equations of state and magneto-
hydrodynamics [45, 62, 63].

Liquid metallic hydrogen may also present interesting
lattice characteristics to the theorist. Calculations reveal that
metallic hydrogen displays an important dependence of po-
tential energy and interatomic distance [63]. For instance, in
liquid sodium, the potential well for interionic bonding has
a single minimum. In contrast, for metallic hydrogen, the
spatial inhomogeneity of the electron density is so important
that higher order perturbations must be considered. This leads
to potential functions with groups of minima rather than a
single minimum [63]. These potential energy functions have
important pressure dependences [63]. As a result, metallic
hydrogen should be able to assume a variety of lattice struc-
tures, with varying interatomic distances, in a manner which
depends primarily on temperature and pressure. It is likely
that future extensions of these findings to liquid metallic
hydrogen will enable the calculation of various possible
structures within the liquid phase itself. This may be impor-
tant in helping us understand the nature of Sunspots and
stellar luminosities, particularly when magnetic field effects
are added to the problem.

4.7 The displacement of solar mass

All current gaseous models of the Sun make the assump-
tion that densities are gradually changing between the con-
vection zone, photosphere, chromosphere, transition zone,
and corona. In these models, only the opacity changes at the
photosphere, in order to create the “illusion” of a surface.
Nonetheless, it is clear that a phase transition is occurring
between the photosphere and the chromosphere/transition
zone/corona.

In the photosphere, both upward and downward radial
flows are observed. These are also associated with transverse
flows parallel to the surface itself. The motion of Sunspots
also reminds us that transverse flows are an important com-
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ponent of mass displacement in the photosphere. In sharp
contrast, flows in the corona are clearly radial in nature
(ignoring the effects of solar eruptions and flares). The solar
wind is a manifestation of these radially pronounced flows.
Consequently, the analysis of solar mass displacement, at the
surface and in the corona, clearly reveals that we are dealing
with an important phase transition at the photosphere. The
solar corona is a gaseous plasma. Note that it has all the char-
acteristics of a true sparse state (no surface, no continuous
spectrum, not subject to seismological studies, unable to
boil). It is proper to think of the corona as representing
the vapor surrounding the condensed photosphere. This is
typical of every liquid-gas equilibrium observed on Earth.
The corona has no distinct boundary, reflecting once again
that it is the true gaseous plasma, not the photosphere. As
previously noted, the chromosphere is reminiscent of the
critical opalescence at the gas/liquid interface near criticality
[30]. This is an important observation which should not be
dismissed.

4.8 The boiling action of the solar surface

Solar boiling is a well established occurrence. Indeed, it is
commonplace to refer to the Sun as a “boiling gas”. Gases,
however, cannot boil. They are the result of such action.
The act of boiling is a property of the liquid state and is
directly associated with the presence of a distinct surface. To
speak of the Sun as “a boiling gas”, as is done in so many
astrophysical texts, is an unintended contradiction relative to
the current gaseous model of the Sun.

5 Advantages of the liquid plasma model

5.1 Solar mixing and nuclear reaction processes

The presence of a liquid state provides an opportunity for
mixing of nuclear species within the solar sphere. The liquid
state can maintain the nuclei involved in nuclear reactions in
close proximity with constant mixing, thereby providing a
significant advantage in achieving efficient nuclear burning.
Conversely, within a solid core, the flow of reacting nuclei is
greatly hindered. All solar models advocate that the bulk of
the nuclear reactions in the Sun occur in the core. As the Sun
evolves, it is said that the hydrogen core will slowly burn
out [2, 3]. The Sun will then move to helium burning, and
later to the burning of the heavier elements. In contrast, in
the liquid plasma model, nuclear reactions are free to occur
throughout the solar body, as a result of the nearly uniform
solar density.

The energy produced in this fashion, within the solar
interior, would be brought to the surface by conduction and
convection. When nuclear reactions occur on the surface
of the Sun, energy could be directly emitted in the form
of gamma rays. That nuclear reactions can be distributed
throughout the solar interior has dramatic implications for

the lifetime of our Sun, since the burning out of a nuclear
core would not occur. A liquid model could extend the life of
our star more than 10 fold, relative to the current expectancy.
This is because only 10% of the hydrogen fuel is hypothesi-
zed to be burned, in the core of the present gaseous model,
before the Sun is forced to switch to helium [3]. The liquid
model elegantly overcomes such limitations, by enabling the
continuous free flow of reactants in nuclear processes. As
a result, the composition of the photosphere becomes an
important indicator of the composition of the entire star,
since convection now acts to equilibrate the entire solar
interior. The determination of stellar compositions is subject
only to the timescale of mixing. Such reevaluations have
profound implications for stellar evolution and cosmology.

5.2 Coronal heating

The eruption of solar flares and prominences are associated
with the displacement of material from the solar surface.
Such events often occur in conjunction with the release of
strong X-ray and gamma ray flashes. These flashes point
to an underlying thermal potential in the photosphere which
is not expressed under normal circumstances. This provides
secondary evidence for the hot photospheric liquid plasma
model. In this model, the heating of the corona, by complex
magnetic field interactions is still permitted, but no longer
required. The primary means of internal heat transfer within
the Sun once again becomes convection and conduction [17].
Since energy transfer through convection is only proportion-
al to T and not T 4 (as was the case for thermal radiation), it
can be expected that regions of non-equilibrium superheated
fluid exist within the Sun. A theory based on the release of
superheated fluid from the interior could help explain much
of the solar activity found on the surface, including flares
and prominences.

In order to simultaneously preserve Langley’s temperatu-
re and respect the 2nd law of thermodynamics, the gaseous
model provides two means of generating heat (e.g., [4, 5,
27]). The first of these occurs within the Sun and is thought
to be thermonuclear in origin. The second occurs in the
corona and is thought to be of magnetic origin. Particles
moving at enormous speeds are also involved to ensure this
second temperature. Furthermore, something strange must be
happening relative to the photosphere. The gaseous model
advances that this layer cannot be heated either by the in-
terior of the Sun or by the corona, both of which are at
much higher temperatures. This problem is overcome in the
liquid plasma model by raising the true temperature of the
photosphere itself, based on energy partition in liquids and
on the known production of hard X-rays at the solar surface
during eruptive events.

At the same time, the liquid model is quite easily extend-
ed to include the presence of Alfvén waves in the chromo-
sphere, transition zone, and corona, much in the same way
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as the current gaseous model (e.g., [4, 5, 27]). In this regard,
the increased density of the photosphere in the liquid model
may well help to better explain the origin and behavior of
the magnetic field lines located at the surface of the Sun.

5.3 The evolution of the stars

It is clear that adopting a liquid plasma model of the Sun
constitutes a significant reshaping of astrophysics with im-
portant evolutionary and cosmological consequences. These
are too broad to discuss in this work. The issue at hand
is simply the assignment of the proper state of matter for
the Sun.

5.4 The birth of a star

Current stellar evolution theory holds that the stars are initi-
ally formed as a result of the free fall gravitational collapse
of interstellar clouds [3]. A significant weakness of these
models is the need for a disturbance initiating the collapse
[3]. It is also difficult to conceive how many stars can form
from a single cloud in such models. Nonetheless, as the
collapse proceeds, the process rapidly accelerates until a
quasi-steady state is reached with the ignition of nuclear
reactions [3].

Relative to the formation of a liquid plasma Sun, it may
be important to reconsider this question. What if stellar for-
mation is initiated not by gravitational collapse, but rather by
the slow condensation and growth of a star? Star formation
would be initiated in extremely cold matter, wherein two
atoms first make van der Waals contact [28]. Given the
low temperatures, if their combined kinetic energy is not
sufficient to overcome the force associated with the van der
Waals attraction, a two-atom system is created. A third atom
would then join the first two and so on, until a larger and
larger mass is created.

The latent heat of condensation could be dissipated by
radiative emission. Initially, of course, such seeds of stellar
formation would be very subject to destruction, because a
high energy atom could always come and break up the pro-
cess. However, a mass could grow large enough that its van
der Waals forces, and its energy of cohesion, are sufficient
to deal with the kinetic energy of any single noncondensed
atom. When this occurs, condensation would increase rapid-
ly. Again, the important interaction is the van der Waals
force. Eventually, a large body could be formed and grav-
itational forces would become important. The stellar mass
would continue to grow. Hydrogen would be converted to
a liquid metal plasma, when a critical value for the mass
and pressure is achieved. This would correspond to a mass
on the order of the Jovian planets (since they are currently
theorized to be liquid metal plasmas [60]). As the forces
of gravity begin to dominate, the mass of the star would
grow until the internal pressure and temperatures become

high enough to provoke nuclear ignition and the birth of a
new star.

A significant advantage of this approach is that stellar
formation takes place at low temperatures. Cold hydrogen is
permitted to condense and ignition occurs only once a given
stellar mass is reached.

6 Conclusions

For over one hundred years now, the gaseous model of the
Sun has dominated scientific thought in solar research. Yet,
the model is complex and not easily supported by scientific
experimentation. Sufficient evidence is presented herein that
the Sun is truly a liquid plasma. In contrast, not a single
reason can be provided supporting the idea that the Sun is a
gas. The argument made in advance textbooks and course-
work simply rests on the observation that the Sun is “hot”.
The assumption then follows that it cannot be a liquid. Such
arguments completely ignore the nature of liquids and gases.

Simple extensions of the Clausius-Clapeyron equation,
neglect fact that the Sun is not in a closed system. Further-
more, the gaseous model ignores the existence of liquid
metallic hydrogen plasmas in the laboratory.

In reality, we have very little understanding of the press-
ures and temperatures associated with the Sun. As a result,
the “proofs of the gaseous model” tend to be mathematical
and theoretical, not experimental. That is because of the
mathematical simplicity and elegance of the current equa-
tions of state [1–3]. However, as Michelson reminds us:
“Everything depends on the insight with which ideas are
handled before they reach the mathematical stage [32].”

It is not prudent to apply gaseous equations of state to the
Sun, without allowing for experimental guidance. Current
solutions relative to solar collapse, temperature, density, in-
ternal radiative emission, photon shifting, and seismology,
are significant issues for which little more that theoretical
arguments are advanced. In addition, all the gaseous models
ignore that atoms have size. The possibility that the conden-
sed state needs to be considered is being ignored, precisely
because van der Waals’ contributions to physical phenomena
have been dismissed. Real gases are not infinitely compress-
ible. Yet, the Sun is being described as an ideal gas in many
solar models, despite the fact that the ideal gas law from
the onset violates van der Waals’ findings. Furthermore, the
gaseous model is counter to many experimental results in the
laboratory, relative to the thermal and physical behavior of
gases. Unfortunately, no alternative model currently exists as
a point of discussion.

In contrast to the gaseous model of the Sun, the hot liquid
plasma model is extremely simple; requiring no theoretical
arguments beyond those provided by the liquid state itself,
even in the area of energy partition. The hot liquid plasma
model addresses the problems of solar collapse and seismo-
logy with simplicity. It reconciles the violation of the 2nd
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law of thermodynamics and the heating of the corona, by
invoking the simple release of stored energy from the con-
vection currents of the photosphere. It dismisses extreme
densities with hydrogen and helium, by having recourse to
the incompressibility of the liquid state. The liquid model
eliminates radiative heat transfer as a means of striving for
internal thermal equilibrium, as contrary to established ther-
modynamic principles. Internal thermal equilibrium within
the Sun must be achieved using convection and conduction,
as is the case for every other object.

The liquid plasma model also provides an alternative
explanation for “photon shifting”. The visible light of the
photosphere is simply produced instantly as a direct mani-
festation of the vibrational energy contained within the liquid
lattice of the solar surface. The problem of calculating in-
ternal solar opacities, which must be continually adjusted for
frequency and temperature, is removed. Rather, it is argued
that not a single photon is being produced within the Sun.
Radiative emission remains a surface phenomenon for the
Sun, as it is for every other object known to man.

As with any new model, it is clear that a great deal
of effort will be required to place each solar finding in
the context of a liquid framework. The gaseous equations
of state had provided a mathematically elegant approach to
stellar structure. In the liquid plasma model, the equations
associated with magnetohydrodynamics move to the fore-
front. This implies that, rather than concentrate on pressure
and density, we must turn our attention to thermal conduct-
ivity and viscosity. This is far from being a simple problem.
Pressure and density changes can be relatively easily ad-
dressed, in the liquid plasma model, based on known rigid
body solutions [58]. However, the determination of solar
conductivities and viscosities poses a daunting task for plas-
ma physics. This is especially true since thermal conductivi-
ties and viscosities are often viewed as second and fourth-
order tensors, respectively.

Nonetheless, the plasma physicist may eventually gain a
better understanding of these quantities as related to stellar
interiors, particularly as our efforts are focused on the nature
and properties of liquid metallic hydrogen.

It is certainly true that the reevaluation of stellar structure
will be difficult. As the same time, the introduction of the
liquid plasma model brings new and exciting dimensions in
our quest to characterize the physics associated with the Sun.
Prudence dictates that we consider every possibility, as we
continue to explore this still mystical object in our sky.

Dedication: This work is dedicated to the memory of
Jacqueline Alice Roy.
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The Theory of Vortical Gravitational Fields

Dmitri Rabounski
E-mail: rabounski@yahoo.com

This paper treats of vortical gravitational fields, a tensor of which is the rotor of
the general covariant gravitational inertial force. The field equations for a vortical
gravitational field (the Lorentz condition, the Maxwell-like equations, and the
continuity equation) are deduced in an analogous fashion to electrodynamics. From
the equations it is concluded that the main kind of vortical gravitational fields is
“electric”, determined by the non-stationarity of the acting gravitational inertial force.
Such a field is a medium for traveling waves of the force (they are different to the
weak deformation waves of the space metric considered in the theory of gravitational
waves). Standing waves of the gravitational inertial force and their medium, a vortical
gravitational field of the “magnetic” kind, are exotic, since a non-stationary rotation of
a space body (the source of such a field) is a very rare phenomenon in the Universe.

1 The mathematical method

There are currently two methods for deducing a formula for
the Newtonian gravitational force in General Relativity. The
first method, introduced by Albert Einstein himself, has its
basis in an arbitrary interpretation of Christoffel’s symbols
in the general covariant geodesic equations (the equation of
motion of a free particle) in order to obtain a formula like
that by Newton (see [1], for instance). The second method is
due to Abraham Zelmanov, who developed it in the 1940’s
[2, 3]. This method determines the gravitational force in
an exact mathematical way, without any suppositions, as
a part of the gravitational inertial force derived from the
non-commutativity of the differential operators invariant in
an observer’s spatial section. This formula results from Zel-
manov’s mathematical apparatus of chronometric invariants
(physical observable quantities in General Relativity).

The essence of Zelmanov’s mathematical apparatus [4]
is that if an observer accompanies his reference body, his
observable quantities are the projections of four-dimensional
quantities upon his time line and the spatial section— chrono-
metrically invariant quantities, via the projecting operators
bα= dxα

ds
and hαβ =−gαβ + bαbβ , which fully define his

real reference space (here bα is his velocity relative to his
real references). So the chr.inv.-projections of a world-vector
Qα are bαQα=

Q0√
g00

and hiαQ
α=Qi, while the chr.inv.-

projections of a 2nd rank world-tensor Qαβ are bαbβQαβ =

= Q00

g00
, hiαbβQαβ =

Qi
0√
g00

, hiαh
k
βQ

αβ =Qik. The principal
physical observable properties of a space are derived from
the fact that the chr.inv.-differential operators

∗∂
∂t
= 1√

g00
∂
∂t

and
∗∂
∂xi
= ∂
∂xi
+ 1
c2
vi

∗∂
∂t

are non-commutative as
∗∂2

∂xi∂t
−

−
∗∂2

∂t ∂xi
= 1

c2
Fi

∗∂
∂t

and
∗∂2

∂xi∂xk
−

∗∂2

∂xk∂xi
= 2

c2
Aik

∗∂
∂t

, and
also that the chr.inv.-metric tensor hik=−gik+ bi bk may
not be stationary. The principal physical observable charac-
teristics are the chr.inv.-vector of the gravitational inertial

force Fi, the chr.inv.-tensor of the angular velocities of the
space rotation Aik, and the chr.inv.-tensor of the rates of the
space deformations Dik:

Fi=
1

√
g00

(
∂w

∂xi
−
∂vi
∂t

)

, w = c2 (1−
√
g00) , (1)

Aik=
1

2

(
∂vk
∂xi

−
∂vi
∂xk

)

+
1

2c2
(Fivk−Fkvi) , (2)

Dik=
1

2

∗∂hik
∂t

, Dik=−
1

2

∗∂hik

∂t
, D=Dk

k=
∗∂ ln

√
h

∂t
, (3)

where w is the gravitational potential, vi=−
c g0i√
g00

is the

linear velocity of the space rotation, hik=−gik+ 1
c2
vivk

is the chr.inv.-metric tensor, h=det‖hik‖, hg00=−g, and
g=det‖gαβ‖. The observable non-uniformity of the space
is set up by the chr.inv.-Christoffel symbols

Δijk=h
imΔjk,m=

1

2
him

( ∗∂hjm
∂xk

+
∗∂hkm
∂xj

−
∗∂hjk
∂xm

)

, (4)

which are constructed just like Christoffel’s usual symbols
Γαμν = g

ασΓμν,σ using hik instead of gαβ .
A four-dimensional generalization of the chr.inv.-quanti-

ties Fi, Aik, and Dik is [5]

Fα=−2c
2bβaβα , (5)

Aαβ = ch
μ
αh

ν
βaμν , (6)

Dαβ = ch
μ
αh

ν
βdμν , (7)

where

aαβ =
1

2
(∇α bβ−∇β bα) , dαβ =

1

2
(∇α bβ+∇β bα) . (8)

For instance, the chr.inv.-projections of Fα are

ϕ = bαF
α =

F0
√
g00

= 0 , qi = hiαF
α = F i. (9)
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Proceeding from the exact formula for the gravitational
inertial force above, we can, for the first time, determine
vortical gravitational fields.

2 D’Alembert’s equations of the force

It is a matter of fact that two bodies attract each other due
to the transfer of the force of gravity. The force of gravity
is absent in a homogeneous gravitational field, because the
gradient of the gravitational potential w is zero everywhere
therein. Therefore it is reasonable to consider the field of the
vector potential Fα as a medium transferring gravitational
attraction via waves of the force.

D’Alembert’s equations of the vector field Fα without
its inducing sources

Fα = 0 (10)

are the equations of propagation of waves traveling in the
field∗. The equations have two chr.inv.-projections

bσ F σ = 0 , hiσ F σ = 0 , (11)

which are the same as

bσ g
αβ∇α∇βF

σ = 0 , hiσ g
αβ∇α∇βF

σ = 0 . (12)

These are the chr.inv.-d’Alembert equations for the field
Fα=−2c2a∙ασ∙b

σ without its-inducing sources. To obtain the
equations in detailed form isn’t an easy process. Helpful
here is the fact that the chr.inv.-projection of Fα upon a
time line is zero. Following this path, after some algebra,
we obtain the chr.inv.-d’Alembert equations (11) in the final
form

1

c2

∗∂

∂t

(
FkF

k
)
+
1

c2
Fi

∗∂F i

∂t
+Dk

m

∗∂Fm

∂xk
+

+hik
∗∂

∂xi
[(Dkn + Akn)F

n]−
2

c2
AikF

iF k+

+
1

c2
FmF

mD +Δm
knD

k
mF

n−

−hikΔm
ik (Dmn + Amn)F

n = 0 ,

1

c2

∗∂2F i

∂t2
− hkm

∗∂2F i

∂xk∂xm
+
1

c2

(
Di
k + A

∙i
k∙

) ∗∂F k

∂t
+

+
1

c2

∗∂

∂t

[(
Di
k+A

∙i
k∙

)
F k
]
+
1

c2
D

∗∂F i

∂t
+
1

c2
F k

∗∂F i

∂xk
+

+
1

c2

(
Di
n+A

∙i
n∙

)
FnD−

1

c2
Δi
kmF

kFm+
1

c4
FkF

kF i−

−hkm
{

∗∂

∂xk

(
Δi
mnF

n
)
+
(
Δi
knΔ

n
mp−Δ

n
kmΔ

i
np

)
F p+

+Δi
kn

∗∂Fn

∂xm
−Δn

km

∗∂F i

∂xn

}
= 0 .






(13)

∗The waves travelling in the field of the gravitational inertial force
aren’t the same as the waves of the weak perturbations of the space metric,
routinely considered in the theory of gravitational waves.

3 A vortical gravitational field. The field tensor and
pseudo-tensor. The field invariants

We introduce the tensor of the field as a rotor of its four-
dimensional vector potential Fα as well as Maxwell’s tensor
of electromagnetic fields, namely

Fαβ = ∇αFβ −∇β Fα =
∂Fβ
∂xα

−
∂Fα
∂xβ

. (14)

We will refer to Fαβ (14) as the tensor of a vortical
gravitational field, because this is actual a four-dimensional
vortex of an acting gravitational inertial force Fα.

Taking into account that the chr.inv.-projections of the
field potential Fα=−2c2a∙ασ∙b

σ are F0√
g00
=0, F i=hikFk,

we obtain the components of the field tensor Fαβ :

F00 = F 00 = 0 , F0i = −
1

c

√
g00

∗∂Fi
∂t

, (15)

Fik =
∗∂Fi
∂xk

−
∗∂Fk
∂xi

+
1

c2

(

vi
∗∂Fk
∂t

− vk
∗∂Fi
∂t

)

, (16)

F ∙00∙ =
1

c2
vk

∗∂Fk
∂t

, F ∙i0∙ =
1

c

√
g00 h

ik
∗∂Fk
∂t

, (17)

F ∙0k∙ =
1

√
g00

[
1

c

∗∂Fk
∂t

−
1

c3
vkv

m
∗∂Fm
∂t

+

+
1

c
vm
(∗∂Fm
∂xk

−
∗∂Fk
∂xm

)]

,

(18)

F ∙ik∙ = him
( ∗∂Fm
∂xk

−
∗∂Fk
∂xm

)

−
1

c2
himvk

∗∂Fm
∂t

, (19)

F 0k =
1

√
g00

[
1

c
hkm

∗∂Fm
∂t

+

+
1

c
vnhmk

( ∗∂Fn
∂xm

−
∗∂Fm
∂xn

)]

,

(20)

F ik = himhkn
( ∗∂Fm
∂xn

−
∗∂Fn
∂xm

)

. (21)

We see here two chr.inv.-projections of the field tensor
Fαβ . We will refer to the time projection

Ei=
F ∙i0∙√
g00

=
1

c
hik

∗∂Fk
∂t

, Ei=hikE
k=

1

c

∗∂Fi
∂t

(22)

as the “electric” observable component of the vortical gravi-
tational field, while the spatial projection will be referred to
as the “magnetic” observable component of the field

Hik = F ik = himhkn
( ∗∂Fm
∂xn

−
∗∂Fn
∂xm

)

, (23)

Hik = himhknH
mn =

∗∂Fi
∂xk

−
∗∂Fk
∂xi

, (24)
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which, after use of the 1st Zelmanov identity [2, 3] that
links the spatial vortex of the gravitational inertial force to
the non-stationary rotation of the observer’s space

∗∂Aik
∂t

+
1

2

( ∗∂Fk
∂xi

−
∗∂Fi
∂xk

)

=0 , (25)

takes the form

Hik = 2himhkn
∗∂Amn
∂t

, Hik = 2
∗∂Aik
∂t

. (26)

The “electric” observable component Ei of a vortical
gravitational field manifests as the non-stationarity of the
acting gravitational inertial force F i. The “magnetic” ob-
servable component Hik manifests as the presence of the
spatial vortices of the force F i or equivalently, as the non-
stationarity of the space rotation Aik (see formula 26). Thus,
two kinds of vortical gravitational fields are possible:

1. Vortical gravitational fields of the “electric” kind
(Hik=0, Ei 6=0). In this field we have no spatial
vortices of the acting gravitational inertial force F i,
which is the same as a stationary space rotation. So a
vortical field of this kind consists of only the “electric”
component Ei (22) that is the non-stationarity of the
force F i. Note that a vortical gravitational field of the
“electric” kind is permitted in both a non-holonomic
(rotating) space, if its rotation is stationary, and also
in a holonomic space since the zero rotation is the
ultimate case of stationary rotations;

2. The “magnetic” kind of vortical gravitational fields is
characterized by Ei=0 and Hik 6=0. Such a vortical
field consists of only the “magnetic” components Hik,
which are the spatial vortices of the acting force F i

and the non-stationary rotation of the space. Therefore
a vortical gravitational field of the “magnetic” kind is
permitted only in a non-holonomic space. Because the
d’Alembert equations (13), with the condition Ei=0,
don’t depend on time, a “magnetic” vortical gravita-
tional field is a medium for standing waves of the
gravitational inertial force.

In addition, we introduce the pseudotensor F ∗αβ of the
field dual to the field tensor

F ∗αβ =
1

2
EαβμνFμν , F∗αβ =

1

2
EαβμνF

μν , (27)

where the four-dimensional completely antisymmetric dis-
criminant tensors Eαβμν = eαβμν√

−g and Eαβμν = eαβμν
√
−g

transform tensors into pseudotensors in the inhomogeneous
anisotropic four-dimensional pseudo-Riemannian space∗.

Using the components of the field tensor Fαβ , we obtain

∗Here eαβμν and eαβμν are Levi-Civita’s unit tensors: the four-
dimensional completely antisymmetric unit tensors which transform tensors
into pseudotensors in a Galilean reference frame in the four-dimensional
pseudo-Euclidean space [1].

the chr.inv.-projections of the field pseudotensor F ∗αβ :

H∗i =
F ∗∙i0∙√
g00

=
1

2
εikm

( ∗∂Fk
∂xm

−
∗∂Fm
∂xk

)

, (28)

E∗ik = F ∗ik = −
1

c
εikm

∗∂Fm
∂t

, (29)

where εikm= b0E
0ikm=

√
g00E

0ikm= eikm√
h

and εikm=

= b0E0ikm=
E0ikm√
g00

= eikm
√
h are the chr.inv.-discriminant

tensors [2]. Taking into account the 1st Zelmanov identity
(25) and the formulae for differentiating εikm and εikm [2]

∗∂εimn
∂t

= εimnD ,
∗∂εimn

∂t
= −εimnD , (30)

we write the “magnetic” component H∗i as follows

H∗i = εikm
∗∂Akm
∂t

= 2

( ∗∂Ω∗i

∂t
+Ω∗iD

)

, (31)

where Ω∗i= 1
2 ε

ikmAkm is the chr.inv.-pseudovector of the
angular velocity of the space rotation, while the trace D=
=hikDik=D

n
n of the tensor Dik is the rate of the relative

expansion of an elementary volume permeated by the field.
Calculating the invariants of a vortical gravitational field

(J1=FαβFαβ and J2=FαβF ∗αβ), we obtain

J1=h
imhkn

(∗∂Fi
∂xk

−
∗∂Fk
∂xi

)(∗∂Fm
∂xn

−
∗∂Fn
∂xm

)

−

−
2

c2
hik

∗∂Fi
∂t

∗∂Fk
∂t

,

(32)

J2 = −
2

c
εimn

( ∗∂Fm
∂xn

−
∗∂Fn
∂xm

) ∗∂Fi
∂t

, (33)

which, with the 1st Zelmanov identity (25), are

J1 = 4h
imhkn

∗∂Aik
∂t

∗∂Amn
∂t

−
2

c2
hik

∗∂Fi
∂t

∗∂Fk
∂t

, (34)

J2 = −
4

c
εimn

∗∂Amn
∂t

∗∂Fi
∂t

=

= −
8

c

( ∗∂Ω∗i

∂t
+Ω∗iD

) ∗∂Fi
∂t

.

(35)

By the strong physical condition of isotropy, a field is
isotropic if both invariants of the field are zeroes: J1=0
means that the lengths of the “electric” and the “magnetic”
components of the field are the same, while J2=0 means
that the components are orthogonal to each other. Owning
the case of a vortical gravitational field, we see that such a
field is isotropic if the common conditions are true

himhkn
∗∂Aik
∂t

∗∂Amn
∂t

=
1

2c2
hik

∗∂Fi
∂t

∗∂Fk
∂t

∗∂Amn
∂t

∗∂Fi
∂t

= 0





(36)
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however their geometrical sense is not clear.
Thus the anisotropic field can only be a mixed vortical

gravitational field bearing both the “electric” and the “mag-
netic” components. A strictly “electric” or “magnetic” vort-
ical gravitational field is always spatially isotropic.

Taking the above into account, we arrive at the necessary
and sufficient conditions for the existence of standing waves
of the gravitational inertial force:

1. A vortical gravitational field of the strictly “magnetic”
kind is the medium for standing waves of the gravita-
tional inertial force;

2. Standing waves of the gravitational inertial force are
permitted only in a non-stationary rotating space.

As soon as one of the conditions ceases, the acting grav-
itational inertial force changes: the standing waves of the
force transform into traveling waves.

4 The field equations of a vortical gravitational field

It is known from the theory of fields that the field equations
of a field of a four-dimensional vector-potential Aα is a
system consisting of 10 equations in 10 unknowns:

• Lorentz’s condition ∇σAσ =0 states that the four-
dimensional potential Aα remains unchanged;

• the continuity equation ∇σ jσ =0 states that the field-
inducing sources (“charges” and “currents”) can not
be destroyed but merely re-distributed in the space;

• two groups (∇σFασ = 4π
c j

α and ∇σF ∗ασ =0) of the
Maxwell-like equations, where the 1st group determ-
ines the “charge” and the “current” as the components
of the four-dimensional current vector jα of the field.

This system completely determines a vector field Aα and
its sources in a pseudo-Riemannian space. We shall deduce
the field equations for a vortical gravitational field as a field
of the four-dimensional potential Fα=−2c2a∙ασ∙b

σ .
Writing the divergence ∇σF σ = ∂Fσ

∂xσ
+ΓσσμF

μ in the
chr.inv.-form [2, 3]

∇σF
σ=

1

c

( ∗∂ϕ

∂t
+ϕD

)

+
∗∂qi

∂xi
+qi

∗∂ln
√
h

∂xi
−
1

c2
Fiq

i (37)

where
∗∂ ln

√
h

∂xi
=Δ

j
ji and

∗∂qi

∂xi
+ qiΔ

j
ji=

∗∇i qi, we obtain
the chr.inv.-Lorentz condition in a vortical gravitational field

∗∂F i

∂xi
+ F iΔ

j
ji −

1

c2
FiF

i = 0 . (38)

To deduce the Maxwell-like equations for a vortical gra-
vitational field, we collect together the chr.inv.-projections
of the field tensor Fαβ and the field pseudotensor F ∗αβ . Ex-
pressing the necessary projections with the tensor of the rate
of the space deformation Dik to eliminate the free hik terms,
we obtain

Ei =
1

c
hik

∗∂Fk
∂t

=
1

c

∗∂F i

∂t
+
2

c
FkD

ik, (39)

Hik = 2himhkn
∗∂Amn
∂t

=

= 2
∗∂Aik

∂t
+ 4

(
Ai∙∙nD

kn − Ak∙∙mD
im
)
,

(40)

H∗i = εimn
∗∂Amn
∂t

= 2
∗∂Ω∗i

∂t
+ 2Ω∗iD , (41)

E∗ik = −
1

c
εikm

∗∂Fm
∂t

. (42)

After some algebra, we obtain the chr.inv.-Maxwell-like
equations for a vortical gravitational field

1

c

∗∂2F i

∂xi∂t
+
2

c

∗∂

∂xi

(
FkD

ik
)
+
1

c

(
∗∂F i

∂t
+2FkD

ik

)
Δj
ji−

−
2

c
Aik

(
∗∂Aik

∂t
+Ai∙∙nD

kn

)
= 4πρ

2
∗∂2Aik

∂xk∂t
−
1

c2

∗∂2F i

∂t2
+4

∗∂

∂xk

(
Ai∙∙nD

kn−Ak∙∙mD
im
)
+

+2
(
Δj
jk−

1

c2
Fk

){∗∂Aik

∂t
+2
(
Ai∙∙nD

kn−Ak∙∙mD
im
)
}
−

−
2

c2

∗∂

∂t

(
FkD

ik
)
−
1

c2

(
∗∂F i

∂t
+2FkD

ik

)
D=

4π

c
ji






G
ro

up
I,

(43)

∗∂2Ω∗i

∂xi∂t
+

∗∂

∂xi

(
Ω∗iD

)
+
1

c2
Ω∗m

∗∂Fm
∂t

+

+

(
∗∂Ω∗i

∂t
+ Ω∗iD

)
Δj
ji = 0

εikm
∗∂2Fm
∂xk∂t

+ εikm
(
Δj
jk−

1

c2
Fk

) ∗∂Fm
∂t

+2
∗∂2Ω∗i

∂t2
+

+4D
∗∂Ω∗i

∂t
+2

(
∗∂D

∂t
+D2

)
Ω∗i = 0






G
ro

up
II

.

(44)

The chr.inv.-continuity equation ∇σjσ=0 for a vortical
gravitational field follows from the 1st group of the Maxwell-
like equations, and is

∗∂2

∂xi∂xk

(
∗∂Aik

∂t

)
−
1

c2

(
∗∂Aik

∂t
+Ai∙∙nD

kn

)(
AikD+

∗∂Aik
∂t

)
−

−
1

c2

[
∗∂2Aik

∂t2
+
∗∂

∂t

(
Ai∙∙nD

nk
)
]
Aik+

1

2c2

(
∗∂F i

∂t
+2FkD

ik

)
×

×

(∗∂Δj
ji

∂t
+
D

c2
Fi−

∗∂D

∂xi

)
+2

∗∂2

∂xi∂xk

(
Ai∙∙nD

kn−Ak∙∙mD
im
)
+

+

[
∗∂Aik

∂t
+2
(
Ai∙∙nD

kn−Ak∙∙mD
im
)
][

∗∂

∂xi

(
Δj
jk−

1

c2
Fk

)
+

+
(
Δj
ji−

1

c2
Fi

)(
Δl
lk−

1

c2
Fk

)]
= 0 .

(45)

To see a simpler sense of the obtained field equations, we
take the field equations in a homogeneous space (Δikm=0)
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free of deformation (Dik=0)∗. In such a space the chr.inv.-
Maxwell-like equations obtained take the simplified form

1

c

∗∂2F i

∂xi∂t
−
2

c
Aik

∗∂Aik

∂t
= 4πρ

2
∗∂2Aik

∂xk∂t
−
2

c2
Fk

∗∂Aik

∂t
−
1

c2

∗∂2F i

∂t2
=
4π

c
ji




 G
ro

up
I,

(46)

∗∂2Ω∗i

∂xi∂t
+
1

c2
Ω∗m

∗∂Fm
∂t

= 0

εikm
∗∂2Fm
∂xk∂t

−
1

c2
εikmFk

∗∂Fm
∂t

+ 2
∗∂2Ω∗i

∂t2
= 0




 G
ro

up
II

,

(47)

where the field-inducing sources are

ρ =
1

4πc

( ∗∂2F i

∂xi∂t
− 2Aik

∗∂Aik

∂t

)

, (48)

ji =
c

2π

( ∗∂2Aik

∂xk∂t
−
1

c2
Fk

∗∂Aik

∂t
−

1

2c2

∗∂2F i

∂t2

)

, (49)

and the chr.inv.-continuity equation (45) takes the form

∗∂2

∂xi∂xk

(∗∂Aik

∂t

)

−
1

c2
Aik

∗∂2Aik

∂t2
−
1

c2

∗∂Aik
∂t

∗∂Aik

∂t
−

−
1

c2

( ∗∂Fk
∂xi

−
1

c2
FiFk

) ∗∂Aik

∂t
= 0 .

(50)

The obtained field equations describe the main properties
of vortical gravitational fields:

1. The chr.inv.-Lorentz condition (38) shows the inho-
mogeneity of a vortical gravitational field depends on
the value of the acting gravitational inertial force F i

and also the space inhomogeneity Δjji in the direction
the force acts;

2. The 1st group of the chr.inv.-Maxwell-like equations
(43) manifests the origin of the field-inducing sources
called “charges” ρ and “currents” ji. The “charge” ρ
is derived from the inhomogeneous oscillations of the
acting force F i and also the non-stationary rotation
of the space (to within the space inhomogeneity and
deformation withheld). The “currents” ji are derived
from the non-stationary rotation of the space, the spa-
tial inhomogeneity of the non-stationarity, and the
non-stationary oscillations of the force F i (to within
the same approximation);

3. The 2nd group of the chr.inv.-Maxwell-like equations
(44) manifests the properties of the “magnetic” com-
ponent H∗i of the field. The oscillations of the acting
force F i is the main factor making the “magnetic”
component distributed inhomogeneously in the space.

∗Such a space has no waves of the space metric (waves the
space deformation), however waves of the gravitational inertial force are
permitted therein.

If there is no acting force (F i=0) and the space is free
of deformation (Dik=0), the “magnetic” component
is stationary.

4. The chr.inv.-continuity equation (50) manifests in the
fact that the “charges” and the “currents” inducing
a vortical gravitational field, being located in a non-
deforming homogeneous space, remain unchanged
while the space rotation remains stationary.

Properties of waves travelling in a field of a gravitational
inertial force reveal themselves when we equate the field
sources ρ and ji to zero in the field equations (because a
free field is a wave):

∗∂2F i

∂xi∂t
= 2Aik

∗∂Aik

∂t
, (51)

∗∂2Aik

∂xk∂t
=
1

c2
Fk

∗∂Aik

∂t
+

1

2c2

∗∂2F i

∂t2
, (52)

which lead us to the following conclusions:

1. The inhomogeneous oscillations of the gravitational
inertial force F i, acting in a free vortical gravitational
field, is derived mainly from the non-stationary rota-
tion of the space;

2. The inhomogeneity of the non-stationary rotations of
a space, filled with a free vortical gravitational field, is
derived mainly from the non-stationarity of the oscil-
lations of the force and also the absolute values of the
force and the angular acceleration of the space.

The foregoing results show that numerous properties of
vortical gravitational fields manifest only if such a field is
due strictly to the “electric” or the “magnetic” kind. This fact
forces us to study these two kinds of vortical gravitational
fields separately.

5 A vortical gravitational field of the “electric” kind

We shall consider a vortical gravitational field strictly of the
“electric” kind, which is characterized as follows

Hik =
∗∂Fi
∂xk

−
∗∂Fk
∂xi

= 2
∗∂Aik
∂t

= 0 , (53)

Hik = 2himhkn
∗∂Amn
∂t

= 0 , (54)

Ei =
1

c

∗∂Fi
∂t

6= 0 , (55)

Ei =
1

c
hik

∗∂Fk
∂t

=
1

c

∗∂F i

∂t
+
2

c
FkD

ik 6= 0 , (56)

H∗i = εimn
∗∂Amn
∂t

= 2
∗∂Ω∗i

∂t
+ 2Ω∗iD = 0 , (57)

E∗ik = −
1

c
εikm

∗∂Fm
∂t

6= 0 . (58)
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We are actually considering a stationary rotating space
(if it rotates) filled with the field of a non-stationary gravita-
tional inertial force without spatial vortices of the force. This
is the main kind of vortical gravitational fields, because a
non-stationary rotation of a space body is very rare (see the
“magnetic” kind of fields in the next Section).

In this case the chr.inv.-Lorentz condition doesn’t change
to the general formula (38), because the condition does not
have the components of the field tensor Fαβ .

The field invariants J1=FαβF
αβ and J2=FαβF

∗αβ

(34, 35) in this case are

J1 = −
2

c2
hik

∗∂Fi
∂t

∗∂Fk
∂t

, J2 = 0 . (59)

The chr.inv.-Maxwell-like equations for a vortical gravi-
tational field strictly of the “electric” kind are

∗∇iE
i = 4πρ

1

c

( ∗∂Ei

∂t
+ EiD

)

= −
4π

c
ji





Group I, (60)

E∗ikAik = 0

∗∇kE
∗ik −

1

c2
FkE

∗ik = 0





Group II, (61)

and, after Ei and E∗ik are substituted, take the form

1

c

∗∂2F i

∂xi∂t
+
1

c

(
∗∂F i

∂t
+2FkD

ik

)
Δj
ji+

+
2

c

∗∂

∂xi

(
FkD

ik
)
=4πρ

1

c2

∗∂2F i

∂t2
+
2

c2

∗∂

∂t

(
FkD

ik
)
+

+
1

c2

(
∗∂F i

∂t
+2FkD

ik

)
D=−

4π

c
ji






Group I, (62)

1

c2
Ω∗m

∗∂Fm
∂t

= 0

εikm
∗∂2Fm
∂xk∂t

+ εikm
(
Δj
jk −

1

c2
Fk

) ∗∂Fm
∂t

= 0





Group II. (63)

The chr.inv.-continuity equation for such a field, in the
general case of a deforming inhomogeneous space, takes the
following form
( ∗∂F i

∂t
+ 2FkD

ik

)( ∗∂Δ
j
ji

∂t
−

∗∂D

∂xi
+
D

c2
Fi

)

= 0 , (64)

and becomes the identity “zero equal to zero” in the absen-
ce of space inhomogeneity and deformation. In fact, the chr.
inv.-continuity equation implies that one of the conditions

∗∂F i

∂t
= −2FkD

ik,
∗∂Δ

j
ji

∂t
=

∗∂D

∂xi
−
D

c2
Fi (65)

or both, are true in such a vortical gravitational field.

The chr.inv.-Maxwell-like equations (62, 63) in a non-
deforming homogeneous space become much simpler

1

c

∗∂2F i

∂xi∂t
= 4πρ

1

c2

∗∂2F i

∂t2
= −

4π

c
ji





Group I, (66)

1

c2
Ω∗m

∗∂Fm
∂t

= 0

εikm
∗∂2Fm
∂xk∂t

−
1

c2
εikmFk

∗∂Fm
∂t

= 0





Group II. (67)

The field equations obtained specify the properties for
vortical gravitational fields of the “electric” kind:

1. The field-inducing sources ρ and ji are derived mainly
from the inhomogeneous oscillations of the acting gra-
vitational inertial force F i (the “charges” ρ) and the
non-stationarity of the oscillations (the “currents” ji);

2. Such a field is permitted in a rotating space Ω∗i 6=0, if
the space is inhomogeneous (Δikn 6=0) and deforming
(Dik 6=0). The field is permitted in a non-deforming ho-
mogeneous space, if the space is holonomic (Ω∗i=0);

3. Waves of the acting force F i travelling in such a field
are permitted in the case where the oscillations of the
force are homogeneous and stable;

4. The sources ρ and qi inducing such a field remain
constant in a non-deforming homogeneous space.

6 A vortical gravitational field of the “magnetic” kind

A vortical gravitational field strictly of the “magnetic” kind
is characterized by its own observable components

Hik =
∗∂Fi
∂xk

−
∗∂Fk
∂xi

= 2
∗∂Aik
∂t

6= 0 , (68)

Hik = 2himhkn
∗∂Amn
∂t

6= 0 , (69)

Ei =
1

c

∗∂Fi
∂t

= 0 , (70)

Ei =
1

c
hik

∗∂Fk
∂t

=
1

c

∗∂F i

∂t
+
2

c
FkD

ik = 0 , (71)

H∗i = εimn
∗∂Amn
∂t

= 2
∗∂Ω∗i

∂t
+ 2Ω∗iD 6= 0 , (72)

E∗ik = −
1

c
εikm

∗∂Fm
∂t

= 0 . (73)

Actually, in such a case, we have a non-stationary rotat-
ing space filled with the spatial vortices of a stationary grav-
itational inertial force Fi. Such kinds of vortical gravita-
tional fields are exotic compared to those of the “electric”

8 D. Rabounski. The Theory of Vortical Gravitational Fields



April, 2007 PROGRESS IN PHYSICS Volume 2

kind, because a non-stationary rotation of a bulky space body
(planet, star, galaxy) — the generator of such a field — is a
very rare phenomenon in the Universe.

In this case the chr.inv.-Lorentz condition doesn’t change
to the general formula (38) or for a vortical gravitational
field of the “electric” kind, because the condition has no
components of the field tensor Fαβ .

The field invariants (34, 35) in the case are

J1 = 4h
imhkn

∗∂Aik
∂t

∗∂Amn
∂t

, J2 = 0 . (74)

The chr.inv.-Maxwell-like equations for a vortical gravi-
tational field strictly of the “magnetic” kind are

1

c
HikAik = −4πρ

∗∇kH
ik −

1

c2
FkH

ik =
4π

c
ji





Group I, (75)

∗∇iH
∗i = 0

∗∂H∗i

∂t
+H∗iD = 0





Group II, (76)

which, after substituting for Hik and H∗i, are
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+
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)
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+
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(
Ω∗iD
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+

(
∗∂Ω∗i
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)
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(78)

The chr.inv.-continuity equation for such a field, in a de-
forming inhomogeneous space, is
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+
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Δl
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1
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)}
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(79)

If the space is homogeneous and free of deformation, the
continuity equation becomes

∗∂2

∂xi∂xk

(∗∂Aik

∂t

)

−
1

c2
Aik

∗∂2Aik
∂t2

−

−
1

c2

( ∗∂Aik
∂t

+
∗∂Fk
∂xi

−
1

c2
FiFk

) ∗∂Aik

∂t
= 0 .

(80)

In such a case (a homogeneous space free of deforma-
tion) the chr.inv.-Maxwell-like equations (77, 78) become

1

c
Aik

∗∂Aik
∂t

= −2πρ

∗∂2Aik

∂xk∂t
−
1

c2
Fk
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∗∂2Ω∗i

∂xi∂t
= 0

∗∂2Ω∗i

∂t2
= 0





Group II. (82)

The obtained field equations characterizing a vortical
gravitational field of the “magnetic” kind specify the prop-
erties of such kinds of fields:

1. The field-inducing “charges” ρ are derived mainly
from the non-stationary rotation of the space, while
the field “currents” ji are derived mainly from the
non-stationarity and its spatial inhomogeneity;

2. Such a field is permitted in a non-deforming homoge-
neous space, if the space rotates homogeneously at a
constant acceleration;

3. Waves in such a field are standing waves of the acting
gravitational inertial force. The waves are permitted
only in a space which is inhomogeneous (Δikn 6=0)
and deforming (Dik 6=0);

4. The sources ρ and ji inducing such a field remain
unchanged in a non-deforming homogeneous space
where F i 6=0.

7 Conclusions

According the foregoing results, we conclude that the main
kind of vortical gravitational fields is “electric”, derived from
a non-stationary gravitational inertial force and, in part, the
space deformation. Such a field is a medium for traveling
waves of the gravitational inertial force. Standing waves
of a gravitational inertial force are permitted in a vortical
gravitational field of the “magnetic” kind (spatial vortices
of a gravitational inertial force or, that is the same, a non-
stationary rotation of the space). Standing waves of the grav-
itational inertial force and their medium, a vortical gravita-
tional field of the “magnetic” kind, are exotic, due to a non-
stationary rotation of a bulky space body (the source of such
a field) is a very rare phenomenon in the Universe.

It is a matter of fact that gravitational attraction is an
everyday reality, so the traveling waves of the gravitational
inertial force transferring the attraction should be incontro-
vertible. I think that the satellite experiment, propounded
in [6], would detect the travelling waves since the amplitudes
of the lunar or the solar flow waves should be perceptible.
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Forces of Space Non-Holonomity as the Necessary Condition
for Motion of Space Bodies

Larissa Borissova
E-mail: lborissova@yahoo.com

The motion of a satellite in the gravitational field of the Earth is studied. The condition
of weightlessness in terms of physical observable quantities is formulated. It is shown
that the motion of all planets in the Solar system satisfy this condition. The exact
solution of non-null geodesic lines describing the motion of a satellite in a state of
weightlessness is obtained. It is shown that two kinds of rotational forces (forces of
non-holonomity) exist: the inner force is linked to a gravitational potential, the outer
force changes geometric properties of a space. The latter force causes both anisotropy
of the velocity of light and additional displacement of mass-bearing bodies.

1 Introduction

We continue studies commenced in [1], where, using General
Relativity, the space metric along the Earth’s trajectory in the
Galaxy was constructed. This metric was constructed in two
steps: (i) the metric along the Earth’s transit in the gravita-
tional field of the Sun; (ii) using the Lorenz transformation
to change to the reference frame moving along the z-axis
coinciding with the direction in which the Earth moves in the
Galaxy. The behaviour of a light ray in a reference body’s
space described by the obtained metric was studied in [1]. It
follows from exact solutions of the isotropic geodesic lines
equations for the obtained metric, that an anisotropy of the
velocity of light exists in the z-direction. This anisotropy is
due to the motion of the Earth in the Galaxy. The Earth’s
motion in the Galaxy causes additional spreading of the
light ray in this direction: harmonic oscillations with a 24-
hour period and amplitude v

2 , where v is the velocity of
concomitant motion of the Earth with the Solar system in
the Galaxy.

The metric describing a satellite’s motion around the
Earth as it moves concomitantly with the Earth in the gravi-
tational field of the Sun is applied in this paper. The motion
of a satellite by means of non-isotropic (non-null) geodesic
lines equations is described. The motion of a satellite in a
state of weightlessness is realised. The strong mathematical
definition of this state in terms of physically observed (chro-
nometrically invariant) quantities of A. L. Zelmanov [2, 3] is
formulated. It is shown that the condition of weightlessness
means that gravitational-inertial forces are absent in the
region in which a satellite moves. The condition of weight-
lessness is a condition of a equilibrium between the gravita-
tional (Newtonian) force FN attracting a satellite towards the
Earth’s centre and the force Fω directing it from the Earth.
We called it the inner force of non-holonomity. We describe
this force as a vector product of two quantities: (1) a pseudo-
vector of the angular velocity of the Earth’s daily rotation ω;
(2) a vector of the linear velocity V of orbital motion of

a satellite. The result of vectorial multiplication of these
quantities is a pseudo-vector, directed always in the direction
opposite to the force of gravitational attraction. If the forces
of attraction and rejection are not equal one to other, a
satellite: (1) falls to Earth if Fω <FN ; (2) escapes Earth
if Fω >FN . It is shown that the condition of weightlessness
applies to all planets of the Solar system. Moreover, it is in
accordance with Kepler’s third law: the cube of the mean dis-
tance of a planet from the Sun is proportional to the square
of the period of rotation of the planet around the Sun.

We obtain the exact solution of the non-isotropic (non-
null) geodesic lines equations. It follows from them that the
relativistic mass of a satellite in a state of weightlessness
is constant; space velocities and space displacements in the
r- and z-directions include additions caused by the Earth’s
daily rotation; the motion in the z-direction coinciding with
the Earth’s motion in the Solar system includes the effect
which is described by harmonic oscillations having a period
of 24 hours and an amplitude of 13 cm.

The question as to why the z-direction is preferred, is
studied. It is shown that motion along the z-axis is also a
rotational motion, with the angular velocity Ω, around the
gravitational centre of a greater body. This body attracts the
studied body and the gravitational centre around which the
studied body rotates with the angular velocity ω. In order
that this situation can be realized it is necessary that both
these motions satisfy the condition of weightlessness.

It is shown that two kinds of forces exist, linked to a ro-
tational motion. Because rotation of a space means that this
space is non-holonomic [2, 3], we called these forces the
inner and the outer force of non-holonomity, respectively.
They have a different physical nature. From the physical
viewpoint the inner force Fω counteracts the Newtonian
force FN , the outer force FΩ causes the motion in the z-
direction. This action is an interaction of two rotations with
the angular velocities ω and Ω, respectively. From the math-
ematical viewpoint these forces are different, because they
are included in different terms of the space-time metric.
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2 The weightlessness condition in terms of physical
observable quantities

We consider, using the methods of General Relativity, the
space of a body which: (1) rotates on its own axis, passing
through its centre of gravity; (2) moves as a whole around
the centre of gravity of a greater body. For example, the
Earth rotates on its axis and simultaneously rotates around
the Sun. The period of one rotation of the Earth on its axis
is one astronomical day, or 86,400 sec. The linear velocity
vrot of this rotation depends on geographic latitude φ: vrot=
= 500 cosφ m/sec (vrot=0 at the Earth’s poles). The Earth
rotates around the Sun with the velocity v= 30 km/sec. The
period of this rotation is one astronomical year, or 365.25
of astronomical days. The Earth’s radius is 6,370 km, the
distance between the Earth and the Sun is 150×106 km, and
therefore we can consider the orbital motion of the Earth
approximately as a forward motion.

We will consider every parallel of the Earth as a cylinder
oriented in interplanetary space along the Earth’s axis, pas-
sing through its poles. Every point of the Earth: (1) rotates
around the axis with a velocity depending on its geographic
latitude; (2) moves together with the Earth in the Sun’s space
with the velocity 30 km/sec. It is necessary to note that the
points of the Earth space, which are on the Earth axis, move
forward only. It is evident that, not only for the Earth’s poles
but also for all points along this direction, the linear velocity
of rotation is zero. The combined motion of every point of
the Earth’s space (except axial points) is a very elongated
spiral [1].

This metric is applicable to the general case of one body
rotating around another body, moving concomitantly with
the latter in the gravitational field of a greater body. For
example, the Earth rotates around the Sun with the velocity
30 km/sec and simultaneously moves together with the Sun
in the galactic space with the velocity 222 km/sec. The com-
bined motion of the Earth motion in the Galaxy is described
by a very elongated spiral. This case is studied in detail
in [1]. The combined motion of every point of the Earth’s
surface in the Galaxy is more complicated trajectory.

The metric describing the space of a body which rotates
around another body (or around its own centre of gravity)
and moves together with the latter in the gravitational field
of a greater body is [1]:

ds2 =

(

1−
2GM

c2r

)

c2dt2 +
2ωr2

c
cdtdϕ−

−

(

1 +
2GM

c2r

)

dr2 − r2dϕ2 +
2ωvr2

c2
dϕdz − dz2,

(1)

where G= 6.67×10−8 cm3/g×sec2 is Newton’s gravitational
constant, ω is the angular velocity of the rotation around
the axis, v is the orbital velocity of the body, r, ϕ and
z are cylindrical coordinates. We direct the z-axis along

a direction of a forward motion. This metric describes the
motion of all points of the rotating body, besides axial points.

We apply Zelmanov’s theory of physically observed
quantities (chronometrically invariants) [2, 3] in order to de-
scribe this gravitational field. The three-dimensional observ-
ed space of the space-time (1) has a metric hik (i=1, 2, 3).
Its components are

h11 = 1 +
2GM

c2r
, h22 = r2

(

1 +
ω2r2

c2

)

,

h23 = −
ωr2v

c2
, h33 = 1;

h11 = 1−
2GM

c2r
, h22 =

1

r2

(

1−
ω2r2

c2

)

,

h23 =
ωv

c2
, h33 = 1 .

(2)

Physically observed (chronometrically invariant) char-
acteristics of this space are

F 1 =

(

ω2r −
GM

r2

)(

1 +
ω2r2

c2

)

, (3)

A12 = −
ω

r

(

1−
2GM

c2r
+
ω2r2

2c2

)

, A31 =
ω2vr

c2
, (4)

where F i is a vector of a gravitational-inertial force, Aik is a
tensor of an angular velocity of a rotation (a tensor of a non-
holonomity). The third characteristic is a tensor of velocities
of a deformation Dik = 0.

Geometric space characteristics of (2) are chronometric-
ally invariant Christoffel symbols Δkij of the second kind:

Δkij=h
kmΔij,m=

1

2
hkm

( ∗∂him
∂xj

+
∗∂him
∂xi

−
∗∂hij
∂xm

)

, (5)

where Δij,m are Christoffel symbols of the first kind, while
∗∂
∂xi
= ∂
∂xi
− 1
c2
vi

∗∂
∂t

is chronometric differentiation with res-

pect to spatial coordinates, and
∗∂
∂t

is chronometric different-
iation with respect to time. Because the gravitational field
described by the metric (1) is stationary, we have

∗∂
∂xi

= ∂
∂xi

The non-zero components of Δkij for (1) are

Δ111 =
GM

c2r
, Δ122 = −r

(

1−
2GM

c2r
+
2ω2r2

c2

)

,

Δ123=
ωvr

c2
, Δ212=

1

r

(

1+
ω2r2

c2

)

, Δ213=−
ωv

c2r
.

(6)

Let’s consider the particular case of this motion when the
gravitational-inertial force is absent:

F i = 0 . (7)

We rewrite it for the metric (1) in the form

GM

r
= ω2r2 = V 2, (8)
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where V is the linear velocity of a rotational motion.
Substituting into (8) the Earth’s mass M⊕= 6×1027g and

the Earth’s radius R⊕= 6.37×108 cm we obtain the value of
a velocity of a rotation V= 7.9 km/sec. This value is the
first space velocity, which we denote by VI . If we accelerate
a body located on the Earth in this way, so that its velocity
acquires the value 7.9 km/sec, it will move freely in the grav-
itational field of the Earth as an Earth satellite. This means
that condition (7) is the weightlessness condition in General
Relativity, formulated in terms of physically observed quan-
tities.

Substituting into (8) the mass of the Sun M�= 2×1033 g
and the distance between the Earth and the Sun r=
=15×1012 cm we obtain v=30 km/sec — the orbital velocity
of the Earth in the gravitational field of the Sun. This means
that the Earth rotates around the Sun in the state of weight-
lessness.

Analogous calculations show [4] that the orbital motion
of the Moon around the Earth and orbital motions of all pla-
nets of the Solar system satisfy the weightlessness condition.
We conclude that the weightlessness condition is the con-
dition by which the force of Newton’s attraction FN equals
the force Fω connected with a rotational motion. It is evident
that this force must be directed opposite to that of the New-
tonian force. It is possible to consider this force as a vector
product of two quantities: (1) a pseudo-scalar of an angular
velocity of rotation ω directed along the Earth’s axis;
(2) a vector V =ω× r in a direction tangential to the sat-
ellite’s orbit. Thus we have

Fω = ω × V = ω ×
[
ω × r

]
. (9)

This force is directed opposite to the Newtonian force in
a right coordinate frame. Its value is ωV sinα, α the angle
between these vectors; it equals ω2r if these quantities are
orthogonal to one another.

We call this force the inner force of non-holonomity,
because it acts on a body moving in the inner gravitational
field of another body. This force is included in the g00-
component of the fundamental metric tensor gαβ .

It is necessary to explain why we consider ω a pseudo-
vector. In general, Zelmanov defines a pseudo-vector of an
angular velocity Ωi= 1

2 ε
imnAmn, where εimn is a comple-

tely antisymmetric chronometrically invariant unit tensor.
For it we have ε123= 1√

h
, where h is the determinant of

a three-dimensional fundamental metric tensor hik.
Taking (8) into account, we calculate for the metric (1):

h = r2
(

1 +
3ω2r2

c2

)

, (10)

A12 = −ωr

(

1 +
3ω2r2

2c2

)

, (11)

with the other components of Aik all zero. Consequently
only the component Ω3=−ω is not zero for this metric.

It is easy to calculate for all planets that orbital motion
satisfies Kepler’s third law.

3 The motion of a satellite in the gravitational field of
the Earth

We consider the motion of a satellite in the gravitational field
of the Earth rotating around the its own axis and moving
in the gravitational field of the Sun (rotating around its
centre). This is a motion of a free body, so it is consequently
described by the geodesic equations

d2xα

ds2
+ Γαμν

dxμ

ds

dxν

ds
= 0, (12)

where dxα

ds is a vector of a four-dimensional velocity, Γαμν are
four-dimensional Christoffel symbols. In terms of observed
quantities, these equations have the form

dm

dτ
−
m

c2
FiV

i +
m

c2
DikV

iV k = 0,

d(mV i)

dτ
+2m

(
Di
k+A

∙i
k∙

)
V k−mF i+mΔinkV

nV k=0,

(13)

where τ is proper (observed) time, V i= dxi

dτ is a three-
dimensional observed velocity, m is the relativistic mass of a
satellite. It is evident that its gravitational field is negligible.

Substituting into these equations the calculated values
of Aik and Δkij for the metric (1) and taking into account
the condition of weightlessness (8), we obtain a system of
equations

dm

dτ
= 0 , (14)

d

dτ

(

m
dr

dτ

)

+2mωr

(

1−
ω2r2

2c2

)
dϕ

dτ
+
mω2r

c2

(
dr

dτ

)2
−

−mr

(
dϕ

dτ

)2
+
2mωvr

c2
dϕ

dτ

dz

dτ
= 0 ,

(15)

d

dτ

(

m
dϕ

dτ

)

−
2mω

r

(

1 +
ω2r2

2c2

)
dr

dτ
+

+
2m

r

(

1 +
ω2r2

c2

)
dr

dτ

dϕ

dτ
−
2mωv

c2r

dr

dτ

dz

dτ
= 0 ,

(16)

d

dτ

(

m
dz

dτ

)

−
2mω2vr

c2
dr

dτ
= 0. (17)

We obtain from equation (14) that the relativistic mass of
a space body is, by a condition of weightlessness, constant:
m= const. Using this condition we calculate the first integr-
al of equation (17)

ż = ż0 +
ω2v

(
r2 − r20

)

c2
, (18)

where ż denotes differentiation with respect to τ , ż0 and r0
are initial values.
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Taking into account that m= const and also GM
c2r

= ω2r2

c2

(the condition of weightlessness) we rewrite (15) and (16) as

r̈+2ωr

(

1−
ω2r2

2c2

)

ϕ̇+
ω2r

c2
ṙ2−rϕ̇2+

2ωvr

c2
ϕ̇ż = 0, (19)

ϕ̈−
2ω

r

(

1+
ω2r2

c2

)

ṙ+
2

r

(

1+
ω2r2

c2

)

ṙϕ̇−
2ωv

c2r
ṙż = 0. (20)

The linear velocity of the Earth’s rotation around its
axis, ωr cosφ, has the maximum value, at the equator, ωr=
500 m/sec, and consequently the maximum value of ω2r2

c2
=

= 6×10−11. Substituting (18) into (19–20) and neglecting the
terms ω2r2

c2
and ω2rṙ2

c2
, we obtain

r̈ + 2ωrϕ̇− rϕ̇2 +
2ωvr

c2
ϕ̇ż0 = 0 , (21)

ϕ̈− 2ω
ṙ

r
+ 2ϕ̇

ṙ

r
−
2ωvż0
c2

ṙ

r
= 0 . (22)

We rewrite (24) in the form

ϕ̈+ 2 (ϕ̇− ω̃)
ṙ

r
= 0 , (23)

where ω̃ = ω
(
1 + vż0

c2

)
. The quantity ω̃ is the angular vel-

ocity of an Earth point daily rotation containing a correction
vż0
c2

which is due to the orbital motion of the Earth around

the Sun. It is necessary that we do not neglect the term vż0
c2

,
because its order is 2.7×10−9: we propose v= 30 km/sec
(the orbital velocity of the Earth) and ż0= 8 km/sec (the
initial value of the satellite velocity).

The variable in equation (23) can be separated, and there-
fore it is easily integrated. The first integral is

ϕ̇ = ω̃ +
(ϕ̇0 − ω̃) r20

r2
, (24)

where ϕ̇ and r0 are initial values.
Substituting (24) into (21) we obtain, after transforma-

tions, the second order differential equation relative to r

r̈ + ω̃2r −
(ϕ̇0 − ω̃) r40

r3
= 0 . (25)

We introduce the new variable p = ṙ. Then r̈ = p dp
dr

and
(25) becomes

p dp =
(ϕ̇0 − ω̃)

2
r40

r3
dr − ω̃2rdr = 0 , (26)

the variables of which are also separable. It is easily integ-
rated to

ṙ2 =

(
dr

dτ

)2
= −ω2r2 −

(ϕ̇0 − ω̃)
2
r40

r2
+K, (27)

where the constant of integration K is

K = ṙ20 + r
2
0

[
2ω̃2 + ϕ̇0 (ϕ̇0 − 2ω̃)

]
. (28)

We obtain

ṙ =
dr

dτ
= ±

√

K − ω̃2r2 −
(ϕ̇0 − ω̃)

2
r40

r2
. (29)

This too is an equation with separable variables. Consi-
dering the positive sign we obtain, after elementary transfor-
mations,

dτ =
rdr

√
−ω̃2r4 +Kr2 − (ϕ̇0 − ω̃)

2
r40

. (30)

Introducing the new variable y = r2 we have

dτ =
1

2

dy
√
−ω̃2y2 +Ky − (ϕ̇0 − ω̃)

2
r40

. (31)

Integrating (31) and returning to the old variable r we
obtain the expression for τ

τ = −
1

2ω̃
arcsin

K − 2ω̃2r2
√
K2 − 4ω̃2 (ϕ̇0 − ω̃) r40

+B, (32)

where B is a constant of integration. Calculating B = 0 for
the initial value of τ0 = 0 we rewrite (32) as

sin 2ω̃τ =
2ω̃2

(
r2 − r20

)

√
K2 − 4ω̃2 (ϕ̇0 − ω)

2
r40

, (33)

where r0 is the initial value of r. It is easy to express r2 as

r2 = r20 +

√
K2 − 4ω̃2 (ϕ̇0 − ω̃)

2ω̃2
sin 2ω̃τ. (34)

Expressing K2−4ω̃2B2 through initial values we obtain

r =

√

r20 +
Q

2ω̃2
sin 2ω̃τ , Q = const, (35)

where Q =
√
(ṙ20 + r

2
0 ϕ̇

2
0)
[
ṙ20 + r

2
0(ϕ̇0 + 2ω̃)

2
]
.

Substituting (35) into (18) and integrating the resulting
expression we have

z = ż0τ +
vQ

2ω̃c2
(1− cos 2ω̃τ ) + z0 , (36)

where z0 and ż0 are initial values.
Substituting (34) into (24) and integrating we obtain for

ϕ the expression

ϕ = ω̃τ +
2ω̃2r20 (ϕ̇0 − ω̃)√
Q2 − 4ω̃4r40

×

× ln

∣
∣
∣
∣
∣
2ω̃2r20 tan ω̃τ +Q−

√
Q2 − 4ω̃4r40

2ω̃2r20 tan ω̃τ +Q+
√
Q2 − 4ω̃4r40

∣
∣
∣
∣
∣
+ P ,

(37)

where the integration constant equals P =ϕ0−
2ω̃2r20(ϕ̇0−ω̃)
Q2−4ω̃4r40

×

× ln

∣
∣
∣
∣
Q−
√
Q2−4ω̃4r40

Q+
√
Q2−4ω̃4r40

∣
∣
∣
∣.
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We see from (35–37) that trajectories of a freely falling
satellite in the Earth’s gravitational field conclude correc-
tions for the daily rotation of the Earth. Besides that, the
motion in the z-direction coinciding with a forward motion
of the Earth includes the velocity of the orbital motion of the
Earth around the Sun. Let’s estimate the correction in the z-
direction caused the orbital motion of the Earth with velocity
30 km/sec. In order to estimate the value Q, we propose
that the satellite moved vertically at the initial moment. This
means that only the radial component of the initial velocity
is not zero: ṙ0 6=0. Let it be equal to the first space velocity:
ṙ0'VI = 8 km/sec. In this case Q=V 2I ' 64 km2/sec2.
Taking into account the angular velocity of the daily rotation
ω= 8×10−5 sec−1 we obtain the correction vQ

2ω̃c2
= 13 cm.

This means that a satellite not only moves forward with a
velocity ż0 in the z-direction, it also undergoes harmonic
oscillations with the amplitude 13 cm during the 24-hour
period.

It is necessary to take into account these corrections in
relation to some experiments with satellites. For example,
experiments, the aim of which is to discover gravitational
waves: two geostationary satellites are considered as two
free particles. Measuring changes of the distance between
them by means of laser interferometer, scientists propose
to discover gravitational waves emitted by different space
sources. It is evident, it is necessary to take into account
changes of this distance caused by motion of satellites in the
gravitational field of the Sun.

Let’s study in detail why the z-direction is preferred.
The displacement in the z-direction includes the velocity
v= 30 km/sec of the Earth’s motion in the gravitational field
of the Sun. We consider this motion as a “forward” motion.
On the other hand, this motion is as well rotation, because
the Earth rotates around the Sun. Therefore we can consider
v as a vector product of two quantities

v = Ω×R , (38)

where Ω=2×10−7sec−1 is the angular velocity of the Earth’s
orbital rotation, R= 150×106 km is the distance between the
Earth and the Sun.

Now we define the outer force of non-holonomity FΩ as a
force of a kind different toFω . This definition corresponds to
the case where one body rotates around another as the latter
rotates around a greater body. We define this force also as
a force of non-holonomity, because Zelmanov proved that a
rotation of a three-dimensional space means that this space
is non-holonomic. The metric of the corresponding space-
time in this case necessarily includes the mixed (space-time)
terms g0i, because it is impossible to transform coordinates
in such a way that all g0i = 0.

We define the outer force of non-holonomity as

FΩ = ω ×
[
Ω×R

]
, (39)

where ω and Ω are angular velocities of two different rota-
tions: ω is the angular velocity of rotation of a space body
around a centre of attraction; Ω is the angular velocity of
rotation of the concomitant rotation of a space body and
its centre of attraction around a greater space body. The
interaction of both rotations produces a real force, acting
on masses the fields of which are in the region of this force.

We see that this force is included in metric (1) as an off-
diagonal term ωvr2

c2
. It is also contained in the chronometric-

ally invariant Christoffel symbols (6). Solving the null geo-
desic lines equations for this metric, we obtained in [1]
that an anisotropy of the velocity of light exists in the z-
direction. The z-axis in (1) coincides with the direction of
the concomitant motion of the Earth with the Solar system.
This motion realises the velocity 222 km/sec. The anisotropy
correction appearing in this direction as

Δż =
v

2
sin 2ω̃τ , (40)

where ż= dz
dτ , ω̃ is the angular velocity of the Earth’s orbital

motion. thus the value of ż is realised during one astronomic
year harmonic oscillation, with the amplitude 111 km/sec.

4 Conclusion. Further perspectives

We studied in this paper the motion of a satellite in the
Earth’s gravitational field. This motion is realised by the
condition of weightlessness, defined as a state of equilibrium
between two forces: the Newtonian force of attraction FN
and the force of repulsion Fω , caused by a rotational motion.
The existence of a rotation means the existence of a field of
non-holonomity, and, consequently, the existence of forces
of non-holonomity. The inner force of non-holonomity Fω
is a pseudo-tensor, always directed opposite to the direction
to the centre of attraction. This is a real force countering
the Newtonian force FN . The equality of these two forces
means that a satellite moves around the Earth in a state of
weightlessness.

A satellite moves freely, and consequently moves along
non-isotropic geodesic lines. We obtain from these equations
that the relativistic mass of a satellite is constant. Displace-
ments of a satellite in the r- and ϕ-directions include com-
ponents caused by the daily rotation of the Earth. Solving
the non-null geodesic lines equations describing its motion,
we obtained from formula (36)

Δż =
vQ

2c2
'
vV 2I
2c2

= 10−8 km, (41)

where v= 30 km/sec, VI = 8 km/sec is the first space veloc-
ity. This correction is very small, but it has the same origin
as the anisotropy of the velocity of light. Calculating the
displacement of a satellite in the z-direction, we obtain the
correction as a harmonic oscillation with the amplitude 13
cm and of 24-hour period.
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The expression (36) is the exact solution of the equation
(17). It is easy to see that the second term of (17) includes the
quantity mωv=mωΩR, where R is the distance between
the Earth and the Sun. We can rewrite it as the angular
momentum L of the outer force of non-holonomity

L = mFΩR = mωΩR . (42)

We conclude that:

1. If a body rotating around a centre of attraction also
rotates with the latter around a greater origin of attrac-
tion, these fields of rotation interact.

This interaction exists only by the condition that both bodies
rotate. The interaction of two fields of non-holonomity (the
inner and the outer) causes an anisotropy in the velocity of
light in the direction of the motion in the gravitational field
of a greater body [1]. This interaction causes the displace-
ment in this equation of a mass-bearing body (a satellite) ob-
tained in the present paper. Both effects have the same natu-
re: the angular moment of the outer force of non-holonomity
deviates null and non-null trajectories of light-like particles
and mass-bearing bodies.

We conclude that the inner and the outer forces of non-
holonomity have a different nature, and therefore produce
different effects on the motion of space bodies (and light).

2. The inner force of non-holonomity counters the New-
tonian force of attraction. It is included in a three-
dimensional potential of a gravitational field

w = c2 (1−
√
g00) '

GM

r
+
ω2r2

2
. (43)

This field of non-holonomity is linked to the weightless-
ness condition: the motion of a space body satisfies the
weightlessness condition if ∂w

∂r
= 0. This result follows from

the definition of a gravitational-inertial force vector

Fi =
1

1− w
c2

(
∂w

∂xi
−
∂vi
∂t

)

. (44)

We see that if a rotation is stationary (i. e. ∂vi
∂t
=0) the

condition of weightlessness has the form ∂w
∂xi
=0. It is evi-

dent that if a rotation is non-stationary, the condition of the
weightlessness takes the form

∂w

∂xi
=
∂vi
∂t

. (45)

It is interesting to note that a stationary rotation of a
three-dimensional space is linked with motions of the space-
time. It is shown in [4] that a stationary rotation of a three-
dimensional space is a motion of the space-time itself due to
the fact that a Lie derivative for this metric is zero.

3. The outer force of non-holonomity acts on the geo-
metry of the space of transit of a body which rotates
around another body and moves with the latter in the

gravitational field of a greater body. It imparts energy
to a moving (rotating) system of bodies, the gravita-
tional fields of which are part of the gravitational field.
We obtain the following chain: the gravitational field
of the Earth (and all other planets) is a part of the Sun’s
gravitational field; the gravitational field of the Sun is
a part of the galactic gravitational field, etc. All these
space bodies are linked by gravitational forces and
forces of non-holonomity. Its equilibrium is a necess-
ary condition of existence for the Universe.

A study of spaces with non-stationary rotation is the theme
of further papers. A necessary consideration of this problem
involves the microwave radiation in the observed Universe.
We have shown in the second part of [1] that the space-time
satisfying to metric (1) can be permeated only by matter
with stationary characteristics: a density, a stream of energy,
a stress tensor, etc. Proposing that the Universe is filled by an
ideal fluid (gas) and electromagnetic radiation, we showed
that the electromagnetic field can only be stationary. If we
consider this electromagnetic field as an electromagnetic
wave, we conclude that these waves can only be standing
waves. But observations show that in our Universe a micro-
wave electromagnetic radiation exists. We therefore must
initially choice a non-stationary metric. Such a metric can
allow non-stationary electromagnetic radiation. It is possible
that microwave radiation is linked with non-stationary fields
of non-holonomity. But this is a theme for further studies.
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Evidence of Non-local Chemical, Thermal and Gravitational Effects
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Quantum entanglement is ubiquitous in the microscopic world and manifests itself
macroscopically under some circumstances. But common belief is that it alone cannot
be used to transmit information nor could it be used to produce macroscopic non-
local effects. Yet we have recently found evidence of non-local effects of chemical
substances on the brain produced through it. While our reported results are under
independent verifications by other groups, we report here our experimental findings of
non-local chemical, thermal and gravitational effects in simple physical systems such
as reservoirs of water quantum-entangled with water being manipulated in a remote
reservoir. With the aids of high-precision instruments, we have found that the pH
value, temperature and gravity of water in the detecting reservoirs can be non-locally
affected through manipulating water in the remote reservoir. In particular, the pH value
changes in the same direction as that being manipulated; the temperature can change
against that of local environment; and the gravity apparently can also change against
local gravity. These non-local effects are all reproducible and can be used for non-local
signalling and many other purposes. We suggest that they are mediated by quantum
entanglement between nuclear and/or electron spins in treated water and discuss the
implications of these results.

1 Introduction

Scientific methods require that one conform one’s know-
ledge of nature to repeatable observations. Thus, it is unsci-
entific to reject what’s observed repeatedly and consistently.
With this in mind, we comment that quantum entanglement
has been recently shown to be physically real in many labo-
ratories [1, 2]. Indeed, spins of electrons, photons and nuclei
have now been successfully entangled in various ways for
the purposes of quantum computation and communication
[3, 4]. On the other hand, we have recently observed non-
local effects of chemical substances on the brain produced
through quantum entanglement [5, 6] which are commonly
thought to be impossible [7]. Here we report our work carried
out on simple physical systems, in particular, water, using
simple physical/chemical observables such as pH, tempera-
ture and gravity measured with high-precision instruments.
Our motivation for measuring pH change of water in one
reservoir, while manipulating water in a remote reservoir
quantum-entangled with the former, is to investigate whether
and how pH value in the water being measured shifts under
non-local influences. Our motivation for measuring tempera-
ture variation of water in one reservoir, while manipulating
water in a remote reservoir quantum-entangled with the
former, is to investigate whether and how the thermodynam-
ics of water being measured changes under non-local influ-
ences. Our motivation for measuring gravity change of one
reservoir of water, while manipulating water in a remote re-
servoir quantum-entangled with the former, is to investigate
whether gravity also change under non-local influences.

The successes of the experiments described herein were
achieved with the aids of high-precision analytical instru-
ments. They include an Ohaus Voyager Analytical Balance
with capacity 210 g, resolution 0.1 mg, repeatability 0. 1mg
and sensitivity drift 3PPM/◦C, a Control Company traceable-
calibration digital thermometer with resolution 0.001◦C and
repeatability 0.002◦C near 25◦C in liquid such as water (esti-
mated from calibration data provided), and a Hanna micro-
processor pH meter Model 213 with resolution 0.001 and
repeatability 0.002. The other key apparatus is a 25-litre
Dewar filled with liquid nitrogen and positioned remotely
at a desired distance which not only provided the drastic
changes in the water being manipulated but also served as a
natural Faraday cage blocking any possible electromagnetic
influence between the water being measured and the water
being manipulated. Also vital to the success of the experi-
ments described herein was the stable environment found
in an underground room which shields many external noises
such as mechanical vibration, air turbulence and large tempe-
rature change.

2 Materials and methods

Quantum-entangled stock water in individual volumes of
500 ml or similar quantities was prepared as described pre-
viously [5] which might then be split into smaller volumes
or combined into larger ones based on needs.Briefly, in one
procedure 500 ml fresh tap water in a closed plastic reservoir
was exposed to microwave radiation in a 1500 W microwave
oven for 2 min and then left in room temperature for 24 hours
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Manipulation Device

ThermometerpH Meter

Non-local
Processes

25-Liter Dewar

Third
Reservoir

Analytical Balance

Second
Reservoir

Pan

Foam

Windshield

First
Reservoir
    

Fig. 1: Illustration of the key experimental setup. Several variations
of this setup were also used in the actual experiments as described
in the text. For example, in one variation, the manipulation was
heating the water in the 3rd reservoir to boiling point and then
cooling it down. In a second variation, the gravity measurement
was eliminated and the manipulations were first adding 5 ml
concentrated HCl (38%) to the third reservoir, then adding 20 g
NaOH to the same and third heating the same to boiling point.
In a third variation, the Dewar was located more than 500 feet
away from the site of measurement. In fourth variation, the
gravity and pH measurements were eliminated and the temperature
measurements were carried out more than 50 miles away from the
location of the Dewar.

before use. In a second procedure 500 ml fresh tap water in
the closed plastic reservoir was exposed to audio-frequency
radiations of a 20 W magnetic coil for 30 min and then left
in room temperature for 24 hours before use. In a third
procedure, 500 ml bottled natural water was simply left in
room temperature for at least 30 days before use. In a fourth
procedure, 500 ml bottled distilled water was simply left in
room temperature for at least 30 days before use. It was
found previously that the stock water prepared according to
these procedures is quantum-entangled [5].

Figure 1 shows a diagram of the key experimental setup.
It includes (1) the analytical balance calibrated internally
and stabilized in the underground room for more than one
week before use and a tightly closed plastic first reservoir
containing 175 ml water split from the 500 ml stock water
which is placed on the wind-shielded pan of the balance
with 1-inch white foam in between as insulation; (2) the
digital thermometer and calibrated pH meter placed into the
middle of a glass second reservoir containing 75 ml water
split from the 500 ml stock water which is closed to prevent
air exchange; and (3) the 25-litre Dewar containing 15–25
litres of liquid nitrogen which is located at a distant of 50
feet from the underground room and a tightly closed plastic

pH Meter

50 mW Red Laser

1st Reservoir
200ml Water

2nd Reservoir
100ml HCl(38%)

Fig. 2: Illustration of the second experimental setup which allows
the measurement of pH value in the presence or absence of
concentrated HCl about 500 cm away from and behind the water
being measured. If no quantum entanglement is involved, the
presence or absence of the HCl should not affect the pH value.

third-reservoir containing 250 ml water split from the 500 ml
stock water to be submerged into the liquid nitrogen in the
Dewar at a specified time.

Experiments with the above first-setup were carried out
as follows: (1) prepare the 500 ml quantum entangled stock
water, divide the same into 175ml, 75ml and 250ml portions
and put them into their respective reservoirs described above;
(2) set up the experiment according to Figure 1 and let the
instruments to stabilize for 30 min before any measurements
is taken; (3) record for 20 min minute-by-minute changes of
pH value and temperature of the water in the first-reservoir
and weight of the second reservoir with water before sub-
merging the third reservoir into liquid nitrogen; (4) submerge
the third-reservoir with water into liquid nitrogen for 15 min
or another desired length of time and record the instrument
readings as before; and (5) take the third-reservoir out of
liquid nitrogen, thaw the same in warm water for 30 min or
longer and, at the same time, record the instrument readings
as before. Control experiments were carried out in same
steps with nothing done to the water in the third-reservoir.

In one variation of the above setup, the closed plastic
third-reservoir was replaced with a metal container and in-
stead of freeze-thaw treatment the water in the metal con-
tainer was quickly heated to boiling within 4–5 minutes
and then cooled in cold water. In a second variation of
the above setup, the gravity portion of the experiment was
eliminated and the water in the first and second reservoirs
was combined into a closed thermal flask which prevents
heat exchange between the water being measured and its
local environment. In a third variation of the above setup,
the gravity portion of the experiment was eliminated and the
water in the first and second reservoirs was combined into
a fourth plastic container in which 5 ml concentrated HCl
(38% by weight) was first added, then 20 g NaOH powder
was added and next the same water was transferred to a
metal container and heated to boiling on a stove. In a fourth
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Fig. 3: pH variations under remote manipulations of water
quantum-entangled with water being measured. The pH value at
the starting point is set to zero and the results shown were obtained
from one batch of quantum-entangled water. The difference in
pH values from control in which no freeze-thaw was done at
the point of thawing is about 0.010. However, if the water being
measured was kept in a thermal flask to prevent energy exchange
with the local environment, no effect on pH value was observed
during freeze-thaw treatment of remote water. Statistical analysis
on data collected after freezing for 10 min show that the results are
significantly different under the different treatments/settings shown.

variation of the above first-setup, the 25-litre Dewar con-
taining liquid nitrogen was replaced by a large water tank
located 20-feet above the underground room which con-
tained 200-gallon tap water sitting in room temperature for
months and, instead of submersion, the water in the third-
reservoir was poured into the large water tank the purpose
of which was to quantum-entangle the poured water with the
water in the large tank. In a fifth variation of the above setup,
the gravity portion of the experiment was eliminated and the
water in the first and second reservoirs was combined into a
closed glass fourth-reservoir which was moved to a location
more than 50 miles away from the Dewar for temperature
measurement.

Figure 2 shows a diagram of the second experimental
setup. It includes: (1) a red laser with a 50 mW output and
wavelengths 635–675 nm placed next and pointed to a flat
glass first-reservoir containing 200 ml tap water sitting in
room temperature for more than a week without air exchange;
(2) the calibrated pH meter and optionally the digital thermo-
meter placed into the middle of the said flat glass reservoir
which was closed to prevent air exchange; and (3) a round
glass second-reservoir containing 100 ml concentrated HCl
(38% by weight) to be placed 500 cm away from the first-
reservoir at a specified time.

Experiments with the above second setup were carried
out as follows: (1) prepare the 200 ml tap water and set
up the experiment according Figure 2; turn on the laser so
that the laser light first passes through the first-reservoir and
then gets scattered on a nearby concrete wall, and let the

Fig. 4: Temperature variations under remote manipulations of water
quantum-entangled with water being measured. The temperature at
the starting point is set to zero and the results shown were obtained
from one batch of quantum-entangled water. The temperature
difference from control in which no freeze-thaw was done at the
point of thawing is about 0.05◦C. However, if the water being
measured is kept in a thermal flask to prevent heat exchange with
the local environment, no dropping of temperature were observed
under freeze-thaw treatment. Statistical analysis performed on
data collected after freezing for 10 min show that the results are
significantly different under the different treatments/settings shown.

instruments to stabilize for 30 min before any measurement
is taken; (2) record for 10 min minute-by-minute changes
of pH value and optionally temperature of the water in the
first-reservoir; and (3) place the second reservoir containing
100 ml HCl on the path of the laser light and at a distance
of 500 cm from the first reservoir and record for 60 min or
longer instrument readings as before. Control experiments
were carried out in same steps in the absence of HCl.

3 Results

Figures 3, 4 and 5 summarize the results obtained from ex-
periments conducted with the key setup and one batch of
quantum-entangled water which were simply bottled natural
water with a shelf time of more than 90 days. Similar results
were also obtained with water prepared according to other
quantum entanglement methods mentioned above and other
quantum-entangled liquid such as olive oil, alcohol and even
Coca Cola as discussed later. The different distances of the
Dewar from the underground room where most measure-
ments were done made no noticeable differences with respect
to the results obtained.

Figure 3 shows changes of pH value of the water in the
second-reservoir during the three stages of manipulations of
the water in the remote third-reservoir. As shown, within
minutes after the remote third-reservoir was submerged into
liquid nitrogen, during which the temperature of water being
manipulated would drop from about 25◦C to −193◦C, the
pH value of the water in the second reservoir steadily stopped
dropping and then started rising, but about 20 min after the
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Fig 4A: One particular example detailing temperature variations
under remote manipulation. The temperature difference from
control at the point of thawing is about 0.08◦C. However, if the
water being measured is kept in a thermal flask, no dropping of
temperature were observed under freeze-thaw treatment.

frozen water was taken out of liquid nitrogen and thawed in
warm water the pH value of the same steadily levelled off
and started dropping again. In contrast, the control experi-
ments did not show such dynamics. It is known that the pH
value of water increases as its temperature goes down to
0◦C. Therefore, the pH value of water being measured goes
in the same direction as the remote water when the latter
is manipulated. The difference in pH values from control in
which no freeze-thaw was done at the point of thawing is
about 0.010. However, if the water being measured is kept
in a thermal flask to prevent heat exchange with the local
environment, no effect on pH value was observed under
freeze-thaw treatment of the remote water. Statistical analysis
performed on data collected after freezing for 10 minutes
show that the results are significantly different under these
different treatments/settings.

Figure 4 shows temperature variations of the water in the
second-reservoir during the three stages of manipulations of
the water in the remote third-reservoir. As shown, before the
submersion of the remote third-reservoir into liquid nitrogen
the temperature of the water in the second-reservoir rose in
small increments due to, by design, the slight temperature
difference between the local environment and the water in-
side the second reservoir; but within about 4–5 minutes after
the remote third-reservoir was submerged into liquid nitro-
gen, during which the temperature of water being manipula-
ted would drop from about 25◦C to −193◦C, the temperature
of the water in the second reservoir first stopped rising and
then steadily dropped in small increments; and then within
about 4–5 minutes after the frozen water was taken out of
liquid nitrogen and thawed in warm water the temperature of
the same first stopped dropping and then steadily rose again
in small increments. In contrast, the control experiments
did not show such dynamics. The temperature difference

Fig 4B: One example showing temperature variation of a different
liquid, Coca Cola, under remote manipulation of a portion of the
said liquid quantum-entangled with another portion of the liquid
being measured. Other liquids such as distilled water, olive oil
and alcohol also showed similar qualitative results under the same
treatment.

from control in which no freeze-thaw was done at the point
of thawing is about 0.05◦C. However, if the water being
measured is kept in a thermal flask to prevent heat exchange
with the local environment, no dropping of temperature were
observed under freeze-thaw treatment of the remote water.
Statistical analysis performed on data collected after freezing
for 10 minutes show that the results are significantly differ-
ent under these different treatments/settings.

In addition, Figure 4A shows one particular example of
temperature variations under remote manipulation of water
quantum-entangled with water being measured. In this case,
the temperature difference from control at the point of thaw-
ing is about 0.08◦C. Further, Figure 4B shows one example
of temperature variation of a different liquid, Coca Cola,
under remote manipulation of a portion of the said liquid
quantum-entangled with another portion being measured.
Other liquids such as distilled water, olive oil and alcohol
also showed similar qualitative results under the same freeze-
thaw treatment. Furthermore, preliminary experiments con-
ducted with the temperature measurement done at a location
more than 50 miles way from the Dewar also show results
similar to those obtained at distances of 50 and 500 feet
respectively.

Figure 5 shows weight variations of the first reservation
during the three stages of manipulation of the water in the
remote third-reservoir. Before the submersion of the remote
third-reservoir into liquid nitrogen the weight being mea-
sured drifted lower very slowly. But almost immediately after
the remote third-reservoir was submerged into liquid nitro-
gen, during which the temperature and physical properties of
water being manipulated drastically changed, the weight of
the first-reservoir dropped at an increased rate, and after the
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Fig 5: Weight variations under remote manipulations of water
quantum-entangled with water being weighed. The weight at the
starting point is set to zero and the results shown were obtained
from one batch of quantum-entangled water. The weight differences
from control in which no freeze-thaw was done at the point of
thawing is about 2.5 mg. In some cases, the weight of the water
being weighed not only briefly stop dropping for several minutes
but also rose briefly for several seconds to minutes as shown in
Figure5A. Also when the remote water was quickly heated to
boiling on a stove instead of being frozen in liquid nitrogen, a
brief rise of weight in the range of about 0.5 mg were repeated
observed in one variation of the key setup. Further, when the remote
water was poured into a 200-gallon water tank, small but noticeably
increased weight losses were also observed in several experiments
conducted to date. Statistical analysis performed on data collected
after freezing for 10 min show that the results are significantly
different under the different treatments/settings shown.

frozen water was taken out the liquid nitrogen and thawed
in warm water the weight of the same first stopped dropping
and, in some cases, even rose before resuming drifting lower
as further discussed below. In contrast, the control experi-
ments did not show such dynamics. The weight difference
from control in which no freeze-thaw was done at the point
of thawing is about 2.5 mg. Statistical analysis performed
on data collected after freezing for 10 minutes show that
the results are significantly different under these different
treatments/settings.

As shown in Figure 5A, in some cases, the weight of the
water being measured not only stopped dropping for several
minutes but also rose. The signatures of freezing induced
weight decreases and thawing induced weight increases for
three different thawing times are very clear. In addition,
Figure 5B shows one example of weight and temperature
variations under the same remote manipulation of water
quantum-entangled with water being weighed and measured
respectively. Again, the signatures of freezing and thawing
induced weight and temperature decreases and increases are
respectively very clear. Further, Figure 5C shows another
example of weight and temperature variations under another

Fig 5A: Examples of weight variations under remote manipulations
of water quantum-entangled with water being weighed. The onset
of increased weight loss started either at the time of freezing
treatment or slightly later. The signatures of thawing induced
weight increases were clear for the three different thawing times.
The distances shown are the respectively distances of the Dewar to
the location of measurement in each experiment.

same remote manipulation in which the Dewar was located
about 500 feet away from where the measurements were
taken. The general background trend of decreasing tempera-
ture was due to environmental temperature change. Yet again,
the signatures of freezing and thawing induced weight and
temperature variations were respectively are very clear. Also,
when the remote water was quickly heated to boiling on a
stove instead of being frozen in liquid nitrogen, a brief rise of
weight in the range of about 0.5 mg were repeated observed
in several experiments conducted so far.

Furthermore, when the remote water was poured into
the 200-gallon water tank instead of being frozen in liquid
nitrogen, small but noticeably increased weight losses were
repeatedly observed in the several experiments conducted
to date. More specifically, before mixing of the water in
the remote third-reservoir with water in the water tank the
measured weight drifted lower very slowly, but within short
time measured in minutes after the water in the remote third-
reservoir was poured into the water tank, during which the
water in the said tank got quantum-entangled with the water
in the third-reservoir, the weight of the first-reservoir dropped
at small but increased rate for a period of time. In contrast,
the control experiments did not show such dynamics.

Figure 6 shows an example of temperature variations
under the respective treatments of adding 5 ml concentrated
HCl (38%) to the third reservoir, then adding 20 g NaOH to
the same and third heating the same to boiling point. The
signatures of these remote treatments induced temperature
changes were clear and repeatedly observable in quite a few
experiments conducted to date.

Figure 7 shows the variations of pH value of the water in
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Fig 5B: One example of weight and temperature variations under
the same remote manipulation of water quantum-entangled with
water being weighed and measured respectively. The onset of
increased weight loss started at the time of freezing treatment
but the onset of temperature decrease against environmental
temperature started a few minutes later after freezing treatment
started. The signatures of thawing induced weight and temperature
increases were clear. The distance shown is the distance of the
Dewar to the location of measurement.

the first reservoir in experiments done with the setup in Figu-
re 2. As shown, in about 30 min after the second-reservoir
containing 100 ml concentrated HCl (38% by weight) was
placed behind the first-reservoir at a distance of 500 cm and
on the path of the laser beam, during which the water in
the first-reservoir got quantum-entangled with the content in
the second reservoir, the pH value of the water in the first-
reservoir steadily decreased. In contrast, the control experi-
ments did not show such dynamics. Also, the 50 mW red
laser did not affect the temperature of the water in the first
reservoir significantly during the whole treatment. The dif-
ference in pH value from control in which HCl was absence
is about 0.070 after 50 min of exposure to HCl. Statistical
analysis performed on data collected after exposure to HCl
for 30 min show that the results are significantly different
from control. Various experiments done with direct additions
of HCl to the remote water also repeated showed decreases
in pH value in the water being measured.

4 Discussions

With all experimental setups and their variations described
herein, we have observed clear and reproducible non-local
effects with the aids of high-precision analytical instruments
and under well-controlled conditions. The physical observ-
ables used for measuring the non-local effects are simple
ones which can be measured with high precisions. These
effects are, even under the most stringent statistical analysis,
significantly above and beyond what were noticeable in the
control experiments.

Fig 5C: Second example of weight and temperature variations
under another same remote manipulation of water quantum-
entangled with water being weighed and measured respectively.
The general background trend of decreasing temperature was
due to environmental temperature change. The onset of increased
weight loss started at the time of freezing treatment but the
onset of increased temperature loss started a few minutes later
after freezing treatment started. The signatures of thawing induced
weight increase and slow down of temperature loss were again
clear. The distance shown is the distance of the Dewar to the
location of measurement.

Through careful analysis, we have likely excluded the
possibility that the observed weight variation was a second-
ary local effect due to heat loss and/or sensitivity drift of
balance associated with temperature change induced by the
remote manipulation. First, during the period of remote ma-
nipulation the total temperature change was less than 0.08◦C
so the total heat loss for the 175 ml water in the first-reservoir
is about 60 J. In contrast, the weight loss during remote ma-
nipulation was on average about 2.5 mg which is 22.5×109 J
in energy unit. Second, the first-reservoir and the pan of the
balance were separated by 1-inch white foam to prevent heat
transfer to the analytic balance. Even in the highly unlikely
scenario that this temperature change somehow affected the
overall temperature of the balance, the associated sensitivity
drift of the balance was about 0.03 mg which is 10 times
smaller than what’s actually observed. In addition, Figures
5A, 5B and 5C also show several other signatures of remote
freeze-thaw treatment as the sole cause of the observed weight
variations. Therefore, we cautiously suggest that the observ-
ed gravity variation is a genuine and direct non-local effect
associated with quantum entanglement. However, as with
many other important new results, replications by others are
the key to independently confirm our results reported here.

We chose to use liquid nitrogen in a large Dewar placed
at a distant location for manipulating water in our experi-
ments because it can provide drastic changes in temperature
and properties of water in a very short period of time. Our
expectation was that, if the quantum entities inside the water
being measured are able to sense the changes experienced by
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Fig 6: An example of temperature variations under the respective
treatments of adding 5 ml concentrated HCl (38%) to the third
reservoir, then adding 20 g NaOH to the same and third heating the
same to boiling point. The signatures of these remote treatments
induced temperature changes were clear and repeatedly observable
in quite a few experiments conducted to date. The general
background trend of the temperature first increasing, flattening and
decreasing was due to environmental temperature change.

the quantum entities in the water being manipulated through
quantum entanglement and further utilize the information
associated with the said changes, the chemical, thermal and
even possibly gravitational properties of the water might
be affected through quantum entanglement mediated non-
local processes [5, 6]. The most logical explanation for these
observed non-local effects is that they are the consequences
of non-local processes mediated by quantum entanglement
between quantum entities in the water being measured and
the remote water being manipulated as more specifically
illustrated below.

First, when pH value of the water in the manipulation
reservoir is high or low or is changing under direct manipu-
lation such as extreme cooling or heating or addition of
acidic or alkaline chemical, the measured pH in the detecting
reservoir shifts in the same direction under the non-local
influence of the water in the manipulation reservoir mediated
through quantum entanglement and, under the condition that
the detecting reserve is able to exchange energy with its
local environment, as if H+ in the latter is directly available
to water in the detecting reservoir.

Second, when the temperature in the manipulation re-
servoir is extremely low or high or is changing under direct
manipulation such as extreme cooling or heating or addition
of heat-generating and/or property-changing chemical such
as concentrated HCl or NaOH powder, the temperature in the
detecting reservoir changes in the same direction under non-
local influence of the water in the manipulation reservoir
mediated through quantum entanglement and, under the con-
dition that the detecting reserve is able to exchange heat with

Fig 7: pH variations under laser treatment in the presence and
absence of concentrated HCl with the setup in Figure 2. The pH
value at the starting point is set to zero. The difference in pH value
from control in which HCl was absence is about 0.07 after 50 min
of exposure to HCl. Various experiments done with direct additions
of HCl to the remote water also repeated showed decreases in pH
value in the water being measured. Statistical analysis performed
on data collected after exposure to HCl for 30 min show that the
results are significant different from control.

its local environment so that the local thermodynamic energy
is conserved, as if the heat or lack of it in manipulation
reservoir is directly available to the water in the detecting
reservoir.

Third, when water in manipulation reservoir is manipu-
lated though extreme cooling, heating or mixing with large
quantum-entangled mass, e.g., water, such that, it is hereby
cautiously suggested, the quantum entanglement of the water
under manipulation with its local environment changes, the
weight of the water in the detecting reservoir also changes
under the presumed non-local influence of the manipulation
reservoir mediated through quantum entanglement. However,
independent and vigorous replications should be carried out
before a definite conclusion is drawn.

We suggest here that the said quantum entities inside
water are likely nuclear spins for the reasons discussed below.
Water contains vast numbers of nuclear spins carried by 1H.
These spins form complex intra- and inter-molecular net-
works through various intra-molecular J- and dipolar coup-
lings and both short- and long-range intermolecular dipolar
couplings. Further, nuclear spins have relatively long relaxa-
tion times after excitations [8]. Thus, when a nematic liquid
crystal is irradiated with multi-frequency pulse magnetic
fields, its 1H spins can form long-lived intra-molecular quan-
tum coherence with entanglement for information storage
[9]. Long-lived entanglement of two macroscopic electron
spin ensembles in room temperature (0.05 ms) has also been
achieved [1]. Furthermore, spin is a fundamental quantum
process and was shown to be responsible for the quantum
effects in both Hestenes and Bohmian quantum mechanics
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[10, 11]. Thus, we suggest that quantum-entangled nuclear
spins and/or electron spins are likely the mediators of all
observed non-local effects reported here [5, 6].

5 Conclusions

Several important conclusions can be drawn from our find-
ings. First, we have realized non-local signalling using three
different physical observables, pH value, temperature and
apparently gravity. Second, we have shown that the tempera-
ture of water in a detecting reservoir quantum entangled with
water in a remote reservoir can change against the tempera-
ture of its local environment when the latter is manipulated
under the condition that the water the detecting reservoir
is able to exchange heat with its local environment. Third,
we have also shown that the gravity of water in a detecting
reservoir quantum entangled with water in a remote reservoir
apparently also change when the latter was remotely manipu-
lated. Our findings imply that the properties of all matters
can be affected non-locally through quantum entanglement
mediated processes.

Finally, with respect applications, our findings enable
various quantum entanglement assisted technologies be de-
veloped. Some of these technologies can be used to manipu-
late and/or affect remotely various physical, chemical and/or
biological systems including human bodies. Other such tech-
nologies can be used for non-local signalling and communi-
cations between remote locations of arbitrary distances in
various ways. Potentially, other novel and practical applica-
tions can also be developed based on our experimental find-
ings.
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On Line-Elements and Radii: A Correction
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Using a manifold with boundary various line-elements have been proposed as solutions
to Einstein’s gravitational field. It is from such line-elements that black holes,
expansion of the Universe, and big bang cosmology have been alleged. However, it
has been proved that black holes, expansion of the Universe, and big bang cosmology
are not consistent with General Relativity. In a previous paper disproving the black
hole theory, the writer made an error which, although minor and having no effect on
the conclusion that black holes are inconsistent with General Relativity, is corrected
herein for the record.

1 Introduction

In a previous paper [1] (see page 8 therein) the writer made
the following claim:

“the ratio χ
Rp
> 2π for all finite Rp”

where Rp is the proper radius and χ is the circumference
of a great circle. This is not correct. In fact, the ratio χ

Rp
is

greater than 2π for some values of Rp and is less than 2π
for other values of Rp. Furthermore, there is a value of χ
for which χ

Rp
=2π, thereby making Rp=Rc, where Rc is

the radius of curvature. Thus, if the transitional value of the
circumference of a great circle is χe, then

χ < χe ⇒
χ

Rp
> 2π,

χ = χe ⇒
χ

Rp
= 2π,

χ > χe ⇒
χ

Rp
< 2π.

2 Correction — details

Consider the general static vacuum line-element

ds2 = A(r)dt2 −B(r)dr2 − C(r)
(
dθ2 + sin2θdϕ2

)
, (1)

A(r), B(r), C(r) > 0.

It has been shown in [1] that the solution to (1) is

ds2 =

(

1−
α

√
C(r)

)

dt2−
1

1− α√
C(r)

d
√
C(r)

2
−

−C(r)
(
dθ2 + sin2θdϕ2

)
,

α <
√
C(r) <∞,

(2)

where, using c=G=1,

Rc = Rc(r) =
√
C(r) =

(∣
∣r − r0

∣
∣n + αn

)1
n

,

Rp = Rp(r) =
√
Rc(r) (Rc(r)− α)+

+α

∣
∣
∣
∣
∣
Rc(r) +

√
Rc(r)− α√
α

∣
∣
∣
∣
∣
,

r ∈ <, n ∈ <+, r 6= r0,

(3)

and where r0 and n are entirely arbitrary constants, and α
is a function of the mass M of the source of the gravitational
field: α=α(M). Clearly, limr→r±0

Rp(r)= 0
+ and also

limr→r±0
Rc(r)=α

+ irrespective of the values of r0 and n.

Usually α = 2m ≡ 2GM/c2 by means of a comparision
with the Newtonian potential, but this identification is rather
dubious.

Setting Rp = Rc, one finds that this occurs only when

Rc ≈ 1.467α.
Then

χe ≈ 2.934πα.

Thus, at χe the Euclidean relation Rp = Rc holds. This
means that when χ = χe the line-element takes on a Euclid-
ean character.

An analogous consideration applies for the case of a
point-mass endowed with charge or with angular momentum
or with both. In those cases α is replaced with the corres-
ponding constant, as developed in [2].

3 Summary

The circumference of a great circle in Einstein’s gravitational
field is given by

χ = 2πRc ,

2πα < χ <∞ .
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In the case of the static vacuum field, the great circle
with circumference χ=χe≈ 2.934πα takes on a Euclidean
character in that Rp=Rc≈ 1.467α there, and so χe marks
a transition from spacetime where χ

Rp
< 2π to spacetime

where χ
Rp
> 2π. Thus,

lim
r→∞±

χ

Rp(r)
= 2π,

lim
r→r±0

χ

Rp(r)
= ∞ ,

lim
χ→χ±e

χ

Rp(r)
= 2π.

Similar considerations must be applied for a point-mass
endowed with charge, angular momentum, or both, but with
α replaced by the corresponding constant β in the expression
for Rp [2],

β =
α

2
+

√
α2

4
− (q2 + a2 cos2 θ) ,

q2 + a2 <
α2

4
, a =

2L

α
,

where q is the charge and L is the angular momentum, and so

Rc = Rc(r) =
(∣
∣r − r0

∣
∣n + βn

) 1
n

,

r ∈ <, n ∈ <+, r 6= r0,

where both r0 and n are entirely arbitrary constants.
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Relativistic Cosmology Revisited
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In a previous paper the writer treated of particular classes of cosmological solutions
for certain Einstein spaces and claimed that no such solutions exist in relation thereto.
In that paper the assumption that the proper radius is zero when the line-element is
singular was generally applied. This general assumption is unjustified and must be
dropped. Consequently, solutions do exist in relation to the aforementioned types,
and are explored herein. The concept of the Big Bang cosmology is found to be
inconsistent with General Relativity.

1 Introduction

In a previous paper [1] the writer considered what he thought
was a general problem statement in relation to certain Ein-
stein spaces, and concluded that no such solutions exist for
those types. However, the problem statement treated in the
aforementioned paper adopted an unjustified assumption —
that the proper radius is zero when the line-element is sing-
ular. Although this occurs in the case of the gravitational
field for Rμν =0, it is not a general principle and so it
cannot be generally applied, even though it can be used
to amplify various errors in the usual analysis of the well
known cosmological models, as done in [1]. By dropping
the assumption it is found that cosmological solutions do
exist, but none are consistent with the alleged Big Bang
cosmology.

2 The so-called “Schwarzschild — de Sitter model”

Consider the line-element

ds2 =

(

1−
α

Rc
−
λ

3
R2c

)

dt2−

−

(

1−
α

Rc
−
λ

3
R2c

)−1
dR2c −R

2
c

(
dθ2 + sin2θdϕ2

)
,

(1)

where Rc = Rc(r) is the radius of curvature, r a parameter,
and α a function of mass. This has no solution for some
function Rc(r) on Rc(r)→∞ [1].

If α = 0, (1) reduces to

ds2 =

(

1−
λ

3
R2c

)

dt2−

−

(

1−
λ

3
R2c

)−1
dR2c −R

2
c

(
dθ2 + sin2θdϕ2

)
.

(2)

This has no solution for some function Rc (r) on values√
3
λ <Rc(r)<∞ [1].

For 1− λ
3R

2
c > 0 and Rc > 0, it is required that

0 6 Rc <

√
3

λ
. (3)

The proper radius on (2) is

Rp =

∫
dRc√
1− λ

3R
2
c

=

√
3

λ
arcsin

√
λ

3
R2c +K ,

where K is a constant. Rp=0 is satisfied if Rc=0=K, in
accord with (3). Then

Rp =

√
3

λ
arcsin

√
λ

3
R2c .

Now
√
3

λ
arcsin 1 =

√
3

λ

(1 + 4n)π

2
=

= lim
Rc→

√
3
λ

−

√
3

λ
arcsin

√
λ

3
Rc = lim

Rc→
√

3
λ

−
Rp ,

n = 0, 1, 2, . . .

(4)

in accord with (3). Thus, Rp can be arbitrarily large. More-
over, Rp can be arbitrarily large for any Rc satisfying (3)
since

Rp =

√
3

λ
arcsin

√
λ

3
Rc =

√
3

λ
(ψ + 2nπ) ,

n = 0, 1, 2, . . .

where ψ is in radians, 0 6 ψ < π
2 .

In the case of (1), the mutual constraints on the radius of
curvature are

λ

3
R3c −Rc + α < 0

0 < Rc (r) .
(5)

The proper radius on (1) is

Rp(r) =

∫
dRc√

1− α
Rc
− λ

3R
2
c

+K, (6)

where K is a constant, subject to Rp > 0. The difficulty
here is the cubic in (5) and (6). The approximate positive

roots to the cubic are α and
√

3
λ . These must correspond
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to limiting values in the integral (6). Both Rc(r) and Rp(r)
also contain α and λ.

In addition, it was argued in [1] that the admissible form
for Rc(r) in (1) must reduce, when λ = 0, to the Schwarz-
schild form

Rc(r) =
(
|r − r0|

n
+ αn

) 1
n

n ∈ <+, r ∈ <, r 6= r0 ,
(7)

where r0 and n are entirely arbitrary constants. Note that
when α = 0 and λ = 0, (1) reduces to Minkowski space and
(7) reduces to the radius of curvature in Minkowski space,
as necessary.

Determination of the required general parametric expres-
sion for Rc(r) in relation to (1), having all the required prop-
erties, is not a simple problem. Numerical methods suggest
however [1], that there may in fact be no solution for Rc(r)
in relation to (1), subject to the stated constraints. At this
time the question remains open.

3 Einstein’s cylindrical model

Consider the line-element

ds2 = dt2 −
[
1− (λ− 8πP0)R

2
c

]−1
dR2c −

−R2c
(
dθ2 + sin2θdϕ2

)
.

(8)

This of course has no Lorentz signature solution in Rc(r)
for 1√

λ− 8πP0
<Rc(r)<∞ [1].

For 1− (λ−8πP0)R2c > 0 and Rc=Rc(r)> 0,

0 6 Rc <
1

√
λ− 8πP0

. (9)

The proper radius is

Rp =

∫
dRc√

1− (λ− 8πP0)R2c
=

=
1

√
λ− 8πP0

arcsin
√
(λ− 8πP0)R2c +K,

where K is a constant. Rp=0 is satisfied for Rc=0=K,
so that

Rp =
1

√
λ− 8πP0

arcsin
√
(λ− 8πP0)R2c ,

in accord with (9).
Now

1
√
λ− 8πP0

arcsin 1 =
(1 + 4n)π

2
√
λ− 8πP0

=

= lim
Rc→ 1√

λ−8πP0

−

1
√
λ− 8πP0

arcsin
√
(λ− 8πP0)R2c

n = 0, 1, 2, . . .

in accord with (9). Thus Rp can be arbitrarily large. More-
over, Rp can be arbitrarily large for any Rc satisfying (9),
since

Rp =
1

√
λ−8πP0

arcsin
√
(λ−8πP0)R2c =

(ψ+2nπ)
√
λ−8πP0

,

n = 0, 1, 2, . . .

where ψ is in radians, 0 6 ψ < π
2 .

4 De Sitter’s spherical model

Consider the line-element

ds2 =

(

1−
λ+ 8πρ00

3
R2c

)

dt2−

−

(

1−
λ+8πρ00

3
R2c

)−1
dR2c−R

2
c

(
dθ2+ sin2θdϕ2

)
.

(10)

This has no Lorentz signature solution in some Rc(r) on√
3

λ+8πρ00
<Rc(r)<∞ [1].

For 1− λ+8πρ00
3 R2c > 0 and Rc=Rc(r)> 0,

0 6 Rc <

√
3

λ+ 8πρ00
. (11)

The proper radius is

Rp =

∫
dRc√(

1− λ+8πρ00
3

)
R2c

=

=

√
3

λ+ 8πρ00
arcsin

√(
λ+ 8πρ00

3

)

R2c +K,

where K is a constant. Rp=0 is satisfied for Rc=0=K, so

Rp =

√
3

λ+ 8πρ00
arcsin

√(
λ+ 8πρ00

3

)

R2c ,

in accord with (11).
Now

√
3

λ+ 8πρ00
arcsin 1 =

√
3

λ+ 8πρ00

(1 + 4n)π

2
=

= lim
Rc→

√
3

λ+8πρ00

−

√
3

λ+8πρ00
arcsin

√(
λ+8πρ00

3

)

R2c ,

n = 0, 1, 2, . . .

in accord with (11). Thus Rp can be arbitrarily large. More-
over, Rp can be arbitrarily large for any Rc satisfying (11),
since

Rp =

√
3

λ+ 8πρ00
arcsin

√(
λ+ 8πρ00

3

)

R2c =

=

√
3

λ+ 8πρ00
(ψ + 2nπ) , n = 0, 1, 2, . . .

where ψ is in radians, 0 6 ψ < π
2 .
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5 Cosmological models of expansion

Transform (10) by

R̄c =
Rc√
1− R2c

W 2

e−
t
W , t̄ = t+

1

2
W ln

(

1−
R2c
W 2

)

,

W 2 =
3

λ+ 8πρ00
,

to get

ds2 = dt̄2 − e
2t̄
W

(
dR̄2c + R̄

2
cdθ

2 + R̄2c sin
2θdϕ2

)
, (12)

where according to (11), 06 R̄c<∞. Clearly the proper
radius on (12) is

R̄p = lim
R̄c→∞

e
t̄
W

∫ R̄c

0

dR̄c =∞ ,

therefore (12) describes an infinite Universe for all t̄.
Consider the line-element

ds2 = dt2−
eg(t)

(
1+k

4G
2
)2
[
dG2+G2(dθ2+sin2θdϕ2)

]
, (13)

where G=G(r), r a parameter. If k=0 a form of (12) is
obtained. If k > 0,

Rp = e
1
2 g(t)

∫
dG

1 + k
4 G

2
= e

1
2 g(t)

[
2
√
k
arctan

√
k

2
G+K

]

,

where K is a constant. Rp=0 is satisfied by G=0=K, so

Rp = e
1
2 g(t)

∫
dG

1 + k
4 G

2
= e

1
2 g(t)

2
√
k
arctan

√
k

2
G.

Now for (13), the radius of curvature is

Rc =
G

1 + k
4 G

2
, (14)

which is maximum when G= 2√
k
, i. e.

Rcmax
= Rc

(
2
√
k

)

=
1
√
k
.

Also, limG→∞Rc = 0. Therefore, on (13),

0 6 Rc 6
1
√
k
, (15)

or equivalently

0 6 G 6
2
√
k
. (16)

Now

Rp

(

G =
2
√
k

)

= e
1
2 g(t) arctan 1 = e

1
2 g(t) arctan 1 =

= e
1
2 g(t)

(1 + 4n)π

4
, n = 0, 1, 2, . . .

which is arbitrarily large. Moreover, Rp is arbitrarily large
for any Rc satisfying (15), or equivalently for any G satis-
fying (16), since

Rp = e
1
2 g(t)

2
√
k
(ψ + nπ) , n = 0, 1, 2, . . .

where ψ is in radians, 0 6 ψ 6 π
4 .

If k < 0, set k = −s, s > 0. Then

Rp = e
1
2 g(t)

∫
dG

1+ s
4G

2
= e

1
2 g(t)

[
1
√
s
ln

∣
∣
∣
∣
∣

G+ 2√
s

G− 2√
s

∣
∣
∣
∣
∣
+K

]

,

where K is a constant. Rp=0 is satisfied for G=0=K.
Then

Rp = e
1
2 g(t)

1
√
s
ln

∣
∣
∣
∣
∣

G+ 2√
s

G− 2√
s

∣
∣
∣
∣
∣
.

To maintain signature in (13),

−
2
√
s
< G <

2
√
s
.

However, since a negative radius of curvature is mean-
ingless, and since on (13) the radius of curvature in this
case is

Rc(G) =
G

1− s
4G

2
, (17)

it is required that

0 6 G <
2
√
s
. (18)

Now

lim
G→ 2√

s

−
e
1
2 g(t)

1
√
s
ln

∣
∣
∣
∣
∣

G+ 2√
s

G− 2√
s

∣
∣
∣
∣
∣
=∞,

in accord with (18). The proper radius of the space and the
radius of curvature of the space are therefore infinite for all
time t.

The usual transformation of (13) to obtain the Robertson-
Walker line-element involves expressing (13) in terms of the
radius of curvature of (13) instead of the quantity G, thus

Ḡ =
G

1 + k
4 G

2
,

carrying (13) into

ds2 = dt2−eg(t)
[

dḠ2

1−k
4 Ḡ

2
+Ḡ2

(
dθ2+sin2θdϕ2

)
]

. (19)

If k = 0 a form of (12) is obtained.
Comparing Ḡ with (14) it is plain that Ḡ=Rc(G), where

06Rc6 1√
k

by (15), k> 0, and therefore 06 Ḡ6 1√
k
. Now

Rp= e
1
2 g(t)

∫
dRc√
1− k

4R
2
c

= e
1
2 g(t)

(
2
√
k
arcsin

√
k

2
Rc+K

)

,
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where K is a constant. Rp=0 is satisfied for Rc=0=K, so

Rp = e
1
2 g(t)

2
√
k
arcsin

√
k

2
Rc ,

in accord with (15).
Then

Rp

(

Rc =
1
√
k

)

= e
1
2 g(t)

2
√
k

(π
6
+ 2nπ

)
, (20)

n = 0, 1, 2, . . .

in accord with (15), and so Rp is arbitrarily large for all
time t. When making the transformation to the Robertson-
Walker form the limits on the transformed coordinate cannot
be ignored. Moreover, RP is arbitrarily large for all time for
any Rc satisfying (15), since

Rp = e
1
2 g(t)

2
√
k
(ψ + 2nπ) , n = 0, 1, 2, . . .

where ψ is in radians, 06ψ6 π
6 .

If k< 0 set k=−s where s> 0, then (19) becomes

ds2 = dt2 − eg(t)
[

dR2c
1+ s

4R
2
c

+R2c
(
dθ2 + sin2θdϕ2

)
]

. (21)

The proper radius is

Rp= e
1
2
g(t)

∫
dRc√
1+ s

4
R2c

= e
1
2
g(t)

[
2
√
s
ln

(
Rc+

√

R2c+
4

s

)
+K

]

where K is a constant. Rp=0 is satisfied for Rc=0 and
K =− 2√

s
ln 2√

s
, in accord with (17) and (18). So

Rp = e
1
2 g(t)

2
√
s
ln




Rc +

√
R2c +

4
s

2√
s



 .

Now Rp→∞ as Rc→∞, in accord with (17) and (18).
Thus, (21) describes an infinite Universe for any time t.

6 Conclusions

By the foregoing types of spacetimes, General Relativity
permits cosmological solutions, contrary to the claims made
in [1]. However, the Big Bang theory is not consistent with
General Relativity, since the spacetimes permitted are all
spatially infinite (arbitrarily large) for any time t.
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Distant redshifted SNe1a light sources from the Universe that are usually interpreted
as cosmological redshifts are shown to be universal gravitational redshifts seen by
all observers in the quantum celestial mechanics (QCM) approach to cosmology. The
increasingly negative QCM gravitational potential dictates a non-linear redshift with
distance and an apparent gravitational repulsion. No space expansion is necessary.
QCM is shown to pass the test of the five kinematical criteria for a viable approach
to cosmology as devised by Shapiro and Turner, so the role of QCM in understanding
the behavior of the Universe may be significant.

1 Introduction

The observed redshift from distant sources can be interpreted
as (1) a velocity redshift called the Doppler Effect, (2) a cos-
mological redshift in which space itself is expanding during
the transit time of the photons, and/or (3) a gravitational
redshift as introduced by the General Theory of Relativity
(GTR). High-z redshifts from distant SNe1a light sources
in galaxies are presently being interpreted as cosmological
redshifts, apparently providing observational evidence for
the expansion of the Universe.

A new theory, Quantum Celestial Mechanics(QCM), de-
veloped from GTR by H. G. Preston and F. Potter [1, 2],
accurately predicts the observed SNe1a redshifts from near
and distant galaxies. For the Universe, there exists in QCM
a previously unknown gravitational potential that is used to
derive all of the observed SNe1a redshifts. In addition, QCM
predicts no mass currents in any coordinate direction, i.e., no
galaxies moving away anywhere. These results eliminate the
need for a space expansion. The presently known average
baryonic density of the Universe is sufficient for QCM to
explain the critical matter/energy density of the Universe.

Observations of galaxies and distributions of galaxies are
beginning to suggest conflicts with the standard concept of
an expanding Universe and its interpretation of a high-z
redshift as a cosmological redshift. For example, galaxies
at z= 2.5 are reported [3] to be extremely dense when using
the expanding Universe assumptions and standard galaxy
modeling. However, if the Universe is not expanding, the
linear scales of these galaxies would be much larger, elimi-
nating the high density conflict and revealing galaxies much
similar to galaxies seen locally.

Theoretical approaches are also beginning to inquire
about what we really know about cosmic expansion and
its acceleration. In an interesting paper, C. A. Shapiro and
M. S. Turner [4] relax the assumption of GTR but retain
the weaker assumption of an isotropic and homogeneous

space-time described by a metric theory of gravity. Using
the Robertson-Walker metric to describe the Universe and
accepting the dimming and redshifting of a gold set of SNe1a
data [5], they determine the cosmic acceleration kinematic-
ally and provide a list of five kinematical criteria that must
be met by any approach to cosmology.

In this paper, we compare the QCM predictions for the
state of the Universe to the five criteria provided by Shapiro
and Turner. Our new result is that QCM agrees with the
five criteria. Therefore, SNe1a redshifts can be interpreted
as universal gravitational redshifts instead of cosmological
redshifts. There is no need for space expansion.

2 Reviewing the QCM potential

In a series of papers [1, 2, 6] we derived and applied QCM
to the Solar System, to other solar system-like systems such
as the satellites of the Jovian planets and exoplanet systems,
to the Galaxy, to other galaxies in general, and to clusters of
galaxies [7]. In all these cases there is reasonable agreement
with the observational data, i.e., the predicted QCM states of
the gravitationally-bound systems were shown to be actual
states of the systems without the need for dark matter. Recall
that the QCM general wave equation derived from the gene-
ral relativistic Hamilton-Jacobi equation is approximated by
a Schrödinger-like wave equation and that a QCM quantiza-
tion state is completely determined by the system’s total
baryonic mass M and its total angular momentum HΣ.

These agreements with the data strongly suggest that
QCM applies universally and that all gravitationally-bound
systems should obey the quantization conditions dictated by
QCM. Therefore, not only should the large-scale gravitation-
ally bound systems like a solar system exhibit QCM behav-
ior, but even a torsion balance near an attractor mass should
have quantization states. And the largest gravitationally-
bound system of all, the Universe, should also be describable
by QCM. The QCM states of a torsion bar system will be
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discussed in a future paper. In this paper we concentrate on
the QCM Universe.

For gravitationally-bound smaller systems, we found that
the Schwarzschild metric approximation produced an efffect-
ive gravitational potential for a particle of mass μ in orbit

Veff = −
GM

r
+
l (l+ 1)H2c2

2r2
, (1)

where G is the gravitational constant, c is the speed of light
in vacuum, the characteristic length scale H =HΣ/Mc, the
angular momentum quantization number l originates from
the θ-coordinate symmetry, and r is the r-coordinate dis-
tance from the origin in spherical coordinates. Therefore, in
QCM the total angular momentum squared is l (l+1)μ2H2c2

instead of the classical Newtonian expression. Consequently,
the quantization of angular momentum dictates which parti-
cular circular orbit expectation values <r> in QCM corres-
pond to equilibrium orbital radii, in contrast to Newtonian
gravitation for which all radii are equilibrium radii.

In the case of the Universe we used the GTR interior
metric approximation, which is directly related to the general
Robertson-Walker type of metric. Omitting small terms in
the r-coordinate equation, we derived a new Hubble rela-
tion that agrees with the SNe1a data. At the same time we
showed that our QCM approach produced the required aver-
age matter/energy density of about 2×10−11 J/m3, corres-
ponding to the critical density ρc= 8×10−27 kg×m−3, with
only a 5% contribution from known baryonic matter, i.e.,
without needing dark energy.

The QCM effective gravitational potential for all observ-
ers inside a static dust-filled, constant density universe with
no pressure is

Veff ≈ −
kr2c2

2 (1− kr2)2
+
l (l+ 1)H2c2

2r2(1− kr2)
, (2)

where k=8πGρc/3c2. Figure 1 shows this QCM gravita-
tional potential for an r-coordinate distance up to about 10
billion light-years.

If the total angular momentum of the Universe is zero or
nearly zero, H can be ignored and then the negative gradient
of the first term in Veff produces an average positive radial
acceleration

<r̈> = kc2
r (1 + kr2)

(1− kr2)3
(3)

from which we derive a new Hubble relation

<ṙ> = r
c
√
k

1− kr2
. (4)

For r-coordinate distances up to about one billion light-
years, when kr2� 1, we recover the standard Hubble rela-
tion and have a Hubble constant h∼ 2×10−18 s−1, about
62 km per second per megaparsec, an acceptable value [8].
Without the kr2 in the denominator, v/c→ 1 at about 14.1
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Fig. 1: QCM gravitational potential to 10 billion light-years.

billion light-years; otherwise, the maximum visible coordi-
nate distance r= 8.74 billion light-years, with more of the
Universe beyond this distance.

Notice that the QCM effective gravitational potential is
negative (when H can be ignored) but produces an apparent
repulsive gravitational radial acceleration! Each observer
anywhere in this Universe will determine that the incoming
photons are redshifted. Why? Because the photons originate
in a source that is in a more negative gravitational potential
where the clock rates are slower than the clock rates at the
observer. And this redshift increases non-linearly because the
potential becomes more negative more rapidly with increas-
ing distance away. There is no need for expansion of space
and its cosmological redshift to explain the SNe1a data.
There is no need for dark energy to explain the accelerated
expansion.

3 The kinematical criteria

Our QCM approach to cosmology and an understanding of
the behavior of the Universe must meet specific kinematical
criteria. By analyzing the gold set of SNe1a data, Shapiro
and Turner list these five kinematical criteria to be met by
any viable approach to a cosmology:

1. Very strong evidence that the Universe once accele-
rated and that this acceleration is likely to have been
relatively recent in cosmic history.

2. Strong evidence that the acceleration q was higher in
the past and that the average dq/dz is positive, where
z is the redshift.

3. Weak evidence that the Universe once decelerated, but
this result may be a model-dependent feature.

4. Little or no evidence that the Universe is presently
accelerating, i.e., it is difficult to constrain q for z< 0.1
with SNe1a data.

5. No particular models of the acceleration history pro-
vide more acceptable fits to the SNe1a data than any
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others, i.e., several different kinematic models fit the
data as well as the cold dark matter hypotheses called
ΛCDM and wCDM.

The QCM effective gravitational potential Veff and the
new Hubble relation provide QCM explanations for these
five criteria:

1. The light now just reaching us from farther and farther
away exhibits an increasing redshift because the Veff is
increasingly more and more negative with increasing
distance. Without QCM, the interpretation would be
that the acceleration is recent.

2. The Veff is increasingly more and more negative with
increasing distance. Without QCM, a higher accelera-
tion in the past is required for the space expansion
approach to cosmology.

3. QCM shows no deceleration at the level of mathemat-
ical approximation we used.

4. The new Hubble relation of QCM reduces to the linear
dependence of the standard Hubble relation for z small,
agreeing with there being no acceleration presently.

5. Our QCM approach fits the SNe1a data as well as
the other approaches, producing about a 12% increase
from the linear Hubble when kr2∼ 0.11, consistent
with the data.

QCM explains the five criteria in its unique way because
the SNe1a redshift now originates in the properties of the
static interior metric and its QCM gravitational potential.
The important consequence is that QCM cannot be elimi-
nated by any of the five criteria and must be considered as a
viable approach to cosmology.

4 Final comments

The existence of a repulsive gravitational potential in the
QCM wave equation for the Universe removes the necessity
for invoking dark matter and dark energy. According to
QCM, the Universe is not expanding and does not require
dark energy in order for us to understand its behavior. Pre-
viously labelled cosmological redshifts are actually gravita-
tional redshifts of the photons reaching us from distant
sources in the Universe that are in greater negative gravita-
tional potentials than the observer. Each and every observer
experiences this same behavior. This static Universe is
always in equilibrium.
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The conventional representation of the H2 molecule characterizes a 4-body system
due to the independence of the orbitals of the two valence electrons as requested by
quantum chemistry, under which conditions no exact solution is possible. To overcome
this problem, Santilli and Shillady introduced in 1999 a new model of the H2-molecu-
le in which the two valence electrons are deeply bounded-correlated into a single
quasi-particle they called isoelectronium that is permitted by the covering hadronic
chemistry. They pointed out that their new H2-model is a restricted 3-body system
that, as such, is expected to admit an exact solution and suggested independent studies
for its identification due to its relevance, e.g., for other molecules. In 2000, Aringazin
and Kucherenko did study the Santilli-Shillady restricted 3-body model of the H2

molecules, but they presented a variational solution that, as such, is not exact. In any
case, the latter approach produced significant deviations from experimental data, such
as a 19.6% inter-nuclear distance greater than the experimental value. In this paper we
present, apparently for the first time, an exact solution of the Santilli-Shillady restricted
3-body model of the Hydrogen molecule along the lines of its originators and show
that it does indeed represent correctly all basic data. Intriguingly, our solution confirms
that the orbital of the isoelectronium (referred to as its charge distribution around the
nuclei) must be concentrated in a limited region of space given by the Santilli-Shillady
oo-shaped orbits. Our exact solution is constructed by following the Ley-Koo solution
to the Schrödinger equation for a confined hydrogen molecular ion, H+

2 . We show
that a confined model to the 3-body molecule reproduces the ground state curve as
calculated by Kolos, Szalewics and Monkhorst with a precision up to the 4-th digit
and a precision in the representation of the binding energy up to the 5-th digit.

1 Introduction

As it is well known, the conventional representation of the
Hydrogen molecule characterizes a four-body system due to
the independence of the orbitals of the two valence electrons
as requested by quantum chemistry, under which conditions
no exact solution is possible. To overcome this problem,
R. M. Santilli and D. Shillady introduced in 1999 a new
model of the H2-molecule [1, 2], in which the two valence
electrons are deeply bounded-correlated into a single quasi-
particle they called isoelectronium that is permitted by the
covering hadronic chemistry [3a].

They pointed out that their new model of Hydrogen mo-
lecule is a restricted three-body system that, as such, is ex-
pected to admit an exact solution; they suggested to carry out
independent studies for its identification due to its relevance,
e.g., for other molecules. In 2000, Aringazin and Kuche-
renko [4] did study the Santilli-Shillady restricted three-
body model of the Hydrogen molecule, but they presented a
variational solution that, as such, is not exact. In any case,
the latter approach produced significant deviations from
experimental data, such as a 19.6% inter-nuclear distance
greater than the experimental value.

In this paper we present, apparently for the first time,
an exact solution of the Santilli-Shillady restricted three-
body model of the Hydrogen molecule along the lines of its
originators and show that it does indeed represent correctly
all basic data. Intriguingly, our solution confirms that the
orbital of the isoelectronium (referred to as its charge distrib-
ution around the nuclei) must be concentrated in a limited
region of space given by the Santilli-Shillady oo-shaped
orbits. Our exact solution is constructed by following the
E. Ley-Koo and A. Cruz solution to the Schrödinger equation
for a confined hydrogen molecular ion, H+

2 [5]. We show
that a confined model to the three-body molecule reproduces
the ground state curve as calculated by Kolos, Szalewics and
Monkhorst [6] with a precision up to the 4-th digit and a
precision in the representation of the binding energy up to
the 5-th digit.

The suggestion that a kind of correlated state of electrons
is present while they surround in closed paths the nuclei sti-
mulates the search of a complementary quantum mechanical
approach. In addition, Pérez-Enrı́quez [7], while working on
high-Tc superconductivity, found that by using a Möbius-
type orbital for Cooper pairs, there is a structural parameter
in perovskite type superconductors that correlates linearly
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with the critical temperature. Other contributions to the dis-
cussion about correlation between electrons were presented
by Taut [8] in 1999. He reported that a one-particle represen-
tation could apply to systems with high densities of charge,
based upon a pair-correlation function and density of charge
for a system of two electrons in an external potential.

In our approach as it has been mentioned, we use the
idea of a system under confinement as worked by E. Ley-
Koo and A. Cruz for the hydrogen molecular ion and by
other authors for molecules under pressure [9, 10]. Besides,
previous studies related to the present discussion concerning
hydrogenic impurities and excitons in quantum dots have
been carried out by our team and others [11, 12, 13].

The main features of the restricted three-body Santilli-
Shillady model, we discuss here, are summarized in sec-
tion 2; special attention is drawn to the isoelectronium pro-
posal. In this section, we also compare the results from this
model with a standard ground state energy curve calculated
by Kolos, Szalewics and Monkhorst (KSM curve) [6]. In
section 3, we describe how to calculate the exact solution
to the three-body model including a spheroidal confinement
and a defect of mass parameters in order to reproduce the
standard KSM curve, using a variational calculation. Finally,
in section 4, some conclusions are made with regard to the
accuracy of our results.

2 Iso-chemical model of the hydrogen molecule

The point of departure of the iso-chemical model of the
hydrogen molecule, presented for the first time in 1999 by
Santilli and Shillady [1], resides in the fact that the distance
between nuclei is large; hence, the force binding them to-
gether comes form the orbiting electrons. The main hypo-
thesis of the model describes how the valence electrons
become involved in a binding process when they are at very
short distance giving rise to a new state or quasi-particle,
called isoelectronium. This particle would be responsible for
the stability of the molecule and would describe a oo-shaped
orbit around the nuclei “in a similar way as a planet orbits
around binary stars” [1].

This hydrogen molecule model is forbidden by quantum
mechanics and quantum chemistry since the proximity of
electrons creates a repulsive Coulomb force between them;
however, the authors assume that this difficulty can be over-
ruled by a non-Hamiltonian interaction based on the over-
lapping of wave packets associated with each electron. This
force surmounts the electrostatic one and allows the quasi-
particle formation. They affirm that “the attractive force
coming from the deep wave-overlapping does not have an
equivalent in quantum mechanics and requires the new the-
ory” [1]. This is the reason to introduce the so called iso-
mechanics and iso-chemistry theories as part of hadronic
mechanics [3b].

Our approach, however, uses the isoelectronium hypo-

thesis and at the same time looks for a compatible state in the
frame of quantum chemistry. We will show that there exists
a state reproducing the ground state energy of the hydrogen
molecule in the frame of the restricted three-body Santilli-
Shillady model.

The two basic notions of hadronic chemistry that we
need for understanding the iso-chemical model of the hydro-
gen molecule are:

(a) Hadronic horizon. The hadronic horizon is a distance
between electrons, rc, which measures one femtometer
(1 fm= 10−15 m). Outside this range quantum chem-
istry applies and within it hadronic chemistry is valid;

(b) The trigger, which is given by external (conventional)
interactions, causes the identical electrons to move
one toward the other and penetrate the hadronic hor-
izon against Coulomb interaction (once inside the said
horizon, the attractive hadronic force overcomes the
repulsive Coulomb one), resulting in a bound state.

Santilli presented for the first time the hypothesis of a
bound state between electrons in 1978 [3], while explaining
the structure of a π0 meson as a hadronic bound state of
one electron and one positron. Later, Animalou [14] and
Animalou and Santilli [15] extended the model to consider
the Cooper pair in superconductivity as a hadronic bound
state of two identical electrons.

According to Santilli, in the case of π0 there is no need
for a trigger because the involved particles have opposite
charges. However, the existence of the Cooper pair requires a
trigger, which Santilli and Animalou identified as the field of
the copper ions. In the case of the hydrogen molecule, they
conjecture that the trigger, constituted by the field between
nuclei, is sufficiently intense (attractive for the electrons)
enough to draw them together. They assume, essentially, that
atom attraction is sufficient to cause the overlapping between
wave packets, thus pushing electrons beyond the hadronic
horizon.

2.1 Four-body Santilli-Shillady model

The iso-chemical model of the hydrogen molecule uses the
conventional quantum model of the H2 subject to a non-
unitary transformation for the condition rc = r12. This inter
electronic distance is small given that the electrons are inside
the hadronic horizon. After using this transformation, one
can reduce the problem to an equation that uses a Hulthén
potential, recalling that at short distances, this behaves like
a Coulomb potential,
{

−
}2

2μ1
∇21 −

}2

2μ2
∇22 − V0

e−r12/rc

1− e−r12/rc
+
e2

r12
−

−
e2

r1a
−
e2

r2a
−
e2

r1b
−
e2

r2b
+
e2

R

}

|ψ̂ 〉 = E |ψ̂ 〉 .

(1)

As Santilli and Shillady affirm, this equation exhibits a
new explicitly attractive force among neutral atoms of the
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Fig. 1: Hydrogen molecule in the restricted three-body Santilli-
Shillady model; a stable isoelectronium moves around nuclei in a
oo-shaped orbit (figure taken from Santilli 1999, ref. [1]).

molecule in a way that is not possible within the quantum
chemistry framework. They claim that Eq. (1) explains why
only two hydrogen atoms make up the molecule and allows
the exact representation of the binding energy in the full 4-
body configuration.

A further simplification of the iso-chemical model can be
introduced by making the two iso-electrons (electrons inside
the hadronic horizon) be bound together into a state called
isoelectronium as mentioned above. With this approximation,
Equation (1) is reduced to a restricted three-body problem
because one can consider r1a≈ r2a= ra and r1b≈ r2b= ra
as r12� ra, rb. In this manner, an exactly solvable problem
similar to the conventional ion is obtained. One remarkable
idea proposed by the authors consists in representing the
isotopic model of the molecule as two H-protons at rest and
the isoelectronium moving around them in a oo-shaped orbit,
as it is shown in Figure 1 and described by the following
structural equation:
{

−
}2

2μ1
∇21 −

}2

2μ2
∇22 − V0

e−r12/rc

1− e−r12/rc
+
e2

r12
−

−
2e2

ra
−
2e2

rb
+
e2

R

}

|ψ̂ 〉 = E | ψ̂ 〉 .
(2)

This simplification, impossible in a quantum chemistry
environment, could be used to reach an exact solution of
the H-molecule. At this point, it is worth mentioning that
with the aid of this model, Santilli and Shillady extended
their analysis to other molecules; in particular, they studied
the hydrogen and oxygen atoms in order to form HO. This
gave them elements to present, for the first time, an exact
solution to the water molecule, treated as an HOH molecule,
using an isotopic intersection of an HO and an OH [2]. They
have further their research to extend their model to another
type of molecular chains and molecules.

Results for the Santilli-Shillady model of molecular hyd-
rogen were obtained by the standard Boys-Reeves model [1],
using an attractive Gaussian-screened-Coulomb potential.
These authors used their SASLOBE programme (Santilli-
Animalou-Shillady LOBE) to calculate the energies reported
in columns three and four of Table 1, which in turn are
compared with the quantum chemical results (first column).

Results from Table 1 show that the energy calculated
by the SASLOBE program (−1.174444 au) differs from the
exact result in the 6th digit (a 3×10−5 error) with a 20 hours

Concept/species H2 a) Ĥ2 b) H̃2 c)

Energy (variational) −1.12822497 −7.61509174 *
Energy SCF (au) 1.14231305 * −1.13291228
Energy SAS (au) * * −1.174444
Energy exactd) (au) −1.174474 * −1.174474
Bond length (bohr) 1.4011 0.2592 1.4011
Isoelectronium

radius (bohr) * * 0.01124995

Notes: a)Normal molecule in the quantum-chemical model
b)Molecule in the restricted three-body model (see)
c)Molecule in the iso-chemical model (stable isoelectronium)
d)Ground state energy by Kolos, Szalewicz and Monhorst

Table 1: Comparison of results from Iso-chemical model. Taken
from Santilli 1999, ref. [1].

process time in a 320 MFLOPS Silicon Graphics computer.
Notice that some changes in the most expensive routines
in the iso-chemical model improve by a factor of 1000 the
time used to compute a Boys-Reeves C.I. calculation. An im-
portant result is that with their method, they found a bound
length (R= 1.4011 bohr) which coincides with that of the
C.I. value.

This new way to represent chemical bonding has allowed
the opening of a whole field named Hadronic Mechanics.
With this new tool, several problems of physics and chem-
istry have been worked, leading to new proposals that range
from energetic problems to superconductivity issues [16].
Our work has not taken that road; it considers the solution of
the restricted three-body in the frame of Quantum Mechan-
ics, two protons bound by an orbiting stable isoelectronium.
This approach uses the solution of an H+

2 ion but with a
charge q=−2e for the quasi-particle.

2.2 Restricted three-body Santilli-Shillady model

The four-body Santilli-Shillady model, as described by
Eq. (2), was modified by Aringazin and Kucherenko [4] in
order to restrict it to an explicit three-body approach. Within
this restricted three-body Santilli-Shillady model (M3CS-S),
these authors found a set of two equations that can be solved
exactly. In this section we follow the main features of their
method and show some of their results to contrast them
with the results from our approach. The restricted Santilli-
Shillady model assumes three basic conditions:

(a) A stable isoelectronium;

(b) The size of the isoelectronium can be neglected as
compared with the inter nuclear distance; and,

(c) The Born-Oppenheimer approximation is valid.

When we combine these conditions with Eq. (2), re-
presenting a four-body equation, we arrive at a couple of
differential equations which can be exactly solved. Aringazin
and Kucherenko assumed that:

μ1 = μ2 = me . (3)

And that the isoelectronium mass and reduced mass were
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M = μ1 + μ2 ; m =
μ1μ2
M

. (4)

In order to simplify expressions, they transformed the
momentum operators

pi = −i}
∂

∂ ri
, i = 1, 2; (5)

into generalized ones:

PM = −i}
∂

∂ rab
, p12 = −i}

∂

∂ r12
. (6)

Through them, Aringazin and his colleague arrived to a
new equation from which the three-body equation can be
derived by a variable separation method; i.e., from equation
{

−
}2

2M
∇2ab −

}2

2m
∇212 − V0

e−r12/rc

1− e−r12/rc
+
e2

r12
−

−
2e2

ra
−
2e2

rb
+
e2

R

}

|ψ̂ 〉 = E |ψ̂ 〉
(7)

they got two equations, one describing the electrons inside
the hadronic horizon in terms of the distance between them:

−
}2

2m
∇212 χ+ V (r12)χ = εχ ; (8)

and, the second for the isoelectronium interaction with the
nuclei:

−
}2

2M
∇2abψ +W (ra, rb, R)ψ = (E − ε)ψ, (9)

where
|ψ̂ 〉 = χ (r12)ψ(ra, rb) (10)

with

V (r12) =
e2

r12
− V0

e−r12/rc

1− e−r12/rc
, (11)

and

W (ra, rb, R) = −
2e2

ra
−
2e2

rb
+
e2

R
. (12)

The Aringazin-Kucherenko proposal, Eqs. (9) and (12),
becomes the restricted three-body Santilli-Shillady Model
(M3CS-S) with which we are going to compare our results.
On the other hand, Eqs. (8) and (11) become the description
of the electrons involved in the isoelectronium itself. They
have also considered that since the size of isoelectronium is
small, the energy must be near zero, ε≈ 0; a point we are
not going to discuss here.

ν a) E Ropt
b)

0.3 −1.142556 1.722645
0.307 −1.169215 1.683367
0.308 −1.173024 1.677899
0.308381c) −1.174475 1.675828
0.309 −1.176832 1.672471

Notes: a)Mass parameter in
b)Optimum bond length (bohr)
c)Parameter to obtain best energy

Table 2: Minimum energy dependence on the mass parameter

The direct solution of these equations gives results for the
energy and bond length far from the experimentally observ-
ed; for example, the minimum energy, E=−7.614289 au,
is much lower than Ee=−1.17447567 au, while the bond
length, R= 0.25 bohr, markedly differs from R= 1.4011
bohr.

2.3 Results from the Aringazin-Kucherenko approach

As it has just been mentioned, the application of the restricted
three-body Santilli-Shillady model gives results far from the
experimental values for both, energy and bond length. In
order to correct this problem, Aringazin and his team have
chosen a scaling method to equalize their energy value with
that experimentally observed. By assuming a charge equal to
−2e for the isoelectronium and its mass M = νme, they as-
signed to E the formula E=W+1/R (W is isoelectronium
energy) and R in Eq. (9) to get a scaling rule for their original
calculated data. The summary of the scaling process is:

(R,W ) −→ (R, W+1/R) −→

(
R

2ν
, 4ν W

)

−→

−→

(
R

2ν
, 4ν W+

2ν

R

)

.

(13)

Values in Table 2 show energy variations with respect to
mass parameter and allows the identification of as the best
parameter for the estimation of energy, E=−1.174475 au.
While we have a 7th significant digit precision to the desired
energy, the correspondent bond length disagrees 19.6% from
the expected value.

There are, in the literature, a great number of studies and
estimates for the ground state energy of molecular hydrogen.
This elemental molecule is the most studied one and has
compelled researchers in this field to design tools and other
quantum mechanical theories. To compare our results with
those of Aringazin-Kucherenko, we are going to use as the
ground state energy curve the values reported by Kolos,
Szalewicz y Monkhorst [6] as reference. Though there are
already other studies reporting higher precision values, up to
12 significant digits [17], for example, we will not employ
them here for we do not need such precision as our method
gives numbers up to the 6th significant digit. These data are
going to be identified as Kolos data or KSM curve.

With the aid of the data for the electronic energy W as
a function of the distance between nuclei in the molecule
(we remit the reader to Table 2 in ref. [4]), it is possible to
construct a curve for the molecular energy according to the
M3CS-S model. In Figure 2, we present a graph comparing
the corresponding curve with Kolos data. It is self evident
that both curves are very different, mainly in the region
R> 2.0, though profiles are similar for lower R values.

On the other hand, the optimum bond length, R=
= 1.675828 bohr, of this curve is deviated from the experi-
mentally observed value by 19.6%. These observations to
the M3CS-S model imply that some kind of adjustment is
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Fig. 2: Comparison between KSM’s ground state energy data and
scaled Aringazin-Kucherenko curve.

needed; probably a change in one of the features of the
isoelectronium model could suppress these differences. In
next section, we will present one such modification: the
finite extension of isoelectronium.

3 Confined isoelectronium approach

We have shown until this point that the M3CS-S model
satisfies the established conditions for the existence of iso-
electronium with two drawbacks: it lacks the precision to
represent the ground state potential energy curve of the hyd-
rogen molecule and does not give a good approximation to
its optimum bond length. In this section, we are going to in-
troduce a condition directly related to the isoelectronium de-
finition, a condition on the extension of isoelectronium wave
function that will provide a modified three-body Santilli-
Shillady model reproducing the behavior of the KSM curve
in an appreciable range of distances between nuclei in the
molecule.

The isoelectronium, as proposed by iso-chemistry, is a
particle that brings together both electrons in the Hydrogen
molecule, bound firmly (stable isoelectronium) by a Hulthén
type potential. With a charge twice of the electron this quasi-
particle has to orbit around protons in a very compact way.
For an M =2me particle, the results of the calculations give
very low energies and small bond length values. From this
picture, we consider that the four-body problem of the hydro-
gen molecule can be converted into a compatible three-body
approach if some aspects of the quasi-particle formation
and molecule structure are taken into account. First of all,
the formation of particles involves the transformation of
mass into energy as it is observed for example in nuclear
reactions; this means that while electrons come together to
form an isoelectronium, there must be an effective mass
factor present in the description of the molecule. As seen
from the Schrödinger equation, this parameter would appear
as a scaling factor for the energy and bond length.

This kind of scaling has been suggested in the literature
before, not just by Aringazin and Kucherenko but by other

authors as well. In particular, Svidzinsky and collaborators
[18] have recently published a paper on the role of scaling
while they attempt to represent the hydrogen molecule from
Bohr’s model. They make a dimensional scaling of the
energy in this pre-quantum mechanical description. In our
approach, scaling comes from an effective mass factor.

Another factor that must be considered in our model
arises from the fact that a double charged particle surround-
ing both nuclei in the molecule can not extend in the same
way as an electron does in the molecular ion. This small but
heavily charged quasi-particle must have to limit its motion
to confined orbits. Thus, the Hydrogen molecule with the
isoelectronium orbiting two protons has to appear as a con-
fined system. Therefore, as a way to improve the restricted
three-body Santilli-Shillady model, a pair of conditions was
introduced to understand the kind of movement an isoelect-
ronium would describe. We have hypothesized the following
additional restrictions for the isoelectronium model:

(a) The formation of the quasi-particle from the two elec-
trons involves an effective mass transformation; i.e.,
the mass and charge of isoelectronium are M = νme

and q=−2e, respectively, where ν is the effective
mass parameter, also called “iso-renormalization of
mass”; and

(b) The spatial extension of the orbits of isoelectronium
is limited to a defined region of space: the isoelectro-
nium must orbit in a spheroidal shaped region of space.

Using these two hypotheses we have worked out two
methods for the solution of the hydrogen molecule problem.
First, the solution of Eq. (9) is considered in a way similar
to the Ley-Koo and Cruz solution for the molecular ion
confined by a spheroidal box [5]. They arrive to an exact
solution for the differential equation by using separation of
variables and the condition of a vanishing wave function on
the spheroidal border. The second, whose results are reported
here, uses a variational approach to solve Eq. (9) as it was
done by Marı́n and Muñoz [19], with the same border con-
dition: ψ(ξ0, η, ϕ)= 0 and ξ0 defines the shape of the box.

3.1 Exact solution to the confined model

Our variational approach to solve the modified three-body
Santilli-Shillady model of the hydrogen molecule (modified
M3CS-S) arrives to the following equation after applying
the Hamiltonian for H+

2 , but including the above stated
conditions on the mass, M = νme, where ν is the mass
parameter, and the q = −2e is the charge:
{
−

}
2νme

4

ρ2(ξ2−η2)

[
∂

∂ξ
(ξ2−1)

∂

∂ξ
+
∂

∂η
(1−η2)

∂

∂η

]
+

+
ξ2−η2

(ξ2−1)(1−η2)
∂2

∂ϕ2
−
4e2

ρ

(Z1+Z2)ξ+(Z2−Z1)η
ξ2−η2

+

+
Z1Z2 e

2

ρ

}
ψ(ξ, η, ϕ) = E′ ψ(ξ, η, ϕ) ,

(14)
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subject to the following restriction:

ψ(ξ0, η, ϕ) = 0, (15)

which specifies a spheroidal shaped region of space where
the particle moves (ξ 6 ξ0). Moreover, the wave function
must vanish at the border. Due to the symmetry of the mole-
cule in the ground state (m = 0), the azimuthal variable, can
be suppressed so the problem is reduced to the z − x plane.
In addition, we introduce atomic units:

a0 =
}2

mee2
; E′ =

e2

2a0
E ; R =

ρ

a0
.

Thus, the equation is rewritten as

H̃φ = Eφ
or
{
−

4

νR2(ξ2−η2)

[
∂

∂ξ
(ξ2−1)

∂

∂ξ
+
∂

∂η
(1−η2)

∂

∂η

]
−

−
8

R

(Z1+Z2)ξ + (Z2−Z1)η
ξ2−η2

+
Z1Z2
R

}
φ(ξ, η)=Eφ(ξ, η).

(16)

With this reduction, the above stated conditions can be
met by a simple variational function considering one para-
meter and a cut off factor:

φ(α; ξ, η) = (ξ0 − ξ)
(
exp
[
−α(ξ + η)

]
+

+exp
[
−α(ξ − η)

])
.

(17)

The minimum energy of this modified M3CS-S molecule
can be obtained by minimization of the functional of energy

E (α) =
〈φ |H̃ |φ〉
〈φ |φ〉

(18)

subject to the condition

∂E

∂α

∣
∣
∣
∣
E=Emin

= 0 , (19)

But really such a minimum energy, Emin, will depend on
several parameters

Emin = Emin(ν, ξ0, R) , (20)

i.e., mass scale, spheroidal box and nuclei separation para-
meters. If we leave free all three parameters and use a sim-
plex optimization method, a Nelder-Mead method for exam-
ple [20], we will find that this energy is located at a point
near the one reported by Santilli-Shillady and included here
in Table 1 (E=−7.61509174 au and R= 0.2592 bohr).
However, we can choose a fixed value for the mass para-
meter and find the minimum energy suitable for the ground
state energy of free H2.

Effectively, in order to obtain the minimum energy cor-
responding to a given mass parameter, ν, we have optimized
the energy using the Nelder-Mead algorithm for two para-
meters: ξ0 — spheroidal box shape; and, R — bond length.

ξ0 a) R b) ν c) E d)

48.46714783 1.41847181 0.37030 −1.1741987
48.46714783 1.41847181 0.37035 −1.1743573
48.46714783 1.41847181 0.37038 −1.1744523
48.46714783 1.41847181 0.37039 −1.1744840e)

48.46714783 1.41847181 0.37040 −1.1745157
48.46714783 1.41847181 0.37050 −1.1748325
48.46714783 1.41847181 0.37060 −1.1751492

Notes: a)Shape parameter inverse of eccentricity (optimization)
b)Bond length parameter (optimization)
c)Mass parameter up to five digits (fixed)
d)Minimum energy (calculated by program)
e)Nearest value to exact energy (error)

Table 3: Minimum energy from parameter optimization for the
confined model.

One relevant aspect resulting from these calculations is that
for all mass parameter values the convergence of the method
yields always identical values for both parameters as can be
seen in Table 3 (ξ0= 48.46714783; R= 1.41847181 bohr).
Furthermore, the minimum energy for ν= 0.37039 gives
an energy E=−1.1744840 au; that is, we have obtained
the energy of the experimentally observed ground state of
molecular hydrogen with a precision of 1×10−5 and a corres-
ponding error in bond length of just 1.24%. This last result
must be compared with the difference calculated by Aringa-
zin and Kucherenko, 19.6%, to appreciate the importance of
our finding.

Our approach to the hydrogen molecule, named from
here onward as the Pérez-Marı́n-Riera approach to the res-
tricted three-body Santilli-Shillady of the hydrogen molecule
or M3CPM-R, encompasses more than the sole calculation
of the minimum energy. With it, we can reproduce the whole
set of data points of the KSM ground state curve in the
R ∈ [0.8, 3.2] interval.

3.2 Comparison of our data with KSM curve

As we have just mentioned, our approach to the isoelectro-
nium movement provides an effective way to represent the
ground state of H2. Using the box shape and effective mass
parameters found for the closest value to the exact energy
of the ground state minimum, we have calculated the energy
for several values of the distance between protons ranging
from 0.4 to 6.0 bohr. The values obtained in this manner
show a very significant behavior, a least in a defined interval
R ∈ [0.8, 3.2]. We reproduce the values that Kolos and his
collaborators obtained with a highly sophisticated computing
method, shown with ours in Table 4 for comparison. As
can be seen while reviewing the las column in the table,
a difference appears in the fourth significant digit for the
worst result and up to the fifth digit for the best, which is
located at R= 1.40 bohr.

Figure 3 illustrates the values for the energy as a function
of R found by Kolos (big points) together with the curve
(line) representing our data. Both data sets are identical to
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Fig. 3: Comparison between Kolos data and our exact restricted
three-body model for the Hydrogen molecule (parameters are: ν -
mass; ξ0 - spheroidal shape).

each other up to the 4th significant digit; this is confirmed
by a χ2 statistical test (χ2= 1.3522 with gl= 17), with a
confidence level of 0.9999998 We state that by confining
the isoelectronium, it is possible to reproduce the standard
curve with a minimum computational calculation effort.

Again, if compare this result with that of the Aringazin-
Kucherenko curve (χ2= 410.239 with gl= 17), we state that
the Aringazin curve differs completely from the KSM curve,
as it was shown in Figure 2.

Both findings, up to six digit precision in minimum en-
ergy coincidence and whole curve reproduction, give support
to our approach to the three-body Santilli-Shillady model.
We can establish that the hypothesis on the isoelectronium
movement is correct; that is, the orbiting of isoelectronium
around both nuclei limits itself to a spheroidal region of spa-
ce. Another way to express this behavior is that the forma-
tion of isoelectronium could be favored by the confinement
of the molecule without changing its general properties.

The isoelectronium movement in a bound state together
with the charge distribution confirms the explanation given
by iso-chemistry to the following question: Why has the
hydrogen molecule only two atoms? In our view, as soon as
the molecule forms (isoelectronium) it becomes a bound sys-
tem thus limiting the possibility of another hydrogen atom to
be part of the molecule. In fact, the Pauli principle requires
that the two valence electrons are correlated-bounded in a
singlet state; as a result, the isoelctronium has spin zero.
Consequently, no third electron can be bound via a conven-
tional valence (see [3c] for details).

4 Conclusions

The value for the minimum energy of the ground state of the
hydrogen molecule has been obtained using the three-body
Santilli-Shillady model. Other parameters involved, such as
the optimum bond length or energies for several distances
between nuclei, can not be verified with it. We have shown
that after modifying the model, by introducing a condition on

R a) α b) M3CP-M c) KSM d) Diff. e)

0.80 0.4188965 −1.024900 −1.0200565 0.0048435
0.90 0.4585059 −1.085753 −1.0836432 0.0021098
1.00 0.4964746 −1.125001 −1.1245396 0.0004614
1.10 0.5331055 −1.149680 −1.1500574 0.0003774
1.20 0.5686328 −1.164305 −1.1649352 0.0006302
1.30 0.6032813 −1.171876 −1.1723471 0.0004711
1.40 0.6371875 −1.174438 −1.1744757 0.0000377f)

1.50 0.6705273 −1.173416 −1.1728550 0.0005610
1.60 0.7033789 −1.169826 −1.1685833 0.0012427
1.70 0.7358594 −1.164397 −1.1624586 0.0019384
1.80 0.7680469 −1.157664 −1.1550686 0.0025954
2.00 0.8319141 −1.141767 −1.1381329 0.0036341
2.20 0.8953906 −1.124237 −1.1201321 0.0041049
2.40 0.9589063 −1.106267 −1.1024226 0.0038444
2.60 1.0228130 −1.088534 −1.0857913 0.0027427
2.80 1.0871880 −1.071422 −1.0706831 0.0007389
3.00 1.1521880 −1.055136 −1.0573262 0.0021902
3.20 1.2179690 −1.039776 −1.0457995 0.0060235

Notes: a)Bond length (in bohr)
b)Non linear variational parameter
c)Our data in the present work with ξ0= 48.467148

and ν= 0.37039
d)Kolos, Szalewicz and Monhorst data from 1986 [6]
e)Absolute value of the difference.
f)Best approximation up to 6th significant digit

Table 4: Energies for the M3CP-M model and KSM curve

the isoelectronium orbit, it is possible to calculate a minimum
energy for the ground state coincident with the experimental
values up to the sixth significant digit. Furthermore, the
modified three-body model of the hydrogen molecule, a con-
fined three-body system, enables the reproduction of the
whole curve of ground state energy in the range [0.80, 3.20]
for the bond length. The physical interpretation to the con-
fined isoelectronium model comprehends the isoelectronium
itself, since the interaction between electrons while the quasi-
particle is forming, implies its movement to be restricted
to a defined region of space. The Santilli-Shillady orbits,
the oo-shaped orbits, go beyond a way of speaking, they
are a condition for the movement of the electron pair. This
limitation in movement could be present in other states of
electron pairs, such as the Cooper pairs of superconductivity,
mainly in high Tc Superconductivity, for example.

The M3CP-M-R model of the hydrogen molecule intro-
duced here represents an appropriate approach to study this
molecule and gives support to the isoelectronium model in-
troduced by Santilli and Shillady.
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Laser-induced breakdown spectroscopy (LIBS) has been applied to perform a study
of the matrix effect on the plasma characterization of Fe, Mg, Be, Si, Mn, and Cu in
aluminum alloy targets. The generated plasma emissions due to focusing of a 100 mj
Nd: YAG pulsed laser at 1064 nm at the target surface were detected using a portable
Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma
evolution of laser produced plasmas has been characterized in terms of their spectra,
electron density Ne and electron temperature Te assuming the LTE and optically
thin plasma conditions. The obtained average values of Te and Ne were 7600 K and
3×1017 cm−3, respectively, for the six elements in the aluminum alloy samples. The
electron density increases with the element concentration while the plasma temperature
does not has significance change with concentration. For industrial applications, LIBS
with the portable Echelle spectrometer could be applied in the on-line production
control that following up elemental concentration in metals and pharmaceuticals by
only measuring Ne.

1 Introduction

Laser Induced Plasma Spectroscopy (LIPS or LIBS) is an
alternative elemental analysis technology based on the optic-
al emission spectra of the plasma produced by the interaction
of high-power laser with gas, solid and liquid media. The
increasing popularity of this technique is due to easiness of
the experimental set-up and to the wide flexibility in the
investigated material that doesn’t need any pre-treatment of
the sample before the analysis. Obvious tasks for LIBS are
certification of metal contents in alloys, trace detection of
metals for environmental pollution analysis in soils, on-line
control of laser induced industrial processes (e.g. cutting
and welding, thin film deposition), quick characterization
of material in archaeological objects and works of art, and
many others [1–5].

LIBS is based on analysis of line emission from the
laser-induced plasma, obtained by focusing a pulsed laser
beam onto the sample. The physical and chemical properties
of the sample can affect the produced plasma composition,
a phenomenon known as the matrix effect. The interaction
between the laser and the target in LIBS is influenced signi-
ficantly by the overall composition of the target, so that the
intensity of the emission lines observed is a function of both
the concentration of the elements of interest and the prop-
erties of the matrix that contains them. Plasma composition
is dependent not only on composition of the sample, but also
on laser parameters, sample surface conditions as well as
on thermal and optical properties of the sample. Previously
published works studied the matrix effect under different

experimental conditions to specify causes and find out the
methods of correction [6–11]. The different approaches have
been undertaken to discriminate the problems resulting from
the fractionation of the ablation and matrix effects. The most
convenient approach is to determine elemental abundance
comparing the analytic line intensities with signals obtained
from the proper reference standards having the similar
matrix composition. But, it is not always possible to obtain
such calibration curves because there are no available stan-
dard samples, or it is impossible to have an internal standard
of known concentration [12, 13]. In addition, plasma forma-
tion dynamics, sample ablation and associated processes are
highly non-linear and not fully understood and may also play
an important role as reasons of the matrix effect.

Recently an alternative procedure, based on the LIBS
technique, for quantitative elemental analysis of solid mater-
ials has been proposed, which can, in principle, provide
quantitative data with no need of calibration curves or intern-
al standards [14, 15]. The method relies on the assumption
about the existence the stoichiometric ablation and local
thermodynamic equilibrium (LTE) i.e. Boltzmann distribu-
tion and Saha equation amongst the level population of any
species and electron density and temperature of the plasma.
However for application of this method experimentally one
needs to obtain both equilibrium and thin plasma conditions,
a task that may not be always possible to perform. Thus,
in spite of the many advantages of LIBS the realization of
a quantitative analytical method, which is able to measure
main constituents in samples from different matrices, still
remains a difficult task because of the complex laser-sample
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and laser-plasma interaction mechanisms. As a rule, laser
ablation plasma is characterized by complex spatial and tem-
poral structures, and one meets a wide range of varying of
parameters during the plasma existence time.

In this paper, we report the optimized conditions for
LIBS to analyze the emission spectrum of aluminum alloy
samples with high resolution using a portable Echelle spec-
trometer Mechelle 7500 equipped with ICCD camera. Spec-
troscopic analysis of plasma evolution of laser produced
plasmas has been characterized in terms of their spectra,
electron density and electron temperature. The LTE and op-
tically thin plasma conditions were verified for the produced
plasma. The electron temperature and density were deter-
mined using the emission intensity and stark broadening,
respectively, of the spectral lines of six elements Fe, Mg,
Be, Si, Mn, and Cu in the aluminum alloys. The dependence
of the electron density and temperature on the concentrations
of these elements was studied.

2 Experimental setup

2.1 Instrumentation

A typical LIBS experimental setup, described in details by
the author elsewhere [6], is used throughout the present
investigations. The plasma formation was attained with the
aid of a Q-switched Nd: YAG laser (surelite I, continuum,
USA) operating at 1064 nm (pulse duration of 7 ns) and
repetition rate of 0.1 Hz – 10 Hz. The laser pulse energy of
100 mJ was adjusted by a suitable combination of beam
splitters at constant operating high voltage (1.3 kV) and Q-
switch delay (1.65μs) to ensure spatial and temporal beam
profile stability. An energy meter (Nova 978, Ophir Optron-
ics Ldt., USA) was employed to monitor the shot to shot
pulse energy. The laser beam was focused on aluminum
alloy samples by a 10 cm focal length quartz lens to generate
the plasma. A one meter length fused-silica optical fiber
(600μm diameter) mounted on a micro xyz-translation stage
is used to collect the emission light from the plasma plume
and feed it to a portable Echelle spectrometer of a 0.17 m
focal length (Mechelle 7500, Multichannel Instruments,
Sweden). The Echelle grating spectrometers designed for
operation in high orders and high angles of incidence and
diffraction, can provide high resolution in a more compact
size and cover a much wider spectral range than convention-
al grating spectrometers [16]. The Mechelle 7500 provides
a constant spectral resolution (CSR) of 7500 corresponding
to 4 pixels FWHM over a wavelength range 200–1000 nm
displayable in a single spectrum. A gateable, intensified
CCD camera, (DiCAM-Pro-12 bit, UV enhanced, 43000
channels, PCO Computer Optics, Germany) coupled to the
spectrometer was used for detection of the dispersed light.
The overall linear dispersion of the spectrometer camera sys-
tem ranges from 0.006 (at 200 nm) to 0.033 nm/pixel
(at 1000 nm). To avoid the electronic interference and jitters,

the intensifier high voltage was triggered optically. Echelle
spectra display, control, processing and analysis were done
using both Mechelle software (Multichannel Instruments,
Stockholm, Sweden) and GRAMS/32 version 5.1 Spectro-
scopic Data Analysis Software (Galactic Industries, Salem,
NH, USA).

2.2 Optimization of data acquisition procedure

Many optimization procedures were performed to improve
our LIBS resolution and sensitivity and to minimize the
measurements fluctuations and problems due to the sample
heterogeneity.

To improve data reproducibility, and to avoid electronic
jittering problem, the laser was set to single shot mode.
Then, the Nd:YAG laser beam was focused onto the sample
surface at 90◦ angle. This was done using a 25 mm diameter
dichroic mirror that reflects 99% of high energy 1064 nm
wavelength. This mirror placed just before the laser-focusing
lens as shown in Figure 1. The focal point was set 5 mm
below the surface of the sample in order to generate plasma
of 800μm spot diameter. This also minimize breakdown
above the surface of any particles and aerosols generally
present above the sample. Moreover, for each new sample,
before spectral collection, 20 laser pulses were performed
to clean the sample surface and removes surface oxides and
contamination to ensure that the observed spectrum is repre-
sentative of the sample composition. Furthermore, we found
that enhancement of the data reproducibility can be achieved
by accumulation of consecutive measured spectra for expo-
sures of duration 1000 ns, each delayed 2500 ns from the
laser pulse. These values of delay time and exposure window
time (gate time) for the ICCD camera produced spectra with
minimal background and signals from major lines that did
not saturate the detector.

On the other hand, the use of a micro xyz-translation
stage as a holder for fused-silica optical fiber facilities maxi-
mum intensity of the observed emission light from the plas-
ma plume. We investigated a set of eight standard samples of
aluminum alloy to study the dependence of the electron den-
sity and temperature on the concentrations of six elements
Be, Mg, Si, Mn, Fe and Cu by the proposed LIBS setup. So
that, these samples, which have never been treaded before
using LIBS with Mechelle 7500, were selected to have the
six elements with a range of concentrations. We used disk
shaped standard samples of aluminum alloy provided by
Alcan International Limited (0.5 cm; φ= 5 cm). The concen-
trations of Mg, Si, Be, Cu, Mn and Fe in the aluminum alloy
samples are given in Table 1.

Now, we aim to produce LIBS spectra with high preci-
sion. Precision is the measure of the degree of reproducibility
of a measurement. Laser shot-to-shot variation causes diffe-
rences in the plasma properties, therefore affects the mag-
nitude of the element signal, and hence degrades the LIBS
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Sample Be Mg Si Fe Cu Mn Al

AL 3104 0.0011 1.15 0.21 0.42 0.17 0.92 Balance

AL 4104 0.0017 1.56 9.63 0.7 0.12 0.046 Balance

AL 5052 0.0043 2.51 0.087 0.33 0.042 0.09 Balance

AL 5182 0.0012 4.67 0.11 0.27 0.061 0.35 Balance

AL 5754 0.0022 2.54 0.22 0.35 0.1 0.29 Balance

AL 6063 0.00030 0.54 0.43 0.2 0.085 0.081 Balance

AL 7010 0.0007 2.44 0.11 0.22 1.88 0.082 Balance

AL a380.2 0.00036 0.028 9.17 0.41 3.61 0.042 Balance

Table 1: Beryllium, copper, iron, magnesium, silicon and manganese con-
centrations (in w/w %) in the standard aluminum alloy samples.

precision. To improve LIBS precision, spectra from several
laser shots have to be averaged in order to reduce statistical
error due to laser shot-to-shot fluctuation. We reproduced
the measurements at five locations on the sample surface
in order to avoid problems linked to sample heterogeneity.
Twenty shots were fired at each location and saved in sepa-
rated files and the average was computed and saved to serve
as the library spectrum. For each recorded spectrum, the
peak intensity, the Lorentzian curve fitting, the full width
at half maximum FWHM, and the center wavelength of
each line, as well as the background emission continuum are
determined. Data treatment preprocessing of the averaged
spectra data was performed in the Windows environment on
a Pentium 4 PC using GRAMS/32, Excel (Microsoft Office
Excel 2003) and Origin software version 7.0220 (Origin Lab
Co., USA). The averages of peak tables (lists of wavelengths
and intensities) of the averaged spectra were roll generated
in GRAMS/32 and exported for data evaluation.

3 Results and discussion

3.1 LIBS spectrum

Figure 1 shows a typical plasma emission spectrum for alu-
minum alloy sample AL 7010. This spectrum is the average
of 100 single shot spectra recorded at 2.5 μs delay time and
1μs gate width. The panoramic Echelle spectra in the spect-
ral range 200–700 nm show the UV emission lines of alumi-
num as a major element and the emission lines of Si, Cu, Be,
Fe, Mn and Mg in the aluminum alloy sample. Moreover, our
observed spectra reflect the wide spectral range and the high
resolution of the used spectroscopic system.

3.2 Electron temperature measurements

In LIBS experiments, assuming optically thin plasma and the
local thermodynamic equilibrium (LTE) conditions are hold,
the re-absorption effects of plasma emission are negligible
(i.e. the main ionization process is produced through impact
excitation by thermal electrons). Upon these conditions, a
Boltzmann population distribution can be assumed in de-
scribing the actual thermodynamics parameters of the plas-

Fig. 1: Typical LIBS spectrum for aluminum alloy sample AL
7010. The laser energy was 100 mJ at wavelength 1064 nm, plasma
emissions are accumulated with delay 2.5 μs, and gate width 1μs.

ma. So, the emitted spectral line intensity I is a measure
of the population of the corresponding energy level of this
element in the plasma. Then I corresponding to the transition
between levels Ek and Ei of the atomic species α with
concentration Cα, can be expressed as

Ikiα = F Cα
gkAki e

−Ek
KBT

Uα (T )
, (1)

where KB is the Boltzmann constant, Uα(T ) is the partition
function, Aki is the transition probability, gk is the statistical
weight for the upper level, Ek is the excited level energy,
T is the temperature (in LTE all temperatures are assumed
to be equal, i.e. Te≈Tion≈Tplasma) and F is a constant
depending on experimental conditions.

Equation (1) allows also for evaluating Cα when the
sample and reference plasma temperature are different, once
the atomic parameters are derived from atomic databases.
In order to evaluate the plasma temperature, they take the
natural logarithm of Equation (1), obtaining

ln

(
Ikiα
gkAki

)

=
Ek
KB T

+ ln

(
CαF

Uα (Tα)

)

. (2)

In the two-dimensional Boltzmann plane identified by
the left hand term of Equation (2) and by Ek, different
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Fig. 2: Six Boltzmann plots were determined form the emission
line intensities of Si, Mg, Fe, Be, Mn and Cu observed in the laser-
induced plasma of aluminum alloy sample AL 7010. The slope of
the plotted curves yields temperatures of 7606 K, 7562 K, 7817 K,
7511 K, 7842 K, and 7224 K for the elements Si, Mg, Fe, Be, Mn,
and Cu respectively.

emission lines intensities belonging to the same element in
the same spectrum lie along a straight line with a slope of
−1/KBT [21].

In our experiment, the temperatures were determined
form the emission line intensities of Mg, Si, Be, Cu, Mn
and Fe observed in the laser-induced plasma of aluminum
alloys. Figure 2 show six Boltzmann plots of Eqn. (2), for
each of these six elements in the aluminum alloy sample AL
7010 where the data were fitted with the least-square ap-
proximation. The spectral lines wavelengths, energies of the
upper levels, statistical weights, and transition probabilities
used for each element are obtained from NIST [17] and
Griem [21], and listed in Table 2. The slope of the plotted
curves yields temperatures 7606 K, 7562 K, 7817 K, 7511 K,
7842 K, and 7224 K for the elements Si, Mg, Fe, Be, Mn, and
Cu respectively. The average value of the plasma tempera-
ture is 7600 K which agrees with the value obtained by
Sabsabi and Cielo [20] under conditions similar to ours. The
difference in the plasma temperature of the six elements may
be attributed to the difference in the excitation and ionization

Fig. 3: Electron temperature measured at 2.5 μs delay time and
1μs gate width using Boltzmann plot for different concentrations
of beryllium in different aluminum alloy samples.

potentials between these elements.
Then the matrix effect on the plasma temperature was

studied using the variety of concentrations of the six ele-
ments in the eight aluminum samples. This was done by plot-
ting the corresponding temperature for each element versus
its concentration in the aluminum alloy samples. Under our
experimental conditions, no significance change was found
for the plasma temperature with the concentration of the
six elements, especially for low concentration elements as
shown in Figure 3 as an example for Beryllium. This is
could be understanding as follows; for optical thin plasma,
increasing the element concentration returns an increasing of
the intensity of its corresponding spectral lines with roughly
the same ratio, which leads to have the same slope of Boltz-
mann plot and results in the same plasma temperature.

3.3 Electron density measurements

The usual method for determination of electron density is the
measuring of the broadening of a suitable emission line of
the laser-plasma spectrum. There are several possible mech-
anisms of line broadening in plasma: self-absorption, pres-
sure broadening, Doppler broadening, Stark broadening, etc.
Lida reported that the line broadening and the spectral shift
of the emission line are due mainly to self-absorption phen-
omenon [18]. In the present study line splitting and the
spectral shift, which are good evidence of self-absorption,
were monitored carefully. No evidence of line splitting or
spectral shift was observed.

Nemet and Kozma reported the broadening of transition
lines as pressure, Stark, and Doppler broadening [19]. But
pressure and Doppler broadening should not be so much
different among transition lines as is the case for plasma of
solids. Kyuseok Song et al. stated that Stark broadening may
be one of the reasons since the broadening effect increases
as the energy level increases [22]. Stark broadening results
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Si 221.89 1.50E+06 45276.18 3 — Fe 376.01 4.47E+06 45978.00 15 —

Si 243.87 7.40E+05 40991.88 3 — Fe 376.38 5.44E+07 34547.21 5 —

Si 250.69 4.66E+07 39955.05 5 — Fe 376.55 9.80E+07 52655.00 15 —

Si 251.43 6.10E+07 39760.28 3 — Fe 376.72 6.40E+07 34692.14 3 —

Si 251.61 1.21E+08 39955.05 5 — Fe 378.60 4.20E+06 46026.94 13 —

Si 252.41 1.81E+08 39683.16 1 — Fe 538.33 5.6E+07 53352.98 13 5.3E-03 [29]

Si 252.85 7.70E+07 39760.28 3 — Cu 240.00 2.00E+06 67911.85 4 4.1E-3 [21, 28]

Si 288.15 1.89E+08 40991.88 3 0.74E-3 [21] Cu 261.84 3.07E+07 49382.95 4 —

Si 300.67 1.10E+03 33326.05 5 — Cu 276.64 9.60E+06 49382.95 4 —

Si 302.00 3.30E+03 33326.05 5 — Cu 282.44 7.80E+06 46598.34 6 —

Si 390.55 1.18E+07 40991.88 3 1.46E-3 [21] Cu 296.12 3.76E+06 44963.22 8 —

Mg 277.66 1.32E+08 57873.94 5 — Cu 306.34 1.55E+06 45879.31 4 —

Mg 277.82 1.82E+08 57833.4 3 — Cu 319.41 1.55E+06 44544.15 4 —

Mg 277.98 4.09E+08 57873.94 5 — Cu 324.75 1.39E+08 30783.69 4 —

Mg 278.14 5.43E+08 57812.77 1 — Cu 327.40 1.37E+08 30535.30 2 —

Mg 278.29 2.14E+08 57833.4 3 — Cu 333.78 3.80E+05 41153.43 8 —

Mg 279.07 4.01E+08 71491.06 4 — Cu 402.26 1.90E+07 55387.67 4 —

Mg 279.55 2.60E+08 35760.88 4 — Cu 406.26 2.10E+07 55391.29 6 —

Mg 279.79 4.79E+08 71490.19 6 — Cu 427.51 3.45E+07 62403.32 8 —

Mg 280.27 2.57E+08 35669.31 2 — Cu 465.11 3.80E+07 62403.32 8 —

Mg 281.11 1.96E+08 83520.47 5 — Cu 510.55 2.00E+06 30783.69 4 —

Mg 281.17 2.11E+08 83511.25 3 — Cu 515.32 6.00E+07 49935.20 4 —

Mg 285.21 4.91E+08 35051.26 3 3.6E-04 [27] Cu 521.82 7.50E+07 49942.06 6 —

Mg 291.54 4.09E+08 80693.01 5 — Cu 529.25 1.09E+07 62403.32 8 —

Mg 292.86 1.15E+08 69804.95 2 — Cu 570.02 2.40E+05 30783.69 4 —

Mg 293.65 2.30E+08 69804.95 2 — Cu 578.21 1.65E+06 30535.30 2 —

Fe 370.11 4.80E+07 51192.27 9 — Mn 258.97 2.6E+08 38543.08 7 5.91E-03 [30]

Fe 370.56 3.22E+06 27394.69 7 — Mn 401.81 2.54E+07 41932.64 8 —

Fe 371.99 1.62E+07 26874.55 11 — Mn 403.08 1.70E+07 24802.25 8 —

Fe 372.26 4.97E+06 27559.58 5 — Mn 403.31 1.65E+07 24788.05 6 —

Fe 372.71 2.00E+07 50534.39 7 — Mn 403.45 1.58E+07 24779.32 4 —

Fe 373.33 6.20E+06 27666.35 3 — Mn 404.14 7.87E+07 41789.48 10 —

Fe 373.53 2.40E+07 50475.29 9 — Mn 404.88 7.50E+07 42143.57 4 —

Fe 373.71 1.42E+07 27166.82 9 — Mn 405.55 4.31E+07 41932.64 8 —

Fe 373.83 3.80E+07 53093.52 13 — Mn 405.89 7.25E+07 42198.56 2 —

Fe 374.56 1.15E+07 27394.69 7 — Mn 406.17 1.90E+07 49415.35 6 —

Fe 374.59 7.33E+06 27666.35 3 — Mn 406.35 1.69E+07 42053.73 6 —

Fe 374.83 9.15E+06 27559.58 5 — Mn 407.92 3.80E+07 42143.57 4 —

Fe 375.82 6.34E+07 34328.75 7 — Mn 408.29 2.95E+07 42053.73 6 —

Mn 408.36 2.80E+07 41932.64 8 — Be 265.08 1.80E+08 59695.07 3 —

Mn 423.51 9.17E+07 46901.13 6 — Be 313.04 1.15E+08 31935.32 4 2.81E-05 [21]

Mn 441.49 2.93E+07 45940.93 6 — Be 313.11 1.15E+08 31928.744 2 —

Mn 445.16 7.98E+07 45754.27 8 — Be 324.16 1.37E+07 127335.12 2 —

Mn 446.20 7.00E+07 47207.28 10 — Be 324.18 2.73E+07 127335.12 2 —

Mn 475.40 3.03E+07 39431.31 8 — Be 327.46 1.43E+07 118761.32 4 —

Mn 478.34 4.01E+07 39431.31 8 — Be 327.47 1.43E+07 118760.51 2 —

Mn 482.35 4.99E+07 39431.31 8 — Be 332.10 6.90E+06 52080.94 3 —

Be 265.05 1.08E+08 59697.08 5 — Be 332.11 2.10E+07 52080.94 3 —

Be 265.06 1.44E+08 59695.07 3 — Be 332.13 3.40E+07 52080.94 3 —

Table 2: A list of the spectroscopic data of the spectral lines used for the determination of plasma temperature and
density of aluminum alloy samples.
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Fig. 4: The 285.21 nm line with sufficient resolution to measure
the full width at half-maximum (λ1/2) at different concentrations
of Mg in the aluminum alloys. For each line, the data points were
fitted with Lorentzian fitting function using the Origin software to
determine (λ1/2).

from Coulomb interactions between the radiator and the
charged particles present in the plasma. Both ions and elec-
trons induce Stark broadening, but electrons are responsible
for the major part because of their higher relative velocities.
Therefore, in our conditions, the profile of a line is mainly
contributed to linewidths arises from the Stark effect while
the contribution of other mechanisms of broadening (Dop-
pler effect, Van der Waals broadening, and resonance broad-
ening) can be neglected, as shown under conditions similar
to ours by Sabsabi and Cielo [20].

The electrons in the plasma can perturb the energy levels
of the individual ions which broaden the emission lines ori-
ginating from these excited levels. Stark broadening of well-
isolated lines in the plasma is, thus, useful for estimating the
electron number densities provided that the Stark-broadening
coefficients have been measured or calculated. The line pro-
file for stark broadened is well described by a Lorentzian
function

Since the instrumental line-broadening exhibit Gaussian
shape, then the stark line width ΔλFWHM can be extracted
from the measured line width Δλobserved by subtracting the
instrumental line broadening Δλinstrument:

ΔλFWHM = Δλobserved −Δλinstrument . (3)

In our case Δλinstrument was 0.05 nm (determined by
measuring the FWHM of the Hg lines emitted by a standard
low pressure Hg lamp).

The width of stark broadening spectral line depends on
the electron density Ne. Both the linear and the quadratic
stark effect are encountered in spectroscopy. Only the hydro-
gen atom and H-like ion exhibit the linear stark effect. For
the linear stark effect the electron density should be deduced

from H line width from the formula [21]

Ne = C (Ne, T )Δλ
3/2
FWHM (4)

the values of the parameter C (Ne, T ) are tabulated in the
literature [21], which determine the relative contribution of
the electron collision on the electrostatic fields, and depend
weakly on Ne and T .

For a non-H-like line, the electron density (in cm−3)
could be determined from the FWHM of the line from the
formula [21]:

Ne ≈

(
ΔλFWHM

2w

)

× 1016, (5)

where w is the electron impact parameter (stark broadening
value) and it is given in Table 2. The last formula is generally
used for calculations of plasma generated from solid targets
[7, 8, 20].

Six lines were identified as candidates for electron-
density measurements: 390.55 nm, 285.21 nm, 538.33 nm,
240.00 nm, 258.97 nm and 313.04 nm for Si, Mg, Fe, Cu, Mn
and Be respectively. Figure 4 shows, as an example for Mg,
the 285.21 nm line with sufficient resolution to measure the
full width at half-maximum (λ1/2) at different concentrations
of Mg in the aluminum alloys. All the six lines data points
were fitted with Lorentzian fitting function using the Origin
software to determine (λ1/2) as shown in Fig. 4 for Mg as an
example. Substituting the values of λ1/2 in Eqn. (3) and the
corresponding values of stark broadening w from Table 2
in Eqn. (6) the electron density for Mg was determined.
These steps were repeated for each concentration of the
six elements in the eight aluminum alloy samples. Then
the obtained electron density values were plotted versus the
element concentration. Figure 5 shows six plots for the varia-
tion of the electron density values versus the concentrations
of Mg, Si, Be, Fe, Cu and Mn in different aluminum alloy
samples. These plots reveal that, in case of Mg, Si, Fe,
Cu and Mn, electron density increases with the element
concentration. For the case of low concentration elements
like Be, the increase of the electron density with the element
concentration is very weak. This result might occur because
increasing the “element” concentration comprises increasing
portion of the laser-target interaction volume which agrees
with O. Samek [24] and Rusak et al. [25].

Finally, by knowing the electron density and the plasma
temperature we can determine whether the local thermo-
dynamic equilibrium (LTE) assumption is valid applying the
criterion given by McWhirter [26].

The lower limit for electron density for which the plasma
will be in LTE is:

Ne > 1.4×1014ΔE3T 1/2, (6)

where ΔE is the largest energy transition for which the
condition holds and T is the plasma temperature [23].

In the present case ΔE = 3.65 eV for Al (see Ref. [20])
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Fig. 5: Six plots for the variation of the electron density values
versus the concentrations of Mg, Si, Be, Fe, Cu and Mn in different
aluminum alloy samples.

and the electron density lower limit value given by Eqn. (7)
is 6×1015 cm−3. The experimentally calculated densities are
greater than this value, which is consistent with the assump-
tion that the LTE prevailing in the plasma.

4 Conclusion

In summary, we have carried out an accurate LIBS setup
using portable commercial Echelle spectrometer equipped
with ICCD detector to study aluminum alloys matrix effects
on the plasma characterization. The electron density and
plasma temperature were determined for six elements (Fe,
Mg, Be, Si, Mn, and Cu) in the aluminum alloy targets. The
electron density increases with the element concentration
while the plasma temperature does not has significance
change with the element concentration.

For a plasma diagnostics perspective, the target physical
properties play an important role in the obtained values of
the laser induced plasma temperature Te and electron density
Ne. For industrial application, LIBS could be applied in
the on-line industrial process that following up elemental
concentration in metals and pharmaceuticals by only mea-
suring Ne of that element.
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A Letter by the Editor-in-Chief:

Twenty-Year Anniversary of the Orthopositronium Lifetime Anomalies:
The Puzzle Remains Unresolved

This letter gives a history of two observed anomalies of orthopositronium annihilation,
of which the 20th anniversary occurs this year. The anomalies, breaking the basics of
Quantum Electrodynamics, require more experimental study, in view of the recent
claim of the Michigan group of experimentalists, which alleges resolution of one of
the anomalies.

It is now the 20th anniversary of the observation of ano-
malies of orthopositronium annihilation (both discovered in
1987) in experiments conducted by two groups of research-
ers: one group in the USA, headed by the late Prof. Arthur
Rich in the University of Michigan at Ann Arbor, and the
other group in Russia, headed by Dr. Boris Levin of the
Institute of Chemical Physics in Moscow, but then at the
Gatchina Nuclear Centre in St. Petersburg.

The anomalies dramatically break the basics of Quantum
Electrodynamics.

Recently my long-time colleague, Boris Levin, one of
the discoverers of the anomalies, suggested that the last ex-
periment of the Michigan group, by which it has claimed
resolution of one of the anomalies [1], was set up so that an
electric field introduced into the experiment (it accelerates
the particle beam before the target) mere suppressed the ano-
maly despite the electric field helps to reach complete ther-
malization of orthopositronium in the measurement cell. As
a dry rest the anomaly, remaining represented but suppressed
by the field, became mere invisible in the given experiment.

Now Levin proposes a modification of the last Michigan
experiment in order to demonstrate the fact that the anomaly
remains. He describes his proposed experiment in his brief
paper appearing in this issue of Progress in Physics.

I would give herein a brief introduction to the anomalies
(otherwise dispersed throughout many particular papers in
science journals).

Positronium is an atom-like orbital system that contains
an electron and its anti-particle, the positron, coupled by
electrostatic forces. There are two kinds of positronium: pa-
rapositronium p-Ps, in which the spins of the electron and
the positron are oppositely directed so that the total spin is
zero, and orthopositronium o-Ps, in which the spins are co-
directed so that the total spin is one. Because a particle-anti-
particle system is unstable, life span of positronium is rather
small. In vacuum parapositronium decays in ∼1.25×10−10 s,
while orthopositronium in ∼1.4×10−7 s. In a medium the life
span is even shorter because positronium tends to annihilate
with electrons of the medium. Due to the law of conservation
of charge parity, parapositronium decays into an even number
of γ-quanta (2, 4, 6, . . . ) while orthopositronium annihilates
into an odd number of γ-quanta (3, 5, 7, . . . ). The older
modes of annihilation are less probable and their contribu-

tions are very small. For instance, the rate of five-photon
annihilation of o-Ps compared to that of three-photon anni-
hilation is as small as λ5≈ 10−6λ3. Hence parapositronium
actually decays into two γ-quanta p-Ps→2γ, while ortho-
positronium decays into three γ-quanta o-Ps→3γ.

In the laboratory environment positronium can be obtain-
ed by placing a source of free positrons into matter, a mon-
atomic gas for instance. The source of positrons is β+-decay,
self-triggered decays of protons in neutron-deficient atoms
p→ n + e++ νe. It is also known as positron β-decay.

Some of free positrons released into a gas from a β+-
decay source quite soon annihilate with free electrons and
electrons in the container’s walls. Other positrons capture
electrons from gas atoms thus producing orthopositronium
and parapositronium (in ratio 3:1).

The time spectrum of positron annihilations (number of
events vs. life span) is the basic characteristic of their anni-
hilation in matter. In particular, in such spectra one can see
parts corresponding to annihilation with free electrons and
annihilation of p-Ps and o-Ps.

In inert gases the time spectrum of annihilation of quasi-
free positrons generally forms an exponential curve with a
plateau in its central part, known as a “shoulder” [2, 3].

In 1965 P. E. Osmon published [2] pictures of observed
time spectra of annihilation of positrons in inert gases (He,
Ne, Ar, Kr, Xe). In his experiments he used 22NaCl as a
source of β+-decay positrons. Analyzing the results of the
experiments, Levin noted that the spectrum in neon was
peculiar compared to those in other monatomic gases: in
neon, points in the curve were so widely scattered that the
presence of a “shoulder” was uncertain. Repeated measure-
ments of time spectra of annihilation of positrons in He, Ne,
and Ar, later accomplished by Levin [4, 5], have proven
the existence of anomaly in neon. A specific feature of the
experiments conducted by Osmon, Levin and some other
researchers is that the source of positrons was 22Na, while
the moment of appearance of the positron was registered
according to the γn-quantum of decay of excited 22∗Ne,
22∗Ne→ 22Ne + γn , from one of the products of β+-decay
of 22Na. This method is quite justified and is commonly
used, because the life span of excited 22∗Ne is as small as
τ ' 4×10−12 s, which is a few orders of magnitude less than
those of the positron and parapositronium.
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In his further experiments [6, 7] Levin discovered that
the peculiarity of the annihilation spectrum in neon (abnor-
mally widely scattered points) is linked to the presence in
natural neon of a substantial quantity of its isotope 22Ne
(around 9%). Levin called this effect the isotope anomaly.
Time spectra were measured in neon environments of two
isotopic compositions: (1) natural neon (90.88% of 20Ne,
0.26% of 21Ne, and 8.86% of 22Ne); (2) neon with reduced
content of 22Ne (94.83% of 20Ne, 0.26% of 21Ne, and 4.91%
of 22Ne). Comparison of the time spectra of positron decay
revealed that in natural neon (composition 1) the shoulder
is fuzzy, while in neon poor in 22Ne (composition 2) the
shoulder is always pronounced. In the part of the spectrum
to which o-Ps decay mostly contributes, the ratio between
intensity of decay in 22Ne-poor neon and that in natural neon
(with more 22Ne) is 1.85±0.1 [7].

The relationship between the anomaly of positron annihi-
lation in neon and the presence of 22Ne admixture, as shown
in [6, 7], hints at the existence in gaseous neon of collective
nuclear excitation of 22Ne isotopes. In the terminal stage of
β+-decay nuclear excitation of 22∗Ne (life time ∼ 4×10−12 s)
is somehow passed to a set of 22Ne nuclei around the source
of positrons and is carried away by a nuclear γn-quantum
after a long delay in the moment of self-annihilation of
orthopositronium (free positrons and parapositronium live
much shorter). Hence collective excitation of 22Ne atoms
seems to be the reason for the isotope anomaly. On the
other hand, the nature of the material carrier that passes
excitation of nuclear 22∗Ne to the surrounding 22Ne atoms
is still unclear, as is the means by which orthopositronium is
linked to collective excitation — collective nuclear excitation
is only known in crystals (Mössbauer effect, 1958).

In 1990 Levin [8] suggested, as a result of a relationship
between orthopositronium and collective nuclear excitation,
that a 1-photon mode of its annihilation should be observed.
But decay of o-Ps into one γ-quantum would break the laws
of conservation of Quantum Electrodynamics. To justify this
phenomenological conclusion without breaking QED laws,
Levin, in his generalised study [9], suggested that in the spe-
cific experimental environment, annihilation of some ortho-
positronium atoms releases one γ-quantum into our world
and two γ-quanta into a mirror Universe, placing them be-
yond observation. But before any experiments are designed
to prove or disprove the existence of such a “1-photon”
mode, or any theory is developed to explain the observed
effect, the problem still requires discussion.

Another anomaly is the substantially higher measured
rate of annihilation of orthopositronium (the reciprocal to its
life span) compared to that predicted by QED.

Measurement of the orthopositronium annihilation rate is
among the main tests aimed at experimental verification of
QED. Before the mid 1980’s no difference between theory
and experiment was observed, as measurement precision re-
mained at the same low level.

In 1987, thanks to new precision technology, a group of
researchers based at the University of Michigan (Ann Arbor)
made a breakthrough in this area. The experimental results
showed a substantial gap between experiment and theory.
The anomaly that the Michigan group revealed was that mea-
sured rates of annihilation at λT(exp)=7.0514±0.0014μs−1

and λT(exp)=7.0482±0.0016μs−1 (to a precision of 0.02%
and 0.023% using gas and vacuum methods [10–13] were
much higher compared to λT(theor)=7.00383±0.00005μs−1

as predicted by QED [14–17]. The 0.2% effect was ten times
greater than the measurement precision, and was later called
the λT-anomaly [9].

In 1986 Robert Holdom [18] suggested that “mixed type”
particles may exist, which, being in a state of oscillation, stay
for some time in our world and for some time in a mirror
Universe. In the same year S. Glashow [18] gave further de-
velopment to the idea and showed that in the case of 3-
photon annihilation o-Ps will “mix up” with its mirror twin,
thus producing two effects: (1) a higher annihilation rate
due to an additional mode of decay, o-Ps→nothing, because
products of decay passed into the mirror Universe cannot be
detected; (2) the ratio between orthopositronium and para-
positronium numbers will decrease from o-Ps :p-Ps= 3:1 to
1.5:1. But because at that time (1986) no such effects were
reported, Glashow concluded that no oscillation is possible
between our-world and mirror-world orthopositronium.

On the other hand, by the early 1990’s these theoretical
studies motivated many researchers worldwide to an experi-
mental search for various “exotic” (unexplained by QED)
modes of o-Ps decay, which could shed some light on the
abnormally high rate of decay. These were, to name just a
few, search for o-Ps→nothing mode [20], check of possible
contribution from 2-photon mode [21–23] or from other exo-
tic modes [24–26]. As a result it has been shown that no
exotic modes can contribute to the anomaly, while contribu-
tion of the o-Ps→nothing mode is limited to < 5.8×10−4 of
o-Ps→3γ.

In a generalised study in 1995 [9] it was pointed out
that the programme of critical experiments was limited to
a search for the 1-photon mode o-Ps→γ\2γ′ involving the
mirror Universe and to a search for the mode o-Ps→nothing.
The situation has not changed significantly over the past five
years. The most recent publication on this subject, in May
2000 [27], still focused on the Holdom-Glashow suggestion
of a possible explanation of the λT-anomaly by interaction of
orthopositronium with its mirror-world twin, and on a search
for the o-Ps→nothing mode. But no theory has yet been
proposed to account for the possibility of such an interaction
and to describe its mechanism.

The absence of a clear explanation of the λT-anomaly en-
couraged G. S. Adkins et al. [28] to suggest the experiments
made in Japan [29] in 1995 as an alternative to the basic Mi-
chigan experiments. No doubt, the high statistical accuracy
of the Japanese measurements [29] puts them on the same
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level as the basic experiments [10–13]. But all the Michigan
measurements possessed the property of a “full experiment”,
which in this particular case means no external influence
could affect the wave function of positronium. Such an in-
fluence is inevitable due to the electrodynamic nature of po-
sitronium, and can be avoided only using special techniques.
As was shown later, by Levin [31], this factor was not taken
into account in Japanese measurements [29] and thus they
do not possess property of a “full experiment”.

As early as 1993 S. G. Karshenboim, one of the leaders
in the theory, showed that QED had actually exhausted its
theoretical capabilities to explain the orthopositronium ano-
malies [30]. The puzzle remains unresolved.

January 30, 2007 Dmitri Rabounski
Editor-in-Chief
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A Proposed Experimentum Crucis for the Orthopositronium
Lifetime Anomalies

Boris M. Levin
E-mail: bormikhlev@mail.ru, bormikhlev@mail.ioffe.ru

Expansion of the Standard Model (SM) for the quantitative description of the
orthopositronium lifetime anomalies allows formulation of additional experimental
tests of supersymmetry in the final state of the positron beta-decay of nuclei such as
22Na, 68Ga, and resolution of the results of the last Michigan experiment (2003).

In 2003, at the University of Michigan (Ann Arbor), a mea-
surement of the o-Ps annihilation rate was carried out, and
the researchers reported complete agreement between the ex-
perimental value, λT= 7.0404(10)(8)μs−1, and the value
calculated in the frame of QED, λT(theor)=7.039979(11)μs−1

[1]. These measurements were performed by a different tech-
nique, namely, a dc electric field of 7 kV/cm was introduced
into the measurement cell. For this reason, and since they
disregarded the “isotope anomaly” of o-Ps in gaseous neon
in “resonance conditions” [2, 3], authors [1] could not in-
clude the additional action of the electric field on the observ-
ed o-Ps self-annihilation rate λT(exp) [3], notwithstanding the
provisions they undertook to ensure complete o-Ps thermal-
ization. The additional action of the electric field E∼7kV/cm
oriented parallel to the force of gravity should suppress the
excessΔλT'0.19÷0.14% over the calculated value λT(theor),
which had been reported earlier by the Michigan group and
referred to quantitatively as the macroscopic quantum effect
(the “λT-anomaly” [3])∗.

This is why rejection [1] of the conclusions drawn from
the earlier high-precision λT measurements does not appear
unambiguous.

The uncertainty we are presently witnessing can be re-
solved only by performing a program of additional measure-
ments.

Consider the scheme of a Gedanken experiment for a
measuring cell filled with a gas (Fig. 1).

Could one substantiate a program of comparative measu-
rements which would yield as a final result the doubling of
the parameter V to be measured with the external dc electric
field orientation changed from horizontal to vertical? This
would be certainly impossible within the SM. An analysis
of the o-Ps anomalies within the concept of spontaneously
broken complete relativity opens up such a possibility; indeed,
restoration of the symmetry under discussion “should be
accompanied by doubling of the space-time dimension” [4].

The uniqueness of orthopositronium dynamics (virtual
single-quantum (!) annihilation, CP -invariance) make it an
intriguing probe to double the space-time (see [5]).

∗Here and so forth the sign ÷ means that the values were obtained in
the gas and vacuum experiments respectively.

Fig. 1: Scheme and the result of a Gedanken experiment with an
electric field in a laboratory on Earth. The measuring cell is filled
with gas. ~E is orientation and dc voltage of an electric field; V is
the value of the parameter to be measured.

Consider in this connection again the standard experi-
mental technique used to measure positron/orthopositronium
annihilation lifetime spectra.

Figure 2 presents a block diagram of a fast-slow lifetime
spectrometer of delayed γn– γa coincidences.

Recording of real coincidences (in the start-stop arrange-
ment) with a time resolution of 1.7×10−9 s [2] between the
signal produced by a nuclear γn quantum of energy '1.28
MeV (“start”) with the signal generated by the detected γa
annihilation quantum of energy '0.34÷0.51 MeV (“stop”,
corresponding, accordingly, to 3γ and 2γ-annihilation) is
accompanied by the energy (amplitude) discrimination in
the slow (“side”) coincidence channels (with a resolution
δτs∼ 10−6 s between the corresponding signals from the
last-but-one dynodes of the lifetime PM tubes, an approach
that cuts efficiently random coincidence noise.

After subtraction of the random coincidence background,
the positron annihilation lifetime spectra of inert gases would
represent the sums of exponentials with characteristic anni-
hilation rate constants λi

N(t) =

i=2∑

i=0

Ii e
−λi t,

where λ0 and I0 are, respectively, the rate and intensity of
two-quantum annihilation of the para-positronium compo-
nent (p-Ps), λ1 and I1 are the components of two-quantum
annihilation of the quasi-free positrons that have not formed
positronium (with so-called “shoulder” peculiarity [5]), and
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Fig. 2: Block-diagram of the lifetime spectrometer (fast-slow γn–
γa coincidences). ID is for Integral Discriminator (excludes γa
detection in the “start” channel); DD is for Differential Discrimi-
nator (restricts γn detection in the “stop” channel); SCM is for Slow
Coincidence Module; TAC is for Time-to-Amplitude Converter
(Δt→ amplitude); MPHA is multichannel pulse-height analyzer.

λ2 and I2 are those of three-quantum annihilation of the
orthopositronium component.

Experimental bounds accumulated in the two decades of
intense studies of the orthopositronium problem lead one
to the conclusion that the additional single-quantum mode
of orthopositronium annihilation involves not a photon but
rather a notoph (γ◦ is a zero-mass, zero-helicity particle
which is complementary in properties to the photon) [7]
and two mirror photons γ′ with a negative total energy of
3.6×10−4 eV [3, 5]:

o-Ps\ p-Ps′ (p-Ps′) −→ γ◦\2γ′.

This was how the broadening of the framework in which
the nature of the o-Ps anomalies could be analyzed (from
QED to SQED) and the phenomenology of the mechanism
of energy and momentum deficit compensation in a single-
quantum mode were first formulated [7].

Treated from the SM standpoint, however, detection of
a quantum of energy 1.022 MeV in the “stop” channel of
the fast-slow coincidences is forbidden (see the “lower” and
“upper” detection thresholds of ∼0.34÷0.51 MeV, respecti-
vely, in Fig. 2).

We now come back to the principal question of how the
additional realization of supersymmetry would be establish-
ed in the experiment.

Detection of a single-notoph o-Ps annihilation mode
should also be accompanied by observation of an energy

Fig. 3: Scheme of additional measurements: is there a connection
between gravity and electromagnetism?

deficit in the “stop” channel of the lifetime spectrometer:
indeed, single-notoph annihilation is identified in the scintil-
lator by the Compton-scattered electron e, which is bound in
the long-range atom “shell” in a “pair” eē with the “electron-
ic hole” ē (negative mass) in the “C-field/mirror Universe”
structure. Half of the notoph energy, ∼0.51 MeV, is transfer-
red to the e hole (ē) and, thus, “disappears” (anti-Compton
scattering). As a result, the additional single-notoph mode is
detected by the lifetime spectrometer in the “stop” channel
by Compton scattering of an electron e of energy 6 0.51 eV.

The experiment is in agreement with the phenomenology
proposed for quantitative description of the o-Ps anomalies
provided we assume that the additional single-notoph anni-
hilation mode contributes to the instantaneous coincidence
peak [5]. This means that one half of the intensity of the
long-lived lifetime spectral component obtained under “reso-
nance conditions” for neon of natural isotope abundance (I2)
transfers to the t∼ 0 region. An electric field of 7 kV/cm
applied parallel to the force of gravity should suppress the
additional mode and double the orthopositronium compo-
nent (2I2). Accordingly, in the Michigan experiment (non-
resonance conditions) an electric field oriented along the
force of gravity would bring about complete agreement be-
tween λT(exp) with the QED-calculated value λT(theor); and
the disagreement of about ΔλT/λT' 0.19÷0.14% found
previously (in experiments without electric field) should
again appear after the action of the electric field has been
neutralized (by applying it perpendicular to the force of grav-
ity) [3].

The term “anti-Compton scattering” has been borrowed
from J. L. Synge [8]; it appears appropriate to cite here an
excerpt from the abstract of this paper written by a celebrated
proponent of the theory of relativity:

“The purpose of this paper is to answer the following
question in terms of concepts of classical relativistic
mechanics: How is Compton scattering altered if we
replace the photon by a particle of zero rest mass
and negative energy, and apply the conservation of 4-
momentum? [ . . . ] Since particles with negative ener-
gies are not accepted in modern physics, it is perhaps
best to regard this work as a kinematical exercise in
Minkowskian geometry, worth recording because the
results are not obvious”.
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Observation of orthopositronium anomalies gives one
physical grounds to broaden the present-day SM. It now
appears appropriate to analyze “anti-Compton scattering”
in connection with the detection of notoph in the proposed
program of additional measurements, which aim at proving
the existence of a connection between gravity and electro-
magnetism [3].

We may add that the concept of the supersymmetric
version of a spin-1/2 quasi-particle and a hole as supersym-
metric partners has been discussed in the literature [9].

To sum up: one should carry out additional measure-
ments because the result, inconceivable in the frame of the
SM, becomes an expected result in the program of experi-
mentum crucis (Fig. 3).

A positive result of this crucial experiment would mean
the birth of new physics that would be complementary to the
Standard Model.
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In recent years, there are attempts to describe quantization of planetary distance
based on time-independent gravitational Schrödinger equation, including Rubcic &
Rubcic’s method and also Nottale’s Scale Relativity method. Nonetheless, there is
no solution yet for time-dependent gravitational Schrödinger equation (TDGSE). In
the present paper, a numerical solution of time-dependent gravitational Schrödinger
equation is presented, apparently for the first time. These numerical solutions
lead to gravitational Bohr-radius, as expected. In the subsequent section, we also
discuss plausible extension of this gravitational Schrödinger equation to include
the effect of phion condensate via Gross-Pitaevskii equation, as described recently
by Moffat. Alternatively one can consider this condensate from the viewpoint
of Bogoliubov-deGennes theory, which can be approximated with coupled time-
independent gravitational Schrödinger equation. Further observation is of course
recommended in order to refute or verify this proposition.

1 Introduction

In the past few years, there have been some hypotheses sug-
gesting that quantization of planetary distance can be derived
from a gravitational Schrödinger equation, such as Rubcic
& Rubcic and also Nottale’s scale relativity method [1, 3].
Interestingly, the gravitational Bohr radius derived from this
gravitational Schrödinger equation yields prediction of new
type of astronomical observation in recent years, i.e. extra-
solar planets, with unprecedented precision [2].

Furthermore, as we discuss in preceding paper [4], using
similar assumption based on gravitational Bohr radius, one
could predict new planetoids in the outer orbits of Pluto
which are apparently in good agreement with recent observa-
tional finding.. Therefore one could induce from this observ-
ation that the gravitational Schrödinger equation (and gravi-
tational Bohr radius) deserves further consideration.

In the meantime, it is known that all present theories
discussing gravitational Schrödinger equation only take its
time-independent limit. Therefore it seems worth to find out
the solution and implication of time-dependent gravitational
Schrödinger equation (TDGSE). This is what we will discuss
in the present paper.

First we will find out numerical solution of time-inde-
pendent gravitational Schrödinger equation which shall yield
gravitational Bohr radius as expected [1, 2, 3]. Then we ex-
tend our discussion to the problem of time-dependent grav-
itational Schrödinger equation.

In the subsequent section, we also discuss plausible ex-
tension of this gravitational Schrödinger equation to include the

effect of phion condensate via Gross-Pitaevskii equation,
as described recently by Moffat [5]. Alternatively one can
consider this phion condensate model from the viewpoint of
Bogoliubov-deGennes theory, which can be approximated
with coupled time-independent gravitational Schrödinger
equation. To our knowledge this proposition of coupled time-
independent gravitational Schrödinger equation has never
been considered before elsewhere.

Further observation is of course recommended in order
to verify or refute the propositions outlined herein.

All numerical computation was performed using Maple.
Please note that in all conditions considered here, we use
only gravitational Schrödinger equation as described in Rub-
cic & Rubcic [3], therefore we neglect the scale relativistic
effect for clarity.

2 Numerical solution of time-independent gravitational
Schrödinger equation and time-dependent gravita-
tional Schrödinger equation

First we write down the time-independent gravitational
Schrödinger radial wave equation in accordance with Rubcic
& Rubcic [3]:

d2R

dr2
+
2

r

dR

dr
+
8πm2E′

H2
R+

+
2

r

4π2GMm2

H2
R−

` (`+ 1)

r2
R = 0 .

(1)

When H , V , E′ represents gravitational Planck constant,
Newtonian potential, and the energy per unit mass of the
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orbiting body, respectively, and [3]:

H = h

(

2π f
Mmn

m2
0

)

, (2)

V (r) = −
GMm

r
, (3)

E′ =
E

m
. (4)

By assuming that R takes the form:

R = e−αr (5)

and substituting it into equation (1), and using simplified
terms only of equation (1), one gets:

Ψ = α2 e−αr −
2αe−αr

r
+
8πGMm2 e−αr

rH2
. (6)

After factoring this equation (7) and solving it by equat-
ing the factor with zero, yields:

RR = −
2
(
4πGMm2 −H2α

)

α2H2
= 0 , (7)

or
RR = 4πGMm2 −H2α = 0 , (8)

and solving for α, one gets:

a =
4π2GMm2

H2
. (9)

Gravitational Bohr radius is defined as inverse of this
solution of α, then one finds (in accordance with Rubcic &
Rubcic [3]):

r1 =
H2

4π2GMm2
, (10)

and by substituting back equation (2) into (10), one gets [3]:

r1 =

(
2πf

αc

)2
GM . (11)

Equation (11) can be rewritten as follows:

r1 =
GM

ν20
, (11a)

where the “specific velocity” for the system in question can
be defined as:

ν0 =

(
2πf

αc

)−1
= αg c . (11b)

The equations (11a)-(11b) are equivalent with Nottale’s
result [1, 2], especially when we introduce the quantization
number: rn= r1n2 [3]. For complete Maple session of these
all steps, see Appendix 1. Furthermore, equation (11a) may
be generalised further to include multiple nuclei, by rewrit-
ing it to become: r1=(GM)/v2 ⇒ r1=(GΣM)/v

2, where
ΣM represents the sum of central masses.

Solution of time-dependent gravitational Schrödinger

equation is more or less similar with the above steps, except
that we shall take into consideration the right hand side
of Schrödinger equation and also assuming time dependent
form of r:

R = e−αr(t) . (12)

Therefore the gravitational Schrödinger equation now
reads:

d2R

dr2
+
2

r

dR

dr
+
8πm2E′

H2
R+

+
2

r

4π2GMm2

H2
R−

` (`+ 1)

r2
R = H

dR

dt
,

(13)

or by using Leibniz chain rule, we can rewrite equation
(15) as:

−H
dR

dr (t)

dr (t)

dt
+
d2R

dr2
+
2

r

dR

dr
+
8πm2E′

H2
R+

+
2

r

4π2GMm2

H2
R−

` (`+ 1)

r2
R = 0 .

(14)

The remaining steps are similar with the aforementioned
procedures for time-independent case, except that now one
gets an additional term for RR:

RR′ = H3α

(
d

dt
r(t)

)

r(t)− α2r(t)H2+

+8πGMm2 − 2H2α = 0 .

(15)

At this point one shall assign a value for d
dt r(t) term,

because otherwise the equation cannot be solved. We choose
d
dt r(t)= 1 for simplicity, then equation (15) can be rewritten
as follows:

RR′ : =
rH3α

2
+
rH2α2

2
+4π2GMm2−H2α = 0 . (16)

The roots of this equation (16) can be found as follows:

a1 : = −r2H+2H+
√
r4H4−4H3r+4H2−32rGMm2π2

2rH
,

a2 : = −r2H+2H−
√
r4H4−4H3r+4H2−32rGMm2π2

2rH
.

(17)

Therefore one can conclude that there is time-dependent
modification factor to conventional gravitational Bohr radius
(10). For complete Maple session of these steps, see Ap-
pendix 2.

3 Gross-Pitaevskii effect. Bogoliubov-deGennes appro-
ximation and coupled time-independent gravitational
Schrödinger equation

At this point it seems worthwhile to take into consideration a
proposition by Moffat, regarding modification of Newtonian
acceleration law due to phion condensate medium, to include
Yukawa type potential [5, 6]:

a(r) = −
G∞M

r2
+K

exp (−μφ r)
r2

(1 + μφ r) . (18)
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Therefore equation (1) can be rewritten to become:

d2R

dr2
+
2

r

dR

dr
+
8πm2E′

H2
R+

+
2

r

4π2
(
GM −K exp(−μφ r)(1 + μφ r)

)
m2

H2
R−

−
`(`+ 1)

r2
R = 0 ,

(19)

or by assuming μ = 2μ0 = μ0r for the exponential term,
equation (19) can be rewritten as:

d2R

dr2
+
2

r

dR

dr
+
8πm2E′

H2
R+

+
2

r

4π2
(
GM−Ke−2μ0(1+μ0r)

)
m2

H2
R−

`(`+1)

r2
R=0 .

(20)

Then instead of equation (8), one gets:

RR′′=8πGMm2−2H2α−8π2m2Ke−μ0(1+μ)= 0 . (21)

Solving this equation will yield a modified gravitational
Bohr radius which includes Yukawa effect:

r1 =
H2

4π2(GM −Ke−2μ0)m2
(22)

and the modification factor can be expressed as ratio between
equation (22) and (10):

χ =
GM

(GM −Ke−2μ0)
. (23)

(For complete Maple session of these steps, see Appendix 3.)
A careful reader may note that this “Yukawa potential

effect” as shown in equation (20) could be used to explain
the small discrepancy (around ±8%) between the “observed
distance” and the computed distance based on gravitational
Bohr radius [4, 6a]. Nonetheless, in our opinion such an
interpretation remains an open question, therefore it may be
worth to explore further.

There is, however, an alternative way to consider phion
condensate medium i.e. by introducing coupled Schrödinger
equation, which is known as Bogoliubov-deGennes theory
[7]. This method can be interpreted also as generalisation of
assumption by Rubcic-Rubcic [3] of subquantum structure
composed of positive-negative Planck mass. Therefore,
taking this proposition seriously, then one comes to hypo-
thesis that there shall be coupled Newtonian potential, in-
stead of only equation (3).

To simplify Bogoliubov-deGennes equation, we neglect
the time-dependent case, therefore the wave equation can be
written in matrix form [7, p.4]:

[A] [Ψ] = 0 , (24)

where [A] is 2×2 matrix and [Ψ] is 2×1 matrix, respectively,
which can be represented as follows (using similar notation

with equation 1):

[
A
]
=






8πGMm2e−αr

rH2
α2e−αr−

2αe−αr

r

α2e−αr−
2αe−αr

r
−
8πGMm2 e−αr

rH2




 (25)

and
[
Ψ
]
=

(
f (r)

g (r)

)

. (26)

Numerical solution of this matrix differential equation
can be found in the same way with the previous methods,
however we leave this problem as an exercise for the readers.

It is clear here, however, that Bogoliubov-deGennes ap-
proximation of gravitational Schrödinger equation, taking
into consideration phion condensate medium will yield non-
linear effect, because it requires solution of matrix differen-
tial equation∗ (21) rather than standard ODE in conventional
Schrödinger equation (or time-dependent PDE in 3D-
condition). This perhaps may explain complicated structures
beyond Jovian Planets, such as Kuiper Belt, inner and outer
Oort Cloud etc. which of course these structures cannot be
predicted by simple gravitational Schrödinger equation. In
turn, from the solution of (21) one could expect that there are
numerous undiscovered celestial objects in the Oort Cloud.

Further observation is also recommended in order to
verify and explore further this proposition.

4 Concluding remarks

In the present paper, a numerical solution of time-dependent
gravitational Schrödinger equation is presented, apparently
for the first time. This numerical solution leads to gravita-
tional Bohr-radius, as expected.

In the subsequent section, we also discuss plausible ex-
tension of this gravitational Schrödinger equation to include
the effect of phion condensate via Gross-Pitaevskii equation,
as described recently by Moffat. Alternatively one can con-
sider this condensate from the viewpoint of Bogoliubov-
deGennes theory, which can be approximated with coupled
time-independent gravitational Schrödinger equation.

It is recommended to conduct further observation in order
to verify and also to explore various implications of our pro-
positions as described herein.
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Appendix 1 Time-independent gravitational Schrödinger equation

> restart;
> with (linalg);
> R:= exp (−(alpha*r));

R := e
−αr

> D1R:=diff (R,r); D2R:=diff (D1R,r);

D1R := −αe−αr

D2R := −α2 e−αr

> SCHEQ1:=D2R+D1R*2/r+8*piˆ2*m*E*R/hˆ2+8*piˆ2*G*M*mˆ2*R/(r*hˆ2)−
l*(l+1)*R/rˆ2=0;
> XX1:=factor (SCHEQ1);
> #Using simplified terms only from equation (A*8, of Rubcic & Rubcic, 1998)
> ODESCHEQ:=D2R+D1R*2/r+8*piˆ2*G*M*mˆ2*R/(r*hˆ2)=0;

ODESCHEQ := α
2
e
−αr −

2αe−α r

r
+
8π2GMm2e−α r

rH2
= 0

> XX2:=factor (SCHEQ2);

XX2 :=
e−αr

(
α2rH2 − 2H2α+ 8π2GMm2

)

rH2
= 0

> RR:= solve (XX2, r);

RR := −
2(4π2GMm2 −H2α)

α2H2

> #Then solving for RR=0, yields:

> SCHEQ3:=4*piˆ2*G*M*mˆ2−hˆ2*alpha=0;

SCHEQ3 := 4π2GMm2 −H2α = 0

> a:= solve (SCHEQ3, alpha);

a :=
4π2GMm2

H2

> #Gravitational Bohr radius is defined as inverse of alpha:
> gravBohrradius:=1/a;

rgravBohr :=
H2

4π2GMm2

Appendix 2 Time-dependent gravitational Schrödinger equation

> #Solution of gravitational Schrodinger equation (Rubcic, Fizika 1998);
> restart;
> #with time evolution (Hagendorn’s paper);
> S:=r(t); R:=exp(−(alpha*S)); R1:=exp(−(alpha*r));

S := r(t)

R := e
−αr

> D4R:=diff(S,t); D1R:=−alpha*exp(−(alpha*S)); D2R:=−alphaˆ2*
exp(−(alpha*S)); D5R:=D1R*D4R;

D4R :=
d

dt
r(t)

D1R := −αe−αr(t)

D2R := −α2 e−αr(t)

D1R := −αe−αr(t)
d

dt
r(t)

> #Using simplified terms only from equation (A*8)
> SCHEQ3:=−h*D5R+D2R+D1R*2/S+8*piˆ2*G*M*mˆ2*R/(S*hˆ2);
> XX2:=factor(SCHEQ3);

XX2 :=
e−αr(t)

(
H3α

dr(t)
dt r(t)−α2r(t)H2−2H2α+8π2GMm2

)

r(t)H2
= 0

> #From standard solution of gravitational Schrodinger equation, we know (Rubcic,
Fizika 1998):
> SCHEQ4:=4*piˆ2*G*M*mˆ2−hˆ2*alpha;

SCHEQ4 := 4π
2
GMm

2 −H2
α

> #Therefore time-dependent solution of Schrodinger equation may introduce new
term to this gravitational Bohr radius.
> SCHEQ5:=(XX2*(S*hˆ2)/(exp(−(alpha*S))))−2*SCHEQ4;

ODESCHEQ5 := H
3
α
dr(t)

dt
r(t)− α2r(t)H2

> #Then we shall assume for simplicity by assigning value to d[r(t)]/dt:
> D4R:=1;
> Therefore SCHEQ5 can be rewritten as:
> SCHEQ5:= Hˆ3*alpha*r/2+alphaˆ2*r*Hˆ2/2−4*piˆ2*G*M*mˆ2−Hˆ2*alpha=0;

SCHEQ5 :=
rH3α

2
+
rH2α2

2
+ 4π

2
GMm

2 −H2
α = 0

> Then we can solve again SCHEQ5 similar to solution of SCHEQ4:
> a1:=solve(SCHEQ5,alpha);

a1 :=
−r2H + 2H +

√
r4H4 − 4H3r + 4H2 − 32rGMm2π2

2rH

a2 :=
−r2H + 2H −

√
r4H4 − 4H3r + 4H2 − 32rGMm2π2

2rH

> #Therefore one could expect that there is time-dependent change of gravitational
Bohr radius.
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Appendix 3 Time-independent gravitational Schrödinger equation
with Yukawa potential [5]

> #Extension of gravitational Schrodinger equation (Rubcic, Fizika 1998);
> restart;
> #departure from Newton potential;
> R:=exp (−(alpha*r));

R := e
−αr

> D1R:=diff (R,r); D2R:=diff (D1R,r);

D1R := −αe−αr

D2R := −α2 e−αr

> SCHEQ2:=D2R+D1R*2/r+8*piˆ2*(G*M−K*exp (−2*mu)*(1+mu*r))*mˆ2*R/
(r*hˆ2)=0;

ODESCHEQ := α2 e−αr −
2αe−α r

r
+

+
8π2(GM −Ke−2μ(1 + μr))m2e−α r

rH2
= 0

> XX2:=factor(SCHEQ2);
> RR1:=solve(XX2,r);

RR1 := −
2(−H2α+ 4π2GMm2 − 4π2m2Ke−2μ)

−α2H2 + 8π2m2Ke−2μ

> #from standard gravitational Schrodinger equation we know:
> SCHEQ3:=4*piˆ2*G*M*mˆ2−hˆ2*alpha=0;
> a:=solve(SCHEQ3, alpha);
> #Gravitational Bohr radius is defined as inverse of alpha:
> gravBohrradius:=1/a;

rgravBohr :=
H2

4π2GMm2

> #Therefore we conclude that the new terms of RR shall yield new terms (YY) into
this gravitational Bohr radius:
> PI:= (RR*(alphaˆ2*hˆ2)−(−8*piˆ2*G*M*mˆ2+2*hˆ2*alpha));
> #This new term induced by pion condensation via Gross-Pitaevskii equation may
be observed in the form of long-range potential effect. (see Moffat J., arXiv: astro-
ph/0602607, 2006; also Smarandache F. and Christianto V. Progress in Physics, v. 2,
2006, & v. 1, 2007, www.ptep-online.com)
> #We can also solve directly:
> SCHEQ5:=RR*(alphaˆ2*hˆ2)/2;

SCHEQ5 :=
α2H2(−H2α+ 4π2GMm2 − 4π2m2Ke−2μ)

−α2H2 + 8π2m2Ke−2μ

> a1:=solve(SCHEQ5, alpha);

a1 := 0, 0,
4π2m2(GM −Ke−2μ)

H2

> #Then one finds modified gravitational Bohr radius in the form:
> modifgravBohrradius:=1/(4*piˆ2*(G*M−K*exp (−2*mu))*mˆ2/hˆ2);

rmodified.gravBohr :=
H2

4π2m2(GM −Ke−2μ)

> #This modification can be expressed in chi-factor:
> chi:=modifgravBohrradius/gravBohrradius;

χ :=
GM

GM −Ke−2μ
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In the light of some recent hypotheses suggesting plausible unification of thermo-
statistics where Fermi-Dirac, Bose-Einstein and Tsallis statistics become its special
subsets, we consider further plausible extension to include non-integer Hausdorff
dimension, which becomes realization of fractal entropy concept. In the subsequent
section, we also discuss plausible extension of this unified statistics to include
anisotropic effect by using quaternion oscillator, which may be observed in the
context of Cosmic Microwave Background Radiation. Further observation is of course
recommended in order to refute or verify this proposition.

1 Introduction

In recent years, there have been some hypotheses suggesting
that the spectrum and statistics of Cosmic Microwave Back-
ground Radiation has a kind of scale invariant character [1],
which may be related to non-integer Hausdorff dimension.
Interestingly, in this regard there is also proposition some-
time ago suggesting that Cantorian spacetime may have deep
link with Bose condensate with non-integer Hausdorff dim-
ension [2]. All of these seem to indicate that it is worth to
investigate further the non-integer dimension effect of Bose-
Einstein statistics, which in turn may be related to Cosmic
Microwave Background Radiation spectrum.

In the meantime, some authors also consider a plausible
generalization of known statistics, i.e. Fermi-Dirac, Bose-
Einstein, and Tsallis statistics, to become more unified stat-
istics [3, 4]. This attempt can be considered as one step for-
ward from what is already known, i.e. to consider anyons as
a generalization of bosons and fermions in two-dimensional
systems [5, p. 2] Furthermore, it is known that superfluidity
phenomena can also be observed in Fermi liquid [6].

First we will review the existing procedure to generalize
Fermi-Dirac, Bose-Einstein, and Tsallis statistics, to become
more unified statistics [3, 4]. And then we explore its plau-
sible generalization to include fractality of Tsallis’ non-
extensive entropy parameter.

In the subsequent section, we also discuss plausible ex-
tension of this proposed unified statistics to include aniso-
tropic effect, which may be observed in the context of Cos-
mic Microwave Background Radiation. In particular we con-
sider possibility to introduce quaternionic momentum. To
our knowledge this proposition has never been considered
before elsewhere.

Further observation is of course recommended in order
to verify or refute the propositions outlined herein.

2 Unified statistics including Fermi-Dirac, Bose-
Einstein, and Tsallis statistics

In this section we consider a different theoretical framework
to generalize Fermi-Dirac and Bose-Einstein statistics, from
conventional method using anyons, [5] in particular because
this conventional method cannot be generalized further to
include Tsallis statistics which has attracted some attention
in recent years.

First we write down the standard expression of Bose
distribution [9, p. 7]:

n̄(εi) =
1

exp
(
β (εi − μ)

)
− 1

, (1)

where the harmonic energy levels are given by [9, p. 7]:

εi =

(

nx + ny + nz +
3

2

)

h̄ω0 . (2)

When we assume that bosons and fermions are g-ons
obeying fractional exclusion statistics, then we get a very
different picture. In accordance with [3], we consider the
spectrum of fractal dimension (also called generalized Renyi
dimension [11]):

Dq = lim
δ→0

1

q − 1
lnΩq
ln δ

, (3)

(therefore the spectrum of fractal dimension is equivalent
with Hausdorff dimension of the set A [11]).

Then the relation between the entropy and the spectrum
of fractal dimension is given by: [3]

Sq = −KB lim
δ→0

ln δDq , (4)

where KB is the Boltzmann constant.
The spectrum of fractal dimension may be expressed in

terms of p:
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Dq ≈
1

q − 1

k∑

i=1

p
q
i − 1

ln δ
. (5)

Then, substituting equation (6) into (4), we get the Tsallis
non-extensive entropy [3]:

Sq = −KB

k∑

i=1

p
q
i − 1

q − 1
. (6)

After a few more assumptions, and using g-on notation
[3], i.e. g=1 for generalized Fermi-Dirac statistics and g=0
for generalised Bose-Einstein statistics, then one gets the
most probable distribution for g-ons [3]:

n̄k (εi, g, q) =
1

(
1− (q − 1)β (εi − μ)

) 1
q−1 + 2g − 1

, (7)

Which gives standard Planck distribution for μ=0, g=0
and q=1 [3, 9]. In other words, we could expect that g-
ons gas statistics could yield more generalized statistics than
anyons’.

To introduce further generality of this expression (8), one
may consider the parameter q as function of another non-
integer dimension, therefore:

n̄k (εi, g, q,D)=
1

(
1−(qD−1)β(εi−μ)

) 1

qD−1+2g−1
, (8)

where D=1 then equation (9) reduces to be (8).
Of course, the picture described above will be different

if we introduce non-standard momentum [5, p. 7]:

p2 = −
d2

dx2
+

λ

x2
. (9)

In the context of Neutrosophic logic as conceived by one
of these writers [8], one may derive a proposition from the
arguments presented herein, i.e. apart from common use of
anyons as a plausible generalization of fermion and boson,
perhaps an alternative method for generalization of fermion
and boson can be described as follows:

1. If we denote fermion with (f) and boson with (b), then
it follows that there could be a mixture composed of
both (f) and (b)→ (f)∩ (b), which may be called as
“anyons”;

2. If we denote fermion with (f) and boson with (b), and
because g=1 for generalized Fermi-Dirac statistics
and g=0 for generalised Bose-Einstein statistics, then
it follows that the wholeness of both (f) and (b)→
(f)∪ (b), which may be called as “g-on”;

3. Taking into consideration of possibility of “neither-
ness”, then if we denote non-fermion with (¬f) and
non-boson with (¬b), then it follows that there shall
be a mixture composed of both (¬f) and also (¬b)→
(¬f)∩ (¬b), which may be called as “feynmion” (after
physicist the late R. Feynman);

4. Taking into consideration of possibility of “neither-
ness”, then it follows that the wholeness of both (¬f)
and (¬b)→ (¬f)∪ (¬b), which may be called as “anti-
g-on”.

Therefore, a conjecture which may follow from this propo-
sition is that perhaps in the near future we can observe some
new entities corresponding to g-on condensate or feynmion
condensate.

3 Further extension to include anisotropic effect

At this section we consider the anisotropic effect which may
be useful for analyzing the anisotropy of CMBR spectrum,
see Fig. 1 [13].

For anisotropic case, one cannot use again equation (2),
but shall instead use [7, p. 2]:

εi=

(

nx+
1

2

)

h̄ωx+

(

ny+
1

2

)

h̄ωy+

(

nz+
1

2

)

h̄ωz , (10)

where nx, ny , nz are integers and >0. Or by neglecting
the 1/2 parts and assuming a common frequency, one can
re-write (10) as [7a, p.1]:

εi = (nxr + nys+ nzt) h̄ω0 , (11)

where r, s, t is multiplying coefficient for each frequency:

r =
ωx
ω0

, s =
ωy
ω0

, t =
ωz
ω0

. (12)

This proposition will yield a different spectrum com-
pared to isotropic spectrum by assuming isotropic harmonic
oscillator (2). See Fig. 2 [7a]. It is interesting to note here
that the spectrum produced by anisotropic frequencies yields
number of peaks more than 1 (multiple-peaks), albeit this is
not near yet to CMBR spectrum depicted in Fig. 1. None-
theless, it seems clear here that one can expect to predict the
anisotropy of CMBR spectrum by using of more anisotropic
harmonic oscillators.

In this regard, it is interesting to note that some authors
considered half quantum vortices in px+ ipy superconduc-
tors [14], which indicates that energy of partition function
may be generalized to include Cauchy plane, as follows:

E = px c+ ipyc ≈ h̄ωx + ih̄ωy , (13)

or by generalizing this Cauchy plane to quaternion number
[12], one gets instead of (13):

Eqk = h̄ω + ih̄ωx + j h̄ωy + kh̄ωz , (14)

which is similar to standard definition of quaternion number:

Q ≡ a+ bi+ cj + dk . (15)

Therefore the partition function with anisotropic harmon-
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Fig. 1: Anisotropy of CMBR (after Tkachev [13]). Left panel: comparison of CMB power spectra in the models with adiabatic and
isocurvature initial perturbations. Right panel: adiabatic power spectra in comparison with spectra appearing in models seeded by
topological defects. In this panel some older, pre-WMAP, data are also shown.

ic potential can be written in quaternion form. Therefore in-
stead of (11), we get:

εi =
(
nxr+nys+nzt+inxr+jnys+knzt

)
h̄ω0 , (16)

which can be written as:

εi = (1 + qk)(nk rk) h̄ω0 , (17)

where k=1, 2, 3 corresponding to index of quaternion num-
ber i, j, k. While we don’t obtain numerical result here, it
can be expected that this generalisation to anisotropic quater-
nion harmonic potential could yield better prediction, which
perhaps may yield to exact CMBR spectrum. Numerical so-
lution of this problem may be presented in another paper.

This proposition, however, may deserve further conside-
rations. Further observation is also recommended in order to
verify and also to explore various implications of.

4 Concluding remarks

In the present paper, we review an existing method to gene-
ralize Fermi-Dirac, Bose-Einstein, and Tsallis statistics, to
become more unified statistics. And then we explore its
plausible generalization to include fractality of Tsallis non-
extensive entropy parameter .

Therefore, a conjecture which may follow this proposi-
tion is that perhaps in the near future we can observe some
new entities corresponding to g-on condensate or feynmion
condensate.

In the subsequent section, we also discuss plausible ex-
tension of this proposed unified statistics to include aniso-
tropic effect, which may be observed in the context of Cos-
mic Microwave Background Radiation. In particular we con-
sider possibility to introduce quaternionic harmonic oscilla-
tor. To our knowledge this proposition has never been con-
sidered before elsewhere.

Fig. 2: Spectrum for anisotropic
harmonic oscillator potential
(after Ligare [7a]).

It is recommended to conduct further observation in
order to verify and also to explore various implications of
our propositions as described herein.
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We have derived in this paper, the relationship that needs to be satisfied when length
measurements are expressed in two different units. Interesting relationships emerge
when the smaller of the two units chosen is a function of time. We relate these results to
the expected periodicities in the observed data when a system of objects are revolving
around a common center of mass. We find that these results are highly intriguing and
can equally well account for some of the major results in the field of astrophysics.

1 Introduction

In an earlier paper (Rajamohan and Satya Narayanan [1])
we derived the condition that needs to be satisfied for signal
from a relatively stationary emitter to meet an observer mov-
ing transverse to the line of sight. A receiver moving across
the line of sight is equivalent of the receiver accelerating
away along the line of sight from the emitter. In this paper,
we have derived the period and period derivative for this
equivalent situation.

It is well known that signals with uniform period Pe from
an emitter will arrive at a receiver, moving with uniform
relative velocity V along the line of sight, with a period P
given by the equation

P =
Pe

(1− V/C)
,

where C is the signal speed. Instead if the receiver or the
emitter were to be accelerating with a as the value of accele-
ration, it is generally assumed that the observed rate of
change of period Ṗ per unit time is governed by the equation
(Shklovski [2])

Ṗ =
aP

C
. (1)

The above equation does not
take into account the relation-
ship between space intervals and
time intervals properly. When
acceleration is involved, the time
interval Δt that corresponds to
a given space interval Δx is a
function of time. That is, the space
interval Δx corresponds to smaller
and smaller time interval (along the
direction of motion) as the velocity
of the accelerating receiver is a
function of time.

The space-time relationship
when properly taken into account
leads to an additional term which

Q

Q

A

O

D

R

α

Fig. 1: Schematic repre-
sentation of the observer
and the emitter meeting
at a point.

is enormously larger than that given by equation (1).

2 Relationship between time, length and the unit of
length-measurement

Consider the general case when the observer is at a distance
A (km) from the emitter moving with uniform velocity V at
an angle α to the line of sight as shown in Figure 1. Let the
emitter at position O emit signals at regular intervals of Pe
seconds.

At time t=0, let a signal start from O when the observer
is at Q (at t=0). Let this signal meet the observer at R
at time t. Let the initial distance OQ=A at t=0 and the
distance OR=D at time t.

From triangle OQR

(OR)2 = (OQ)2 + (QR)2 − 2(OQ)(QR) cosα

or

D2=A2+V 2t2−2AV cosαt=A2
[

1+
V 2t2

A2
−
2V cosαt

A

]

,

D = A

[

1 +
V 2t2

A2
−
2V cosαt

A

]1
2

≈ A+
1

2

V 2t2

A
−

−V cosαt−
1

2

V 2 t2cos2α

A
=A−V cosαt+

1

2

V 2sin2α

A
t2.

Therefore

D − A = −V cosαt+
1

2

V 2 sin2α

A
t2.

We can rewrite D − A as

D − A = ut+
1

2
at2;

u is positive when α is greater than 90◦ and negative when α
is less than 90◦. However, a=V 2sin2α/A is always positive.
If the angle α were to be 0 or 180◦, the observer will be
moving uniformly along the line of sight and the signals
from O will be equally spaced in time. If the observer were
to move in a circular orbit around the emitter then too, the
period observed would be constant. In all other cases the
acceleration due to transverse component that leads to the
period derivative will always be positive.

Draw a circle with A as radius. Let it intercept the line
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OR at Q′. Therefore OQ=OQ′. Let the signal from O
reach Q′ at time te

D − A = Q′R = C (t− te) = ut+
1

2
at2.

The signal from O meeting the uniformly moving ob-
server along QR is equivalent to the same signal chasing an
observer from Q′ to R with initial velocity u and accele-
ration a

C (t− te) = ut+
1

2
at2 =

= u
[
te + (t− te)

]
+
1

2
a
[
te + (t− te)

]2
=

= ute +
1

2
at2e + (u+ ate)(t− te) +

1

2
a(t− te)

2.

Let C (t− te)=X and ute+ 1
2 at

2
e =Xe. The space in-

tervalXe containsN signals where N =Xe/CPe which will
get folded in the space interval X −Xe as the train of signals
moving along OR will be spaced at CPe km.

Therefore

t− te =
X

C
=
Xe
C
+
u+ ate
C

(t− te) +
1

2

a

C
(t− te)

2.

Hence the average observed period in the time interval
(t− te) is

P̄ =
(t− te)
N

=
(t− te)CPe

Xe
=

X

Xe
Pe ,

P̄ =
X

Xe
Pe = Pe +

u(t− te)CPe
CXe

+
ate(t− te)CPe

CXe
+

+
1
2 a(t− te)

2CPe

CXe
,

P̄ = Pe +
u

C

X

Xe
Pe +

ate
C

X

Xe
Pe +

1

2

a(t− te)
C

X

Xe
Pe .

For N signals in the time interval (t− te), we can write

(t− te) = PiN +
1

2
ṖPiN

2,

where Pi is the initial period. Hence

P̄ =
t− te
N

= Pi +
1

2
ṖPiN .

Comparing this with

P̄ = Pe +
u

C

X

Xe
Pe +

ate
C

X

Xe
Pe

[

1 +
1

2

t− te
te

]

we derive

P̄ = Pi +
ate
C

X

Xe
Pe

[

1 +
1

2

(t− te)
te

]

as Pi=Pe/(1−u/C). Hence 1
2 ṖN ≈

ate
C

[
1+ 1

2
(t−te)
te

]
or

Ṗ =
2ate
CN

[

1 +
1

2

t− te
te

]

=
2ate(CPe)

CXe

[

1 +
1

2

t− te
te

]

.

Fig. 2: log Ṗ /P plotted as a function of logD.

As |Xe|= |u|te+ 1
2 at

2
e,

Ṗ ≈
2a

|u|
+
aPe
C

.

The second term on the right hand side of the above
equation is the Shklovski’s [2] solution which is u/C times
smaller than the first term

Ṗ =
2ate
Xe

Pe

(
1+

u

C

)
=
2ate
|u|

(
1+

u

C

)
≈
2Pe
te

(
1+

u

C

)
.

The acceleration a due to transverse component of veloc-
ity is always positive and hence Ṗ will be positive even
when the observer is moving toward the emitter at an angle
α less than 90◦.

3 The period derivatives of pulsars

If Vτ is the relative transverse velocity between the Sun
and the Pulsar, then the relative acceleration is V 2τ/d. As√
2d/Vτ = t is the relative time of free fall over π

2 radians,
we can write Ṗ =2Pe/t= 1

2Vτ/d=
π
2Vτ/d. This is of the

order of the average observed period derivate of pulsars.
If we assume that an inverse square law is applicable the
average observed period derivatives of pulsars must increase
as a function of distance from the Sun.

Figure 2, is a plot of log Ṗ /P versus logD of all pulsars
in the period range 0.1 to 3 seconds and in the distance
range logD=−0.3 to +1.3. The data is taken from Taylor
et al. [3]. Table 1 gives the values of log Ṗ /P averaged
in different distance bins. N is the number of pulsars in
each bin. Leaving the two points that are slightly further
away from the mean relationship, the best fit straight line
Y =mX + k gives a slope of 0.872 and the constant as
−15.0506. The constant k gives the value of

√
2Vτ/d at

an average distance of the Sun. In short we expect that this
should more or less correspond with the accepted values for
the Sun’s motion around the galactic center. Taking V�=210
km×s−1 and d�= 8 kpc , we get

√
2V�/d�= 1.24×10−15

and the value from k is 1.12×10−15.
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log D log Ṗ /P N

−0.25 −15.3353 10
−0.15 −15.1632 17
−0.05 −15.6460 12

0.05 −15.0711 16
0.15 −15.0231 27
0.25 −14.6667 38
0.35 −14.6620 46
0.45 −14.6205 51
0.55 −14.7416 78
0.65 −14.5052 66
0.75 −14.2172 49
0.85 −14.1072 51
0.95 −14.1509 30
1.05 −14.4594 12
1.15 −14.0552 10
1.25 −14.6030 3

Table 1: log Ṗ /P as a func-
tion of logD and the number
of pulsars in each bin.

This is given more as an
illustration of the application
of this effect. The real (true)
spin down rates of the large
majority of pulsars, may be
much lower than the canonical
value of 3×10−15. Hence the
average observed period deri-
vatives of pulsars is due to
the differential galactic rotation
effect. This result is fully in
conformity with the observed
relationship between transverse
motion and Ṗ by Anderson
and Lyne [4] and Cordes [5]
and that the correlation found
by them cannot be accounted
for purely by selection effects
alone (Stollman and Van den
Heuvel [6]).

4 Bending of light

As the photon angle accelerates in the gravitational field of
the Sun, the angle Δφ at which the light from the limb of the
Sun would be seen to meet the observer is the instantaneous
value of the second derivative of α with respect to time at
the distance of the earth. This is given by

Δφ =
π

2

d2α

dt2
t (1s) =

π

2

2CVτ
d2

(1s)
d

C
=
πVτ (1s)

d
,

where π
2 is introduced as a scale factor to relate the free-fall

height to the actual arc length that an object traverses in a
gravitational field; Vτ is the relative transverse velocity and
d is the distance between the Sun and the Earth. This will
result in an observed bending of light as

Δφ =
πVτ (1s)

d
=

407π

1.5×108 radians
= 1.76 arc sec.

5 Precession of Mercury’s orbit

The arrival time acceleration when not taken into account
will appear as though the orbit is precessing. A good exam-
ple is the precesion of Mercury’s orbit. Treating Mercury as
a rotating object with a period equal to its synodic period
Ps= 115.88 days,

Δω =
πVτ
d

=
3.14×18.1

0.917×108
= 61.98×10−8 rad,

which is the change per synodic period. Hence,

Δω

Ps
=

61.98×10−8

115.88×86400
=

= 6.19×10−14 rad×s−1 = 40 arc sec/century.

6 Binary pulsars

In the case of a binary pulsar, the relative transverse motion
of the common centre of mass of the binary system and the
Sun will lead to a secular increase in the period. Over and
above this effect, the acceleration of the pulsar in the grav-
itational field of its companion will lead to further periodic
deceleration in the arrival times. In analogy with Mercury,
we can therefore expect a similar phenomenon in the case
of binary pulsars. That is, the orbit might appear to precess
if the arrival time delays caused by the pulsar acceleration
in the gravitational field of the companion is not taken into
account. The apparent precesion per pulse period Pe will be
(Rajamohan and Satya Narayanan [1])

Δω =
π

4

V 2

a2
P 2e .

Approximating the orbit to be circular and expressing the
above equation in terms of well determined quantities,

Δω ≈ π3P 2e /P
2
b ,

Pb is the orbital period and a is the semi-major axis of the
orbit. Introducing appropriate values for PSR1913+16, we
find

Δω ≈ 1.386×10−10 rad/pulse ≈ 4.24◦ yr−1,

which is in very good agreement with the observed value of
4.2261◦ yr−1 by Taylor and Weisberg [7]. For PSR1534+12
we find

Δω ≈ 0.337×10−10 rad/pulse ≈ 1.61◦ yr−1,

while the observed value is 1.756◦ yr−1 (Taylor et al. [8]).

Acknowledgements

We are thankful to Dr. Baba Verghese for his help in produ-
cing the Table and the Figures in this paper.

Submitted on February 02, 2007
Accepted on February 06, 2007

References

1. Rajamohan R. and Satya Narayanan A. Speculations in Sci-
ence and Technology, 1995, v. 18, 51.

2. Shklovski I. S. Soviet Astron., 1969, v. 13, 562.

3. Taylor J. H., Manchester R. N. and Lyne A. G. Catalogue of
706 pulsars, 1995 (http://pulsar.princeton.edu).

4. Anderson B. and Lyne A. G. Nature, 1983, v. 303, 597.

5. Cordes J. M. Astrophys. J., 1986, v. 311, 183.

6. Stollman G. M. and Van den Heuvel E. P. J. Astron. & Astro-
phys, 1986, v. 162, 87.

7. Taylor J. H. and Weisberg J. M. Astroph. J., 1982, v. 253, 908.

8. Taylor J. H., Wolszan A., Damour T. and Weisberg J. M.
Nature, 1992, v. 355, 132.

R. Rajamohan and A. Satya Narayanan. On the Rate of Change of Period for Accelerated Motion in Astrophysics 67



Volume 2 PROGRESS IN PHYSICS April, 2007

Gravitation on a Spherically Symmetric Metric Manifold

Stephen J. Crothers

Queensland, Australia
E-mail: thenarmis@yahoo.com

The usual interpretations of solutions for Einstein’s gravitational field satisfying
the spherically symmetric condition contain anomalies that are not mathematically
permissible. It is shown herein that the usual solutions must be modified to account
for the intrinsic geometry associated with the relevant line elements.

1 Introduction

The standard interpretation of spherically symmetric line
elements for Einstein’s gravitational field has not taken into
account the fundamental geometrical features of spherical
symmetry about an arbitrary point in a metric manifold. This
has led to numerous misconceptions as to distance and radius
that have spawned erroneous theoretical notions.

The nature of spherical symmetry about an arbitrary point
in a three dimensional metric manifold is explained herein
and applied to Einstein’s gravitational field.

It is plainly evident, res ipsa locquitur, that the standard
claims for black holes and Big Bang cosmology are not con-
sistent with elementary differential geometry and are conse-
quently inconsistent with General Relativity.

2 Spherical symmetry of three-dimensional metrics

Denote ordinary Efcleethean∗ 3-space by E3. Let M3 be
a 3-dimensional metric manifold. Let there be a one-to-one
correspondence between all points of E3 and M3. Let the
point O∈E3 and the corresponding point inM3 be O′. Then
a point transformation T of E3 into itself gives rise to a
corresponding point transformation ofM3 into itself.

A rigid motion in a metric manifold is a motion that
leaves the metric d`′2 unchanged. Thus, a rigid motion
changes geodesics into geodesics. The metric manifold M3

possesses spherical symmetry around any one of its points
O′ if each of the ∞3 rigid rotations in E3 around the corres-
ponding arbitrary point O determines a rigid motion inM3.

The coefficients of d`′2 ofM3 constitute a metric tensor
and are naturally assumed to be regular in the region around
every point inM3, except possibly at an arbitrary point, the
centre of spherical symmetry O′ ∈M3.

Let a ray i emanate from an arbitrary point O∈E3.
There is then a corresponding geodesic i′ ∈M3 issuing from
the corresponding point O′ ∈M3. Let P be any point on
i other than O. There corresponds a point P ′ on i′ ∈M3

different to O′. Let g′ be a geodesic inM3 that is tangential
to i′ at P ′.

Taking i as the axis of ∞1 rotations in E3, there corres-

∗For the geometry due to Efcleethees, usually and abominably rendered
as Euclid.

ponds∞1 rigid motions inM3 that leaves only all the points
on i′ unchanged. If g′ is distinct from i′, then the ∞1 rigid
rotations in E3 about i would cause g′ to occupy an infinity
of positions in M3 wherein g′ has for each position the
property of being tangential to i′ at P ′ in the same direction,
which is impossible. Hence, g′ coincides with i′.

Thus, given a spherically symmetric surface Σ in E3 with
centre of symmetry at some arbitrary point O∈E3, there cor-
responds a spherically symmetric geodesic surface Σ′ inM3

with centre of symmetry at the corresponding point O′∈M3.
Let Q be a point in Σ∈E3 and Q′ the corresponding

point in Σ′ ∈M3. Let dσ be a generic line element in Σ issu-
ing from Q. The corresponding generic line element dσ′ ∈Σ′

issues from the point Q′. Let Σ be described in the usual
spherical-polar coordinates r, θ, ϕ. Then

dσ2 = r2(dθ2 + sin2θ dϕ2), (1)

r = |OQ|.

Clearly, if r, θ, ϕ are known, Q is determined and hence
also Q′ in Σ′. Therefore, θ and ϕ can be considered to be
curvilinear coordinates for Q′ in Σ′ and the line element
dσ′ ∈Σ′ will also be represented by a quadratic form similar
to (1). To determine dσ′, consider two elementary arcs of
equal length, dσ1 and dσ2 in Σ, drawn from the point Q in
different directions. Then the homologous arcs in Σ′ will be
dσ′1 and dσ′2, drawn in different directions from the corres-
ponding point Q′. Now dσ1 and dσ2 can be obtained from
one another by a rotation about the axis OQ in E3, and
so dσ′1 and dσ′2 can be obtained from one another by a
rigid motion in M3, and are therefore also of equal length,
since the metric is unchanged by such a motion. It therefore
follows that the ratio dσ′

dσ is the same for the two different
directions irrespective of dθ and dϕ, and so the foregoing
ratio is a function of position, i.e. of r, θ, ϕ. But Q is an
arbitrary point in Σ, and so dσ′

dσ must have the same ratio

for any corresponding points Q and Q′. Therefore, dσ
′

dσ is a
function of r alone, thus

dσ′

dσ
= H(r),

and so

dσ
′2 = H2(r)dσ2 = H2(r)r2(dθ2 + sin2θ dϕ2), (2)
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where H(r) is a priori unknown. For convenience set Rc=
=Rc(r)=H(r)r, so that (2) becomes

dσ
′2 = R2c(dθ

2 + sin2θ dϕ2), (3)

where Rc is a quantity associated with M3. Comparing (3)
with (1) it is apparent that Rc is to be rightly interpreted in
terms of the Gaussian curvature K at the point Q′, i.e. in
terms of the relation K = 1

R2c
since the Gaussian curvature

of (1) is K = 1
r2 . This is an intrinsic property of all line ele-

ments of the form (3) [1, 2]. Accordingly, Rc can be regarded
as a radius of curvature. Therefore, in (1) the radius of curva-
ture is Rc= r. Moreover, owing to spherical symmetry, all
points in the corresponding surfaces Σ and Σ′ have constant
Gaussian curvature relevant to their respective manifolds
and centres of symmetry, so that all points in the respective
surfaces are umbilic.

Let the element of radial distance from O∈E3 be dr.
Clearly, the radial lines issuing from O cut the surface Σ
orthogonally. Combining this with (1) by the theorem of
Pythagoras gives the line element in E3

d`2 = dr2 + r2(dθ2 + sin2θ dϕ2). (4)

Let the corresponding radial geodesic from the point
O′ ∈M3 be dg. Clearly the radial geodesics issuing from
O′ cut the geodesic surface Σ′ orthogonally. Combining this
with (3) by the theorem of Pythagoras gives the line element
inM3 as,

d`
′2 = dg2 +R2c(dθ

2 + sin2θ dϕ2), (5)

where dg is, by spherical symmetry, also a function only of
Rc. Set dg=

√
B(Rc)dRc, so that (5) becomes

d`
′2 = B(Rc)dR

2
c +R

2
c(dθ

2 + sin2θ dϕ2), (6)

where B(Rc) is an a priori unknown function.
Setting dRp=

√
B(Rc)dRc carries (6) into

d`
′2 = dR2p +R

2
c(dθ

2 + sin2θ dϕ2). (7)

Expression (6) is the most general for a metric manifold
M3 having spherical symmetry about some arbitrary point
O′ ∈M3 [1, 3].

Considering (4), the distance Rp= |OQ| from the point
at the centre of spherical symmetry O to a point Q∈Σ, is
given by

Rp =

∫ r

0

dr = r = Rc .

Call Rp the proper radius. Consequently, in the case of
E3, Rp and Rc are identical, and so the Gaussian curvature
at any point in E3 can be associated with Rp, the radial dis-
tance between the centre of spherical symmetry at the point
O∈E3 and the point Q∈Σ. Thus, in this case, we have
K = 1

R2c
= 1

R2p
= 1

r2 . However, this is not a general relation,

since according to (6) and (7), in the case of M3, the radial
geodesic distance from the centre of spherical symmetry at
the point O′ ∈M3 is not given by the radius of curvature,
but by

Rp =

∫ Rp

0

dRp =

∫ Rc(r)

Rc(0)

√
B(Rc(r)) dRc(r) =

=

∫ r

0

√
B(Rc(r))

dRc(r)

dr
dr ,

where Rc(0) is a priori unknown owing to the fact that
Rc(r) is a priori unknown. One cannot simply assume that
because 06 r <∞ in (4) that it must follow that in (6)
and (7) 06Rc(r)<∞. In other words, one cannot simply
assume that Rc(0)= 0. Furthermore, it is evident from (6)
and (7) that Rp determines the radial geodesic distance from
the centre of spherical symmetry at the arbitrary point O′ in
M3 (and correspondingly so from O in E3) to another point
in M3. Clearly, Rc does not in general render the radial
geodesic length from the centre of spherical symmetry to
some other point in a metric manifold. Only in the particular
case of E3 does Rc render both the Gaussian curvature and
the radial distance from the centre of spherical symmetry,
owing to the fact that Rp and Rc are identical in that special
case.

It should also be noted that in writing expressions (4) and
(5) it is implicit that O∈E3 is defined as being located at the
origin of the coordinate system of (4), i.e. O is located where
r=0, and by correspondence O′ is defined as being located
at the origin of the coordinate system of (5), i.e. using (7),
O′ ∈M3 is located where Rp=0. Furthermore, since it is
well known that a geometry is completely determined by the
form of the line element describing it [4], expressions (4)
and (6) share the very same fundamental geometry because
they are line elements of the same form.

Expression (6) plays an important rôle in Einstein’s grav-
itational field.

3 The standard solution

The standard solution in the case of the static vacuum field
(i.e. no deformation of the space) of a single gravitating
body, satisfying Einstein’s field equations Rμν =0, is (using
G= c=1),

ds2 =

(

1−
2m

r

)

dt2 −

(

1−
2m

r

)−1
dr2−

− r2(dθ2 + sin2θ dϕ2) ,

(8)

where m is allegedly the mass causing the field, and upon
which it is routinely claimed that 2m<r<∞ is an exterior
region and 0<r< 2m is an interior region. Notwithstanding
the inequalities it is routinely allowed that r=2m and r=0
by which it is also routinely claimed that r=2m marks
a “removable” or “coordinate” singularity and that r=0
marks a “true” or “physical” singularity [5].
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The standard treatment of the foregoing line-element
proceeds from simple inspection of (8) and thereby upon
the following assumptions:

(a) that there is only one radial quantity defined on (8);

(b) that r can approach zero, even though the line-element
(8) is singular at r=2m;

(c) that r is the radial quantity in (8) (r=2m is even routi-
nely called the “Schwarzschild radius” [5]).

With these unstated assumptions, but assumptions none-
theless, it is usual procedure to develop and treat of black
holes. However, all three assumptions are demonstrably false
at an elementary level.

4 That assumption (a) is false

Consider standard Minkowski space (using c=G=1) de-
scribed by

ds2 = dt2 − dr2 − r2dΩ2, (9)

0 6 r <∞ ,

where dΩ2= dθ2+ sin2θ dϕ2. Comparing (9) with (4) it is
easily seen that the spatial components of (9) constitute a
line element of E3, with the point at the centre of spherical
symmetry at r0=0, coincident with the origin of the coordi-
nate system.

In relation to (9) the calculated proper radius Rp of the
sphere in E3 is,

Rp =

∫ r

0

dr = r , (10)

and the radius of curvature Rc is

Rc = r = Rp . (11)

Calculate the surface area of the sphere:

A =

2π∫

0

π∫

0

r2 sin θdθdϕ = 4πr2 = 4πR2p = 4πR
2
c . (12)

Calculate the volume of the sphere:

V=

2π∫

0

π∫

0

r∫

0

r2 sin θdrdθdϕ=
4

3
πr3=

4

3
πR3p=

4

3
πR3c . (13)

Then for (9), according to (10) and (11),

Rp = r = Rc . (14)

Thus, for Minkowski space, Rp and Rc are identical.
This is because Minkowski space is pseudo-Efcleethean.

Now comparing (8) with (6) and (7) is is easily seen
that the spatial components of (8) constitute a spherically
symmetric metric manifoldM3 described by

d`
′2 =

(

1−
2m

r

)−1
dr2 + r2dΩ2,

and which is therefore in one-to-one correspondence with
E3. Then for (8),

Rc = r ,

Rp =

∫ √
r

r − 2m
dr 6= r = Rc .

Hence, RP 6=Rc in (8) in general. This is because (8) is
non-Efcleethean (it is pseudo-Riemannian). Thus, assump-
tion (a) is false.

5 That assumption (b) is false

On (8),

Rp = Rp(r) =

∫ √
r

r − 2m
dr =

=
√
r (r − 2m) + 2m ln

∣
∣
∣
√
r +

√
r − 2m

∣
∣
∣+K,

(15)

where K is a constant of integration.
For some r0, Rp(r0)= 0, where r0 is the corresponding

point at the centre of spherical symmetry in E3 to be deter-
mined from (15). According to (15), Rp(r0)= 0 when r=
= r0=2m and K =−m ln 2m. Hence,

Rp(r) =
√
r (r − 2m)+2m ln

(√
r +

√
r − 2m

√
2m

)

. (16)

Therefore, 2m<r<∞⇒ 0<Rp<∞, where Rc= r.
The inequality is required to maintain Lorentz signature,
since the line-element is undefined at r0=2m, which is the
only possible singularity on the line element. Thus, assump-
tion (b) is false.

It follows that the centre of spherical symmetry of E3,
in relation to (8), is located not at the point r0=0 in E3 as
usually assumed according to (9), but at the point r0=2m,
which corresponds to the point Rp(r0=2m)= 0 in the met-
ric manifold M3 that is described by the spatial part of (8).
In other words, the point at the centre of spherical symmetry
in E3 in relation to (8) is located at any point Q in the
spherical surface Σ for which the radial distance from the
centre of the coordinate system at r=0 is r=2m, owing
to the one-to-one correspondence between all points of E3

and M3. It follows that (8) is not a generalisation of (9),
as usually claimed. The manifold E3 of Minkowski space
corresponding to the metric manifold M3 of (8) is not de-
scribed by (9), because the point at the centre of spherical
symmetry of (9), r0=0, does not coincide with that required
by (15) and (16), namely r0=2m.

In consequence of the foregoing it is plain that the ex-
pression (8) is not general in relation to (9) and the line
element (8) is not general in relation to the form (6). This is
due to the incorrect way in which (8) is usually derived from
(9), as pointed out in [6, 7, 8]. The standard derivation of (8)
from (9) unwittingly shifts the point at the centre of spheri-
caly symmetry for the E3 of Minkowski space from r0=0
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to r0=2m, with the consequence that the resulting line
element (8) is misinterpreted in relation to r=0 in the E3

of Minkowski space as described by (9). This unrecognised
shift actually associates the point r0=2m∈E3 with the
point Rp(2m)= 0 in the M3 of the gravitational field. The
usual analysis then incorrectly associates Rp=0 with r0=0
instead of with the correct r0=2m, thereby conjuring up a
so-called “interior”, as typically alleged in [5], that actually
has no relevance to the problem — a completely meaningless
manifold that has nothing to do with the gravitational field
and so is disjoint from the latter, as also noted in [6, 9,
10, 11]. The point at the centre of spherical symmetry for
Einstein’s gravitational field is Rp=0 and is also the origin
of the coordinate system for the gravitational field. Thus the
notion of an “interior” manifold under some other coordinate
patch (such as the Kruskal-Szekeres coordinates) is patently
false. This is clarified in the next section.

6 That assumption (c) is false

Generalise (9) so that the centre of a sphere can be located
anywhere in Minkowski space, relative to the origin of the
coordinate system at r=0, thus

ds2 = dt2 − (d |r − r0|)
2 − |r − r0|

2
dΩ2 =

= dt2 −
(r − r0)

2

|r − r0|
2 dr

2 − |r − r0|
2
dΩ2 =

= dt2 − dr2 − |r − r0|
2
dΩ2,

(17)

0 6 |r − r0| <∞ ,

which is well-defined for all real r. The value of r0 is
arbitrary. The spatial components of (17) describe a sphere of
radius D= |r− r0| centred at some point r0 on a common
radial line through r and the origin of coordinates at r=0
(i.e. centred at the point of orthogonal intersection of the
common radial line with the spherical surface r= r0). Thus,
the arbitrary point r0 is the centre of spherical symmetry in
E3 for (17) in relation to the problem of Einstein’s gravita-
tional field, the spatial components of which is a spherically
symmetric metric manifold M3 with line element of the
form (6) and corresponding centre of spherical symmetry
at the point Rp(r0)= 0 ∀ r0. If r0=0, (9) is recovered from
(17). One does not need to make r0=0 so that the centre
of spherical symmetry in E3, associated with the metric
manifoldM3 of Einstein’s gravitational field, coincides with
the origin of the coordinate system itself, at r=0. Any
point in E3, relative to the coordinate system attached to
the arbitrary point at which r=0, can be regarded as a point
at the centre of spherical symmetry in relation to Einstein’s
gravitational field. Although it is perhaps desirable to make
the point r0=0 the centre of spherical symmetry of E3

correspond to the point Rp=0 at the centre of symmetry of
M3 of the gravitational field, to simplify matters somewhat,

this has not been done in the usual analysis of Einstein’s
gravitational field, despite appearances, and in consequence
thereof false conclusions have been drawn owing to this fact
going unrecognised in the main.

Now on (17),

Rc = |r − r0| ,

Rp =

|r−r0|∫

0

d |r−r0| =

r∫

r0

(r−r0)
|r−r0|

dr = |r−r0| ≡ Rc,
(18)

and so Rp≡Rc on (17), since (17) is pseudo-Efcleethean.
Setting D= |r− r0| for convenience, generalise (17) thus,

ds2=A
(
C(D)

)
dt2−B

(
C(D)

)
d
√
C(D)

2
−C(D)dΩ2, (19)

where A
(
C(D)

)
, B
(
C(D)

)
, C (D)> 0. Then for Rμν =0,

metric (19) has the solution,

ds2 =

(

1−
α

√
C(D)

)

dt2−

−
1

1− α√
C(D)

d
√
C(D)

2
− C (D)dΩ2,

(20)

where α is a function of the mass generating the gravitational
field [3, 6, 7, 9]. Then for (20),

Rc = Rc(D) =
√
C(D),

Rp = Rp(D) =

∫ √ √
C(D)

√
C(D)− α

d
√
C(D) =

=

∫ √
Rc(D)

Rc(D)−α
dRc(D)=

√
Rc(D)

(
Rc(D)−α

)
+

+α ln

(√
Rc(D) +

√
Rc(D)− α√
α

)

,

(21)

where Rc(D)≡Rc (|r− r0|)=Rc(r). Clearly r is a para-
meter, located in Minkowski space according to (17).

Now r= r0⇒D=0, and so by (21), Rc(D=0)=α
and Rp(D=0)=0. One must ascertain the admissible form
of Rc(D) subject to the conditions Rc(D=0)=α and
Rp(D=0)=0 and dRc(D)/dD> 0 [6, 7], along with the
requirements that Rc(D) must produce (8) from (20) at will,
must yield Schwarzschild’s [12] original solution at will
(which is not the line element (8) with r down to zero),
must produce Brillouin’s [13] solution at will, must produce
Droste’s [14] solution at will, and must yield an infinite
number of equivalent metrics [3]. The only admissible form
satisfying these conditions is [7],

Rc=Rc(D)= (D
n+αn)

1
n ≡

(
|r−r0|

n
+αn

)1
n =Rc(r), (22)

D > 0, r ∈ <, n ∈ <+, r 6= r0,

where r0 and n are entirely arbitrary constants.
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Choosing r0=0, r > 0, n=3,

Rc(r) =
(
r3 + α3

) 1
3 , (23)

and putting (23) into (20) gives Schwarzschild’s original
solution, defined on 0 < r <∞.

Choosing r0=0, r > 0, n=1,

Rc(r) = r + α, (24)

and putting (24) into (20) gives Marcel Brillouin’s solution,
defined on 0 < r <∞.

Choosing r0=α, r >α, n=1,

Rc(r) = (r − α) + α = r, (25)

and putting (25) into (20) gives line element (8), but defined
on α<r<∞, as found by Johannes Droste in May 1916.
Note that according to (25), and in general by (22), r is not
a radial quantity in the gravitational field, because Rc(r)=
= (r−α)+α=D+α is really the radius of curvature in (8),
defined for 0<D<∞.

Thus, assumption (c) is false.
It is clear from this that the usual line element (8) is

a restricted form of (22), and by (22), with r0=α=2m,
n=1 gives Rc= |r− 2m|+2m, which is well defined on
−∞<r<∞, i.e. on 06D<∞, so that when r=0,
Rc(0)= 4m and RP (0)> 0. In the limiting case of r=2m,
then Rc(2m)= 2m and Rp(2m)= 0. The latter two rela-
tionships hold for any value of r0.

Thus, if one insists that r0=0 to match (9), it follows
from (22) that,

Rc =
(
|r|n + αn

) 1
n ,

and if one also insists that r > 0, then

Rc = (r
n + αn)

1
n , (26)

and for n=1,
Rc = r + α,

which is the simplest expression for Rc in (20) [6, 7, 13].
Expression (26) has the centre of spherical symmetry

of E3 located at the point r0=0 ∀n∈<+, corresponding
to the centre of spherical symmetry of M3 for Einstein’s
gravitational field at the point Rp(0)= 0 ∀ n∈<+. Then
taking α=2m it follows that Rp(0)=0 and Rc(0)=α=2m
for all values of n.

There is no such thing as an interior solution for the line
element (20) and consequently there is no such thing as an
interior solution on (8), and so there can be no black holes.

7 That the manifold is inextendable

That the singularity at Rp(r0) ≡ 0 is insurmountable is clear
by the following ratio,

lim
r→r±0

2πRc(r)

Rp(r)
= lim
r→r±0

2π
(
|r − r0|

n
+ αn

) 1
n

Rp(r)
=∞,

since Rp(r0)= 0 and Rc(r0)=α are invariant.
Hagihara [15] has shown that all radial geodesics that do

not run into the boundary at Rc(r0)=α (i.e. that do not run
into the boundary at Rp(r0)= 0) are geodesically complete.

Doughty [16] has shown that the acceleration a of a
test particle approaching the centre of mass at Rp(r0)= 0
is given by,

a =

√
−g00

(
−g11

)
|g00,1|

2g00
.

By (20) and (22), this gives,

a =
α

2R
3
2
c

√
Rc(r)− α

.

Then clearly as r→ r±0 , a→∞, independently of the
value of r0.

J. Smoller and B. Temple [10] have shown that the
Oppenheimer-Volkoff equations do not permit gravitational
collapse to form a black hole and that the alleged interior of
the Schwarzschild spacetime (i.e. 06Rc(r)6α) is therefore
disconnected from Schwarzschild spacetime and so does not
form part of the solution space.

N. Stavroulakis [17, 18, 19, 20] has shown that an object
cannot undergo gravitational collapse into a singularity, or to
form a black hole.

Suppose 06
√
C(D(r))<α. Then (20) becomes

ds2 = −

(
α
√
C
− 1

)

dt2 +

(
α
√
C
− 1

)−1
d
√
C
2
−

−C (dθ2 + sin2θ dϕ2),

which shows that there is an interchange of time and length.
To amplify this set r= t̄ and t= r̄. Then

ds2 =

(
α
√
C
− 1

)−1
Ċ2

4C
dt̄2 −

(
α
√
C
− 1

)

dr̄2−

−C (dθ2 + sin2θ dϕ2),

where C =C(t̄) and the dot denotes d/dt̄. This is a time
dependent metric and therefore bears no relation to the prob-
lem of a static gravitational field.

Thus, the Schwarzschild manifold described by (20) with
(22) (and hence (8)) is inextendable.

8 That the Riemann tensor scalar curvature invariant
is everywhere finite

The Riemann tensor scalar curvature invariant (the Kretsch-
mann scalar) is given by f =RμνρσR

μνρσ . In the general
case of (20) with (22) this is

f =
12α2

R6c(r)
=

12α2

(
|r − r0|

n
+ αn

)6
n

.

A routine attempt to justify the standard assumptions on
(8) is the a posteriori claim that the Kretschmann scalar
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must be unbounded at a singularity [5, 21]. Nobody has ever
offered a proof that General Relativity necessarily requires
this. That this additional ad hoc assumption is false is clear
from the following ratio,

f(r0) =
12α2

(
|r0 − r0|

n
+ αn

)6
n

=
12

α4
∀ r0 .

In addition,

lim
r→±∞

12α2

(
|r − r0|

n
+ αn

)6
n

= 0 ,

and so the Kretschmann scalar is finite everywhere.

9 That the Gaussian curvature is everywhere finite

The Gaussian curvature K of (20) is,

K = K
(
Rc(r)

)
=

1

R2c(r)
,

where Rc(r) is given by (22). Then,

K(r0) =
1

α2
∀ r0 ,

and
lim

r→±∞
K(r) = 0 ,

and so the Gaussian curvature is everywhere finite.
Furthermore,

lim
α→0

1

α2
=∞,

since when α=0 there is no gravitational field and empty
Minkowski space is recovered, wherein Rp and Rc are ident-
ical and 06Rp<∞. A centre of spherical symmetry in
Minkowski space has an infinite Gaussian curvature because
Minkowski space is pseudo-Efcleethean.

10 Conclusions

Using the spherical-polar coordinates, the general solution to
Rμν =0 is (20) with (22), which is well-defined on

−∞ < r0 <∞,

where r0 is entirely arbitrary, and corresponds to

0 < Rp(r) <∞, α < Rc(r) <∞,

for the gravitational field. The only singularity that is possib-
le occurs at g00=0. It is impossible to get g11=0 because
there is no value of the parameter r by which this can be
attained. No interior exists in relation to (20) with (22),
which contain the usual metric (8) as a particular case.

The radius of curvature Rc(r) does not in general deter-
mine the radial geodesic distance to the centre of spherical
symmetry of Einstein’s gravitational field and is only to
be interpreted in relation to the Gaussian curvature by the
equation K =1/R2c(r). The radial geodesic distance from

the point at the centre of spherical symmetry to the spherical
geodesic surface with Gaussian curvature K =1/R2c(r) is
given by the proper radius, Rp(Rc(r)). The centre of spher-
ical symmetry in the gravitational field is invariantly located
at the point Rp(r0)= 0.

Expression (20) with (22), and hence (8) describes only
a centre of mass located at Rp(r0)= 0 in the gravitational
field, ∀ r0. As such it does not take into account the distribu-
tion of matter and energy in a gravitating body, since α(M)
is indeterminable in this limited situation. One cannot gener-
ally just utilise a potential function in comparison with the
Newtonian potential to determine α by the weak field limit
because α is subject to the distribution of the matter of the
source of the gravitational field. The value of α must be
calculated from a line-element describing the interior of the
gravitating body, satisfying Rμν − 1

2Rgμν =κTμν 6=0. The
interior line element is necessarily different to the exterior
line element of an object such as a star. A full description
of the gravitational field of a star therefore requires two line
elements [22, 23], not one as is routinely assumed, and when
this is done, there are no singularities anywhere. The stand-
ard assumption that one line element is sufficient is false.
Outside a star, (20) with (22) describes the gravitational
field in relation to the centre of mass of the star, but α
is nonetheless determined by the interior metric, which, in
the case of the usual treatment of (8), has gone entirely
unrecognised, so that the value of α is instead determined
by a comparison with the Newtonian potential in a weak
field limit.

Black holes are not predicted by General Relativity. The
Kruskal-Szekeres coordinates do not describe a coordinate
patch that covers a part of the gravitational manifold that is
not otherwise covered - they describe a completely different
pseudo-Riemannian manifold that has nothing to do with
Einstein’s gravitational field [6, 9, 11]. The manifold of
Kruskal-Szekeres is not contained in the fundamental one-
to-one correspondence between the E3 of Minkowski space
and theM3 of Einstein’s gravitational field, and is therefore
a spurious augmentation.

It follows in similar fashion that expansion of the Uni-
verse and the Big Bang cosmology are inconsistent with
General Relativity, as is easily demonstrated [24, 25].
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According to an idea underlying the classical relativity, a pulsating (or simply
expanding or simply contracting) spherical source does not generate an external
dynamical (i.e. non-stationary) gravitational field. The relativists believe that this idea
is well based on account of the so-called Birkhoff’s theorem, which, contrary to the
fundamental principles of general relativity, states that the external gravitational field
of a non-stationary spherical mass is necessarily static. However, as shown in several
papers [2, 3, 4, 7, 8], Birkhoff’s theorem is, in fact, a vicious circle arising from the
introduction of inadmissible implicit transformations which eliminate in advance the
boundary conditions defining the radial motion of the sphere bounding the matter,
namely the boundary conditions inducing the non-stationary states of the gravitational
field. In the present paper we deal with the rigorous mathematical theory of the subject
and put forward the corresponding form of the spacetime metric in order to prepare
a thorough study of the equations of gravitation related to the dynamical states of the
gravitational field.

1 SΘ(4)-invariant metrics and gravitational disturb-
ances

Let us first consider a general spacetime metric
3∑

i,j=0

gijdxidxj (1.1)

namely a form of signature (+1,−1,−1,−1) on a open set
U ⊂ R× R3. In order that the local time and the proper time
of the observes be definable, the timelike character of x0
must be clearly indicared together with its distinction from
the spacelike character of the coordinates x1, x2, x3. This
is why, according to Levi-Civita [l], the components g00,
g11, g22, g33 of the metric tensor must satisfy the conditions
g00> 0, g11< 0, g22< 0, g33< 0.

Our investigation of an SΘ(4)-invariant (or Θ(4)-invar-
iant) metric follows Levi-Civita’s point of view by allowing
at the same time a slight generalization which will be fully
justified. More precisely, an allowable SΘ(4)-invariant (or
Θ(4)-invariant) metric will satisfy the conditions g00> 0,
g11 6 0, g22 6 0, g33 6 0. We recall [9] the explicit form
of such a metric

ds2 =
(
fdx0 + f1 (xdx)

)2
− `21dx

2 −
`2 − `21
ρ2

(xdx)
2
,

x0 = t, ` (t, 0) = `1 (t, 0) ,

which is invariant by the action of the group SΘ(4) consist-
ing of the matrices of the form
(

1 OH
OV A

)

, OH = (0, 0, 0) , OV =




0
0
0



 ,

A ∈ SO(3)

as well as by the action of the group Θ(4) consisting of the
matrices of the same form for which A ∈ O(3). Note that
the given form of the metric does not contain the important
functions

h = ρf1 = ρf1 (t, ρ) , g = ρ`1 = ρ`1 (t, ρ) ,

because they are not C∞ on the subspace R× {(0, 0, 0)}.
However, as already noted [9], on account of their geometr-
ical and physical significance, it is very convenient to insert
them into the metric, thus obtaining

ds2 =

(

fdx0 +
h

ρ
(xdx)

)2
−

(
g

ρ

)2
dx2−

−
1

ρ2

(

`2 −

(
g

ρ

)2)

(xdx)
2

(1.2)

and then

g00 = f2, gii =
(
h2 − `2

) x2i
ρ2
−

(
g

ρ

)2(

1−
x2i
ρ2

)

,

(i = 1, 2, 3) .

We contend that gii 6 0, (i = 1, 2, 3), if and only if
|h| 6 `. In fact, if |h| 6 `, we have obviously gii6 0,
(i = 1, 2, 3). On the other hand, if |h| >`, by choosing
x1= ρ, x2=x3=0, we have g11=h

2− `2> 0.
The SΘ(4) -invariant metric (1.2), considered with the

condition |h| 6 `, is assumed to represent the gravitational
field generated by a spherical isotropic non-rotating, in gene-
ral pulsating, distribution of matter. This field is related in-
tuitively to a radial uniform propagation of spherical gravita-
tional (and possibly electromagnetic) disturbances issuing
from the matter and governed by the time according to the
following rule:
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The emission of a disturbance takes place at a given
instant from the entirety of the sphere bounding the
matter (namely from the totality of the points of this
sphere) and reaches the totality of any other sphere
Sρ :‖ x ‖= ρ> 0 outside the matter at another instant.

The assignment of a given instant t to every point of the
sphere Sρ means that we consider an infinity of simultaneous
events {(t, x) |x ∈ Sρ } related to Sρ. This conception of
simultaneity is restricted to the considered sphere Sρ and
cannot be extended radially (for greater or less values of ρ).
So the present situation differs radically from that encount-
ered in special relativity. In particular, the synchronization of
clocks in Sρ cannot be carried out by the standard method
put forward by Einstein, because there are no null geodesies
of the metric associated with curves lying on Sρ. The idea
of synchronization in Sρ :‖x‖= ρ> 0 is closely related to
the very definition of the SΘ(4)-invariant field: For any
fixed value of time t, the group SΘ(4) sends the subspace
{t} × Sρ of R× R3 onto itself, so that the group SΘ(4)
assigns the value of time t to every point of the sphere Sρ.
Specifically, given any two distinct points x and y of Sρ,
there exists an operation of SΘ(4) sending (t, x) onto (t, y).
This operation appears as an abstract mathematical mapping
and must be clearly distinguished from a rotation in R3 in
the sense of classical mechanics. Such a rotation in R3 is a
motion defined with respect to a pre-existing definition of
time, whereas the assignment of the value of time t to every
point of Sρ, is an “abstract operation” introducing the time
in the metric.

Let Sm be the sphere bounding the matter. As will be
shown later on, the “synchronization” in Sm induces the
synchronization in any other sphere Sρ outside the matter
by means of the propagation process of gravitation. In a
stationary state, the radius of Sm reduces to a constant, say
σ, and every point of Sm can be written as x = ασ where
α = (α1, α2, α3) ∈ S1, S1 being the unit sphere:

S1 =
{
α = (α1, α2, α3) ∈ R3

∣
∣

‖ α ‖=
√
α21 + α

2
2 + α

2
3 = 1

}
.

Now, in a non-stationary state, the radius of Sm will be
a function of time, say σ (t), and the equation of Sm can be
written as x=ασ (t) with α ∈ S1. So each value of time t
defines both the radius σ (t) and the “simultaneous events”
{(t, ασ (t)) |α ∈ S1}. This simultaneity is also closely relat-
ed to the definition of the SΘ(4) invariant field: {(t, ασ(t)) |
α ∈ S1} remains invariant by the action of SΘ(4). From
these considerations it follows that the first principles related
to the notion of time must be introduced axiomatically on the
basis of the very definition of the SΘ(4)-invariance. Their
physical justification is to be sought a posteriori by taking
into account the results provided by the theory itself.

This being said, according to our assumptions, it makes

sense to consider as a function of time the curvature radius
g (t, ρ) = ρ`1(t, ρ) of a sphere ‖x‖= ρ= const> 0 outside
the matter. The same assumptions allow to define, as func-
tions of time, the radius σ (t) and the curvature radius, de-
noted by ζ(t), of the sphere bounding the matter. These po-
sitive functions, σ (t) and ζ(t), constitute the boundary con-
ditions at finite distance for the non-stationary field outside
the pulsating source. They are assumed to be C∞, but they
cannot be analytic, because the vanishing of |σ′(t)|+|ζ ′(t)|
on certain compact time intervals does not imply its va-
nishing on R.

Since the internal field extends to the external one through
the sphere ‖x‖=σ (t), the non-stationary (dynamical) states
of the gravitational field outside the pulsating source are
induced by the radial motion of this sphere, namely by the
motion defined mathematically by the boundary conditions
σ (t) and ζ(t). So, it is reasonable to assume that, if σ′(t) =
= ζ ′(t) = 0 on a compact interval of time [t1, t2], no propa-
gation of gravitational disturbances takes place in the extern-
al space during [t1, t2] (at least if there is no diffusion of dis-
turbances). It follows that the gravitational radiation in the
external space depends on the derivatives σ′(t) and ζ ′(t),
so that we may identify their pair with the gravitational dis-
turbance inducing the dynamical states outside the matter.
More precisely, the non-stationary-states are generated by
the propagation of the gravitational disturbance in the ex-
terior space, so that we have first to clarify the propagation
process. Our intuition suggests that the propagation of grav-
itation is closely related to the radial propagation of light,
and this is why we begin by defining the function governing
the radial propagation of light from the sphere bounding the
matter.

2 Radial null geodesics

We recall that a curve x(υ) = (x0(υ), x1(υ), x2(υ), x3(υ))
is a geodesic line with respect to (1.1) if

D

dυ

dx(υ)

dυ
= q(υ)

dx(υ)

dυ
.

So we are led to introduce the vector

Y j =
d2xj
dυ2

+

3∑

k,`=0

Γ
j
k`

dxk
dυ

dx`
dυ

−q(υ)
dxj
dυ

, (j = 0, 1, 2, 3),

which allows to write the equations of a geodesic in their
general form

Y 0 = 0 , Y 1 = 0 , Y 2 = 0 , Y 3 = 0 .

On the other hand, a null line (not necessarily geodesic)
is defined by the condition

3∑

i,j=0

gij
dxi
dυ

dxj
dυ

= 0 , (υ 6= s),
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which implies

∑
gij
dxi
dυ

d2xj
dυ2

+
∑

Γi,k`
dxi
dυ

dxk
dυ

dx`
dυ

= 0

so that by setting

Xj =
∑

gij
dxi
dυ

we deduce by an easy computation the relation
3∑

j=0

XjY
j = 0

which is valid for every null line.
Now, let

dt =
{
x1 = α1ρ, x2 = α2ρ, x3 = α3ρ,

α21 + α
2
2 + α

2
3 = 1, ρ > σ(t)

}

be a half-line issuing from a point of the sphere ‖x‖=σ (t).
The vanishing of (1.2) on dt gives rise to two radial null
lines defined respectively by the equations

dt

dρ
=
−h(t, ρ) + `(t, ρ)

f (t, ρ)
(2.1)

dt

dρ
=
−h(t, ρ)− `(t, ρ)

f (t, ρ)
(2.2)

Proposition 2.1. The above defined null lines are null geo-
desics.

Proof. By using a transformation defined by an element
of the group SΘ(4), we may assume, without restriction
of generality, that dt is defined by the equations x1= ρ,
x2=0, x3=0, where ρ>σ (t). Then taking into account
the expressions of the Christoffel symbols [9], we see that

Γ200 = Γ
2
01 = Γ

2
11 = 0, Γ300 = Γ

3
01 = Γ

3
11 = 0,

so that the equations Y 2=0, Y 3=0 are identically verified.
Moreover x2=x3=0 imply

Y 0 =
d2t

dυ2
+ Γ000

(
dt

dυ

)2
+ Γ011

(
dρ

dυ

)2
+

+2Γ001
dt

dυ

dρ

dυ
− q (υ)

dt

dυ
,

Y 1 =
d2ρ

dυ2
+ Γ100

(
dt

dυ

)2
+ Γ111

(
dρ

dυ

)2
+

+2Γ101
dt

dυ

dρ

dυ
− q (υ)

dρ

dυ
.

Now, let t= ξ (ρ) be a solution of (2.1) and take υ= ρ.
Then the equation Y 1=0 gives

Γ100
(
ξ (ρ), ρ

)(
ξ′(ρ)

)2
+ Γ111

(
ξ (ρ), ρ

)
+

+2Γ101
(
ξ (ρ), ρ

)
ξ′(ρ) = q (ρ)

so that it defines the function q (ρ). Next, since the equa-
tions Y 1=0, Y 2=0, Y 3=0 are fulfilled, the condition∑3
j=0XjY

j =0 reduces to X0Y 0=0, and since

X0 = g00
dt

dυ
+ g01

dx1
dυ

= f2
dt

dρ
+ fh =

= f2
(
−h+ `
f

)

+ fh = f` > 0 ,

it follows also that Y 0=0. In the same way taking into ac-
count that −f`< 0, we prove the assertion regarding (2.2).

Corollary 2.1. The equation (2.1), resp. (2.2), defines the ra-
dial motion of the photons issuing from (resp. approach-
ing to) the pulsating spherical mass.

In fact, since |h| 6 `, we have −h+` > 0, which impies
dt/dρ > 0, and −h− ` 6 0 which implies dt/dρ 6 0.
Remark 2.1. The condition |h| 6 ` has been introduced in
order to ensure the physical validity of the spacetime metric.
Now we see that it is absolutely indispensable in order to
define the radial motion of light. In fact, if h> ` (resp.
−h> `), the photons issuing from (resp. approaching to) the
spherical mass would be inexistent for the metric. A detailed
discussion of the inconsistencies resulting from the negation
of the condition |h| 6 ` is given in the paper [6].

Remark 2.2. As already remarked, the propagation of the
gravitation from the pulsating source is closely related to the
radial propagation of te outgoing light which is defined by
(2.1). Regarding the equation (2.2), which defines the radial
propagation of the incoming light, it is not involved in our
study, because there are no gravitational disturbances coming
from the “infinity”.

3 On the solutions of (2.1)

Let us consider a photon emitted radially at an instant u from
the sphere bounding the matter. Its velocity at this instant,
namely

dρ

dt
=

f
(
u, σ (u)

)

`
(
u, σ (u)

)
− h

(
u, σ (u)

)

is greater than the radial velocity |σ′(u)| of this sphere,
whence the condition

`
(
u, σ (u)

)
− h

(
u, σ (u)

)

f
(
u, σ (u)

) |σ′(u)| < 1

which implies in particular the validity of the condition

`
(
u, σ (u)

)
− h

(
u, σ (u)

)

f
(
u, σ (u)

) σ′(u) < 1 (3.1)

which is trivially valid if σ′(u) 6 0.
This being said, let us consider the open set

U =
{
(t, ρ) ∈ R2 | ρ > σ(t)

}

and denote by F its frontier:

F =
{
(t, ρ) ∈ R2 | ρ = σ (t)

}
.
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Since the equation (2.1) is conceived on the closed set
U =U ∪ F , the functions f , h, ` are defined on U . However,
since we have to define the solutions of (2.1) by using initial
conditions in F , we are led to extend the function

α (t, ρ) =
−h (t, ρ) + ` (t, ρ)

f (t, ρ)

to a C∞ function α̂ (t, ρ) > 0 on an open set W containing
U . It is not necessary to indicate a precise extension on W
because its values on W−U play an auxiliary part and are
not involved in the final result.

This remark applies also to the derivatives of the func-
tions f , h, ` at the points of F . In fact, although the defi-
nition of these derivatives takes into account the extension
α̂ (t, ρ), their values on F , on account of the continuity, are
defined uniquely by their values on U .

This being said, for each fixed point (u, σ (u)) ∈ F , the
differential equation

dt

dρ
= α̂ (t, ρ)

possesses a unique local solution t= ξ̂ (u, ρ) taking the value
u for ρ=σ (u). Let ] ρ1(u), ρ2(u) [ be the maximal interval
of validity of this local solution (ρ1(u)<σ (u)<ρ2(u)).

Lemma 3.1. There exists a real number ε> 0 such that
σ (u)<ε<ρ2(u) and (ξ̂ (u, ρ), ρ)∈U for every ρ∈ ]σ (u), ε ].
Proof. Assume that such a number does not exist. Then
we can find a sequence of values ρn>σ (u) converging to
σ (u) and such that (ξ̂ (u, ρn), ρn) /∈ U , which means that
σ (ξ̂ (u, ρn))> ρn, and implies, in particular ξ̂ (u, ρn) 6=u. It
follows that

ξ̂ (u, ρn)− u
ρn − σ (u)

∙
σ
(
ξ̂ (u, ρn)

)
− σ (u)

ξ̂(u, ρn)− u
=

=
σ
(
ξ̂ (u, ρn)

)
− σ (u)

ρn − σ (u)
> 1

and since ξ̂ (u, σ (u))=u, ρn → σ (u), we obtain

∂ξ̂
(
u, σ (u)

)

∂ρ
σ′(u) > 1 ,

or
−h
(
u, σ (u)

)
+ `
(
u, σ (u)

)

f
(
u, σ (u)

) σ′(u) > 1

which contradicts (3.1 ). This contradiction proves our as-
sertion.
Lemma 3.2. We also have ( ξ̂ (u, ρ), ρ) ∈ U for every ρ ∈
] ε, ρ2(u) [ .

Proof. If not, the set of values ρ ∈ ] ε, ρ2(u) [ for which
σ ( ξ̂ (u, ρ))= ρ is not empty. Let ρ0 be the greatest lower
bound of this set. Then σ (ξ̂ (u, ρ0))= ρ0. Let ξ̂ (u, ρ0)= t0
and let ψ (t0, ρ) be the local solution of the differential equa-
tion

dt

dρ
= α̂(t, ρ)

for which ψ (t0, ρ0)= t0. The uniqueness of the solution
implies obviously that ψ(t0, ρ)= ξ̂ (u, ρ). On the other hand,
for every ρ∈ ]σ (u), ρ0[ , we have σ (ξ̂ (u, ρ))<ρ. Moreover
ξ̂ (u, ρ0) 6= ξ̂ (u, ρ) because the equality ξ̂ (u, ρ0)= ξ̂ (u, ρ)
would imply

ρ0 = σ
(
ξ̂ (u, ρ0)

)
= σ

(
ξ̂ (u, ρ)

)
< ρ

contradicting the choice of ρ. On the other hand

σ
(
ξ̂ (u, ρ0)

)
− σ

(
ξ̂ (u, ρ)

)
=

= ρ0 − σ
(
ξ̂ (u, ρ)

)
> ρ0 − ρ > 0

so that we can write

ξ̂ (u, ρ0)− ξ̂ (u, ρ)
ρ0 − ρ

∙
σ
(
ξ̂ (u, ρ0)

)
− σ

(
ξ̂ (u, ρ)

)

ξ̂ (u, ρ0)− ξ̂ (u, ρ)
=

=
σ
(
ξ̂ (u, ρ0)

)
− σ

(
ξ̂ (u, ρ)

)

ρ0 − ρ
> 1

or

ψ (t0, ρ0)− ψ (t0, ρ)
ρ0 − ρ

∙
σ (t0)− σ

(
ψ(t0, ρ)

)

t0 − ψ(t0, ρ)
> 1

and for ρ→ ρ0 we find

∂ψ (t0, ρ0)

∂ρ
σ′(t0) > 1

or
−h
(
t0, σ (t0)

)
+ `
(
t0, σ (t0)

)

f (t0, σ (t0))
σ′(t0) > 1

which contradicts (3.1). This contradiction proves our as-
sertion.

Proposition 3.1. Let ξ (u, ρ) be the restriction of the solution
ξ̂ (u, ρ) to the interval [σ (u), ρ2(u) [ . Then ξ (u, ρ) does not
depend on the extension α̂(t, ρ) of α(t, ρ), so that it is the
unique local solution of (2.1) in U satisfying the condition
ξ (u, σ (u))=u.

In fact, since ξ̂ (u, σ (u))=u and (ξ̂ (u, ρ), ρ)∈U for
ρ>σ (u), the definition of ξ (u, ρ) on [σ (u), ρ2(u)[ depends
uniquely on the function α(t, ρ) which is defined on U

In general, the obtained solution ξ (u, ρ) is defined on
a bounded interval [σ (u), ρ2(u) [ . However the physical
conditions of the problem require that the emitted photon
travel to infinity. In fact, the pulsating source (whenever it
is expanding) can not overtake the photon emitted radially
at the instant u. Consequently the functions f , h, ` involved
in the metric must be such that, for each value of u∈R,
the solution ξ (u, ρ) of (2.1) be defined on the half-line
[σ (u),+∞ [ , so that ρ2 (u)=+∞ and (ξ (u, ρ), ρ)∈U for
every ρ∈ ]σ (u),+∞ [ . Then the corresponding curves
(ξ (u, ρ), ρ) issuing from the points of F are the leaves of a
foliation of U representing the paths of the photons emitted
radially from the sphere bounding the matter (see Figure 1
shown in Page 79).
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Fig. 1: Foliation representing the paths of the photons emitted
radially from the sphere bounding the matter.

4 Propagation function of light and canonical metric

The solution ξ (u, ρ) appears as a function of two variables:
On the one hand the time u ∈ R on the sphere bounding
the matter, and on the other hand the radial coordinate ρ ∈
[σ (u),+∞ [ .

Proposition 4.1. The function ξ (u, ρ), (u, ρ) ∈ U , fulfils the
conditions

∂ξ (u, ρ)

∂u
> 0,

∂ξ (u, ρ)

∂ρ
> 0

the first of which allows to solve with respect to u the
equation t= ξ (u, ρ), where ξ (u, σ (u))=u, and obtain thus
the instant u of the radial emission of a photon as a function
of (t, ρ): u=π(t, ρ). The so obtained function π(t, ρ) on U
satisfies the conditions

∂π(t, ρ)

∂t
> 0 ,

∂π(t, ρ)

∂ρ
6 0 , π

(
t, σ (t)

)
= t .

Proof. Since −h + ` > 0, the condition ξ (u, ρ)/∂ρ > 0 is
obvious on account of (2.1). On the other hand, taking the
derivatives of both sides of the identity ξ (u, σ (u))=u we
obtain

∂ξ
(
u, σ (u)

)

∂u
+
∂ξ
(
u, σ (u)

)

∂ρ
σ′(u) = 1

or

∂ξ
(
u, σ (u)

)

∂u
+
−h
(
u, σ (u)

)
+ `
(
u, σ (u)

)

f
(
u, σ (u)

) σ′(u) = 1

whence, on account of (3.1),

∂ξ
(
u, σ (u)

)

∂u
> 0

for every u ∈ R. It remains to prove that, for each fixed
value u0 ∈ R, and for each fixed value ρ0>σ (u0), we have
∂ξ (u0, ρ0)/∂u > 0.

Now, ρ0 > σ (u0) implies that there exists a straight line
segment

[
−ε1 + ξ (u0, ρ0), ε1 + ξ (u0, ρ0)

]
× {ρ0} , ε1 > 0,

contained in U . Let us denote by L1, L0, L2 respectively
the leaves containing the points
(
−ε1+ξ(u0, ρ0), ρ0

)
,
(
ξ(u0, ρ0), ρ0

)
,
(
ε1+ξ(u0, ρ0), ρ0

)
.

L0 is defined by the solution ξ (u0, ρ) of (2.1), whereas
L1 and L2 are defined respectively by two solutions ξ (u1, ρ)
and ξ (u2, ρ) with convenient values u1 and u2. Since L1 ∩
L0=Ø, L0 ∩L2=Ø, it follows obviously that u1<u0 and
u0<u2. The same reasoning shows that, if u1<u′<u0<
u′′<u2, then

ξ (u1, ρ0) < ξ (u′, ρ0) < ξ (u0, ρ0) < ξ (u′′, ρ0) < ξ (u2, ρ0),

so that ξ (u, ρ0) is a strictly increasing function of u on the
interval [u1, u2]. It follows that ∂ξ (u0, ρ0)/∂u> 0 as as-
serted. Regarding the last assertion, it results trivially from
the identity ξ (π(t, ρ), ρ)= t, which implies

∂ξ

∂u
∙
∂π

∂t
= 1 ,

∂ξ

∂u
∙
∂π

∂ρ
+
∂ξ

∂ρ
= 0 .

Remark. Let u1 and u2 be two instants such that u1<u2,
and let ρ be a positive length. If the values ξ(u1, ρ) and
ξ(u2, ρ) are both definable, which implies, in particular,
ξ(u1, ρ)>u1 and ξ(u2, ρ)>u2, then ξ(u1, ρ) < ξ(u2, ρ).

The function π(t, ρ) characterizes the radial propagation
of light and will be called propagation function. Its physical
significance is the following : If a photon reaches the sphere
‖x‖= ρ at the instant t, then π(t, ρ) is the instant of its
radial emission from the sphere bounding the matter.

Proposition 4.2 If a photon emitted radially from the sphere
bounding the matter reaches the sphere ‖x‖= ρ at the in-
stant t, then its radial velocity at this instant equals

−
∂π(t, ρ)/∂t

∂π(t, ρ)/∂ρ
.

In fact, since

dt

dρ
=
−h+ `
f

=
∂ξ (u, ρ)

∂ρ
,

the velocity in question equals

dρ

dt
=

(
∂ξ (u, ρ)

∂ρ

)−1
= −

(
∂ξ (u, ρ)

∂u

∂π(t, ρ)

∂ρ

)−1
=

= −
∂π(t, ρ)/∂t

∂π(t, ρ)/∂ρ
.

Remark. The preceding formula applied to the classical
propagation function t− ρ

c , gives the value c.
Since the parameter u appearing in the solution ξ (u, ρ) re-
presents the time on the sphere bounding the matter and
describes the real line, we are led to define a mapping Γ :
U → U , by setting Γ(t, ρ)= (π(t, ρ), ρ)= (u, ρ).
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Proposition 4.3. The mapping Γ is a diffeomorphism which
reduces to the identity on the frontier F of U . Moreover it
transforms the leaf

{
(t, ρ) ∈ U | t= ξ (u, ρ)

}
issuing from

a point (u, σ (u)) ∈ F into a half-line issuing from the
same point and parallel to the ρ-axis. Finally it transforms
the general Θ(4) invariant metric (1.2) into another Θ(4)-
invariant metric for which h= `, so that the new propagation
function is identical with the new time coordinate.

Proof. The mapping Γ is one-to-one and its jacobian deter-
minant ∂π(t, ρ)/∂t is strictly positive everywhere. Conse-
quently Γ is a diffeomorphism. Moreover, since each leaf
is defined by a fixed value of u, its transform in the new
coordinates (u, ρ) is actually a half-line parallel to the ρ-
axis. Finally, since t= ξ (u, ρ) and ∂ξ/∂ρ=(−h+ `)/f , it
follows that

fdt+
h

ρ
(xdx) =

(

f
∂ξ

∂u

)

du+

(

f
∂ξ

∂ρ

)

dρ+ hdρ

=

(

f
∂ξ

∂u

)

du+

(

f

(
−h+`
f

)

+ h

)

dρ

=

(

f
∂ξ

∂u

)

du+ `dρ

=

(

f
∂ξ

∂u

)

du+ `
(xdx)

ρ
with

f = f
(
ξ(u, ρ), ρ

)
, h = h

(
ξ(u, ρ), ρ

)
, ` = `

(
ξ(u, ρ), ρ

)
.

So the remarkable fact is that, in the transformed Θ(4)-
invariant metric, the function h equals `. The corresponding
equation (2.1) reads

du

dρ
= 0

whence u= const, so that the new propagation function is
identified with the time coordinate u. (This property follows
also from the fact that the transform of π(t, ρ) is the function
π(ξ (u, ρ), ρ) = u.)

The Canonical Metric. In order to simplify the notations,
we writef (u, ρ), `(u, ρ), g(u, ρ) respectively instead of

f
(
ξ (u, ρ), ρ

)∂ξ (u, ρ)
∂u

, `
(
ξ (u, ρ), ρ

)
, g

(
ξ (u, ρ), ρ

)

so that the transformed metric takes the form

ds2 =

(

f (u, ρ)du+ `(u, ρ)
(xdx)

ρ

)2
−

−

[(
g(u, ρ)

ρ

)2
dx2+

(
(
`(u, ρ)

)2
−

(
g(u, ρ)

ρ

)2)
(xdx)2

ρ2

] (4.1)

which will be termed Canonical.
The equality h= ` implies important simplifications:

Since the propagation function of light is identified with
the new time coordinate u, it does not depend either on the
unknown functions f , `, g involved in the metric or on the

boundary conditions at finite distance σ (u), ζ (u). The radial
motion of a photon emitted radially at an instant u0 from the
sphere ‖x‖=σ (u) will be defined by the equation u=u0,
which, when u0 describes R, gives rise to a foliation of U
by half-lines issuing from the points of F and parallel to
the ρ-axis (Figure 2). This property makes clear the physical
significance of the new time coordinate u. Imagine that the
photon emitted radially at the instant u0 is labelled with
the indication u0. Then, as it travels to infinity, it assigns
the value of time u0 to every point of the corresponding ray.
This conception of time differs radically from that introduced
by special relativity. In this last theory, the equality of values
of time at distinct points is defined by means of the process
of synchronization. In the present situation the equality of
values of time along a radial half-line is associated with the
radial motion of a single photon. The following proposition
is obvious (although surprising at first sight).

Fig. 2: The rise to a foliation of U by half-lines issuing from the
points of F and parallel to the ρ-axis.

Proposition 4.4. With respect to the canonical metric,
the radial velocity of propagation of light is infinite.
Note that the classical velocity of propagation of light,
namely c, makes sense only with respect to the time defined
by synchronized clocks in an inertial system.

We emphasize that the canonical metric is conceived on
the closed set

{
(u, x) ∈ R× R3 | ‖x‖>σ (u)

}
namely on

the exterior of the matter, and it is not possible to assign to
it a universal validity on R × R3. In fact, ` is everywhere
strictly positive, whereas h vanishes for ρ=0, so that the
equality h(t, ‖x‖)= `(t, ‖x‖) cannot hold on a neighbour-
hood of the origin. It follows that the canonical metric is
incompatible with the idea of a punctual source.

5 Propagation function of gravitational disturbances

We recall that, σ (u) and ζ(u) being respectively the radius
and the curvature radius of the sphere bounding the matter,
we are led to identify the pair of derivatives (σ′(u), ζ ′(u))
with the gravitational disturbance produced at the instant u
on the entirety of the sphere in question. This local disturb-
ance induces a radial propagation process with propagation
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paths identified with the radial geodesies and wave fronts
covering successively the spheres ‖x‖= ρ= const. This pro-
cess modifies step by step the field outside the matter and
thus gives rise to a non-stationary (dynamical) state of the
gravitational field. It follows that apart from any theory
aimed at determining the gravitational field, we have first
to elucidate the propagation process of the gravitational dis-
turbance. In order to carry out this investigation, we refer
constantly to the canonical metric (4.1) which, without re-
striction of generality, gives rise to significant simplifications.
This being said, the gravitational disturbance being produced
at the instant u on the sphere bounding the matter, let us
consider the instant t=ψ(u, ρ) at which it reaches the sphere
‖x‖= ρ, so that we have, in particular, ψ(u, σ (u))=u. We
assume naturally that the pulsating source does not hinder
the propagation of gravitation outside the matter. In other
words, every time that the sphere bounding the matter is
expanding, it can not overtake the advancing gravitational
disturbance. This is the case if and only if (ψ(u, ρ), ρ) ∈ U
for every ρ>σ (u). On the other hand, on account of the

physical conditions of the problem, the derivative
∂ψ(u, ρ)
∂ρ

cannot be negative, so that the equation t = ψ(u, ρ) defines
non decreasing functions of ρ giving rise to a foliation of
U by curves issuing from the points of F . Because of this
foliation, we have the condition

∂ψ(u, ρ)

∂u
> 0 (5.1)

which allows to solve the equation t = ψ(u, ρ) with respect
to u, thus obtaining the propagation function of the grav-
itational disturbance u= e(t, ρ) relative to the canonical
metric (4.1). Note that, on account of (5.1), by setting
Δ(u, ρ)= (ψ(u, ρ), ρ)= (t, ρ), we define a diffeomorphism
Δ : U → U , the restriction of which to F is the identity.

Proposition 5.1 If the gravitational disturbance emitted at
the instant u reaches the sphere ‖x‖= ρ at the instant t,
then its radial velocity at this instant equals

−
∂e(t, ρ)/∂t

∂e(t, ρ)/∂ρ
.

Proof. The velocity in question equals

dρ

dt
=

1

dt/dρ
=

1

∂ψ(u, ρ)/∂ρ

and since the derivation of the identity

e
(
ψ(u, ρ), ρ

)
= u

with respect to ρ gives

∂e

∂t

∂ψ

∂ρ
+
∂e

∂ρ
= 0 ,

we obtain
1

∂ψ(u, ρ)/∂ρ
= −

∂e(t, ρ)/∂t

∂e(t, ρ)/∂ρ

as asserted.

Remark. Since the radial velocity of propagation of light is
infinite with respect to the canonical metric (4.1), the veloc-
ity of radial propagation of the gravitational disturbance is
necessarily less than (or possibly equal to) that of light. In
fact, we can establish the identity of the two propagation
functions on the basis of a hypothesis which suggests itself
quite naturally.

Proposition 5.2. If the diffeomorphism Δ transforms the
canonical metric (4.1) into another physically admissible
Θ(4)-invariant metric on U , then the propagation function of
the gravitational disturbance is identical with the propaga-
tion function of light.

Proof. In order to transform (4.1) by means of Δ, we have
simply to replace u in (4.1) by e(t, ρ) thus obtaining the
Θ(4)-invariant metric

ds2 =

(

Fdt+
H

ρ
(xdx)

)2
−

−

[(
G

ρ

)2
dx2 +

(

L2−

(
G

ρ

)2)
(xdx)

2

ρ2

] (5.2)

where

F = F (t, ρ) = f
(
e(t, ρ), ρ

)∂e(t, ρ)
∂t

, (5.3)

H = H (t, ρ) = f
(
e(t, ρ), ρ

)∂e(t, ρ)
∂ρ

+ `
(
e(t, ρ), ρ

)
,

(5.4)

G = G(t, ρ) = g
(
e(t, ρ), ρ

)
,

L = L(t, ρ) = `
(
e(t, ρ), ρ

)
.

In the new metric (5.2), each value of t=ψ(u, ρ) is
the instant at which the disturbance emitted at the instant u
reaches the sphere ‖x‖= ρ. Consequently e(t, ρ) is also the
propagation function of the gravitational disturbance with
respect to (5.2).

We now prove that the derivative ∂e(t, ρ)/∂ρ vanishes
identically on U .

We argue by contradiction. If this derivative does not
vanish, the propagation function e(t, ρ) of the gravitational
disturbance is distinct from the propagation function of light
with respect to (4.1), hence also with respect to the trans-
formed metric (5.2). This last being admissible, according to
our assumption, it satisfies the condition

|H (t, ρ)| 6 L(t, ρ) ,

so that the radial motion of the photons issuing from the
matter is defined by the equation

dt

dρ
=
−H (t, ρ) + L(t, ρ)

F (t, ρ)
.

On account of (5.3) and (5.4), we have

−H (t, ρ) + L(t, ρ)
F (t, ρ)

= −
∂e(t, ρ)/∂ρ

∂e(t, ρ)/∂t
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so that the preceding equation reads

∂e(t, ρ)

∂t
dt+

∂e(t, ρ)

∂ρ
dρ = 0

whence e(t, ρ)= const and since e(t, σ (t))= t, e(t, ρ) is the
propagation function of light with respect to (5.2) contrary
to our assumptions. This contradiction proves our assertion,
namely that ∂e(t, ρ)/∂ρ = 0 on U .

This being proved, since the condition ψ(e(t, ρ), ρ) = t
implies

∂ψ

∂u

∂e

∂ρ
+
∂ψ

∂ρ
= 0 ,

the derivative ∂ψ/∂ρ vanishes identically on U . In other
words, ψ(t, ρ) does not depend on ρ, so that

ψ(u, ρ) = ψ
(
u, σ (u)

)
= u

for every ρ > σ (u). It follows that the propagation function
of the gravitational disturbance is the same as that of light
with respect to (4.1), hence also with respect to any admis-
sible transformation of (4.1).

From now on we will not distinguish the propagation
function of gravitational disturbances from that of light. So
we can begin by the consideration of the canonical metric
(4.1) for the study of the equations of gravitation related to a
spherical pulsating source. This investigation will be carried
out in another paper.
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Effect from Hyperbolic Law in Periodic Table of Elements
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Hyperbola curves Y =K/X and Y =(mx+n)/(px+ q) at determination of the
upper limit of the Periodic System have been studied. Their interdependence is shown
by the example of mathematical calculations in chemistry.

1 Introduction. Mathematical basis

Our previous article shows that the Y content of any element
K in a chemical compound is decreasing in case molecular
mass X is increasing in the range from 1 up to any desired
value in compliance with rectangular hyperbole law Y = K

X .
Simultaneously, fraction (1−Y ) is increasing in inverse pro-
portion in compliance with formula 1−Y = K

X or

Y =
X −K
X

. (1)

It is known that the function

y =
ax+ b

cx+ d
(2)

is called a linear-fractional function [2]. If c=0 and d 6=0,
then we get linear dependence y= a

d
x+ b

d
. If c 6=0, then

y =
a

c
+

bc−ad
c2

x+ d
c

. (3)

Supposing that X=x+ d
c ,

bc−ad
c2

= k 6=0, Y = y− a
c , we

get Y = K
X , i.e. rectangular hyperbole formula which center

is shifted from coordinates origin to point C (−d
c ;

a
c ).

As we can see, formula (1) is a special case of the
function (2), cause coefficient d=0. Then, determinant
D (ad− bc) degenerates into −bc. There exists a rule: when
D< 0, (K> 0), real axis together with X axis (abscissa
axis) makes an angle +45◦; and if D> 0, then the angle
is −45◦. In our case D= a× 0−(−K)× 1=K. Therefore,
real axis, on which tops of all new hyperboles will be located,
shall be in perpendicular position to the axis y= k

x . At that,
the center is shifted from the coordinates origin C (0; 0) to
the point C (0; 1). That means, in our case, semi-axes

a = b =

√
2|D|
c2

=
√
2K . (4)

Then the coordinates of the top of the other hyperbole
Beryllium will be: X0=Y0=

√
K =

√
9.0122= 3.00203 and

X ′= 60.9097, Y ′=1−Y =1− 0.14796= 0.85204.
In order to avoid possible mistakes let us use the follow-

ing terminology: hyperbole of y= k
x kind is called straight,

and linear-fractional — an adjoining one.

Figure 1 demonstrates these curves which represent five
elements from different groups: chlorine (No. 17), zirconium
(No. 40), wolfram (No. 74), mendelevium (No. 101), and the
last one (No. 155). Peculiarity of the diagrams is symmetry
axis at content of elements equal to 0.5. It is clear that both
hyperboles of the last element and ordinate axis limit the
existence area of all chemical compounds related to one
gram-atom.

Previously [1], we proved that all the elements of Period-
ic System can be described by means of rectangular hyper-
bole formulas. That is why, it is quite enough to present
several diagrams in order to illustrate this or that depend-
ence. The same is valid for linear-fractional functions which
curves are directed bottom-up. If we put the picture up by
symmetry axis, we shall see that they fully coincide with
straight hyperboles. At the cross point of straight and adjoin-
ing hyperboles on this line, abscissa is equal to doubled
atomic mass of the element. Coordinates of another cross
points for each pair of hyperboles have the following para-
meters: X is equal to the sum of atomic mass of two ele-
ments (K1+K2), and Y has two values K1

K1+K2
and K2

K1+K2
.

Mentioned above is valid up to the upper bound of Periodic
System inclusive.

As we can see on Figure 2, (А00) and (В01) are real
axes of straight and adjoining hyperboles accordingly; and,
АС and BD, (00Е) and (01Е) are tangents to them. Real axes
are perpendicular to each other and to tangents. And all of
them are equal to each other. Diagonals (00D) and (01С)
divide straights АЕ and ВЕ in halves.

There are formulas of mentioned lines. Cross points of
these lines are also calculated. Abscissa of cross sections
are values divisible by atomic mass of the last element:
0; 205.83; 274.44; 329.328; 411.66; 548.88; 617.49; 823.32
(0; 0.5; 0.667; 0.8; 1.0; 1.333; 1.5; 2.0).

For reference, Figure 3 demonstrates graphical construc-
tion for tungsten.

We can see, that knowing real axes (normal to the top
of hyperboles), it is very easy to build up tangents to any
element, if required, in order to check accuracy of chosen
tops. For that, it is necessary to calculate formula of the
straight which passes through the point M1 (x1; y1) and pa-
rallel y= ax+ b:

y− y1= a(x−x1) . (5)
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Fig. 1: Dependence of Y and 1−Y content from molecular mass in straight and
adjoining hyperboles accordingly.

Fig. 2: Main lines of straight and adjoining hyperboles of the last element: real axes,
tangents, diagonals etc.

Fig. 3: Hyperboles of the last element and tungsten, their cross points and tangents.
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Fig. 4: Dependence of content of Y (OH) and 1−Y in hydroxides from their molecular
mass counting on 1 gram-mole ОН (of hyperbole). Broken curves are overall (summarized)
content of ОН in a substance.

Fig. 5: Application of mathematic methods at calculating of the diagram containing
hyperboles of sodium, chlorine and groups CO3, SO4. Building up of a new hyperbole
based on these data.
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2 Application of law of hyperboles for chemical com-
pounds

As it has already been mentioned above, the law is based on
the following: the content of the element we are determining
in the substance should be referred to its gram-atom. It was
shown in detail by the example of oxygen. In compliance
with the formula y= k

x element is a numerator, and any com-
pound is a denominator. For example, in order to determine
content of sodium (Na) in compounds with molecular mass
NaOH (39.9967), Na2CO3 (105.9872), Na3PO4 (163.941),
NaCl (58.443), Na2SO4 (142.0406) it is necessary, before
the formula, to put coefficients, reducing amount of sodium
in it to a unit: 1, 12 , 13 , 1, 12 , accordingly. Then, numerically,
part of element (Y ) will be: 0.5748, 0.4338, 0.4207, 0.3934,
and 0.3237. I.e. it is in one range with decreasing, and value
(1−Y ) with increasing. Both these curves (in pairs) which
are built based on these data are referred to one element.

Method of rectangular hyperboles is worked out in order
to determine the last element of the Periodic System of
D. I. Mendeleev. But its capabilities are much bigger.

Let us build straight and adjoining hyperboles for sod-
ium, chlorine and also for groups CO3 and SO4, which
form, accordingly, carbonates and sulphates. As we can see
in formula y= k

x they replace elements in a numerator. In
our last work, we said that hyperboles can by formed by
any numbers within location of their tops on a real axis.
However, there is a rule for groups, similar to that of 1 gram-
atom of the element: their quantity in calculated compounds
should not exceed a unit. Otherwise we get a situation shown
on Figure 4.

As we can see, it is necessary to put coefficient 1
2 before

the formula of hydroxide at bivalent barium. Then, his com-
pounds will be on hyperboles. In case of non-observance of
this rule, their points will be on broken line (circle).

Now we can start to solve a problem of building up new
hyperboles, based on existing ones (Figure 5).

Let’s mark on them several general points related to the
known compounds. On sodium curves there are two points
(on each curve) 1

2 Na2CO3 and 1
2 Na2SO4, which are also

located on respective hyperboles but without the coefficient
1
2 (Na2CO3 and Na2SO4). Thus, the point 12 Na2SO4, located
on the straight hyperbole of sodium, and its cross points with
hyperboles CO3 and SO4 form imaginary broken line located
between chlorine and СO3.

In a similar manner it works with adjoining hyperboles.
Let’s build a formula (by three points) Y = 63.257X−1.0658

of a power function (or ln y= 4.1472− 1.0658 lnx). With
the help of mentioned formula we will find some more co-
ordinates, including (obligatory) their crossing center (93.85;
0.5). Then we divide the abscissa of this point by 2 (straight
and adjoining hyperboles cross at doubled value of atomic
mass) we get X , equal to 46.925, and that is a numerator in
a formula of new hyperboles (y= 46.925

x ).

3 Conclusion

Method of rectangular hyperboles makes it possible to do
the following:

• to create mathematical basis for using hyperboles of
the kind y=1− k

x in chemistry;

• to determine existence area of the chemical com-
pounds;

• to calculate formulas of the main lines and cross points
of all the hyperboles, including the last element;

• to show the possibility of building up hyperboles
whose numerator is a group of elements, including the
rule of 1 gram-atom (in this case it is 1 gram-mole);

• to calculate and to build unknown in advance hyper-
boles by several data of known chemical compounds
located on respective curves;

• to control (with high accuracy) the content of synthes-
ized substances;

• to design chemical compounds.

Due to the fact that it is inconvenient to call each time
the element 155 (that we calculated in this paper) “the last
element” and by the right of the discoverer we decided to
call it KHAZANIUM (Kh).
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Laser-induced breakdown spectroscopy (LIBS) has been applied to analysis aluminum
alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on
the target in air at atmospheric pressure. Such plasma emission spectrum was collected
using a one-meter length wide band fused-silica optical fiber connected to a portable
Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma
evolution of laser produced plasmas has been characterized in terms of their spectra,
electron density and electron temperature assuming the LTE and optically thin plasma
conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace
elements. The electron temperature and density were determined using the emission
intensity and stark broadening, respectively, of selected aluminum spectral lines. The
values of these parameters were found to change with the aluminum alloy matrix, i.e.
they could be used as a fingerprint character to distinguish between different aluminum
alloy matrices using only one major element (aluminum) without needing to analysis
the rest of elements in the matrix. Moreover, It was found that the values of Te and
Ne decrease with increasing the trace elements concentrations in the aluminum alloy
samples. The obtained results indicate that it is possible to improve the exploitation
of LIBS in the remote on-line industrial monitoring application, by following up
only the values of Te and Ne for aluminum in aluminum alloys as a marker for
the correct alloying using an optical fiber probe.

1 Introduction

The interaction of high-power pulsed laser light with a target
or solid samples has been an active topic not only in plasma
physics but also in the field of analytical chemistry. During
the paste decade, the use of Laser Induced Plasma Spectro-
scopy (LIBS) as an alternative elemental analysis technology
based on the optical emission spectra of the plasma produced
by the interaction of high-power laser with a target has been
studied by several authors [1–7]. Because of the lack of pre-
treatment of the material as well as the speed of analysis, not
mentioning the possibility of in situ analysis, this technique
offers an attractive solution for a wide range of industrial ap-
plications. However, the existent commercial instruments are
still not sufficient to guarantee reproducibility and precise
quantitative results. In fact, the analytical performance of the
LIBS technique depends strongly on the choice of experi-
mental conditions that influence the laser-produced plasma
characteristics [8]. The main parameters affecting the per-
formance of LIBS results are as follows: laser intensity, exci-
tation wavelength, laser pulse duration, and the surrounding
atmosphere [9]. Moreover, the physical and chemical prop-
erties of the sample can affect the produced plasma compo-
sition, a phenomenon known as the matrix effect. The inter-
action between the laser and the target in LIBS is influenced
significantly by the overall composition of the target, so that
the intensity of the emission lines observed is a function

of both the concentration of the elements of interest and
the properties of the matrix that contains them. The author
published works studied the matrix effect under different
experimental conditions to specify causes and find out the
methods of correction [4, 6, 7].

On the other hand, from a more fundamental point of
view, LIBS diagnostic studies of electron temperature Te
and number density Ne have all been based on assumptions,
most importantly those of the existence of local thermo-
dynamic equilibrium LTE conditions and of optically thin
plasma [10]. Ciucci et al. [11] have discussed the possibility
of devising a calibration free method, i.e. some kind of an
“absolute analysis” approach. The success of such approach
heavily relies upon the accurate knowledge of the parameters
and the validity of the assumptions cited above. Apparently
LIBS plasmas fulfill LTE conditions even though during the
measurement time, the plasma parameters rapidly change
due to expansion. In this connection, one needs to determine
the conditions for expanding high density plasmas to be
in an equilibrium state as well as of the time duration for
the existence of such equilibrium. The aim of the present
paper is to study the variation of the plasma parameters
with aluminum lines in different aluminum alloy matrices.
This will help not only clarifying the constraints to be taken
into account when measuring Te and Ne but also using
the matrix effect to distinguish different aluminum alloy
matrices.
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Sample Be Mg Si Fe Cu Ca Mn Al

AL 6063 0.00030 0.54 0.43 0.2 0.085 0.0021 0.081 Balance

AL 4104 0.0017 1.56 9.63 0.7 0.12 0.0021 0.046 Balance

AL 5754 0.0022 2.54 0.22 0.35 0.1 0.0011 0.29 Balance

AL 3104 0.0011 1.15 0.21 0.42 0.17 0.0031 0.92 Balance

Table 1: Beryllium, Copper, iron, magnesium, silicon, calcium and manganese
concentrations (in w/w %) in the standard aluminum alloy samples.

2 Experimental setup

A typical LIBS experimental setup, described in details by
the author elsewhere [4, 6], is used throughout the present
investigations. The plasma formation was attained with the
aid of a Q-switched Nd: YAG laser (NY81.30, continuum,
USA) operating at 1064 nm (pulse duration of 7 ns) and
repetition rate of 0.1 Hz–30 Hz. The laser pulse energy of
100–300 mJ was adjusted by a suitable combination of beam
splitters at constant operating high voltage (1.3 kV) and Q-
switch delay (1.65μs) to ensure spatial and temporal beam
profile stability. An energy meter (Nova 978, Ophir Optron-
ics Ldt., USA) was employed to monitor the shot to shot
pulse energy. The laser beam was focused on aluminum alloy
samples by a 10 cm focal length quartz lens to generate the
plasma. The emitted light from the plasma plume is collected
via a one-meter length wide band fused-silica optical fiber
connected to a 0.17 m focal length Echelle spectrometer
(Mechelle 7500, Multichannel Instruments, Sweden). The
Mechelle 7500 provides a constant spectral resolution of
7500 corresponding to 4 pixels FWHM, over a wavelength
range 200–1000 nm displayable in a single spectrum. A gate-
able, intensified CCD camera, (DiCAM-Pro, PCO Computer
Optics, Germany) coupled to the spectrometer was used for
detection of the dispersed light. The overall linear dispersion
of the spectrometer-camera system ranges from 0.006 nm/
pixel (at 200 nm) to 0.033 nm/pixel (at 1000 nm). To avoid
the electronic interference and jitters, the CCD intensifier
high voltage was triggered optically. The ICCD camera con-
trol was performed via Mechelle software (Multichannel In-
struments, Stockholm, Sweden). The emission spectra
display, processing and analysis were done using 2D- and
3D-GRAMS/32 version 5.1 spectroscopic data analysis soft-
ware (Galactic Industries, Salem, NH, USA). To improve
data reproducibility, and to avoid electronic jittering problem,
the laser was set to single shot mode. Then, the Nd:YAG
laser beam was focused onto the sample surface at 90◦ angle.
This was done using a 25 mm diameter dichroic mirror that
reflects 99% of high energy 1064 nm wavelength. The focal
point was set 5 mm below the surface of the sample in
order to generate plasma of 800μm spot diameter. This also
minimize breakdown above the surface of any particles and
aerosols generally present above the sample. Moreover, for
each new sample, before spectral collection, 20 laser pulses
were performed to clean the sample surface and removes

surface oxides and contamination to ensure that the observed
spectrum is representative of the sample composition.

On the other hand, the use of a micro xyz-translation
stage as a holder for fused-silica optical fiber facilities max-
imum intensity of the observed emission light from the plas-
ma plume. Now, we aim to produce LIBS spectra with high
precision. Precision is the measure of the degree of repro-
ducibility of a measurement. Laser shot-to-shot variation
causes differences in the plasma properties, therefore affects
the magnitude of the element signal, and hence degrades the
LIBS precision. To improve LIBS precision, spectra from
several laser shots have to be averaged in order to reduce
statistical error due to laser shot-to-shot fluctuation. We rep-
roduced the measurements at five locations on the sample
surface in order to avoid problems linked to sample hetero-
geneity. Twenty shots were fired at each location and saved
in separated files and the average was computed and saved
to serve as the library spectrum. For each recorded spectrum,
the peak intensity, the Lorentzian curve fitting, the full width
at half maximum FWHM, and the center wavelength of
each line, as well as the background emission continuum are
determined. Data treatment preprocessing of the averaged
spectra data was performed in the Windows environment on
a Pentium 4 PC using GRAMS/32, Excel (Microsoft Office
Excel 2003) and Origin software version 7.0220 (Origin Lab
Corp., USA). The averages of peak tables (lists of wave-
lengths and intensities) of the averaged spectra were roll
generated in GRAMS/32 and exported for data evaluation.

We investigated a set of five standard samples of alum-
inum alloy to study the dependence of the electron density
and temperature on the matrix effect. So that, these samples
were selected to have trace elements with a range of concen-
trations. We used disk shaped standard samples of aluminum
alloy provided by Alcan international limited (0.5 cm;
φ= 5 cm). The concentrations of the trace elements “Mg,
Si, Be, Cu, Mn, Fe, Ca” in the aluminum alloy samples are
given in Table 1.

3 Results and discussion

3.1 Optimizing LIBS spectrum

Optimizing LIBS for a high resolution aluminum alloy was
done by optimizing the experimental conditions including
the time delay, the gate delay (the integration time) and the
laser irradiance. In fact, the timing of the recorded signal
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Fig. 1: The figure contains three spectra as follows: A — the
panoramic LIBS spectrum in the spectral range 200–700 nm shows
the UV-visible emission lines of aluminum as a major element
and the emission lines of the trace elements in the aluminum
alloy sample AL 6063. B — a zoomed segment showing the
copper lines 324.7 nm and 327.4 nm in the UV region recorded
at 1.5μs delay time and 1μs gate width using laser irradiance of
108 W/cm2 for sample AL 6063 containing copper concentration
of 0.085% (w/w) where S/N= 8. C — the same copper lines using
the optimized conditions of 2.5μs delay time and 1.5μs gate width
at 1010 W/cm2 laser irradiance where S/N= 25.

depend on the laser energy and wavelength, so we firstly
increased the laser energy from 70 mJ, as used before by
the author [6], to 300 mJ. In this case, the laser irradiance
increased from ≈108 W/cm2 to ≈1010 W/cm2 which found
to be suitable for the case of aluminum alloy samples having
trace elements with concentrations in the ppm range. Then
under the late laser irradiance, the delay time, at which the
spectrum is recorded from the laser start, was optimized by
scanning the delay time with the signal intensity as done
previously by the author [6]. It was found that the optimized
conditions are 2.5μs delay time and 1.5μs gate width at
1010 W/cm2 laser irradiance at the sample surface. The gate
delay was limited to 1.5μs to avoid saturation of the detec-
tor. Optimizing LIBS spectrum was done in order to reduce

the background signal and increase the signal to noise ratio
(S/N). Figure 1 shows a typical plasma emission spectrum
for aluminum alloy sample AL 6063. The figure contains
three spectra as follows: A — the panoramic LIBS spectrum
in the spectral range 200–700 nm shows the UV-visible emis-
sion lines of aluminum as a major element and the emission
lines of the trace elements in the aluminum alloy sample.
B — a zoomed segment showing the copper lines 324.7 nm
and 327.4 nm in the UV region recorded at 1.5 μs delay time
and 1μs gate width using laser irradiance of 108 W/cm2 for
sample AL 6063 containing copper concentration of 0.085%
(w/w) where S/N= 8. C — the same copper lines using
the optimized conditions of 2.5μs delay time and 1.5μs
gate width at 1010 W/cm2 laser irradiance where S/N= 25.
This, of course, makes LIBS to be a very high-resolution
spectroscopic system for the trace elements with concentra-
tions in the ppm range.

3.2 Plasma parameters and matrix effect

The main factors that influence the light emitted by the plas-
ma are its temperature, the number density of the emitting
species, and the electronic density. The number density of
the emitting species (e.g. atoms, ions, etc) depends on the
total mass ablated by the laser, the plasma temperature, and
the degree of the excitation and/or ionization of the plasma.
The vaporized amount, in turn, depends on the absorption
of the incident laser radiation by the surface, the plasma
shielding [12], which is related to the electron density of the
plasma, and the laser fluence. Therefore, the knowledge of
the plasma temperature and the density of plasma species are
vital for the understanding of the dissociation–atomization,
excitation, and ionization processes occurring in the plasma.
For this reason, study the variation of these plasma parame-
ters with aluminum lines in different aluminum alloy matri-
ces. This will help not only clarifying the constraints to be
taken into account when measuring Te and Ne but also using
the matrix effect to distinguish different aluminum alloy
matrices.

For plasma in local thermodynamic equilibrium (LTE),
the population density of atomic and ionic electronic states
is described by a Boltzmann distribution. For optically thin
plasma, the re-absorption effects of plasma emission are
negligible. So, the emitted spectral line intensity I is a mea-
sure of the population of the corresponding energy level
of this element in the plasma. For the LTE plasma, the
population of an excited level can be related to the total
density N(T ) of neutral atom or ion of this element by
Boltzmann equation [13] as:

I =
hc

4πλ
N(T )

Aki gk
U(T )

exp

(

−
Ek
KT

)

, (1)

where λ is the wavelength, Aki is the transition probability,
gk is the statistical weight for the upper level, Ek is the
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Wavelength
(nm)

Aki (s−1) Ek (cm−1) gk

Stark
broadening
parameter
W (nm)

281.62 3.83E+08 95351 1 4.2900E-04

308.85 1.50E+07 139289.2 5 —

364.92 1.50E+07 132823 3 —

364.92 1.50E+07 132823 3 —

365.11 2.10E+07 132822.8 5 —

365.11 2.10E+07 132822.8 5 —

365.50 2.70E+07 132822.9 7 —

365.50 2.70E+07 132822.9 7 —

370.32 3.80E+07 133916.4 5 —

373.20 4.30E+06 132215.5 3 —

373.39 1.30E+07 132215.5 3 —

373.80 2.10E+07 132215.5 3 —

386.62 3.70E+07 132778.6 1 —

390.07 4.80E+05 85481.35 5 —

559.33 1.10E+08 124794.1 5 —

624.34 1.10E+08 121483.5 7 —

Table 2: A list of the spectroscopic data of the aluminum spec-
tral lines used for the determination of plasma temperature and
density of aluminum alloy samples.

excited level energy, T is the temperature (in LTE all tempe-
ratures are assumed to be equal, i.e. Te≈Tion≈Tplasma),K
is the Boltzmann constants, U(T ) is the partition function.

The emitted spectral line intensity from a given state of
excitation can be used to evaluate the plasma temperature.
The lines must be well resolved for accurately evaluating
their wavelengths λ, intensities I , and their transition proba-
bilities Aki must be know.

Reformulating Eqn. (1) gives;

ln
Iλ

Aki gk
= −

1

KT
Ek + ln

C F

U(T )
, (2)

where F is an experimental factor and C is the species
concentration.

By plotting the left hand side of Eqn. (2) vs. the excited
level energy Ek, the plasma temperature can be obtained
from the slope of obtained straight line.

During the early stages of plasma formation, the emitted
spectrum is dominated by an intense continuum (Bremsstra-
hlung radiation), on which several heavily broadened ionic
lines of the elements present are superimposed. The broaden-
ing of the ionic lines is due to the high electron densities
occurring at this initial period (Stark broadening). At the
same time, the excited neutral atoms’ spectral lines are rela-
tively weak; they are superimposed on the continuum and
often overlap with the ionic lines. Hence, they cannot be
easily isolated and measured. As a consequence, the measu-
rement of their intensity for the construction of Boltzmann
plots becomes problematic at early times (e.g. the first few

Fig. 2: Four Boltzmann plots were determined form the emission
line intensities of aluminum observed in the laser-induced plasma
of aluminum alloys. The slope of the plotted curves yields
temperatures 13960 K, 12974 K, 11871 K, and 10841 K for the
samples AL 6063, AL 5754, AL 3104 and AL 4104 respectively.

hundred nanoseconds) and the use of time delay is compul-
sory. However, each spectral line exhibits different temporal
evolution that is element and atomic energy level specific.
Under our experimental conditions, a delay time of 2.5 μs
delay time and 1.5μs gate width at 1010 W/cm2 laser irradi-
ance have been determined as optimum conditions (as de-
scribed in Section 3.1 before). Under these experimental
conditions, the plasma temperatures were determined form
the emission line intensities of sixteen selected aluminum
lines (see Table 2) observed in the laser-induced plasma of
different aluminum alloy targets. Figure 2 show four Boltz-
mann plots of Eqn. (2), for these lines where the data were
fitted with the least-square approximation. The spectral lines
wavelengths, energies of the upper levels, statistical weights,
and transition probabilities used for these lines were obtained
from NIST [14] and Griem [13], and listed in Table 3. The
slope of the plotted curves yields temperatures 13960 K,
12974 K, 11871 K, and 10841 K for the samples AL 6063,
AL 5754, AL 3104 and AL 4104 respectively as listed in
Table 3).

On the other hand, the electron number density can be
obtained from the Stark-broadening of the emission lines
[15]. This is because, Stark-broadening results from Cou-
lomb interactions between the radiator and the charged par-
ticles present in the plasma. Both ions and electrons induce
Stark broadening, but electrons are responsible for the major
part because of their higher relative velocities. The electrons
in the plasma can perturb the energy levels of the individual
ions which broaden the emission lines originating from these
excited levels. Stark broadening of well-isolated lines in the
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Plasma parameters Sample AL6063 Sample AL 5754 Sample AL 3104 Sample AL 4104

Electron Temperature (Kelvin) 13960 12974 11871 10841

Electron Density (cm−3) 7.28×1018 4.28×1018 4.44×1018 2.28×1018

Table 3: The plasma electron temperature Te and density Ne determined from aluminum spectral lines in the four
standard aluminum alloy samples.

plasma is, thus, useful for estimating the electron number
densities provided that the Stark-broadening coefficients
have been measured or calculated. The line profile for stark
broadened is well described by a Lorentzian function. Since
the instrumental line-broadening exhibit Gaussian shape,
then the stark line width ΔλFWHM can be extracted from the
measured line width Δλobserved by subtracting the instru-
mental line broadening Δλinstrument:

ΔλFWHM = Δλobserved −Δλinstrument . (3)

In our case Δλinstrument was 0.05 nm (determined by
measuring the FWHM of the Hg lines emitted by a standard
low pressure Hg lamp).

The width of stark broadening spectral line depends on
the electron density Ne. Both the linear and the quadratic
stark effect are encountered in spectroscopy. Only the hydro-
gen atom and H-like ion exhibit the linear stark effect. For
the linear stark effect the electron density should be deduced
from H line width from the formula [13]

Ne = C (Ne, T )Δλ
3/2
FWHM (4)

the values of the parameter C (Ne, T ) are tabulated in the
literature [13], which determine the relative contribution of
the electron collision on the electrostatic fields, and depend
weakly on Ne and T .

For a non-H-like line, the electron density (in cm−3)
could be determined from the FWHM of the line from the
formula [13]:

Ne ≈

(
ΔλFWHM

2W

)

× 1016, (5)

W is the electron impact parameter (stark broadening value)
and it is given in Table 2). The last formula is generally used
for calculations of plasma generated from solid targets [7, 12].

The aluminum line 281.62 nm was identified as candi-
date for electron-density measurements. Figure 3 shows, the
281.62 nm line with sufficient resolution to measure the full
width at half-maximum (λ1/2) at four different aluminum
alloy samples. All the data points were fitted with Lorentzian
fitting function using the Origin software to determine (λ1/2)
as shown in Fig. 3 and found to be 0.113 nm, 0.070 nm,
0.092 nm and 0.088 nm for the samples AL6063, AL 4104,
AL 5754, and AL 3104 respectively. Substituting the values
of λ1/2 in Eqn. (3) and the corresponding value of stark
broadening W (4.29×10−4 nm from Griem [13] at plasma
temperature of 10000 K) in Eqn. (5) the electron density
values of 7.28×1018, 4.28×1018, 4.44×1018, and 2.28×1018

Fig. 3: The 281.62 nm line with sufficient resolution to measure
the full width at half-maximum (λ1/2) at four different aluminum
alloy samples. All the data points were fitted with Lorentzian fitting
function using the Origin software and the values of λ1/2 found
to be 0.113 nm, 0.070 nm, 0.092 nm and 0.088 nm for the samples
AL6063 , AL 4104, AL 5754, and AL 3104 respectively.

were obtained for the samples AL 6063, AL 5754, AL 3104
and AL 4104 respectively as listed in Table 3.

The above obtained results reveal that plasma parameters
(Te, Ne) change with changing the aluminum alloy matrix
i.e. matrix dependent. Moreover, by comparing the results
of the four samples in Table 3 with the concentrations of
the trace elements in Table 1, one could recognized that
while the concentrations of trace elements increase both
values of Te and Ne decrease. This is well clear by compar-
ing the two samples AL 6063 and AL 4104 thus while all
the trace elements, except Mn, increase (silicon concentra-
tion increases from 0.43% to 9.63%), both values of Te
and Ne decrease from 13960 K, 7.28×1018cm−3 to 10841 K,
2.28×1018cm−3, respectively. This result might occur be-
cause increasing the “trace element” concentration compri-
ses increasing portion of the laser-target interaction volume
of that trace element and decreases the laser-target interac-
tion volume of the major element (aluminum). Moreover,
aluminum “the major element” species are easy to be ionized
than the species of the seven trace elements which leads
to higher electron density for aluminum alloy samples with
low trace elements concentrations than for relatively high
trace elements concentrations. Moreover, this is clear since,
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the ionization potential of Al, Ca, Be, Mg, Si, Mn, Fe,
and Cu are (in eV) 5.98, 6.11, 9.32, 7.64, 8.15, 7.43, 7.87
and 7.72 respectively. The last observed result agrees with
previously observed results obtained by O. Samek [15] and
Rusak et al. [16].

Finally, by knowing the electron density and the plasma
temperature we can determine whether the local thermo-
dynamic equilibrium (LTE) assumption is valid applying the
criterion given by McWhirter [17], Bekefi [18] where the
lower limit for electron density for which the plasma will be
in LTE is:

Ne > 1.4×1014ΔE3 T 1/2, (6)

ΔE is the largest energy transition for which the condition
holds and T is the plasma temperature.

In the present case ΔE= 4.34 eV for Mg (see Ref. [13])
and the highest temperature is 1.2 eV (13960 K), then
the electron density lower limit value given by Eqn. (6) is
1.25×1016 cm−3. The experimentally calculated densities are
greater than this value, which is consistent with the assump-
tion that the LTE prevailing in the plasma.

4 Conclusion

LIBS technique has been used to analysis different alumi-
num alloy samples. The LIBS spectrum was optimized for
high S/N ratio especially for trace elements. The character-
istic plasma parameters (Te, Ne) were determined using
selected aluminum spectral lines. The values of these para-
meters were found to change with the aluminum alloy
matrix, i.e. they could be used as a fingerprint character
to distinguish between different aluminum alloy matrices
using only one major element (aluminum) without needing
to analysis the rest of elements in the matrix. Moreover,
It was found that the values of Te and Ne decrease with
increasing the trace elements concentrations in the aluminum
alloy samples.

For industrial application, LIBS could be applied in the
on-line industrial process that following up elemental con-
centration in aluminum alloys by only measuring Te and Ne
for the aluminum using an optical fiber probe. This could
be done by building a database containing the determined
values of Te and Ne for a range of standard aluminum alloy
matrices. Then the unknown aluminum alloy sample could
be identified just by comparing its measured Te and Ne
values with the previously stored values in our database.
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Use of satellite shift formula emerging in Quaternion (Q-) model of relativity theory
for explanation of Pioneer anomaly [1] is critically discussed. A cinematic scheme
more suitable for the case is constructed with the help of Q-model methods. An
appropriate formula for apparent deceleration resulting from existence of observer-
object relative velocity is derived. Preliminary quantitative assessments made on the
base of Pioneer 10/11 data demonstrate closure of the assumed “relativistic decele-
ration” and observed “Doppler deceleration” values.

1 Introduction. Limits of satellite-shift formula

Recently [1] there was an attempt to give an explanation
of Pioneer anomaly essentially using formula for relativistic
shift of planet’s fast satellites observed from the Earth. This
formula was derived within framework of Q-method deve-
loped to calculate relativistic effects using SO(1, 2) form-
invariant quaternion square root from space-time interval
rather than the interval itself [2]; in particular this advanta-
geously permits to describe relativistic motions of any non-
inertial frames. The last option was used to find mentioned
formula that describes cinematic situation comprising three
Solar System objects: the Earth (with observer on it), a
planet, and its satellite revolving with comparatively large
angular velocity. Due to existence of Earth-planet relative
velocity, not great though and variable but permanent, the
cycle frequency of satellite rotation (observed from the
Earth) is apparently less that in realty, i.e. the “planet’s
clock” is slowing down, and calculation shows that the gap is
growing linearly with time. Visually it looks that the satellite
position on its orbit is apparently behind an expected place.
For very fast satellites (like Jupiter’s Metis and Adrastea)
and for sufficiently long period of time the effect can probab-
ly be experimentally detected. Same effect exists of course
for Mars’s satellites and it is computed that monthly apparent
shift on its orbit of e.g. Phobos is about 50 meters (that is
by the way can be important and taken into account when
planning expedition of spacecraft closely approaching the
moon).

In paper of F. Smarandache and V. Christianto [1] the dis-
cussed formula was used to describe famous Pioneer effect,
implying that the last great acceleration the space probe
received when approached very close to Jupiter; in particular
data concerning Adrastea, whose location was as close to
Jupiter as the space probe, were cited in [1]. Combined with
ether drift effect the formula gives good coincidence (up to

0.26%) with value of emission angle shift required to explain
observation data of Pioneer’s signal Doppler residuals [3].

This surprisingly exact result nevertheless should not
lead to understanding that obtained by Q-method mathema-
tical description of a specific mechanical model can bear uni-
versal character and fit to arbitrary relativistic situation. One
needs to recognize that Pioneer cinematic scheme essentially
differs from that of the Earth-planet-satellite model; but if
one tries to explain the Pioneer effect using the same rela-
tivistic idea as for satellite shift then an adequate cinematic
scheme should be elaborated. Happily the Q-method readily
offers compact and clear algorithm for construction and de-
scription of any relativistic models. In Section 2 a model
referring observed frequency shift of Pioneer spacecraft sig-
nals to purely relativistic reasons is regarded; some quantita-
tive assessments are made as well as conclusions on ability
of the model to explain the anomaly. In Section 3 a short
discussion is offered.

2 Earth-Pioneer Q-model and signal frequency shift

Paper [3] enumerates a number of factors attracted to analyze
radio data received from Pioneer 10/11 spacecraft, among
them gravitational planetary perturbations, radiation pres-
sure, interplanetary media, General Relativity∗, the Earth’s
precession and nutation. It is worth noting here that one sig-
nificant factor, time delay caused by relative probe-observer
motion, is not distinguished in [3]. The fact is understand-
able: relative motion of spacecraft and observer on the Earth
is utterly non-inertial one; Special Relativity is not at all
able to cope with the case while General Relativity methods
involving specific metric and geodesic lines construction

∗Unfortunately paper [3] does not indicate to what depth General
Relativity is taken into account: whether only Newtonian gravity is modi-
fied by Schwarzschild, Kerr (or other) metrics, or cinematic effects are
regarded too.
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(with all curvature tensor components zero) or additional
vector transport postulates are mathematically difficult. Con-
trary to this the Q-relativity method easily allows building of
any non-inertial relativistic scheme; an example describing
a spacecraft (probe) and an Earth’s observer is given below.

Assume that Pioneer anomaly is a purely relativistic ef-
fect caused by existence of Earth-Pioneer relative velocity,
variable but permanent. Construct respective model using the
Q-method algorithm. Choose Q-frames. Let Σ=(q1,q2,q3)
be the Earth’s frame whose Cartesian directing vectors are
given by quaternion “imaginary” units qk obeying the multi-
plication rule∗

1qk = qk 1 = qk , qkql = −δkl + εklj qj . (1)

Let Q-frame Σ′ = {qk′} belong to a probe. Suppose for
simplicity that vectors q2, q3 are in the ecliptic plane as
well as (approximately) the probe’s trajectory. Assume that
vector q2 of Σ is always parallel to Earth-probe relative
velocity V . Now one is able to write rotational equation,
main relation of Q-relativity, which ties two frames

Σ′ = O
−iψ
1 Σ , (2)

here O−iψ1 is 3×3 orthogonal matrix of rotation about axis
No.1 at imaginary angle −iψ

O
−iψ
1 =




cos(iψ) − sin(iψ) 0

sin(−iψ) cos(iψ) 0

0 0 1



=




coshψ −i sinhψ 0

i sinhψ coshψ 0

0 0 1





thus “converting” frame Σ into Σ′. The first row in the
matrix equation (2)

q1′ = q1 coshψ − q2 i sinhψ

after straightforward algebra

q1′ = coshψ (q1−q2 i tanhψ) ⇒ q1′ =
dt

dt′
(q1−q2 iV ψ)

with usual relativistic relations

V = tanhψ, dt = dt′ coshψ (3)

acquires the form of basic cinematic space-time object of
Q-relativity

idt′q1′ = idtq1 + drq2 ,

a specific quaternion square root from space-time interval of
Special Relativity

(idt′q1′)(idt
′q1′) = (idtq1 + drq2)(idtq1 + drq2) ⇒

⇒ dt′2 = dt2 − dr2,

dt′ being proper time segment of the probe. Eq. (3) yields
ratio for probe-Earth signal period (small compared to time
of observation) T = T ′ coshψ, i.e. observed from Earth the

∗Latin indices are 3-dimensional (3D), δkl is 3D Kroneker symbol,
εjkl is 3D Levi-Civita symbol; summation convention is assumed.

period is apparently longer than it really is. Vice versa, ob-
served frequency f =1/T is smaller than the real one f ′

f =
1

T
=

1

T coshψ
=

f ′

coshψ
= f ′

√
1− (V/c)2, (4)

or for small relative velocity

f ∼= f ′
(

1−
V 2

2c2

)

.

This means that there exists certain purely apparent re-
lativistic shift of the probe’s signal detected by the Earth
observer

Δ f = f ′ − f = f ′
V 2

2c2
, or

Δ f

f ′
=
V 2

2c2
=

ε

c2
, (5)

ε being the probe’s kinetic energy per unit mass computed
in a chosen frame. Contrary to pure Doppler effect the shift
given by Eq. (5) does not depend on the direction of relative
velocity of involved objects since in fact it is just another
manifestation of relativistic delay of time. Light coming to
observer from any relatively (and arbitrary) moving body is
universally “more red” than originally emitted signal; as well
all other frequencies attributed to observed moving bodies
are smaller then original ones, and namely this idea was
explored for derivation of satellite shift formula.

Experimental observation of the frequency change (5)
must lead to conclusion that there exists respective “Doppler
velocity” VD entering formula well known from Special Re-
lativity

f =
f ′

√
1− (VD/c)2

(

1−
VD
c
cosβ

)

, (6)

β being angle between velocity vector and wave vector of
emitted signal. If β=0 and smaller relativistic correction are
neglected then Eq. (6) can be rewritten in the form similar
to Eq. (5)

Δ f

f ′
∼=
VD
c2
; (7)

comparison of Eqs. (7) and (5) yields very simple formula
for calculated (and allegedly existent) “Doppler velocity”
corresponding to observed relativistic frequency change

VD ∼=
ε

c
. (8)

Estimation of the value of VD can be done using picture
of Pioneer 10/11 trajectories (Fig.1) projected upon ecliptic
plane (provided in NASA report [4]); other spacecraft traces
are also shown, the Earth’s orbit radius too small to be
indicated.

Schematically the cinematic situation for Pioneer 10 is
shown at Fig. 2 where the trajectory looks as a straight line
inclined at constant angle λ to axis q2, while the Earth’s
position on its orbit is determined by angle α=Ωt, Ω=
= 3.98×10−7 s−1 being the Earth’s orbital angular velocity.
Vectors of the probe’s and Earth’s velocities in Solar Ecliptic
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Fig. 1: Spacecraft trajectories on the ecliptic plane. (After NASA
original data [4]. Used by permission.)

(SE) coordinate system∗ are respectively denoted as VP
and VE ; their vector subtraction gives relative Earth-probe
velocity V = VP −VE so that

VD(t) =
V 2

2c
=
V 2P + V

2
E − 2VPVE cos(Ωt−λ)

2c
, (9)

and respective “Doppler acceleration” is

aD = V̇D(t) =

=
VP V̇P−V̇PVE cos(Ωt−λ)+ΩVPVE sin(Ωt−λ)

c
.

(10)

In Eq. (10) the first term in the numerator claims exist-
ence of secular deceleration, since escaping from the Sun’s
and Jupiter’s gravity the probe is permanently decelerated,
V̇p< 0; the result is that the frequency gap shrinks giving
rise to pure relativistic blue shift. Other sign-changing terms
in right-hand-side of Eq. (10) are periodic (annual) ones;
they may cause blue shift as well as red shift. Thus Eq. (10)
shows that, although relative probe-Earth velocity incorpo-
rates into difference between real and observed frequency,
nevertheless secular change of the difference is to be related
only to relative probe-Sun velocity. Distinguish this term
temporary ignoring the annual modulations; then the secular
deceleration formula is reduced as

aSD ∼=
V̇P VP
c

. (11)

∗The SE is a heliocentric coordinate system with the z-axis normal to
and northward from the ecliptic plane. The x-axis extends toward the first
point of Aries (Vernal Equinox, i.e. to the Sun from Earth in the first day
of Spring). The y-axis completes the right handed set.

Fig. 2: Earth-Pioneer 10 cinematic scheme, where the trajectory
looks as a straight line inclined at constant angle λ to axis q2.

Below only radial components of the probe’s velocity
and acceleration in Newtonian gravity are taken into account
in Eq. (11); it is quite a rough assessment but it allows to
conceive order of values. The probe’s acceleration caused
by the Sun’s Newtonian gravity is

V̇P = −
GM�

R2
, (12)

G= 6.67×10−11 m3/kg×s2, M�= 1.99×1030 kg are respec-
tively gravitational constant and mass of the Sun. NASA
data [5] show that in the very middle part (1983–1990) of the
whole observational period of Pioneer 10 its radial distance
from the Sun changes from R∼= 28.8 AU= 4.31×1012 m to
R∼= 48.1 AU= 7.2×1012 m, while year-mean radial velocity
varies from VP = 15.18×103 m/s to VP = 12.81×103 m/s. Re-
spective values of the secular “relativistic deceleration” va-
lues for this period computed with the help of Eqs. (11), (12)
vary from aSD =−3.63×10−10 m/s2 to aSD =−1.23×10−10

m/s2. It is interesting (and surprising as well) that these re-
sults are very close in order to anomalous “Doppler decele-
ration” of the probe aP =−(8±3)×10−10 m/s2 cited in [3].

Analogous computations for Pioneer 11, as checking
point, show the following. Full time of observation of Pio-
neer 11 is shorter so observational period is taken from 1984
to 1989, with observational data from the same source [5].
Radial distances for beginning and end of the period are
R∼=15.1AU=2.26×1012m, R∼=25.2AU=3.77×1012m; re-
spective year-mean radial velocities are VP = 11.86×103 m/s,
VP = 12.80×103 m/s. Computed “relativistic deceleration”
values for this period are then aSD =−10.03×10−10 m/s2,
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aSD =−5.02×10−10 m/s2: this is even in much better cor-
relation (within limits of the cited error) with experimental
value of aP .

3 Discussion

Quantitative estimations presented above allow to conclude:
additional blue shift, experimentally registered in Pioneer 10
and 11 signals, and interpreted as Sun-directed acceleration
of the spacecraft to some extent, support the assumption
of pure relativistic nature of the anomaly. Of course one
notes that while Pioneer 11 case shows good coincidence
of observed and calculated values of deceleration, values of
aSD for Pioneer 10 constitute only (45–15)% of observed
Doppler residual; moreover generally in this approach “rela-
tivistic deceleration” is a steadily decreasing function, while
experimentally (though not directly) detected deceleration
aP is claimed nearly constant. These defects could find ex-
planation first of all in the fact that a primitive “Newtonian
radial model” was used for assessments. Preliminary but
more attentive reference to NASA data allows noticing that
observed angular acceleration of the probes too could signi-
ficantly incorporate to values of “relativistic deceleration”.
This problem remains to be regarded elsewhere together with
analysis of the angular acceleration itself.
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Single photon experiments have been used as one of the most striking illustrations of
the apparently nonclassical nature of the quantum world. In this review we examine
the mathematical basis of the principle of complementarity and explain why the
Englert-Greenberger duality relation is not violated in the configurations of Unruh
and of Afshar.

1 Introduction

In classical physics if we have two distinct physical states
ψ1 6=ψ2 of a physical system and we know that ψ1ORψ2
is a true statement we can easily deduce that ψ1XORψ2 is
a true statement too. In Quantum Mechanics however we
encounter a novel possibility for quantum coherent superpo-
sition. It has been verified in numerous experiments that a
qubit can be prepared in a linear combination of two ortho-
gonal states, and this parallel existence in the quantum realm,
in the form ψ1ANDψ2, is what requires caution when we
draw conclusions from a given set of premises — the truth of
ψ1ORψ2 now does not lead to the truth of ψ1XORψ2.∗ If a
qubit at point x is in a state ψ1XORψ2 then ψ1 and ψ2 are
called distinguishable states. Logically, if the qubit at point
x is in a state ψ1XNORψ2 the two states ψ1 and ψ2 will
be indistinguishable. From the requirement for mathematical
consistency it follows that two states ψ1 and ψ2 cannot be
both distinguishable and indistinguishable at the same time.

The concept of distinguishability is intimately tied with
the notion of quantum complementarity. While the quantum
amplitudes evolve linearly according to the Schrödinger eq-
uation, the physical observables are obtained from the under-
lying quantum amplitudes through nonlinearity prescribed
by Born’s rule.

Thus if quantum states ψ1(x) 6=0 and ψ2(x) 6=0 are in-
distinguishable at a point x (coherent superposition), that
is ψ1(x)ANDψ2(x), the probability distribution (observed
intensity) is given by P = |ψ1(x) + ψ2(x)|2. The density

matrix of the setup is a pure type one, ρ̂=
(
|ψ1|

2 ψ1ψ
∗
2

ψ2ψ
∗
1 |ψ2|

2

)
, and

ρ̂= ρ̂2 holds. The two quantum states do quantum mechan-
ically interfere. In Hilbert space the two functions are not

∗Such a direct interpretation of the AND gate as having corresponding
quantum coherent superposed reality is consistent with the prevailing view
among working physicists that resembles Everett’s many worlds interpreta-
tion (MWI) of Quantum Mechanics in many ways (Tegmark and Wheeler
[11]). However, the reality of quantum superposition is not a characteristic
feature only of MWI. The transactional interpretation (TI) proposed by
Cramer [4] and quantum gravity induced objective reduction (OR) proposed
by Penrose [8] both admit of the reality of superposed quantum waves,
respectively superposed space-times.

ψ1 ψ2 XOR output

0 0 0

0 1 1

1 0 1

1 1 0

ψ1 ψ2 XNOR output

0 0 1

0 1 0

1 0 0

1 1 1

Table 1: Distinguishable –vs– indistinguishable states

orthogonal and the overlap integral is not zero (Vedral [12]):
∫
ψ∗1(x) ψ2(x) dx 6= 0 . (1)

Alternatively, if quantum states ψ1(x) and ψ2(x) are dis-
tinguishable at a point x (incoherent superposition), that is
ψ1(x)XORψ2(x), then the probability distribution is given
by P = |ψ1(x)|2 + |ψ2(x)|2. The (reduced) density matrix

is mixed type one, ρ̂ =
(
|ψ1|

2 0

0 |ψ2|
2

)
, and ρ̂ 6= ρ̂2. The two

quantum states do not quantum mechanically interfere but
just sum classically. In Hilbert space the two functions are
orthogonal and the overlap integral is zero:

∫
ψ∗1(x) ψ2(x) dx = 0 . (2)

The observable value given by P should not necessarily
describe an incoherently superposed state. It might as well
describe a fictious statistical average of two single amplitude
experiments in which either only ψ1(x) or only ψ2(x) parti-
cipates. In this case however ψ1(x) and ψ2(x) should be
separately normalized to 1, and as elements in the main
diagonal of the density matrix must be taken the statistical
probabilities defining the mixture (Zeh [14]).

Next, despite the fact that qubits generally might take
more than one path in a coherent superposition (Feynman
and Hibbs [7]), we will still show that the “which way”
claims (“welcher weg”, in German) can be derived rigour-
ously within the quantum mechanical formalism. The “which
way” claim will be defined as an existent one-to-one corres-
pondence (bijection) between elements of two sets (typically
input state and observable).
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L1[
|ψ〉
]
→

path 1[

i
1
√
2
|ψ1〉

]

+

path 2[
1
√
2
|ψ2〉

]

→

path 3[

−
1
√
2
|ψ1〉

]

+

path 4[

i
1
√
2
|ψ2〉

]

→

D1[

−
1

2
|ψ1〉 −

1

2
|ψ2〉

]

+

D2[

−i
1

2
|ψ1〉+ i

1

2
|ψ2〉

]

(3)

Fig. 1: Mach-Zehnder interferometer. Incoming photon at L1
quantum mechanically self-interferes in order to produce its own
full cancelation at detector D2 and recover itself entirely at detector
D1. The opposite holds for the photon entering at L2. Legend: BS,
beam splitter, M, fully silvered mirror.

2 The Mach-Zehnder interferometer

In order to illustrate the “which way” concept let us introdu-
ce the Mach-Zehnder interferometer, from which more com-
plicated interferometers can be built up. The setup is sym-
metric and contains two half-silvered and two fully silvered
mirrors positioned at angle π

4 to the incoming beam (Fig. 1).
The action of the beam splitter (half-silvered mirror) will
be such as to transmit forward without phase shift 1√

2
ψ of

the incoming quantum amplitude ψ, while at the same time
reflects perpendicularly in a coherent superposition i 1√

2
ψ of

it. The action of the fully silvered mirrors will be such as to
reflect perpendicularly all of the incoming amplitude ψ with
a phase shift of π

2 , which is equivalent to multiplying the
state by ei

π
2 = i (Elitzur and Vaidman [6]; Vedral [12]).

In this relatively simple setup it can be shown that a pho-
ton entering at L1 will always be detected by detector D1,
whilst a photon entering at L2 will always be detected by de-
tector D2. It is observed that the photon quantum mechanic-
ally destructively self-interferes at one of the detectors, whilst
it quantum mechanically constructively self-interferes at the
other detector, creating a one-to-one correspondence between
the entry point and the exit point in the Mach-Zehnder inter-
ferometer.

Let the incoming amplitude Ψ at L1 be normalized so
that |Ψ|2=1. The evolution of the wave package in the
interferometer branches is described by formula (3), where
|ψ1〉 refers to passage along path 1 and |ψ2〉 refers to passage
along path 2.

Since the two interferometer paths are indistinguishable

one easily sees that at D1 one gets constructive quantum
interference, while at D2 one gets destructive quantum inter-
ference. The inverse will be true if the photon enters at L2.
Therefore we have established a one-to-one correspondence
(bijection) between the entry points and detector clicks. The
indistinguishability of ψ1 and ψ2 allows for quantum self-
interference of Ψ at the detectors. Insofar as we don’t specify
which path of the interferometer has been traversed, allow
quantum interference of amplitudes at the exit gates coming
from both interferometer paths, so ψ1ANDψ2 (indistin-
guishable ψ1 and ψ2), we will maintain the one-to-one cor-
respondence between entry points and detectors (distinguish-
able D1 and D2).

If we however block one of the split beams ψ1 or ψ2,
or we label ψ1 and ψ2, e.g. by different polarization filters,
V (vertical polarization) and H (horizontal polarization), we
will lose the quantum interference at the exit gates and the
one-to-one correspondence between entry points and exit
points will be lost. Thus we have encountered the phenom-
enon of complementarity. We can determine which of the
interferometer paths has been taken by the photon, hence
ψ1XORψ2 (distinguishable ψ1 and ψ2), and destroy the
one-to-one correspondence between entry points and exit
gates (indistinguishable D1 and D2). A photon entering at
L1 (or L2) will not self-interfere and consequently could be
detected by either of the detectors with probability of 1

2 .
Thus we have shown that quantum coherent superposi-

tion of photon paths itself does not preclude the possibility
for one to establish one-to-one correspondence (bijection)
between two observables (entry and exit points). However,
it will be shown that the bijection L1→D1, L2→D2 is
valid for the discussed mixed case in which we have input
L1XORL2, yet might not be true in the case where the input
points L1 and L2 are in quantum coherent superposition
(L1ANDL2) as is the case in Unruh’s setup.

3 Unruh’s interferometer

Unruh’s thought experiment is an arrangement that tries to
create a more understandable version of Afshar’s experiment,
which will be discussed later. Unruh’s interferometer is es-
sentially a multiple pass interferometer with two elementary
building blocks of the Mach-Zehnder type. In Fig. 2 each
arm of the interferometer is labelled with a number, and a
photon enters at L1.

Application of Feynman’s sum over histories approach
leads us to the correct quantum mechanical description of
the experiment. Expression (4) is Dirac’s ket notation for
the quantum states evolving in the interferometer arms.
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L1[
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]
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8
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1
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8
|ψ2〉
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(4)

Fig. 2: Unruh’s version of a multiple pass interferometer setup that
captures the essence of Afshar’s experiment. It is composed of two
elementary building blocks described in the text, and the incoming
photon at L1 has an equal chance to end either at D1, or at D2.

3.1 Unruh’s “which way” claim

Unruh obstructed path 1 and correctly argues that the pho-
tons coming from the source that pass the first half-silvered
mirror and take path 2 (that is they are not reflected to be
absorbed by the obstruction located in path 1) will all reach
detector D2. These are exactly 50% of the initial photons.
The explanation is the one provided in the analysis of the
Mach-Zehnder interferometer. So Unruh shows that there is
a one-to-one corespondence between path 2 and detector
D2 when path 1 is blocked. Similarly he argues that in
the inverted setup with the obstruction in path 2, all the
photons that take path 1 (that is they are not absorbed by
the obstruction located in path 2) will reach detector D1.
This suggests a one-to-one correspondence between path 1
and detector D1 when path 2 is blocked.

Note at this stage that Unruh investigates a statistical
mixture of two single path experiments. Therefore the case
is ψ1XORψ2, both paths ψ1 and ψ2 are distinguishable
because of the existent obstruction, and ψ1 and ψ2 do not
quantum cross-interfere with each other in the second block
of the interferometer (in the first block they are separated

spatially, in the second branch they are separated temporally).
Thus in the mixed setup there is a one-to-one correspondence
between paths and exit gates due to the distinguishability of
ψ1 and ψ2, that is, there is no quantum interference between
ψ1 and ψ2 in the second building block of Unruh’s inter-
ferometer.

Unruh then unimpedes both paths ψ1 and ψ2, and consi-
dering the statistical mixture of the two single path experi-
ments argues that photons that end up at detector D1 have
taken path ψ1, while those ending at detector D2 come from
path ψ2. The logic is that the second building block of the
interferometer has both of its arms open, and the one-to-
one correspondence is a result of self-interference of ψ1 and
self-interference of ψ2 respectively.

The problem now is to secure the conclusion that “which
way” information in the form of a one-to-one correspon-
dence between paths ψ1 and ψ2 and the two detectors still
“remains” when both paths 1 and 2 are unimpeded? The
only way to justify the existence of the bijection is to take
the following two statements as axioms: (i) ψ1 and ψ2 do
not quantum cross-interfere with each other; (ii) ψ1 and ψ2
can only quantum self-interfere. Concisely written together,
both statements reduce to one logical form, ψ1XORψ2 i.e.
ψ1 and ψ2 are orthogonal states. Thus Unruh’s “which way”
statement when both paths of the interferometer are unim-
peded is equivalent to the statement that the density matrix
of the photons at the detectors is a mixed one. Thus stated
Unruh’s “which way” claim, which is mathematically equiv-
alent with the claim for a mixed state density matrix of the
setup, is subject to experimental test. Quantum mechanically
one may perform experiments to find whether or not two in-
coming beams are quantum coherent (pure state) or incohe-
rent (mixed state). Hence Unruh’s thesis is experimentally
disprovable, and in order to keep true his thesis Unruh must
immunize it against experimental test by postulating that
one cannot experimentally distinguish the mixed state from
the pure state. Otherwise one may decide to let the two
beams (led away from the detectors) cross each other. If
an interference pattern is build up then one will have experi-
mental verification that the density matrix of the setup is
not of the mixed type (ψ1XORψ2, ρ̂ 6= ρ̂2), but one of pure
type (ψ1ANDψ2, ρ̂= ρ̂2). It is not conventional to think that
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the mixed state cannot be experimentally distinguished from
the pure state, and that is why Unruh’s “which way” claim
for the double path coherent setup is incorrect. One notices
however that if each of the paths 1 and 2 is labelled by
different polarization filters, e.g. V and H, then the density
matrix of the setup will be a mixed one (incoherent superpo-
sition in the second interferometer block), and the “which
way” claim will be correct because the different polariza-
tions will convert ψ1 and ψ2 into orthogonal states. If the
two beams lead away from the detectors and cross, they will
not produce an interference pattern.

3.2 Correct “no which way” thesis

We have already shown that if one argues that there is “which
way” correspondence, he must accept that ψ1 and ψ2 are
distinguishable, and hence that they will not be able to cross-
interfere at arms 5–8 of the interferometer.

Now we will show the opposite; that postulating “unmea-
sured destructive interference” in arms 5 and 7 of the inter-
ferometer, regardless of the fact that the interference is not
measured, is sufficient to erase completely the “which way”
information. Postulating quantum interference in arms 5–8
is equivalent to postulating indistinguishability (quantum co-
herent superposition) of ψ1 and ψ2, which is equivalent to
saying that ψ1 and ψ2 can annihilate each other.

The quantum amplitude at D1 is:

D1 :

[
1
√
8
|ψ1〉 −

1
√
8
|ψ2〉

]

+

[
1
√
8
|ψ1〉+

1
√
8
|ψ2〉

]

. (5)

The first two members in the expression have met each
other earlier, so they annihilate each other. What remains
is 1√

8
|ψ1〉+ 1√

8
|ψ2〉 and when squared gives 1

2 |Ψ|
2, where

ψ1 and ψ2 contribute equally to the observed probability
of detecting a photon. Now is clear why one cannot hold
consistently both the existence of “which way” one-to-one
correspondence and existent but undetected interference at
paths 5 and 6.

• If one postulates ψ1XORψ2 then 1√
8
|ψ2〉 − 1√

8
|ψ2〉

will interfere at the exit and the resulting observable
intensity 1

2 |Ψ|
2 will come from squaring 1√

8
|ψ1〉+

+ 1√
8
|ψ1〉 i.e. only from path 1.

• If one postulates ψ1ANDψ2 then 1√
8
|ψ1〉 − 1√

8
|ψ2〉

will interfere first, and the resulting observable inten-
sity 1

2 |Ψ|
2 will come from squaring 1√

8
|ψ1〉 + 1√

8
|ψ2〉

i.e. both paths 1 and 2.

The “mixing of the two channels” at D2 is analogous.

D2:

[

i
1
√
8
|ψ1〉−i

1
√
8
|ψ2〉

]

+

[

−i
1
√
8
|ψ1〉−i

1
√
8
|ψ2〉

]

. (6)

• If one postulates ψ1XORψ2 then i 1√
8
|ψ1〉− i 1√

8
|ψ1〉

will interfere at the exit and the obtained observable

intensity 1
2 |Ψ|

2 will come from squaring −i 1√
8
|ψ2〉−

− i 1√
8
|ψ2〉 i.e. only from path 2.

• If one postulates ψ1ANDψ2 then i 1√
8
|ψ1〉 − i 1√

8
|ψ2〉

will interfere first, and the obtained observable inten-
sity 1

2 |Ψ|
2 will come from squaring of −i 1√

8
|ψ1〉−

− i 1√
8
|ψ2〉 i.e. both paths 1 and 2.

3.3 Inconsistent interpretation: “which way” + pure
state density matrix

It has been suggested in web blogs and various colloquia,
that only measurement of the interference at arms 5–8 dis-
turbs the “which way” interpretation, and if the destructive
quantum interference is not measured it can peacefully co-
exist with the “which way” claim. Mathematically formu-
lated the claim is that there is “which way” one-to-one cor-
respondence between paths 1 and 2, and D1 and D2 respec-
tively, while at the same time the whole setup is described
by a pure state density matrix. Afshar [1–3] claims an equiv-
alent statement for his setup insisting on a “which way” +
pure state density matrix.

We will prove that assuming a “which way” + pure state
density matrix leads to mathematical inconsistency. In order
to show where the inconsistency arises we should rewrite the
expressions of the quantum amplitudes at the two detectors
in a fashion where each of the wavefunctions ψ1 and ψ2 is
written as a superposition of its own branches |ψ15〉, |ψ16〉
and |ψ25〉, |ψ26〉, respectively, where the second subscript
5 or 6 denotes a branch in the second building block of
Unruh’s interferometer:

D1 :
1
√
8
|ψ15〉 −

1
√
8
|ψ25〉+

1
√
8
|ψ16〉+

1
√
8
|ψ26〉 (7)

D2 : i
1
√
8
|ψ15〉−i

1
√
8
|ψ25〉−i

1
√
8
|ψ16〉−i

1
√
8
|ψ26〉. (8)

From the “which way” claim it follows that the contribu-
tions to the final intensity (squared amplitude) detected at
D1 or D2 must come from ψ1 or ψ2 only. This is possible if
and only if the individual branches 5 or 6 of each function
are indistinguishable, so that the claim mathematically yields
quantum destructive interference (annihilation) between ψ15
and ψ16, and between ψ25 and ψ26, respectively.

However to postulate at the same time that the density
matrix is a pure type one i.e. there is “undetected negative
quantum cross-interference” at branch 5 between ψ1 and ψ2
(self-interference of Ψ) is equivalent to saying that paths
5 and 6 are distinguishable. We have arrived at a logical
inconsistency.

Paths 5 and 6 cannot be both distinguishable and indis-
tinguishable for the quantum state Ψ — this is what the
complementarity principle says.

Due to basic arithmetic axiom ψ15 cannot entirely anni-
hilate both ψ16 and ψ25. Thus the complementarity principle
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itself is a manifestation of the underlying mathematical for-
malism and one ends up with an XOR bifurcation of two
inconsistent with each other outcomes. The two alternative
outcomes do not “complement” each other instead they lo-
gically exclude each other.

We have therefore proved that within standard Quantum
Mechanics one cannot claim both “which way” and pure
state of the density matrix at the same time. Whether the
quantum interference at branch 5 is measured or not does
not matter. Its consistent postulation is sufficient to rule out
the “which way information”.

3.4 Retrospective reconstructions and complementarity

Now notice that arguing that photons possess “which way”
information implies that the photon density matrix at detec-
tors is that of a mixed type. We have denoted the quantum
amplitude through path 1 by ψ1, and the quantum amplitude
through path 2 by ψ2. Therefore when we retrospectively
reconstruct the photon probability distribution function we
should use the correct complementarity rule P = |ψ1|2 +
+ |ψ2|2, and we must logically and consistently argue that
there is no negative interference at path 5 — simply, we
do not just add ψ1 to ψ2 but first square each of those
amplitudes. Basically, if the two paths ψ1 and ψ2 are distin-
guishable, then the interference terms must be zero, and the
(reduced) density matrix will be of mixed type i.e. one with
off-diagonal elements being zeroes. To accept that there is
“which way” information is equivalent to accepting that the
setup with both paths unobstructed is a statistical mixture of
the two single path setups with obstructions so the comple-
mentarity rule for making retrospective predictions is P =
= |ψ1|2+ |ψ2|2. This alternative formulation of the principle
of complementarity is in a form of instruction as to how
to make the correct retrospective reconstruction of a mixed
state setup — it says that mixed state setups should be retro-
spectively reconstructed with P = |ψ1|2+ |ψ2|2 distribution.

However, if the beams along paths 1 and 2 interfere so
that no photons are expected along path 5, the setup is a “no
which way” pure state setup. In this case the retrospective
photon probability distribution should be calculated as P =
= |ψ1+ψ2|2. Thus the alternative formulation of the prin-
ciple of complementarity in a form of instruction as to how
to make the correct retrospective reconstruction of pure state
setup is — pure state setups should be retrospectively recon-
structed with the P = |ψ1+ψ2|2 distribution.

Taken together the above two instructions provide a clear
idea of complementarity — one cannot retrospectively re-
cover a given setup with both types of probability distribu-
tions P = |ψ1|2+ |ψ2|2 and P = |ψ1+ψ2|2 at the same
time, because otherwise you will produce a mathematical
inconsistency.

One sees that, in some special cases for a given point x
both probability distributions coincide, so P(x)=P (x), and

if one observes only the point x the choice of how to retro-
spectively reconstruct the setup might be tricky. It is unwise
to retrospectively reconstruct a pure state setup with P =
= |ψ1|2+ |ψ2|2 probability distribution. One will not arrive
at a direct experimental contradiction if he looks only within
the region where P(x)=P (x). Yet, any measurement out-
side this region will reveal the improper retrospective recon-
struction.

4 Afshar’s setup

In Afshar’s setup, light generated by a laser passes through
two closely spaced circular pinholes. After the dual pinholes,
a lens refocuses the light so that each image of a pinhole is
received by a separate photo-detector. Considering a mixture
of single pinhole trials Afshar argues that a photon that
goes through pinhole 1 impinges only on detector D1, and
similarly, if it goes through pinhole 2 impinges only on
detector D2. Exactly as in Unruh’s setup, Afshar investigates
a statistical mixture ψ1XORψ2 and after that draws non
sequitur conclusions for the ψ1ANDψ2 setup. Thus accord-
ing to Afshar, there is a one-to-one correspondence between
pinholes and the corresponding images even when the light
coherently passes through both pinholes. While in classical
optics this is a straightforward conclusion, in quantum cohe-
rent setups we will shortly prove that each image of a pinhole
in the coherent dual pinhole setup is counter-intuitively as-
sembled by light coming from both pinholes at once.

Afshar [1, 2] claimed (erroneously) that Unruh’s setup
(originally intended to disprove Afshar’s reasoning) is not eq-
uivalent to Afshar’s setup, and therefore that the “plane con-
structed by Unruh has no wings”. At first glance one might
argue that in Afshar’s setup at image 1 comes only quantum
amplitude from pinhole 1, and zero amplitude from pinhole
2, and at image 2 comes amplitude from pinhole 2 and zero
from pinhole 1. The putative difference between Unruh’s
setup and Afshar’s setup at first glance seems to be this:

• Afshar’s setup: image 1: 1√
2
ψ1+0×ψ2 and image 2:

1√
2
ψ2 + 0 × ψ1. The zero looks “physically unstruc-

tured”, not a result of negative interference of positive
and negative amplitudes contributed from the alternat-
ive pinhole.

• Unruh’s setup: D1: 1√
2
ψ1+

[
1√
8
ψ2− 1√

8
ψ2
]

and D2:
1√
2
ψ2 +

[
1√
8
ψ1 − 1√

8
ψ1
]
. In this case the zero mani-

fests “with physical structure”, and is a result of negat-
ive interference of positive and negative amplitudes
contributed from the alternative path.

If one shows that the “no which way” proof applied to
Unruh’s setup is not applicable to Afshar’s setup, he will
also show that Unruh’s plane is indeed without wings. If
in contrast, one can prove that in Afshar’s setup the zero
pinhole amplitude contribution at the opposite image is gene-
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Fig. 3: Action of a lens in a dual pinhole setup — pinholes 1 and
2 create two peak images, 1′ and 2′, F denotes the focal plane of
the lens, I denotes the image planes of the lens, G is the grid that
can be used to verify the existence of an interference pattern in the
coherent setup when both pinholes are open. The image is released
under GNU free documentation licence by A. Drezet.

rated by negative quantum interference, he will show that
Unruh’s setup is completely equivalent to Afshar’s setup.
Thus our criticism of Afshar will be the same as in Unruh’s
case — logical fallacy and mathematical error in claiming
both pure state and “which way”.

It will now be shown that Afshar’s setup is equivalent
to Unruh’s setup. In brief Afshar has dual pinholes, a lens,
and detectors that record photons streaming away from the
pinhole images created at the image plane of the lens (Afshar
[3]). Analogously to Unruh’s setup one closes pinhole 1 and
sees that light goes only to image 2, then closes pinhole 2
and sees that light goes only to image 1. One may, analog-
ously to Unruh’s setup, inconsistently postulate “which way”
+ pure state density matrix. However, one should note that,
in the single pinhole experiments, at the image plane of
the lens the zero light intensity outside the central Airy
disc of the pinhole image is a result of destructive quantum
interference. There are many faint higher order maxima and
minima outside the central Airy disc resulting from quantum
interference. In order for the two pinhole images to be resolv-
able∗ the image of the second pinhole must be outside the
central Airy disc, and located in the first negative Airy ring
of the first pinhole image (or further away). Therefore in the
case of open pinhole 2 at image 1 there are destructively
interfering quantum amplitudes contributed by pinhole 2 be-
cause image 1 resides in an Airy minimum of image 2. In
contrast at image 2 the waves from pinhole 2 will construc-
tively interfere. If both pinholes are open and some of the
waves coming from pinhole 1 cross-interfere with waves
coming from pinhole 2 in the space before the lens, there
will remain a contribution by pinhole 2 at image 1 that will
compensate exactly the decrease of quantum waves contri-
buted by pinhole 1 at image 1. Now one has to “choose”

∗One should cautiously note that resolvable images of a pinhole is not
equivalent with distinguishable pinholes. Resolvable means that the two
images of a pinhole are separated and not fused into a single spot. The
distinguishability of the pinholes has to be proven by existent bijection
between an image and a pinhole.

which amplitudes will annihilate, and which will remain to
be squared. If one postulates the existent interference in the
space before the lens (or after the lens as is the case at the
focal plane of the lens) then the annihilation between ψ1 and
ψ2 at the dark fringes will be equivalent to the interference at
path 5 of Unruh’s setup, and the final observed intensities at
the detectors cannot be claimed to come only from one of the
pinholes. Thus Afshar is wrong to say that “Unruh’s plane
is without wings”. Afshar’s setup is equivalent to Unruh’s
setup. The treatment of complementarity is analogous. In
the case with both pinholes open there is no “which way”
information in Afshar’s experiment. Counter-intuitively each
image of a pinhole is assembled from light coming by half
from both pinholes.

An exact calculation is adduced by Qureshi [9] where he
shows that the quantum state at the overlap region where the
dark interference fringes are detected can be written as

ψ(y, t) = aC(t) e
−
y2+y2

0
Ω(t)

[

cosh
2yy0
Ω(t)

+ sinh
2yy0
Ω(t)

]

+

+ bC(t) e
−
y2+y2

0
Ω(t)

[

cosh
2yy0
Ω(t)

− sinh
2yy0
Ω(t)

]

,

(9)

where C(t)= 1

(π/2)1/4
√
ε+2i h̄t/mε

, Ω(t)= ε2+2i h̄t/m, a is

the amplitude contribution from pinhole 1, b is the amplitude
contribution from pinhole 2, ε is the width of the wave-
packets, 2y0 is the slit separation.

For Afshar’s setup a = b = 1√
2

so the sinh terms cancel
out at the dark fringes and what is left is

ψ(y, t) =
1

2
aC(t)

[

e
− (y−y0)

2

Ω(t) + e
− (y+y0)

2

Ω(t)

]

+

+
1

2
bC(t) e

−
y+y2

0
Ω(t)

[

e
− (y−y0)

2

Ω(t) + e
− (y+y0)

2

Ω(t)

]

.

(10)

If a lens is used, after the interference has occurred,

to direct the e−
(y−y0)

2

Ω(t) part into one detector and the part

e
− (y+y0)

2

Ω(t) into the other detector, one easily sees that the
amplitudes from each slit evolve into a superposition of two
parts that go to both detectors. Note that the coefficient of
the part from a slit to each of the detectors becomes exactly
1√
8

as we have obtained via analysis of Unruh’s setup.

5 Englert-Greenberger duality relation

Afshar claimed he has violated the Englert-Greenberger dua-
lity relation V 2 +D2 6 1, where V stands for visibility and
D stands for distinguishability and are defined as:

D =

∣
∣|ψ1|2 − |ψ2|2

∣
∣

|ψ1|2 + |ψ2|2
, (11)

V =
2|ψ1||ψ2|

|ψ1|2 + |ψ2|2
. (12)
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Since the duality relation is a mathematically true state-
ment (theorem) then it cannot be disproved by experiment
and certainly means that Afshar’s arguments, through which
he violates the duality relation, are inconsistent. Indeed the
calculation of V and D depends on the principle of comple-
mentarity and distinguishability of the states ψ1 and ψ2. The
calculation of V and D in Unruh’s and Afshar’s setup is
different for pure state and mixed state setups.

5.1 Mixed state setup

In view of the foregoing explanation for Unruh’s claim with
mixed density matrix, the calculation simply yields D = 1
and V = 0. This will be true if we label the paths by different
polarization filters, or if we investigate a statistical mixture
of two single path/slit experiments.
D1: |ψ1| = 1√

2
, |ψ2| = 0 ,

D2: |ψ1| = 0, |ψ2| = 1√
2

.

Thus the two paths 1 and 2 are distinguishable and they
do not quantum mechanically cross-interfere. This cannot
be said for the quantum coherent setup with both paths/slits
unimpeded.

5.2 Pure state setup

The correct analysis of Unruh’s and Afshar’s setup suggests
a pure state density matrix, and amplitudes for each of the
exit gates being |ψ1| = |ψ2| = 1√

8
. Thus one gets D = 0

and V = 1:
D1:|ψ1| = 1√

8
, |ψ2| = 1√

8
,

D2:|ψ1| = 1√
8
, |ψ2| = 1√

8
.

The two paths 1 and 2 are indistinguishable, and they
quantum mechanically cross-interfere.

6 Conclusions

It is wrongly believed that the lens at the image plane always
provides “which way” information (Afshar [1, 2]; Drezet [5]).
However we have shown that Afshar’s analysis is inconsis-
tent, and that the distinguishability and visibility in Afshar’s
setup are erroneously calculated by Afshar and colleagues
[3]. The two peak image at the image plane in Afshar’s
setup, even without wire grid in the path of the photons, is an
interference pattern and does not provide any “which way”
information. Exact calculations for the lens setup have been
performed by Qureshi [9] and Reitzner [10], showing that
once the two paths interfere the interference cannot be un-
done, and the “which way” information cannot be regained.
The probability distribution can look like the one in a mixed
setup, but the retrospective reconstruction of the setup for
times before the detector click must be done with interfering
waves which do not carry the “which way” information.
Afshar’s mathematics is inconsistent, hence Afshar’s setup

does not disprove MWI, or any other rival interpretation of
Quantum Mechanics that opposes the standard Copenhagen
paradigm.
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Upper Limit of the Periodic Table and Synthesis of Superheavy Elements
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For the first time, using the heaviest possible element, the diagram for known nuclides
and stable isotopes is constructed. The direction of search of superheavy elements is
indicated. The Periodic Table with an eighth period is tabulated.

1 Shell construction of a nucleus, magic numbers

The nucleus of an atom is the central part of the atom,
consisting of positively charged protons (Z) and electrically
neutral neutrons (N). They interact by means of the strong
interaction.

If a nucleus of an atom is consider as a particle with a
certain number of protons and neutrons it is called a nuclide.
A nuclide is that version of an atom defined by its mass
number (A=Z+N), its atomic number (Z) and a power
condition of its nucleus. Nuclei with identical numbers of
protons but different numbers of neutrons are isotopes. The
majority of isotopes are unstable. They can turn into other
isotopes or elements due to radioactive disintegration of the
nucleus by one of the following means: β-decay (emission of
electron or positron), α-decay (emission of particles consist-
ing of two protons and two neutrons) or spontaneous nuclear
fission of an isotope. If the product of disintegration is also
unstable, it too breaks up in due course, and so on, until a
stable product is formed.

It has been shown experimentally that a set of these par-
ticles becomes particularly stable when the nuclei contain
“magic” number of protons or neutrons. The stable structure
can be considered as shells or spherical orbits which are
completely filled by the particles of a nucleus, by analogy
with the filled electronic shells of the noble gases. The num-
bers of particles forming such a shell are called “magic”
numbers. Nuclei with magic number of neutrons or protons
are unusually stable and in nuclei with one proton or other
than a magic number, the neutron poorly binds the super-
fluous particle. The relevant values of these numbers are 2,
8, 20, 28, 50, 82, and 126, for which there exists more stable
nuclei than for other numbers. Calculations indicate exist-
ence of a nucleus with filled shell at Z = 114 and N= 184
(298114) which would be rather stable in relation to spontan-
eous division. There is experimental data for the connexion
of magic numbers to a nucleus with Z= 164 [1, 2]. J. Oga-
nesyan [3] has alluded to a Rutherford-model atom which as-
sumes existence of heavy nuclei with atomic numbers within
the limits of Z∼ 170. At the same time there is a point of
view holding that superheavy elements (SHEs) cannot have
Z> 125 [4]. In October 2006 in was reported that element
118 had been synthesized in Dubna (Russia), with atomic
weight 293 [5]. (It is known however, that this weight is

understated, owing to technical difficulties associated with
the experiments.)

2 The N-Z diagram of nuclei, islands of stability

The search for superheavy nuclei, both in the Nature and by
synthesis as products of nuclear reactions, has intensified. In
the 1970’s 1200 artificially produced nuclei were known [6].
Currently the number is ∼3000, and it is estimated that this
will increase to ∼6500 [7].

In Fig. 1 the neutron-proton diagram of nuclei of stable
and artificial isotopes [8–10] is presented.

Light stable or long-lived nuclei which arrangement can
be arranged in a valley of stability as shown by small circles.
The top set of border points represents a line of proton
stability and bottom a line of neutron stability. Beyond these
limits begins the so-called, “sea of instability”. There is
apparently only a narrow strip of stability for which there
exists a quite definite parity, N/Z. For nuclei with atomic
weight below 40, the numbers of protons and neutrons are
approximately identical. With increase in the quantity of
neutrons the ratio increases, and in the field of A=(N+Z)=
= 250 it reaches 1.6. The growth in the number of neutrons
advances the quantity of protons in heavy nuclei, which in
this case become energetically more stable. To the left of
the stable nuclei are proton excess nuclei, and on the right
neutron excess nuclei. These and others are called exotic
nuclei.

The diagram terminates in the last element from the
table IUPAC [11] at No. 114, with mass number 289, while
scientists suspect nucleus No. 114–298. Such isotopes should
possess the increased stability and lifetime of superheavy
elements.

This diagram is specially constructed, only on the basis
of tabulated data, but augmented by the theoretical upper
limit of the Periodic Table [12]. Up to the Z∼60 the line
of trend approaches the middle of a valley of stability, with
N/Z∼ 1.33. Furthermore, N/Z increases steadily to ∼1.5 up
to Z∼ 100. The equation of the line of trend represents a
polynomial of the fourth degree. It is noteworthy that this
implies rejection of the upper magic number for neutrons
heretofore theoretically supposed.

It is particularly evident from Fig. 2, in which small frag-
ment of the N–Z diagram is amplified and augmented with
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Fig. 1: N–Z diagram of nuclides.

Fig. 2: N–Z diagram of nuclides with elements. For increase in scale the diagram is reduced after
carrying out of a line of a trend.

some theoretically determined nuclei, including the heaviest
element Z= 155, that the equations of lines of trend and
the values of R2 are practically identical in both Figures.
When the line of trend for Fig. 1, without element 155,
is extrapolated beyond Z= 114, it passes through the same
point in Fig. 2 for Z= 155, indicating that element 155 is
correctly placed by theory.

The predicted element No. 114–184 is displaced from the
line of a trend. With a nuclear charge of 114 it should have
179 neutrons (А= 293) whereas 184 neutrons has atomic
number 116. In the first case there is a surplus 5 neutrons,
in the second a deficit of 2 protons. For an element 126
(on hypothesis) the mass number should be 310, but by our
data it is 327. The data for mass number 310 corresponds to
Z= 120.

It is important to note that there is a close relation be-
tween the mass number and the atomic weight. The author’s
formulation of the Periodic law of D. I. Mendeleev stipulates
that the properties of elements (and of simple compounds)
depend upon periodicity in mass number. It was established
in 1913, in full conformity with the hypothesis of Van den
Brook, that the atomic numbers of the chemical elements
directly reflect the nuclear charge of their atoms. This law
now has the following formulation: “properties of elements
and simple substances have a periodic dependence on the
nuclear charge of the atoms of elements”.

In the Periodic Table the last, practically stable element
is bismuth, Z= 83. The six following elements (No.’s 84 to
89) are radioactive and exist in Nature in insignificant quan-
tities, and are followed by the significant radioactive ele-
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Fig. 3: Dependence of element mass number (1) and corresponding numbers of neutrons (2) on the atomic
number in the Periodic Table.

Fig. 4: Dependence of total isotopes (circle) and stable elements (square) on atomic number. The triangle
designates the beginning of the periods.

Fig. 5: Distribution of isotopes on the periods: an S-shaped summarizing curve, lower-quantity at each point.
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1 2A 3A 4A 5A 6A 7A 2
H 2 13 14 15 16 17 He

3 4 5 6 7 8 9 10
Li Be B C N O F Ne

11 12 3B 4B 5B 6B 7B 8 1B 2B 13 14 15 16 17 18
Na Mg 3 4 5 6 7 8 9 10 11 12 Al Si P S Cl Ar

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

87 88 89 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
Fr Ra Ac Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup

Table 1: The standard table of elements (long) with addition of the theoretical eighth period.

58 59 60 61 62 63 64 65 66 67 68 69 70 71
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

90 91 92 93 94 95 96 97 98 99 100 101 102 103
Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Table 2: Lanthanides (upper line) and actinides (lower line).

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

140 141 142 143 144 145 146 147 148 149 150 151 152 153

Table 3: The eight period: super actinides (18g and 14f elements)

119 120 121 154 155
Kh

Table 4: The eight period: s-elements (No. 119, 120), g–elements (No. 121),
d–elements (No. 154, 155). Element No. 155 must be analogous to Ta, as Db.

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

137 138 139 154 155

140 141 142 143 144 145 146 147 148 149 150 151 152 153

Table 5: Variation of the Periodic Table of D. I. Mendeleev with heaviest element in the eighth period. A structure for
super actinides is offered in a series in work [2].
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ments thorium, protactinium and uranium (Z= 90, 91, and
92 respectively). The search for synthetic elements (No.’s
93 to 114) continues. In the IUPAC table, mass numbers for
elements which do not have stable nuclides, are contained
within square brackets, owing to their ambiguity.

It is clear in Fig. 3 that the reliability (R2) of approxima-
tion for both lines of trend is close to 1. However, in the field
of elements No. 104 to No. 114, fluctuations of mass number,
and especially the number of neutrons, are apparent.

According to the table, the most long-lived isotope of an
element violates the strict law of increase in mass number
with increase in atomic number. To check the validity of
element No. 155 in the general line of trend of elements for
all known and theoretical [12] elements, the two following
schedules are adduced:

1. For element numbers 1 to 114, y= 1.6102x1.099 at
R2= 0.9965;

2. For element numbers 1 to 155, y= 1.6103x1.099 at
R2= 0.9967.

Upon superposition there is a full overlapping line of
trend that testifies to a uniform relation of dependences.
Therefore, in analyzing products of nuclear reactions and
in statement of experiment it is necessary to consider an
element No. 155 for clarification of results.

3 The eighth period of the Periodic Table of elements

Our theoretical determination of the heaviest element at
Z= 155 allows for the first time in science a presentation
of Mendeleev’s Table with an eighth period. Without going
into details, we shall note that at the transuranium elements,
electrons are located in seven shells (shells 1 to 7 inclusive),
which in turn contain the subshells s, p, d, f. In the eighth
period there is an 8th environment and a subshell g.

G. T. Seaborg and V. I. Goldanski, on the basis of the
quantum theory, have calculated in the eighth period internal
transitive superactinoid a series containing 5g-subshells for
elements No. 121 to No. 138 and 6f subshells for No. 139 to
No. 152. By analogy with the seventh period, No. 119 should
be alkaline, No. 120 a alkaline ground metal, No. 121 similar
to actinium and lanthanium, No. 153 to No. 162 contain a 7d
subshell, and No. 163 to No. 168 an 8р subshell [2]. The
latter class resulted because these scientists assumed the
presence not only of an 8th, but also a 9th periods, with
50 elements in each.

However, distribution of isotopes depending on a atomic
number of the elements (Fig. 4) looks like a parabola, in
which branch Y sharply decreases, reaching the value 1 at
the end of the seventh period. It is therefore, hardly possible
to speak about the probability of 100 additional new ele-
ments when in the seventh period there is a set of unresolved
problems.

Our problem consisted not so much in development of
methods for prediction of additional elements, but in an ex-
planation as to why their number should terminate No. 155.
Considering the complexities of synthesis of heavy elements,
we have hypothesized that their quantity will not be more
than one for each atomic. Then, from Fig. 5 it can be seen
that the S-figurative summarizing curve already in the se-
venth period starts to leave at a horizontal, and the eighth
reaches a limit. The bottom curve shows that after a max-
imum in the sixth period the quantity of isotopes starts to de-
crease sharply. This provides even more support for our theo-
retical determination [12] of the heaviest possible element at
Z= 155.

In July 2003 an International conference took place in
Canada, resulting in publication [13], wherein it is asked,
“Has the Periodic Table a limit?”

The head of research on synthesis of elements in Dubna
(Russia), J. Oganesyan, has remarked that the question of the
number of chemical elements concerns fundamental prob-
lems of science, and therefore the question, what is the
atomic number of the heaviest element?

Despite the fact that hundreds of versions of the Periodic
Table have been offered of the years, none have designated
the identity of the heaviest element. The heaviest element is
offered in Tables shown in Page 107.

4 Conclusions

With this third paper in a series on the upper limit of the
Periodic Table of the Elements, the following are concluded.

1. As the fact of the establishment of the upper limit in
Periodic Table of Elements until now is incontestable
(on October, 25th 2005 appeared the first publication
on the Internet), it is obviously necessary to make
some correction to quantum-mechanical calculations
for electronic configurations in the eighth period.

2. In modern nuclear physics and work on the synthesis
of superheavy elements it is necessary to consider the
existence of a heaviest element at Z= 155 with the
certain mass number that follows from the neutron-
proton diagram.

3. For discussion of the number of the periods and ele-
ments in them it is necessary to carry out further re-
search into the seventh period.

4. From the schedules for distribution of isotopes, it is
apparent that the end of the seventh period of elements
is accounted for in units because of technical difficul-
ties: No. 94 to No. 103 have been known for 20 years,
and No. 104 to No. 116 for 40. Hence, to speak about
construction of the Table of Elements with the eighth
and ninth periods (100 elements), even for this reason,
is not meaningful.

108 A. Khazan. Upper Limit of the Periodic Table and Synthesis of Superheavy Elements



April, 2007 PROGRESS IN PHYSICS Volume 2

5. The variants of the Periodic Table of Mendeleev con-
structed herein with inclusion of the heaviest element
No. 155 opens a creative path for theoretical physicists
and other scientists for further development of the
Table.
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rile Omului ı̂n Domeniul Ştiinţific (the Romanian translation) . . . . . . . . . . . . . . . . . . . 94
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On the Earth Microwave Background: Absorption and Scattering
by the Atmosphere

Pierre-Marie Robitaille
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E-mail: robitaille.1@osu.edu

The absorption and scattering of microwave radiation by the atmosphere of the Earth
is considered under a steady state scenario. Using this approach, it is demonstrated
that the microwave background could not have a cosmological origin. Scientific
observations in the microwave region are explained by considering an oceanic source,
combined with both Rayleigh and Mie scattering in the atmosphere in the absence
of net absorption. Importantly, at high frequencies, Mie scattering occurs primarily
with forward propagation. This helps to explain the lack of high frequency microwave
background signals when radio antennae are positioned on the Earth’s surface.

1 Introduction

The absorption of radiation by the atmosphere of the Earth
has been highly studied and exploited [1–3]. In the visible
region, atmospheric absorption accounts for significant de-
viations of the solar spectrum from the thermal lineshape.
These deviations are removed when viewing the spectrum
from the outer atmosphere. Under these conditions, the solar
spectrum now differs from the ideal lineshape only slightly.
The remaining anomalies reflect processes associated with
the photosphere itself.

In the microwave region, absorption of radiation is pri-
marily associated with reversible quantum transitions in the
vibrational-rotational states of gaseous molecules, particu-
larly oxygen and water. Intense absorption occurs in several
bands. The high frequency microwave bands are consequent-
ly less suited for signal transmission to, or from, satellites [1].

2 The Microwave Background

The microwave background [4] is currently believed to be
of cosmic origin. The Earth is viewed as immersed in a bath
of signal arising continuously from every possible direction,
without directional preference. This is an intriguing physical
problem in that it represents a steady state condition, not
previously considered relative to atmospheric absorption.
Indeed, all other atmospheric absorption problems involve
sources which are temporally and spatially dependent. Such
sources are radically different from the steady state.

Since the microwave background is temporally continu-
ous and spatially isotropic, and since the vibrational-rotational
transitions of gases are reversible, the steady state scenario
leads to the absence of net absorption of microwave radiation
in the atmosphere. An individual absorbing species, such as
molecular oxygen or water, acts simply as a scatterer of
radiation. Any radiation initially absorbed will eventually
be re-emitted. There can be no net absorption over time.
Only the effects of direct transmission and/or scattering can

exist. Herein lies the problem for assigning the microwave
background to a cosmic origin. The steady state results in a
lack of net absorption by the atmosphere. Thus, if the signal
was indeed of cosmic origin, there could be no means for the
atmosphere to provide signal attenuation at high frequency.
Assuming frequency independent scattering, a perfect ther-
mal spectrum should have been received, even on Earth.
Nonetheless, the high frequency components of the micro-
wave background, on the ground, are seriously attenuated.
Only at the position of the COBE satellite has a nearly perfect
thermal spectrum been recorded [5].

3 Oceanic origin of the Microwave Background

It has previously been advanced that the microwave back-
ground is of oceanic origin [6–8]. Under this hypothesis,
the oceans of the Earth are emitting a signal which mimics
a blackbody source. This radiation is being emitted over all
possible angles. The path length that radiation travels through
the atmosphere can therefore be quite substantial, especially
at the lower emission angles. Arguably, this oceanic signal,
with its 2.7K apparent temperature, indirectly reflects the
presence of translational and rotational degrees of freedom
in the liquid. The weak hydrogen bonds between water mol-
ecules, and their associated vibrational degrees of freedom,
are likely to be the underlying physical oscillators funda-
mentally responsible for this spectrum.

At low frequencies, oceanic radiation travels into the
atmosphere where Rayleigh scattering may occur. This re-
sults in a substantial fraction of backscattering, since Ray-
leigh scattering is multidirectional. Consequently, the low
frequency signals can easily be detected on Earth. However,
at high microwave frequencies, Mie scattering dominates in-
creasingly. Mie scattering, at the elevated frequencies, results
primarily in forward propagation of the incident signal. The
presence of forward scattering accounts for the lack of high
frequency signals detected for the microwave background on
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Earth. Forward scattering produces a preferential direction-
ality away from the surface of the Earth. The variation of
atmosperic density with elevation may also contribute to
this observation. As a result, the high frequency portion of
the microwave background is not well detected from the
Earth. Since the problem is once again in the steady state
regimen, there can be no net absorption in the atmosphere.
Given sufficient scattering at all frequencies, at the position
of COBE [5], the signal examined must be isotropic. At el-
evated frequencies, perfect scattering of the oceanic signals is
being ensured by the absorption and re-emission of radiation
by atmospheric gases. These processes follow substantial
forward scattering. Of course, Rayleigh scattering is also
being produced by small matter and scatterers in the lower
atmosphere, particularly for the lower frequencies.

4 Conclusion

Given steady state, there can be no net absorption of micro-
wave signals by the atmosphere. Yet, on Earth, the micro-
wave background cannot be properly detected in the high
frequency region. This directly implies that the microwave
background cannot arise from the cosmos. Conversely, if one
considers that the signal is oceanic in nature, the observed
behavior of the microwave background on Earth is easily
explained using a combination of absorption, re-emission,
Rayleigh and Mie scattering, wherein forward propagation is
also invoked. An oceanic signal followed by scattering also
helps to explain the phenomenal signal to noise observed
by the COBE FIRAS instrument [5]. Powerful signals imply
proximal sources. This constitutes further evidence that the
microwave background [4] is of Earthly origin [6–8]. We
will never know the temperature of the Universe.
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Within the modified formalism of Glauber’s multiple scattering theory, we have
studied the elastic scattering of deuteron with nuclei in the mass region 66B6 72
at intermediate energies. We have calculated the differential cross-section with
and without invoking the phase-variation parameter into the nucleon-nucleon (NN)
scattering amplitude and compared our results with the corresponding experimental
data. We found that the presence of the phase-variation improves our results, especially
at the minima of the diffraction patterns.

1 Introduction

In the interaction of a light ion with nuclei, elastic scattering
is the largest of all partial cross sections. For projectile ener-
gies sufficiently above the Coulomb barrier, the elastic ang-
ular distribution is dominated by a diffractionlike pattern. It
was realized [1] that this phenomenon is due to the finite
size of the nucleus and the fact that nuclei are ”partially
trnsparent”. One of the most important approaches used to
describe such collisions is the Glauber’s multiple scattering
theory (GMST) [2–4]. The theory is based on high-energy
approximation, in which the interacting particles are almost
frozen in their instantaneous positions during the passage
of the projectile through the target. As a result, the nucleon-
nucleus and nucleus-nucleus scattering amplitudes are simply
expressed in terms of the free nucleon-nucleon (NN) ones.
The preliminary applications of this theory were found to
have great successes in reproducing the hadron-nucleus scat-
tering data [5–13]. The confidence in this theory encouraged
the extension of its application to nucleus-nucleus collisions
but this was faced with computational difficulties [14–19] for
collisions between two nuclei of mass numbers A, B> 4.
The series describing these collisions contains numerous
(2A×B − 1) terms so that its complete summation is exten-
sive. Moreover, the higher order multiple scatterings involve
multi-dimensional integrals, which are cumbersome to be
evaluated, even if one uses simple Gaussian forms for the
nuclear densities and NN scattering amplitudes. These draw-
backs were overcomed in the works of many authors like
Yin et al. [20, 21], Franco and Tekou [14], Huang [22]
and El-Gogary et al. [23–25]. Their results describe more
satisfactorily the scattering data for the elastic collisions
considered there except smaller shifts were found to exist
around the diffraction patterns.

Our previous works dealt with studies the elastic scatter-
ing of hadrons either with stable nuclei [26, 27] or exotic
nuclei [28]. The results are found to be good except around
the diffraction pattern (as the previous authors showed) where
overall shifts are still persists. It is of special interest to probe

the validity of the Glauber multiple scattering theory for
the elastic scattering of deuterons (which are weakly bound
composite particles) with nuclei.

The essential feature of the presently proposed method
is the use of a phase variation of the nucleon-nucleon elastic
scattering amplitude which agrees with the empirical ampli-
tude at low q’s at the appropriate energy and its large-q
behaviour is left adjustable in terms of one free parameter.
The effect of the phase variation is to eliminate minima or to
make them shallower and to generally increase cross-sections
even at the momentum transfers where no minima originally
occurred [29, 30]. Franco and Yin [31, 32] have suggested
that the phase of the NN scattering amplitude should vary
with the momentum transfer. So far the physical origin of
this phase variation has not been settled. This phase modifies
the ratio of the real part to the imaginary part of the forward
amplitude and makes the diffraction pattern shallower.

Our present work is directed toward two ways; first, we
have studied the elastic scattering of deuteron with nuclei
in the mass region 66B6 72 using the GMST where both
the full multiple scattering series of the Glauber amplitude
and the consistent treatment of the center-of-mass (c.m.) cor-
relations are simultaneously employed. Second, as a result
of the shifts appeared around the diffraction patterns in the
previous works mentioned above, it is helpful to study the
role of the phase-variation parameter of the NN scattering
amplitude as invoked in this work. The theoretical formulas
used to do the above calculations are given in Section 2.
Section 3 includes the results and their discussions. The
conclusion is summarized in Section 4. The orbits, lengths
and Δ-matrices required for carrying out the above calcula-
tions are exhibited in the appendix.

2 Theoretical framework

This section is devoted to obtain the expression for the ang-
ular distribution ( dσdΩ or σ

σRUTH
) for the elastic scattering

of deuteron with medium-weighted nuclei using Glauber’s
multiple scattering theory. This expression is developed by
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taking into account both the full series expansion of the
Glauber amplitude and the consistent treatment of the center-
of-mass correlation.

In this theory, the elastic scattering amplitude between
deuteron of mass number A and a target nucleus of mass
number B and atomic number ZB is given as [16]

FdB(~q ) =
ik

2π
Θ(~q )

∫
d~b exp(i~q ∙~b)

{
1−exp

(
iχdB(~b)

)}
(1)

where, ~q is the momentum transferred from the deuteron to
the target nucleus B, ~k is the incident momentum of the
deuteron, and ~b is the impact parameter vector. Θ(~q ) arising
from the effect of the center-of-mass correlations [16] and
it was found to has an exponential form of q-squared [17].
χdB(

~b) is the nuclear phase-shift function resulting from the
interaction between the deuteron and a target nucleus B and
it is given by,

exp
[
iχdB(~b)

]
= <Ψd({~r

′
i})ΨB({~r

′
j})

∣
∣ exp

[
iχdB(~b, {~s

′
i}, {~s

′
j})
]∣∣ ΨdΨB >,

(2)

where, Ψd({~r ′i})bΨB({~r
′
j})c is the deuteron (target) wave

functions that depends on the position vectors {~ri}b{~r ′j}c
of the deuteron (target) nucleons whose projections on the
impact parameter plane are {~si}b{~s ′j}c.

In Eq. (1), the effect of the center-of-mass correlation is
treated as a global correction (denoted by Θ(~q )) multiplied
by the scattering amplitude. Because Θ(~q ) leads to unphys-
ical divergence as q goes to high values, Franco and Tekou
[14] have overcomed this drawback by incorporating it in
each order of the optical phase-shift expansion. Such treat-
ment has modified the phase-shift function to a new form,
which is simply expressed in terms of the uncorrelated one.

Thus, Eq. (1) becomes

FdB(~q ) =
ik

2π

∫
d~b exp(i~q ∙~b)

{
1− exp

(
iχ̄dB(~b)

)}
, (3)

where the modified phase-shift function χ̄dB(~b) (which is
referred here by adding a bar sign on the corresponding
uncorrelated one) can be written in terms of the uncorrelated
one, χdB(~b), as [16, 17]

exp
[
iχ̄dB(~b)

]
=

=

∫ ∞

0

J0(qb)Θ(q)qdq

∫ ∞

0

J0(qb
′) exp

[
iχ̄dB(~b

′)
]
b′db′,

(4)

By taking into account the Coulomb phase-shift function
in addition to the nuclear one, we can write

χ̄dB(~b) = χ̄n(~b) + χ̄C(~b) =

= χ̄n(~b) + χ̄
pt
C (
~b) + χ̄EC(~b),

(5)

where χ̄ptC (~b) is the modified point charge correction to the
Coulomb phase-shift function, which is equal to 2n ln ( b2a ),

a is equal to 1
2k , n= ZB e

2

}v is the usual Coulomb parameter

and χ̄EC(~b) is the modified extended charge correction to the
Coulomb phase shift function. χ̄n(~b) is the modified nuclear
interaction phase-shift function.

From Eqs. (3) and (5), we find [16, 25]

FdB(~q ) = f
pt
C (q) + i

∫ ∞

0

(kb)2in+1×

×
{
1− exp

(
iχ̄EC(~b) + iχ̄n(~b)

)}
J0(qb)db .

(6)

Assuming the projectile (deuteron) and target ground
state wave functions to have the form:

Ψi=d,B({~rj}) = ξi(~Ri)Φi({~r
int
j }), ~r intj = ~rj − ~Ri, (7)

where ξi(~Ri), where i= d,B, are the wave functions de-
scribing the center-of- mass motions of the deuteron and tar-
get nucleons, respectively. Accordingly, the center-of-mass
correlation function Θ(~q ) is found to has the form

Θ(~q ) =
[
<ξd(~Rd) ξB(~RB) |e

i~q (~Rd−~RB)| ξdξB>
]−1

, (8)

Now, we need to describe the wave function of the sys-
tem to perform the integrations of Eqs. (2) and (8). Consider
the approximation in which the nucleons inside any cluster
and the clusters themselves inside the nucleus are completely
uncorrelated. Then, we can write

|ΨdΨB |
2 = ΠMA

i=1Π
MN
α=1 ρd(~riα)Π

MB

j=1Π
MN

δ=1 ρB(~r
′
jδ), (9)

where ρd and ρB are the normalized single particle density
functions and are chosen in the present work to be of the
single-Gaussian density which is given as [25, 26, 28]

ργ(~r ) =

(
α2γ
π

)3/2
exp(−α2γr

2), γ = d,B, (10)

where αγ is related to the rms radius by

αγ =

√
3

2

(
1

<r2γ>
1/2

)

.

With the aid of the NN scattering amplitude, fNN (~q ),
which is given as [22, 32]

fNN (~q ) =
kNσ

4π
(i+ ρ) exp

(
−aq2

2

)

, (11)

where, kN is the momentum of the incident particle, σ, is
the total cross-section and ρ is the ratio of the real to the
imaginary parts of the forward scattering amplitude. a is
taken to be complex; a=β2+ iγ2, where β2 is the slope
parameter of the elastic scattering differential cross-section,
and γ2 is a free parameter introducing a phase variation of the
elemental scattering amplitude, adopting the wave function
(9) with the density (10) and following the same procedures
as that given in Ref. [25], we can perform the
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integrations in Eqs. (8) and (2) analytically and get

Θs(q) = exp

[
q2

4

(
1

Aα2d
+

1

Bα2B

)]

(12)

and

exp
[
iχn(b)

]
= 1 +

M1∑

μ1=1

∑

λμ1

T1(μ1, λμ1)×

×ΠMA

i=1Πj=1MB{ZS}
Δij(μ1,λμ1 ) ,

(13)

where ZS has the reduced form

ZS = CdB

M2∑

μ2=1

∑

λμ2

T2(μ2, λμ2)[−g]
μ2×

×RS [μ2, λμ2,Δ(μ2, λμ2), 0, 0, . . .]×

×
(
exp{−WS [μ2, λμ2,Δ(μ2, λμ2), 0, 0, . . .] b

2}
)
,

with

CdB =

[
α2d α

2
B

π2

]MN

The various functions (Θ, Z,R andW ) are marked by the
subscript s to refer to the employed single-Gaussian density.
Incorporating the c.m. correlation, the modified phase-shift
function χ̄n(~b) can be expressed as

exp
[
iχ̄n(b)

]
= 1 +

M1∑

μ1=1

∑

λμ1

T1(μ1, λμ1)×

×ΠMA

i=1Π
MB

j=1{Z̄S}
Δij(μ1,λμ1 ),

(14)

The form of Z̄S is obtained by inserting the expressions
of ZS and ΘS(~q ) into Eq. (4), yielding

Z̄S = CdB

M2∑

μ2=1

∑

λμ2

T2(μ2, λμ2)[−g]
μ2×

× R̄S [μ2, λμ2,Δ(μ2, λμ2), 0, 0, . . .]×

×
(
exp{−W̄S [μ2, λμ2,Δ(μ2, λμ2), 0, 0, . . .] b

2}
)
,

(15)

with

W̄s =

[
1

Ws
−

(
1

Aα2d
+

1

Bα2B

)]−1
and R̄s =

Rs × W̄s

Ws

Finally, the modified extended charge correction to the
Coulomb phase — shift, χ̄EC(b), has already been derived
analytically in Ref. [16] for a single-Gaussian density where
it was found to have the form

χ̄EC(b) = nE1(b
2/R̄2) (16)

where E1(z) is the exponential integral function and,

R̄2 = R2d (1−A
−1)+R2B(1−B

−1), R2d =
1

α2d
, R2B =

1

α2B
.

With the results of Eqs. (14), (15) and (16), the scattering
amplitude FdB(q) can be obtained by performing the integ-
ration in Eq. (6) numerically. Whence, the angular distribu-

E/A (MeV/nucleon) σNN (fm2) ρNN β2 (fm2)

25 24.1 0.85 0.8258599

40 13.5 0.9 0.4861189

60 9.15 1.1725 0.3755747

85 6.1 1.0 0.2427113

342.5 2.84 0.26 0.045

Table 1: Parameters of the Nucleon-Nucleon amplitude [34, 35].

tion of the elastic scattering is given by

dσ(q)

dΩ
=
∣
∣FdB(q)

∣
∣2. (17)

The point change approximation of the coulomb ampli-
tude fptc (~q ), is given as [33]

fptc (q) = −2nkq
−2×

× exp
{
−i
[
2n ln(qa)− 2 arg Γ(1 + in)

]}
.

(18)

The Rutherford formula for the differential cross section,
σRUTH is then given by

σRUTH = |f
pt
c (q)|

2 = 4n2k2q−4, (19)

where a, n, k, q have the same definitions that given above.

3 Results and discussion

To examine the simple analysis presented in the above sec-
tion, we have calculated the differential cross section for a set
of elastic nuclear reactions, like, d-3Li6, d-8O

16, d-23V
50, d-

32Ge70 and d-32Ge72 at incident energies 171 MeV, d-6C
12 at

110, 120 and 170 MeV, d-16S
32 at 52 and 171 MeV, d-20Ca40

at 52 and 700 MeV, d-28Ni58 at 80, 120 and 170 MeV and
d-12Mg24 at 170MeV. The ingredients needed to perform
these calculations are the parameters associated with the NN
scattering amplitude and the nuclear densities as well as the
orbits, lengths and Δ-matrices of the groups G1=SMA ⊗
SMB and G2=SMN ⊗SMN . For the above energies, we used
the values of the NN parameters given in Table 1.

The values of the parameters αγ , after correcting for the
effects of the finite proton-size and the c.m. recoil, are [16]

α2γ =
3

2

(
1− 1

γ

<r2γ>−<r2p>

)

, γ = A,B,

where <r2γ> and <r2p> are the mean square radii of the
deuteron, target nucleus and the proton, respectively. The
values of the rms radii we have used for the present nuclei
and the proton are given in Table 2.

The cluster structure specific to the considered reactions
and the corresponding orbits, lengths and Δ-matrices are
exhibited in Appendix.

The results obtained from these calculations for the con-
sidered reactions are shown as dashed curves in Figs. 1–16.
Fig. 1 contains the result obtained for d-3Li6 reaction at in-
cident energy 171 MeV. We can see from this figure that the
predicted angular distribution satisfactorily agree the scatter-
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Fig. 1: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-3Li6 reaction at incident energy
171 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−14 (GeV/c)−2).
The dots are the experimental data [42].

Fig. 2: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-6C12 reaction at incident energy
110 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−14 (GeV/c)−2).
The dots are the experimental data [43].

Fig. 3: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-6C12 reaction at incident energy
120 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−16 (GeV/c)−2).
The dots are the experimental data [43].

Fig. 4: Plots the elastic differential cross section (dσ/dΩ) versus
scattering angle for the deuteron-6C12 reaction at incident energy
170 MeV. The solid curve is the constant phase result (γ2=0). The
dots are the experimental data [44].

Fig. 5: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-8O16 reaction at incident energy
171 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−16 (GeV/c)−2).
The dots are the experimental data [42].

Fig. 6: Plots the elastic differential cross section (dσ/dΩ) versus
scattering angle for the deuteron-12Mg24 reaction at incident energy
170 MeV. The solid curve is the constant phase result (γ2=0). The
dots are the experimental data [44].
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Fig. 7: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-16S32 reaction at incident energy
52 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−8 (GeV/c)−2).
The dots are the experimental data [45]

Fig. 8: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-16S32 reaction at incident energy
171 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−12 (GeV/c)−2).
The dots are the experimental data [42].

Fig. 9: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron- 20Ca40 reaction at incident energy
52 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−18 (GeV/c)−2).
The dots are the experimental data [46].

Fig. 10: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-20Ca40 reaction at incident energy
700 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−10 (GeV/c)−2).
The dots are the experimental data [47].

Fig. 11: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-23V 50 reaction at incident energy
171 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−26 (GeV/c)−2).
The dots are the experimental data [42].

Fig. 12: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-28Ni58 reaction at incident energy
80 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−26 (GeV/c)−2).
The dots are the experimental data [48].
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Fig. 13: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-28Ni58 reaction at incident energy
120 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−20 (GeV/c)−2).
The dots are the experimental data [42].

Fig. 14: Plots the elastic differential cross section (dσ/dΩ) versus
scattering angle for the deuteron-28Ni58 reaction at incident energy
170 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−28 (GeV/c)−2).
The dots are the experimental data [44].

Fig. 15: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-32Ge70 reaction at incident energy
171 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−28 (GeV/c)−2).
The dots are the experimental data [42].

Fig. 16: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-32Ge72 reaction at incident energy
171 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−28 (GeV/c)−2).
The dots are the experimental data [42].

Nucleus P d Li6 C12 O16 Mg24
√
<r2> (fm) 0.810 2.170 2.450 2.453 2.710 2.980

Ref. 16 16 36 16 16 16

Nucleus S32 Ca40 V50 Ni58 Ge70 Ge72
√
<r2> (fm) 3.239 3.486 3.615 3.790 4.070 4.050

Ref. 37 16 37 16 37 37

Table 2: Nuclear rms radii.

ing data except a smaller shift is found at the minimum. The
predicted angular distribution for d-6C

12 elastic collision at
the energies 110, 120 and 170 MeV is shown in Figs. 2–
4 respectively. The scattering data is well reproduced in
the last case (at 170 MeV) rather than in the other two
cases (110 and 120 MeV) where smaller shifts are still ap-
peared around the diffraction patterns. For d-8O

16 reaction,
Fig. 5, the predicted angular distribution is in good agree-

ment with the corresponding experimental data. In Fig. 6 we
presented the case of the d-12Mg24 reaction at bombarding
energy 170 MeV. One can easily see from this figure that the
predicted angular distribution give an excellent account to
the experimental data over the whole range of the scattering
angles. The calculated angular distribution for the d-16S

32

reaction at energies 52 and 171 MeV are shown in Figs. 7–
8. We observe from these figures that the predicted angular
distribution for the 171 MeV is much better in reproducing
the scattering data than that obtained at 52 MeV and smaller
shifts are found around the minima in both of them. The
results for the angular distribution of the elastic scattering
of 52 and 700 MeV deuteron on 20Ca40 nuclei are shown
in Figs. 9–10. The calculations reproduce reasonably the
scattering data up to the angular range (θ6 35◦) for the first
reaction and up to (θ6 10◦) for the second reaction, while for
larger angles just the qualitative trend is accounted for. For

10 A. S. Shalaby and M. M. H. El-Gogary. Phase-Variation Enhancement on Deuteron Elastic Scattering from Nuclei



July, 2007 PROGRESS IN PHYSICS Volume 3

d-23V
50 reaction, Fig. 11, the data are reasonably reproduced

with a smaller shift away from the forward angles. Enlarging
the mass of the target nucleus as in the d-28Ni58 reaction,
Figs. 12–14, one can easily see that the predicted angular
distribution in the later case are twofold better in reproducing
the experimental data than in the others with smaller shifts
still found in all of them. For Germanium target nuclei as
in the case of d-32Ge70 and d-32Ge72 reactions, Figs. 15–16,
the data are quantitatively represented at the forward angles
and qualitatively reproduced at the backward angles.

On discussing these results, the positive picture obtained
at smaller values of momentum transfer is expected because
the Glauber theory is a very good approximation at forward
angles. But at larger angles poorer fits are obtained as the
energy increases was not expected.

However, we should keep in mind that at these energies
the input NN cross sections parameters are strongly depen-
dent on energy as shown in Table 1. Therefore, the scattering
would be very sensitive to the large q-details of the density
distributions and the elemental scattering amplitudes.

In the vie of the analysis made by several authors [30,
38–41], the question about the influence of invoking a phase-
variation in the NN scattering amplitude is investigated in
our calculations. To investigate how the q-dependent phase
exp −iγ2q2

2 affects the deuteron-nucleus elastic scattering, we
have carried out extensive numerical calculations for most
of our considered reactions (where smaller shifts are found
around their diffraction patterns), at various nonzero values
of the phase parameter γ2. The calculations showed that for
a given value of the ratio parameter ρ, the variation of γ2

leads to either overall increase or decrease in the estimated
values of the cross sections. Indeed, we found that such
change in the cross section takes place depending on the
signs of ρ and γ2, i.e. if ρ is positive, the negative value of γ2

increases the cross section while the positive value decreases
it and vice versa. Hence, a nonzero value for ρ implies a
single nonzero value for γ2 as well. This in fact agrees with
what was predicted before by Ahmad and Alvi [39] from
potential model calculation. However, the best results of the
present calculations are shown by the solid curves in our
figures. On comparing the solid curve (at γ2 6= 0) with the
dashed curve (at γ2=0) in each figure, we can note that
the influence of the phase is obvious only at the minima
and is roughly notable at the momentum transfers where no
minima originally occurred. In general, taking this phase into
account gives better agreement with the scattering data, Figs.
5, 11, 13, 14 and 16, while the improvement is confined at
the minima of the results obtained for the other reactions
presented in the Figs. 1–3, 7–10, 12 and 15.

4 Conclusion

In the framework of Glauber’s multiple scattering theory
which takes into account both the full multiple scattering

series of the Glauber amplitude and a consistent treatment
of the center-of-mass correlation, we have studied the elastic
scattering of deuteron with different nuclei like, 3Li6, 6C

12,
8O

16, 12Mg24, 16S
32, 20Ca40, 23V

50, 28Ni58, 32Ge70 and
32Ge72 at intermediate energies (256E/A6342.5). We have
calculated the angular distribution ( σ

σRUTH
or dσ

dΩ ) for the
above considered reactions and compared our results with
the corresponding experimental data. It was shown that, in
general, a smaller shift is appeared around the minimum in
most of the theoretical results and a disagreement at large
scattering angles is also exist there. Trial to overcome these
drawbacks is made by investigating the effect of invoking a
phase-variation in the NN scattering amplitude. Although the
results show that a better agreement with the experimental
data is obtained, especially at the minima of the diffraction
patterns in comparison with the free-phase calculations, the
introduction of such phase alone is not sufficient to bring the
Glauber model prediction closer to the experimental data,
except for a few number of the considered energies. The
reason for the insignificance of this phase at large scatteing
angles may be attributed to the followings: First, The com-
plicated eclipse occurred from the multiple scattering colli-
sions between nucleons which are not simple (linear) in its
dependence on q2 as that taken here. Second, the utilized bare
NN parameters that neglecting the in-medium effect. Thus,
for serious phase effect investigation, one should use a more
realistic density distribution for the deuteron and effective
NN parameters that account for the density dependence and
the medium effect. This will be the subject of our future
work.
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Appendix

This appendix contains the tables of the orbits, lengths and Δ-matrices em-
ployed in our calculations. We obtained them by enumerating and investi-
gating all the possible combinations of collisions according to their pertation
[20]. In the present work, the elastic collisions, d-3Li6, d-6C12, d-8O16, d-
12Mg24, d-16S32, d-20Ca40, d-23V50, d-28Ni58, d-32Ge70 and d-32Ge72

have been studied according to their cluster and nucleon structures. The
orbits, lengths and Δ-matrices of the groups G1=SMA ⊗SMB and G2=
=SMN ⊗SMN (defined in Section 2) corresponding to these reactions
depend on the assumed cluster and nucleon configurations.

The numbers (MA,MB ,MN ), determining the cluster and nucleon
structures assumed in each system are taken as follows: MA=1, MN =2
while MB is different for each reaction and it is equal to B/2, where B is
the mass number of the target nucleus.

For the sake of brevity, we give only the tables of the non-similar
groups.

μ λμ T (μ, λμ) Δ(μ, λμ)

1 1 29 10000000000000000000000000000

2 1 406 11000000000000000000000000000

3 1 3654 11100000000000000000000000000

4 1 23751 11110000000000000000000000000

5 1 118755 11111000000000000000000000000

6 1 475020 11111100000000000000000000000

7 1 1560780 11111110000000000000000000000

8 1 4292145 11111111000000000000000000000

9 1 10015005 11111111100000000000000000000

10 1 20030010 11111111110000000000000000000

11 1 34597290 11111111111000000000000000000

12 1 51895935 11111111111100000000000000000

13 1 67863915 11111111111110000000000000000

14 1 77558760 11111111111111000000000000000

Table 3: Orbits, lengths and Δ-matrices for G=S1⊗S29. Total number
of orbits (including the orbits not shown) = 29.

μ λμ T (μ, λμ) Δ(μ, λμ)

1 1 29 10000000000000000000000000000

2 1 190 11000000000000000000000000000

3 1 1140 11100000000000000000000000000

4 1 4845 11110000000000000000000000000

5 1 15504 11111000000000000000000000000

6 1 38760 11111100000000000000000000000

7 1 77520 11111110000000000000000000000

8 1 125970 11111111000000000000000000000

9 1 167960 11111111100000000000000000000

10 1 184756 11111111110000000000000000000

Table 4: Orbits, lengths and — matrices for G=S1⊗S20. Total number of
orbits (including the orbits not shown) = 20.

μ λμ T (μ, λμ) Δ(μ, λμ)

1 1 25 10000000000000000000000000000

2 1 300 11000000000000000000000000000

3 1 2300 11100000000000000000000000000

4 1 12650 11110000000000000000000000000

5 1 53130 11111000000000000000000000000

6 1 177100 11111100000000000000000000000

7 1 480700 11111110000000000000000000000

8 1 1081575 11111111000000000000000000000

9 1 2042975 11111111100000000000000000000

10 1 3268760 11111111110000000000000000000

11 1 4457400 11111111111000000000000000000

12 1 5200300 11111111111100000000000000000

Table 5: Orbits, lengths and Δ-matrices for G=S1⊗S25. Total number
of orbits (including the orbits not shown) = 25.
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μ λμ T (μ, λμ) Δ(μ, λμ)

1 1 3 100

Table 6: Orbits, lengths and Δ-matrices for G=S1⊗S3. Total number of
orbits (including the orbits not shown) = 3.

μ λμ T (μ, λμ) Δ(μ, λμ)

1 1 35 10000000000000000000000000000

2 1 595 11000000000000000000000000000

3 1 6545 11100000000000000000000000000

4 1 52360 11110000000000000000000000000

5 1 324632 11111000000000000000000000000

6 1 1623160 11111100000000000000000000000

7 1 6724520 11111110000000000000000000000

8 1 23535820 11111111000000000000000000000

9 1 70607460 11111111100000000000000000000

10 1 1.835794E8 11111111110000000000000000000

11 1 4.172259E8 11111111111000000000000000000

12 1 8.344518E8 11111111111100000000000000000

13 1 1.4763378E9 11111111111110000000000000000

14 1 2.3199594E9 11111111111111000000000000000

15 1 3.2479432E9 111111111111111000000000000000

16 1 4.0599289E9 111111111111111100000000000000

17 1 4.5375676E9 111111111111111110000000000000

Table 7: Orbits, lengths and Δ-matrices for G=S1⊗S35. Total number
of orbits (including the orbits not shown) = 35.

μ λμ T (μ, λμ) Δ(μ, λμ)

1 1 36 10000000000000000000000000000

2 1 630 11000000000000000000000000000

3 1 7140 11100000000000000000000000000

4 1 58905 11110000000000000000000000000

5 1 376992 11111000000000000000000000000

6 1 1947792 11111100000000000000000000000

7 1 8347680 11111110000000000000000000000

8 1 302660340 11111111000000000000000000000

9 1 94143280 11111111100000000000000000000

10 1 2.5418686E8 11111111110000000000000000000

11 1 6.008053E8 11111111111000000000000000000

12 1 1.2516777E9 11111111111100000000000000000

13 1 2.3107896E9 11111111111110000000000000000

14 1 3.7962972E9 11111111111111000000000000000

15 1 5.5679026E9 111111111111111000000000000000

16 1 7.3078721E9 111111111111111100000000000000

17 1 8.5974966E9 111111111111111110000000000000

18 1 9.0751353E9 111111111111111111000000000000

Table 8: Orbits, lengths and Δ-matrices for G=S1⊗S36. Total number
of orbits (including the orbits not shown) = 36.

In these tables, the first column represents the order of multiple scatter-
ing μ which ranges from 1 to 1×n while λμ in the second column
represents the serial index used to number the orbits of order μ. The
third column represents the length of the orbit T (μ, λμ). In the fourth
column the (1×n) - digit binary numbers give the Δ-matrices of the group
G=S1⊗Sn. The n-digits are the elements Δ1i, where i=1, 2, . . . , n.

By symmetry, the orbits, lengths and Δ-matrices for μ′s which are not
shown in our tables could be easily deduced from the Tables. This is carried
out by using the results for order μ′ = m×n−μ and interchanging the 0′s
and 1′s ofΔ(μ′, λμ′ ). The indices λμ and λμ′ are the same and the lengths
T (μ, λμ) and T (μ′, λμ′ ) are equal. The matrix Δ(n, 1) has elements Δ1j
equal to 1.

The orbits, lengths and Δ-matrices of the groups G = S2 ⊗ S2 [24] &
S1 ⊗ S6 & S1 ⊗ S12 & S1 ⊗ S16 [26] and S1 ⊗ S8 [28] are also used to
carry out our present calculations in addition to what was listed above.
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The fluctuations of funnel solutions of intersecting D1 and D3 branes are quite
explicitly discussed by treating different modes and different directions of the
fluctuation at the presence of world volume electric field. The boundary conditions
are found to be Neumann boundary conditions.

1 Introduction

D-branes described by Non-abelian Born-Infeld (BI) action
[1] have many fascinating features. Among these there is the
possibility for D-branes to morph into other D-branes of dif-
ferent dimensions by exciting some of the scalar fields [2, 3].
It’s known in the literature that there are many different
but physically equivalent descriptions of how a D1-brane
may end on a D3-brane. From the point of view of the D3
brane the configuration is described by a monopole on its
world volume. From the point of view of the D1-brane the
configuration is described by the D1-brane opening up into
a D3-brane where the extra three dimensions form a fuzzy
two-sphere whose radius diverges at the origin of the D3-
brane. These different view points are the stringy realization
of the Nahm transformation [4, 5]. Also the dynamics of
the both bion spike [2, 6] and the fuzzy funnel [5, 7, 8]
were studied by considering linearized fluctuations around
the static solutions.

The present work is devoted to study the fluctuations of
funnel solutions in the presence of a world-volume electric
field. By discussing the solutions and the potentials for this
particular case we end by the system D1⊥D3 branes gets a
special property because of the presence of electric field; the
system is divided to two regions corresponding to small and
large electric field. Consequently, the system has Neumann
boundary conditions and the end of open string can move
freely on the brane which is agree with its dual discussed in
[9] considering Born-Infeld action dealing with the fluctua-
tion of the bion skipe in D3⊥D1-case.

The paper is organized as follows: In section 2, we start
by a brief review on D1⊥D3 branes in dyonic case by using
the non-Born-Infeld action. Then, we discuss the fluctuations
of the fuzzy funnel in section 3 for zero and high modes. We
give the solutions of the linearized equations of motion of
the fluctuations for both cases the overall transverse and the
relative one. We also discuss the solutions and the potential
depending on the presence of electric field which is leading
to Neumann boundary conditions as special property of the
system. Then the waves on the brane cause the fuzzy funnel
to freely oscillate.

2 D1⊥D3 branes with electric field swished on

In this section, we review in brief the funnel solutions for
D1⊥D3 branes from D3 and D1 branes points of view. First,
using abelian BI action for the world-volume gauge field
and one excited transverse scalar in dyonic case, we give
the funnel solution. It was showed in [10] that the BI action,
when taken as the fundamental action, can be used to build a
configuration with a semi-infinite fundamental string ending
on a D3-brane [11]. The dyonic system is given by using
D-string world-volume theory and the fundamental strings
introduced by adding a U(1) electric field. Thus the system
is described by the following action

S =

∫
dtL =

= −T3

∫
d4σ
√
−det(ηab + λ2 ∂aφi ∂bφi + λFab) =

= −T3

∫
d4σ
[
1 + λ2

(
|∇φ|2 +B2 + E2

)
+

+λ4
(
(B ∙ ∇φ)2 + (E ∙B)2 + |E ∧∇φ|2

)] 1
2

(1)

in which Fab is the field strength and the electric field is de-
noted as F09=EIab, (Iab isN×N matrix). σa (a=0, . . . , 3)
denote the world volume coordinates while φi (i=4, . . . , 9)
are the scalars describing transverse fluctuations of the brane
and λ=2π`2s with `s is the string length. In our case we
excite just one scalar so φi=φ9≡φ. Following the same
process used in the reference [10] by considering static gauge,
we look for the lowest energy of the system. Accordingly to
(1) the energy of dyonic system is given as

Ξ = T3

∫
d3σ
[
λ2|∇φ+ ~B+ ~E|2+(1−λ2∇φ∙ ~B)2−

− 2λ2 ~E ∙( ~B+∇φ)+λ4
(
( ~E ∙ ~B)2+ | ~E∧∇φ|2

)] 1
2

,

(2)

then if we require ∇φ + ~B + ~E = 0, Ξ reduces to Ξ0 > 0
and we find

Ξ0 = T3

∫
d3σ
[(
1− λ2 (∇φ) ∙ ~B

)2
+ 2λ2 ~E ∙ ~E+

+λ4
(
( ~E ∙ ~B)2 + | ~EΛ∇φ|2

)] 12 (3)
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as minimum energy. By using the Bianchi identity ∇∙B=0
and the fact that the gauge field is static, the funnel solution
is then

φ=
Nm +Ne
2r

, (4)

with Nm is magnetic charge and Ne electric charge.
Now we consider the dual description of the D1⊥D3

from D1 branes point of view. To get D3-branes from D-
strings, we use the non-abelian BI action

S = −T1

∫
d2σ×

× Str
[
− det(ηab + λ

2 ∂aφ
iQ−1ij ∂bφ

j) detQij
] 1
2

(5)

where Qij = δij + iλ
[
φi, φj

]
. Expanding this action to lead-

ing order in λ yields the usual non-abelian scalar action

S ∼= −T1

∫
d2σ×

×
[
N + λ2 tr

(
∂aφ

i + 1
2

[
φi, φj

][
φj , φi

])
+ . . .

] 1
2

.

The solutions of the equation of motion of the scalar
fields φi, i=1, 2, 3 represent the D-string expanding into
a D3-brane analogous to the bion solution of the D3-brane
theory [2, 3]. The solutions are

φi = ±
αi
2σ
,

[
αi, αj

]
= 2iεijkαk,

with the corresponding geometry is a long funnel where the
cross-section at fixed σ has the topology of a fuzzy two-
sphere.

The dyonic case is taken by considering (N,Nf )-strings.
We have N D-strings and Nf fundamental strings [5]. The
theory is described by the action

S = −T1

∫
d2σ×

× Str
[
−det(ηab+λ

2∂aφ
iQ−1ij ∂bφ

j+λEIab) detQ
ij
] 1
2

(6)

in which we replaced the field strength Fab by EIab (Iab is
N×N -matrix) meaning that the fundamental string is intro-
duced by adding a U(1) electric field E.

The action can be rewritten as

S = −T1

∫
d2σ Str

[

−det

(
ηab+λEIab λ∂aφ

j

−λ∂bφ
i Qij

)] 1
2

, (7)

then the bound states of D-strings and fundamental strings
are made simply by introducing a background U(1) electric
field on D-strings, corresponding to fundamental strings dis-
solved on the world-sheet. By computing the determinant,
the action becomes

S = −T1

∫
d2σ×

× Str
[
(1− λ2E2 + αiαiR̂

′2)(1 + 4λ2αjαjR̂
4)
] 1
2

,
(8)

where the following ansatz were inserted

φi = R̂αi . (9)

Hence, we get the funnel solution for dyonic string by
solving the equation of variation of R̂, as follows

φi =
αi

2σ
√
1− λ2E2

. (10)

3 Fluctuations of dyonic funnel solutions

In this section, we treat the dynamics of the funnel solutions.
We solve the linearized equations of motion for small and
time-dependent fluctuations of the transverse scalar around
the exact background in dyonic case.

We deal with the fluctuations of the funnel (10) discussed
in the previous section. By plugging into the full (N −Nf )
string action (6, 7) the “overall transverse” δφm(σ, t)=
= fm(σ, t)IN , m=4, . . . , 8 which is the simplest type of
fluctuation with IN the identity matrix, together with the
funnel solution, we get

S = −T1

∫
d2σ Str

[

(1 + λE)

(

1 +
λ2αiαi

4σ4

)

×

×

((

1 +
λ2αiαi

4σ4

)
(
1 + (λE − 1)λ2(∂tδφ

m)2
)
+

+λ2(∂σδφ
m)2

)] 1
2

≈ −NT1

∫
d2σH

[

(1 + λE)−

− (1− λ2E2)
λ2

2
(ḟm)2 +

(1 + λE)λ2

2H
(∂σf

m)2 + . . .

]

(11)

where

H = 1 +
λ2C

4σ4

and C = trαiαi. For the irreducible N × N representation
we have C = N2 − 1. In the last line we have only kept
the terms quadratic in the fluctuations as this is sufficient to
determine the linearized equations of motion
(

(1− λE)

(

1 + λ2
N2 − 1
4σ4

)

∂2t − ∂
2
σ

)

fm = 0 . (12)

In the overall case, all the points of the fuzzy funnel
move or fluctuate in the same direction of the dyonic string
by an equal distance δxm. First, the funnel solution is φi=
= 1

2
√
1−λ2E2

αi

σ and the fluctuation fm waves in the direction
of xm; fm(σ, t) = Φ(σ) e−iwtδxm. (13)

With this ansatz the equation of motion is
(
(1− λE)Hw2 + ∂2σ

)
Φ(σ) = 0 , (14)

then the problem is reduced to finding the solution of a single
scalar equation.
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Thus, we remark that the equation (14) is an analog one-
dimensional Schrödinger equation and it can be rewritten
as

(
− ∂2σ + V (σ)

)
Φ(σ) = w2 (1− λE)Φ(σ), (15)

with

V (σ) = w2(λE − 1)λ2
N2 − 1
4σ4

.

We notice that, if the electric field dominates E� 1, the
potential goes to w2λ3E N2

4σ4
for large N and if E� 1 we

find V =−w2 λ2 N2

4σ4
. This can be seen as two separated

systems depending on electric field so we have Neumann
boundary condition separating the system into two regions
E� 1 and E� 1.

Now, let’s find the solution of a single scalar equation
(14). First, the equation (14) can be rewritten as follows

(
1

w2(1− λE)
∂2σ + 1 +

λ2N2

4σ4

)

Φ(σ) = 0 , (16)

for large N . If we suggest σ̃=w
√
1−λE σ the latter equa-

tion becomes
(

∂2σ̃ + 1 +
κ2

σ̃4

)

Φ(σ̃) = 0 , (17)

with the potential is

V (σ̃) =
κ2

σ̃4
, (18)

and κ= λNw2

2 (1−λE). This equation is a Schrödinger
equation for an attractive singular potential ∝ σ̃−4 and de-
pends on the single coupling parameter κ with constant po-
sitive Schrödinger energy. The solution is then known by
making the following coordinate change

χ(σ̃) =

∫ σ̃

√
κ

dy

√

1 +
κ2

y4
, (19)

and

Φ =

(

1 +
κ2

σ̃4

)− 1
4

Φ̃ . (20)

Thus, the equation (17) becomes

(
− ∂2χ + V (χ)

)
Φ̃ = 0 , (21)

with

V (χ) =
5κ2

(
σ̃2 + κ2

σ̃2

)3 . (22)

Then, the fluctuation is found to be

Φ =

(

1 +
κ2

σ̃4

)− 1
4

e±iχ(σ̃). (23)

Fig. 1: Left hand curve represents the overall fluctuation wave
in zero mode and low electric field. Right hand curve shows the
scattering of the overall fluctuation wave in zero mode and high
electric field. This latter caused a discontinuitity of the wave which
means Neumann boundary condition.

Fig. 2: The up line shows the potential in zero mode of the overall
funnel’s fluctuations at the absence of electric field E and the dots
represent the potential in the same mode at the presence of E. The
presence of E is changing the potential totally to the opposite.

This fluctuation has the following limits; at large σ,
Φ∼ e±iχ(σ̃) and if σ is small Φ=

√
κ
σ̃ e

±iχ(σ̃). These are the
asymptotic wave function in the regions χ → ±∞, while
around χ ∼ 0; i.e. σ̃ ∼

√
κ, fm∼ 2−

1
4 e−iwtδxm (Fig. 1).

The potential (22) in large and small limits of electric
field becomes (Fig. 2):

• E � 1, V (χ)∼ −5λN2

Eσ6
;

• E � 1, V (χ)∼ 5λ2N2w2

4
(
w2σ2+ λ2N2w2

4σ2

) .

At the presence of electric field we remark that around
σ∼ 0 there is a symmetric potential which goes to zero
very fast and more fast as electric field is large ∼ −1

Eσ2
.

As discussed above, again we get the separated systems in
different regions depending on the values of electric field.
Also if we have a look at the fluctuation (23) we find that
fm in the case of E� 1 is different from the one in E� 1
case and as shown in the Fig. 1 the presence of electric
field causes a discontinuity of the fluctuation wave which
means free boundary condition. Contrarily, at the absence of
electric field the fluctuation wave is continue. Then, this is
seen as Neumann boundary condition from non-Born-Infeld
dynamics separating the system into two regions E� 1 and
E� 1 which is agree with its dual discussed in [9].

16 J. Douari and A. H. Ali. Funnel’s Fluctuations in Dyonic Case: Intersecting D1-D3 Branes



July, 2007 PROGRESS IN PHYSICS Volume 3

The fluctuations discussed above could be called the zero
mode ` = 0 and for high modes ` > 0, the fluctuations are

δφm(σ, t) =

N−1∑

`=0

ψmi1...i`α
i1 . . . αi`

with ψmi1...i` are completely symmetric and traceless in the
lower indices.

The action describing this system is

S ≈ −NT1

∫
d2σ

[

(1 + λE)H − (1− λ2E2)×

×H
λ2

2
(∂tδφ

m)2 +
(1 + λE)λ2

2H
(∂σδφ

m)2−

− (1−λ2E2)
λ2

2

[
φi, δφm

]2
−
λ4

12

[
∂σφ

i, ∂tδφ
m
]2
+. . .

]
(24)

Now the linearized equations of motion are
[
(1 + λE)H∂2t − ∂

2
σ

]
δφm + (1− λ2E2)×

×
[
φi,
[
φi, δφm

]]
−
λ2

6

[
∂σφ

i,
[
∂σφ

i, ∂2t δφ
m
]]
= 0 .

(25)

Since the background solution is φi ∝ αi and we have[
αi, αj

]
=2iεijkα

k, we get
[
αi,
[
αi, δφm

]]
=
∑

`<N

ψmi1...i`
[
αi,
[
αi, αi1 . . . αi`

]]

=
∑

`<N

4`(`+ 1)ψmi1...i`α
i1 . . . αi`

(26)

To obtain a specific spherical harmonic on 2-sphere, we
have

[
φi,
[
φi, δφm`

]]
=
`(`+ 1)

σ2
δφm` ,

[
∂σφ

i,
[
∂σφ

i, ∂2t δφ
m
]]
=
`(`+ 1)

σ4
∂2t δφ

m
` .

(27)

Then for each mode the equations of motion are
[(

(1 + λE)

(

1 + λ2
N2−1
4σ4

)

−
λ2`(`+1)

6σ4

)

∂2t −

− ∂2σ + (1− λ
2E2)

`(`+ 1)

σ2

]

δφm` = 0 .

(28)

The solution of the equation of motion can be found
by taking the following proposal. Let’s consider φm` =
= fm` (σ)e

−iwtδxm in directionm with fm` (σ) is some func-
tion of σ for each mode `.

The last equation can be rewritten as
[
− ∂2σ + V (σ)

]
fm` (σ) = w2(1 + λE) fm` (σ) , (29)

with

V (σ) = −w2
(

(1 + λE)
λ2N2

4σ4
−
λ2`(`+ 1)

6σ4

)

+

+(1− λ2E2)
`(`+ 1)

σ2
.

Let’s write the equation (29) in the following form
[

w2
(

(1 + λE)H −
λ2`(`+ 1)

6σ4

)

−

− (1− λ2E2)
`(`+ 1)

σ2
+ ∂2σ

]

fm` (σ) = 0 .

(30)

and again as
[

1 +
1

σ4

(

λ2
N2 − 1
4

−
λ2`(`+ 1)

6(1 + λE)

)

−

− (1− λE)
`(`+ 1)

w2σ2
+

1

w2(1 + λE)
∂2σ

]

fm` (σ) = 0 .

(31)

We define new coordinate σ̃=w
√
1+λE σ and the latter

equation becomes
[

∂2σ̃ + 1 +
κ2

σ̃4
+

η

σ̃2

]

fm` (σ) = 0 , (32)

where

κ2 = w2(1 + λE)

(

λ2
N2 − 1
4

−
λ2`(`+ 1)

6(1 + λE)

)1
2

,

η = −(1− λ2E2) `(`+ 1)

such that

N >

√
2`(`+ 1)

3(1 + λE)
+ 1 .

For simplicity we choose small σ, then the equation (32)
is reduced to [

∂2σ̃ + 1 +
κ2

σ̃4

]

fm` (σ) = 0 , (33)

as we did in zero mode, we get the solution by using the steps
(19–22) with new κ. Since we considered small σ we get

V (χ) =
5σ̃6

κ4
,

then

fm` =
σ̃
√
κ
e±iχ(σ̃) . (34)

This fluctuation has two different values at large E and
small E (Fig. 3) and a closer look at the potential at large
and fixed N in large and small limits of electric field leads to

• E � 1, V (χ)∼ 20w2Eσ6

λN2 ;

• E � 1, V (χ)∼ 5w2σ6

λ2
(
N2

4 − `(`+1)
6

) .

The potential in the first case is going fast to infinity than
the one in the second case because of the electric field if
σ � 1 (Fig. 4).

For large σ the equation of motion (30) of the fluctuation
becomes

[
− ∂2σ + Ṽ (σ)

]
fm` (σ) = w2(1 + λE)fm` (σ) , (35)
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Fig. 3: The left figure shows the continuity of the fluctuation wave
in high mode of the overall fluctuation at the absence of electric
field E. The right figure shows the discontinuity of the wave at the
presence of E in high mode meaning free boundary condition.

with Ṽ (σ)= (1−λ2E2) ` (`+1)

σ2
and fm` is now a Sturm-

Liouville eigenvalue problem (Fig. 3). We found that the
fluctuation has discontinuity at the presence of electric field
meaning free boundary condition. Also we remark that the
potential has different values in the different regions of elec-
tric field E � 1 and E � 1 and this time for large σ. In this
side, the potential drops with opposite sign from one case to
other and as shown in (Fig. 4). The presence of E is changing
the potential totally to the opposite in both cases zero and
high modes.

Consequently, by discussing explicitly the fluctuations
and the potential of intersecting D1-D3 branes in D1-brane
world volume theory we found that the system has Neumann
boundary conditions and the end of the string can move
freely on the brane for both zero and high modes of the
overall transverse fluctuations case.

3.1 Relative Transverse Fluctuations

Now if we consider the “relative transverse” δφi(σ, t)=
= f i(σ, t)IN , i=1, 2, 3 the action is

S = −T1

∫
d2σ×

× Str

[

−det

(
ηab+λEIab λ∂a(φ

j+δφj)

−λ∂b(φ
i+δφi) Qij

∗

)] 1
2

,

(36)

with Qij∗ = Qij+iλ
([
φi, δφj

]
+
[
δφi, φj

]
+
[
δφi, δφj

])
. As

before we keep only the terms quadratic in the fluctuations
and the action becomes

S ≈ −NT1

∫
d2σ

[

(1− λ2E2)H −

− (1−λE)
λ2

2
(ḟ i)2+

(1+λE)λ2

2H
(∂σf

i)2+ . . .

]

.

(37)

Then the equations of motion of the fluctuations are
(

−∂2σ − w
2 1− λE
1 + λE

λ2
N2 − 1
4σ4

)

f i = w2
1− λE
1 + λE

f i. (38)

If we write f i=Φi(σ) e−iwtδxi in the direction of xi,
the potential will be

V (σ) = −
1− λE
1 + λE

λ2
N2 − 1
4σ4

w2.

Fig. 4: The line represents the potential for small σ and dots for
large σ in both figures. In high mode of overall fluctuations at the
absence of electric field E, the left figure shows high potential at
some stage of σ where the two curves meet. The right figure shows
a critical case. The curves represent the potentials at the presence of
E for small and large σ. As a remark, there is no intersecting point
for theses two potentials! At some stage of σ there is a singularity.

Fig. 5: The line shows the potential in zero mode of the relative
funnel’s fluctuations at the absence of electric field E and the dots
represent the potential in the same mode at the presence of E. The
presence of E is changing the potential totally to the opposite.

Let’s discuss the cases of electric field:

• E � 1, V (σ)∼ − λ2N
2−1
4σ4

w2;

• E � 1, V (σ)∼λ2N
2−1
4σ4

w2.

Also in the relative case, this is Neumann boundary con-
dition (Fig. 5) which can be also shown by finding the
solution of (38) for which we follow the same way as above
by making a coordinate change suggested by WKB. This
case is seen as a zero mode of what is following so we will
treat this in general case by using this coordinate change for
high modes.

Now let’s give the equation of motion of relative trans-
verse fluctuations of high ` modes with (N−Nf ) strings
intersecting D3-branes. The fluctuation is given by

δφi(σ, t) =

N−1∑

`=1

ψii1...i`α
i1 . . . αi`

with ψii1...i` are completely symmetric and traceless in the
lower indices.
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The action describing this system is

S ≈ −NT1

∫
d2σ

[

(1− λ2E2)H −

− (1− λE)H
λ2

2
(∂tδφ

i)2 +
(1 + λE)λ2

2H
(∂σδφ

i)2−

− (1− λE)
λ2

2

[
φi, δφi

]2
−
λ4

12

[
∂σφ

i, ∂tδφ
i
]2
+ . . .

]

.

(39)

The equation of motion for relative transverse fluctua-
tions in high mode is as follows
[
1− λE
1 + λE

H∂2t − ∂
2
σ

]

δφi + (1− λE)
[
φi,
[
φi, δφi

]]
−

−
λ2

6

[
∂σφ

i,
[
∂σφ

i, ∂2t δφ
i
]]
= 0 .

(40)

By the same way as done for overall transverse fluctua-
tions the equation of motion for each mode is
[

−∂2σ+

(
1−λE
1+λE

(

1+λ2
N2−1
4σ4

)

−
λ2`(`+1)

6σ4

)

∂2t +

+(1− λE)
`(`+ 1)

σ2

]

δφi` = 0 .

(41)

We take δφi` = f i` e
−iwtδxi, then the equation (41) be-

comes
[

−∂2σ−

(
1−λE
1+λE

(

1+λ2
N2−1
4σ4

)

−
λ2`(`+1)

6σ4

)

w2+

+(1− λE)
`(`+ 1)

σ2

]

f i` = 0 .

(42)

To solve the equation we choose for simplicity the boun-
daries of σ; For small σ, the equation is reduced to
[

−∂2σ −

(
1− λE
1 + λE

(

1 + λ2
N2 − 1
4σ4

)

−

−
λ2`(`+ 1)

6σ4

)

w2
]

f i` = 0 ,

(43)

which can be rewritten as follows
[

−
1 + λE

1− λE
∂2σ −

((

1 + λ2
N2 − 1
4σ4

)

−

−
1 + λE

1− λE
λ2`(`+ 1)

6σ4

)

w2
]

f i` = 0 .

(44)

We change the coordinate to σ̃=
√

1−λE
1+λE wσ and the

equation (44) becomes
[

∂2σ̃ + 1 +
κ2

σ̃4

]

f i` (σ̃) = 0 , (45)

with

κ2 = w4λ2
3(1− λE)2(N2 − 1)− 2(1− λ2E2) `(`+ 1)

12(1 + λE)2
.

Then we follow the suggestions of WKB by making a
coordinate change;

β(σ̃) =

∫ σ̃

√
κ

dy

√

1 +
κ2

y4
, (46)

and

f i` (σ̃) =

(

1 +
κ2

σ̃4

)− 1
4

f̃ i` (σ̃) . (47)

Thus, the equation (45) becomes
(
− ∂2β + V (β)

)
f̃ i = 0 , (48)

with

V (β) =
5κ2

(
σ̃2 + κ2

σ̃2

)3 . (49)

Then

f i` =

(

1 +
κ2

σ̃4

)− 1
4

e±iβ(σ̃) . (50)

The discussion is similar to the overall case; so the ob-
tained fluctuation has the following limits; at large σ, f i` ∼

∼ e±iβ(σ̃) and if σ is small f i` =
√
κ
σ̃ e

±iβ(σ̃). These are the
asymptotic wave function in the regions β→±∞, while
around β ∼ 0; i.e. σ̃ ∼

√
κ, f i` ∼ 2

− 1
4 .

Then let’s have a look at the potential in various limits
of electric field:

• E ∼ 1
λ , V (β) ∼ 0;

• E� 1, κ2≡κ2+∼w
4λ2 3(N

2−1)+2`(`+1)
12 , then σ∼ 0

⇒V (β) ∼ 5σ̃6

κ4+
;

• E� 1, κ2≡κ2−∼w
4λ2 3(N

2−1)−2`(`+1)
12 ; for this case

we get σ ∼ 0⇒ V (β) ∼ 5σ̃6

κ4−
;

this means that we have a Neumann boundary condition with
relative fluctuations at small σ (Fig. 6).

Now, if σ is too large the equation of motion (42) be-
comes
[

−∂2σ + (1− λE)
`(`+ 1)

σ2

]

f i` =
1− λE
1 + λE

w2f i` . (51)

We see, the associated potential V (σ)=(1−λE) `(`+1)
σ2

goes to −ε in the case of E � 1 and to +ε if E � 1 since σ
is too large with ε ∼ 0, (Fig. 6). We get the same remark as
before by dealing with the fluctuations for small and large σ
(50) and solving (51) respectively, at the presence of electric
field that we have two separated regions depending on the
electric field (Fig. 7).

We discussed quite explicitly through this section the flu-
ctuation of the funnel solution of D1⊥D3 branes by treating
different modes and different directions of the fluctuation.
We found that the system got an important property because
of the presence of electric field; the system has Neumann
boundary condition.
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Fig. 6: As we saw in high mode of overall fluctuations, also for
relative case we get high potential at some stage of σ where the
the tow curves meet representing potentials for small and large σ
at the absence of electric field E in the left figure. Right figure
shows again a singularity this time in relative case because of the
presence of E.

Fig. 7: The presence of electric field E causes a discontinuity of
the wave in high mode of relative case meaning free boundary
condition.

4 Conclusion

We have investigated the intersecting D1-D3 branes through
a consideration of the presence of electric field. We have
treated the fluctuations of the funnel solutions and we have
discussed explicitly the potentials in both systems. We found
a specific feature of the presence of electric field. When the
electric field is going up and down the potential of the system
is changing and the fluctuations of funnel solutions as well
which cause the division of the system to tow regions. Con-
sequently, the end point of the dyonic strings move on the
brane which means we have Neumann boundary condition.

The present study is in flat background and there is
another interesting investigation is concerning the perturba-
tions propagating on a dyonic string in the supergravity back-
ground [12, 5] of an orthogonal 3-brane. Then we can deal
with this important case and see if we will get the same
boundary conditions by treating the dyonic fluctuations.
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On the Possibility of Nuclear Synthesis During Orthopositronium Formation
by β+-Decay Positrons in Deuterium
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Observations of the “isotopic anomaly” of positron (22Na) annihilation lifetime
spectra in samples of gaseous neon of various isotopic abundance, the independent
observations of the orthopositronium lifetime anomaly, and comparison of unique
experimental data on the positron’s annihilation lifetime spectra in condensed
deuterium (D2) and protium (H2), suggest a hypothesis on synthesis of 4He during the
orthopositronium formation in deuterium. The decisive experiment is offered.

1 Introduction

When a muon replaces an electron in a two-centre “molecular
ion” of light nuclei (e.g. [dμ− d]+, where d is the deuteron),
the structure of the ion is changed in a qualitative way — it
is converted into a one-centre “compound ion” [4∗He μ−]+

owing to a two order increase in lepton mass. Energy is then
released as a result of fragmentation∗ and the liberation of a
muon (μ catalysis).

There is the possibility that conversions of this sort occur
in processes involving light diatomic molecules (in particular,
D2) as they interact with positrons in the process of pro-
duction of orthopositronium [o-Ps, TPs ≡ 3(e+e−)1]. This
suggestion is based primarily on the results of independent
measurements which have established lifetime anomalies in
o-Ps annihilation (deviations from QED), on the “isotopic
anomaly” [1] and the “λT-anomaly” [2, 3].

“Positronium, the bound state of the electron and posi-
tron, is a purely leptonic state — it is effectively free of had-
ronic and weak-interaction effects” [2], and its annihilation
is calculated with high precision in QED. Observation of the
“isotopic anomaly” [1] was the basis for careful study this
assertion. This relationship sets up a new perspective which
merits further studies.

In this connexion there is special interest in the results on
lifetime annihilation spectra of positrons (orthopositronium)
in liquid and solid deuterium [4] and comparison of these
results with corresponding results on protium [5]. In parti-
cular, Liu and Roberts [4] have measured the short-lived
components in the time-resolved spectra: τ1= 0.83±0.03 ns
(liquid D2, 20.4 K) and τ1= 0.74±0.03 ns (solid D2, 13 K).
However, there are no data on a long-lived component
(o-Ps). The results for H2 are τ1= 0.92±0.04 ns (20.4 K)
and τ1= 0.80±0.03 ns (13 K). In contrast with the D2 case,
data were reported on o-Ps (τ2= 28.6±2.3 ns at 20.4 K and
14.6±1.2 ns at 13 K [5]).

Clearly, o-Ps is formed in condensed deuterium in the

∗In the neutron channel 3He (0.82 MeV) + n (2.45 MeV), or in the
tritium channel, T (1.01 MeV) + p (3.02 MeV).

same way as in condensed protium. We are thus led to
ask whether o-Ps is indeed absent from the time-resolved
annihilation spectra in condensed deuterium. The single cor-
responding study [4] has failed to answer this question un-
ambiguously.

2 Background of the hypothesis and the first attempt of
its verification (a cumulative method of identification
of products of nuclear synthesis)

If this difference between the time-resolved positron annihi-
lation spectra in the condensed states of H2 and D2 is con-
firmed, then the absence of the o-Ps-component in liquid and
solid deuterium could be explained on the basis that it is
quenched by radiolysis products with net charge and spin,
in a “blast hole” of charged products of nuclear synthesis
which carry off a total energy of a few MeV per event. These
products of radiolysis suppress the long-living component of
the lifetime spectra (quenching of o-Ps [6]).

For an explanation and quantitative description of the
orthopositronium anomalies [1–3] the hypothesis of repre-
sentation of the β+-decay of the nuclei 22Na, 68Ga, etc.
(ΔJπ =1+) as a topological quantum transition in a lim-
ited (macroscopic) “volume” of space-time is justified. The
limited “volume” (“defect”) of space-time, i.e. vacuum-like
state of matter with positive Planckian mass +MPl, is the
long-range atom having a full number of sites N (3)=
= 1.302×1019. All its charges (baryon charge among them)
are compensated for by a discrete scalar C-field (the “mirror
Universe” with negative Planckian mass −MPl). A “defect”
of space-time becomes some “background” where ortho-
positronium is within of macroscopic “long-range atom
nucleus” with the number of sites n̄= 5.2780×104 in oscil-
lation [7–12].

“Let there be a certain probability for disturbances in
vacuum to alter its topology. If we now visualize some sort
of ‘handedness’ such that at the entrance the particle is right-
handed, and at the exit it is left-handed, then we have a
certain probability for a right-left particle transition, which
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means that the particles have a rest mass” [13].
The aforementioned oscillations between the observable

Universe and the “mirror Universe” are responsible for an
additional mode of the orthopositronium annihilations

o-Ps\o-Ps′(p-Ps′)→ γ◦\2γ ′,

where γ◦ is a notoph, a massless particle with zero helicity,
in addition to the properties to the photon (helicity ±1); in
interactions the notoph, as well as the photon, transfers spin
1 [14]. These oscillations can also cause an additional mass
for electrons e−∗ that can result in nuclear synthesis during
o-Ps formation by

e+β +
[
de−e−d

]
→ 3(e+β e−∗ )1

[
de−∗ d

]+
→

→
[
4∗He e−

]
→

[
3He+ n
T+ p

.

Thus, the orthopositronium anomalies (as manifestation
of its connexion with the “mirror Universe”) permit the for-
mulation of a hypothesis about effective o-Ps topological
mass (∼ 200 me) and, accordingly, a two-way connexion of
an electron in [de−∗ d]+ (owing to an exchange interaction at
the moment of o-Ps formation), along with an experimental
programme for studying this hypothesis [15].

Amongst the products of reaction we focus on 3He, since
(on the one hand) it is formed directly in the neutron channel,
and (on the other) it accumulates, because of the decay
T→ 3He+ e−+ ν̃ from the tritium channel. The accumula-
tion method with exposition time texp∼ 0.32 years and a
high-sensitivity magnetic resonant mass-spectrometer for
the analysis, 3He and 4He have established a negative result
concerning the products of fragmentation of a compound ion
[4∗He e−]+ not only by the neutron channel, but also by the
tritium channel [15].

However these results do not rule out the overall hypo-
thesis which we consider: there is a possibility that nuclear
synthesis involving o-Ps is cut off in the stage of formation
of the “compound ion” [4∗He e−]+, with subsequent relax-
ation of nuclear excitation energy (23.85 MeV) as kinetic
energy of an “α-particle”, as the “long-range atom” through
an “atomic nucleus” can relinquish its non-recoil energy.
Now there are no data on quantum energy excitation struc-
ture of the “nucleus” and “long-range atom” as a whole.
Because of the disproportionately large mass of an “atom”
(MPl) in comparison with the mass of an “α-particle”, the
latter can practically carry away all energy of excitation and
formation in a final state, after delay and recombination, as
follows,

e+β + [d e−e−d ]→ 3(e+β e−∗ )1[de−∗ d ]+ →

→ [4∗He e−]→ 4He+ e− + Q (23.85 MeV) ,

but part of energy can be transferred to the “lattice” of the
vacuum-like state of matter.

Fig. 1: V− and V| are electric breakdown thresholds of the gas
when the dc electric field is oriented horizontally and vertically
respectively. A decrease in the electric breakdown threshold of
deuterium (D2) is anticipated for perpendicular orientation of
electric field to gravity, under other identical conditions (V−<V|).
For H2 the electric breakdown thresholds in these measurements
cannot significantly differ (V−≡V|). (A conventional criterion:
~E > 6.7 kV/cm [16].)

3 The electric field opens an opportunity of direct
check of a hypothesis

The latest work of the Michigan group has created a new
situation for the hypothesis adduced herein. It is necessary to
emphasize that the result of the last set of Michigan mea-
surements, after introduction of a dc electric field up to
∼7 kV/cm in a measuring cell [16], we treat as the first ob-
servation of a connexion between gravitation and electricity
[11, 12]. The introduction of an electric field in the final
Michigan experiment can have other (additional) consequen-
ces to those given by authors for o-Ps thermalization [16].
According to the hypothesis, manifestation of the “isotopic
anomaly” [1] and the λT-anomaly [2, 3] as macroscopic
quantum effects is the generalized “displacement currents” in
the final state of the topological quantum transition for nuclei
22Na, 68Ga, etc. The electric field probably counteracts the
generalized displacement currents and has led to suppression
of macroscopic quantum effects [10, 12]. The Michigan ex-
periment [16] was set up in such a way that an electric field
introduced into the experiment (it accelerates the particle
beam before the target) merely suppressed the anomaly, de-
spite the fact that the electric field helps achieve complete
thermalization of orthopositronium in the measurement cell.
Consequently, the anomaly, present but suppressed by the
field, merely became obscured in the given experiment.

In work [12] the analysis of the mechanism of suppres-
sion of macroscopic quantum effects by an electric field is
presented, from which it follows that comparative measure-
ments of a threshold of electric breakdown in a cell with a
source of positrons (22Na) alternately filled by dense gases
(D2, H2), and (for each gas) with change of orientation of
an electric field (parallel and perpendicular to gravity) can
be a more sensitive tool for identification of macroscopic
quantum effects in comparison with the accumulation method
[15]. At sufficiently high pressures of D2 the activity of a
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source of stationary concentrations of positrons of the radio-
lysis products in a field ~E > 6.7 kV/cm, the background level
created by cosmic and other casual sources of radiations can
be repeatedly exceeded. In these conditions the threshold of
electric breakdown of a gas oriented parallel to gravity (V|)
will be higher than the electric breakdown threshold of gas
oriented perpendicular to gravity (V−), under other identical
conditions (V|>V−).

The experiment suggested herein, with introduction of
an electric field ~E > 7 kV/cm into a measuring cell, provided
that a field ~E > 6.7 kV/cm is still under the electric break-
down threshold of the gas (see Fig. 1), is the decisive expe-
riment.
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In the present article we would like to make a few comments on a recent paper
by A. Yefremov in this journal [1]. It is interesting to note here that he concludes his
analysis by pointing out that using full machinery of Quaternion Relativity it is possible
to explain Pioneer XI anomaly with excellent agreement compared with observed data,
and explain around 45% of Pioneer X anomalous acceleration. We argue that perhaps
it will be necessary to consider extension of Lorentz transformation to Finsler-Berwald
metric, as discussed by a number of authors in the past few years. In this regard, it
would be interesting to see if the use of extended Lorentz transformation could also
elucidate the long-lasting problem known as Ehrenfest paradox. Further observation is
of course recommended in order to refute or verify this proposition.

1 Introduction

We are delighted to read A. Yefremov’s comments on our
preceding paper [3], based on his own analysis of Pioneer
anomalous “apparent acceleration” [1]. His analysis made
use of a method called Quaternion Relativity, which essen-
tially is based on SO(1, 2) form invariant quaternion square
root from space-time interval rather than the interval itself
[1, 2]. Nonetheless it is interesting to note here that he con-
cludes his analysis by pointing out that using full machinery
of Quaternion Relativity it is possible to explain Pioneer XI
anomaly with excellent agreement compared with observed
data, and explain around 45% of Pioneer X anomalous acce-
leration [1].

In this regard, we would like to emphasize that our pre-
ceding paper [3] was based on initial “conjecture” that in
order to explain Pioneer anomaly, it would be necessary
to generalize pseudo-Riemann metric of General Relativity
theory into broader context, which may include Yefremov’s
Quaternion Relativity for instance. It is interesting to note
here, however, that Yefremov’s analytical method keeps use
standard Lorentz transformation in the form Doppler shift
effect (Eq. 6):

f =
f ′

√
1−

(
vD
c

)2

(
1−

vD
c
cosβ

)
. (1)

While his method using relativistic Doppler shift a la
Special Relativity is all right for such a preliminary analysis,
in our opinion this method has a drawback that it uses
“standard definition of Lorentz transformation” based on 2-
dimensional problem of rod-on-rail as explained in numer-
ous expositions of relativity theory [5]. While this method of
rod-on-rail seems sufficient to elucidate why “simultaneity”

is ambiguous term in physical sense, it does not take into con-
sideration 3-angle problem in more general problem.
This is why we pointed out in our preceding paper that
apparently General Relativity inherits the same drawback
from Special Relativity [3].

Another problem of special relativistic definition of Lo-
rentz transformation is known as “reciprocity postulate”,
because in Special Relativity it is assumed that: x↔x′,
t↔ t′, v↔−v′ [6]. This is why Doppler shift can be derived
without assuming reciprocity postulate (which may be re-
garded as the “third postulate” of Special Relativity) and
without special relativistic argument, see [7]. Nonetheless, in
our opinion, Yefremov’s Quaternion Relativity is free from
this “reciprocity” drawback because in his method there is
difference between moving-observer and static-observer [2].

An example of implications of this drawback of 1-angle
problem of Lorentz transformation is known as Ehrenfest
paradox, which can be summarized as follows: “According
to Special Relativity, a moving rod will exhibit apparent
length-reduction. This is usually understood to be an obser-
vational effect, but if it is instead considered to be a real
effect, then there is a paradox. According to Ehrenfest,
the perimeter of a rotating disk is like a sequence of rods.
So does the rotating disk shatter at the rim?” Similarly,
after some thought Klauber concludes that “The second re-
lativity postulate does not appear to hold for rotating
systems” [8].

While it is not yet clear whether Quaternion-Relativity
is free from this Ehrenfest paradox, we would like to point
out that an alternative metric which is known to be nearest
to Riemann metric is available in literature, and known
as Finsler-Berwald metric. This metric has been discussed
adequately by Pavlov, Asanov, Vacaru and others [9–12].
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2 Extended Lorentz-transformation in Finsler-Berwald
metric

It is known that Finsler-Berwald metric is subset of Finsler-
ian metrics which is nearest to Riemannian metric [12],
therefore it is possible to construct pseudo-Riemann metric
based on Berwald-Moor geometry, as already shown by Pav-
lov [4]. The neat link between Berwald-Moor metric and
Quaternion Relativity of Yefremov may also be expected
because Berwald-Moor metric is also based on analytical
functions of the H4 variable [4].

More interestingly, there was an attempt in recent years
to extend 2d-Lorentz transformation in more general frame-
work on H4 of Finsler-Berwald metric, which in limiting
cases will yield standard Lorentz transformation [9, 10]. In
this letter we will use extension of Lorentz transformation
derived by Pavlov [9]. For the case when all components
but one of the velocity of the new frame in the old frame
coordinates along the three special directions are equal to
zero, then the transition to the frame moving with velocity
V1 in the old coordinates can be expressed by the new frame
as [9, p.13]:







x0
x1
x2
x3





 =

[ [
F
] [

0
]

[
0
] [

F
]

]

=







x′0
x′1
x′2
x′3





 (2)

where the transformation matrix for Finsler-Berwald metric
is written as follows [9, p.13]:

[
F
]
=






1√
1−V 2

1

V1√
1−V 2

1

V1√
1−V 2

1

1√
1−V 2

1




 (3)

and
[
0
]
=

(
0 0

0 0

)

. (4)

Or

x0 =
x′0 + V x

′
1√

1− V 21
x1 =

V x′0 + x
′
1√

1− V 21
, (5)

and

x2 =
x′2 + V x

′
3√

1− V 21
x3 =

V x′2 + x
′
3√

1− V 21
. (6)

It shall be clear that equation (5) (x′0, x
′
1) ↔ (x0, x1)

coincides with the corresponding transformation of Special
Relativity, while the transformation in equation (6) differs
from the corresponding transformation of Special Relativity
where x2=x′2, x3=x

′
3 [9].

While we are not yet sure whether the above extension of
Lorentz transformation could explain Pioneer anomaly better
than recent analysis by A. Yefremov [1], at least it can be
expected to see whether Finsler-Berwald metric could shed
some light on the problem of Ehrenfest paradox. This propo-
sition, however, deserves further theoretical considerations.

In order to provide an illustration on how the transforma-
tion keeps the Finslerian metric invariant, we can use Maple
algorithm presented by Asanov [10, p.29]:

> c1:=cos(tau);c2:=cos(psi);c3:=cos(phi);
> u1:=sin(tau);u2:=sin(psi);u3:=sin(phi);
> l1:=c2*c3−c1*u2*u3;l2:=−c2*u3−c1*u2*c3;l3:=u1*u2;
> m1:=u2*c3+c1*c2*u3;m2:=−u2*u3+c1*c2*c3;m3:=−u1*c2;
> n1:=u1*u3; u1*c3; c1;
> F1:=(e1)ˆ((l1+m1+n1+l2+m2+n2+l3+m3+n3+1)/4)*
(e2)ˆ((−l1−m1−n1+l2+m2+n2−l3−m3−n3+1)/4)*
(e3)ˆ((l1+m1+n1−l2−m2−n2−l3−m3−n3+1)/4)*
(e4)ˆ((−l1−m1−n1−l2−m2−n2+l3+m3+n3+1)/4):
> F2:=(e1)ˆ((−l1+m1−n1−l2+m2−n2−l3+m3−n3+1)/4)*
(e2)ˆ((l1−m1+n1−l2+m2−n2+l3−m3+n3+1)/4)*
(e3)ˆ((−l1+m1−n1+l2−m2+n2+l3−m3+n3+1)/4)*
(e4)ˆ((l1−m1+n1+l2−m2+n2−l3+m3−n3+1)/4):
> F3:=(e1)ˆ((l1−m1−n1+l2−m2−n2+l3−m3−n3+1)/4)*
(e2)ˆ((−l1+m1+n1+l2−m2−n2−l3+m3+n3+1)/4)*
(e3)ˆ((l1−m1−n1−l2+m2+n2−l3+m3+n3+1)/4)*
(e4)ˆ((−l1+m1+n1−l2+m2+n2+l3−m3−n3+1)/4):
> F4:=(e1)ˆ((−l1−m1+n1−l2−m2+n2−l3−m3+n3+1)/4)*
(e2)ˆ((l1+m1−n1−l2−m2+n2+l3+m3−n3+1)/4)*
(e3)ˆ((−l1−m1+n1+l2+m2−n2+l3+m3−n3+1)/4)*
(e4)ˆ((l1+m1−n1+l2+m2−n2−l3−m3+n3+1)/4):
> a:=array(1..4,1..4):
for i from 1 to 4
do
for j from 1 to 4
do
a[i,j]:=diff(F||i,e||j);
end do:
end do:
> b:=array(1..4,1..4):
for i from 1 to 4
do
for j from 1 to 4
do
b[i,j]:=simplify(add(1/F||k*diff(a[k,i],e||j),k=1..4),symbolic);
end do:
end do:
> print(b);

The result is as follows:






0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0





 .

This result showing that all the entries of the matrix are
zeroes support the argument that the metricity condition is
true [10].

3 Concluding remarks

In the present paper we noted that it is possible to gene-
ralise standard Lorentz transformation into H4 framework of
Finsler-Berwald metric. It could be expected that this ex-
tended Lorentz transformation could shed some light not
only to Pioneer anomaly, but perhaps also to the long-lasting
problem of Ehrenfest paradox which is also problematic in
General Relativity theory, or by quoting Einstein himself:
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“. . . Thus all our previous conclusions based on gen-
eral relativity would appear to be called in question.
In reality we must make a subtle detour in order to
be able to apply the postulate of general relativity
exactly” [5].

This reply is not intended to say that Yefremov’s preli-
minary analysis is not in the right direction, instead we only
highlight a possible way to improve his results (via extend-
ing Lorentz transformation). Furthermore, it also does not
mean to say that Finsler-Berwald metric could predict better
than Quaternion Relativity. Nonetheless, further observation
is of course recommended in order to refute or verify this
proposition.
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The paper “Single Photon Experiments and Quantum Complementarity” by Georgiev
misrepresents my position on the Afshar “which path/interference” debate.

D. Georgiev has recently published a paper [1] in which
he argues that my interpretation [2] of a “complementarity”
experiment based on Afshar’s original suggestion [3] is in-
coherent and wrong. Unfortunately his interpretation of my
model distorted what I say.

The Afshar experiment is one in which it is claimed one
can both determine both which path a photon has followed
and that the photon self interfered in one and same experi-
ment, violating Bohr’s complementarity principle, that com-
plementary aspects of a system cannot simultaneously be
measured. I have suggested a more stark experiment than
Afshar’s which throws the issues into greater relief, one
whose setup Georgiev describes well in his paper.

However, he then implies that I hold certain positions
about the interpretation of the experiment, interpretations
which I neither hold not are contained in my description.

Referring to Georgiev’s diagram, I demonstrate that if
the photon is known to have traveled down arm 1 of the
interferometer (for example by blocking arm 2, or by any
other means, then the detector D1 will always register the
photon. If the photon is known to have gone down arm 2,
then detector D2 always clicks. The crucial question is what
happens if the photon is in an arbitrary state. This raises a
variety of questions, including the question as to whether one
can ever infer anything about a system being measured from
the outcomes reported on the measuring instrument. One
could of course take the position of no. That the readings on
measurement instruments tell one only about that measuring
instrument and cannot be used to infer anything about the
system being measured. While a defensible position, it is
also one which would make experimental physics impos-
sible. My position follows that of von Neuman, that one
can make inferences from the reading on the measurement
instruments to the system being measured. IF there is a 100%
correlation between the apparatus outcome and the system
when the system is known to be in a certain state, and if
orthogonal states for the system lead to different outcomes
in the apparatus, then one can make inferences from the
outcome of the apparatus to the attribute of the system. In this
case, the 100% correlation between which detector registers
the photon to the known path the photon followed (1 or
2) allows one to infer that IF the detector D1 registers the

photon, then that photon has the property that it followed
path 1. This is true no matter what the state of the photon
was — pure or mixed or something else. Readings on appa-
ratus, if properly designed DO allow one to infer values for
attributes of the system at earlier time.

Note the key point I made in my paper was that if
one places an absorber into path 5 or 6, then even if those
absorbers do not ever actually absorb any photons, they do
destroy that correlation between the reading on the detectors
and the the path, 1 or 2, the photon follows. Because in
this case, if we know that the photon was on path 1, either
detector D1 or D2 will register, with 50% probability or if the
photon was detected by detector D1, the photon could have
come from either path 1 or 2. One cannot any longer infer
from the apparatus (the detectors) which path of the pho-
ton took, precisely because one was also trying to determine
in the two paths interfered. The change in the experimental
situation destroys the critical correlation required to make
those inferences.

Georgiev then claims to prove that such an interpretation
is incoherent and disagrees with the mathematics. He bases
this on his equations 7 and 8 in which he ascribes a state
to the photon both passing along arm 1 or 2 and arm 5
or 6. In no conventional quantum formalism do such states
exist. Certainly amplitudes for the particle traveling along
both path 1 and 5, say, exist, but amplitudes are just complex
numbers. They are not states. And complex numbers can be
added and subtracted no matter where they came from.
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Exact Mapping of Quantum Waves between Unruh’s and Afshar’s Setup
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In a recent letter, Unruh argued that I have misrepresented his position and I have
“put words into his mouth” which distort Unruh’s original analysis of Unruh’s setup.
Unfortunately such a complaint is ungrounded. I have presented a mathematical
argument that Unruh’s which way claim for the discussed setup is equivalent to the
claim for a mixed density matrix of the experiment. This is a mathematical proof, and
has nothing to do with misrepresentation. Unruh clearly accepts the existence of the
interference pattern at paths 5 and 6, accepts that the setup is described by pure state
density matrix, and at the same time insists on existing which way bijection, therefore
his position is provably mathematically inconsistent.

1 Direct calculation of detector states

Unruh in [6, 7] clearly has accepted the existence of unmea-
sured destructive interference at path 5 (pure state density
matrix) plus a direct which way claim stating that |ψ1〉 and
|ψ2〉 are respectively eigenstates of the detectors D1 and
D2, thus it is easy for one to show that Unruh’s analysis is
mathematically inconsistent [2]. Despite of the fact that the
mathematical analysis in my previous paper is rigorous, it
was based on retrospective discussion deciding which waves
shall annihilate, and which shall remain to be squared ac-
cording to Born’s rule. The choice for such a purely mathem-
atical discussion was done in order to provide insight why
Unruh’s confusion arises. In this comment I will present
concise physical description of the evolution of the photon
based on direct forward-in-time calculation of Unruh’s setup
described in detail in [2], and will spot several troublesome
claims made by Unruh, which appear to be severe mathemat-
ical misunderstandings.

For a coherent setup the quantum state in Unruh’s inter-
ferometer after exit of beamsplitter 2 (BS2) is |Ψ(t1)〉=
= − 1|ψ6〉, where |ψ6〉 denotes the wavefunction evolving
along path 6.∗ After reflection at mirror 3 (M3) the state
evolves into |Ψ(t2)〉 = −ı|ψ6〉, which meets BS3 and splits
into coherent superposition of two parts each going to one
of the detectors

|Ψ(t3)〉 =

(
1
√
2
−

1
√
2
ı

)

|ψ6〉 =
1
√
2
|D1〉−

1
√
2
ı|D2〉 (1)

∗Here explictly should be noted that |ψ6〉 is not just eigenstate of
the position operator describing location at path 6, it is a wavefunction
describing the photon state including its energy (wavelength), position,
momentum, etc., that evolves in time and which may be represented as
a vector (ket) in Hilbert space. As we speak about arbitrary photon with
arbitrary energy, etc., the definition of the vector |ψ6〉 is left flexible with
the comprehension that it must describe fully the characteristics of the real
photon. Also |ψ6〉 is an unit vector, and as easily can be seen it must be
multiplied by −1 in order for one to get the real state of the qubit at path 6.

from which follows that |D1〉= |D2〉= |ψ6〉. Since |ψ6〉=
= 1

2 (|ψ1〉+ |ψ2〉) it is obvious that |ψ1〉 and |ψ2〉 are not
eigenstates of the detectors D1 and D2. That is why there
is no which way information in coherent version of Unruh’s
setup. To suggest that the BS3 can selectively only reflect
or only transmit the components |ψ1〉 and |ψ2〉 in a fashion
preserving the which way correspondence is mathematically
equivalent to detect photons at path 6, and then determine
just a single path 1 or 2 along which the photon has arrived.
Since it is impossible for one to distinguish the |ψ1〉 compo-
nent from the |ψ2〉 component of a photon detected at path
6 it is perfectly clear that the BS3 cannot distinguish these
components either, so standard QM prediction is that BS3
will “see” photon coming at path 6 but BS3 will not make any
difference for |ψ1〉 or |ψ2〉 component of the photon state.
BS3 will reflect both |ψ1〉 and |ψ2〉 to both detectors. The
evolution of the state −ı|ψ6〉 into a coherent superposition
going to both detectors providing no which way information
is straightforward and can be characterized as “back-of-an-
envelope calculation”.†

Now let us investigate why if one prevents the interfe-
rence along path 5 by converting the setup into a mixed
one, the which way information will be preserved and the
states |ψ1〉 and |ψ2〉 will be eigenstates of the corresponding
detectors. First, one must keep in mind how the quantum
entanglements (correlations) work in QM — due to the fact
the photon wavefunction is entangled with the state of ex-
ternal system it is possible if one investigates only the re-
duced density matrix of the photon to see mixed state with
all off-diagonal elements being zeroes, hence no interference
effects manifested. This is the essence of Zeh’s decoherence
theory which does not violate Schrödinger equation and one

†This expression was used by Prof. Tabish Qureshi (Jamia Millia
Islamia, New Delhi, India) to describe how in just a few lines one can
disprove Afshar’s analysis and the calculation can be performed on the
back side of an envelope for letters.
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ends up with states that are not true classical mixtures, but
have the same mathematical description satisfying the XOR
gate. Thus let us put vertical polarizator V on path 1 and
horizontal polarizator H on path 2. The state after BS2 will
have non-zero component at path 5

|Ψ(t1)〉 =

[

−
1

2
ı|ψ1〉|V〉+

1

2
ı|ψ2〉|H〉

]

+

+

[

−
1

2
|ψ1〉|V〉 −

1

2
|ψ2〉|H〉

]

.

(2)

Now as both wavefunctions ψ1 and ψ2 are orthogonal
and distinguishable because of spatial separation (no over-
lap) in the interferometer arms 1 and 2, and because they
get entangled with orthogonal states of the two different
polarizators V and H, in the future spatial overlapping of
the wavefunctions ψ1 and ψ2 cannot convert them into non-
orthogonal states. Due to entanglement with polarizators the
photon state is such that as if for ψ1 the wavefunction ψ2
does not exist, hence ψ1 cannot overlap with ψ2, and the
state will be ψ1XORψ2.∗ At the detectors due to destructive
quantum interference the ψ2 waves will self-annihilate at D1
and ψ1 waves will self-annihilate at D2. Thus |ψ1〉|V〉 and
|ψ2〉|H〉 will be eigenstates of the corresponding detectors
D1 and D2 (see details in [2]). This which way information
is only existent because of the existent which way label
which is the mixed state of photon polarization due to entan-
glements with the polarizators. In Unruh’s single path setups
the mixture of the photon states is result of obstacles on one
of the interferometer paths, and then taking fictitious stat-
istical average i.e. photons from the two alternative setups
run in two distinguishable time intervals t1 vs t2. So in
the classical mixture of two single path trials investigated
by Unruh the time intervals t1 and t2 have the equivalent
function of |V〉 and |H〉 entanglements. In order to complete
the analogy one may explicitly write entanglements with
orthogonal kets |t1〉 and |t2〉 describing the interferometer
quantum state with obstacles on one of the two paths 1 or
2. Thus actually in the classical mixture discussed by Unruh
it is |ψ1〉|t1〉 and |ψ2〉|t2〉 that are the eigenstates of the
detectors. Destroying the mixture leads to loss of the which
way information at the detectors.

Where was the essential step in the mixed setup that
allowed us to recover the which way information? It was
exactly the nonzero value of path 5. If in a coherent setup
one allows for a state 0|ψ5〉 it is obvious that the vector |ψ5〉
cannot be recovered without division to zero. Recovering of
the which way information requires components included in
the vector |ψ5〉, thus one will be mathematically inconsistent
if keeps the which way claim, and also claims that the state
at path 5 is 0|ψ5〉 i.e. from that moment |ψ5〉 is erased. It is
obvious that in any QM calculation one can write the real
state as a sum of infinite number of such terms of arbitrary

∗If however one erases the polarization the spatial overlap of the two
waves will manifest interference and will erase the which way information.

vector states multiplied by zero without changing anything
e.g. |Ψ〉 = |Ψ〉+0|Λ〉+ ∙ ∙ ∙+0|Θ〉. However all these zeroed
components do not have physical significance.

And last but not least, it is clear that puting obstacle on
place where the quantum amplitudes are expected to be zero
does not change the mathematical description of the setup.
Formally one may think as if having Renninger negative-
result experiment [4] with the special case of measuring at
place where the probability is zero. This is the only QM
measurement that does not collapse the wavefunction of
the setup! Analogously one may put obstacles in the space
outside of the Unruh’s interferometer. As the photon wave-
function is zero outside the interferometer it is naive one to
expect that the photon wavefunction inside the interferome-
ter is collapsed by the obstacles located around the interfero-
meter. So puting obstacle or not, at place where the quantum
amplitudes are zero, does not change the mathematical de-
scription. As this is always true, Unruh’s idea that having
obstacle or not at the negative interference area at path 5 will
change the final conclusions of the which way information
is wrong. As we have defined the which way information
as provable bijection, it is unserious for one to believe that
from a difference that has no effect on photon’s wavefunction
and does not change the mathematical description, one may
change a mathematical proof of existent bijection.

2 Which way information as provable bijection

Now we will show that the naive statement that which way
information and quantum interference are incompatible with
each other is generally false. First one must define the which
way information as a provable bijection between at least two
distinguishable wavefunctions and two observables. Alterna-
tively no which way information will be disprovable bijec-
tion i.e. the bijection is provably false. Then one can only say
that if the bijection is true then quantum cross-interference
of the two wavefunctions did not occur, yet self-interference
is always possible! This was explicitly formulated in [2]
however in the text bellow we discuss the idea in depth with
the proposed Georgiev’s four-slit experiment.

Let us us have four equally spaced identical slits A, B,
C, D, and let us detect the interference pattern of photon at
the far-field Fraunhofer limit. In case of coherent setup one
will have coherent wavefunction Φ ≡ ΨA+ΨB+ΨC +ΨD
and will observe a single four-slit interference P = |ΨA+
+ΨB + ΨC + ΨD|2. This is a no which way distribution
as far as we know that the photon amplitudes have passed
through all four slits at once in quantum superposition.

Now let us put V polarizators on slits A and B, and
H polarizators on slits C and D. There will be no cross-
interference between the wavefunctions Φ1 ≡ ΨA+ΨB and
Φ2 ≡ ΨC +ΨD and the observed intensity distribution will
be mixed one P = |ΨA +ΨB |2 + |ΨC +ΨD|2. In this case
one can establish provable bijection Φ1→P1≡ |ΨA+ΨB |2,
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Fig. 1: The four slit interference pattern P = |ΨA + ΨB + ΨC +
ΨD|2 of non-polarized or identically polarized photons.

Φ2 → P2 ≡ |ΨC +ΨD|2. Thus there is which way informa-
tion Φ1 → P1, Φ2 → P2 only because there is no cross-
interference between Φ1 and Φ2. The self-interferences of Φ1
and Φ2 are always there e.g. the cross-interference
between ΨA and ΨB does not allows us to further prove
existent bijection in which only slit A wavefunction, or only
slit B wavefunction participates. In order to illustrate the
discussion we have performed numerical plotting with Wolf-
ram’s Mathematica 5.2 for photons with wavelength λ=
= 850nm, slit width s= 0.25mm, interslit distance d= 2mm,
at the Fraunhofer limit z= 4.2 m behind the four slits. Re-
sults are presented in Figures 1–3.

This section on the which way information as existent
provable bijection was added for clarity. From the presented
details it does not follow that Bohr’s complementarity prin-
ciple is wrong, we have just explicitly reformulated the prin-
ciple providing strict definitions for which way claims as bi-
jections, and have clarified the useful terms self-interference
and cross-interference. If one investigates existent bijection
then self-interference is always there, only certain cross-
interferences are ruled out.

3 Quantum states as vectors

In this section we point out that QM can be approached
in three ways. One way is to use wave equations with the
prototype being the Schrödinger equation. One may write
down a wave function Ψ(x, t) that evolves both in space and
time, where x is defined in R3. It is clear that the history of
such mathematical function can be “traced” in time t, because
the very defining of the wavefunction should be done by
specifying its temporal evolution. Every wavefunction can
be represented as a vector (ket) in Hilbert space. This is just
second equivalent formulation, and changes
nothing to the above definition. As the wavefunction evolves
in time, it is clear that the vector representing the function
will evolve in time too. It is the wavefunction that is referred
to as quantum state, and it is the equivalent vector represent-
ing the wavefunction that is called state vector. Third way
to represent the quantum state is with the use of density
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Fig. 2: Shifted to the left P1 = |ΨA+ΨB |2 double-slit interference
pattern of vertically polarized photons.
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Fig. 3: Shifted to the right P2 = |ΨC + ΨD|2 double-slit inter-
ference pattern of horizontally polarized photons.

matrices. In the previous work [2] we have used all three
representations in order to provide more clear picture of
Unruh’s setup.

Namely, we have shown that the different wavefunctions
if they manifest cross-interference are no more described
by orthogonal vectors in Hilbert space. What is more the
wavefunctions were “traced” in time in order for one to prove
possible bijections. Surprisingly Unruh makes the following
claim:

“Certainly amplitudes for the particle travelling
along both path 1 and 5, say, exist, but amplitudes
are just complex numbers. They are not states. And
complex numbers can be added and subtracted no
matter where they came from.”

Such a misunderstanding of mathematical notation is not
tolerable. As written in Eqs. 7–8 in [2] the usage of Dirac’s
ket notation is clear. All kets denote vectors (wavefunctions),
hence all these are quantum states, and nowhere I have
discussed only the quantum amplitude itself.

First, one should be aware that all kets are time depend-
ent, as for example instead of writing |ψ1(t1)〉, |ψ1(t2)〉,
|ψ1(t3)〉, ∙ ∙ ∙ the notation was concisely written as |ψ1〉 with
the understanding that the state is a function of time. Even
for two different points along the same interferometer arm,
the spread of the laser beam (or the single photon wave-
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packet) is different, yet this time dependence should be kept
in mind without need for explicitly stating it. It is the time
dependence of the state vectors that has been overlooked by
Unruh. If one rejects the possibility to “trace” the history of
the discussed wavefunctions in time, then he must accept the
bizarre position that it is meaningless for one to speak about
bijections and which way correspondences at first place.

Another target of Unruh’s comment is the reality of the
states |ψ15〉, |ψ16〉, |ψ25〉, |ψ26〉 in Eqs. 7–8 in [2].

“[Georgiev in] his equations 7 and 8 ascribes a state
to the photon both passing along arm 1 or 2 and arm
5 or 6. In no conventional quantum formalism do such
states exist.”

Unfortunately this is wrong. Mathematically one can always
represent a wavefunction as a sum of suitably defined func-
tions. As it was clearly stated in [2] e.g. the state |ψ15〉 is a
wavefunction (vector, and not a scalar as erroneously argued
by Unruh) which is branch of the wavefunction ψ1 that
evolves at arm 5. Therefore the mathematical definition is ri-
gorous ψ1=α(t)(ψ15+ψ16). One may analitically continue
both functions ψ15 and ψ16 along path 1 as well, in this case
the two functions are indistinguishable for times before BS2
with α = 1

2 , while after BS2 the wavefunctions become
distinguishable with α= 1√

2
. The time dependence of α(t)

is because the orthogonality of the two states is function
of time. The usage of the same Greek letter with different
numerical index as a name of a new function is standard
mathematical practice in order to keep minimum the numer
of various symbols used. The fact that the vector |ψ15〉 is not
orthogonal with the vector |ψ25〉 in the coherent version of
Unruh’s setup is not a valid argument that it is not a valid
quantum state. Mathematically it is well defined and whether
it can be observed directly is irrelevant. Analogously, at
path 6 the wavefunctions ψ1 and ψ2 are indistinguishable
however mathematically they are still valid quantum states.
Indistinguishability of states does not mean their non-
existence as argued by Unruh. Indeed exactly because the
two quantum functions |ψ15〉 and |ψ25〉 are defined in dif-
ferent way and have different time history, one may make
them orthogonal by physical means. Simply putting obstacle
at path 2, and then registering photon at path 5 one observes
photons with intensity distribution P15= |ψ15|2 which are
solely contributed by ψ15. And each photon only manifests
“passing along arm 1 and arm 5”. The other method to
create mixed state where one can have bijective association
of observables to each of the states |ψ15〉, |ψ16〉, |ψ25〉,
|ψ26〉 is to put different polarizators V and H on paths 1
and 2, and then detect photons at paths 5 and 6. Due to
polarizator entanglements there will be four observables and
provable bijection ψ15 → P15, ψ16 → P16, ψ25 → P25,
ψ26 → P26, where each probability distribution P is defined
by the corresponding wavefunction squared and polarization
of the photon dependent on the passage either through path 1

or path 2.
If Unruh’s argument were true then it obviously can

be applied to Unruh’s own analysis, disproving the reality
of the states |ψ1〉 and |ψ2〉 after BS2. As noted earlier, in
the mixed state discussed by Unruh the state of the photon
is either |ψ1〉|t1〉 or |ψ2〉|t2〉, where by |t1〉 and |t2〉 we
denote two different distinguishable states of the Unruh’s
interferometer one with obstacle at path 2, and one with
obstacle at path 1. It is exactly these entanglements with
the external system being the interferometer itself and the
obstacles that make the states |ψ1〉 and |ψ2〉 orthogonal at
the detectors. If Unruh’s logic were correct then removing the
obstacles and making the two states not orthogonal at path
6 should be interpreted as non-existence for the two states.
Fortunately, we have shown that Unruh’s thesis is incorrect as
is based on misunderstanding the difference between vector
and scalar in the ket notation. All mentioned wavefunctions
in [2] are well-defined mathematically and they are valid
quantum states, irrespective of whether they are orthogonal
with other states or not.

4 Classical language and complementarity

Unruh’s confusion concerning the reality of quantum states,
is grounded on some early antirealist misunderstandings of
QM formalism. Still in some QM textbooks one might see
expressions such as “if the position of a qubit is precisely
measured the momentum is largely unknown”, or “if in the
double slit setup a photon is detected at the Fraunhofer limit
one will observe interference pattern but will not know which
slit the photon has passed”. Such expressions are based on
simple logical error — knowledge that “the photon has not
passed either only through slit 1, or only through slit 2” is
not mathematically equivalent to “lack of knowledge which
slit the photon has passed”.

Let us discuss a statistical mixture of two single slit
experiments with shutter on one of the slits. What knowledge
do we have? Certainly this is XOR knowledge, which means
either one slit, or the other one, but not both! The truth-table
was given in Table 1 in [2]. It is clear that exactly one of the
statements “passage through slit 1” or “passage through slit
2” is true.

Now investigate the logical negation of the XOR gate.
This essentially describes two possibilities. The first one
is trivial with both slits closed. The photon does not pass
through any slit, so no detection will occur at the Fraunhofer
limit. A photon passed through slit 1 will be indistinguish-
able from photon passed through slit 2, but this is vacuously
true. Simply no such photons exist! Much more interesting
is however the coherent setup in which both slits are open.
Logically one proves that the photon has passed through both
slits at once. This is the essence of the quantum superposi-
tion and is described by AND logical gate. The statements
“passage through slit 1” and “passage through slit 2” are
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simultaneously true, and it is ruled out that only one of them
is true but not the other. Therefore the antirealist position
based on classical physical intuition, and/or classical lan-
gauge is erroneous when it comes to describe superposed
state. The logical negation (NOT gate) of the XOR gate
i.e. the XOR gate is false, is wrongly interpreted as “lack
of knowledge on the slit passage” i.e. XOR gate possibly
might be true or might be false. As this lack of knowledge
is contradicting the QM formalism one runs directly into
inconsistency with the theory.

Let us now see the implications for Unruh’s objection
e.g. against the ψ15 state. As in a coherent setup this state
is superposed with the ψ25 state along path 5, Unruh argues
that they are both nonexistent. This conclusion is non seq-
uitur, because the quantum superposition is described by
AND logical gate and this means that ψ15 and ψ25 are both
true, hence existent states. Unruh relies on von Neumann
formulation of QM, which is antirealist one, and rejects
to accept the reality of quantum superposed states. This is
untenable position because the antirealist vision interpreted
as lack of precise knowledge of one of two non-commuting
observables is mathematically inconsistent with the under-
lying mathematical formalism. It exactly the opposite — if
one knows precisely the spatial region of the localization
of qubit (having XOR knowledge ruling out other possible
localizations) then mathematically it will follow that the mo-
mentum will be spread widely amongst numerous possible
values (hence having AND knowledge). What is the reality
of the AND state is outside the scope of the present article
and depends on the interpretation - in MWI the superposed
states reside in different Universes, in Penrose’s OR model
the quantum coherent state resides in a single Universe with
superposed space-time curvatures, etc.

From the preceding discussion follows that expressions
as “which way information” and “no which way information”
are just names and have precise mathematical definitions as
provable bijection b, and respectively disprovable bijection
¬b. Also we have logically proved that non-commuting ob-
servables are always existent and well-defined mathematic-
ally. However in contrast with classical intuition necessarily
at least one of the two non-commuting observables should be
described by AND gate, hence being quantum superposed.

5 Qureshi’s waves mapped onto Georgiev’s waves

One of the major differences between works of Georgiev
[2] and Qureshi [4] is that in our previous paper we have
introduced explicitly the idea of XOR and AND states in
QM, and we have explicitly formulated the need of provable
bijection. Otherwise Qureshi’s argument is identical to the
presented here forward-in-time calculation. Yet for the sake
of clarity, we will provide one-to-one mapping of Qureshi’s
waves for Afshar’s setup with Georgiev’s waves for Unruh’s
setup. This one-to-one mapping is mathematically clear evi-

dence for existence of the quantum waves (states) described
by Georgiev in [2] and leave no other alternative but one in
which Unruh must confess his confusion in the complement-
arity debate.

As shown in [2] in retrospective discussion on wave an-
nihilation, there will be eight waves that shall interfere. This
is purely mathematical method, because mathematical truth
is atemporal, and as explained before one either chooses self-
interference of ψ1 and self-interference of ψ2 at detectors, or
chooses destructive cross-interference between ψ1 and ψ2 at
earlier times (path 5). Here we will show that the canceled
sinh terms in Qureshi’s calculation provide four more waves
that go to both detectors and that one-to-one mapping exists
with Georgiev’s waves.

Let us denote all eight waves in Georgiev’s description of
Unruh’s setup with ψ151, ψ152, ψ161, ψ162, ψ251, ψ252, ψ261,
ψ262. As these are only names, the precise meaning for each
one should be explicitly defined e.g. ψ151 is wavefunction
whose history traced in time is passage along path 1, then
passage along path 5, and ending at detector 1. Definitions
for rest of the waves is analogous.

Now let us write again the Qureshi’s equation for Af-
shar’s setup

Ψ(y, t) = aC(t) e−
y2+y2

0
Ω(t)

[

cosh
2yy0
Ω(t)

+ sinh
2yy0
Ω(t)

]

+

+ bC(t) e
−
y2+y2

0
Ω(t)

[

cosh
2yy0
Ω(t)

− sinh
2yy0
Ω(t)

]

where C(t)= 1

(π/2)1/4
√
ε+2ı~t/mε

, Ω(t)= ε2+ 2ı~t
m , a is the

amplitude contribution from pinhole 1, b is the amplitude
contribution from pinhole 2, ε is the width of the wave-
packets, 2y0 is the slit separation. Qureshi’s analysis con-
tinues directly with annihilation of four of the waves con-
tributed by the sinh terms i.e. for Afshar’s setup a= b= 1√

2
so the sinh terms cancel out at the dark fringes. What is left
at the bright fringes are the cosh terms, which can be ex-
panded as a sum of exponential functions, namely coshx=
= 1

2 (e
x + e−x), and after simplification we arrive at∗:

Ψ(y, t) =
1

2
aC(t)

[

e−
(y−y0)

2

Ω(t) + e−
(y+y0)

2

Ω(t)

]

+

+
1

2
bC(t)

[

e−
(y−y0)

2

Ω(t) + e−
(y+y0)

2

Ω(t)

]

.

If a lens is used after the cross-interference has ocurred to

take the e−
(y−y0)

2

Ω(t) part to detector 1, and the part e−
(y+y0)

2

Ω(t)

to detector 2, one easily sees that the amplitudes from each
slit evolve into a superposition of two identical parts that
go to both detectors. The waves that shall be responsible for
which way information in mixed setups and make possible
the bijection a→ D1, b→ D2 are hidden in the erased sinh

∗The following equation actually is the intended Eq. 10 in [2], where
unfortunately typesetting error occurred.
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terms. Taking into account that sinhx = 1
2 (e

x − e−x), one
may recover the four zeroed sinh components in the form:

0 =
1

2
aC(t)

[

e−
(y−y0)

2

Ω(t) − e−
(y+y0)

2

Ω(t)

]

+

+
1

2
bC(t)

[

−e−
(y−y0)

2

Ω(t) + e
− (y+y0)

2

Ω(t)

]

.

If the eight interfering Qureshi’s waves are denoted with
Q, where Q1−4 arise from the cosh terms and Q5−8 arise
from the sinh terms, then the one-to-one mapping with the
eight Georgiev’s waves is

Q1 ≡
1

2
aC(t) e

− (y−y0)
2

Ω(t) → ψ161 (3)

Q2 ≡
1

2
aC(t) e

− (y+y0)
2

Ω(t) → ψ162 (4)

Q3 ≡
1

2
bC(t) e

− (y−y0)
2

Ω(t) → ψ261 (5)

Q4 ≡
1

2
bC(t) e−

(y+y0)
2

Ω(t) → ψ262 (6)

Q5 ≡
1

2
aC(t) e−

(y−y0)
2

Ω(t) → ψ151 (7)

Q6 ≡ −
1

2
aC(t) e−

(y+y0)
2

Ω(t) → ψ152 (8)

Q7 ≡ −
1

2
bC(t) e

− (y−y0)
2

Ω(t) → ψ251 (9)

Q8 ≡
1

2
bC(t) e−

(y+y0)
2

Ω(t) → ψ252 (10)

To our knowledge this is the first exact one-to-one map-
ping between Unruh’s setup and Afshar’s setup, all previous
discussions were much more general and based on analogy
[2, 6]. Now one can explicitly verify that a and b terms in
Qureshi’s calculation have the same meaning as path 1 and
path 2 in Unruh’s setup; sinh and cosh terms have the mean-

ing of the path 5 and path 6, and e−
(y−y0)

2

Ω(t) and e−
(y+y0)

2

Ω(t)

terms have the meaning of detection at D1 or D2. The
provided exact mapping between Qureshi’s and Georgiev’s
work is clear evidence that Unruh’s complaint for Georgiev’s
waves not being valid quantum states is invalid. None of the
proposed by Georgiev states is being zero. Only couples
of Georgiev’s states can be collectively zeroed, but which
members will enter in the zeroed couples depends on the
density matrix of the setup. And this is just the complement-
arity in disguise.

6 Conclusions

In recent years there has been heated debate whether comple-
mentarity is more fundamental than the uncertainty principle
[5, 8], which ended with conclusion that complementarity is
enforced by quantum entanglements and not by uncertainty

principle itself [1]. Indeed the analysis of the proposed here
Georgiev’s four-slit experiment, as well as the analysis of
Unruh’s and Afshar’s setups, show that which way claims
defined as provable bijections are just another mathematical
expression of the underlying density matrix of the setup,
and as discussed earlier diagonalized mixed density matrices
in standard Quantum Mechanics are possible only if one
considers quantum entanglements in the context of Zeh’s
decoherence theory [9].

Unruh’s error is that he uses results from mixed state
setup to infer which way correspondence in coherent setup,
overlooking the fact that bijections must be mathematically
proved. Therefore it is not necessary for one to measure the
interference in order to destroy the which way claim, it is
sufficient only to know the interference is existent in order
to disprove the claimed bijection. Indeed in the presented
calculations for Unruh’s setup we have proved that Unruh’s
which way bijection is false. Hence Unruh’s analysis is
mathematically inconsistent.
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1. Dürr S., Nonn T. and Rempe G. Origin of quantum-mechanical
complementarity probed by a “which-way” experiment in an
atom interferometer. Nature, 1998, v. 395, 33–37.

2. Georgiev D. D. Single photon experiments and quantum com-
plementarity. Progress in Physics, 2007, v. 2, 97–103.

3. Qureshi T. Complementarity and the Afshar experiment. 2007,
arXiv: quant-ph/0701109.

4. Renninger M. Messungen ohne storung des messobjekts.
Zeitschrift für Physik, 1960, v. 158, 417–421.

5. Scully M. O., Englert B. G. and Walther H. Quantum optical
tests of complementarity. Nature, 1991, v. 351, 111–116.

6. Unruh W. G. Shahriar Afshar — quantum rebel? 2004,
http://axion.physics.ubc.ca/rebel.html.

7. Unruh W. G. Comment to “Single photon experiments and
quantum complementarity” by D. Georgiev. Progress in
Physics, 2007, v. 3, 39.

8. Wiseman H. and Harrison F. Uncertainty over complement-
arity? Nature, 1995, v. 377, 584.

9. Zeh H. D. Roots and fruits of decoherence. Séminaire Poin-
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In the literature, the algebraic Rainich conditions are obtained using special methods
such as spinors, duality rotations, an eigenvalue problem for certain 4× 4 matrices or
artificial tensors of 4th order. We give here an elementary procedure for deducing an
identity satisfied by a determined class of second order tensors in arbitrary <4, from
which the Rainich expressions are immediately obtained.

1 Introduction

Rainich [1–5] proposed a unified field theory for the geomet-
rization of the electromagnetic field, whose basic relations
can be obtained from the Einstein-Maxwell field equations:

Rij −
1

2
Rgij = −8π

(

FibF
∙b
j ∙ −

1

4
FabF

abgij

)

, (1)

where Rac=Rca, R=Rb∙∙b and Fac=−Fca are the Ricci
tensor, scalar curvature and Faraday tensor [6], respectively.

If in (1) we contract i with j we find that:

R = 0 (2)

then (1) adopts the form:

Rij = 2πFabF
abgij − 8πFibF

∙b
j ∙ (3)

used by several authors [1, 2, 5, 7, 8] to obtain the identity:

RicR
∙c
j ∙ =

1

4

(
RabR

ab
)
gij . (4)

If Far is known, then (3) is an equation for gij and our
situation belongs to general relativity. The Rainich theory
presents the inverse process: To search for a solution of
(2) and (4) (plus certain differential restrictions), and after
with (3) to construct the corresponding electromagnetic field;
from this point of view Far is a consequence of the spacetime
geometry.

In the next Section we give an elementary proof of (4),
without resorting to duality rotations [2], spinors [7], eigen-
value problems [8] or fourth order tensors [9, 10].

2 The algebraic Rainich conditions

The structure of (3) invites us to consider tensors with the
form:

Cij = Agij +BikF
∙k
j ∙ (5)

where A is a scalar and Bac, Fij are arbitrary antisymmetric

tensors. Then from (5) it is easy to deduce the expression:

CiaC
a∙
∙j −

C

2
Cij −

1

4

(

CabC
ba −

C2

2

)

gij = Dij (6)

with C =C r ∙
∙r and

Dij = BikF
akBamF

∙m
j ∙ −

1

2
(BnmFnm)BibF

∙b
j ∙ +

+
1

8

[
(BnmFnm)

2 − 2BbkF
a∙
∙kB

∙m
a∙

]
gij .

(7)

But in four dimensions we have the following identities
between antisymmetric tensors and their duals [11–13]:

Bm∙
∙c F

ic − ∗B ic ∗Fm∙∙c =
1

2

(
BcdF

cd
)
gim,

Bk∙∙r
∗B ir =

1

4

(
Bab

∗Bab
)
gik.

(8)

With (7) and (8) it is simple to prove that Dij =0. There-
fore (6) implies the identity:

CiaC
a∙
∙j −

C

2
Cij =

1

4

(

CabC
ba −

C2

2

)

gij . (9)

If now we consider the particular case:

A = 2πFabF
ab, Bij = −8πFij , (10)

then (5) reproduces (3) and C =R=0, and thus (9) leads to
(4), q.e.d.

Our procedure shows that the algebraic Rainich condi-
tions can be deduced without special techniques.
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In the framework of the Open Quantum Relativity, we discuss the geodesic and
chronological structures related to the embedding procedure and dimensional reduction
from 5D to 4D spacetime. The emergence of an extra-force term, the deduction of the
masses of particles, two-time arrows and closed time-like solutions are considered
leading to a straightforward generalization of causality principle.

1 Introduction

Open Quantum Relativity [1] is a theory based on a dyna-
mical unification scheme [2] of fundamental interactions
achieved by assuming a 5D space which allows that the
conservation laws are always and absolutely valid as a natural
necessity. What we usually describe as violations of conser-
vation laws can be described by a process of embedding and
dimensional reduction, which gives rise to an induced-matter
theory in the 4D space-time by which the usual masses,
spins and charges of particles, naturally spring out. At the
same time, it is possible to build up a covariant symplectic
structure directly related to general conservation laws [3,
4]. Finally, the theory leads to a dynamical explanation of
several paradoxes of modern physics (e.g. entanglement of
quantum states, quantum teleportation, gamma ray bursts
origin, black hole singularities, cosmic primary antimatter
absence and a self-consistent fit of all the recently observed
cosmological parameters [2, 5, 7, 8, 9]). A fundamental rôle
in this approach is the link between the geodesic structure
and the field equations of the theory before and after the
dimensional reduction process. The emergence of an Extra
Force term in the reduction process and the possibility to re-
cover the masses of particles, allow to reinterpret the Equiv-
alence Principle as a dynamical consequence which naturally
“selects” geodesics from metric structure and vice-versa the
metric structure from the geodesics. It is worth noting that,
following Schrödinger [10], in the Einstein General Relativ-
ity, geodesic structure is “imposed” by choosing a Levi-
Civita connection [12] and this fact can be criticized consi-
dering a completely “affine” approach like in the Palatini
formalism [13]. As we will show below, the dimensional
reduction process gives rise to the generation of the masses
of particles which emerge both from the field equations and
the embedded geodesics. Due to this result, the coincidence
of chronological and geodesic structure is derived from the
embedding and a new dynamical formulation of the Equival-
ence Principle is the direct consequence of dimensional re-

duction. The dynamical structure is further rich since two
time arrows and closed time-like paths naturally emerge.
This fact leads to a reinterpretation of the standard notion of
causality which can be, in this way, always recovered, even
in the case in which it is questioned (like in entanglement
phenomena and quantum teleportation [5, 6]), because it is
generalized to a forward and a backward causation.

The layout of the paper is the following. In Sec.2, we
sketch the 5D approach while in Sec.3 we discuss the rôle
of conservation laws. Sec.4 is devoted to the discussion of
geodesic structure and to the emergence of the Extra Force
term. The field equations, the masses of the particles and
time-like solutions are discussed in Sec.5. Conclusions are
drawn in Sec.6.

2 The 5D-field equations

Open Quantum Relativity can be framed in a 5D space-time
manifold and the 4D reduction procedure induces a scalar-
tensor theory of gravity where conservation laws (i.e. Bianchi
identities) play a fundamental rôle into dynamics. The 5D-
manifold which we are taking into account is a Riemannian
space provided with a 5D-metric of the form

dS2 = gAB dx
AdxB , (1)

where the Latin indexes are A,B=0, 1, 2, 3, 4. We do not
need yet to specify the 5D signature, because, in 4D, it is
dynamically fixed by the reduction procedure as we shall see
below. The curvature invariants, the field equations and the
conservation laws in the 5D-space can be defined as follows.
In general, we ask for a space which is a singularity free,
smooth manifold, where conservation laws are always valid
[7]. The 5D-Riemann tensor is

RDABC = ∂BΓ
D
AC − ∂CΓ

D
AB + Γ

D
EBΓ

E
AC − Γ

D
ECΓ

E
AB (2)

and the Ricci tensor and scalar are derived from the contrac-
tions

RAB = RCACB ,
(5)R = RAA . (3)
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The field equations can be obtained from the 5D-action

(5)A = −
1

16π (5)G

∫
d5x

√
−g(5)

[
(5)R

]
, (4)

where (5)G is the 5D-gravitational coupling and g(5) is the
determinant of the 5D-metric [2]. The 5D-field equations are

GAB = RAB −
1

2
gAB

(5)R = 0 , (5)

so that at least the Ricci-flat space is always a solution. Let
us define now a 5D-stress-energy tensor for a scalar field Φ:

TAB = ∇AΦ∇BΦ−
1

2
gAB ∇CΦ∇

CΦ , (6)

where only the kinetic terms are present. As standard, such
a tensor can be derived from a variational principle

TAB =
2

√
−g(5)

δ
(√

−g(5) LΦ
)

δgAB
, (7)

where LΦ is a Lagrangian density related to the scalar field
Φ. Because of the definition of 5D space itself, based on the
conservation laws [7], it is important to stress now that no
self-interaction potential U(Φ) has to be taken into account
so that TAB is a completely symmetric object and Φ is, by
definition, a cyclic variable. In this situation the Noether
theorem always holds for TAB . With these considerations in
mind, the field equations can assume the form

RAB = χ

(

TAB −
1

2
gAB T

)

, (8)

where T is the trace of TAB and χ = 8π (5)G.

3 The rôle of conservation laws

Eqs. (8) are useful to put in evidence the rôle of the scalar
field Φ, if we are not simply assuming Ricci-flat 5D-spaces.
Due to the symmetry of the stress-energy tensor TAB and
the Einstein field equations GAB , the contracted Bianchi
identities

∇A T
A
B = 0 , ∇AG

A
B = 0 , (9)

must always hold. Developing the stress-energy tensor, we
obtain

∇A T
A
B = ΦB

(5)2Φ , (10)

where (5)2 is the 5D d’Alembert operator defined as∇AΦA≡
≡ gABΦ,A;B ≡ (5)2Φ. The general result is that the conser-
vation of the stress-energy tensor TAB (i.e. the contracted
Bianchi identities) implies the Klein-Gordon equation which
assigns the dynamics of Φ, that is

∇A T
A
B = 0 ⇐⇒ (5)2Φ = 0 . (11)

Let us note again the absence of self-interactions due
to the absence of potential terms. The relations (11) give a
physical meaning to the fifth dimension. Splitting the 5D-
problem in a (4+1)-description, it is possible to generate
the mass of particles in 4D. Such a result can be deduced
both from Eq. (11) and from the analysis of the geodesic
structure, as we are going to show.

4 The 5D-geodesics and the Extra Force

The geodesic structure of the theory can be derived consi-
dering the action

A =
∫
dS

(

gAB
dxA

dS

dxB

dS

)1/2
, (12)

whose Euler-Lagrange equations are the geodesic equations

d2xA

dS2
+ ΓABC

dxB

dS

dxC

dS
= 0 . (13)

ΓABC are the 5D-Christoffel symbols. Eq. (13) can be split in
the (4 + 1) form

2gαμ

(
dxα

ds

)(
d2xμ

ds2
+ Γ

μ
βγ

dxβ

ds

dxγ

ds

)

+

+
∂gαβ
dx4

dx4

ds

dxα

ds

dxβ

ds
= 0 ,

(14)

where the Greek indexes are μ, ν =0, 1, 2, 3 and ds2=
= gαβdx

αdxβ . Clearly, in the 4D reduction (i.e. in the usual
spacetime) we ordinarily experience only the standard geode-
sics of General Relativity, i.e. the 4D component of Eq. (14)

d2xμ

ds2
+ Γ

μ
βγ

dxβ

ds

dxγ

ds
= 0 , (15)

so that, under these conditions, the last part of the representa-
tion given by Eq. (14) is not detectable in 4D. In other words,
for standard laws of physics, the metric gαβ does not depend
on x4 in the embedded 4D manifold. On the other hand, the
last component of Eq. (14) can be read as an “Extra Force”
which gives the motion of a 4D frame with respect to the
fifth coordinate x4. This fact shows that the fifth dimension
has a real physical meaning and any embedding procedure
scaling up in 5D-manifold (or reducing to 4D spacetime) has
a dynamical description. The Extra Force

F =
∂gαβ
dx4

dx4

ds

dxα

ds

dxβ

ds
, (16)

is related to the mass of moving particles in 4D and to
the motion of the whole 4D frame. This means that the
emergence of this term in Eq. (14), leaving the 5D-geodesic
equation verified, gives a new interpretation to the Equival-
ence Principle in 4D as a dynamical consequence. Looking at
Eqs. (14) and (15), we see that in the ordinary 4D spacetime
no term, in Eq. (15), is directly related to the masses which
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are, on the contrary, existing in Eq. (14). In other words, it is
the quantity F , which gives the masses to the particles, and
this means that the Equivalence Principle can be formulated
on a dynamical base by an embedding process. Furthermore
the massive particles are different but massless in 5D while,
for the physical meaning of the fifth coordinate, they assume
mass in 4D thanks to Eq. (16).

Let us now take into account a 5D-null path given by

dS2 = gAB dx
AdxB = 0 . (17)

Splitting Eq. (17) into the 4D part and the fifth compo-
nent, gives

dS2 = ds2 + g44
(
dx4
)2
= 0 . (18)

An inspection of Eq. (18) tells that a null path in 5D
can result, in 4D, in a time-like path, a space-like path, or
a null path depending on the sign and the value of g44. Let
us consider now the 5D-vector uA= dxA/dS. It can be split
as a vector in the ordinary 3D-space v, a vector along the
ordinary time axis w and a vector along the fifth dimension
z. In particular, for 5D null paths, we can have the velocity
v2=w2+ z2 and this should lead, in 4D, to super-luminal
speed, explicitly overcoming the Lorentz transformations.
The problem is solved if we consider the 5D-motion as a-
luminal, because all particles and fields have the same speed
(being massless) and the distinction among super-luminal,
luminal and sub-luminal motion (the standard causal motion
for massive particles) emerges only after the dynamical re-
duction from 5D-space to 4D spacetime. In this way, the
fifth dimension is the entity which, by assigning the masses,
is able to generate the different dynamics which we perceive
in 4D. Consequently, it is the process of mass generation
which sets the particles in the 4D light-cone. Specifically, let
us rewrite the expression (16) as

F =
∂gμν
∂x4

dx4

ds
uμuν . (19)

As we said, seen in 4D, this is an Extra Force generated
by the motion of the 4D frame with respect to the extra
coordinate x4. This fact shows that all the different particles
are massless in 5D and acquire their rest masses m0 in the
dynamical reduction from the 5D to 4D. In fact, considering
Eqs. (14) and (18), it is straightforward to derive

F = uμuν
∂gμν
∂x4

dx4

ds
=

1

m0

dm0

ds
=
d ln(m0)

ds
, (20)

where m0 has the rôle of a rest mass in 4D, being, from
General Relativity,

dxμ

ds
−
1

2

∂gαβ
∂xμ

uαuβ = 0 (21)

and
pμ = m0u

μ, pμp
μ = m2

0 , (22)

which are, respectively, the definition of linear momentum
and the mass-shell condition. Then, it is

d ln(m0) =
∂gμν
∂x4

uμuνdx4 (23)

that is

m0 = exp

∫ (
∂gμν
∂x4

uμuνdx4
)

= exp

∫ (
Fdx4

)
. (24)

In principle, the term
∫ (∂gμν

∂x4 u
μuνdx4

)
never gives a

zero mass. However, this term can be less than zero and, with
large absolute values, it can asymptotically produce a m0

very close to zero. In conclusion the Extra Force induced by
the reduction from the 5D to the 4D is equal to the derivative
of the natural logarithm of the rest mass of a particle with
respect to the (3 + 1) line element and the expression

∫ (
∂gμν
∂x4

uμuνdx4
)

=

∫ (
Fdx4

)
(25)

can be read as the total “work” capable of generating masses
in the reduction process from 5D to 4D.

5 The field structure and the chronological structure

The results of previous section assume a straightforward
physical meaning considering the fifth component of the
metric as a scalar field. In this way, the pure “geometric” in-
terpretation of the Extra Force can be framed in a “material”
picture. In order to achieve this goal, let us consider the
Campbell theorem [15] which states that it is always possible
to consider a 4D Riemannian manifold, defined by the line
element ds2= gαβ dxαdxβ , embedded in a 5D one with
dS2= gAB dx

AdxB . We have gAB = gAB
(
xα, x4

)
with x4

the extra coordinate. The metric gAB is covariant under
the group of 5D coordinate transformations xA→xA(xB),
but not under the restricted group of 4D transformations
xα→xα(xβ). This means, from a physical point of view,
that the choice of the 5D coordinate can be read as the
gauge which specifies the 4D physics. On the other hand, the
signature and the value of the fifth coordinate is related to
the dynamics generated by the physical quantities which we
observe in 4D (mass, spin, charge). Let us start considering
the variational principle

δ

∫
d(5)x

√
−g(5)

[
(5)R+ λ(g44 − εΦ

2)
]
= 0 , (26)

derived from (4) where λ is a Lagrange multiplier, Φ a
generic scalar field and ε=±1. This procedure allows to
derive the physical gauge for the 5D metric. The above 5D
metric can be immediately rewritten as

dS2= gAB dx
AdxB = gαβdx

αdxβ + g44
(
dx4
)2
=

= gαβ dx
αdxβ + εΦ2

(
dx4
)2
,

(27)
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where the signature ε=−1 can be interpreted as “particle
like” solutions while ε=+1 gives rise to wave-like solutions.
The physical meaning of these distinct classes of solutions, as
we will see below, is crucial. Assuming a standard signature
(+ − −−) for the 4D component of the metric, the 5D
metric can be written as the matrix

gAB =

(
gαβ 0
0 εΦ2

)

, (28)

and the 5D Ricci curvature tensor is

(5)Rαβ = Rαβ −
Φ,α;β
Φ

+
ε

2Φ2

(
Φ,4 gαβ,4

Φ
−

− gαβ,44 + g
λμgαλ,4 gβμ,4 −

gμνgμν,4 gαβ,4
2

) (29)

where Rαβ is the 4D Ricci tensor. After the projection from
5D to 4D, gαβ , derived from gAB , no longer explicitly
depends on x4, and then the 5D Ricci scalar assumes the
remarkable expression:

(5)R = R−
1

Φ
2Φ , (30)

where the 2 is now the 4D d’Alembert operator. The action
in Eq. (26) can be recast in a 4D Brans-Dicke form

A = −
1

16πGN

∫
d4x

√
−g [ΦR+ LΦ] , (31)

where the Newton constant is given by

GN =
(5)G

2πl
(32)

where l is a characteristic length in 5D. Defining a generic
function of a 4D scalar field ϕ as

−
Φ

16πGN
= F (ϕ) (33)

we get a 4D general action in which gravity is nonminimally
coupled to a scalar field [2, 16, 17]:

A =
∫

M
d4x×

×
√
−g

[

F (ϕ)R+
1

2
gμνϕ;μ ϕ;ν − V (ϕ) + Lm

] (34)

F (ϕ) and V (ϕ) are a generic coupling and a self interacting
potential respectively. The field equations can be derived by
varying with respect to the 4D metric gμν

Rμν −
1

2
gμνR = T̃μν , (35)

where

T̃μν =
1

F (ϕ)

{

−
1

2
ϕ;μϕ;ν +

1

4
gμνϕ;αϕ

;α−

−
1

2
gμνV (ϕ)− gμν2F (ϕ) + F (ϕ);μν

} (36)

is the effective stress–energy tensor containing the nonmini-
mal coupling contributions, the kinetic terms and the poten-
tial of the scalar field ϕ. By varying with respect to ϕ, we
get the 4D Klein-Gordon equation

2ϕ−RF ′(ϕ) + V ′(ϕ) = 0 , (37)

where primes indicate derivatives with respect to ϕ.
Eq. (37) is the contracted Bianchi identity demonstrating

the recovering of conservation laws also in 4D [2]. This
feature means that the effective stress-energy tensor at right
hand side of (35) is a zero-divergence tensor and this fact is
fully compatible with Einstein theory of gravity also starting
from a 5D space. Specifically, the reduction procedure from
5D to 4D preserves all the features of standard General
Relativity. In order to achieve the physical identification
of the fifth dimension, let us recast the generalized Klein-
Gordon equation (37) as

(
2+m2

eff

)
ϕ = 0 , (38)

where
m2
eff =

[
V ′(ϕ)−RF ′(ϕ)

]
ϕ−1 (39)

is the effective mass, i.e. a function of ϕ, where self-gravity
contributions RF ′(ϕ) and scalar field self interactions V ′(ϕ)
are taken into account [18]. This means that a natural way to
generate the masses of particles can be achieved starting from
a 5D picture and the concept of mass can be recovered as a
geometric derivation according to the Extra Force of previous
section. In other words, the chronological structure and the
geodesic structure of the reduction process from 5D to 4D
naturally coincide since the the masses generated in both
cases are equivalent. From an epistemological point of view,
this new result clearly demonstrates why geodesic structure
and chronological structure can be assumed to coincide in
General Relativity using the Levi-Civita connection in both
the Palatini and the metric approaches [13]. Explicitly the 5D
d’Alembert operator can be split, considering the 5D metric
in the form (27) for particle-like solutions:

(5)2 = 2− ∂4
2 . (40)

This means that we are considering ε=−1. We have then

(5)2Φ =
[
2− ∂4

2
]
Φ = 0 . (41)

Separating the variables and splitting the scalar field Φ
into two functions

Φ = ϕ(t, ~x)χ(x4) , (42)

the field ϕ depends on the ordinary space-time coordinates,
while χ is a function of the fifth coordinate x4. Inserting (42)
into Eq. (41), we get

2ϕ

ϕ
=
1

χ

[
d2χ

dx24

]

= −k2n (43)
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where kn is a constant. From Eq. (43), we obtain the two
field equations (

2+ k2n
)
ϕ = 0 , (44)

and
d2χ

dx24
+ k2n χ = 0 . (45)

Eq. (45) describes a harmonic oscillator whose general
solution is

χ(x4) = c1e
−iknx

4

+ c2e
iknx

4

. (46)

The constant kn has the physical dimension of the inverse
of a length and, assigning boundary conditions, we can derive
the eigenvalue relation

kn =
2π

l
n , (47)

where n is an integer and l a length which we have previously
defined in Eq. (32) related to the gravitational coupling. As a
result, in standard units, we can recover the physical lengths
through the Compton lengths

λn =
~

2πmnc
=
1

kn
(48)

which always assign the masses to the particles depending on
the number n. It is worth stressing that, in this case, we have
achieved a dynamical approach because the eigenvalues of
Eq. (45) are the masses of particles which are generated by
the process of reduction from 5D to 4D. The solution (46) is
the superposition of two mass eigenstates. The 4D evolution
is given by Eq. (38) or, equivalently, (44). Besides, the
solutions in the coordinate x4 give the associated Compton
lengths from which the effective physical masses can be
derived. Specifically, different values of n fix the families of
particles, while, for any given value n, different values of
parameters c1,2 select the different particles within a family.
With these considerations in mind, the effective mass can be
obtained integrating the modulus of the scalar field Φ along
the x4 coordinate. It is

meff ≡
∫
|Φ|dx4 =

∫
|Φ(dx4/ds)| ds (49)

where ds is the 4D affine parameter used in the derivation
of geodesic equation. This result means that the rest mass of
a particle is derived by integrating the Extra Force along
x4 (see Eq. 24) while the effective mass is obtained by
integrating the field Φ along x4. In the first case, the mass of
the particle is obtained starting from the geodesic structure
of the theory, in the second case, it comes out from the
field structure. In other words, the coincidence of geodesic
structure and chronological structure (the causal structure),
supposed as a principle in General Relativity, is due to the
fact that masses are generated in the reduction process.

At this point, from the condition (42), the field 5D Φ

results to be

Φ(xα, x4) =
+∞∑

n=−∞

[
ϕn(x

α)e−iknx
4

+ϕ∗n(x
α)eiknx

4
]
, (50)

where ϕ and ϕ∗ are the 4D solutions combined with the
fifth-component solutions e±iknx

4

. In general, every particle
mass can be selected by solutions of type (46). The number
knx

4, i.e. the ratio between the two lengths x4/λn, fixes the
interaction scale. Geometrically, such a scale is related to
the curvature radius of the embedded 4D spacetime where
particles can be identified and, in principle, detected. In this
sense, Open Quantum Relativity is an induced-matter theory,
where the extra dimension cannot be simply classified as
“compactified” since it yields all the 4D dynamics giving
origin to the masses. Moreover, Eq. (50) is not a simple
“tower of mass states” but a spectrum capable of explaining
the hierarchy problem [7]. On the other hand, gravitational
interaction can be framed in this approach considering as its
fundamental scale the Planck length

λP = l =

(
~GN
c3

)1/2
, (51)

instead of the above Compton length. It fixes the vacuum
state of the system ant the masses of all particles can be
considered negligible if compared with the Planck scales.
Finally, as we have seen, the reduction mechanism can select
also ε=1 in the metric (27). In this case, the 5D-Klein
Gordon equation (11), and the 5D field equations (5) have
wave-like solutions of the form

dS2 = dt2 − Ω(t, x1)
(
dx1
)2
− Ω(t, x2)

(
dx2
)2
−

−Ω(t, x3)
(
dx3
)2
+
(
dx4
)2
,

(52)

where

Ω(t, xj) = exp i(ωt+ kjx
j) , j = 1, 2, 3 . (53)

In this solution, the necessity of the existence of two
times arrows naturally emerges and, as a direct consequence,
due to the structure of the functions Ω(t, xj), closed time-
like paths (i.e. circular paths) are allowed. The existence of
closed time-like paths means that Anti-De Sitter [14] and
Gödel [11] solutions are naturally allowed possibilities in
the dynamics.

6 Discussion and conclusions

In this paper, we have discussed the reduction process which
allows to recover the 4D spacetime and dynamics starting
from the 5D manifold of Open Quantum Relativity. Such
a theory needs, to be formulated, a General Conservation
Principle. This principle states that conservation laws are
always and absolutely valid also when, to maintain such a
validity, phenomena as topology changes and entanglement
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can emerge in 4D. In this way, we have a theory without
singularities (like conventional black holes) and unphysical
spacetime regions are naturally avoided [8, 6]. The dimen-
sional reduction can be considered from the geodesic struc-
ture and the field equations points of view. In the first case,
starting from a 5D metric, it is possible to generate an
Extra Force term in 4D which is related to the rest masses
of particles and then to the Equivalence Principle. In fact,
masses can be dynamically generated by the fifth component
of the 5D space and the relation between inertial mass and
gravitational mass is not an assumed principle, as in standard
physics [10], but the result of the dynamical process of
embedding. It is worth noting that an “amount of work”
is necessary to give the mass to a particle. An effective
mass is recovered also by splitting the field equations in a
(4+1) formalism. The fifth component of the metric can
be interpreted as a scalar field and the embedding as the
process by which the mass of particles emerges. The fact that
particles acquire the mass from the embedding of geodesics
and from the embedding of field equations is the reason
why the chronological and geodesic structures of the 4D
spacetime are the same: they can be both achieved from
the same 5D metric structure which is also the solution of
the 5D field equations. By taking into account such a result
in 4D, the result itself naturally leads to understand why
the metric approach of General Relativity, based on Levi-
Civita connections, succeed in the description of spacetime
dynamics even without resorting to a more general scheme as
the Palatini-affine approach where connection and metric are,
in principle, considered distinct. The reduction process leads
also to a wide class of time solutions including two-time
arrows and closed time-like paths. As a consequence, we
can recover the concept of causality questioned by the EPR
effect [6] thanks to the necessary introduction of backward
and forward causation [1]. As a final remark, we can say
that Open Quantum Relativity is an approach which allows
to face Quantum Mechanics and Relativity under the same
dynamical standard (a covariant symplectic structure [3]):
this occurrence leads to frame several paradoxes of modern
physics under the same dynamical scheme by only an as-
sumption of the absolute validity of conservation laws and
the generalization of the causal structure of spacetime.

Submitted on May 14, 2007
Accepted on May 21, 2007

References

1. Basini G., Capozziello S. Gen. Relativ. Grav., 2005, v. 37, 115.

2. Basini G., Capozziello S. Gen. Relativ. Grav., 2003, v. 35,
2217.

3. Basini G., Capozziello S. Mod. Phys. Lett., 2005, v. A20, 251.

4. Basini G., Capozziello S. Int. Journ. Mod. Phys., 2006, v. D15,
583.

5. Basini G., Capozziello S. Europhys. Lett., 2003, v. 63, 166.

6. Basini G., Capozziello S. and Longo G. Gen. Relativ. Grav.,
2003, v. 35, 189.

7. Basini G., Capozziello S. and Longo G. Phys. Lett., 2003,
v. 311A, 465.

8. Basini G., Capozziello S. and Longo G. Astrop. Phys., 2004,
v. 20, 457.

9. Basini G., Bongiorno F. and Capozziello S. Int. Journ. Mod.
Phys., 2004, v. D13, 717.

10. Schrödinger E. Space-time structure. Cambridge Univ. Press,
Cambridge, 1960.
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Analysis of covariant derivatives of vectors in quaternion (Q-) spaces performed
using Q-unit spinor-splitting technique and use of SL(2C)-invariance of quaternion
multiplication reveals close connexion of Q-geometry objects and Yang-Mills (YM)
field principle characteristics. In particular, it is shown that Q-connexion (with
quaternion non-metricity) and related curvature of 4 dimensional (4D) space-times
with 3D Q-space sections are formally equivalent to respectively YM-field potential
and strength, traditionally emerging from the minimal action assumption. Plausible
links between YM field equation and Klein-Gordon equation, in particular via its
known isomorphism with Duffin-Kemmer equation, are also discussed.

1 Introduction

Traditionally YM field is treated as a gauge, “auxiliary”, field
involved to compensate local transformations of a ‘main’
(e.g. spinor) field to keep invariance of respective action
functional. Anyway there are a number of works where YM-
field features are found related to some geometric properties
of space-times of different types, mainly in connexion with
contemporary gravity theories.

Thus in paper [1] violation of SO(3, 1)-covariance in
gauge gravitation theory caused by distinguishing time di-
rection from normal space-like hyper-surfaces is regarded as
spontaneous symmetry violation analogous to introduction of
mass in YM theory. Paper [2] shows a generic approach to
formulation of a physical field evolution based on description
of differential manifold and its mapping onto “model” spaces
defined by characteristic groups; the group choice leads to
gravity or YM theory equations. Furthermore it can be shown
[2b] that it is possible to describe altogether gravitation in
a space with torsion, and electroweak interactions on 4D
real spacetime C2, so we have in usual spacetime with torsion
a unified theory (modulo the non treatment of the strong
forces).

Somewhat different approach is suggested in paper [3]
where gauge potentials and tensions are related respectively
to connexion and curvature of principle bundle, whose base
and gauge group choice allows arriving either to YM or to
gravitation theory. Paper [4] dealing with gravity in Riemann-
Cartan space and Lagrangian quadratic in connexion and cur-
vature shows possibility to interpret connexion as a mediator
of YM interaction.

In paper [5] a unified theory of gravity and electroweak
forces is built with Lagrangian as a scalar curvature of space-
time with torsion; if trace and axial part of the torsion vanish
the Lagrangian is shown to separate into Gilbert and YM
parts. Regardless of somehow artificial character of used
models, these observations nonetheless hint that there may
exist a deep link between supposedly really physical object,
YM field and pure math constructions. A surprising analogy
between main characteristics of YM field and mathematical
objects is found hidden within geometry induced by quater-
nion (Q-) numbers.

In this regard, the role played by Yang-Mills field cannot
be overemphasized, in particular from the viewpoint of the
Standard Model of elementary particles. While there are a
number of attempts for describing the Standard Model of
hadrons and leptons from the viewpoint of classical electro-
magnetic Maxwell equations [6, 7], nonetheless this question
remains an open problem. An alternative route toward
achieving this goal is by using quaternion number, as describ-
ed in the present paper. In fact, in Ref. [7] a somewhat similar
approach with ours has been described, i.e. the generalized
Cauchy-Riemann equations contain 2-spinor and C-gauge
structures, and their integrability conditions take the form of
Maxwell and Yang-Mills equations.

It is long ago noticed that Q-math (algebra, calculus and
related geometry) naturally comprise many features attribut-
ed to physical systems and laws. It is known that quaternions
describe three “imaginary” Q-units as unit vectors directing
axes of a Cartesian system of coordinates (it was initially de-
veloped to represent subsequent telescope motions in astro-
nomical observation). Maxwell used the fact to write his
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equations in the most convenient Q-form. Decades later
Fueter discovered a formidable coincidence: a pure math
Cauchy-Riemann type condition endowing functions of Q-
variable with analytical properties turned out to be identical
in shape to vacuum equations of electrodynamics [9].

Later on other surprising Q-math — physics coincidences
were found. Among them: “automatic” appearance of Pauli
magnetic field-spin term with Bohr magneton as a coefficient
when Hamiltonian for charged quantum mechanical particle
was built with the help of Q-based metric [10]; possibility to
endow “imaginary” vector Q-units with properties of not only
stationary but movable triad of Cartan type and use it for a
very simple description of Newtonian mechanics in rotating
frame of reference [11]; discovery of inherited in Q-math
variant of relativity theory permitting to describe motion of
non-inertial frames [12]. Preliminary study shows that YM
field components are also formally present in Q-math.

In Section 2 notion of Q-space is given in necessary de-
tail. Section 3 discussed neat analogy between Q-geometric
objects and YM field potential and strength. In Section 4
YM field and Klein-Gordon correspondence is discussed.
Concluding remarks can be found in Section 5.

Part of our motivation for writing this paper was to
explicate the hidden electromagnetic field origin of YM
fields. It is known that the Standard Model of elementary
particles lack systematic description for the mechanism of
quark charges. (Let alone the question of whether quarks do
exist or they are mere algebraic tools, as Heisenberg once
puts forth: If quarks exist, then we have redefined the word
“exist”.) On the other side, as described above, Maxwell
described his theory in quaternionic language, therefore it
seems natural to ask whether it is possible to find neat link
between quaternion language and YM-fields, and by doing
so provide one step toward describing mechanism behind
quark charges.

Further experimental observation is of course recom-
mended in order to verify or refute our propositions as
described herein.

2 Quaternion spaces

Detailed description of Q-space is given in [13]; shortly
but with necessary strictness its notion can be presented as
following.

Let UN be a manifold, a geometric object consisting of
points M ∈ UN each reciprocally and uniquely correspond-
ing to a set of N numbers-coordinates {yA} : M ↔ {yA},
(A=1, 2 . . . N). Also let the sets of coordinates be trans-
formed so that the map becomes a homeomorphism of a
class Ck. It is known that UN may be endowed with a
proper tangent manifold TN described by sets of orthogonal
unite vectors e(A) generating in TN families of coordinate
lines M→{X(A)}, indices in brackets being numbers of
frames’ vectors. Differentials of coordinates in UN and TN

are tied as dX(A)= g
(A)
B dyB , with Lamé coefficients g(A)B ,

functions of yA, so that X(A) are generally non-holonomic.
Irrespectively of properties of UN each its point may be
attached to the origin of a frame, in particular presented by
“imaginary” Q-units qk, this attachment accompanied by a
rule tying values of coordinates of this point with the triad
orientation M ↔ {yA,Φξ}. All triads {qk} so defined on
UN form a sort of “tangent” manifold T (U,q), (really tangent
only for the base U3). Due to presence of frame vectors
qk(y) existence of metric and at least proper (quaternionic)
connexion ωjkn=−ωjnk, ∂jqk=ωjknqn, is implied, hence
one can tell of T (U,q) as of a Q-tangent space on the base
UN . Coordinates xk defined along triad vectors qk in T (U,q)
are tied with non-holonomic coordinates X(A) in proper
tangent space TN by the transformation dxk≡hk(A)dX(A)

with hk(A) being locally depending matrices (and generally
not square) of relative e(A) ↔ qk rotation. Consider a special
case of unification U ⊕ T (U,q) with 3-dimensional base
space U =U3. Moreover, let quaternion specificity of T3
reflects property of the base itself, i.e. metric structure of U3
inevitably requires involvement of Q-triads to initiate Car-
tesian coordinates in its tangent space. Such 3-dimensional
space generating sets of tangent quaternionic frames in each
its point is named here “quaternion space” (or simply Q-
space). Main distinguishing feature of a Q-space is non-
symmetric form of its metric tensor∗ gkn ≡ qkqn=− δkn+
+ εknjqj being in fact multiplication rule of “imaginary”
Q-units. It is easy to understand that all tangent spaces
constructed on arbitrary bases as designed above are Q-
spaces themselves. In most general case a Q-space can be
treated as a space of affine connexion Ωjkn=Γjkn+Qjkn+
+Sjkn+ωjnk+σjkn comprising respectively Riemann
connexion Γjkn, Cartan contorsion Qjkn, segmentary cur-
vature (or ordinary non-metricity) Sjkn, Q-connexion ωjnk,
and Q-non-metricity σjkn; curvature tensor is given by stand-
ard expression Rknij = ∂iΩj kn − ∂jΩi kn + Ωi kmΩj mn−
−Ωj nmΩimk. Presence or vanishing of different parts of
connexion or curvature results in multiple variants of Q-
spaces classification [13]. Further on only Q-spaces with
pure quaternionic characteristics (Q-connexion and Q-non-
metricity) will be considered.

3 Yang-Mills field from Q-space geometry

Usually Yang-Mills field ABμ is introduced as a gauge field
in procedure of localized transformations of certain field, e.g.
spinor field [14, 15]

ψa → U(yβ)ψa . (1)

If in the Lagrangian of the field partial derivative of ψa
is changed to “covariant” one

∂β → Dβ ≡ ∂β − gAβ , (2)
∗Latin indices are 3D, Greek indices are 4D; δkn, εknj are Kronecker

and Levi-Civita symbols; summation convention is valid.
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Aβ ≡ iAC βTC , (3)

where g is a real constant (parameter of the model), TC are
traceless matrices (Lie-group generators) commuting as

[TB , TC ] = ifBCDTD (4)

with structure constants fBCD , then

DβU ≡ (∂β − gAβ)U = 0 , (5)

and the Lagrangian keeps invariant under the transformations
(1). The theory becomes “self consistent” if the gauge field
terms are added to Lagrangian

LYM ∼ FαβFαβ , (6)

Fαβ ≡ FC αβ TC . (7)

The gauge field intensity FμνB expressed through poten-
tials ABμ and structure constants as

FC αβ = ∂αAC β − ∂βAC α + fCDE ADαAE β . (8)

Vacuum equations of the gauge field

∂α F
αβ +

[
Aα, F

αβ
]
= 0 (9)

are result of variation procedure of action built from Lagran-
gian (6).

Group Lie, e.g. SU(2) generators in particular can be
represented by “imaginary” quaternion units given by e.g.
traceless 2×2-matrices in special representation (Pauli-type)
iTB → qk̃ = −iσk (σk are Pauli matrices),

Then the structure constants are Levi-Civita tensor com-
ponents fBCD → εknm, and expressions for potential and
intensity (strength) of the gauge field are written as:

Aβ = g
1

2
Ak̃ β qk̃ , (10)

Fkαβ = ∂αAk β − ∂βAkα + εkmnAmαAnβ . (11)

It is worthnoting that this conventional method of intro-
duction of a Yang-Mills field type essentially exploits heu-
ristic base of theoretical physics, first of all the postulate
of minimal action and formalism of Lagrangian functions
construction. But since description of the field optionally
uses quaternion units one can assume that some of the above
relations are appropriate for Q-spaces theory and may have
geometric analogues. To verify this assumption we will use
an example of 4D space-time model with 3D spatial quater-
nion section.

Begin with the problem of 4D space-time with 3D spatial
section in the form of Q-space containing only one geometric
object: proper quaternion connexion. Q-covariant derivative
of the basic (frame) vectors qm identically vanish in this
space:

D̃αqk ≡ (δmk ∂α + ωαmk)qm = 0 . (12)

This equation is in fact equivalent to definition of the
proper connexion ωαmk. If a transformation of Q-units is
given by spinor group (leaving quaternion multiplication rule
invariant)

qk = U(y)qk̃U
−1(y) (13)

(qk̃ are constants here) then Eq. (12) yields

∂αU qk̃U
−1 + U qk̃ ∂αU

−1 = ωαknU qñU
−1. (14)

But one can easily verify that each “imaginary” Q-unit qk̃
can be always represented in the form of tensor product of its
eigen-functions (EF) ψ(k̃), ϕ(k̃) (no summation convention
for indices in brackets):

qk̃ψ(k̃) = ±iψ(k̃), ϕ(k̃)qk̃ = ±iϕ(k̃) (15)

having spinor structure (here only EF with positive parity
(with sign +) are shown)

qk̃ = i(2ψ(k̃)ϕ(k̃) − 1); (16)

this means that left-hand-side (lhs) of Eq. (14) can be equiv-
alently rewritten in the form

1

2
(∂αU qk̃U

−1 + U qk̃ ∂αU
−1) =

= (∂αU ψ(k̃))ϕ(k̃)U
−1 + U ψ(k̃) (ϕ(k̃)∂αU

−1)
(17)

which strongly resembles use of Eq. (1) for transformations
of spinor functions.

Here we for the first time underline a remarkable fact:
form-invariance of multiplication rule of Q-units under their
spinor transformations gives expressions similar to those
conventionally used to initiate introduction of gauge fields
of Yang-Mills type.

Now in order to determine mathematical analogues of
these “physical fields”, we will analyze in more details Eq.
(14). Its multiplication (from the right) by combination U qk̃
with contraction by index k̃ leads to the expression

−3 ∂αU + U qk̃ ∂αU
−1Uqk̃ = ωαknU qñqk̃ . (18)

This matrix equation can be simplified with the help of
the always possible development of transformation matrices

U ≡ a + bk qk̃ , U−1 = a − bk qk̃ , (19)

UU−1 = a2 + bk bk = 1 , (20)

where a, bk are real scalar and 3D-vector functions, qk̃ are Q-
units in special (Pauli-type) representation. Using Eqs. (19),
the second term in lhs of Eq. (18) after some algebra is
reduced to remarkably simple expression

U qk̃ ∂αU
−1Uqk̃ =

= (a+ bnqñ)qk̃(∂αa− ∂αbmqm̃) (a+ blql̃)qk̃ =

= ∂α(a+ bnqñ) = −∂αU

(21)
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so that altogether lhs of Eq. (18) comprises −4 ∂αU while
right-hand-side (rhs) is

ωαknU qñqk̃ = −εknmωαknU qm̃ ; (22)

then Eq. (18) yields

∂αU −
1

4
εknmωαknU qm̃ = 0 . (23)

If now one makes the following notations

Ak α ≡
1

2
εknmωαkn , (24)

Aα ≡
1

2
Anqñ , (25)

then notation (25) exactly coincides with the definition (10)
(provided g=1), and Eq. (23) turns out equivalent to Eq. (5)

U
←

Dα ≡ U(
←

∂α − Aα) = 0 . (26)

Expression for “covariant derivative” of inverse matrix
follows from the identity:

∂αU U
−1 = −U∂αU

−1. (27)

Using Eq. (23) one easily computes

−∂αU
−1 −

1

4
εknmωαkn qm̃U

−1 = 0 (28)

or
DαU

−1 ≡ (∂α + Aα)U
−1 = 0 . (29)

Direction of action of the derivative operator is not essen-
tial here, since the substitution U−1 → U и U → U−1 is
always possible, and then Eq. (29) exactly coincides with
Eq. (5).

Now let us summarize first results. We have a remarkable
fact: form-invariance of Q-multiplication has as a corollary
“covariant constancy” of matrices of spinor transformations
of vector Q-units; moreover one notes that proper Q-conne-
xion (contracted in skew indices by Levi-Civita tensor) plays
the role of “gauge potential” of some Yang-Mills-type field.
By the way the Q-connexion is easily expressed from Eq. (24)

ωαkn = εmknAmα . (30)

Using Eq. (25) one finds expression for the gauge field
intensity (11) (contracted by Levi-Civita tensor for conve-
nience) through Q-connexion

εkmnFkαβ =

= εkmn(∂αAk β − ∂βAkα) + εkmnεmljAl αAj β =

= ∂αωβmn − ∂βωαmn + AmαAnβ − AmβAnα .

(31)

If identically vanishing sum

−δmnAj αAj β + δmnAjβAjα = 0 (32)

is added to rhs of (31) then all quadratic terms in the right
hand side can be given in the form

AmαAnβ − AmβAnα − δmnAj αAj β + δmnAjβAjα =

= (δmpδqn − δmnδqp)(ApαAq β − ApβAq α) =

= εkmqεkpn(ApαAq β − ApβAq α) =

= −ωαkn ωβ km + ωβ knAαkm .

Substitution of the last expression into Eq. (31) accom-
panied with new notation

Rmnαβ ≡ εkmnFkαβ (33)

leads to well-known formula:

Rmnαβ = ∂αωβmn − ∂βωαmn+

+ωαnk ωβ km − ωβ nk ωαkm .
(34)

This is nothing else but curvature tensor of Q-space built
out of proper Q-connexion components (in their turn being
functions of 4D coordinates). By other words, Yang-Mills
field strength is mathematically (geometrically) identical to
quaternion space curvature tensor. But in the considered
case of Q-space comprising only proper Q-connexion, all
components of the curvature tensor are identically zero. So
Yang-Mills field in this case has potential but no intensity.

The picture absolutely changes for the case of quaternion
space with Q-connexion containing a proper part ωβ kn and
also Q-non-metricity σβ kn

Ωβ kn(y
α) = ωβ kn + σβ kn (35)

so that Q-covariant derivative of a unite Q-vector with conne-
xion (35) does not vanish, its result is namely the Q-non-
metricity

D̂αqk ≡ (δmk∂α +Ωαmk)qm = σαmk qk . (36)

For this case “covariant derivatives” of transformation
spinor matrices may be defined analogously to previous case
definitions (26) and (29)

U
←̂

Dα ≡ Û(
←

∂α − Âα), D̂αU
−1 ≡ (∂α + Âα)U . (37)

But here the “gauge field” is built from Q-connexion (35)

Âk α ≡
1

2
εknmΩαkn, Âα ≡

1

2
Ânqñ . (38)

It is not difficult to verify whether the definitions (37) are
consistent with non-metricity condition (36). Action of the
“covariant derivatives” (37) onto a spinor-transformed unite
Q-vector

D̂αqk → (D̂αU)qk̃ ∂αU
−1 + U qk̃ (D̂αU

−1) =

=

(

U
←

Dα −
1

4
εjnmΩαnmUqj̃ qk̃

)

U−1+

+ U qk̃

(

DαU
−1 +

1

4
εjnmΩαnmqj̃U

−1

)
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together with Eqs. (26) and (29) demand:

U
←

Dα = DαU
−1 = 0 (39)

leads to the expected results

D̂αqk →
1

2
εjnmσαnmUεjklql̃ U

−1 =

= σαklU ql̃ U
−1 = σαkl ql

i.e. “gauge covariant” derivative of any Q-unit results in Q-
non-metricity in full accordance with Eq. (36).

Now find curvature tensor components in this Q-space; it
is more convenient to calculate them using differential forms.
Given Q-connexion 1-form

Ω kn = Ωβ kndy
β (40)

from the second equation of structure

1

2
R̂knαβ dy

α ∧ dyβ = dΩkn +Ωkm ∧ Ωmn (41)

one gets the curvature tensor component

R̂knαβ = ∂αΩβ kn − ∂βΩαkn+

+ΩαkmΩβmn − ΩαnmΩβmk
(42)

quite analogously to Eq. (34). Skew-symmetry in 3D indices
allows representing the curvature part of 3D Q-section as 3D
axial vector

F̂mαβ ≡
1

2
εknmR̂knαβ (43)

and using Eq. (38) one readily rewrites definition (43) in
the form

F̂mαβ = ∂αÂmβ − ∂βÂmα + εknmÂkαÂnβ (44)

which exactly coincides with conventional definition (11).
QED.

4 Klein-Gordon representation of Yang-Mills field

In the meantime, it is perhaps more interesting to note here
that such a neat linkage between Yang-Mills field and quater-
nion numbers is already known, in particular using Klein-
Gordon representation [16]. In turn, this neat correspondence
between Yang-Mills field and Klein-Gordon representation
can be expected, because both can be described in terms of
SU(2) theory [17]. In this regards, quaternion decomposition
of SU(2) Yang-Mills field has been discussed in [17], albeit
it implies a different metric from what is described herein:

ds2 = dα21 + sin
2α1 dβ

2
1 + dα

2
2 + sin

2α2 dβ
2
2 . (45)

However, the O(3) non-linear sigma model appearing in
the decomposition [17] looks quite similar (or related) to the
Quaternion relativity theory (as described in the Introduction,
there could be neat link between Q-relativity and SO(3, 1)).

Furthermore, sometime ago it has been shown that four-
dimensional coordinates may be combined into a quaternion,
and this could be useful in describing supersymmetric exten-
sion of Yang-Mills field [18]. This plausible neat link be-
tween Klein-Gordon equation, Duffin-Kemmer equation and
Yang-Mills field via quaternion number may be found useful,
because both Duffin-Kemmer equation and Yang-Mills field
play some kind of significant role in description of standard
model of particles [16].

In this regards, it has been argued recently that one
can derive standard model using Klein-Gordon equation, in
particular using Yukawa method, without having to introduce
a Higgs mass [19, 20]. Considering a notorious fact that
Higgs particle has not been observed despite more than three
decades of extensive experiments, it seems to suggest that
an alternative route to standard model of particles using
(quaternion) Klein-Gordon deserves further consideration.

In this section we will discuss a number of approaches
by different authors to describe the (quaternion) extension
of Klein-Gordon equation and its implications. First we will
review quaternion quantum mechanics of Adler. And then
we discuss how Klein-Gordon equation leads to hypothetical
imaginary mass. Thereafter we discuss an alternative route
for quaternionic modification of Klein-Gordon equation, and
implications to meson physics.

4.1 Quaternion Quantum Mechanics

Adler’s method of quaternionizing Quantum Mechanics grew
out of his interest in the Harari-Shupe’s rishon model for
composite quarks and leptons [21]. In a preceding paper [22]
he describes that in quaternionic quantum mechanics (QQM),
the Dirac transition amplitudes are quaternion valued, i.e.
they have the form

q = r0 + r1i+ r2j + r3k (46)

where r0, r1, r2, r3 are real numbers, and i, j, k are
quaternion imaginary units obeying

i2 = j2 = k2 = −1, ij = −ji = k,

jk = −kj = i, ki = −ik = j .
(47)

Using this QQM method, he described composite fermion
states identified with the quaternion real components [23].

4.2 Hypothetical imaginary mass problem in Klein-
Gordon equation

It is argued that dynamical origin of Higgs mass implies
that the mass of W must always be pure imaginary [19,
20]. Therefore one may conclude that a real description for
(composite) quarks and leptons shall avoid this problem, i.e.
by not including the problematic Higgs mass.

Nonetheless, in this section we can reveal that perhaps
the problem of imaginary mass in Klein-Gordon equation is
not completely avoidable. First we will describe an elemen-
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tary derivation of Klein-Gordon from electromagnetic wave
equation, and then by using Bakhoum’s assertion of total
energy we derive alternative expression of Klein-Gordon
implying the imaginary mass.

We can start with 1D-classical wave equation as derived
from Maxwell equations [24, p.4]:

∂2E

∂x2
−
1

c2
∂2E

∂t2
= 0 . (48)

This equation has plane wave solutions:

E(x, t) = E0e
i(kx−ωt) (49)

which yields the relativistic total energy:

ε2 = p2c2 +m2c4. (50)

Therefore we can rewrite (48) for non-zero mass particles
as follows [24]:

(
∂2

∂x2
−
1

c2
∂2

∂t2
−
m2c2

~2

)

Ψe
i
~ (px−Et) = 0 . (51)

Rearranging this equation (51) we get the Klein-Gordon
equation for a free particle in 3-dimensional condition:

(

∇−
m2c2

~2

)

Ψ =
1

c2
∂2Ψ

∂t2
. (52)

It seems worthnoting here that it is more proper to use
total energy definition according to Noether’s theorem in lieu
of standard definition of relativistic total energy. According
to Noether’s theorem [25], the total energy of the system
corresponding to the time translation invariance is given by:

E = mc2 +
cw

2

∫ ∞

0

(
γ2 4πr2 dr

)
= kμc2 (53)

where k is dimensionless function. It could be shown, that
for low-energy state the total energy could be far less than
E = mc2. Interestingly Bakhoum [25] has also argued in
favor of using E = mv2 for expression of total energy,
which expression could be traced back to Leibniz. Therefore
it seems possible to argue that expression E = mv2 is more
generalized than the standard expression of special relativity,
in particular because the total energy now depends on actual
velocity [25].

From this new expression, it is possible to rederive Klein-
Gordon equation. We start with Bakhoum’s assertion that it
is more appropriate to use E = mv2, instead of more con-
venient form E = mc2. This assertion would imply [25]:

H2 = p2c2 −m2
0c
2v2. (54)

A bit remark concerning Bakhoum’s expression, it does
not mean to imply or to interpret E = mv2as an assertion
that it implies zero energy for a rest mass. Actually the prob-

lem comes from “mixed” interpretation of what we mean
with “velocity”. In original Einstein’s paper (1905) it is
defined as “kinetic velocity”, which can be measured when
standard “steel rod” has velocity approximates the speed of
light. But in quantum mechanics, we are accustomed to make
use it deliberately to express “photon speed”= c. Therefore,
in special relativity 1905 paper, it should be better to interpret
it as “speed of free electron”, which approximates c. For
hydrogen atom with 1 electron, the electron occupies the
first excitation (quantum number n = 1), which implies that
their speed also approximate c, which then it is quite safe
to assume E ∼ mc2. But for atoms with large number of
electrons occupying large quantum numbers, as Bakhoum
showed that electron speed could be far less than c, therefore
it will be more exact to use E = mv2, where here v should
be defined as “average electron speed” [25].

In the first approximation of relativistic wave equation,
we could derive Klein-Gordon-type relativistic equation from
equation (54), as follows. By introducing a new parameter:

ζ = i
v

c
, (55)

then we can use equation (55) in the known procedure to
derive Klein-Gordon equation:

E2 = p2c2 + ζ2m2
0c
4, (56)

where E = mv2. By using known substitution:

E = i~
∂

∂t
, p =

~
i
∇ , (57)

and dividing by (~c)2, we get Klein-Gordon-type relativistic
equation [25]:

−c−2
∂Ψ

∂t
+∇2Ψ = k

′2
0 Ψ , (58)

where

k
′

0 =
ζm0c

~
. (59)

Therefore we can conclude that imaginary mass term
appears in the definition of coefficient k

′

0 of this new Klein-
Gordon equation.

4.3 Modified Klein-Gordon equation and meson obser-
vation

As described before, quaternionic Klein-Gordon equation has
neat link with Yang-Mills field. Therefore it seems worth to
discuss here how to quaternionize Klein-Gordon equation.
It can be shown that the resulting modified Klein-Gordon
equation also exhibits imaginary mass term.

Equation (52) is normally rewritten in simpler form (by
asserting c = 1): (

∇−
∂2

∂t2

)

Ψ =
m2

~2
. (60)
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Interestingly, one can write the Nabla-operator above in
quaternionic form, as follows:

A. Define quaternion-Nabla-operator as analog to quaternion
number definition above (46), as follows [25]:

∇q = −i
∂

∂t
+ e1

∂

∂x
+ e2

∂

∂y
+ e3

∂

∂z
, (61)

where e1, e2, e3 are quaternion imaginary units. Note that
equation (61) has included partial time-differentiation.

B. Its quaternion conjugate is defined as follows:

∇̄q = −i
∂

∂t
− e1

∂

∂x
− e2

∂

∂y
− e3

∂

∂z
. (62)

C. Quaternion multiplication rule yields:

∇q ∇̄q = −
∂2

∂t2
+

∂2

∂2x
+

∂2

∂2y
+

∂2

∂2z
. (63)

D. Then equation (63) permits us to rewrite equation (60) in
quaternionic form as follows:

∇q∇̄qΨ =
m2

~2
. (64)

Alternatively, one used to assign standard value c=1 and
also ~=1, therefore equation (60) may be written as:

(
∂2

∂t2
−∇2 +m2

)

ϕ(x, t) = 0 , (65)

where the first two terms are often written in the form of
square Nabla operator. One simplest version of this equa-
tion [26]:

−

(
∂S0
∂t

)2
+m2 = 0 (66)

yields the known solution [26]:

S0 = ±mt+ constant . (67)

The equation (66) yields wave equation which describes
a particle at rest with positive energy (lower sign) or with
negative energy (upper sign). Radial solution of equation
(66) yields Yukawa potential which predicts meson as obser-
vables.

It is interesting to note here, however, that numerical 1-D
solution of equation (65), (66) and (67) each yields slightly
different result, as follows. (All numerical computation was
performed using Mathematica [28].)

• For equation (65) we get:

(−D[#,x,x]+mˆ2+D[#,t,t])&[y[x,t]]==

m2 + y(0,2)[x, t]− y(2,0)[x, t] = 0

DSolve[%,y[x,t],{x,t}]
{{

y[x, t]→
m2x2

2
+ C[1][t− x] + C[2][t+ x]

}}

• For equation (66) we get:

( mˆ2−D[#,t,t])&[y[x,t]]==

m2 + y(0,2)[x, t] = 0

DSolve[%,y[x,t],{x,t}]
{{

y[x, t]→
m2t2

2
+ C[1][x] + tC[2][x]

}}

One may note that this numerical solution is in quadratic
form m2t2

2 + constant, therefore it is rather different from
equation (67) in [26].

In the context of possible supersymetrization of Klein-
Gordon equation (and also PT-symmetric extension of Klein-
Gordon equation [27, 29]), one can make use biquaternion
number instead of quaternion number in order to generalize
further the differential operator in equation (61):

E. Define a new “diamond operator” to extend quaternion-
Nabla-operator to its biquaternion counterpart, according to
the study [25]:

♦ = ∇q+i∇q =

(

−i
∂

∂t
+e1

∂

∂x
+e2

∂

∂y
+e3

∂

∂z

)

+

+ i

(

−i
∂

∂T
+e1

∂

∂X
+e2

∂

∂Y
+e3

∂

∂Z

)

,

(68)

where e1, e2, e3 are quaternion imaginary units. Its conjugate
can be defined in the same way as before.

To generalize Klein-Gordon equation, one can generalize
its differential operator to become:
[(

∂2

∂t2
−∇2

)

+i

(
∂2

∂t2
−∇2

)]

ϕ(x, t)=−m2ϕ(x, t), (69)

or by using our definition in (68), one can rewrite equation
(69) in compact form:

(
♦♦̄+m2

)
ϕ(x, t) = 0, (70)

and in lieu of equation (66), now we get:
[(

∂S0
∂t

)2
+ i

(
∂S0
∂t

)2]

= m2. (71)

Numerical solutions for these equations were obtained in
similar way with the previous equations:

• For equation (70) we get:

(−D[#,x,x]+D[#,t,t]−I*D[#,x,x]+I*D[#,t,t]+mˆ2)

&[y[x,t]]==

m2 + (1 + i) y(0,2)[x, t]− (1 + i) y(2,0)[x, t] = 0

DSolve[%,y[x,t],{x,t}
{{

y[x, t]→

(
1

4
−
i

4

)

m2x2+C[1][t− x]+C[2][t+ x]

}}

48 A. Yefremov, F. Smarandache and V. Christianto. Yang-Mills Field from Quaternion Space Geometry



July, 2007 PROGRESS IN PHYSICS Volume 3

• For equation (71) we get:

(−mˆ2+D[#,t,t]+I*D[#,t,t])&[y[x,t]]==

m2 + (1 + i) y(0,2)[x, t] = 0

DSolve[%,y[x,t],{x,t}]
{{

y[x, t]→

(
1

4
−
i

4

)

m2x2 + C[1][x] + tC[2][x]

}}

Therefore, we may conclude that introducing biquater-
nion differential operator (in terms of “diamond operator”)
yield quite different solutions compared to known standard
solution of Klein-Gordon equation [26]:

y(x, t) =

(
1

4
−
i

4

)

m2t2 + constant . (72)

In other word: we can infer hat t = ± 1
m

√
y/
(
1
4 −

i
4

)
,

therefore it is likely that there is imaginary part of time
dimension, which supports a basic hypothesis of the afore-
mentioned BQ-metric in Q-relativity.

Since the potential corresponding to this biquaternionic
KGE is neither Coulomb, Yukawa, nor Hulthen potential,
then one can expect to observe a new type of matter, which
may be called “supersymmetric-meson”. If this new type
of particles can be observed in near future, then it can be
regarded as early verification of the new hypothesis of PT-
symmetric QM and CT-symmetric QM as considered in some
recent reports [27, 29]. In our opinion, its presence may be
expected in particular in the process of breaking of Coulomb
barrier in low energy schemes.

Nonetheless, further observation is recommended in
order to support or refute this proposition.

5 Concluding remarks

If 4D space-time has for its 3D spatial section a Q-space with
Q-connexion Ωβ kn containing Q-non-metricity σβ kn, then
the Q-connexion, geometric object, is algebraically identical
to Yang-Mills potential

Âkα ≡
1

2
εknmΩαkn ,

while respective curvature tensor R̂knαβ , also a geometric
object, is algebraically identical to Yang-Mills “physical
field” strength

F̂mαβ ≡
1

2
εknmR̂knαβ .

Thus Yang-Mills gauge field Lagrangian

LYM ∼ F̂
αβ
k F̂kαβ=

1

4
εkmnεkjl R̂

αβ
mnR̂jlαβ=

1

2
R̂αβmnR̂mnαβ

can be geometrically interpreted as a Lagrangian of “non-
linear” or “quadratic” gravitational theory, since it contains
quadratic invariant of curvature Riemann-type tensor con-
tracted by all indices. Hence Yang-Mills theory can be re-

garded as a theory of pure geometric objects: Q-connexion
and Q-curvature with Lagrangian quadratic in curvature (as:
Einstein’s theory of gravitation is a theory of geometrical
objects: Christoffel symbols and Riemann tensor, but with
linear Lagrangian made of scalar curvature).

Presence of Q-non-metricity is essential. If Q-non-
metricity vanishes, the Yang-Mills potential may still exist,
then it includes only proper Q-connexion (in particular, com-
ponents of Q-connexion physically manifest themselves as
“forces of inertia” acting onto non-inertially moving ob-
server); but in this case all Yang-Mills intensity components,
being in fact components of curvature tensor, identically are
equal to zero.

The above analysis of Yang-Mills field from Quaternion
Space geometry may be found useful in particular if we
consider its plausible neat link with Klein-Gordon equation
and Duffin-Kemmer equation. We discuss in particular a
biquaternionic-modification of Klein-Gordon equation. Since
the potential corresponding to this biquaternionic KGE is
neither Coulomb, Yukawa, nor Hulthen potential, then one
can expect to observe a new type of matter. Further obser-
vation is recommended in order to support or refute this
proposition.
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This paper addresses further investigations of local-time effects on the laboratory scale.
We study dependence of the effect on spatial directions defined by a pair of sources of
fluctuations. The results show that the effect appears in the neighborhood of directions
North-South and East-West. Only for these directions are the experimental results in
excellent agreement with theoretically predicted local-time values. The results reveal
the character of near-Earth space heterogeneity and lead to the conclusion that at
the laboratory scale, local-time effects cannot be caused by some axial-symmetric
structure, which has permanent properties along an Earth meridian. Appearance of the
effect along an Earth parallel is linked to rotational motion of the Earth. Observed
properties of local-time effects in the direction of an Earth meridian can be linked to
motion of the Earth in this direction.

1 Introduction

The results of many years of investigation of macroscopic
fluctuation phenomena can be considered as evidence of an
essential heterogeneity and anisotropy of space-time. This
statement is based upon the results of studies of α-decay-rate
fluctuations of 239Pu sources measured by plane semicon-
ductor detectors and detectors with collimators cutting α-
particle beams, carried out in the years 1985–2005 [1–6]. For
reasons of methodology, the time resolution reached in those
years was about one minute, and the studied spatial scale
about a hundred kilometers. This work presents results of
further investigations of macroscopic fluctuations phenom-
ena with time resolution to 0.5 milliseconds.

Such resolution allows studies of local time effects for
distances down to one metre between sources of fluctuations
[7, 8]. On the one hand, this result has an independent impor-
tance as a lower scale end for the existence of macroscopic
fluctuations phenomena, but on the other hand, it has great
methodological importance due to the possibility of system-
atic laboratory investigations, which were previously unavai-
lable because of very large spatial distances between places
of measurement. One such investigation is the dependence
of local-time effects as function of spatial directions, which
is the main subject of this paper.

2 Experiment description and results

A functional diagram of the experimental setup is presented
in Fig. 1b). It consists of two sources of fluctuations, which
are fixed to a wooden base. The distance between the sources
was 1.36 m. The base, with the sources of fluctuations, can
revolve on its axis and can be positioned in any desired di-
rection. A two-channel LeCroy WJ322 digital storage oscil-
loscope (DSO in Fig. 1b) was used for data acquisition.

Fig. 1: Diagram of spatial directions, which was examined in ex-
periments with fixed spatial base 1.36 m (a) and functional diagram
of the experimental setup (b).

The digitizing frequency used for all series of measure-
ments was 100 kHz. Consequently, the duration of 50-point
histograms, which were used in the experiment, is 0.5 milli-
seconds. This means that all local-time values in the experi-
ment are defined with an accuracy of ±0.5 milliseconds.

Fig. 1a) depicts the spatial directions which were examin-
ed in the experiment. In Fig. 1a) every one of these directions
is denoted by letters outside the circle. For example, direction
AA means that the base with the sources of fluctuations is
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Fig. 2: Averaged interval distributions obtained for every spatial direction.

aligned in the EA-AA direction in such a way that source
No 1 is placed on the AA end of the base and source No 2 is
placed on the EA end. Correspondingly, direction EA means
that source No 1 is on the EA end, and source No 2 is on the
opposite end. Letters N, S, E, and W denote directions to the
North, South, East, and West respectively. Directions A and
E lie on an Earth meridian, and directions G and C lie on an
Earth parallel.

The angular difference between two neighboring direc-
tions is 11.25◦, so we have 32 spatial directions. To examine
all the directions one series of measurements must include
32 pairs of synchronous records. Every record consists of
500,000 points. This allowed acquisition of two synchronous
sets of 50-point histograms for every direction. Every set
contains 10,000 histograms. The experimental results, which
are presented below, are based on 8 series of measurements.

It is important to note that pairs of directions presented
in Fig. 1a), for example, A-E and E-A, are actually the same
because the pair of fluctuations sources used in the experi-
ment are non-directional. For this reason the total number of
directions examined is half that denoted by letters in Fig. 1a).
The second measurement in an opposite pair of directions can
be considered as a control. The data processing procedure

used in the experiment is described in detail in [2, 9].
Fig. 2 shows the interval distributions obtained for each

of the 32 spatial directions. Every one of these distributions
is averaged through the interval distributions from all of the
series of measurements for every one of the spatial directions.
The circle inside Fig. 2 is the same as in Fig. 1a) and
shows spatial directions in relation to the presented interval
distributions.

All the distributions presented in Fig. 2 can be divided
into two distinct groups. The first group consists of distribu-
tions in the neighbourhoods (approximately ±11.25◦ of the
directions A-E and C-G; labeled as A, E, C, and G. To the
first group also can be related distributions that are closest
to A, E, C, and G: HC, AA, BC, CA, DC, EA, FC, GA. To
the second group can be related all remaining distributions.
The distribution from the first group we call ‘non-diagonal’,
and from the second, ‘diagonal’. The first group in Fig. 2 is
highlighted by the gray color.

The main difference between the two groups lies in the
following: non-diagonal distributions always have a single
peak, which corresponds to the same interval value in all
series of measurements. In the case of the non-diagonal
distributions, every spatial direction can be characterized by a
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Fig. 3: Non-diagonal interval distributions for meridian (North-
South) directions A and E, and for parallel (East-West) directions
C and G.

stable, reproducible pattern of interval distribution. Contrary
to non-diagonal distributions, a diagonal distribution is multi-
peaked and cannot ordinarily be characterized by a stable,
reproducible pattern.

Non-diagonal interval distributions are presented in
Fig. 3. For Earth meridian directions (A and E), patterns
of interval distributions always have a stable peak at zero
intervals. In the case of Earth parallel directions (C and G),
interval distributions have a peak at the interval that is equal
to the local-time-difference for the spatial base of 1.36 m.
This difference has the same magnitude but different sign
for opposite directions. It is easy to see from Fig. 3 that
interval distributions for directions C and G have peaks at
the intervals 10 and −10.

3 Value of local-time-difference

As follows from previous investigations [1–6] the value of
the local-time effect depends only on the longitudinal dif-
ference between places of measurements, not on latitudinal
distance. From this it follows that the factor which determines
the shape of fine structure of histograms must be axial-
symmetric. Longitudinal dependence of local-time effect
phenomenology can be considered as dependence of shape of
the fine structure of histograms on spatial directions defined
by the centre of the Earth and the two points where measure-
ments are taken [8]. In this case the results of measurements
depend on the solid angle between two planes defined by
the axis of the Earth and the two points of measurement;
such angle depends on the longitudinal difference, not on the
latitudinal difference.

But for the case of separated measurements with fixed
spatial base 4L0= const, the results of the experiment

Fig. 4: Theoretical estimation (solid line) and experimentally ob-
tained local-time values. Points with bold error bars show local-time
values for non-diagonal directions.

become dependent on latitude, θ. Really, the time 4t, after
which fluctuation source No 2 will define the same direction
as source No 1 before, depends on the velocity of the mea-
surement system ν (θ, h):

4t =
4L0
ν (θ, h)

sinα , (1)

where α ∈ [0, 2π] is an angle, counter-clockwise from the
direction to the North (direction A). It is important to note
that the theoretical estimation of the longitudinal difference
is given by (1) obtained on the assumption that the factor det-
ermining the fine structure of histograms is axial-symmetric.

The value ν (θ, h) is determined by:

ν (θ, h) =
2π

T






√√
√
√

R2p
R2p
R2e
+ tan2θ

+ h




 , (2)

where Rp= 6356863 m and Re= 6378245 m are the values
of the polar and equatorial radii of the Earth [10] respectively,
T = 86160 sec is the period of the Earth’s revolution. For
the place of measurements (Pushchino, Moscow region) we
have latitude θp= 54◦50.037′ and height above sea level
hp= 170 m. So the velocity of the measurement system is
ν (θp, hp)= 268 m/sec. For near-equatorial regions ν (θ, h)
can exceed ν (θp, hp) by almost twice the latter. Conse-
quently, for measurements with a fixed spatial base we have
sufficiently strong dependence of local-time-difference (1)
on latitude θ.

The value of the velocity ν (θp, hp) allows, on the basis
of (1), calculation of the local-time-difference 4t(α) as
function of spatial directions examined in the experiment.
The solid line in Fig. 4 shows the results of this calculation.
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Points with error bars in Fig. 4 show local-time values ob-
tained for all series of measurements.

4 Discussions

It is easy to see from Fig. 4 that the experimental results are
in excellent agreement with the theoretically predicted local-
time values only for a narrow neighbourhood around the
directions North-South (directions A and E) and East-West
(directions C and G) i.e. for non-diagonal directions. At the
same time, for diagonal directions, the experimental results
in most cases don’t follow the theoretical predictions. Results
presented in Fig. 4 are in agreement with results summarized
in Fig. 2, and linked to the dependence of local-time effect
on spatial directions.

The results reveal the character of near-Earth space an-
isotropy. As pointed out above, the theoretical estimation of
local-time effect values in Fig. 4 were obtained under the
hypothesis that the effect is caused by some axial-symmetric
structure, which has permanent properties along an Earth
meridian. According to this hypothesis, the dependence of
local-time effect must be the same for all spatial directions,
and local-time values obtained in the experiment must follow
the theoretically predicted values. But the fact that the diag-
onal directions experimental results don’t confirm this hypo-
thesis leads to the conclusion that at the laboratory scale
local-time effects cannot be caused by some axial-symmetric
structure.

Evidently, dependence of local-time effects in East-West
directions is linked to the rotational motion of the Earth.
In this case, after the time interval 4t, which is equal to
local-time difference for the spatial base used, the position
of the ‘West’ source of fluctuations will be exactly the same
as the position of ‘East’ previously. In the case of diagonal
spatial directions such a coincidence is absent. However, for
North-South direction such an explanation is inapplicable.

Dependence of the local-time effect in the direction of a
meridian is probably linked to the velocity component along
the path of the Solar System in the Galaxy. This hypothesis
is preliminary and may possibly change in consequence of
future investigations.

The authors are grateful to V. P. Tikhonov, Dr. Hartmut
Muller, Victor Tsyganov, and M. N. Kondrashova for valu-
able discussions and financial support.
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This work presents an experimental investigation of a possible mechanism causing
local time effects, with the aid of moving sources of fluctuations. The results show that
the measurement system, consisting of two separated sources of fluctuations moving
in a near-Earth space, can detect its own motion in form of a local time effect, or in
other words, we can determine uniform and rectilinear motion of an isolated system
on the basis of measurements made inside the system.

1 Introduction

If at any two places on the Globe we make two synchronous
records of fluctuations in any natural processes, then by a
standard method [1-4] we can find that shape of the fine
structure of histograms, constructed on the basis of short
segments of time series, is most similar for such pairs, that
are separated by a time interval equal to the local time
difference for the places of measurements. Because of this
the phenomenon is called the local time effect. At the present
time it is known that the effect exists for any distances
between places of measurements, ranging from the highest
possible on the Earth down to one metre [5, 6]. The local
time or longitudinal difference implies dependence of the fine
structure of the histograms on the Earth’s rotation around its
axis. In relation to ambient space this means that after a
time interval equal to the local time difference measurement,
system No. 2 appears in the same place where system No. 1
was located previously, or that measurement system No. 2
will be oriented in the same direction as system No. 1 was
oriented before. The same places or directions mean that the
same conditions prevail and, consequently, a similar shape
for the histograms.

The existence of a local time effect is closely connected
with space-time heterogeneity. Really the effect is possible
only if the experimental setup, consisting of a pair of separat-
ed sources of fluctuations, moves through heterogeneous
invariable space. It is obvious that for the case of homogene-
ous space the effect cannot exist. Existence of a local-time
effect for some space scale can be considered as evidence of
space-time heterogeneity, which corresponds to this scale.

So, to observe the local time effect we need heterogene-
ous invariable space and a pair of fluctuation sources on
a fixed spatial base, which moves synchronously through
that space. All phenomenology of the local time effect was
obtained due to rotational motion of the Earth. The present
investigation studies the local time effect for the case of the
measurement system moving independently of the rotational
motion of the Earth. In other words, we try to ascertain if

Fig. 1: Simplified diagram of the experiment with moving sources
of fluctuations.

an isolated measurement system, consisting of two separated
sources of fluctuations, can detect its own motion in the form
of a local time effect.

2 Experiment description and results

A simplified diagram of the experiment with moving sources
of fluctuations is presented in Fig. 1. The measurement
system consists of two separated sources of fluctuations,
which are oriented in the line of the velocity vector of
the plane in such a way that source No. 2 follows source
No. 1. The sources are separated by the fixed distance of
0.75 m. Signals of fluctuations were digitized by means of
an analogue-to-digital converter (ADC) via a USB interface
connected to a personal computer running appropriate data
acquisition software. The whole system was mounted inside
the plane moving with a velocity of V = 850 km/h along an
Earth meridian from South to North.

The digitizing frequency used for all series of measure-
ments was 100 kHz. One record consists of 500 kpts per
channel. This allowed acquisition of two synchronous sets
of 50-point histograms. The maximum length of each set
was 10,000 histograms. Consequently, the duration of a 50-
point histogram is 0.5 ms, so that all local-time values in the
experiment can be determined to an accuracy of ±0.5 ms.

The local time value 4t for the experiment is the time
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Fig. 2: a) Interval distributions for moving, and b) motionless
ground-based measurement systems. Measurements were carried
out at the same time each day and at the same spatial orientation of
the measurement systems (South-North).

interval in which the plane can travel a distance of 0.75 m.
Calculation shows that this value is 4t= 3.18 ms.

Along with the moving experiment, a motionless ground-
based one was carried out. For this experiment we used the
same experimental setup and exactly the same orientation
of fluctuation sources. The motionless measurements were
carried out at the same daytime as for measurements with
the moving system.

The intervals distribution for the motionless ground-based
experiment is presented in Fig. 2b). The distribution has a
single peak at the zero interval. The pattern of this distribu-
tion is exactly the same as that reported in work [7] for a
meridian direction.

The interval distribution for the moving measurement
system is shown in Fig. 2a). Like the distribution in Fig. 2b),
in this case we also have zero-peak, except this peak on the
distribution has a maximum at 3.5±0.5 ms, which is in good
agreement with the calculated local time value 4t= 3.18 ms
and can be linked to motion of the measurement system.

Both interval distributions presented in Fig. 2 represent
an average of five series of measurements. Ordinates in Fig. 2
are defined to 7–10%.

3 Conclusions

The results confirm the hypothesis that a local time effect is
caused by motion of the measurement system in heterogene-

ous invariable space. The opposite statement also is true: a
measurement system moving in near-Earth space can detect
its own motion in the form of a local time effect. It is
interesting to note that by means of the method described
above, it is possible to determine uniform and rectilinear
motion of an isolated system on the basis of measurements
made inside the system.

The zero-peak for both interval distributions in Fig. 2,
aren’t linked to plane motion and are caused only by the spa-
tial orientation of the measurement system [7]. Investigation
of the nature of the zero-peak is one of our immediate tasks.
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A Theory of the Podkletnov Effect based on General Relativity: Anti-Gravity
Force due to the Perturbed Non-Holonomic Background of Space

Dmitri Rabounski and Larissa Borissova
E-mail: rabounski@yahoo.com; lborissova@yahoo.com

We consider the Podkletnov effect — the weight loss of an object located over a
superconducting disc in air due to support by an alternating magnetic field. We
consider this problem using the mathematical methods of General Relativity. We
show via Einstein’s equations and the geodesic equations in a space perturbed by
a disc undergoing oscillatory bounces orthogonal to its own plane, that there is no
rôle of superconductivity; the Podkletnov effect is due to the fact that the field of
the background space non-holonomity (the basic non-othogonality of time lines to
the spatial section), being perturbed by such an oscillating disc produces energy and
momentum flow in order to compensate the perturbation in itself. Such a momentum
flow is directed above the disc in Podkletnov’s experiment, so it works like negative
gravity (anti-gravity). We propose a simple mechanical system which, simulating the
Podkletnov effect, is an experimental test of the whole theory. The theory allows for
other “anti-gravity devices”, which simulate the Podkletnov effect without use of very
costly superconductor technology. Such devices could be applied to be used as a cheap
source of new energy, and could have implications to air and space travel.
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1 Introducing Podkletnov’s experiment

In 1992, Eugene Podkletnov and his team at the Tampere
Institute of Technology (Finland) tested the uniformity of a
unique bulky superconductor disc, rotating at high speed via
a magnetic field [1]. The 145×6-mm superconductor disc
was horizontally oreinted in a cryostat and surrounded by
liquid helium. A small current was initiated in the disc by
outer electromagnets, after which the medium was cooled
to 20–70 K. As the disc achieved superconductivity, and the
state became stable, another electromagnet located under the
cryostat was switched on. Due to the Meissner-Ochsenfeld
effect the magnetic field lifted the disc into the air. The disc
was then driven by the outer electromagnets to 5000 rpm.

A small non-conducting and non-magnetic sample was
suspended over the cryostat where the rotating disc was con-
tained. The weight of the sample was measured with high
precision by an electro-optical balance system. “The sample
with the initial weight of 5.47834 g was found to lose about
0.05% of its weight when placed over the levitating disc
without any rotation. When the rotation speed of the disc
increased, the weight of the sample became unstable and
gave fluctuations from −2.5 to +5.4% of the initial value.
[ . . . ] The levitating superconducting disc was found to rise
by up to 7 mm when its rotation moment increased. Test
measurements without the superconducting shielding disc
but with all operating solenoids connected to the power sup-
ply, had no effect on the weight of the sample” [1].

Additional results were obtained by Podkletnov in 1997,
with a larger disc (a 275/80×10-mm toroid) run under
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Fig. 1: Cryogenic system in Podkletnov’s experiment [2]. Courtesy
of E. Podkletnov. Used by permission.

Fig. 2: Supporting and rotating solenoids in Podkletnov’s experi-
ment [2]. Courtesy of E. Podkletnov. Used by permission.

similar conditions [2]: “The levitating disc revealed a clearly
measurable shielding effect against the gravitational force
even without rotation. In this situation, the weight-loss
values for various samples ranged from 0.05 to 0.07%. [. . .]
Samples made from the same material and of comparable
size, but with different masses, lost the same fraction of their
weight. [. . .] Samples placed over the rotating disc initially
demonstrated a weight loss of 0.3–0.5%. When the rotation
speed was slowly reduced by changing the current in the
solenoids, the shielding effect became considerably higher
and reached 1.9–2.1% at maximum” [2].

Two groups of researchers supported by Boeing and
NASA, and also a few other research teams, have attempted
to replicate the Podkletnov experiment in recent years [3–7].
The main problem they encountered was the reproduction of
the technology used by Podkletnov in his laboratory to pro-
duce sufficiently large superconductive ceramics. The tech-
nology is very costly: according to Podkletnov [8] this re-

Fig. 3: Weight and pressure measurement in Podkletnov’s experi-
ment [2]. Courtesy of E. Podkletnov. Used by permission.

quires tens of millions of dollars. Therefore the aforemen-
tioned organisations tested discs of much smaller size, about
1′′ diameter; so they produced controversial results at the
boundary of precision measurement. As was pointed out
by Podkletnov in his recent interview (April, 2006), the
NASA team, after years of unsuccessful attempts, made a
12′′ disc of superconductive ceramic. However, due to the
crude internal structure (this is one of the main problems
in making such discs), they were unable to use the disc to
replicate his experiment [8].

Podkletnov also recently reported on a “gravity field gen-
erator” [8, 9] constructed in his laboratory in recent years,
on the basis of the earlier observed phenomenon.

In a nutshell, the aforementioned phenomenon is as fol-
lows. We will refer to this as the Podkletnov effect:

When a disc of superconductive ceramic, being in
the state of superconductivity, is suspended in air by
an alternating magnetic field due to an electromagnet
located under the disc, the disc is the source of a
radiation. This radiation, traveling like a plane wave
above the disc, acts on other bodies like a negative
gravity. The radiation becomes stronger with larger
discs, so it depends on the disc’s mass and radius.
When the disc rotates uniformly, the radiation re-
mains the same. During acceleration/braking of the
disc’s rotation, the radiation essentially increases.

Podkletnov claimed many times that he discovered the
effect by chance, not by any theoretical prediction. Being
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an experimentalist who pioneered this field of research, he
continued his experiments blindfolded: in the absence of a
theoretical reason, the cause of the observed weight loss was
unclear. This is why neither Podkletnov nor his followers
at Boeing and NASA didn’t develop a new experiment by
which the weight loss effect substantially increased.

For instance, Podkletnov still believes that the key to
his experiment is that special state which is specific to the
electron gas inside superconductive materials in the state
of superconductivity [8]. He and all the others therefore
focused attention on low temperature superconductive cer-
amics, production of which, taking the large size of the discs
into account, is a highly complicated and very costly process,
beyond most laboratories. In fact, during the last 15 years
only Podkletnov’s laboratory has had the ability to produce
such the discs with sufficient quality.

We propose a purely theoretical approach to this prob-
lem. We consider Podkletnov’s experiment using the math-
ematical methods of General Relativity, in the Einstenian
sense: we represent all essential components of the experi-
ment as a result of the geometrical properties of the lab-
oratory space such as the space non-uniformity, rotation,
deformation, and curvature. We build a complete theory of
the Podkletnov effect on the basis of General Relativity.

By this we will see that there is no rôle for superconduc-
tivity; Podkletnov’s effect has a purely mechanical origin
due in that the vertical oscillation of the disc, produced by
the supporting alternating magnetic field, and the angular
acceleration/braking of the disc’s rotation, perturb a homo-
geneous field of the basic non-holonomity of the space (the
basic non-othogonality of time lines to the spatial section,
known from the theory of non-holonomic manifolds). As
a result the non-holonomity field, initially homogeneous,
is locally stressed, which is expressed by a change of the
left side of Einstein’s equations (geometry) and, through
the conservation law, a corresponding change of the right
side — the energy-momentum tensor for distributed matter
(the alternating magnetic field, in this case). In other words,
the perturbed field of the space non-holonomity produces
energy-momentum in order to compensate for the local per-
turbation in itself. As we will see, the spatial momentum
is directed above the disc in Podkletnov’s experiment, so it
works like negative gravity.

Owing to our theory we know definitely the key para-
meters ruling the weight loss effect. Therefore, following
our calculation, it is easy to propose an experiment wherein
the weight loss substantially increases.

For example, we describe a new experiment where the
Podkletnov effect manifests via simple electro-mechanical
equipment, without costly superconductor technology. This
new experiment can be replicated in any physics laboratory.

We therefore claim thta with our mathematical theory
of the Podkletnov effect, within the framework of General
Relativity, we can calculate the factors ruling the weight loss.

This gives us an opportunity to construct actual working
devices which could revolutionize air and space travel. Such
new technology, which uses high frequency electromagnetic
generators and mechanical equipment instead of costly su-
perconductors, can be the subject of further research on a
commercial basis (due to the fact that applied research is
outside academia).

Besides, additional energy-momentum produced by the
space non-holonomity field in order to compensate for a
local perturbation in itself, means that the Podkletnov effect
can be used to produce new energy.

By our advanced study (not included in this paper), of
our mathematical theory, that herein gives the key factors
which rule the new energy, lends itself to the construction of
devices which generate the new energy, powered by strong
electromagnetic fields, not nuclear reactions and atomic fuel.
Therefore this technology, free of radioactive waste, can be
a source of clean energy.

2 The non-holonomic background space

2.1 Preliminary data from topology

In this Section we construct a space metric which includes
a basic (primordial) non-holonomity, i.e. a basic field of the
non-orthogonality of the time lines to the three-dimensional
spatial section.

Here is some information from topology Each axis of
a Euclidean space can be represented as the element of a
circle with infinite radius [10]. An n-dimensional torus is
the topological product of n circles. The volume of an n-
dimensional torus is completely equivalent to the surface of
an (n+1)-dimensional sphere. Any compact metric space of
n dimensions can be mapped homeomorphicly into a subset
of a Euclidean space of 2n+1 dimensions.

Sequences of stochastic transitions between configura-
tions of different dimensions can be considered as stochastic
vector quantities (fields). The extremum of a distribution
function for frequencies of the stochastic transitions depen-
dent on n gives the most probable number of the dimensions,
and, taking the mapping n→ 2n+1 into account, the most
probable configuration of the space. This function was first
studied in the 1960’s by di Bartini [11, 12, 13]. He found that
the function has extrema at 2n+1=±7 that is equivalent
to a 3-dimensional vortical torus coaxial with another, the
same vortical torus, mirrored with the first one. Each of the
torii is equivalent to a (3+1)-dimensional sphere. Its con-
figuration can be easy calculated, because such formations
were studied by Lewis and Larmore. A vortical torus has
no breaks if the current lines coincide with the trajectory of
the vortex core. Proceeding from the continuity condition,
di Bartini found the most probable configuration of
the vortical torus is it characterized by the ratio E= D

r =
= 1
4 e

6.9996968= 274.074996 between the torus diameter D
and the radius of torus circulation r.
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We apply di Bartini’s result from topology to General
Relativity. The time axis is represented as the element of
the circle of radius R= 1

2D, while the spatial axes are the
elements of three small circles of radii r (the topological
product of which is the 3-dimensional vortical torus). In a
“metric” representation by a Minkowski diagram, the torus
is a 3-dimensional spatial section of the given (3+1)-space
while the time lines have some inclination to the the spatial
section. In order for the torus (the 3-dimensional space of
our world) to be uniform without break, all the time lines
have the same inclination to the spatial section at each point
of the section.

Cosines of the angles between the coordinate axes, in
Riemannian geometry, are represent by the components of
the fundamental metric tensor gαβ [14]. If the time lines are
everywhere orthogonal to the spatial section, all g0i are zero:
g0i=0. Such a space is called holonomic. If not (g0i 6=0),
the space is said to be non-holonomic. As was shown in
the 1940’s by Zelmanov [15, 16, 17], a field of the space
non-holonomity (inclinations of the time lines to the spatial
section) manifests as a rotation of the space with a
3-dimensional velocity vi=−

cg0i√
g00

. The mathematical proof
is given in Appendix 1.

So a field with the same inclination of the time lines
to the spatial section is characterized, in the absence of
gravitational fields, by vi=−cg0i= const at each point of
the spatial section. In other words, this is a field of the ho-
mogeneous non-holonomity (rotation) of the whole space. It
is hard to explain such a field by everyday analogy, because
it has zero angular speed, and also no centre of rotation.
However owing to the space-time representation by a Min-
kowski diagram, it appears very simply as a field of which
the time arrows pierce the hyper-surface of the spatial
section with the same inclination at each point.

After di Bartini’s result, we therefore conclude that the
most probable configuration of the basic space (space-time)
of General Relativity is represented by a primordially non-
holonomic (3+1)-dimensional pseudo-Riemannian space,
where the non-holonomic background field is homogeneous,
which manifests in the spatial section (3-dimensional space)
as the presence of two fundamental drift-fields:

1. A homogeneous field of the constant linear velocity of
the background space rotation

v̄ = c
r

R
=
2c

E
= const = 2.187671×108 cm/sec (1)

which originates from the fact that, given the non-
holonomic space, the time-like spread R depends on
the spatial-like spread r as R

r =
1
2E=137.037498. The

background space rotation, with v̄ = 2,187.671 km/sec
at each point of the space, is due to the continuity
condition everywhere inside the torus;

2. A homogeneous drift-field of the constant dipole-fit

linear velocity

v̄ =
v̄

2π
= const = 3.481787×107 cm/sec (2)

which characterizes a spatial linear drift of the non-
holonomic background relative to any given observer.
The field of the spatial drift with v̄ = 348.1787 km/sec
is also present at each point of the space.

In the spatial section the background space rotation with
v̄=2,187.671km/sec is observed as absolute motion. This
is due to the fact that a rotation due to the space non-
holonomity is relative to time, not the spatial coordinates.
Despite this, as proven by Zelmanov [15, 16, 17], such a
rotation relates to spatial rotation, if any.

2.2 The space metric which includes a non-holonomic
background

We are going to derive the metric of a non-holonomic space,
which has the aforementioned most probable configuration
for the (3+1)-space of General Relativity. To do this we
consider an element of volume of the space (the elementary
volume).

We consider the pseudo-Riemannian (3+1)-space of Ge-
neral Relativity. Let it be non-holonomic so that the non-
holonomity field is homogeneous, i.e. manifests as a homo-
geneous space-time rotation with a linear velocity v, which
has the same numerical value along all three spatial axes
at each point of the space. The elementary 4-dimensional
interval in such a space is

ds2 = c2dt2 +
2v

c
cdt (dx+ dy + dz) −

− dx2 − dy2 − dz2,
(3)

where the second term is not reduced, for clarity.
We denote the numerical coefficient, which characterize

the space rotation (see the second term on the right side),
as α= v/c. We mean, consider the most probable confi-
guration of the (3+1)-space, v= v̄= 2,187.671km/sec and
also α= v̄ /c= 1/137.037498. The ratio α= v̄ /c specific to
the space (it characterizes the background non-holonomity
of the space), coincides with the analytical value of Som-
merfeld’s fine-structure constant [11, 12, 13], connected to
electromagnetic interactions.∗

Given the most probable configuration of the space, each
3-dimensional volume element rotates with the linear veloc-
ity v̄= 2,187.671km/sec and moves with the velocity v̄ =
= v̄

2π = 348.1787 km/sec relative toward any observer loc-
ated in the space. The metric (3) contains the space rotation
only. To modify the metric for the most probable configura-

∗Tests based on the quantum Hall effect and the anomalous magnetic
moment of the electron, give different experimental values for Sommer-
feld’s constant, close to the analytical value. For instance, the latest tests
(2006) gave α' 1/137.035999710(96) [18].
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ds2 = c2dt2 +
2v (cosϕ+ sinϕ)

c
cdtdr +

2vr (cosϕ− sinϕ)
c

cdtdϕ+
2v

c
cdtdz−

− dr2 +
2vv (cosϕ+ sinϕ)

c2
drdz − r2dϕ2 +

2vvr (cosϕ− sinϕ)
c2

dϕdz − dz2
(7)

tion, we should apply Lorentz’ transformation along the
direction of the space motion.

We choose the z-axis for the direction of space motion.
For clarity of further calculation, we use the cylindrical co-
ordinates r, ϕ, z

x = r cosϕ , y = r sinϕ , z = z , (4)

so the metric (3) in the new coordinates takes the form

ds2 = c2dt2 +
2v

c
(cosϕ+ sinϕ) cdtdr+

+
2vr

c
(cosϕ− sinϕ) cdtdϕ+

2v

c
cdtdz−

− dr2 − r2dϕ2 − dz2.

(5)

Substituting the quantities t̃ and z̃ of Lorentz’ transfor-
mations

t̃ =
t+ vz

c2√
1− v2

c2

, z̃ =
z + vt
√
1− v2

c2

, (6)

for t and z in the metric (5), we obtain the metric for a
volume element which rotates with the constant velocity
v̄=αc and approaches with the constant velocity v= v̄ with
respect to any observer located in the space. This is formula
(7) shown on the top of this page. In that formula

1
√
1− v2

c2

=
1

√
1− v̄2

c2

= const ' 1 , (8)

due to that fact that, in the framework of this problem, v� c.
Besides there is also v� c, so that the second order terms
reduce each other. We still do not reduce the numerical
coefficient c of the non-diagonal space-time terms so that
they are easily recognized in the metric.

Because the non-holonomic metric (7) satisfies the most
probable configuration for such a (3+1)-space, we regard it
as the background metric of the world.

2.3 Study of the background metric. The main charac-
teristics of the background space

We now calculate the main characteristics of the space which
are invariant within a fixed three-dimensional spatial section,
connected to an observer. Such quantities are related to the
chronometric invariants, which are the physical observable
quantities in General Relativity [15, 16, 17] (see Appendix 2).

After the components of the fundamental metric tensor
gαβ are obtained from the background metric (7), we cal-
culate the main observable characteristics of the space (see
Appendix 2). It follows that in the space:

v

c
=
v̄

c
= α = const,

vv

c2
=
αv̄

c
=

v̄2

2πc2
= const , (9)

the gravitational potential w is zero

g00 = 1 , w = c2
(
1−
√
g00
)
= 0 , (10)

the linear velocity of the space rotation vi=−
cg0i√
g00

is

v1 = − v̄ (cosϕ+ sinϕ)

v2 = − v̄r (cosϕ− sinϕ)

v3 = − v̄





(11)

the relativistic multiplier is unity (within the number of sign-
ificant digits)

1
√
1− v̄2

c2

=
1

0.9999993
= 1 , (12)

the gravitational inertial force Fi, the angular velocity of the
space rotation Aik, the space deformation Dik, and the space
curvature Cik are zero

Fi = 0 , Aik = 0 , Dik = 0 , Cik = 0 , (13)

while of all the chr.inv.-Christoffel symbols Δikm, only two
components are non-zero,

Δ122 = −r , Δ212 =
1

r
. (14)

The non-holonomic background space is free of distrib-
uted matter, so the energy-momentum tensor is zero therein.
Hence, as seen from the chr.inv.-Einstein equations (see Ap-
pendix 2), the background space necessarily has

λ = 0 , (15)

i.e. it is also free of physical vacuum (λ-field). In other
words, the non-holonomic background space is empty.

We conclude for the background space exposed by the
non-holonomic background metric (7), that

The non-holonomic background space satisfying the
most probable configuration of the (3+1)-space of
General Relativity is a flat pseudo-Riemannian space
with the 3-dimensional Euclidean metric and a con-
stant space-time rotation. The background space is
empty; it permits neither distributed matter or vacuum
(λ-field). The background space is not one an Ein-
stein space (where Rαβ = kgαβ , k= const) due to
the fact that Einstein’s equations have k=0 in the
background space. To be an Einstein space, the back-
ground space should be perturbed.

Read about Einstein spaces and their formal determina-
tion in Einstein Spaces by A. Z. Petrov [19].

It should be noted that of the fact that the 3-dimensional
Euclidean metric means only Fi=0, Aik=0, Dik=0 and
Cik=0. The Christoffel symbols can be Δimn 6=0 due to the
curvilinear coordinates.
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ds2 =

(

1−
2GM

c2z

)

c2dt2 +
2v (cosϕ+ sinϕ)

c
cdtdr +

2vr (cosϕ− sinϕ)
c

cdtdϕ+
2v

c
cdtdz−

− dr2 +
2vv (cosϕ+ sinϕ)

c2
drdz − r2dϕ2 +

2vvr (cosϕ− sinϕ)
c2

dϕdz −

(

1 +
2GM

c2z

)

dz2
(20)

2.4 Perturbation of the non-holonomic background

How does a gravitational field and local rotation (the gravita-
tional field of the Earth and the rotation of a disc, for ins-
tance) affect the metric? This we now describe.

The ratio v /c, according to the continuity condition in the
space (see §2), equals Sommerfeld’s fine-structure constant
α= v̄ /c= 1/137.037498 only if the non-holonomic back-
ground metric is unperturbed by a local rotation, so the
space non-holonomity appears as a homogeneous field of
the constant linear velocity of the space rotation v̄, which
is 2,187.671 km/sec. The gravitational potential w appears
in General Relativity as w= c2(1−

√
g00), i.e. connected to

g00. So the presence of a gravity field changes the linear
velocity of the space rotation vi=−

cg0i√
g00

. For an Earth-

bound laboratory, we have w
c2
= GM

c2z
'7×10−10. This numer-

ical value is so small that perturbations of the non-holonomic
background through g00, by the Earth’s gravitational field,
are weak. Another case — local rotations. A local rotation
with a linear velocity ṽ or a gravitational potential w per-
turbs the homogeneous field of the space non-holonomity,
the ratio v /c in that area changes from the initial value
α= v̄ /c= 1/137.037498 to a new, perturbed value

v

c
=
v̄ + ṽ

c
= α+

ṽ

v̄
α . (16)

This fact should be taken into account in all formulae
which include v or the derivatives.

Consider a high speed gyro used in aviation navigation: a
250 g rotor of 1.65′′ diameter, rotating with an angular speed
of 24,000 rpm. With modern equipment this is almost the
uppermost speed for such a mechanically rotating system∗. In
such a case the background field of the space non-holonomity
is perturbed near the giro as ṽ≈ 53 m/sec, that is 2.4×10−5

of the background v̄= 2,187.671km/sec. Larger effects are
expected for a submarine gyro, where the rotor and, hence,
the linear velocity of the rotation is larger. In other words, the
non-holonomic background can be substantially perturbed
near such a mechanically rotating system.

2.5 The background metric perturbed by a gravita-
tional field

The formula for the linear velocity of the space rotation

vi = −c
g0i
√
g00

, (17)

∗Mechanical gyros used in aviation and submarine navigation techno-
logy have rotations in the range 6,000–30,000 rpm. The upper speed is
limited by problems due to friction.

was derived by Zelmanov [15, 16, 17], due to the space non-
holonomity, and originating in it. It is evident that if the same
numerical value vi= const remains unchanged everywhere
in the spatial section (i.e. ∗∇i vi=0)†

vi = const
∗∇i v

i = 0

}

(18)

there is a homogeneous field of the space non-holonomity.
By the formula (17), given a homogeneous field of the space
non-holonomity, any local rotation of the space (expressed
with g0i) and also a gravitational potential (contained in g00)
perturb the homogeneous non-holonomic background.

We modify the background metric (7) to that case where
the homogeneous non-holonomic background is perturbed
by a weak gravitational field, produced by a bulky point
massM , that is usual for observations in a laboratory located
on the Earth’s surface or near orbit. The gravitational poten-
tial in General Relativity is w= c2(1−

√
g00). We assume

gravity acting in the z-direction, i.e. w= GM
z , and we omit

terms of higher than the second order in c, following the
usual approximation in General Relativity (see Landau and
Lifshitz [20] for instance). We substitute

g00 =
(
1−

w

c2

)2
=

(

1−
GM

c2z

)2
' 1−

2GM

c2z
6=1 (19)

into the first term of the initial metric (5). After Lorentz’
transformations, we obtain a formula for the non-holonomic
background metric (7) perturbed by such a field of gravity.
This is formula (20) displayed on the top of this page.

2.6 The background metric perturbed by a local oscil-
lation and gravitational field

A superconducting disc in air under the influence of an alt-
ernating magnetic field of an electromagnet located beneath
it, undergoes oscillatory bounces with the frequency of the
current, in a vertical direction (the same that of the Earth’s
gravity — the z-direction in our cylindrical coordinates).

We set up a harmonic transformation of the z-coordinate

z̃ = z + z0 cos
Ω

c
u , u = ct+ z , (21)

where z0 is the initial deviation (the amplitude of the oscilla-
tion), while Ω is the frequency. After calculating dz̃ and
dz̃2 (22), and using these instead of dz and dz2 in the non-
holonomic background metric (7), we obtain the background
metric (7) perturbed by the local oscillation and gravitational
field. This is formula (23) shown above.

†See Appendix 2 for the chr.inv.-differentiation symbol ∗∇.
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dz̃ =

(

1−
Ωz0
c
sin

Ω

c
u

)

dz −

(
Ωz0
c
sin

Ω

c
u

)

cdt

dz̃2 =

(

1−
Ωz0
c
sin

Ω

c
u

)2
dz2 −

2Ωz0
c

sin
Ω

c
u

(

1−
Ωz0
c
sin

Ω

c
u

)

cdt dz +

(
Ω2z20
c2

sin2
Ω

c
u

)

c2dt2






(22)

ds2 =

[

1−
2GM

c2
(
z + z0 cos

Ω
c u
) −

2vΩz0
c2

sin
Ω

c
u−

Ω2z20
c2

sin2
Ω

c
u

]

c2dt2+

+
2v (cosϕ+ sinϕ)

c

(

1−
Ωz0v

c2
sin

Ω

c
u

)

cdt dr +
2vr (cosϕ− sinϕ)

c

(

1−
Ωz0v

c2
sin

Ω

c
u

)

cdt dϕ +

+
2

c

(

1−
Ωz0v

c2
sin

Ω

c
u

){

v +Ωz0 sin
Ω

c
u

[

1 +
2GM

c2
(
z + z0 cos

Ω
c u
)

]}

cdt dz − dr2+

+
2vv (cosϕ+ sinϕ)

c2

(

1−
Ωz0
c2

sin
Ω

c
u

)

dr dz − r2dϕ2 +
2vvr (cosϕ− sinϕ)

c2

(

1−
Ωz0
c
sin

Ω

c
u

)

dϕ dz−

−

[

1 +
2GM

c2
(
z + z0 cos

Ω
c u
)

](

1−
Ωz0
c
sin

Ω

c
u

)2
dz2

(23)

ds2 =

(

1−
2GM

c2z
−
2Ωz0v

c2
sin

Ω

c
u

)

c2dt2 +
2v (cosϕ+ sinϕ)

c
cdt dr +

2vr (cosϕ− sinϕ)
c

cdt dϕ +

+
2

c

(

v +Ωz0 sin
Ω

c
u

)

cdt dz − dr2 − r2dϕ2 − dz2
(25)

3 The space of a suspended, vertically oscillating disc

3.1 The main characteristics of the space

Metric (23) is very difficult in use. However, under the phys-
ical conditions of a real experiment, many terms vanish so
that the metric reduces to a simple form. We show how.

Consider a system like that used by Podkletnov in his
experiment: a horizontally oriented disc suspended in air
due to an alternating high-frequent magnetic field generated
by an electromagnet located beneath the disc. Such a disc
undergoes an oscillatory bounce along the vertical axis with
a frequency which is the same as that of the alternating
magnetic field. We apply metric (23) to this case, i.e. the
metric of the space near such a disc.

First, because the initial deviation of such a disc from
the rest point is very small (z0� z), we have

2GM

c2
(
z+z0 cos

Ω
c u
)'

2GM

c2z

(

1−
z0
z
cos

Ω

c
u

)

'
2GM

c2z
. (24)

Second, the relativistic square is K =1. Third, under
the conditions of a real experiment like Podkletnov’s, the

terms Ω2z20
c2

Ω2z0
c

, Ωz0
c

, v2

c2
and v

c
have such small num-

erical values that they can be omitted from the equations.
The metric (23) then takes the much simplified form, shown
as expression (25) at the top of this page. In other words,
the expression (25) represents the metric of the space of a
disc which undergoes an oscillatory bounce orthogonal to its
own plane, in the conditions of a real experiment. This is the

main metric which will be used henceforth in our study for
the Podkletnov effect.

We calculate the main observable characteristics of such
a space according to Appendix 2.

In such a space the gravitational potential w and the com-
ponents of the linear velocity of the space rotation vi are

w =
GM

z
+

(

Ωz0 sin
Ω

c
u

)

v , (26)

v1 = −v (cosϕ+ sinϕ)

v2 = −vr (cosϕ− sinϕ)

v3 = −v − Ωz0 sin
Ω

c
u





. (27)

The components of the gravitational inertial force Fi
acting in such a space are

F1 =

(

Ωz0 sin
Ω

c
u

)

vr + (cosϕ+ sinϕ) vt

F2 =

(

Ωz0 sin
Ω

c
u

)

vϕ + r (cosϕ− sinϕ) vt

F3 =

(

Ωz0 sin
Ω

c
u

)

vz −
GM

z2
+ vt +

+ Ω2z0 cos
Ω

c
u






, (28)

where the quantities vr, vϕ, vz , vt denote the respective
partial derivatives of v.
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In such a space the components of the tensor of the
angular velocities of the space rotation Aik are

A12 =
1

2
(cosϕ+ sinϕ) vϕ −

r

2
(cosϕ− sinϕ) vr

A23 =
r

2
(cosϕ− sinϕ) vz −

1

2
vϕ

A13 =
1

2
(cosϕ+ sinϕ) vz −

1

2
vr






. (29)

Because we omit all quantities proportional to v2

c2
, the

chr.inv.-metric tensor hik=−gik+ 1
c2
vivk (the observable

3-dimensional metric tensor) becomes hik=−gik. Its com-
ponents for the metric (25) are

h11 = 1 , h22 = r
2, h33 = 1

h11 = 1 , h22 =
1

r2
, h33 = 1

h = det ‖hik‖ = r
2,

∂ln
√
h

∂x1
=
1

r






. (30)

For the tensor of the space deformation Dik we obtain

D33 = D
33 = 0 , D = hikDik = 0 . (31)

Among the chr.inv.-Christoffel symbols Δikm within the
framework of our approximation, only two components are
non-zero,

Δ122 = −r , Δ212 =
1

r
, (32)

so, despite the fact that the observable curvature tensor Cik
which possesses all the properties of Ricci’s tensor Rαβ on
the 3-dimensional spatial section (see Appendix 2) isn’t zero
in the space, but within the framework of our assumption it
is meant to be zero: Cik=0. In other words, although the
space curvature isn’t zero, it is so small that it is negligible
in a real experiment such as we are considering.

These are the physical observable characteristics of a
space volume element located in an Earth-bound laboratory,
where the non-holonomic background of the space is per-
turbed by a disc which undergoes oscillatory bounces ortho-
gonal to its own plane.

We have now obtained all the physical observable char-
acteristics of space required by Einstein’s equations. Ein-
stein’s equations describe flows of energy, momentum and
matter. Using the derived equations, we will know in preci-
sely those flows of energy and momentum near a disc which
undergoes an oscillatory bounce orthogonal to its own plane.
So if there is any additional energy flow or momentum flow
generated by the disc, Einstein’s equations show this.

3.2 Einstein’s equations in the space. First conclusion
about the origin of the Podkletnov effect

Einstein’s equations, in terms of the physical observable
quantities given in Appendix 2, were derived in the 1940’s

by Zelmanov [15, 16, 17] as the projections of the general
covariant (4-dimensional) Einstein equations

Rαβ −
1

2
gαβR = −κTαβ + λgαβ (33)

onto the time line and spatial section of an observer.
We omit the λ-term due to its negligible effect. In consi-

dering a real situation like Podkletnov’s experiment, we as-
sume the same approximation as in the previous Section. We
also take into account those physical observable characterist-
ics of the space which are zero according to our calculation.

Einstein’s equations expressed in the terms of the phys-
ical observable quantities (see Appendix 2 for the complete
equations) then take the following simplified form

∂F i

∂xi
− AikA

ik +
∂ ln
√
h

∂xi
F i = −

κ

2

(
ρc2 + U

)

∂Aij

∂xj
+
∂ ln
√
h

∂xj
Aij = −κJ i

2AijA
∙j
k∙ +

1

2

(
∂Fi
∂xk

+
∂Fk
∂xi

− 2ΔmikFm

)

=

=
κ

2

(
ρc2 − U

)
hik + κUik






(34)

where ρ= T00
g00

, J i= cT i0√
g00

and U ik= c2T ik are the observ-
able projections of the energy-momentum tensor Tαβ of dis-
tributed matter on the right side of Einstein’s equations (the
right side determines distributed matter which fill the space,
while the left side determines the geometrical properties
of the space). By their physical sense, ρ is the observable
density of the energy of the matter field, J i is the observ-
able density of the field momentum, U ik is the observable
stress-tensor of the field.

In relation to Podkletnov’s experiment, Tαβ is the sum
of the energy-momentum tensor of an electromagnetic field,
generated by an electromagnet located beneath the disc, and
also that of the other fields filling the space. We therefore
attribute the energy-momentum tensor Tαβ and its observ-
able components ρ, J i, U ik to the common field.

Is there additional energy and momentum produced by
the field of the background space non-holonomity in order
to compensate for a perturbation therein, due to a disc under-
going oscillatory bounces orthogonal to its own pane? This is
easy to answer using Einstein’s equations, owing to the fact
that given the unperturbed field of the background space
non-holonomity, the linear velocity of the space rotation
v isn’t a function of the spatial coordinates and time v 6=
6= f (r, ϕ, z, t). After Fi, Aik, Dik, and Δikn specific to the
space of a suspended, vertically oscillating disc are substi-
tuted into Einstein’s equations (34), the left side of the equa-
tions should contain additional terms dependent on the de-
rivatives of v by the spatial coordinates r, ϕ, z, and time
t. The additional terms, appearing in the left side, build
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(35)
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respective additions to the energy and momentum of the act-
ing electromagnetic field on the right side of the equations.

Following this line, we are looking for the energy and
momentum produced by the field of the background space
non-holonomity due to perturbation therein.

We substitute Fi (28), Aik (29), Dik (31), and Δikn
(32), specific to the space of such an oscillating disc, into
the chr.inv.-Einstein equations (34), and obtain the Einstein
equations as shown in formula (35). These are actually Ein-
stein’s equations for the initial homogeneous non-holonomic
space perturbed by such a disc.

As seen from the left side of the Einstein equations (35),
a new energy-momentum field appears near the disc due to
the appearance of a non-uniformity of the field of the back-
ground space non-holonomity (i.e. due to the functions v of
the coordinates and time):

1. The field bears additional energy to the electromagnet-
ic field energy represented in the space (see the scalar
Einstein equation);

2. The field has momentum flow J i. The momentum
flow spreads from the outer space toward the disc
in the r-direction, twists around the disc in the ϕ-
direction, then rises above the disc in the z-direction
(see the vectorial Einstein equations which describe
the momentum flow J1, J2, and J3 toward r, ϕ,
and z-direction respectively). This purely theoretical
finding explains the Podkletnov effect. According to
Eugene Podkletnov, a member of his experimental
team smoked a pipe a few meters away from the cryo-
stat with the superconducting disc, during operation.
By a stroke of luck, Podkletnov noticed that the to-
bacco smoke was attracted towards the cryostat, then
twisted around it and rose above it. Podkletnov then
applied a high precision balance, which immediately
showed a weight loss over the cryostat. Now it is clear
that the tobaccosmoke revealed the momentum flow
produced by the background space non-holonomity
field perturbed near the vertically oscillating disc;

3. The field has distributed stresses which are expressed
by an addition to the electromagnetic field stress-
tensor (see the Einstein tensor equations).

In the simplest case where Podkletnov’s experiment is
run in a completely holonomic space (v=0) the Einstein
equations (35) take the simplest form

2GM

z3
= −κρc2

J1 = 0 , J2 = 0 , J3 = 0

U11 = 0 , U12 = 0 , U13 = 0 , U22 = 0 , U23 = 0

2GM

z3
= κU33






(36)

This is also true in another case, where the space is non-
holonomic (v 6=0) but v isn’t function of the spatial coordi-
nates and time v 6= f (r, ϕ, z, t), that is the unperturbed
homogeneous field of the background space non-holonomity.
We see that in both cases there is no additional energy and
momentum flow near the disc; only the electromagnetic field
flow is put into equilibrium by the Earth’s gravity, directed
vertically along the z-axis.

So Einstein’s equations show clearly that:
The Podkletnov effect is due to the fact that the field
of the background space non-holonomity, being per-
turbed by a suspended, vertically oscillating disc,
produces energy and momentum flow in order to
compensate for the perturbation therein.

3.3 Complete geometrization of matter

Looking at the right side of the Einstein equations (35),
which determine distributed matter, we see that ρ and U
are included only in the scalar (first) equation and also three
tensor equations with the indices 11, 22, 33 (the 5th, 8th,
and 10th equations). We can therefore find a formula for U .
Then, substituting the formula back into the Einstein equa-
tions for ρ and U11, U22, U33, we can express the char-
acteristics of distributed matter through only the physical
observable characteristics of the space. This fact, coupled
with the fact that the other characteristics of distributed matter
(J1, J2, J3, U12, U13, U13) are expressed through only
the physical observable characteristics of the space by the
2nd, 3rd, 4th, 6th, 7th, and 9th equations of the Einstein
equations (35), means that considering a space in which the
homogeneous non-holonomic background is perturbed by an
oscillating disc, we can obtain a complete geometrization of
matter.

Multiplying the 1st equation of (35) by the 3rd, then
summing with the 5th, 8th, and 10th equations, we eliminate
ρ. Then, because U =hikUik=U11+

U22
r2
+U33, we obtain

a formula for U expressed only via the physical observable
characteristics of the space. Substituting the obtained formula
for κU into the 1st equation, we obtain a formula for ρ.
After that it is easy to obtain ρc2+U and ρc2−U . Using
these in the three Einstein tensor equations with the diagonal
indices 11, 22, 33, we obtain formulae for U11, U22, U33, all
expressed only in terms of the physical observable character-
istics of the space.

The resulting equations, coupled with those of the Ein-
stein equations (35) which determine J1, J2, J3, U12, U13,
and U13, build the system of the equations (37), which comp-
letely determine the properties of distributed matter — the
density of the energy ρ, the density of the momentum flow
JI , and the stress-tensor Uik — only in terms of the physical
observable characteristics of the space. So:

Matter which fills the space, where a homogeneous
non-holonomic background is perturbed by an oscil-
lating disc is completely geometrized.
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There is just one question still to be answered. What is
the nature of the matter?

Among the matter different from the gravitational field,
only the isotropic electromagnetic field was previously geo-
metrized — that for which the metric is determined by the
Rainich condition [23, 24, 25]

R = 0 , RαρR
ρβ =

1

4
δβα (RρσR

ρσ) = 0 (38)

and the Nordtvedt-Pagels condition [26]

ημεγσ
(
Rδγ;σRετ −Rδε;σRγτ

)
= 0 . (39)

The Rainich condition and the Nordtvedt-Pagels condi-
tion, being applied to the left side of Einstein’s equations,
completely determine the properties of the isotropic elec-
tromagnetic field on the right side. In other words, the afore-
mentioned conditions determine both the geometric proper-
ties of the space and the properties of a pervading isotropic
electromagnetic field.

An isotropic electromagnetic field is such where the field
invariants FαβFαβ and F∗αβF

αβ , constructed from the
electromagnetic field tensor Fαβ and the field pseudo-tensor
F ∗αβ = 1

2 η
αβμνFμν dual, are zero

FαβF
αβ = 0 , F∗αβF

αβ = 0 , (40)

so the isotropic electromagnetic field has a structure trun-
cated to that of an electromagnetic field in general.

In our case we have no limitation on the structure of
the electromagnetic field, so we use the energy-momentum
tensor of the electromagnetic field in the general form [20]

Tαβ =
1

4π

(

−FασF
∙σ
β ∙ +

1

4
FμνF

μνgαβ

)

, (41)

whence the observable density of the field energy ρ= T00
g00

and the trace U =hikUik of the observable stress-tensor of
the field U ik= c2T ik are connected by the relation

ρc2 = U . (42)

In other words, if besides the gravitational field there is
be only an electromagnetic field, we should have ρc2=U
for distributed matter in the Einstein equations.

However, as seen in the 2nd equation of the system (37),
ρc2−U 6=0 in the Einstein equations, for the only reason
that, in the case we are considering, the laboratory space
is filled not only by the Earth’s gravitational field and an
alternating magnetic field which supports the disc in air, but
also another field appeared due to the fact that the oscillating
disc perturbs the non-holonomic background of the space.
The perturbation field, as shown in the previous Section,
bears energy and momentum∗, so it can be taken as a field
of distributed matter. In other words,

∗The fact that the space non-holonomity field bears energy and mo-
mentum was first shown in the earlier publication [27], where the field of a
reference body was considered.

We have obtained a complete geometrization of
matter consisting of an arbitrary electromagnetic field
and a perturbation field of the non-holonomic back-
ground of the space.

3.4 The conservation law

When considering the geodesic equations in a space, the
hon-holonomic background of which is perturbed by a disc
undergoing oscillatory bounces orthogonal to its own plane,
we need to know the space distribution of the perturbation,
i.e. some relations between the functions vt= ∂v

∂t
, vr = ∂v

∂r
,

vϕ=
∂v
∂ϕ

, vz = ∂v
∂z

, which are respective partial derivatives of
the value v of the linear velocity of the space rotation vi.

The functions vt, vr, vϕ, vz are contained in the left
side (geometry) of the Einstein equations we have obtained.
Therefore, from a formal point of view, to find the functions
we should integrate the Einstein equations. However the
Einstein equations are represented in a non-empty space,
so the right side of the equations is not zero, but occupied
by the energy-momentum tensor Tαβ of distributed matter
which fill the space. Hence, to obtain the functions vt, vr,
vϕ, vz from the Einstein equations, we should express the
right side of the equations — the energy-momentum tensor
of distributed matter Tαβ — through the functions as well.

Besides, in our case, Tαβ represents not only the energy-
momentum of the electromagnetic field but also the energy-
momentum produced by the field of the background space
non-holonomity compensating the perturbation therein. Yet
we cannot divide one energy-momentum tensor by another.
So we must consider the energy-momentum tensor for the
common field, which presents a problem, because we have
no formulae for the components of the energy-momentum
tensor of the common field. In other words, we are enforced
to operate with the components of Tαβ as merely some
quantities ρ, J i, and U ik.

How to express Tαβ through the functions vt, vr, vϕ,
vz , aside for by the Einstein equations? In another case we
would be led to a dead end. However, our case of distributed
matter is completely geometrized. In other words, the geom-
etrical structure of the space and the space distribution of
the energy-momentum tensor Tαβ are the same things. We
can therefore find the functions vt, vr, vϕ, vz from the space
distribution of Tαβ , via the equations of the conservation law

∇σT
ασ = 0 . (43)

The conservation law in the chr.inv.-form, i.e. represent-
ed as the projections of equation (43) onto the time line and
spatial section of an observer, is [15]
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(44)
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(46)

where ρ= T00
g00

, J i= cT i0√
g00

and U ik= c2T ik are the observ-
able projections of the energy-momentum tensor Tαβ of dis-
tributed matter. The chr.inv.-conservation equations, taking
our assumptions for real experiment into account, take the
simplified form

∂ρ

∂t
+
∂J i

∂xi
+
∂ ln

√
h

∂xi
J i = 0

∂Jk

∂t
+ 2A∙ki∙ J

i +
∂U ik

∂xi
+
∂ln
√
h

∂xi
U ik+

+ΔkimU
im − ρF k = 0






. (45)

Substituting into the equations the formulae for D, Dk
i ,

A∙ki∙ ,
∂ln

√
h

∂xi
, Δkim, and F k, we obtain a system of the con-

servation equations (46) wherein we should substitute ρ, J i,
and U ik from the Einstein equations (37) then, reducing
similar terms, arrive at some relations between the functions
vt, vr, vϕ, vz . The Einstein equations (37) substituted into
(46) evidently result in intractable equations. It seems that
we will have no chance of solving the resulting equations
without some simplification according to real experiment.
We should therefore take the simplification into account
from the beginning.

First, the scalar equation of the conservation law (44)
under the conditions of a real experiment takes the form of
(45), which in another notation is

∂ρ

∂t
+ ∗∇i J

i = 0 . (47)

The 2nd equation of (37) determines ρ: the quantity is
ρ∼ 1

c2
. Omitting the term proportional to 1

c2
as its effect is

negligible in a real experiment, we obtain the scalar equation
of the conservation law in the form∗

∗∇i J
i = 0 , (48)

∗The chr.inv.-differential operators are completely determined, accord-
ing to [15, 16], in Appendix 2.

i.e. the chr.inv.-derivative of the common flow of the spatial
momentum of distributed matter is zero to within the appro-
ximation of a first-order experiment. This finding has a very
important meaning:

Given a space, the non-holonomic background of
which is perturbed by an oscillating disc, the common
flow of the momentum of distributed matter on the
spatial section of such a space is conserved in a first-
order experiment.

Second, there are three states of the disc in Podkletnov’s
experiment: (1) uniform rotation; (2) non-uniform rotation
(acceleration/deceleration); (3) non-rotating disc. To study
the case of a rotating disc we should introduce, into the
metric (25), additional terms which take the rotation into
account. We don’t do this now, for two reasons: (1) the
additional terms introduced into the metric (25) make the
equations of the theory too complicated; (2) the case of a
non-rotating disc is that main case where, according Podklet-
nov’s experiments, the weight-loss effect appears in the basic
form; accelerating/decelerating rotation of the disc produces
only additions to the basic weight-loss. So, to understand the
origin of the weight-loss phenomenon it is most reasonable
to first consider perturbation of the background field of the
space non-holonomity by a non-rotating disc. Because such
a disc lies horizontally in the plane rϕ (horizontal plane),
we should assume vz =0, while the fact that there vr 6=0
and vϕ 6=0 means freedom for oscillation in the plane rϕ
(accelerating or decelerating twists in the plane) as a result of
vertical oscillation of such a disc (otherwise, for no oscilla-
tion in the plane rϕ, the conservation equations would
become zero). The fact that ϕ 6= const in the equations means
the same.

As a result, the conservation equations (46), with the afo-
rementioned assumptions taken into account, take the form
(49). The characteristics of distributed matter such as the
momentum flow J i and the stress-tensor U ik, resulting from
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the Einstein equations (37), were collected in complete form
into the system (37). Under the aforementioned assumptions
they take the form (50).

We substitute the respective components of J i and U ik

(50) into the conservation equations (49). After algebra, re-
ducing similar terms, the first two equations of (49) become
identically zero, while the third equation takes the form:

vr =
vϕ
r
, (51)

The solution vr =
vϕ
r we have obtained from the conser-

vation equations satisfies by the function

v = B (t) r eϕ, (52)

where B (t) is a function of time t. Specific formula for the
function B (t) should be determined by nature of the pheno-

menon or the conditions of the experiment.
The solution indicates a dependency between the distrib-

utions of v in the r-direction and ϕ-direction in the space, if
the non-holonomic background is perturbed by a disc lying
in the rϕ plane and oscillating in the z-direction.

In other words, the conservation equations in common
with the Einstein equations we have obtained mean that:

A disc, oscillating orthogonally to its own plane, per-
turbs the field of the background non-holonomity of
the space. Such a motion of a disc places a limi-
tation on the geometric structure of the space. The
limitation is manifested as a specific distribution of
the linear velocity of the space rotation. This distribu-
tion means that such a disc should also have small
twists in its own plane due to the perturbed non-
holonomic background.
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(60)

3.5 The geodesic equations in the space. Final conclu-
sion about the forces driving the Podkletnov effect

This is the final part of our mathematical theory of the
Podkletnov effect. Here, using the Einstein equations and
the equations of the conservation law we have developed,
we deduce an additional force that produces the weight-
loss effect in Podkletnov’s experiment, i.e. the weight-loss
over a superconducting disc which is supported in air by an
alternating magnetic field.

As is well known, motion in a gravitational field of a free
test-particle of rest-mass m0 is described by the equations of
geodesic lines (the geodesic equations). The geodesic equa-
tions are, from a purely mathematical viewpoint, the equa-
tions of parallel transfer of the four-dimensional vector of
the particle’s momentum Pα=m0

dxα

ds
along the particle’s

4-dimensional trajectory

dPα

ds
+ ΓαμνP

μ dx
ν

ds
= 0 , (53)

where Γαμν are Christoffel’s symbols of the 2nd kind, while
ds is the 4-dimensional interval along the trajectory.

The geodesic equations (53), being projected onto the
time line and spatial section of an observer, and expressed
through the physical observable characteristics of a real lab-
oratory space of a real observer, are known as the chr.inv.-
geodesic equations. They were deduced in 1944 by Zelm-
anov [15, 16]. The related scalar equation is the projection
onto the time line of the observer, while the 3-dimensional
vector equation is the projection onto his spatial section, and
manifests the 3rd Newtonian law for the test-particle:
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ivk = 0

d(mvi)

dτ
+2m

(
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vk−mF i+mΔinkv

nvk=0





(54)

where m is the relativistic mass of the particle, vi is the 3-
dimensional observable velocity of the particle, and τ is the
physical observable or proper time∗ [15, 16]

∗This is that real time which is registered by the observer in his real

m=
m0√
1−v2/c2

, vi =
dxi

dτ
, (55)

dτ =
√
g00 dt+

g0i
c
√
g00

dxi =
√
g00 dt−

1

c2
vidx

i. (56)

With the simplifications for the real experiment we are
considering, the chr.inv.-geodesic equations (54) take the
form
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k −mF i +mΔinkv
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(57)

that is, in component notation,
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(58)

which are actual chr.inv.-equations of motion of a free test-
body in the space, whose non-holonomic homogeneous
background is perturbed by an oscillating disc.

The scalar geodesic equation of (58) says

m = const , (59)

so taking this fact into account and introducing the notation
v1= dr

dτ
= ṙ, v2= dϕ

dτ
= ϕ̇, v3= dz

dτ
= ż, we obtain a system

of three vector equations of motion of the test-body (60),
wherein vt= ∂v

∂t
, vr = ∂v

∂r
, vϕ= ∂v

∂ϕ
, vz = ∂v

∂z
.

laboratory space. Intervals of the physical observable time dτ and the
observable spatial coordinates dxi are determined, by the theory of phys-
ical observable quantities (chronometric invariants) as the projections of
the interval of the 4-dimensional coordinates dxα onto the time line and
spatial section of an observer, i.e.: bαdxα= cdτ , hiαdx

α= dxi [15, 16].
See Appendix 2 for the details of such a projection.

D. Rabounski and L. Borissova. A Theory of the Podkletnov Effect Based on General Relativity 71



Volume 3 PROGRESS IN PHYSICS July, 2007

Because the terms containing z0 in equations (60) are
very small, they can be considered to be small harmonic
corrections. Such equations can always be solved using the
small parameter method of Poincaré. The Poincaré method
is also known as the perturbation method, because we con-
sider the right side as a perturbation of a harmonic oscillation
described by the left side. The Poincaré method is related to
exact solution methods, because a solution produced with
the method is a power series expanded by a small parameter
(see Lefschetz, Chapter XII, §2 of [21]).

However our task is much simpler. We are looking for an
approximate solution of the system of the vector equations
of motion in order to see the main forces acting in the basic
Podkletnov experiment. We therefore simplify the equations
as possible. First we take into account that, in the condition
of Podkletnov’s experiment, the suspended test-body has
freedom to move only in the z-direction (i.e. up or down
in a vertical direction, which is the direction of the acting
force of gravity). In other words, concerning a free test-body
falling from above the disc, we take ṙ=0 and ϕ̇=0 despite
the forces r̈ and ϕ̈ acting it in the r-direction and the ϕ-
direction are non-zero. Second, rotational oscillation of the
disc in the rϕ–plane is very small. We therefore regard ϕ as
a small quantity, so sinϕ'ϕ and cosϕ' 1. Third, by the
conservation equations, vϕ= rvr.

Taking all the assumptions into account, the equations of
motion (60) take the much simplified form
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(61)

where g= GM
z2

is the acceleration produced by the Earth’s
force of gravity, remaining constant for the experiment.

For Podkletnov’s experiment, vt= const, and this value
depends on the specific parameters of the vertically oscillat-
ing disc, such as its diameter, the frequency and amplitude
of its vibration. The harmonic term in the third equation is
a small correction which can only shake a test-body in the
z-direction; this term cannot be a source of a force acting
in just one direction. Besides, the harmonic term has a very
small numerical value, and so it can be neglected. In such a
case, the third equation of motion takes the simple form

z̈ + g − vt = 0 , (62)

where the last term is a correction to the acting force of
gravity due to the perturbed field of the background space
non-holonomity.

Integrating the equation z̈=−g+ vt, we obtain

z = −
g − vt
2

τ 2 + C1 τ + C2 , (63)

where the initial moment of time is τ0=0, the constants
of integration are C1= ż0 and C2= z0. As a result, if the
test-body is at rest at the initial moment of time (ż0=0),
its vertical coordinate z at another moment of observable
time is

z = z0 −
gτ 2

2
+
vt τ

2

2
. (64)

The result we have obtained isn’t trivial because the ad-
ditional forces obtained within the framework of our theory
originate in the field of the background space non-holonomity
perturbed by the disc. As seen from the final equation of
motion along the z-axis (62), such an additional force acts
everywhere against the force of gravity. So it works like
“negative gravity”, a truly anti-gravity force.

Within the framework of Classical Mechanics we have
no space-time, hence there are no space-time terms in the
metrics which determine the non-holonomity of space. So
such an anti-gravity force is absent in Classical Mechanics.

Such an anti-gravity force vanishes in particular cases of
General Relativity, where the pseudo-Riemannian space is
holonomic, and also in Special Relativity, where the pseudo-
Riemannian space is holonomic by definition (in addition to
the absence of curvature, gravitation, and deformation).

So the obtained anti-gravity force appears only in Gen-
eral Relativity, where the space is non-holonomic.

It should be noted that the anti-gravity force F =mvt
isn’t related to a family of forces of inertia. Inertial forces
are fictitious forces unrelated to a physical field; an inertial
force appears only in mechanical contact with that physical
body which produces it, and disappears when the mechanical
connexion ceases. On the contrary, the obtained anti-gravity
force originates from a real physical field — a field of the
space non-holonomity, — and is produced by the field in
order to compensating for the perturbation therein. So the
anti-gravity force obtained within the framework of our theory
is a real physical force, in contrast to forces of inertia.

Concerning Podkletnov’s experiment, we should take
into account the fact that a balance suspended test-body isn’t
free, due to the force of reaction of the pier of the balance
which completely compensates for the common force of
attraction of the test-body towards the Earth (the body’s
weight). As a result such a test-body moves along a non-
geodesic world-trajectory, so the equations of motion of such
a particle have non-zero right side containing the force of
the reaction of the pier. In the state of static weight, the
common acceleration of the test-body in the z-direction is
zero (z̈=0), hence its weight Q is

Q = mg −mvt . (65)

The quantity vt contained in the additional anti-gravity
force F =mvt is determined by the parameters of the small
twists of the disc in the horizontal plane, the frequency of
which is the same as the frequency Ω of vertical oscillation
of the disc, while the amplitude depends on parameters of the
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disc, such as its radius r and the amplitude z0 of the oscilla-
tion. (A calculation for such an anti-gravity force in the
condition of a real experiment is given in the next Section.
As we will see, our theory gives good coincidence with the
weight-loss effect as measured in Podkletnov’s experiment.)

The geodesic equation we have obtained in the field of
an oscillating disc allows us to draw a final conclusion about
the origin of the forces which drive the weight-loss effect in
Podkletnov’s experiment:

A force produced by the field of the background space
non-holonomity, compensating for a perturbation
therein, works like negative gravity in the condition
of an Earth-bound experiment. Being produced by a
real physical field that bears its own energy and mo-
mentum, such an anti-gravity force is a real physical
force, in contrast to fictitious forces of inertia which
are unrelated to physical fields.

In the conditions of Podkletnov’s experiment, a hori-
zontally placed superconducting disc, suspended in
air due to an alternating magnetic field, undergoes
oscillatory bounces in a vertical direction (orthogonal
to the plane of the disc) with the same frequency of
the magnetic field. Such an oscillation perturbs the
field of the background space non-holonomity, ini-
tially homogeneous. As a result the background non-
holonomity field is perturbed in three spatial direc-
tions, including the horizontal plane (the plane of the
disc), resulting in small amplitude oscillatory twists
about the vertical direction. The oscillatory twists det-
ermine the anti-gravity force, produced by the per-
turbed field of the background space non-holonomity,
and act in the vertical directing against the force of
gravity. Any test-body, placed in the perturbed non-
holonomity field above such a vertically oscillating
disc, should experience a loss in its weight, the num-
erical value of which is determined by the parameters
of the disc and its oscillatory motion in the vertical
direction. If such a disc rotates with acceleration, this
should be the source of an addition perturbation of
the background non-holonomity field and, hence, a
substantial addition to the weight-loss effect should
be observed in experiment. (Uniform rotation of the
disc should give no effect.)

Herein we have been concerned with only a theory of
a phenomenon discovered by Podkletnov (we refer to this
as the Podkletnov effect, to fix the term in scientific termin-
ology).

According to our theory, superconductor technology ac-
counts in Podkletnov’s experiment only for levitation of the
disc and driving it into small amplitude oscillatory motion
in the vertical direction. However, it is evident that this isn’t
the only way to achieve such a state for the disc.

Furthermore, we show that there are also both mechan-
ical and nuclear systems which can simulate the Podkletnov
effect and, hence, be the sources of continuous and explo-
sive energy from the field of the background space non-

holonomity.
Such a mechanical system, simulating the conditions of

the Podkletnov effect, provides a possibile means of continu-
ous production of energy from the space non-holonomity
field. At the same time we cannot achieve high numerical
values of the oscillatory motion in a mechanical system, so
the continuous production of energy might be low (althopugh
it may still reach useful values).

On the contrary, processes of nuclear decay and synthesis,
due to the instant change of the spin configuration among
nucleons inside nuclei, should have high numerical values
of vt, and therefore be an explosive source of energy from
the field of the background space non-holonomity.

Both mechanical and nuclear simulations of the Podklet-
nov effect can be achieved in practice.

4 A new experiment proposed on the basis of the theory

4.1 A simple test of the theory of the Podkletnov effect
(alternative to superconductor technology)

According our theory, the Podkletnov effect has a purely
mechanical origin, unrelated to superconductivity — the field
of the background space non-holonomity being perturbed by
a disc which undergoes oscillatory bounces orthogonal to its
own plane, produces energy and momentum flow in order to
compensate for the perturbation therein. Owing to this, we
propose a purely mechanical experiment which reproduces
the Podkletnov effect, equivalent to Podkletnov’s original
superconductor experiment, which would be a cheap alter-
native to costly superconductor technology, and also be a
simple mechanical test of the whole theory of the effect.

What is the arrangement of such a purely mechanical
system, which could enable reproduction of the Podkletnov
effect? Searching the scientific literature, we found such a
system. This is the vibration balance [22], invented and
tested in the 1960–1970’s by N. A. Kozyrev, a famous astro-
nomer and experimental physicist of the Pulkovo Astronom-
ical Observatory (St. Petersburg, Russia). Below is a descrip-
tion of the balance, extracted from Kozyrev’s paper [22]:

“The vibration balance is an equal-shoulder balance, where
the pier of the central prism is connected to a vibration machine.
This vibration machine produces vertical vibration of the pier. The
acceleration of the vibration is smaller than the acceleration of
the Earth’s gravitation. Therefore the prism doesn’t lose contact
with the pier, only alternating pressure results. Thus the distance
between the centre of gravity and the cone of the prism remains
constant while the weight and the balance don’t change their own
measurement precision. The vertical guiding rods, set up along the
pier, exclude the possibility of horizontal motion of the pier. One
of two samples of the same mass is rigidly suspended by the yoke
of the balance, while the second sample is suspended by an elastic
material. Here the force required to lift the yoke is just a small
percentage of the force required to lift the rigidly fixed sample.
Therefore, during vibration of the balance, there is stable kinematic
of the yoke, where the point O (the point of hard suspension)
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doesn’t participate in vibration, while the point A (the point of
elastic suspension) has maximal amplitude of oscillation which is
double the amplitude of the central prism C. Because the additional
force, produced during vibration, is just a few percent more than
the static force, the yoke remains fixed without inner oscillation, i.e.
without twist, in accordance with the requirement of static weight.

We tested different arrangements of balances under vibration.
The tested balances had different sensitivities, while the elastic
material was tried with rubber, a spring, etc. Here is detailed a
description of the vibration balance which is currently in use. This
is a technical balance of the second class of sensitivity, with a
maximum payload of 1 kg. A 1 mm deviation of the measurement
arrow, fixed on the yoke, shows a weight of 10 mg. The centre of
gravity of the yoke is located ∼1 cm below the pier of the central
prism. The length of the shoulders of the yoke is: OC=CA= l=
= 16 cm. The amplitude of vibration is a≈ 0.2 mm. Thus the
maximum speed of the central prism is v= 2π

T
a'2 cm/sec, while

its maximum acceleration
(
2π

T

)2
a= 2×102 is about 20% of the

acceleration of the Earth’s gravitation. We regularly used samples
of 700 g. One of the samples was suspended by a rubber, the strain
of which for 1 cm corresponds 100 g weight. So, during vibration,
the additional force on the yoke is less than 10 g and cannot destroy
the rigidity of the yoke. The elastic rubber suspension absorbs
vibration so that the sample actually rests.

This balance, as well as all recently tested systems,
showed each time the increase of the weight of the elastically
suspended sample. This additional force 4Q is proportional to
the weight of the sample Q, besides 4Q/Q= 3×10−5. Hence,
having Q= 700 g, 4Q= 21 mg and the force momentum twisting
the yoke is 300 dynes×cm.

[ . . . ] From first view one can think that, during such a vibra-
tion, the pier makes twists around the resting point O. In a real
situation the points of the pier are carried into more complicated
motion. The central prism doesn’t lose contact with the pier; they
are connected, and move only linearly. Therefore the central part of
the yoke, where its main mass is concentrated, has no centrifugal
acceleration. What is about the point O, this point in common with
the rigidly suspended sample is fixed in only the vertical direction,
but it can move freely in the horizontal direction. These horizontal
displacements of the point O are very small. Naturally, they are
a2

2l
, i.e. ∼0.1μm in our case. Despite that, the small displacements

result a very specific kinematic of the yoke. During vibration, each
point of the yoke draws an element of an ellipse, a small axis
of which lies along the yoke (in the average position of it). The
concavities of the elements in the yoke’s sections O–C and C–A are
directed opposite to each other; they produce oppositely directed
centrifugal forces. Because v̄2 is greater in the section C–A, the
centrifugal forces don’t compensate each other completely: as a
result there in the yoke a centrifugal force acts in the A-direction
(the direction at the point of the elastically suspended sample). This
centrifugal acceleration has maximum value at the point A. We
have v̄2= 4π2

T2
a2= 6 cm2/sec2. From here we obtain the curvature

radius of the ellipse: ρ= 4 l= 60 cm. So the centrifugal acceleration
is v̄2

ρ
= 0.1 cm/sec2.”

Such a vibration balance is shown in the upper picture of
Fig. 4. An analogous vibration balance is shown in the lower
picture of Fig. 4: there the vibration machine is connected

Fig. 4: The vibration balance — a mechanical test of the whole
theory of the Podkletnov effect (a simple alternative to costly
superconductor technology).

not to the pier of the central prism, but to he elastic suspen-
sion, while the prism’s pier is supported by a spring; such a
system should produce the same effect.

To understand how the Podkletnov effect manifests with
the vibration balance, we consider the operation of the bal-
ance in detail (see Fig. 5).

The point O of the yoke undergoes oscillatory bounces
in the r-direction with the amplitude d, given by

d = l− l cosα = l− l
√
1− sin2α =

= l− l

√

1−
a2

l2
' l− l

(

1−
a2

2 l2

)

'
a2

2 l
,

(66)

while b is

b=d tanα=d
a

l cosα
'

a3

2 l2
(
1− a2

2 l2

)'
a3

2 l2− a2
. (67)

The point A undergoes oscillatory bounces in the z-
direction with the amplitude 2a, while its oscillatory motion
in the r-direction has the amplitude

c = 2l− 2l cosα− d = d . (68)

The oscillatory bouncing of the points O and A along
the elements of an ellipse is an accelerating/decelerating
rotational motion around the focus of the ellipse. In such a
case, by definition of the space non-holonomity as the non-
orthogonality of time lines to the spatial section, manifest
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Fig. 5: The yoke of the vibration balance in operation. The yoke
OA is indicated by the bold line. The double arrow shows the
oscillatory bouncing motion of the point C, which is the point
of connexion of the central prism and the central point of the
yoke. The lower picture shows the yoke in its initial horizontal
position. The upper picture shows the yoke in the upper position,
at maximum deviation from the state of equilibrium.

as a three-dimensional rotation, points O and A during the
oscillatory motion along respective elliptic elements, are the
source of a local field of the space non-holonomity . Respect-
ive tangential accelerations v̄t at the points O and A deter-
mine the sources.

Given that the background space is non-holonomic, such
a field of the local non-holonomity is a perturbation field
in the non-holonomic background. In other words, points O
and A, in common with the respective samples mechanic-
ally connected to the points, are the sources of respective
perturbation fields in the background field of the space non-
holonomity.

Each point of the yoke, being carried into such an oscilla-
tory motion, is the source of such a perturbation field. On the
other hand, the average tangential acceleration of the motion,
v̄t, takes its maximum value at the point A, then substantially
decreases to the point O where it is negligible. Therefore
such a yoke can be approximated as a non-symmetric system,
where the end-point A is the source of a perturbation field in
the non-holonomic background, while the end-point O isn’t
such a source.

According to the Einstein equations we have obtained in
(35), the energy and momentum of a perturbation field in the
non-holonomic background are produced by the whole field
of the background space non-holonomity in order to com-
pensate for the perturbation therein∗. So the energy produced

∗Note that we deduced the Einstein equations (35) for a space pervaded
not only by an electromagnetic field, but also by distributed matter
characterised by arbitrary properties. If only an electromagnetic field, there
would be ρc2=U . However ρc2−U 6=0 in the Einstein equations (35).
This can be due to a number of reasons, the presence of an elastic force
which compresses a spring, for instance. Therefore the Einstein equations

on a test-body in such a perturbation field isn’t limited by
the energy of the source of the perturbation (an oscillator,
for instance), but can increase infinitely.

According to the geodesic equations (61) we have ob-
tained in a perturbed non-holonomic field, the momentum of
such a perturbation field manifests as the additional forces
which act in all three directions r, ϕ, z relative to the source
of the perturbation. If considering a free test-body constrain-
ed to move only along only the Earth’s gravitational field-
lines (falling freely in the z-direction), such an add-on force
is expressed in the geodesic equation along the z-axis (62)

z̈ + g − vt = 0 (69)

as F =mvt, and works against the force of gravity mg. In
the situation of a static weight the total acceleration of such
a sample is zero, z̈=0, while the other forces are put into
equilibrium by the weight of the sample (65)

Q = mg −mvt = Q0 −4Q . (70)

A source of perturbation cannot be an object of applica-
tion of a force produced due to the perturbation. Therefore
the sample O is the object of application of an anti-gravity
force F =mvt due to a field of the anti-gravity accelerations
vt, a source of which is the oscillatory bouncing system
of the point A in common with the elastically suspended
sample, while the point A itself in common with the sample
has no such anti-gravity force applied to it. As a result the
weight of the sample rigidly suspended at the end-point O,
decreases as 4Q=mvt, while the weight of the sample A
remains the same:

QO = mg −mvt , QA = mg . (71)

As a result, such a balance, during its vibration, should
demonstrate a weight-loss of the rigidly suspended sample
O and, respectively, a twist of the balance’s yoke to the
elastically suspended sample A. Such a weight-loss effect on
the rigidly suspended sample, which is a fictitious increase
of the weight of the elastically suspended sample, was first
observed during the years 1960–1970’s in the pioneering
experiment of Kozyrev [22].

The half-length horizontal section of a superconducting
disc suspended in air by an alternating magnetic field in
Podkletnov’s experiment (see Fig. 2) can be approximated
by the yoke of the aforementioned vibrational balance. This
is because the vertical oscillation of such a disc by an alter-
nating magnetic field isn’t symmetric in the disc’s plane, so
such a disc has a small oscillatory twisting motion in the
vertical plane to the yoke of the vibration balance†.

we have obtained (35) are applicable to a laboratory space containing such
a vibration balance.

†This is despite the fact that such a disc has so small an amplitude
and so high a frequency of oscillatory twisting motion, that it seems to be
levitating when almost at rest.
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As a result, such a disc should experience the anti-gravity
force F =mvt at the end-points of the disc, along the whole
perimeter. Common action of the forces should produce:

1. The weight-loss effect 4Q=mvt on the disc itself.
The weight-loss of the disc should increase if the disc
has accelerating/decelerating rotation;

2. Respective weight-loss effect on any test-body located
over the disc along the vertical axis z, according to
the field of anti-gravity accelerations vt.

Therefore the disc in Podkletnov’s experiment and a vib-
ration balance of the aforementioned type are equivalent
systems. So both the superconductor experiment and the
vibration balance should be described by the same theory
we have adduced herein, and produce the same weight-loss
effect as predicted by the theory.

The numerical value of such an anti-gravity acceleration,
vt, can also be calculated within the framework of our theory
of the Podkletnov effect, and thus checked in experiment.

According to our theory, the value v of the perturbation
isn’t dependent on the vertical direction (the z-direction in
our coordinates). Therefore only the horizontal oscillatory
bouncing motion of point A (in common with the sample
rigidly suspended there) perturbs the background field of the
space non-holonomity. According to Fig. 5, the tangential
acceleration of the point A in its oscillatory motion with
amplitude 2a along an ellipse with the radius ρ=4 l, is
directed in the z-direction. So the tangential acceleration
cannot perturb the non-holonomic background. However
there is another tangential acceleration of the point A, which
results from the oscillatory motion of the point with the
amplitude c (numerically c= d) around the upper location of
the point A. This tangential acceleration is directed along the
r-axis, so it is the source of a local perturbation in the non-
holonomic background. The angle of the small twist at the
point A during such an oscillation is ϕ= d

2πa
= a

4πl
, so the

average angular acceleration of the motion is ˉ̈ϕ= 1
2
ϕ̈= Ω2a

8πl
.

The average tangential acceleration of the motion, directed
in the r-direction, is v̄t=2a ˉ̈ϕ, i.e.

v̄t =
Ω2a2

4π l
=
πν2a2

l
, (72)

which characterizes, according to the definition of the space
non-holonomity, the local perturbation in the background
field of the space non-holonomity.

Consider a vibration balance like that in Kozyrev’s ori-
ginal experiment [22]. Each shoulder of the yoke has the
length l= 16 cm, so the total length of the yoke is 32 cm. Let
the central prism of the balance undergo oscillatory bounces
in the vertical direction with an amplitude of a= 0.020 cm,
so the amplitude of the point A is 2a= 0.040 cm. One of the
samples is rigidly suspended at point O of the yoke, while
the other sample is suspended at point A by an
elastic medium. Both samples have the same mass: 700 g.

According to our theory, the Podkletnov effect should appear
in the balance as a weight loss 4Q of the sample O, depen-
dent on the frequency as follows:

ν, Hz vt, cm/sec2 4Q/Q 4Q, mg 4Qexp, mg

30 0.071 7.2×10−5 50
25 0.049 5.0×10−5 35
20 0.031 3.2×10−5 22 21
15 0.018 1.8×10−5 13
10 0.0079 8.0×10−6 5.6

Table 1: The weight-loss effect, calculated with our theory of the
Podkletnov effect, for a vibration balance with the same charact-
eristics as that of Kozyrev’s pioneering experiment [22]. The last
column gives the numerical value of the weight-loss effect observed
in Kozyrev’s experiment, at a constant frequency of 20 Hz.

Kozyrev measured 4Q= 21 mg at a fixed frequency of
ν= 20 Hz in his experiment [22]. This corresponds with
4Q= 22 mg predicted by our theory∗.

For Podkletnov’s experiment, we haven’t enough data for
the amplitude of oscillatory bouncing motion of the super-
conductor disc. Despite this, we can verify our theory of the
phenomenon in another way, due to the fact that Podkletnov
observed a dependence of the weight-loss effect on the
oscillation frequency.

Although dependency on frequency was observed in
each of Podkletnov’s experiments, we only have detailed
data for the 1997 experiment, from publication [2]. We give
in Table 2 Podkletnov’s experimental values of4Q/Q, mea-
sured on a sample located in the field of a 275/80×10 mm
superconductor toroid at vibration frequencies of the toroid
from 3.1 MHz to 3.6 MHz and the constant rotation speed
4300 rpm. The last column gives the increasing values of
4Q/Q, calculated by our theory where the weight-loss effect
should be dependent on the square of the vibration frequency:

ν, MHz (4Q/Q)exp (4Q/Q)theor

3.1 2.2×10−3

3.2 2.3×10−3 2.3×10−3

3.3 2.4×10−3 2.5×10−3

3.4 2.6×10−3 2.6×10−3

3.5 2.9×10−3 2.8×10−3

3.6 3.2×10−3 3.0×10−3

Table 2: The increase of the weight-loss effect (4Q/Q)exp with
vibration frequency ν, measured in Podkletnov’s experiment of
1997 [2], in comparison to the value (4Q/Q)theor calculated by
our theory of the phenomenon.

∗We should also add that, coming from the geodesic equation along the
z-axis, which is the third equation of (61), to the simplified form (62)
thereof, we omitted the harmonic term from consideration. If the term
is included, the vibration balance experiment should reveal not only an
increase of the weight-loss effect with the frequency, but also resonant
levels in it. The resonant levels, in further experiment, would be an
additional verification of our theory.
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We see that our theory is in very close accord with
Podkletnov’s experimental data. Furthermore, according to
Podkletnov [2], despite the high measurement precision of
the balance used in his experiment, some error sources pro-
duced systematic error in the order of 10−3 during the ex-
periment. Taking this into account, we conclude that our
theory is sufficiently coincident with Podkletnov’s experi-
mental data.

Podkletnov observed a decrease of the air pressure over
the working device in the laboratory, and also a force distri-
buted in a radial direction. We point out that the geodesic
equations (61) obtained within the framework of our theory
show forces, aside for the vertically acting anti-gravity force
(i.e. acting in the z-direction), acting in the directions r and
ϕ as well, produced by the perturbed field of the space non-
holonomity. We therefore interpret Podkletnov’s observa-
tions as a qualitative verification of our theory.

Podkletnov measured a much greater weight-loss effect
over a disc during its accelerating/braking rotation. We
haven’t developed a theory for a rotating disc yet. Despite
that, by analogy with our theory for a non-rotating disc,
we can qualitatively predict that a field of the anti-gravity
acceleration vt produced by a rotating disc should be propor-
tional to the radius of the disc and its angular acceleration,
in accordance with the fact that Podkletnov’s experiment is
very difficult to reproduce on small discs, diameter about 1′′.
Following Podkletnov, the weight-loss effect will be surely
measured on a disc of at least 5′′ diameter.

Finally, complete verification of our theory of the Pod-
kletnov effect should usher in new experimental checks for
the frequency dependency of the weight-loss, which should
appear in both the vibration balance and the Podkletnov
superconductor device. With a new vibration balance experi-
ment and a superconductor experiment confirming the fre-
quency dependency according to (72), our theory of the
Podkletnov effect would be completely verified.

4.2 New energy sources and applications to space travel

Due to the predictions of our theory, we have the possibility
of the Podkletnov effect on such a simple device as the
vibration balance, which is a thousand times cheaper and
accessible than superconductor technology. In other words,
being armed with the theory, it is more reasonable to use
the weight-loss effect in practice with other devices which,
working on principles other than the Podkletnov supercon-
ductor device, could easily reproduce the effect in both an
Earth-bound laboratory and in space.

On the basis of our theory, new engineering applications
such as anti-gravity devices and devices which could be used
as new sources of energy, might be developed.

Anti-gravity engines for air and space travel. There can
be at least two kinds of such engines, projected on the basis
of our theory:

1. Land-based engines, which produce a strong anti-
gravity acceleration field due to the Podkletnov effect.
The anti-gravity acceleration field doesn’t depend on
the vertical distance from the disc, which generates it
in Podkletnov’s experiment. Due to this fact, a land-
based engine, producing a beam of the anti-gravity
acceleration field focused on a flying apparatus, can be
used by the flying vehicle as a power station. The anti-
gravity acceleration in the beam becomes the same as
the acceleration of free fall. There can be limitation
only from the scattering of the beam with distance. So
such a land-based engine is suitable for short distances
used in air travel∗;

2. Engines located on board of a flying vehicle, that can
be more suitable for both air and space travel. Such an
engine, being the source of a field of the anti-gravity
acceleration, cannot be the subject of application of
the anti-gravity force produced in the field. However
the force applies to the other parts of the apparatus, as
in the vibration balance experiment or Podkletnov’s
experiment.

We note that in both cases, it isn’t necessary to use a
purely mechanical kernel for such an engine, as for the
vibration balance experiment and Podkletnov’s experiment
considered in this paper. Naturally, using a mechanical oscil-
latory bouncing motion or accelerating/braking rotation, the
maximum acceleration in the generated anti-gravity field is
limited by the shock resistance of the mechanical aspects of
the engine. This substantial limitation can be overcome if
instead of solid bodies, liquids (liquid metal like mercury,
for instance) or liquid crystals are driven into such motion
by high frequency electromagnetic fields.

Devices which could be the source of new energy. This is
another application of our theory, the experimental realiza-
tion of which differs from the vibration balance experiment
and Podkletnov’s experiment. According to our theory, the
coupling energy between the nucleons in a nucleus should
be different due to the Podkletnov effect depending on the
common orientation of the nucleons’ spins in the nucleus.
As a result, we could have a large explosive production of
energy during not only self-decay of heavy elements like
uranium and the trans-uraniums, but also by destroying the
nuclei of the lightweight elements located in the middle
of the Periodic Table of Elements. Of course, not just any
nucleus will be the source of such energy production, but
only those where, by our theory, the Podkletnov effect works,
due to the specific orientation of the spins in the strong
interaction amongst the nucleons.

Such an energy source, being free of deadly radiation or
radioactive waste, could be a viable alternative to nuclear
power plants.

∗This kind of anti-gravity engine was first proposed in 2006 by Eugene
Podklenov, in his interview [8].
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Appendix 1 The space non-holonomity as rotation

How is the non-orthogonality of the coordinate axes expressed by the
components of the fundamental metric tensor gαβ? To show this there are
a few ways [14]. We use a formal method developed by Zelmanov [15].
First, we introduce a locally geodesic reference frame at a given point of
the Riemannian space. Within infinitesimal vicinities of any point of such a
reference frame the fundamental metric tensor is

g̃αβ = gαβ +
1

2

(
∂2g̃αβ

∂x̃μ∂x̃ν

)
(x̃μ − xμ)(x̃ν − xν) + . . . ,

i. e. the components at a point, and in its vicinity, are different from those
at the point of reflection to within only the higher order terms, the values
of which can be neglected. Therefore, at any point of a locally geodesic
reference frame the fundamental metric tensor can be considered constant,
while the first derivatives of the metric (the Christoffel symbols) are zero.

As a matter of fact, within infinitesimal vicinities of any point located
in a Riemannian space, a locally geodesic reference frame can be set up.
At the same time, at any point of this locally geodesic reference frame a
tangentially flat Euclidean space can be set up so that this reference frame,
being locally geodesic for the Riemannian space, is the global geodesic for
that tangential flat space.

The fundamental metric tensor of a flat Euclidean space is constant, so
the values of g̃μν , taken in the vicinity of a point of the Riemannian space,
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converge to the values of the tensor gμν in the flat space tangential at
this point. Actually, this means that we can build a system of basis vectors
~e(α), located in this flat space, tangential to curved coordinate lines of the
Riemannian space.

In general, coordinate lines in Riemannian spaces are curved, inhomo-
geneous, and are not orthogonal to each other. So the lengths of the basis
vectors may sometimes be very different from unity.

We denote a four-dimensional infinitesimal displacement vector by
d~r=(dx0, dx1, dx2, dx3), so that d~r=~e(α)dxα, where components of the
basis vectors ~e(α) tangential to the coordinate lines are ~e(0)={e

0
(0),0,0,0},

~e(1)= {0, e
1
(1), 0, 0}, ~e(2)= {0, 0, e

2
(2), 0}, ~e(3)= {0, 0, 0, e

2
(3)}. The sca-

lar product of the vector d~r with itself is d~rd~r= ds2. On the other hand,
the same quantity is ds2= gαβ dxαdxβ . As a result we have

gαβ = ~e(α)~e(β) = e(α)e(β)cos (x
α;xβ) ,

so we obtain
g00 = e

2
(0) ,

g0i = e(0)e(i) cos (x
0;xi) ,

gik = e(i)e(k) cos (x
i;xk) .

The gravitational potential is w= c2(1−
√
g00). So the time basis

vector ~e(0) tangential to the time line x0= ct, having the length

e(0) =
√
g00 = 1−

w

c2
,

is smaller than unity the greater the gravitational potential w.
The space rotation linear velocity vi=−

cg0i√
g00

and, according to it,

the chr.inv.-metric tensor hik=−gik +
g0i g0k
g00

gives

vi = −c e(i) cos (x
0;xi) ,

hik = e(i)e(k)

[
cos (x0;xi) cos (x0;xk)− cos (xi;xk)

]
.

Appendix 2 A short tour of chronometric invariants

Determination of physical observable quantities in General Relativity isn’t
a trivial problem. For instance, for a four-dimensional vector Qα we may
heuristically assume that its three spatial components form a three-
dimensional observable vector, while the temporal component is an observ-
able potential of the vector field (which generally doesn’t prove they can
be actually observed). However a contravariant tensor of the 2nd rank Qαβ

(as many as 16 components) makes the problem much more indefinite. For
tensors of higher rank the problem of heuristic determination of observable
components is more complicated. Besides, there is an obstacle related to
definition of observable components of covariant tensors (in which the
indices are subscripts) and of mixed tensors, which have both subscripts
and superscripts. Therefore the most reasonable way out of the labyrinth of
heuristic guesses is to create a strict mathematical theory to enable calcula-
tion of observable components for any tensor quantities.

A complete mathematical apparatus to calculate physical observable
quantities for a four-dimensional pseudo-Riemannian space was completed
in 1944 by Abraham Zelmanov [15]: that is the strict solution of the prob-
lem. He called the apparatus the theory of chronometric invariants. Many
researchers were working on the problem in the 1930–1940’s. Even Landau
and Lifshitz in their famous book The Classical Theory of Fields (1939)
introduced observable time and the observable three-dimensional interval
similar to those introduced by Zelmanov. But they limited themselves only
to this particular case and did not arrive at general mathematical methods
to define physical observable quantities in pseudo-Riemannian spaces.

The essence of Zelmanov’s theory is that if an observer accompanies
his physical reference body, his observable quantities are projections of
four-dimensional quantities on his time line and the spatial section — chro-
nometrically invariant quantities, made by projecting operators

bα =
dxα

ds
, hαβ = −gαβ + bαbβ ,

which fully define his real reference space (here bα is his velocity with
respect to his real references). Thus, the chr.inv.-projections of a world-
vector Qα are

bαQ
α =

Q0
√
g00

, hiαQ
α = Qi,

while chr.inv.-projections of a world-tensor of the 2nd rank Qαβ are

bαbβQαβ =
Q00

g00
, hiαbβQαβ =

Qi0√
g00

, hiαh
k
βQ

αβ = Qik.

Physically observable properties of the space are derived from the fact
that chr.inv.-differential operators

∗∂

∂t
=

1
√
g00

∂

∂t
,

∗∂

∂xi
=

∂

∂xi
+
1

c2
vi

∗∂

∂t

are non-commutative
∗∂2

∂xi ∂t
−

∗∂2
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∂t
,

∗∂2

∂xi∂xk
−

∗∂2

∂xk∂xi
=
2

c2
Aik

∗∂

∂t
,

and also from the fact that the chr.inv.-metric tensor

hik = −gik +
g0ig0k

g00
= −gik +

1

c2
vivk ,

which is the chr.inv.-projection of the fundamental metric tensor gαβ onto

the spatial section hαi h
β
k gαβ =−hik, may not be stationary. The main ob-

servable characteristics are the chr.inv.-vector of gravitational inertial force
Fi, the chr.inv.-tensor of angular velocities of the space rotation Aik, and
the chr.inv.-tensor of rates of the space deformations Dik, namely

Fi =
1

√
g00

(
∂w

∂xi
−
∂vi

∂t

)
,

Aik =
1

2

(
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∂xi
−
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)
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1

2c2
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1

2
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, Dik = −

1

2

∗∂hik

∂t
, D = Dk

k =
∗∂ ln

√
h
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,

where w is the gravitational potential

w = c2 (1−
√
g00) ,

and vi is the linear velocity of the space rotation

vi = −c
g0i
√
g00

, vi = −c g0i
√
g00 , vi = hikv

k,

while h=det ‖hik‖, hg00=−g, g=det ‖gαβ‖. Observable inhomoge-
neity of the space is set up by the chr.inv.-Christoffel symbols

Δijk = h
imΔjk,m =

1

2
him
( ∗∂hjm

∂xk
+

∗∂hkm

∂xj
−

∗∂hjk

∂xm

)
,

which are built just like Christoffel’s usual symbols

Γαμν = g
ασ Γμν,σ =

1

2
gασ
(
∂gμσ

∂xν
+
∂gνσ

∂xμ
−
∂gμν

∂xσ

)

using hik instead of gαβ . Components of the usual Christoffel symbols are
linked to the chr.inv.-Christoffel symbols and other chr.inv.-chractersitics of
the accompanying reference space of the given observer by the relations

Di
k + A

∙i
k∙ =

c
√
g00

(
Γi0k −

g0kΓ
i
00

g00

)
,

F k = −
c2Γk00
g00

, giαgkβ Γmαβ = h
iqhksΔmqs .

Zelmanov had also found that the chr.inv.-quantities Fi and Aik are
linked to one another by two identities
∗∂Aik

∂t
+
1

2

( ∗∂Fk
∂xi

−
∗∂Fi

∂xk

)
= 0 ,

∗∂Akm

∂xi
+
∗∂Ami

∂xk
+
∗∂Aik

∂xm
+
1

2
(FiAkm+FkAmi+FmAik) = 0
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which are known as Zelmanov’s identities.

Zelmanov deduced chr.inv.-formulae for the space curvature. He fol-
lowed that procedure by which the Riemann-Christoffel tensor was built:
proceeding from the non-commutativity of the second derivatives of an
arbitrary vector

∗∇i
∗∇kQl −

∗∇k
∗∇iQl =

2Aik

c2

∗∂Ql

∂t
+H

...j
lki∙Qj ,

he obtained the chr.inv.-tensor

H
...j
lki∙ =

∗∂Δ
j
il

∂xk
−

∗∂Δ
j
kl

∂xi
+Δmil Δ

j
km −ΔmklΔ

j
im

which is similar to Schouten’s tensor from the theory of non-holonomic ma-
nifolds. The tensor H...j

lki differs algebraically from the Riemann-Christoffel
tensor because of the presence of the space rotation Aik in the formula.
Nevertheless its generalization gives the chr.inv.-tensor

Clkij =
1

4
(Hlkij −Hjkil +Hklji −Hiljk) ,

which possesses all the algebraic properties of the Riemann-Christoffel
tensor in this three-dimensional space and, at the same time, the property
of chronometric invariance. Therefore Zelmanov called Ciklj the chr.inv.-
curvature tensor the tensor of the observable curvature of the observer’s
spatial section. Its successive contraction

Ckj = C
∙∙∙i
kij∙ = h

imCkimj , C = C
j
j = h

ljClj

gives the chr.inv.-scalar C, which is the observable three-dimensional cur-
vature of this space.

Chr.inv.-projections of the Riemann-Christoffel tensor

Xik = −c2
R∙i∙k0∙0∙

g00
, Y ijk = −c

R
∙ijk
0 ∙∙∙√
g00

, Zijkl = c2Rijkl,

after substituting the necessary components of the Riemann-Christoffel ten-
sor and lowering indices, are

Xij=
∗∂Dij

∂t
−
(
Dl
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2
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Ziklj=DikDlj−DilDkj+AikAlj−AilAkj+2AijAkl−c
2Ciklj ,

where we have Y(ijk)=Yijk +Yjki+Ykij =0, just like the Riemann-
Christoffel tensor. Successive contraction of the spatial observable pro-
jection Ziklj gives

Zil = DikD
k
l −DilD + AikA
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l∙ + 2AikA

k∙
∙l − c

2Cil ,

Z = hilZil = DikD
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ik − c2C .

Accordingly, Einstein’s equations in the case where matter is arbitrarily
distributed throughout the space have the chr.inv.-projections (the chr.inv.-
Einstein equations)
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where ∗∇j denotes the chr.inv.-derivative, for instance
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while the quantities

ρ =
T00

g00
, Ji =

cT i0√
g00

, U ik = c2T ik

(from which we have U =hikUik) are the chr.inv.-components of the
energy-momentum tensor Tαβ of distributed matter: the physical observ-
able density of the field energy ρ, the physical observable density of the
field momentum vector Ji, and the physical observable stress-tensor U ik.
For instance, the energy-momentum tensor of the electromagnetic field has
the form [20]

Tαβ =
1

4π

(
−FασF ∙σβ ∙ +

1

4
FμνF

μνgαβ

)
,

where Fαβ is the electromagnetic field tensor (so-called Maxwell’s tensor).
(It follows that the field density ρ is connected to the quantity U=hikUik
by ρc2=U .)

In this way, for any quantity or equation obtained using general covar-
iant methods, we can calculate their physically observable projections on
the time line and the spatial section of any particular reference body and
formulate the projections in terms of their real physically observable prop-
erties, from which we obtain equations containing only quantities measur-
able in practice.

80 D. Rabounski and L. Borissova. A Theory of the Podkletnov Effect Based on General Relativity



July, 2007 PROGRESS IN PHYSICS Volume 3

LETTERS TO PROGRESS IN PHYSICS

Comment on the “Declaration of the Academic Freedom” by D. Rabounski

Marian Apostol

Department of Theoretical Physics, Institute of Atomic Physics, Magurele-Bucharest MG-6, PO Box MG-35, Romania
E-mail: apoma@theory.nipne.ro

At least four major misconceptions gravely affect science and technology today, and
the progress of scientific and technological research. These misconceptions are related
to a utilitarian view of science, whereby large-scale collaborations and institutions
of higher learning are conceived of as the only means for developing science and
technology, where scientific publication is the sole aim of scientific research, within a
commercial view of the nature of these human endeavours and activities. It is revealed
herein just how abusive and destructive these misconceptions are, and to what great
extent they now plague society. In complementing D. Rabounski’s recent Declaration
of the Academic Freedom, scientific and technological research should reaffirm its
free, universal and critical nature, as a source of human dignity and honour, honesty
and lucidity. Unfortunately, a despicable vulgarization of science and technology has
led nowadays to a widely held relativism and uncertainty, which is employed as
a theoretical ideology for manipulation and domination, placing human society in
great peril.

Science and technology has changed human life essentially
and irreversibly, both personal and social, the environment,
and created a new, artificial world with profound cultural
implications at the level of human behaviour, psychology
and mentality. Human society today depends essentially on
science and technology, to the point that life on Earth can be
irreversibly damaged by the loss of science and technology.
The only thing today that still remains outside the scope
of science and technology is the creation of life, although
basic modification of life is already present, and destroying
life by science and technology is routine. Today’s science and
technology teaches us that the planet Earth, the Solar System,
and perhaps the whole Universe, are very likely casual, and
perhaps not eternal. It is therefore much more sensible to do
everything possible to preserve life, for as long as possible.

Science and technology are now in great peril, not only
due to social and political changes, and not only by a very
uncontrollable economic activity, but also by various mis-
conceptions. The latter are the most pernicious, because the
human world is indeed a “matter of will and representation”
(Schopenhauer). There are at least four plagues which the
vulgarization of science and technology have generated in
our modern society: relativism, indeterminacy, utilitarianism,
manipulation and domination, and which now collectively
turn against science and technology.

I adduce herein a series of current injurious misconcep-
tions related to science and technology.

It is wrong, but widely held today, that science must sa-
tisfy any immediate desire or need, either physical or mental,
as whimsical as may be, and that technology must satisfy as
soon and most economically as possible. This is profoundly

wrong. Science responds only to our intellectual impulse,
this is its nature, to “accommodate in the most economical
way our sensations to our ideas, which is a basic need for our
survival” (Planck). It is indeed a deep wonder, which nobody
could have ever explained, and probably cannot ever, that
answering our intellectual questions may sometimes result
in practical, technological applications that make our life
more comfortable. History shows this, without explanation,
but it also definitely shows that the way from science to
technology is not direct, but a very mediated one. To bring
scientific discoveries into practical life one needs commit-
ment, investment, patience, competence, a lot of work, and,
especially, the acceptance of the possibility that it may never
happen at all. Science teaches us basically that its technolo-
gical applications are in fact a matter of good luck, and we
must accept this point as a scientific statement, as strange as
it may sound. It reveals the autonomy and the freedom of
science, which bears upon its profound nature. The politi-
cians and policy-makers of today must accept that it is not
they who should direct science and technology, but instead
precisely the opposite, it is science and technology which
should direct them, if life is going to be preserved and
cultivated. Admittedly, it is difficult to accept that science
would not be “scientific”. Actually, as a matter of fact, sci-
ence is nothing else but that endeavour that makes human
the mysteries of the natural world, as the history of Mankind
testifies.

Another common misconception about science nowa-
days is that science must be done exclusively in collabora-
tion, and, as such, the broader the collaboration, the better
— it is the only possible way to achieve scientific advances.
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This is wrong. First, history proves the contrary. Newton
worked alone, Maxwell similarly, Boltzmann worked alone
and much against the current wisdom, Einstein likewise not-
oriously, the quantum physicists in the first half of the 20th
century worked in a restricted cooperation, etc, etc. Feynman
used to talk a lot with people around and about, find prob-
lems and work them for himself, alone. There is no other
way. Similar examples occur in sciences other than physics.
No profound scientific discovery has ever been made by
many people, but always by one or, occasionally, by a few
at any time. This is not only a historical fact, but a logical
one too. If a discovery emerged in the heads of many, then it
would not be something new, nor revolutionary, but instead,
it would be a routine, trivial thing, by definition. Another,
positive argument, without resorting to the demonstratio per
absurdum, is the following. Suppose that for one scientific
problem there would be many, most valuable contributors.
Since the problem is one and these contributors are many it
follows that each of them brings only a small contribution.
Then, the problem is never solved by any one of them,
but by one, who synthesized the work of the many. That
does not mean that many workers in science or technology
are not desirable, or that they would be superfluous. On
the contrary, they make a valuable research environment,
their work is the fuel of great discoveries, but it is only the
coal in the scientific furnace. It is not science, it is only
the probable way toward science. Science is what a few do
based on the work of many. As such, the opinion of the
many in science is useless, and always dangerous, because
they do not know. They are non-scientific, they are only
the material used in scientific and technological discoveries.
Democracy in science and technology is a most dangerous
thing, because it is contrary to the scientific spirit and to
the nature of these endeavours. In contrast with political
and social life, where today democracy is the accepted way
of making mistakes, in science and technology the only
acceptable medium of making mistakes along the way to
the correct answer is the scientific and technical aristocracy.
Only the latter “knows what knows and what does not know”
(Socrates), which is its claim to competence. The former,
people at large, do not know what knows, or what they
don’t. In its endeavour to acquire positive knowledge, i.e.
that knowledge which is so probable to be taken as granted
and warranted, science must only use lucidity and honesty,
and cannot afford any inconsequential talk. This points again
towards a basic feature of science and technology, that of
creativity, which comes from their profound freedom and
autonomy, a sense of honour generated exclusively by hon-
esty and lucidity. Our attention nowadays is insistently and
ideologically forced, by politics and the media, towards great
scientific and technological organizations, as the only way
of developing science and technology. This is a dishonest
enterprise, the content of such actions is anti-scientific. Such
people say one thing but mean the opposite. They abuse

science, falsify and manipulate it, for image and political
ends. Science and technology can only be achieved in an
adequate environment, and the institutions of research of
today are more than welcome, the larger the better. But
we must be aware that they are there only for the purpose
of an act of scientific or technological discovery, and not
for becoming ends in themselves. Scientists must not, by
necessity, belong to any such large organizations, in order
to be scientists, or engineers. The requirement of an institu-
tional enrollment for scientists and engineers is an abusive
plague upon our mentality nowadays, with profound negative
consequences. Today, scientific work can be carried out by
electronic means as an individual, building upon the work
of smaller or larger scientific and technical organizations.
The factual reality shows that any discovery in science and
technology was made by individuals, who used the work
of many, sometimes of hordes. The big organizations of
scientific research and technology are necessary, but not
sufficient, by no means. They are just disposable means.
Since the means should not dictate our aims, democracy
must not be permitted to decide upon scientific and techno-
logical matters. It must be fully and for ever banished from
science and technology. In science and technology we do not
know the solutions. But certainly the “solutions” of the many
are wrong, especially because they do not know what they
do not know. This is why the opinion of those who “know
that they do not know” is by far preferable, and history
proves this point. In political and social life democracy may
be a convenient instrument, especially when and where the
majority is meager. Then, we have a permanent civil war in
society, without a very definite outcome, which gains time
for social life.

Another misconception which produces much damage
to scientific research is related to scientific publications. Sci-
entific publications are a means of doing scientific research,
and they do occur naturally in the process of research. They
are meant to present results of scientific research to the
scientific public, in order to help science advance. The aim of
scientific research is to get scientific results, which naturally
are materialized in scientific publications. If we define, as is
the case today, that scientific publications are the aim and
the goal of scientific research, we confound the means for
the aim, thereby falsifying scientific research and impeding
the progress of science. Scientific authors of today no longer
publish for a scientific aim, they publish instead only for
the number of “papers”. The great pressure of “publish or
perish” placed today upon scientific researchers by various
political and administrative bodies, by the research institu-
tional organizations and universities, has definitely turned
the attention of the researchers from science to publications.
The scientific literature has been invaded by an enormous
amount of publications, at a tremendously increasing rate,
which contains no scientific result, which nobody reads, and
which is completely useless. Such publications are merely
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“progress reports”, which mean only that “time has passed”
(Oppenheimer), and reveal only that the research funds have
been spent. They have been spent indeed, but not on re-
search. They have been spent on useless publications, and
the costs obviously do not match the output. The requirement
of publications as an end per se is one of the greatest attacks
the political and administrative media are now mounting
against scientific research, its freedom, liberty, and its very
nature. It has deliberately misled contemporary scientific
research along a false path, and locked genuine scientific
individuals outside the social organization of scientific re-
search. Mankind is losing and wasting one of its most valu-
able natural resources, scientific creativity. Moreover, in-
fluential political and administrative bodies and organiza-
tions with a commercial orientation have defined a number
of scientific journals as the “main stream”, according to
their rate of citations, in the “impact factor”, in complete
disregard for their scientific contents. Research which is not
in this “main stream” perishes, it is not funded, whilst those
which belong to such influential organizations are published,
funded and run forever, without any scientific result: produc-
ing only with a massive literature, good for nothing. Because
the frequent citation of such literature is improper, there is no
reference to the scientific content, which is absent, because
it is just a formality, a ritual of the publications industry. The
“impact factor” is defined by these organizations as the ratio
of the number of citations to the number of published papers,
so the scientific journals of today publish only those papers
which are most likely to be cited, i.e. those which come pre-
cisely from the same influential organizations which define
the impact factor. This is a self-approving type of institu-
tional activity, which is closed in itself, permits no criticism,
no contrary opinion, and, as such, is typical of underground,
criminal, terrorist-like, dictatorial, secret societies and orga-
nizations. In fact, the secret character of these organizations
is obvious in their practice of the “anonymous peer review”
procedure. These “main stream” journals have in fact a quite
notorious and ignominious past: they have rejected from
publication authors like Einstein, Schwinger, Fermi and also
Feynman. Many articles published today by the foremost
“main stream” scientific journals are withdrawn soon there-
after by the authors, which reflects conflict within those
organizations, very similar to the fights and wars between
rival criminal mobs. Moreover, if the “impact factor” was
instead referred to the number of papers in the sold copies
according to declared users, we would have a very different
picture, and the “main stream” would be seen immediately
to be in fact a “mean stream”, because there are a lot of
declared-users sold copies of these journals which nobody
reads. Research funds are spent not only to produce such
journals, but to buy them, without being read or used. This
is a vicious activity which falsifies scientific research, and to
impose the “main stream” upon scientific activity is another
great attack upon the freedom of scientific research. To ex-

clude from publication people who do not belong to those
influential organizations is an attack upon the universality
of science. In 1920 Sommerfeld established a new scientific
journal, which soon became the famous Zeitschrift für
Physik. This journal never had reviewers, let alone “ano-
nymous reviewers”. The scientific articles were published
under the sole scientific and moral authority of Sommerfeld.
This real freedom permitted the birth of quantum mechanics,
nuclear and solid-state physics and all the other branches of
modern Physics. Of course, not all of the papers published
in Zeit Phys were good, and Sommerfeld did not understand
them all. But he was a professional of science, and where his
professional expertise could not help him, he exercised his
honesty and lucidity. This is competence in science.

Another misconception regarding the scientific research
of today is that it must be self sustaining, as any commercial
activity. This is a nonsense. The nature of scientific “pro-
ducts”, which are the scientific results, is such that not only
does nobody buy them, but they are also offered freely.
These “products” have no immediate practical utility. The
best we can expect is to bring them to the attention of as
many learned people as possible, and even to society at
large, in order to get new ideas, visions, perspectives, etc.,
and to make apparent possible practical applications. The
latter depend on technological skills and means, which is an
undertaking in its own right. It does not only make use of the
scientific results, but it provides scientific research with new
suggestions and ideas. As such, both scientific research and
technological development, which aims at practical applica-
tions of the scientific results, must be funded by society with
no regard to immediate commercial reward. In comparison
with other social costs, and in regard to its enormous bene-
fits, as proved by history, the funding of scientific and tech-
nological research is modest; the highest spending today on
science and technology does not exceed about 3–4% of GDP
in the most developed countries. Scientific and technological
research is funded today by government or corporations,
by universities and private companies, and to a much less
extent by sponsors, benefactors, philanthropists or a sort
of “mecena”. In all of these situations the misconceptions
described above prevail and dominate, mixed up with a mis-
leading financial “reasoning”. First, the notion of “project
funding” tends to be generalized up to the point that re-
searchers get their salaries exclusively on an “competition”
basis. This is nonsense: one cannot expect honest work from
a worker who is not paid a regular salary. Consequently,
“project competition” generates corruption, it is “lobby and
lottery”, it provides only an occasional, temporary and irre-
gular income. Scientific researchers turn their attention from
their real work to the process of getting funded through such
a “competition” basis. “Project funding” was originally re-
stricted to temporary jobs for PhD students or post-doctoral
researchers, until these beginners secured a stable research,
teaching, or technical position, and was mainly limited to
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universities as a form of further education and instruction,
facilitating social insertion. Today, this “competition of pro-
ject funding” tends to be generalized, destroying scientific
research and scientific education. Indeed, it is almost uni-
versally accepted today that university professors should no
longer concentrate upon their teaching mission, but should
instead do research. This is a grave diversion, which explains
why scientific education has degraded and declined so much
in our modern society. As for research funding from sponsors
or other individuals, this is a naive conception. Almost no-
body gives personal money without asking for something
rewarding in return. Scientific results produce satisfaction
only when one takes part in getting them. Otherwise, such
sorts of things are absurd. According to an old joke, “I love
work. I would sit and watch it for hours”. Such sponsors,
benefactors, philanthropists and various “mecena”, desire in
fact publicity and image for their money to use these for
getting in turn even more money. But image and publicity
gained by scientific research means diverting the latter from
its nature, and, in fact, abusing it. This is another grave injury
inflicted upon scientific research by our modern society. A
man who relatively recently invested $50,000.00 in a private
research institute, took twice as much from government and
public funds, and acquired 3 or 4 permanent staff. The insti-
tute now accommodates many visitors, whose expenses are
paid by their respective institutional employers, and who
deliver public lectures on nonsense such as black holes, the
Big Bang, conscience, etc., etc. This is nice, to “scientize”
the public at large, but it is pseudo-science. In addition, that
fellow became an influential member of various government
and academic bodies, from which he draws a big salary,
which overcompensates by far the original $50,000.00, for
his vulgarization of scientific research and his “great ser-
vice” to society. Such are the methods of modern society for
destroying science.

Funding scientific and technological research without
asking for an immediate revenue, according to the nature
of these activities, does not mean that these activities are
unaccountable. On the contrary. But first let us remark that
their products are not physical, but intellectual. As such,
the printed paper, or the electronic archives, which embody
the present scientific literature cannot be mistaken for the
scientific results. Not even the experimental setups or appa-
ratus produced by technological research should be mistaken
for the result of this research, because they only serve to
represent physically an idea. Scientific and technological
research is accountable by its scientific and technical results,
which are essentially spiritual, or intellectual, objects. This
accountability is realized by the scientists themselves, who
are able to speak clearly, logically and, especially, critically
about their own work. The democratic vote of the majority is
nonsense in this enterprise. (I have witnessed, at a degraded
nuclear laboratory, the neutron lifetime established by major-
ity vote; they decided about 1 second.) The responsible po-

litical, administrative and social elements are afraid of being
trumped by scientists in this process of accountability. I can
assure them that they wouldn’t. But of course, these people
must try to become a little literate in science and technology.
And finally, what is not risky today in any enterprise? A sure
and safe business either does not exist or it is illegal. The
fact that we do not know does not give us the right to abuse
and destroy scientific research, nor to falsify it. The latter
is illegal, and deserves legal punishment, the former is bad
and irreversibly damaging for us, for our children and for the
whole future of Mankind. It is morally culpable.

The Declaration of Academic Freedom, or Scientific
Freedom, is quite welcome, and essentially declares the fol-
lowing Rights.

According to its nature, scientific research has the Right
of doing Science; it has the Right of doing it in perfect Free-
dom and Universality, aiming exclusively at spiritual and
intellectual results, without interference from political, ad-
ministrative or social organizations, to publish its scientific
results wherever, whenever and in whatever way it considers
appropriate. It has the Right of discussing openly, freely and
critically, whatever the result declared as being scientific,
and society must warrant this Right and facilitate its exer-
cise. It has the Right of being funded appropriately by society
and the Right of accounting for its own results according to
its own criteria, ways, methods and procedures. Scientific
and technological research has the Right of dismissing as
abusive, intruding and falsifying, the use of democracy in
scientific matters, the “main stream” publications and “im-
pact factor” as means of evaluation, “project competition”
as a means of funding. It has the Right of being Free and
Autonomous, and to give account of its results to the whole of
society, according to its own methods, practices, procedures,
historically established. The Right to Scientific Research is
a Fundamental Human Right.
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In addition to his outstanding achievements in physics and activities in policy,
C.-F. von Weizsäcker is famous for his talks, given as a member of the Academy
Leopoldina. Due to the latter, I could learn quite a lot from his methodological
writings. In particular, he is the only modern thinker I’m aware of who has pointed
to the difference between Newton’s and Laplace’s notions of state. But this difference
is essential for the relationship between classical and quantum physics. Moreover it is
the clue to overcoming Gibbs’ paradox within classical statistical mechanics itself.

1 Introduction

With Carl-Friedrich Freiherr von Weizsäcker (1912–2007) an
outstanding physicist, philosopher and human being passed
away. Born into a family with long traditions of widespread
interests, activities and education — his father was a highly
ranked diplomat, his younger brother Richard was President
of Western Germany — he showed from the very beginning
a strong interest in both physics and philosophy. His talks
as a member of the German Academy of Sciences Leopoldina
are famous not only by their original content, but also by his
humour. His books on methodological and historical issues
display his broad scope, and are full of wise insights. As a
master, he acknowledged the masters of the past; one can
learn from him how to learn from the masters, then and now.
Notably, I remember his reference to Euler’s (1707–1783)
reasoning on the equivalence of causal (differential equa-
tions) and teleological descriptions (minimum principles),
and his pointing to the difference between the notions of
state as used by Newton (1643–1727), and today, respec-
tively [1]. As the latter has profound implications even for
modern physics, I would like to honour von Weizsäcker
through outlining its relevance for statistical and quantum
physics.

2 State and motion

2.1 Conservation laws vs laws of motion

Descartes (1596–1650), Huygens (1629–1695), Newton and
Euler started their exposition of the basic laws with the con-
servation of (stationary) state. This is followed by the change
of state and eventually by the change of location (equation
of motion). The location of a body is not a state variable,
because it changes even without the action of an external
force, i.e., without reason. The latter kind of reasoning was
abandoned at the end of 18th century as part of scholastics
([1], p. 235). The centre of the Lagrange (1736–1813) for-
malism is occupied by the Lagrangian equation of motion,

i.e., equations for the non-state variable location (represented
by the generalized coordinates).

On the other hand, this equation of motion indicates
at once the conservation of (generalized) momentum for
the force-free motion of a body in a homogeneous space.
Indeed, there is a very tight interconnection of symmetries
and conserved quantities in general, as stated in Noether’s
(1882–1935) theorem, the mechanical and field-theoretical
applications of which being usually expressed by means
of the Lagrange formalism. The principle of least action
containing the Lagrange function is often even placed at the
pinnacle of mechanics.

This development has strengthened the focus of physic-
ists on the equations of motion and weakened their attention
on the laws of state conservation, despite the extraordinary
rôle of energy in quantum mechanics and Bohr’s (1885–
1962) emphasis on the fundamental rôle of the principles
of state conservation and of state change [2]. Indeed, there
are derivations of Newton’s equation of motion from the
energy law, e.g., in [3, 4, 5]; a deduction of Hamilton’s
(1805–1865) equation of motion from Euler’s principles of
classical mechanics can be found in [6, 7].

Thus, there are two traditional lines of thought,

• the “physics of conserved quantities”: Parmenides
(ca. 515 BC — ca. 445 BC) — Descartes — Leibniz
(1646–1716), and

• the “physics of laws of change”: Heraclites (ca. 388
BC — ca. 315 BC) — Galileo (1564–1642) — Newton.

In the end, both lines are equivalent, leading eventually
to the same results, as first shown by Daniel Bernoulli
(1700–1782) [8].

2.2 Motion vs stationary states

In classical mechanics, if an external force ceases to act
upon a body or conservative system, the latter remains in
that stationary state it has assumed at that moment. Non-
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stationary motion is a continuous sequence of stationary
states. Consequently, the set of stationary states of a system
determines both its stationary and its non-stationary motions
and, in particular, its set of possible configurations. For
instance, the turning points of a pendulum are determined
by its energy.

In quantum mechanics, the situation is somewhat more
complicated. The set of stationary states is (quasi-)discon-
tinuous. The external influence vanishes most likely at an
instant, when the wave function of the system is not equal to
one of the stationary states. However, it can be constructed
from the stationary wave functions. According to Schrödin-
ger (1887–1961) [9], the transition between two states is
characterized by contributions to the wave function from both
states. It’s like climbing a staircase without jumping, i.e., the
one foot leaves the lower step only after the other foot has
reached the higher step. In this sense, the fashionable term
“quantum leap” is a fiction. Therefore, the quantum motion,
too, is largely determined by the stationary states.

2.3 State variables vs quantum numbers

A freely moving body exhibits 3 Newtonian state variables
(e.g., the 3 components of its momentum vector; c.f. Laws 1
and 2), but 6 Laplacian state variables (e.g., the 6 components
of its velocity and position vectors; c.f. Laplace’s demon
[10]). A freely moving spinless quantum particle exhibits 3
quantum numbers (e.g., the 3 components of its momentum
vector).

The planets revolving around the sun à la Kepler (1571–
1630) exhibit 3 Newtonian state variables (e.g., the total
energy and 2 components of the angular momentum), but
6 Laplacian state variables (e.g., those of free bodies,
given above). Neglecting spin, the one-electron states of
atoms are labeled by 3 quantum numbers (1 for the energy
plus 2 for the angular momentum). The same applies to the
three-dimensional classical and quantum oscillators, respec-
tively.

The example of these three basic systems of mechanics,
both classical and quantum, clearly demonstrates that the
Newtonian notion of state — corresponding largely to the mo-
dern notion of stationary states — is much more appropriate
for comparing classical and quantum systems than the Lap-
lacian notion of state. It should be enlightening to draw these
parallels for field theory.

3 (In)Distinguishability

3.1 Permutation symmetry of Newtonian state functions

Two classical bodies are equal if they possess the same mass,
size, charge, etc. [11]. A simple example is given by the red
balls of snooker (a kind of billiards; I abstract, of course,
from deviations caused by the production process). Due to
the unique locus of a body, they can be distinguished by

their locations and, thus, are not identical. For the outcome
of a snooker game, however, this does not play any rôle.
Similarly, for recognizing a player of the own team, only the
color of the tricot is important, not its size. In other words,
it is not the totality of properties that matters, but just that
subset which is important for the current situation.

The Hamilton function of a system of equal bodies is
invariant under the interchange of two bodies (permutation
of the space and momentum variables). More generally,
given only the Newtonian state variables of a system, the
classical (!) bodies in it are indistinguishable. This allows for
discussing the issue of (in)distinguishability within classical
dynamics. Equal quantum particles are also not identical, if
they can be distinguished through their localization.

3.2 Distribution functions vs energy spectrum

In his 1907 paper “Planck’s theory of radiation and the theory
of specific heat of solids” [12], Einstein (1879–1955) not
only founded the quantum theory of solids, but demonstrated
also, that the differences between the classical and quantum
occupation of states result from the different character of the
energy spectra of classical and quantum systems, respective-
ly; and he defined quantization as a selection problem [6, 7].

Wien’s (1864–1928) classical distribution law he obtain-
ed by using the continuous energy spectrum of a classical
oscillator, while Planck’s (1858–1947) non-classical distri-
bution law emerges from the discrete energy spectrum of a
quantum oscillator.

In a perfect crystal, the atoms oscillate around localized
lattice positions and, therefore, are distinguishable. Their
interaction, however, leads to collective oscillations called
normal modes. In these common states, the individual lattice
atoms become indistinguishable. It is these normal modes
that were actually used by Einstein. However, due to the
use of Newton’s notion of state Einstein was able to derive
Planck’s distribution law by means of “classical” arguments.

3.3 Gibbs’ paradox

Consider a box filled uniformly with a gas in thermal equi-
librium. When putting a slide sufficiently slowly into it,
dividing the box into two parts, no macroscopic quantity
of the box as a whole should change. However, within con-
ventional classical statistical mechanics, the entropy changes
drastically, because the interchange of two molecules from
now different parts of the box is regarded as being significant.
This is called Gibbs’ (1839–1903) paradox [13]. In conven-
tional representations, it is argued that, actually, the mole-
cules are quantum particles and, thus, indistinguishable; the
double counting is corrected ad hoc.

Now, as outlined above, if Newton’s rather than Laplace’s
notion of state is used, an interchange of any two molecules
of the same part or of different parts of the box, does not
affect the state. Therefore, the artifact of Gibbs’ paradox
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can be avoided from the very beginning when working with
Newton’s notion of state, as can be seen from Einstein’s 1907
paper discussed above.

4 Summary and discussion

Contrary to Einstein’s results, Ehrenfest (1880–1933) [14]
and Natanson (1864–1937) [15] explained the difference
between the classical and quantum radiation laws by means
of different counting rules for distinguishable and indistin-
guishable particles ([16], §1.4; [17], vol. 1, pt. 2, sect. V.3).
Apparently supported by the uncertainty relation, in parti-
cular, after its “iconization” as the “uncertainty principle”,
this view prevailed for most of the 20th century. Only at
its end was it realized more and more that it is not the
(in)distinguishability of particles that matters, but that of the
states (e.g. [18], sects. 1 and 2.1; [19], sect. 4.1). Using
Newton’s rather than Laplace’s notion of state, the statistical
reasoning in [18, 19] can be physically-dynamically substan-
tiated.

It needs, perhaps, a congenial mixing of physics and phi-
losophy, like that of von Weizsäcker, to recognize and stress
the importance of notions within physics. As the notions are
the tools of our thinking, the latter cannot be more accurate
than the former.

Both Newton’s and Laplace’s notions of state exhibit
advantages [20]. The proper use of them makes classical
statistical mechanics self-consistent.
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Carl Friedrich von Weizsäcker, 1983.

Biography∗

Carl Friedrich Freiherr (Baron) von Weizsäcker (June 28, 1912, Kiel –
April 28, 2007, Säcking near Starnberg) was a German physicist and philo-
sopher. He was the longest-living member of the research team which tried,
and failed, to develop a nuclear weapon in Germany during the Second
World War.

Weizsäcker was born in Kiel, Germany, the son of the German diplomat
Ernst von Weizsäcker. He was the elder brother of the former German
President Richard von Weizsäcker, father of the physicist and environmental
researcher Ernst Ulrich von Weizsäcker and father-in-law of the former
General Secretary of the World Council of Churches Konrad Raiser.

From 1929 to 1933, Weizsäcker studied physics, mathematics and astro-
nomy in Berlin, Göttingen and Leipzig supervised by and in cooperation,
e.g., with Werner Heisenberg and Niels Bohr. The supervisor of his doctoral
thesis was Friedrich Hund.

His special interest as a young researcher was the binding energy
of atomic nuclei, and the nuclear processes in stars. Together with Hans
Bethe he found a formula for the nuclear processing in stars, called the
Bethe-Weizsäcker formula and the cyclic process of fusion in stars (Bethe-
Weizsäcker process, published in 1937).

Note regarding personal names: Freiherr is a title, translated as Baron,
not a first or middle name. (The female forms are Freifrau and Freiin.)

During the Second World War, he joined the German nuclear energy
project, participating in efforts to construct an atomic bomb. As a protegee
of Heisenberg, he was present at a crucial meeting at the Army Ordinance
headquarters in Berlin on 17 September 1939, at which the German atomic
weapons program was launched. In July 1940 he was co-author of a report
to the Army on the possibility of “energy production” from refined uranium,
and which also predicted the possibility of using plutonium for the same
purpose. He was later based at Strasbourg, and it was the American capture
of his laboratory and papers there in December 1944 that revealed to the
Western Allies that the Germans had not come close to developing a nuclear
weapon.

Historians have been divided as to whether Heisenberg and his team
were sincerely trying to construct a nuclear weapon, or whether their failure
reflected a desire not to succeed because they did not want the Nazi regime
to have such a weapon. This latter view, largely based on postwar interviews
with Heisenberg and Weizsäcker, was put forward by Robert Jungk in his
1957 book Brighter Than a Thousand Suns. Weizsäcker states himself that
Heisenberg, Wirtz and he had a private agreement to study nuclear fission
to the fullest possible in order to “decide” themselves how to proceed with
its technical application. “There was no conspiracy, not even in our small

∗The biography and foto are included into the issue, from the Wikipedia,
by the Editors of Progress in Physics. The Wikipedia texts and images are
under the GNU free documentation license. The Editors of Progress in
Physics are thankful to the Wikipedia.

three-men-circle, with certainty not to make the bomb. Just as little, there
was no passion to make the bomb . . . ” (cited from: C. F. von Weizsäcker,
letter to Mark Walker, August 5, 1990).

The truth about this question was not revealed until 1993, when tran-
scripts of secretly recorded conversations among ten top German physicists,
including Heisenberg and Weizsäcker, detained at Farm Hall, near Cam-
bridge in late 1945, were published. The Farm Hall Transcript revealed
that Weizsäcker had taken the lead in arguing for an agreement among
the scientists that they would claim that they had never wanted to develop
a German nuclear weapon. This story, which they knew was untrue, was
called among themselves die Lesart (the Version). Although the memo-
randum which the scientists drew up was drafted by Heisenberg, one of those
present, Max von Laue, later wrote: “The leader in all these discussions was
Weizsäcker. I did not hear any mention of any ethical point of view” (cited
from: John Cornwell, Hitler’s Scientists, Viking, 2003, p. 398). It was this
version of events which was given to Jungk as the basis of his book.

Weizsäcker was allowed to return to Germany in 1946 and became
director of a department for theoretical physics in the Max Planck Institut
for Physics in Göttingen (successor of Kaiser Wilhelm Institut). From
1957 to 1969, Weizsäcker was professor of philosophy at the University
of Hamburg. In 1957 he won the Max Planck medal. In 1970 he formulated
a Weltinnenpoltik (world internal policy). From 1970 to 1980, he was head
of the Max Planck Institute for the Research of Living Conditions in the
Modern World, in Starnberg. He researched and published on the danger
of nuclear war, what he saw as the conflict between the first world and
the third world, and the consequences of environmental destruction. In
the 1970’s he founded, together with the Indian philosopher Pandit Gopi
Krishna, a research foundation “for western sciences and eastern wisdom”.
After his retirement in 1980 he became a Christian pacifist, and intensified
his work on the conceptual definition of quantum physics, particularly on
the Copenhagen Interpretation.

His experiences in the Nazi era, and with his own behavior in this time,
gave Weizsäcker an interest in questions on ethics and responsibility. He was
one of the Gättinger 18 — 18 prominent German physicists — who protested
in 1957 against the idea that the Bundeswehr should be armed with tactical
nuclear weapons. He further suggested that West Germany should declare
its definitive abdication of all kinds of nuclear weapons. However he never
accepted his share of responsibility for the German scientific community’s
efforts to build a nuclear weapon for Nazi Germany, and continued to repeat
the version of these events agreed on at Farm Hill. Some others believe this
version to be a deliberate falsehood.

In 1963 Weizsäcker was awarded the Friedenspreis des Deutschen
Buchhandels (peace award of the German booksellers). In 1989, he won
the Templeton Prize for Progress in Religion. He also received the Order
Pour le Mérite. There is a Gymnasium named after him, in the town of
Barmstedt, which lies northwest of Hamburg, in Schleswig-Holstein, the
Carl Friedrich von Weizsäcker Gymnasium im Barmstedt.

Main books by C. F. von Weizsäcker

1. Zum Weltbild der Physik. Leipzig, 1946. Translated into English as
The World View of Physics, Londres, 1952; in French — Le Monde vu
par la Physique, Paris, 1956.

2. Die Geschichte der Natur. Göttingen, 1948.
3. Die Einheit der Natur. München, 1971. Translated into English as

The Unity of Nature, N.Y., 1980.
4. Wege in der Gefahr. München, 1976. Translated into English as The Po-

litics of Peril, N.Y., 1978.
5. Der Garten des Menschlichen. München, 1977. Translated as The Am-

bivalence of Progress: Essays on Historical Anthropology, N.Y., 1988.
6. Introduction to The Biological Basis of Religion and Genius, by Gopi

Krishna, N.Y., 1971, 1972 (the introduction takes half the book).
7. Aufbau der Physik. München, 1985. Translated as The Structure of

Physics, Heidelberg, 2006.
8. Der Mensch in seiner Geschichte. München, 1991.
9. Zeit und Wissen. München, 1992.

10. Grosse Physiker. München, 1999.
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According to Jewish Kabbalistic tradition, nothing is real except for G-d. In this
brief letter, originally addressed to Torah scholars, we demonstrate how Zelmanov’s
Anthropic Principle is consistent with this tradition by analyzing the famous question
in philosophy, “If a tree falls in a forest and no one is around to hear it, does it make
a sound?”

There is a famous question in philosophy: “If a tree falls in a
forest and no one is around to hear it, does it make a sound?”
Philosophers have been debating this question for centuries.
The philosophers who answer “No”, called idealists, are of
the opinion that reality is whatever we perceive it to be. And
the philosophers who answer “Yes’, called realists, are of the
opinion that reality exists independently of observers.

In the 1940’s, the prominent cosmologist Abraham Zel-
manov introduced his Anthropic Principle:

“The Universe has the interior we observe, because we
observe the Universe in this way. It is impossible to divorce
the Universe from the observer. The observable Universe
depends on the observer and the observer depends on the
Universe. If the contemporary physical conditions in the
Universe change then the observer is changed. And vice
versa, if the observer is changed then he will observe the
world in another way. So the Universe he observes will
be also changed. If no observers exist then the observable
Universe as well does not exist” [1, 2].

The Anthropic Principle answer to the above question is
both “Yes” and “No”. “Yes”, since the observer is dependent
upon the observable Universe for his or her existence, so it is
possible for sound, which is part of the observable Universe,
to exist without an observer. And “No”, since the observable
Universe is dependent upon the observer for its existence, so
it is impossible for sound to exist without an observer. So the
Anthropic Principle seems to be logically contradictory. But
Zelmanov’s Anthropic Principle is nevertheless consistent
with Torah. How is this possible?

According to our Torah sages of blessed memory, only
G-d is real, since only G-d has an independent existence that
is not subject to change from external factors.∗ The question,
“If a tree falls in a forest and no one is around to hear it,
does it make a sound?”, is based upon the assumption that

∗One of the best references for the claim that Torah tradition says
that only G-d is real is the book entitled Tanya, by Rabbi Shneur Zalman
of Liadi [3]. Book 2 of Tanya, entitled Sha’ar ha-Yichud ve’ha’Emunah
(translated as The Gateway of Unity and Belief ) explains this principle in
detail.

either the observer or the observable Universe is real. Thus
according to the reasoning of our Torah sages of blessed
memory, the question, “If a tree falls in a forest and no one
is around to hear it, does it make a sound?”, is based upon
a false premise, since both the observer and the observable
universe are not real (according to the sages’ definition of
“real”). Hence, it is possible for the answer to the question,
“If a tree falls in a forest and no one is around to hear it,
does it make a sound?” to be both “Yes” and “No” and still
be consistent with Torah.
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Open Letter by the Editor-in-Chief: Declaration of Academic Freedom (Scientific Human Rights)
The Bulgarian Translation∗

Декларация за Академична Свобода
(Научни Човешки Права)

Клауза 1: Предисловие

Началото на 21-ви век отразява по-силно от всякога в
историята на човечеството, дълбочината и значимостта
на ролята, която науката и технологиите имат в човеш-
ките дела.

Мощното нахлуване на модерната наука и техноло-
гии в различни отрасли дава общопритето впечатление,
че бъдещи ключови открития са възможни принципно и
единствено от големи правителствени или корпоративно
финансирани изследователски групи, които имат достъп
до изключително скъпа апаратура и орда от помощен
персонал.

Това общоприето впечатление обаче е митично, и не
отразява истинската природа на това как се правят науч-
ни открития. Големи и скъпи технологични проекти, без
значение колко сложни, са всъщност резултат на при-
ложението на проницателни научни прозрения на малка
група от отдадени на науката изследователи или самосто-
ятелни учени, често работещи в изолация. Учен, който
работи сам, сега и в бъдеще, точно както и в минало-
то, ще може да прави открития, които значимо могат да
повлияят на съдбата на човечеството и да променят ли-
цето на цялата планета, която ние толкова незначително
обитаваме.

Фундаментални открития по правило се правят от
индивиди, които работят в подчинени позиции в пра-
вителствени агенции, изследователски и образователни
институции, или комерсиални предприятия. Следовател-
но изследователят често е подтискан от институционните
или корпоративни директори, които работещи под друга
агенда (дневен ред), се опитват да поемат контрол и да
прилагат научните открития за лична или корпоративна
изгода, или себевъзвеличаване.

Историята на научните открития е пълна със случаи
на подтискане и подигравки към учения дръзнал да се
противопостави на установените догми, но в които през
следващите години правотата на учения е била доказана
чрез неумолимия марш на практическата необходимост
и жаждата за интелектуално развитие. Също така исто-
рията е пълна и със случаи на мръсен и петнящ плаги-
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аризъм и преднамерено фалшиво представяне на факти,
престъпно извършено поради безскруполност, мотивира-
на от завист и користолюбие. Така е и днес!

Целта на тази Декларация е да подкрепи и развие
фундаменталната доктрина защитаваща, че научните из-
следвания трябва да са независими от скрито или открито
подтискащо влияние от бюрократични, политически, ре-
лигиозни или наказателни директиви, и че създаването
на наука е човешко право не по-малко от други основ-
ни човешки права, които вече са разискани в различни
международни спогодби и международни закони.

Всички учени с подобно мислене нека се придържат
към тази Декларация в знак на солидарност с междуна-
родната научна общност, и нека уважат правото на насе-
лението на Земята на неоковано от догми създаване на
наука, всеки според собствените индивидуални възмож-
ности и предпочитания, за да може да се развива науката,
и всеки, като порядъчен гражданин в този непорядъчен
свят, да има шанс да допринесе максимална полза за чо-
вечеството.

Клауза 2: Кой е учен

Учен е всеки човек, който прави наука. Всеки човек, кой-
то сътрудничи с учен в развитието и представянето на
идеи и данни в научните изследвания или прилагането
им, е също учен. Наличието на професионална квалифи-
кация не е пререквизит за да може човек да бъде учен.

Клауза 3: Къде се прави наука

Научни изследвания могат да бъдат извършвани абсо-
лютно навсякъде, например на работното място, в про-
цес на образование, по време на спонсорирана академич-
на програма, в научни групи, или самостоятелно вкъщи
провеждайки собствено проучване.

Клауза 4: Свобода на избор на изследователска тема

Много учени работещи за високи научни звания или в
други изследователски програми на научни институции
като университети и институти за напреднали изследва-
ния, биват възпрепятствани да работят по изследовател-
ска тема по собствен избор от висши академични и/или
административни представители, не поради липса на не-
обходимата техника, а поради това че академичната йер-
архия и/или други органи просто не одобряват проучва-
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нията, които могат да се противопоставят на общоприе-
тата догма, любима теория, или поради финансирането
на други проекти, които иначе биха могли да бъдат дис-
кредитирани от предложеното проучване. Авторитетът
на ортодоксалното мнозинство често бива използван за
да потопи начинанията за дадено научно проучване, са-
мо и само за да не бъде разстроен бюджета. Тази общо-
приета практика на обмислено подтискане на свободната
научна мисъл е ненаучна в своята екстремност, а освен
това е и престъпна. Тя не може да бъде толерирана.

Учен работещ за някаква академична институция,
власт или агенция, трябва да бъде абсолютно свободен да
избира изследователска тема, ограничена само от мате-
риалната база и интелектуални възможности, които
могат да бъдат предоставени от институцията, агенци-
ята или властта. Ако учен провежда изследвания като
част от сътрудническа група, ръководителите на проекта
и водачите на група трябва да бъдат ограничени само до
съвещателна и консултативна роля във връзка с избора
на подходяща изследователска тема от учен в групата.

Клауза 5: Свобода на избор на изследователски ме-
тоди

Често бива оказван натиск върху учения от администра-
тивния персонал или по-старши академици във връзка
с дадена изследователска програма провеждана в акаде-
мична среда, за да се принуди учения да използва други
методи от тези които той е избрал, без друга причина ос-
вен лични предпочитания, пристрастие, институционна
политика, редакторска диктатура, или колективна власт.
Тази практика, която е доста разпространена, е предна-
мерено отричане на свободата на мисълта и не може да
бъде разрешена.

Некомерсиален или академичен учен има правото да
развива изследователска тема по всеки рационален на-
чин, който учения смята за най-ефективен. Финансовите
решения относно това как ще се обезпечи изследването
са собствен проблем на учения.

Ако некомерсиален или академичен учен работи като
член на колаборативен некомерсиален или академичен
колектив от учени, то лидерите на проекта и ръководите-
лите на изследването трябва да имат само съвещателна
или консултативна роля и не трябва да повлияват, проме-
нят или ограничават изследователските методи или из-
следователската тема на учен от групата.

Клауза 6: Свобода на участие и сътрудничество в
научните изследвания

Налице е значим елемент на институционално съпер-
ничество в практиката на съвременната наука, съпът-
ствано от елементи на лична завист или запазване на
репутацията на всяка цена, независимо от научната дей-
ствителност. Това често възпрепятства учените да отбе-

лязват помощта на компетентни колеги от съперничещи
институции или такива без академично работно място.
Подобна практика също е преднамерено възпрепятства-
не на научния прогрес.

Ако некомерсиален учен иска помощ от друг човек, и
този човек е съгласен, то ученият има свободата да пока-
ни този човек и да използва всякаква и цялостна помощ,
при положение, че помощта е в рамките на предоставе-
ния изследователски бюджет. Ако помощта не зависи от
предоставения бюджет, то учения има правото да наеме
като асистент даден човек по собствена преценка, свобо-
ден от възпрепятстване от който и да е било.

Клауза 7: Свобода за несъгласие в научна дискусия

В резултат на скрита завист или направени капитало-
вложения, модерната наука ненавижда откритата научна
дискусия и с желание забранява тези учени, които поста-
вят под въпрос ортодоксалните възгледи. Много често
учени с доказани качества, които показват проблеми в
общоприета теория или интерпретация на данни, биват
наричани ненормални, за да могат техните възгледи да
бъдат игнорирани. Те биват подложени на присмех пу-
блично или в частна кореспонденция, систематично не
биват допускани за участие в научни конгреси, семина-
ри или колоквиуми, за да не могат техните идеи да имат
слушатели. Преднамерена фалшификация на данни или
изопачаване на дадена теория, сега са често оръжие в ар-
сенала на тези които безскруполно целят подтискането на
определени научни или исторически факти. Формирани
международни комитети съставени от научни мерзавци
сега провеждат и оглавяват научни конгреси на които
могат да участват само последователи, които предста-
вят статии без значение от качеството на съдържанието
им. Тези комитети използват крупни суми от обществе-
ния бюджет за да спонсорират собствените си проекти
употребявайки измама и лъжи. Всяко възражение към
техните предложения, което е базирано на научни аргу-
менти бива заглушавано с всички налични средства, за
да могат парите да продължават да текат в собствените
научноизследователски сметки, по този начин гаранти-
райки им добре платено собствено работно място. По
тяхна повеля част от противопоставилите се учени би-
ват изхвърляни от работното място, други биват възпре-
пятствани от успешно уговаряне на научни мероприятия
чрез изградена мрежа от корумпирани съучастници. В
някои ситуации учени биват изхвърляни от конкурси за
висши образователни програми, например докторантури,
за това че са изразили идеи които подкопават дадена
модна теория, независимо от това колко е отдавнашна
тази ортодоксална теория. Фундаментален факт е, че ни-
коя научна теория е непоклатима или неприкосновена,
следователно всяка теория е отворена за дискусия и по-
вторно оценяване. Това обаче е забравено от споменатите
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международни комитети. Те също така игнорират факта,
че даден феномен може да има множество правдоподоб-
ни обяснения, и злостно дискредитират всяко обяснение
което не е в унисон с тяхното ортодоксално мнение като
без да се колебаят използват ненаучни аргументи за да
оправдаят пристрастните си убеждения.

Всички учени трябва да бъдат свободни да обсъж-
дат собствените си изследвания както и изследванията
на други учени без страх от публично или лично безпри-
чинно осмиване, без страх от това да бъдат обвинени,
очернени, поставени под съмнение, или да бъдат дискре-
дитирани по друг начин от безпочвени твърдения. Ни-
кой учен не бива да бъде поставян в положение в което
прехраната или репутацията му да бъдат рискувани само
заради изказването на научно мнение. Свободата за науч-
но изразяване трябва да е първостепенна. Употребата на
власт за отхвърлянето на научен аргумент е ненаучна и не
трябва да бъде използвана за заблуда, потискане, запла-
шване, отлъчване от обществото, или по друг начин на-
силва или оковава учения. Преднамереното потискане на
научните факти или аргументи, както чрез действие така
и чрез бездействие, а също и преднамереното подправяне
на фактите за да подкрепят аргумент или дискредитират
противопоставящ се възглед, е научна измама, която е
равна на научно престъпление. Принципите на доказване
трябва да водят всяка научна дискусия, независимо дали
доказателтсвото е физично, теоретично (математическо),
или комбинация от двете споменати.

Клауза 8: Свобода на публикуване на научни резул-
тати

Окаяно и жалко цензориране на научни статии сега се е
превърнало в стандартна практика на редакторските бор-
дове на важни списания и електронни архиви, и тяхната
банда от набедени експертни рецензенти. Рецензентите
в голяма част са предпазени от гарантираната аноним-
ност така че авторът не може да е сигурен в тяхната
компетентност. Статии сега рутинно се отхвърлят пора-
ди това, че авторът не е съгласен или се противопоставя
на общоприето предпочитана теория или преобладаваща
правоверност. Много статии сега се отхвърлят автома-
тично само защото сред авторите се появява името на
учен, който е имал пререкания с редакторите на списа-
нието, рецензентите, или други експертни цензори, като
въобще и не се поглежда съдържанието на отхвърлена-
та статия. Съществуват “черни листи” на инакомислещи
учени и този лист се разпространява между редакторски-
те бордове на списания които имат един и същ участващ
редактор. Всичко това спомага за голямо пристрастие и
престъпно потискане на свободната мисъл, и би трябвало
да бъдат заклеймени от международната научна общност.

Всички учени трябва да имат право да представят
техните научни резултати, изцяло или частично, на съот-

ветни научни конференции, както и да ги публикуват в
отпечатвани научни списания, електронни архиви, или
всякаква друга медия. Никой учен не трябва да полу-
чава отказ за публикуване на изпратена от него работа
просто защото е подложил на въпрос мнението на се-
гашното мнозинство, съществува конфликт с мнението
на редакторския борд, подкопава устоите на текущи или
планирани от други учени изследвания, е в конфликт с
някаква политическа догма, религиозно изповедание, или
личното мнение на някого, и никой учен не трябва да бъ-
де поставян в “черна листа”, цензуриран или недопускан
да публикува поради някого си. Никой учен не бива да
блокира, модифицира, или по друг начин възпрепятства
публикацията на работа на друг учен поради какъвто и
да е било обещан подкуп.

Клауза 9: Съавторство на научни статии

Слабо пазена тайна в научните кръгове е, че много съав-
тори на научни статии всъщност имат малък или даже
никакъв принос относно докладваните в публикацията
резултати. Много ръководители на докторанти например
нямат нищо против да си поставят името заедно с ав-
тора на който те са ръководители. В много от случа-
ите човекът, който пише статията е интелектуално по-
напред от формалния си ръководител. В други случаи,
отново заради желание за именитост, репутация, пари,
престиж и други подобни, не участвали в проучването
хора биват включвани в статията като съавтори. По този
начин действителния автор може да отговаря на проти-
вопоставени алтернативни възгледи но само с риск след
това да бъде наказан по някакъв начин, или рискува да
не получи научната си степен. Много всъщност биват
изхвърлени и не завършват научната си степен поради
тази причина. Такава безобразна практика не може да
бъде толерирана. Само хора, които са отговорни за из-
следването трябва да бъдат официално обявени за съав-
тори.

Никой учен не трябва да кани друг човек да бъде
включен и никой учен не бива да позволява да бъде
включен като съавтор на научна статия, ако те не са до-
принесли значимо за резултатите публикувани в стати-
ята. Никой учен не бива да позволява да бъде насилен
от представител на дадена академична институция, кор-
порация, правителствена агенция, или друг човек, за да
бъдат имената на тези хора включени като съавтор в из-
следване проведено от учения в което те не са допри-
несли значимо, както и учения не бива да предоставя
името си за употреба като съавтор в замяна на подаръци
или друг подкуп. Никой човек не бива да убеждава или
да се опитва да убеждава учен, по какъвто и да е било
начин, за да може името на учения да бъде включено ка-
то съавтор на научна статия относно резултати за които
учения не е допринесъл значимо.

92 Декларация за Академична Свобода: Научни Човешки Права



July, 2007 PROGRESS IN PHYSICS Volume 3

Клауза 10: Независимост на учения от връзки с ин-
ституция

Много учени сега биват наемани с краткотрайни дого-
вори. С прекратяване на трудовия договор се прекратява
и академичната връзка с дадена институция. Честа по-
литика на редакторските бордове на списания е да не
публикуват статии на хора без връзка с академична или
комерсиална институция. Поради липсата на връзка с ин-
ституция много възможности остават недостъпни за уче-
ния, а също така шансовете му да представя лекции и
статии на конференции биват редуцирани. Това е пороч-
на практика, която трябва да бъде спряна. Науката не
признава връзките с институция.

Нито един учен не бива да бъде възпрепятстван да
представя статии на конференции, колоквиуми или семи-
нари, да публикува резултатите си във всякаква медия,
да има достъп до академични библиотеки или научни
публикации, да посещава научни срещи, да чете лекции,
да иска връзка с дадена академична институция, научен
институт, правителствена или комерсиална лаборатория,
или друга организация.

Клауза 11: Отворен достъп до научна информация

Повечето специализирани книги относно научна инфор-
мация, както и много научни списания, имат малка или
не носят никаква печалба, така че комерсиални издател-
ски къщи не желаят да публикуват такива творби без
да им се заплати от академичната институция, прави-
телствена агенция, филантропска фондация, или други
подобни. При такива обстоятелства комерсиалните изда-
телски къщи трябва да предоставят свободен достъп до
електронните версии на публикуваните научни материа-
ли, и да се борят да редуцират цената на отпечатаните от
тях публикации до минимум.

Нека всички учени се борят за осигуряване на не-
платен достъп до техните научни публикации, или ако
това не е възможно, то достъпът да е на минимална цена.
Всички учени трябва да предприемат активни мерки, за
да могат техните специализирани книги да бъдат достъп-
ни на възможно най-малка цена по този начин правейки
научната информация широко достъпна за международ-
ното научно общество.

Клауза 12: Морална отговорност на учените

Историята ни учи, че научните открития се използват ка-
кто за добро така и за зло, за полза на едни и разоряване
на други. Тъй като прогресът на науката и технологията
не може да бъде спрян, то трябва да бъдат предприети
мерки за ограничаване на потенциални злосторни при-
ложения. Само демократично избрано правителство, сво-
бодно от религиозни, расистки или други предразсъдъци,

може да охранява цивилизацията. Единствено демокра-
тично избрано правителство, трибунал или комитет мо-
гат да охраняват правото на свобода на научно създаване.
Днес, различни недемократични страни или тоталитар-
ни режими активно провеждат изследвания в областта
на ядрената физика, химия, вирусология, генетично ин-
жинерство, и други науки, за да могат да продуцират
ядрено, химическо или биологическо оръжие. Нито един
учен не бива да сътрудничи на недемократични страни
или тоталитарни режими. Всеки учен принуден да рабо-
ти за разработка на оръжие на такива страни трябва да
намери начин и средства да забави развитието на изсле-
дователските програми и да редуцира научната произво-
дителност, за да може цивилизацията и демокрацията да
възтържествуват.

Всички учени носят морална отговорност за собстве-
ните научни разработки и открития. Нито един учен не
бива доброволно да се въвлича в дизайн или конструкция
на каквито и да е било оръжия за недемократични стра-
ни или тоталитарни режими, или да позволява неговите
научни умения и знание да бъдат приложени за разра-
ботване на нещо което може да навреди на човечеството.
Ученият трябва да живее с мисълта, че всяко недемокра-
тично правителство или незачитане на човешките права
е престъпление.

Март 12, 2007
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Open Letter by the Editor-in-Chief: Declaration of Academic Freedom (Scientific Human Rights)
The Romanian Translation∗

Declaraţie asupra Libertăţii Academice
(Drepturile Omului ı̂n Domeniul Ştiinţific)

Articolul 1: Introducere

Inceputul secolului al 21-lea reflectă mai mult decât oricând
ı̂n istoria omenirii, rolul adânc şi significant al ştiinţei şi
tehnologiei ı̂n activităţile umane.

Natura atotpătrunzătoare şi universală a ştiinţei şi tehno-
logiei moderne a dat naştere unei percepţii comune că viitoa-
rele descoperiri importante pot fi făcute, ı̂n principal sau ı̂n
exclusivitate, numai de grupuri mari de cercetare finanţate
de guvernări sau de firme mari, care au access la instrumente
foate scumpe precum şi la un număr mare de personal de
support.

Această percepţie comună, este totuşi nerealistă şi con-
trazice modul adevărat ı̂n care sunt făcute descoperirile ştiin-
ţifice. Proiecte tehnologice mari şi scumpe, oricât de com-
plexe, sunt numai rezultatul aplicării profundei intuiţii ştiin-
ţifice a unor grupuri mici de cercetători dedicaţi sau a unor
oameni de ştiinţă solitari, care de multe ori lucrează izolaţi.
Un om de ştiinţă care lucrează singur, este, acum precum
şi ı̂n viitor, aşa cum a fost şi ı̂n trecut, capabil să facă o
descoperire, care poate influenţa substanţial soarta omenirii
şi poate schimba faţa ı̂ntegii planete pe care o locuim pentru
aşa de puţin timp.

Descoperirile cele mai importante sunt făcute de per-
soane care lucreaza ca subalterni ı̂n diverse agenţii guverna-
mentale, instituţii de ı̂nvăţământ şi cercetare, sau intreprin-
deri comerciale. În consecinţă, cercetătorul este foare frec-
vent forţat sau umbrit de directorii instituţiilor şi firmelor,
care, având planuri diferite, caută să controleze şi să aplice
descoperirile ştiintifice şi cercetările pentru profit personal
sau pentru organizaţie, sau prestigiu personal.

Recordul istoric al decoperirilor ştiinţifice abundă ı̂n ca-
zuri de represiune şi ridiculizare făcute de cei la putere,
dar ı̂n ultimii ani acestea au fost dezvăluite si corectate de
către inexorabilul progres al necesităţii practice şi iluminare
intelectuală. Tot aşa de rău arată şi istoria distrugerii şi de-
gradării produse prin plagiarism şi denaturare intenţionată,
făcute de necinstiţi, motivaţi de invidie şi lăcomie. Şi aşa
este şi azi.

Intenţia acestei Declaraţii este să sprijine şi să dezvolte
doctrina fundamentală că cercetarea ştiinţifică trebuie să fie

∗Original text published in English: Progress in Physics, 2006, v. 1,
57–60. Online — http://www.ptep-online.com/

Textul originar ı̂n limba engleză de Dmitri Rabounski, Redactor Şef al
revistei Progress in Physics. E-mail: rabounski@yahoo.com

Traducere autorizată ı̂n limba romană de Florentin Smarandache.
E-mail: smarand@unm.edu

liberă de influenţa ascunsă şi făţiş represivă a directivelor
birocratice, politice, religioase, pecuniare şi, de asemenea,
creaţia ştiinţifică este un drept al omului, nu mai mic decât
alte drepturi similare şi speranţe disperate care sunt promul-
gate in acorduri şi legi internaţionale.

Toţi oamenii de ştiinţă care sunt de acord vor trebui să
respecte aceasta Declaraţie, ca o indicaţie a solidarităţii cu
comunitatea ştiinţifică internaţională care este preocupată de
acest subiect, şi să asigure drepturile cetăţenilor lumii la
creaţie ştiinţifică fără amestec, ı̂n acordanţă cu talentul şi
dispoziţia fiecăruia, pentru progresul ştiinţei şi conform abi-
lităţii lor maxime ca cetăţeni decenţi ı̂ntr-o lume indecentă,
ı̂n avantajul Omenirii. Stiinţa şi tehnologia au fost pentru
prea multă vreme servanţii asupririi.

Articolul 2: Cine este un cercetător ştiinţific

Un cercetător ştiinţific este orice persoană care se preocupă
de ştiinţă. Orice persoană care colaborează cu un cercetător
ı̂n dezvoltarea şi propunerea ideilor şi a informaţiilor ı̂ntr-
un project sau aplicaţie, este de asemenea un cercetător.
Deţinerea unor calificări formale nu este o cerinţă prealabilă
pentru ca o persoană să fie un cercetător ştiinţific.

Articolul 3: Unde este produsă ştiinţa

Cercetarea ştiinţifică poate să aibă loc oriunde, de exemplu,
la locul de muncă, ı̂n timpul studiilor, ı̂n timpul unui program
academic sponsorizat, ı̂n grupuri, sau ca o persoană singură
acasă făcând o cercetare independentă.

Articolul 4: Libertatea de a alege o temă de cercetare

Mulţi cercetători care lucrează pentru nivele mai avansate
de cercetare sau ı̂n alte programe de cercetare la instituţii
academice, cum sunt universităţile şi facultăţile de studii
avansate, sunt descurajaţi, de personalul de conducere aca-
demic sau de oficiali din administraţie, de a lucra ı̂n domeniul
lor preferat de cercetare, şi aceasta nu din lipsa mijloacelor
de suport, ci din cauza ierarhiei academice sau a altor oficia-
lităţi, care pur şi simplu nu aprobă o direcţie de cercetare
să se dezvolte la potenţialul ei, ca să nu deranjeze dogma
convenţională, teoriile favorite, sau subvenţionarea altor
proiecte care ar putea fi discreditate de cercetarea propusă.
Autoritatea majorităţii ortodoxe este destul de frecvent in-
vocată ca să stopeze un proiect de cercetare, astfel ı̂ncât
autorităţile şi bugetul să nu fie deranjate. Această practică
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comună este o obstrucţie deliberată a gândirii libere, este
neştiinţifică la extrem, şi este criminală. Aceasta nu poate fi
tolerată.

Un cercetător care lucrează pentru orice instituţie acade-
mică, organizaţie, sau agenţie trebuie să fie complet liber
ı̂n alegerea unei teme de cercetare şi să fie limitat doar
de suportul material şi de expertiza intelectuală care poate
fi oferită de instituţia academică, organizaţia, sau agenţia
respectivă. Dacă un cercetător ı̂şi desfăsoară activitatea lui
de cercetare fiind membru al unui grup de cercetători, atunci
directorii de cercetare şi liderii grupului ı̂şi vor limita rolul
lor doar la capacitatea de recomandare şi consultanţă ı̂n ceea
ce priveşte alegerea unei teme de cercetare relevante de către
un cercetător din grup.

Articolul 5: Libertatea de alegere a metodelor de cer-
cetare

În multe cazuri personalul administrativ sau academic de
conducere impune o anumită presiune asupra unor cercetă-
tori, care fac parte dintr-un program de cercetare care se
desfăşoară ı̂ntr-un mediu academic, ca să-i forţeze să adopte
alte metode de cercetare decât acelea alese de ei, motivul
fiind nu altul decât o preferinţă personală, o prejudecată,
o procedură instituţională, ordine editorială, ori autoritate
colectivă. Această practică, care este destul de răspândită,
este o eliminare deliberată a libertăţii de gândire, şi această
nu poate fi permisă.

Un cercetator academic sau dintr-o instituţie care nu luc-
rează pentru profit are dreptul să dezvolte o temă de cercetare
ı̂n orice mod rezonabil, utilizând orice mijloace rezonabile
pe care el le consieră că vor fi cele mai eficiente. Doar
cercetătorul ı̂nsuşi ia decizia finală asupra modului cum cer-
cetarea va fi efectuată.

Dacă un cercetator academic, sau dintr-o instituţie care
nu lucrează pentru profit, lucrează ca un membru al unui
grup de cercetători academici, sau dintr-o instituţie care nu
lucrează pentru profit, conducătorii de proiect şi directorii de
cercetare vor avea doar un rol de ı̂ndrumători şi consultanţi
şi nu trebuie ı̂n nici un fel să influenţeze, să intervină, sau
să limiteze metodele de cercetare sau tema de cercetare ale
unui cercetător din grup.

Articolul 6: Libertatea de participare şi colaborare ı̂n
cercetare

În practicarea ştiinţei moderne există un element semnificant
de rivalitate instituţională, concomitent cu elemente de in-
vidie personală şi de prezervare a reputaţiei cu orice preţ,
indiferent de realităţile ştiinţifice. Aceasta de multe ori a
condus la faptul că cercetătorii au fost ı̂mpiedicaţi să nomi-
nalizeze asistenţa colegilor competenţi care fac parte din
instituţii rivale sau alţii care nu au nici o afiliaţie academică.
Această practică este de asemenea o obstrucţie deliberată a
progresului ştiinţific.

Dacă un cercetator ştiinţific dintr-o instituţie care nu lu-
crează pentru profit cere asistenţa unui alt cercetător şi dacă
acel cercetător este de accord, cercetătorul are libertatea de a
invita celălalt cercetător să-i ofere orice asistenţă, cu condiţia
ca asistenţa să fie ı̂n cadrul bugetului de cercetare stabilit.
Dacă asistenţa este independentă de buget, cercetătorul are
libertatea să angajeze cercetătorul colaborator la discreţia
lui, făra absolut nici o intervenţie din partea nici unei alte
persoane.

Articolul 7: Libertatea de a nu fi de accord ı̂n discuţii
ştiinţifice

Datorită invidiei ascunse şi a intereselor personale, ştiinţa
modernă nu apreciază discuţii deschise şi nu acceptă ı̂n mod
categoric pe acei cercetători care pun la ı̂ndoială teoriile orto-
doxe. Deseori, cercetători cu abilităţi deosebite, care arată
deficienţele ı̂ntr-o teorie actuală sau ı̂ntr-o interpretare a date-
lor, sunt denumiţi excentrici, astfel ca vederile lor să poată
fi ignorate cu uşurinţă. Ei sunt făcuţi de râs ı̂n public şi ı̂n
discuţii personale şi sunt opriţi ı̂n mod sistematic de a par-
ticipa la convenţii, seminarii, sau colocvii ştiinţifice, astfel
ca ideile lor să nu poată să găsească o audienţă. Falsificări
deliberate ale datelor şi reprezentarea greşită a teoriei sunt
acum unelte frecvente ale celor fără scrupule, ı̂n eliminarea
dovezilor, atât tehnice cât şi istorice. Comitete internaţionale
de cercetători rău-intenţionaţi au fost formate şi aceste comi-
tete organizează şi conduc convenţii internaţionale, unde
numai cei care sunt de accord cu ei sunt admişi să prezinte
lucrări, indiferent de calitatea acestora. Aceste comitete
extract sume mari de bani din bugetul public ca să suporte
proiectele lor preferate, folosind falsităţi şi minciuni. Orice
obiecţiune la propunerile lor, pe baze ştiinţifice, este trecută
sub tăcere prin orice mijloace la dispoziţia lor, aşa ca banii
să poată să continue să se verse la conturile proiectelor
lor şi să le garanteze posturi bine plătite. Cercetătorii care
s-au opus au fost daţi afară la cererea acestor comitete, alţii
au fost ı̂mpiedicaţi, de către o reţea de complici corupţi, de
a obţine posturi academice. În alte situaţii unii au fost daţi
afară de la candidatura pentru titluri academice avansate,
cum ar fi doctoratul, pentru că şi-au exprimat idei care nu
sunt de accord cu teoria la modă, chiar dacă această teorie
ortodoxă la modă este ı̂n vigoare de multă vreme. Ei ignoră
complet faptul fundamental că nici o teorie ştiinţifică nu
este definitivă şi inviolabilă, şi prin urmare este deschisă
pentru discuţii şi re-examinare. De asemenea ei ignoră faptul
că un fenomen ar putea să aibă mai multe explicaţii
plauzibile, şi ı̂n mod răutăcios discreditează orice explicaţie
care nu este de acord cu opinia ortodoxă, folosind fără nici
o restricţie argumente neştiinţifice să explice opiniile lor
părtinitoare.

Toţi cercetătorii trebuie să fie liberi să discute cercetările
lor şi cercetările altora, fără frica de a fi ridiculizaţi, fără
nici o bază materială, ı̂n public sau ı̂n discuţii particulare,
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sau să fie acuzaţi, criticaţi, nerespectaţi sau discreditaţi ı̂n
alte feluri, cu afirmaţii nesubstanţiate. Nici un cercetător nu
trebuie să fie pus ı̂ntr-o poziţie ı̂n care situaţia sau reputaţia
lui vor fi riscate, datorită exprimării unei opinii ştiinţifice.
Libertatea de exprimare ştiinţifică trebuie să fie supremă.
Folosirea autorităţii ı̂n respingerea unui argument ştiinţific
este neştiinţifică şi nu trebuie să fie folosită ca să oprească,
să anuleze, să intimideze, să ostracizeze, sau să reducă la
tăcere ori să interzică ı̂n orice fel un cercetător. Înterzicerea
deliberată a faptelor sau argumentelor ştiinţifice, fie prin
fapte sau prin omitere, şi falsificarea deliberată a datelor,
ca să suporte un argument sau ca să discrediteze un punct de
vedere opus, este o decepţie ştiinţifică, care poate fi numită
crimă ştiinţifică. Principiile de evidenţă trebuie să fie călăuza
discuţiei ştiinţifice, fie că acea evidenţa este fizică sau teore-
tică sau o combinaţie a lor.

Articolul 8: Libertatea de a publica rezultate ştiinţifice

O cenzură deplorabilă a articolelor ştiinţifice a devenit acum
practica standard a editorilor multor jurnale de specialitate şi
arhive electronice, şi a grupurilor lor de aşa zişi referenţi
experţi. Referenţii sunt, ı̂n majoritate, protejaţi prin ano-
nimitate aşa ı̂ncât un autor nu le poate verifica aşa zisa
lor expertiză. Lucrările sunt acum de obicei respinse dacă
autorul nu este de accord sau contrazice teorii preferate şi
ortodoxia majoritară. Multe lucrări sunt acum respinse ı̂n
mod automat bazat pe faptul că ı̂n bibliografie apare citat
un cercetător care nu este ı̂n graţiile editorilor, referenţilor,
sau al altor cenzori experţi, cu nici un fel de consideraţie
faţă de conţinutul lucrării. Există o listă neagră a cercetă-
torilor care sunt ı̂n opoziţie şi această listă este comunicată
ı̂ntre conducerile editurilor. Toate acestea duc la o crasă
prejudecare şi o represiune greşită ı̂mpotriva gândirii libere
şi trebuie condamnate de comunitatea internaţională a cerce-
tătorilor.

Toţi cercetătorii trebuie să aibă dreptul să prezinte rezul-
tatele cercetărilor lor ştiinţifice, ı̂n totalitate sau parţial, la
conferinţe ştiinţifice relevante, şi să le publice ı̂n jurnale
ştiinţifice tipărite, arhive electronice sau in altă media. Cer-
cetătorilor nu trebuie să li se respingă lucrările sau rapoartele
lor când sunt prezentate spre publicare ı̂n jurnale ştiinţifice,
arhive electronice, sau in altă media, numai pentru motivul
că lucrările lor pun sub semn de ı̂ntrebare opinia majoritară
curentă, este ı̂n contradicţie cu opiniile unei conduceri edito-
riale, zdruncină bazele altor proiecte de cercetare prezente
sau de viitor ale altor cercetători, este ı̂n conflict cu orice
dogmă politică sau doctrină religioasă, sau cu opinia perso-
nală a cuiva, şi nici un cercetător ştiinţific nu trebuie să fie
pe lista neagră sau cenzurat şi ı̂mpiedicat de la publicare de
nici o altă persoană. Nici un cercetător ştiinţific nu trebuie
să blocheze, modifice, sau să se amestece ı̂n orice mod la
publicarea lucrării unui cercetător deoarece ı̂i sunt promise
cadouri sau alte favoruri.

Artiolul 9: Publicând articole ştiinţifice ı̂n calitate de
co-autor

In cercurile ştiinţifice este un secret bine cunoscut, că mulţi
co-autori ai lucrărilor de cercetare au foarte puţin sau nimic
ı̂n comun cu rezultatele prezentate. Mulţi conducători de teze
ale studenţilor, de exemplu, nu au nici o problemă să-şi pună
numele pe lucrările candidaţilor pe care numai formal ı̂i
coordonează. În multe cazuri dintre acestea, persoana care
de fapt scrie lucrarea are o inteligenţă superioară celei a
coordinatorului. In alte situaţii, din nou, pentru motive de
notorietate, reputaţie, bani, prestigiu, şi altele, neparticipanţi
sunt incluşi ı̂n lucrare ı̂n calitate de co-autori. Adevăraţii
autori ai acestor lucrări pot să obiecteze numai cu riscul de
a fi penalizaţi mai târziu ı̂ntr-un mod sau altul, sau chiar ris-
când să fie excluşi de la candidatura pentru grade superioare
de cercetare sau din grupul de cercetare. Mulţi au fost de
fapt eliminaţi din aceste motive. Această teribilă practică nu
poate fi tolerată. Numai acele persone responsabile pentru
cercetare trebuie să fie creditaţi ca autori.

Cercetatorii nu trebuie să invite alte persoane să fie co-
autori şi nici un cercetător nu ar trebui să admită ca numele
lui să fie inclus ı̂n calitate de co-autor la o lucrare ştiinţifică,
dacă nu au avut o contribuţie substanţială la cercetarea pre-
zentată ı̂n lucrare. Nici un cercetător nu trebuie să se lase
forţat de nici un reprezentant al unei instituţii academice,
firmă, agenţie guvernamentală, sau orice altă persoană să
devină co-autor la o lucrare, dacă ei nu au avut o contribuţie
significantă pentru acea lucrare, şi nici un cercetător nu tre-
buie să accepte să fie co-autor ı̂n schimb pentru pentru ca-
douri sau alte gratuităţi. Nici o persoană nu trebuie să ı̂ncu-
rajeze sau să ı̂ncerce să ı̂ncurajeze un cercetător, ı̂n orice
modalitate, să admită ca numele său să fie inclus ı̂n calitate
de co-autor al unei lucrări ştiinţifice pentru care ei nu au adus
o contribuţie semnificativă.

Articolul 10: Independenţa afiliaţiei

Mulţi cercetători sunt angajaţi prin contracte de scurtă du-
rată. Odată cu terminarea contractului se termină şi afiliaţia
academică. Este frecventă practica conducerii editurilor ca
persoanelor fără afiliaţie academică sau comercială să nu li
se publice lucrările. Când cercetătorul nu este afiliat, el nu
are resurse şi deci are oportunităţi reduse să participe şi să
prezinte lucrări la conferinţe. Aceasta este o practică vicioasă
care trebuie stopată. Ştiinţa nu recunoaşte afiliaţie.

Nici un cercetător nu trebuie să fie ı̂mpiedicat de la
prezentarea de lucrări la conferinţe, colocvii sau seminarii,
de la publicarea ı̂n orice media, de la acces la biblioteci aca-
demice sau publicaţii ştiinţifice, de la participarea la şedinţe
academice, sau de la prezentarea de prelegeri, din cauză că
nu are o afiliere cu instituţii academice, institute de cercetare,
laboratoare guvernamentale sau comericale, sau cu orice altă
organizaţie.
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Articolul 11: Acces deschis la informaţia ştiinţifică

Multe cărţi ştiinţifice de specialitate şi multe jurnale ştiinţi-
fice au un profit mic sau nici un profit, de aceea editorii re-
fuză să le publice fără o contribuţie monetară de la institţiile
academice, agenţii guvernamentale, fundaţii filantropice, şi
altele. În aceste circumstanţe editorii ar trebui să dea acces
liber la versiunile electronice ale publicaţiilor, şi să se stră-
duiască să menţină costul pentru tipărirea materialului la
minim.

Toţi cercetătorii trebuie să se străduiască să se asigure
ca lucrările lor să fie gratuite şi accesibile la comunitatea
ştiinţifică internaţională, sau, dacă nu este posibil, la un preţ
modest. Toţi cercetătorii trebuie să ia măsuri active ca să
ofere cărţile lor tehnice la cel mai mic preţ posibil, pentru
ca informaţia ştiinţifică să devină accesibilă marii comunităţi
ştiinţifice internaţionale.

Articolul 12: Responsabiltatea etică a cercetătorilor

Istoria este martoră că descoperirile ştiinţifice sunt folosite
ı̂n ambele direcţii, bune şi rele, pentru binele unora şi pentru
distrugerea altora. Deoarece progresul ştiinţei şi tehnologiei
nu poate fi oprit, trebuie să avem metode de control asupra
applicaţiilor rău făcătoare. Doar guvernele alese democratic,
eliberate de religie, de rasism şi alte prejudicii, pot să pro-
tejeze civilizaţia. Doar guvernele, tribunalele şi comitetele
alese democratic pot proteja dreptul la o creaţie ştiinţifică
liberă. Astăzi, diferite state nedemocratice şi regime totali-
tare performă o activă cercetare ı̂n fizica nucleară, chimie,
virologie, inginerie genetică, etc. ca să producă arme nuc-
leare, chimice şi biologice. Nici un cercetător nu trebebuie
să colaboreze voluntar cu state nedemocratice sau regime
totalitare. Orice cercetător forţat să lucreze ı̂n crearea de
arme pentru astfel de state trebuie să găsească mijloace de
a ı̂ncetini progresul programelor de cercetare şi să reducă
rezultatele ştiinţifice, astfel ı̂ncât civilizaţia şi democraţia ı̂n
cele din urmă să triumfe.

Toţi cercetătorii au o responsabilitate morală pentru des-
coperirile şi rezultatele lor ştiinţifice. Nici un cercetător să nu
se angajeze de bună voie ı̂n proiectarea sau construcţia a nici
unui fel de armament pentru state cu regimuri nedemocratice
sau totalitare sau să accepte ca talentele şi cunoştiinţele lor
să fie aplicate ı̂n crearea de arme care vor conduce la distru-
gerea Omenirii. Un cercetător ştiinţific trebuie să trăiască
aplicând dictonul că toate guvernele nedemocratice şi viola-
rea drepturilor umane sunt crime.

14 martie, 2007
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Open Letter by the Editor-in-Chief: Declaration of Academic Freedom (Scientific Human Rights)
The French Translation∗

Déclaration de la Liberté Académique
(Les Droits de l’Homme dans le Domaine Scientifique)

Article 1: Préambule

Le début du 21ème siècle reflète, plus qu’aucun autre temps
de l’histoire, la profondeur et l’importance de la science et
la technologie dans les affaires humaines.

La nature puissante et influente de la science et la techno-
logie modernes a fait naı̂tre une perception commune voulant
que les prochaines grandes découvertes ne peuvent être faites
principalement ou entièrement que par des groupes de re-
cherche qui sont financés par des gouvernements ou des
sociétés et ont accès à une instrumentation dispendieuse et à
des hordes de personnel de soutien.

Cette perception est cependant mythique et donne une
fausse idée de la façon dont des découvertes scientifiques
sont faites. Les grands et coûteux projets technologiques,
aussi complexes qu’ils soient, ne sont que le résultat de l’ap-
plication de la perspicacité des petits groupes de recherche ou
d’individus dévoués, travaillant souvent seuls ou séparément.
Un scientifique travaillant seul est, maintenant et dans le
futur, comme dans le passé, capable de faire une découverte
qui pourrait influencer le destin de l’humanité.

Les découvertes les plus importantes sont généralement
faites par des individus qui sont dans des positions sub-
alternes au sein des organismes gouvernementaux, des étab-
lissements de recherche et d’enseignement, ou des entreprises
commerciales. Par conséquent, le rechercheur est trop sou-
vent restraint par les directeurs d’établissements ou de la
société, qui ont des ambitions différentes, et veulent contrôler
et appliquer les découvertes et la recherche pour leur bien-
être personnel, leur agrandissement, ou pour le bien-être de
leur organisation.

L’histoire est remplie d’exemples de suppression et de
ridicule par l’établissement. Pourtant, plus tard, ceux-ci ont
été exposés et corrigés par la marche inexorable de la néces-
sité pratique et de l’éclaicissement intellectuel. Tristement,
la science est encore marquée par la souillure du plagiat et
l’altération délibérée des faits par les sans-scrupules qui sont
motivés par l’envie et la cupidité; cette pratique existe encore
aujourd’hui.

L’intention de cette Déclaration est de confirmer et pro-

∗Original text published in English: Progress in Physics, 2006, v. 1,
57–60. Online — http://www.ptep-online.com/

Le texte originaire en anglais par Dmitri Rabounski, rédacteur en chef
de la revue Progress in Physics. E-mail: rabounski@yahoo.com

Traduction autorisée en français par Florentin Smarandache (New Me-
xico, USA), e-mail: smarand@unm.edu. Edition par Stéphanie Robitaille-
Trzcinski (Nova Scotia, Canada), e-mail: str@ns.sympatico.ca.

mouvoir la doctrine fondamentale de la recherche scienti-
fique; la recherche doit être exempte d’influences suppres-
sive, latente et manifeste, de directives bureaucratiques, poli-
tiques, religieuses et pécuniaires. La création scientifique doit
être un droit de l’homme, tout comme les droits et espérances
tels que proposés dans les engagements internationaux et le
droit international.

Tous les scientifiques doivent respecter cette Déclaration
comme étant signe de la solidarité dans la communauté scien-
tifique internationale. Ils défendront les droits à la création
scientifique libre, selon leurs différentes qualifications, pour
l’avancement de la science et, à leur plus grande capacité
en tant que citoyens honnêtes dans un monde malhonnête,
pour permettre un épanouissement humain. La science et
la technologie ont été pendant trop longtemps victimes de
l’oppression.

Article 2: Qu’est-ce qu’un scientifique

Un scientifique est une personne qui travaille en science.
Toute personne qui collabore avec un scientifique en déve-
loppant et en proposant des idées et des informations dans la
recherche, ou son application, est également un scientifique.
Une formation scientifique formelle n’est pas un prérequis
afin d’être un scientifique.

Article 3: Le domaine de la science

La recherche scientifique existe n’importe où, par exemple,
au lieu de travail, pendant un cours d’éducation formel,
pendant un programme universitaire commandité, dans un
groupe, ou en tant qu’individu à sa maison conduisant une
recherche indépendante.

Article 4: Liberté du choix du thème de recherche

Plusieurs scientifiques qui travaillent dans des échelons plus
élevés de recherche tels que les établissements académiques,
les universités et les institutions, sont empêchés de choisir
leurs sujets de recherche par l’administration universitaire,
les scientifiques plus haut-placés ou par des fonctionnaires
administratifs. Ceci n’est pas par manque d’équipements,
mais parce que la hiérarchie académique et/ou d’autres fonc-
tionnaires n’approuvent pas du sujet d’une enquête qui pour-
rait déranger le dogme traditionnel, les théories favorisées,
ou influencer négativement d’autres projets déjà proposés.
L’autorité plutôt traditionnelle est souvent suscitée pour
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faire échouer un projet de recherche afin de ne pas déranger
l’autorité et les budgets. Cette pratique commune est une
obstruction délibérée à la science, ainsi que la pensée
scientifique et démontre un élément anti-scientifique à l’ex-
trême; ces actions sont criminelles et ne peuvent pas être
tolérées.

Un scientifique dans n’importe quel établissement aca-
démique, institution ou agence, doit être complètement libre
quant au choix d’un thème de recherche. Il peut être limité
seulement par l’appui matériel et les qualifications intel-
lectuelles offertes par l’établissement éducatif, l’agence ou
l’institution. Quand un scientifique effectue de la recherche
collaborative, les directeurs de recherche et les chefs d’équipe
seront limités aux rôles de consultation et de recommandation
par rapport au choix d’un thème approprié pour un scienti-
fique dans leur groupe.

Article 5: Liberté de choisir ses méthodes et ses tech-
niques de recherche

Souvent les scientifiques sont forcés par le personnel admini-
stratif ou académique à adopter des méthodes de recherches
contraires à celles que le scientifique préfère. Cette pression
exercée sur un scientifique contre son gré est à cause de la
préférence personnelle, le préjugé, la politique institution-
nelle, les préceptes éditoriaux, ou même l’autorité collective.
Cette pratique répandue va à l’encontre la liberté de pensée
et ne peut pas être permise ni toléreé.

Un scientifique travaillant à l’extérieur du secteur com-
mercial doit avoir le droit de développer un thème de re-
cherche de n’importe quelle manière et moyens raisonnables
qu’il considère les plus efficaces. La décision finale sur
la façon dont la recherche sera executée demeure celle du
scientifique lui-même.

Quand un scientifique travaille en collaboration, il doit
avoir l’indépendance de choisir son thème et ses méthodes
de recherche, tandis que les chefs de projets et les directeurs
auront seulement des droits de consultatition et de recom-
mandation, sans influencer, atténuer ou contraindre les mé-
thodes de recherches ou le thème de recherche d’un scienti-
fique de leur groupe.

Article 6: Liberté de participation et de collaboration en
recherche

La rivalité entre les différentes institutions dans la science
moderne, la jalousie personnelle et le désir de protéger sa
réputation à tout prix empêchent l’entraide parmi des scienti-
fiques qui sont aussi compétents les uns que les autres mais
qui travaillent dans des établissements rivaux. Un scientifique
doit avoir recours à ses collègues dans un autre centre de
recherche.

Quand un premier scientifique qui n’a aucune affiliation
commerciale a besoin de l’aide et qu’il invite un autre scien-
tifique, ce deuxième est libre d’accepter d’aider le premier

si l’aide demeure à l’intérieur du budget déjà établi. Si
l’aide n’est pas dépendante des considérations budgetaires,
le premier scientifique a la liberté d’engager le deuxième à
sa discrétion sans l’interposition des autres. Le scientifique
pourra ainsi rémunérer le deuxième s’il le désire, et cette
décision demeure à sa discrétion.

Article 7: Liberté du désaccord dans la discussion scien-
tifique

À cause de la jalousie et des intérêts personnels, la science
moderne ne permet pas de discussion ouverte et bannit obsti-
nément ces scientifiques qui remettent en cause les positions
conventionnelles. Certains scientifiques de capacité excep-
tionnelle qui précisent des lacunes dans la théorie ou l’inter-
prétation courante des données sont étiquetés comme cinglés,
afin que leurs opinions puissent être facilement ignorées. Ils
sont raillés en public et en privé et sont systématiquement
empêchés de participer aux congrès scientifiques, aux confé-
rences et aux colloques scientifiques, de sorte que leurs
idées ne puissent pas trouver une audience. La falsification
délibérée des données et la présentation falsifiée des théories
sont maintenant les moyens utlilisés habituellement par les
sans-scrupules dans l’étouffement des faits, soit techniques
soit historiques. Des comités internationaux de mécréants
scientifiques ont été formés et ces mêmes comités accueillent
et dirigent des conventions internationales auxquelles seule-
ment leurs acolytes sont autorisés à présenter des articles sans
tenir compte de la qualité du travail. Ces comités amassent de
grandes sommes d’argent de la bourse publique et placent en
premier leurs projets commandités et fondés par la déception
et le mensonge. N’importe quelle objection à leurs proposi-
tions, pour protéger l’intégrité scientifique, est réduite au si-
lence par tous leur moyens, de sorte que l’argent puisse con-
tinuer à combler leurs comptes et leur garantir des emplois
bien payés. Les scientifiques qui s’y opposent se font ren-
voyer à leur demande; d’autres ont été empêchés de trouver
des positions académiques par ce réseau de complices cor-
rompus. Dans d’autres situations certains ont vu leur candi-
dature expulsée des programmes d‘études plus élevés, tels
que le doctorat, après avoir ébranlé une théorie à la mode,
même si une théorie plus conventionnelle existe depuis plus
longtemps. Le fait fondamental qu’aucune théorie scienti-
fique est ni définitive ni inviolable, et doit être ré-ouverte,
dicutée et ré-examinée, ils l’ignorent complètement. Souvent
ils ignorent le fait qu’un phénomène peut avoir plusieurs
explications plausibles, et critiquent avec malveillance n’im-
porte quelle explication qui ne s’accorde pas avec leur opi-
nion. Leur seul recours est l’utilisation d’arguments non
scientifiques pour justifier leurs avis biaisés.

Tous les scientifiques seront libres de discuter de leur
recherche et la recherche des autres sans crainte d’être ridi-
culisés, sans fondement matériel, en public ou en privé, et
sans êtres accusés, dénigrés, contestés ou autrement critiqués
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par des allégations non fondées. Aucun scientifique ne sera
mis dans une position dans laquelle sa vie ou sa réputation
sera en danger, dû à l’expression de son opinion scientifique.
La liberté d’expression scientifique sera primordiale. L’auto-
rité ne sera pas employée dans la réfutation d’un argument
scientifique pour bâillonner, réprimer, intimider, ostraciser,
ou autrement pour contraindre un scientifique à l’obéissance
ou lui faire obstacle. La suppression délibérée des faits ou des
arguments scientifiques, par acte volontaire ou par omission,
ainsi que la modification délibérée des données pour soutenir
un argument ou pour critiquer l’opposition constitue une
fraude scientifique qui s’élève jusqu’à un crime scientifique.
Les principes de l’évidence guideront toutes discussions sci-
entifiques, que cette évidence soit concrète, théorique ou une
combinaison des deux.

Article 8: Liberté de publier des résultats scientifiques

La censure déplorable des publications scientifiques est main-
tenant devenue la norme des bureaux de rédaction, des jour-
naux et des archives électroniques, et leurs bandes de soit-dits
arbitres qui prétent être experts. Les arbitres sont protégés
par l’anonymat, de sorte qu’un auteur ne puisse pas vérifier
l’expertise prétendue. Des publications sont maintenant re-
jetées si l’auteur contredit, ou est en désaccord avec, la
théorie préférée et la convention la plus acceptée. Plusieurs
publications sont rejetées automatiquement parce qu’il y a
un des auteurs dans la liste qui n’a pas trouvé faveur avec
les rédacteurs, les arbitres, ou d’autres censureurs experts,
sans respect quelconque pour le contenu du document. Les
scientifiques discordants sont mis sur une liste noire et cette
liste est communiquée entre les bureaux de rédaction des
participants. Cet effet culmine en un penchant biaisé et une
suppression volontaire de la libre pensée, et doit être con-
damné par la communauté scientifique internationale.

Tous les scientifiques doivent avoir le droit de présenter
leurs résultats de recherche, en entier ou en partie, aux
congrès scientifiques appropriés, et d’éditer ceux-ci dans
les journaux scientifiques, les archives électroniques, et tous
les autres médias. Aucun scientifique ne se fera rejeter ses
publications ou rapports quand ils seront soumis pour publi-
cation dans des journaux scientifiques, des archives électro-
niques, ou d’autres médias, simplement parce que leur travail
met en question l’opinion populaire de la majorité, fait conflit
avec les opinions d’un membre de rédaction, contredit les
prémisses de bases d’autres recherche ou futurs projets de
recherche prévus par d’autres scientifiques, sont en conflit
avec quelque sorte de dogme politique, religieuse, ou l’opi-
nion personnelle des autres. Aucun scientifique ne sera mis
sur une liste noire, ou sera autrement censuré pour empêcher
une publication par quiconque. Aucun scientifique ne blo-
quera, modifiera, ou interfèrera autrement avec la publication
du travail d’un scientifique sachant qu’il aura des faveurs ou
bénifices en le faisant.

Article 9: Les publications à co-auteurs

C’est un secret mal gardé parmi les scientifiques que beau-
coup de co-auteurs de publications ont réellement peu, ou
même rien, en rapport avec la recherche présentée. Les
dirigeants de recherche des étudiants diplômés, par exemple,
préfèrent leurs noms inclus avec celui des étudiants sous
leur surveillance. Dans de tels cas, c’est l’élève diplômé qui
a une capacité intellectuelle supérieure à son dirigeant. Dans
d’autres situations, pour des fins de notoriété et de réputation,
d’argent, de prestige et d’autres raisons malhonnêtes, des
personnes qui n’ont rien contribué sont incluses en tant que
co-auteurs. Les vrais auteurs peuvent s’y opposer, mais seront
pénalisés plus tard d’une manière quelconque, voir même
l’expulsion de leur candidature pour un diplôme plus élevé,
ou une mise à pied d’une équipe de recherche. C’est un vécu
réel de plusieurs co-auteurs dans ces circonstances. Cette
pratique effroyable ne doit pas être tolérée. Pour maintenir
l’intégrité de la science, seulement les personnes chargées de
la recherche devraient être reconnues en tant qu’auteurs.

Aucun scientifique n’invitera quiconque n’a pas collaboré
avec lui à être inclus en tant que co-auteur, de même, aucun
scientifique ne permettera que son nom soit inclus comme co-
auteur d’une publication scientifique sans y avoir contribué
de manière significative. Aucun scientifique ne se laissera
contraindre par les représentants d’un établissement acadé-
mique, par une société, un organisme gouvernemental, ou
qui que ce soit à inclure leur nom comme co-auteur d’une
recherche s’il n’y a pas contribué de manière significative.
Un scientifique n’acceptera pas d’être co-auteur en échange
de faveurs ou de bénéfices malhonnêtes. Aucune personne ne
forcera un scientifique d’aucune manière à mettre son nom
en tant que co-auteur d’une publication si le scientifique n’y
a pas contribué de manière significative.

Article 10: L’indépendance de l’affiliation

Puisque des scientifiques travaillent souvent à contrats à court
terme, quand le contrat est terminé, l’affiliation académique
du scientifique est aussi terminée. C’est souvent la politique
des bureaux de rédaction que ceux sans affiliation acadé-
mique ou commerciale ne peuvent pas être publiés. Sans
affiliation, beaucoup de ressources ne sont pas disponibles au
scientifiques, aussi les occasions de présenter des entretiens
et des publications aux congrès sont réduites. Cette pratique
vicieuse doit être arrêtée. La science se déroule indépendam-
ment de toutes affiliations.

Aucun scientifique ne sera empêché de présenter des
publications aux congrès, aux colloques ou aux séminaires;
un scientifique pourra publier dans tous les médias, aura
accès aux bibliothèques académiques ou aux publications
scientifiques, pourra assister à des réunions scientifiques,
donner des conférences, et ceci même sans affiliation avec
un établissement académique, un institut scientifique, un
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laboratoire gouvernemental ou commercial ou tout autre or-
ganisation.

Article 11: L’accès à l’information scientifique

La plupart des livres de science et les journaux scientifiques
ne font pas de profits, donc les éditeurs sont peu disposés à
les éditer sans une contribution financière des établissements
académiques, des organismes gouvernementaux, des fonda-
tions philanthropiques et leur semblables. Dans ces cas, les
éditeurs commerciaux doivent permettre le libre accès aux
versions électroniques des publications et viser à garder le
coût d’imprimerie à un minimum.

Les scientifiques s’efforceront d’assurer la disponibilité
de leurs ouvrages à la communauté internationale gratuite-
ment, ou à un coût minimum. Tous les scientifiques doivent
faire en sorte que les livres de techniques soient disponibles à
un coût minimum pour que l’information scientifique puisse
être disponible à une plus grande communauté scientifique
internationale.

Article 12: La responsabilité morale des scientifiques

L’histoire a démontré que des découvertes scientifiques sont
parfois utilisées à des fins extrèmes, soit bonnes, soit mau-
vaises, au profit de certains et à la ruine des autres. Puisque
l’avancement de la science et de la technologie continue tou-
jours, des moyens d’empêcher son application malveillante
doivent être établis. Puisqu’un gouvernement élu de manière
démocratique, sans biais religieux, racial ou autres biais peut
sauvegarder la civilisation, ainsi seulement le gouvernement,
les tribunaux et les comités élu de manière démocratique
peuvent sauvegarder le droit de la création scientifique libre
et intègre. Aujourd’hui, divers états anti-démocratiques et
régimes totalitaires font de la recherche active en physique
nucléaire, en chimie, en virologie, en génétique, etc. afin
de produire des armes nucléaires, chimiques ou biologiques.
Aucun scientifique ne devrait volontairement collaborer avec
les états anti-démocratiques ou les régimes totalitaires. Un
scientifique qui est contraint à travailler au développement
des armes pour de tels états doit trouver des moyens pour ra-
lentir le progrès de cette recherche et réduire son rendement,
de sorte que la civilisation et la démocratie puissent finale-
ment régner.

Tous les scientifiques ont la responsabilité morale de
leurs créations et découvertes. Aucun scientifique ne prendra
volontairement part dans les ébauches ou la construction
d’armes pour des états anti-démocratiques et/ou des régimes
totalitaires, et n’appliquera ni ses connaissances ni son talent
au développement d’armes nuisibles à l’humanité. Un scien-
tifique suivra le maxime que tous les gouvernements anti-
démocratiques et l’abus des droits de l’homme sont des
crimes.

Le 10 avril, 2007
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Open Letter by the Editor-in-Chief: Declaration of Academic Freedom (Scientific Human Rights)
The Russian Translation∗

Декларация Академической Свободы
(Права Человека в Научной Деятельности)

Статья 1: Преамбула

Начало 21-го столетия больше, чем любая другая эпоха
в истории человечества, проявляет глубину и значение
роли науки и техники в человеческих делах.

Интенсивное развитие современной науки и техники
явилось причиной банального мнения, что все дальней-
шие ключевые открытия в науке могут быть сделаны пре-
имущественно или исключительно крупными исследова-
тельскими группами (коллективами), финансируемыми
исключительно на уровне государства или крупной кор-
порации, и, соответственно, имеющими доступ к очень
дорогому экспериментальному оборудованию и большо-
му количеству вспомогательного обслуживающего пер-
сонала.

Эта обычная точка зрения, однако, является мифом, и
противоречит истинному положению дел с теоретически-
ми и экспериментальными исследованиями в современ-
ной науке. В действительности крупные и дорогие тех-
нологические проекты — это всего лишь результат при-
ложения фундаментальных научных знаний, полученных
небольшими группами исследователей или вообще инди-
видуалами, часто работающими в отрыве от крупных на-
учных коллективов и институтов. Ученый, работающий
в одиночку — ныне, так же как и в прошлом — способен
сделать открытие, которое может существенно повлиять
на судьбу человечества и изменить лицо всей нашей пла-
неты.

Большинство инновационных открытий вообще сде-
ланы индивидуумами, работающими, в зависимости от
специфики исследования, в научно-исследовательских
институтах, ВУЗах или лабораториях промышленных
предприятий. В такой ситуации, будучи непосредствен-
но зависимым от начальства, исследователь очень часто
сдерживается или даже подавляется самой бюрократиче-
ской структурой учреждения или его директором, кото-
рые стремятся монополизировать научное открытие или
иные результаты исследования ученого для своей личной
выгоды или прибыли предприятия.

Мировая история научных открытий переполнена

∗Original text published in English: Progress in Physics, 2006, v. 1,
57–60. Online — http://www.ptep-online.com/

Автор оригинального текста Декларации на английском языке —
Дмитрий Рабунский, Главный редактор журнала Progress in Physics.
E-mail: rabounski@yahoo.com

Перевод Декларации на русский язык — Эльмира Исаева. E-mail:
el_max63@yahoo.com; elmira@physics.ab.az

случаями подавления и просто издевательств и насме-
шек по отношению к реальным ученым-исследователям
со стороны их непосредственного начальства и бюрокра-
тов, руководивших учреждениями, где эти ученые рабо-
тали. Таких случаев, иногда закончившихся трагически,
— множество: как в прошлом науки так и в настоящем.
В том числе, сами результаты оригинального исследо-
вания часто губятся преднамеренными искажениями и
откровенным плагиатом со стороны недобросовестных,
завистливых, и алчных коллег. Такие “коллеги”, будучи
не в состоянии сделать что-то новое в науке, пытаются
использовать труды своих более талантливых подчинен-
ных, а если это не получается по ряду организационных
причин, то просто подавить или не дать ходу этим иссле-
дованиям, чтобы эти блестящие научные результаты не
оттеняли их собственные бездарные попытки имитации
научной деятельности. Эта порочная практика продол-
жается почти повсеместно и поныне.

Цель этой Декларации состоит в том, чтобы устано-
вить фундаментальную доктрину: научное исследование
должно быть свободно от скрытого и откровенного ре-
прессивного влияния бюрократических, политических,
религиозных и финансовых директив; научное творче-
ство является фундаментальным правом человека не
меньше, чем другие фундаментальные права человека.
Эта доктрина несомненно должна быть предметом обсу-
ждения международных договоров, и отражена в между-
народном праве.

Главы всех государств и правительств, претендую-
щих на причастность к демократическому мировому со-
обществу, должны соблюдать и всячески поддерживать
эту Декларацию как признак солидарности с заинтере-
сованным международным сообществом ученых, и дать
право всем народам нашей планеты Земля к свободному
неограниченному научному творчеству на благо всего че-
ловечества. Творчество в науке и технике слишком дол-
го были объектом притеснения. Этой порочной практике
должен быть положен конец.

Статья 2: Кто такой ученый

Ученый — это любой человек, кто производит научные
исследования. Любой человек, кто сотрудничает с уче-
ным в обсуждении и развитии идеи его исследования
— также ученый. Проведение формальной квалификации
(как-то выдача диплома о специальном образовании, при-
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своение ученой степени и т.п.) — еще не повод для того,
чтобы считать кого-то ученым.

Статья 3: Где делается наука

Научное исследование может быть выполнено в любом
месте вообще, например, на рабочем месте, в течение
формального курса образования, в течение спонсируемой
академической программы, в группах, или также инди-
видуумом у себя дома.

Статья 4: Свобода выбора темы для научного иссле-
дования

Многие ученые, работающие по программе получения
ученой степени или в рамках других исследовательских
программ, в ВУЗах, таких как университеты или кол-
леджи расширенного обучения, не имеют реальной воз-
можности собственного выбора темы их исследователь-
ской работы. Как правило, им предлагается сделать вы-
бор только из некого списка “разрешенных” тем, предо-
ставляемого администрацией или начальством, которое
руководит данной программой. Это происходит потому,
что академическая иерархия и/или другие академические
начальники, администрирующие науку, просто не одо-
бряют самостоятельную линию поведения ученых в на-
уке, боясь что новые оригинальные исследования и воз-
можные неожиданные результаты могут быть намного
ярче и успешней их собственной научной деятельности
и, таким образом, дискредитировать их собственный ав-
торитет в науке (и, как следствие, они сильно рискуют
лишиться получаемых в течении многих лет грантов и
другого финансирования, которое может быть передано
более успешным ученым). Кроме того, есть риск, что
принципиально новые исследования могут опровергнуть
какую-либо научную догму, поддерживаемую данной на-
учной школой, что было бы на руку другим научным
школам, которые эту догму не признают. Власть орто-
доксального большинства, ведомого отнюдь не интере-
сом к поиску новых научных знаний, а элементарными
корыстными интересами, жаждой денег и власти, весь-
ма часто срывает научную работу, если становится вид-
на перспектива принципиально нового прорыва в науке.
Эта банальная практика — преднамеренное препятствие
свободной научной мысли — не имеет ничего общего с
наукой, и является преступной. Этой порочной практике
должен быть положен конец.

Ученый, работающий для любого ВУЗа, научного ин-
ститута или агентства, должен быть полностью свободен
в выборе исследовательской темы. Какие-то ограничения
могут происходить только из-за реалий недостаточности
материальной поддержки, и ничего более относящегося
к собственно теме или предмету научного исследования.
Если же ученый выполняет исследование как член рабо-

чей группы, проводящей некоторое исследование по со-
вместной тематике, то выбор должен быть результатом
совместных консультаций в данной рабочей группе.

Статья 5: Свобода выбора исследовательских ме–
тодов

Часто имеет место тот факт, что ученый, проводящий
исследование в рамках некоторой академической среды
(научного института, ВУЗа или корпорации), вынужден
принимать исследовательские методы отличные от тех,
которые он избрал в начале своего исследования. Чаще
всего это происходит из-за корпоративных предубежде-
ний, навязываемых индивидуалу, а также элементарного
лоббирования и корысти получить оплату за аренду обо-
рудования данной лаборатории или института. Эта прак-
тика весьма широко распространена, и является по сути
преднамеренным препятствием свободы научного твор-
чества. Этой порочной практике должен быть положен
конец.

Ученый, работающий по некоммерческой или акаде-
мической программе, имеет право развивать свою иссле-
довательскую тему любым разумным способом и любы-
ми разумными средствами, которые он считает необходи-
мыми и наиболее эффективными для его исследования.
Окончательное решение о том, каким образом и на каком
оборудовании будет проводиться данное исследование,
должно быть сделано самим ученым.

Если же ученый выполняет исследование в составе
рабочей группы, объединенной общей тематикой, руко-
водители проекта имеют право только на консультацию и
не должны влиять или ограничивать исследовательские
методы или исследовательскую тему ученого в пределах
группы.

Научное сообщество — это не армия, а свободное
объединение людей, занимающихся научным творчес-
твом на благо человечества и научного прогресса.

Статья 6: Свобода сотрудничества в научном иссле-
довании

Существует немалый элемент конкуренции в практике
современной науки. Этому сопутствуют обстоятельства
с элементами личной зависти и сохранения репутации
академического начальства любой ценой, независимо от
научных фактов. Это часто приводит к тому, что ученый,
проводящий реальные исследования ведущие к принци-
пиально новым результатам в науке, становится безра-
ботным. Эта порочная практика — также преднамеренное
препятствование свободе научного прогресса.

Если ученому требуется помощь в исследовании от
какого-то другого (любого) человека, который согласен
помочь, тогда ученый волен пригласить этого человека
для участия в своем исследовании независимо от мнения
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на эту тему его академического начальства. Ученый так-
же волен предоставлять свою посильную помощь любо-
му другому исследователю, если эта помощь находится
в пределах бюджета его исследовательской программы.

Статья 7: Свобода разногласий в научной дискуссии

Вследствие скрытой ревности и жажды личного обога-
щения, в современном научном сообществе, разделен-
ном корпоративными интересами и закулисной борьбой
научных школ, получила широкое распространение не-
нависть к открытому обсуждению научных результатов
а также порочная практика преднамеренно исключать из
дискуссии тех ученых, кто подвергает сомнению орто-
доксальные догмы, принятые и отстаиваемые той или
иной научной школой. Очень часто, ученые способные
указать на неточности в текущей теории или интерпрета-
ции данных, объявляются сумасшедшими для того, что-
бы было удобно игнорировать их мнение и идеи. Они вы-
смеиваются публично и конфиденциально, и системати-
чески получают отказ от научных конференций, семина-
ров и коллоквиумов так, чтобы препятствовать свободно-
му обсуждению их идей и научных результатов. Предна-
меренная фальсификация данных и искажение существу-
ющих теорий — теперь частые средства для подавления и
скрытия “неугодных” научных фактов. Многие научные
комитеты, журналы и академические фонды были сфор-
мированы таким образом, чтобы только их руководите-
лям, их помошникам и связанным с ними ученым, им и
только им было позволено использовать финансовые ре-
сурсы, публиковать свои научные работы (независимо от
качества содержания) и т.п. Эти комитеты часто расходу-
ют огромные суммы денег простых налогоплательщиков,
чтобы финансировать исключительно свои собственные
проекты, что в конечном итоге ведет к коррупции, об-
ману и лжи. Любое возражение на их проекты, имею-
щее серьезное научное обоснование, сразу подвергается
травле со стороны находящихся под их контролем науч-
ных журналов и других средств массовой информации.
Единственная цель такой порочной политики — это сде-
лать так, чтобы деньги продолжали по-прежнему течь
на банковские счета руководителей этих проектов и их
помошников, гарантируя им и членам их семей хорошо
обеспеченное будущее, а их друзьям из среды ученых —
высоко оплачиваемые рабочие места. Под авторитарным
и финансовым давлением этих руководителей, их науч-
ные оппоненты увольняются или отстраняются от прове-
дения научных работ и экспертиз, а несогласные ученики
отстраняются от PhD программ; на их место назначаются
совсем другие люди из числа коррумпированных сообщ-
ников. Это все — не наука. Для описания всего этого есть
только одно подходящее слово — мафия.

Фундаментальный факт, что никакая научная теория
не является абсолютно определенной и неприкосновен-

ной и поэтому открыта для обсуждения и развития, часто
игнорируется в академической среде. Также игнорирует-
ся тот факт, что одно и тоже явление может иметь не-
сколько равноправных объяснений (как, например, кор-
пускулярная и волновая теория света). Злонамеренно
дискредитируется любое объяснение, которое не согла-
совывается с ортодоксальным мнением, при этом без ко-
лебания используются любые ненаучные методы, чтобы
одержать верх в дискуссии и получить желаемый грант,
субсидию или другую финансовую помощь.

Все ученые должны быть свободны в обсуждении
их собственных исследований и исследований других
ученых, без опасения публичных насмешек, обвинений,
унижений, или необоснованной критики, что совершен-
но недопустимо в научной дискуссии. Ни один ученый
не должен быть поставлен в такое положение, в кото-
ром его средства к существованию или репутация будут
в опасности вследствие выражения его научного мнения.
Свобода научного выражения должна быть главной. Ис-
пользование административной власти в опровержении
научных результатов не имеет ничего общего с нормаль-
ным научным процессом и не должно использоваться,
чтобы завязывать рот, подавлять, или запугивать ученого.
Преднамеренное сокрытие научных фактов и подавле-
ние научного мнения — это научное мошенничество, и
является составом преступления. Все научные обсужде-
ния экспериментальных или теоретических результатов
должны вести к принципу очевидности.

Статья 8: Свобода публикации результатов научного
исследования

Цензура научных документов ныне стала стандартной
практикой редакций основных научных журналов и
электронных архивов. Рецензенты защищены, главным
образом, анонимностью так, чтобы автор не смог прове-
рить их предполагаемую экспертизу. Статьи теперь
обычно отклоняются, если автор не соглашается или
противоречит точке зрения научной школы, которая мо-
нополизировала данный научный журнал. Много статей
теперь отклоняются автоматически на основании присут-
ствия в списке авторов какого-либо ученого, к которому
не расположены редакторы или рецензенты журнала, или
который принадлежит к “враждебной” научной школе,
придерживающейся иной точки зрения на исследуемое
явление природы. Все это не имеет вообще никакого от-
ношения к содержанию поданной научной статьи. Су-
ществует также порочная практика составления “черных
списков” в которые заносят имена ученых, неугодных
данной редакции или рецензентам. Статьи ученых, име-
на которых занесены в такой “черный список”, отклоня-
ются без рассмотрения, по чисто формальным поводам.

Применяющие эту и подобные порочные методы, ви-
новны в подавлении свободного мышления, что является
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преступлением против прав человека и должно быть осу-
ждено международным научным сообществом.

Все ученые должны иметь право представлять свои
научные исследовательские результаты, полностью или
частично, на соответствующих научных конференциях
и издавать в научных журналах, электронных архивах и
любых других средствах массовой информации. Ни один
ученый не должен получить отказ в публикации в науч-
ном журнале, электронном архиве или других средствах
массовой информации, на том основании, что его научно
обоснованное мнение или результаты исследования на-
ходятся в конфликте с мнением большинства, мнением
редакции журнала, или опровергают какую-либо догму,
поддерживаемую научной школой, монополизировавшей
данный журнал. Ни один ученый не должен быть по-
мещен в “черный список” нежелательных авторов, или
блокирован любым другим формальным образом от воз-
можности публиковать результаты своих научных иссле-
дований.

Только фактические ошибки в расчетах или экспе-
рименте, или несоответствие тематике данного издания
могут быть причиной отказа в публикации поданной на-
учной работы.

Статья 9: Соавторство в научном исследовании

В научных кругах прекрасно известно: многие из соав-
торов научных публикаций фактически имеют неболь-
шой или вообще никакого вклада в данное исследова-
ние. Например, — научные руководители PhD студен-
тов. Во многих таких случаях, человек, который фак-
тически проводит научное исследование и пишет по его
результатам научную статью, имеет интеллект и способ-
ности, намного выше своего номинального начальника.
Тем не менее, номинальные начальники и другие люди,
от которых зависит продолжение финансирования науч-
ной работы, получение ученой степени, и т.п. чаще всего
включаются как соавторы в научную публикацию. Фак-
тические авторы не могут даже возразить против этого,
опасаясь что впоследствии могут будут лишены финан-
сирования, возможности получить ученую степень, от-
странены от работы в исследовательской группе, и т.п.
Известно множество случаев, когда ученые, реально про-
водившие исследования и писали научные статьи, были
вообще исключены их начальством из списка соавторов
под угрозой увольнения или прочих репрессивных мер.
Эта ужасная практика является преступлением, и не мо-
жет более продолжаться. Только те люди, кто реально
проводил научное исследование, могут быть аккредито-
ваны как соавторы итоговой научной публикации.

Ни один ученый не должен включать другого челове-
ка в список соавторов своей научной публикации, если
этот человек не внес значительного вклада в данное ис-
следование. Ни один ученый не должен позволять себе

быть принужденным любым представителем ВУЗа, кор-
порации, правительственного агентства или любого дру-
гого человека включать их имена в список соавторов ис-
следования, которое они не делали. Ни один ученый не
должен позволять использовать свое имя в списке соав-
торов научной работы как предмет торговли или обмена
на любые подарки, ученую степень, или финансовую по-
мощь. Ни один человек не должен стимулировать или
пытаться стимулировать ученого в том, что тот включил
его в список соавторов научного исследования или пу-
бликации, в которую он не внес значительного научного
вклада.

Статья 10: Независимость от аффилиации

В настоящее время значительная доля ученых работает
по краткосрочным контрактам, тогда как в промежутках
между контрактами или грантами (это может длиться го-
дами), они формально не заняты в научной индустрии.
В рамках любого контракта существует такое понятие –
академическая аффилиация. Вместе с тем, часто поли-
тика редакций научных журналов такова, что научные
работы исследователей не имеющих академической аф-
филиации не принимаются к публикации, а часто даже
просто не рассматриваются. Кроме того, не имея акаде-
мической аффилиации, ученый лишен доступа ко многим
научным ресурсам, а также возможности представлять
свои работы на конференциях. Это — порочная практика,
которой должен быть положен конец. Наука не подразу-
мевает наличие академической аффилиации.

Никто, ни одна организация или группа людей адми-
нистрирующие науку, не должны устанавливать правила
препятствующие ученым, не имеющим академической
аффилиации, представлять свои научные труды и разра-
ботки на конференциях, коллоквиумах или семинарах, а
также публиковать их в любых средствах массовой ин-
формации. Никто не должен устанавливать правила, пре-
пятствующие ученым, не имеющим академической аф-
филиации, получать свободный доступ к академическим
библиотекам или научным публикациям, к посещению
научных встреч или лекций в ВУЗах, научных институ-
тах, правительственных или коммерческих лабораториях
или любой другой организации.

Статья 11: Открытый доступ к научной информации

Специализированная научная литература и подавляющее
большинство научных журналов дают очень маленькую
прибыль или вообще убыточны. Поэтому издатели не
желают издавать их на коммерческой основе и, естест-
венно, требуют от ученых денег. Оплата такой литера-
туры, чаще всего, поступает от исследовательских ин-
ститутов, где работают данные ученые, а также ВУЗов,
академических фондов и организаций, филантропов-
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индивидуалов и т.п. При таких обстоятельствах коммер-
ческие издатели должны предоставлять свободный до-
ступ к электронным версиям публикаций и по возмож-
ности стремиться свести стоимость напечатанных мате-
риалов к минимуму.

Все ученые должны способствовать и стремиться к
тому, чтобы их публикации и исследовательские доку-
менты были доступны международному научному сооб-
ществу бесплатно, или в альтернативе, если этого нельзя
избежать, по минимальной стоимости. Все ученые долж-
ны предпринять активные меры для того, чтобы сделать
их книги и журналы доступными по самой низкой воз-
можной цене так, чтобы научная информация могла быть
доступна самому широкому международному научному
сообществу.

Статья 12: Морально-этическая ответственность
ученого

История свидетельствует: в конечном счете научные от-
крытия очень часто используются в разрушительных це-
лях, во вред и даже уничтожение цивилизации и чело-
вечества в целом. Так как научно-технический прогресс
не может быть остановлен, необходимо установить ряд
средств, препятствующих такому деструктивному при-
менению результатов научных исследований и техниче-
ских разработок. Прежде всего, необходимо помнить:
только демократически избранное гражданское прави-
тельство, свободное от религиозных, расовых и других
предрассудков, может сохранить цивилизацию. Только
демократически избранные правительства и комитеты
могут сохранить право на свободное научное творчество.
Ныне мы видим: различные недемократические государ-
ства и тоталитарные режимы проводят активные иссле-
дования и технические разработки в ядерной физике, хи-
мии, вирусологии, генной инженерии и т.п., с целью про-
изводства ядерного, химического и биологического ору-
жия массового поражения. Ни один ученый не должен
добровольно сотрудничать с недемократическими пра-
вительствами или тоталитарными режимами. Если же
ученый был силой привлечен к работам по созданию во-
оружений в таком государстве, он должен постараться
найти способы замедлить продвижение своей исследова-
тельской программы в этой области так, чтобы данный
тоталитарный режим не смог воспользоваться получен-
ными результатами его исследования и цивилизованные
страны, несущие всему миру принципы демократии и
прогресса, смогли бы в конечном счете победить тотали-
тарное зло.

Все ученые несут моральную ответственность за ре-
зультаты их научных работ и открытий. Ни один ученый
не должен добровольно участвовать в проектировании
или создании оружия любого вида для недемократиче-
ских государств или тоталитарных режимов, или позво-

лять применить его знания или научные навыки к раз-
витию технологий, опасных для человечества. Каждый
ученый должен иметь в виду, что деятельность любого
недемократического правительства, а также нарушение
прав человека являются преступлением.

14 мая 2007
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On the Gravitational Field of a Pulsating Source

Nikias Stavroulakis
Solomou 35, 15233 Chalandri, Greece

E-mail: nikias.stavroulakis@yahoo.fr

Because of the pseudo-theorem of Birkhoff, the important problem related to the dy-
namical gravitational field of a non-stationary spherical mass is ignored by the rel-
ativists. A clear formulation of this problem appears in the paper [5], which deals
also with the establishment of the appropriate form of the spacetime metric. In the
present paper we establish the corresponding equations of gravitation and bring out
their solutions.

1 Introduction

As is shown in the paper [5], the propagation of gravitation
from a spherical pulsating source is governed by a function
�(t; �), termed propagation function, satisfying the following
conditions

@�(t; �)
@t

> 0;
@�(t; �)
@�

6 0; �(t; �(t)) = t;

where �(t) denotes the time-dependent radius of the sphere
bounding the matter. The propagation function is not unique-
ly defined. Any function fulfilling the above conditions char-
acterizes the propagation of gravitation according to the fol-
lowing rule: If the gravitational disturbance reaches the
sphere kxk = � at the instant t, then � = �(t; �) is the instant
of its radial emission from the entirety of the sphere bounding
the matter. Among the infinity of possible choices of �(t; �),
we distinguish principally the one identified with the time co-
ordinate, namely the propagation function giving rise to the
canonical �(4)-invariant metric

ds2 =
�
f(�; �)d� + `(�; �)

xdx
�
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�
��
g(�; �)
�

�2
dx2+

��
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�2�(xdx)2

�2

� (1.1)

(here � denotes the time coordinate instead of the notation u
used in the paper [5]).

Any other �(4)-invariant metric results from (1.1) if we
replace � by a conveniently chosen propagation function
�(t; �). Consequently the general form of a �(4)-invariant
metric outside the matter can be written as
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(1.2)

The equations of gravitation related to (1.2) are very com-
plicated, but we do not need to write them explicitly, because
the propagation function occurs in them as an arbitrary func-
tion. So their solution results from that of the equations re-
lated to (1.1) if we replace � by a general propagation func-
tion �(t; �). It follows that the investigation of the �(4)-
invariant gravitational field must by based on the canonical
metric (1.1). The metric (1.2) indicates the dependence of
the gravitational field upon the general propagation function
�(t; �), but it is of no interest in dealing with specific prob-
lems of gravitation for the following reason. Each allowable
propagation function is connected with a certain conception
of time, so that the infinity of allowable propagation functions
introduces an infinity of definitions of time with respect to the
general �(4)-invariant metric. This is why the notion of time
involved in (1.2) is not clear.

On the other hand, the notion of time related to the canon-
ical metric, although unusual, is uniquely defined and concep-
tually easily understandable.

This being said, from now on we will confine ourselves to
the explicit form of the canonical metric, namely

ds2 =
�
f(�; �)

�2d� 2 + 2f(�; �) `(�; �)
(xdx)
�

d� �

�
�
g(�; �)
�

�2
dx2 +

�
g(�; �)
�

�2 (xdx)2

�2

(1.3)

which brings out its components:

g00 =
�
f(�; �)

�2; g0i = f(�; �) `(�; �)
xi
�
;

gii = �
�
g(�; �)
�

�2
+
�
g(�; �)
�

�2 x2
i
�2 ;

gij =
�
g(�; �)
�

�2 xixj
�2 ; (i; j = 1; 2; 3; i , j) :

Note that, since the canonical metric, on account of its
own definition, is conceived outside the matter, we have not
to bother ourselves about questions of differentiability on the
subspace R � f(0; 0; 0)g of R � R3. It will be always un-
derstood that the spacetime metric is defined for (�; �) 2 U ,
� = kxk, U being the closed set f(�; �) 2 R2j� � �(� )g.
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2 Summary of auxiliary results

We recall that the Christoffel symbols of second kind related
to a given �(4)-invariant spacetime metric [3] are the com-
ponents of a �(4)-invariant tensor field and depend on ten
functions B� = B�(t; �), (� = 0; 1; : : : ; 9), according to the
following formulae

�0
00 = B0; �0

0i = �0
i0 = B1xi ; �i00 = B2xi ;

�0
ii = B3 +B4x2

i ; �0
ij = �0

ji = B4xixj ;

�ii0 = �i0i = B5 +B6x2
i ; �ij0 = �i0j = B6xixj ;

�iii = B7x3
i + (B8 + 2B9)xi ;

�ijj = B7xix2
j +B8xi ; �jij = �jji = B7xix2

j +B9xi ;

�ijk = B7xixjxk ; (i; j; k = 1; 2; 3; i , j , k , i) :

We recall also that the corresponding Ricci tensor is a
symmetric �(4)-invariant tensor defined by four functions
Q00, Q01, Q11, Q22, the computation of which is carried
out by means of the functions B� occurring in the Christoffel
symbols:
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+B2(B3 + �2B4)� 2B6(2 + �2B9)�
�B1(3B5 + �2B6) ;

Q11 = �@B3

@t
� �@B8

@�
� (B0 +B5 + �2B6)B3 +

+ (1� �2B8)(B1 + �2B7 +B8 + 2B9)� 3B8 ;

Q22 = �@B4

@t
+

1
�
@
@�

(B1 +B8 + 2B9) +B2
1 +B2

8 �
� 2B2

9 � 2B1B9 + 2B3B6 + (�B0 �B5 + �2B6)B4 +

+
��3 + �2(�B1 +B8 � 2B9)

�
B7 :

3 The Ricci tensor related to the canonical metric (1.3)

In order to find out the functions B�, (� = 0; 1; : : : ; 9), re-
sulting from the metric (1.3), we have simply to write down
the explicit expressions of the Christoffel symbols �0

00, �0
01,

�1
00, �0

11, �1
01, �1

12, �1
22, thus obtaining

B0 =
1
f
@f
@�

+
1
`
@`
@�
� 1
`
@f
@�

; B1 = 0 ;

B2 = � f
�`2

@`
@�

+
f
�`2

@f
@�

;

B3 =
g

�2f`
@g
@�
; B4 = � g

�4f`
@g
@�
;

B5 =
1
g
@g
@�

; B6 =
1
�2`

@f
@�
� 1
�2g

@g
@�

;

B7 = � g
�5f`

@g
@�

+
1
�3f

@f
@�

+
1
�4 +

g
�5`2

@g
@�

+

+
1
�3`

@`
@�
� 2
�3g

@g
@�
;

B8 =
g

�3f`
@g
@�

+
1
�2 � g

�3`2
@g
@�
;

B9 = � 1
�2 +

1
�g
@g
@�
:

The conditions B1 = 0, B3 + �2B4 = 0 imply several
simplifications. Moreover an easy computation gives

Q11 + �2Q22 = 2�
@B9

@�
�

� 2(1 + �2B9)(B8 +B9 + �2B7) + 4B9:

Replacing now everywhere the functions B�,
(� = 0; 1; : : : ; 9), by their expressions, we obtain the four
functions defining the Ricci tensor.

Proposition 3.1 The functions Q00, Q01, Q11, Q22 related
to (1.3) are defined by the following formulae.

Q00 =
1
`
@2f
@�@�

� f
`2
@2f
@�2 +

f
`2

@2`
@�@�

+
2
g
@2g
@� 2 �

� f
`3
@`
@�

@`
@�

+
f
`3
@f
@�

@`
@�

+
2f
`2g

@`
@�

@g
@�
�

� 2f
`2g

@f
@�

@g
@�
� 2
fg

@f
@�

@g
@�
� 2
`g
@`
@�

@g
@�

+

+
2
`g
@f
@�

@g
@�
� 1
f`
@f
@�

@f
@�

;

(3.1)

�Q01 =
@
@�

�
1
f`
@(f`)
@�

�
� @
@�

�
1
`
@f
@�

�
+

+
2
g
@2g
@�@�

� 2
`g
@f
@�

@g
@�
;

(3.2)

�2Q11 = �1� 2g
f`

@2g
@�@�

+
g
`2
@2g
@�2 � 2

f`
@g
@�

@g
@�
�

� g
`3
@`
@�

@g
@�

+
1
`2

�
@g
@�

�2
+

g
f`2

@f
@�

@g
@�
;

(3.3)
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Q11 + �2Q22 =
2
g

�
@2g
@�2 � @g

@�
1
f`
@(f`)
@�

�
: (3.4)

Note that from (3.1) and (3.2) we deduce the following
useful relation

`Q00 � f�Q01 =
2`
g
@2g
@� 2 +

2f
`g
@`
@�

@g
@�
�

� 2`
fg

@f
@�

@g
@�
� 2
g
@`
@�

@g
@�

+
2
g
@f
@�

@g
@�
� 2f

g
@2g
@�@�

:
(3.5)

4 Reducing the system of the equations of gravitation

In order to clarify the fundamental problems with a minimum
of computations, we will assume that the spherical source
is not charged and neglect the cosmological constant. The
charge of the source and the cosmological constant do not
add difficulties in the discussion of the main problems, so that
they may be considered afterwards.

Of course, the equations of gravitation outside the pulsat-
ing source are obtained by writing simply that the Ricci tensor
vanishes, namely

Q00 = 0 ; Q01 = 0 ; Q11 = 0 ; Q11 + �2Q22 = 0 :

The first equation Q00 = 0 is to be replaced by the equa-
tion

`Q00 � f�Q01 = 0

which, on account of (3.5), is easier to deal with.
This being said, in order to investigate the equations of

gravitation, we assume that the dynamical states of the gravi-
tational field alternate with the stationary ones without diffu-
sion of gravitational waves.

We begin with the equation Q11 + �2Q22 = 0, which, on
account of (3.4), can be written as

@
@�

�
1
f`
@g
@�

�
= 0

so that
@g
@�

= �f`

where � is a function depending uniquely on the time � .
Let us consider a succession of three intervals of time,

[�1; �2] ]�2; �3[ [�3; �4];

such that the gravitational field is stationary during
[�1; �2] and [�3; �4] and dynamical during ]�2; �3[.

When � describes [�1; �2] and [�3; �4], the functions f , `,
g depend uniquely on �, so that � reduces then necessarily
to a constant, which, according to the known theory of the
stationary vacuum solutions, equals 1

c , c being the classical
constant (which, in the present situation, does not represent
the velocity of propagation of light in vacuum). It follows

that, if � depends effectively on � during ]�2; �3[, then it ap-
pears as a boundary condition at finite distance, like the ra-
dius and the curvature radius of the sphere bounding the mat-
ter. However, we cannot conceive a physical situation related
to such a boundary condition. So we are led to assume that
� is a universal constant, namely 1

c , keeping this value even
during the dynamical states of the gravitational field. How-
ever, before accepting finally the universal constancy of �, it
is convenient to investigate the equations of gravitation under
the assumption that � depends effectively on time during the
interval ]�2; �3[.

We first prove that � = �(� ) does not vanish in ]�2; �3[.
We argue by contradiction, assuming that �(�0) = 0 for some
value �02 ]�2; �3[. Then @g

@� and @2g
@�2 = � @(f`)

@� vanish for

� = �0, whereas @2g
@�@�=(f`)�0+� @(f`)

@� reduces to (f`)�0(�0)
for � = �0. Consequently the equation �2Q11 = 0 reduces
to the condition 1 + 2g�0(�0) = 0 whence �0(�0)< 0 (since
g > 0). It follows that �(� ) is strictly decreasing on a certain
interval [�0� "; �0 + "]� ]�2; �3[, " > 0, so that �(� ) < 0 for
every � 2 ]�0; �0 + "]. Let �00 be the least upper bound of the
set of values � 2 ]�0 + "; �3[ for which �(� ) = 0 (This value
exists because �(� ) = 1

c > 0 on [�3; �4]). Then �(�00) = 0
and �(� ) > �00 for � > �00. But, according to what has just
been proved, the condition �(�00) = 0 implies that �(� ) < 0
on a certain interval ]�00; �00 + �], � > 0, giving a contra-
diction. It follows that the function �(� ) is strictly positive
on ]�2; �3[, hence also on any interval of non-stationarity, and
since �(� ) = 1

c on the intervals of stationarity, it is strictly
positive everywhere. Consequently we are allowed to intro-
duce the inverse function � = �(� ) = 1

�(�) and write

f` = �
@g
@�

(4.1)

and
f =

�
`
@g
@�
: (4.2)

Inserting this expression of f into the equation �2Q11 = 0
and then multiplying throughout by @g

@� , we obtain an equation
which can be written as

@
@�

�
� 2g
�
@g
@�

+
g
`2

�
@g
@�

�2
� g
�

= 0

whence

�2g
�
@g
@�

+
g
`2

�
@g
@�

�2
� g = �2� = function of �;

and
@g
@�

=
�
2

�
� 1 +

2�
g

+
1
`2

�
@g
@�

�2�
: (4.3)

It follows that

@2g
@�@�

= �
�
� �
g2
@g
@�
� 1
`3
@`
@�

�
@g
@�

�2
+

1
`2
@g
@�

@2g
@�2

�
(4.4)
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and

@3g
@�@�2 = �

�
2�
g3

�
@g
@�

�2
� �
g2
@2g
@�2 +

+
3
`4

�
@`
@�

�2�@g
@�

�2
� 1
`3
@2`
@�2

�
@g
@�

�2
�

� 4
`3
@`
@�

@g
@�

@2g
@�2 +

1
`2

�
@2g
@�2

�2
+

1
`2
@g
@�

@3g
@�3

�
:

(4.5)

On the other hand, since f` = �@g@� , the expression (3.2)
is transformed as follows

�Q01 =
1�
@g
@�

�
2

�
@g
@�

@3g
@�@�2 � @2g

@�2
@2g
@�@�

�
+

+�
�
� 3
`4

�
@`
@�

�2 @g
@�

+
1
`3
@2`
@�2

@g
@�

+

+
3
`3
@`
@�

@2g
@�2 � 1

`2
@3g
@�3 � 2�

g3
@g
@�

�
and replacing in it @2g

@�@� and @3g
@�@�2 by their expressions (4.4)

and (4.5), we find �Q01 = 0. Consequently the equation of
gravitation �Q01 = 0 is verified. It remains to examine the
equation `Q00� f�Q01 = 0. We need some preliminary
computations. First we consider the expression of @

2g
@�2 result-

ing from the derivation of (4.3) with respect to � , and then
replacing in it @g

@� and @2g
@�@� by their expressions (4.3) and

(4.4), we obtain

2
@2g
@� 2 = �d�

d�
+ 2

d�
d�

�
g

+
1
`2
d�
d�

�
@g
@�

�2
+

+
2�
g
d�
d�
� 2�2�2

g3 +
�2�
g2 � 2�

`3
@`
@�

�
@g
@�

�2
�

� 3
�2�
`2g2

�
@g
@�

�2
� 2�2

`5
@`
@�

�
@g
@�

�3
+

2�2

`4

�
@g
@�

�2 @2g
@�2 :

(4.6)

Next, because of (4.2), we have

@f
@�

= � �
`2
@`
@�

@g
@�

+
�
`
@2g
@�2 (4.7)

and
@f
@�

=
1
`
d�
d�

@g
@�
� �
`2
@`
@�

@g
@�

+
�
`
@2g
@�@�

:

Lastly taking into account (4.4), we obtain

@f
@�

=
1
`
d�
d�

@g
@�
� �
`2
@`
@�

@g
@�
� �2�
`g2

@g
@�
�

� �2

`4
@`
@�

�
@g
@�

�2
+
�2

`3
@g
@�

@2g
@�2 :

(4.8)

Now inserting (4.2), (4.3), (4.4), (4.6), (4.7), (4.8) into

(3.5), we obtain, after cancelations, the very simple expres-
sion

`Q00 � f�Q01 =
2�`
g2

d�
d�

:

Consequently the last equation of gravitation, namely
`Q00� f�Q01 = 0, implies that d�

d� = 0, namely that � re-
duces to a constant.

Finally the system of the equations of gravitation is re-
duced to a system of two equations, namely (4.1) and (4.3),
where � is a constant valid whatever is the state of the field,
and � is a strictly positive function of time reducing to the
constant c during the stationary states of the field. As already
remarked, if � depends effectively on � during the dynamical
states, then it plays the part of a boundary condition the ori-
gin of which is indefinable. The following reasoning, which
is allowed according to the principles of General Relativity,
corroborates the idea that � must be taken everywhere equal
to c.

Since �(� )> 0 everywhere, we can introduce the new
time coordinate

u =
1
c

Z �

�0
�(v)dv

which amounts to a change of coordinate in the sphere bound-
ing the matter. The function

 (� ) =
1
c

Z �

�0
�(v)dv

being strictly increasing, its inverse � ='(u) is well defined
and '0= 1

 0 = c
� . Instead of `(�; �) and g(�; �) we have now

the functions L(u; �) = `('(u); �) andG(u; �) = g('(u); �),
Moreover, since fd� = f'0du, f(�; �) is replaced by the

function F (u; �) ='0(u)f('(u); �) = c
�f('(u); �).

It follows that

FL = '0f` =
c
�
�
@g
@�

= c
@G
@�

(4.9)

and

@G
@u

=
@g
@�

d�
du

=
�
2

�
� 1 +

2�
g

+
1
`2

�
@g
@�

�2� c
�

=

=
c
2

�
� 1 +

2�
G

+
1
L2

�
@G
@�

�2�
:

(4.10)

Writing again f(�; �), `(�; �), g(�; �) respectively instead
of F (u; �), L(u; �), G(u; �), we see that the equations (4.9)
and (4.10) are rewritten as

f` = c
@g
@�

(4.11)

@g
@�

=
c
2

�
� 1 +

2�
g

+
1
`2

�
@g
@�

�2�
: (4.12)

So (4.1) and (4.3) preserve their form, but the function �
is now replaced by the constant c. Finally we are allowed to
dispense with the function � and deal subsequently with the
equations (4.11) and (4.12).
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5 Stationary and non-stationary solutions

If the field is stationary during a certain interval of time, then
the derivative @g

@� vanishes on this interval. The converse
is also true. In order to clarify the situation, consider the
succession of three intervals of time ]�1; �2[, [�2; �3], ]�3; �4[
such that ]�1; �2[ and ]�3; �4[ be maximal intervals of non-
stationarity, and @g

@� = 0 on [�2; �3]. Then we have on [�2; �3]
the equation

�1 +
2�
g

+
1
`2

�
@g
@�

�2
= 0

from which it follows that ` does not depend either on � . On
account of (4.11), this property is also valid for f . Conse-
quently the vanishing of @g

@� on [�2; �3] implies the establish-
ment of a stationary state.

During the stationary state we are allowed to introduce
the radial geodesic distance

� =
Z �

0
`(v)dv

and investigate subsequently the stationary equations in ac-
cordance with the exposition appearing in the paper [4]. Since

� = �(�)

is a strictly increasing function of �, the inverse function
�= (�) is well defined and allows to consider as function
of � every function of �. In particular the curvature radius
G(�) = g ((�)) appears as a function of the geodesic dis-
tance � and gives rise to a complete study of the stationary
field. From this study it follows that the constant � equals
km
c2 and that the solution G(�) possesses the greatest lower

bound 2�. Moreover G(�) is defined by the equationZ G

2�

duq
1� 2�

u

= � � �0 (5.1)

where �0 is a new constant unknown in the classical theory of
gravitation. This constant is defined by means of the radius �1
and the curvature radius �1 = G(�1) of the sphere bounding
the matter:

�0 = �1 � pG(�1)(G(�1)� 2�)�

� 2� ln

 s
G(�1)

2�
+

s
G(�1)

2�
� 1

!
:

So the values �1 and �1 =G(�1) constitute the boundary
conditions at finite distance. Regarding F =F (�) = f((�)),
it is defined by means of G:

F = cG0 = c
r

1� 2�
G
; (G > 2�) :

The so obtained solution does not extend beyond the in-
terval [�2; �3] and even its validity for � = �2 and � = �3 is

questionable. The notion of radial geodesic distance does not
make sense in the intervals of non-stationarity such as ]�1; �2[
and ]�3; �4[. Then the integralZ �

0
`(�; v)dv

depends on the time � and does not define an invariant length.
As a way out of the difficulty we confine ourselves to the
consideration of the radical coordinate related to the manifold
itself, namely �=kxk.

Regarding the curvature radius �(� ), it is needed in order
to conceive the solution of the equations of gravitation. The
function g(�; �) must be so defined that g (�; �(� )) = �(� ).
The functions �(� ) and �(� ) are the boundary conditions at
finite distance for the non-stationary field. They are not di-
rectly connected with the boundary conditions of the station-
ary field defined by means of the radial geodesic distance.

6 On the non-stationary solutions

According to very strong arguments summarized in the paper
[2], the relation g > 2� is always valid outside the matter
whatever is the state of the field. This is why the first attempt
to obtain dynamical solutions was based on an equation anal-
ogous to (5.1), namelyZ g

2�

duq
1� 2�

u

= (�; �)

where (�; �) is a new function satisfying certain con-
ditions. This idea underlies the results presented briefly in
the paper [1]. However the usefulness of introduction of a
new function is questionable. It is more natural to deal di-
rectly with the functions f , `, g involved in the metric. In
any case we have to do with two equations, namely (4.11)
and (4.12), so that we cannot expect to define completely the
three unknown functions. Note also that, even in the con-
sidered stationary solution, the equation (5.1) does not de-
fine completely the function G on account of the new un-
known constant �0. In the general case there is no way to
define the function g(�; �) by means of parameters and sim-
pler functions. The only available equation, namely (4.12), a
partial differential equation including the unknown function
`(�; �), is, in fact, intractable. As a way out of the difficulties,
we propose to consider the function g(�; �) as a new entity
required by the non-Euclidean structure involved in the dy-
namical gravitational field. In the present state of our knowl-
edge, we confine ourselves to put forward the main features
of g(�; �) in the closed set

U = f(�; �) 2 R2j� > �(� )g:
Since the vanishing of f or ` would imply the degeneracy
of the spacetime metric, these two functions are necessarily
strictly positive on U . Then from the equation (4.11) it fol-
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lows that
@g (�; �)
@�

> 0 (6.1)

on the closed set U . On the other hand, since (4.12) can be
rewritten as

2
c
@g
@�

+ 1� 2�
g

=
1
`2

�
@g
@�

�2
we have also

2
c
@g
@�

+ 1� 2�
g
> 0 (6.2)

on the closed set U . Now, on account of (6.1) and (6.2), the
equations (4.11) and (4.12) define uniquely the functions f
and ` by means of g:

f = c

s
2
c
@g
@�

+ 1� 2�
g

(6.3)

` =
@g=@�q

2
c
@g
@� + 1� 2�

g

: (6.4)

It is now obvious that the curvature radius g (�; �) plays
the main part in the conception of the gravitational field. Al-
though it has nothing to do with coordinates, the relativists
have reduced it to a so-called radial coordinate from the be-
ginnings of General Relativity. This glaring mistake has given
rise to intolerable misunderstandings and distorted complete-
ly the theory of the gravitational field.

Let ]�1; �2[ be a maximal bounded open interval of non-
stationarity. Then @g

@� = 0 for � = �1 and � = �2, but @g@� , 0
on an open dense subset of ]�1; �2[. So @g

@� appears as a gravi-
tational wave travelling to infinity, and it is natural to assume
that @g

@� tends uniformly to zero on [�1; �2] as �!+1. Of
course the behaviour of @g

@� depends on the boundary condi-
tions which do not appear in the obtained general solution.
They are to be introduced in accordance with the envisaged
problem. In any case the gravitational disturbance plays the
fundamental part in the conception of the dynamical gravita-
tion, but the state of the field does not follow always a simple
rule.

In particular, if the gravitational disturbance vanishes dur-
ing a certain interval of time [�1; �2], the function g(�; �) does
not depend necessarily only on � during [�1; �2]. In other
words, the gravitational field does not follow necessarily the
Huyghens principle contrary to the solutions of the classical
wave equation in R3.

We deal briefly with the case of a Huyghens type field,
namely a �(4)-invariant gravitational field such that the van-
ishing of the gravitational disturbance on a time interval im-
plies the establishment of a universal stationary state. Then
the time is involved in the curvature radius by means of the
boundary conditions �(� ), �(� ), so that g(�; �) is in fact a
function of (� (� ); � (� ); �) : g (�(� ); � (� ); �). The corres-

ponding expressions for f and ` result from (6.3) and (6.4):

f = c

s
2
c

�
@g
@�

�0(� ) +
@g
@�

� 0(� )
�

+ 1� 2�
g

` =
@g
@�r

2
c

�
@g
@� �

0(� ) + @g
@� �

0(� )
�

+ 1� 2�
g

where g denotes g(�(� ); �(� ); �).
If �0(� ) = � 0(� ) = 0 during an interval of time, the bound-

ary conditions �(� ), �(� ) reduce to positive constants �0, �0
on this interval, so that the curvature radius defining the sta-
tionary states depends on the constants �0; �0 : g(�0; �0; �). It
is easy to write down the conditions satisfied by g(�0; �0; �),
considered as function of three variables.
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Dynamical 3-Space: Supernovae and the Hubble Expansion — the Older
Universe without Dark Energy

Reginald T. Cahill

School of Chemistry, Physics and Earth Sciences, Flinders University, Adelaide 5001, Australia
E-mail: Reg.Cahill@flinders.edu.au

We apply the new dynamics of 3-space to cosmology by deriving a Hubble expansion
solution. This dynamics involves two constants; G and � — the fine structure constant.
This solution gives an excellent parameter-free fit to the recent supernova and gamma-
ray burst redshift data without the need for “dark energy” or “dark matter”. The data
and theory together imply an older age for the universe of some 14.7Gyrs. The 3-space
dynamics has explained the bore hole anomaly, spiral galaxy flat rotation speeds, the
masses of black holes in spherical galaxies, gravitational light bending and lensing, all
without invoking “dark matter” or “dark energy”. These developments imply that a new
understanding of the universe is now available.

1 Introduction

There are theoretical claims based on observations of Type Ia
supernova (SNe Ia) redshifts [1, 2] that the universe expan-
sion is accelerating. The cause of this acceleration has been
attributed to an undetected “dark energy”. Here the dynami-
cal theory of 3-space is applied to Hubble expansion dynam-
ics, with the result that the supernova and gamma-ray burst
redshift data is well fitted without an acceleration effect and
without the need to introduce any notion of “dark energy”.
So, like “dark matter”, “dark energy” is an unnecessary and
spurious notion. These developments imply that a new under-
standing of the universe is now available.

1.1 Dynamical 3-Space

At a deeper level an information-theoretic approach to mod-
elling reality, Process Physics [3, 4], leads to an emergent
structured “space” which is 3-dimensional and dynamic, but
where the 3-dimensionality is only approximate, in that if we
ignore non-trivial topological aspects of the space, then it may
be embedded in a 3-dimensional geometrical manifold. Here
the space is a real existent discrete fractal network of relation-
ships or connectivities, but the embedding space is purely a
mathematical way of characterising the 3-dimensionality of
the network. Embedding the network in the embedding space
is very arbitrary; we could equally well rotate the embedding
or use an embedding that has the network translated or trans-
lating. These general requirements then dictate the minimal
dynamics for the actual network, at a phenomenological level.
To see this we assume at a coarse grained level that the dy-
namical patterns within the network may be described by a
velocity field v(r; t), where r is the location of a small region
in the network according to some arbitrary embedding. The
3-space velocity field has been observed in at least 8 exper-
iments [3, 4]. For simplicity we assume here that the global
topology of the network is not significant for the local dynam-

ics, and so we embed in anE3, although a generalisation to an
embedding in S3 is straightforward and might be relevant to
cosmology. The minimal dynamics is then obtained by writ-
ing down the lowest-order zero-rank tensors, of dimension
1=t2, that are invariant under translation and rotation, giving

r�
�
@v
@t

+ (v�r)v
�

+
�
8
�
(trD)2�tr(D2)

�
=�4�G�; (1)

Dij =
1
2

�
@vi
@xj

+
@vj
@xi

�
; (2)

where �(r; t) is the effective matter density. The embedding
space coordinates provide a coordinate system or frame of
reference that is convenient to describing the velocity field,
but which is not real. In Process Physics quantum matter are
topological defects in the network, but here it is sufficient to
give a simple description in terms of an effective density. G
is Newton’s gravitational constant, and describes the rate of
non-conservative flow of space into matter, and data from the
bore hole g anomaly and the mass spectrum of black holes
reveals that � is the fine structure constant �1/137, to within
experimental error [5, 6, 7].

Now the acceleration a of the dynamical patterns in the
3-space is given by the Euler or convective expression

a(r; t) = lim
�t!0

v
�
r + v(r; t)�t; t+ �t

�� v(r; t)
�t

=

=
@v
@t

+ (v � r)v :
(3)

As shown in [8] the acceleration g of quantum matter is
identical to the acceleration of the 3-space itself, apart from
vorticity and relativistic effects, and so the gravitational ac-
celeration of matter is also given by (3). Eqn. (1) has black
hole solutions for which the effective masses agree with ob-
servational data for spherical star systems [5, 6, 7]. The-
ses black holes also explain the flat rotation curves in spiral
galaxies [9].
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2 Supernova and gamma-ray burst data

The supernovae and gamma-ray bursts provide standard can-
dles that enable observation of the expansion of the universe.
The supernova data set used herein and shown in Figs. 2 and
3 is available at [10]. Quoting from [10] we note that Davis et
al. [11] combined several data sets by taking the ESSENCE
data set from Table 9 of Wood–Vassey et al. (2007) [13],
using only the supernova that passed the light-curve-fit qual-
ity criteria. They took the HST data from Table 6 of Riess
et al. (2007) [12], using only the supernovae classified as
gold. To put these data sets on the same Hubble diagram
Davis et al. used 36 local supernovae that are in common be-
tween these two data sets. When discarding supernovae with
z < 0.0233 (due to larger uncertainties in the peculiar veloci-
ties) they found an offset of 0.037�0.021 magnitude between
the data sets, which they then corrected for by subtracting this
constant from the HST data set. The dispersion in this offset
was also accounted for in the uncertainties. The HST data
set had an additional 0.08 magnitude added to the distance
modulus errors to allow for the intrinsic dispersion of the su-
pernova luminosities. The value used by Wood–Vassey et al.
(2007) [13] was instead 0.10 mag. Davis et al. adjusted for
this difference by putting the Gold supernovae on the same
scale as the ESSENCE supernovae. Finally, they also added
the dispersion of 0.021 magnitude introduced by the simple
offset described above to the errors of the 30 supernovae in the
HST data set. The final supernova data base for the distance
modulus �obs(z) is shown in Figs. 2 and 3. The gamma-ray
burst (GRB) data is from Schaefer [14].

3 Expanding 3-space — the Hubble solution

Suppose that we have a radially symmetric density �(r; t) and
that we look for a radially symmetric time-dependent flow
v(r; t) = v(r; t)r̂ from (1). Then v(r; t) satisfies the equation,
with v0= @v(r;t)

@r ,

@
@t

�
2v
r

+ v0
�

+ vv00 + 2
vv0
r

+ (v0)2 +

+
�
4

�
v2

r2 +
2vv0
r

�
= �4�G�(r; t) :

(4)

Consider first the zero energy case �= 0. Then we have
a Hubble solution v(r; t) =H(t)r, a centreless flow, deter-
mined by

_H +
�

1 +
�
4

�
H2 = 0 (5)

with _H = dH
dt . We also introduce in the usual manner the scale

factor R(t) according to H(t) = 1
R
dR
dt . We then obtain the

solution

H(t) =
1

(1 + �
4 )t

= H0
t0
t

; R(t) = R0

�
t
t0

�4=(4+�)

(6)

Fig. 1: Plot of the scale factor R(t) vs t, with t = 0 being “now”
with R(0) = 1, for the four cases discussed in the text, and corre-
sponding to the plots in Figs. 2 and 3: (i) the upper curve (green)
is the “dark energy” only case, resulting in an exponential acceler-
ation at all times, (ii) the bottom curve (black) is the matter only
prediction, (iii) the 2nd highest curve (to the right of t = 0) is the
best-fit “dark energy” plus matter case (blue) showing a past decel-
eration and future exponential acceleration effect. The straight line
plot (red) is the dynamical 3-space prediction showing a slightly
older universe compared to case (iii). We see that the best-fit
“dark energy”-matter curve essentially converges on the dynamical
3-space result. All plots have the same slope at t = 0, i.e. the same
value ofH0. If the age of the universe is inferred to be some 14Gyrs
for case (iii) then the age of the universe is changed to some 14.7Gyr
for case (iv).

where H0 =H(t0) and R0 =R(t0). We can write the Hub-
ble function H(t) in terms of R(t) via the inverse function
t(R), i.e. H(t(R)) and finally as H(z), where the redshift
observed now, t0, relative to the wavelengths at time t, is
z=R0=R� 1. Then we obtain

H(z) = H0(1 + z)1+�=4: (7)

We need to determine the distance travelled by the light
from a supernova before detection. Using a choice of co-
ordinate system with r= 0 at the location of a supernova
the speed of light relative to this embedding space frame is
c+ v(r(t); t), i.e. c wrt the space itself, where r(t) is the dis-
tance from the source. Then the distance travelled by the light
at time t after emission at time t1 is determined implicitly by

r(t) =
Z t

t1
dt0
�
c+ v

�
r(t0); t0

��
; (8)

which has the solution on using v(r; t) = H(t)r

r(t) = cR(t)
Z t

t1

dt0
R(t0) : (9)

Expressed in terms of the observable redshift z this gives

r(z) = c(1 + z)
Z z

0

dz0
H(z0) : (10)
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Fig. 2: Hubble diagram showing the combined supernovae data from
Davis et al. [11] using several data sets from Riess et al. (2007)
[12] and Wood-Vassey et al. (2007) [13] (dots without error bars
for clarity — see Fig. 3 for error bars) and the Gamma-Ray Bursts
data (with error bars) from Schaefer [14]. Upper curve (green) is
“dark energy” only 
� = 1, lower curve (black) is matter only

m = 1. Two middle curves show best-fit of “dark energy”-matter
(blue) and dynamical 3-space prediction (red), and are essentially
indistinguishable. However the theories make very different predic-
tions for the future and for the age of the universe. We see that the
best-fit ‘dark energy’-matter curve essentially converges on the dy-
namical 3-space prediction.

The effective dimensionless distance is given by

d(z) = (1 + z)
Z z

0

H0dz0
H(z0) (11)

and the theory distance modulus is then defined by

�th(z) = 5 log10
�
d(z)

�
+m: (12)

Because all the selected supernova have the same abso-
lute magnitude,m is a constant whose value is determined by
fitting the low z data.

Using the Hubble expansion (7) in (11) and (12) we ob-
tain the middle curves (red) in Figs. 2 and the 3, yielding an
excellent agreement with the supernovae and GRB data. Note
that because �

4 is so small it actually has negligible effect on
these plots. Hence the dynamical 3-space gives an immediate
account of the universe expansion data, and does not require
the introduction of a cosmological constant or “dark energy”,
but which will be nevertheless discussed next.

When the energy density is not zero we need to take ac-
count of the dependence of �(r; t) on the scale factor of the
universe. In the usual manner we thus write

�(r; t) =
�m
R(t)3 +

�r
R(t)4 + � (13)

Fig. 3: Hubble diagram as in Fig. 2 but plotted logarithmically to re-
veal details for z < 2, and without GRB data. Upper curve (green)
is “dark-energy” only, next curve down (blue) is best fit of “dark
energy”-matter. Lower curve (black) is matter only 
m = 1. Lower
of two middle curves (red) is dynamical 3-space parameter-free pre-
diction.

for matter, EM radiation and the cosmological constant or
“dark energy” �, respectively, where the matter and radiation
is approximated by a spatially uniform (i.e independent of r)
equivalent matter density. We argue here that � — the dark
energy density, like dark matter, is an unnecessary concept.
Then (4) becomes for R(t)

�R
R

+
�
4

_R2

R2 = �4�G
3

��m
R3 +

�r
R4 + �

�
(14)

giving

_R2 =
8�G

3

��m
R

+
�r
R2 + �R2

�� �
2

Z _R2

R
dR : (15)

In terms of _R2 this has the solution

_R2 =
8�G

3

�
�m

(1��2 )R
+

�r
(1��4 )R2 +

�R2

(1+�
4 )

+bR��2
�

(16)

which is easily checked by substitution into (15), where b is
an arbitrary integration constant. Finally we obtain from (16)

t(R) =
Z R

R0

dRr
8�G

3

��m
R

+
�r
R2 + �R2 + bR��=2

� (17)

where now we have re-scaled parameters �m! �m=(1� �
2 ),

�r! �r=(1� �
4 ) and �!�=(1+ �

4 ). When �m= �r=�= 0,
(17) reproduces the expansion in (6), and so the density terms
in (16) give the modifications to the dominant purely spatial
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expansion, which we have noted above already gives an ex-
cellent account of the data.

From (17) we then obtain

H(z)2 = H0
2(
m (1 + z)3 + 
r(1 + z)4 +

+ 
� + 
s(1 + z)2+�=2) (18)

with

m + 
r + 
� + 
s = 1 : (19)

Using the Hubble function (18) in (11) and (12) we obtain
the plots in Figs. 2 and 3 for four cases:

(i) 
m = 0, 
r = 0, 
� = 1, 
s = 0, i.e a pure “dark en-
ergy” driven expansion,

(ii) 
m = 1, 
r = 0, 
� = 0, 
s = 0 showing that a matter
only expansion is not a good account of the data,

(iii) from a least squares fit with 
s = 0 we find 
m = 0.28,

r = 0, 
� = 0.68 which led to the suggestion that the
“dark energy” effect was needed to fix the poor fit from
(ii), and finally

(iv) 
m = 0, 
r = 0, 
� = 0, 
s = 1, as noted above, that
the spatial expansion dynamics alone gives a good ac-
count of the data.

Of course the EM radiation term 
r is non-zero but small
and determines the expansion during the baryogenesis initial
phase, as does the spatial dynamics expansion term because
of the � dependence. If the age of the universe is inferred to
be some 14Gyrs for case (iii) then, as seen in Fig. 1, the age
of the universe is changed to some 14.7Gyr for case (iv). We
see that the one-parameter best-fit “dark energy”-matter curve
essentially converges on the no-parameter dynamical 3-space
result.

4 Conclusions

There is extensive evidence for a dynamical 3-space, with
the minimal dynamical equation now known and confirmed
by numerous experimental and observational data. As well
we have shown that this equation has a Hubble expanding 3-
space solution that in a parameter-free manner manifestly fits
the recent supernova data, and in doing so reveals that “dark
energy”, like “dark matter”, is an unnecessary notion. The
Hubble solution leads to a uniformly expanding universe, and
so without acceleration: the claimed acceleration is merely an
artifact related to the unnecessary “dark energy” notion. This
result gives an older age for the universe of some 14.7Gyr,
and resolves as well various problems such as the fine tun-
ing problem, the horizon problem and other difficulties in the
current modelling of the universe.
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Dynamical 3-Space: Alternative Explanation of the “Dark Matter Ring”
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NASA has claimed the discovery of a “Ring of Dark Matter” in the galaxy cluster CL
0024+17, see Jee M.J. et al. arXiv:0705.2171, based upon gravitational lensing data.
Here we show that the lensing can be given an alternative explanation that does not
involve “dark matter”. This explanation comes from the new dynamics of 3-space. This
dynamics involves two constant G and � — the fine structure constant. This dynamics
has explained the bore hole anomaly, spiral galaxy flat rotation speeds, the masses of
black holes in spherical galaxies, gravitational light bending and lensing, all without
invoking “dark matter”, and also the supernova redshift data without the need for “dark
energy”.

1 Introduction

Jee et al. [1] claim that the analysis of gravitational lens-
ing data from the HST observations of the galaxy cluster CL
0024+17 demonstrates the existence of a “dark matter ring”.
While the lensing is clearly evident, as an observable phe-
nomenon, it does not follow that this must be caused by some
undetected form of matter, namely the putative “dark matter”.
Here we show that the lensing can be given an alternative ex-
planation that does not involve “dark matter”. This explana-
tion comes from the new dynamics of 3-space [2, 3, 4, 5, 6].
This dynamics involves two constant G and � — the fine
structure constant. This dynamics has explained the bore
hole anomaly, spiral galaxy flat rotation speeds, the masses
of black holes in spherical galaxies, gravitational light bend-
ing and lensing, all without invoking “dark matter”. The 3-
space dynamics also has a Hubble expanding 3-space solution
that explains the supernova redshift data without the need for
“dark energy” [8]. The issue is that the Newtonian theory of
gravity [9], which was based upon observations of planetary
motion in the solar system, missed a key dynamical effect that
is not manifest in this system. The consequences of this fail-
ure has been the invoking of the fix-ups of “dark matter” and
“dark energy”. What is missing is the 3-space self-interaction
effect. Experimental and observational data has shown that
the coupling constant for this self-interaction is the fine struc-
ture constant, � � 1/137, to within measurement errors. It
is shown here that this 3-space self-interaction effect gives a
direct explanation for the reported ring-like gravitational lens-
ing effect.

2 3-space dynamics

As discussed elsewhere [2, 8] a deeper information — the-
oretic Process Physics has an emergent structured 3-space,
where the 3-dimensionality is partly modelled at a phenome-
nological level by embedding the time- dependent structure in

an E3 or S3 embedding space. This embedding space is not
real — it serves to coordinatise the structured 3-space, that is,
to provide an abstract frame of reference. Assuming the sim-
plest dynamical description for zero-vorticity spatial velocity
field v(r; t), based upon covariant scalars we obtain at lowest
order [2]
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where �(r; t) is the matter and EM energy density expressed
as an effective matter density. In Process Physics quantum
matter are topological defects in the structured 3-spaces, but
here it is sufficient to give a simple description in terms of an
effective density.

We see that there are two constants G and �. G turns
out to be Newton’s gravitational constant, and describes the
rate of non-conservative flow of 3-space into matter, and �
is revealed by experiment to be the fine structure constant.
Now the acceleration a of the dynamical patterns of 3-space
is given by the Euler convective expression

a(r; t) = lim
�t!0

v
�
r + v(r; t)�t; t+ �t

�� v(r; t)
�t

=

=
@v
@t

+ (v � r)v
(3)

and this appears in the first term in (1). As shown in [3] the
acceleration of quantum matter g is identical to this accel-
eration, apart from vorticity and relativistic effects, and so
the gravitational acceleration of matter is also given by (3).
Eqn. (1) is highly non-linear, and indeed non-local. It ex-
hibits a range of different phenomena, and as has been shown
the � term is responsible for all those effects attributed to the
undetected and unnecessary “dark matter”. For example, out-
side of a spherically symmetric distribution of matter, of total
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mass M , we find that one solution of (1) is the velocity in-
flow field

v(r) = �r̂

r
2GM(1 + �

2 + : : :)
r

(4)

and then the the acceleration of (quantum) matter, from (3),
induced by this in-flow is

g(r) = �r̂
GM(1 + �

2 + : : :)
r2 (5)

which is Newton’s Inverse Square Law of 1687 [9], but with
an effective mass M(1 + �

2 + : : :) that is different from the
actual mass M .

In general because (1) is a scalar equation it is only ap-
plicable for vorticity-free flows r � v = 0, for then we can
write v =ru, and then (1) can always be solved to determine
the time evolution of u(r; t) given an initial form at some
time t0. The �-dependent term in (1) and the matter acceler-
ation effect, now also given by (3), permits (1) to be written
in the form

r � g = �4�G�� 4�G�DM ; (6)

�DM (r; t) � �
32�G

�
(trD)2 � tr(D2)

�
; (7)

which is an effective “matter” density that would be required
to mimic the �-dependent spatial self-interaction dynamics.
Then (6) is the differential form for Newton’s law of gravity
but with an additional non-matter effective matter density. So
we label this as �DM even though no matter is involved [4,
5]. This effect has been shown to explain the so-called “dark
matter” effect in spiral galaxies, bore hole g anomalies, and
the systematics of galactic black hole masses.

The spatial dynamics is non-local. Historically this was
first noticed by Newton who called it action-at-a-distance. To
see this we can write (1) as an integro-differential equation

@v
@t
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�

v2

2

�
+

+ G
Z
d3r0 �DM (r0; t) + �(r0; t)

jr� r0j3 (r� r0) :
(8)

This shows a high degree of non-locality and non-
linearity, and in particular that the behaviour of both �DM
and � manifest at a distance irrespective of the dynamics of
the intervening space. This non-local behaviour is analogous
to that in quantum systems and may offer a resolution to the
horizon problem.

2.1 Spiral galaxy rotation anomaly

Eqn (1) gives also a direct explanation for the spiral galaxy
rotation anomaly. For a non-spherical system numerical solu-
tions of (1) are required, but sufficiently far from the centre,
where we have � = 0, we find an exact non-perturbative two-

Fig. 1: Data shows the non-Keplerian rotation-speed curve vO for
the spiral galaxy NGC 3198 in km/s plotted against radius in kpc/h.
Lower curve is the rotation curve from the Newtonian theory for an
exponential disk, which decreases asymptotically like 1=

p
r. The

upper curve shows the asymptotic form from (11), with the decrease
determined by the small value of �. This asymptotic form is caused
by the primordial black holes at the centres of spiral galaxies, and
which play a critical role in their formation. The spiral structure is
caused by the rapid in-fall towards these primordial black holes.

parameter class of analytic solutions

v(r) = � r̂K
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r

+
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�
Rs
r

��
2
!1=2

(9)

where K and Rs are arbitrary constants in the � = 0 region,
but whose values are determined by matching to the solu-
tion in the matter region. Here Rs characterises the length
scale of the non-perturbative part of this expression, and K
depends on �, G and details of the matter distribution. From
(5) and (9) we obtain a replacement for the Newtonian “in-
verse square law”

g(r) = � r̂
K2

2

 
1
r2 +

�
2rRs

�
Rs
r

��
2
!
: (10)

The 1st term, 1=r2, is the Newtonian part. The 2nd term
is caused by a “black hole” phenomenon that (1) exhibits.
This manifests in different ways, from minimal supermassive
black holes, as seen in spherical star systems, from globular
clusters to spherical galaxies for which the black hole mass is
predicted to be MBH = �M=2, as confirmed by the observa-
tional datas [2, 4, 5, 6, 7], to primordial supermassive black
holes as seen in spiral galaxies as described by (9); here the
matter spiral is caused by matter in-falling towards the pri-
mordial black hole.

The spatial-inflow phenomenon in (9) is completely dif-
ferent from the putative “black holes” of General Relativity
— the new “black holes” have an essentially 1=r force law,
up to O(�) corrections, rather than the usual Newtonain and
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Fig. 2: The “dark matter” density extracted by deconvolution of the
gravitational lensing data for galaxy cluster CL 0024+17, see Jee
M.J. et al. arXiv:0705.2171. Picture credit: NASA, ESA, M.J. Jee
and H.C. Ford (John Hopkins University). The “dark matter” density
has been superimposed on a HST image of the cluster. The axis of
“symmetry” is perpendicular to the planer of this image. The gravi-
tational lensing is caused by two galaxy clusters that have undergone
collision. It is claimed herein that the lensing is associated with the
3-space interaction of these two “nearby” galaxy clusters, and not
by the fact that they had collided, as claimed in [1]. The effect it is
claimed, herein, is caused by the spatial in-flows into the black holes
within the galaxies.

GR 1=r2 law. The centripetal acceleration relation for circu-
lar orbits v�(r) =

p
rg(r) gives a “universal rotation-speed

curve”

v�(r) =
K
2

 
1
r

+
�

2Rs

�
Rs
r

��
2
!1=2

: (11)

Because of the � dependent part this rotation-velocity
curve falls off extremely slowly with r, as is indeed observed
for spiral galaxies. An example is shown in Fig. 1. It was the
inability of the Newtonian and Einsteinian gravity theories
to explain these observations that led to the notion of “dark
matter”.

For the spatial flow in (9) we may compute the effective
dark matter density from (7)

~�DM (r) =
(1� �)�

16�G
K2

R3
s

�
Rs
r

�2+�=2

: (12)

It should be noted that the Newtonian component of (9)
does not contribute, and that ~�DM (r) is exactly zero in the
limit � ! 0. So supermassive black holes and the spiral
galaxy rotation anomaly are all �-dynamics phenomena.

Fig. 3: Plot showing two constant value surfaces of ��DM (r) from
(19). We have modelled the system with two galaxies located on
the axis of symmetry, but outside of the range of the plot. This plot
shows the effects of the interfering spatial in-flows generating an
effective “dark matter” density, as a spatial self-interaction effect.
This “dark matter” density is that required to reproduce the gravi-
tational acceleration if we used Newton’s law of gravity. This phe-
nomenon is caused by the�-dependent dynamics in (1), essentially a
quantum-space effect. Viewed along the axis of symmetry this shell
structure would appear as a ring-like structure, as seen in Fig. 2.

2.2 Gravitational lensing

The spatial velocity field may be observed on the cosmolog-
ical scale by means of the light bending and lensing effect.
But first we must generalise the Maxwell equations so that
the electric and magnetic fields are excitations of the dynam-
ical 3-space, and not of the embedding space:

r�E = ��
�
@H
@t

+ v � rH
�
; r �E = 0 ; (13)

r�H = �
�
@E
@t

+ v � rE
�
; r �H = 0 ; (14)

which was first suggested by Hertz in 1890, but with v being
a constant vector field. As easily determined the speed of EM
radiation is c= 1p�� wrt to the dynamical space, and not wt
to the embedding space as in the original form of Maxwell’s
equations, and as light-speed anisotropy experiment have in-
dicated [2]. The time-dependent and inhomogeneous velocity
field causes the refraction of EM radiation. This can be com-
puted by using the Fermat least-time approximation. Then the
EM trajectory r(t) is determined by minimising the elapsed
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Fig. 4: Plot of ��DM (r) from (19) in a radial direction from a mid-
point on the axis joining the two galaxies.

Fig. 5: Plot of ��DM (r) from (19) in the plane containing the two
galaxies. The two galaxies are located at +10 and -10, i.e above and
below the vertical in this contour plot. This plot shows the effects of
the interfering in-flows.

travel time:

� =
Z sf

si

ds
��dr
ds

��
jc v̂R(s) + v

�
r(s); t(s)

�j (15)

vR =
�
dr
dt
� v(r; t)

�
(16)

by varying both r(s) and t(s), finally giving r(t). Here s is
a path parameter, and vR is a 3-space tangent vector for the
path. As an example, the in-flow in (4), which is applicable
to light bending by the sun, gives the angle of deflection

� = 2
v2

c2
=

4GM(1 + �
2 + : : :)

c2d
+ : : : (17)

where v is the in-flow speed at distance d and d is the impact
parameter. This agrees with the GR result except for the �

correction. Hence the observed deflection of 8.4�10�6 radi-
ans is actually a measure of the in-flow speed at the sun’s sur-
face, and that gives v= 615 km/s. These generalised Maxwell
equations also predict gravitational lensing produced by the
large in-flows from (9) associated with the new “black holes”
in galaxies. So again this effect permits the direct observation
of the these black hole effects with their non inverse-square-
law accelerations.

3 Galaxy Cluster lensing

It is straightforward to analyse the gravitational lensing pre-
dicted by a galaxy cluster, with the data from CL 0024+17
of particular interest. However rather than compute the ac-
tual lensing images, we shall compute the “dark matter” ef-
fective density from (7), and compare that with the putative
“dark matter” density extracted from the actual lensing data
in [1]. To that end we need to solve (1) for two reasonably
close galaxies, located at positions R and �R. Here we look
for a perturbative modification of the 3-space in-flows when
the two galaxies are nearby. We take the velocity field in 1st
approximation to be the superposition

v(r) � v(r�R) + v(r + R) ; (18)

where the RHS v’s are from (9).
Substituting this in (1) will then generate an improved

solution, keeping in mind that (1) is non-linear, and so this
superposition cannot be exact. Indeed it is the non-linearity
effect which it is claimed herein is responsible for the ring-
like structure reported in [1]. Substituting (18) in (7) we may
compute the change in the effective “dark matter” density
caused by the two galaxies interfering with the in-flow into
each separately, i.e.

��DM (r) = �DM (r)� ~�DM (r�R)� ~�DM (r + R) (19)

~�DM (r�R) are the the effective “dark matter” densities for
one isolated galaxy in (12). Several graphical representations
of ��DM (r) are given in Figs. 3, 4 and 5. We seen that
viewed along the line of the two galaxies the change in the
effective “dark matter” density has the form of a ring, in par-
ticular one should compare the predicted effective “dark mat-
ter” density in Fig. 3 with that found by deconvoluting the
gravitaitaional lensing data shown in shown Fig. 2.

4 Conclusions

We have shown that the dynamical 3-space theory gives a di-
rect account of the observed gravitational lensing caused by
two galaxy clusters, which had previously collided, but that
the ring-like structure is not related to that collision, contrary
to the claims in [1]. The distinctive lensing effect is caused
by interference between the two spatial in-flows, resulting in
EM refraction which appears to be caused by the presence
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of a “matter” having the form of a ringed-shell structure, ex-
actly comparable to the observed effect. This demonstrates
yet another success of the new dynamical theory of 3-space,
which like the bore hole, black hole and spiral galaxy rota-
tion effects all reveal the dynamical consequences of the �-
dependent term in (1). This amounts to a totally different
understanding of the nature of space, and a completely differ-
ent account of gravity. As shown in [3] gravity is a quantum
effect where the quantum waves are refracted by the 3-space,
and that analysis also gave a first derivation of the equiva-
lence principle. We see again that “dark matter” and “dark
energy” are spurious concepts required only because Newto-
nian gravity, and ipso facto GR, lacks fundamental processes
of a dynamical 3-space — they are merely ad hoc fix-ups. We
have shown elsewhere [7] that from (1) and the generalised
Dirac equation we may show that a curved spacetime formal-
ism may be introduced that permits the determination of the
quantum matter geodesics, but that in general the spacetime
metric does not satisfy the Hilbert-Einstein equations, as of
course GR lacks the �-dependent dynamics. This induced
spacetime has no ontological significance. At a deeper level
the occurrence of � in (1) suggests that 3-space is actually a
quantum system, and that (1) is merely a phenomenological
description of that at the “classical” level. In which case the
�-dependent dynamics amounts to the detection of quantum
space and quantum gravity effects, although clearly not of the
form suggested by the quantisation of GR.
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Quantum Spin Transport in Mesoscopic Interferometer
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Spin-dependent conductance of ballistic mesoscopic interferometer is investigated. The
quantum interferometer is in the form of ring, in which a quantum dot is embedded in
one arm. This quantum dot is connected to one lead via tunnel barrier. Both Aharonov-
Casher and Aharonov-Bohm effects are studied. Our results confirm the interplay of
spin-orbit coupling and quantum interference effects in such confined quantum sys-
tems. This investigation is valuable for spintronics application, for example, quantum
information processing.

1 Introduction

The flexibility offered by semiconductor spintronics [1] is an-
ticipated to lead to novel devices and may eventually become
used for quantum information processing. Another advantage
offered by spin systems in semiconductors is their long co-
herence times [2, 3]. In recent years, much attention has been
devoted towards the interplay of the spin-orbit interaction and
quantum interference effects in confined semiconductor het-
erostructures [4, 5, 6]. Such interplay can be exploited as a
mean to control and manipulate the spin degree of freedom at
mesoscopic scale useful for phase-coherent spintronics appli-
cations.

Since the original proposal of the spin field effect tran-
sistor (SFET) [7] by Datta and Das, many proposals have
appeared based on intrinsic spin splitting properties of semi-
conductors associated with the Rashba spin-orbit interaction
[8, 9, 10].

In the present paper, a quantum interference effect in co-
herent Aharonov-Casher ring is investigated. In such devices
quantum effects are affecting transport properties.

2 The model

The mesoscopic device proposed in the present paper is in the
form of quantum dot embedded in one arm of the Aharonov-
Casher interferometer. This interferometer is connected to
two conducting leads. The form of the confining potential
in such spintronics device is modulated by an external gate
electrode, allowing for direct control of the electron spin-
orbit interaction. The main feature of the electron transport
through such device is that the difference in the Aharonov-
Casher phase of the electrons traveling clockwise and coun-
terclockwise directions produces spin-sensitive interference
effects [11, 12]. The quantum transport of the electrons oc-
curs in the presence of Rashba spin-orbit coupling [13] and
the influence of an external magnetic field. With the present
proposed mesoscopic device, we can predict that the spin

polarized current through such device is controlled via gate
voltage.

The Hamiltonian, Ĥ, describing the quantum transport
through the present studied device could be written in the
form as [14]

Ĥ =
P 2

2m� + V (r) + Ĥsoc ; (1)

where Ĥsoc is the Hamiltonian due to the spin-orbit coupling
and is expressed as

Ĥsoc =
~2

2m�a2

�
�i @

@'
+
!socm�a2

~
�r
�
; (2)

where !soc = �
~a and it is called the frequency associated with

the spin-orbit coupling, � is the strength of the spin-orbit cou-
pling, a is the radius of the Aharonov-Casher ring and �r is
the radial part of the Pauli matrices which expressed in the
components of Pauli matrices �x, �y as

�r = �x cos'+ �y sin' ;

�' = �y cos'� �x sin' :
(3)

The parameter ', Eq. (3) represents the phase difference
of electrons passing through the upper and the lower arms of
the ring. In Eq. (1), V (r) is the effective potential for trans-
mission of electrons through the quantum dot which depends,
mainly, on the tunnel barrier between the quantum dot and
the lead. Applying external magnetic field, B, normal to the
plane of the device, then the Aharonov-Bohm phase picked
up by an electron encircling this magnetic flux is given by

�AB =
� eB a2

~
: (4)

Then the Hamiltonian, Ĥsoc, due to the spin-orbit cou-
pling Eq. (2) will take the form

H 0soc =
~2

2m�a2

�
�i @

@'
� �AB

2�
� !socm�a2

~
�r
�
: (5)
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Now in order to study the transport properties of the pre-
sent quantum system, we have to solve Schrödinger equation
and finding the eigenfunctions for this system as follows

Ĥ 	 = E	 : (6)

The solution of Eq. (6) consists of four eigenfunctions
[14], where 	L(x) is the eigenfunction for transmission
through the left lead, 	R(x)-for the right lead, 	up(�)-for
the upper arm of the ring and 	low(�)-for the lower arm of
the ring. Their forms will be as

	L(x) =
X
�

�
Aeikx +B e�ikx

�
��(�) ;

x 2 [�1; 0] ;
(7a)

	R(x) =
X
�

h
C eikx

0
+ De�ikx0

i
��(0) ;

x 2 [0;1] ;

(7b)

	up(') =
X
�;�

F� ein
0�
�' ��(') ;

' 2 [0; �] ;

(7c)

	low(') =
X
�;�

G� ein
�
�' ��(') ;

' 2 [�; 2�] :

(7d)

The mutually orthogonal spinors  �n(') are expressed in

terms of the eigenvectors
�

1
0

�
,
�

0
1

�
of the Pauli matrix �z as

�(1)
n (') =

 
cos �2

ei' sin �
2

!
; (7)

�(2)
n (') =

 
sin �

2

�ei' cos �2

!
; (8)

where the angle � [15] is given by

� = 2 tan�1 
� p
2 + !2
soc

!soc
(9)

in which 
 is given by


 =
~

2m�a2 : (10)

The parameters n0�� and n�� are expressed respectively as

n0�� = �k0a� '+
�AB
2�

+
��AC
2�

; (11)

n�� = �ka� '+
�AB
2�

+
��AC
2�

; (12)

where �=�1 corresponding to the spin up and spin down
of transmitted electrons, �AB is given by Eq. (4). The term
�AC represents the Aharonov-Casher phase and is given by

�(�)
AC = ��

�
1 +

(�1)�(!2
soc + 
2)1=2




�
: (13)

The wave numbers k0, k are given respectively by

k0 =
r

2m�E
~2 ; (14)

k =

s
2m�
~2

�
Vd + e Vg +

N2e2

2C
+ EF � E

�
; (15)

where Vd is the barrier height, Vg is the gate voltage, N is the
number of electrons entering the quantum dot, C is the total
capacitance of the quantum dot, m� is the effective mass of
electrons with energy, E, and charge, e, and EF is the Fermi
energy.

The conductance, G, for the present investigated device
will be calculated using landauer formula [16] as

G =
2e2 sin'

h

X
�=1;2

Z
dE
�
�@fFD

@E

�
j��(E)j2 ; (16)

where fFD is the Fermi-Dirac distribution is function and
j��(E)j2 is tunneling probability. This tunneling probability
could be obtained by applying the Griffith boundary condi-
tions [15, 17, 18], which states that the eigenfunctions
(Eqs. 7a, 7b, 7c, 7d) are continuous and that the current den-
sity is conserved at each intersection. Then the expression for
��(E) is given by

��(E) =

=
8i cos �AB+�(�)

AC
2 sin(�ka)

4 cos(2�k0a)+4 cos
�
�AB+�(�)

AC

�
+4i sin(2�k0a)

: (17)

3 Results and discussion

In order to investigate the quantum spin transport character-
istics through the present device, we solve Eqs. (17, 18) nu-
merically. We use the heterostructures as InGaAs/InAlAs.

We calculate the conductance, G, at different both mag-
netic field and the !soc which depends on the Rashba spin-
orbit coupling strength. The main features of our obtained
results are:

1. Figs. 1 and Fig. 2 show the dependence of the conduc-
tance on the magnetic field, B, for small and large val-
ues of B at different !soc.

2. Fig. 3 shows the dependence of the conductance on the
parameter !soc at different values of B.
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Fig. 3: The dependence of conductance on !soc at different values of B.

Fig. 1: The dependence of conductance on B at dif-
ferent !soc (small B).

Fig. 2: The dependence of conductance on B at dif-
ferent !soc (large B).

From the figures we observe a quasi-periodic oscillations
in the conductance (Fig. 1), and takes the form of satellite
peaks. While for large values of B, the oscillations behave
completely different from those in case of small values of B.
The oscillatory behavior of G(!soc) shows a wide peaks and
in some ranges of !soc, there is a splitting in the peaks.

The obtained results could be explained as follows: The
oscillatory behavior of the conductance with B and !soc
could be due to spin-sensitive quantum-interference effects
caused by the difference in the Aharonov-Casher phase
accumulated by the opposite spin states. Also the quantum
interference effects in the present device could be due to
Aharonov-Bohm effect. Our results are found concordant
with those in the literatures [4, 5, 15, 19].

4 Conclusions

In the present paper an expression for the conductance has
been deduced for the investigated mesoscopic device. The
spin transport in such coherent device is investigated taking
into consideration both Aharonov-Casher and Aharonov-
Bohm effects in the quantum dot connected to conducting
lead via a tunnel barrier. The present results are valuable for
employing such devices in phase coherent spintronics appli-
cations.
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We indicate some formulas connecting Ricci flow and Perelman entropy to Fisher in-
formation, differential entropy, and the quantum potential. There is a known relation
involving the Schroedinger equation in a Weyl space where the Weyl-Ricci curvature is
proportional to the quantum potential. The quantum potential in turn is related to Fisher
information which is given via the Perelman entropy functional arising from a differ-
ential entropy under Ricci flow. These relations are written out and seem to suggest
connections between quantum mechanics and Ricci flow.

1 Formulas involving Ricci flow

Certain aspects of Perelman’s work on the Poincaré conjec-
ture have applications in physics and we want to suggest a
few formulas in this direction; a fuller exposition will appear
in a book in preparation [8]. We go first to [13, 24–28, 33, 39]
and simply write down a few formulas from [28, 39] here with
minimal explanation. Thus one has Perelman’s functional
( _R is the Riemannian Ricci curvature)

F =
Z
M

( _R+ jrf j2) exp(�f)dV (1.1)

and a so-called Nash entropy (1A) N(u) =
R
M u log(u)dV

where u = exp (�f). One considers Ricci flows with
�g� @tg=h and for (1B) ��u=�@tu��u+ _Ru= 0
(or equivalently @tf + �f � jrf j2 + _R= 0) it follows thatR
M exp(�f)dV =1 is preserved and @tN=F. Note the Ricci

flow equation is @t g=�2Ric. Extremizing F via �F�
� @tF= 0 involves Ric+Hess(f) = 0 or Rij +rirjf = 0
and one knows also that

@tN =
Z
M

(jrf j2 + _R) exp(�f)dV = F ;

@tF = 2
Z
M
jRic+Hess(f)j2 exp(�f)dV:

(1.2)

2 The Schrödinger equation and WDW

Now referring to [3–5, 7–12, 15, 16, 18–23, 29–32, 35–38, 40]
for details we note first the important observation in [39] that
F is in fact a Fisher information functional. Fisher informa-
tion has come up repeatedly in studies of the Schrödinger
equation (SE) and the Wheeler-deWitt equation (WDW) and
is connected to a differential entropy correspondingto the
Nash entropy above (cf. [4, 7, 18, 19]). The basic ideas
involve (using 1-D for simplicity) a quantum potential Q such
that

R
M P Qdx �F arising from a wave function  =

=R exp(iS=~) where Q=�(~2=2m)(�R=R) and P � j j2

is a probability density. In a WDW context for example one
can develop a framework

Q = cP�1=2 @(GP 1=2);Z
QP = c

Z
P 1=2@(GP 1=2)Dhdx !

! � c
Z
@P 1=2G@P 1=2Dhdx

9>>>>>>=>>>>>>;
(2.1)

where G is an expression involving the deWitt metric
Gijk`(h). In a more simple minded context consider a SE in
1-D i~@t =�(~2=2m)@2

x +V  where  =R exp(iS=~)
leads to the equations

St +
1

2m
S2
x +Q+ V = 0;

@tR2 +
1
m

(R2Sx)x = 0 : Q = � ~2

2m
Rxx
R

:

9>>=>>; (2.2)

In terms of the exact uncertainty principle of Hall and
Reginatto (see [21, 23, 34] and cf. also [4, 6, 7, 31, 32])
the quantum Hamiltonian has a Fisher information term
c
R
dx(rP � rP=2mP ) added to the classical Hamiltonian

(where P =R2� j j2) and a simple calculation givesZ
PQd3x � � ~2

8m

Z �
2�P � 1

P
jrP j2

�
d3x =

=
~2

8m

Z
1
P
jrP j2 d3x :

(2.3)

In the situation of (2.1) the analogues to Section 1 involve
(@ � @x)

P � e�f ; P 0 � Px � �f 0e�f ;

Q� ef=2@(G@e�f=2); PQ� e�f=2@(G@e�f=2);Z
PQ! �

Z
@e�f=2G@e�f=2 � �

Z
@P 1=2G@P 1=2:

9>>>>>>=>>>>>>;
(2.4)
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In the context of the SE in Weyl space developed in [1, 2,
4, 7, 10, 11, 12, 35, 36, 40] one has a situation j j2�R2�
�P � �̂ = �=pg with a Weyl vector ~� =�r log(�̂) and a
quantum potential

Q � � ~2

16m

�
_R+

8p
�̂

1pg @i
�p

g gik@k
p
�̂
��

=

= � ~2

16m

�
_R+

8p
�̂

�
p
�̂
� (2.5)

(recall divgrad(U) = �U= (1=pg)@m(pggmn@nU). Here
the Weyl-Ricci curvature is (2A) R = _R+Rw where

Rw = 2 j~�j2 � 4r � ~� = 8
�
p
�̂p
�̂

(2.6)

and Q = �(~2=16m)R. Note that

�r � ~� � �� log(�̂) � ���̂
�̂

+
jr�̂j2
�̂2 (2.7)

and for exp(�f) = �̂ = uZ
�̂r � ~� dV =

Z �
���̂+

jr�̂j2
�̂

�
dV (2.8)

with the first term in the last integral vanishing and the second
providing Fisher information again. Comparing with Sec-
tion 1 we have analogues (2B) G� (R+ j~�j2) with ~�=
=�r log(�̂)�rf to go with (2.4). Clearly �̂ is basically a
probability concept with

R
�̂ dV = 1 and Quantum Mechan-

ics (QM) (or rather perhaps Bohmian mechanics) seems to
enter the picture through the second equation in (2.2), namely
(2C) @t �̂ + (1=m) div(�̂rS) = 0 with p = mv =rS,
which must be reconciled with (1B) (i.e. (1=m) div(urS) =
= �u� _Ru). In any event the termG= _R+ j~�j2 can be writ-
ten as (2D) _R+Rw + (j~�j2�Rw) =�Q+ (4r � ~�� j~�j2)
which leads to (2E) F�� RM QP dV +�

R j~�j2PdV put-
ting Q directly into the picture and suggesting some sort of
quantum mechanical connection.

REMARK 2.1. We mention also that Q appears in a fascinat-
ing geometrical role in the relativistic Bohmian format fol-
lowing [3, 15, 37, 38] (cf. also [4, 7] for survey material).
Thus e.g. one can define a quantum mass field via

M2 = m2 exp(Q) � m2(1 +Q);

Q � �~2

c2m2
�(p�)p� � �

6
Rw

(2.9)

where � refers to an appropriate mass density andM is in fact
the Dirac field � in a Weyl-Dirac formulation of Bohmian
quantum gravity. Further one can change the 4-D Lorentzian
metric via a conformal factor 
2 =M2=m2 in the form ~g�� =
= 
2g�� and this suggests possible interest in Ricci flows etc.

in conformal Lorentzian spaces (cf. here also [14]). We refer
to [3, 15] for another fascinating form of the quantum poten-
tial as a mass generating term and intrinsic self energy. �

NOTE. Publication information for items below listed by
archive numbers can often be found on the net listing. �
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In this work, an introductory exposition of the laws of thermodynamics and radiative
heat transfer is presented while exploring the concepts of the ideal solid, the lattice,
and the vibrational, translational, and rotational degrees of freedom. Analysis of heat
transfer in this manner helps scientists to recognize that the laws of thermal radiation
are strictly applicable only to the ideal solid. On the Earth, such a solid is best repre-
sented by either graphite or soot. Indeed, certain forms of graphite can approach perfect
absorption over a relatively large frequency range. Nonetheless, in dealing with heat,
solids will eventually sublime or melt. Similarly, liquids will give way to the gas phase.
That thermal conductivity eventually decreases in the solid signals an inability to further
dissipate heat and the coming breakdown of Planck’s law. Ultimately, this breakdown is
reflected in the thermal emission of gases. Interestingly, total gaseous emissivity can de-
crease with increasing temperature. Consequently, neither solids, liquids, or gases can
maintain the behavior predicted by the laws of thermal emission. Since the laws of ther-
mal emission are, in fact, not universal, the extension of these principles to non-solids
constitutes a serious overextension of the work of Kirchhoff, Wien, Stefan and Planck.

The question now is wherein the mistake consists and
how it can be removed.

Max Planck, Philosophy of Physics, 1936.

While it is true that the field of thermodynamics can be com-
plex [1–8] the basic ideas behind the study of heat (or energy)
transfer remain simple. Let us begin this study with an ideal
solid, S1, in an empty universe. S1 contains atoms arranged
in a regular array called a “lattice” (see Figure 1). Bonding
electrons may be present. The nuclei of each atom act as
weights and the bonding electrons as springs in an oscillator
model. Non-bonding electrons may also be present, however
in an ideal solid these electrons are not involved in carrying
current. By extension, S1 contains no electronic conduction
bands. The non-bonding electrons may be involved in Van der
Waals (or contact) interactions between atoms. Given these
restraints, it is clear that S1 is a non-metal.

Ideal solids do not exist. However, graphite provides a
close approximation of such an object. Graphite is a black,
carbon-containing, solid material. Each carbon atom within
graphite is bonded to 3 neighbors. Graphite is black because
it very efficiently absorbs light which is incident upon its
surface. In the 1800’s, scientists studied objects made from
graphite plates. Since the graphite plates were black, these
objects became known as “blackbodies”. By extension, we
will therefore assume that S1, being an ideal solid, is also a
perfect blackbody. That is to say, S1 can perfectly absorb any
light incident on its surface.

Let us place our ideal solid, S1, in an imaginary box. The
walls of this box have the property of not permitting any heat
to be transferred from inside the box to the outside world and

Fig. 1: Schematic representation of the ideal solid, S1. The atoms
are arranged in a regular array, or “lattice”.

vice versa. When an imaginary partition has the property of
not permitting the transfer of heat, mass, and light, we say
that the partition is adiabatic. Since, S1 is alone inside the
adiabatic box, no light can strike its surface (sources of light
do not exist). Let us assume that S1 is in the lowest possible
energy state. This is the rest energy, Erest. For our ideal solid,
the rest energy is the sum of the relativistic energy, Erel, and
the energy contained in the bonds of the solid, Ebond. The
relativistic energy is given by Einstein’s equation, E=mc2.
Other than relativistic and bonding energy, S1 contains no
other energy (or heat). Simplistically speaking, it is near 0
Kelvin, or absolute zero.

That absolute zero exists is expressed in the form of the
3rd law of thermodynamics, the last major law of heat trans-
fer to be formulated. This law is the most appropriate start-
ing point for our discussion. Thus, an ideal solid contain-
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Fig. 2: Depiction of the Little Heat Engine at the center of the lattice.
The atoms near this heat source move about their absolute location,
such that they experience no net displacement over time. The vibra-
tional degrees of freedom are slowly being filled.

Fig. 3: The Little Heat Engine is turned off and the heat introduced
into the lattice begins to equilibrate throughout the solid.

ing no heat energy is close to absolute zero as defined by
the 3rd law of thermodynamics. In such a setting, the atoms
that make up the solid are perfectly still. Our universe has
a total energy (E total) equal to the rest mass of the solid:
E total =Esolid =Erest =Erel +Ebond.

Now, let us imagine that there is a hypothetical little heat
engine inside S1. We chose an engine rather than a source
to reflect the fact that work is being done as we ponder this
problem. However, to be strictly correct, a source of heat
could have been invoked. For now, we assume that our lit-
tle heat engine is producing hypothetical work and it is also
operating at a single temperature. It is therefore said to be
isothermal. As it works, the little heat engine releases heat
into its environment.

It is thus possible to turn on this hypothetical little heat
engine and to start releasing heat inside our solid. However,
where will this heat go? We must introduce some kind of “re-
ceptacle” to accept the heat. This receptacle will be referred
to as a “degree of freedom”. The first degrees of freedom
that we shall introduce are found in the vibration of the atoms

about their absolute location, such that there is no net dis-
placement of the atoms over time. The heat produced by our
little heat engine will therefore begin to fill the vibrational de-
grees of freedom and the atoms in its vicinity will start vibrat-
ing. When this happens, the bonds of the solid begin to act
as little springs. Let us turn on the heat engine for just a little
while and then turn it off again. Now we have introduced a
certain quantity of heat (or energy) inside the solid. This heat
is in the immediate vicinity of the little heat engine (see Fig-
ure 2). As a result, the atoms closest to the heat engine begin
to vibrate reflecting the fact that they have been heated. The
total amount of energy contained in the vibrational degrees of
freedom will be equal to Evib.

Since the little heat engine has been turned off, the heat
produced will now start to equilibrate within the solid (see
Figure 3). Thus, the area nearest the little heat engine be-
comes colder (the atoms nearest the heat engine slow down
their vibration) and the areas away from our little engine heat
up (they increase their vibration). As this happens, S1 is
moving towards thermal equilibrium. That is, it is becoming
isothermal — moving to a single uniform temperature. In this
state, all the atoms in S1 share equally in the energy stored
in the vibrational degrees of freedom. The driving force for
reaching this thermal equilibrium is contained in the 2nd law
of thermodynamics. This law states that heat must always
move from hotter to colder regions in an irreversible manner.

That heat flows in an irreversible manner is the central
theme of the 2nd law of thermodynamics. Indeed, no matter
what mechanism will be invoked to transfer heat in nature,
it will always be true that the macroscopic transfer of heat
occurs in an irreversible manner.

So far, S1 is seeking to reach a uniform temperature or
thermal equilibrium. For our ideal solid, thermal equilibrium
can only be achieved through thermal conduction which in
turn is supported by energy contained in the vibrational de-
grees of freedom. Thermal conduction is the process whereby
heat energy is transferred within an object without the abso-
lute displacement of atoms or molecules. If the little heat en-
gine was kept on, then thermal conduction would constantly
be trying to bring our solid to thermal equilibrium. If there
were no processes other than thermal conduction, and the en-
gine was turned off, eventually one would think that the entire
solid would come to a single new temperature and thermal
equilibrium would be achieved. At this stage, our universe
would have a total energy equal to that contained in the rest
energy (Erel +Ebond) and in the vibrational degrees of free-
dom (E total =Esolid =Erest +Evib).

However, even though our little heat engine has been
turned off, thermal equilibrium cannot be reached in this sce-
nario. This is because there is another means of dissipating
heat available to the solid. Thus, as the solid is heated, it dis-
sipates some of the energy contained in its vibrational degrees
of freedom into our universe in an effort to cool down. This
is accomplished by converting some of the energy contained
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in the vibrational degrees of freedom into light!
The light that objects emit in an attempt to cool down is

called thermal radiation. The word thermal comes in because
we are dealing with heat. The word radiation comes from the
fact that it is light (or radiation) which is being emitted.

This light is emitted at many different frequencies (see
Figure 4). We represent the total amount of energy in this
emission as Eem. Emission of light provides another means
of dealing with heat. Thus, the emission of light joins vi-
bration in providing for our stationary non-metallic solid the
only degrees of freedom to which it can ever have access.
However, the energy of emission becomes a characteristic of
our universe and not of the solid. Thus, the universe now
has a total energy given by E total =Esolid +Eem. As for
the solid, it still has an energy equal only to that stored as
rest energy and that contained in the vibrational degrees of
freedom, Esolid =Erest +Evib. However, note that since all
the heat energy of the solid was initially contained in its vi-
brational degrees of freedom, the energy of emission (Eem)
must be related to the energy contained in Evib at the time of
emission.

As stated above, light has the property that it cannot cross
an adiabatic partition. Consequently, the light produced by
heating the solid becomes trapped in our virtual box. If we
kept our adiabatic walls close to the solid, eventually ther-
mal equilibrium would be achieved between the solid and the
radiation. In this scenario, the solid would be constantly emit-
ting and absorbing radiation. Under a steady state regimen,
all of the atoms in the solid would be sharing equally in the
energy contained in the vibrational degrees of freedom. How-
ever, let us make the box large for now, so that it will take
the light many years to reach the walls of the box and be
reflected back towards the solid. For all purposes then, the
light that the solid emits cannot return and hit the surface of
the solid.

Up to this point, by turning on our little heat engine, we
have been able to discuss two important processes. The first
is thermal conduction. Thermal conduction is that process
which tries to bring the internal structure of the solid to ther-
mal equilibrium. In our ideal solid, the vibrations of the
atoms are the underlying support for this process. The sec-
ond process is thermal radiation (also called radiative emis-
sion). Through radiative emission, the solid is trying to come
to thermal equilibrium with the outside world. There are
only two means for an ideal solid to deal with heat. It can
strive to achieve internal thermal equilibrium through ther-
mal conduction supported by the vibrations of its atoms and
it can dissipate some of the energy contained in its vibrational
degrees of freedom to the outside world through thermal
radiation.

For an ideal solid, the light emitted in an attempt to reach
or maintain thermal equilibrium will contain a continuous
range of frequencies (see Figure 4). The intensity of the
light at any given frequency will be given by the well known

Fig. 4: The light that objects emit in an attempt to cool down is
called thermal radiation. Emission of light provides another means
of dealing with heat. The emission is continuous over all frequencies
for our ideal solid, S1.

Fig. 5: For the ideal solid, S1, the total emission (area under the
curve) is proportional to the fourth power of the temperature as dic-
tated by Stefan’s law of thermal emission.

Planckian relation [9]

B�(T ) =
"�
��

=
2h�3

c2
1

eh�=kT � 1
:

Planck’s equation states that the light produced, at a fre-
quency �, by a blackbody (or an ideal solid), B� , depends
only on two variables: temperature, T , and the frequency,
�. All the other terms in this equation are constants (h =
Planck’s constant, k = Boltzman’s constant, c = speed of
light). This equation tells us that the nature of light produced
is dependent only on the temperature of the solid and on the
frequency of interest. The fact that the light emitted by an
ideal solid was dependent only on temperature and frequency
was first highlighted by Gustav Robert Kirchhoff in the mid-
1800’s. Kirchhoff’s formulation became know as Kirchhoff’s
Law of Thermal Radiation [10, 11]

B�(T ) =
"�
��

:

In this equation, "� represents the ability of the black-
body to emit light (emissivity) and �� represents its ability

P.-M. Robitaille. The Little Heat Engine: Heat Transfer in Solids, Liquids and Gases 27



Volume 4 PROGRESS IN PHYSICS October, 2007

Fig. 6: Thermal conductivity for pyrolytic graphite (parallel to the
layer planes) increases to a maximum and then begins to decrease.
Eventually, graphite sublimes at 3925 K. Adapted from reference
15, volume 2, Thermal Conductivity of Nonmetallic Solids, 1970.

to absorb light (opacity) at a given frequency. As mentioned
above, an ideal solid is a blackbody, or a perfect absorber of
light (�� = 1). As such, this equation states that the manner
in which a blackbody emits or absorbs light at a given fre-
quency depends exclusively on its temperature. The function,
f , contained in Kirchhoff’s Law B� = "�

�� = f(T; �) was elu-
cidated by Max Planck as shown in the first equation above. It
is for this reason that Kirchhoff’s equation constitutes the left
hand portion of Planck’s equation [9]. As a result, any work
by Kirchhoff on this topic is critical to our understanding of
Planck’s work [9, 10, 11].

It has also been observed that the amount of light that our
ideal solid will produce, or the total emission (see the area un-
der the curve in Figure 5), is proportional to the fourth power
of the solid’s temperature. This is known as Stefan’s law of
emission ("=�T 4), where " represents total emission and
Stefan’s constant, � , is equal to 5.67051�10�8 Watts/(m2K4)
[12]. Note that Stefan’s law of emission reveals a pronounced
increase in the production of light, with temperature. Thus, as
the temperature of the solid increases, thermal radiation can
greatly increase to accommodate the increased requirement
for heat dissipation. If the solid is at room temperature, this
light will be emitted at infrared frequencies, that is, just below
the portion of the electromagnetic spectrum that is visible to
the human eye. Indeed, this emitted light at room tempera-
tures can be viewed with a thermal or infrared camera of the
type used by the military to see at night.

Interestingly for S1, the frequency of light at which the
maximal emission occurs (�max) is directly related to the tem-
perature �max=c=T ). This is known as Wien’s law of dis-
placement [13].

Let us turn on our little heat engine once again. As the
little heat engine releases more heat into solid, it becomes ap-
parent that thermal conductivity increases only approximately
linearly with temperature. In fact, as temperature is increased
for many real solids, thermal conductivity actually may ini-
tially increase to a maximum and then suddenly begin to de-
crease (see Figure 6 for graphite and Figure 7 for sapphire

Fig. 7: Thermal conductivity for sapphire (Al2O3) increases to a
maximum and then decreases. Eventually, sapphire melts at 2323
K. Adapted from reference 15, volume 2, Thermal Conductivity of
Nonmetallic Solids, 1970.

or Al2O3) [14]. Since the vibrational degrees of freedom are
central to both thermal conduction and emission, one can only
gather that the vibrational degrees of freedom simply become
incapable of dealing with more heat (see Figure 8). Herein
lies a problem for maintaining the solid phase. As tempera-
ture is increased, there is a greater difficulty of dealing with
the internal flow of heat within the solid. The solid must begin
to search for a new degree of freedom.

The next available means of dealing with heat lies in
breaking bonds that link up the atoms forming the ideal solid.
As these bonds begin to break, the atoms (or the molecules)
gain the ability to change their average location. New degrees
of freedom are born, namely, the translational and rotational
degrees of freedom. Interestingly, these new degrees of free-
dom are associated with both the flow of heat and mass.

With the arrival of the translational and rotational degrees
of freedom, S1 is transformed into one of two possibilities. It
can either melt — giving rise to the liquid phase, L1; or, it can
sublime — giving rise directly to the gas phase,G1. Graphite,
perhaps the closest material to an ideal solid, sublimes (see
Figure 6) and never melts. Whereas sapphire or Al2O3 melts
(see Figure 7). In any case, as a solid is being converted to a
liquid or a gas, the absolute amount of rest energy is chang-
ing, because bonds are being broken (Ebond! 0).

Since many solids melt giving rise toL1, let us turn our at-
tention first to this situation. We assume that unlike graphite,
our ideal solid can in fact melt. Thus, as more heat is pumped
into S1, the temperature will no longer rise. Rather, the solid
S1 will simply slowly be converted to the liquid L1. The
melting point has been reached (see Figure 9 and Figure 10)
and the liquid created (see Figure 11).

Since L1 has just been created, let us turn off our little
heat engine once again. The liquid L1 at this stage, much
like S1 of old, is still capable of sustaining thermal conduc-
tion as an internal means of trying to reach thermal equilib-
rium through the vibrational degrees of freedom. However,
the absolute level of thermal conduction is often more than
100 times lower than in the solid [8, 15]. The liquid L1 also
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Fig. 8: The Little Heat Engine has introduced so much heat into the
lattice that the vibrational degrees of freedom become full. The solid
must search for a new way to deal with the continued influx of heat.

Fig. 9: As The Little Heat Engine continues to heat the lattice, the
melting point is eventually reached. The solid, S1, begins to melt as
the translational and rotational degrees of freedom start to be filled.

has access to thermal radiation as a means of dissipating heat
to the outside world.

However, within L1, a new reality has taken hold. The re-
quirements placed on conduction and radiative emission for
heat dissipation have now been relaxed for the liquid and,
mass transfer becomes a key means of dissipating heat within
such an object. Indeed, internal convection, the physical dis-
placement (or flow) of atoms or molecules, can now assist
thermal conduction in the process of trying to reach inter-
nal thermal equilibrium. Convection is a direct result of the
arrival of the translational degrees of freedom. The driving
force for this process once again is the 2nd law of thermody-
namics and the physical phenomenon involved is expressed
in kinetic energy of motion. Thus, through internal convec-
tion, currents are set up within the liquid, whose sole purpose
is an attempt at thermal equilibrium. As convection currents
form, the bonds that make up the liquid are constantly in the
process of breaking and reforming. Like thermal conduction,
the process of internal convection changes approximately lin-
early with temperature. For its part, L1 now has three means

Fig. 10: As The Little Heat Engine continues to heat the lattice,
melting continues. The regular array of the solid lattice is being
replaced by the fleeting lattice of the liquid.

Fig. 11: The Little Heat Engine is turned off and melting of S1 into
L1 is completed. The regular solid lattice is now completely re-
placed with the fleeting lattice of the liquid. The individual atoms
now experience absolute displacement in position over time.

of dealing with heat transfer: conduction, convection (inter-
nal), and thermal radiation (external). The total energy of the
universe is now expressed asE total =Eliquid +Eemission. The
energy within the liquid is divided between the rest energy
and the energy flowing through the vibrational, translational,
and rotational degrees of freedom, Eliquid =Erest +Evib +
+Etrans +Erot. Thermal conduction and radiative emission
remain tied to the energy associated with the vibrational de-
grees of freedom, while convection becomes associated with
the energy within the translational and rotational degrees of
freedom. The added heat energy contained within the liquid
is now partitioned amongst three separate degrees of freedom:
Evib +E trans +Erot.

At this stage, the little heat engine can be turned on again.
Very little is known regarding thermal emission from liquids.
However, it appears that when confronted with increased in-
flow of heat, the liquid responds in a very different way. In-
deed, this is seen in its thermal emission. Thus, while thermal
emission in the solid increased with the fourth power of the
temperature, thermal emissivity in a liquid increases little, if
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Fig. 12: The total emissivity for CO2 at 1 atmosphere for various
pressure path lengths. Note that emissivity can actually drop sig-
nificantly with increasing temperature. Gases are unable to follow
Stefan’s Law. Adapted from reference 17.

at all, with temperature [8, 15]. Indeed, total thermal emis-
sion may actually decrease. Stefan’s law does not hold in a
liquid. That is because new degrees of freedom, namely the
translational and rotational degrees of freedom (and its asso-
ciated convection), have now been introduced into the prob-
lem. Since the vibrational degrees of freedom are no longer
exclusively in control of the situation, Stefan’s law fails.

It has already been noted that thermal conduction is even-
tually unable to deal with increased heat in the solid. In liq-
uids, it is often observed that thermal conductivity changes
only slightly with temperature and often decreases [8, 14, 15].
At the same time, it is clear that thermal radiation does not in-
crease with temperature in the liquid. One can only surmise
that convection rapidly becomes a dominant means of deal-
ing with heat transfer in the liquid phase. This can be seen by
examining the viscosity of the liquid. Thus, the viscosity of
liquids decreases with temperature and the liquid flows bet-
ter at higher temperature [14]. This is a direct reflection that
an increasing percentage of bonds within the liquid are being
broken in order to accommodate the increased flow of heat,
or energy, into the translational degrees of freedom.

Let us now return to our little heat engine. Since the lit-
tle heat engine has been left on, as it continues to heat L1, a
point will be reached where internal conduction and convec-
tion along with thermal radiation can no longer accommodate
the increase in heat. At that point, a new process must arise
to carry heat away. Thus, with an internal structure weakened
by broken bonds, individual atoms or molecules are now free
to carry mass and heat directly away from the liquid in the
form of kinetic energy of motion. The liquid L1 enters the
gas phase becoming G1. This is exactly analogous to what
occurred previously for the solid with sublimation. The liq-

Fig. 13: The total emissivity of water vapor for various pressure path
lengths. Note that the total emissivity can actually drop significantly
with increasing temperature. Gases are unable to follow Stefan’s
Law. Adapted from reference 17.

uid L1 has now reached the boiling point. While it boils,
its temperature will no longer increase. Rather, it is simply
being slowly converted from the liquid L1 to the gas G1. Ac-
cording to the kinetic theory of gases, the molecules of the
gas are traveling at a particular average velocity related to the
temperature of the gas at a given pressure. It is our adiabatic
partitions that have ensured that we can speak of pressure.
The fact that the gas molecules are moving is a reflection of
the convection within the gas which, in turn, is an expression
of the translational degrees of freedom. Let us turn off our
little heat engine for a moment in order to analyze what has
just transpired.

In the gas G1, individual molecules are not attached to
each other but are free to move about. This is once again
a reflection of the translational degrees of freedom. G1 can
have either a molecular nature (it is made up of individual
molecules) or an atomic nature (it is made up of individ-
ual atoms). For now, let us make the assumption that S1
was selected such that a diatomic molecular gas, G1, is pro-
duced. Let us also assume that our diatomic molecular gas
will be made up of two different types of atoms. Note that
we are deviating slightly from the requirements of an ideal
solid in order to deal with molecular gases. Once in the
gas phase, the molecular gas can also invoke rotational de-
grees of freedom. Therefore, the molecular gas G1 has en-
ergy partitioned amongst its available degrees of freedom,
Egas =Erest +Evib +Etrans +Erot. Note that in the molec-
ular gas the Erest term decreases, reflecting the breakdown
of S1 and L1 into the gas G1 (less energy is now contained
in Ebond). From above, we now see that the total energy in
the universe is Etotal =Egas +Eem =Erest +Evib +Etrans +
+Erot +Eem. The molecular gas will still be able to emit ra-
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Fig. 14: Schematic representation of the absorptance for CO2 at 830
K and 10 atmospheres for a path length of 0.388 meters. The gas ab-
sorbs in discrete bands and not in a continuous fashion as previously
observed for a solid. Adapted from reference 8.

diation, typically in the microwave or infrared region of the
electromagnetic spectrum.

It is now time to turn our little heat engine on again. As
more heat is generated, the gas will increase the average ki-
netic energy of motion of its constituent molecules. Nonethe-
less, thermal conduction within G1 is now at least 10 times
lower than was the case for the liquid [15]. Most importantly
the total radiative emissivity for the molecular gas at constant
pressure actually begins to drop dramatically with increased
temperature [7, 16]. We can speak of constant pressure when
we do not permit the adiabatic walls of our imaginary box to
move. If we now move in our adiabatic walls we increase the
pressure on the gas and the emissivity will increase, corre-
sponding to a higher apparent temperature.

Nonetheless, it should be noted that the total emissivity
for a gas at constant pressure can actually drop significantly
with increasing temperature (see Figure 12 and Figure 13).
Consequently, we can see that Stefan’s law does not hold for
gases [7]. In fact, thermal emission for the diatomic gas (like
CO and NO) occurs in discrete bands of the electromagnetic
spectrum and in a manner not simply related to temperature
(see Figure 14, Figure 15 and Figure 16) [8, 16]. The situ-
ation becomes even more interesting if the gas is not molec-
ular, but rather monatomic in nature (like Ar or He for in-
stance). In that case, when moving from the liquid to the gas
phase, G1 looses both its rotational, and more importantly,
its vibrational, degrees of freedom, Ebond =Evib =Erot = 0.
Neglecting electronic emission, which typically occurs in the
ultra violet or visible range, a monatomic gas cannot emit
significant radiation in the microwave and infrared regions.
Indeed, for such a gas, Stefan’s law no longer has any real
meaning.

It is now clear that relative to S1 (and evenL1), the molec-
ular gas G1 is unable to dissipate its heat effectively to the
outside world in response to increased temperature. Indeed,
since thermal emission can drop dramatically with tempera-
ture for molecular gases, as temperature is increased, a greater
fraction of the heat energy must be dealt with by the transla-

Fig. 15: Schematic representation of the absorptance for carbon
dioxide (A: CO2 partial pressure path product = 3.9 atm m, tem-
perature = 1389 K, total pressure = 10 atm, partial pressure = 10
atm), water (B: H2O partial pressure path product = 3.9 atm m, tem-
perature = 1389 K, total pressure = 10 atm, partial pressure = 10
atm), and methane (C: CH4 partial pressure path product = 3.9 atm
m, temperature = 1389 K, total pressure = 10 atm, partial pressure
= 10 atm). Note that for gases absorbance is not continuous and
occurs in discrete bands. Adapted from reference 8.

tional and rotational degrees of freedom. If the gas is made
up of molecules as is the case for G1, then as more heat is
pumped into the gas by our little engine, the gas molecules
will eventually break apart into their constituent atoms. The
gas then adopts the nature of monatomic gases as mentioned
above withEbond =Evib =Erot = 0. As more heat is pumped
into the system, electronic transitions within each atom be-
comes more and more important. If the little heat engine is
not stopped, much like what happened in the case of the solid
and the liquid, the atomic gas will no longer be able to deal
with the increased heat. Eventually, the electrons gain enough
energy to start emitting radiation in the visible or ultra-violet
range. As the little heat engine continues to generate heat,
the electrons will gain enough energy to become free of the
nucleus and a final new state is born — the plasma. The dis-
cussion of heat flow in plasmas is beyond our scope at this
stage. Suffice it to say that if the little heat engine continues
to operate, still another process would occur, namely nuclear
reactions.

It is now time to finally turn off our little heat engine. We
have learned a lot with this little device and so it is somewhat
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Fig. 16: Vibrational-rotational spectrum of hydrochloric acid at
room temperature. The spectrum reveals the presence of the two
isotropic form, H35Cl and H37Cl. Adapted from reference 18.

sad to state that it can live only in our imagination. This is
because our little heat engine violates the 1st law of thermo-
dynamics. That law states that there must be conservation of
energy. Namely, energy cannot be created or destroyed. How-
ever, when Einstein introduced relativity he demonstrated that
E=mc2. Thus, it is actually possible to convert mass into
energy and vise versa. As a result, after Einstein, the 1st law
of thermodynamics had to be modified. Consequently, the 1st
law of thermodynamics now states that there must be conser-
vation of mass and energy. Theoretically, these two entities
could be freely interchanged with one another.

For a moment in closing however, let us return to our ini-
tial solid S1. Of course, in the real world our solid is not in an
isolated universe. Other solids, liquids (like our oceans) and
gases (like our atmosphere) also exist. How do these affect
our solid? In order to understand this, let us now bring two
other solids into our adiabatic box. We will assume that these
two solids, denoted “S2” and “S3”, are in thermal equilibrium
with each other. That is to say that, if “S2” is placed in direct
contact with “S3” no net heat will flow between these objects.
Now, if we now place solid “S1” in contact with solid “S2”,
we will discover one of two things. Either solid “S1” is in
thermal equilibrium with solid “S2”, or it is not in equilib-
rium. If it is in equilibrium with S2, then by the 0th law of
thermodynamics, it must also be in equilibrium with S3. If
on the other hand the solid S1 it is not in equilibrium with S2,
then S1, S2 and S3 will all move to a new thermal equilibrium
with each other. If they are not in direct physical contact, this
can only occur through thermal emission. However, if they
are in direct contact, then they can use the much more effi-
cient means of conduction to reach thermal equilibrium. If
in turn we substitute a liquid or a gas for one of the solids,
then convection can also be used to reach thermal equilib-
rium amongst all the objects. This is provided of course that
the solids remain in physical contact with the gas or liquid. In
the real universe therefore, all of the matter is simultaneously
trying to reach thermal equilibrium with all other matter. The
2nd law of thermodynamics is governing this flow of heat.
Most importantly, this process on a macroscopic scale is irre-
versible.

But now what of our little heat engine? Would it not be
nice to bring it back? Perhaps we can! That is because, for
our solar system, it is our Sun, and its internal energy, which

is the ultimate source of energy. Therefore our Sun becomes
for us a local little heat engine. As for the stars, they become
other local heat engines, in a universe constantly striving for
thermal equilibrium.

Author’s comment on The Little Heat Engine:

The Little Heat Engine is telling us that the internal processes
involved in heat transfer cannot be ignored. However, modern
courses in classical thermodynamics often neglect the inter-
nal workings of the system. In large part, this is because the
fathers of thermodynamics (men like Kirchhoff, Gibbbs and
Claussius) did not yet have knowledge of the internal work-
ings of the system. As such, they had no choice but to treat
the entire system.

In this essay, it becomes apparent that Stefan’s Law of
thermal emission does not hold for liquids and gases. This is
a reflection that these two states of matter have other available
degrees of freedom. For instance, if Stefan’s Law had held,
solids would have no need to melt. They could keep dealing
with heat easily, simply by emitting photons in a manner pro-
portional with the fourth power of the temperature. However,
the drop in thermal conductivity observed in the solid her-
alds the breakdown of Stefan’s law and the ensuing change
in phase. The Little Heat Engine is telling us that statistical
thermodynamics must be applied when dealing with thermal
emission. The Little Heat Engine is a constant reminder that
universality does not exist in thermal radiation. The only ma-
terials which approach the blackbody on the Earth are gen-
erally made of either graphite or soot. The application, by
astrophysics, of the laws of blackbody radiation [9–13] to the
Sun [19, 20] and to unknown signals [21] irrespective of the
phase of origin constitutes a serious overextension of these
laws. Experimental physics has well established that there
is no universality and that the laws of thermal radiation are
properly restricted to the solid [22, 23].
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In this work, we attempt to describe the classical physical fields of gravity, electromag-
netism, and the so-called intrinsic spin (chirality) in terms of a set of fully geometrized
constitutive equations. In our formalism, we treat the four-dimensional space-time con-
tinuum as a deformable medium and the classical fields as intrinsic stress and spin fields
generated by infinitesimal displacements and rotations in the space-time continuum it-
self. In itself, the unifying continuum approach employed herein may suggest a possible
unified field theory of the known classical physical fields.

1 Introduction

Many attempts have been made to incorporate the so-called
standard (Hookean) linear elasticity theory into general rela-
tivity in the hope to describe the dynamics of material bodies
in a fully covariant four-dimensional manner. As we know,
many of these attempts have concentrated solely on the treat-
ment of material bodies as linearly elastic continua and not
quite generally on the treatment of space-time itself as a lin-
early elastic, deformable continuum. In the former case, tak-
ing into account the gravitational field as the only intrinsic
field in the space-time continuum, it is therefore true that
the linearity attributed to the material bodies means that the
general consideration is limited to weakly gravitating objects
only. This is because the curvature tensor is in general quad-
ratic in the the so-called connection which can be said to
represent the displacement field in the space-time manifold.
However, in most cases, it is enough to consider an infinitesi-
mal displacement field only such that the linear theory works
perfectly well. However, for the sake of generality, we need
not assume only the linear behavior of the properly-stressed
space-time continuum (and material bodies) such that the pos-
sible limiting consequences of the linear theory can be readily
overcome whenever it becomes necessary. Therefore, in the
present work, we shall both consider both the linear and non-
linear formulations in terms of the response of the space-time
geometry to infinitesimal deformations and rotations with in-
trinsic generators.

A few past attempts at the full description of the elas-
tic behavior of the space-time geometry in the presence of
physical fields in the language of general relativity have been
quite significant. However, as standard general relativity de-
scribes only the field of gravity in a purely geometric fash-
ion, these past attempts have generally never gone beyond
the simple reformulation of the classical laws of elasticity in
the presence of gravity which means that these classical laws
of elasticity have merely been referred to the general four-

dimensional curvilinear coordinates of Riemannian geome-
try, nothing more. As such, any possible interaction between
the physical fields (e.g., the interaction between gravity and
electromagnetism) has not been investigated in detail.

In the present work, we develop a fully geometrized con-
tinuum theory of space-time and the classical physical fields
in which the actions of these physical fields contribute di-
rectly to the dynamics of the space-time geometry itself. In
this model, we therefore assume that a physical field is di-
rectly associated with each and every point in the region of
space-time occupied by the field (or, a material body in the
case of gravity). This allows us to describe the dynamics of
the space-time geometry solely in terms of the translational
and rotational behavior of points within the occupied region.
Consequently, the geometric quantities (objects) of the space-
time continuum (e.g., curvature) are directly describable in
terms of purely kinematic variables such as displacement,
spin, velocity, acceleration, and the particle symmetries them-
selves.

As we have said above, at present, for the sake of sim-
plicity, we shall assume the inherently elastic behavior of the
space-time continuum. This, I believe, is adequate especially
in most cosmological cases. Such an assumption is nothing
but intuitive, especially when considering the fact that we
do not fully know the reality of the constituents of the fab-
ric of the Universe yet. As such, the possible limitations of
the present theory, if any, can be neglected considerably until
we fully understand how the fabric of the space-time contin-
uum is actually formed and how the properties of individual
elementary particles might contribute to this formation.

2 The fundamental geometric properties of a curved
manifold

Let us present the fundamental geometric objects of an n-
dimensional curved manifold. Let !a = @Xi

@xa Ei = @aXiEi
(the Einstein summation convention is assumed throughout
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this work) be the covariant (frame) basis spanning the n-
dimensional base manifold C1 with local coordinates xa =
=xa

�
Xk�. The contravariant (coframe) basis �b is then given

via the orthogonal projection


�b; !a

�
= �ba, where �ba are the

components of the Kronecker delta (whose value is unity if
the indices coincide or null otherwise). The set of linearly in-
dependent local directional derivatives Ei = @

@Xi = @i gives
the coordinate basis of the locally flat tangent space Tx(M)
at a point x 2 C1. Here M denotes the topological space of
the so-called n-tuples h (x) =h

�
x1; : : : ; xn

�
such that rel-

ative to a given chart (U; h (x)) on a neighborhood U of a
local coordinate point, our C1-differentiable manifold itself
is a topological space. The dual basis to Ei spanning the lo-
cally flat cotangent space T�x(M) will then be given by the
differential elements dXk via the relation



dXk; @i

�
= �ki .

In fact and in general, the one-forms dXk indeed act as a
linear map Tx(M)! IR when applied to an arbitrary vector
field F 2 Tx(M) of the explicit form F =F i @

@Xi = fa @
@xa .

Then it is easy to see that F i =F Xi and fa =F xa, from
which we obtain the usual transformation laws for the con-
travariant components of a vector field, i.e., F i = @aXifa
and f i = @ixaF i, relating the localized components of F to
the general ones and vice versa. In addition, we also see that

dXk; F

�
=FXk =F k.

The components of the symmetric metric tensor g=
= gab �a
 �b of the base manifold C1 are readily given by

gab = h!a; !bi
satisfying

gac gbc = �ba

where gab =


�a; �b

�
. It is to be understood that the covari-

ant and contravariant components of the metric tensor will
be used to raise and the (component) indices of vectors and
tensors.

The components of the metric tensor

g (xN ) = �ik dXi 
 dXk

describing the locally flat tangent space Tx(M) of rigid
frames at a point xN =xN (xa) are given by

�ik = hEi; Eki = diag (�1;�1; : : : ;�1) :

In four dimensions, the above may be taken to be the com-
ponents of the Minkowski metric tensor, i.e., �ik=hEi; Eki=
= diag (1;�1;�1;�1).

Then we have the expression

gab = �ik @aXi@bXk:

The line-element of C1 is then given by

ds2 = g = gab
�
@ixa@kxb

�
dXi 
 dXk

where �a = @ixadXi.

Given the existence of a local coordinate transformation
via xi = xi (x�) in C1, the components of an arbitrary ten-
sor field T 2 C1 of rank (p; q) transform according to

T ab:::gcd:::h = T��:::���:::� @�x
a @� xb : : : @�xg @c �x� @d �x� : : : @h �x�:

Let �i1i2:::ipj1j2:::jp be the components of the generalized Kro-
necker delta. They are given by

�i1i2:::ipj1j2:::jp =2j1j2:::jp2i1:::ip= det

0BBB@
�i1j1 �i2j1 : : : �ipj1
�i1j2 �i2j2 : : : �ipj2
: : : : : : : : : : : :
�i1jp �i2jp : : : �ipjp

1CCCA
where 2j1j2:::jp =

p
det (g) �j1j2:::jp and 2i1i2:::ip = �i1i2:::ipp

det(g)
are the covariant and contravariant components of the com-
pletely anti-symmetric Levi-Civita permutation tensor, re-
spectively, with the ordinary permutation symbols being
given as usual by �j1j2:::jq and �i1i2:::ip . Again, if ! is an
arbitrary tensor, then the object represented by

�!j1j2:::jp =
1
p!
�i1i2:::ipj1j2:::jp !i1i2:::ip

is completely anti-symmetric.
Introducing a generally asymmetric connection � via the

covariant derivative

@b!a = �cab!c
i.e.,

�cab = h�c; @b!ai = �c(ab) + �c[ab]

where the round index brackets indicate symmetrization and
the square ones indicate anti-symmetrization, we have, by
means of the local coordinate transformation given by xa =
=xa (�x�) in C1

@b e�a = �cab e
�
c � ����� e

�
a e

�
b

where the tetrads of the moving frames are given by e�a =
= @a�x� and ea� = @�xa. They satisfy ea�e�b = �ab and e�aea� =
= ��� . In addition, it can also be verified that

@� ea� = ����� ea� � �abc eb� ec� ;

@b ea� = ea� ����� e
�
b � �acb ec� :

We know that � is a non-tensorial object, since its com-
ponents transform as

�cab = ec�@be
�
a + ec� ����� e

�
a e

�
b :

However, it can be described as a kind of displacement
field since it is what makes possible a comparison of vectors
from point to point in C1. In fact the relation @b!a = �cab!c
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defines the so-called metricity condition, i.e., the change (dur-
ing a displacement) in the basis can be measured by the basis
itself. This immediately translates into

rc gab = 0

where we have just applied the notion of a covariant derivative
to an arbitrary tensor field T :

rmT ab:::gcd:::h = @mT
ab:::g
cd:::h + �apmT

pb:::g
cd:::h + �bpmT

ap:::g
cd:::h + : : :

: : :+ �gpmT ab:::pcd:::h � �pcmT ab:::gpd:::h � �pdmT
ab:::g
cp:::h � : : :

: : :� �phmT
ab:::g
cd:::p

such that (@mT )ab:::gcd:::h = rm T ab:::gcd:::h .
The condition rcgab = 0 can be solved to give

�cab =
1
2
gcd (@b gda � @d gab + @a gbd) +

+ �c[ab] � gcd
�
gae�e[db] + gbe�e[da]

�
from which it is customary to define

�c
ab =

1
2
gcd (@b gda � @d gab + @a gbd)

as the Christoffel symbols (symmetric in their two lower in-
dices) and

Kc
ab = �c[ab] � gcd

�
gae�e[db] + gbe�e[da]

�
as the components of the so-called cotwist tensor (anti-
symmetric in the first two mixed indices).

Note that the components of the twist tensor are given by

�a[bc] =
1
2
ea�
�
@c e�b � @b e�c + e�b ����c � e�c ����b

�
where we have set ����c = �����e�c , such that for an arbitrary
scalar field � we have

(rarb �rbra) � = 2�c[ab]rc� :

The components of the curvature tensorR of C1 are then
given via the relation

(rqrp �rprq)T ab:::scd:::r = T ab:::swd:::rR
w
cpq + T ab:::scw:::rR

w
dpq +

+ : : :+ T ab:::scd:::wR
w
rpq � Twb:::scd:::r R

a
wpq � T aw:::scd:::r R

b
wpq �

� : : :� T ab:::wcd:::r R
s
wpq � 2�w[pq]rw T ab:::scd:::r

where

Rdabc = @b�dac � @c�dab + �eac�
d
eb � �eab�

d
ec

= Bdabc (�) + r̂bKd
ac � r̂cKd

ab +Ke
acK

d
eb �Ke

abK
d
ec ;

where r̂ denotes covariant differentiation with respect to the
Christoffel symbols alone, and where

Bdabc (�) = @b�d
ac � @c�d

ab + �e
ac�

d
eb ��e

ab�
d
ec

are the components of the Riemann-Christoffel curvature ten-
sor of C1.

From the components of the curvature tensor, namely,
Rdabc, we have (using the metric tensor to raise and lower
indices)

Rab � Rcacb = Bab (�) + r̂cKc
ab �Kc

adK
d
cb�

� 2r̂b�c[ac] + 2Kc
ab�

d
[cd]

R � Raa = B (�)� 4gab r̂a�c[bc]�
� 2gac�b[ab]�

d
[cd] �KabcKacb

where Bab (�) � Bcacb (�) are the components of the sym-
metric Ricci tensor and B (�) � Baa (�) is the Ricci scalar.
Note that Kabc � gadKd

bc and Kacb � gcdgbeKa
de.

Now since

�bba = �b
ba = �b

ab = @a
�

ln
p

det (g)
�

�bab = @a
�

ln
p

det (g)
�

+ 2�b[ab]

we see that for a continuous metric determinant, the so-called
homothetic curvature vanishes:

Hab � Rccab = @a�ccb � @b�cca = 0 :

Introducing the traceless Weyl tensorW , we have the fol-
lowing decomposition theorem:

Rdabc =W d
abc+

1
n�2

�
�dbRac+gacR

d
b��dcRab�gabRdc�+

+
1

(n� 1) (n� 2)
�
�dc gab � �db gac�R

which is valid for n > 2. For n = 2, we have

Rdabc = KG
�
�db gac � �dc gab�

where
KG =

1
2
R

is the Gaussian curvature of the surface. Note that (in this
case) the Weyl tensor vanishes.

Any n-dimensional manifold (for which n > 1) with con-
stant sectional curvature R and vanishing twist is called an
Einstein space. It is described by the following simple rela-
tions:

Rdabc =
1

n(n� 1)
�
�db gac � �dc gab�R ;

Rab =
1
n
gabR :
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In the above, we note especially that

Rdabc = Bdabc (�) ;

Rab = Bab (�) ;

R = B (�) :

Furthermore, after some lengthy algebra, we obtain, in
general, the following generalized Bianchi identities:

Rabcd +Racdb +Radbc = �2
�
@d�a[bc] + @b�a[cd] +

+ @c�a[db] + �aeb�
e
[cd] + �aec�

e
[db] + �aed�

e
[bc]
�
;

reRabcd +rcRabde +rdRabec =

= 2
�
�f[cd]R

a
bfe + �f[de]R

a
bfc + �f[ec]R

a
bfd
�
;

ra
�
Rab � 1

2
gabR

�
= 2gab�c[da]R

d
c + �a[cd]R

cdb
a

for any metric-compatible manifold endowed with both cur-
vature and twist.

In the last of the above set of equations, we have intro-
duced the generalized Einstein tensor, i.e.,

Gab � Rab � 1
2
gabR

In particular, we also have the following specialized iden-
tities, i.e., the regular Bianchi identities:

Babcd +Bacdb +Badbc = 0 ;

r̂eBabcd + r̂cBabde + r̂dBabec = 0 ;

r̂a
�
Bab � 1

2
gabB

�
= 0 :

In general, these hold in the case of a symmetric, metric-
compatible connection. Non-metric differential geometry is
beyond the scope of our present consideration.

We now define the so-called Lie derivative which can be
used to define a diffeomorphism invariant in C1. for a vec-
tor field U and a tensor field T , both arbitrary, the invariant
derivative represented (in component notation) by

LUT
ab:::g
cd:::h = @mT

ab:::g
cd:::h U

m + T ab:::gmd:::h @cU
m +

+ T ab:::gcm:::h @dU
m + : : :+ T ab:::gcd:::m @hU

m�
� Tmb:::gcd:::h @mUa � T am:::gcd::::h @mU

b � : : :� T ab:::mcd:::h @mUg

defines the Lie derivative of T with respect to U . With the
help of the twist tensor and the relation

@bUa = rbUa � �acbU
c = rbUa � ��abc � 2�a[bc]

�
Uc

we can write

LUT
ab:::g
cd:::h = rmT ab:::gcd:::h U

m + T ab:::gmd:::hrcUm +

+ T ab:::gcm:::hrdUm + : : :+ T ab:::gcd:::mrhUm � Tmb:::gcd:::h rmUa�
� T am:::gcd::::h rmU b � : : :� T ab:::mcd:::h rmUg +

+ 2�a[mp]T
mb:::g
cd:::h Up + 2�b[mp]T

am:::g
cd:::h Up +

: : : + 2�g[mp]T
ab:::m
cd:::h Up � 2�m[cp]T

ab:::g
md:::hU

p +

+ 2�m[dp]T
ab:::g
cm:::hU

p � : : :� 2�m[hp]T
ab:::g
cd:::mU

p:

Hence, noting that the components of the twist tensor,
namely, �i[kl], indeed transform as components of a tensor

field, it is seen that the LUT
ij:::s
kl:::r do transform as components

of a tensor field. Apparently, the beautiful property of the
Lie derivative (applied to an arbitrary tensor field) is that it is
connection-independent even in a curved manifold.

We will need the identities derived in this Section later on.

3 The generalized four-dimensional linear constitutive
field equations

We shall now present a four-dimensional linear continuum
theory of the classical physical fields capable of describing
microspin phenomena in addition to the gravitational and
electromagnetic fields. By microspin phenomena, we mean
those phenomena generated by rotation of points in the four-
dimensional space-time manifold (continuum) S4 with local
coordinates x� in the manner described by the so-called
Cosserat continuum theory.

We start with the following constitutive equation in four
dimensions:

T�� = C����D
�� =

1
�

�
R�� � 1

2
g��R

�
where now the Greek indices run from 0 to 3. In the above
equation, T�� are the contravariant components of the gener-
ally asymmetric energy-momentum tensor, C���� are the
mixed components of the generalized four-dimensional elas-
ticity tensor, D�� are the contravariant components of the
four-dimensional displacement gradient tensor, R�� are the
contravariant components of the generalized (asymmetric)
four-dimensional Ricci curvature tensor, �=�8� is the Ein-
stein coupling constant (in geometrized units), and R=R�� is
the generalized Ricci four-dimensional curvature scalar.

Furthermore, we can decompose our four-dimensional
elasticity tensor into its holonomic and anholonomic parts as
follows:

C���� = A���� +B����
where

A���� = A(��)
(��) = A����

B���� = B[��]
[��] = B����
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such that
C���� = C ��

�� :

Therefore, we can express the fully covariant components
of the generalized four-dimensional elasticity tensor in terms
of the covariant components of the symmetric metric tensor
g�� (satisfying, as before, g��g�� = ��� ) as

C���� = �g��g�� + �g��g�� +  g��g�� =

= �g��g��+� (g��g��+g��g��) + ! (g��g���g��g��)
where �, �, , �, and ! are constitutive invariants that are not
necessarily constant. It is therefore seen that

A���� = �g��g�� + � (g��g�� + g��g��)

B���� = ! (g��g�� � g��g��)
An infinitesimal displacement (diffeomorphism) in the

space-time manifold S4 from an initial point P to a neigh-
boring point Q is given as usual by

x� (Q) = x�(P ) + ��

where �� are the components of the four-dimensional infinite-
simal displacement field vector. The generally asymmetric
four-dimensional displacement gradient tensor is then given
by

D�� = r� �� :
The decomposition D�� = D(��) + D[��] and the sup-

plementary infinitesimal point-rotation condition ��[��]�
� = 0

allow us to define the symmetric four-dimensional displace-
ment (“dilation”) tensor by

��� = D(��) =
1
2

(r��� +r���) =
1
2
L� g��

from which the “dilation” scalar is given by

� = ��� = D�
� =

1
2
g�� L� g�� = r� ��

as well as the anti-symmetric four-dimensional intrinsic spin
(vorticity) tensor by

!�� = D[��] =
1
2

(r� �� �r� ��) :

Let us now decompose the four-dimensional infinitesimal
displacement field vector as follows:

�� = @�F +  �:

Here the continuous scalar function F represents the in-
tegrable part of the four-dimensional macroscopic displace-
ment field vector while the remaining parts are given by
 � via

 � = �� + �� + 2 �e'�

where �� are the components of the non-integrable four-

dimensional macroscopic displacement field vector, �� are
the components of the four-dimensional microscopic (micro-
polar) intrinsic spin vector, e is a constant proportional to the
electric charge, and '� are the components of the electromag-
netic four-potential vector. We assume that in general ��, ��,
and '� are linearly independent of each other.

The intrinsic four-dimensional macroscopic spin (“angu-
lar momentum”) tensor is then given by


�� =
1
2

(r� �� �r� ��) :

Likewise, the intrinsic four-dimensional microscopic (mi-
cropolar) spin tensor is given by

S�� =
1
2

(r� �� �r� ��) :

Note that this tensor vanishes when the points are not al-
lowed to rotate such as in conventional (standard) cases.

Meanwhile, the electromagnetic field tensor is given by

F�� = r� '� �r� '� :
In this case, we especially note that, by means of the con-

dition ��[��]�
� = 0, the above expression reduces to the usual

Maxwellian relation

F�� = @�'� � @�'� :
We can now write the intrinsic spin tensor as

!�� = 
�� + S�� + �eF�� :

Hence the full electromagnetic content of the theory be-
comes visible. We also see that our space-time continuum can
be considered as a dynamically polarizable medium possess-
ing chirality. As such, the gravitational and electromagnetic
fields, i.e., the familiar classical fields, are intrinsic geometric
objects in the theory.

Furthermore, from the cotwist tensor, let us define a geo-
metric spin vector via

A� � K�
�� = 2��[��]:

Now, in a somewhat restrictive case, in connection with
the spin fields represented by ��; ��; and '�, the selection

A� = c1�� + c2�� + 2 �ec3'� = 2  �
i.e.,

2 =
c1�� + c2�� + 2 �ec3'�
�� + �� + 2 �e'�

will directly attribute the cotwist tensor to the intrinsic spin
fields of the theory. However, we would in general expect the
intrinsic spin fields to remain in the case of a semi-symmetric
connection, for which A� = 0 and so we cannot carry this
proposition any further.
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At this point, we see that the holonomic part of the gen-
eralized four-dimensional elasticity tensor given by A���� is
responsible for (centrally symmetric) gravitational phenom-
ena while the anholonomic part given by B���� owes its ex-
istence to the (con)twist tensor which is responsible for the
existence of the intrinsic spin fields in our consideration.

Furthermore, we see that the components of the energy-
momentum tensor can now be expressed as

T�� = �g��� + �D�� + D�� :

In other words,

T(��) = �g��� + (� + ) ��� ;

T[��] = (� � )!�� :

Alternatively,

T(��) =
1
2
�g��g��L� g�� +

1
2

(� + )L� g�� ;

T[��] = (� � ) (
�� + S�� + �eF��) :

We may note that, in a sense analogous to that of the or-
dinary mechanics of continuous media, the generally asym-
metric character of the energy-momentum tensor means that
a material object in motion is generally subject to distributed
body couples.

We also have

T = T�� = (4�+ � + ) � = � 1
�
R :

Let us briefly relate our description to the standard mate-
rial description given by general relativity. For this purpose,
let us assume that the intrinsic spin fields other than the elec-
tromagnetic field are negligible. If we denote the material
density and the pressure by � and p, respectively, then it can
be directly verified that

� =
�� 4p

4�+ � + 
is a solution to the ordinary expression

T(��) = �u�u� � pg�� �
� 1

4�

�
F��F �� � 1

4
g��F��F��

�
where u� are the covariant components of the unit veloc-
ity vector. This is true whether the electromagnetic field is
present or not since the (symmetric) energy-momentum ten-
sor of the electromagnetic field given by

J�� = � 1
4�

�
F��F �� � 1

4
g��F��F��

�
is traceless.

At this point, however, we may note that the covariant

divergence

r� T�� = g��r� (��) + �r�D�� +

+ r�D�� +D��r� � +D��r� 
need not vanish in general since

r� T�� =
1
�
r�
�
R�� � 1

2
g��R

�
=

=
1
�

�
2g�� ��[��]R

�
� + ��[��]R

���
�

�
:

In an isotropic, homogeneous Universe, for which the
constitutive invariants �; �; ; �; and ! are constant, the
above expression reduces to

r� T�� = �g��r� � + �r�D�� + r�D��:

If we require the above divergence to vanish, however, we
see that the motion described by this condition is still more
general than the pure geodesic motion for point-particles.

Still in the case of an isotropic, homogeneous Universe,
possibly on large cosmological scales, then our expression
for the energy-momentum tensor relates the generalized Ricci
curvature scalar directly to the “dilation” scalar. In general,
we have

R = �� (4�+ � + ) � = ���� = �1
2
��g��L� g�� :

Now, for the generalized Ricci curvature tensor, we obtain
the following asymmetric constitutive field equation:

R�� = �
�
T�� � 1

2
g�� T

�
= � (�g�� + �D�� +  )

where
� = �1

2
(2�+ � + ) � :

In other words,

R(��) = �
�
�g�� + (� + ) ���

�
;

R[��] = � (� � )!�� :

Inserting the value of �, we can alternatively write

R(��) = �8�
�
�g�� +

1
2

(� + )L�g��
�

R[��] = �8� (� � ) (
�� + S�� + �eF��) :

Hence, the correspondence between the generalized Ricci
curvature tensor and the physical fields in our theory becomes
complete. The present theory shows that in a curved space-
time with a particular spherical symmetry and in a flat Min-
kowski space-time (both space-times are solutions to the
equation ��� = 0, i.e., L� g�� = 0) it is in general still pos-
sible for the spin fields to exist. One possible geometry that
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complies with such a space-time symmetry is the geome-
try of distant parallelism with vanishing space-time curvature
(but non-vanishing Riemann-Christoffel curvature) and non-
vanishing twist.

Now let us recall that in four dimensions, with the help of
the Weyl tensor W , we have the decomposition

R���� = W���� +

+
1
2

(g��R�� + g��R�� � g��R�� � g��R��) +

+
1
6

(g��g�� � g��g��)R :

We obtain, upon setting ��= 1
2 ��, ��= 1

2 ��, �= 1
2 �,

and ��= 1
6 ��

R���� = W���� + 2�� (g�� g�� � g�� g��) +

+ �� (g��D�� + g��D�� � g��D�� � g��D��) +

+ � (g��D�� + g��D�� � g��D�� � g��D��) +

+ �� (g�� g�� � g�� g��) � :

Therefore, in terms of the anholonomic part of the gener-
alized elasticity tensor, we have

R���� = W���� + 2
��
!
B���� +

+ �� (g��D�� + g��D�� � g��D�� � g��D��) +

+ � (g��D�� + g��D�� � g��D�� � g��D��) +

+ �� (g�� g�� � g�� g��) � :

In the special case of a pure gravitational field, the twist
of the space-time continuum vanishes. In this situation our
intrinsic spin fields vanish and consequently, we are left
simply with

R���� = W���� +

+
1
2
� �� + �

�
(g��D�� + g��D�� � g��D�� � g��D��) +

+ �� (g�� g�� � g�� g��) � :

In standard general relativity, this gives the explicit form
of the Riemann-Christoffel curvature tensor in terms of the
Lie derivative L� g�� = 2��� . For a space-time satisfying the
symmetry L� g�� = 0, we simply have R���� =W���� , i.e.,
the space-time is devoid of material sources or “empty”. This
condition is relatively weaker than the case of a space-time
with constant sectional curvature, R= const. for which the
Weyl tensor vanishes.

4 The generalized four-dimensional non-linear constitu-
tive field equations

In reference to the preceding section, let us now present, in
a somewhat concise manner, a non-linear extension of the

formulation presented in the preceding section. The result-
ing non-linear constitutive field equations will therefore not
be limited to weak fields only. In general, it can be shown
that the full curvature tensor contains terms quadratic in the
displacement gradient tensor and this gives us the reason to
express the energy-momentum tensor which is quadratic in
the displacement gradient tensor.

We start with the non-linear constitutive field equation

T�� = C����D
��+K��

����D
��D��=

1
�

�
R���1

2
g��R

�
where

K������ = a1 g�� g�� g�� + a2 g�� g�� g�� +

+ a3g�� g�� g�� + a4 g�� g�� g�� + a5 g�� g�� g�� +

+ a6 g�� g�� g�� + a7 g�� g�� g�� + a8 g�� g�� g�� +

+ a9 g�� g�� g�� + a10 g�� g�� g�� + a11 g�� g�� g�� +

+ a12 g�� g�� g�� + a13 g�� g�� g�� + a14 g�� g�� g�� +

+ a15 g�� g�� g��

where the fifteen constitutive invariants a1, a2, . . . , a15 are
not necessarily constant.

We shall set

K������ = K������ = K������ = K������ :

Letting
K������ = P������ +Q������ ;

P������ = P(��)(��)(��) ;

Q������ = Q[��][��][��] ;
we have

P������ = P������ = P������ = P������ ;

Q������ = Q������ = Q������ = Q������ :

Introducing the eleven constitutive invariants b1, b2, . . . ,
b11, we can write

K������ = b1g��g��g�� + b2g�� (g��g�� + g�� + g��) +

+ b3g�� (g��g�� � g��g��) + b4g�� (g��g�� + g��g��) +

+ b5g�� (g��g�� � g��g��) + b6g�� (g��g�� + g��g��) +

+ b7g�� (g��g�� � g��g��) + b8g�� (g��g�� + g��g��) +

+ b9g�� (g��g�� � g��g��) + b10g�� (g��g�� + g��g��) +

+ b11g�� (g��g�� � g��g��) :

The energy-momentum tensor is therefore given by

T�� =
�
��+b1 �2 +2b2 ������+2b3!��!��

�
g�� +

+ �D�� + D�� + 2 (b4 + b6) ���� +

+ 2 (b5 + b7) �!�� + 2b8D
�
���� + 2b9D

�
�!�� +

+ 2b10D�
���� + 2b11D�

� !�� :
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In other words,

T(��) =
�
�� + b1�2 + 2b2������ + 2b3!��!��

�
g�� +

+ (� + ) ���2 (b4 + b6) ���� + (b8 + b10)�
� �D�

����+D�
����

�
+ (b9 +b11)

�
D�

�!��+D�
�!��

�
;

T[��] = (� � )!�� + 2 (b4 + b6) �!�� + (b8 + b10)�
� �D�

�����D�
����

�
+ (b9 +b11)

�
D�

�!���D�
�!��

�
:

We also have

T = �1 � + �2 �2 + �3 ������ + �4!�� !��

where we have set

�1 = 4�+ � +  ;

�2 = 4b1 + 2 (b4 + b6) ;

�3 = 8b2 + 2 (b8 + b10) ;

�4 = 8b3 + 2 (b9 � b11) ;

for the sake of simplicity.
For the generalized Ricci curvature tensor, we obtain

R�� = �
n�
c1� + c2�2 + c3������ + c4!��!��

�
g�� +

+ c5D�� + c6D�� + c7���� + c8�!�� + c9D�
���� +

+ c10D�
�!�� + c11D�

���� + c12D�
�!��

o
where

c1 = �1
2

(2�+ � + ) ; c7 = 2 (b4 + b6) ;

c2 = � (b1 + b4 + b6) ; c8 = 2 (b5 + b7) ;

c3 = � (2b2 + b8 + b10) ; c9 = 2b8 ;

c4 = � (2b3 + b9 � b11) ; c10 = 2b9 ;

c5 = � ; c11 = 2b10 ;

c6 =  ; c12 = 2b11 ;
i.e.,

R(��) = �
n�
c1� + c2 �2 + c3 ������ +

+ c4!��!��
�
g�� + (c5 + c6) ��� + c7���� +

+
1
2

(c9 + c11)
�
D�

���� +D�
����

�
+

+
1
2

(c10 + c12)
�
D�

�!�� +D�
� !��

�o
;

R[��] = �
n

(c5 � c6)!�� + c8 �!�� +

+
1
2

(c9 + c11)
�
D�

� ��� �D�
� ���

�
+

+
1
2

(c10+c11)
�
D�

� !�� �D�
� !��

�o
:

The generalized Ricci curvature scalar is then

R = �
�
h1 � + h2 �2 + h3 ������ + h4!�� !��

�
where

h1 = 4c1 + c5 + c6 ;

h2 = 4c2 + c5 ;

h3 = 4c3 + c9 + c11 ;

h4 = 4c4 + c10 + c12 :

Finally, we obtain, for the curvature tensor, the following
expression:

R���� = W���� +

+
�
f1 � + f2 �2 + f3 ������ + f4!��!��

��
� (g��g�� � g��g��) +

� �� + f5�
��
g����� + g������

� g����� � g������+
� �� + f6�

��
g��!�� + g��!���

� g��!�� � g��!���+ �
�
g��D�� + g��D���

� g��D�� � g��D���+ f7
�
D�

���� g�� +

+D�
���� g�� �D�

���� g�� �D�
���� g��

�
+

+ f8
�
D�

� !�� g�� +D�
�!�� g�� �D�

� !�� g�� �
�D�

�!�� g��
�

+ f9
�
D�

���� g�� +D�
���� g�� �

�D�
���� g�� �D�

����g��
�

+ f10
�
D�

�!�� g�� +

+D�
�!�� g�� �D�

�!�� g�� �D�
�!�� g��

�
where

f1 = c1 = ��+ �� ; f6 = c8 ;

f2 =
�

1� 2
3
�
�
c2 +

1
6
� c7 ; f7 = c9 ;

f3 =
�

1� 2
3
�
�
c3 +

1
6
� (c9 + c11) ; f8 = c10 ;

f4 =
�

1� 2
3
�
�
c4 +

1
6
� (c10 � c12) ; f9 = c11 ;

f5 = c7 ; f10 = c12 :

At this point, the apparent main difficulty lies in the fact
that there are too many constitutive invariants that need to be
exactly determined. As such, the linear theory is compara-
tively preferable since it only contains three constitutive in-
variants. However, by presenting the most general structure
of the non-linear continuum theory in this section, we have
acquired a quite general picture of the most general behavior
of the space-time continuum in the presence of the classical
fields.
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5 The equations of motion

Let us now investigate the local translational-rotational mo-
tion of points in the space-time continuum S4. Consider an
infinitesimal displacement in the manner described in the pre-
ceding section. Keeping the initial position fixed, the unit ve-
locity vector is given by

u� =
d��

ds
=
dx�

ds
;

1 = g��u�u� ;

such that, at any proper time given by the world-line s, the
parametric representation

d�� = u� (x�; s) ds

describes space-time curves whose tangents are everywhere
directed along the direction of a particle’s motion. As usual,
the world-line can be parametrized by a scalar & via s =
= a& + b, where a and b are constants of motion.

The local equations of motion along arbitrary curves in
the space-time continuum S4 can be described by the quadru-
plet of unit space-time vectors (u; v; w; z) orthogonal to each
other where the first three unit vectors, or the triplet (u; v; w),
may be defined as (a set of) local tangent vectors in the (three-
dimensional) hypersurface � (t) such that the unit vector z is
normal to it. More explicitly, the hypersurface � (t) is given
as the time section t=x0 = const of S4. This way, the equa-
tions of motion will be derived by generalizing the ordinary
Frenet equations of orientable points along an arbitrary curve
in three-dimensional Euclidean space, i.e., by recasting them
in a four-dimensional manner. Of course, we will also include
effects of microspin generated by the twist of space-time.

With respect to the anholonomic space-time basis !� =
= !�

�
x�(Xk)

�
= ei� @

@Xi , we can write

u = u�!� ;

v = v� !� ;

w = w� !� ;

z = z� !� ;

we obtain, in general, the following set of equations of motion
of points, i.e., point-like particles, along an arbitrary curve `
in the space-time continuum S4:

Du�

Ds
= � v� ;

Dv�

Ds
= � w� � �u� ;

Dw�

Ds
= � v� + 'z� ;

Dz�

Ds
= 'w� ;

where the operator D
Ds =u�r� represents the absolute co-

variant derivative. In the above equations we have introduced
the following invariants:

� =
�
g��

Du�

Ds
Du�

Ds

�1=2
;

� = 2���� u�v�Dv
�

Ds
z�;

' =
�
g��

Dz�

Ds
Dz�

Ds

�1=2
:

In particular, we note that, the twist scalar � measures the
twist of the curve ` in S4 due to microspin.

At this point, we see that our equations of motion describe
a “minimal” geodesic motion (with intrinsic spin) when �=0.
In other words, if

Du�

Ds
= 0 ;

Dv�

Ds
= � w�;

Dw�

Ds
= � v� + 'z�;

Dz�

Ds
= 'w�:

However, in general, any material motion in S4 will not
follow the condition � = 0. This is true especially for the
motion of a physical object with structure. In general, any
physical object can be regarded as a collection of points (with
different orientations) obeying our general equations of mo-
tion. It is therefore clear that � , 0 for a moving finite phys-
ical object (with structure) whose material points cannot be
homogeneously oriented.

Furthermore, it can be shown that the gradient of the unit
velocity vector can be decomposed according to

r� u� = ��� + ��� +
1
6
h�� �� + u�a�

where

h�� = g�� � u�u� ;

��� =
1
4
h��h

�
� (r� u� +r� u�) =

=
1
4
h��h

�
�

�r̂� u� + r̂� u�
�� 1

2
h��h

�
�K

�
(��)u� ;

��� =
1
4
h��h

�
� (r� u� �r� u�) =

=
1
4
h��h

�
�

�r̂� u� � r̂� u��� 1
2
h��h

�
�K

�
[��]u� ;

�� = r� u�;

a� =
Du�
Ds

:
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Note that

h�� u� = ��� u� = ��� u� = 0 ;

K�
(��) = �g�� �g����[��] + g����[��]

�
;

K�
[��] = ��[��] :

Meanwhile, with the help of the identities

u�r�r� u� = r� �u�r� u��� (r� u�)
�r�u�� =

= r� a� � (r� u�)
�r�u�� ;

u� (r� r� �r�r�)u� = R����u�u
� � 2��[��]u

�r�u� ;
we obtain

D��
Ds

= r�a��(r�u�)(r�u�)�R��u�u�+2��[��]u
�r�u�

for the “rate of shear” of a moving material object with re-
spect to the world-line.

6 The variational principle for the theory

Let us now derive the field equations of the present theory
by means of the variational principle. Considering thermody-
namic effects, in general, our theory can best be described by
the following Lagrangian density:

�L = �L1 + �L2 + �L3
where

�L1 =
1
�
p

det (g)�
�
�
R�� (r� �� �D��)� 1

2
�
��D�

�
�
R
�
;

�L2 =
p

det (g)
�

1
2
C����D��D

�� +

+
1
3
K��

����D��D
��D�� ��D�

��T
�
;

�L3 =
p

det (g) u� (r� ��) (f�� � �u�) ;

where � is a thermal coefficient, �T is (the change in) the
temperature, and f is a generally varying scalar entity. Note
that here we have only explicitly assumed that � = r� ��.

Alternatively, we can express �L as follows:

�L1 =
1
�
p

det (g)
�
R�� � 1

2
g��R

�
(r� �� �D��) :

Hence we have

�L =
p

det (g)
�
T�� (r� �� �D��) +

+
1
2
C����D��D

�� +
1
3
K��

����D��D
��D�� �

��D�
��T + u� (r� ��) (f�� � �u�)

�
:

We then arrive at the following invariant integral:

I =
Z
S4

�
T��

�r(� ��) � ���
�

+ T��
�r(� ��) � !���+

+
1
2
A���������� +

1
2
B����!�� !

�� +

+
1
3
P��������������� +

1
3
Q������!�� !

��!�� �
��D�

��T + u� (r� ��) (f �� � �u�)
�
d�

where d� =
p

det (g) dx0dx1dx2dx3 is the proper four-
dimensional differential volume.

Writing �L=
p

det (g)L and employing the variational
principle, we then have

�I =
Z
S4

�
@L
@T��

�T�� +
@L
@���

���� +
@L
@!��

�!�� +

+
@L

@ (r� ��)
� (r� ��)

�
d� = 0 :

NowZ
S4

@L
@ (r� ��)

� (r� ��) d� =
Z
S4

r�
�

@L
@ (r� ��)

���
�
d��

�
Z
S4

r�
�

@L
@ (r� ��)

�
���d� = �

Z
S4

r�
�

@L
@ (r� ��)

�
��� d�

since the first term on the right-hand-side of the first line is
an absolute differential that can be transformed away on the
boundary of integration by means of the divergence theorem.
Hence we have

�I =
Z
S4

�
@L
@T��

�T�� +
@L
@���

���� +
@L
@!��

�!�� �

�r�
�

@L
@ (r� ��)

�
���
�
d� = 0

where each term in the integrand is independent of the others.
We may also note that the variations �T�� , ���� , �!�� , and
��� are arbitrary.

From @L
@T�� = 0, we obtain

��� = r(� ��) ;

!�� = r[� ��] ;

i.e., the covariant components of the “dilation” and intrinsic
spin tensors, respectively.

From @L
@��� = 0, we obtain

T (��) =
1
�

�
R(��) � 1

2
g��R

�
=

= A������� + P������������ ��g���T
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i.e., the symmetric contravariant components of the energy-
momentum tensor.

In other words,

T�� =
1
�

�
R�� � 1

2
g��R

�
=

= C����D
�� +K��

����D
��D�� ��g���T :

Finally, we now show in detail that the fourth variation
yields an important equation of motion. We first see that

@L
@ (r� ��)

= T�� + u�
�
f�

� � �u�� :
Hence

r�
�

@L
@ (r� ��)

�
= r� T�� +r� (f u�) �� +

+ f u�r� �� �r� (�u�)u� � �u�r� u� :
Let us define the “extended” shear scalar and the mass

current density vector, respectively, via

l = r� (fu�) ;

J� = �u�:

We can now readily identify the acceleration vector and
the body force per unit mass, respectively, by

a� = u� r� a� =
Du�

Ds
;

b� =
1
�
�
l �� + f (1�r� J�)u�

�
:

In the conservative case, the condition r� J� = 0 gives

D�
Ds

= ��r� u�:
In the weak-field limit for which u� =

�
1; uA

�
(where

A= 1; 2; 3) we obtain the ordinary continuity equation,

@�
@t

+rA ��uA� = 0 :

Finally, we haveZ
S4

(r� T�� + � b� � � a�) ���d� = 0

i.e., the equation of motion

r� T�� = � (a� � b�)

or

r�
�
R�� � 1

2
g��R

�
= �� (a� � b�) :

If we restrict our attention to point-like particles, the body
force vanishes since it cannot act on a structureless (zero-
dimensional) object. And since the motion is geodesic, i.e.,
a� = 0, we have the conservation law

r� T�� = 0 :

In this case, this conservation law is true regardless of
whether the energy-momentum tensor is symmetric or not.

Let us now discuss the so-called couple stress, i.e., the
couple per unit area which is also known as the distributed
moment. We denote the couple stress tensor by the second-
rank tensor field M . In analogy to the linear constitutive re-
lations relating the energy-momentum tensor to the displace-
ment gradient tensor, we write

M�� = J����L
�� +H��

����L
��L��

where
J���� = E���� + F���� ;

H������ = U������ + V������ :

These are assumed to possess the same symmetry proper-
ties as C���� and K������ , respectively, i.e., E���� have the
same symmetry properties as A���� , F���� have the same
symmetry properties as B���� , U������ have the same sym-
metry properties as P������ , and V������ have the same
symmetry properties as Q������ .

Likewise, the asymmetric tensor given by

L�� = L(��) + L[��]

is comparable to the displacement gradient tensor.
Introducing a new infinitesimal spin potential via ��, let

the covariant dual form of the intrinsic spin tensor be
given by

�!�� =
1
2
2���� !�� =

1
2

(r� �� �r� ��) :

Let us now introduce a completely anti-symmetric third-
rank spin tensor via

S��� = �1
2

(� � ) 2���� �� :
As a direct consequence, we see that

r� S��� = (� � )!��

In other words,

r� S��� = T [��] �N�� =
1
�

�
R[��] � ���

�
where

N�� = 2 (b4 + b6) �!�� + (b8 + b10)�
� �D����� �D�����

�
+ (b9 + b9)

�
D��!�� �D��!��

�
;

��� = c8�!�� +
1
2

(c9 + c11)
�
D����� �D�����

�
+

+
1
2

(c10 + c11)
�
D��!�� �D��!��

�
:
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We can now form the second Lagrangian density of our
theory as

�H =
p

det (g)
�
M�� (r� �� � L��) +

1
2
J����L��L

�� +

+
1
3
H��

����L��L
��L��� 2���� (r� ��)S���u� +

+u� (r� ��) (h�� � I�s�)
�

where h is a scalar function, I is the moment of inertia, and
s� are the components of the angular velocity vector.

Letting L(��) =X�� and L[��] =Z�� , the corresponding
action integral is

J =
Z
S4

�
M�� �r(� ��)�X���+M�� �r[� ��]�Z���+

+
1
2
E����X��X

�� +
1
2
F����Z��Z

�� +

+
1
3
U������X��X

��X�� +
1
3
V ������Z��Z

��Z�� �
� 2���� (r� ��)S���u�+u� (r���) (h���I�s�)

�
d� :

As before, writing �H =
p

det (g)H and performing the
variation �J = 0, we have

�J =
Z
S4

�
@H
@M�� �M

�� +
@H
@X�� �X

�� +

+
@H
@Z��

�Z�� �r�
�

@H
@ (r� ��)

�
���
�
d� = 0

with arbitrary variations �M��, �X��, �Z��, and ��� .
From @H

@M�� = 0, we obtain

X�� = r(� ��) ;

Z�� = r[� ��] :

From @H
@X�� = 0, we obtain

M (��) = E����X
�� + U������X

��X�� :

From @H
@Z��

= 0, we obtain

M [��] = F����Z
�� + V ������Z

��Z�� :

We therefore have the constitutive relation

M�� = J����L
�� +H��

����L
��L�� :

Let us investigate the last variation

�
Z
S4

r�
�

@H
@ (r���)

�
��� d� = 0

in necessary detail.
Firstly,

@H
@ (r� ��)

= M��� 2���� S���u� + u� (h�� � I�s�) :

Then we see that

r�
�

@H
@ (r� ��)

�
= r�M�� �

� 2���� T [��]u�� 2���� S���r� u� +r� (hu�)�� +

+hu�r� �� � Ir� (�u�) s� � I�u�r� s� :
We now define the angular acceleration by

�� = u� r� s� =
Ds�

Ds
and the angular body force per unit mass by

�� =
1
�

�
�l �� + h

D��

Ds
� I (r� J�) s�

�
where �l = r� (hu�).

We haveZ
S4

�
r�M��� 2����

�
T [��]u� + S���r�u�

�
+

+ ��� � I���
�
��� d� = 0 :

Hence we obtain the equation of motion

r�M�� = 2���� �

�
��

T [��] �N��
�
u� + S���r�u�

�
+ � (I�� � ��)

i.e.,

r�M�� = 2���� �

�
�

1
�

�
R[��] � ���

�
u� + S���r�u�

�
+ � (I�� � ��) :

7 Final remarks

We have seen that the classical fields of physics can be uni-
fied in a simple manner by treating space-time itself as a
four-dimensional finite (but unbounded) elastic medium ca-
pable of undergoing extensions (dilations) and internal point-
rotations in the presence of material-energy fields. In the
present framework, the classical physical fields indeed appear
on an equal footing as they are of purely geometric character.
In addition, we must note that this apparent simplicity still
leaves the constitutive invariants undetermined. At the mo-
ment, we leave this aspect of the theory to more specialized
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attempts. However, it can be said, in general, that we ex-
pect the constitutive invariants of the theory to be functions of
the known physical properties of matter such as material den-
sity, energy density, compressibility, material symmetry, etc.
This way, we have successfully built a significant theoretical
framework that holds in all classical physical situations.

We would also like to remark that once the constitutive
invariants are determined and incorporated into the possible
equations of state, the fully non-linear formulation of the pre-
sent theory should be very satisfactory for describing the dy-
namics of astrophysical objects especially various fluids
which exhibit the characteristics of non-degenerate relativis-
tic and non-Newtonian fluids.

We have seen that the general dynamical behavior of a
material body as determined by the equations of motion given
in Section 5, is intrinsically related to the underlying geome-
try of the space-time continuum which in turn is largely deter-
mined by the constitutive relations given in Sections 3 and 4.
In Section 6, we have also constructed a framework in which
the motion of a point-like particle is always subject to the con-
servation law of matter and energy regardless of the particle’s
intrinsic spin.

We also note that a material body in our continuum
representation of space-time can be regarded as the three-
dimensional boundary of a so-called world-tube such that out-
side the world-tube the region is said to be free or empty. This
three-dimensional boundary can be represented by a time-like
hypersurface. Such hypersurfaces can be seen as disturbances
in the space-time continuum. Furthermore, such disturbances
are equivalent to three-dimensional representations of mate-
rial waves (not necessarily gravitational waves). In this con-
text, one may formulate the dynamic discontinuity conditions
as purely geometric and kinematic compatibility conditions
over the hypersurfaces.

In common with standard general relativity, a region of
the space-time continuum is said to be statical if it can be
covered by a space-time coordinate system relative to which
the components of the metric tensor are independent of time.
It may be that such a region can be covered by one or more
such coordinate systems. As such, material waves are propa-
gated into a fixed (three-dimensional) curved space along tra-
jectories normal to the family of hypersurfaces given by the
successive positions of a material body in the fixed space. In
various cases, such trajectories can be represented as curves
of zero length in the space-time continuum.

The microscopic substructure of the space-time contin-
uum provides us room for additional degrees of freedom. In
other words, there exist intrinsic length scales associated with
these additional degrees of freedom. Correspondingly, one
may define the so-called microrotational inertial field. In fact,
the internal rotation of the points in the space-time contin-
uum is seen as representing the intrinsic spin of elementary
particles. On microscopic scales, the structure of the space-
time continuum can indeed appear to be granular. Due to

possible effects arising from this consideration, it is often not
sufficient to model the space-time continuum itself as contin-
uous, isotropic, and homogeneous. Furthermore, the rather
predominant presence of twisting paths may give rise to par-
ticles exhibiting micropolar structure.

In geometrizing microspin phenomena, we emphasize
that the initial microspin variables are not to be freely chosen
to be included in the so-called elasticity scalar functional of
the space-time continuum which is equivalent to a Lagrangian
density. Rather, one must first identify them with the internal
geometric properties of the space-time continuum. In other
words, one must primarily unfold their underlying geometric
existence in the space-time continuum itself. This is precisely
what we have done in this work.

Finally, we note that geometric discontinuities can also
be incorporated into the present theory. Such discontinuities
can be seen as topological defects in the space-time contin-
uum. Holographic four-dimensional continua with cellular,
fibrous, or foamy structure may indeed represent admissible
semi-classical models of the Universe which can be realized
in the framework of the present theory. In such a case, the
metric must therefore be quantized. It remains to be seen how
this might correspond to any conventional quantum descrip-
tion of the space-time continuum.
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We attempt to present a classical theoretical framework in which the gravitational and
electromagnetic fields are unified as intrinsic geometric objects in the space-time mani-
fold. For this purpose, we first present the preliminary geometric considerations dealing
with the metric differential geometry of Cartan connections. The unified field theory is
then developed as an extension of the general theory of relativity based on a semi-
symmetric Cartan connection which is meant to be as close as possible structurally to
the symmetric connection of the Einstein-Riemann space-time.

1 Introduction

It is now well-known that there are various paths available,
provided by geometry alone, to a unified description of phys-
ical phenomena. The different possibilities for the interpre-
tation of the underlying nature and fabric of the Universe in
a purely geometric fashion imply that there is a deep under-
lying structural reason for singular harmony that lies in the
depths of Nature’s unity. It appears that the Universe is a
self-descriptive continuum which connects what seem to be
purely intrinsic mathematical objects to physical observables.
It is the belief that analytical geometry alone is able to pro-
vide the profoundest description of the complexity and har-
mony of our structured Universe that has led generations of
mathematicians and physicists to undertake the task of ge-
ometrizing the apparently systematic laws of Nature. Indeed
this is, as Einstein once described, the effect of the sense of
universal causation on the inquisitive mind.

The above-mentioned wealth of the inherent mathemati-
cal possibility for the geometrization of physics has resulted
in the myriad forms of unified field theory which have been
proposed from time to time, roughly since 1918 when H.
Weyl’s applied his so-called purely infinitesimal geometry
which was a relaxation of the geometry of Riemann spaces to
the task of geometrizing the electromagnetic field in the hope
to unify it with the already geometrized gravitational field of
general relativity [6]. However, often for want of simplicity,
this fact which basically gives us a vision of a solid, reified
reality may also lead us to think that the Universe of phenom-
ena must be ultimately describable in the somewhat simplest
and yet perhaps most elegant mathematical (i.e., geometric)
formalism. Furthermore, when one is exposed to the different
forms of unified field theory, especially for the first time, I
believe it is better for one to see a less complicated version,
otherwise one might get overloaded mentally and it follows
that there is a chance that such a thing will just prevent one
from absorbing the essence of our desired simplicity which

is intuitively expected to be present in any objective task of
unification.

Given the freedom of choice, we do not attempt, in this
work, to speak about which version of unified field theory out
of many is true, rather we shall present what I believe should
qualify among the logically simplest geometric descriptions
of the classical fields of gravity and electromagnetism. In-
deed, for the reason that we may not still be fully aware of
the many hidden aspects of the Universe on the microscopic
(quantum) scales, at present we shall restrict our attention
to the unification and geometrization of the classical fields
alone.

As we know, there are many types of differential geome-
try, from affine geometry to non-affine geometry, from met-
ric (i.e., metric-compatible) geometry to non-metric geom-
etry. However, the different systems of differential geome-
try that have been developed over hundreds of years can be
most elegantly cast in the language of Cartan geometry. The
geometric system I will use throughout this physical part of
our work is a metric-compatible geometry endowed with a
semi-symmetric Cartan connection. It therefore is a variant of
the so-called Riemann-Cartan geometry presented in Sections
1.1-1.6. As we know, the standard form of general relativity
adopts the symmetric, twist-free, metric-compatible Christof-
fel connection. We are also aware that the various extensions
of standard general relativity [7] tend to employ more gen-
eral connections that are often asymmetric (e.g., the Sciama-
Kibble theory [8, 9]) and even non-metric in general (e.g.,
the Weyl theory [6]). However, in the present work, we shall
insist on logical simplicity and on having meaningful physi-
cal consequences. Once again, we are in no way interested
in pointing out which geometric system is most relevant to
physics, rather we are simply concerned with describing in
detail what appears to be among the most consistent and ac-
curate views of the physical world. We only wish to construct
a unified field theory on the common foundation of beauty,
simplicity, and observational accuracy without having to deal

I. Suhendro. A New Semi-Symmetric Unified Field Theory of the Classical Fields of Gravity and Electromagnetism 47



Volume 4 PROGRESS IN PHYSICS October, 2007

with unnecessarily complex physical implications that might
dull our perspective on the workings of Nature. I myself have
always been fond of employing the most general type of con-
nection for the purpose of unification. However, after years of
poring over the almost universally held and (supposedly) ob-
jectively existing physical evidence, I have come to the con-
clusion that there is more reason to impose a simpler geomet-
ric formulation than a more general type of geometry such as
non-metric geometry. In this work, it is my hope to dovetail
the classical fields of gravity and electromagnetism with the
conventional Riemann-Cartan geometry in general and with a
newly constructed semi-symmetric Cartan connection in par-
ticular. Our resulting field equations are then just the distilla-
tion of this motive, which will eventually give us a penetrating
and unified perspective on the nature of the classical fields of
gravity and electromagnetism as intrinsic geometric fields, as
well as on the possible interaction between the translational
and rotational symmetries of the space-time manifold.

I believe that the semi-symmetric nature of the present
theory (which keeps us as close as possible to the profound,
observable physical implications of standard general relativ-
ity) is of great generality such that it can be applied to a large
class of problems, especially problems related to the more
general laws of motion for objects with structure.

2 A comprehensive evaluation of the differential geome-
try of Cartan connections with metric structure

The splendid, profound, and highly intuitive interpretation of
differential geometry by E. Cartan, which was first applied to
Riemann spaces, has resulted in a highly systematic descrip-
tion of a vast range of geometric and topological properties
of differentiable manifolds. Although it possesses a some-
what abstract analytical foundation, to my knowledge there
is no instance where Riemann-Cartan geometry, cast in the
language of differential forms (i.e., exterior calculus), gives a
description that is in conflict with the classical tensor analysis
as formalized, e.g., by T. Levi-Civita. Given all its successes,
one might expect that any physical theory, which relies on
the concept of a field, can be elegantly built on its rigorous
foundation. Therefore, as long as the reality of metric struc-
ture (i.e., metric compatibility) is assumed, it appears that
a substantial modified geometry is not needed to supersede
Riemann-Cartan geometry.

A common overriding theme in both mathematics and
theoretical physics is that of unification. And as long as
physics can be thought of as geometry, the geometric objects
within Riemann-Cartan geometry (such as curvature for grav-
ity and twist for intrinsic spin) certainly help us visualize and
conceptualize the essence of unity in physics. Because of its
intrinsic unity and its breadth of numerous successful appli-
cations, it might be possible for nearly all the laws govern-
ing physical phenomena to be combined and written down
in compact form via the structural equations. By the intrin-

sic unity of Riemann-Cartan geometry, I simply refer to its
tight interlock between algebra, analysis, group representa-
tion theory, and geometry. At least in mathematics alone, this
is just as close as one can get to a “final” unified description
of things. I believe that the unifying power of this beautiful
piece of mathematics extends further still.

I’m afraid the title I have given to this first part of our
work (which deals with the essential mathematics) has a
somewhat narrow meaning, unlike the way it sounds. In writ-
ing this article, my primary goal has been to present Riemann-
Cartan geometry in a somewhat simpler, more concise, and
therefore more efficient form than others dealing with the
same subject have done before [1, 4]. I have therefore had to
drop whatever mathematical elements or representations that
might seem somewhat highly counterintuitive at first. After
all, not everyone, unless perhaps he or she is a mathemati-
cian, is familiar with abstract concepts from algebra, analy-
sis, and topology, just to name a few. Nor is he or she ex-
pected to understand these things. But one thing remains es-
sential, namely, one’s ability to catch at least a glimpse of
the beauty of the presented subject via deep, often simple,
real understanding of its basics. As a non-mathematician (or
simply a “dabbler” in pure mathematics), I do think that pure
mathematics as a whole has grown extraordinarily “strange”,
if not complex (the weight of any complexity is really rela-
tive of course), with a myriad of seemingly separate branches,
each of which might only be understood at a certain level of
depth by the pure mathematicians specializing in that partic-
ular branch themselves. As such, a comparable complexity
may also have occurred in the case of theoretical physics itself
as it necessarily feeds on the latest formalism of the relevant
mathematics each time. Whatever may be the case, the real
catch is in the essential understanding of the basics. I believe
simplicity alone will reveal it without necessarily having to
diminish one’s perspectives at the same time.

2.1 A brief elementary introduction to the Cartan
(-Hausdorff) manifold C1

Let !a = @Xi

@xa Ei = @aXiEi (summation convention employ-
ed throughout this article) be the covariant (frame) basis span-
ning the n-dimensional base manifold C1 with local coordi-
nates xa =xa

�
Xk�. The contravariant (coframe) basis �b is

then given via the orthogonal projection


�b; !a

�
= �ba, where

�ba are the components of the Kronecker delta (whose value is
unity if the indices coincide or null otherwise). Now the set of
linearly independent local directional derivatives Ei = @

@Xi =
= @i gives the coordinate basis of the locally flat tangent
space Tx(M) at a point x2C1. HereM denotes the topolog-
ical space of the so-called n-tuples h (x) =h

�
x1; : : : ; xn

�
such that relative to a given chart

�
U; h (x)

�
on a neighbor-

hood U of a local coordinate point, our C1-differentiable
manifold itself is a topological space. The dual basis to Ei
spanning the locally flat cotangent space T�x(M) will then
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be given by the differential elements dXk via the relation

dXk; @i

�
= �ki . In fact and in general, the one-forms dXk

indeed act as a linear map Tx(M) ! IR when applied to
an arbitrary vector field F 2Tx(M) of the explicit form F =
=F i @

@Xi = fa @
@xa . Then it is easy to see that F i =FXi and

fa =Fxa, from which we obtain the usual transformation
laws for the contravariant components of a vector field, i.e.,
F i = @aXifa and f i = @ixaF i, relating the localized com-
ponents of F to the general ones and vice versa. In addition,
we also see that



dXk; F

�
=FXk =F k.

The components of the metric tensor g= gab�a
 �b of
the base manifold C1 are readily given by

gab = h!a; !bi :
The components of the metric tensor g (xN ) = �ikdXi


dXk describing the locally flat tangent space Tx(M) of rigid
frames at a point xN =xN (xa) are given by

�ik = hEi; Eki = diag (�1;�1; : : : ;�1) :

In four dimensions, the above may be taken to be the com-
ponents of the Minkowski metric tensor, i.e., �ik =hEi; Eki=
= diag (1;�1;�1;�1).

Then we have the expression

gab = �ik @aXi@bXk

satisfying
gac gbc = �ba

where gab =


�a; �b

�
.

The manifold C1 is a metric space whose line-element in
this formalism of a differentiable manifold is directly given
by the metric tensor itself, i.e.,

ds2 = g = gab
�
@ixa@kxb

�
dXi 
 dXk;

where the coframe basis is given by the one-forms �a =
= @ixadXi.

2.2 Exterior calculus in n dimensions

As we know, an arbitrary tensor field T 2C1 of rank (p; q)
is the object

T = T i1i2:::iqj1j2:::jp!i1 
 !i2 
 : : :
 !iq 
 �j1 
 �j2 
 : : :
 �jp :
Given the existence of a local coordinate transformation

via xi =xi (�x�) in C1, the components of T 2C1 transform
according to

T ij:::skl:::r = T��:::���:::� @�x
i@�xj : : : @�xs@k�x�@l�x� : : : @r�x�:

Taking a local coordinate basis �i = dxi, a Pfaffian p-form
! is the completely anti-symmetric tensor field

! = !i1i2:::ipdx
i1 ^ dxi2 ^ : : : ^ dxip ;

where

dxi1^dxi2^: : :^dxip � 1
p!
�i1i2:::ipj1j2:::jpdx

j1
dxj2
: : :
dxjp :

In the above, the �i1i2:::ipj1j2:::jp are the components of the gen-
eralized Kronecker delta. They are given by

�i1i2:::ipj1j2:::jp =2j1j2:::jp2i1:::ip= det

0BBB@
�i1j1 �i2j1 : : : �ipj1
�i1j2 �i2j2 : : : �ipj2
: : : : : : : : : : : :
�i1jp �i2jp : : : �ipjp

1CCCA
where 2j1j2:::jp =

p
det (g) �j1j2:::jp and 2i1i2:::ip = �i1i2:::ipp

det(g)
are the covariant and contravariant components of the com-
pletely anti-symmetric Levi-Civita permutation tensor, res-
pectively, with the ordinary permutation symbols being given
as usual by �j1j2:::jq and �i1i2:::ip .

We can now write

! =
1
p!
�i1i2:::ipj1j2:::jp!i1i2:::ipdx

j1 ^ dxj2 ^ : : : ^ dxjp :
such that for a null p-form != 0 its components satisfy the
relation �i1i2:::ipj1j2:::jp!i1i2:::ip = 0.

By meticulously moving the dxi from one position to an-
other, we see that

dxi1 ^ dxi2 ^ : : : ^ dxip�1 ^ dxip ^ dxj1 ^ dxj2 ^ : : :
: : : ^ dxjq = (�1)pdxi1 ^ dxi2 ^ : : : ^ dxip�1 ^ dxj1^
^ dxj2 ^ : : : ^ dxjq ^ dxip

and

dxi1 ^ dxi2 ^ : : : ^ dxip ^ dxj1 ^ dxj2 ^ : : : ^ dxjq =
= (�1)pqdxj1 ^ dxj2 ^ : : : ^ dxjq ^ dxi1 ^ dxi2 ^ : : :
: : : ^ dxip :
Let ! and � be a p-form and a q-form, respectively. Then,

in general, we have the following relations:

! ^ � = (�1)pq� ^ ! = !i1i2:::ip�j1j2:::jqdx
i1^ dxi2^ : : :

: : : ^ dxp^ dxj1^ dxj2^ : : : ^ dxjq
d (! + �) = d! + d�

d (! ^ �) = d! ^ � + (�1)p ! ^ d�
Note that the mapping d : != d! is a (p+ 1)-form. Ex-

plicitly, we have

d! =
(�1)p

(p+ 1)!
�i1i2:::ipj1j2:::jp

@!i1i2:::ip
@xip+1

dxj1 ^ dxj2 ^ : : :
: : : ^ dxjp ^ dxip+1 :
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For instance, given a (continuous) function f , the one-
form df = @ifdxi satisfies d2f � ddf = @k@ifdxk ^ dxi = 0.
Likewise, for the one-form A=Aidxi, we have dA=
= @kAidxk ^ dxi and therefore d2A= @l@kAidxl ^ dxk ^^ dxi = 0, i.e., �iklrst@l@kAi = 0 or @l@kAi + @k@iAl +
+ @i@lAk = 0. Obviously, the last result holds for arbitrary
p-forms �ij:::s

kl:::r, i.e.,

d2�ij:::s
kl:::r = 0 :

Let us now consider a simple two-dimensional case. From
the transformation law dxi = @�xid�x�, we have, upon em-
ploying a positive definite Jacobian, i.e., @ (xi; xj)

@ (�x�; �x�)
> 0, the

following:

dxi ^ dxj = @�xi@�xjd�x�^ d�x� =
1
2
@
�
xi; xj

�
@ (�x�; �x�)

d�x�^ d�x� :

It is easy to see that

dx1 ^ dx2 =
@
�
x1; x2�

@ (�x1; �x2)
d�x1 ^ d�x2:

which gives the correct transformation law of a surface ele-
ment.

We can now elaborate on the so-called Stokes theorem.
Given an arbitrary function f , the integration in a domain D
in the manifold C1 is such that
"

D

f
�
xi
�
dx1 ^ dx2 =

"

D

f
�
xi (�x�)

� @ �x1; x2�
@ (�x1; �x2)

d�x1d�x2:

Generalizing to n dimensions, for any  i = i (xk) we
have

d 1 ^ d 2 ^ : : : ^ d n =

=
@
�
 1;  2; : : : ;  n

�
@ (x1; x2; : : : ; �xn)

dx1 ^ dx2 ^ : : : ^ dxn:
Therefore (in a particular domain)

"
: : :
Z
fd 1 ^ d 2 ^ : : : ^ d n =

"
: : :

: : :
Z
f
�
xi
� @ � 1;  2; : : : ;  n

�
@ (x1; x2; : : : ; xn)

dx1 ^ dx2 ^ : : : ^ dxn:
Obviously, the value of this integral is independent of

the choice of the coordinate system. Under the coordinate
transformation given by xi =xi (�x�), the Jacobian can be ex-
pressed as

@
�
 1;  2; : : : ;  n

�
@ (x1; x2; : : : ; xn)

=

=
@
�
 1;  2; : : : ;  n

�
@ (�x1; �x2; : : : ; �xn)

@
�
�x1; �x2; : : : ; �xn

�
@ (x1; x2; : : : ; xn)

:

If we consider a (n�m)-dimensional subspace (hyper-
surface) S2C1 whose local coordinates uA parametrize the

coordinates xi, we have
"

: : :
Z
fd 1 ^ d 2 ^ : : : ^ d n =

=
"

: : :
Z
f
�
xi
�
uA
���

� @
�
 1 �xi �uA�� ;  2 �xi �uA�� ; : : : ;  n �xi �uA���

@ (u1; u2; : : : ; un�m)
�

� du1du2 : : : dun�m:

2.3 Geometric properties of a curved manifold

Let us recall a few concepts from conventional tensor analysis
for a while. Introducing a generally asymmetric connection
� via the covariant derivative

@b!a = �cab!c
i.e.,

�cab = h�c; @b!ai= �c(ab) + �c[ab]

where the round index brackets indicate symmetrization and
the square ones indicate anti-symmetrization, we have, by
means of the local coordinate transformation given by xa =
=xa (�x�) in C1

@be�a = �cab e
�
c � �����e

�
ae
�
b ;

where the tetrads of the moving frames are given by e�a=@a�x�
and ea� = @�xa. They satisfy ea�e�b = �ab and e�aea� = ��� . In
addition, it can also be verified that

@� ea� = ����� ea� � �abc eb� ec� @b ea� = ea� ����� e
�
b � �acb ec� :

From conventional tensor analysis, we know that � is a
non-tensorial object, since its components transform as

�cab = ec�@b e
�
a + ec� ����� e

�
a e

�
b :

However, it can be described as a kind of displacement
field since it is what makes possible a comparison of vectors
from point to point in C1. In fact the relation @b!a = �cab!c
defines the so-called metricity condition, i.e., the change (dur-
ing a displacement) in the basis can be measured by the basis
itself. This immediately translates into

rc gab = 0 ;

where we have just applied the notion of a covariant derivative
to an arbitrary tensor field T :

rkT ij:::slm::::r = @kT
ij:::s
lm:::r + �ipkT

pj:::s
lm:::r + �jpkT

ip:::s
lm:::r + : : :

+ �spkT
ij:::p
lm:::r � �plkT

ij:::s
pm:::r � �pmkT

ij:::s
lp:::r � : : :� �prkT

ij:::s
lm:::p

such that (@kT )ij:::slm:::r =rkT ij:::slm:::r.
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The condition rc gab = 0 can be solved to give

�cab =
1
2
gcd (@bgda � @dgab + @agbd) + �c[ab]�

� gcd �gae�e[db] + gbe�e[da]

�
from which it is customary to define

�c
ab =

1
2
gcd (@bgda � @dgab + @agbd)

as the Christoffel symbols (symmetric in their two lower in-
dices) and

Kc
ab = �c[ab] � gcd

�
gae�e[db] + gbe�e[da]

�
as the components of the so-called contwist tensor (anti-
symmetric in the first two mixed indices).

Note that the components of the twist tensor are given by

�a[bc] =
1
2
ea�
�
@c e�b � @b e�c + e�b ����c � e�c ����b

�
where we have set ����c = ����� e�c , such that for an arbitrary
scalar field � we have

(rarb �rbra) � = 2�c[ab]rc� :
The components of the curvature tensorR of C1 are then

given via the relation

(rqrp �rprq)T ab:::scd:::r = T ab:::swd:::rR
w
cpq + T ab:::scw:::rR

w
dpq +

: : :+ T ab:::scd:::wR
w
rpq � Twb:::scd:::r R

a
wpq � T aw:::scd:::r R

b
wpq � : : :

�T ab:::wcd:::r R
s
wpq � 2�w[pq]rwT ab:::scd:::r

where

Rdabc = @b�dac � @c�dab + �eac�
d
eb � �eab�

d
ec =

= Bdabc (�) +r̂bKd
ac�r̂cKd

ab+Ke
acKd

eb�Ke
abKd

ec

where r̂ denotes covariant differentiation with respect to the
Christoffel symbols alone, and where

Bdabc (�) = @b�d
ac � @c�d

ab + �e
ac�

d
eb ��e

ab�
d
ec

are the components of the Riemann-Christoffel curvature ten-
sor of C1.

From the components of the curvature tensor, namely,
Rdabc, we have (using the metric tensor to raise and lower
indices)

Rab � Rcacb = Bab (�) + r̂cKc
ab �Kc

adK
d
cb�

� 2r̂b�c[ac] + 2Kc
ab�

d
[cd]

R � Raa = B (�)� 4gabr̂a�c[bc]�
� 2gac�b[ab]�

d
[cd] �KabcKacb

where Bab (�) �Bcacb (�) are the components of the sym-
metric Ricci tensor and B (�) �Baa (�) is the Ricci scalar.
Note that Kabc� gadKd

bc and Kacb� gcdgbeKa
de.

Now since

�bba = �b
ba = �b

ab = @a
�

ln
p

det (g)
�

�bab = @a
�

ln
p

det (g)
�

+ 2�b[ab]

we see that for a continuous metric determinant, the so-called
homothetic curvature vanishes:

Hab � Rccab = @a�ccb � @b�cca = 0

Introducing the traceless Weyl tensor C, we have the fol-
lowing decomposition theorem:

Rdabc =Cdabc+
1

n�2
�
�dbRac+gacR

d
b��dcRab�gabRdc�+

+
1

(n�1) (n�2)
�
�dc gab � �db gac�R

which is valid for n> 2. For n= 2, we have

Rdabc = KG
�
�db gac � �dc gab�

where
KG =

1
2
R

is the Gaussian curvature of the surface. Note that (in this
case) the Weyl tensor vanishes.

Any n-dimensional manifold (for which n> 1) with con-
stant sectional curvature R and vanishing twist is called an
Einstein space. It is described by the following simple rela-
tions:

Rdabc =
1

n(n� 1)
�
�db gac � �dc gab�R

Rab =
1
n
gabR :

In the above, we note especially that

Rdabc = Bdabc (�) ;

Rab = Bab (�) ;

R = B (�) :

Furthermore, after some elaborate (if not tedious) alge-
bra, we obtain, in general, the following generalized Bianchi
identities:

Rabcd +Racdb +Radbc = �2
�
@d�a[bc] +

+ @b�a[cd] + @c�a[db] + �aeb�
e
[cd] + �aec�

e
[db] + �aed�

e
[bc]
�

reRabcd +rcRabde +rdRabec =

= 2
�

�f[cd]R
a
bfe + �f[de]R

a
bfc + �f[ec]R

a
bfd

�
ra
�
Rab � 1

2
gabR

�
= 2gab�c[da]R

d
c + �a[cd]R

cdb
a
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for any metric-compatible manifold endowed with both cur-
vature and twist.

In the last of the above set of equations, we have intro-
duced the generalized Einstein tensor, i.e.,

Gab � Rab � 1
2
gabR :

In particular, we also have the following specialized iden-
tities, i.e., the regular Bianchi identities:

Babcd +Bacdb +Badbc = 0 ;

r̂eBabcd + r̂cBabde + r̂dBabec = 0

r̂a
�
Bab � 1

2
gabB

�
= 0 :

In general, these hold in the case of a symmetric, metric-
compatible connection. Non-metric differential geometry is
beyond the scope of our present consideration. We will need
the identities presented in this section in the development of
our semi-symmetric, metric-compatible unified field theory.

2.4 The structural equations

The results of the preceding section can be expressed in the
language of exterior calculus in a somewhat more compact
form.

In general, we can construct arbitrary p-forms !ab:::ecd:::f
through arbitrary (p� 1) forms �ab:::ecd:::f , i.e.,

!ab:::ecd:::f = d�ab:::ecd:::f =
@�ab:::ecd:::f

@xh
^ dxh:

The covariant exterior derivative is then given by

D!ab:::ecd:::f = rh!ab:::ecd:::f ^ dxh
i.e.,

D!ab:::ecd::::f = d!ab:::ecd:::f + (�1)p
�
!hb:::ecd:::f ^ �ah +

+ !ah:::ecd:::f ^ �bh + : : :+ !ab:::hcd:::f ^ �eh � !ab:::ehd:::f ^ �hc �
� !ab:::ech:::f ^ �hd � : : :� !ab:::ecd:::h ^ �hf

�
where we have defined the connection one-forms by

�ab � �abc �
c

with respect to the coframe basis �a.
Now we write the twist two-forms �a as

�a = D�a = d�a + �ab ^ �b:
This gives the first structural equation. With respect to

another local coordinate system (with coordinates �x�) in C1
spanned by the basis �� = e�a�a, we see that

�a = �ea����[��]"
� ^ "�:

We shall again proceed to define the curvature tensor. For
a triad of arbitrary vectors u, v, w, we may define the follow-
ing relations with respect to the frame basis !a:

rurvw � ucrc �vbrbwa�!a
r[u;v]w � rbwa �ucrcvb � vcrcub�

where ru and rv denote covariant differentiation in the di-
rection of u and of v, respectively.

Then we have

(rurv �rvru)w = �Rabcdwbucvd!a :
Note that
�Rabcd = @c�abd � @d�abc + �ebd�

a
ec � �ebc�

a
ed +

+ 2�e[cd]�
a
be = Rabcd + 2�e[cd]�

a
be

are the components of the extended curvature tensor �R.
Define the curvature two-forms by

�Rab � 1
2
�Rabcd �c ^ �d:

The second structural equation is then

�Rab = d�ab + �ac ^ �cb :

The third structural equation is given by

d2�ab = d�Rab � �Rac ^ �cb + �ac ^ �Rcb = D�Rab
which is equivalent to the generalized Bianchi identities given
in the preceding section.

In fact the second and third structural equations above can
be directly verified using the properties of exterior differenti-
ation given in Section 1.2.

Now, as we have seen, the covariant exterior derivative
of arbitrary one-forms �a is given by D�a = d�a + �ab ^ �b.
Then

DD�a = d (D�a) + �ab ^D�b =

= d
�
d�a + �ab ^ �b�+ �ac ^ �d�c + �cd ^ �d� =

= d�ab ^ �b � �ab ^ �bc ^ �c =

= (d�ab + �ac ^ �cb) ^ �b
where we have used the fact that the D�a are two-forms.
Therefore, from the second structural equation, we have

DD�a = �Rab ^ �b:
Finally, taking �a = �a, we give the fourth structural

equation as
DD�a = D�a = �Rab ^ �b

or,
d�a = �Rab ^ �b � �ab ^ � b:

Remarkably, this is equivalent to the first generalized
Bianchi identity given in the preceding section.

52 I. Suhendro. A New Semi-Symmetric Unified Field Theory of the Classical Fields of Gravity and Electromagnetism



October, 2007 PROGRESS IN PHYSICS Volume 4

2.5 The geometry of distant parallelism

Let us now consider a special situation in which our n-
dimensional manifold C1 is embedded isometrically in a flat
n-dimensional (pseudo-)Euclidean space En (with coordina-
tes v �m) spanned by the constant basis e �m whose dual is de-
noted by s�n. This embedding allows us to globally cover the
manifold C1 in the sense that its geometric structure can be
parametrized by the Euclidean basis e �m satisfying

� �m�n = he �m; e�ni = diag (�1;�1; : : : ;�1) :

It is important to note that this situation is different from
the one presented in Section 1.1, in which case we may refer
the structural equations of C1 to the locally flat tangent space
Tx(M). The results of the latter situation (i.e., the localized
structural equations) should not always be regarded as glob-
ally valid since the tangent space Tx(M), though ubiquitous
in the sense that it can be defined everywhere (at any point) in
C1, cannot cover the whole structure of the curved manifold
C1 without changing orientation from point to point.

One can construct geometries with special connections
that will give rise to what we call geometries with paral-
lelism. Among others, the geometry of distant parallelism
is a famous case. Indeed, A. Einstein adopted this geometry
in one of his attempts to geometrize physics, and especially
to unify gravity and electromagnetism [5]. In its application
to physical situations, the resulting field equations of a uni-
fied field theory based on distant parallelism, for instance, are
quite remarkable in that the so-called energy-momentum ten-
sor appears to be geometrized via the twist tensor. We will
therefore dedicate this section to a brief presentation of the
geometry of distant parallelism in the language of Riemann-
Cartan geometry.

In this geometry, it is possible to orient vectors such that
their directions remain invariant after being displaced from a
point to some distant point in the manifold. This situation is
made possible by the vanishing of the curvature tensor, which
is given by the integrability condition

Rdabc = ed�m (@b@c � @c@b) e �m
a = 0

where the connection is now given by

�cab = ec�m@be
�m
a

where e �m
a = @a� �m and ea�m = @ �mxa.

However, while the curvature tensor vanishes, one still
has the twist tensor given by

�a[bc] =
1
2
ea�m
�
@c e �m

b � @b e �m
c
�

with the e �m
a acting as the components of a spin “potential”.

Thus the twist can now be considered as the primary geomet-
ric object in the manifold C1p endowed with distant paral-
lelism.

Also, in general, the Riemann-Christoffel curvature ten-
sor is non-vanishing as

Bdabc = r̂cKd
ab � r̂bKd

ac +Ke
abK

d
ec �Ke

acK
d
eb :

Let us now consider some facts. Taking the covariant
derivative of the tetrad e �m

a with respect to the Christoffel sym-
bols alone, we have

r̂b e �m
a = @b e �m

a � e �m
d �d

ab = e �m
c K

c
ab

i.e.,
Kc
ab = ec�mr̂b e �m

a = �e �m
a r̂b ec�m :

In the above sense, the components of the contwist tensor
give the so-called Ricci rotation coefficients. Then from

r̂cr̂b e �m
a = e �m

d

�r̂cKd
ab +Ke

abK
d
ec

�
it is elementary to show that�r̂cr̂b � r̂br̂c� e �m

a = e �m
d B

d
abc :

Likewise, we have

~rb e �m
a = @b e �m

a � e �m
d Kd

ab = e �m
c �c

ab

�c
ab = ec�m ~rb e �m

a = �e �m
a

~rb ec�m
where now ~r denotes covariant differentiation with respect
to the Ricci rotation coefficients alone. Then from

~rc ~rbe �m
a = e �m

d

�
~rc�d

ab + �e
ab�

d
ec

�
we get�

~rc ~rb � ~rb ~rc
�
e �m
a = �e �m

d
�
Bdabc � 2�d

ae�
e
[bc]�

��e
abK

d
ec + �e

acK
d
eb �Ke

ab�
d
ec +Ke

ac�
d
eb
�
:

In this situation, one sees, with respect to the coframe ba-
sis �a = ea�ms �m, that

d�a = ��ab ^ �b � T a
i.e.,

T a = �a[bc]�
b ^ �c:

Thus the twist two-forms of this geometry are now given
by T a (instead of �a of the preceding section). We then real-
ize that

D�a = 0 :
Next, we see that

d2�a = dT a = �d�ab ^ �b + �ab ^ d�b =

= � (d�ab + �ac ^ �cb) ^ �b =

= ��Rab ^ �b:
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But, as always, d2�a = 0, and therefore we have

�Rab ^ �b = 0

Note that in this case, �Rab , 0 (in general) as

�Rabcd = 2�e[cd]�
a
be

will not vanish in general. We therefore see immediately that

�Rabcd + �Racdb + �Radbc = 0

giving the integrability condition

�e[cd]�
a
be + �e[db]�

a
ce + �e[bc]�

a
de = 0 :

Meanwhile, the condition

dT a = 0

gives the integrability condition

@d�a[bc] + @b�a[cd] + @c�a[db] = 0 :

Contracting, we find

@c�c[ab] = 0 :

It is a curious fact that the last two relations somehow
remind us of the algebraic structure of the components of the
electromagnetic field tensor in physics.

Finally, from the contraction of the components Bdabc of
the Riemann-Christoffel curvature tensor (the Ricci tensor),
one defines the regular Einstein tensor by

Ĝab � Bab � 1
2
gabB � kEab

where k is a physical coupling constant and Eab are the com-
ponents of the so-called energy-momentum tensor. We there-
fore see that

Eab =
1
k

�
Kc
adK

d
cb � r̂cKc

ab + 2r̂b�c[ac] � 2Kc
ab�

d
[cd]

��
� 1

2k
gab
�

4gcdr̂c�e[de] + 2gce�d[cd]�
f
[ef ] +KcdeKced

�
:

In addition, the following two conditions are satisfied:

E[ab] = 0 ;

r̂aEab = 0 :

We have now seen that, in this approach we have applied
here, the energy-momentum tensor (matter field) is fully ge-
ometrized. This way, gravity arises from twistal (spin) inter-
action (possibly, on the microscopic scales) and becomes an
emergent phenomenon rather than a fundamental one. This
seems rather speculative. However, it may have profound
consequences.

2.6 Spin frames

A spin frame is described by the anti-symmetric tensor
product


ik =
1
2
�
�i 
 �k � �k 
 �i� = �i ^ �k � 1

2
�
�i; �k

�
:

In general, then, for arbitrary vector field fields A and B,
we can form the commutator

[A;B] = A
B �B 
 A :
Introducing another vector field C, we have the so-called

Jacobi identity

[A; [B;C]] + [B; [C;A]] + [C; [A;B]] = 0 :

With respect to the local coordinate basis elements
Ei = @i of the tangent space Tx(M), we see that, astonish-
ingly enough, the anti-symmetric product [A;B] is what de-
fines the Lie (exterior) derivative of B with respect to A:

LAB � [A;B] =
�
Ai@iBk �Bi@iAk� @

@Xk :

(Note that LAA= [A;A] = 0.) The terms in the round brack-
ets are just the components of our Lie derivative which can
be used to define a diffeomorphism invariant (i.e., by taking
Ai = �i where � represents the displacement field in a neigh-
borhood of coordinate points).

Furthermore, for a vector fieldU and a tensor field T , both
arbitrary, we have (in component notation) the following:

LUT
ij:::s
kl:::r = @mT

ij:::s
kl:::rU

m + T ij:::sml:::r@kU
m +

+ T ij:::skm:::r@lU
m + : : :+ T ij:::skl:::m@rU

m � Tmj:::skl:::r @mU
i�

� T im:::skl:::r @mU
j � : : :� T ij:::mkl:::r @mU

s

It is not immediately apparent whether these transform as
components of a tensor field or not. However, with the help
of the twist tensor and the relation

@kU i = rkU i � �imkU
m = rkU i �

�
�ikm � 2�i[km]

�
Um

we can write

LUT
ij:::s
kl:::r = rmT ij:::skl:::rU

m + T ij:::sml:::rrkUm +

+ T ij:::skm:::rrlUm + : : :+ T ij:::skl:::mrrUm � Tmj:::skl:::r rmU i�
� T im:::skl::::r rmU j � : : :� T ij:::mkl:::r rmUs +

+ 2�i[mp]T
mj:::s
kl:::r U

p + 2�j[mp]T
im:::s
kl:::r U

p + : : :

+ 2�s[mp]T
ij:::m
kl:::r U

p � 2�m[kp]T
ij::s
ml:::rU

p�
� 2�m[lp]T

ij:::s
km:::rU

p � : : :� 2�m[rp]T
ij:::s
kl:::mU

p:

Hence, noting that the components of the twist tensor,
namely, �i[kl], indeed transform as components of a tensor
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field, it is seen that the LUT
ij:::s
kl:::r do transform as components

of a tensor field. Apparently, the beautiful property of the
Lie derivative (applied to an arbitrary tensor field) is that it is
connection-independent even in a curved manifold.

If we now apply the commutator to the frame basis of the
base manifold C1 itself, we see that (for simplicity, we again
refer to the coordinate basis of the tangent space Tx(M))

[!a; !b] =
�
@aXi @i@bXk � @bXi @i@aXk� @

@Xk :

Again, writing the tetrads simply as eia=@aXi; eai =@ixa,
we have

[!a; !b] =
�
@aekb � @beka� @

@Xk

i.e.,
[!a; !b] = �2�c[ab]!c :

Therefore, in the present formalism, the components of
the twist tensor are by themselves proportional to the so-
called structure constants 	c

ab of our rotation group:

	c
ab = �2�c[ab] = �eci �@a eib � @b eia� :

As before, here the tetrad represents a spin potential.
Also note that

	d
ab	

e
dc + 	d

bc	
e
da + 	d

ca	
e
db = 0 :

We therefore observe that, as a consequence of the present
formalism of differential geometry, spin fields (objects of an-
holonomicity) in the manifold C1 are generated directly by
the twist tensor.

3 The new semi-symmetric unified field theory of the
classical fields of gravity and electromagnetism

In this part, we develop our semi-symmetric unified field the-
ory on the foundations of Riemann-Cartan geometry present-
ed in Sections 1.1–1.6. We shall concentrate on physical
events in the four-dimensional space-time manifold S4 with
the usual Lorentzian signature. As we will see, the choice
of a semi-symmetric Cartan twist will lead to a set of phys-
ically meaningful field equations from which we will obtain
not only the generally covariant Lorentz equation of motion
of a charged particle, but also its generalizations.

We are mainly concerned with the dynamical equations
governing a cluster of individual particles and their multiple
field interactions and also the possibility of defining geomet-
rically and phenomenologically conserved currents in the the-
ory. We will therefore not assume dimensional (i.e., struc-
tural) homogeneity with regard to the particles. Classically,
a point-like (i.e., structureless) particle which characterizes
a particular physical field is only a mere idealization which
is not subject, e.g., to any possible dilation when interacting
with other particles or fields. Still within the classical context,
we relax this condition by assigning a structural configuration

to each individual particle. Therefore, the characteristic prop-
erties of the individual particles allow us to describe a parti-
cle as a field in a physically meaningful sense. In this sense,
the particle-field duality is abolished on the phenomenolog-
ical level as well. In particular, this condition automatically
takes into account both the rotational and reflectional symme-
tries of individual particles which have been developed sep-
arately. As such, without having to necessarily resort to par-
ticle isotropy, the symmetry group in our theory is a general
one, i.e., it includes all rotations about all possible axes and
reflections in any plane in the space-time manifold S4.

The presence of the semi-symmetric twist causes any lo-
cal (hyper)surface in the space-time manifold S4 to be non-
orientable in general. As a result, the trajectories of individ-
ual particles generally depend on the twisted path they trace
in S4. It is important to note that this twist is the genera-
tor of the so-called microspin, e.g., in the simplest case, a
spinning particle is simply a point-rotation in the sense of the
so-called Cosserat continuum theory [10]. As usual, the semi-
symmetric twist tensor enters the curvature tensor as an inte-
gral part via the general (semi-symmetric) connection. This
way, all classical physical fields, not just the gravitational
field, are intrinsic to the space-time geometry.

3.1 A semi-symmetric connection based on a semi-
simple (transitive) rotation group

Let us now work in four space-time dimensions (since this
number of dimensions is most relevant to physics). For a
semi-simple (transitive) rotation group, we can show that

[!a; !b] = � 2abcd 'c �d
where 2abcd=

p
det (g) �abcd are the components of the com-

pletely anti-symmetric four-dimensional Levi-Civita permu-
tation tensor and ' is a vector field normal to a three-
dimensional space (hypersurface)

P
(t) defined as the time

section ct=x0 = const. (where c denotes the speed of light in
vacuum) of S4 with local coordinates zA. It satisfies 'a'a =
= = � 1 and is given by

'a =
1
6
 2abcd2ABC �bA�cB�dC

where
�aA � @Axa; �Aa � @azA;
�bA�

A
a = �ba � 'a'b;

�aA�
B
a = �BA :

More specifically,

2ABC 'd =2abcd �aA�bB�cC
from which we find

2abcd =2ABC �Aa �Bb �Cc 'd + �abcd

I. Suhendro. A New Semi-Symmetric Unified Field Theory of the Classical Fields of Gravity and Electromagnetism 55



Volume 4 PROGRESS IN PHYSICS October, 2007

where

�abcd =  (2ebcd 'a + 2aecd 'b + 2abed 'c)'e:
Noting that �abcd'd = 0, we can define a completely anti-

symmetric, three-index, four-dimensional “permutation” ten-
sor by

�abc �2abcd 'd =  2ABC �Aa �Bb �Cc :
Obviously, the hypersurface

P
(t) can be thought of as

representing the position of a material body at any time t. As
such, it acts as a boundary of the so-called world-tube of a
family of world-lines covering an arbitrary four-dimensional
region in S4.

Meanwhile, in the most general four-dimensional case,
the twist tensor can be decomposed according to

�c[ab] =
1
3

�
�cb �d[ad] � �ca�d[bd]

�
+

+
1
6
2cabd2dpqr gqsgrt�p[st] + gcdQdab ;

Qabc +Qbca +Qcab = 0 ;

Qaab = Qaba = 0 :

In our special case, the twist tensor becomes completely
anti-symmetric (in its three indices) as

�c[ab] = �1
2
 gce 2abed 'd

from which we can write

'a = �1
3
2abcd �b[cd]

where, as usual, �b[cd] = gbe�e[cd]. Therefore, at this point,
the full connection is given by (with the Christoffel symbols
written explicitly)

�cab =
1
2
gcd (@bgda � @d gab + @agbd)� 1

2
 2cabd 'd:

We shall call this special connection “semi-symmetric”.
This gives the following simple conditions:

�c(ab) = �c
ab =

1
2
gcd (@bgda � @dgab + @agbd) ;

Kc
ab = �c[ab] = �1

2
 2cabd 'd;

�b[ab] = 0 ;

�bab = �bba = @a
�

ln
p

det (g)
�
:

Furthermore, we can extract a projective metric tensor $
from the twist (via the structure constants) as follows:

$ab = gab � 'a'b = 2�c[ad]�
d
[cb]:

In three dimensions, the above relation gives the so-called
Cartan metric.

Finally, we are especially interested in how the existence
of twist affects a coordinate frame spanned by the basis !a
and its dual �b in a geometry endowed with distant paral-
lelism. Taking the four-dimensional curl of the coframe basis
�b, we see that

[r; �a] = 2d�a = 2T a

= � 2 �m�n�p�q (@ �mea�n)'�pe�q

where r= �brb = s �m @ �m and 2abcd = 1p
det(g)

�abcd. From

the metricity condition of the tetrad (with respect to the basis
of En), namely,rbe �m

a = 0, we have

@b e �m
a = �cab e

�m
c ;

@�ne �m
a = ��n�p eb�p@b e

�m
a = e �m

c �cab e
�nb:

It is also worthwhile to note that from an equivalent met-
ricity condition, namely,raeb�m = 0, one finds

@�n ea�m = ��abc e
b
�m e

c
�n :

Thus we find

[r; �a] = � 2bcde �a[bc]'d !e :

In other words,

T a = d�a = �1
2
 2bcde �a[bc]'d !e :

For the frame basis, we have

[r; !a] = � 2bcde �a[bc]'d !e :

At this point it becomes clear that the presence of twist
in S4 rotates the frame and coframe bases themselves. The
basics presented here constitute the reality of the so-called
spinning frames.

3.2 Construction of the semi-symmetric field equations

In the preceding section, we have introduced the semi-
symmetric connection

�cab =
1
2
gcd (@b gda � @d gab + @a gbd)� 1

2
 2cabd 'd

based on the semi-simple rotation group

[!a; !b] = � 2abcd 'c �d:
Now we are in a position to construct a classical uni-

fied field theory of gravity and electromagnetism based on
this connection. We shall then call the resulting field equa-
tions semi-symmetric, hence the name semi-symmetric uni-
fied field theory. (Often the terms “symmetric” and “asym-
metric” refer to the metric rather than the connection.)
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Using the results we have given in Section 1.3, we see
that the curvature tensor built from our semi-symmetric con-
nection is given by

Rdabc = Bdabc � 1
2

�2dace r̂b'e� 2dabe r̂c'e�+

+
3
2

�
geb �defacg � gec �defabg

�
'f 'g:

As before, the generalized Ricci tensor is then given by
the contraction Rab =Rcacb, i.e.,

Rab = Bab � 1
2

(gab � 'a'b)� 1
2
 2cdab r̂c'd :

Then we see that its symmetric and anti-symmetric parts
are given by

R(ab) = Bab � 1
2

(gab � 'a'b)
R[ab] = �1

2
 2cdab Fcd

where
Fab =

1
2

(@a'b � @b'a)
are the components of the intrinsic spin tensor of the first kind
in our unified field theory. Note that we have used the fact that
r̂a'b�r̂b'a = @a'b� @b'a.

Note that if
'a =  �a0

then the twist tensor becomes covariantly constant throughout
the space-time manifold, i.e.,

rd �c[ab] = r̂d �c[ab] = 0 :

This special case may indeed be anticipated as in the pre-
sent theory, the two fundamental geometric objects are the
metric and twist tensors.

Otherwise, in general let us define a vector-valued gravo-
electromagnetic potential A via

'a = �Aa

where

� =
�


AaAa

�1=2
:

Letting 2 =�2, we then have

Rab = Bab � 1
2

(gab� 2 AaAb)� 1
2
 2cdab �� �F +Hcd

�
where

�Fab =
1
2

(@aAb � @bAa) ;
Hab = �1

2
(Aa@b�� Ab@a�) :

We may call �Fab the components of the intrinsic spin ten-
sor of the second kind. The components of the anti-symmetric
field equation then take the form

R[ab] = �1
2
 2cdab �� �Fcd +Hcd

�
:

Using the fact that

@aFbc + @bFca + @cFab = 0

we obtain
raR[ab] = 0 :

The dual of the anti-symmetric part of the generalized
Ricci tensor is then given by

~R[ab] =
1
2
2abcd R[cd] = �1

2
(@a'b � @b'a)

i.e.,
~R[ab] = � �� �Fab +Hab

�
:

We therefore see that

@a ~R[bc] + @b ~R[ca] + @c ~R[ab] = 0 :

At this point, the components of the intrinsic spin tensor
take the following form:

�Fab = � 1
2�

�2abcd R[cd] + 2Hab
�
:

The generalized Einstein field equation is then given by

Gab = Rab � 1
2
gabR = kTab

where k is a coupling constant, R=Raa =B� 3
2 (in our ge-

ometrized units) is the generalized Ricci scalar, and Tab are
the components of the energy-momentum tensor of the cou-
pled matter and spin fields. Taking the covariant divergence
of the generalized Einstein tensor with the help of the rela-
tions

raRab = r̂aRab � �b[ac]R
[ac] ;

raR = @aR = @aB ;

Fab'b = �1
2
'b r̂b 'a ;

we obtain
raGab = r̂aGab � F ba'a:

On the other hand, using the integrability condition

2abcd r̂br̂c'd =2abcd @b@c'd = 0

we have

r̂aRab = r̂aBab � 1
2
 r̂a �'a'b� :

I. Suhendro. A New Semi-Symmetric Unified Field Theory of the Classical Fields of Gravity and Electromagnetism 57



Volume 4 PROGRESS IN PHYSICS October, 2007

Therefore

raGab = r̂a Ĝab +
1
2

�
'b r̂a 'a + 'a r̂a 'b

�� F ba'a
where, as before, Ĝab =Bab� 1

2 gabB. But as r̂a Ĝab = 0,
we are left with

raGab =
1
2

�
'b r̂a 'a + 'a r̂a 'b

�� F ba'a:
We may notice that in general the above divergence does

not vanish.
We shall now seek a possible formal correspondence be-

tween our present theory and both general relativistic gravit-
omagnetism and Maxwellian electrodynamics. We shall first
assume that particles do not necessarily have point-like struc-
ture. Now let the rest (inertial) mass of a particle and the
speed of light in vacuum (again) be denoted by m and c, re-
spectively. Also, let � represent the scalar gravoelectromag-
netic potential and let ga and Ba denote the components of
the gravitational spin potential and the electromagnetic four-
potential, respectively. We now make the following ansatz:

� = const = � �g
2mc2

;

Aa = @a�+ vg0a = @a�+ ga +Ba ;

where v is a constant and

�g = (1 +m)n+ 2 (1 + s�) e

is the generalized gravoelectromagnetic charge. Here n is the
structure constant (i.e., a volumetric number) which is differ-
ent from zero for structured particles, s� is the spin constant,
and e is the electric charge (or, more generally, the electro-
magnetic charge).

Now let the gravitational vorticity tensor be given by

!ab =
1
2

(@a gb � @b ga)
which vanishes in spherically symmetric (i.e., centrally sym-
metric) situations. Next, the electromagnetic field tensor is
given as usual by

fab = @bBa � @aBb :
The components of the intrinsic spin tensor can now be

written as
�Fab = !ab � 1

2
fab :

As a further consequence, we have Hab = 0 and therefore

�Fab = � 1
2�
2abcd R[cd] =

mc2

�g
2cdab R[cd] :

The electromagnetic field tensor in our unified field the-
ory is therefore given by

fab = �2
�
mc2

�g
2cdab R[cd] � !ab

�
:

Here we see that when the gravitational spin is present,
the electromagnetic field does interact with the gravitational
field. Otherwise, in the presence of a centrally symmetric
gravitational field we have

fab = �2mc2

�g
2cdab R[cd]

and there is no physical interaction between gravity and elec-
tromagnetism.

3.3 Equations of motion

Now let us take the unit vector field ' to represent the unit
velocity vector field, i.e.,

'a = ua =
dxa

ds
where ds is the (infinitesimal) world-line satisfying

1 = gab
dxa

ds
dxb

ds
:

This selection defines a general material object in our
unified field theory as a hypersurface

P
(t) whose world-

velocity u is normal to it. Indeed, we will soon see some
profound physical consequences.

Invoking this condition, we immediately obtain the fol-
lowing equation of motion:

raGab =
1
2

�
ubra ua +

Dub

Ds

�
�  F ba 'a

where we have used the following relations:

�c(ab) = �c
ab

�c[ab] = �1
2
 2cabd ud

Dua

Ds
= ubrb ua =

dua

ds
+ �a(bc)u

buc =

=
dua

ds
+ �a

bcu
buc = ub r̂a ua :

What happens now if we insist on guaranteeing the con-
servation of matter and spin? Letting

raGab = 0

and inserting the value of �, we obtain the equation of motion

Dua

Ds
= � �g

mc2
�F abu

b � uarb ub
i.e., the generalized Lorentz equation of motion

Dua

Ds
=

�g
2mc2

(fab � 2!ab)u
b � uarbub:

From the above equation of motion we may derive special
equations of motion such as those in the following cases:
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1. For an electrically charged, non-spinning, incompress-
ible, structureless (point-like) particle moving in a stat-
ic, centrally symmetric gravitational field, we have
m, 0, e, 0, s� = 0, n= 0,raua = 0, fab , 0, !ab = 0.
Therefore its equation of motion is given by

Dua

Ds
=

e
mc2

fabu
b

which is just the standard, relativistically covariant Lo-
rentz equation of motion.

2. For an electrically charged, spinning, incompressible,
structureless particle moving in a non-static, spinning
gravitational field, we have m, 0, e, 0, s� , 0, n= 0,
raua = 0, fab , 0, !ab , 0. Therefore its equation of
motion is given by

Dua

Ds
=

(1 + s�)
mc2

e (fab � 2!ab)u
b:

3. For a neutral, non-spinning, incompressible, structure-
less particle moving in a static, centrally symmetric
gravitational field, we havem, 0, e= 0, s� = 0, n= 0,
raua = 0, fab = 0, !ab = 0. Therefore its equation of
motion is given by the usual geodesic equation of mo-
tion Dua

Ds
= 0 :

In general, this result does not hold for arbitrary incom-
pressible bodies with structure.

4. For a neutral, static, non-spinning, compressible body
moving in a static, non-spinning, centrally symmetric
gravitational field, we havem, 0, e= 0, s� = 0, n, 0,
raua , 0, fab = 0, !ab = 0. Therefore its equation of
motion is given by

Dua

Ds
= �uarb ub

which holds for non-Newtonian fluids in classical hy-
drodynamics.

5. For an electrically charged, non-spinning, compress-
ible body moving in a static, non-spinning, centrally
symmetric gravitational field, we have m, 0, e, 0,
s� = 0, n, 0, raua , 0, fab , 0, !ab = 0. Therefore
its equation of motion is given by

Dua

Ds
=
n (1 +m)
mc2

efabu
b � uarbub

which holds for a variety of classical Maxwellian flu-
ids.

6. For a neutral, spinning, compressible body moving in a
non-static, spinning gravitational field, the parametric
(structural) condition is given by m, 0, e= 0, s�;, 0,
n, 0, raua , 0, fab = 0, !ab , 0. Therefore its equa-
tion of motion is given by

Dua

Ds
= �n (1 +m)

mc2
!abu

b � uarbub:

Note that the exact equation of motion for massless, neu-
tral particles cannot be directly extracted from the general
form of our equation of motion.

We now proceed to give the most general form of the
equation of motion in our unified field theory. Using the gen-
eral identity (see Section 1.3)

raGab = 2gab�c[da]R
d
c + �a[cd]R

cdb
a

we see that

raGab = 
�
2bcda R[cd] +

1
2
2cdea Rcdeb

�
ua:

After some algebra, we can show that the above relation
can also be written in the form

Dua

Ds
= � 2abcd R[bc]ud:

Note that the above general equation of motion is true
whether the covariant divergence of the generalized Einstein
tensor vanishes or not. Otherwise, let �a =rbGba represent
the components of the non-conservative vector of the coupled
matter and spin fields. Our equation of motion can then be
written alternatively as

Dua

Ds
=

1
2
2bcde Rbcdaue � �a:

Let us once again consider the conservative case, in which
�a = 0. We now have the relation

1
2
2bcde Rbcdaue = � 2�g

mc2
�F abu

b � uarbub
i.e.,

1
2

�
2cdhb Rcdha +

4�g
mc2

�F ab

�
ub = �uarbub:

For a structureless spinning particle, we are left with�
2cdhb Rcdha +

4 (1 + s�)
mc2

e �F ab

�
ub = 0

for which the general solution may read

�Fab = e
mc2

4 (1 + s�)
�2acde R cde

b � 2bcde R cde
a
�

+ Sab

where Sab , 0 are the components of a generally asymmetric
tensor satisfying

Sabub = � e mc2

4 (1 + s�)
2acde R cde

b ub:

In the case of a centrally symmetric gravitational field,
this condition should again allow us to determine the electro-
magnetic field tensor from the curvature tensor alone.

Now, with the help of the decomposition

Rdabc = Cdabc +
1
2
�
�dbRac+gacR

d
b��dcRab�gabRdc�+

+
1
6
�
�dc gab � �db gac�R
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we obtain the relation

2bcde Rbcda =2bcde
�
Cbcda +

1
2

�
gacR[bd] � gabR[cd]

��
:

However, it can be shown that the last two terms in the
above relation cancel each other, since

2bcde gacR[bd] =2bcde gabR[cd] = � gac (@euc � @cue)
therefore we are left with the simple relation

2bcde Rbcda =2bcde Cbcda:
If the space-time under consideration is conformally flat

(i.e., Cdabc = 0), we obtain the following integrability condi-
tion for the curvature tensor:

2bcde Rbcda = 0 :

It is easy to show that this is generally true if the compo-
nents of the curvature tensor are of the form

Rabcd =
1
12

(gac gbd � gad gbc)B + Pabcd

where
Pabcd = " (gac gbd � gad gbc) �Frs �F rs

with � being a constant of proportionality. In this case, the
generalized Ricci tensor is completely symmetric, i.e.,

R(ab) =
1
4
gab
�
B + 12 " �Frs �F rs

��
R[ab] = 0 :

We also have

R = B + 12 " �Fab �F ab

such that the variation �S= 0 of the action integral

S =
& p

det(g)R d4x =

=
& p

det(g)
�
B + 12 " �Fab �F ab

�
d4x

where dV =
p

det(g)dx0dx1dx2dx3 =
p

det(g)d4x defines
the elementary four-dimensional volume, gives us a set of
generalized Einstein-Maxwell equations. Note that in this
special situation, the expression for the curvature scalar is
true irrespective of whether the Ricci scalar B is constant
or not. Furthermore, this gives a generalized Einstein space
endowed with a generally non-vanishing spin density. Elec-
tromagnetism, in this case, appears to be inseparable from
the gravitational vorticity and therefore becomes an emer-
gent phenomenon. Also, the motion then becomes purely
geodesic:

dua

ds
+ �a

bcu
buc = 0 ;

�Fabub = 0 :

3.4 The conserved gravoelectromagnetic currents of
the theory

Interestingly, we can obtain more than one type of conserved
gravoelectromagnetic current from the intrinsic spin tensor of
the present theory.

We have seen in Section 2.2 that the intrinsic spin tensor
in the present theory is given by

�Fab =
mc2

�g
2cdab R[cd] :

We may note that bja � brb �F ba = 0

which is a covariant “source-free condition” in its own right.
Now, we shall be particularly interested in obtaining the

conservation law for the gravoelectromagnetic current in the
most general sense.

Define the absolute (i.e., global) gravoelectromagnetic
current via the total covariant derivative as follows:

ja � rb �F ba =
mc2

�g
2abcd rdRbc :

Now, with the help of the relation

rc �Fab+ra �Fbc+rb �Fca=�2
�
�d[ab] �Fcd+�d[bc] �Fad+�d[ca]

�Fbd
�

we see that

ja = �6mc2

�g
gce�abcdR[be]ud:

Simplifying, we have

ja =
6mc2

�g
R[ab]ub :

At this moment, we have nothing definitive to say about
gravoelectromagnetic charge confinement. We cannot there-
fore speak of a globally admissible gravoelectromagnetic cur-
rent density yet. However, we can show that our current is
indeed conserved. As a start, it is straightforward to see that
we have the relative conservation law

r̂aja = 0 :

Again, this is not the most desired conservation law as we
are looking for the most generally covariant one.

Now, with the help of the relations

2abcd rcFab = � 2abcd ��e[ac]Feb + �e[bc]Fae
�

�a[bc] = �1
2
 2abcd ud

we obtain
raR[ab] = �2F abua :
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Therefore
ubraR[ab] = 0 :

Using this result together with the fact that

R[ab]raub = �1
2
 2abcd FabFcd = 0

we see that

raja =
6mc2

�g

�
ubraR[ab] +R[ab]raub

�
= 0

i.e., our gravoelectromagnetic current is conserved in a fully
covariant manner.

Let us now consider a region in our space-time mani-
fold in which the gravoelectromagnetic current vanishes. We
have, from the boundary condition ja = 0, the governing
equation

R[ab]ub = 0

which is equivalent to the following integrability condition:

2abcd ua (@cud � @duc) = 0 :

In three dimensions, if in general curlu, 0, this gives the
familiar integrability condition

u � curlu = 0

where the dot represents three-dimensional scalar product.
We are now in a position to define the phenomenologi-

cal gravoelectromagnetic current density which shall finally
allow us to define gravoelectromagnetic charge confinement.
However, in order to avoid having extraneous sources, we do
not in general expect such confinement to hold globally. From
our present perspective, what we need is a relative (i.e., local)
charge confinement which can be expressed solely in geomet-
ric terms.

Therefore we first define the spin tensor density (of
weight +2) as

�fab � det (g) �F ab =
mc2

�g
p

det (g) "abcdR[cd] :

The phenomenological (i.e., relative) gravoelectromag-
netic current density is given here by

�ja = @b �fab =
mc2

�g

�
@b
p

det (g)
�
"abcdR[cd]

i.e.,
�ja =

mc2

2�g
"abcdgrs (@b grs)R[cd] :

Meanwhile, using the identity

@a gbc = �gbrgcs@a grs
we see that

(@a grs) (@b grs) = (@a grs) (@b grs) :

Using this result and imposing continuity on the metric

tensor, we finally see that

@a �ja =
mc2

2�g
"abcd�

�
�

1
2
grsgpq (@agrs) (@bgpq)� (@agrs) (@bgrs)

�
R[cd] = 0

which is the desired local conservation law. In addition, it is
easy to show that

r̂a �ja = 0 :

Unlike the geometric current represented by ja, the phe-
nomenological current density given by �ja corresponds di-
rectly to the hydrodynamical analogue of a gravoelectromag-
netic current density if we set

�ja = det (g) �ua

which defines charge confinement in our gravoelectrodynam-
ics. Combining this relation with the previously given equiv-
alent expression for ja, we obtain

� =
mc2

2�g
2abcd ua grs (@b grs) R[cd]

i.e.,
� =

mc2

�g
2abcd ua�hhbR[cd]

for the gravoelectromagnetic charge density. Note that this is
a pseudo-scalar.

At this point, it becomes clear that the gravoelectromag-
netic charge density is generated by the properties of the curv-
ed space-time itself, i.e., the non-unimodular character of the
space-time geometry, for which

p
det(g) = 1 and �hhb , 0,

and the twist (intrinsic spin) of space-time which in general
causes material points (whose characteristics are given by �g)
to rotate on their own axes such that in a finite region in the
space-time manifold, an “individual” energy density emerges.
Therefore, in general, a material body is simply a collection
of individual material points confined to interact gravoelec-
trodynamically with each other in a finite region in our curved
space-time. More particularly, this can happen in the absence
of either the electromagnetic field or the gravitational vor-
ticity, but not in the absence of both fields. To put it more
simply, it requires both local curvature and twist to generate
a material body out of an energy field.

4 Final remarks

At this point, we may note that we have not considered the
conditions for the balance of spin (intrinsic angular momen-
tum) in detail. This may be done, in a straightforward man-
ner, by simply expressing the anti-symmetric part of the gen-
eralized Ricci tensor in terms of the so-called spin density
tensor as well as the couple stress tensor. This can then be
used to develop a system of equations governing the balance
of energy-momentum in our theory. Therefore, we also need

I. Suhendro. A New Semi-Symmetric Unified Field Theory of the Classical Fields of Gravity and Electromagnetism 61



Volume 4 PROGRESS IN PHYSICS October, 2007

to obtain a formal representation for the energy-momentum
tensor in terms of the four-momentum vector. This way, we
obtain a set of constitutive equations which characterize the
theory.

This work has simply been founded on the feeling that it
could be physically correct as a unified description of physi-
cal phenomena due to its manifest simplicity. Perhaps there
remains nothing more beyond the simple appreciation of that
possibility. It is valid for a large class of particles and (space-
time) continua in which the coordinate points themselves are
allowed to rotate and translate. Since the particles are directly
related to the coordinate points, they are but intrinsic objects
in the space-time manifold, just as the fields are.

It remains, therefore, to consider a few physically mean-
ingful circumstances in greater detail for the purpose of find-
ing particular solutions to the semi-symmetric field equations
of our theory.
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Optical-Fiber Gravitational Wave Detector: Dynamical 3-Space
Turbulence Detected
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Preliminary results from an optical-fiber gravitational wave interferometric detector are
reported. The detector is very small, cheap and simple to build and operate. It is as-
sembled from readily available opto-electronic components. A parts list is given. The
detector can operate in two modes: one in which only instrument noise is detected, and
data from a 24 hour period is reported for this mode, and in a 2nd mode in which the
gravitational waves are detected as well, and data from a 24 hour period is analysed.
Comparison shows that the instrument has a high S/N ratio. The frequency spectrum of
the gravitational waves shows a pink noise spectrum, from 0 to 0.1 Hz.

1 Introduction

Preliminary results from an optical-fiber gravitational wave
interferometric detector are reported. The detector is very
small, cheap and simple to build and operate, and is shown in
Fig. 1. It is assembled from readily available opto-electronic
components, and is suitable for amateur and physics under-
graduate laboratories. A parts list is given. The detector
can operate in two modes: one in which only instrumen-
tal noise is detected, and the 2nd in which the gravitational
waves are detected as well. Comparison shows that the in-
strument has a high S/N ratio. The frequency spectrum of
the gravitational waves shows a pink noise spectrum, from
essentially 0 to 0.1 Hz. The interferometer is 2nd order in
v=c and is analogous to a Michelson interferometer. Michel-
son interferometers in vacuum mode cannot detect the light-
speed anisotropy effect or the gravitational waves manifesting
as light-speed anisotropy fluctuations. The design and oper-
ation as well as preliminary data analysis are reported here
so that duplicate detectors may be constructed to study cor-
relations over various distances. The source of the gravita-
tional waves is unknown, but a 3D multi-interferometer de-
tector will soon be able to detect directional characteristics of
the waves.

2 Light speed anisotropy

In 2002 it was reported [1, 2] that light-speed anisotropy had
been detected repeatedly since the Michelson-Morley exper-
iment of 1887 [3]. Contrary to popular orthodoxy they re-
ported a light-speed anisotropy up to 8 km/s based on their
analysis of their observed fringe shifts. The Michelson-
Morley experiment was everything except null. The deduced
speed was based on Michelson’s Newtonian-physics calibra-
tion for the interferometer. In 2002 the necessary special rela-
tivity effects and the effects of the air present in the light paths
were first taken into account in calibrating the interferometer.
This reanalysis showed that the actual observed fringe shifts

Fig. 1: Photograph of the detector showing the fibers forming the
two orthogonal arms. See Fig. 2 for the schematic layout. The beam
splitter and joiner are the two small stainless steel cylindrical tubes.
The two FC to FC mating sleeves are physically adjacent, and the
fibers can be re-connected to change from Mode A (Active detector
— gravitational wave and device noise detection) to Mode B (Back-
ground — device noise measurements only). The overall dimensions
are 160mm�160mm. The 2�2 splitter and joiner each have two in-
put and two output fibers, with one not used.

corresponded to a very large light-speed anisotropy, being
in excess of 1 part in 1000 of c= 300,000 km/s. The exis-
tence of this light-speed anisotropy is not in conflict with the
successes of Special Relativity, although it is in conflict with
Einstein’s postulate that the speed of light is invariant. This
large light-speed anisotropy had gone unnoticed throughout
the twentieth century, although we now know that it was de-
tected in seven experiments, ranging from five 2nd order in
v=c gas-mode Michelson-interferometer experiments [3–7] to
two 1st order in v=c one-way RF coaxial cable travel-speed
measurements using atomic clocks [8, 9]. In 2006 another
RF travel time coaxial cable experiment was performed [10].
All eight light-speed anisotropy experiments agree [11, 12].
Remarkably five of these experiments [3, 4, 8, 9, 10] reveal
pronounced gravitational wave effects, where the meaning of
this term is explained below. In particular detailed analysis of
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Fig. 2: Schematic layout of the interferometric optical-fiber light-speed anisotropy/gravitational wave detector (in Mode A). Actual detector
is shown in Fig.1, with ARM2 located to the left, so as to reduce lengths of fiber feeds and overall size. Coherent 650 nm light from the laser
diode is split into two 1m length single-mode polarisation preserving fibers by the beam splitter. The two fibers take different directions,
ARM1 and ARM2, after which the light is recombined in the beam joiner, which also has 1m length fibers, in which the phase differences
lead to interference effects that are indicated by the outgoing light intensity, which is measured in the photodiode, and then recorded in the
Digital Storage Oscilloscope (DSO). In Mode A the optical fibers are joined x � x and w � w at the FC to FC mating sleeves, as shown.
In the actual layout the fibers make four loops in each arm, and the length of one straight section is 100 mm, which is the center to center
spacing of the plastic turners, having diameter = 52 mm, see Fig. 1. The two FC to FC mating sleeves are physically adjacent and by
re-connecting the fibers as x � w and w � x the light paths can be made symmetrical wrt the arms, giving Mode B, which only responds
to device noise — the Background mode. In Mode A the detector is Active, and responds to both flowing 3-space and device noise. The
relative travel times, and hence the output light intensity, are affected by the fluctuating speed and direction of the flowing 3-space, by
affecting differentially the speed of the light, and hence the net phase difference between the two arms.

the Michelson-Morley fringe shift data shows that they not
only detected a large light-speed anisotropy, but that their
data also reveals large wave effects [12]. The reason why
their interferometer could detect these phenomena was that
the light paths passed through air; if a Michelson interfer-
ometer is operated in vacuum then changes in the geomet-
ric light-path lengths exactly cancel the Fitzgerald-Lorentz
arm-length contraction effects. This cancellation is incom-
plete when a gas is present in the light paths. So modern vac-
uum Michelson interferometers are incapable of detecting the
large light-speed anisotropy or the large gravitational waves.
Here we detail the construction of a simple optical-fiber light-
speed anisotropy detector, with the main aim being to record
and characterise the gravitational waves. These waves reveal
a fundamental aspect to reality that is absent in the prevailing
models of reality.

3 Dynamical 3-Space and gravitational waves

The light-speed anisotropy experiments reveal that a dynam-
ical 3-space exists, with the speed of light being c only wrt
to this space: observers in motion “through” this 3-space de-
tect that the speed of light is in general different from c, and
is different in different directions. The notion of a dynam-
ical 3-space is reviewed in [11, 12]. The dynamical equa-
tions for this 3-space are now known and involve a velocity
field v(r; t), but where only relative velocities are observ-
able. The coordinates r are relative to a non-physical math-
ematical embedding space. These dynamical equations in-

volve Newton’s gravitational constant G and the fine struc-
ture constant �. The discovery of this dynamical 3-space
then required a generalisation of the Maxwell, Schrödinger
and Dirac equations. In particular these equations showed
that the phenomenon of gravity is a wave refraction effect, for
both EM waves and quantum matter waves [12, 13]. This new
physics has been confirmed by explaining the origin of grav-
ity, including the Equivalence Principle, gravitational light
bending and lensing, bore hole g anomalies, spiral galaxy ro-
tation anomalies (so doing away with the need for dark mat-
ter), black hole mass systematics, and also giving an excel-
lent parameter-free fit to the supernovae and gamma-ray burst
Hubble expansion data [14] (so doing away with the need for
dark energy). It also predicts a novel spin precession effect
in the GPB satellite gyroscope experiment [15]. This physics
gives an explanation for the successes of the Special Relativ-
ity formalism, and the geodesic formalism of General Rela-
tivity. The wave effects already detected correspond to fluc-
tuations in the 3-space velocity field v(r; t), so they are really
3-space turbulence or wave effects. However they are better
known, if somewhat inappropriately as “gravitational waves”
or “ripples” in “spacetime”. Because the 3-space dynamics
gives a deeper understanding of the spacetime formalism, we
now know that the metric of the induced spacetime, merely a
mathematical construct having no ontological significance, is
related to v(r; t) according to [11, 12]

ds2 = dt2 �
�
dr� v(r; t)dt

�2
c2

= g�� dx�dx� : (1)
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The gravitational acceleration of matter, and of the struc-
tural patterns characterising the 3-space, is given by [12, 13]

g =
@v
@t

+ (v � r)v (2)

and so fluctuations in v(r; t) may or may not manifest as a
gravitational force. The general characteristics of v(r; t) are
now known following the detailed analysis of the eight exper-
iments noted above, namely its average speed, over an hour
or so, of some 420�30 km/s, and direction RA = 5.5�2hr,
Dec = 70�10�S, together with large wave/turbulence effects.
The magnitude of this turbulence depends on the timing res-
olution of each particular experiment, and here we report that
the speed fluctuations are very large, as also seen in [10]
Here we employ a new detector design that enables a detailed
study of v(r; t), and with small timing resolutions. A key
experimental test of the various detections of v(r; t) is that
the data shows that the time-averaged v(r; t) has a direction
that has a specific Right Ascension and Declination as given
above, i.e. the time for say a maximum averaged speed de-
pends on the local sidereal time, and so varies considerably
throughout the year, as do the directions to all astronomical
processes/objects. This sidereal effect constitutes an abso-
lute proof that the direction of v(r; t) and the accompany-
ing wave effects are real “astronomical” phenomena, as there
is no known earth-based effect that can emulate the sidereal
effect.

4 Gravitational wave detector

To measure v(r; t) has been difficult until now. The early ex-
periments used gas-mode Michelson interferometers, which
involved the visual observation of small fringe shifts as the
relatively large devices were rotated. The RF coaxial ca-
ble experiments had the advantage of permitting electronic
recording of the RF travel times, over 500 m [8] and 1.5km
[9], by means of two or more atomic clocks, although the ex-
periment reported in [10] used a novel technique that enable
the coaxial cable length to be reduced to laboratory size. The
new detector design herein has the advantage of electronic
recording as well as high precision because the travel time
differences in the two orthogonal fibers employ light inter-
ference effects, with the interference effects taking place in
an optical beam-joiner, and so no optical projection problems
arise. The device is very small, very cheap and easily assem-
bled from readily available opto-electronic components. The
schematic layout of the detector is given in Fig. 2, with a de-
tailed description in the figure caption. The detector relies
on the phenomenon where the 3-space velocity v(r; t) affects
differently the light travel times in the optical fibers, depend-
ing on the projection of v(r; t) along the fiber directions. The
differences in the light travel times are measured by means of
the interference effects in the beam joiner. However at present
the calibration constant k of the device is not yet known, so
it is not yet known what speed corresponds to the measured

Parts Thorlabs
http://www.thorlabs.com/

1x Si Photodiode Detector/ PDA36A or PDA36A-EC
Amplifier/Power Supply select for local AC voltage

1xFiber Adaptor for above SM1FC

1xFC Fiber Collimation Pkg F230FC-B

1xLens Mounting Adaptor AD1109F

2xFC to FC Mating Sleeves ADAFC1

2x 2x2 Beam Splitters FC632-50B-FC

Fiber Supports PFS02

Midwest Laser Products
http://www.midwest-laser.com/

650nm Laser Diode Module VM65003

LDM Power Supply/3VDC Local Supplier or Batteries

BNC 50
 coaxial cable Local Supplier

PoLabs

PoScope USB DSO http://www.poscope.com/

Table 1: List of parts and possible suppliers for the detector. The FC
Collimation Package and Lens Mounting Adaptor together permit
the coupling of the Laser Diode Module to the optical fiber connec-
tor. This requires unscrewing the lens from the Laser Diode Module
and screwing the diode into above and making judicious adjustment
to maximise light coupling. The coaxial cable is required to connect
the photodiode output to the DSO. Availability of a PC to host the
USB DSO is assumed. The complete detector will cost � $1100 US
dollars.

time difference �t, although comparison with the earlier ex-
periments gives a guide. In general we expect

�t = k2Lv2
P

c3
cos
�
2(� �  )

�
(3)

where k is the instrument calibration constant. For gas-mode
Michelson interferometers k is known to be given by k2�
�n2� 1, where n is the refractive index of the gas. Here
L= 4�100 mm is the effective arm length, achieved by hav-
ing four loops of the fibers in each arm, and vP is the pro-
jection of v(r; t) onto the plane of the detector. The angle
� is that of the arm relative to the local meridian, while  is
the angle of the projected velocity, also relative to the local
meridian. A photograph of the prototype detector is shown in
Figure 1.

A key component is the light source, which can be the
laser diode listed in the Table of parts. This has a particu-
larly long coherence length, unlike most cheap laser diodes,
although the data reported herein used a more expensive He-
Ne laser. The other key components are the fiber beam split-
ter/joiner, which split the light into the fibers for each arm,
and recombine the light for phase difference measurements by
means of the fiber-joiner and photodiode detector and ampli-
fier. A key feature of this design is that the detector can oper-

R. T. Cahill. Optical-Fiber Gravitational Wave Detector: Dynamical 3-Space Turbulence Detected 65



Volume 4 PROGRESS IN PHYSICS October, 2007

Fig. 3: Photodiode voltages over a 24 hour period with data recording every 5 s, with the detector arms orientated in a NS-EW direction and
horizontal. Upper plot (red) is for detector in Mode A, i.e responding to 3-space dynamics and instrument noise, while lower plot (blue) is
for Mode B in which detector only responds to instrumental noise, and demonstrates the high S/N ratio of the detector. The lower plot is
dominated by higher frequency noise, as seen in the frequency spectrum in Fig. 5. A selection of the above data over a 1 hour time interval,
from time steps 4900 to 5620, is shown in Fig. 4 indicating details of the 3-space wave forms.

ate in two different modes. In Mode A the detector is Active,
and responds to both flowing 3-space and device noise. Be-
cause the two fiber coupler (FC) mating sleeves are physi-
cally adjacent a re-connection of the fibers at the two mating
sleeves makes the light paths symmetrical wrt the arms, and
then the detector only responds to device noise; this is the
Background mode. The data stream may be mostly cheaply
recorded by a PoScope USB Digital Storage Oscilloscope
(DSO) that runs on a PC.

The interferometer operates by detecting the travel time
difference between the two arms as given by (3). The cycle-
averaged light intensity emerging from the beam joiner is
given by

I(t) /
���E1 ei!t + E2 ei!(t+�+�t)

���2
= jEj2 cos

�
!(� + �t)

2

�2
� a+ b�t : (4)

Here Ei are the electric field amplitudes and have the
same value as the fiber splitter/joiner are 50%-50% types,
and having the same direction because polarisation preserv-
ing fibers are used, ! is the light angular frequency and � is a
travel time difference caused by the light travel times not be-
ing identical, even when �t= 0, mainly because the various
splitter/joiner fibers will not be identical in length. The last
expression follows because �t is small, and so the detector
operates in a linear regime, in general, unless � has a value
equal to modulo(T ), where T is the light period. The main
temperature effect in the detector is that � will be tempera-
ture dependent. The photodiode detector output voltage V (t)

is proportional to I(t), and so finally linearly related to �t.
The detector calibration constants a and b depend on k and � ,
and are unknown at present, and indeed � will be instrument
dependent. The results reported herein show that the value of
the calibration constant b is not given by using the effective
refractive index of the optical fiber in (3), with b being much
smaller than that calculation would suggest. This is in fact
very fortunate as otherwise the data would be affected by the
need to use the cosine form in (4), and thus would suffer from
modulo effects. It is possible to determine the voltages for
which (4) is in the non-linear regime by spot heating a seg-
ment of one fiber by touching with a finger, as this produces
many full fringe shifts.

By having three mutually orthogonal optical-fiber inter-
ferometers it is possible to deduce the vectorial direction of
v(r; t), and so determine, in particular, if the pulses have any
particular direction, and so a particular source. The simplicity
of this device means that an international network of detectors
may be easily set up, primarily to test for correlations in the
waveforms.

5 Data analysis

Photodiode voltage readings from the detector in Mode A on
July 11, 2007, from approximately 12:30pm local time for
24 hours, and in Mode B June 24 from 4pm local time for
24 hours, are shown in Fig. 3, with an arbitrary zero. The
photodiode output voltages were recorded every 5 s. Most
importantly the data are very different, showing that only in
Mode A are gravitational waves detected, and with a high S/N
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Fig. 4: Lower plot (red) shows the time series data over a 1
hour period, from time steps 4900 to 5620 in Fig. 3, show-
ing the wave forms present in Fig. 3 in greater detail. Similar
complex wave forms were seen in [10]. These plots were re-
constructed from the FT after band passing the frequencies (1–
3000)�1.16�10�5Hz=(0.000116–0.034) Hz to reduce the instru-
ment noise component, which is very small as shown in upper plot
(blue).

Fig. 5: Two plots of jeVsj from Fast Fourier Transforms of the pho-
todiode detector voltage Vr at 5 second intervals for 24 fours. Fre-
quency step corresponds to 1.157�10�5Hz. Upper frequency spec-
trum (red) is for detector in Mode A, i.e responding to 3-space dy-
namics and instrument noise, while lower spectrum (blue) is for
Mode B in which detector only responds to instrumental noise. We
see that the signal in Mode A is very different from that Mode B op-
eration, showing that the S/N ratio for the detector is very high. The
instrumental noise has a mild “blue” noise spectrum, with a small
increase at higher frequencies, while the 3-space turbulence has a
distinctive “pink” noise spectrum.

Fig. 6: Top: Absolute projected speeds vP in the Miller experiment
plotted against sidereal time in hours for a composite day collected
over a number of days in September 1925. Maximum projected
speed is 417 km/s. The data shows considerable fluctuations. The
dashed curve shows the non-fluctuating variation expected over one
day as the Earth rotates, causing the projection onto the plane of the
interferometer of the velocity of the average direction of the 3-space
flow to change. Middle: Data from the Cahill experiment [10] for
one sidereal day on approximately August 23, 2006. We see similar
variation with sidereal time, and also similar wave structure. This
data has been averaged over a running 1hr time interval to more
closely match the time resolution of the Miller experiment. These
fluctuations are real wave phenomena of the 3-space. Bottom: Data
from the optical-fiber experiment herein with only low frequencies
included to simulate the time averaging in the other two experiments.
Comparison permits an approximate calibration for the optical fiber
detector, as indicated by the speed in km/s.
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ratio. A 1 hour time segment of that data is shown in Fig. 4.
In that plot the higher frequencies have been filtered out from
both data time series, showing the exceptional S/N ratio that
can be achieved.

In Fig. 5 the Fourier Transfoms of the two data time series
are shown, again revealing the very different characteristics
of the data from the two operating modes. The instrumental
noise has a mild “blue” noise spectrum, with a small increase
at higher frequencies, while the 3-space turbulence has a dis-
tinctive “pink” noise spectrum, and ranging essentially from
0 to 0.1 Hz. The FT is defined by

eVs =
1p
n

nX
r=1

Vre2�i(r�1)(s�1)=n (5)

where n= 17280 corresponds to a 5 s timing interval over 24
hours.

By removing all but the FT amplitudes 1–10, and then
inverse Fourier Transforming we obtain the slow changes oc-
curring over 24 hours. The resulting data has been presented
in terms of possible values for the projected speed vP in (3),
and is shown in Fig. 6 and plotted against sidereal time, after
adjusting the unknown calibration constants to give a form
resembling the Miller and coaxial cable experimental results
so as to give some indication of the calibration of the detec-
tor. The experiment was run in an unoccupied office in which
temperatures varied by some 10�C over the 24 hour periods.
In future temperature control will be introduced.

6 Conclusions

As reviewed in [11, 12] gravitational waves, that is, fluc-
tuations or turbulence in the dynamical 3-space, have been
detected since the 1887 Michelson-Morley experiment, al-
though this all went unrealised until recently. As the timing
resolution improved over the century, from initially one hour
to seconds now, the characteristics of the turbulence of the
dynamical 3-space have become more apparent, and that at
smaller timing resolutions the turbulence is seen to be very
large. As shown herein this wave/pulse phenomenon is very
easy to detect, and opens up a whole new window on the uni-
verse. The detector reported here took measurements every
5 s, but can be run at millisecond acquisition rates. A 3D
version of the detector with three orthogonal optical-fiber in-
terferometers will soon become operational. This will permit
the determination of the directional characteristics of the 3-
space pulses.

That the average 3-space flow will affect the gyroscope
precessions in the GP-B satellite experiment through vortic-
ity effects was reported in [15]. The fluctuations are also pre-
dicted to be detectable in that experiment as noted in [16].
However the much larger fluctuations detected in [10] and
herein imply that these effects will be much large than re-
ported in [16] where the time averaged waves from the De-

Witte experiment [9] were used; essentially the gyro preces-
sions will appear to have a large stochasticity.

Special thanks to Peter Morris, Thomas Goodey, Tim East-
man, Finn Stokes and Dmitri Rabounski.
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On the “Size” of Einstein’s Spherically Symmetric Universe

Stephen J. Crothers
Queensland, Australia

E-mail: thenarmis@yahoo.com

It is alleged by the Standard Cosmological Model that Einstein’s Universe is finite but
unbounded. Although this is a longstanding and widespread allegation, it is nonetheless
incorrect. It is also alleged by this Model that the Universe is expanding and that it
began with a Big Bang. These are also longstanding and widespread claims that are
demonstrably false. The FRW models for an expanding, finite, unbounded Universe are
inconsistent with General Relativity and are therefore invalid.

1 Historical basis

Non-static homogeneous models were first investigated theo-
retically by Friedmann in 1922. The concept of the Big Bang
began with Lemaı̂tre, in 1927, who subsequently asserted that
the Universe, according to General Relativity, came into ex-
istence from a “primaeval atom”.

Following Friedmann, the work of Robertson and
Walker resulted in the FRW line-element,

ds2 = dt2 �R2(t)
�

dr2

1� kr2 + r2 �d�2 + sin2� d'2�� ;
from which is obtained the so-called “Friedmann equation”,

_R2 + k =
8�G

3
�R2;

where � is the macroscopic proper density of the Universe and
k a constant. Applying the continuity condition T�� ;� = 0,
to the stress tensor T�� of a perfect fluid

T�� = (�+ p)u�u� � pg�� ;
where p is the pressure and u� the covariant world velocity
of the fluid particles, the equation of continuity becomes

R _�+ 3 _R(�+ p) = 0 :

With the ad hoc assumption thatR(0) = 0, the Friedmann
equation is routinely written as

_R2 + k =
A2

R
;

where A is a constant. The so-called “Friedmann models”
are:

(1) k = 0 — the flat model,
(2) k = 1 — the closed model,
(3) k = �1 — the open model,

wherein t = 0 is claimed to mark the beginning of the Uni-
verse and R(0) = 0 the cosmological singularity.

Big Bang and expansion now dominate thinking in con-
temporary cosmology. However, it is nonetheless easily prov-

ed that such cosmological models, insofar as they relate to
the FRW line-element, with or without embellishments such
as “inflation”, are in fact inconsistent with the mathematical
structure of the line-elements from which they are alleged,
and are therefore false.

2 Spherically symmetric metric manifolds

A 3-D spherically symmetric metric manifold has, in the
spherical-polar coordinates, the following form ([1, 2]),

ds2 = B(Rc)dR
2
c +R2

c(d�
2 + sin2� d'2) ; (1)

where B(Rc) and Rc = Rc(r) are a priori unknown analytic
functions of the variable r of the simple line element

ds2 = dr2 + r2(d�2 + sin2� d'2) ; (2)

0 6 r 61 :

Line elements (1) and (2) have precisely the same fun-
damental geometric form and so the geometric relations be-
tween the components of the metric tensor are exactly the
same in each line element. The quantity Rc appearing in (1)
is not the geodesic radial distance associated with the mani-
fold it describes. It is in fact the radius of curvature, in that
it determines the Gaussian curvature G = 1=R2

c (see [1, 2]).
The geodesic radial distance distance, Rp, from an arbitrary
point in the manifold described by (1) is an intrinsic geomet-
ric property of the line element, and is given by

Rp =
Z p

B(Rc) dRc + C =
Z p

B(Rc)
dRc
dr

dr + C ;

where C is a constant of integration to be determined ([2]).
Therefore, (1) can be written as

ds2 = dR2
p +R2

c(d�
2 + sin2� d'2) ;

where
dRp =

p
B(Rc) dRc ;

and
0 6 Rp <1 ;
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with the possibility of the line element being singular (unde-
fined) at Rp = 0, since B(Rc) and Rc = Rc(r) are a pri-
ori unknown analytic functions of the variable r. In the case
of (2),

Rc(r) � r; dRp � dr; B(Rc(r)) � 1 ;

from which it follows that Rc � Rp � r in the case of (2).
Thus Rc � Rp is not general, and only occurs in the special
case of (2), which describes an Efcleethean� space.

The volume V of (1), and therefore of (2), is

V =
Z Rp

0
R2
c dRp

Z �

0
sin � d�

Z 2�

0
d' =

= 4�
Z Rc(r)

Rc(0)
R2
c(r)

p
B(Rc(r)) dRc(r) =

= 4�
Z r

0
R2
c(r)

p
B(Rc(r))

dRc(r)
dr

dr ;

although, in the general case (1), owing to the a priori un-
known functions B(Rc(r)) and Rc(r), the line element (1)
may be undefined at Rp(Rc(0)) = Rp(r = 0) = 0, which is
the location of the centre of spherical symmetry of the man-
ifold of (1) at an arbitrary point in the manifold. Also, since
Rc(r) is a priori unknown, the value of Rc(0) is unknown
and so it cannot be assumed that Rc(0) = 0. In the special
case of (2), both B(Rc(r)) and Rc(r) are known.

Similarly, the surface area S of (1), and hence of (2), is
given by the general expression,

S = R2
c(r)

Z �

0
sin � d�

Z 2�

0
d' = 4�R2

c(r) :

This might not ever be zero, since, once again, Rc(r) is an a
priori unknown function and so Rc(0) might not be zero. It
all depends an the explicit form for Rc(r), if it can be deter-
mined in a given situation, and on associated boundary con-
ditions. References [1, 2] herein describe the mathematics in
more detail.

3 The “radius” of Einstein’s universe

Since a geometry is entirely determined by the form of its
line element [3], everything must be determined from it. One
cannot, as is usually done, merely foist assumptions upon it.
The intrinsic geometry of the line element and the consequent
geometrical relations between the components of the metric
tensor determine all.

Consider the usual non-static cosmological line element

ds2 = dt2 � eg(t)�
1+k

4 �r2
�2 �d�r2+�r2(d�2+ sin2� d'2)

�
; (3)

wherein it is usually simply assumed that 0 6 �r <1 [3–6].
�For the geometry due to Efcleethees, usually and abominably rendered

as Euclid.

However, the range on �r must be determined, not assumed. It
is easily proved that the foregoing usual assumption is patent-
ly false.

Once again note that in (3) the quantity �r is not a radial
geodesic distance. In fact, it is not even a radius of curvature
on (3). It is merely a parameter for the radius of curvature
and the proper radius, both of which are well-defined by the
form of the line element (describing a spherically symmetric
metric manifold). The radius of curvature, Rc, for (3), is

Rc = e
1
2 g(t)

�r
1 + k

4 �r2
: (4)

The proper radius for (3) is given by

Rp = e
1
2 g(t)

Z
d�r

1 + k
4 �r2

=

=
2e 1

2 g(t)p
k

 
arctan

p
k

2
�r + n�

!
; n = 0; 1; 2; : : :

(5)

Since Rp > 0 by definition, Rp = 0 is satisfied when �r=
= 0 =n. So �r= 0 is the lower bound on �r. The upper bound
on �r must now be ascertained from the line element and
boundary conditions.

It is noted that the spatial component of (4) has a maxi-
mum of 1p

k
for any time t, when �r= 2p

k
. Thus, as �r ! 1,

the spatial component ofRc runs from 0 (at �r= 0) to the max-
imum 1p

k
(at �r= 2p

k
), then back to zero, since

lim
�r!1

�r
1 + k

4 �r2
= 0: (6)

Transform (3) by setting

R = R(�r) =
�r

1 + k
4 �r2

; (7)

which carries (3) into

ds2 = dt2�eg(t)
�

dR2

1� kR2 +R2(d�2 + sin2� d'2)
�
: (8)

The quantity R appearing in (8) is not a radial
geodesic distance. It is only a factor in a radius of curva-
ture in that it determines the Gaussian curvatureG = 1

eg(t)R2 .
The radius of curvature of (8) is

Rc = e
1
2 g(t)R; (9)

and the proper radius of Einstein’s universe is, by (8),

Rp = e
1
2 g(t)

Z
dRp

1� kR2
=

=
e 1

2 g(t)p
k

�
arcsin

p
kR+ 2m�

�
; m = 0; 1; 2; : : :

(10)

Now according to (7), the minimum value of R is
R (�r= 0) = 0. Also, according to (7), the maximum value
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of R is R(�r= 2p
k
) = 1p

k
. R= 1p

k
makes (8) singular, al-

though (3) is not singular at �r= 2p
k

. Since by (7), �r !1)
R(�r)! 0, then if 06 �r <1 on (3) it follows that the proper
radius of Einstein’s universe is, according to (8),

Rp = e
1
2 g(t)

Z 0

0

dRp
1� kR2

� 0 : (11)

Therefore, 06 �r <1 on (3) is false. Furthermore, since
the proper radius of Einstein’s universe cannot be zero and
cannot depend upon a set of coordinates (it must be an in-
variant), expressions (5) and (10) must agree. Similarly, the
radius of curvature of Einstein’s universe must be an invariant
(independent of a set of coordinates), so expressions (4) and
(9) must also agree, in which case 06R< 1p

k
and 06�r< 2p

k
.

Then by (5), the proper radius of Einstein’s universe is

Rp = lim
�! 2p

k

e
1
2 g(t)

Z �

0

d�r
1 + k

4 �r2
=

=
2e 1

2 g(t)p
k

h��
4

+ n�
��m�i ; n;m = 0; 1; 2; : : :

n > m:

Setting p = n�m gives for the proper radius of Einstein’s
universe,

Rp =
2e 1

2 g(t)p
k

��
4

+ p�
�
; p = 0; 1; 2; : : : (12)

Now by (10), the proper radius of Einstein’s universe is

Rp = lim
�! 1p

k

e
1
2 g(t)

Z �

0

dRp
1� kR2

=

=
e 1

2 g(t)p
k

h��
2

+ 2n�
��m�i ; n;m = 0; 1; 2; : : :

2n > m:

Setting q = 2n�m gives the proper radius of Einstein’s
universe as,

Rp =
e 1

2 g(t)p
k

��
2

+ q�
�
; q = 0; 1; 2; : : : (13)

Expressions (12) and (13) must be equal for all values
of p and q. This can only occur if g(t) is infinite for all
values of t. Thus, the proper radius of Einstein’s universe
is infinite.

By (4), (7) and (9), the invariant radius of curvature of
Einstein’s universe is,

Rc

�
2p
k

�
=
e 1

2 g(t)p
k
; (14)

which is infinite by virtue of g(t) =1 8 t.

4 The “volume” of Einstein’s universe

The volume of Einstein’s universe is, according to (3),

V = e
3
2 g(t)

Z 2p
k

0

�r2d�r�
1 + k

4 �r2
�3 Z �

0
sin �d�

Z 2�

0
d' =

=
4�e 3

2 g(t)

k 3
2

��
4

+ p�
�
; p = 0; 1; 2; : : :

(15)

The volume of Einstein’s universe is, according to (8),

V = e
3
2 g(t)

Z 1p
k

0

R2dRp
1� kR2

Z �

0
sin �d�

Z 2�

0
d' =

= e
3
2 g(t)

2�
k 3

2

h�
2

+ (2n�m)�
i
; n;m = 0; 1; 2; : : :

2n > m;

and setting q = 2n�m this becomes,

V =
2�e 3

2 g(t)

k 3
2

��
2

+ q�
�
; q = 0; 1; 2; : : : (16)

Since the volume of Einstein’s universe must be an invari-
ant, expressions (15) and (16) must be equal for all values of
p and q. Equality can only occur if g(t) is infinite for all val-
ues of the time t. Thus the volume of Einstein’s universe is
infinite.

In the usual treatment (8) is transformed by setting

R =
1p
k

sin�; (17)

to get

ds2 = dt2 � eg(t)

k
�
d�2 + sin2�(d�2 + sin2� d'2)

�
; (18)

where it is usually asserted, without any proof (see e.g. [3, 4,
5, 6]), that

0 6 � 6 � (or 0 6 � 6 2�); (19)

and whereby (18) is not singular. However, according to (7),
(11), (12), and (13), � can only take the values

2n� 6 � <
�
2

+ 2n�; n = 0; 1; 2; : : :

so that the radius of curvature of Einstein’s universe is,
by (18),

Rc =
e 1

2 g(t) sin�p
k

which must be evaluated for � = �
2 + 2n�, n = 0; 1; 2; : : :,

giving

Rc =
e 1

2 g(t)p
k

as the radius of curvature of Einstein’s universe, in concor-
dance with (4), (7), and (9). The proper radius of Einstein’s
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universe is given by

Rp =
e 1

2 g(t)p
k

Z �
2 +2n�

2n�
d� =

e 1
2 g(t)p
k
�
2
; (20)

and since the proper radius of Einstein’s universe is an invari-
ant, (20) must equal (12) and (13). Expression (20) is consis-
tent with (12) and (13) only if g(t) is infinite for all values of
the time t, and so Einstein’s universe is infinite.

According to (18), the volume of Einstein’s universe is,

V =
e 3

2 g(t)

k 3
2

Z �
2 +2n�

2n�
sin2� d�

Z �

0
sin �d�

Z 2�

0
d' =

=
�2e 3

2 g(t)

k 3
2

�
2
:

(21)

Since this volume must be an invariant, expression (21)
must give the same value as expressions (15) and (16). This
can only occur for (21) if g(t) is infinite for all values of the
time t, and so Einstein’s universe has an infinite volume.

5 The “area” of Einstein’s universe

Using (3), the invariant surface area of Einstein’s universe is

S = R2
c

Z �

0
sin �d�

Z 2�

0
d' = 4�R2

c

which must be evaluated for Rc(�r = 2p
k
), according to (4),

and so

S =
4�eg(t)

k
:

By (8) the invariant surface area is

S = eg(t)R2
Z �

0
sin �d�

Z 2�

0
d' = 4�R2eg(t);

which must, according to (7), be evaluated for
R(�r = 2p

k
) = 1p

k
, to give

S =
4�eg(t)

k
:

By (18) the invariant surface area is

S =
eg(t)

k
sin2�

Z �

0
sin �d�

Z 2�

0
d' =

4�eg(t)

k
sin2� ;

and this, according to (17), must be evaluated for �=
=
��

2 + 2n�
�
, n = 0; 1; 2; : : :, which gives

S =
4�eg(t)

k
:

Thus the invariant surface area of Einstein’s universe is
infinite for all values of the time t, since g(t) is infinite for all
values of t.

In similar fashion the invariant great “circumference”,
C = 2�Rc, of Einstein’s universe is infinite at any particular
time, given by

C =
2�e 1

2 g(t)p
k

:

6 Generalisation of the line element

Line elements (3), (8) and (18) can be generalised in the fol-
lowing way. In (3), replace �r by j�r � �r0j to get

ds2 = dt2 � eg(t)�
1 + k

4 j�r � �r0j2�2 �
� �d�r2 + j�r � �r0j2(d�2 + sin2� d'2)

�
;

(22)

where �r0 2 < is entirely arbitrary. Line element (22) is
defined on

0 6 j�r � �r0j < 2p
k
8 �r0 ;

i.e. on
�r0 � 2p

k
< �r <

2p
k

+ �r0 8 �r0 : (23)

This corresponds to 06Rc< 1p
k

irrespective of the value
of �r0 , and amplifies the fact that �r is merely a parameter. In-
deed, (4) is generalised to

Rc = Rc(�r) =
j�r � �r0j

1 + k
4 j�r � �r0j2 ;

where (23) applies. Note that �r can approach �r0 from above
or below. Thus, there is nothing special about �r0 = 0. If
�r0 = 0 and �r > 0, then (3) is recovered as a special case, still
subject of course to the range 0 6 �r < 2p

k
.

Expression (7) is generalised thus,

jR�R0j = j�r � �r0j
1 + k

4 j�r � �r0j2 ;
where R0 is an entirely arbitrary real number, and so (8) be-
comes

ds2 = dt2 � eg(t)�
�
�

dR2

1� kjR�R0j2 + jR�R0j2(d�2 + sin2� d'2)
�
;

(24)

where
R0 � 1p

k
< R <

1p
k

+R0 8 R0 : (25)

Note that R can approach R0 from above or below. There
is nothing special about R0 = 0. If R0 = 0 and R > 0,
then (8) is recovered as a special case, subject of course to
the range 0 6 R < 1p

k
.

Similarly, (18) is generalised, according to (24), by set-
ting

jR�R0j = 1p
k

sin j�� �0j ;

72 S. J. Crothers. On the “Size” of Einstein’s Universe



October, 2007 PROGRESS IN PHYSICS Volume 4

where �0 is an entirely arbitrary real number, and

2n� 6 j�� �0j < �
2

+ 2n�; n = 0; 1; 2; : : :

8 �0 2 <:
Note that � can approach �0 from above or below. There is
nothing special about �0 = 0. If �0 = 0 and � > 0, then (18)
is recovered as a special case, subject of course to the range
2n� 6 � < �

2 + 2n�, n = 0; 1; 2; : : :
The corresponding expressions for the great circumfer-

ence, the surface area, and the volume are easily obtained in
like fashion.

7 Conclusions

Einstein’s universe has an infinite proper radius, an infinite
radius of curvature, an infinite surface area and an infinite
volume at any time. Thus, in relation to the Friedmann-
Robertson-Walker line-element and its variations considered
herein, the concept of the Big Bang cosmology is invalid.
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In this work, the nature of the microwave background is discussed. It is advanced that
the 2.725 K monopole signal, first detected by Penzias and Wilson, originates from the
Earth and therefore cannot be detected at the Lagrange 2 point (L2). Results obtained by
the COBE, Relikt-1, and WMAP satellites are briefly reviewed. Attention is also placed
on the upcoming PLANCK mission, with particular emphasis on the low frequency in-
strument (LFI). Since the LFI on PLANCK can operate both in absolute mode and in
difference mode, this instrument should be able to unequivocally resolve any question
relative to the origin of the 2.725 K monopole signal. The monopole will be discovered
to originate from the Earth and not from the Cosmos. This will have implications rela-
tive to the overall performance of the PLANCK satellite, in particular, and for the future
of astrophysics, in general.

1 Introduction

In 1965, a thermal signal of unknown origin, which appeared
to completely engulf the Earth, irrespective of angle of obser-
vation, was first reported to exist at microwave frequencies
[1]. Immediately considered of great importance, the strange
finding was rapidly attributed to the universe by Dicke et al.
[2] in a communication which preceded the disclosure of the
actual measurements by A. A. Penzias and R. W. Wilson [1].
The observation became known as the “Cosmic Microwave
Background (CMB)” nearly from the instant of discovery [1,
2]. For years, it had been predicted that such a signal must ex-
ist, if the universe evolved from a Big Bang scenario. With the
advent of the Penzias and Wilson measurement [1], the long
sought signature of creation seemed discovered, and cosmol-
ogy entered the realm of modern science.

Since that time, the “CMB” has become a cornerstone
of astrophysics [3–6]. The background and its characteris-
tic 2.725 K monopole temperature [7, 8], the “relic of the Big
Bang”, is believed to span the entire known universe. While
the “CMB” was initially considered weak, it is now clear that
the signal was in fact quite powerful, at least when viewed
from Earth orbit (8). Indeed, few experimental signals of nat-
ural origin have surpassed the microwave background in ab-
solute signal to noise [8]. For cosmology, the “CMB” is the
most important “astrophysical” finding. Experimental confir-
mations of its existence and characterization have consumed
vast amounts of both financial and human capital. As a result,
a more detailed understanding of the microwave background
has emerged.

In addition to its characteristic monopole temperature at
2.725 K [8], the background has associated with it a strong
(3.5 mK) dipole which is ascribed to the motion of the Earth
and the Sun through the local group [9]. This powerful dipole

has been observed not only on Earth, and in Earth orbit [9],
but also by instruments located well beyond the Earth, like
the Soviet Relikt-1 [10] and the NASA WMAP [11] satel-
lites. Consequently, there can be little question that the dipole
is real, and truly associated with motion through the local
group.

Beyond the dipole, cosmology has also placed significant
emphasis on the multipoles visible at microwave frequencies
[12]. Accordingly, the universe has now been characterized
by anisotropy maps, the most famous of which have been re-
ported by the COBE [7] and WMAP [11] satellites. These
maps reflect very slight differences in microwave power of
the universe as a function of observational direction.

The recent array of scientific evidence, in support of a mi-
crowave background of cosmological origin, appears tremen-
dous, and cosmology seems to have evolved into a precision
science [13–19]. Should the 2.725 K microwave background
truly belong to the universe, there can be little question that
cosmology has joined the company of the established exper-
imental disciplines. Yet, these claims remain directly linked
to the validity of the assignment for the “Cosmic Microwave
Background”. Indeed, if the “CMB” is reassigned to a differ-
ent source, astrophysics will undergo significant transforma-
tions.

2 The origin of the microwave background

Recently, the origin of the “CMB” has been brought into
question, and the monopole of the microwave background has
been formally reassigned to the Earth [20–29]. Such claims
depend on several factors, as follows:

1. The assignment of a 2.725 K temperature to the Pen-
zias and Wilson signal constitutes a violation of Kirch-
hoff’s Law of Thermal Emission [30, 31]. The proper
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assignment of thermal temperatures requires, accord-
ing to Kirchhoff [31], equilibrium with an enclosure
[30]. This is a condition which cannot be met by the
universe. Therefore, the absolute magnitude of the tem-
perature should be considered erroneous;

2. The cosmological community, in general, and the
COBE [33] and WMAP [34] teams, in particular, have
advanced that the Earth can be treated as a �300 K
blackbody. In fact, since the Earth is 75% water cov-
ered, this assumption is not justified, based on the
known behavior of sea emissions in the microwave re-
gion [26, 35]. The oceans exhibit thermal emission pro-
files, which depend on the Nadir angle, and are there-
fore not blackbody emitters at �300 K. Indeed, the
oceans can produce signals very close to 0 K [26, 35]. It
remains of concern that the signature of the microwave
background is completely devoid of earthly interfer-
ence. Not a single artifact has been reported over the
entire frequency range [8] which could be attributed to
an earthly signal of oceanic origin. At the same time,
it is well established that water is a powerful absorber
of microwave radiation. Consequently, it is reasonable
to expect that the oceans cannot be microwave silent
relative to this problem;

3. Powerful signals imply proximal sources. When mea-
sured from the Earth the monopole of the microwave
background has a tremendous signal to noise [8]. To re-
quire that such extensive power fill the entire universe
argues in favor of a nearly infinite power source well
outside anything known to human science. Conversely,
if the signal arises from the Earth, it would be expected
to be strong when viewed from Earth [8]. The power-
ful nature of the microwave background in Earth orbit
[8], and the lack of oceanic contaminating signal could
very easily be solved, if the Penzias and Wilson signal
[1] was generated by the Earth itself [20–29];

4. In the experimental setting, thermal photons, once re-
leased, report the temperature of the source which pro-
duced them in a manner which is independent of time
elapsed and of subsequent source cooling. Once pho-
tons are emitted, they cannot shift their frequencies to
account for changes at the source. Yet, the Big Bang
scenario requires a constant and systematic shifting of
photon frequencies towards lower temperatures in a
manner wherein the cooling of the source is constantly
monitored and reported. This is without experimental
evidence in the laboratory. Experimental photons, once
produced, can no longer monitor the cooling of the
source. Arguments relative to photon shifting, based
on an expanding universe, are theoretical and are not
supported by laboratory measurements. In considering
stellar red shifts, for instance, it is commonly held that
the sources themselves are moving away from the ob-

server. Thus, the photons are being shifted as they are
being produced. In sharp contrast, a microwave back-
ground of cosmic origin requires continuous shifting of
photon frequencies long after emission;

5. The monopole of the microwave background is char-
acterized by a thermal profile [8]. It is a well recog-
nized observation of physics, that a Lyman process is
required to produce a group of Lyman lines. Like-
wise, a nuclear magnetic resonance process is required
to obtain an NMR line. Similarly, a thermal process
must occur to produce a thermal line. On Earth, ther-
mal emission spectra are generated exclusively in the
presence of matter in the condensed state [30]. The ex-
istence of a Planckian line in the microwave requires
a process analogous to that which results in a thermal
spectrum from a piece of graphite on Earth [30]. Phys-
ics has not provided a known mechanism for the cre-
ation of a photon by graphite [30]. As a result, Planck’s
equation, unlike all others in physics, remains detached
from physical reality [30]. In this regard, it is main-
tained [30] that a thermal profile can only be obtained
as the result of the vibration of atomic nuclei within
the confines of a lattice field (or fleeting lattice field
in the case of a liquid). Condensed matter, either in
the solid or liquid state, is required. This condition
cannot be met within the framework of Big Bang cos-
mology. Universality in blackbody radiation does not
hold [30, 31];

6. Measurements performed by the COBE satellite reveal
a systematic error relative to the measured value of the
microwave background monopole temperature, derived
either from the monopole or the dipole [26, 27]. These
measurements can be interpreted as implying that still
another field exists through which the Earth is moving
[26, 27];

7. Currently, the “Cosmic Microwave Background” is
thought to be continuously immersing the Earth in mi-
crowave photons from every conceivable direction in
space. Under this steady state scenario, there can be no
means for signal attenuation at high frequencies, as has
been observed on Earth [28]. This strongly argues that
the “CMB” cannot be of cosmic origin [28];

8. The “CMB” anisotropy maps reported by the WMAP
satellite display instabilities which are unacceptable,
given the need for reproducibility on a cosmological
timescale. The results fail to meet accepted standards
for image quality, based on a variety of criteria [23–
25]. These findings demonstrate that the stability ob-
served in the monopole at 2.725 K is not translated at
the level of the anisotropy maps, as would be expected
for a signal of cosmologic origin. This implies that
the monopole arises from a stable source, while the
anisotropies arise from separate unstable sources.
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Fig. 1: Schematic representation of the Sun-Earth system depicting
the position of the Lagrange 2 point, L2.

2.1 The CMB versus the EMB

Given this array of concerns relative to the assignment of the
microwave background, it is clear that mankind must deter-
mine, without question, whether this signal is indeed of cos-
mic origin, or whether, as advanced herein and elsewhere
[20–29], it is being generated by the Earth. Current satel-
lite data make strong arguments relative to systematic errors
[26, 27] and stability [25] that the monopole of the microwave
background originates from the Earth. Conversely, the astro-
physical community maintains that a cosmic origin remains
the only valid explanation. This being said, it is perplex-
ing that the thermal emission profile of the Earth itself, from
space, has yet to be obtained. If the Earth’s emission pro-
file was obtained, over the infrared and microwave region, it
would become evident that our planet is not a 300 K black-
body radiation source, as the COBE [33], WMAP [34], and
PLANCK [36] teams assume. In this era of concern for global
warming, it is critical to secure this data.

In the meantime, the PLANCK mission [36], planned by
the European Space Agency, will provide the next opportu-
nity to help resolve these questions. Because PLANCK [36]
may well acquire the decisive evidence relative to an earthly
origin for the monopole of the microwave background, it is
important to understand this mission, relative to both COBE
[7] and WMAP [11]. The area of greatest interest lies in
the configuration of the PLANCK radiometers and the results
which they should be able to deliver at the Lagrange 2 point
(see Figure 1).

2.1.1 Scenario 1: a cosmic origin

The microwave background has always been viewed as a rem-
nant of the Big Bang originating far beyond our own galaxy.
The Earth, in this scenario, is being constantly bombarded
by photons from every direction. The frequency distribution
of these photons is represented by a 2.725 K blackbody [8].
Indeed, the “CMB” represents perhaps the most precise ther-

mal radiation curve ever measured [8]. The Earth is traveling
through the microwave background, as it continues to orbit
the Sun and as the latter moves within the galaxy. This mo-
tion through the local group is associated with a strong dipole
(3.346�0.017 mK) in the direction l; b= 263.85��0.1�;
48.25��0.04� [11], where l and b represent galactic longi-
tude and latitude, respectively. In addition, the “CMB” is
characterized by numerous multipoles derived from the anal-
ysis of the “CMB” anisotropy maps [11]. Under this scenario,
the “CMB” field experienced at ground level, in Earth orbit,
or at the Lagrange 2 point (see Figure 1), should be theoreti-
cally identical, neglecting atmospheric interference. If COBE
[7] and Relikt-1 [10] were launched into Earth orbit, it was
largely to avoid any interference from the Earth. The WMAP
[11] and PLANCK [36] satellites seek a superior monitoring
position, by traveling to the Lagrange 2 point. At this posi-
tion, the Earth is able to shield the satellite, at least in part,
from solar radiation.

2.1.2 Scenario 2: an earthly origin

Recently [20–29], it has been advanced that the microwave
background is not of cosmic origin, but rather is simply being
produced by the oceans of the Earth. Since the monopole can
be visualized only on Earth, or in close Earth orbit [8], it will
be referred to as the Earth Microwave Background or “EMB”
[28]. In this scenario, the monopole of the Earth microwave
background at 2.725 K (EMBM) reports an erroneous tem-
perature, as a result of the liquid nature of the Earth’s oceans.
The oceans fail to meet the requirements set forth for setting
a temperature using the laws of thermal emission [30–32].
For instance, Planck has warned that objects which sustain
convection can never be treated as blackbodies [37]. A ther-
mal signature may well appear, but the temperature which is
extracted from it is not necessarily real. It may be only appar-
ent. The fundamental oscillator responsible for this signature
is thought to be the weak hydrogen bond between the water
molecules of the oceans. The EMB has associated with it a
dipole [9]. This dipole has been extensively measured from
Earth and Earth orbit, and is directly reflecting the motion of
the Earth through the local group, as above. Since the Earth is
producing the monopole (EMBM), while in motion through
the local group, the EMB dipole or “EMBD” would be ex-
pected to exist unrelated to the presence of any other fields.

At the Lagrange 2 point, the signal generated by the
oceans (EMB) will be too weak to be easily observed [34, 38].
Nonetheless, L2 will not be devoid of all microwave signals.
Indeed, at this position, a microwave field must exist. This
field, much like noise, will not be characterized by a single
temperature. Rather, it will be a weak field, best described
through the summation of many apparent temperatures, not
by a single monopole. In a sense, microwave noise will be
found of significant intensity, but it will be devoid of the
characteristics of typical signal. For the sake of clarity, this
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Fig. 2: Partial schematic representation of the WMAP pseudo-correlation differential radiometers [41]. Note that the signal from each horn
first travels to an orthomode transducer (OMT) wherein two orthogonal outputs are produced, one for each radiometer. One output from
the OMT then travels to the 180� hybrid tee before entering the phase-matched leg of the radiometer. Importantly, for the WMAP satellite,
the signal from each horn is being compared directly to its paired counterpart. The satellite does not make use of internal reference loads
and cannot operate in absolute mode. (Adapted from [34, 41].)

field will be referred to as the Weak Microwave Background
(WMB). This weak background bathes, at least, our solar sys-
tem, and perhaps much of the galaxy. However, it may or
may not extend much power into intergalactic space. Interest-
ingly, motion of the WMAP [11] or PLANCK [36] satellites
through this WMB will be associated with the production of
a dipole of exactly the same magnitude and direction as ob-
served on Earth [9], since the nature of the motion through
the local group has not changed at this point. As such, two
dipoles can be considered. The first is associated with the
EMB. It is referred to above by the acronym EMBD. The
second is associated with the WMB and motion through the
local group. It will be referred to henceforth as the WMBD.
In actuality, even if the Earth did not produce the 2.725 K
monopole, it would still sense the WMBD, as it is also trav-
eling through the WMB. The fact, that both an EMBD and a
WMBD are expected, has been used to reconcile the system-
atic error reported by the COBE satellite [26, 27].

In summary, under the second scenario, we now have a
total of four fields to consider:

(1) the monopole of the Earth Microwave Background, the
EMBM;

(2) the dipole associated directly with the Earth Microwave
Background and motion through the local group, the
EMBD;

(3) the Weak Microwave Background present at L2 and
perhaps in much of the galaxy, the WMB, and finally

(4) the dipole associated when any object travels through
the Weak Microwave Background, the WMBD.

2.1.3 The microwave anisotropies

Weak Microwave Background Anisotropies (MBA) are asso-
ciated with either Scenario 1 or 2. The anisotropies form the
basis of the microwave anisotropy maps now made famous

by the WMAP satellite [11, 39, 40]. Under the first scenario,
the MBA are tiny fluctuations in the fabric of space which
represent relics of the Big Bang. However, careful analysis
reveals that the anisotropy maps lack the stability required
of cosmic signals [25], and are therefore devoid of cosmo-
logical significance. They represent the expected microwave
variations, in the sky, associated with the fluctuating nature of
microwave emissions originating from all galactic and extra-
galactic sources. These observations increase the probability
that the second scenario is valid.

3 The WMAP versus PLANCK missions

3.1 WMAP

The WMAP satellite [11] is currently positioned at the La-
grange 2 point. WMAP operates in differential mode (see
Figure 2), wherein the signal from two matched horns are
constantly compared [34, 41]. In this sense, the WMAP satel-
lite resembles the DMR instrument on COBE [33, 42]. Ini-
tially, WMAP was to rely exclusively on the magnitude of the
dipole observable at L2, in order to execute the calibration of
the radiometers (see Section 7.4.1 in [41]). Since the “CMB”
and its 2.7 K signature are believed to be present at L2 by the
WMAP team, then calibration involves the 1st derivative of
the “CMB” and calculated temperature maps of the sky [41],
describing the associated temperature variations based on the
dipole [9]. Once WMAP reached L2, the initial approach to
calibration appeared to be somewhat insufficient, and addi-
tional corrections were made for radiometer gains with the
initial data release [45, 46].

WMAP is a pseudo-correlation differential spectrometer
without absolute reference loads (see Figure 2). Correlation
receivers are used extensively in radioastronomy, in part due
to the inherent stability which they exhibit, when presented
with two nearly identical signals [43, 44]. Since WMAP
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Fig. 3: Partial schematic representation of the PLANCK LFI pseudo-correlation differential radiometers [47, 48]. Prior to entering each
radiometer, the signal from each sky horn travels to an orthomode transducer (OMT) where two orthogonal linearly polarized signals are
produced. Each of these signals is then compared directly to a reference load maintained at 4 K. Unlike WMAP, PLANCK can operate
both in absolute and differential mode. In absolute mode, PLANCK will be able to directly compare the amplitude signal observed from
the sky with that produced by the reference loads. Importantly, in order to maintain a minimal knee frequency PLANCK assumes that the
differences between the sky and reference signals will be small. (Adapted from [47–52].)

is devoid of reference loads, the satellite is unable to easily
answer questions relative to the presence or absence of the
2.725 K “CMB” signal at the L2 point. Should only a WMB
be present, WMAP could still be calibrated properly [41], be-
cause the magnitude and direction of the dipole itself ulti-
mately governs the entire problem, independent of the under-
lying field. Because the dipole is being produced by motion
through the local group, its magnitude and direction at L2 will
be identical, irrespective of the scenario invoked above. This
is true, of course, provided that the WMB exists. The WMAP
team assumes the presence of a “CMB” monopole at L2 and
uses its first derivative, in combination with an expected sky
temperature difference map, based on the known dipole [41].
Alternatively, if only a WMB exists at L2, the dipole will still
be present, and another set of theoretical constraints will also
satisfy the requirements for calibration.

WMAP has been able to detect the dipole at the L2 point,
but this is expected from both scenarios listed above. In any
case, an objective analysis of the data products associated
with this satellite reveals that, far from affirming the cosmic
nature of anisotropy, WMAP refutes such conclusions [25].
The anisotropy maps derived from WMAP are much too un-
stable and unreliable to be fundamentally linked to signals of
primordial origin [25]. WMAP has not been able to yield a
definitive answer relative to the origin of the “CMB”, and,
to date, no signal has been measured which can be ascribed
to the remnant of the Big Bang. Fortunately, it appears that
the PLANCK satellite will be able to unambiguously resolve
the issue.

3.2 PLANCK

Much like WMAP, the PLANCK satellite [36] is scheduled
to be launched into an operational orbit at L2, the Lagrange
2 point of the Earth-Sun system. The satellite is equipped
with two instruments, the low frequency instrument (LFI) and
the high frequency instrument (HFI), scanning the sky at 30,
44, and 70 GHz [47–55] and 100, 143, 217, 353, 545, and
857 GHz [55–57], respectively. In contrast, the WMAP satel-
lite scanned the 23, 33, 41, 61, and 94 GHz regions of the
electromagnetic spectrum. Thus, PLANCK greatly extends
the range of frequencies which will be sampled.

Still, more important differences exist between PLANCK
and WMAP. The high frequency instrument on PLANCK is
not differential, and frequencies from 100–857 GHz will be
sampled in absolute mode, without subtraction. Moreover,
while the low frequency instrument is designed to operate as
a differential spectrometer, it can also function in absolute
mode [47-54]. The low frequency instrument on PLANCK
(see Figure 3) is also designed to function as a pseudo-
correlation radiometer [47-53]. However, the signal from the
sky, obtained by each horn, is being compared to a reference
load maintained at 4 K (see Figure 3). These details constitute
critical variations relative to the WMAP radiometer design.

Given that the LFI on PLANCK makes use of absolute
reference loads, it resembles, in this important sense, the FI-
RAS Instrument on COBE [58]. Furthermore, since the LFI
on PLANCK can operate either in absolute mode, or in differ-
ence mode [47–54], the spectrometer has a flexibility which
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appears to combine the best features possible for such an in-
strument. In absolute mode, the LFI on PLANCK will be
able to quantify completely the signal originating from the
sky relative to that produced by its 4 K references. Nonethe-
less, the LFI was designed to operate primarily in differential
mode. This has implications for the quality of its data prod-
ucts based on whether or not the 2.725 K monopole signal is
present at L2.

3.2.1 The PLANCK LFI

The PLANCK LFI is designed as a pseudo-correlation [52]
receiver (see Figure 3). For this receiver, gain instabilities
in the High Electron Mobility Transistor (HEMT) amplifier,
within the receiver front end, result in 1=f noise. The 1=f
noise, if not properly accounted for, can produce significant
stripes in the final maps [47, 48]. These stripes are also de-
pendent on scanning strategy. The behavior of the 1=f noise
has been carefully analyzed for the PLANCK LFI [47, 48].
Since the LFI is designed to operate primarily in differen-
tial mode, it is important to minimize the difference between
the reference load temperature, Tref , and the sky tempera-
ture, Tsky .

Currently, the PLANCK team is making the assumption
that Tsky = 2.725 K, as previously reported by the COBE
group [7]. As such, they have chosen to use Tref = 4 K. Any
offset between Tsky and Tref “can be balanced before differ-
encing either by a variable back-end gain stage with a feed-
back scheme to maintain the output power as close as pos-
sible to zero, or by multiplying in software one of the two
signals by a so-called gain modulation factor” [47].

If the differences between the sky temperature and the ref-
erence temperatures are large, then the idea of using back-end
gain stage feedback, to balance the two channels, should in-
troduce substantial noise directly into the system. The situa-
tion using software and a gain modulation factor would also
introduce unexpected complications.

The gain modulation factor, r, is given by the following:
r = (Tsky +Tn)=(Tref +Tn) where Tn corresponds to the
radiometer noise temperature. The noise temperature of the
radiometer, Tn, is a fundamental property of any receiver and
is determined by the overall design and quality of the instru-
ment. Tn is critical in establishing the sensitivity of the spec-
trometer. For instance, the radiometer sensitivity, �Trms,
over a given integration time, is directly dependent on both
Tsky and Tn, as follows: �Trms = 2(Tsky +Tn)=

p
�, where

� is the bandwidth of the radiometer (typically taken as 20%).
Note that if Tn is large, then it will be easy to achieve gain
modulation factors near 1. However, the radiometer sensi-
tivity would be severely compromised. Low Tn values are
central to the performance of any receiver. Under this con-
straint, the gain modulation factor will be strongly affected
by any differences between the Tsky and Tref .

PLANCK has the ability to calculate the gain modulation

factor, r, directly from radiometer data acquired with the spec-
trometer operating in absolute mode [47]. Alternatively, r can
be calculated from software, using up to three approaches in-
cluding, for instance, minimizing the final differenced data
knee frequency, fk. The knee frequency is the frequency at
which the value of 1=f noise and white noise contributions
are equal.

In general, it is also true that for the PLANCK LFI “the
white noise sensitivity and the knee-frequency depend on the
actual temperature in the sky” [47]. Because excessive 1=f
noise can degrade the final images and data products [47,
48], it is important to minimize its contribution. This can
be achieved “if the post detection knee frequency fk (i.e. the
frequency at which the 1=f noise contribution and the ideal
white noise contribution are equal) is significantly lower than
the spacecraft rotation frequency (fspin� 0.017 Hz)” [48].
If the fk is greater than, or approximately equal to fspin, a
degradation in the final sensitivity of the satellite will occur
[47]. As this inherently depends on the real sky temperature,
there are some concerns relative to the performance of the
PLANCK LFI instruments.

When the knee frequencies are too high, stripes will occur
in the images generated by the satellite. It is true that algo-
rithms do exist to help remove these artifacts, provided that
they are not too strong [47]. Nonetheless, when the sky tem-
perature and the reference temperatures are not balanced, the
knee frequency will rise substantially. This could diminish
the quality of the data products from this satellite.

The importance of maintaining a low knee frequency for
the PLANCK LFI instruments cannot be overstated. “If the
knee frequency is sufficiently low (i.e. fk 6 0.1 Hz), with the
application of such algorithms it is possible to maintain both
the increase in rms noise within few % of the white noise, and
the power increase at low multipole values (i.e. l6 200) at
a very low level (two orders of magnitude less than the CMB
power). If, on the other hand, the knee frequency is high (i.e.
� 0.1 Hz) then even after destriping the degradation of the
final sensitivity is of several tens of % and the excess power
at low multipole values is significant (up to the same order
of the CMB power for fk� 10 Hz . . . ) Therefore, careful
attention to instrument design, analysis, and testing is essen-
tial to achieve a low 1=f noise knee frequency” [48]. The
PLANCK team has emphasized this further, as follows: “It is
then of great importance to decrease as much as possible the
impact of 1=f noise before destriping and fk = 0.01 Hz is an
important goal for instrument studies and prototypes.”

The manner in which the knee frequency is affected by
both the gain modulation factor, r, and the absolute sky tem-
perature [48], has been described algebraically:

fk (Tn) = �
�
A (1� r)Tn
2 (Tsky + Tn)

�2

: (1)

In this equation, � corresponds to the bandwidth of the
receiver, typically taken at 20%, Tn is the radiometer noise
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temperature, and A is a normalization factor for noise fluc-
tuations [48]. Note that if the sky temperature, Tsky , is only
some fraction of a Kelvin degree, this equation is moving to-
wards:

fk (Tn) = �
�
A (1� r)

2

�2

: (2)

Under test conditions, the PLANCK team estimated gain
modulation factors ranging from 0.936 to 0.971 for the 30, 44,
and 70 GHz radiometers [47]. In flight, Tn values of 7.5, 12,
and 21.5 K are expected for the 30, 44, and 70 GHz radiome-
ters [50]. This results in r values ranging from�0.89–0.95, if
Tsky is taken as 2.725 K and Tref = 4 K. Anticipated fk val-
ues would therefore range from �0.0032 Hz to �0.0043 Hz,
well below the 16 mHz requirement. This situation will not
occur under Scenario 2, wherein Tsky at L2 is not 2.725 K,
but rather only some fraction of a Kelvin degree.

As Tsky will have a much lower value than foreseen, the
gain modulation factor, r, will be moving away from unity.
It is also clear from Eqs. 1 and 2 that the knee frequency for
the LFI radiometers would rise to values substantially above
those currently sought by the PLANCK team.

In the extreme case, it is simple to consider the conse-
quence of Tsky! 0. In this instance, gain modulation factors
would drop precipitously from �0.89 to �0.65 at 30 GHz,
and from �0.95 to �0.84 at 70 GHz. This would translate
into substantially elevated fk values of �50 mHz. Even an
apparent Tsky value of 300 mK would result in r and fk val-
ues in this range. Other than the direct measurement of the
sky temperature by the PLANCK LFI in absolute mode, the
drop in r values and the tremendous rise in fk will constitute
another indication that the 2.725 K signal does not exist at the
L2 point.

Consequently, it is difficult to envision that the PLANCK
team will be able to attain the desired image quality if Tsky
is not at 2.725 K. The spectrometer is not designed to achieve
maximal sensitivity in absolute mode, while in difference
mode, both its r values and its fk will be compromised. De-
striping algorithms will have to be invoked in a much more
central manner than anticipated.

Note that the situation with PLANCK is substantially dif-
ferent from WMAP. With WMAP (see Figure 2), the radio-
meters do not make use of an absolute reference load, but
rather, the two sky horns are constantly and directly being
differenced. Thus, the knee frequency for WMAP would be
as predicted prior to launch. The WMAP horns are nearly
perfectly balanced by the sky itself. Therefore, their perfor-
mance would not be affected by the real nature of the signal
at L2. This is not the case for the PLANCK satellite.

4 Conclusion

The WMAP satellite was designed as a differential spectrom-
eter without absolute calibration. As a result, it is unable

to ascertain the absolute magnitude of the microwave sig-
nals at the L2 point. The satellite has produced anisotropy
maps [39, 40]. Yet, these maps lack the stability required of
cosmological signals. Indeed, WMAP appears devoid of any
findings relative to cosmology, as previously stated [25]. The
only signal of note, and one which was not anticipated [21],
is that associated with the dipole [9, 26, 27]. The dipole is
important, since it can be used to quantify the motion of ob-
jects through the local group. Under the second scenario, this
dipole signal implies that there is a Weak Microwave Back-
ground (WMB) at the L2 point.

In sharp contrast with WMAP, PLANCK has the advan-
tage of being able to operate in absolute mode. In this con-
figuration, it can directly determine whether or not there is
a 2.725 K monopole signal at L2. If the signal is present,
as expected by the PLANCK team, and as predicted in the
first scenario, then the satellite should be able to acquire sim-
ply phenomenal maps of the sky. However, this will not oc-
cur. In the absence of a monopole, the PLANCK radiome-
ters will be compromised when operating in difference mode,
as their knee frequencies rise. This shall result in the pres-
ence of more pronounced image artifacts in the data prod-
ucts, which may not be easily removed through processing,
potentially impacting the harvest from PLANCK. Nonethe-
less, PLANCK should be able to fully characterize the WMB
predicted under the second scenario.

At the same time, since the 2.725 K monopole signature
does not exist at the L2 point, PLANCK is poised to alter
the course of human science. The satellite will help estab-
lish that there is no universality [30, 31]. The need to link
Planck’s equation to the physical world will become evident
[30, 31]. It will be realized that the Penzias and Wilson signal
did come from the Earth, and that liquids can indeed produce
thermal spectra reporting incorrect temperatures. It is likely
that a renewed interest will take place in condensed matter
physics, particularly related to a more profound understand-
ing of thermal emission, in general, and to the study of ther-
mal processes in liquids, in particular. The consequences for
astrophysics will be far reaching, impacting our understand-
ing of stellar structure [59, 60], stellar evolution and cosmol-
ogy. PLANCK, now, must simply lead the way.
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In this work the mathematical methods of General Relativity are used to answer the
following questions: if a microwave background originates from the Earth, what would
be its density and associated dipole measured at the altitude of a U2 aeroplane (25 km),
the COBE satellite (900 km), and the 2nd Lagrange point (1.5 million km, the posi-
tion of the WMAP and PLANCK satellites)? The first problem is solved via Einstein’s
equations for the electromagnetic field of the Earth. The second problem is solved using
the geodesic equations for light-like particles (photons) which are mediators for electro-
magnetic radiation. We have determined that a microwave background that originates at
the Earth (the Earth microwave background) decreases with altitude so that the density
of the energy of such a background at the altitude of the COBE orbit (900 km) is 0.68
times less than that at the altitude of a U2 aeroplane. The density of the energy of the
background at the L2 point is only �10�7 of the value detected by a U2 aeroplane or at
the COBE orbit. The dipole anisotropy of the Earth microwave background, due to the
rapid motion of the Earth relative to the source of another field which isn’t connected
to the Earth but is located in depths of the cosmos, doesn’t depend on altitute from the
surface of the Earth. Such a dipole will be the same irrespective of the position at which
measurements are taken.

1 Problem statement: the space of the Earth and the
Earth microwave background

Here we solve two theoretical problems related to the mea-
surement of the microwave background:

(1) What is the density of the Earth microwave background
which one will observe at the COBE orbit and at the L2
point?

(2) What is the anisotropy of the Earth microwave back-
ground, due to a drift of the whole space of the Earth,
which one will observe in the COBE orbit and at the
L2 point?

In a sense, the anisotropy we are treating is the sum of the
dipole and all other multipoles.

According to General Relativity, the result of an observa-
tion depends on the velocity of the observer relative to the ob-
ject he observes, and also on the properties of the local space
(such as the space rotation, gravitation, deformation, curva-
ture, etc.) where the observation is made. Therefore, we are
looking for a theoretical solution of the aforementioned prob-
lems using the mathematical methods, which are specific to
General Relativity.

We solve the first problem using Einstein’s equations, ma-
nifest in the energy and momentum of a field of distributed
matter (an electromagnetic field, for instance), depending on
the distance from the field’s source, and also on the properties
of the space e.g. the space rotation, gravitation, etc.

We solve the second problem using the geodesic equa-
tions for light-like particles (photons, which are mediators for
microwave radiation, and for any electromagnetic radiation in
general). The geodesic equations give a possibility of finding

a preferred direction (anisotropy) in such a field due to the
presence of a linear drift of the whole reference space of the
observer relative to the source of another field, which isn’t
connected to the observer’s space, but moves with respect to
it [1, 2]. In the present case, such a linear drift is due to the
motion of the observer, in common with the microwave back-
ground’s source, the Earth, relative to the source of another
field such as the common field of a group of galaxies or that
of the Universe as a whole (a weak microwave background).
Then we compare our theoretical result from General Relativ-
ity to the experimental data for the microwave background,
obtained in space near the Earth by the COBE satellite, lo-
cated in a 900 km orbit, and also by the WMAP satellite, lo-
cated at the L2 point, as far as 1.5 million km from the Earth.

In order to obtain a theoretical result expressed in quan-
tities measurable in practice, we use the mathematical appa-
ratus of chronometric invariants — the projections of four-
dimensional quantities on the time line and spatial section of
a real observer, which are the physical observable quatities in
General Relativity [3, 4].

First, we introduce a space where all the mesurements are
taken. Both locations, of the COBE satellite and the L2 point,
are connected, by gravitation, to the gravitational field of the
Earth, so both observers are connected to the space of the
Earth, whose properties (e.g. rotation, gravitation, deforma-
tion, etc.) affect the observations. We therefore consider dif-
ferent locations of an observer in the space of the Earth.

We construct the metric for the Earth’s space, which is the
superposition of the metric of a non-holonomic (self-rotating)
space and a gravitating space.

The space of the Earth rotates with a frequency of one
revolution per day. By the theory of non-holonomic spaces
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[5], a non-holonomic space (space-time) has inclinations be-
tween the times lines and the three-dimensional spatial sec-
tion, cosines of which are represent by the three-dimensional
linear velocity of the rotation. The metric of a non-holonomic
space (space-time), which rotation is given by a linear veloc-
ity v at a given point, is described at this point by

ds2 = c2dt2+
2v
c
cdt (dx+dy+dz)�dx2�dy2�dz2: (1)

For clarity of further calculation, we change to the cylin-
drical coordinates r, ', z, where

x = r cos' ; y = r sin' ; z = z ; (2)

so the metric (1) takes the form

ds2 = c2dt2 +
2v
c

(cos'+ sin') cdtdr+

+
2vr
c

(cos'� sin') cdtd'+
2v
c
cdtdz�

� dr2 � r2d'2 � dz2:

(3)

The metric of a space, where gravitation is due to a body
of a mass M , in quasi-Newtonian approximation and in the
cylindrical coordinates, is

ds2 =
�

1� 2GM
c2r

�
c2dt2 �

�
1 +

2GM
c2r

�
dr2�

� r2d'2 � dz2;
(4)

where G is the Newtonian gravitational constant. We con-
sider a satellite which rotates in the metric (4) around the
gravitating body. Both observers, located on board the COBE
satellite (a 900 km orbit) and the WMAP satellite (the L2
point) respectively, are in a state of weightlessness, which is
described by the weightlessness condition

GM
r

= !2r2; (5)

where r is the radius of the satellite’s orbit, while ! is the
angular velocity of the rotation of the observer (in common
with the satellite on which he is located) around the gravitat-
ing body. So the metric (4) is

ds2 =
�

1� 2GM
c2r

� !2r2

c2

�
c2dt2 � 2!r2

c
cdtd'�

�
�

1 +
2GM
c2r

�
dr2 � r2d'2 � dz2;

(6)

where GM
r = !2r2. The weightless state is common to all

planets and their satellites. So the Earth’s space from the
point of an observer located on board the COBE satellite and
the WMAP satellite is in the weightless state.

We use the cylindrical coordinates, because such an ob-
server is located on board of a satellite which orbits the Earth.

The metric of the Earth’s space at the point of location of
such an observer is a superposition of the metric with rotation
(3) and the metric with a gravitational field (6), which is

ds2 =
�

1� 2GM
c2r

� !2r2

c2

�
c2dt2 +

+
2v (cos'+ sin')

c
cdtdr+

+
2r [v (cos'� sin')� !r]

c
cdtd'+

2v
c
cdtdz�

�
�

1 +
2GM
c2r

�
dr2 � r2d'2 � dz2:

(7)

Because the Earth, in common with its space, moves rel-
ative to the source of the weak microwave background, this
drift should also be taken into account in the metric. This is
accomplished by choosing this motion to be in the z-direction
and then applying Lorentz’ transformations to the z coordi-
nate and time t

~t =
t+ vz

c2q
1� v2

c2

; ~z =
z + vtq
1� v2

c2

; (8)

so the resulting metric of the space of the Earth, where such
a drift is taken into account, is

ds2 =
�

1� 2GM
c2r

� !2r2

c2
+

2vv
c2

�
c2dt2 +

+
2v (cos'+ sin')

c
cdtdr+

+
2r [v (cos'� sin')� !r]

c
cdtd'+

2v
c
cdtdz�

�
�

1+
2GM
c2r

�
dr2+

2vv (cos'+ sin')
c2

drdz�r2d'2 +

+
2rv [v (cos'� sin')�!r]

c2
d'dz�

�
1� 2vv

c2

�
dz2;

(9)

where we mean 1� v2

c2 ' 1, because the Earth’s velocity v
relative to the source of the weak microwave background is
small to the velocity of light c.

This is the metric of the real physical space of the Earth,
where we process our observations.

Now we apply this metric to the reference frames of two
observers, one of which is located on board the COBE satel-
lite, in an orbit with an altitude of 900 km, while the second
observer is located on board of WMAP satellite, at the L2
point, which is far as 1.5 million km from the Earth.

2 The density of the Earth microwave background at
the COBE orbit and at the L2 point

Here we answer the question: what is the density of the Earth
microwave background that one will observe at the COBE
orbit and at the L2 point? Using the main observable char-
acteristics of the space of the Earth, pervaded by an electro-
magnetic field (the microwave background, for instance), we
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derive Einstein’s equations for the space. Einstein’s equations
describe the energy and momentum of distributed matter, in
this case the microwave background. So we will know pre-
cisely, through Einstein’s equations, the density of the energy
of the Earth microwave background which will be observed
at the COBE orbit and at the L2 point.

2.1 The Earth space. Its physical properties manifest in
observations of the Earth microwave background

In this particular problem we are interested in the distribu-
tion of the Earth microwave background with altitude, giving
the difference in the measurement of the background at the
COBE orbit and at the L2 point. We therefore neglect terms
like vv

c2 , which take into account the drift of the whole space
of the Earth. The quantity 2GM

c2r has its maximum numerical
value �10�9 at the Earth’s surface, and the value substatially
decreases with altitude. We therefore neglect the last terms
in g11 =� �1+ 2GM

c2r

�
, but we do not neglect the last terms in

g00 =1� 2GM
c2r � !2r2

c2 , because they will be multiplied by c2
later. In such a case the Earth space metric takes the simpli-
fied form

ds2 =
�

1� 2GM
c2r

� !2r2

c2

�
c2dt2 +

+
2v (cos'+ sin')

c
cdtdr+

+
2r [v (cos'� sin')� !r]

c
cdtd'+

2v
c
cdtdz�

� dr2 � r2d'2 � dz2:

(10)

We will use this metric to determine the density of the en-
ergy of the Earth microwave background at the COBE orbit
and at the L2 point. We are loooking for the main observ-
able characteristics of the space. By the theory of physical
observable quantities in General Relativity [3, 4], the observ-
able properties of a space are determined within the fixed
three-dimensional spatial section of an observer. Those are
the quatities invariant within the spatial section (the so-called
chronometric invariants): the gravitational potential w, the
linear velocity of the space rotation vi, the gravitational iner-
tial force Fi, the angular velocity of the space rotation Aik,
the three-dimensional metric tensor hik, the space deforma-
tionDik, the three-dimensional Christoffel symbols �i

kn, and
the three-dimensional curvature Ciklj . These characteristics
can be calculated through the components of the fundamen-
tal metric tensor g�� , which can be easily obtained from a
formula for the space metric (see [3, 4] for the details).

The substantially non-zero components of the character-
istics of the space of the Earth, calculated though the compo-
nents g�� of the metric (10), are

w =
GM
r

+
!2r2

2
; (11)

v1 = �v (cos'+ sin')

v2 = �r [v (cos'� sin')� !r]
v3 = �v

9>=>; (12)

F1 = (cos'+ sin') vt + !2r � GM
r2

F2 = r (cos'� sin') vt ; F3 = vt

9=; (13)

A12 = !r +
1
2
�
(cos'+ sin') v'�

� r (cos'� sin') vr
�

A23 = �v'
2
; A13 = �vr

2

9>>>>=>>>>; (14)

h11 = h33 = 1 ; h22 = r2; h11 = h33 = 1

h22 =
1
r2 ; h = r2;

@ ln
p
h

@r
=

1
r

�1
22 = �r ; �2

12 =
1
r

9>>>>=>>>>; (15)

while all components of the tensor of the space deformation
Dik and the space curvature Ciklj are zero, in the framework
of our assumptions. Here we assume the plane in cylindri-
cal coordinates wherein the space of the Earth rotates: we
assume that v doesn’t depend from the z-coordinate. This as-
sumption is due to the fact that the Earth, in common with
its space, moves relative to a weak (cosmic) microwave back-
ground in the direction of its anisotropy. The quantities vr,
v', and vt denote the partial derivatives of v by the respective
coordinates and time.

2.2 Einstein’s equations in the Earth space. The density
of the energy of distributed matter

Einstein’s general covariant equations

R�� � 1
2
g��R = ��T�� + �g�� ; (16)

in a reference frame of the fixed spatial section of an ob-
server, are represented by their projections onto the observer’s
time line and spatial section [3, 4]. We omit the �-term, the
space deformation Dik, and the space curvature, Ciklj , be-
cause they are zero in the framework of our problem. In
such a case the projected Einstein equations, according to
Zelmanov [3, 4], are

@F i

@xi
+
@ ln
p
h

@xi
F i � AikAik = ��

2
�
�c2 + U

�
@Aik

@xk
+
@ ln
p
h

@xk
Aik = ��J i

2AijA
�j
k� +

1
2

�
@Fi
@xk

+
@Fk
@xi
� 2�m

ikFm
�

=

=
�
2
�
�c2hik + 2Uik � Uhik�

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(17)
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�2!2 � 2! (cos'+ sin')
v'
r

+ 2! (cos'� sin') vr + (cos'+ sin') vtr + (cos'� sin')
vt'
r

+

+
�
cos2 '� sin2 '

� vrv'
r

+ cos' sin'
�
v2
r � v2

'

r2

�
� v2

r � v2
'

r2 = ���c2
1
2

h
(cos'+ sin')

�vr
r

+
v''
r2

�
+ (cos'� sin')

�v'
r2 � vr'

r

�i
= ��J1

1
2

h
(cos'+ sin')

�v'
r3 � vr'

r2

�� (cos'� sin')
vrr
r

i
= ��J2

1
2

�
vrr +

vr
r

+
v''
r2

�
= ��J3

v2
r +

v2
'

2r3 + 3!2 +
2GM
r3 + 2! (cos'+ sin')

v'
r
� 2! (cos'� sin') vr + (cos'+ sin') vtr �

� �cos2 '� sin2 '
� vrv'

r
� cos' sin'

�
v2
r � v2

'

r2

�
= �U11

r2

2

hvrv'
r2 + (cos'+ sin')

vt'
r2 + (cos'� sin')

vtr
r

i
= �U12

1
2

"
2!
v'
r

+ vtr + (cos'+ sin')
v2
'

r2 � (cos'� sin')
vrv'
r

#
= �U13

2!2 + 2! (cos'+ sin')
v'
r
� 2! (cos'� sin') vr + (cos'� sin')

vt'
r

+
v2
r
2

+
v2
'

r2 �
� �cos2 '� sin2 '

� vrv'
r

+ cos' sin'
�v2

'

r2 � v2
r

�
= �

U22

r2

r2

2

�
vt'
r2 � 2!

vr
r
� (cos'+ sin')

vrv'
r2 + (cos'� sin')

v2
r
r

�
= �U23

v2
r
2

+
v2
'

2r2 = �U33

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(18)

where �= T00
g00

, J i = c T i0pg00
, and U ik = c2T ik are the respec-

tive projections of the energy-momentum tensor T�� of dis-
tributed matter on the right side of the equations: � is the
density of the energy of the matter field, J i is the density of
the field momentum, and U ik is the stress-tensor of the field.

We substitute here the formulae obtained for the space of
the Earth. In this deduction we take into account the weight-
lessness condition !2r2 = GM

r . (This is because we calcu-
late the equations for a satellite-bound observer.) We also
apply the condition �c2 =U , which is specific to any electro-
magnetic field; so we mean only an electromagnetic field dis-
tributed in the space. As a result, after some algebra, we ob-
tain the projected Einstein equations for the Earth space filled
with a background field of matter. The resulting Einstein
equations, the system of 10 equations with partial derivatives,
are given in formula (18).

(Obvious substitutions such as cos2'� sin2'= cos 2'
and cos' sin'= 1

2 sin 2' can be used herein.)
We are looking for a solution of the scalar Enstein equa-

tion, the first equation of the system (18). In other words, we

are looking for the density of the field’s energy, �, which orig-
inates in the Earth, expressed through the physical properties
of the space of the Earth (which decrease with distance from
the Earth as well).

As seen, the quantity � is expressed through the distribu-
tion function of the linear velocity of the space rotation v (see
the first equation of the system), which are unknown yet. A
great help to us is that fact that we have only an electromag-
netic field distributed in the space. This means that with use
of the condition �c2 =U we equalize �c2 and U taken from
the Einstein equations (18) so that we get an equation con-
taining the distribution functions of v without the properties
of matter (an electromagnetic field, in our case). With such
an equation, we find a specific correlation between the distri-
bution functions.

First we calculate is the trace of the stress-tensor of dis-
tributed matter

U = U11 +
U22

r2 + U33 (19)

which comes from the 5th, 8th, and 10th equations of the
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(cos'� sin')
�vtr'

r
� vt'
r2

�
+ ! (cos'+ sin')

�vr'
r
� v'
r2

�� ! (cos'� sin') vrr + 2vrvrr +
v'vr'
r2 +

� v
2
'

r3 + (cos'+ sin') vtrr � 1
2

cos 2'
�v'vrr

r
+
vrvr'
r
� vrv'

r2

�
+

1
2

sin 2'
�
v'vr'
r2 � v2

'

r3 � vrvrr
�

= 0

(cos'+ sin')
�vtr'
r2 � vt'

r3

�
+ (cos'� sin')

�vt''
r3 +

vtr
r2

�
+ ! (cos'+ sin')

�vr
r2 +

v''
r3

�
+

+! (cos'� sin')
�v'
r3 � vr'

r2

�
+
v'v''
r4 +

vrvr'
r2 +

1
2

cos 2'
�v2

'

r4 � v2
r
r2 � vrv''

r3 � v'vr'
r3

�
+

+
1
2

sin 2'
�

2vrv'
r3 +

v'v''
r4 � vrvr'

r2

�
= 0

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

(24)

Einstein equations (18). We obtain

�U = 4!2 + 4! (cos'+ sin')
v'
r
�

� 4! (cos'� sin') vr + 2v2
r +

2v2
'

r2 +

+ sin 2'
�v2

'

r2 � v2
r

�
� cos 2'

vrv'
r

+

+ (cos'+ sin') vtr + (cos'� sin')
vt'
r
:

(20)

Equalizing it to ��c2 of the first equation of the Einstein
equations (18), we obtain

2!2 + 2! (cos'+ sin')
v'
r
� 2! (cos'� sin') vr +

+ v2
r +

v2
'

r2 +
1
2

sin 2'
�v2

'

r2 � v2
r

�
� cos 2'

vrv'
r

+

+2 (cos'+ sin') vtr + 2 (cos'� sin')
vt'
r

= 0 :

(21)

Thus we have all physically observable components of
T�� expressed in only the physical observable properties of
the space. Substituting the components into the conservation
law for the common field of distributed matter in the space,
we look for the formulae of the distribution functions of the
space rotation velocity v.

The conservation law r� T�� = 0, expressed in terms of
the physical observed quantities�, is [3, 4]

�@�
@t

+D�+
1
c2
DijU ij +

+
�
�ri � 1

c2
Fi
�
J i � 1

c2
FiJ i = 0

�@Jk
@t

+ 2
�
Dk
i + A�ki�

�
J i +

+
�
�ri � 1

c2
Fi
�
U ik � �F k = 0

9>>>>>>>>>>=>>>>>>>>>>;
(22)

�The asterisk denotes the chronometrically invariant differential opera-
tors, e.g.

�@
@t

= 1pg00

@
@t

and
�@
@xi

= @
@xi

+ 1
c2
vi
�@
@t

; see [3, 4].

which, under the specific conditions of our problem, become

@J i

@xi
+
@ ln
p
h

@xi
J i = 0

@Jk

@t
+ 2A�ki� J i +

@U ik

@xi
+ �k

imU
im +

+
@ ln
p
h

@xi
U ik � �F k = 0

9>>>>>>>=>>>>>>>;
(23)

The first, a scalar equation of conservation, means
riJ i= 0, i.e. the flow of the common field of distributed
matter is conserved in the space of the Earth. The second, a
vector equation of conservation, after substituting the compo-
nents of J i and U ik from the Einstein equations (18), and also
Aik (14) and �i

kn (15), give the system (24) of two non-linear
differential equations with partial derivatives with respect to
v (while the third equation vanishes becoming the identity
“zero equals zero”).

The exact solution of the system, i.e. a function which
when substituted into the equations makes them identities, is

v = T (t) rei'; (25)

where i is the imaginary unit, while T is a function of time
(its dimension is sec�1).

Substituting the derivatives

vr = T ei' ; v' = ir T ei' ; vt = _T rei'

vt' = i _T rei'; vtr = T ei'

9=; (26)

into (21), we obtain, after transformations,

Tt (i+ 1) + !T (i� 1)� iT 2

2
+ !2 = 0 ; (27)

where _Tt = @T
@t . We obtain, for the real part of the equation

_T � !T + !2 = 0 ; (28)

which is a linear differential equation of the first order

_T + f(t)T = g(t) ; (29)
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whose exact solution is

T = e�F
�
T0 +

Z t

t0=0
g(t)eF dt

�
; (30)

F (t) =
Z
f(t)dt : (31)

Substituting f =�!, g=�!2 and integrating the result-
ing expression within the limits from t to t0 = 0, we obtain
the solution for the real part of the function T (t):

T (t) = e!t (T0 � !) + ! ; (32)

where T0 is the initial value of T .
The imaginary part of the (27) satisfies the differential

equation

Tt + !T � 1
2
T 2 = 0 ; (33)

which is Bernoulli’s equation

Tt + f T 2 + gT = 0 ; (34)

where f =� 1
2 and g=! are constant coefficients. Such a

Bernoulli equation has the solution

1
T

= E(t)
Z

fdt
E(t)

; E(t) = e
R
gdt : (35)

Integrating this expression, we obtain

T (t) =
2!

1 + Ce!t
; (36)

which is the imaginary part of T . Here C is a constant of
integration. Assuming the initial value t0 = 0, we obtain

C =
2!
T0
� 1 ; (37)

where T0 is the initial value of T . Because, by definition
v=T rei' (25), T has a dimension of sec�1, we consider T0
to be the initial frequency of the vibrations of the distributed
matter (background).

So we obtain the final formula for the imaginary part of
the solution for T :

T (t) =
2!T0

T0 + (2! � T0) e!t
: (38)

We therefore write the full solution for T as a complex
function, which is

T (t) = e!t (T0 � !) + ! + i
2!T0

(2! � T0) e!t + T0
: (39)

We see that the imaginary part of T is zero if T0 = 0.
Hence the imaginary part of T originates in the presence of
the initial non-zero value of T .

Assuming T0 = 0, we obtain: the full solution for T has
only the real solution

T = !
�
1� e!t� (40)

when T0 = 0. Substituting this solution into the expression for
�c2, i.e. the first equation of the system (18), and taking into
account the geometrization condition 21 we have obtained for
electromagnetic field, we obtain the real component of the
density of the energy, which is

�c2 =
3!
�

(! � T ) =
3!2

�
�
1� �1� e!t�� : (41)

This is the final formula for the observable density of
the energy W = �c2 of distributed matter in the space of the
Earth, where the matter is represented by an electromagnetic
field which originates in the Earth, with an additional compo-
nent due to the complete rotation of the Earth’s space.

2.3 Calculation of the density of the Earth microwave
background at the COBE orbit and at the L2 point

We simplify formula (41) according to the assumptions of our
problem. The quantity !=

p
GM�=R3, the frequency of the

rotation of the Earth space for an observer existing in the
weightless state, takes its maximum numerical value at the
equator of the Earth’s surface, where != 1.24�10�3 sec�1.
Obviously, the numerical value of ! decreases with altitude
above the surface of the Earth. Since ! is a small value, we
expand e!t into the series

e!t � 1 + !t+
1
2
!2t2 + : : : (42)

where we omit the higher order terms from consideration. As
a result, we obtain, for the density of the energy of distributed
matter (41) in the space of the Earth (we mean an electromag-
netic field originating in the Earth as above),

�c2 =
3!2

�
; (43)

where !=
p
GM�=R3. (In derivation of this formula we

neglected the orders of ! higher than !2.) It should be noted
that the quantity ! is derived from the weightless condition
in the space, depending on the mass of the Earth M�, and the
distance R from the centre of the Earth.

Because microwave radiation is related to an electromag-
netic field, our theoretical result (43) is applicable to a mi-
crowave background originating from the Earth.

Now, with formula (43), we calculate the ratio between
the density of the energy of the Earth microwave background
at the L2 point (R L2 = 1.5 million km) and at the COBE orbit
(R COBE = 6,370 + 900 = 7,270 km)

� L2

�COBE

=
R3

COBE

R3
L2

' 1.1�10�7: (44)
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At the altitude of a U2 aeroplane (25 km altitude, which
almost coincides with the location at the Earth’s surface
(within the framework of the precision of our calculation),
we have RU2 = 6,370 + 25 = 6,395 km. So, we obtain the ra-
tio between the density of the Earth microwave background at
the L2 point, at the COBE orbit, and that at the U2 altitude is

� L2

�U2

=
R3

U2

R3
L2

' 7.8�10�8;
�COBE

�U2

=
R3

U2

R3
COBE

' 0.68: (45)

We see, concerning a microwave background field which
originates in the Earth (the Earth microwave background),
that a measurement of the background by an absolute instru-
ment will give almost the same result at the position of a U2
aeroplane and the COBE satellite. However, at the L2 point
(as far as 1.5 million km from the Earth, the point of location
of the WMAP satellite and the planned PLANCK satellite),
PLANCK, with its ability to function as an absolute instru-
ment, should sense only �10�7 of the field registered either
by the U2 aeroplane or by the COBE satellite.

3 The anisotropy of the Earth microwave background
in the COBE orbit and at the L2 point

It is also important to understand what is the anisotropy of
the Earth microwave background due to a drift of the whole
space of the Earth which would one observe at the COBE
orbit and at the L2 point. We solve this problem by using
the equations of motion of free light-like particles (photons),
which are mediators transferring electromagnetic radiation,
including those in the microwave region. When treating the
photons which originate in the Earth’s field (the Earth mi-
crowave background, for instance), the equations of motion
should manifest an anisotropy in the directions of motion of
the photon due to the presence of a linear drift in the Earth’s
space as a whole, relative to the source of another field such
as the common field of a compact group of galaxies or that
of the Universe as a whole [1, 2] (a weak microwave back-
ground).

The equations of motion of free particles are the geodesic
equations.

A light-like free particle, e.g. a free photon, moves along
isotropic geodesic trajectories whose four-dimensional equa-
tions are [3, 4]

dK�

d�
+ ����K

� dx�

d�
= 0 ; (46)

whereK� = 

c
dx�
d� is the four-dimensional wave vector of the

photon (the vector satisfies the condition K�K� = 0), while

 is the proper cyclic frequency of the photon. The three-
dimensional observable interval equals the interval of observ-
able time d�= cd� along isotropic trajectories, so ds2 =
= c2d� 2� d�2 = 0. In terms of the physical observable quan-
tities, the isotropic geodesic equations are represented by

their projections on the time line and spatial section of an
observer [1, 2]

d

d�
� 

c2
Fi ci +



c2
Dik cick = 0 ;

d
d�
�

ci
�

+ 2

�
Di
k + A�ik�

�
ck�

�
F i + 
�i
knc

kcn = 0 ;

9>>>>=>>>>; (47)

where ci = dxi
d� is the three-dimensional vector of the observ-

able velocity of light (the square of ci satisfies ckck = c2 in
the fixed spatial section of the observer). The first of the equa-
tions (the scalar equation) represents the law of energy for the
particle, while the vectorial equation is the three-dimensional
equation of its motion.

We apply the isotropic geodesic equations to the space
metric (9), which includes a linear drift of the reference space
in the z-direction with a velocity v. Because the dipole-
fit velocity of the Earth, extracted from the experimentally
obtained anisotropy of the microwave background, is only
v = 365�18 km/sec, we neglect the relativistic square in the
metric (9) so that it is

ds2 =
�

1� 2GM
c2r

� !2r2

c2
+

2vv
c2

�
c2dt2 +

+
2v (cos'+ sin')

c
cdtdr+

+
2r [v (cos'� sin')� !r]

c
cdtd'+

2v
c
cdtdz�

�
�

1+
2GM
c2r

�
dr2+

2vv (cos'+ sin')
c2

drdz�r2d'2 +

+
2rv [v (cos'� sin')�!r]

c2
d'dz�

�
1� 2vv

c2

�
dz2;

(48)

We use the metric with the approximation specific to an
observer located on board the COBE satellite or the WMAP
satellite: the observer exists in the weightless state, so !2r2 =
= GM

r ; the linear velocity v of the Earth’s space rotation
doesn’t depend on the z-coordinate, the direction of the drift
of the whole space. We neglect the terms v2

c2 and also higher
order terms, but retain the term vv

c2 which takes into account
the drift of the whole space of the Earth: the value of v
is determined in the weightless state of the observer; it is
'7.9 km/sec close to the surface of the Earth, and hence we
have, near the surface, v

2

c2 � 7�10�10 and vv
c2 � 3�10�8. Both

values decrease with distance (altitude) from the Earth’s sur-
face, but the term vv

c2 remains two orders higher than v2

c2 . We
also neglect GMc2r which is �10�9 at the Earth’s surface.

Due to the fact that the terms vv
c2 are small corrections in

the metric (48), it is easy to show that the exact solution of
the conservation equations v=T (t)rei', obtained earlier in
the framework of such a metric without a drift of the whole
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space (10), satisfies the present metric (48) where the drift is
taken into account.

Using the solution for T (t) (40), and expanding e!t into
series e!t� 1 +!t+ : : :, we obtain

T = �!2t ; (49)
then

v = �!2trei': (50)

We assume ' to be small. We calculate the observable
characteristics of the Earth space where the drift of the whole
space is taken into account, i.e. the space of the metric (48).
Using the components of the fundamental metric tensor g��
taken from the metric (48), we obtain

v1 = !2trei' (cos'+ sin')

v2 = !r2 �!tei' (cos'� sin') + 1
�

v3 = !2rtei'

9>>=>>; (51)

F1 = �!2rei' (cos'+ sin') + !2vtei'

F2 = �!2r2ei' (cos'� sin')� i!2rvtei'

F3 = �!2rei'

9>>=>>; (52)

A12 = !r
�
1 +

!t
2

(1� i)
�

A23 =
i!2trei'

2
; A13 =

!2tei'

2

9>>=>>; (53)

h11 = 1 ; h13 =
!2vtr (cos'+ sin') ei'

c2

h22 = r2; h23 =
!r2v

�
!tei' (cos'� sin') +1

�
c2

h33 = 1� 2!2vtrei'

c2

h = r2
�

1 +
2!2vtrei'

c2

�
h11 = 1 ; h13 = �!2vtr (cos'+ sin') ei'

c2

h22 =
1
r2 ; h

23 = �!v
�
!tei' (cos'� sin') +1

�
c2

h33 = 1 +
2!2vtrei'

c2

9>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>;

(54)

Because the components h13 and h23 of the tensor hik de-
pend on the time coordinate t, we obtain two non-zero com-
ponents of the tensor of the space deformation Dik

D13 =
!2rv (cos'+ sin') ei'

2c2

D23 =
!2r2v (cos'� sin') ei'

2c2

D33 =
!2rvei'

c2

9>>>>>>>=>>>>>>>;
(55)

the scalar D = hikDik is

D =
!2rvei'

c2
: (56)

We now calculate the chronometric Christoffel symbols
of the second kind

�1
22 = �r ; �1

23 =
!2rvt (i� 1)

2c2
� !rv

c2

�1
33 =

!2vtei'

c2

�2
12 =

1
r
; �2

13 =
!2vt (1� i)

2c2r
+
!v
c2r

�2
33 =

i!2vtei'

c2r

�3
11 =

!2vt (cos'+ sin') ei'

c2

�3
12 =

!2rvt (i+ 1) e2i'

2c2
; �3

13 = �!2vtei'

c2

�3
22 =

i!2r2vt (cos'� sin') ei'

c2

�3
23 =

i!2rvtei'

c2

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(57)

We use the above characteristics of the Earth’s space to
write the isotropic geodesic equations (47) in component
form. We neglect the terms proportional to 1

c2 in the equa-
tions. Besides, in the framework of our asumptions, the dif-
ferential with respect to proper time � , i.e.

d
d�

=
�@
@t

+ vi
�@
@xi

; (58)

can be removed with the regular partial derivative d
d� = @

@t .
(The starred derivatives become the regular derivatives, and
also the observable velocity of light ci doesn’t depend on the
z coordinate in our case where the whole space has a drift in
the z direction.)

The vectorial isotropic geodesic equations, written in
component notation, are

dc1

d�
+2
�
D1
k+A

�1
k�
�
ck�F 1+�1

22c
2c2 +

+ 2�1
23c

2c3 + �1
33c

3c3 = 0

dc2

d�
+2
�
D2
k+A

�2
k�
�
ck�F 2+2�2

12c
1c2 +

+ 2�2
13c

1c3 + �2
33c

3c3 = 0

dc3

d�
+2
�
D3
k+A

�3
k�
�
ck�F 3+�3

11c
1c1+2�3

12c
1c2 +

+ 2�3
13c

1c3 + �3
22c

2c2 + 2�3
23c

2c3 = 0

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;
(59)

and after substituting the observable characteristics of the
space, take the form (60–62), where dot denotes differenti-
ation with respect to time.
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�r � 2!r
�
1 +

!t (1� i)
2

�
_'� !2ei'

�
t� vr (cos'+ sin')

c2

�
_z + !2�r (cos'+ sin')� vt

�
ei'�

� r _'2 +
2!rv
c2

�
!t(i� 1)

2
� 1
�

_' _z +
!2vtei'

c2
_z2 = 0 ;

(60)

�'+
2!
r

�
1 +

!t (1� i)
2

�
_r � !2ei'

r

�
it� vr (cos'� sin')

c2

�
_z +

!2

r
�
r (cos'� sin') + ivt

�
ei' +

+
2
r

_r _'� 2!v
c2r

�
!t(i� 1)

2
� 1
�

_r _z � i!2vt
c2

_z2 = 0 ;
(61)

�z + !2ei'
�
t+

vr (cos'+ sin')
c2

�
_r + !2rei'

�
it+

vr (cos'� sin')
c2

�
_'+

2!2rvei'

c2
_z+

+!2rei' +
!2vtei' (cos'+ sin')

c2
_r2 +

!2rvt (i+ 1) e2i'

c2
_r _'+

2!2vtei'

c2
_r _z+

+
i!2r2vt (cos'� sin') ei'

c2
_'2 +

2i!2rvtei'

c2
_' _z = 0;

(62)

_r2 +
2!2rvt (cos'+ sin') ei'

c2
_r _z + r2 _'2 +

2!r2v
�
!tei' (cos'� sin') + 1

�
c2

_' _z+

+
�

1� 2!2rvtei'

c2

�
_z2 = c2:

(63)

The space-time interval ds along isotropic geogesics sat-
isfies the condition ds2 = 0. This condition, in the terms of
physical observed quantities, implies constancy of the square
of the three-dimensional observable velocity of light cici =
=hik cick = c2 along the trajectory. This condition, for the
metric (48), takes the form (63).

A system of the differential equations (60–63) describes
the motion of light-like particles completely, in the given
space-time of the metric (48).

Earlier in this study we considered only the real part
v=T (t)rei' of the solution of the conservation equations
in an electromagnetic field. Because we study the motion
of photons in such an electromagnetic field (in the sample
of a microwave background) we only use the real solution
in the system of the equations (60–63). After the function
v=T (t)rei' is substituted into (60–63), we have, after trans-
formations, the formulae (64–67) (see Page 93).

We assume that a light-like signal (photon) of the Earth
microwave radiation moves along the radial direction r. Be-
cause the space of the Earth at the location of a satellite (the
space of the weightless state) rotates with an angular veloc-
ity ! which depends upon r, we have _'= 0. Two satellites
which measure the Earth microwave background are located
at the altitudes r1 = 900 km and r2 = 1.5 million km respec-
tively. Calculation of !2 = GM�

r3 , where M�= 6�1027g is
the mass of the Earth, gives the values: !1 = 10�3 sec�1 and
!2 = 3.5�10�6 sec�1. Because both values are small, we use
cos'' 1 +!t and sin''!t. Substituting these into the
system of equations (64–67), and neglecting the terms of or-

der higher than !2 (and also the other higher order terms), we
obtain, finally,

�r�!2
�
t� rv

c2
�

_z+!2 (r�vt) +
!2vt
c2

_z2 = 0 ; (68)

�'+ 2!
�

1 +
2!t
2

�
_r
r

+
!2v
c2

_z + 4!2 + 2!
_r
r

+

+
2!v

�
1 + !t

2

�
c2r

_r _z = 0 ;
(69)

�z + !2
�
t+

rv
c2
�

_r +
2!2vr
c2

_z + !2r+

+
!2vt
c2

_r2 +
2!2vt
c2

_r _z = 0 ;
(70)

_r2 +
2!2rvt
c2

_r _z +
2!2r2v
c2

_z+

+
�

1� 2!2rvt
c2

�
_z2 = c2:

(71)

We do choose the coordinate axes so that the z-axis is
directed along the motion of the Earth, in common with its
own electromagnetic field, relative to the source of another
feld such as the common feld of a compact group of galaxies
or that of the Universe as a whole (a weak microwave back-
ground). We also assume, for simplicity, that the orbit of the
satellite, on board of which an observer is located, lies in the
plane orthogonal to the z-direction. In such a case, we have
_z0 = 0. We obtain, assuming _z0 = 0,

_r2
0 = c2; (72)
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�r � !2
�
t cos'� rv (1 + cos 2'+ sin 2')

c2

�
_z � 2!r

�
1 +

!t
2

�
_'+ 2!2r (1 + cos 2'+ sin 2') +

+!2vt cos'� r _'2 � 2!rv
�!t

2 + 1
�

c2
_' _z +

!2vt cos'
c2

_z2 = 0 ;
(64)

�'+ 2!
�

1 +
!t
2

�
_r
r

+
!2

r

�
t sin'+

vr (1 + cos 2'� sin 2')
c2

�
_z + 2!2 (1 + cos 2'� sin 2') �

� !2
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2 _r _'
r

+
2!v

�!t
2 + 1

�
c2r

_r _z = 0 ;
(65)

�z + !2
�
t cos'+

rv (1 + cos 2'+ sin 2')
c2

�
_r � 2!2r

�
2t sin'� rv (1 + cos 2'� sin 2')

c2

�
_'+

+
2!2rv cos'

c2
_z + !2r cos'+

!2vt (1 + cos 2'+ sin 2')
2c2

_r2 +
!2vt (cos 2'� sin 2')

c2
_r _'+

+
2!2vt cos'

c2
_r _z +

2!2r2vt (1� cos 2'� sin 2')
c2

_'2 � 2!2rvt sin'
c2

_' _z = 0 ;

(66)

_r2 +
2!2rvt (1 + cos 2'+ sin 2')

c2
_r _z + r2 _'2 +

2!r2v
�!t

2 (1 + cos 2'� sin 2') +1
�

c2
_' _z+

+
�

1� 2!2rvt cos'
c2

�
_z2 = c2:

(67)

hence we assume _r' c. So we have r' ct. Substituting these
into the equation of motion of a photon in the z-direction
(70), and taking the weightless condition into account, we
obtain the equation of motion in the z direction for a photon
associated with the Earth’s electromagnetic field, the Earth
microwave background in particular. The equation is

�z +
2GM�
c2t2

�
1 +

v
c

�
= 0 : (73)

Integrating the equation with the conditions _z0 = 0 and
r' ct taken into account, we obtain

_z =
2GM�
cr

�
1 +

v
c

�
= _z0 + �z0; (74)

where the first term shows that such a photon, initially
launched in the r-direction in the rotating space (gravitational
field) of the Earth, is carried into the z-direction by the rota-
tion of the space of the Earth. The second term shows car-
riage into the z-direction due to the motion of the Earth in
this direction relative to another source such as a local group
of galaxies or the whole Universe.

Denoting the first term in this formula as _z0= 2GM�
cr and

the second term as � _z0= 2GM�v
c2r , we obtain the relative car-

riage of the three-dimensional vector of the light velocity
from the initial r-direction to the z-direction, due to the mo-
tion of the Earth, as

� _z0
_z0 =

v
c
: (75)

Such a relative carriage of a photon radiated from the
Earth’s surface, applied to the field of photons of the Earth

microwave background radiated in the radial directions, re-
veals the anisotropy associated with the dipole component of
the background.

Such a relative carriage of a photon, associated with the
Earth’s electromagnetic field, into the z-direction, doesn’t de-
pend on the path travelled by such a photon in the radial di-
rection r from the Earth. This means that the anisotropy as-
sociated with the dipole component of the Earth microwave
background shouldn’t be dependent on altitude: it should be
the same be it measured on board a U2 aeroplane (25 km), at
the orbit of the COBE satellite (900 km), and at the L2 point
(the WMAP satellite and PLANCK satellite, 1.5 million km
from the Earth).

4 Comparing the theoretical results to experimental
data. Conclusions

We have obtained, from General Relativity, two fundamental
results:

• A microwave background which originates in the Earth
(the EMB) decreases with altitude, such that the den-
sity of the energy of this background at the height of
the COBE satellite (900 km) is just 0.68 times less that
that at the height of a U2 aeroplane (25 km). The en-
ergy of the background at the L2 point (which is up to
1.5 million km from the Earth) is only �10�7 that ex-
perienced at the location either of a U2 aeroplane or of
the COBE satellite;

• The anisotropy of the Earth microwave background,
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due to the fast motion of the Earth relative to the source
of another field, which isn’t connected to the Earth but
located in depths of the cosmos, does not depend on
the position relative to the Earth’s surface. The dipole
anisotropy is therefore independent of altitude; the an-
isotropy will be the same be it measured at the alti-
tude of a U2 aeroplane (25 km), the COBE satellite
(900 km), or the WMAP satellite located at the L2 point
(1.5 million km).

These purely theoretical conclusions, from General Rela-
tivity, cause us to consider an Earth origin of the microwave
background, the monopole 2.7 K component of which was
discovered in 1965 by Penzias and Wilson, in a ground-based
observation [6], while the dipole 3.35 mK component was
first observed in 1969 by Conklin, also via a ground-based ob-
servation [7], then studied by Henry [8], Corey [9], and also
Smoot, Gorenstein, and Muller, who organized a stratosphere
observation on board a U2 aeroplane [11]. (See the history of
the observations in detail in Lineweaver’s paper [10].)

There are many problems in the observation of the mi-
crowave background. The monopole component, at low fre-
quencies, is easy to observe at the Earth’s surface [6]. The
dipole component is best observed at the altitude of a U2
aeroplane [11], at the altitude of 900 km (the COBE satellite)
and also at 1.5 million km (the WMAP satellite located at the
L2 point) where its anisotropy is clearly indicated [12–17].
Conversely, the monopole observed on Earth and in COBE
orbit, has yet to be recorded at the L2 point: the WMAP satel-
lite has only differential instruments on board, which are able
to indicate only the anisotropy of the background, not its ab-
solute value.

On the other hand, as shown by Robitaille [18–22], such
a phenomenology of the observations has a clear explanation
as an Earth microwave background which originates not in a
cosmic source, but the oceans of the Earth, which produce mi-
crowave signals, in particular, with an apparent temperature
of 2.7 K. Besides, as pointed out in [21, 23], the observed
anisotropy of the microwave background can be explained as
a relativistic effect of the motion of the observer, in common
with the source of the background (the Earth), relative to the
source of a noise microwave field, which has no specific tem-
perature, and a source of which is located in depths of the
cosmos (i.e. the distance from the many sources).

According to our theory, which supports the phenomenol-
ogy of the Earth microwave background, proposed by Ro-
bitaille [18–22], we have four new specific terms, namely:

1. The EMB (the Earth Microwave Background);
2. The EMBM (the monopole associated with the Earth

Microwave Background);
3. The EMBD (the dipole associated with the Earth Mi-

crowave Background);
4. The EMBA (the anisotropy of the Earth Microwave

Background, associated with the dipole).

The PLANCK satellite (which has an absolute instrument
on board), will soon be launched to the L2 point, on 31st
July 2008, and should find an experimental verification of
our theory.
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We consider a new four-dimensional formulation of semi-classical quantum general rel-
ativity in which the classical space-time manifold, whose intrinsic geometric properties
give rise to the effects of gravitation, is allowed to evolve microscopically by means of
a conformal function which is assumed to depend on some quantum mechanical wave
function. As a result, the theory presented here produces a unified field theory of grav-
itation and (microscopic) electromagnetism in a somewhat simple, effective manner.
In the process, it is seen that electromagnetism is actually an emergent quantum field
originating in some kind of stochastic smooth extension (evolution) of the gravitational
field in the general theory of relativity.

1 Introduction

We shall show that the introduction of an external parameter,
the Planck displacement vector field, that deforms (“maps”)
the standard general relativistic space-time S1 into an evolved
space-time S2 yields a theory of general relativity whose
space-time structure obeys the semi-classical quantum me-
chanical law of evolution. In addition, an “already quan-
tized” electromagnetic field arises from our schematic evolu-
tion process and automatically appears as an intrinsic geomet-
ric object in the space-time S2. In the process of evolution, it
is seen that from the point of view of the classical space-time
S1 alone, an external deformation takes place, since, by defi-
nition, the Planck constant does not belong to its structure. In
other words, relative to S1, the Planck constant is an external
parameter. However from the global point of view of the uni-
versal (enveloping) evolution space M4, the Planck constant
is intrinsic to itself and therefore defines the dynamical evo-
lution of S1 into S2. In this sense, a point in M4 is not strictly
single-valued. Rather, a point in M4 has a “dimension” de-
pending on the Planck length. Therefore, it belongs to both
the space-time S1 and the space-time S2.

2 Construction of a four-dimensional metric-compatible
evolution manifold M4

We first consider the notion of a four-dimensional, universal
enveloping manifoldM4 with coordinates x� endowed with a
microscopic deformation structure represented by an exterior
vector field � (x� ) which maps the enveloped space-time
manifold S1 2M4 at a certain initial point P0 onto a new en-
veloped space-time manifold S2 2M4 at a certain point P1
through the diffeomorphism

x� (P1) = x� (P0) + l ��;

where l=
q

G ~
c3 � 10�33 cm is the Planck length expressed

in terms of the Newtonian gravitational constantG, the Dirac-

Planck constant ~, and the speed of light in vacuum c, in such
a way that

�� = l ��

lim
~!0

�� = 0 :

From its diffeomorphic structure, we therefore see that
M4 is a kind of strain space. In general, the space-time S2
evolves from the space-time S1 through the non-linear map-
ping

P (�) : S1 ! S2 :

Note that the exterior vector field � can be expressed as
�=��h� = ���g� (the Einstein summation convention is em-
ployed throughout this work) where h� and g� are the sets of
basis vectors of the space-times S1 and S2, respectively (like-
wise for �). We remark that S1 and S2 are both endowed with
metricity through their immersion in M4, which we shall now
call the evolution manifold. Then, the two sets of basis vec-
tors are related by

g� =
�
��� + lr� ���h�

or, alternatively, by

g� = h� + l
� �r� ���

�
g�

where ��� are the components of the Kronecker delta.
At this point, we have defined the two covariant deriva-

tives with respect to the connections ! of S1 and � of S2 as
follows:

r�A��:::��::: = @�A
��:::
��::: + !���A

��:::
��::: + !���!��:::��::: + : : :

�!���A��:::��::: � !���A��:::��::: � : : :
and

�r�B��:::��::: = @�B
��:::
��::: + ����B

��:::
��::: + ����B����::: + : : :

�����B
��:::
��::: � ����B

��:::
��::: � : : :

for arbitrary tensor fields A and B, respectively. Here
@� = @=@ x�, as usual. The two covariant derivatives above
are equal only in the limit ~! 0.
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Furthermore, we assume that the connections ! and � are
generally asymmetric, and can be decomposed into their sym-
metric and anti-symmetric parts, respectively, as

!��� =
�
h�; @vh�

�
= !�(��) + !�[��]

and
���� =

�
g�; @vg�

�
= ��(��) + ��[��]:

Here, by (a; b) we shall mean the inner product between
the arbitrary vector fields a and b.

Furthermore, by direct calculation we obtain the relation

@�g� =
�
!��� + l

�r����!��� + l @�
�r�����h� :

Hence, setting

F��� = !��� + l
�
(r���)!��� + @�

�r����� =

= !���+ l
�
(r���)!���+@�@���+��@�!���+ (@���)!���

�
we may simply write

@�g� = F���h� :

Meanwhile, we also have the following inverse relation:

h� =
�
��� � l �r� ���

�
g� :

Hence we obtain

@�g� =
�
!��� + l (r���)!��� + l @�@��� +

+ l ��@�!��� + l (@���)!��� � l !��� �r� ����
� l (r���)!��� �r� ��� � l (@v@���) �r� ����
� l �� �@�!���� �r� ��� �l (@���)!��� �r� ���

�
g� :

Using the relation @�g� = ����g� (similarly, @�h� =
=!���h�), we obtain the relation between the two connec-
tions � and ! as follows:

���� = !��� + l
�
(r���)!��� + @�@��� +

+ ��@�!��� (@���)!����!��� �r� ���� (r���)!��� �r� ����
� (@�@���) �r� ������ �@�!���� �r� ��� � (@���)!��� �r� ���

�
which is a general non-linear relation in the components of
the exterior displacement field �. We may now write

���� = F��� +G���

where, recalling the previous definition of F ��� , it can be re-
written as

F ��� = !��� + l
��
@�!��� + !���!���

�
�� +

+ @�@��� + (@���)!��� + (@���)!���
�

and where

G��� = �l �!��� + l
�
(r���) !���

+ @�@��� + �� @�!��� + (@� ��) !���
�� �r� ��� :

At this point, the intrinsic curvature tensors of the space-
times S1 and S2 are respectively given by

K�
��� = 2

�
h�; @[�@�]h�

�
=

= @�!��� � @� !��� + !��� !��� � !��� !���
and

R���� = 2
�
g�; @[�@�]g�

�
=

= @����� � @����� + ���� ���� � �������� :

We may also define the following quantities built from the
connections !��� and ���� :

D�
��� = @�!��� + @�!��� + !��� !

�
�� + !���!

�
��

and

E���� = @����� + @����� + ���� ���� + ��������

from which we may define two additional “curvatures”X and
P by

X�
��� = (h�; @�@�h�) =

1
2
�
K�

��� +D�
���
�

=

= @�!��� + !���!���
and

P ���� = (g�; @�@� g�) =
1
2
�
R���� + E����

�
=

= @����� + ���� ����

such that K�
��� = 2X�

�[��] and R���� = 2P ��[��].
Now, we see that

F �(��) = !�(��) + l
�

1
2
D�

��� �
� + @�@���

�
+

+ l
�
(@���) !��� + (@���) !���

�
and

F�[��] = !�[��] +
1
2
lK�

��� �
� :

In addition, we also have

G�(��) = l
�
!�(��) + l

�
1
2
D�

��� �
� + @�@���

��
�r� ��� +

+ l
�
l
�

(@���) !��� + (@���) !���
�� �r� ���

and

G�[��] = l
�
!�[��] � 1

2
lK�

��� �
�
�

�r� ���:

Now, the metric tensor g of the space-time S1 and the
metric tensor h of the space-time S2 are respectively given by

h�� = (h�; h�)

and
g�� = (g�; g�)
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where the following relations hold:

h��h�� = ���
g��g�� = ���

In general, the two conditions h�� g�� , ��� and
g�� h��,��� must be fulfilled unless l=0 (in the limit ~!0).
Furthermore, we have the metricity conditions

r� h�� = 0 ;
and �r� g�� = 0 :

However, note that in general, �r� h�� , 0 andr�g�� , 0.
Hence, it is straightforward to see that in general, the met-

ric tensor g is related to the metric tensor h by

g�� = h�� + 2 lr(���) + l2r���r���
which in the linear approximation reads

g�� = h�� + 2 lr(���) :

The formal structure of our underlying geometric frame-
work clearly implies that the same structure holds in n di-
mensions as well.

3 The conformal theory

We are now in the position to extract a physical theory of
quantum gravity from the geometric framework in the pre-
ceding section by considering the following linear conformal
mapping:

g� = e'h�

where the continuously differentiable scalar function ' (x�)
is the generator of the quantum displacement field in the evo-
lution space M4 and therefore connects the two space-times
S1 and S2.

Now, for reasons that will be apparent soon, we shall de-
fine the generator ' in terms of the canonical quantum me-
chanical wave function  (x�) as

' = ln (1 +M )
1
2

where
M = �1

2
l
�
i
m0c
~

�2
:

Here m0 is the rest mass of the electron. Note that the
sign � signifies the signature of the space-time used.

Now, we also have the following relations:

g� = e�'h�;
h� = e�'g�;
h� = e'g�;

(g�; g�) = (h�; h�) = ��� ;

(g�; h�) = e2'��� ;

(h�; g�) = e�2'��� ;

as well as the conformal transformation

g�� = e2'h�� :
Hence

g�� = e�2' h�� :

We immediately see that

g�� h�� = e2' ��� ;

h�� g�� = e�2' ��� :

At this point, we see that the world-line of the space-time
S2, s=

Rp
h�� dx�dx� , is connected to that of the space-

time S1, �=
Rp

g�� dx�dx� , through

ds = e2'd� :

Furthermore, from the relation

g� =
�
��� + lr��� �h� = e'h�

we obtain the important relation

lr��� = (e' � 1)h�� ;
which means that

��� = lr��� = ��� ;

i.e., the quantum displacement gradient tensor field � is sym-
metric. Hence we may simply call � the quantum strain ten-
sor field. We also see that the components of the quantum
displacement field, �� = l ��, can now be described by the
wave function  as

�� = l @� 
i.e.,

 =  0 +
1
l

Z
��dx�

for an arbitrary initial value  0 (which, most conveniently,
can be chosen to be 0).

Furthermore, we note that the integrability condition
��� = ��� means that the space-time S1 must now possess
a symmetric, linear connection, i.e.,

!��� = !��� =
1
2
h�� (@�h�� � @�h�� + @�h��) ;

which are just the Christoffel symbols f ��� g in the space-time
S1. Hence ! is now none other than the symmetric Levi-
Civita (Riemannian) connection. Using the metricity condi-
tion @�g�� = ���� + ����, i.e.,

@� g�� = Mh�� @� + (1 +M  ) (!��� + !���) ;

we obtain the mixed form

!��� =
1
2

(1 +M )�1 (@�g�� � @�g�� + @�g��)�
� 1

2
M (1 +M )�1 (h��@� � h��@� + h��@� )
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i.e.,

!��� =
1
2

(1 +M )�1 h�� (@�g�� � @� g�� + @� g��)�
� 1

2
M (1 +M )�1 ����@� + ��� @� � h��h��@� � :

It may be noted that we have used the customary conven-
tion in which ���� = g�� ���� and !��� =h��!

�
�� .

Now we shall see why we have made the particular choice
'= ln (1 +M  )

1
2 . In order to explicitly show that it now

possess a stochastic part, let us rewrite the components of the
metric tensor of the space-time S2 as

g�� = (1 +M )h�� :

Combining this relation with the linearized relation
g�� =h��+ 2 lr(� ��) and contracting the resulting relation,
we obtain

lD2 = 2
�
e2' � 1

�
= 2M ;

where we have defined the differential operator D2 =
= h��r�r� such that

D2 = h��
�
@�@� � !��� @� � :

ExpressingM explicitly, we obtainD2 = � �m0 c
~

�2  ,
i.e., �

D2 � �m0c
~

�2
�
 = 0

which is precisely the Klein-Gordon equation in the presence
of gravitation.

We may note that, had we combined the relation g�� =
= (1 +M  )h�� with the fully non-linear relation

g�� = h�� + 2 lr(���) + l2r���r��� ;
we would have obtained the following non-linear Klein-
Gordon equation:�
D2 � �m0 c

~

�2
�
 = l2h��h�� (r�r� ) (r�r� ) :

Now, from the general relation between the connections �
and ! given in Section 2, we obtain the following important
relation:

��[��] = �1
2
l
�
��� � l �r� ���

�
K�

����
�;

which not only connects the torsion of the space-time S2 with
the curvature of the space-time S1, but also describes the tor-
sion as an intrinsic (geometric) quantum phenomenon. Note
that

K�
��� = @�

�
�
��

�
� @�

�
�
��

�
+

+
�
�
��

��
�
��

�
�
�
�
��

��
�
��

�
are now the components of the Riemann-Christoffel curvature
tensor describing the curvature of space-time in the standard

general relativity theory.
Furthermore, using the relation between the two sets of

basis vectors g� and h�, it is easy to see that the connection
� is semi-symmetric as

���� = !��� + ��� @�'

or, written somewhat more explicitly,

���� =
1
2
h�� (@�h�� � @�h�� + @�h��) +

+
1
2
��� @�

�
ln (1 +M )

�
:

We immediately obtain

��(��) = !��� +
1
2
�
���@�'+ ��� @�'

�
and

��[��] =
1
2
�
���@�'� ��� @�'� :

Additionally, using the relation

!��� = !��� = @�
�

ln
p

det (h)
�

=

= @�
�

ln
�
e�'

p
det (g)

��
= @�

�
ln
p

det (g)
�� @�'

we may now define two semi-vectors by the following con-
tractions:

�� = ���� = @�
�

ln
p

det (h)
�

+ 4 @�'

�� = ���� = @�
�

ln
p

det (h)
�

+ @�'

or, written somewhat more explicitly,

�� = @�
�

ln
p

det (h) + ln (1 +M )2
�

�� = @�
�

ln
p

det (h) + ln
p

1 +M 
�
:

We now define the torsion vector by

�� = ��[��] =
3
2
@�' :

In other words,

�� =
3
4

M
(1 +M )

@� :

Furthermore, it is easy to show that the curvature tensors
of our two space-times S1 and S2 are now identical:

R���� = K�
���

which is another way of saying that the conformal transfor-
mation g� = e' h� leaves the curvature tensor of the space-
time S1 invariant. As an immediate consequence, we obtain
the ordinary expression

R���� =
1
2

(@�@�h��+@�@�h���@�@�h���@�@�h��) +

+h��
�
!���!

�
�� � !��� !���� :
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Hence the following cyclic symmetry in Riemannian ge-
ometry:

R���� +R���� +R���� = 0

is preserved in the presence of torsion. In addition, besides
the obvious symmetry R���� =�R����, we also have the
symmetry

R���� = �R����
which is due to the metricity condition of the space-times S1
and S2. This implies the vanishing of the so-called Homoth-
etic curvature as

H�� = R���� = 0 :

The Weyl tensor is given in the usual manner by

C���� = R���� � 1
2

(h��R�� + h��R���
�h��R�� � h��R��)� 1

6
(h��h�� � h��h��)R ;

where R�� =R���� are the components of the symmetric
Ricci tensor and R=R�� is the Ricci scalar.

Now, by means of the conformal relation g�� = e2' h��
we obtain the expression

R���� = e�2'
�
@�@�g�� + @�@�g�� � @�@�g��@�@�g�� +

+ g��
�

�������� � ��������
�

+ (@�g�� � @�g��) @�'+

+ (@�g�� � @�g��) @�'+ (@� g�� � @�g��) @�'+

+ (@�g�� � @�g��) @�'+ g��@�@�'+ g��@�@�'+

� g��@�@�'� g��@�@�'+ 2 (g��@�'@�'+

+ g��@�'@�'� g��@�'@�'� g��@�'@�'�+

+ g��
��

����@�'�����@�'
�
����

�
����@�'�����@�'

�
���
��
:

Note that despite the fact that the curvature tensor of the
space-time S2 is identical to that of the space-time S1 and
that both curvature tensors share common algebraic symme-
tries, the Bianchi identity in S2 is not the same as the ordinary
Bianchi identity in the torsion-free space-time S1. Instead, we
have the following generalized Bianchi identity:

�r�R���� + �r�R���� + �r�R���� =

= 2
�

��[��]R���� + ��[��]R���� + ��[��]R����
�
:

Contracting the above relation, we obtain

�r�
�
R�� � 1

2
g��R

�
= 2 g����[��]R

�
� + ��[��]R

���
� :

Combining the two generalized Bianchi identities above
with the relation ��[��] = 1

2

�
��� @�'� ��� @�' �, as well as re-

calling the definition of the torsion vector, and taking into
account the symmetry of the Ricci tensor, we obtain

�r�R���� + �r�R���� + �r�R���� =

= 2 (R����@�'+R����@�'+R����@� ')

and

�r�
�
R�� � 1

2
g��R

�
= � 2

�
R�� � 1

2
g��R

�
@�'

which, upon recalling the definition of the torsion vector, may
be expressed as

�r�
�
R�� � 1

2
g��R

�
= � 4

3

�
R�� � 1

2
g��R

�
�� :

Apart from the above generalized identities, we may also
give the ordinary Bianchi identities as

r�R���� +r�R���� +r�R���� = 0

and
r�
�
R�� � 1

2
h��R

�
= 0 :

4 The electromagnetic sector of the conformal theory.
The fundamental equations of motion

Based on the results obtained in the preceding section, let us
now take the generator ' as describing the (quantum) electro-
magnetic field. Then, consequently, the space-time S1 is un-
derstood as being devoid of electromagnetic interaction. As
we will see, in our present theory, it is the quantum evolution
of the gravitational field that gives rise to electromagnetism.
In this sense, the electromagnetic field is but an emergent
quantum phenomenon in the evolution space M4.

Whereas the space-time S1 is purely gravitational, the
evolved space-time S2 does contain an electromagnetic field.
In our present theory, for reasonsthat will be clear soon, we
shall define the electromagnetic field F 2S2 2M4 in terms of
the torsion of the space-time S2 by

F�� = 2
m0c2

�e
��[��]u� ;

where �e is the (elementary) charge of the electron and

u� = g��
dx�

ds
= e2'h��

dx�

ds
are the covariant components of the tangent velocity vector
field satisfying umu u� = 1.

We have seen that the space-time S2 possesses a manifest
quantum structure through its evolution from the purely grav-
itational space-time S1. This means that �e may be defined in
terms of the fundamental Planck charge ê as follows:

�e = Nê = N
p

4�"0~c ;

where N is a positive constant and "0 is the permitivity of
free space. Further investigation shows that N =

p
� where

��1� 137 is the conventional fine structure constant.
Let us now proceed to show that the geodesic equation of

motion in the space-time S2 gives the (generalized) Lorentz
equation of motion for the electron. The result of parallel-
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transferring the velocity vector field u along the world-line
(in the direction of motion of the electron) yields

�Du�

ds
=
� �r�u��u� = 0 ;

i.e., du�

ds
+ ����u

�u� = 0 ;

where, in general,

���� =
1
2
g�� (@�g�� � @�g�� + @�g��) + ��[��]�

� g�� �g����[��] + g�� ��[��]

�
:

Recalling our expression for the components of the tor-
sion tensor in the preceding section, we obtain

���� =
1
2
g�� (@�g�� � @�g�� + @�g��) +

+ g��g��@�'� ��� @�'
which is completely equivalent to the previously obtained re-
lation

���� = !��� + ��� @�' :
Note that

��
�� =

1
2
g�� (@�g�� � @�g�� + @�g��)

are the Christoffel symbols in the space-time S2. These are
not to be confused with the Christoffel symbols in the space-
time S1 given by !��� .

Furthermore, we have
du�

ds
+ ��

�� u
�u� = 2g����[��]u�u

�:

Now, since we have set F�� = 2m0 c2
�e ��[��]u�, we obtain

the equation of motion

m0c2
�
du�

ds
+ ��

��u
�u�

�
= �eF�� u

� ;

which is none other than the Lorentz equation of motion for
the electron in the presence of gravitation. Hence, it turns out
that the electromagnetic field, which is non-existent in the
space-time S1, is an intrinsic geometric object in the space-
time S2. In other words, the space-time structure of S2 inher-
ently contains both gravitation and electromagnetism.

Now, we see that

F�� =
m0c2

�e
(u�@�'� u�@�') :

In other words,

�eF�� u
� = m0c2

�
u�
d'
ds
� g��@�'

�
:

Consequently, we can rewrite the electron’s equation of
motion as

du�

ds
+ ��

��u
�u� = u�

d'
ds
� g�� @�' :

We may therefore define an asymmetric fundamental ten-
sor of the gravoelectromagnetic manifold S2 by

~g�� = g��
d'
ds
� �e
m0c2

F��

satisfying
~g��u� = @�' :

It follows immediately that�
���
d'
ds
� �e
m0c2

F��

�
u� = g�� @�'

which, when expressed in terms of the wave function  , gives
the Schrödinger-like equation

u�
d 
ds

=
1
M

�
@�'+

�e
m0c2

F��u�
�
 :

We may now proceed to show that the electromagnetic
current density given by the covariant expression

j� = � c
4�

�r�F��
is conserved in the present theory.

Let us first call the following expression for the covariant
components of the electromagnetic field tensor in terms of the
covariant components of the canonical electromagnetic four-
potential A:

F�� = �r�A� � �r�A�
such that �e �r�A� =m0c2u�@�', i.e.,

m0c2@�' = �e u� �r�A�
which directly gives the equation of motion

m0c2
d'
ds

= �e u�u� �r�A� :
Hence, we obtain the following equation of state:

m0c2
d 
ds

= 2 �e
(1 +M )

M
u�u� �r�A� :

Another alternative expression for the electromagnetic
field tensor is given by

F�� = @�A� � @�A�2��[��]A� =

= @�A� � @�A� + A� @�'� A�@�' :
In the particular case in which the field-lines of the elec-

tromagnetic four-potential propagate in the direction of the
electron’s motion, we have

F�� = �
�e�

1� �2

c2

� (@�u� � @�u�)

where � is a proportionality constant and �=� �e
q

�
m0

.
Then, we may define a vortical velocity field, i.e., a spin field,
through the vorticity tensor which is given by

!�� =
1
2

(@�u� � @�u�)
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and hence
F�� = 2�

�e�
1� �2

c2

� !�� ;
which describes an electrically charged spinning region in the
space-time continuum S2.

Furthermore, we have the following generalized identity
for the electromagnetic field tensor:

�r�F�� + �r�F�� + �r�F�� =

= 2
�

��[��]F�� + ��[��]F�� + ��[��]F��
�

which, in the present theory, takes the particular form

�r�F�� + �r�F�� + �r�F�� =

= 2 (F��@�'+ F��@�'+ F��@�') :

Contracting, we have

�r� j� = � c
4�

�r�
�

��[��]F
��
�
:

We therefore expect that the expression in the brackets
indeed vanishes. For this purpose, we may set

j� = � c
4�

��[��] F
��

and hence, again, using the relation

��[��] =
1
2
�
���@�'� ��� @�'� ;

we immediately see that

�r�j� � c
4�

�
@�' �r�F�� + F��

�
@�@�'� ��[��]@�'

��
=

= � j� @�'� c
4�

��[��]F
�� @�'

i.e.,
�r� j� = 0 :

At this point, we may note the following: the fact that
our theory employs torsion, from which the electromagnetic
field is extracted, and at the same time guarantees electromag-
netic charge conservation (in the form of the above continuity
equation) in a natural manner is a remarkable property.

Now, let us call the relation

��[��] = �1
2
l
�
��� � l �r� ���

�
R���� �

�

obtained in Section 3 of this work (in which R���� =K�
���).

This can simply be written as

��[��] = �1
2
le�'R���� ��

i.e.,

��[��] = �1
2
le�'R���� g��@� :

Hence, we obtain the elegant result

F�� = � l m0c2

�e
e�'R���� u� g��@� 

i.e.,

F�� = � l
�e

m0c2p
1 +M 

R���� u� g
��@� 

or, in terms of the components of the (dimensionless) micro-
scopic displacement field �,

F�� = � l m0c2

�e
e�'R���� u� g����

which further reveals how the electromagnetic field originates
in the gravitational field in the space-time S2 as a quantum
field. Hence, at last, we see a complete picture of the elec-
tromagnetic field as an emergent phenomenon. This com-
pletes the long-cherished hypothesis that the electromagnetic
field itself is caused by a massive charged particle, i.e., when
m0 = 0 neither gravity nor electromagnetism can exist. Fi-
nally, with this result at hand, we obtain the following equa-
tion of motion for the electron in the gravitational field:

du�

ds
+ ��

��u
�u� = � le�'R���� u� ��u�

i.e.,

du�

ds
+ ��

��u
�u� = � lp

1 +M 
R���� u�u

� @� :

In addition, we note that the torsion tensor is now seen to
be given by

�� = �1
2
le�'R�� ��

or, alternatively,

�� = �1
2
le�'R�� g��@� :

In other words,

�� = �1
2

lp
1 +M  

R�� g��@� :

Hence, the second generalized Bianchi identity finally
takes the somewhat more transparent form

�r�
�
R�� � 1

2
g��R

�
=

= �2
3
le�'

�
R��R�� � 1

2
RR��

�
g�� @� 

i.e.,

�r�
�
R�� � 1

2
g��R

�
=

= �2
3

lp
1 +M 

�
R��R�� � 1

2
RR��

�
g�� @� :
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5 Final remarks

The present theory, in its current form, is still in an elementary
state of development. However, as we have seen, the emer-
gence of the electromagnetic field from the quantum evolu-
tion of the gravitational field is a remarkable achievement
which deserves special attention. On another occasion, we
shall expect to expound the structure of the generalized Ein-
stein’s equation in the present theory with a generally non-
conservative energy-momentum tensor given by

T�� = � c4

8�G

�
R�� � 1

2
g��R

�
which, like in the case of self-creation cosmology, seems to
allow us to attribute the creation and annihilation of matter
directly to the scalar generator of the quantum evolution pro-
cess, and hence the wave function alone, as

�r�T�� = �2
3

lp
1 +M 

T��R�� g�� @� , 0 :
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Two-slit experiments performed earlier by Tsuchiya et al. and recently by Afshar et
al. demonstrate the joint wave-particle properties of the single indiviual photon, and
agree with Einstein’s argument against Complementarity. These results cannot be ex-
plained by conventional theory in which Maxwell’s equations serve as a guiding line and
basis. On the other hand a revised quantum electrodynamic theory based on a nonzero
electric field divergence in the vacuum yields results which appear to be consistent with
the experiments. A model of the individual photon is thus deduced from the theory, in
the form of a wave packet behaving as a single entity and having simultaneous wave
and particle properties.

1 Introduction

Ever since the earlier epoch of natural science, the wave-
particle duality of light has appeared as something of an
enigma. In Bohr’s principle of Complementarity, this duality
has been a cornerstone in the interpretation of quantum me-
chanics. Thereby the wavelike and particlelike properties are
conceived to be complementary, in the sense that they are mu-
tually exclusive, and no experiment can reveal both at once.
This formulation of quantum mechanics has been successful
in many applications and is widely accepted by physicists, but
it is full of apparent paradoxes which made Einstein deeply
uncomfortable [1].

During the latest decades additional investigations on the
nature of light have been made, among which the two-slit ex-
periments by Tsuchiya et al. [2] and Afshar et al. [3] deserve
particular attention. These investigations verify that there is a
joint wave-particle duality of the individual photon, thus be-
ing in agreement with Einstein’s argument against Comple-
mentarity.

In this paper part of the results by Tsuchiya et al. and
Afshar et al. are reviewed and compared with a revised quan-
tum electrodynamic theory by the author. The latter theory
is based on a vacuum state that is not merely an empty space
but includes the electromagnetic fluctuations of the zero point
energy and a corresponding nonzero electric charge density
associated with a nonzero electric field divergence. A short
description of the theory is presented, whereas its detailed
deductions are given elsewhere [4–7].

2 The two-slit experiments

A photon-counting imaging system has earlier been elabo-
rated by Tsuchiya et al. [2] and incorporates the ability to
detect individual photons, spatial resolution, and the capabil-
ity of real-time imaging and subsequent image analysis. Two
parallel slits of size 50�m � 4 mm at a spacing of 250�m

were arranged to pass light through an interference filter at
a wavelength of 253.7 nm. The full size of the obtained im-
age on the monitor screen of the experiment was 11.4 mm
at the input plane. Since the purpose of the investigation
was to demonstrate the interference property of a single pho-
ton itself, the spacing of individual photons was made much
longer than their coherence time, so that interference between
individual photons could be prevented. For this reason, neu-
tral density filters were used to realize a very low light
level, where the counting rates were of the order of 100
per second.

As the measurements started, bright very small dots ap-
peared at random positions on the monitor screen. After 10
seconds had elapsed, a photon-counting image was seen on
the screen, containing 103 events, but its overall shape was
not yet clearly defined. After 10 minutes, however, the total
accumulated counts were 6�104, and an interference pattern
formed by the dots was clearly detected. The diameter of
each dot was of the order of 6�10�3 of the screen size, and
the fringe distance about 5�10�2 of it. The effect of closing
one of the double slits was finally observed. Then the inter-
ference pattern did not appear, but a diffraction pattern was
observed.

As concluded by Tsuchiya et al., these results cannot be
explained by mutually exclusive wave and particle descrip-
tions of the photon, but give a clear indication of the wave-
particle duality of the single individual photon [2].

These important results appear not to have attracted the
wide interest which they ought to deserve. However, as long
as 22 years later, Afshar et al. [3] conducted a two-slit ex-
periment based on a different methodology but with a similar
outcome and conclusions. In this investigation there was a
simultaneous determination of the wave and particle aspects
of light in a “welcher-weg” experiment, beyond the limita-
tions set by Bohr’s principle of Complementarity. The ex-
periment included a pair of pinholes with diameters of 40 nm
and center-to-center separation of 250�m, with light from a

104 Bo Lehnert. Joint Wave-Particle Properties of the Individual Photon



October, 2007 PROGRESS IN PHYSICS Volume 4

diode laser of the wavelength 638 nm. These parameter val-
ues were thus not too far from those of the experiments by
Tsuchiya et al. In addition, six thin wires of 127�m diameter
were placed at a distance of 0.55 m from the pinholes, and at
the minima of the observed interference pattern. When this
pattern was present, the disturbance to the incoming beam by
the wire grid was minimal. On the other hand, when the inter-
ference pattern was absent, the wire grid obstructed the beam.
Also here the investigation was conducted in the low photon
flux regime, to preclude loss of which-way information due
to the intrinsic indistinguishability of coherent multi-photon
systems. When the flux was 3�104 photons per second, the
average separation between successive photons was estimated
to about 10 km. The experiments were performed in four
ways, i.e. with both pinholes open in absence of the wire grid,
with both pinholes open in presence of the wire grid, and with
either pinhole open in presence of the same grid.

From the measured data the which-way information and
the visibility of an interference pattern could then be deter-
mined within the same experimental setup. The which-way
information thus indicates through which pinhole the parti-
clelike photon has passed. At the same time the interference
indicates that the same wavelike photon must have sampled
both pinholes so that an interference pattern could be formed.
These derived properties of the individual photon refer back
to the same space-time event, i.e. to the moment when the
single photon passed the plane of the pinholes.

Consequently, also these experimental results force us to
agree vith Einstein’s argument against Complementarity [3].

3 Shortcomings of conventional theory

In conventional quantum electrodynamics (QED), Maxwell’s
equations have served as a guiding line and basis when there
is a vacuum state with a vanishing electric charge density and
a zero electric field divergence [8]. According to Schiff [8]
and Heitler [9] the Poynting vector then defines the momen-
tum of the pure radiation field, expressed by sets of quan-
tized plane waves. As pointed out by Feynman [10], there
are nevertheless unsolved problems which lead to difficulties
with Maxwell’s equations that are not removed by and not
directly associated with quantum mechanics. Consequently,
QED will also become subject to the shortcomings of the con-
ventional field theory.

To be more specific in connection with a theoretical model
of the individual photon, we start here with the following gen-
eral physical requirements to be fulfilled:

• The model should have the form of a wave or a wave
packet of preserved and limited geometrical shape,
propagating with undamped motion in a defined direc-
tion of three-space. This leads to an analysis in a cylin-
drical frame (r; '; z) with z in the direction of propa-
gation;

• The obtained general solutions for the field quantities
should extend all over space, and no artificial bound-
aries would have to be introduced in the vacuum;

• The integrated total field energy should remain finite;
• The solutions should result in an angular momentum

(spin) of the photon as a propagating boson particle.

Maxwell’s equations in the vacuum state yield solutions
for any field quantity Q having the normal mode form

Q = Q̂(r) exp
�
i (�!t+ �m'+ kz)

�
(1)

in cylindrical geometry where ! is the frequency and k and �m
are the wave numbers with respect to the z and ' directions.
We further introduce

K2
0 =

�!
c

�2 � k2: (2)

When K2
0 > 0 the phase velocity becomes larger and the

group velocity smaller than the velocity c of light. The gen-
eral solution then has field components in terms of Bessel
functions Z �m(K0 r) of the first and second kind, where the
r-dependence of every component is of the form Z �m=r or
Z �m+1 [11]. Application to a photon model then leads to the
following results:

• Already the purely axisymmetric case �m= 0 results in
a Poynting vector which yields zero spin;

• The spin also vanishes when K0 = 0 and the phase and
group velocities both are equal to c;

• There is no clearly defined spatial limitation of the so-
lutions;

• With no material boundaries such as walls, the total in-
tegrated field energy becomes divergent.

Consequently, conventional theory based on Maxwell’s
equations in the vacuum state does not lead to a physically
relevant model for the individual photon.

4 Photon physics in revised quantum electrodynamics

An extended electromagnetic theory applied to the vacuum
state and aiming beyond Maxwell’s equations serves as
a guiding line and basis of the present theoretical approach
[4–7]. In four-dimensional representation the theory has the
following form�

1
c2
@2

@t2
�r2

�
A� = �0J� ; � = 1; 2; 3; 4 ; (3)

where A� are the electromagnetic potentials. As deduced
from the requirement of Lorentz invariance, the four-current
density of the right-hand member of equation (3) becomes

J� = (j; ic��) = "0(div E) (C; ic) ; C 2 = c2 (4)

with c as the velocity of light, E denoting the electric field
strength, and SI units being adopted. Further B= curl A is
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the magnetic field strength derived from the three-space mag-
netic vector potential A. In equation (4) the velocity vector C
has the modulus c. Maxwell’s equations in the vacuum are re-
covered when div E = 0, whereas div E, 0 leads to a space-
charge current density (4) in the vacuum. The corresponding
three-space part j = "0(div E)C appears in addition to the
displacement current.

The revised basic field equations of dynamic states in a
three-dimensional representation are now given by the wave
equation�

@2

@t2
� c2r2

�
E +

�
c2r+ C

@
@t

�
(div E) = 0 (5)

for the electric field, and the equation

curl E = � @B
@t

(6)

of electromagnetic induction. The characteristic features of
the field equations (3)–(6) are as follows:

• The theory is based on the pure radiation field in the
vacuum state, including contributions from a nonzero
electric charge density;

• The associated nonzero electric field divergence intro-
duces an additional degree of freedom, leading to new
solutions and new physical phenomena. This also be-
comes important in situations where this divergence ap-
pears to be small;

• The theory is both Lorentz and gauge invariant;

• The velocity of light is no longer a scalar c but a vector
C with the modulus c.

To become complete, the theory has to be quantized. In
absence as well as in presence of source terms, such as the
right-hand member of equation (3), the quantized field equa-
tions are generally equivalent to the original field equations
in which all field quantities are replaced by their expectation
values, as shown by Heitler [9]. As a first step and a simplifi-
cation, the general solutions of the field equations will there-
fore first be determined, and relevant quantum conditions will
afterwards be imposed on these solutions. This is justified by
the expectation values due to Heitler. The present theory may
therefore not be too far from the truth, in the sense that it rep-
resents the most probable states in a first approximation to a
rigorous quantum-theoretical deduction.

4.1 Application to a model of the individual photon

The theory of equations (3)–(6) is now applied to the model of
an individual photon in the axisymmetric case where
@=@'= 0 in a cylindrical frame (r; '; z) with z along the di-
rection of propagation. Screw-shaped modes where @=@', 0
end in several respects up with similar results, but become
more involved and have been described elsewhere [6, 7].

The velocity vector of equation (4) is in this axisymmetric
case given by

C = c (0; cos�; sin�) (7)

where � is a constant angle, and cos� and sin� could in
principle have either sign but are here limited to positive val-
ues for the sake of simplicity. The form (7) can be shown
to imply that the electromagnetic energy has one part which
propagates in the z-direction, and another part which circu-
lates in the '-direction around the axis of symmetry and be-
comes associated with the spin [6, 7]. Normal modes of the
form (1) with �m= 0 then result in general solutions for the
components of E and B, being given in terms of differential
expressions of a generating function

F = G0R(�) exp
�
i(�!t+ kz)

�
: (8)

(HereG0 is an amplitude factor, �= r=r0, and r0 represents a
characteristic radius of the geometrical configuration in ques-
tion.) The corresponding dispersion relation becomes

! = kv ; v = c (sin�) (9)

thus resulting in axial phase and group velocities, both be-
ing equal to v < c . Not to get into conflict with the experi-
ments by Michelson and Morley, the condition 0< cos�� 1
has to be imposed on the parameter cos�. As an example,
cos�6 10�4 would make the velocity v differ from c by less
than the eight decimal in the value of c. As a consequence
of the dispersion relation (9) with v < c and of the detailed
deductions, the total integrated field energy mc2 further be-
comes equivalent to a total mass m and a rest mass

m0 = m
p

1� (v=c)2 = m (cos�): (10)

This rest mass is associated with the angular momentum
which only becomes nonzero for a nonzero electric field di-
vergence. When div E, cos�, and m0 vanish, we are thus
back to the conventional case of Section 3 with its spinless
and physically irrelevant basis for a photon model. Even if
the electric field divergence at a first glance appears to be a
small quantity, it thus has a profound effect on the physics of
an individual photon model.

From the obtained general solutions it has further been
shown that the total integrated charge and magnetic moment
vanish, whereas the total integrated mass m and angular mo-
mentum s remain nonzero.

From the solutions of the normal wave modes, a wave
packet has to be formed. In accordance with experimental ex-
perience, such a packet should have a narrow line width. Its
spectrum of wave numbers k should then be piled up around a
main wave number k0 and a corresponding wavelength
�0 = 2�=k0. The effective axial length 2z0 of the packet is
then much larger than �0.

To close the system, two relevant quantum conditions
have further to be imposed. The first concerns the total in-
tegrated field energy, in the sense that mc2 =h�0 according
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to Einstein and Planck, where the frequency �0 � c=�0, for
cos�� 1. The second condition is imposed on the total in-
tegrated angular momentum which should become equal to
s=h=2� for the photon to behave as a boson particle.

From combination with the wave packet solutions, the im-
posed quantum conditions result in expressions for an effec-
tive transverse diameter 2 r̂ of the wave packet. In respect to
the radial part R of the generating function (8), there are two
alternatives which are both given by

2 r̂ =
"�0

� (cos�)
(11)

and become specified as follows:
• When "= 1 expression (11) stands for a part R(�)

which is convergent at the origin �= 0. This results
in an effective photon diameter being only moderately
small, but still becoming large as compared to atomic
dimensions;

• When "� 1 there are solutions for a part R(�) which
is divergent at �= 0. Then finite field quantities can
still be obtained within a whole range of small ", in
the limit of a shrinking characteristic radius r0 = c0 "
where c0 is a positive constant having the dimension of
length. This alternative results in an an effective pho-
ton diameter which can become very small, such as to
realize a state of “needle radiation” first proposed by
Einstein. Then the diameter (11) can become compara-
ble to atomic dimensions.

It is thus seen that the requirements on a photon model can
be fulfilled by the present revised theory. Its wave packet so-
lutions have joint wave-particle properties. In some respects
this appears to be similar to the earlier wave-particle duality
outlined by de Broglie, where there is a “pilot wave” prop-
agating along the axis, on which wave a “particle-like” part
is “surfing”. However, such a subdivision is not necessary in
the present case where the wave packet behaves as one single
entity, having wave and particle properties at the same time.

Attention is finally called to a comparison between the
definition of the momentum of the pure radiation field in
terms of the Poynting vector on one hand, and that given by
the expression p =�i~r in the deduction of the Schrödinger
equation for a particle with mass on the other [5]. For nor-
mal modes the axial component of p becomes pz = ~k as
expected. However, in the transverse direction of a photon
model being spatially limited and having a finite effective di-
ameter (11), there would arise a nonzero transverse momen-
tum pr as well, but this appears to be physically unacceptable
for a photon model.

4.2 The present photon model and its relation to two-slit
experiments

The limits of the effective photon diameter (11) can be es-
timated by assuming an upper limit of 2 r̂ when "= 1 and

cos�= 10�4, and a lower limit of 2 r̂ when "= cos�. Then
the effective diameter would be in the range of the values
�0=� 6 2r̂ 6 104�0=�, but the lower limit could even be lower
when "< cos� for strongly pronounced needle radiation.
From this first order estimate, and from the features of the
theory, the following points should be noticed:

• The diameter of the dot-shaped marks on the monitor
screen of the experiment by Tsuchiya et al. is of the
order of 6�10�3 of the screen size, i.e. about 10�4 m.
With the wave length �0 = 253.7 nm, the effective pho-
ton diameter would then be in the range of the values
7�10�4 > 2 r̂ > 7�10�8 m. This range covers the ob-
served size of the dots;

• The width of the parallel slits in the experiments by
Tsuchiya et al. is 5�10�5 m and their separation dis-
tance is 25�10�5 m. The corresponding pinhole diam-
eters and their center-to-center separation in the exper-
iments by Afshar et al. are 4�10�5 m and 25�10�5 m,
respectively, and the wavelength is �0 = 638 nm. In the
latter experiments the effective diameter is estimated to
be in the range 2�10�7 6 2 r̂ 6 2�10�3 m. In both ex-
periments the estimated ranges of 2 r̂ are thus seen to
cover the slit widths and separation distances;

• A large variation of a small cos� has only a limited ef-
fect on the phase and group velocities of equation (9).
Also a considerable variation of a small " does not in-
fluence the general deductions of the theory [4, 6, 7]
even if it ends up with a substantial change of the di-
ameter (11). This leads to the somewhat speculative
question whether the state of the compound parameter
"=cos� could adopt different values during the propa-
gation of the wave packet. This could then be related
to “photon oscillations” as proposed for a model with
a nonzero rest mass, in analogy with neutrino oscilla-
tions [4, 7];

• As compared to the slit widths and the separation dis-
tances, the obtained ranges of 2 r̂ become consistent
with the statement by Afshar et al. that the same wave-
like photon can sample both pinholes to form an inter-
ference pattern;

• Interference between cylindrical waves should take
place in a similar way as between plane waves. In par-
ticular, this becomes obvious at the minima of the in-
terference pattern where full cancellation takes place;

• Due to the requirement of a narrow line width, the wave
packet length 2z0 by far exceeds the wave length �0
and the effective diameter 2 r̂. Therefore the packet
forms a very long and narrow wave train;

• Causality raises the question how the photon can
“know” to form the interference pattern on the monitor
screen already when it passes the slits. An answer may
be provided by the front part of the elongated packet
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which may serve as a “precursor”, thereby also rep-
resenting the quantum mechanical wave nature of the
packet. Alternatively, there may exist a counterpart to
the precursor phenomenon earlier discussed by Stratton
[11] for conventional electromagnetic waves.

5 Conclusions

The two-slit experiments by Tsuchiya et al. and by Afshar et
al. demonstrate the joint wave-particle properties of the in-
dividual photon, and agree with Einstein’s argument against
Complementarity. These experiments cannot be explained by
conventional theory. The present revised theory appears on
the other hand to become consistent with the experiments.
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In the preceding article we argue that biquaternionic extension of Klein-Gordon equa-
tion has solution containing imaginary part, which differs appreciably from known so-
lution of KGE. In the present article we discuss some possible interpretation of this
imaginary part of the solution of biquaternionic KGE (BQKGE); thereafter we offer a
new derivation of biquaternion Schrödinger equation using this method. Further obser-
vation is of course recommended in order to refute or verify this proposition.

1 Introduction

There were some attempts in literature to generalise Schrö-
dinger equation using quaternion and biquaternion numbers.
Because quaternion number use in Quantum Mechanics has
often been described [1, 2, 3, 4], we only mention in this paper
the use of biquaternion number. Sapogin [5] was the first to
introduce biquaternion to extend Schrödinger equation, while
Kravchenko [4] use biquaternion number to describe neat link
between Schrödinger equation and Riccati equation.

In the present article we discuss a new derivation of bi-
quaternion Schrödinger equation using a method used in the
preceding paper. Because the previous method has been used
for Klein-Gordon equation [1], now it seems natural to ex-
tend it to Schrödinger equation. This biquaternion effect may
be useful in particular to explore new effects in the context of
low-energy reaction (LENR) [6]. Nonetheless, further obser-
vation is of course recommended in order to refute or verify
this proposition.

2 Some interpretations of preceding result of biquater-
nionic KGE

In our preceding paper [1], we argue that it is possible to
write biquaternionic extension of Klein-Gordon equation as
follows��
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where e1, e2, e3 are quaternion imaginary units obeying
(with ordinary quaternion symbols: e1 = i, e2 = j, e3 = k)

i2 = j2 = k2 = �1 ; ij = �ji = k ;

jk = �kj = i ; ki = �ik = j ;
(4)

and quaternion Nabla operator is defined as [7]
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Note that equation (3) and (5) included partial time-
differentiation.

It is worth nothing here that equation (2) yields solution
containing imaginary part, which differs appreciably from
known solution of KGE:

y(x; t) =
�

1
4
� i

4

�
m2t2 + constant: (6)

Some possible alternative interpretations of this imagina-
ry part of the solution of biquaternionic KGE (BQKGE) are:

(a) The imaginary part implies that there is exponential
term of the wave solution, which is quite similar to
the Ginzburg-Landau extension of London phenomen-
ology [8]

 (r) = j (r)j ei'(r) ; (7)

because (6) can be rewritten (approximately) as:

y(x; t) =
ei

4
m2t2; (8)

(b) The aforementioned exponential term of the solution
(8) can be interpreted as signature of vortices solution.
Interestingly Navier-Stokes equation which implies
vorticity equation can also be rewritten in terms of
Yukawa equation [3];

(c) The imaginary part implies that there is spiral wave,
which suggests spiralling motion of meson or other par-
ticles. Interestingly it has been argued that one can ex-
plain electron phenomena by assuming spiralling elec-
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trons [9]. Alternatively this spiralling wave may al-
ready be known in the form of Bierkeland flow. For
meson observation, this could be interpreted as another
form of meson, which may be called “supersymmetric-
meson” [1];

(d) The imaginary part of solution of BQKGE also implies
that it consists of standard solution of KGE [1], and
its alteration because of imaginary differential operator.
That would mean the resulting wave is composed of
two complementary waves;

(e) Considering some recent proposals suggesting that
neutrino can have imaginary mass [10], the aforemen-
tioned imaginary part of solution of BQKGE can also
imply that the (supersymmetric-) meson may be com-
posed of neutrino(s). This new proposition may require
new thinking both on the nature of neutrino and also
supersymmetric-meson [11].

While some of these propositions remain to be seen, in
deriving the preceding BQKGE we follow Dirac’s phrase that
“One can generalize his physics by generalizing his mathe-
matics”. More specifically, we focus on using a “theorem”
from this principle, i.e.: “One can generalize his mathemat-
ics by generalizing his (differential) operator”.

3 Extended biquaternion Schrödinger equation

One can expect to use the same method described above to
generalize the standard Schrödinger equation [12]�

� ~2

2m
�u+ V (x)

�
u = Eu ; (9)

or, in simplified form, [12, p.11]:

(�� + wk)fk = 0 ; k = 0; 1; 2; 3: (10)

In order to generalize equation (9) to biquaternion version
(BQSE), we use first quaternion Nabla operator (5), and by
noticing that � � rr, we get
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�
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Note that we shall introduce the second term in order to
‘neutralize’ the partial time-differentiation ofrq �rq operator.

To get biquaternion form of equation (11) we can use our
definition in equation (3) rather than (5), so we get
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This is an alternative version of biquaternionic Schrödin-
ger equation, compared to Sapogin’s [5] or Kravchenko’s [4]
method. We also note here that the route to quaternionize
Schrödinger equation here is rather different from what is de-
scribed by Horwitz [13, p. 6]

~H =  e1E ; (13)

or
~H q =  q

�
q�1 e1 q

�
E ; (14)

where the quaternion number q, can be expressed as follows
(see [13, p. 6] and [4])

q = q0 +
3X
i=1

qi ei : (15)

Nonetheless, further observation is of course recommend-
ed in order to refute or verify this proposition (12).

4 Numerical solution of biquaternion Schrödinger
equation

It can be shown that numerical solution (using Maxima [14])
of biquaternionic extension of Schrödinger equation yields
different result compared to the standard Schrödinger equa-
tion, as follows. For clarity, all solutions were computed in
1-D only.

For standard Schrödinger equation [12], one can rewrite
equation (9) as follows:

(a) For V (x) > E:

� ~2

2m
�u+ a � u = 0 ; (16)

(b) For V (x) < E:

� ~2

2m
�u� a � u = 0 : (17)

Numerical solution of equation (16) and (17) is given (by
assuming ~=1 and m= 1=2 for convenience)

(%i44) -’diff (y, x, 2) + a*y;
(%o44) a � y � d2

d2x
y

(a) For V (x) > E:

(%i46) ode2 (%o44, y, x);
(%o46) y = k1 � exp(

p
a � x) + k2 � exp(�pax)

(b) For V (x) < E:

(%i45) ode2 (%o44, y, x);
(%o45) y = k1 � sinh(

p
a � x) + k2 � cosh(

p
a � x)

In the meantime, numerical solution of equation (12), is
given (by assuming ~=1 and m= 1=2 for convenience)

(a) For V (x) > E:

(%i38) (%i+1)*’diff (y, x, 2) + a*y;

(%o38) (i+ 1) d2

d2x
y + a � y

(%i39) ode2 (%o38, y, x);
(%o39) y = k1 � sin(

p a
i+1 � x) + k2 � cos(

p a
i+1 � x)

(b) For V (x) < E:

(%i40) (%i+1)*’diff (y, x, 2) - a*y;

(%o40) (i+ 1) d2

d2x
y � a � y

(%i41) ode2 (%o40, y, x);
(%o41)y = k1 � sin(

p� a
i+1 � x) + k2 � cos(

p� a
i+1 � x)
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Therefore, we conclude that numerical solution of bi-
quaternionic extension of Schrödinger equation yields differ-
ent result compared to the solution of standard Schrödinger
equation. Nonetheless, we recommend further observation in
order to refute or verify this proposition/numerical solution
of biquaternion extension of spatial-differential operator of
Schrödinger equation.

As side remark, it is interesting to note here that if we
introduce imaginary number in equation (16) and equation
(17), the numerical solutions will be quite different compared
to solution of equation (16) and (17), as follows

� i~2

2m
�u+ au = 0 ; (18)

where V (x) > E, or

� i~2

2m
�u� au = 0 ; (19)

where V (x) < E.
Numerical solution of equation (18) and (19) is given (by

assuming ~=1 and m= 1=2 for convenience)

(a) For V (x) > E:

(%i47) -%i*’diff (y, x, 2) + a*y;
(%o47) a � y � i d2

d2x
y

(%i48) ode2 (%o47, y, x);
(%o48) y = k1 � sin(

p
ia � x) + k2 � cos(

p
ia � x)

(b) For V (x) < E:

(%i50) -%i*’diff (y, x, 2) - a*y;
(%o50) �a � y � i d2

d2x
y

(%i51) ode2 (%o50, y, x);
(%o51) y = k1 � sin(�pia � x) + k2 � cos(�pia � x)

It shall be clear therefore that using different sign for dif-
ferential operator yields quite different results.
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12. Straumann N. Schrödingers Entdeckung der Wellenmechanik.
arXiv: quant-ph/0110097, p. 4

13. Horwitz L. Hypercomplex quantum mechanics. arXiv: quant-
ph/9602001, p. 6.

14. Maxima. http://maxima.sourceforge.net. Using Lisp GNU
Common Lisp (GCL).

V. Christianto and F. Smarandache. A New Derivation of Biquaternion Schrödinger Equation and Plausible Implications 111



Volume 4 PROGRESS IN PHYSICS October, 2007

Thirty Unsolved Problems in the Physics of Elementary Particles

Vic Christianto� and Florentin Smarandachey
�Sciprint.org — a Free Scientific Electronic Preprint Server, http://www.sciprint.org

E-mail: admin@sciprint.org
yDepartment of Mathematics, University of New Mexico, Gallup, NM 87301, USA

E-mail: smarand@unm.edu

Unlike what some physicists and graduate students used to think, that physics science
has come to the point that the only improvement needed is merely like adding more
numbers in decimal place for the masses of elementary particles or gravitational con-
stant, there is a number of unsolved problems in this field that may require that the
whole theory shall be reassessed. In the present article we discuss thirty of those un-
solved problems and their likely implications. In the first section we will discuss some
well-known problems in cosmology and particle physics, and then other unsolved prob-
lems will be discussed in next section.

1 Unsolved problems related to cosmology

In the present article we discuss some unsolved problems
in the physics of elementary particles, and their likely im-
plications. In the first section we will discuss some well-
known problems in cosmology and particle physics, and then
other unsolved problems will be discussed in next section.
Some of these problems were inspired by and expanded from
Ginzburg’s paper [1]. The problems are:

1. The problem of the three origins. According to Mar-
celo Gleiser (Darthmouth College) there are three un-
solved questions which are likely to play significant
role in 21st-century science: the origin of the universe,
the origin of life, and the origin of mind;

2. The problem of symmetry and antimatter observation.
This could be one of the biggest puzzle in cosmology:
If it’s true according to theoretical physics (Dirac equa-
tion etc.) that there should be equal amounts of matter
and antimatter in the universe, then why our observa-
tion only display vast amounts of matter and very little
antimatter?

3. The problem of dark matter in cosmology model. Do
we need to introduce dark matter to describe galaxy
rotation curves? Or do we need a revised method in
our cosmology model? Is it possible to develop a new
theory of galaxy rotation which agrees with observa-
tions but without invoking dark matter? For example
of such a new theory without dark matter, see Moffat
and Brownstein [2, 3];

4. Cosmological constant problem. This problem repre-
sents one of the major unresolved issues in contempo-
rary physics. It is presumed that a presently unknown
symmetry operates in such a way to enable a vanish-
ingly small constant while remaining consistent with
all accepted field theoretic principles [4];

5. Antimatter hydrogen observation. Is it possible to find
isolated antimatter hydrogen (antihydrogen) in astro-
physics (stellar or galaxies) observation? Is there anti-
hydrogen star in our galaxy?

Now we are going to discuss other seemingly interesting
problems in the physics of elementary particles, in particu-
lar those questions which may be related to the New Energy
science.

2 Unsolved problems in the physics of elementary par-
ticles

We discuss first unsolved problems in the Standard Model
of elementary particles. Despite the fact that Standard Model
apparently comply with most experimental data up to this day,
the majority of particle physicists feel that SM is not a com-
plete framework. E. Goldfain has listed some of the most
cited reasons for this belief [5], as follows:

6. The neutrino mass problem. Some recent discovery in-
dicates that neutrino oscillates which implies that neu-
trino has mass, while QM theories since Pauli predict
that neutrino should have no mass [6]. Furthermore it
is not yet clear that neutrino (oscillation) phenomena
correspond to Dirac or Majorana neutrino [7];

7. SM does not include the contribution of gravity and
gravitational corrections to both quantum field theory
and renormalization group (RG) equations;

8. SM does not fix the large number of parameters that en-
ter the theory (in particular the spectra of masses, gauge
couplings, and fermion mixing angles). Some physi-
cists have also expressed their objections that in the
QCD scheme the number of quarks have increased to
more than 30 particles, therefore they assert that QCD-
quark model cease to be a useful model for elementary
particles;
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9. SM has a gauge hierarchy problem, which requires fine
tuning. Another known fine-tuning problem in SM is
“strong CP problem” [8, p. 18];

10. SM postulates that the origin of electroweak symmetry
breaking is the Higgs mechanism. Unfortunately Higgs
particle has never been found; therefore recently some
physicists feel they ought to introduce more speculative
theories in order to save their Higgs mechanism [9];

11. SM does not clarify the origin of its gauge group
SU(3)�SU(2)�U(1) and why quarks and lepton occur
as representations of this group;

12. SM does not explain why (only) the electroweak inter-
actions are chiral (parity-violating) [8, p. 16];

13. Charge quantization problem. SM does not explain an-
other fundamental fact in nature, i.e. why all particles
have charges which are multiples of e=3 [8, p. 16].

Other than the known problems with SM as described
above, there are other quite fundamental problems related to
the physics of elementary particles and mathematical physics
in general, for instance [10]:

14. Is there dynamical explanation of quark confinement
problem? This problem corresponds to the fact that
quarks cannot be isolated. See also homepage by Clay
Institute on this problem;

15. What is the dynamical mechanism behind Koide’s mix-
ing matrix of the lepton mass formula [11]?

16. Does neutrino mass correspond to the Koide mixing
matrix [12]?

17. Does Dirac’s new electron theory in 1951 reconcile the
quantum mechanical view with the classical electrody-
namics view of the electron [13]?

18. Is it possible to explain anomalous ultraviolet hydrogen
spectrum?

19. Is there quaternion-type symmetry to describe neutrino
masses?

20. Is it possible to describe neutrino oscillation dynam-
ics with Bogoliubov-deGennes theory, in lieu of using
standard Schrödinger-type wave equation [6]?

21. Solar neutrino problem — i.e. the seeming deficit of
observed solar neutrinos [14]. The Sun through fusion,
send us neutrinos, and the Earth through fission, an-
tineutrinos. But observation in SuperKamiokande etc.
discovers that the observed solar neutrinos are not as
expected. In SuperKamiokande Lab, it is found that the
number of electron neutrinos which is observed is 0.46
that which is expected [15]. One proposed explanation
for the lack of electron neutrinos is that they may have
oscillated into muon neutrinos;

22. Neutrino geology problem. Is it possible to observe
terrestrial neutrino? The flux of terrestrial neutrino is

a direct reflection of the rate of radioactive decays in
the Earth and so of the associated energy production,
which is presumably the main source of Earth’s
heat [14];

23. Is it possible to explain the origin of electroweak sym-
metry breaking without the Higgs mechanism or Higgs
particles? For an example of such alternative theory to
derive boson masses of electroweak interaction without
introducing Higgs particles, see E. Goldfain [16];

24. Is it possible to write quaternionic formulation [17] of
quantum Hall effect? If yes, then how?

25. Orthopositronium problem [18]. What is the dynamics
behind orthopositronium observation?

26. Is it possible to conceive New Energy generation
method from orthopositronium-based reaction? If yes,
then how?

27. Muonium problem. Muonium is atom consisting of
muon and electron, discovered by a team led by Ver-
non Hughes in 1960 [19]. What is the dynamics behind
muonium observation?

28. Is it possible to conceive New Energy generation
method from muonium-based reaction? If yes, then
how?

29. Antihydrogen problem [20]. Is it possible to conceive
New Energy generation method from antihydrogen-
based reaction? If yes, then how?

30. Unmatter problem [21]. Would unmatter be more use-
ful to conceiving New Energy than antimatter? If yes,
then how?

It is our hope that perhaps some of these questions may
be found interesting to motivate further study of elementary
particles.
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Dr. Charles Kenneth Thornhill, who died recently, was a proud, gritty Yorkshireman
who, throughout his long life, genuinely remained true to himself. This led him into
conflicts within the scientific community. The jury is still out on whether he was correct
or not in his ideas but, be that as it may, all can learn a tremendous amount from the
courage of this man in standing up for what he truly believed.

Dr. Charles Kenneth Thornhill

Dr. Charles Kenneth Thornhill was born in Sheffield on 25th
November 1917. To the very end he remained fiercely proud
of being a Yorkshireman. Indeed, throughout his life, he
faced all problems, both personal and academic, with that
gritty fortitude many associate with people from Yorkshire.

His secondary education was undertaken at the King Ed-
ward VII School in Sheffield. In 1936 he was awarded an
Open (Jodrell) Scholarship for Mathematics at Queen’s Col-
lege, Oxford. This scholarship was worth 110 a year, a con-
siderable amount in those days. He completed his undergrad-
uate studies at the beginning of the Second World War and
spent that war devoting his considerable mathematical talent
to the aid of the war effort. During the War and in subsequent
years, he worked in a variety of fields with a bias towards
unsteady gasdynamics. These included external, internal, in-
termediate and terminal ballistics; heat transfer and erosion
in gun-barrels; gasdynamics and effects of explosions; theo-
ries of damage; detonation and combustion; thermodynam-
ics of solids and liquids under extreme conditions, etc. As a
result of the war work, he was awarded the American Pres-
idential Medal of Freedom. This was an award of which he
was, quite properly, inordinately proud. The actual citation
was as follows:

Mr. C. Kenneth Thornhill, United Kingdom, during the
period of active hostilities in World War II, performed
meritorious service in the field of scientific research. As
a mathematician working in the field of gun erosion, he
brought to the United States a comprehensive knowl-
edge of the subject, and working in close co-operation
with American scientists concerned with the study of
erosion in gun barrels, he aided and stimulated the
work in improving the performance of guns.

After the war, he spent the remainder of his working life
working at Fort Halstead for the Ministry of Defence.

Throughout his time at the Ministry of Defence, he had
kept abreast of developments in the areas of theoretical
physics that fascinated him, — those areas popularly asso-
ciated with the names relativity and cosmology. One way he
achieved this was through his membership of the Royal As-
tronomical Association. However, on his retirement in 1977
— incidentally, according to him, retirement was the job he
recommended to everyone — he was able to devote his time
and intellect to considering those deep problems which con-
tinue to concern so many. Also, relating to that transitional
time, he commented that, up to retirement, he had worked for
man but afterwards he had worked for mankind. His main
interests were in the physical properties of the ether and the
construction of a non-singular ethereal cosmology. Unfortu-
nately, because of his disbelief in relativity, many refused to
even listen to his views. One undoubted reason for this was
his insistence on referring to the aether by that very name.
It is quite likely that if he’d been willing to compromise and
use words such as “vacuum” he might have had more suc-
cess with publication in the better-known journals. However,
some journal editors are courageous and genuinely believe in
letting the scientific community at large judge the worth of
peoples’ work.

It is seen immediately that some of these articles make
truly substantial contributions to science. Not all are incredi-
bly long but all result from enormous thought and mathemat-
ical effort, effort in which Kenneth Thornhill’s geometrical
knowledge and skill are well to the fore. It is also immedi-
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ately clear that here was a man who was prepared to think
for himself and not allow himself to be absolutely bound by
what appeared in books, whether the books in question be
academic tomes or mere popular offerings.

In his life, Kenneth Thornhill was ostracised by many in
the scientific establishment as some sort of “enfant terrible”.
In truth, many of these people really feared his intellect. That
is not to say that all his thoughts were correct. The jury should
still be out on many of his ideas but, to do that, the mem-
bers of the jury must have read his offerings and done so with
open scientific minds. Kenneth Thornhill left us all a truly
enormous legacy and that is that he showed us all that it is
vitally important to be true to yourself. He never pandered
to the establishment rather he stuck with what he genuinely
believed.

Kenneth Thornhill died peacefully on 30th June 2007 and
is survived by four children, eight grandchildren and two
great grandchildren. To the end he was enormously proud of
all fourteen and to them must be extended our heartfelt sym-
pathy. To the scientific community at large must be extended
the hope that its members will learn the true meaning of scien-
tific integrity from this gritty Yorkshireman. As one who was
privileged to know him, albeit mainly through lengthy, en-
joyable telephone conversations, I feel his scientific integrity
alone will result in the words:

“Well done, thou good and faithful servant.”
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October 4th, 2007 marks the 60th anniversary of Planck’s death. Planck was not only
the father of Quantum Theory. He was also a man of profound moral and ethical values,
with far reaching philosophical views. Though he lived a life of public acclaim for his
discovery of the Blackbody radiation formula which bares his name, his personal life
was beset with tragedy. Yet, Planck never lost his deep faith and belief in a personal
God. He was admired by Einstein, not so much for his contributions to physics, but
rather, for the ideals which he embodied as a person. In this work, a brief synopsis is
provided on Planck, his life, and his philosophical writings. It is hoped that this will
serve as an invitation to revisit the philosophical works of the man who, more than any
other, helped set the course of early 20th century physics.

“Many kinds of men devote themselves to science, and not
all for the sake of science herself. There are some who come
into her temple because it offers them the opportunity to dis-
play their particular talents. To this class of men science is
a kind of sport in the practice of which they exult, just as an
athlete exults in the exercise of his muscular prowess. There
is another class of men who come into the temple to make an
offering of their brain pulp in the hope of securing a prof-
itable return. These men are scientists only by the chance of
some circumstance which offered itself when making a choice
of career. If the attending circumstance had been different,
they might have become politicians or captains of business.
Should an angel of God descend and drive from the temple
of science all those who belong to the categories I have men-
tioned, I fear the temple would be nearly emptied. But a few
worshippers would still remain — some from former times
and some from ours. To these latter belongs our Planck. And
that is why we love him. . .

. . . (Planck’s) work has given one of the most powerful
of all impulses to the progress of science. His ideas will be
effective as long as physical science lasts. And I hope that
the example which his personal life affords will not be less
effective with later generations of scientists.”

Albert Einstein, 1932

Biography

Max Planck, the father of quantum theory, was born on the
23rd of April 1858 in the town of Kiel, Germany [1–5]. His
father had been a professor of law in the same town, while his
paternal grandfather and great grandfather had been leading
Lutheran theologians at the University of Göttingen. In 1867,
when Planck reached the age of nine, his father received an
academic appointment at the University of Munich and the
Planck family relocated to this city. In Munich, he would at-

Fig. 1: Max Planck in his earlier years. AIP Emilio Segre Visual
Archives, W. F. Meggers Collection. Reproduced through permis-
sion.

tend the Maximillian Gymnasium and there gained his first
love for Physics and Mathematics. In 1874, while still only
16, he enrolled at the University of Munich to study Physics.
Beginning in 1877, he would spend one year at the University
of Berlin where he was taught by Gustav Robert Kirchhoff

and Hermann von Helmholtz, both of whom had been emi-
nent physicists of the period. He was impressed with both
of these men, but had little regard for the quality of their lec-
tures. During his studies, Planck took an early interest in ther-
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modynamics and immersed himself in Rudolf Clausius’ work
on the subject. He would receive his doctorate in physics in
1879 from the University of Munich at the age of 21. His
thesis was focused on the second law of thermodynamics.
In 1885, through the influence of his father, Max Planck re-
ceived an appointment as an associate professor of physics at
the University of Kiel. Later, he would present a paper on
thermodynamics that would result in an appointment for him
at the University of Berlin upon the death of Kirchoff in 1889.
Kirchhoff had been the chair of theoretical physics in Berlin
and Planck would become the only theoretical physicist on
the faculty. He would hold this chair until his retirement in
1927, having become a full professor in 1892 [1–5].

In 1913, Planck would offer Albert Einstein a professor-
ship in Berlin. The two of them, along with Planck’s stu-
dent, Professor Max von Laue, would remain close personal
friends and scientific colleagues even after Einstein departed
for Princeton. Rosenthal-Schneider [6] describes Planck as
gentle, reserved, unpretentious, noble-minded and warm-
hearted. He deeply loved mountain-climbing and music. He
might well have been a concert pianist rather than a theoret-
ical physicist, but he believed that he would do better as an
average physicist than as an average pianist [1, 6].

While in Berlin, Planck would turn his attention to the
emission of heat and light from solids. From these studies, his
famous equation would emerge and quantum theory, through
“the discovery of the elementary quantum of action”, would
be born [7]. Planck recognized the far reaching impact of his
discovery:

“(The essence of Quantum Physics) . . . consists in the fact
that it introduces a new and universal constant, namely the el-
ementary Quantum of Action. It was this constant which, like
a new and mysterious messenger from the real world, insisted
on turning up in every kind of measurement, and continued to
claim a place for itself. On the other hand, it seemed so in-
compatible with the traditional view of the universe provided
by Physics that it eventually destroyed the framework of this
older view. For a time it seemed that a complete collapse of
classical Physics was not beyond the bounds of possibility;
gradually, however, it appeared, as had been confidently ex-
pected by all who believed in the steady advance of science,
that the introduction of Quantum Theory led not to the de-
struction of Physics, but to a somewhat profound reconstruc-
tion, in the course of which the whole science was rendered
more universal. For if the Quantum of Action is assumed to be
infinitely small, Quantum Physics become merged with clas-
sical Physics. . . ” [8, p. 22–23].

Planck also believed that his equation could be applied to
all objects independent of the phases of matter:

“According to the Kirchhoff law this radiant energy is in-
dependent of the nature of the radiating substance and there-
fore has a universal significance” [9, p. 18].

Planck’s personal life would take a tragic turn after his
discovery of the quantum in 1900 [7]. In 1909, he would lose

Fig. 2: Max Planck, the 1930’s. AIP Emilio Segre Visual Archives.
Reproduced through permission.

his wife of 22 years. His oldest son, Karl, would be killed
in action at Verdun in 1916. In 1917, his daughter Margerite
would die in childbirth. In 1919, his second daughter Emma
would suffer the same fate. In the meantime, though the First
World War had just ended, Planck would win the 1918 Nobel
Prize in Physics [2–5].

Unfortunately however, Planck’s misfortunes continued.
His home would be demolished in an ally air raid in 1944.
Planck would later acknowledge gifts of food shipped from
Australia by his former student Iles Rosenthal-Schneider [6].
Beginning in the early 1930’s, Planck had expressed strong
private and public views against the Nazi regime. Little did
he realize at that time the price that he, and indeed much of
the free world, would have to pay for the curse of this regime.
Thus, in January 1945, his son Erwin was charged with an
attempt on Hitler’s life. Erwin was his only remaining child
from his first marriage. Once his son was charged, Planck and
von Laue tried to intervene before Heinrich Himmler, the sec-
ond most powerful man in Germany [4]. But upon his arrival
to Berlin, Hitler himself ordered the execution and immediate
hanging of Planck’s son. It is said that this execution robbed
Planck of much of his will to live. Then in August 1945, the
atomic bomb would be dropped on Hiroshima. Planck would
express concern for the fate of mankind over these develop-
ments [6]. Eventually, Planck would be taken by the allies
to Göttingen to live with his niece. He was accompanied by
his second wife and their son. He would die in Göttingen on
October 4, 1947 [1–5].
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Philosophy of life

As Planck began to age, he devoted much of his time to philo-
sophical works [1, 8, 9, 10]. These centered on the search
for an absolute truth and on other philosophical aspects of
Physics and Religion. Planck viewed science as the primary
means of extracting the absolute. Planck believed that it was
possible to move from the relative to the absolute. He thought
that the Theory of Relativity itself promoted the absolute by
quantifying in absolute terms the speed of light in a vacuum
and the amount of energy within an object at rest (E=mc2).

Planck saw the physical world as an objective reality and
its exploration as a search for truth. Philosophers have often
questioned physical reality, but men like Einstein and Planck
viewed the physical world as real and the pursuit of science as
forever intertwined with the search for truth [6]. These men
saw the search for truth as elevating humanity. In Planck’s
words:

“Science enhances the moral values of life, because it fur-
thers a love of truth and reverence — love of truth displaying
itself in the constant endeavor to arrive at more exact knowl-
edge of the world of mind and matter around us, and rever-
ence, because every advance in knowledge brings us face to
face with the mystery of our own being” [9, p. 122].

Thus, Planck had a deep love and respect for truthfulness.
He regarded it as a central human virtue and as the most im-
portant quality of the scientist:

“But truthfulness, this noblest of all human virtues, is
authoritative even here over a well-defined domain, within
which its moral commandment acquires an absolute mean-
ing, independent of all specific viewpoints. This is probing to
one’s own self, before one’s own conscience. Under no cir-
cumstances can there be in this domain the slightest moral
compromise, the slightest moral justification for the smallest
deviation. He who violates this commandment, perhaps in the
endeavor to gain some momentary worldly advantage, by de-
liberately and knowingly shutting his eyes to the proper eval-
uation of the true situation, is like a spendthrift who thought-
lessly squanders away his wealth, and who must inevitably
suffer, sooner or later, the grave consequences of his foolhar-
diness” [1, p. 79].

He saw his quest for truth and the absolute as a never
ending struggle from which he could take no rest:

“We cannot rest and sit down lest we rust and decay.
Health is maintained only through work. And as it is with
all life so it is with science. We are always struggling from
the relative to the absolute” [9, p. 151].

As he continued his works in search of truth and the ab-
solute, Planck was guided by his undying scientific faith:

“Anyone who has taken part in the building up of science
is well aware from personal experience that every endeavor
in this direction is guided by an unpretentious but essential
principle. This principle is faith — a faith which looks ahead”
[10, p. 121].

At the same time, Planck recognized that one could never
arrive at the absolute truth. This did not deter him:

“What will be the ultimate goal? . . . research in general
has a twofold aim — the effective domination of the world
of senses, and the complete understanding of the real world;
and that both these aims are in principle unattainable. But it
would be a mistake to be discouraged on this account. Both
our theoretical and practical tangible results are too great
to warrant discouragement; and every day adds to them. In-
deed, there is perhaps some justification for seeing in the very
fact that this goal is unattainable, and the struggle unending,
a blessing for the human mind in its search after knowledge.
For it is in this way that its two noblest impulses — enthu-
siasm and reverence — are preserved and inspired anew”
[8, p. 61].

For Planck, the understanding of physical laws would oc-
cupy his entire adult life. He would write:

“The laws of Physics have no consideration for the human
senses; they depend on the facts, and not upon the obvious-
ness of the facts” [8, p. 73].

When he formulated his now famous Law of Thermal Ra-
diation [7], he must have encountered tremendous opposition
for what he was proposing went well beyond the senses:

“An important scientific innovation rarely makes its way
by gradually winning over and converting its opponents: it
rarely happens that Saul become Paul. What does happen
is that its opponents gradually die out and that the growing
generation is familiarized with the idea from the beginning:
another instance of the fact that the future lies with youth”
[10, p. 97].

One can but imagine the courage and scientific faith he
must have held, but Planck himself summarizes well for us:

“. . . in science as elsewhere fortune favors the brave”
[10, p. 112].

According to Thomas Braun “Planck was a man of deeply
religious outlook. His scientist’s faith in the lawfulness of na-
ture was inseparable from his faith in God” [6, p. 23]. Planck
believed that “man needs science for knowledge and religion
for his actions in daily life” [6, p. 106]. For Planck: “religion
and natural science are fighting a joint battle in an incessant,
never relaxing crusade against scepticism and against dog-
matism, against disbelief and against superstition. . . ”
[1, p. 186 –187].

Yet, Planck made a clear distinction between science and
religion stating that:

“Religion belongs to that realm that is inviolable before
the laws of causation and therefore closed to science”
[9, p. 121].

Planck seemed to marvel at the mystery of scientific dis-
covery in a manner that most clearly conveys his religious
philosophy:

“In fact, how pitifully small, how powerless we human
beings must appear to ourselves if we stop to think that the
planet Earth on which we live our lives is just a minute, in-
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finitesimal mote of dust; on the other hand how peculiar it
must seem that we, tiny creatures on a tiny planet, are nev-
ertheless capable of knowing though not the essence at least
the existence and the dimensions of the basic building blocks
of the entire great Cosmos!” [1, p. 174].

Perhaps there is no more suitable way of closing a work
on Max Planck than to recall the memorial address delivered
by Professor Max von Laue at the Albani Church in Göttin-
gen on October 7, 1947 [1, p. 7–10]. Max von Laue was a
colleague of Max Planck at the University of Berlin. In 1914,
he had received the Nobel Prize in Physics for his study of the
diffraction of X-rays by crystals.

My Fellow Mourners:
We stand at the bier of a man who lived to be almost four-

score-and-ten. Ninety years are a long life, and these par-
ticular ninety years were extraordinarily rich in experiences.
Max Planck would remember, even in his old age, the sight
of the Prussian and Austrian troops marching into his na-
tive town of Kiel. The birth and meteoric ascent of the Ger-
man Empire occurred during his lifetime, and so did its total
eclipse and ghastly disaster. These events had a most pro-
found effect on Planck in his person, too. His eldest son, Karl,
died in action at Verdun in 1916. In the Second World War, his
house went up in flames during an air raid. His library, col-
lected throughout a whole long lifetime, disappeared, no one
knows where, and the most terrible blow of all fell when his
second son, Erwin, lost his life in the rule of terror in January,
1945. While on a lecture tour, Max Planck, himself, was an
eye-witness of the destruction of Kassel, and was buried in an
air raid shelter for several hours. In the middle of May, 1945,
the Americans sent a car to his estate of Rogatz on the Elbe,
then a theatre of war, to take him to Göttingen. Now we are
taking him to his final resting-place.

In the field of science, too, Planck’s lifetime was an epoch
of deep-reaching changes. The physical science of our days
shows an aspect totally different from that of 1875, when
Planck began to devote himself to it — and Max Planck is
entitled to the lion’s share in the credit for these changes.
And what a wonderous story his life was! Just think — boy
of seventeen, just graduated from high school, he decided to
take up a science which even its most authoritative repre-
sentative who he could consult, described as one of mighty
meager prospects. As a student, he chose a certain branch
of science, for which even its neighbor sciences had but lit-
tle regard — and even within this particular branch a highly
specialized field, in which literally nobody at all had any in-
terest whatever. His first scientific papers were not read by
Helmholtz, Kirchhoff and Clausius, the very men who would
have found it easiest to appreciate them. Yet, he continued on
his way, obeying an inner call, until he came face to face with
a problem which many others had tried and failed to solve, a
problem for which the very path taken by him turned out to
have been the best preparation. Thus, he was able to recog-
nize and formulate, from measurements of radiations, the law

which today bears and immortalizes his name for all times.
He announced it before the Berlin Physical Society on Octo-
ber 19, 1900. To be sure, the theoretical substantiation of it
made it necessary for him to reconsider his views and to fall
back on methods of the atom theory, which he had been wont
to regard with certain doubts, And beyond that, he had to ven-
ture a hypothesis, the audacity of which was not clear at first,
to its full extent, to anybody, not even him. But on December
14, 1900, again before the German Physical Society, he was
able to present the theoretic deduction of the law of radiation.
This was the birthday of quantum theory. This achievement
will perpetuate his name forever.

Max von Laue, 1947
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